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Abstract

The study of protein-protein interactions (PPI) is critically important within the field

of Molecular Biology, as proteins facilitate key organismal functions including the main-

tenance of both cellular structure and function. Current experimental methods for elu-

cidating PPIs are greatly hindered by large operating costs, lengthy wait times, as well

as low accuracy. The recent development of computational PPI predicting techniques

has worked to address many of these issues. Despite this, many of these methods uti-

lize over-engineered features and naive learning algorithms. With the recent advances in

Machine Learning and Artificial Intelligence, we attempt to view this problem through

a novel, deep learning perspective. We propose a siamese, convolutional neural-network

architecture for predicting protein-protein interactions using protein signatures as fea-

ture vectors. In comparison to four leading computational methods, we find that our

results are comparable to and, in many cases, surpass the results of these methods. The

emphasis of the discussion is to show that there is still much room for improvement in

the area of PPI prediction using modern deep learning techniques.

Keywords: Machine Learning, Protein-Protein Interactions, PPI, Protein Signature,

Deep Neural Network
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Chapter 1

Introduction

Proteins are vital molecules in organisms, as they determine a majority of cellular struc-

ture and function [51]. It was widely thought that analyzing only DNA would lead to

an understanding of an organism, however a great portion of information in DNA is

shared between species. For example, over 90% of active human genes are similar to

those of fruit flies and worms [50], so there must be more that is responsible for the vast

differences and complexities in organisms. The current understanding is that it is the

interactions between proteins that account for an organism’s complexity. Thus, studying

the interactions within the proteome (entire set of proteins expressed by an organism)

can give us deeper insights into the structure and function of biological components of

such species and what makes them so different. Much work has been done in predicting

protein-protein interactions. Broadly, these can be divided into two types of methods -

experimental and computational.

The two popular experimental methods for determining protein-protein interactions

(PPIs) are Yeast two-hybrid (Y2H) [14] and Tandem Affinity Purification (TAP) [48].

Both of these methods require experiments, which are often time and labour intensive

and come with a high associated cost. Furthermore, they have been found to have high

false negative and false positive rates [11].

1



Chapter 1. Introduction 2

Due to this, experimental methods have been devised in an attempt to increase ac-

curacy while minimizing time and cost.

Computational methods can roughly be grouped into six types of approaches [23] -

genome based, evolutionary relationships, protein structure based, domain based, net-

work analysis, and primary sequence based [62]. The biggest issue is that many of these

large-network based approaches take too long to compute the interactome (sum total of

all PPIs in an organism) of species. Primary sequence based approaches, with machine

learning, have become more popular in recent times as they generally take less time to

run. However, these methods have their own problems, namely that many of them make

(often blind) assumptions about how proteins interact and how best to compute feature

vectors for proteins.

In this thesis, we compare against four primary sequence based, computational meth-

ods, and address some of their shortcomings. Martin et al. [36] were one of the first to use

machine learning. They use Support Vector Machines (SVMs) to predict interactions,

with protein feature vectors defined as Protein Signatures. PIPE [46] computes a predic-

tion matrix based on similarities between proteins. Ding et al. [10] use an ensemble of

machine learning methods and define protein feature vectors using multivariate, mutual

information. SPRINT [33] also computes a prediction matrix based on similarities.

This thesis proposes a new deep learning architecture for predicting human PPIs

called SigNet. The model is a siamese, convolutional neural-network. We use Martin et

al.’s protein signature as protein feature vectors (hence the name SigNet). We test on

seven different datasets and find that, depending on the dataset, our method is either

comparable to or better than the four aforementioned methods. We also define a consen-

sus method, combining SigNet and SPRINT, and find that its predictive ability is better

than all previous methods on all datasets.

The thesis is outlined as follows. Chapter 2 is a primer on the relevant deep learning

methods used in our model. Chapter 3 is a primer on the relevant biology and PPI



Chapter 1. Introduction 3

predictions, as well as a brief description of current experimental and computational

methods, and considerations for dataset curation. Chapter 4 is a detailed description

of SigNet and the training procedure. Chapter 5 is a discussion and comparison of the

methods. Finally, we summarize in Chapter 6 and outline possible future research.



Chapter 2

Machine Learning Techniques and

Methodologies

This chapter explains the prerequisite machine learning background relevant to our

model. A bottom up approach is used to explain how to construct deep learning ar-

chitectures and specifically the types of methods used in our model. Additional tools for

minimizing loss and optimizing training for time and memory are also described.

2.1 Deep Neural Networks

From a high level, all computational tasks (any task done by a computer) can be thought

of as performing a function, or transformation, on some input and producing an output.

Traditional algorithmic techniques require us to create handcrafted functions with specific

rules and parameters for a given task. Machine learning algorithms change this paradigm

in that what is programmed is not the function, but a procedure that learns a function

which can map given inputs to outputs. This idea is expressed in Figure 2.1.

In this section we build an understanding of what deep neural networks are and how

they can be used as learning machines.

4



Chapter 2. Machine Learning Techniques and Methodologies 5

Figure 2.1: Machine Learning - an overview

2.1.1 Logistic Regression

Linear Regression

One of the simplest functions is a linear function. i.e. given some input x with com-

ponents x1, x2 . . . xi, and corresponding output y, a simple function consists of assigning

a weight θi to each xi. The output of this function is a hypothesis and can be written in

compact, vector notation as:

hθ(x) = θTx (2.1)

Of course, this hypothesis function may not accurately predict the true y. Thus,

we assign a cost which tells us how well the hypothesis did. The following is the least

squares cost for m training samples:

J(θ) = 1
2

m∑
j=1

(hθ(x(j))− y(j))2 (2.2)

Ideally, we wish to choose the value for θ which minimizes the cost. One such pro-

cedure for ‘learning’ these parameters is gradient descent. We start with an initial

guess for θ and use the gradient of the cost, with respect to θ, to update θ such that the

cost moves in the direction of steepest descent [41]. For a single training sample, this is

defined as:
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θj = θj − α
∂

∂θj
J(θ) (2.3)

Where α represents a learning rate, or the speed at which the cost converges to its

minimum. This equation is the heart of the learning procedure.

Logistic Regression

Logistic regression is used in the case where the output of the function we wish to

approximate is not continuous but a discrete label, y ∈ {0, 1}. It is nearly identical to

linear regression, with the only difference being the definition of the hypothesis.

hθ(x) = g(θTx) = 1
1 + e−θT x

(2.4)

Here, g(x) is the sigmoid function, also known as the logistic function. It is visualized

in Figure 2.2.

Figure 2.2: The Sigmoid Function. From deeplearning.net

The range of this function is bounded by the range (0, 1), where large values of x

will approach 1 and small values will approach 0. We use this continuous function to

approximate the discrete label we wish to predict (0 or 1), since a continuous function is

http://deeplearning.net/software/theano/tutorial/examples.html
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differentiable, whereas a discrete function is not.

A visual overview of logistic regression is shown in Figure 2.3.

Figure 2.3: Logistic Regression

This method of being given many training samples with their correct labels and

learning an approximate function which can map the inputs to the outputs is known as

supervised machine learning [40].

2.1.2 Feed Forward Neural Networks

One of the earliest formulations of an artificial neural network was proposed by Mulloch

and Pitts in 1943 [37]. Called the perceptron, this was an attempt at modelling human

neurons. Each neuron took real values as input and if the sum was greater than some

threshold the neuron would ‘activate’ and send a signal to the next neuron. Although this

idea of ‘summing over inputs’ sounds similar to previously discussed ideas, the parameters

of a perceptron can not be optimized using partial derivatives since the functions are not

continuous (they are hard-thresholded values). By adding a logistic unit to each of

the neurons, the model becomes amenable to differentiation techniques. Making this

modification brings us to the modern Feed-Forward Neural Network. It can be seen as a

combination of logistic regression units that feed into other such units (Figure 2.4).

Since the final cost is a function of the weights, θ, we can use differentiation, specifi-

cally the gradient descent technique, to optimize the weights of the network. The method
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Figure 2.4: Feed-Forward Neural Network. From coderoncode.com

of finding the small changes in θ (errors) for each layer that will push the cost towards

its minimum is known as backpropagation [52].

2.1.3 Convolutional Neural Networks

Introduced by LeCunn et al. in 1999 [30], convolutional neural networks have recently

gained significant popularity in image processing tasks ever since they were used to win

the ImageNet competition in 2012 by a significant margin [29]. This work is regarded as

one of the most influential papers in deep learning, and many advances have been made

in convolutional neural networks since then [54, 57].

Intuitively, we can understand convolutional neural networks by the same principle

that underlies convolutional kernels in computer vision. In this context, a convolution is

a real-valued matrix that acts as a sliding window over an image. That is, each pixel in

an image is transformed by adding it to its local neighbours, weighted by the values in

this convolution kernel. We can use image convolutions to perform functions of blurring,

sharpening, edge detection, and more [35, 60]. An example of a convolution kernel and

its corresponding transformation is shown in Figure 2.5.

Convolutional Layers

A convolutional layer is a type of neural network layer where each neuron is locally

connected, instead of fully connected (as in feed-forward networks). For a 2D image input,

we define the width and height of a convolution layer which will act on local regions of

http://coderoncode.com/machine-learning/2017/03/26/neural-networks-without-a-phd-part2.html
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Figure 2.5: Edge Detection Convolution Kernel. From timdettmers.com

the input, and slide over all such regions. It is important to point out that weights are

shared as this layer slides across regions. Thus, we can think of this layer as a convolution

kernel or filter, the weights of which will be learned through backpropagation. We may

also choose to learn many such filters at the same time, this gives the convolutional layer

depth. The output of a convolutional layer will be a new image with given depth that

has been transformed through these filters. A visual representation of this is shown in

Figure 2.6.

Figure 2.6: Convolutional Layer [24]

In addition to width, height and depth a few other considerations need to be made

when implementing convolutional layers.

The stride defines how many pixels the filter will ‘jump’ when sliding over the input.

For example, a stride of 1 moves 1 pixel at a time, while a stride of 3 will skip 2 pixels

after every local region. Larger strides produce smaller output volumes.

Due to how a convolutional layer acts on input, the edges of an image may be cut off.

http://timdettmers.com/2015/03/26/convolution-deep-learning/
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We can choose to pad the edges of the input if we wish to preserve the original width

and height.

Finally, an activation function is often applied after a convolution layer, similar to

how we apply the sigmoid function in each layer of a feed-forward network. A function

which has worked well in practice for convolutional architectures is the Rectified Linear

Unit (ReLU) [17]. This is explained in more detail towards the end of this chapter.

Pooling Layers

A common type of layer used after convolutional layers is a pooling layer [24]. Similar

to convolutions, pooling layers also act on local regions, however their function is to

reduce the spatial size of the input in order to decrease the number of parameters that

need to be optimized. These layers can be thought of as performing a downsampling

operation. Common types of pooling include max pooling, where the maximum of

each local region is used (Figure 2.7), and average pooling, where the average is taken.

Figure 2.7: Max Padding [24]

Fully Connected Layers

The final piece to a ConvNet architecture is the fully connected layer. These are often

the last layers in the network, These are the traditional feed-forward network layers where

every neuron in the input is connected to every neuron in the output. If we view the

convolutional and pooling layers as filters on the input, then the fully connected layers

can be thought of as ‘summarizing’ the information in the filtered output and producing a

final prediction. It is hypothesised that this successive filtering on local regions is similar
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to how the human visual system works [19]. An example of a complete ConvNet used

for image prediction is shown in Figure 2.8.

Figure 2.8: Convolutional Neural Network [24]

ConvNets can also be modified to work on 1-dimensional inputs (such as text), as

well as 3-dimensional data (fMRI datasets).

2.1.4 Siamese Neural Networks

Siamese Neural Networks [6] are useful when training samples consist of two or more

inputs. Siamese networks have shared weights similar to ConvNets, however instead of

local regions, weights are shared between entire networks which operate on the respective

inputs. More specifically, given two inputs, the same network will operate on both

of the inputs, producing two outputs. These outputs are then combined (either by

concatenation or another operation) and fed through more layers producing a prediction

(Figure 2.9). The weights of this architecture can be optimized using backpropagation.

At a high level, siamese networks can be seen as transforming the inputs in some

meaningful way such that a ‘distance metric’, or relationship, between them can be

learned. These networks have been successful in various language tasks such as modelling

question-answer pairs [61].
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Figure 2.9: Siamese Neural Network [6]

2.2 Optimizing Training and Testing

With the theoretical foundations of neural networks in place, this chapter will outline

some practical implementation techniques which need to be considered when optimizing

for run time and performance.

Dropout Layers

One issue when training neural network models is that they are very easy to overfit.

That is, the network may learn a function that perfectly fits the data, but does not

generalize well (Figure 2.10). Adding a dropout layer [56] to the network is one way of

tackling this. The dropout layer randomly ‘drops’ (does not use) a proportion of the

neurons in a layer during training. This has the effect of forcing the other neurons to

learn redundant relationships, and therefore a more general function.
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Figure 2.10: Overfitting. From mlwiki.org

Activation Functions

Similar to the sigmoid function, various other activation functions may also be used

in neural networks, such as the hyperbolic tangent (tanh) or the rectified linear unit

(ReLU). In practice, ReLUs have been shown to be significantly better for optimizing

[15], as well as faster since they are easy to differentiate. A graph of this function is

shown in Figure 2.11.

Figure 2.11: Rectified Linear Unit. From int8.io

Optimizers

Backpropagation is a method for finding the gradients of the weights, however it does

not actually optimize the weights. Other methods, such as gradient descent, need to be

used to actually update the weights according to their gradient. Various techniques have

been proposed which work on the principles of momentum [47, 39] and adaptive learning

http://mlwiki.org/index.php/Overfitting
http://int8.io/neural-networks-in-julia-hyperbolic-tangent-and-relu/
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rates [63] (changing learning rate according to how steep the gradient is). ADAM [27] is

a recent method based on both of these principles which has shown be to very effective

in practice.

Losses

One of the most important areas to consider when designing a learning-based algo-

rithm is the loss function, since this is the function that is actually being optimized

during the learning process. The least-squares cost described above is a simple loss

function which does a descent job at comparing the hypothesis to the actual y values.

However, for classification, it gives too much weight to incorrectly labelled samples. A

better loss function for this taks is the cross-entropy loss. For N training sampels, the

avarage cross-entropy loss is defined as:

1
N

N∑
i=1

[yi log h(xi) + (1− yi) log (1− h(xi))] (2.5)

Where h is the hypothesis function.



Chapter 3

PPI Predictions

This chapter explains the prerequisite molecular biology background relevant to the task

of predicting protein-protein interactions (PPIs). A brief description of previous experi-

mental and computational methods is also given. Finally, four state-of-the-art methods,

which we compare our model against, are described in detail.

3.1 Biological Background

It is repeated often that DNA (deoxyribonucleic acid) is the ‘code’ of life - that, in the

same way computer code determines the function of the computer, DNA can determine

the structure and function of an organism. What is not obvious, however, is why this

relationship exists.

DNA is a type of macromolecule known as a nucleic acid; it is a molecule found

in almost every cell of an organism. Practically, DNA can be thought of as a string

of simpler units called nucleotides. The four base nucleotides which comprise DNA are

Thymine (T), Adenine (A), Guanine (G) and Cytosine (C). When a cell divides, The

strands of DNA also replicate themselves. Thus, every cell contains a nearly identical

copy. Another function of DNA is that certain parts of it can be transcribed into another

type of nucleic acid known as RNA (Ribonucleic acid). This is almost identical to the

15
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DNA with the main difference being that Uracil (U) replaces Thymine. The RNA string

is then ‘read’ by another type of molecule in a procedure known as translation. In this

process, every codon (set of three consecutive nucleotides) gets translated into a type of

molecule called an amino acid. The resulting string of amino acids, of which there are

twenty types, eventually folds into a 3-dimensional structure called a protein.

Figure 3.1: Central Dogma of Biology. From thinglink.com

The protein is another type of macromolecule which can be thought of as the ‘func-

tional’ unit of the cell. These molecules are responsible for activities such as cell signaling,

metabolic processes, transporting molecules, and maintaining structure. Many of these

processes require proteins to interact with other proteins. It is widely accepted that

these protein-protein interactions (PPIs) are responsible for an organism’s overall form

and function [32]. This procedure, from DNA to RNA to Protein is known as the ‘Central

Dogma of Biology’ (Figure 3.1) and is the reason we consider DNA as the biological ‘code’

of the organism - because it contains the ‘information’ that is interpreted as proteins,

which are responsible for the actual physical processes of the cell. The portion of the

https://www.thinglink.com/scene/746517593673695233
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DNA that is expressed as a protein is called a gene. The sum of all such regions in an

organism is called a genome and the sum of all expressed proteins is called the proteome

of the organism.

From this perspective, it is clear why studying protein-protein interactions is crucial

to understanding the biology of organisms. Figuring out the overall interaction network

between proteins in an organism can give us valuable insights about the molecular com-

positions of proteins, how and why they interact, and as a result, how the organism

functions as a whole. Due to the importance of this work, there is a growing demand

for fast, cheap and accurate PPI prediction methods. We discuss some of the current

methods in the following sections.

3.2 Previous Prediction Methods

Broadly speaking, there are two ways of determining protein-protein interactions, exper-

imentally and computationally.

3.2.1 Experimental Approaches

There are two major experimental approaches for finding PPIs, the yeast two-hybrid

(Y2H) approach and tandem affinity purification (TAP).

Yeast Two-Hyrid (Y2H)

Discovered by Fields and Song in 1989 [14], the yeast two-hybrid screening methods

detects whether proteins interact by seeing whether they activate a specific, reporter,

gene. The premise is that a DNA-binding molecule, called the DNA Binding Domain

(DBD), is attached to one protein, and another DNA-binding molecule, called the Acti-

vating Domain (AD) is attached to the other protein. When both of these molecules bind

to the activating region of a specific gene, that gene is expressed and can be detected.
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Since these domains are attached to our respective proteins, the ‘reporter’ gene will only

be activated if the proteins interact.

Although it is popular, the Y2H method has the major drawback that it can only

detect protein interaction which occur inside the nucleus of the cell (a compartment that

houses the DNA in cells of more complex organisms). Secondly, this method can only

detect one interaction at a time, and has been shown to have high false negative and

false positive rates [11, 12].

Tandem affinity Purification (TAP)

Invented by Rigaut et al. in 1999 [49], Tandem Affinity Purification has the advantage

that it can detect interacting domains. The main idea is that tags are attached to a

protein of interest. These proteins are then extracted from the cell using beads which

contain molecules that bind to the tags. After the beads are washed (to remove weakly

bound molecules), a purification step removes the protein (and its interacting proteins)

from the beads. A second purification step removes the tags from the proteins. The

interacting complexes can then be identified and analyzed using mass spectrometry.

The biggest drawback of the TAP method is that the tags which are attached to the

proteins might actually change their chemistry and how they interact with proteins.

Both of these experimental methods are standard techniques for finding PPIs but

suffer from high costs, high false positive and false negative rates, and various other

technical limitations [46]. The following section describes computational approaches that

have been developed to address some of these issues.

3.2.2 Computational Approaches

The computational methods for predicting PPIs can be grouped into six types of ap-

proaches [23].
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The genomic approach works on the assumption that proteins whose genes are in

close proximity to each other are predicted to interact with each other [62].

The phylogenetic approach observes the evolution profile of the genes of proteins.

it is predicted that proteins that interact will have similar evolutionary histories (in order

to preserve their interactions) [62].

Analyzing protein structures via x-ray crystallography or NMR spectroscopy can

give us insight into specific domains. If proteins contain similar domains, it is possible

they function in similar contexts and may interact. A domain is a subsequence (or set of

subsequences) in a protein string which is has structural or functional significance (i.e.

may be responsible for interacting with domains of other proteins).

By the same logic, the domain based approach studies domains between proteins,

but not necessarily the 3D structure. If two proteins have domains that are similar to

two other proteins which interact, we can predict that they will also interact [62].

The network analysis approach creates an interaction graph of all the known

interactions in an organism. Each protein is a node in the graph, and interactions are

represented as edges between the nodes. Small cliques, or sub-graphs, are identified in

this graph and missing edges between proteins can be predicted based on their context

within the neighbourhood [62].

Finally, the primary sequence approach works on the hypothesis that the structure

and function of a protein is completely determined by its primary sequence of amino acids.

Thus, this approach analyzes only the primary sequence of proteins and may employ

various string algorithms, or machine learning techniques, to predict which proteins are

good candidates for interactions [62].

The hypothesis that underlies the primary sequence approach is the focus of this

thesis. If a primary sequence is all that is required to create a protein, then it is assumed

that a computational approach should be able figure out a similar mechanism by relying
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on the same information.

To frame this problem more concretely, we will view a protein as a string of characters,

where the cardinality of the character set is twenty (20 possible amino acids). From a

computational perspective it is a classification problem; the algorithms should take two

protein strings as input, and output a binary label indicating whether the two proteins

interact or not.

The remainder of this chapter outlines four methods for predicting PPIs using primary

sequence. We will compare the results of our model with these methods.

Martin et. al (2005)

The method proposed by Martin et. al [36] was one of the very first methods for PPI

prediction using primary sequence. The basic idea is to represent proteins as Signatures

[59] and use a Support Vector Machine (SVM) [58] to build a predictive model.

One of the constraints of classical machine learning methods is that inputs have

to be represented as meaningful, fixed-length, feature vectors. Martin et al. use the

protein signature as their fixed-length representation. The protein signature can be

defined as s(A) = ∑
i σizi, where A is the protein, zi is a basis vector in the signature

space RN , and σi is the count of zi. A signature consists of an amino acid and its two

neighbours, the signature space is all the possible signatures, and the protein signature

is a vector representing the counts of all the signatures in a protein. For example,

s(LVMTTM) = V (LM) +M(TV ) + 2T (MT ).

It was found experimentally that a signature of three nucleotide bases works better

than other sizes. The second contribution of this paper is the usage of a kernel function

for the SVM. Practically, the kernel can be thought of as a ‘similarity metric’ used by

the SVM to better separate positive and negative training samples. They borrow from

the string kernel developed by Leslie et al. [31] for use with their signature vector.

The one issue, however, is that the input in this case is a pair of vectors, instead of a
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single vector. To resolve this issue, Martin et al. define a kernel for a signature product,

K((A,B), (C,D)) = (s(A)⊗ s(B)) · (s(C)⊗ s(D)). They then prove that this is actually

equivalent to k(A,C)k(B,D), effectively bringing the computational search space down

from RN2 to RN . Finally, the product is normalized by dividing by the vector magnitudes,√
k(A,A)k(B,B).

Martin et al.’s method has been shown to be very effective. Although it is not stated

in their paper, their method is very similar to doing a cosine similarity metric on a bag-of-

words model [9], which is a common technique often used in natural language processing

tasks.

Ding et. al (2005)

The method of Ding et al [10] also converts each protein pair into a fixed-length

feature vector, but uses a random forest classifier [20] for their classification instead of an

SVM. The feature vector is defined as the concatenation of two types of feature vectors.

The first is created using the multivariate mutual information of each set of 3 amino

acids. Secondly, they use the Normalized Moreau-Broto Autocorrelation (NMBAC) of

the protein.

Roughly speaking, the multivariate mutual information is a measure of the amount

of entropy, or information, contained within a random variable, as it ‘intersects’ with

multiple other random variables. To use this method, Ding et al. first categorize each

amino acid into 7 groups based on various properties. Then they consider each set of 3

amino acids as a ‘variable’ for which they calculate the MMI. For 3 amino acids, a, b,

and c this is defined as:

I(a, b, c) = I(a, b)− I(a, b|c) (3.1)

In the equation above, I(a, b) and I(a, b|c) are defined as:
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I(a, b) = f(a, b)ln
(
f(a, b)
f(a)f(b)

)
(3.2)

I(a, b|c) = H(a|c)−H(a|b, c) (3.3)

Where f(a) is a measure of category a appearing in the protein, and H is a measure

of conditional entropies as follows:

H(a|c) = −f(a|c)ln(f(a|c)) (3.4)

H(a|b, c) = −f(a|b, c)ln(f(a|b, c)) (3.5)

Calculating the MMI for each 3-gram, 2-gram, and individual amino acid categories

gives a feature vector of size 119, or 238 when concatenating the vectors of two proteins.

Similar to the MMI method, Ding et al. categorize each amino acid into 6 types based

on physiochemical properties before performing autocorrelation. Informally, autocorre-

lation is a measure of similarity between a signal and a given ‘lag’ of the same signal (or

protein in our case) as a function of the lag. Ding et al. perform autocorrelation with

30 different lags for each of the 6 types of categorizations of amino acids, and add the

frequency of each of the 20 amino acids, for a total feature vector of size 200, or 400 when

concatenating the two proteins.

Finally, the MMI and autocorrelation feature vectors are concatenated for a total of

638 features. This feature vector is then classified using a random forest classifier.

PIPE

Proposed by Pitre et al. in 2006 [46, 44, 45], PIPE is another widely known method

for PPI prediction. Unlike previously described algorithms, it does not use machine
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learning, rather it exploits the similarity of protein regions between interacting pairs to

make predictions.

The first stage in PIPE is the creation of an interaction network - all of the known

interactions (from PPI databases) are mapped onto a graph. In the second stage each

protein pair, which does not interact, is considered. If regions in the proteins are found

to be similar to regions in two other proteins which do interact then those regions of the

proteins are said to interact. More concretely, for each non-interacting pair A and B and

each interacting pair V and W a sliding window of size twenty is used across all proteins.

For each region ai in A, bj in B, vm in V , and wn in W , if ai is similar to vm, and bj

is similar to wn, a score is increased for those regions of A and B. To keep track of all

the scores a matrix can be used, such that location (i, j) in the matrix stores the score

of regions ai and bj. Finally, if there is a region in the matrix with a high score, above

some threshold, then that region is predicted to interact.

PIPE2 [44] and PIPE3 [45] were later introduced with improvements to sensitivity

values, as well as a parallel implementation to optimize run time. With the improvements,

PIPE will take approximately 3 months to compute the entire human interactome.

SPRINT

SPRINT [33] is a relatively new algorithm for PPI prediction that works on a principle

similar to that of PIPE - subsequence similarities between proteins are used to predict

which subsequences of a proteins, and thus which proteins, will interact. However, many

improvements are made which leads to a better algorithm.

The first improvement is that SPRINT uses spaced seeds to perform matching between

subsequences. Roughly speaking, a spaced seed relaxes the constraint that all characters

between two strings must match for them to be considered a match, instead it is a mask

that defines certain locations which should match. For example, a seed of 1101 means

that the first, second and last positions between two 4-character strings should match for
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them to be a ‘match’. This technique has been shown to lead to more accurate matches

in strings of biological nature (DNA or protein sequences). SPRINT uses an efficient

algorithm, SpEED [22], to quickly find multiple seeds which will be used for subsequence

matches.

The second improvement is the introduction of a hash table which maps subsequence

of proteins to their locations within the protein. This allows them to match similar sec-

tions of proteins in constant time, rather than searching all subsequences of all proteins,

for every section of a protein. Finally, SPRINT uses the BLOSUM80 substitution matrix

[18] to more accurately score matches between amino acids of subsequences.

Similar to PIPE, a PPI prediction is then made if sections of proteins are similar to

sections of other proteins which interact.

3.3 Datasets

There are a number of comprehensive datasets available containing known interactions

between proteins in organisms. We find that many methods that attempt to use these

datasets for PPI prediction have very different ways of processing the data, filtering PPIs,

and structuring positive and negative test sets. Furthermore, many of these methods do

not even use the same datasets. For this reason, it is often difficult to compare methods

with each other. One of the earliest works that attempted a comparative analysis between

PPI methods was by Park in 2009 [42]. He found that methods which had good results

in their paper, such as those of Shen et al. [53] and Guo et al. [16], did not actually

perform that well when compared to other methods, such as those of Martin et al. [36]

and PIPE [46] on the same dataset.

Another major issue was found by Park and Marcotte [43] when they noticed that the

task of PPI prediction is slightly different from typical classification problems because the
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Figure 3.2: Flaws in Evaluation [43]

types of test samples can vary greatly. This is an especially important issue when using

machine learning techniques. As shown in Figure 3.2, Park and Marcotte noticed that

there can be 3 different types of test samples. When predicting the interaction between

two proteins it is possible that both proteins were also in the training set (but in different

interactions), they label this type C1. It is also possible that one protein was seen in the

training set but not the other - this is type C2. Finally, type C3 is when neither protein

appeared in the training set.

For these reasons, we consider the four aforementioned methods as their implemen-

tations are available and we can compare them using shared datasets. We test all of the

methods on 7 different datasets, splitting each of their test sets into the classes C1, C2

and C3. This is outlined in more detail in later sections.
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SigNet

In this section, we describe our method of preparing proteins as protein signatures and

outline a novel neural network architecture, called SigNet, for PPI prediction. We also

describe methods of implementation and training.

4.1 Protein Signature

Majority of neural network models require fixed-length feature vectors as inputs. Since

proteins are represented as variable length strings (primary amino acid sequence), we

use Martin et al.’s definition of a protein signature to prepare proteins as fixed-length

vectors.

As described in Chapter 3, the protein signature is a vector representing the counts

of individual amino acid signatures in a protein. A signature is defined as an amino acid

and its neighbours. In our case, we use the 2 adjacent neighbours, thus each signature

represents a window of 3 amino acids. For example, the individual signatures of the

protein LVMTTM would be V (LM), M(TV ) and T (MT ), with counts of 1, 1 and 2

respectively. Since there are 20 possible amino acids, each with 210 different neighbour

pairs, the size of our feature vector will be 4,200. For some datasets, there are 23 possible

characters (characters representing unknown amino acids), in this case the vector size

26
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will be 6,348.

We impose the additional constraint that the signatures must be ordered in alpha-

betical order when representing a protein signature vector. This constraint allows us to

design a more efficient network by exploiting the fact that similar signatures will have

similar counts in a protein. For example, if signature M(TV ) shows up many times in a

protein, then there is a good chance that M(TM) or M(TT ) also appear many times.

This was verified empirically by comparing the protein signatures of many proteins.

Figure 4.1: Protein Signature for Q9NZR2

Figure 4.1 shows a histogram of the 6348 possible signatures in protein Q9NZR2 when

ordered alphabetically, compared with the same histogram when signatures are shuffled.

It is clear that alphabetical ordering results in a a vector with local similarities. This

structure make our feature vector amenable to convolutional techniques, thus allowing

us to create a more efficient network with less parameters to optimize.

4.2 Model Architecture

SigNet is a siamese convolutional neural-network. An overview of its architecture is

shown in Figure 4.2.

Each protein signature vector first goes through two 1D convolutional layers. Each
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Figure 4.2: SigNet Architecture

of these layers has a kernel size of 3 and a depth (number of filters) of 64. A 1D max

pooling operation is then applied with a pool size of 2. A dropout layer is added at this

point so that convolutional filters generalize well. A ReLU activation function is used

between each of these layers. This pattern of conv-pool-dropout is repeated once more,

with the convolutional layers having depth 128. Finally, the output passes through a fully

connected layer with 1024 neurons. The purpose of this is to ‘summarize’ the protein

signature in some smaller latent vector space.

The entire model described above is applied to the signatures of both proteins in the

input, with the weights being shared. The output vectors are then concatenated into a

single vector. This passes through two more fully connected layers of size 1024 and ReLU

activations.

Finally, the output is compared to the real output value using the cross-entropy loss.
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4.3 Implementation

Training and Testing

The ADAM optimizer [27] is used to minimize the loss with an initial learning rate

of 0.001. 5 epochs of training are performed for each dataset, with a batch size of 128.

Software and Hardware

SigNet was implemented with Python 2.7.11, using the TensorFlow library [1] for

construction of the neural network architecture. Keras [8] was used as a frontend library

for simplifying many of the TensorFlow operations. All testing was done on Ubuntu

16.04 LTS.

An NVIDIA GTX 1080 graphics card was used for the computation required during

training and testing. Additionally, we use 32gb of RAM and an Intel i7-5930K CPU.

The Python implementation of SigNet, as well instructions on how to install and

where to download datasets, can be found at https://github.com/MrSaad/signet.

4.4 Combined Method

During testing, we compare SigNet with several other datasets (described in the next

chapter). Additionally, we define a consensus method in which the scores of SigNet are

combined with the scores of SPRINT [33]. We also include the results of this Combined

method in the comparisons.

A single-layer, feed-forward neural network with 16 nodes was used to find the optimal

weighting scheme between the scores of SigNet and SPRINT for each dataset. The

network is trained with cross-entropy loss and the ADAM optimizer.

https://github.com/MrSaad/signet
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Additional Methods

In addition to SigNet, we have tried various other neural-network architectures and fea-

ture vector techniques for the PPI prediction task. We describe two of these methods,

which were relatively successful, in the following sections.

5.1 ProtVec Based

Embeddings

Assigning fixed-length, real-valued feature vectors to inputs such as words can be

tricky since words are nominal values - it does not make much sense to assign numerical

values to words since they do not have an ordering. That is, one word is not necessarily

‘greater than’, or ‘less than’, another word. In this case we construct a vector of size n,

where n is the total number of words in the input space, and assign all values to 0 except

one spot which represents the word. This is a one-hot encoding representation. This

encoding is quite crude since the vector can be very large and sparse, and it does not

capture any relationships between words. A word embedding aims to resolve these issues

by reducing the dimensionality of the vector and representing the word as a meaningful

feature vector such that semantic relationships between words are preserved.

The embedding technique began developing in the early 2000s with Bengio et al. [4].

30
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Figure 5.1: Word Embeddings. From tensorflow.org

Since then, many improvements have been made. One of the more recent methods is

the skip-gram technique [38] in which word vectors are learned based on the distribution

of words in their surrounding neighbourhood. For example, vectors for man and king

will be similar since they appear in a similar gender context, and they will both be

a similar distance away from king and queen respectively (Figure 5.1). Transforming

nominal data into a latent vector space in this way is a powerful tool as it captures

both contextual as well as semantic information within a feature vector, and therefore

generates a significantly better representation of the underlying data.

Model Architecture

Using the idea of word embeddings, Asgari and Mofrad developed an embedding

technique for proteins, called ProtVec [2]. Proteins are broken down into ‘words’ of 3

amino acids and, similar to the skip-gram model, an embedding is learned for each word

given its surrounding neighbourhood. When visualizing this new vector space they find

that amino acids with similar physiochemical properties appear close together, thus this

representation is useful. To represent a complete protein as an embedding they take the

element-wise sum of all embedded feature vectors in a protein.

https://www.tensorflow.org/images/linear-relationships.png
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We use a siamese neural-network architecture similar to SigNet, but instead of protein

signatures as input, we represent proteins as ProtVec embeddings. A visualization of this

architecture can be seen in Figure 5.2.

Figure 5.2: ProtVec Based Architecture

The embedding vector is of size 128. A batch size of 64 was used with 30 epochs of

training.

5.2 LSTM Based

Recurrent Neural Networks

One of the drawbacks of regular feedforward networks is that they operate on fixed-

length feature vectors in which each component has some ’meaning’ in the feature space.

For example, in the case of SigNet each feature represents the count of a specific amino

acid signature. In certain tasks, this representation may not be possible. For example we

cannot use raw words as input to feed-forward networks since each words have variable

length, and positions of letters don’t hold as much meaning as the context within which

they appear. Recurrent Neural Networks attempt to solve this problem. In these neural

networks each hidden layer is connected to a ‘time step’ of the input, and also to a

hidden layer from the previous time step of the same input. For example, each letter of
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a word input would go through the same hidden layer, which keeps track of contextual

information since the same layer also receives input from previous letters. Due to this

recursive nature, recurrent network layers are quite flexible in how many inputs and

outputs they may have (Figure 5.3).

Figure 5.3: Recurrent Neural Networks. From karpathy.github.io

One issue that arises with recurrent networks, however, is the issue of vanishing and

exploding gradients. Since a hidden layer keeps track of many previous time steps, its

gradient has a tendency to exponentially grow larger or smaller over time, and thus lose

information. One way to resolve this is to add additional ‘gates’ or control units to

the hidden layer which will learn the appropriate balance between new inputs and long

term information. A type of RNN cell that uses this technique is the Long-Short Term

Memory [21], or LSTM, cell (Figure 5.4).

Figure 5.4: LSTM cell. From colah.github.io

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Model Architecture

LSTM networks are a natural choice for biological sequences since proteins and DNA

can be interpreted as sequences of characters (amino acids and nucleic acids) with contex-

tual importance. Convolutional LSTM networks have already shown to be very effective

in various sequence-based prediction tasks, such as predicting subcellular localization of

proteins [55].

When using LSTM layers for the task of PPI prediction, we take only the first 200

and last 200 amino acids of each protein as input. Since LSTM networks also suffer

from the vanishing gradient problem (to a lesser degree), this prevents us from using

entire proteins, which can vary anywhere from 50 to more than 5000 amino acids. Using

fixed-length inputs also allows us to take advantage of batch-processing techniques, thus

reducing training time significantly. Finally, it has been shown that beginning and ends

of proteins contain important sorting information [13], so although we are not using the

entire protein, we are still using sections which may be important during interaction.

Each end of the protein goes through a separate stack of conv-pool layers, and finally

through an LSTM layer with 512 nodes, the outputs are concatenated. Each protein is

sent through this same network, in the same siamese style as SigNet. The full architecture

is shown in Figure 5.5.

Figure 5.5: LSTM Based Architecture
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Results and Discussion

6.1 Comparison Techniques

In order to compare the results of our method with those of other methods we define the

following metrics:

TruePositiveRate = Recall = Sensitivity = TP

TP + FN
(6.1a)

FalsePositiveRate = FP

FP + TN
(6.1b)

PositivePredictiveV alue = Precision = TP

TP + FP
(6.1c)

where true positive (TP) is the number of true PPIs predicted as true (correctly), true

negative (TN) is the number of false PPIs predicted as false (correctly), false positive

(FP) is the number of false PPIs predicted as true (incorrectly), and false negative (FN)

is the number of true PPIs predicted as false (incorrectly).

Most binary classification algorithms output real values, given an input. A higher

value represents a true prediction, while a lower value represents a false prediction. Thus,

35
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varying the threshold on these output values can give different true positive and false

positive rates. We can plot the results of all possible thresholds on a plot known as a

Receiver Operation Characteristic (ROC) curve.

Figure 6.1: ROC Curve. From medcalc.org

Shown in Figure 6.1, a ROC curve shows the change in true positive rate against

the false positive rate at varying threshold values. A straight diagonal line represents a

classifier with no predictive ability (as good as random guess), while curves that tend

closer to the top-left (have larger areas) represent good predictive ability. In particular,

it is useful to focus on the beginning of these curves. A good classifier will generally

perform better at high specificity values. Thus, steeper curves at the beginning represent

better performance.

A similar curve used to model this relationship is the Precision-Recall (PR) curve.

This plots Precision against Recall, with varying threshold values. Once again, a larger

area represents a better predictive algorithm.

A short ‘summary’ of these curves can be given as Area Under ROC curve (AUROC)

and Area Under PR Curve (AUPR) values.

https://www.medcalc.org/manual/roc-curves.php
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6.2 Comparing Neural Network Architectures

A small comparison was done between our three deep learning methods (SigNet, ProtVec

based, and LSTM based) on 4 different databases. We split the test set of each database

into the 3 types described by Park and Marcotte - C1, C2, and C3. We compare all of

the methods for each test type for each database. This comparison is shown in Table 6.1.

C1 C2 C3

SigNet ProtVec LSTM SigNet ProtVec LSTM SigNet ProtVec LSTM

Biogrid 0.94 0.93 0.94 0.86 0.86 0.84 0.77 0.78 0.71

HPRD 0.90 0.86 0.89 0.84 0.81 0.82 0.74 0.75 0.70

Innate-Manual 0.96 0.94 0.89 0.86 0.82 0.79 0.63 0.63 0.64

Innate-Experimental 0.95 0.94 0.95 0.87 0.85 0.85 0.78 0.77 0.72

Average 0.9375 0.9175 0.9175 0.8575 0.835 0.825 0.73 0.7325 0.6925

Table 6.1: AUROC values for Deep Learning Methods

Although all of the deep learning methods perform well, it is clear that SigNet is

the better method overall. It outperforms all the other methods on test types C1 and

C2, and shows comparable performance on type C3. For this reason, we use SigNet

as our primary algorithm when comparing against other, classical algorithms. These

comparisons are shown in the following section.
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6.3 Results

We compare the results of SigNet, as well as the Combined method (combining SigNet

with SPRINT), with the work of Martin et al. [36], PIPE [44], Ding et al. [10], and

SPRINT [33].

We train all methods on PPIs from 7 different datasets - BioGrid [7], HPRD [26], two

versions of InnateDB [5] (experimentally and manually curated), IntAct [25], MINT [34],

and the dataset created by Park and Marcotte upon discovery of the 3 test types (C1,

C2, C3) [42].

Table 6.2 shows the number of total PPIs in each of these databases.

Dataset Total PPIs

Biogrid 215,029

HPRD 34,044

InnateDB (experimental) 165,655

InnateDB (manual) 9,913

IntAct 111,744

MINT 16,914

Park and Marcotte 24,718

Table 6.2: Dataset Sizes

Each dataset was split into 40 splits with 10% being used as the test set. Each test set

is further split into the C1, C2 and C3 types. The following sections show ROC and PR

curves for each database of each test class. Every plot shows the average of all 40 splits

for all methods on one of the seven datasets. The corresponding AUROC and AUPR

values are also given along with each plot.



Chapter 6. Results and Discussion 39

6.3.1 C1 Comparisons

Biogrid

(a) ROC Curves

(b) PR Curves

Figure 6.2: Biogrid - C1

Martin PIPE2 Ding SPRINT SigNet Combined

87.54 79.01 93.06 88.11 94.45 94.93

(a) AUROC values

Martin PIPE2 Ding SPRINT SigNet Combined

87.20 80.52 93.08 89.24 93.81 94.74

(b) AUPR values

Table 6.3: Biogrid - C1
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HPRD

(a) ROC Curves

(b) PR Curves

Figure 6.3: HPRD - C1

Martin PIPE2 Ding SPRINT SigNet Combined

86.83 81.53 89.34 86.76 89.80 92.05

(a) AUROC values

Martin PIPE2 Ding SPRINT SigNet Combined

86.93 84.31 90.20 89.32 89.51 92.71

(b) AUPR values

Table 6.4: HPRD - C1
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Innate - Experimental

(a) ROC Curves

(b) PR Curves

Figure 6.4: Innate-Experimental - C1

Martin PIPE2 Ding SPRINT SigNet Combined

90.18 83.98 93.83 91.34 95.27 95.82

(a) AUROC values

Martin PIPE2 Ding SPRINT SigNet Combined

90.31 85.48 94.14 92.25 92.44 95.77

(b) AUPR values

Table 6.5: Innate-Experimental - C1
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Innate - Manual

(a) ROC Curves

(b) PR Curves

Figure 6.5: Innate-Manual - C1

Martin PIPE2 Ding SPRINT SigNet Combined

94.11 90.26 94.89 93.09 95. 96.49

(a) AUROC values

Martin PIPE2 Ding SPRINT SigNet Combined

94.93 92.22 95.73 94.75 95.07 96.80

(b) AUPR values

Table 6.6: Innate-Manual - C1
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IntAct

(a) ROC Curves

(b) PR Curves

Figure 6.6: IntAct - C1

Martin PIPE2 Ding SPRINT SigNet Combined

88.02 80.72 92.18 88.69 93.51 94.23

(a) AUROC values

Martin PIPE2 Ding SPRINT SigNet Combined

87.51 81.68 92.31 89.71 93.18 94.11

(b) AUPR values

Table 6.7: IntAct - C1



Chapter 6. Results and Discussion 44

MINT

(a) ROC Curves

(b) PR Curves

Figure 6.7: MINT - C1

Martin PIPE2 Ding SPRINT SigNet Combined

90.86 83.41 93.54 89.03 93.96 94.91

(a) AUROC values

Martin PIPE2 Ding SPRINT SigNet Combined

91.08 85.93 94.11 91.13 91.76 95.20

(b) AUPR values

Table 6.8: MINT - C1
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Park and Marcotte

(a) ROC Curves

(b) PR Curves

Figure 6.8: Park and Marcotte - C1

Martin PIPE2 Ding SPRINT SigNet Combined

81.49 76.74 82.00 82.35 82.26 86.46

(a) AUROC values

Martin PIPE2 Ding SPRINT SigNet Combined

82.32 79.90 83.00 85.39 82.75 88.01

(b) AUPR values

Table 6.9: Park and Marcotte - C1
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Average C1 Scores

It is clear from the above comparisons that SigNet is comparable to and, in many

cases, outperforms previous methods on C1 test types. In general, we see that training on

larger datasets, such as Biogrid (Figure 6.2), leads to better performance. The Combined

method outperforms all methods in all of the datasets.

An average of all C1 scores for the different methods is shown in Table 6.10.

Martin PIPE2 Ding SPRINT SigNet Combined

88.43 82.24 91.26 88.48 92.15 93.56

(a) AUROC values

Martin PIPE2 Ding SPRINT SigNet Combined

88.61 84.29 91.80 90.26 91.22 93.91

(b) AUPR values

Table 6.10: C1 Averages
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6.3.2 C2 Comparisons

Biogrid

(a) ROC Curves

(b) PR Curves

Figure 6.9: Biogrid - C2

Martin PIPE2 Ding SPRINT SigNet Combined

81.33 76.66 86.57 84.67 86.37 88.90

(a) AUROC values

Martin PIPE2 Ding SPRINT SigNet Combined

80.76 78.25 86.12 86.30 85.98 89.50

(b) AUPR values

Table 6.11: Biogrid - C2
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HPRD

(a) ROC Curves

(b) PR Curves

Figure 6.10: HPRD - C2

Martin PIPE2 Ding SPRINT SigNet Combined

83.30 81.55 84.78 86.09 82.63 88.93

(a) AUROC values

Martin PIPE2 Ding SPRINT SigNet Combined

82.85 83.98 84.85 88.37 82.30 90.11

(b) AUPR values

Table 6.12: HPRD - C2
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Innate - Experimental

(a) ROC Curves

(b) PR Curves

Figure 6.11: Innate-Experimental - C2

Martin PIPE2 Ding SPRINT SigNet Combined

83.96 81.46 87.98 89.31 87.68 91.68

(a) AUROC values

Martin PIPE2 Ding SPRINT SigNet Combined

83.74 82.57 87.91 90.37 86.48 92.17

(b) AUPR values

Table 6.13: Innate-Experimental - C2
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Innate - Manual

(a) ROC Curves

(b) PR Curves

Figure 6.12: Innate-Manual - C2

Martin PIPE2 Ding SPRINT SigNet Combined

85.87 84.43 84.74 87.64 87.66 90.06

(a) AUROC values

Martin PIPE2 Ding SPRINT SigNet Combined

87.71 87.22 87.10 90.33 85.16 91.79

(b) AUPR values

Table 6.14: Innate-Manual - C2
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IntAct

(a) ROC Curves

(b) PR Curves

Figure 6.13: IntAct - C2

Martin PIPE2 Ding SPRINT SigNet Combined

81.687 77.64 85.63 83.14 85.58 88.11

(a) AUROC values

Martin PIPE2 Ding SPRINT SigNet Combined

80.68 78.69 85.20 85.58 85.17 88.92

(b) AUPR values

Table 6.15: IntAct - C2
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MINT

(a) ROC Curves

(b) PR Curves

Figure 6.14: MINT - C2

Martin PIPE2 Ding SPRINT SigNet Combined

86.66 81.76 87.17 86.20 84.60 90.37

(a) AUROC values

Martin PIPE2 Ding SPRINT SigNet Combined

86.37 84.08 87.47 88.47 85.46 91.35

(b) AUPR values

Table 6.16: MINT - C2
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Park and Marcotte

(a) ROC Curves

(b) PR Curves

Figure 6.15: Park and Marcotte - C2

Martin PIPE2 Ding SPRINT SigNet Combined

60.67 63.76 60.00 65.52 58.69 65.96

(a) AUROC values

Martin PIPE2 Ding SPRINT SigNet Combined

60.43 67.41 60.00 70.25 58.60 70.34

(b) AUPR values

Table 6.17: Park and Marcotte - C2
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Average C2 Scores

Although SigNet falls behind on the C2 test type for some datasets, the trend is

similar to C1 in that larger datasets yield better results. On larger datasets, SigNet is

comparable to, and outperforms, previous methods. The Combined method outperforms

all methods in all of the datasets.

An average of all C2 scores is shown in Table 6.18.

Martin PIPE2 Ding SPRINT SigNet Combined

80.50 78.18 82.41 83.23 81.89 86.29

(a) AUROC values

Martin PIPE2 Ding SPRINT SigNet Combined

80.36 80.32 82.67 85.67 81.31 87.74

(b) AUPR values

Table 6.18: C2 Averages
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6.3.3 C3 Comparisons

Biogrid

(a) ROC Curves

(b) PR Curves

Figure 6.16: Biogrid - C3

Martin PIPE2 Ding SPRINT SigNet Combined

76.20 71.38 79.16 79.67 77.30 82.08

(a) AUROC values

Martin PIPE2 Ding SPRINT SigNet Combined

74.89 70.25 77.24 80.59 76.16 82.52

(b) AUPR values

Table 6.19: Biogrid - C3
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HPRD

(a) ROC Curves

(b) PR Curves

Figure 6.17: HPRD - C3

Martin PIPE2 Ding SPRINT SigNet Combined

79.46 77.14 77.51 83.27 75.21 84.27

(a) AUROC values

Martin PIPE2 Ding SPRINT SigNet Combined

78.51 78.28 75.32 85.08 72.55 85.60

(b) AUPR values

Table 6.20: HPRD - C3
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Innate - Experimental

(a) ROC Curves

(b) PR Curves

Figure 6.18: Innate-Experimental - C3

Martin PIPE2 Ding SPRINT SigNet Combined

78.10 75.89 80.69 85.70 78.29 86.83

(a) AUROC values

Martin PIPE2 Ding SPRINT SigNet Combined

76.65 74.42 78.55 86.23 77.33 87.13

(b) AUPR values

Table 6.21: Innate-Experimental - C3
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Innate - Manual

(a) ROC Curves

(b) PR Curves

Figure 6.19: Innate-Manual - C3

Martin PIPE2 Ding SPRINT SigNet Combined

71.75 73.25 65.96 76.57 67.53 77.91

(a) AUROC values

Martin PIPE2 Ding SPRINT SigNet Combined

73.49 74.95 66.81 80.17 65.75 80.96

(b) AUPR values

Table 6.22: Innate-Manual - C3
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IntAct

(a) ROC Curves

(b) PR Curves

Figure 6.20: IntAct - C3

Martin PIPE2 Ding SPRINT SigNet Combined

76.94 73.61 78.81 74.44 75.77 79.75

(a) AUROC values

Martin PIPE2 Ding SPRINT SigNet Combined

74.88 73.11 76.03 78.08 74.10 81.03

(b) AUPR values

Table 6.23: IntAct - C3
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MINT

(a) ROC Curves

(b) PR Curves

Figure 6.21: MINT - C3

Martin PIPE2 Ding SPRINT SigNet Combined

81.25 78.06 78.94 82.54 76.15 83.91

(a) AUROC values

Martin PIPE2 Ding SPRINT SigNet Combined

80.07 79.28 77.14 84.55 75.10 85.35

(b) AUPR values

Table 6.24: MINT - C3
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Park and Marcotte

(a) ROC Curves

(b) PR Curves

Figure 6.22: Park and Marcotte - C3

Martin PIPE2 Ding SPRINT SigNet Combined

57.86 58.90 57.00 60.60 55.67 61.19

(a) AUROC values

Martin PIPE2 Ding SPRINT SigNet Combined

57.07 59.84 56.00 63.49 54.56 63.58

(b) AUPR values

Table 6.25: Park and Marcotte - C3
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Average C3 Scores

SigNet does not perform as well on C3 test types as it does on C1 and C2. However,

following the same trend it performs better than some older methods (PIPE [44] and

Martin et al. [36]) for larger datasets. The Combined method performs better than all

methods on all datasets.

An average of all C3 scores for the different methods is shown in Table 6.26.

Martin PIPE2 Ding SPRINT SigNet Combined

74.51 72.60 74.01 77.54 72.27 79.42

(a) AUROC values

Martin PIPE2 Ding SPRINT SigNet Combined

73.65 72.88 72.44 79.74 70.79 80.88

(b) AUPR values

Table 6.26: C3 Averages
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6.4 Discussion

Martin PIPE2 Ding SPRINT SigNet Combined

81.15 77.67 82.56 83.08 82.11 86.42

(a) AUROC values

Martin PIPE2 Ding SPRINT SigNet Combined

80.87 79.16 82.30 85.22 81.11 87.51

(b) AUPR values

Table 6.27: Average over C1, C2, C3

As shown in the previous section, on average SigNet outperforms previous methods on

the C1 test type. On C2 it outperforms some and is comparable to others, while on C3

SigNet does the worst. When taking the average over all C1, C2 and C3 tests (Table 6.27

we see that Signet outperforms older methods (PIPE [44] and Martin et al [36]), and is

comparable to newer methods (SPRINT [33] and Ding et al. [10]). However, a consistent

trend is that SigNet performs better on larger datasets. This result makes sense since

deep learning relies on large amounts of data to generalize well.

On average, we also see that a model which combines the scores of SigNet and an-

other state-of-the-art method, SPRINT, outperforms all other techniques on all types

of datasets. SigNet performs well on C1 and larger datasets, while SPRINT works well

on C3 and across all types of datasets. This suggests that an optimal algorithm could

be one that balances classical techniques and machine learning methods, taking the best

from both worlds.
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Conclusion

In this thesis we explored the effectiveness of machine learning techniques in predicting

protein-protein interactions. We outlined a brief history of machine learning and, specif-

ically, deep learning methods which are becoming increasingly popular. The purpose of

this discussion was to show that, with the advent of modern deep learning techniques,

there is still much room for improvement in the domain of PPI predictions.

To address the problem using this perspective we developed 3 different siamese neural

network architectures. We tested the efficacy of using recurrent layers, modelling proteins

as protein embeddings, and modelling proteins as signatures. In the end we found that

the architecture based on protein signatures, SigNet, was the best predictive model. We

compared against four other leading methods, on seven different datasets, and found that

SigNet outperforms them on many test cases, with comparable performance on others.

When combining SigNet with a complimentary leading method, SPRINT, we are able to

outperform all methods, on all datasets, for all test cases.

This leads us to the conclusion that combinations of deep learning techniques, specif-

ically neural network architectures, can be used to create powerful models which can

outperform, or at the very least augment the performance of, classical techniques for PPI

predictions.

64
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7.1 Future Work

As deep learning is still a rapidly growing field, there is still much exploratory work to

be done in model creation and tuning. We briefly discuss some areas of improvement to

our model below.

Recurrent Neural Networks

Since the input to our task is variable-length strings it seems that recurrent neural

networks are ideal candidates for this task. This was our initial intuition. Although

we experimented with these, it was quickly discovered that they are notoriously difficult

to train, and we reported sub-par performance. Given enough computational resources

and time, the ideal situation would be to train multiple models with many different

hyperparameter settings (size of layers, number of layers, length of input, etc). Due to a

limitation in resources, we are unable to train significantly larger models in a practical

amount of time.

Another issue with recurrent models is that gradients diminish if there are too many

time steps. This can be solved by adding convolutional down-sampling of the input.

However, with proteins of lengths varying from 50 to 500 this becomes unfeasible. Adding

attention [3] to recurrent layers has been shown to solve this problem, as the attention

layer learns to pay attention to only select parts of the input. This would allow us to feed

the entire protein as input instead of just the beginning and end. However, this was also

shown to be difficult to train properly, and without the appropriate resources arriving at

the right model would take months.

Alternate Embeddings

We briefly discussed the idea of ‘embedding’ data into some latent vector space.

Roughly, the protein signature used by SigNet can be seen as a type of embedding for

proteins, where we transform proteins into meaningful vectors. Alternate representations

for proteins may be even more useful. Initially, we experimented with various transfor-

mations of the protein string, however it may be possible to learn the proper embedding
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in an unsupervised manner. Variational autoencoders [28] have recently become very

popular using this idea. Autoencoders are a type of neural network which have the same

input as output. Thus, the hidden layers learn an alternate representation of the data.

Since our input varies in length, it may be possible to use the output of a recurrent neural

neural network as input to autoencoders, and thus learn a fixed-length representation of

proteins. However, the issue that needs to be overcome is still the same. That is, proteins

of significantly large length pose problems for recurrent architectures.

Models and Hyperparameters

We were able to test many neural network architectures of varying size, and ex-

perimented with hyperparameter settings using manual and grid searches. However,

implementing more robust techniques for finding these parameters, such as bayesian op-

timization, may allow us to find better models in a reasonable amount of time.
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