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Abstract
The work herein falls under the umbrella of mathematical modeling of disease transmission.

The majority of this document focuses on the extent to which infection undermines the strength
of a honey bee colony. These studies extend from simple mass-action ordinary differential
equations models, to continuous age-structured partial differential equation models and finally
a detailed agent-based model which accounts for vector transmission of infection between
bees as well as a host of other influences and stressors on honey bee colony dynamics. These
models offer a series of predictions relevant to the fate of honey bee colonies in the presence
of disease and the nonlinear effects of disease, seasonality and the complicated dynamics of
honey bee colonies. We are also able to extract from these models metrics that preempt colony
failure. The analysis of disease dynamics in age-structured honey bee colony models required
the study of next generation operators (NGO) and the basic reproduction number, R0, for partial
differential equations. This led us to the development of a coherent path from the NGO to its
discrete compartmental counterpart, the next generation matrix (NGM) as well as the derivation
of new closed-form formulae for the NGO for specific classes of disease models.

Keywords: Honey Bee Dynamics, Colony Collapse, Basic Reproduction Number, Next
Generation Operator
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Handle a book as a bee does a flower, extract its sweetness but do not damage it.
- John Muir

OH, NO! NOT THE BEES! NOT THE BEES! AAAAAHHHHH! OH, THEY’RE IN MY EYES!
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Chapter 1

Introduction

1.1 Honey Bees

True honey bees, distinguished from other bees by their ability to produce honey, are any of
the seven species within the genus Apis [45]. The most common honey bee is the Western, or
European, honey bee, Apis mellifera [45].

Honey and wax from honey bees have been harvested by humans for at least 8, 000 years
[28]. There is also evidence that honey from bees provided a nutritionally dense [119] sup-
plement for early members of the genus Homo [29]. While for much of human history honey
bees have been cultivated and farmed for their honey and wax production [28], more recently
honey bees have been used largely for their ability to pollinate commercial crops [79]. Nearly
80 years ago, the USDA recognized the need for an increase in pollinators to keep up with the
increasing production of insect pollinated crops [129]. From this observation came research
leading to honey bees bred specifically as pollinators for commercial crops [129].

The economic impact of insect pollinators in the U.S. in 2009 is estimated to be $15 billion
USD, with $11.6 billion attributed to honey bees. It is worthwhile to note that these figures do
not include the value of honey and wax produced by the honey bee colonies.

Due to their economic [24, 121] and ecological [35] importance, the fact that honey bee
losses are increasing on a global scale [10] is of great concern. In North America alone, honey
bee populations had been declining steadily since the 1960’s [44].

While there are many wild pollinators who aid in the reproductive success of plants (e.g.
bats, butterflies, birds, beetles, etc.) [31], it is estimated that bees pollinate roughly 70% of
global crops [31, 110]. In the U.S., honey bees are estimated to pollinate 15 − 30% of com-
mercial crops [77]. Again, the pollination of these crops is often enhanced by visitation from
local, wild insect populations [52] but managed honey bee colonies remain the most economi-
cally valuable pollinator for monoculture crops [78]. While there are many pollinators who are
better suited to specific crops [52, 71, 79], there are certain fruit, nut and seed plants which see
a 90% decrease in crop production without honey bee pollination [121].

In [52], it is observed that managed honey bee are responsible for the majority of pollen
deposition in plants yet, counter-intuitively, wild insect pollinators create higher fruit yield in
the studied crops. Despite this, honey bees continue to be the most widely used commercial
pollinator due to their economic viability as well as their ability to produce honey, wax, and

1



2 Chapter 1. Introduction

offer pollination services [78]. Moreover, Gaines-Day and Gratton show that in low woodland
areas, there is a positive correlation between honey bee presence and crop yield [51]. In any
case, a synergistic effect has been observed on crop yield when both honey bees and wild
pollinators are present [21].

Of more recent concern, is the mysterious disappearance of colonies due to so-called
Colony Collapse Disorder (CCD) [139]. The disorder is characterized by three symptoms:
(1) the presence of brood and excessive food stores, but no adult bees, (2) the lack of dead
worker bees in or surrounding the hive, and (3) delayed invasion of the abandoned hive (i.e.
scavengers do not immediately pillage the hive) [132].

The current consensus is that colony collapse disorder, and in general the continual increase
in number of lost colonies [80], is due to a number of factors including disease and parasites
[41, 67, 101, 125], predation from competing hives [111], and environmental hazards such as
pesticide exposure [64] and lack of biodiversity of plants in the local ecosystem [55]. Recently,
studies have been more focused on the interactions between different combinations of stressors
and their aggregate effects on honey bee colony dynamics [1, 7, 55, 95, 120, 134].

1.1.1 Honey Bee Colony Dynamics
The honey bee is a highly eusocial insect [91]. They live in female-dominated colonies [91],
and are divided into castes based on sex, morphology and age [113, 116]. The major castes
of honey bees are: queen, worker and drone [140]. Within the worker caste, the bees are
further divided into juveniles, hive bees, and foragers [140]. Sex differentiates the queen

Figure 1.1: A honey bee
colony functions through
caste divisions based on
both genetics and age.

and workers from the drones [140], morphology differentiates
the queen bee from the worker bees [140], and age differentiates
the subtypes of workers [108].

At the center of a honey bee colony is the queen. She is
responsible for all reproduction within a hive [91]. Drones are
born of unfertilized eggs, making them genetic clones of the
queen [54], and workers and new queens are born of fertilized
eggs [140]. The sole purpose of drones in honey bee colonies is
to leave the hive to fertilize virgin queens [91].

Even though queens and workers originate from the same
eggs, the care they received during their larval stages cre-
ates bees of differing morphology [116]. Worker bees are fed
bee bread (a concoction of pollen and honey [133]) as larvae
[140] whereas those destined to become queens are fed copious
amounts of so-called royal jelly (a glandular secretion produced
by worker bees) [85]. This difference in diet leads to worker
bees being born functionally sterile (although a small percent-
age of workers can and will lay drone eggs) and smaller than a
queen [46, 96, 115, 117].

The worker caste is indispensable to a functioning honey bee colony. From emergence as
adults until three days of age, the workers are known as juveniles and spend most of their time
eating and cleaning cells within the hive [113]. After this phase, they continue cleaning cells
but take on the additional responsibility of caring for the brood [113]. After approximately
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sixteen days, the bees will move on to other hive duties (such as maintenance, security, repairs
etc.) or be recruited to foraging duties [140].

Hive bees are recruited to foraging duties through the waggle dance [140]. When foragers
return to the hive with food, they will pass on information such as quality of food source,
distance from the hive, and direction of the source to the hive bees who will then be recruited
to join the foragers [107]. There are a number of conditions surrounding this recruitment

Figure 1.2: Foragers will
dance upon returning to the
hive if they have found a vi-
able food source. The dance
encourages other workers to
begin foraging duties, as
well as offers directions to
the food source in question.

such as the age of the bee [47] (regulated by Juvenile Hormone
III [108]) or the needs of the hive [69]. In order to help con-
trol the forager population within a hive, the foragers produce a
pheromone ethyl oleate, which inhibits the desire to begin forag-
ing [81]. This latter process is known as ‘social inhibition’ and
reduces recruitment when the foraging population is high [81].

The foragers are responsible for exploring the nearby en-
vironment and extracting pollen and nectar from nearby flow-
ers [140]. The flight range of a honey bee is roughly three kilo-
meters, but has been observed up to six kilometers [43]. The
nectar brought back to the hive is stored within particular cells
– specifically made to hold nectar – of the hive and the wa-
ter content is evaporated out through the flapping of the bees’
wings [8], producing honey.

These dynamics are confined to the spring and summer, as
honey bees are dormant in the winter. As temperatures drop and
food becomes scarce, honey bees halt all foraging and return
to the hive [73]. Within the hive, given they are warm enough,
honey bees can survive up to 6 months [116]. The egg-laying
rate of the queen is also greatly reduced in the winter months
and, in harsh climates, ceases completely [73]. The harsh con-
ditions in the winter, including the lack of new bees to replace

the older members of the hive and the lack of incoming food, cause considerable stress on the
hive.

Honey bees are also susceptible to certain parasites, which have been found to play a role
in the failure of colonies and high honey bee losses [139]. There are three major pathogens that
affect honey bee colonies: Varroa destructor, Nosema ceranae, and Nosema apis.

1.1.2 Honey Bee Diseases
Nosema ceranae is a microsporidian introduced into the European honey bee, Apis mellifera,
from Asia where it is a common parasite of the Asian honey bee, Apis ceranae. Infections
by Nosema ceranae are thought to contribute to colony collapse [66, 67]. Nosema ceranae is
transmitted via fecal-oral. The two major routes of transmission are through susceptible bees
eating food contaminated by infected bees, or through bees ridding the hive of infected fecal
matter [26, 50]. There is evidence that N. ceranae can also be transmitted through oral-oral
transmission during feeding [120]. In 2013, it was observed that colonies that suffer from
Nosema infection also exhibit many of the symptoms of colony collapse [122].

Nosema apis is a relative of N. ceranae, and is a common parasite of the European honey
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bee [42]. A comparative study between N. apis and N. ceranae showed that neither has a
competitive advantage at the level of individual bees [49], but N. apis has been observed to
be less virulant than N. ceranae [66]. Nosema apis has also been observed to be less well
adapted to high temperatures than its Asian counterpart [48, 90]. Furthermore, the severity of
N. ceranae may be linked to increased energy consumption in honey bees [89]. Complicating
the issue is the fact that the treatment for N. apis infection may suppress a bee’s immune
response and allows N. ceranae to thrive [68].

The final major parasite of honey bee colonies is Varroa destructor. These mites were first
found in 1904, and spread globally [6]. The parasite is found in all honey bee populations
except for those in Australia [5]. Varroa is a danger to honey bees as it acts as a vector for
many viruses, including Israeli Acute Paralysis Virus [36] and Deformed Wing Virus [53].
Varroa mites enter brood cells before they are capped, and reproduce alongside the bee larvae
[86]. A female varroa mite will lay up to six eggs (the majority of which are female [125])
which will then hatch and mate within the sealed brood cell and emerge with the bee [86, 87].

Figure 1.3: Varroa mites at-
tach themselves to bees and
feed off their blood for 4-5
days before inserting them-
selves into brood cells for re-
production.

The female mites will then attach themselves to nearby bees and
feed off of the bee for four to five days [114], between reproduc-
tive cycles [58, 86].The mites will then insert themselves into a
brood cell [114]. In addition to the viruses which are vectored
by the mites, the mites themselves create wounds within the
exoskeleton of the bees, which in turn increase mortality [58].
The mites themselves also lead to lower body weight of adult
bees [18]. These conditions lead to reduced productivity [92]
and longevity [58] at the colony level.

1.1.3 Mathematical Models of Honey Bees
Due to the complexity of honey bee colony dynamics – espe-
cially in the context of changing environments, pathogens, and
pesticides – mathematical models have become an indispens-
able tool for exploring the underlying mechanics of these inter-
actions. They are also powerful predictive tools that can aid in
best practice decisions for colony management and protection
efforts.

Early mathematical models focusing on honey bees involved
broad population dynamics. Rowland and McLellan used a sim-
ple set of differential equations to model brood production in
honey bee colonies [112]. Harris’ model took into account only classes of adults, pupae, lar-
vae, and eggs and was based on empirical data [61]. The foragers in this model were not
distinguished from the hive bees [61]. Omholt developed a simple ordinary differential equa-
tion (ODE) model for the population size of a honey bee colony, taking into account some of
the intracolonial mechanics [97]. Not long after that, DeGrandi-Hoffman et al. built one of
the first computer simulations for honey bee colony dynamics [32], that was able to simulate
classes of drones, workers, brood and queen in a healthy colony. Other early models, such as
that by Camazine and Sneyd, investigated the decision-making processes of the foragers when
searching for nectar [25].
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As the global decline in honey bee populations gained notoriety in the late 20th and early
21st century [4, 16, 62, 138], new mathematical models were developed to aid in explain-
ing these dwindling populations and to develop strategies counter-acting the observed de-
clines. Sumpter and Martin developed models to investigate the interactions between honey
bee colonies and the parasite V. destructor, as well as the role this parasite – and the viruses
that it vectored – played in the collapse of honey bee colonies [88, 125]. In 2011, Khoury et
al. developed and analyzed a simple compartmental ODE model to quantitatively predict the
different sub-populations of workers in a honey bee colony: nursing bees and foragers [76].
This model was extended by the same authors in 2014 to include food stores and brood dy-
namics [75].

Khoury et al. developed a quantitative model for honey bee colony dynamics which focuses
on the worker bees: the driving force behind a honey bee colony [76]. The ordinary differential
equation model itself consists of two compartments: the hive bees (those bees that perform du-
ties around the hive, mainly maintaining the brood), and the foragers (those that leave the hive
to gather resources such as nectar and pollen). This model also quantifies the main interactions
between the hive bees and foragers, mainly the effect of social inhibition [76].

A number of key insights came from the analysis of the model by Khoury et al. The authors
were able to successfully determine a steady-state equilibrium of the model, as well as stability
criteria for this equilibrium [76]. Also extracted from the model is a critical forager death rate
above which a colony cannot survive. This insight provides evidence that foragers are integral
to the success of a hive, even in the presence of sufficient food (one of the assumptions of
the model) [76]. The model also proves its robustness in that, despite being a very simple
representation of honey bee colony dynamics, model predictions agree well with experimental
data for the Average Age of Onset of Foraging (AAOF) [76].

The same authors later extended this model to include brood dynamics and explicit food
stores [75]. The extended model (building on the last) allows brood survival and recruitment
to be explicitly dependent on food stores. Again, the authors derive non-zero equilibria of
the model and determine the conditions for stability. Numerical analysis of the model shows
the effects of a sudden increase in forager death on the colony dynamics [75]. These results
suggest potential reasons for one of the symptoms of colony collapse: namely that under certain
conditions colonies may go extinct while leaving behind residual food stores [75]. The authors
also compare results of the model to experimental data in [60] and find good agreement with
medium to large colonies [75].

In 2014, I extended the model of Khoury et al. to include the effects of infection [14]. The
proposed model continued to account for basic honey bee colony dynamics (such as recruit-
ment based on food and regulatory mechanisms, brood survival explicitly dependent on food
and number of hive bees, etc.) but also included the dynamics of infection motivated by the
prevalence of N. ceranae. The novel aspect of this model was the introduction of seasonality
into the mathematical model, which allowed analysis of the interplay between infection and
wintering [14]. This model is described in depth in Chapter 2, and led to seasonality being
incorporated into later models.

Concurrently, many other mathematical treatments of honey bee colonies were developed.
One such model, developed in 2013 by Ratti et al. and later extended in 2015 by the same
group, focused on honey bee dynamics and the interactions with the parasite V. destructor
[105, 106] that can transmit Acute Paralysis Virus (APV).
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The first paper [105] introduces the four-dimensional system of ordinary differential equa-
tions which account for healthy bees, infected bees, virus-free mites, and mites who are carriers
of APV. Most notably, the authors develop threshold conditions which determine the survival
of a colony infested with mites [105].

The second study in this series builds upon the first and investigates the long-term behaviour
of a colony that is infested with varroa mites and treated with a varroacide [106]. The effects
of over-wintering are also considered, and the time to collapse is estimated based on the initial
infection [106].

Other mathematical models were developed at the time that were not related to infection or
pesticide exposure. The focus of these models is to generate more realistic dynamics of wild
and farmed honey bee colonies. A model developed by Pereira et al. in 2016 [99] was used to
show the effects of artificial feeding on honey bee colony dynamics. The model is an extension
of that developed in [75], and is consistent with both the results in [75] and validated against
experimental data from the literature [99].

A model developed by Dennis & Kemp describes the interplay between a strong Allee
effect – a critical population size, below which the population growth rate is negative [27]–
and environmental hazards on honey bee colony dynamics [34]. The results of this study

show that there is a minimum critical population size as well as a stable population size in the
neighbourhood of the carrying capacity of the hive [34]. One major result from this paper is
the observation that environmental stresses can intensify the Allee effect leading to an increase
in both the stable population size as well as the critical minimum population size, thus creating
an environment in which a honey bee colony cannot survive [34].

In 2016, we extended our generalized disease model to include the age-structure of honey
bee colonies [13, 15]. The worker castes (Juvenile, Nurse, Maintenance, and Forager) are
divided mainly based on age [108]. Aside from determining the duties of a worker bee, the age
polyethism inherent in the hive contributes to two major factors relating to honey bee colony
dynamics: the death of honey bees and the recruitment of honey bees away from nursing duties
and to foraging duties [108]. In [15], we develop a threshold condition (particularly the basic
reproduction number, R0) for an epidemic outbreak in a honey bee colony. We also show that
in the absence of a disease, our model predicts an asymptotically stable colony, given sufficient
nurse bees to seed the population [15]. A secondary study shows the long-term effects of
seasonality and infection on a honey bee colony [13]. The major results of this study are the
peaks of infection seen in early spring, as well as the ability of the model to capture, and offer an
explanation for, ‘spring dwindle’ [141], a phenomenon in which a colony suffers major losses
in early spring. The model also predicts times of disease onset during the year which would
result in quantifiably significant long-term colony losses [13]. This model and its implications
are discussed in Chapters 3 & 4.

While all the models described above focus on particular aspects of colony dynamics, great
strides were also made to develop computational models that capture realistic colony dynamics
in heterogeneous environments. Of note is the simulation package BEEHAVE developed by
Becher et al. which uses an Agent-Based Model (ABM) to simulate the interactions between
V. destrcutor and a honey bee colony in an environment that incorporates both spatial and
temperature heterogeneity [9]. Each agent within BEEHAVE represents a group of 100 bees
[9]. The model is implemented in NetLogo, and shows good agreement with experimental
results from the literature [9]. The simulation package was used by Thorbek et al. to explore
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the effects of pesticide exposure on a honey bee colony [128] in the context of protection goals
set out by the European Food Safety Authority (EFSA) [128]. In this study, pesticide exposure
is simulated via an increase in forager mortality [128].

Seeing a need for a comprehensive, robust simulation package for honey bee colony dynam-
ics, we set out to develop Bee++ [12]. This model is implemented in C++, is object-oriented
in nature, and freely available to use and modify. One of the novel features of this ABM is
its ability to model and track pesticide exposure for individual bees within a colony. Each
bee is able to ingest and metabolize toxins according to mechanisms derived from observa-
tions in the primary literature such as [123, 124]. Known interactions between toxins [72] are
also accounted for in Bee++. The model, its components and implementation are discussed in
Chapter 5.

1.2 Basic Reproduction Number

Mathematical treatments of disease progression in human populations has its beginnings in
the latter half of the 18th century as Bernoulli used mathematics to model the effectiveness of
inoculation against smallpox [11]. It was another 150 years before Hamer developed a discrete
epidemiological model for measles epidemics [59]. This is the first evidence of the use of mass
action – the idea that the number of new infections is dependent on the product of infected
individuals and susceptible individuals [65]. Five years later, the first vector-borne infection
model was developed for malaria in which disease transmission between humans occured via
mosquitoes [109]. Throughout the 20th century and into the present, the body of literature on
epidemiological modeling has continued to grow steadily.

Central to these concepts are threshold values for epidemic outbreaks. An epidemic is said
to occur when an infected population, I(t), grows from its initial condition [19]. In other words,

an epidemic occurs when I′(t)
∣∣∣∣∣
t=t0

> 0. In 1927, Kermack and McKendrick developed the first

Figure 1.4: The basic reproduction number, R0,
determines how many new infections a single
infected individual creates over its infected life-
time; in this case: R0 = 2.

epidemic model which could predict an epi-
demic outbreak via a threshold value made
up of model parameters, and the number of
susceptible individuals in a population [74].

Parallel studies in demography around
the turn of the 20th century introduced the no-
tion of the net (or later: basic) reproduction
rate (number). This is said to be the number
of new individuals created by a single indi-
vidual in a population [30]. The notion was
first introduced by Böckh in 1886 during his
tenure as the head of the Statistical Office of
Berlin [17, 40]. Böckh determined that there
were 2.172 new females produced for each
woman in the population [40]. A general for-
mula (without a symbol or name) was first given by Sharpe and Lotka in 1911 [118]. The first
evidence for the notation R0 and the name ‘net reproduction rate’ seem to be given by Lotka,
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in French (la reproductivité nette), in 1939 [83].
The modern usage of R0 – the number of secondary infections created by a single infected

individual over its lifetime – was coined in 1952 by MacDonald as he analyzed malaria out-
breaks in the tropics [84]. In this context, R0 can predict an epidemic outbreak as well as allow
for quantitative predictions on effective control measures [63, 94].

The next generation matrix (NGM) is a technique which offers both an intuitive biologi-
cal basis and algorithmic mathematical framework for deriving R0 for compartmental disease
models [38, 130]. The method of the next generation matrix applies to a system of N ordinary
differential equations of which M define infected classes. The equations for the infected classes
are then linearized about the disease-free equilibrium and divided into two matrix components:
the terms which define the influx into the infected classes from uninfected classes are put into
a matrix F. The remaining terms (all other influx terms, say, between infected classes and out-
flux from each class) are used to generate a separate matrix, −V . The next generation matrix is
then given by NGM = FV−1. We offer the following clarifying example1 of this process.

A Clarifying Example
Consider a standard SEIR model in which susceptible members, S , of a population become

exposed2 to an infection, E, who after a period of time then become infectious, I, and finally
either die or recover from the disease and join the removed class, R. Exposed in this sense
means that the individual has the disease, but is not contagious. A more apt name for this
class would be incubator (but I is already being used, alas...). This situation is modeled by the
system

dS
dt

= B − βS I − µS (1.1)

dE
dt

= βS I − κE − µE (1.2)

dI
dt

= pκE − (d + µ)I (1.3)

dR
dt

= (1 − p)κE + dI + µ(S + E + I) (1.4)

where B is a constant birth rate, µ is a natural death rate of the population, β is the contact
rate of individuals, 1/κ is the average period of incubation before the individual either becomes
infectious or clears the infection, p is the probability the individual becomes infectious, and d
is the death rate of an infectious individual due to disease.

The disease-free equilibrium, (S , E, I,R) = (S ∗, 0, 0, 0), is found using the equation
dS
dt

= 0. (1.5)

The linearized equations for the infected classes are then written as
dE
dt

= βS ∗I − (κ + µ)E (1.6)

dI
dt

= pκE − (d + µ)I. (1.7)

1This model is based on those appearing in [3, 131].
2Exposed in the sense that the disease is incubating and non-infectious
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From these equations we can generate the two necessary matrices F and −V . The only influx
into the infected classes from non-infected classes is the term βS ∗I. Therefore,

F =

[
0 βS ∗

0 0

]
. (1.8)

The matrix −V consists of all other terms in the equations for the infected classes. Note that
the negative sign in front of V causes a sign change in all the terms (i.e. outflux is positive).
The matrix −V for this example is

−V =

[
κ + µ 0
−pκ d + µ

]
. (1.9)

The next generation matrix is then given as

FV−1 =

[
0 βS ∗

0 0

] 
(κ + µ)−1 0

pκ
(κ + µ) (d + µ)

(d + µ)−1

 (1.10)

=


βS ∗pκ

(κ + µ) (d + µ)
βS ∗

d + µ

0 0

 . (1.11)

As stated above, the primary function of the next generation matrix is to provide the basic

Figure 1.5: The term β ap-
pearing in equations (1.1)
and (1.2) (and later equation
(1.12)) determines the rate at
which infectious individuals
interact with susceptible in-
dividuals

reproduction number for a population model [63]. The basic
reproduction number is given by the largest eigenvalue of the
NGM, R0 = ρ

(
FV−1

)
[130]. In the above example, we find that

R0 =
βS ∗pκ

(κ + µ) (d + µ)
.

The number of studies that rely on this method (see [63] for
review) for stability analysis of epidemic models substantiate
the importance of the NGM.

In 2009, Diekmann et al. developed a method for deriving
the NGM directly from model parameters in an intuitive, bio-
logically relevant way [37]. This contribution to the scientific
literature also aims to validate different definitions of the NGM
namely, the decomposition described above, and the original
formulation developed by Diekmann in 1990 [39]. A discrep-
ancy often arises because the NGM can be constructed so that
an infection moving from, say, a latent phase to infectious phase
is considered a “new infection” [37]. This obviously can lead to
discrepancies with the more biologically relevant formulations
and definitions. Therefore, Diekmann et al. consolidate the ap-
proaches and prove conditions under which R0 approximations
are the same.

As biological processes are often multi-layered and com-
plex, the systems which model them are often highly nonlinear and as a consequence, using
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systems of ordinary differential equations is often desired. The theory of ordinary differential
systems and dynamical systems is rich with tools for approximating and analyzing nonlinear
systems [102–104, 126]. Population structures, when using ODE models are often broken into
discrete classes or compartments. Often times, a continuum is a more natural structure for
a population model. For example, spatial spread and migration are easily modeled by a sec-
ond and first derivative respectively [93]; nonlocal infection in either space and/or time can
be modeled by a convolution [137]; and a Lévy flight [33] can be modeled by a fractional
derivative.

Such models – whether partial differential equations, integro-differential equations, or both
– are infinite dimensional and the theory of the framework provided by the next generation
matrix does not directly apply when attempting to find the basic reproduction number, R0, for
these systems. Instead a continuous operator is required.

Such an operator was first proposed in 1987 by Greenhalgh [56, 57]. Greenhalgh proposed
an integral operator and conjectured that its spectral radius would act as a threshold condition
for stability for an infinite-dimensional population model [56]. This result was then confirmed
by Inaba two years later [70]. Contemporaneously, Diekmann defined the next generation
operator (NGO) [39] for populations on a continuum.

Brauer also proposed a method for finding both a next generation operator and basic re-
production number for continuous age-structured models [20]. We may extend β in equations
(1.1) and (1.2) to a continuous age structure. One susceptible of age a may then be infected
by an infected individual of age a′ at rate β(a, a′). Accounting for infected individuals of all
possible ages leads to the interaction terms

F = S (a)
∫ ∞

0
β(a, a′)I(a′) da′. (1.12)

For a separable interaction term – one of the form

F = S (a, t)
∫ ∞

0
β(a, a′)I(a′) da′ (1.13)

= S (a, t)α(a)
∫ ∞

0
γ(a′)I(a′) da′ (1.14)

– Brauer is able to derive an expression for the basic reproduction number explicitly [20]. For
a general interaction term, the same methods allow for the construction of a next generation
operator [20]. However, this method does not use the FV−1 factorization commonly associated
with the equivalent discretized, compartmental model.

In 2009, Thieme proved that R0 is the spectral radius of the next generation operator FB−1

for certain classes of infinite dimensional systems (e.g. systems of partial differential equa-
tions) [127]. The operators Theime defines are analogous to F and −V in the case of the next
generation matrix for finite dimensional compartmental models. Another monumental con-
clusion in this work is Thieme’s result on the difference between the spectral radius and the
growth parameter. Thieme shows that in infinite dimensional models, the exponential growth
parameter of infected classes and the spectral radius of the next generation operator will have
the same threshold characteristics, but may be quantitatively different [127].

Thieme’s work was extended by Wang and Zhao in 2012 to include reaction-diffusion mod-
els [136]. Aside from proving that the spectral radius of the next generation operator FB−1 is
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indeed R0 for reaction-diffusion systems, they offer an illustrative example for computing R0

for an SEIR model with diffusion [136].
Based on this previous work, the operator factorization for the next generation operator is

guaranteed to exist and provide the basic reproduction number for specific classes of infinite-
dimensional systems [127, 136]. The importance of this cannot be understated as infinite-
dimensional systems – especially reaction-diffusion systems – are ubiquitous in mathematical
biology. This is ratified by the fact that such systems are covered in many introductory texts
in mathematical biology [2, 22, 23, 82, 93, 98] (see [100, 135] for review). Yet, a closed-form
next generation operator has yet to be determined.

While clearly analogs of one another, a direct connection between the NGM and NGO has
remained elusive. Many formulations of the NGO are constructed ‘intuitively’, using the idea
that the operator should provide the number of secondary infections created by one infected
individual in its lifetime [38], or by developing an operator with the necessary threshold prop-
erties [127]. In Chapter 6, we discuss this connection and show that the NGO can be recovered
as the limit of the NGM. Furthermore, we use this technique to find a closed-form operator for
the NGO for a simple reaction-diffusion system and offer a conjecture which can extend this
operator to a broader class of models.
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Chapter 2

Effects of Infection on Honey Bee
Population Dynamics: A Model

Abstract

We propose a model which combines the dynamics of the spread of disease within a bee
colony with the underlying demographic dynamics of the colony to determine the ulti-
mate fate of the colony under different scenarios. The model suggests that key factors
in the survival or collapse of a honey bee colony in the face of an infection are the rate
of transmission of the infection and the disease-induced death rate. An increase in the
disease-induced death rate, which can be thought of as an increase in the severity of the
disease, may actually help the colony overcome the disease and survive through winter.
By contrast, an increase in the transmission rate, which means that bees are being infected
at an earlier age, has a drastic deleterious effect. Another important finding relates to the
timing of infection in relation to the onset of winter, indicating that in a time interval of
approximately 20 days before the onset of winter the colony is most affected by the onset
of infection. The results suggest further that the age of recruitment of hive bees to forag-
ing duties is a good early marker for the survival or collapse of a honey bee colony in the
face of infection, which is consistent with experimental evidence but the model provides
insight into the underlying mechanisms. The most important result of the study is a clear
distinction between an exposure of the honey bee colony to an environmental hazard such
as pesticides or insecticides, or an exposure to an infectious disease. The results indicate
unequivocally that in the scenarios which we have examined, and perhaps more gener-
ally, an infectious disease is far more hazardous to the survival of a bee colony than an
environmental hazard which causes an equal death rate in foraging bees.

2.1 Introduction
The widespread collapse of honey bee colonies has been the subject of much discussion and
research in recent years [15, 34, 35]. Aside from their ecological importance [5], honey bee
populations have a large economical impact on agriculture in North America, Europe, the
Middle East, and Japan [2, 23, 31].

The focus of research has been largely on environmental factors outside the hive, such as
pesticides or insecticides, which may cause death or injury to foraging bees and jeopardize
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their return to the hive. The reduced number of foraging bees then leads to younger hive bees
being recruited prematurely to perform foraging duties and this chain reaction ultimately leads
to a disruption in the dynamics of the colony as a whole. Examples of this scenario would be
produced by the effects of various pesticides to which foraging bees are exposed in the course
of their duties [12, 35]. Other factors in the same category include possible disruptions to the
bees’ navigation system by mobile phones or other electronic devices, again to the effect of
jeopardizing their return to the hive and thereby reducing their numbers [8].

A key element in this category of disruption to honey bee population dynamics is the un-
timely death of a certain proportion of foraging bees outside the hive and the consequences of
this on the colony as a whole. An important question here concerns the threshold in the death
rate of foraging bees that would determine the survival or collapse of the bee colony. This was
examined recently in two papers by Khoury et al. [20, 21].

In the present paper we consider a different category of disruption to the healthy dynamics
of a bee colony, namely one in which the key hazard is an infection by a communicable disease
acquired by foraging bees outside the hive. The key difference here is that foraging bees that
have been infected would then transport the disease into the hive and go on to infect other
members of the colony within the hive. Here too the affected bees will ultimately suffer an
untimely death, but the effects on the dynamics of the colony are clearly more complex because
the infection in this case may now involve all members of the colony. We sought a model that
would allow a comparison between the effects of these two categories of hazards (pesticide
versus infection) on the ultimate fate of the bee colony.

Disease in honey bee colonies has been studied previously by Sumpter et al. [33] who
modeled the effects of Varroa mites on the brood and on the adult worker bees. The focus of
the model was on the relationship between the mite population within a hive and its role in
virus transmission within the hive. A study by Ratti et al. [24] examined the transmission of
viruses via Varroa mites, using an SIR-framework with the mites as vectors for transmission.

In the present paper we propose a more general model which combines the normal dy-
namics of a honey bee colony with the dynamics of an infectious disease which is acquired
outside the hive but ultimately spreads to the rest of the colony. As a working example, we use
a disease known as Nosema which is a common disease affecting both hive bees and foraging
bees [9]. Nosema is caused by a microsporidian with two common species: Nosema ceranae
and Nosema apis. The former was first discovered in Asian honey bees (Apis ceranae) and the
latter is common among European honey bees (Apis mellifera). A key factor in the collapse of
honey bee colonies in recent years is thought to be the introduction of Nosema ceranae to Apis
mellifera [14].

The main aim of the model is to provide a general tool for determining the ultimate fate of
a honey bee colony under this fairly common hazard. In particular, we identify key variables
that determine the collapse or survival of the bee colony, namely the severity of the disease and
the rate of transmission, and examine different scenarios using different combinations of these
variables. Winter is an important phase in the normal demographic dynamics of a bee colony;
the queen lays fewer eggs and foraging bees return to and remain within the hive [19, 29].
Therefore, the time interval between the onset of disease and the onset of winter may play a
critical role in the ultimate survival or collapse of the colony in the face of an infection. We
show that the model can be used to explore potential markers of the presence of the disease
within the bee colony and of the ultimate fate of the colony under different scenarios.
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2.2 Background

2.2.1 Normal Demographics of a Honey Bee Colony

Honey bee colonies are complex societies in which different members of the colony have spe-
cialized functions that serve the entire colony, thus making members of the colony highly
dependent on each other.

The queen can live up to three years, is responsible for laying eggs, and during peak season
may lay up to 2000 eggs per day [4]. In this function the queen is dependent on worker
bees [36]. The worker bees emerge from fertilized eggs of the queen and consist of females
who maintain the hive and gather resources, and males who mate with the queen to produce
more eggs [28]. Drones are born from unfertilized eggs of the queen [28] and typically making
up less than 5% of the hive population [17, 28]. Because they do not contribute to the colony
work force, and because of their small numbers, they are generally neglected when considering
the dynamics of the colony as a whole.

Female hive bees, following a transition period, leave the hive to start foraging duties and
usually forage until their death. The age at which they start foraging duties is variable, de-
pending on the state of the colony and its needs. If the number of forager bees is lower than
is required for meeting the colony needs, hive bees will begin foraging duties at a younger
age [16]. If the number of forager bees is higher than required, behavioural maturation of hive
bees will be regulated by a pheromone, ethyl oleate, produced by the foragers. This process is
usually referred to as “social inhibition” [22]. Similarly, if the number of hive bees is too low,
it is possible for foragers to revert back to hive bee duties [16].

As the temperature drops outside the hive, foraging becomes less frequent, the queen begins
to lay fewer eggs [36], and drones are expelled from the hive to save hive resources [28]. When
the temperature drops below a certain threshold, the colony enters a winter phase in which
the queen will cease to lay eggs [19] and any remaining foraging bees will return to the hive.
During winter the entire hive population surrounds the queen in order to maintain a temperature
of 34 − 36◦C within the hive [28].

2.2.2 Nosema Infection

Nosema, also known as “Nosemosis”, is an infection affecting honey bees that is spread by the
microsporidian parasites in the Nosema family. Nosema ceranae is of particular interest, as it
is thought to be linked to colony collapse incidents [13, 14]. We use this disease only as an
example to illustrate the utility of the model. The choice was motivated by the availability of
parameter values which allowed us to examine some realistic scenarios of the dynamics of the
bee colony in the presence of infection.

Within the bee colony, Nosema is typically spread via fecal-oral transmission. Adult bees
will contract Nosema either from eating food contaminated by infected bees, or while ridding
the hive of infected fecal matter [3]. There is also evidence that Nosema can be spread via
oral-oral transmission, through feeding [30].

While it is typically asymptomatic at the level of individual bees, Nosema has some symp-
toms that can be observed at the colony level [9, 32]. Stevanovic et al. [32] observed in 2013
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that colonies infected by the parasite Nosema ceranae exhibited many of the classic signs that
precede colony collapse.

Much of the experimental research linking Nosema infection to colony collapse is based on
correlated observations, but direct cause and effect evidence is lacking [9]. Our model aims to
provide a possible mechanism for this linkage in terms of the interplay between the dynamics
of the infection and the normal dynamics of the honey bee colony.

2.3 Mathematical Model
In what follows we present a mathematical model that combines the normal demographic dy-
namics of a honey bee colony with the dynamics of an infection affecting foraging bees outside
the hive at first and then spreading to the rest of the colony. We follow a model for the basic
dynamics of a bee colony in the absence of disease presented recently by Khoury et al. [20, 21],
in which the adult bee population is divided into a number of hive bees H, and a number of
foraging bees F. In the model to be described below we extend this division into four cate-
gories, namely susceptible hive bees HS , infected hive bees HI , susceptible foraging bees FS ,
and infected foraging bees FI . Equations governing each of these four populations during the
active and winter seasons are presented in the following section.

2.3.1 Governing Equations: Active Season
The rate of change in time t (days) of the susceptible hive bee population HS during the active
season is assumed to be governed by

dHS

dt
= LS − HS R − (βHHHI + βHF FI) HS . (2.1)

In the first term on the right L is the queen’s egg laying rate per day and S is the proportion of
those eggs that survive both larval and pupal stages to yield mature bees. This proportion is a
function of the total number of hive bees and of the amount of food f available within the hive
because the brood requires food as well as a sufficient number of supporting hive bees in order
to survive [18]. Following [20] we take

S =

(
HS + HI

w + HS + HI

) (
f

b + f

)
. (2.2)

This function is constructed such that the value of S saturates at 1.0 in the limiting case when
the amount of food f and the total number of hive bees HS + HI are sufficiently large to ensure
the survival of 100% of the eggs laid by the queen. The parameters b and w determine at what
values of f and HS + HI this saturation occurs and they will be discussed later.

In the second term on the right of Eq. 2.1, R is the proportion of maturing hive bees HS that
are being recruited to foraging duties. As discussed earlier, and following [20], we assume that
recruitment is increased when either food stores or forager populations are low and recruitment
is reduced when food stores and forager populations are in excess. Note that in an overabun-
dance of foragers, R may become negative, which implies that foragers are reverting to hive
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duties.

R = Rb + α f

(
b

b + f

)
− αF

(FI + FS

N

)
(2.3)

where Rb is the baseline recruitment rate in the absence of foragers but sufficient food stores,
α f is a weighting of the effect of low food, αF is a weighting of the effect of excess foragers on
recruitment, and N = FI + FS + HS + HI is the colony adult population size. The Average Age
of Recruitment to Foraging (AARF) at any point in time is equal to 1/R.

The last term in Eq. 2.1 determines the rate at which susceptible hive bees become infected.
The transmission rate per day per susceptible hive bee is given by (βHHHI + βHF FI), where βHH

is the contact rate between hive bees and βHF is that between hive bees and foraging bees.
Hive bees are safe within the hive environment under normal circumstances, surviving up

to 6 months over winter [21, 28]. It is therefore assumed that the natural death rate of hive bees
is negligible compared to their recruitment rate to foraging duties.

For the rate of change of the infected hive bee population, we take

dHI

dt
= (βHHHI + βHF FI) HS − HIR − dHHI . (2.4)

Infected hive bees continue to be recruited to foraging duties but, unlike their healthy counter-
parts, they are at risk of dying from the disease before they do so; dH is the rate at which this
occurs.

Susceptible foragers are recruited from susceptible hive bees and may subsequently suffer
natural death, at a rate m, or become infected. Their rate of change is therefore governed by

dFS

dt
= HS R − mFS − (βHF HI + βFF FI) FS . (2.5)

Infected foragers are recruited from infected hive bees or are susceptible foragers that have
become infected. If the death rate from the infection is assumed to be dF then their rate of
change is governed by

dFI

dt
= HIR + (βHF HI + βFF FI) FS − (m + dF) FI . (2.6)

Food is brought into the hive by foragers, either healthy or infected. Although infected for-
agers may forage less efficiently, for simplicity we assume the same foraging rate, c (gm/day)
per forager. The collected food is then consumed by both foragers and hive bees and for
simplicity again we assume the same consumption rate, γA (gm/day). The amount of food
consumed by the larvae is substantial. We assume that the number of larvae is proportional to
the number of surviving eggs and that the larvae consume food at a rate of γL (gm/day). The
amount of food available at time t is thus given by

d f
dt

= c(FS + FI) − γAN − γLLS . (2.7)

The full dynamics of the bee colony are thus governed by Eqs. 2.1, 2.4, 2.5, 2.6 and 2.7
to be solved simultaneously. A compartmental diagram of these dynamics is shown in Figure
2.3.1.
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Figure 2.1: A compartmental diagram of the dynamics of the honey bee colony combined with
the dynamics of an infectious disease. The susceptible and infected hive bees, HS and HI live
within the hive. New susceptible hive bees are generated by surviving brood through the sur-
vival function, S . New infected hive bees are generated through interactions of susceptible
hive bees with infected hive bees and infected foragers at rates βHH and βHF . Hive bees are
recruited to foraging duties through the recruitment function R, which also allows for the re-
versal of duties, from foraging to hive duties. Foragers move into the infected compartment
via interactions with infected hive bees and infected foragers at rates βHF and βFF . All infected
bees die at rates dH or dF , and foragers die naturally at rate m.

2.3.2 Governing Equations: Winter

During winter the rate of egg laying by the queen is considerably diminished, and in harsh
climates the queen may cease laying eggs completely [19]. For simplicity, in our model simu-
lations therefore we take L = 0 for the winter season.

Foraging resources become scarce in winter and foraging bees return to the hive to join hive
bees in their effort to keep the hive warm [19]. The two groups thus perform the same duties
in winter and there is no longer any recruitment from hive to foraging duties. We therefore set
R = 0, although we maintain the separate identities of the two groups in the model in order to
track the behaviors of bees that were foraging before winter against those that were hive bees.

Since there is no foraging in winter, food production halts and we set c = 0. Also, bees
are able to survive longer in winter than they do outside the hive during the active season [26].
Thus the new natural death rate for both hive bees and foraging bees during the winter season
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is set to be mW .
Introducing these changes into the equations governing the dynamics of the colony (Eqs.

2.1, 2.4, 2.5, 2.6, 2.7) we obtain the corresponding equations for the winter season:

dHS

dt
= −mW HS − (βHHHI + βHF FI) HS (2.8)

dFS

dt
= −mW FS − (βHF HI + βFF FI) FS (2.9)

dHI

dt
= (βHHHI + βHF FI) HS − (mW + dH)HI (2.10)

dFI

dt
= (βHF HI + βFF FI) FS − (mW + dF)FI (2.11)

d f
dt

= −γAN − γLLS (2.12)

2.3.3 Parameter Values
The model presented in Section 2.3 contains a total of 13 parameters. Of these, 10 parameters
relate to the baseline demographic dynamics of a honey bee colony, in the absence of disease,
for which empirical estimates are available in the literature. In particular, we consider a bee
colony in which the maximum rate (L in Eq. 4.10) of egg laying by the queen is 2000 eggs/day
and take w = 5000 [21]. Hive bees spend, on average, a minimum of 4 days in the hive before
being recruited to foraging duties [7], and foragers will not revert to hive duties unless one-
third of the bee population is foraging [21]. Based on these values, and following [21], we
take Rb = 0.25 and α f = 0.75. In the complete absence of food, recruitment of foragers will
double [27], thus we take αF = 0.25. Foraging bees are estimated to live approximately 6.76
days outside the hive [6], thus we set m = 0.14 deaths per bee per day.

The parameter b in Eq. 4.10 is the amount of food required to ensure the survival of half
of the eggs to maturation. Based on the observation that the effects of low food stores become
evident when there is less than 1 kg of stored food [21], we take b = 500. It is estimated
that as long as the hive is in an environment that provides sufficient food resources, a forager
will return with c = 0.1 g of food per day [11, 25]. It is also estimated that the daily food
requirement of each member of the brood is γL = 0.018 g and that of an adult hive or foraging
bee is γA = 0.007 g [11, 20, 21].

We assume that both the rate of food consumption and the transmission rate of the disease
remain the same during the active and winter seasons. However, empirical evidence indicates
that bees live longer in winter, surviving up to six months [26], and on that basis we take the
natural death rate in winter, mW = 1/180 deaths per bee per day.

The remaining parameters relate to the dynamics of the disease and, as stated earlier, we
have chosen Nosema ceranae particularly because of the availability of parameter values. The
effect of Nosema ceranae infection is estimated to double the mortality rate of adult for-
agers [10]. On that basis we take dH = dF = m = 0.14 deaths per bee per day. For the
rates of transmission at first we considered different values of βHH, βHF , βFF . Following some
preliminary simulations, however, we found these different values have only a marginal qual-
itative effect on the overall dynamics of the disease. Accordingly, and in the absence of any
field values on which to base a meaningful examination of this issue, the simulations which we
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present in this paper are based on taking βHH = βHF = βFF = β. Generally, transmission of the
disease is mediated via the food stores [30], which makes it difficult in practice to measure the
rate of transmission from an infected bee to a susceptible bee.

A summary of all the parameter values we used is provided in Table 2.1.

L maximum rate of egg laying 2000 eggs/day [21]
w number of hive bees for 50% egg survival 5000 bees [21]
Rb baseline recruitment rate 25%/day [7]
α f maximum additional recruitment in absence of food 25%/day [27]
αF effect of excess foragers on recruitment 75%/day [21]
m natural death rate of foragers (active season) 14%/day [6]
mw natural death rate of foragers and hive bees (winter) 0.56%/day [26]
b mass of food stored for 50% egg survival 500 g [20]
c food gathered per day per forager 0.1 g /day [25]
γ daily food requirement per adult bee 0.007 g [20]

dH death rate of hive bees due to infection 14%/day [10]
dF death rate of foragers due to infection 14%/day [10]
βHH disease transmission rate: hive bee to hive bee variable
βHF disease transmission rate: hive bee to forager variable
βFH disease transmission rate: forager to hive bee variable
βFF disease transmission rate: forager to forager variable

Table 2.1: Parameter values and references.

2.4 Results

In what follows we present the results of numerical simulations of key scenarios that illustrate
the main dynamics of the bee colony in the presence of disease.

To simulate the dynamics of the bee colony, we integrate the governing equations (Eqs. 2.1,
2.4, 2.5, 2.6, 2.7) numerically, with initial conditions HI(0) = FI(0) = 0 and HS (0), FS (0) based
on steady state values for the disease free equilibrium which can be determined analytically.
The food stores, f , continue to grow throughout the active season, and we have found that the
results are not sensitive to the initial value of food in the hive. We present scenarios in which
the dynamics of the disease begin at day 100. The initial onset of infection is simulated by
turning 10% of the susceptible foragers into infected foragers.

Scenario 0: In this scenario we illustrate the baseline demographic dynamics of the colony
in the absence of disease, particularly to highlight the natural seasonal variations. Thus, for this
purpose, in this case we introduce winter after the initial 100 days of integration. The results
are shown in Figure 6.2. The figure shows that both the hive and the foraging bee populations
decrease (from natural death) over winter, but sufficient numbers remain (because of a lower
death rate within the safety of the hive) after a fairly long winter of 100 days. At day 200, the
active season resumes and the colony rebounds to the pre-winter equilibrium.
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Figure 2.2: Baseline demographic dynamics of the honey bee colony in the absence of disease.

Scenario 1: In this scenario, after the initial 100 days we introduce infected foragers into
the system, followed by winter 100 days later. The results are shown in Figure 2.3 based on
β = 5×10−5 and dH = dF = m = 0.14. The figure shows that within about 5 days the susceptible
bee population suffers a drastic drop and the majority of the hive bees have become infected.
The infection greatly reduces the overall size of the colony but a new equilibrium is reached,
with about 65% of the total population sustaining the infection. At the onset of winter, the size
of the colony is not sustainable and within 50 days of winter the colony has collapsed.

Scenario 2: In this scenario we examine the effect of a more severe infection in which
the transmission rate is unchanged but the mortality rates from the disease are increased to
dH = dF = 4m = 0.56. The results, in Figure 2.4, show that after an initial drastic drop, the
population of susceptible bees begins to recover approximately 10 days after the onset of the
infection. The small numbers of infected hive and forager bees lead to their quick demise soon
after the onset of winter, and the disease is eradicated from the hive within 25 days of the onset
of winter. Thus, in this case while the colony has sustained heavy losses from the infection, it
survives winter with a viable number of bees and no disease. A more severe infection, in the
sense that it kills faster, can therefore lead to the survival of the colony as a whole.

Scenario 3: In this scenario we examine the effect of an increased rate of transmission,
setting β = 5 × 10−3 and dH = dF = 2m = 0.28. The results are shown in Figure 2.5. The
infection spreads quickly through the colony, the susceptible population is almost immediately
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Figure 2.3: Scenario 1: Colony dynamics in the presence of disease with β = 5 × 10−5, dH =

dF = 0.14. Red arrow = onset of infection, grey shading = winter.

eradicated, and within 30 days the colony drops drastically to < 10% of its size before infection.
Thereafter, the colony population continues to dwindle slowly, and at the onset of winter it
collapses within 10 days. For comparison, with the same natural death rate but in the absence
of infection, the colony survives through winter and rebounds to its pre-winter level at the onset
of the next active season as seen in Figure 2.2.

Age of Recruitment to Foraging Duties: The average age at which hive bees are recruited
to foraging duties (AARF) under the three scenarios is shown in Figure 2.6. The figure shows
that AARF is an important marker of the health of the colony in the sense that a colony with a
younger workforce can be taken as a sign of disease within the colony. In Scenario 1, AARF is
reduced from 19.6 days before the onset of infection to 13.16 after the infection. In Scenario 2,
with a more severe infection, AARF is reduced to about 14.6 days, though fluctuating between
10 days and 16 days at first. In Scenario 3, with a higher rate of transmission of the infection,
AARF is reduced drastically to 9.7 days. This value is determined from the inverse of the
recruitment function, R.

Figure 2.7 shows the complex relationship between the rate of transmission β and disease-
induced the death rates dH, dF in their effects on the AARF. The figure shows that a combination
of small β and large dH is favorable in that it leads to higher value of the AARF. At higher values
of β, however, the AARF becomes less sensitive to the value of β (as indicated by the clumping
of the curves in that region. The position of the three scenarios in this relationship as shown
in the figure, and their ultimate fate as described earlier, shows again that AARF is an early
marker of colony collapse, which has been supported by experimental evidence [1].



32 Chapter 2. Effects of Infection on Honey Bee Population Dynamics: A Model

50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

time (days)

nu
m

be
r 

of
 b

ee
s

 

 

susceptible hive bees
susceptible foraging bees
infected hive bees
infected foraging bees

Figure 2.4: Scenario 2: Colony dynamics under a more severe infection represented by a higher
death rates from the disease, with β = 5×10−5, dH = dF = 0.56. Red arrow = onset of infection,
grey shading = winter.

Scenario 4: In this scenario, finally, we examine the effect of the timing of the infection in
relation to the onset of winter. Figure 2.8 shows the effect of infection occurring only 10 days
before the onset of winter, compared with 100 days in earlier scenarios. The results, compared
with those in Scenario 2, show that the disease is eradicated sooner by early winter. This is
clearly because healthy bees live longer in the safety of the hive in winter, while the death rate
from infection is unchanged.

Another important indicator of the ultimate fate of the bee colony is the size of the bee
population at the end of winter. While under all scenarios winter is taken to last 100 days,
the size of the bee population at the end of winter is influenced by the severity of the disease
(dH, dF), the transmission rate (β), and the time interval between the onset of infection and
the beginning of winter which we shall denote ∆t. This complex relationship is shown first
in Figure 2.9 for Scenarios 1, 2, 3 where ∆t = 100 days in all three cases. Again, we see a
decrease in sensitivity to β aat higher values of β. Furthermore, an increases in the value of
dH initially has an unfavorable effect on the colony size at end of winter, but at high values
of dH this effect is reversed. The region of fractional values is included in Figure 2.9 only for
(mathematical) completeness of the figure. Biologically, the region represents colonies that do
not survive. By comparison, in Scenario 4 where ∆t = 10 the size of the bee population at
end of winter is reduced by 38% from that in Scenario 2 where the values of other parameters
are the same. A more general indication of the dependence of the size of the bee population
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Figure 2.5: Scenario 3: Colony dynamics under a higher rate of transmission of the disease,
with β = 5 × 10−3, dH = dF = 0.56. Red arrow = onset of infection, grey shading = winter.

at end of winter on ∆t is shown in Figure 2.10. The figure shows that for ∆t < 20 days or
so, there is very high sensitivity to the value of ∆t, but for ∆t > 20 days or so this sensitivity
is considerably diminished. This indicates that in the three weeks or so before winter the bee
colony is most vulnerable to the risk of infection.

Finally, in Figure 2.11 we compare the effects of two major types of hazards faced by a
honey bee colony, one in which there is a simple increase in the death rate of foragers because of
exposure to an environmental hazard and another in which the bees are exposed to an infectious
disease. Specifically, in this figure we contrast the dynamics of Scenario 3 with the dynamics
of an environmental hazard scenario in which the hive is disease-free but the death rate from
the environmental hazard is the same as the total death rate in Scenario 3. Specifically, in
Scenario 3 we had dF = 0.28, dH = 0.28, m = 0.14 for a total death rate of 0.7, thus, for
a comparable environmental hazard scenario we take m = 0.7 and dF = dH = 0. The figure
shows clearly that the survival of the colony is almost guaranteed in the environmental hazard
scenario, while the collapse of the colony is almost guaranteed in the disease scenario.

This comparison is clearly approximate because the three components of death rate in the
infectious disease case (dF , dH,m) are independent of each other and therefore their sum is not
accurately comparable to the total death rate in the environmental hazard case. For this reason,
in Figure 2.12 we consider another comparison in which the dynamics of the two hazards are
such that the average lifespan of bees is the same in both cases. The results again show that
the colony survives under the environmental hazard.
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Figure 2.6: Average age of recruitment to foraging duties (AARF) under the three scenarios in
Figures 2.3, 2.4, 2.5. Red arrow = onset of infection.
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Figure 2.7: Relationship between the rate of transmission β and disease-induced death rates
dH = dF in their effects on the Average Age of Recruitment to Foraging (AARF). The figure
shows the effects of an increase of β and dH on the AARF. Note that the AARF becomes less
sensitive to changes in β as β is increased. Meanwhile, for small β, an increase in dH can have
a favourable effect on the AARF.
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Figure 2.8: Scenario 4: β = 5 × 10−5, dH = dF = 0.56. Effect of the proximity of the onset of
infection to the onset of winter. Red arrow = onset of infection, grey shading = winter.
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Figure 2.9: The expected size of the bee population at the end of winter as influenced by the
severity of the disease (dH = dF) and the transmission rate of the disease (β). For comparison,
the black arrow indicates the population size at end of winter in the absence of disease (Figure
2.2). The figure illustrates the different sensitivity to β and dH. Note that dH has a favourable
effect for small β and dH large enough.
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Figure 2.10: The expected size of the bee population at the end of winter as influenced by the
time interval between the onset of infection and the beginning of winter (∆t), with β = 5×10−5.
For comparison, the black arrow indicates the population size at end of winter in the absence
of disease (Figure 6.2).



2.4. Results 39

50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

time (days)

nu
m

be
r 

of
 b

ee
s

 

 

susceptible hive bees
susceptible foraging bees
infected hive bees
infected foraging bees
environmental−hazard hive bees
environmental−hazard foraging bees

Figure 2.11: The stark difference between the dynamics of Scenario 3 with an environmental
hazard scenario in which the death rate is increased (by the effects of pesticides, for example)
to equal the total death rate in Scenario 3. The survival of the colony is almost guaranteed in
the environmental hazard scenario while the collapse of the colony is almost guaranteed in the
disease scenario.
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Figure 2.12: An alternative comparison of the dynamics of Scenario 3 with an environmental
hazard scenario in which the comparison between the two hazards is based not on the total
death rate as in Figure 2.11 but on the average lifespan of bees being the same in both cases.
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2.5 Discussions and Conclusions
The main aim of this study was to construct a model for examining the way in which the
dynamics of a honey bee colony are affected by an infection. We present this model in terms
of a set of governing equations representing the interplay between the dynamics of the spread
of the disease and the demographic dynamics of the bee colony. Up to this point the model is
fairly general in regard to the specific characteristics of the colony or the disease and can thus be
adapted to a variety of specific cases by an appropriate choice of parameter values. To illustrate
the utility of the model, we chose parameter values associated with Nosema ceranae which has
been well studied experimentally. Our findings, compared with those found experimentally are
summarized in Table 2.2.

Exp. 1 2 3
AARF- Healthy 14-21 19.6 19.6 19.6
AARF- Infected 7-16 13.1 14.6 9.7

(HI + FI)/N 45% 64% 12.2% 92%

Table 2.2: Tabulated results from the model scenarios 1, 2, and 3 and experimental data from [1] and [10]. The
last row shows the percentage of the population infected at the endemic equilibrium, and the experimental value
is the threshold value which leads to over-winter colony collapse.

The model suggests that key factors in the survival or collapse of a honey bee colony in
the face of an infection are the rate of transmission of the infection β and the disease-induced
death rates, dH and dF . An increase in the disease-induced death rates, which can be thought of
as an increase in the severity of the disease, may actually help the colony overcome the disease
and survive through winter (Scenario 2), which is consistent with SIR models of epidemics.
By contrast, an increase in the transmission rate, which means that bees are being infected at
an earlier age, has a drastic deleterious effect (Scenario 3).

Another important finding relates to the timing of infection in relation to the onset of winter.
The results (Figure 2.10) suggest that in a time interval of approximately 20 days before the
onset of winter the colony is most affected by the onset of infection. An infection during
this “dangerous” time period is more likely to lead to colony collapse because the number
of bees surviving through winter becomes unviable for a rebound of the colony in the new
active season. Outside this dangerous time period, i.e. for ∆t > 20 days, the survival of the
colony is no longer critically affected by the timing of infection. It must be emphasized that
the numerical value of 20 days for this dangerous time period is likely not a “universal” value
but one that is specific to the choice of parameter values we used both for the colony and the
disease. With other combinations of colony and disease parameters, the model can be used to
find the corresponding critical time period.

Our results (Figures 2.6 and 2.7) suggest that AARF is a good early marker for the survival
or collapse of a honey bee colony in the face of infection. This is consistent with experimental
evidence in [1] but the model and the results in Figures 2.6 and 2.7 provide an insight into the
underlying mechanisms for this.

Finally, an important result of this study is the clear distinction between two major types
of hazards faced by a honey bee colony, namely, one in which there is a simple increase in
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the death rate of bees because of exposure to an environmental hazard such as pesticides or
insecticides, and another in which the bees are exposed to an infectious disease. The results
in Figure 2.11 show that an exposure to an infectious disease is almost guaranteed to lead to
colony collapse while under an environmental hazard the colony has a good chance of survival.
This conclusion is confirmed by the results of Figure 2.12 in which the comparison between
the two hazards is based not on the total death rate but on the average lifespan of bees being the
same in both cases. Since an environmental hazard in the first place affects only forager bees,
the comparison in this case is equivalent to considering a more severe environmental hazard
than that in Figure 2.11, or to considering the long term consequences of an environmental
hazard as it affects the demographics of the colony. Together, the two comparisons lead us to
suspect that, under comparable death rates and the range of disease transmission rates which
we have considered, an infectious disease may typically be more hazardous to the survival of a
bee colony than an exposure to pesticide or insecticide.
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Chapter 3

Reproduction Number And Asymptotic
Stability For The Dynamics of a Honey
Bee Colony with Continuous Age
Structure

Abstract
A system of partial differential equations is derived as a model for the dynamics of a

honey bee colony with a continuous age distribution, and the system is then extended to in-
clude the effects of a simplified infectious disease. In the disease-free case we analytically
derive the equilibrium age distribution within the colony and propose a novel approach for
determining the global asymptotic stability of a reduced model. Furthermore, we present
a method for determining the basic reproduction number R0 of the infection; the method
can be applied to other age-structured disease models with interacting susceptible classes.
The results of asymptotic stability indicate that a honey bee colony suffering losses will
recover naturally so long as the cause of the losses is removed before the colony collapses.
Our expression for R0 has potential uses in the tracking and control of an infectious disease
within a bee colony.

3.1 Introduction
Honey bee populations continue to decline on a global scale [3], and as research efforts to
identify the underlying cause or causes continue [23, 63, 65], there is as yet no clear resolution
of the problem. While the consequences of the decline are usually discussed in the context of
agriculture and economics [9, 37, 54], the key question clearly hinges on the stability of a honey
bee colony as a population dynamical system. Mathematical models thus provide critically
important tools for studying honey bee populations as they can both simulate many different
environments as well as suggest potential sensitivities a colony may have to environmental
hazards such as pesticides and climate change, or microbial hazards such as parasites and
disease.

Mathematical models have been used in recent years to shed light on the effects of pesti-
cides on the lifespan of foraging bees [29, 30]. Other models have focused on the changing
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dynamics of a colony under changing environmental conditions [58], or the interactions be-
tween colonies [49]. Recent work has also investigated the effects of infection on honey bee
colony dynamics, including Varroa mites [17, 44, 45] and nosema [5], the latter approximating
infection through mass action. An approach from systems biology has been used to explore the
multifactorial causes of colony failure [2].

One of the complicating factors in the dynamics of a honey bee colony is the age distri-
bution (structure) within the colony since age groups may differ in their expected lifespans,
foraging behaviour or susceptibility to a given hazard. While age-independent models have
provided a number of key insights into the properties of colony dynamics [5, 30, 44], the ulti-
mate conditions for the survival or collapse of a honey bee colony must take into account this
added dimension of the problem.

From a mathematical standpoint, incorporating the age structure of a honey bee colony into
the equations governing the population dynamics leads to a set of partial differential equations
instead of the ordinary differential equations obtained when age structure is not included. The
problem of finding stability and equilibrium conditions for the dynamics of the colony becomes
correspondingly more complex. When considering disease dynamics, the problem of finding
the basic reproduction number (R0) at which the fate of the colony is at a bifurcation becomes
particularly difficult.

We propose a method of resolving these mathematical difficulties by transforming the prob-
lem from the real space (age, time) into the Laplace space such that the governing equations
become ordinary differential equations, and from the solution of these equations it is then possi-
ble to deduce the asymptotic behavior of the dynamical system in the real space. In particular,
in the absence of disease we show that the system has an asymptotically stable equilibrium,
which implies that the bee population will rebound from losses when hazards are removed,
provided they are removed before the complete demise of the colony. In the presence of dis-
ease we use a linearized form of the system to obtain a closed form expression for the basic
reproduction number R0. The expression thus provides a measurable threshold for whether the
disease will decay or persist.

Determining R0 for age-structured models has been previously studied for general disease
models with one infected class [25, 32, 59]. Our model has the added complexity of having two
interacting infected classes, namely infected hive bees (HI) and infected foragers (FI), that can-
not be transformed into a single infected class for analysis. Moreover, work on the asymptotic
stability of disease models with age structure is sparse. Several studies use Lyapunov functions
and semi-group analysis to prove persistence of solutions [21, 33], while perturbation analysis
has also proved useful [26]. Other work has made use of properties of the particular model at
hand to show stability [11].

In the present study, we take advantage of detailed experimental work elucidating the dis-
tinct roles that honey bees of different ages play within a honey bee colony, and use this infor-
mation to develop a model of honey bee demographics with continuous age structure (Section
3.2). This model is then extended to include the dynamics of an infectious disease within
the colony. In particular, we find a stability threshold criterion which corresponds to the ba-
sic reproduction number R0. In Section 3.3.1, we use a steady-state approximation to derive
the equilibrium age distribution of the disease-free hive. In 3.3.2, we develop a novel Laplace
transform approach to prove global stability of this disease-free distribution in a reduced model,
implying local stability in the full model. In 3.3.3, we again develop a novel approach to find a
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threshold criterion at which this equilibrium state becomes unstable, and an infection will in-
vade; this threshold corresponds to the basic reproductive number, R0. In Section 4, we discuss
the implications of these results and suggest possible applications of the new approaches we
have developed to other problems in population dynamics.

3.2 Model
The proposed model combines the normal demographics of a honey bee colony with a disease
that at first infects foragers and then spreads to the rest of the colony. As in previous studies,
to keep the problem tractable, we focus on hive bees, H, which are primarily responsible for
maintenance of the brood, and foragers, F, which are responsible for bringing food, f , into
the hive. Although hive bees can take on other duties such as guarding or hive maintenance,
for simplicity we do not model these roles explicitly, but assume all hive bees contribute either
directly or indirectly to the survival of the brood. Male honey bees, known as drones, do not
contribute to the maintenance of the hive, so this population is not included in the model.

Generally, bees emerge from the brood as hive bees and are later recruited to foraging
duties. These two classes are further divided, in the presence of disease, into susceptible pop-
ulations, HS and FS , and infected populations, HI and FI . The following sections present
the governing equations for each of these sub-populations. The total size of the colony to be
modeled in age, a (days), and time, t (days), is thus,

N(t) =

∫ ∞

0
(HS (a, t) + HI(a, t) + FS (a, t) + FI(a, t))da, (3.1)

while the total infected population of the hive, denoted I, is

I(t) =

∫ ∞

0
(HI(a, t) + FI(a, t))da. (3.2)

Susceptible Hive Bees: For the susceptible hive bee population HS (a, t), incorporating age
using the standard approach of McKendrick [36] into our earlier formulation of the problem [5],
the governing equation becomes

∂HS (a, t)
∂t

+
∂HS (a, t)

∂a
= −u(a, t)HS (a, t) − βI(t)HS (a, t). (3.3)

Here, the first term on the right-hand side represents the recruitment of hive bees to foraging
duties, as described below, where u(a, t) denotes the age-dependent rate of recruitment. The
second term on the right governs the disease dynamics within the colony, as described in the
next subsection. It is assumed that the hive provides sufficient safety for bees that remain within
it [30, 51] such that the natural death rate of healthy hive bees is negligible compared to the
rate of recruitment to foraging.

Research has shown that juvenile hormone III regulates the age at which honey bees begin
foraging [46], and there is a minimum age, aR, at which hive bees are normally recruited to
foraging duties [18]. If the foraging needs of the colony are not being met, however, hive
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bees will be recruited to foraging duties at a younger age [24]. Conversely, if the foraging bee
population exceeds the needs of the colony, foragers produce a pheromone, ethyl oleate, to
reduce recruitment [31]. We incorporate these regulatory mechanisms by taking

u(a, t) = α
( a
a + k

)2
(
1 −

σ

N(t)

∫ ∞

0
(FS + FI)da

)
Hv(a − aR) (3.4)

where α is a free parameter representing the base rate of recruitment, Hv(a−aR) is the Heaviside
function, and 1/σ is the maximum allowable fraction of foragers in the colony size. Thus
recruitment begins at age aR and increases sigmoidally with age thereafter where k is the age
at which recruitment is at a quarter of its maximal rate. The form of this sigmoidal function,
(a/(a+k))2, was chosen as it yielded the best fit to available data describing the age distribution
of a healthy honey bee colony [4].

Disease dynamics: To retain analytical tractability when both age- and caste-structure have
been added to the model, we use the simplest possible approximation for disease dynamics. In
particular, we assume the infection is transmitted via mass action at a constant rate β, and in-
fection can be transferred from hive bees to foragers or vice versa. While mass action kinetics,
with no time delay, are unlikely to be the best possible model for any particular disease of
honey bees, this model allows us to gain analytical insight into key broad features of infection
in the colony. Mass action kinetics provide a reasonable approximation for certain modes of
transmission; for example, in the case of nosema, fecal-oral transmission [55], and contami-
nation of food stores [53] can be modeled by mass action under the assumptions that food is
well-mixed and infected food is proportional to infected foragers. Of course, nosema infects
food stores and bees via the microsporidian Nosema ceranae [6, 53]. The microsporidian pop-
ulation within the hive fluctuates seasonally and adds a further complexity to nosema infection
in colonies. The simple transmission terms we assume will clearly not capture the complete
pathogenesis of nosema infections [42].

Three important simplifying assumptions underpin disease transmission in the model. The
first is that hive bees and foragers are both infected (and infect) at the same rate, while the
second is that the disease affects both equally (i.e. same disease-induced death rate for both
classes). Both of these assumptions have been chosen to allow for a simple, general model.
The methods described here, however, remain valid if the second assumption is relaxed, that is,
the approach can also be used to describe a disease which affects the lifespan of hive bees and
foragers differently. Lastly, we assume infected bees are recruited to foraging at the same rate
as healthy bees. We have previously demonstrated that despite this simplifying assumption, a
related model [5] is able to capture reductions caused by infection in the average age at which
bees are recruited to foraging.

Infected Hive Bees: Infected hive bees are at risk of dying due to disease at an age-
dependent rate d(a). The equation governing their dynamics is then

∂HI(a, t)
∂t

+
∂HI(a, t)
∂a

= βI(t)HS (a, t) − [u(a, t) + d(a)]HI(a, t). (3.5)

Susceptible Foragers: Susceptible foragers are recruited from susceptible hive bees and
are subject to age-dependent natural death at rate µ(a). The equation governing their dynamics
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is thus given by

∂FS (a, t)
∂t

+
∂FS (a, t)

∂a
= u(a, t)HS (a, t) − [µ(a) + βI(t)]FS (a, t). (3.6)

In all of the analytical work to follow (Sections 3.3.1, 3.3.2, 3.3.3 and 3.3.4), the function
µ(a) is completely general. For illustrative purposes (in the figures only), a quadratic function
has been used to match qualitative observations of forager mortality. In particular, precocious
foraging has been shown to have deleterious effects on forager lifespan [27, 62], while mortality
has been observed to increase with chronological age [16]. Given these two observations, the
simplest smooth function that agrees qualitatively would be a quadratic with a central age at
which mortality is at a minimum. The function used for numerical illustrations in this study is
provided in Table A.1.

Infected Foragers: Infected foragers can be either (i) infected hive bees that have been
recruited to foraging duties or (ii) susceptible foragers that have become infected by either
infected foragers or infected hive bees. They are subject to a disease-related death rate, d(a),
and their dynamics are governed by

∂FI(a, t)
∂t

+
∂FI(a, t)
∂a

= u(a, t)HI(a, t) + βI(t)FS (a, t) − [µ(a) + d(a)]FI(a, t). (3.7)

Food stores: Food, f , is brought into the hive by both susceptible and infected foragers.
For simplicity, we assume that all foragers bring in food at the same rate c (g/day), although it
is likely that infected foragers would be less efficient at the task. Food is consumed by foragers
and hive bees at, again for simplicity, the same rate, γ. The amount of food available at time t
is therefore given by

d f
dt

= c
∫ ∞

0
(FS + FI) da − γN . (3.8)

Boundary Conditions: The system of equations (3.3),(3.5),(3.6),(3.7) is subject to the fol-
lowing boundary conditions: {

HS (0, t) = LV(t)
HI(0, t) = FS (0, t) = FI(0, t) = 0 .

(3.9)

The first condition represents the birth of new bees where L is the daily egg laying rate by the
queen and V is a survivability function which determines how many of the brood survive to
become viable hive bees. The brood needs both sufficient food and sufficient care from the
hive bees in order to survive [28]. Moreover, it has been shown that there is a range of ages
within which hive bees will care for the brood. Field data suggest that hive bees take on nursing
duties at a minimum age amn and complete these duties at a maximum age amx. After this age,
hive bees tend to either transition to foraging duties or take on hive security or maintenance
duties [66]. On this basis, we define the survivability function V(t) as

V(t) =W

(
f

b + f

) 
∫ amx

amn
HS (a, t)da

w +
∫ amx

amn
HS (a, t)da

 , (3.10)
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where b is the amount of food required for half the brood to survive to adulthood in the presence
of sufficient care from hive bees, and w is the number of nursing hive bees necessary to ensure
survival of half the brood in the presence of sufficient food stores. The term W provides a
‘conversion’ of eggs to bees with a fixed value ofW = 1 bee per egg, and can be interpreted
as the maximum number of bees produced by a single egg. The number of new hive bees
created from L eggs is dependent on the amount of food available as well as the amount of care
available. The boundary conditions for the infected classes assume that bees cannot emerge
infected.

Equations (3.3), (3.5), (3.6), (3.7), (3.8) form a system of integro-partial differential equa-
tions to be solved simultaneously subject to the boundary conditions (3.9).

Numerical Treatment: For illustrative purposes (the figures only), the full system was
solved numerically using a finite difference scheme [20], using parameter values provided in
Table 3.1. Age was divided into N classes, each of size ∆a, and the first derivative was approx-
imated by using a backward difference [52]. Time integration used Forward Euler [12] from
an initial condition of H(a, 0) = 104e−a, F(a, 0) = 0 with step size of ∆t= 10−3. The limit as
a → ∞ was approximated by using a maximum value Amax � ∆a. Solutions were considered
to be at steady state when ||(FS (a, tn) + HS (a, tn)) − (FS (a, tn−1) + HS (a, tn−1))||2 < 10−10∆t.

3.3 Results

3.3.1 Existence

We use the method of characteristics [39], with characteristics given by

da
da

= 1, a(0) = 0 (3.11)

dt
da

= 1, t(0) = t0. (3.12)

The latter equations lead to parallel characteristics of the form t(a) = a + t0. Along these
characteristics, the populations HS (a, t(a)), FS (a, t(a)),HI(a, t(a)), and FI(a, t(a)) satisfy the
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equations

dHS

da
= −u(a, t(a))HS (a, t(a)) (3.13)

− βHS (a, t(a))
∫ ∞

0
HI(a∗, t(a∗)) + FI(a∗, t(a∗))da∗

dFS

da
= u(a, t(a))HS (a, t(a)) − µ(t(a))FS (a, t(a)) (3.14)

− βFS (a, t(a))
∫ ∞

0
HI(a∗, t(a∗)) + FI(a∗, t(a∗))da∗

dHI

da
= −(u(a, t(a)) − d(t(a)))HI(a, t(a)) (3.15)

+ βHS (a, t(a))
∫ ∞

0
HI(a∗, t(a∗)) + FI(a∗, t(a∗))da∗

dFI

da
= u(a, t(a))HI(a, t(a)) − (µ(t(a)) + d(t(a)))FI(a, t(a)) (3.16)

+ βFS (a, t(a))
∫ ∞

0
HI(a∗, t(a∗)) + FI(a∗, t(a∗))da∗

with initial values

HS (a, t0) = LV(t0)e−a (3.17)
FS (a, t0) = HI(a,t0) = FI(a, t0) = 0. (3.18)

Due to the discontinuity in u(a, t), we cannot find a unique differentiable solution to equations
(13), (14), (15), and (16). We can however split the problem at the discontinuity and solve the
system in two parts. Patching together these two solutions allows us to infer the existence of a
continuous, but not differentiable, weak solution to the governing PDEs.

The first-order integro-differential equations (13), (14), (15), and (16) – which define the
steady-state distribution of bees – can be reduced to a finite set of ordinary differential equations
through methods developed in [14, 15, 19]. The approach described therein creates a map
between a system of integro-differential equations with a degenerate kernel (i.e. K(x, y) =

K1(x)K2(y)), and an equivalent system of ordinary differential equations which are guaranteed
to have a unique solution on a ∈ (0, aR) [7]. We denote these solutions as H jS (a, t), F jS (a, t),
H jI(a, t), and F jI(a, t) ( j for ‘juvenile’). As well, we appeal to the same theoretical framework
to guarantee a solution in the interval a ∈ (aR,∞), denoted HmS (a, t), FmS (a, t), HmI(a, t), and
FmI(a, t) (m for ‘mature’), provided HmI(a, t) and FmI(a, t) are bounded and decay as a→ ∞.
The full solution is continuous on a ∈ (0,∞) under the conditions

HmS (aR, aR + t0) = H jS (aR, aR + t0) (3.19)
FmS (aR, aR + t0) = F jS (aR, aR + t0) (3.20)
HmI(aR, aR + t0) = H jI(aR, aR + t0) (3.21)
FmI(aR, aR + t0) = F jI(aR, aR + t0). (3.22)

These conditions act as initial conditions for equations (13), (14), (15), and (16) on the interval
a ∈ (aR,∞). As the characteristics are parallel, the solution is unique in the entirety of at-space.
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3.3.2 Disease-free Equilibria (DFE)
One equilibrium for the disease-free system is the trivial equilibrium

HS (a) = FS (a) = f (t) = 0. (3.23)

A second equilibrium exists, and is the solution to the ODE system,

dH∗∗S
da

= −u(a)H∗∗S (a) (3.24)

dF∗∗S
da

= u(a)H∗∗S (a) − µ(a)F∗∗S (a) (3.25)

γN(t) = c
∫ ∞

0
F∗∗S (a)da (3.26)

where H∗∗S and F∗∗S denote the steady state solutions. We may relax condition (3.26) by setting
d f
dt
≥ 0 as opposed to

d f
dt

= 0, and instead seek a quasi-steady state under which food may be
bounded, or may grow unbounded. Note that the quasi-steady state conditions include the true
equilibrium as well.

Equations (3.3) and (3.6) are non-linear, and coupled in such a way as to make an analytical
expression for their equilibrium evasive. The nonlinearities for the system all appear in the term
u(a), given by equation (3.4), which also depends on HS and FS in the disease-free case through
the integrals

∫
FS da/N. At equilibrium, this term will reduce to a constant. In other words, we

can rewrite the term ∫
FS da

N
= K1

at equilibrium. In the case of bounded food stores, as in equation (3.26),

K1 =
γ

c
but in the case of unbounded food stores,

K1 ≥
γ

c
.

We write the recruitment function at equilibrium, ueq(a) as

ueq(a) = α
( a
k + a

)2
(1 − σK1) Hv

(
â − âR

K

)
(3.27)

= K
( a
k + a

)2
Hv

(
â − âR

K

)
(3.28)

where K = α (1 − σK1). We may then rescale the time variables of the system (t̂ = Kt and
â = Ka) to obtain the scaled system,

K
dH∗S
dâ

= −K
(

â/K

â/K + k̂/K

)2

Hv

(
â − âR

K

)
H∗S (â) (3.29)

K
dF∗S
dâ

= K
(

â/K

â/K + k̂/K

)2

Hv

(
â − âR

K

)
H∗S (â) − µ(â)F∗S (â) (3.30)
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We can then simplify the system to

dH∗S
dâ

= −

(
â

â + k̂

)2

Hv

(
â − âR

K

)
H∗S (â) (3.31)

dF∗S
dâ

=

(
â

â + k̂

)2

Hv

(
â − âR

K

)
H∗S (â) − µ̂(â)F∗S (â) (3.32)

where µ̂(a) = µ(a)/K. The solutions of equations (3.31) and (3.32) in scaled variables are inde-
pendent of K (shown below).

Figure 3.1: The disease-free equilibrium distributions H∗S and F∗S . The equilibrium plotted
here is found by running the full, time dependent equations (3.3), (3.6), (3.8) and (3.9) until the
pointwise solution was no longer changing (below threshold O(10−13)), as well as by plotting
equations (3.33) and (3.34). The two are indistinguishable. All parameter values used in this
simulation, with references to the literature, are found in Table 1. Total hive bee population is∫ ∞

0
HS (a)da = 44839 bees and the total forager population is

∫ ∞
0

FS (a)da = 18312 bees.

Equation (3.31) is decoupled from equation (3.32) and is linear. It can be integrated directly.
Using the results, equation (3.32) can then be solved by variation of parameters, as it is a linear,
non-homogeneous equation. The full solution to equations (3.31) and (3.32) is finally given by

H∗S (â) =



HS 0, if â < âR

HS 0

(
â + k̂

)2 k̂
exp

(
−

â2 + âk̂ − k̂2

â + k̂

)
((

âR + k̂
)2 k̂

)
exp

− â2
R + âRk̂ − k̂2

âR + k̂

 , if â ≥ âR
(3.33)
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Table 3.1: Parameter values and source references.
L maximum rate of egg laying 2000 eggs/day [30]
w number of hive bees for 50% egg survival 5000 bees [30]
b mass of food stored for 50% egg survival 500g [29]

amn age at which hive bees begin brood care 3 days [24]
amx age at which hive bees end brood care 16 days [24]
aR minimum recruitment age 4 days [18]
k age at which rate of recruitment is 25% of max. 10 days
α maximum rate of recruitment 1 /day
1
σ

maximum fraction of colony that can be foraging 1/3 [30]
µ(a) natural death rate of foragers (summer) (a−20)2/400 [16, 27, 62]

c food gathered per day per forager 0.1 g /day /bee [47]
γ daily food requirement per adult bee 0.007 g /day /bee [29]

and

F∗S (â) =


FS 0 exp

(∫ â

0
−µ̂

(
â∗

)
dâ∗

)
, if â < âR

(A(â) + FS 0) exp
(∫ â

âR

−µ̂
(
â∗

)
dâ∗

)
, if â ≥ âR

(3.34)

where {
HS 0 = H∗S (0)
FS 0 = F∗S (0)

, (3.35)

A(a) =

∫ a

aR

(
a∗

a∗ + k

)2

H∗S (a∗)e
∫ a∗

aR
µ̂(s) ds da∗ (3.36)

The conditions on variable â stem from the Heaviside term in the definition of u(a) in
equation (3.4). The age distributions of susceptible hive and foraging bees in equations (3.33)
and (3.34) are shown in Figure 3.1.

In order to recover the equilibrium for unscaled variables, one is required to solve the
implicit, nonlinear equation for K,

K = α

1 − σ
∫ ∞

0
F∗S (Ka) da∫ ∞

0
H∗S (Ka) + F∗S (Ka) da

 (3.37)

which can then be used to recover the equilibrium distributions in unscaled time, H∗∗S (a) =

H∗S (Ka) and F∗∗S (a) = F∗S (Ka).
Using equations (4.9) and (3.31), this steady-state exists so long as∫ amx

amn

H∗(a) da >
w

LW ( f/f +b)
. (3.38)
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3.3.3 Stability of DFE
If the Laplace transform of H(a, t) is denoted by L {H(a, t)} = H (a, s) and lim

t→∞
H(a, t) is finite,

then by the Final Value Theorem [40],

lim
t→∞

H(a, t) = lim
s→0

sH (a, s) (3.39)

under two conditions [10]:

i) There is at most one simple pole at the origin in s-space.

ii) Any roots of the denominator of H (a, s) are negative.

In what follows we use this theorem to analyze the asymptotic behaviour of the PDE system
given by equations (3.3), (3.5), (3.6), (3.7) and (3.8) expressed in scaled variables â and t̂, and
ultimately show that the disease-free equilibrium is locally asymptotically stable.

To begin, we approximate the recruitment function u(a, t) as

u(a, t) = ueq(a) + ε(a, t) (3.40)

where ueq(a) is defined as in equation (3.28) as the rate of recruitment at equilibrium and ε(a, t)
is a small perturbation in this function near the equilibrium.

We then take the Laplace Transform in t̂ of equation (3.3) near the disease-free equilibrium,
ignoring the term βIHS since here we are interested in the disease-free case, which yields

sH (â, s) − HS (â, 0) +
∂H (â, s)

∂â
= −ueq(â)H (â, s) +

∫ s

0
ε(â, r − s)H (â, r)dr (3.41)

where

H (â, s) = L {HS (â, t)} (3.42)
ε(â, s) = L {ε(â, t)}. (3.43)

The corresponding boundary condition is then given by taking the Laplace transform of
condition (4.9) but this is not easy because of the time dependence of that boundary condition.
We simplify this problem by noting that when food stores are unbounded and we are interested
in the behaviour as t → ∞, the term involving food will saturate. On this basis we use the
approximation

lim
t→∞

f
b + f

≈ 1. (3.44)

As well, the second factor in the function V (equation (3.10)) can be expressed at equilibrium
as

0 ≤ κ =

∫ amx

amn
H∗S (a)da

w +
∫ amx

amn
H∗S (a)da

≤ 1. (3.45)
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We can linearize about the equilibrium,
∫

H∗S (a)da (note we have suppressed the limits of
integration for readability) using the Taylor series

HS (0, t) ≈ Lκ + L
dV

d
∫

HS da

∣∣∣∣∣
HS =H∗S

(∫
HS (a, t)da −

∫
H∗S (a)da

)
(3.46)

where
dV

d
∫

HS (a, t)da
is the derivative of V with respect to

∫
HS (a, t)da here defined as

dV

d
∫

HS (a, t)da
=

w(
w +

∫
HS (a, t)da

)2 . (3.47)

Using these approximations, the boundary condition for H becomes

H (0, s) =
Lκ
s

+L

 w(
w +

∫ amx

amn
H∗S (a)da

)2


∫ H (a, s)da −

∫
H∗S (a)da

s


=

Lκ2

s
+ L

dV

d
∫ amx

amn
HS da

∫ amx

amn

H (a, s)da (3.48)

and the limit of sH (0, s) becomes

lim
s→0

sH (0, s) = Lκ2 (3.49)

which we note is constant.
Solving the ODE (3.41) with initial condition HS (â, 0) = g(â) ≥ 0 (bounded, analytic, and

satisfying the two aforementioned conditions) yields,

H (â, s) =


(∫ â

0
g (ã) esãdã + H (0, s)

)
e−sa â < âR

(x(â, s) + C(s)) y(â, s) â ≥ âR

(3.50)

where

y(a, s) =
(
a + k̂

)2 k̂
exp

(
−

sa2 + sak̂ + a2 + ak̂ − k̂2

a + k̂

)
(3.51)

x(a, s) =

∫ a

âR

(
g (ã) +

∫ s

0
ε(ã, s − r)H (ã, r)dr

)
1

y(ã)
dã (3.52)

and

C(s) = H (0, s)
((

âR + k̂
)2 k̂

)−1 exp
− sâ2

R + sâRk̂ + â2
R + âRk̂ − k̂2

âR + k̂

−1

. (3.53)

The tilde sign signifies dummy variables.
We examine this result in two parts:
(i) â > âR : Here we observe that

s y(â)x(â) ≥ 0 (3.54)
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and note that

lim
s→0

s
∫ s

0
ε(â, s − r)H (â, r)dr = 0. (3.55)

Since g(â) is bounded, and

0 ≤
exp

(
−

k̂2

â + k̂

)
(â + k̂)2k̂

≤ 1

we find

s y(â)x(â) ≤ s y(â)
(

max
â∈[0,∞)

g(â)
) ∫ â

âR

e−ã(s̃+1)dã (3.56)

= s y(â)
(

max
â∈[0,∞)

g(â)
)

e−(s+1)âR − e−(s+1)â

s + 1
.

We also note that

lim
s→0

s y(â)
(

max
â∈[0,∞)

g(â)
)

e−(s+1)âR − e−(s+1)â

s + 1
= 0. (3.57)

Using conditions (3.54), (3.56), (3.57) and the Squeeze Theorem [56] we conclude that

lim
s→0

s y(â)x(â) = 0 (3.58)

As well,

lim
s→0

s C = lim
s→0

{
sH (0, s)

((
âR + k̂

)2 k̂
)−1

•exp
− sâ2

R + sâRk̂ + â2
R + âRk̂ − k̂2

âR + k̂

−1
= Lκ2

((
âR + k̂

)2 k̂
)−1

exp
 â2

R + âRk̂ − k̂2

âR + k̂

 (3.59)

Using the above, we find

lim
s→0

sH (â, s) = Lκ2
(
â + k̂

)2 k̂
exp

(
−

sâ2 + sâk̂ + â2 + âk̂ − k̂2

â + k̂

)
(3.60)

= H∗S (â), (3.61)

and applying the Final Value Theorem we find

lim
t→∞

HS (â, t) = H∗S (â), â ≥ âR (3.62)

(ii) â < âR : Here we note simply that

lim
s→0

s
(∫ â

0
g (ã) esãdã + H (0, s)

)
e−sâ (3.63)

=

(∫ a

0
lim
s→0

sg (ã) esãdã + lim
s→0

Lκ2
)

e−sâ (3.64)

= Lκ2 = H∗S (â). (3.65)



3.3. Results 59

This completes the stability analysis of the DFE for HS . Similar analysis applies to the
DFE for FS , though with considerably more tedious algebra, therefore we omit the details.

The above analysis determines the global stability of the linearized model in which we have
sufficient food stores, brood care and time-independent recruitment. This linearized model is
in fact an approximation to the full model governed by equations (3.3), (3.5), (3.6), (3.7) and
(3.8) near the quasi-steady state distribution given by equations (3.33) and (3.34). Note that,
rather than linearizing the full system by using first order approximations (the Jacobian) in
the neighbourhood of the equilibrium, here we need only consider the functional forms of the
recruitment and survival terms. At any equilibrium, factors in these terms that vary with the
population size of a certain class will be constant. Imposing only this assumption, along with
equation 3.44, produces a linearized model that is valid in some neighbourhood of the disease-
free equilibrium. Therefore, the global stability of the linearized model implies local stability
of the full model.

The significance of these results is that starting from any initial age distribution g(a) such
that equation (3.38) is satisfied, given sufficient food stores and brood care, a colony will re-
bound toward the distributions in equations (3.33) and (3.34), shown numerically in Figure 3.1.
While the analysis does not provide a time frame in which the rebound will occur, numerical
experiments suggest that the rebound is relatively fast. More specifically, within months of an
environmental hazard being removed, the colony returns to its quasi-steady state distribution.
Of course, this applies only to the active season, when temperatures are amenable to optimal
colony function. The effects of seasonal changes with age structure are explored separately
elsewhere [4], while an exploration of the effects of seasonal changes with an age-independent
model have been previously studied [45, 47].

3.3.4 Basic Reproduction NumberR0

The basic reproduction number, R0, for a system of partial differential equations has been
explored previously in [25, 32, 59]. The main difficulty in finding an expression for R0 is that a
system of partial differential equations has infinite dimensions and is therefore not amenable to
standard methods such as the next generation matrix [13, 60]. In the present case the situation
is further compounded because there are two susceptible classes, namely HS and FS , and they
interact with each other. In what follows we propose techniques similar to those introduced
by [32] and [25] to determine the basic reproduction number in the face of these complications.

We begin by linearizing the system (equations (3.3),(3.5),(3.6),(3.7),(3.8)) about the DFE
given by equations (3.33) and (3.34). Again, since we are near the disease free equilibrium, we
use ueq(a) to approximate the recruitment function, and rescale time as described previously.
For the basic reproduction number, we are concerned with the growth of only the infected
classes, governed by the following linearized equations in scaled variables:

∂HI

∂t̂
+
∂HI

∂â
= −

( â

â + k̂

)2

Hv(â − âR) + d̂(â)
 HI (3.66)

+ β̂H∗S

∫
(HI + FI) dâ
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∂FI

∂t̂
+
∂FI

∂â
=

(
â

â + k̂

)2

Hv(â − âR)HI − (d̂(â) + µ̂(â))FI(â) (3.67)

+ β̂F∗S

∫
(HI + FI) dâ

where H∗S and F∗S are the distributions of the disease-free equilibrium found in Section 3.1.
We then use the ansatz that at least for a short time after the infection begins, the two infected
populations have fixed age distributions that grow or decay exponentially in time [8, 64], that
is

HI(â, t̂) = hI(â)eρt̂ (3.68)
FI(â, t̂) = fI(â)eρt̂. (3.69)

The set of all values of the exponent ρ is thus viewed as the growth parameters of the linearized
system, equations (3.66),(3.67). For ρ < 0 the solutions will decay to zero, and the DFE will
be asymptotically stable. For ρ > 0 the solutions will lead to an epidemic outbreak, and we
now proceed to determine conditions under which this occurs.

Substituting (3.68) and (3.69) into (3.66) and (3.67) gives a system of integro-differential
equations:

dhI

dâ
= −

( â

â + k̂

)2

Hv(â − âR) + d̂(â) + ρ

 hI + b(â)W (3.70)

d fI

dâ
=

(
â

â + k̂

)2

Hv(â − âR)hI −
[
(d̂(â) + µ̂(â) + ρ

]
fI + B(â)W (3.71)

where
W =

∫
(hI + fI) dâ, (3.72)

b(a) = β̂H∗S (a) (3.73)

and
B(a) = β̂F∗S (a). (3.74)

The above system has the solution,

hI(â) = We−ρâe−Γ̂1(â)
∫ â

0
eρs̃b (s̃) eΓ̂1(s̃)ds̃ (3.75)

fI(â) = We−ρâe−Γ̂2(â)
∫ â

0
eρs̃eΓ̂2(s̃)

(
B (s̃) + û (s̃) hW

I (s̃)
)

ds̃ (3.76)

where

û(a) =

( a
a + k

)2
Hv(a − âR) (3.77)

Γ̂1(a) =

∫ a

0
û (ã) + d̂ (ã) dã (3.78)

Γ̂2(a) =

∫ a

0
d̂ (ã) + µ̂ (ã) dã (3.79)

hW
I (a) = e−ρae−Γ̂1(a)

∫ a

0
eρs̃b (s̃) eΓ̂1(s̃)ds̃. (3.80)
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Substituting equations (3.75) and (3.76) into equation (6.73), we find

W = WR(ρ) (3.81)

where

R(ρ) =

∫ ∞

0
e−ρâ

{
e−Γ̂1(â)

∫ â

0
eρsb (s) eΓ̂1(s)ds (3.82)

+e−Γ̂2(â)
∫ â

0
eρseΓ̂2(s)

(
B (s) + û (s) hW

I (s)
)

ds
}

dâ.

To determine if a non-zero solution of equation (6.75) exists, we seek a ρc such that

R(ρc) = 1. (3.83)

We use the Mean Value Theorem to simplify equation (3.82) and rewrite equation (3.82) as

R(ρ) =
∫ ∞

0
eρ(c1−â)e−Γ̂1(â)

∫ â

0
b (s) eΓ̂1(s)ds (3.84)

+ eρ(c2−â)e−Γ̂2(â)
∫ â

0
eΓ̂2(s)B (s) ds

+ eρ(c3−c4−â)e−Γ̂2(â)
∫ â

0
û(s)h̃W

I (s)eΓ̂2(s)dsdâ

where
{c1, c2, c3, c4} ∈ [0, â] (3.85)

and, as a consequence,
ci − â ≤ 0 for i = 1, 2, 3, 4. (3.86)

Taking the derivative of equation (3.84) with respect to ρ yields

R′(ρ) = − ρ

∫ ∞

0

{
|c1 − â|eρ(c1−â)e−Γ̂1(â)

∫ â

0
b (s) eΓ̂1(s)ds (3.87)

+ |c2 − â|eρ(c2−â)e−Γ̂2(â)
∫ â

0
eΓ̂2(s)B (s) ds

+ |c3 − c4 − â|eρ(c3−c4−â)e−Γ̂2(â)
∫ â

0
û(s)h̃W

I (s)eΓ̂2(s)ds
}

dâ.

Recall that for a disease to persist, a value of ρc > 0 is required such that R(ρc) = 1. Since
each integral in equation (3.87) is positive (because each integrand is positive), then R(ρ) is a
non-increasing function of ρ. Therefore, if R(0) < 1 then R(ρ) , 1 for any ρ > 0. On the other
hand, if R(0) > 1 then by continuity of R(ρ), there must exist a ρc such that R(ρc) = 1. This
then implies there is a solution to equation (6.75) such that W , 0 which then in turn implies
that hI and fI are nonzero. Under these conditions an infection will persist.

The above analysis provides the basis for taking R(0) as our basic reproduction
number, that is for setting R(0) = R0. For R0 < 1 the infection will decay, whereas
for R0 > 1 the infection will grow.
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The basic reproduction number for this model is thus given by

R0 = β̂

∫ ∞

0

{
e−Γ̂1(â)

∫ â

0
H∗S (s)eΓ̂1(s)ds (3.88)

+e−Γ̂2(â)
∫ â

0

(
F∗S (s) + û(s)

∫ s

0
H∗S (s̃)eΓ̂1(s̃)ds̃

)
eΓ̂2(s)ds

}
dâ.

Transforming back to the unscaled variables, R0 can be written:

R0 =β

∫ ∞

0

{∫ a

0
H∗∗S (s)e−(Γ1(a)−Γ1(s))ds

}
da (3.89)

+ β

∫ ∞

0

{∫ a

0
F∗∗S (s)e−(Γ2(a)−Γ2(s))ds

}
da

+ β

∫ ∞

0

{
ueq(s)e−Γ2(a)

∫ s

0
H∗∗S (s̃)e−(Γ2(s)−Γ1(s̃))ds̃ds

}
da ,

recalling that H∗∗S (a) and F∗∗S (a) are the disease-free equilibrium distributions in unscaled time.
This value of R0 defines a bifurcation point at which the disease-free equilibrium loses stability
and gives rise to an epidemic. The appendix relates this expression for R0 to the expression in
the age independent case, R̂0.

Figure 3.2: The total infected population in the hive after integrating equations (3.3),(3.5),(3.6)
and (3.7) for 100 days vs. R0 computed by numerical integration of equation (3.89). We see
that the infection cannot infiltrate the colony for R0 < 1.

Figure 6.1 shows the total infected population, computed numerically and plotted against
values of the basic reproduction number R0. The figure confirms numerically the bifurcation
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value of R0 at 1 as predicted by the analysis. The reduction in I seen as R0 increases shows the
slow collapse of the colony as the bee population becomes more afflicted by the disease.

Figure 3.3: R0 as calculated using equation (3.89) plotted against the basic reproduction num-
ber in the age-independent case, R̂0 calculated using the next generation matrix (see Ap-
pendix). The dashed black line represents equality, while the data are shown in blue. The
age-independent model consistently under estimates the value of R0.

Figure 6.2 shows that the corresponding age-independent R0 (where the parameter values
are taken to be the average over all ages) significantly under-estimates the basic reproduction
number.

3.4 Discussion
Considerable research has highlighted the importance of age structure to a honey bee colony.
Recently Perry et al. have shown experimentally that various stressors can cause rapid be-
havioural maturation, which in turn will accelerate colony failure [41]. Models have also
predicted that earlier recruitment to foraging can be a marker for potential colony collapse
[5, 29, 30]. Modelling age structure explicitly can help us better understand the mechanisms
driving such earlier maturation. Moreover, as seen in [4], an explicit age structure allows the
model to capture behaviours that have been missed by simpler ordinary differential equation
models, including spring dwindle, the loss of bees in early spring. Furthermore, since parasites
and diseases often target, and affect differently, bees of particular age classes [34, 57], an age-
structured model can aid in understanding and predicting the effects of these pathogens. The
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differences between an age-structured model and age-independent model are explored further
in [4], where we found that the age-structured model provides much richer dynamics, which
sometimes contrast the predictions of simpler models.

Equation (3.38) implies that the less food available, the more care is required in order for
an acceptable fraction of the brood to survive. Moreover, if the hive bees begin nursing duties
substantially late, or leave nursing duties early, the equilibrium may disappear, leaving only
the trivial equilibrium (i.e. extinction). This gives insights into the sensitivity of a honey bee
colony to the age polyethism inherent in their social structure.

An important prediction of this study is that if a hazard (environmental, parasitic, etc.)
causes a bee colony to decline, the colony can recover if the hazard is removed in a timely
fashion (given there are still sufficient food stores and brood care). This prediction is further
examined in the sister study [4], where we explore the same model in the context of changing
seasons. This general stability result for honey bee dynamics is consistent with the fact that
honey bee colonies experience annual cycles in population size. Colonies typically suffer great
losses in the late fall and early winter [66], and recover to peak colony population size by late
spring to mid-summer [1, 38]. In this context, winter itself can be seen as a stressor on the
colony, and its end allows the colony to once again reach equilibrium. Moreover, consistent
again with experimental results, this is only possible if there are sufficient bees at the end of
winter (Becher et al. estimate this number to be approximately 4000 bees [3]) and sufficient
food stores (honey bees typically require at least 20kg of stored honey to survive winter [50]).
This of course depends on the length of winter.

Given the parameter set in Table A.1, we are able to predict an age distribution for the
population of a healthy colony. The total colony size predicted here is consistent within ranges
reported by [3, 30, 43]. The age distribution is also consistent with the demography reported
by [48, 49, 61]. This agreement suggests that the simple death rate used in this model is a
reasonable approximation.

In [5, 29, 30, 44], the average age of recruitment to foraging (AARF) is found to be a
good indicator of colony health. Lack of food [29], pesticide exposure [30, 41] and disease
[5, 44] have all been predicted to lower the average age of recruitment to foraging. In our
age-dependent model, this average age can be further refined as we can keep track of the age
of bees explicitly. In particular, at any time, we have an age-dependent recruitment function,
u(a, t), which (in the full model) depends on the populations of hive bees and foragers. Thus
the age-dependent model can recover a full distribution of the age at which bees are recruited
to foraging, not simply the average value. This distribution is an interesting focus for future
work. For example, a reduction in the AARF could be caused by a reduction in the number of
older bees becoming foragers, or potentially an increase in the number of young bees becoming
foragers. While [41] shows that pesticides would cause the latter situation, our model allows
for differentiation between these two scenarios; exploring the possible causes underlying each
case could be of interest.

The work we present here also provides some interesting mathematical techniques, which
can be adapted to other PDE models. The results of this study determine the necessary con-
ditions under which the introduction of an infection will lead to an epidemic outbreak within
a bee colony by determining the basic reproduction number, R0. In theory, the formulation
of R0 can be verified using an infinite dimensional analog of the next generation matrix [59].
We confirm our derived expression of R0 numerically and via reduction to an age-independent
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model, analyzed using the next generation matrix. Although many models have been proposed
for disease dynamics within a honey bee colony [5, 35, 44, 57] and several provide stability
criteria for the disease-free equilibrium, none have provided an expression for R0. Here, we
provide a closed-form expression for R0, admittedly for a simplified disease model, in both
the age-independent case and for the continuous age-structured model. In theory, this should
provide an upper and lower bound for R0 for a model of N age classes.

Moreover, R0, although complicated in its formulation, can be used to determine whether a
disease will be detrimental to a colony’s health if the transmission rate and death rate associated
with that disease are known. In practice, it is often easier to obtain an estimate of R0 itself, in
which case our formula can be used to determine the rate of transmission between bees or the
distribution of the death rate. This knowledge may help in determining strategies for saving the
colony or estimating death rates to be used to more accurately simulate disease transmission in
a colony.

As we demonstrated, the basic reproduction number scales linearly with a constant trans-
mission rate β, as expected. With similar analysis this result can be generalized to an age-
dependent β(a). Also, the rate of recruitment plays a role in the spread of infection to the
extent that a change in rate of recruitment may have the potential to either increase or decrease
R0. In the case of the linearized, age-independent expression, R̂0, we find that an increase in
recruitment lowers R0 (see appendix). We also observe that by omitting age-structure from a
model of honey bee colony dynamics, R0 is under-estimated.

Finally, we note that using the Laplace transform to determine asymptotic stability may be
applied more generally to time-dependent systems of partial differential equations, when the
boundary conditions are constant. Also, the computation of R0 is applicable to many biologi-
cal models with interacting susceptible classes. For example, age-dependent models of many
sexually transmitted diseases may have interacting susceptible classes and could benefit from
the approach we develop here. Future plans involve describing the methods more rigorously to
determine exactly when they can be applied to a more general class of PDE systems.

3.5 Appendix

Test: Uniform age distribution. We test the validity of this bifurcation parameter by reducing
equations (3.70) and (3.71) to a system in which all parameters are constant with respect to
age. In doing so, we find from equation (3.89) that

R̂0 = β
H∗S

u + d
+ β

uH∗S
(µ + d)(u + d)

+ β
F∗S
µ + d

. (3.90)
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This can be verified by using the next generation matrix on the infected classes of the following
reduced model

dHS

dt
= −uHS + β(HI + FI)HS (3.91)

dFS

dt
= uHS + β(HI + FI)FS − µFS (3.92)

dHI

dt
= −uHI + β(HI + FI)HS − dHI (3.93)

dFI

dt
= uHI + β(HI + FI)FS − (d + µ)FI (3.94)

which are a reduced form of equations (4.5) and (4.7). The ratio of the disease-free equilibrium
values of FS ,HS will always be such that

H∗S
F∗S

=
µ

u
. (3.95)

This ratio is found by setting HI = FI =
dHS

dt
=

dFS

dt
= 0 in equations (3.91), (3.92), (3.93)

and (3.94).
From these reduced equations we find the matrices,

F =

[
βH∗S βH∗S
βF∗S βF∗S

]
(3.96)

V =

[
d + u 0
−u d + µ

]
(3.97)

which yield the next generation matrix

FV−1 =


βH∗S
u + d

+
βuH∗S

(u + d)(µ + d)
βH∗S
µ + d

βF∗S
u + d

+
βuF∗S

(u + d)(µ + d)
βF∗S
µ + d

 (3.98)

Each term in this matrix has a biological interpretation which is the expected number of
infections in each class (H or F) caused by a single infected individual in each class. For
example, the term

βH∗S
u + d

(3.99)

gives the expected number of susceptible hive bees that an infected hive bee will infect while
it is still a hive bee. The term

βuH∗S
(u + d)(µ + d)

(3.100)
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represents the probability that an infected hive bee will be recruited to foraging duties during its
life time, multiplied by the expected number of susceptible hive bees that would then become
infected. The expected number of susceptible hive bees infected by a single forager is given by

βH∗S
µ + d

(3.101)

The interpretations for the second row of matrix (3.98) are similar, but give the expected
numbers of susceptible foragers that will become infected.

The basic reproduction number for this uniform age distribution model is then determined
by the largest eigenvalue of the matrix FV−1. Since we have the relation (3.95), matrix (3.98)
is rank 1. Therefore, one of its eigenvalues is zero and the other is given by its trace. We can
see that the trace of matrix (3.98) gives the same expression for the basic reproduction number
as (3.90).

The three terms that appear in (3.89) are analogous to the three terms that appear in equa-
tion (3.90). This suggests that (3.89) correctly determines not only the threshold for disease
persistence but also correctly estimates the number of secondary infections subsequent to one
primary infection [22].
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Chapter 4

Age structure is Critical to the Population
Dynamics and Survival of Honey Bee
Colonies

Abstract

Age-structure is an important feature of the division of labour within honey bee colonies,
but its effects on colony dynamics have rarely been explored. We present a model of a
honey bee colony that incorporates this key feature, and use this model to explore the
effects of both winter and disease on the fate of the colony. The model offers a novel ex-
planation for the frequently observed phenomenon of “spring dwindle”, which emerges as
a natural consequence of the age-structured dynamics. Furthermore, the results indicate
that a model taking age structure into account markedly affects the predicted timing and
severity of disease within a bee colony. The timing of the onset of disease with respect to
the changing seasons may also have a substantial impact on the fate of a honey bee colony.
Finally, simulations predict that an infection may persist in a honey bee colony over sev-
eral years, with effects that compound over time. Thus the ultimate collapse of the colony
may be the result of events several years past.

4.1 Introduction

As honey bee populations continue to decline on a global scale [5], research efforts have been
directed at identifying the underlying causes [12, 20, 43, 45]. These efforts are necessitated by
the ecological [13] and economical importance of honey bee colonies worldwide [9, 29, 40].

To date, much of this research has been focused on the effects of pesticide and insec-
ticideexposure on honey bee health and ultimately colony fitness [18, 45]. Such hazards
may cause injury or death to foraging bees, forcing surviving bees to begin foraging pre-
maturely which will then disrupt the dynamics of the colony, ultimately leading to colony
collapse [18, 23, 24]. Further research has focused on the effects of parasitism and dis-
ease [6, 7, 14, 32, 33, 41], for example, the effects of Varroa destructor on honey bee colony
dynamics [14, 32, 33, 41], the effects of the microsporidian parasite Nosema ceranae [19], and
the effects of communicable infections more generally [6].
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Recent work has also explored the combined effects of two stressors such as disease, limited
biodiversity, and/or exposure to pesticides, which may create conditions detrimental to honey
bee colony survival [1, 2, 17, 28, 39, 44]. Simulation packages have been developed to model
these effects using realistic parameter values [4, 36]. For example, Pettis et al. explored the
interplay between environmental hazards and the subsequent susceptibility to Nosema ceranae
[31]. In previous work [6], we showed that the fate of a honey bee colony in the presence of
disease is dependent on seasonality, particularly the onset of winter.

Previous mathematical models of honey bee dynamics have not considered the effects of
age-structure within the hive, yet the duties of female bees, which constitute the main work
force of the hive, are determined primarily by their age [34]. Specifically, the hierarchy of a
colony hinges on both bee morphology and age [10, 35, 37]: caste polyethism differentiates a
queen bee from a female worker bee [46], while age polyethism determines the functions of
the worker bees [34].

The age distribution within a honey bee colony is an intrinsic property and this property is
therefore important to colony survival because it affects two key components in the dynamics
of the colony, namely ongoing recruitment and death. In the present paper, we examine how
the disease-free age distribution within a colony is altered in the face of a hazard, and how
these changes affect previous predictions of colony survival.

We identify periods of increased vulnerability of the colony to the effects of winter, disease,
or a combination of the two, during which the colony would benefit from remedial actions (e.g.
higher anti-microbial treatments, increased observation and management etc.). In addition, we
use the added dimension of age-structure to explore the long standing phenomenon of “spring
dwindle” whereby a drop in the number of bees within a colony occurs immediately after
the end of winter [47]. While the phenomenon is generally suspected to be due to various
stressors [15, 30, 38], the specific colony dynamics that lead to this phenomenon have not been
established. The question of why the dwindle occurs after rather than during winter remains
unanswered. The resolution of this puzzle is of particular value in the ongoing research efforts
to understand and ultimately avert honey bee colony collapse, since spring dwindle leaves the
colony in a particularly vulnerable state. Finally, we simulate colony dynamics in the presence
of disease for multiple years to demonstrate the compounding effects of infection.

4.2 Model
We present a mathematical model that combines the disease-free demographics of a honey bee
colony with the effects of seasonal changes and a disease that at first infects foragers, and then
spreads to the rest of the colony. Earlier versions of this model were introduced by Khoury
et al. in 2011 and 2013 [23, 24] and were developed further in 2015 [6]. Analytical details
of the model, including local and global stability of the disease free equilibrium as well as a
derivation of the basic reproduction number, R0, are presented in [7].

Briefly, the effects of the brood, guarding bees, as well as bees that work to repair the hive
are neglected. The focus is solely on the hive bees, H, which are responsible for ensuring the
survival of the brood, and the foragers, F, which are responsible for bringing food, f , into the
hive. The male honey bees, known as drones, are also neglected since they contribute only to
reproduction [46]. In the presence of disease, the two classes of bees are further divided into
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the susceptible populations, HS and FS , and the infected populations, HI and FI .

4.2.1 Age Structure
We incorporate an age structure into the age-independent equations [6], using the standard
approach of McKendrick [27] by writing

∂HS

∂t
+
∂HS

∂a
= −u(a)HS − βN HS , (4.1)

where HS (a, t) is the number of susceptible hive bees of age a at time t and u(a) is the age-
dependent rate of recruitment to foraging. Juvenile hormone III regulates the age at which
honey bees begin foraging [34], making older bees more likely to be recruited to foraging du-
ties. As well, it has been observed that there is a minimum age, aR, before which bees cannot
be recruited [16]. Behavioural maturation of hive bees is further regulated by a pheromone,
ethyl oleate, that is produced by foragers [26] and has the effect of delaying the age at which
bees are recruited to foraging duties. This so-called “social inhibition” process reduces recruit-
ment when the number of foragers in the colony is high [26]. We account for these biological
processes by defining u(a) as

u(a) = α
( a
a + k

)2
(
1 −

σ

N

∫
(FS + FI)da

)
Hv(a − aR) (4.2)

where α is the maximum rate of recruitment and Hv(a − aR) is the Heaviside function such
that recruitment cannot begin before age aR. Thereafter, the recruitment rate we are using
increases sigmoidally with age. At age k, recruitment will be one quarter the maximum rate of
recruitment. 1/σ is the maximum proportion of bees that are foraging at any given time and N
is the total number of bees given by

N =

∫
(HS + HI + FS + FI)da. (4.3)

The emergence of new hive bees is modeled as the left boundary condition to Equation (4.1).
This, along with other boundary conditions are described at the end of this section.

The second term on the right-hand side of equation (4.1) governs the disease dynamics
within the hive. We approximate the transmission of disease as a mass action process and
assume that, on average, hive bees and foragers transmit infection between or within classes at
rate β. The total number of infected bees is given by

N =

∫
(HI + FI)da. (4.4)

The hive provides substantial safety for bees that are confined to it [24, 37]. We therefore
assume that the natural death rate of healthy hive bees is negligible compared to the rate of
recruitment.

The equation governing the dynamics of infected hive bees is given by

∂HI

∂t
+
∂HI

∂a
= βN HS − u(a)HI − dH(a)HI . (4.5)
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In contrast with their healthy peers, infected hive bees are at risk of dying due to disease at an
age-dependent rate dH(a).

Susceptible foragers are recruited from susceptible hive bees, and suffer age-dependent
natural death at rate µ(a). Their dynamics are therefore governed by

∂FS

∂t
+
∂FS

∂a
= u(a)HS − µ(a)FS − βN FS (4.6)

Infected foragers can either be recruited from infected hive bees, or from susceptible for-
agers that have become infected. If we assume this class is subject to a disease-related death
rate of dF(a), then their dynamics are governed by

∂FI

∂t
+
∂FI

∂a
= u(a)HI + βN FS − (µ(a) + dF(a)) FI . (4.7)

Food, f , is brought into the hive by both susceptible and infected foragers. Although it is
likely that infected foragers would be less efficient at this task [25], for simplicity, we take an
average rate of food intake, c (g/day/forager). Food is consumed by foragers and hive bees at
an average rate γ. Therefore, the amount of food available at time t changes according to

d f
dt

= c
∫

(FS + FI) da − γN. (4.8)

The above system of equations governing the dynamics of the colony is subject to the
following boundary conditions:HS (0, t) = LS

HI(0, t) = FS (0, t) = FI(0, t) = 0
. (4.9)

The first condition represents the emergence of new adult bees, where L is the daily egg
laying rate of the queen and S is a survivability function, which determines how many eggs
survive to adulthood. The brood needs both sufficient food and sufficient care from the hive
bees in order to survive [22]. Moreover, it has been shown that there is a range of ages within
which hive bees will take on this care for the brood, a minimum age, am, and a maximum age,
aT between 11 and 16 days old [35]. After this age, hive bees tend to transition to foraging
duties, or possibly security or hive maintenance [46]. Therefore, we define the survivability
function S as

S =

(
f

b + f

) 
∫ aT

am
H(a, t)da

w +
∫ aT

am
H(a, t)da

 . (4.10)

Here b is the amount of food required for half the eggs to survive to adulthood provided the
brood has sufficient care, w is the number of care providers required for half the eggs to survive
provided the brood has sufficient food, and H(a, t) = HS (a, t) + HI(a, t).

The dynamics described in this section relate to the main active season of the bee colony,
which is defined as the time interval between the end of one winter and the beginning of the
next.



4.2. Model 77

4.2.2 Winter
The winter season is assumed to last 155 days or roughly 5 months, roughly corresponding to
a humid continental climate [3]. Over winter, no new hive bees emerge (although some eggs
are still being laid by the queen) and foragers return to the hive [46]. Accordingly, in boundary
conditions 4.9 we set L = 0 and in equations 4.1, 4.5, 4.6, 4.7 and 4.8 we set u(a) = 0 and
c = 0. Due to an extended lifespan of bees over winter [46], the death rate of hive bees is no
longer negligible and is set to an average rate of

µw =
1

180
, (4.11)

corresponding to an average lifespan over winter of 6 months [46]. All bees are performing the
same function over winter (keeping the hive warm [21]), therefore we set the natural death rate
of foragers equal to that of the hive bees, µ(a) = µw.

As winter ends, bees resume their normal age-related duties, and bees that were foraging
before winter resume their roles as foragers. We assume that a 21-day transition takes place
during which parameter values change linearly from end-of-winter to new active season values
as follows:

µtrans(a) =
(
1 − t

21

)
µw(a) +

(
t

21

)
µ(a)

Ltrans =
(

t
21

)
L

S trans =
(

t
21

)
S +

(
1 − t

21

)
S ∗

 0 ≤ t ≤ 21 (4.12)

where

S ∗ =

(
f

b + f

) 
∫ ∞

am
HS (a, t)da

w +
∫ ∞

am
HS (a, t)da

 , (4.13)

that is, during winter hive bees of all ages may contribute to brood care. Note that new hive
bees that emerge during the early spring come from eggs that were laid over the winter months,
after completing phases of development to adulthood.

Equations (4.1), (4.5), (4.6), (4.7), and (4.8) form a system of integro-partial differential
equations which we solved simultaneously to predict the population dynamics of a honey bee
colony. The parameter values used in the solution are given in Table A.1 in the supplementary
material.

In [42], the authors found that the age distribution in a colony is as follows: 41% of bees
were one week old, 23% were two weeks old, 17% were three weeks old, 11% were four
weeks old, and 8% were five weeks old. Accordingly, the death rate µex(a) in our model was
constructed to approximately match the experimental findings. In order to account for the
whole range of ages and remain consistent with the five weeks of study in [42], we break the
age range into five cohorts of ten days each. The comparison between experimental data and
our model is summarized in Table 4.1. The death rate that best matched the observed data is
defined by

µex(a) =


1 − e

(a−20)2
10 a ≤ 20

Cex

(
a − 20

20

)4

a > 20
. (4.14)



78 Chapter 4. Age Structure in Honey Bee Colonies

where parameter values were set such that the percentage of bees in their first week of life
matches the experimental data. This death rate is relatively high for very young (≈< 10 days)
or very old bees (≈> 40 days), as shown in Figure 6.2. We see that the drop in population
density after week 1, as observed in [42], can be explained by the high death rate of young
foragers.

Figure 4.1: Death rate distribution which provides the best fit to experimental results observed
in [42]; parameter Cex = 0.42.

We performed sensitivity analysis (see Supplementary Material Figure A.1) and found that
our results are insensitive to the details of the death rate distribution. We therefore use a sim-
plified version of the natural death rate distribution,

µ(a) = C
(a − 20)2

400
, (4.15)

to make the mathematics more tractable. This death rate is plotted in Figure 4.2, and also
compared with the experimental results in Table 4.1, showing good agreement.

The disease-related death rate,

d(a) = −
K1

π
tan−1(a − 10) + K2, (4.16)

is motivated by deformed wing virus [11] that disproportionately affects young bees. The
constants C, K1 and K2 are chosen such that both the natural and disease-related death rates
are non-negative and have an average of 0.14 per day as in [6]. In other cases, we assume the
disease affects all bees uniformly, i.e. d(a) = d. The effects of different death rate distributions
are shown in the supplementary material (Figures A.4–A.12). The results are qualitatively the
same.
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Figure 4.2: The natural death rate, µ(a), and an example of disease-related death rate, d(a),
motivated by deformed wing virus, which predominantly affects young bees [11]. During the
active season, honey bees live an average of five to seven weeks [46], thus we define our death
rates until the age of 60 days. Beyond this age few, if any, bees are still alive and we set their
natural death rate as µ(a > 60) = max(µ(a)).

Figure A.1 in the supplementary material shows the age distribution within a disease-free
colony under the natural death rate µ(a) shown in Figure 4.2. This is used as a baseline distri-
bution for all simulations that begin from equilibrium. We predict from this distribution that
the mean forager age of a healthy colony is approximately 25 days [8, 46].

4.3 Results
Figure 4.3 shows the effects of changing seasons on the number of bees in a colony in the
absence of disease. The seasonal shift back to normal operating conditions is seen to bring
with it a drop in the bee population as the colony emerges from winter. It is obvious that
a longer winter may have a fatal effect on the colony, due to winter only having deleterious
effects on a colony. This is because the surviving bees are now much older and are subject
to a higher natural death rate, while a new generation of younger bees has not yet emerged to
replace them. This seasonal drop in the bee population, which has been referred to as “spring
dwindle” [15, 30, 38, 47], is discussed further in the next section. The population dynamics that
produce the phenomenon have not been fully understood in the past because these dynamics
emerge only when the age distribution within the colony is considered.
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Cohort Experimental Values [42] Model Values, µex(a) Model Values, µ(a)
1 41± 6.4% 41% (0) 41% (0)
2 23± 5.1% 25% (0.39) 30% (1.37)
3 17± 3.7% 18% (0.27) 16% (0.27)
4 11± 2.2% 11% (0) 7% (1.81)
5 8± 1.3% 5% (2.31) 6% (1.54)

Table 4.1: Comparison of experimental results with model results. Standard deviation for
experimental results are given; z-scores computed from experimental mean and standard devi-
ations are given in parentheses next to model values.

Our next objective is to compare the dynamics of the age-structured honey bee colony
model with the dynamics of the age-independent model such as that presented in [6]. To give
the comparison a measure of equivalency, the same value of the basic reproduction number is
used in both cases, namely R0 = 1.43, calculated using the formulas derived in [7]. Figure 5.7
shows that an age-independent model makes significantly different predictions about the timing
and the severity of disease within a bee colony. This is further explored in the supplementary
material (Figure A.3) where we demonstrate that an age-dependent recruitment function both
lowers the severity of a disease and delays the timing of an epidemic, while age-dependent
death rates, µ(a) and d(a), trade-off the two effects.

The vulnerability of a bee colony in early spring is explored further in Figure 4.5 which
illustrates that an infection which is endemic in a colony during one active season and one
winter may pose the greatest risk to the colony during the small window in which the hive is
recovering from the winter months. Moreover, the colony may suffer much greater losses after
its second, third and fourth winters with disease (figure inset).

The time interval between the beginning of an infection and the onset of winter is an im-
portant determinant of the health of the colony at the end of winter, as illustrated in Figure
4.6. The figure shows that the number of bees surviving to the end of winter, NW , depends on
when the infection begins relative to winter. In the figure the infection begins from a single
infected forager ∆t days before winter. The time interval between the end of one winter and the
beginning of the next is taken to be approximately 200 days (≈ 7 months). The timing of the
infection is seen to produce a point of highest vulnerability (local minimum in population size)
which depends on the severity of the disease as represented by the basic reproduction number.

The timing and depth of the points of highest vulnerability seen in Figure 4.6 are tightly
coupled to the time at which an infection peaks within the colony, which in turn is related to
R0. Figure 4.7 shows this relationship, estimating the time of greatest risk to the colony, ∆t∗,
with respect to the onset of winter, based on the basic reproduction number. Of course, for high
values of R0 the colony is likely to suffer substantial losses regardless of when a disease occurs.
In Figure 4.6, we see for example that for R0 = 2.0, ∆t∗ is unique, but when R0 = 2.2 there
are two ∆t∗ values producing the observed bifurcation in Figure 4.7. To measure the relative
significance of these minima, we use the metric max(NW) −min(NW) where the maximum and
minimum are computed for each value of R0, over the range of possible ∆t. The larger the
value of this metric, the greater the significance of the time of onset of disease, ∆t.
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Figure 4.3: Time course of total bee population in a disease-free colony. Shaded area denotes
winter, during which no brood is produced. We see that the aged bees that restart the colony
post-winter create an added risk to the colony, because of their relatively high death rate, until
new brood is able to hatch and contribute to population rebound. The post-winter dip seen in
the figure has been referred to in the literature as “spring dwindle” but its dynamics have not
been previously described.

Figure 4.4: Effect of age distribution on the dynamics of disease within the bee colony. The
blue line represents the total number of susceptible bees and the green dashed line represents
the total infected bees. The shaded area denotes winter. Disease begins with a single infected
forager at t = 112. We use the death rates given in Figure 4.2. The two time courses show
that the two models have significant differences in their predictions when simulating disease
dynamics in the colony.
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Figure 4.5: Time course of the bee population over four years. The top panel shows the total
number of susceptible bees, HS + FS , and the bottom panel shows the total number of infected
bees, HI + FI . An infection is introduced into a colony at equilibrium through a single infected
forager at time t = 0. The inset shows the minimum population size of susceptible bees during
the spring dwindle following each winter. There is a clear decrease in this minimum year after
year, thus the risk of colony collapse increases year after year. The ultimate collapse of a bee
colony may therefore be the consequence of events long past.
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Figure 4.6: Number of bees at the end of winter as a function of the time interval, ∆t between
the onset of disease and the beginning of winter, based on various values of the basic repro-
duction number, R0. The minima show times during which the colony is most vulnerable due
to the combined effects of winter and disease. The colony is started from the equilibrium age
distribution shown in Figure A.1. Infection is introduced at time t = 200 − ∆t via one infected
forager. The total number of bees is calculated at the end of winter. R0 values are calculated
using the expression derived in [7].
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Figure 4.7: The timing and depth of points of highest vulnerability as a function of the basic
reproduction number, R0. The colour bar reflects the depth of the minima seen in Figure 4.6
(see text for details). Red indicates the most severe combinations of R0 and ∆t∗, where ∆t∗ is
the value of ∆t in Figure 4.6 at which a local minimum occurs.
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4.4 Discussion
Our results demonstrate that the age structure that is inherent to all honey bee colonies has
critical effects on colony survival that are not captured by previously explored age-independent
models. Most notably, an age-dependent recruitment rate has a profound impact on the dy-
namics, severity, and spread of an infection in a bee colony. In fact, our results predict that age
polyethism in a honey bee colony has the beneficial effect of impeding the spread of infection
within the colony. Thus, in practice, any disturbance in the natural age structure of a bee colony
may also increase the severity of an infection within the hive. Results in the supplementary
material (Figure A.3) indicate that the natural age distribution within a colony creates a delay in
the speed of spread of an infection. Again, this suggests that any intervention that would alter
the natural age distribution may have the adverse effect of increasing the spread of infection
within a hive.

Our explicit treatment of the colony age distribution also revealed the dynamics underlying
the frequently observed phenomenon of “spring dwindle” in which the total number of bees
within a colony weakens rapidly immediately after the end of winter. While the phenomenon
is generally suspected to be due to various stressors that occurs during winter [15, 30, 38],
our results suggest that declining spring populations are a natural consequence of honey bee
colony dynamics, leading to seasonal vulnerability during which the colony may be particularly
susceptible to other hazards. This post-winter dip is not captured by age-independent models
because the phenomenon is due predominantly to the aging of the bees over the winter months
and the time required to replace them by younger bees in the early spring.

Simulations of colony dynamics over multiple winter seasons demonstrated that endemic
diseases may weaken the colony year after year, increasing the risk of colony collapse during
spring. Thus the eventual collapse of a bee colony may be due to the compounded effects of an
infection over several years.

The time interval between the onset of an infection and the beginning of an approaching
winter is a critical determinant of the ultimate course and consequence of the disease within
a bee colony. As illustrated in Figures 4.6 and 4.7, this effect is most important for infections
with a basic reproduction number close to 2. In this case, the colony is particularly vulnerable
in the early spring, approximately 5 months before the onset of winter.

In conclusion, age structure is an inherent property of honey bee colonies, determining the
division of labour and defining how age-related events such as disease and death unfold within
the colony. Our results suggest that age structure should be a key consideration in future studies
of honey bee population dynamics, and that accurate models of age structure will be necessary
if we are to understand, and ultimately reverse, the increases in colony collapse observed in
recent years.
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Chapter 5

Bee++: An Object-Oriented, Agent-Based
Simulator for Honey Bee Colonies

Abstract

We present a model and associated simulation package (www.beeplusplus.ca) to cap-
ture the natural dynamics of a honey bee colony in a spatially-explicit landscape, with
temporally-variable, weather-dependent parameters. The simulation tracks bees of dif-
ferent ages and castes, food stores within the colony, pollen and nectar sources and the
spatial position of individual foragers outside the hive. We track explicitly the intake of
pesticides in individual bees and their ability to metabolize these toxins, such that the im-
pact of sub-lethal doses of pesticides can be explored. Moreover, pathogen populations
(in particular, Nosema apis, Nosema cerenae and Varroa mites) have been included in the
model and may be introduced at any time or location. The ability to study interactions
among pesticides, climate, biodiversity and pathogens in this predictive framework should
prove useful to a wide range of researchers studying honey bee populations. To this end,
the simulation package is written in open source, object-oriented code (C++) and can be
easily modified by the user. Here, we demonstrate the use of the model by exploring the
effects of sub-lethal pesticide exposure on the flight behaviour of foragers.

5.1 Introduction
Due to the importance of honey bees, both ecologically and agriculturally [14, 19, 51, 74],
and because of their decreasing populations on a global scale, honey bees have been the
focus of a large body of research [7, 24, 26, 34, 36, 43, 60, 80, 85]. The recent problem of
colony collapse has led to a surge in research efforts into honey bee colony dynamics and
the stresses they face. Efforts to understand the causes underlying honey bee decline are
impeded by complex colony dynamics, along with the numerous interactions bees have
with their local ecosystem; these factors create a system with multiple entwined variables,
often confounding causality [19]. In order to gain insight into the problem of colony
collapse and into the impact of honey bees as key players in their local ecosystem more
generally, the suspected causes of colony collapse are often studied in isolation. In the
last fifteen years, both experimental and theoretical studies have looked into the effects
of factors such as competing hives [65], parasites [22, 35, 55, 80], food stores [42], and
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pesticides [34]. More recently, the combined effects of parasites and pesticides have been
addressed experimentally [84].

Due to the complexity of the problem, mathematical modelling has emerged as a valu-
able tool for exploring the dynamics of honey bee colonies; in particular, modelling ap-
proaches are well-suited for understanding the combined effects of multiple stressors on
the colony. Several mathematical studies have addressed the compounding effects of pes-
ticides and parasites on a honey bee colony [2, 22, 57, 61, 82]. In [22, 61], the effects
of acute bee paralysis (vectored by the Varroa destructor) are studied in combination with
pesticides and seasonality respectively. Pettis et al. predicted that an exposure to pesticides
will increase the susceptibility of Nosema ceranae [57], which was shown experimentally
by [2]. The effects of pesticide use in the local environment in the context of honey bee
protection policy is studied, through models, in [82]. Others have further broadened the
scope to account for the combined effects of pesticides and parasites, as well as a lack
of biodiversity in the local environment [30]. Our previous studies have focused on the
combined effects of temperature, seasonality and disease [7, 8].

These combined effects have also been synthesized into software simulation packages,
studying in silico honey bee colonies in a wide range of environmental scenarios [5, 69];
this individual-based approach has proven useful for many ecological models [76]. The
honey bee software packages are agent-based and include temperature data, stochastic
behaviour, and seasonality. Also included in [5] is Varroa transmission, as well as possible
human intervention in the context of care, or honey harvesting. Pesticide exposure is
modelled as an increase in the death rate of foraging bees. In [69], the basic dynamics of
a honey bee colony are modelled in depth.

We have developed a software package, Bee++, that can accurately model a honey
bee colony in a spatially-explicit landscape, in which individual foragers can be tracked
for the entirety of their trips away from the hive. Building on previous approaches, our
model includes age, caste, food stores, temperature data and pathogens. In addition, our
proposed model relaxes the typical simplification that pesticides can only affect the death
rate of bees and allows for explicit tracking of toxin levels within individual bees. As a
consequence, our model also allows individual bees to detoxify over time by modelling
known mechanisms [39, 40]. This allows Bee++ to be used to simulate and study the
long-term effects of pesticide exposure at non-lethal doses, as well as to simulate the com-
pounding effects of different pesticides or prolonged exposure on honey bee physiology.
The software package is highly configurable and developed on an open source platform.
The individual parameters within the model may be varied by the user, and moreover,
the functional form of the processes involved (e.g., recruitment to foraging, detoxification
rate) can be modified. In what follows, we describe the algorithms underlying Bee++, with
particular attention to functions and parameters that are configurable by the user. Our aim
is to provide a platform that can be modified and extended to address a number of research
questions. In what follows, we examine the effects of long-term pesticide exposure on the
navigation abilities of foragers, primarily to illustrate the use of Bee++.

5.2 Model
Bee++ (http:\\www.beeplusplus.ca) consists of a stochastic, agent-based model for a
honey bee colony and the surrounding environment. The model includes three classes
of bees: hive bees, whose sub-classes consist of juveniles, nurses and maintenance work-
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ers; foragers, whose sub-classes consist of scouts, nectar carriers and pollen carriers; and
drones. The egg-laying function of the queen is modelled but, since Bee++ currently sim-
ulates the dynamics of a single colony, subsequent new queens produced in the hive are
omitted.

Bee++ keeps track of the age of each bee, its current role, as well as any diseases it
carries and its level of toxin exposure at any time. The simulation also monitors the state
of the brood, the food stores in the hive (both pollen and honey, separately) and their levels
of contamination by pesticides, fungicides or pathogens.

The environment external to the hive is modelled by the user as a spatial grid, in
which some elements may contain nectar or pollen sources, and/or sources of pesticides or
pathogens. These sources may be constant or may vary with the season as defined by the
user. Within this grid, the position of each bee at each time step is tracked and updated as
described in the sections to follow.

As a brief overview of the algorithm, at each time step the time-dependent parame-
ters (e.g., environmental temperature) are updated, and then the decisions of each bee are
considered. The number of brood is only updated once per day for simplicity and compu-
tational consideration. The number of brood that survive is dependent on the current food
stores and amount of care available. The decisions of the hive bees depend on a number
of parameters, namely temperature, infection, food stores, age and intoxication. The hive
bees are able to transition between juveniles, nursing duties, maintenance duties and for-
aging based on the aforementioned parameters. Once recruited to foraging, the bees begin
exploring the environment looking for food. In this way, they are able to transmit infection
and pesticides from the environment back to the hive. They are also able to recruit new
bees to particular patches of food that they have found. The navigational abilities of the
foragers, along with their ability to survive, recruit and carry food are dependent mainly
on the parameters mentioned above. Flow diagrams for the main program loop and for the
three main classes of bees are provided in Figures 5.1 and 5.2, respectively. Details for the
various processes follow.

5.2.1 Bees
Hive bees: Hive bees are modelled as agents, which, at each time step, make probabilistic
decisions based on their age, the current demography of the colony and the state of the
surrounding environment. The most important of these decisions is whether or not to be
recruited to foraging duties. The recruitment rate increases with the age of the bee and is
reduced if the temperature is not appropriate for foraging or if the fraction of bees already
foraging is optimal. Specifically, a hive bee of age a begins watching a waggle dance (with
the possibility of being recruited to also forage from that patch) at rate

pW = α

(
4 (T − T1) (T2 − T )

(T1 + T2)2

) ( a
k + a

) (
1 − σ

FT

N

)
(5.1)

where α is the base rate of recruitment, k denotes the age at which a hive bee has a 50%
chance of being recruited, FT is the total number of bees currently foraging and N is the
total working population in the colony. The factor 1/σ thus represents the fraction of
foragers required to halt recruitment through social inhibition [17, 46, 72]. T1 and T2 are
threshold temperatures such that foraging stops if the environmental temperature T < T1
or T > T2, and foraging peaks at T = (T1 + T2)/2. This is consistent with experimental
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Figure 5.1: Flow diagram of the main program loop.

findings that there is a peak foraging temperature [81] and that foraging decreases away
from this optimal temperature [10, 41]. Note that Equation (5.1) represents the default
recruitment function in Bee++; not only can each parameter be set by the user, but the form
of the function itself can be reconfigured as needed through straight-forward modifications
to the open source code.

At some point a hive bee foregoes other duties and waits to watch a forager as it returns
to the hive and begins a dance. The hive bee then inherits the target coordinates and carrier
type (pollen or nectar) of the forager. If there is more than one forager dancing during the
time that the hive bee is watching, the hive bee has equal chance of following any of the
current dances, or becoming a scout.

Foragers: Foragers are divided into subclasses: scouts, recruits (working foragers), resting
foragers and dancers [18]. Each forager follows the directions of a waggle dance to the
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target food patch, but does not follow these directions perfectly; thus, movement is dictated
by a biased random walk toward the destination.

We acknowledge that many strategies may be used by honey bees when foraging, and
a number of movement models have been proposed in the literature [13, 18, 62]. Due
to the resolution of the spatial grid in our model, however, we found a biased random
walk sufficient. A finer grid, in which individual plants could be resolved, would be better
modelled by a Lévy flight [63].

In the biased random walk, the inherent error in following directions is given by pa-
rameter ε. The probability of travelling in the correct vertical direction is given by

pV =

(
dV

dV + dH

)
(1 − ε) +

ε

4
(5.2)

where dV is the vertical distance between the forager and its target, and dH is the horizontal
distance between the forager and its target. In other words, if the forager is at coordinates
(xF , yF) and the target food patch is at coordinates (xT , yT ), then

dV = |yT − yF | (5.3)

dH = |xT − xF |. (5.4)

Similarly, the forager travels in the correct horizontal direction with probability

pH =

(
dH

dV + dH

)
(1 − ε) +

ε

4
. (5.5)

This leaves a probability ε
4 of travelling in each of the two wrong cardinal directions. Note

that the error parameter, ε, is set by the user and can be a function of the intoxication
level in an individual bee, such that pesticides that may interfere with navigation can be
simulated. The parameter ε may be affected by pesticides ingested by the forager, and this
is modelled explicitly as

ε = εbase + ϕX (5.6)

where X is the intoxication level of the bee, ϕ is a configurable parameter and εbase is the
natural error in a honey bee’s navigation.

In addition, this randomness in movement is necessary to allow foragers to find new
sources of food. In fact, our simulation is set up in such a way that if a forager comes
across a viable food source before reaching its target, it will update its target to the patch
it has just found.

Foragers will eventually give up on their target if they are looking for too long without
successfully finding the target food source [9]; this search time limit in our model is given
by tS . Furthermore, bees who have been out of the hive for time tH will attempt to return
home before death from exhaustion. Foragers are considered lost if they die a distance dL

from the hive or from any food patches.
The duty of a scout is solely to find new sources of pollen or nectar [1]. Therefore,

they do not have a target, and thus, by setting dV = dH = 0, we are able to allow scouts
to diffuse through the environment until they reach a viable food source. Put simply, a
scout’s movement is governed by a random walk. Once a food source is found, the scout
will use a biased random walk to navigate back to the hive and back to the food source in
the future.
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We assume that a forager always carries a full load of either nectar or pollen back to the
hive and that the time it takes to extract the nectar/pollen from the source depends solely
on the properties of the source. When they get back to the hive, food stores are updated
for both nectar, pollen and any contaminants carried, as described further in Section 2.2.
Upon their return, foragers also decide to dance with (currently) fixed probability, pDance.

Drones: Our model also accounts for drones in the hive. The details of drone dynamics
can be found in Appendix A.1.

The brood: The queen has substantial, if not full, control over the number of fertilized
eggs she lays [59, 86]. In general, the number of eggs laid is seasonally dependent [50]. In
addition, the queen’s health depends on food availability, and thus we assume the number
of eggs she may lay per day depends on the food available to her. Therefore, we model the
number of eggs laid per day as

L = LB min
(

fP

fP + b
e−E1(t−t̂)2

, 1
)
, (5.7)

where t̂ is the day of the year on which the queen lays the most eggs, and E1 is a constant
determining the egg laying season of the queen. The variable fP is the amount of pollen
available in the hive, while b is a shape parameter (amount of pollen at which the number of
eggs laid is half maximum). LB is a randomly generated number to simulate the decision-
making of the queen. Specifically, LB is Poisson-distributed with a mean value set by the
user, which is the mean number of eggs laid per day at the peak of the season, if pollen
stores are plentiful. After L is computed, the number of fertilized eggs is determined by a
binomial random variable; the probability that an egg is fertilized is set by the user.

For computational considerations, the brood is not considered on an individual level.
Instead, the number of brood cells that survive in one day is dependent on the amount
of pollen available for consumption and the amount of care that can be provided by the
nursing bees [43]. This fraction is denoted the survivability function, S , and is defined as

S =

(
fP

fP + b

) (
NN

NN + w

)
(5.8)

where NN is the number of bees currently nursing and w is a shape parameter (number of
nurses for which half the brood survives). As before, we note that the functional forms
of both L and S are configurable; we describe here the default functions currently imple-
mented.

The worker brood are capped at eight days by default, a parameter value motivated
by [32]. Between this day and when the pupae emerge, they survive off the food pro-
vided during their larval stage and are considered well protected. Surviving worker bee
pupae emerge 21 days after egg laying [15], and surviving drone pupae after 24 days of
development [54]. Three days after emerging, the workers begin their nursing duties [67].
We emphasize that we choose these values as defaults as they correspond with parameter
values in the literature. All parameters can be modified to simulate different scenarios.

Intoxication: Each bee is assumed to have a level of intoxication. Intoxication increases
when toxins (such as pesticides) are ingested, and decreases naturally through detoxifi-
cation mechanisms. These mechanisms are poorly understood [23], but it is known that
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certain fungicides hinder certain mechanisms (namely P450 detoxification) [39]. In order
to simulate these particular interactions, Bee++ is configured to account for one type of
pesticide, P, and one type of fungicide, F , which interact in their effects on bee intoxica-
tion, such that:

dX
dt

= γNCP − xD
X

γNCF + X + 1
. (5.9)

Here, X is the intoxication level of the bee; γN is the amount of food ingested in one
time step; CP is the concentration of pesticide in the food stores; xD is the base rate of
detoxification in a honey bee; and CF is the concentration of fungicide in the food stores.
Thus, the detoxification rate is reduced by high levels of fungicide in the food stores. Of
course, as more information becomes available this can be modified to incorporate many
types of interactions between a multitude of different toxins. The concentrations CP and
CF depend on the influx of contaminated food from different sources. Each source, i,
may have a different concentration of toxin present, denoted by ĈP,i and ĈF,i; these are
again configurable. The parameter xD is generally difficult to measure, but recent studies
have been able to measure the half life of pesticides within a honey bee [78, 79], t1/2,
and from this value, we can calculate a metabolization rate, xD, through the conversion
xD = ln(2)/t1/2.

Unlike previous agent-based models, or even general mathematical models for honey
bee colony dynamics, the above method of tracking pesticides allows for exploration of the
effects of toxins on the colony in both a spatially explicit and toxicologically explicit way.
Previous models have simulated the effects of pesticides only by increasing the natural
death rate of the foragers [6, 7, 22, 42, 43, 60, 61, 82]. Bee++ allows us, in addition, to
track the effects of pesticides on, for example, a bee’s ability to navigate its environment
or potentially the effects on recruitment by modifying Equations (5.1), (5.2), or (5.5), or
parameter α.

Death rates: The death of bees is also handled stochastically. The probability of death at
any given time is dependent on many factors, and in this model we simulate death as a
function of temperature, disease, intoxication, food availability and natural causes.

Bees outside the hive are subject to death rate dO = dn + dd + dT + dTox, where each
term is defined below. The natural death rate, dn, is given by

dn = C
(
1 +

K
K + fN

) (
a − aopt

)2

a2
opt

(5.10)

where aopt is the optimal age of a forager (when it is the strongest), fN is the amount of
nectar available in the colony, and C and K are scaling parameters. Thus, the natural death
rate increases quadratically for young or old bees and can be increased by a factor of two
if insufficient nectar is available.

The death rate is also sensitive to the environmental temperature, T , such that:

dT =

(1 − Ae−J(T−TI )2
) dT > 0

0 otherwise.
(5.11)

Here, TI is the ideal environmental temperature for honey bees; A and J are scaling pa-
rameters.
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The death rate due to intoxication depends on the toxin (or combination of toxins)
within the bee and is proportional to a user-defined combination of toxins

dTox = KT X (5.12)

where KT is a scaling parameter that would depend on the specific toxin being studied and
its associated LD50 value and X is the intoxication of the individual.

The disease-related death rate is disease dependent and configurable. If a bee suffers
from multiple inflictions, we assume the effects are additive. For example, nosemosis
induced by N. cerenae has been shown to double the death rate of honey bees [11], and
thus, for this particular disease, we have

dd = dn. (5.13)

Bees inside the hive suffer from the same natural death rate (Equation (5.10)), with a
different scaling parameter C due to the safety the hive provides. They are also subject
to death due to differences in temperature, although temperature affects these bees in a
different way.

Specifically, bees work to keep the temperature inside the hive constant at 35 ◦C by
either fanning their wings to cool, or expending metabolic heat to warm the hive [71].
With this information, we posit that the effects of temperature within the hive are tied to
the number of bees within the hive [45]. The number of bees needed to maintain a constant
temperature within the hive is thus modelled to be proportional to the difference between
the ambient temperature and the target temperature. In other words, the farther away the
ambient temperature is from the ideal, the more bees are required to produce the necessary
metabolic heat to maintain a constant temperature. Therefore, inside the hive, we define
temperature-related death as

dT H =
C1|T − TI |

C2 + C3NH
(5.14)

where C1, C2 and C3 are constants that can be adjusted and NH is the total number of bees
within the hive.

When the temperature outside the hive drops below the threshold, TW , all bees attempt
to return to the hive and begin over-wintering behaviour (i.e. all bees act to maintain brood
and control the temperature of the hive). Drones are cast out of the hive, as during winter
they are a detriment to survival [88].

5.2.2 Food Stores
Bee++ keeps track of the amount of pollen, fP, and honey (derived from nectar), fN , at
time t in the hive. The average concentrations of pesticides and fungicides, CP and CF , in
these food stores are also tracked.

For simplicity, food stores are assumed to be consumed at a constant rate by bees that
are present in the hive at any given time. This means that individual bees do not make
a decision to eat, but are assumed to find time within each time step to eat, based on the
consumption rate for their caste γ j. Therefore, the amount of pollen is reduced by ∆tγBBU ,
while the amount of honey is reduced by ∆t(γHH + γF FR) in each time step ∆t, where BU

is the total population of uncapped brood, FR is the number of resting foragers and H is the
total hive bee population. The amount of pesticide removed from the food stores per bee,
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as the bees consume pesticides with the food, is given by CPγ j∆t, where j represents the
particular caste of the bee eating; fungicides are treated analogously. In its present form,
Bee++ assumes that pesticides do not decay within the food stores, or in the environment.

When a forager returns to the hive from the environment, it will add its load, cP or
cN , to the pollen or honey stores, respectively. The amount of pesticide added to the food
stores from source i is cPĈP,i; again, fungicides are treated analogously.

The average water content of honey is approximately 20% [4], whereas the water con-
tent of nectar can vary anywhere between 20% and 95%, depending on the plant of ori-
gin [4]. This gives a median value of 57.5% water content for nectar, which is in close
agreement with the water content given for alfalfa and clover (55% water concentration)
given by Wilson et al. [87]. With these numbers, we can deduce that the sugar concentra-
tion of nectar is approximately 45%, and the sugar concentration of honey is approximately
80%. Using these numbers, we can convert the weight of nectar in grams to the weight of
honey in grams via

Wh = 0.54Wn (5.15)

where Wh is the amount of honey by weight and Wn is the amount of nectar by weight.
This is necessary, as foragers collect nectar, which is then converted to honey in the hive.

5.2.3 Environment
The environment is represented by an N×N grid of space with which the bees can interact.
Each element of the grid is either empty (meaning a bee may fly through it without any
interactions), a pollen source, a nectar source, or a mating patch as defined by the user.
One cell (typically the centre) is designated as the hive. The pollen and nectar sources
have the ability to be time-dependent to model seasonality, and may be depleted as the
resource is consumed by the bees. The cells may also harbour pesticides or fungicides,
which are transferred to foragers who interact with the patch, who in turn contaminate the
hive food stores when returning to the hive with pollen or nectar. Again, for computational
tractability, we assume that the pesticides are well mixed in both the sources of food, and
in the food stores in the hive.

In terms of the effects of pollination on the flowers, we track how many bees return to
the same plant type for two (or more) consecutive trips. With each consecutive trip, we
assume the bee is able to pollinate more flowers and thus increase the potential fruit yield
for the patch. In this way, Bee++ is able to simulate not only honey bee dynamics, but
also the effects of honey bee colonies on a surrounding environment.

The environmental patches are also able to harbour pathogens and pesticides, which
can then be transmitted to forager bees and brought back to the hive. Moreover, in the
case of certain pathogens, infected foragers may leave parasites on a plant, resulting in
infection of subsequent visitors. The amount of pollen and/or nectar available at a given
patch is seasonally dynamic, allowing for studies of biodiversity as a potential stressor.

The default time step of Bee++ is on the order of minutes. This gives Bee++ the
ability to track the foraging trips of individuals, which, on average, last 6–7 minutes for
healthy bees [1, 44]. The default spatial scale is on the order of square meters per spatial
element of the grid. Because of the fixed flight speed of the bees, the spatial scale and
time step are linked. Large areas can be modelled by scaling back the resolution of the
map (i.e. allowing for larger cells), and in this case the time step should be adjusted to
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days or weeks, such that bees travel one spatial step per time step. Clearly, scaling up the
resolution comes at the cost of being able to accurately track the behaviour of individual
bees.

5.2.4 Pathogens
Three types of pathogens are currently included in Bee++: Varroa mites, Nosema apis and
Nosema cerenae. These are arguably the three most common pathogens affecting honey
bee colonies [73]. They are also the three pathogens most likely to be factors in colony
collapse [85]. Again, for computational reasons, it is not feasible to track these pathogens
individually, but detailed pathogen-specific behaviour is feasible as described in Appendix
A.2. The behaviour of these pathogens is described in detail in Appendix A.2.

5.3 Results
We illustrate the use of Bee++ by simulating a single hive, with several nectar and pollen
sources, over the course of one spring/summer season. Temperature data were obtained
for 2015 from London CS Station at London International Airport (YXU) in London, On-
tario, Canada, as shown in Figure 5.3. Simulations were run with constant availability of
pesticide-free food so as to highlight the dynamics of the bees themselves without potential
environmental pressures.

Table A.1 shows the key parameter values used in the simulations. A comprehen-
sive list of all parameter choices are given as the default values in Bee++ in the file
Parameters.cpp.

Sensitivity analysis was performed on a subset of 17 parameters, which we believe are
crucial to the function of a healthy colony. We varied these parameters by ±20% around
the mean values given in Table A.1. The parameters used are denoted in bold in Table A.1.
Given the large parameter space this creates, we use Latin hypercube sampling [49] with
10 divisions in order to obtain an illustrative sample of the parameter space. The sample
sets used are represented in Table 5.2. The results of the sensitivity analysis on the total
colony size, brood size, and Average Age of Recruitment to Foraging (AARF) are shown
in Figures 5.4–5.6, respectively.
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Figures 5.7 and 5.8 show the results of the simulation for comparison to other data
from the literature, namely [6, 12, 52, 53, 69]. The data from [52] are fitted using a series
of measurements related to colony size; [6] is simulated data; [53] is model data; and [12]
is measured data. Given that the climate in London, Ontario, is different from that of, say,
northern France in the case of [52] or Hertfordshire in the case of [6], we would like to
highlight the qualitative similarities between these results and extant data.

In addition, note that Bee++ is able to capture the decreasing spring population as
seen in [8]. The results suggest that this drop is caused by a combination of the increased
average age of the population within the colony at the end of winter, and the tempera-
ture oscillations around the threshold temperature. The addition of time-dependent food
availability would surely further exacerbate this effect.

Figures 5.9 and 5.10 show the Average Age of Recruitment to Foraging (AARF). This
metric is highly variable when the temperature is close to the threshold in early spring
(Figure 5.10), but stabilizes as the temperature remains above the threshold temperature,
and increases steadily as the colony becomes stronger in numbers (Figure 5.9), eventually
leading to a situation in which foraging is an ‘end of life’ activity. The two lines in the
plot compare the AARF for a colony that is not exposed to pesticides, with one that is
consistently exposed to pesticides through the local plant life. In this example, we remove
all effects of pesticides except the pesticide’s ability to disrupt the navigation abilities of
the foraging bees. We see that the AARF is robust against this particular effect of pesticides
on a colony.

Tracking intoxication levels in bees individually allows Bee++ to explore and confirm
the effects of pesticides on a colony. Figure 5.11 shows a time course of the average
pesticide concentration in the foraging population as well as the number of bees who have
become lost in the last 20 days as a result. As a liberal estimate, we assume that bees only
die of pesticide exposure if they consume their body weight in pesticide. In Panels (b) and
(c) of Figure 5.12, we introduce pesticides in the local environment which have the effect
of interfering with honey bee navigation. In the third panel we note that a far more uniform
distribution of honey bee deaths outside the hive results, indicating that navigation even at
these short distances has been affected by consistent exposure to pesticides, even though
the doses remain sub-lethal. In the case illustrated in Panel (c), parameters were set such
that bees that are highly intoxication can lose any semblance of navigational ability (i.e.,
max(ε) = 1). In this situation, food stores become depleted as many bees cannot find their
way back to the hive, and the colony goes extinct in late spring. Figure 5.12b shows a
more realistic case in which max(ε) = 0.3. Here, the dead bees are contained within the
‘boundary’ of the food sources, but they are more evenly distributed.

The spatial distribution of bee deaths can be easily tracked in an agent-based simula-
tion; this distribution is of interest since a lack of dead bees around the hive is a symptom
of Colony Collapse Disorder [83, 89]. Figure 5.12a shows the spatial distribution of bees
that have died, while away from the hive, between February and September of the simu-
lated year. We see that the highest concentration of dead bees is near the food sources as
this is where foragers spend the majority of their time outside the hive. Note that bees tend
to find their way back to the hive fairly well; although not visible in the colour resolution
of the figure, fewer than 10 bees have died in each spatial cell beyond the food sources,
over the course of the season.
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Figure 5.2: Flow diagram of the three main bee classes and their possible decisions in one time step.
This diagram is not exhaustive, but intended to be illustrative of the main decision tree for each of the
three main classes: drones, hive bees, and foragers. These classes of bees are further divided into
different states, which changes the behaviours and parameters associated with each bee. The green
arrow begins the cycle for one bee agent. The queen lays an egg, which then gets added to the Brood.
The Brood are either fertilized (female) or not (male). After 21 days, the fertilized brood will emerge
and become juveniles. Hive bee: The juveniles are responsible for cleaning cells. After three days, the
hive bee juvenile will become a nurse. The nurses are responsible for caring for the brood, ensuring
their survival. At each time point, the nurse will decide to become a maintenance bee, remain a nurse
or become a forager. The maintenance bees are responsible for hive repair, security and other duties
around the hive that are specifically not caring for brood. Maintenance bees can also revert to nurse bees
if there is a need, or be recruited (red arrow) to the forager class. The probability of the bee choosing
one of these three states is dependent on the needs of the hive, the bee’s age and many other factors
(pesticide exposure, disease, weather etc.). The forager class is typically an ‘end of life’ class. Bees
recruited to forager will leave the hive. If they have a target, the bee will search out the target. If the
bee does not have a target or loses its target, it will explore. A bee who is tired (i.e., runs out of energy)
will return to the hive. If a bee has found food, it will begin to forage in that patch. When the bee is
full, it will return to the hive. In the hive, the bee may decide to dance to relay the location of a food
source to other bees. Whether or not a bee dances, she will always rest. Once rested, the forager will
again leave the hive to forage. Drones: After 24 days, an unfertilized egg will develop into a drone.
Currently, drones in Bee++ stay in the hive and consume resources until they die or are ejected by the
females. At each state, the bee has a probability of death, which has been omitted from the diagram for
clarity.
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Figure 5.3: Daily temperature highs for London, Ontario, Canada, for the 2015 calendar year,
measured at weather station London CS. Data provided by Environment Canada.
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Table 5.1: Parameter values and source references.
L maximum rate of egg laying 1500 eggs/day [28]
w number of hive bees for 50% egg survival 1000 bees
b mass of food stored for 50% egg survival 500 g/day [42]

am age at which hive bees begin brood care 4 days [67]
aT age at which hive bees end brood care 16 days [67]
aR minimum age of recruitment to foraging 4 days [25]
k age at which rate of recruitment is 50% of max. 10 days
α maximum rate of recruitment 1 /day
1
σ

maximum fraction of colony that can be foraging 1
3 [43]

dn natural death rate of foragers outside the hive equation (5.10) [21]
cn nectar gathered per day per forager 0.03 g/day/bee [66]
cp pollen gathered per day per forager 0.016 g/day/bee [66]
γH daily food requirement per hive bee 0.08 g/bee [33, 64]
γF daily food requirement per forager 0.13 g/bee [33, 64]
γD daily food requirement per drone 0.1 g/bee [33, 64]
γBp daily pollen requirement per uncapped brood cell 0.067 g/bee [33, 64]
γBn daily nectar requirement per uncapped brood cell 0.018 g/bee [33, 64]
K Shape parameter for exit probability of forager 30 min
tR Minimum time in hive 1 h
tE Time forager spends searching for target 15 min
tH Maximum flight time 45 min
TW Temperature at which foraging begins 10 ◦C [41, 81]
TI Ideal ambient temperature * 25 ◦C [41, 71, 81]
T1 Minimum foraging temperature 10 ◦C [41, 71, 81]
T2 Maximum foraging temperature 40 ◦C [10]
xD Rate at which pesticides are metabolised 3.33 /day [78, 79]
ĈP Concentration of pesticide in nectar 1.9 ng/g [75, 77]
εbase Error in forager navigation 0.1
ϕ Scaling of pesticide effect on navigation 10

* Bee++ assumes there is always some metabolic heat being generated by the bees; therefore, we set the ideal
temperature lower than the measured ideal hive temperature in [71]. Bold indicates parameters for which

sensitivity analysis was performed.
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1.152
−

5.9516
13.53

11.145
−

10.583
−

1.5224
−

12.415
6.49

−
17.051

19.035
w

−
14.492

−
18.092

2.3472
15.129

16.566
−

11.444
6.8644

−
2.4616

−
7.118

8.1808
b

12.322
−

17.539
7.3496

−
15.187

−
4.4552

−
8.6352

10.577
16.609

−
2.3312

1.6552
K

16.297
13.7

7.96
−

11.238
9.5648

−
17.92

−
5.0736

−
13.032

−
1.924

3.0908
a

R
19.806

−
12.677

−
5.0336

7.2084
1.5772

−
11.295

8.7576
12.791

−
18.832

−
3.4376

a
m
−

19.124
3.1848

−
3.9732

15.626
−

14.602
7.1392

−
4.9756

18.641
11.208

−
10.027

tH
−

3.8032
−

9.5784
17.662

−
6.426

-14.858
2.394

12.565
8.318
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−
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γ

F
−
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−
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−

14.815
−
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−
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γ
H
−
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−
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γ
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6.3964

−
15.98

−
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−
6.6612

−
3.8572

17.315
2.8032

γ
B

p
13.876

−
0.006

16.465
−

17.618
2.7952

−
11.802

−
5.8424

10.85
−

12.338
5.6712

γ
B

n
7.3876

15.708
−

10.322
−

13.148
18.552

−
2.8992

−
7.4332

2.6084
−

19.847
8.1856

tE
−

4.824
12.927

9.538
0.3244

−
14.41

-2.8084
17.025

−
9.5404

−
17.006

7.8528
tH

−
5.8884

−
10.58

6.884
13.928

11.017
−

17.19
−

14.602
−

3.5656
16.556
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c

N
10.404
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−

5.026
−

19.867
1.5232

7.3388
−

11.305
−

2.6228
−

14.186
18.995

c
P
−

0.1608
3.0664

−
5.4444

−
14.534

−
19.944

15.171
8.9716

−
11.545

18.111
7.3644

L
8.7564

18.094
−

16.465
−

7.5028
−

2.5408
7.6108

−
11.634

15.86
−

12.159
0.0456
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Figure 5.4: Results of sensitivity analysis on total colony size: mean (red line) ± one standard
deviation (error bars). Parameter sets were sampled using Latin hypercube sampling [49] with
10 divisions from the mean values provided in Table A.1, ranging ±20%. The parameters on
which sensitivity analysis was performed appear in bold in Table A.1.
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Figure 5.5: Results of sensitivity analysis on brood size: mean (red line) ± one standard de-
viation (error bars). Parameter sets were sampled using Latin hypercube sampling [49] with
10 divisions from the mean values provided in Table A.1, ranging ±20%. The parameters on
which sensitivity analysis was performed appear in bold in Table A.1.
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Figure 5.6: Results of sensitivity analysis on Average Age of Recruitment to Foraging (AARF):
mean (red line) ± one standard deviation (error bars). Parameter sets were sampled using
Latin hypercube sampling [49] with 10 divisions from the mean values provided in Table A.1,
ranging ±20%. The parameters on which sensitivity analysis was performed appear in bold in
Table A.1.
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Figure 5.7: Total bee population from early spring to late summer using data from 10 simula-
tions with the same parameter set (mean in black circles, grey error bars show ± one standard
deviation). These 10 simulations begin after the model has simulated 12 years of data, thereby
representing the colony size and distribution of a well established colony. Results from the
model are compared with those of other studies [6, 12, 52, 53]. The simulation agrees qual-
itatively with previous models (Omholt) [53], observation (Buhlmann) [12], and simulation
(Beehave) [6]. Data from Odoux [52] were obtained by model fitting, using measurements
from many colonies. In the Bee++ example we have assumed constant availability of food in
the environment and therefore we see a larger peak population.
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Figure 5.8: A comparison of brood size obtained using 10 simulations of Bee++ with simula-
tion [6], observed data (Imdorf) [38], and fitted data (Odoux) [52]. Again we have simulated
data for a well established colony, and note that the temporal distribution of brood size is influ-
enced largely by the function used to model the laying rate of the queen. As in Figure 5.7, we
see consistent qualitative agreement in all cases except in comparison to [52], which represents
fitted data averaged over many colonies. Given the 21 day development time of the brood, the
peak in the brood appears roughly 21 days before the peak in adult bee numbers. The simula-
tion in Bee++ assumed constant availability of food throughout the spring and summer. Since
brood survival depends in part on the available food, we see a much smoother curve.
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Figure 5.9: The average age of recruitment to foraging calculated in 7 simulations without
pesticides (red line) and a simulation with pesticide treated plants (magenta line) through the
summer months. Error bars represent one standard deviation. As mentioned in the text, pesti-
cide exposure in this example affects the navigation abilities of the foragers but does not affect
their lifespan, or the age at which they are recruited, thus it may be studied independently from
other confounding effects. We see that the AARF is robust against pesticide exposure. We also
see that an age of recruitment between 20–30 days corresponds to a healthy colony. An AARF
that is above this range could indicate a lack of new brood or problem in the brood, as the
increase in the AARF corresponds to the decrease in the brood population in Figure 5.8. An
AARF below this range (as seen in [7, 43, 56]) can indicate an external stressor (in this case
the added stress of early spring on the colony).
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Figure 5.10: The average age of recruitment to foraging calculated in 7 simulations with-
out pesticides (red line) and a simulation with pesticide treated plants (magenta line) through
spring. Error bars, blue and pink respectively, represent one standard deviation. Compared
with the results in Figure 5.9, the value of AARF is here seen to be generally higher and highly
volatile in April. This is caused by large swings in the ambient temperature during this time,
the ageing of bees and the absence of new bees during winter. Thus AARF is not a useful
metric of the health of the colony during early spring.
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Figure 5.11: Intoxication of foragers and its effect on navigation over time. Seven simulations
were used. Error bars represent one standard deviation. The top plot shows the metabolic
efforts of the bees are not enough to completely flush the pesticides from their system. We see
that once pesticide concentration in a bee is high enough to force higher metabolic effort, there
is a decrease to a more stable concentration. The bottom plot shows the correlation between
pesticide exposure and its effects on navigation. Plotted is the current date versus the number
of bees lost in the previous 20 days. Bees are considered lost if they die outside a radius of nine
patches from the hive (food is at most nine patches away). This plot highlights the functionality
of Bee++ as well as how pesticide exposure may explain one possible symptom of CCD.
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Figure 5.12: Number of dead foragers found in each patch of a 25×25 grid of 4m× 4m patches
totalled between February and September. The total number of dead foragers in this time is
55,283, 55,592 and 56,426 in (a,b,c) respectively. The pollen and nectar sources (in patches
labelled P and N, respectively) are assumed to be constant throughout the year. The hive itself
is labelled H. The colour resolution is roughly 100 bees in Panels (a,b) and 10 bees in Panel
(c). Panel (a) shows a simulation with no pesticide exposure but with normal navigation error
ε = 0.1. In Panels (b,c). this navigation error is increased because of pesticide exposure to a
maximum of 0.35 and 1.0, respectively. In Panel (a), there are fewer than 10 bees in each blue
cell, and in Panel (b), there are between 10 and 30 bees in each blue cell. The effect of pesticide
on the bees is cumulative. In early spring, there is less build up of toxins within individual bees
and thus their navigation is better than it is in late summer.
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5.4 Discussion
We present a detailed, agent-based simulation package for honey bee colony dynamics,
which is broadly configurable and can be adapted to address a wide range of investigations.
In the Results, we demonstrate the behaviour of the model at default parameter values,
predicting colony dynamics that are comparable to those predicted by other models and
simulations [6, 43, 69]. The larger peak population size obtained in our simulations is due
to the idealized condition that food is plentiful and constant, allowing bees to successfully
forage from early spring through late fall; this is configurable in the model. Moreover,
the peak population predicted by Bee++ is well within the range of realistic managed
colonies [58]. In the simulated data, this peak appears in mid-summer, consistent with
observed bee behaviour [16]. Field observations indicate that variation in the timing of this
peak is quite large, with some honey bee populations peaking as early as late spring [29],
depending on the local climate.

Sensitivity analysis shows that the model behaves as expected under a range of bio-
logically reasonable conditions. Parameters not tested here, such as those associated with
intoxication and the transmission rates for different parasites, will clearly also affect the
dynamics of the colony. Sensitivity analyses for these can be carried out by individual re-
searchers after their default environmental and colony parameters have been chosen. The
framework for sensitivity analysis is built into the source code and can easily be modified
to accommodate a detailed sensitivity study for each research question.

The flight patterns of honey bees, and the factors impacting their navigation are com-
plex and quite involved [31]. The navigation used for the bees in Bee++ is macro scale
navigation, given the size of the patches intended for use (≥ 1m2). This means that the
bees are moving toward a general target, and their individual movements between flowers
is not modelled here. Models of movement between individual flowers have been well
studied [13]. Future work entails optimizing the model so that navigation between indi-
vidual flowers can be included. Moreover, displaced or lost honey bees have been shown
to use a number of mechanisms to search for the hive, which can be modelled as a Lévy
flight [62]. These mechanisms could also be considered in future extensions of the flight
mechanisms in Bee++.

Figure 5.8 shows that the brood population of a healthy colony peaks in early June,
consistent again with experimental findings [3]. Qualitatively, we see the same brood-
rearing dynamics as predicted by other models. The measurements provided by [52] differ
qualitatively from the other data presented in Figure 5.8. One potential explanation for
this discrepancy is that the results of [52] are calculated using 208 different colonies, over
four years. Different weather patterns over the 4 years and across the different locales may
force the colonies to peak at different times of the year, potentially obfuscating the peak
experienced by any one colony.

Figure 5.9 predicts that, when the pesticide-free colony population is at its strongest,
the average age of recruitment to foraging is between approximately 20 and 30 days old.
This is in full agreement with previous results [11, 42, 43, 56]. Furthermore, in early
spring, when the colony is under increased stress, we see a lower AARF, consistent with
the predictions of [43], which correlate the AARF and colony health. Our simulations
also show that as the number of eggs laid by the queen diminishes in late summer, the
AARF increases substantially. This behaviour seems to benefit the colony, as the younger,
stronger bees are left in the hive for the incoming winter.

The results shown in Figure 5.9 indicate that while the AARF can be used to determine
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certain aspects of colony health (i.e. a high AARF in the fall corresponds to dwindling
numbers of the brood, or as an indication of infection [7]), the AARF is not a strong met-
ric for the effects of pesticides on the navigational abilities of the worker bees. Results such
as those in [56] (accelerated maturation of bees) can also be added to Bee++, further com-
pounding the effects of pesticides on the age of foragers, with likely detrimental results.
While the AARF has been previously proposed as a measure of colony health [7, 42, 43],
the source of any change to the AARF is hard to extract from this metric, as many stresses
will change its value. Therefore, it is important to know what will and will not effect this
metric as some stresses (such as degrading navigational ability) can be detrimental to the
colony, but asymptomatic without invasive tests on the bees (such as determining intoxi-
cation levels within the bees). In future work, we would like to study the compounding
effects of pesticides, and also investigate the use of time-dependent AARF and other met-
rics to potentially identify which source of stress is causing the most harm to the bees. One
preliminary hypothesis is that high AARF may indicate a problem in the brood, as AARF
indeed increases in our model as the brood population decreases.

One of the key benefits of Bee++ is the ability to explicitly track toxins within individ-
ual bees, a feature that has not been included in previous studies. With this mechanism, we
are able to explore explicit effects of sub-lethal doses of pesticides on honey bees without
approximating these effects as an increased death rate. In particular, our model explicitly
allows for pesticide exposure to interfere with foragers’ navigational abilities, as has been
demonstrated experimentally [34]. When comparing the panels of Figure 5.12, we see that
as pesticides affect navigation more strongly, more bees die at distances further from the
hive. Importantly, a lack of dead bees around the hive is one of the symptoms of Colony
Collapse Disorder (CCD) [83, 89]; our model predicts that an encumbrance on foragers’
navigation ability can help explain this phenomenon. In other words, a loss of navigation
ability is one potential explanation for the lack of bee corpses reported in CCD. This in-
ability to navigate in turn causes a reduction in the amount of food in the hive, and thus an
increased death rate as the bees are generally weaker.

Given the recent proposal by the U.S. Fish and Wildlife service to declare the rusty-
patched bumble bee as an endangered species [90], an accurate, parameter-rich model of
bumble bee dynamics may be crucial in developing policies to protect this species. The
source code of Bee++ can be modified to perform such a task, as bumble bee populations
share a very similar social structure to honey bees. We hope to do so in the near future.

As well, our future work includes plans to modify the model to run on parallel pro-
cessing architectures. With the exception of the waggle dances, each bee makes a decision
at each time step independent of other bees, thus it should be possible to create a more
efficient code by allowing (ideally) all bees to make decisions simultaneously.

Overall, Bee++ has the ability to create realistic simulations of honey bee colonies by
incorporating a wide range of parameters and potential interactions. The object-oriented
nature of the model implementation in C++ allows for easy modification of the source
code so that the model can easily be improved and expanded as more experimental data
become available. The simulations of Bee++ can be used to study the potential underlying
causes of honey bee colony decline such as the effects of biodiversity, disease, predation
and intoxication on colony dynamics. The effects of preventive measures (such as optimal
plant diversity, crop density or anti-viral treatments) or recovery plans (such as manual
feeding or colony transplant) can thus be studied before costly implementation.

Appendix 5.A.
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Appendix 5.A.1. Drone Dynamics

Drones are born of the unfertilized eggs laid by the queen [88]. Their main duty in life
is procreation with a queen of another hive. Upon success, the drone dies [88]. The drones
make two decisions in their lifetime. With probability

pL = max
(
et−t∗ , 1

)
(5.16)

the drones will leave the hive in search of a mate. Here, t∗ represents the optimal time of
year for mating. The drones then move in much the same fashion as foragers, with their
target being the mating area. Those that become lost will return to the hive, and those that
reach the mating area will successfully mate with a queen with probability

pM = min
(

NQ

ND
, 1

)
(5.17)

where NQ is the number of queens present in the mating area and ND is the number of
drones present. The drones do not mate with their own queen (as they are genetic clones
of the queen). The mating process is built into Bee++ so that realistic numbers of drones
can be modelled (since mating is followed by death of the drone). As well, having this
functionality is the first step to creating a model and simulation package with interacting
colonies. At present, multiple colonies are not implemented in the model and therefore
the position of any mating sites and the number of queens present at any given time must
be set manually by the user. Nonetheless the drones are an important part of a honey bee
colony, as they can be a source of pathogens as well as a drain on the food stores and can
account for up to 15% of the total population [70].

Appendix 5.A.2. Pathogen Dynamics

Both sub-types of the microsporidian Nosema reproduce within the epithelial cells of
live bees, which in turn causes dysentery, forcing bees to expel waste within hive cells
where spores will be picked up by bees, which clean contaminated cells [27]. Nosema
ceranae is reported to affect foragers disproportionately, killing them away from the hive
at an unsustainable rate [35]. There is also evidence that spores can be transmitted to bees
through food stores [73]. With this in mind, we posit that bees that clean cells (i.e., nurses)
are most likely to be infected, while secondary mechanisms may exist through direct bee
to bee transmission and food stores. Therefore, we constrain the rates of transmission of
either type of Nosema spore to foragers, drones, maintenance bees and nurses (βF , βD, βM

and βN respectively) through the condition

βF ≈ βD ≈ βM < βN . (5.18)

Since hive cells are often soiled during the winter, when honey bees cannot leave the
hive to defecate, the transmission of Nosema spores is temperature dependent. Presently
Bee++ does not consider a spatially explicit interior to the hive, therefore we cannot track
individual brood/food cells and instead treat the pathogen populations and bee populations
as well mixed.

Each infection rate will then depend on the number of spores in the environment (which
in turn depends on the number of infected bees), as well as susceptibility of a particular
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bee to infection (pesticide exposure may increase susceptibility [84]). In other words, we
define the time-dependent infection rates, pI , as

pI,i, j = βi(P, ~I, i)
S j

s + S j
(5.19)

where βi is a function dependent on the intoxication level P of the bee, the number of
infections I it has acquired that may be compromising its immune system, and the caste
of the bee, i. S j is the number of free Nosema spores of type j (apis or cerenae) and s is
a shape parameter. This infection through free spores is the main transmission method for
both types of Nosema, and the one that our model currently considers. Of course, future
work can expand the model to include secondary transmission routes.

The population of free spores of type j, S j, is governed by the differential equation,

dS j

dt
=

∑
i

BS ,i, jIi −CNN . (5.20)

where BS ,i, j is the shedding rate of Nosema spores of type j by one infected bee of type i
and Ii is the number of infected bees of type i, C is the rate at which nurses can clean the
cells, and NN is once again the total number of nurses.

There is evidence that the fungicide, which prevents Nosema apis infection within
honey bee colonies, may actually allow Nosema ceranae to thrive [37]. Therefore we
thought it imperative to include both possible infections in our model, as well as the N.
apis treatment, fumagillin, as a toxin. In this way, our model allows one to explore the
trade-offs between these three very important, and evidently lethal stressors.

Varroa mites on the other hand, reproduce in the sealed brood cells [47]. Within the
cell, the mite will lay female and male eggs (usually one male and five female [80]. The
mites mate within the sealed brood cell [48], and the female mites emerge with the larvae,
and attach themselves to nearby adult worker bees [47]. The mites feed on the blood of
the adult worker bees, and use them as a means to disperse to new brood cells where they
may reproduce [68].

Varroa has been observed to act as a vector for viruses such as Deformed Wing Virus
(DWV) and Acute Paralysis Virus (APV) [20, 48]. Therefore, our Varroa mites are mod-
elled as three types, Vi, depending on whether they do not carry any virus, are carriers of
DWV, or carriers of APV.

Varroa mites feed on adult bees for approximately 4 to 5 days [68] before entering a
brood cell that is about to be capped. Therefore, we keep track of the number of days a bee
has had a mite attached. When a mite has reached reproductive maturity, with probability
pE(t) the mite will enter a viable brood cell. Once the mite enters a brood cell, the adult
bee is no longer considered infested with a mite. The number of mites that leave their
adult bee hosts are exactly the number of brood cells that end up inhabited by a Varroa
mite. We recognize that this assumes that more than one mite cannot occupy the same
brood cell. We use this assumption first on the basis of empirical data [68] and, second,
in order to make the problem tractable without explicitly tracking the spatial movement of
the bees within the hive. We further assume that all mites either enter a brood cell or die
after 5 days of attaching to a host.

The number of new Varroa mites created by one infected brood cell as the new bee
emerges is

Vnew = rV BI (5.21)
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where rV is the average number of female mites produced by one foundress (i.e., an egg-
laying mite), and BI is the number of infected brood cells. We further assume that upon
hatching, the new female mites find a host bee or die. Therefore the number of infected
bees is directly proportional to the number of surviving emerging mites.
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[12] Bühlmann, G. Assessing population dynamics in a honeybee colony. Mitteilun-
gen der Deutschen Gesellschaft fuer Allgemeine und Angewandte Entomologie (Ger-
many, FR) (1985).

119



120 BIBLIOGRAPHY

[13] Bukovac, Z., Dorin, A., and Dyer, A. A-bees see: a simulation to assess social bee
visual attention during complex search tasks. In Proceedings of the 12th European
Conference on Artificial Life (ECAL 2013) (2013), MIT Press Taormina, pp. 276–
283.

[14] Calderone, N. W. Insect pollinated crops, insect pollinators and US agriculture:
Trend analysis of aggregate data for the period 1992-2009. PLOS ONE 7, 5 (05
2012), e37235.

[15] Camazine, S. Self-organizing pattern formation on the combs of honey bee colonies.
Behavioral ecology and sociobiology 28, 1 (1991), 61–76.

[16] Capinera, J. L. Encyclopedia of entomology, vol. 4. Springer Science & Business
Media, 2008.

[17] Castillo, C., Chen, H., Graves, C., Maisonnasse, A., Le Conte, Y., and Plettner, E.
Biosynthesis of ethyl oleate, a primer pheromone, in the honey bee (Apis mellifera
L.). Insect biochemistry and molecular biology 42, 6 (2012), 404–416.

[18] de Vries, H., and Biesmeijer, J. C. Modelling collective foraging by means of indi-
vidual behaviour rules in honey-bees. Behavioral Ecology and Sociobiology 44, 2
(1998), 109–124.

[19] Devillers, J. The ecological importance of honey bees and their relevance to eco-
toxicology. In Honey Bees: Estimating the Environmental Impact of Chemicals,
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Chapter 6

Discrete and continuum operators
for the spread of disease: A
closed-form next generation
operator for reaction-diffusion
systems

Abstract

The next generation operator (NGO) is a clear analog to the next genera-
tion matrix (NGM) for disease models. However, the NGO has been derived
independently of the NGM and the quantifiable connection between the two
approaches remains an open question. Here, we demonstrate that the NGO can
be directly obtained as the limit of the NGM, as the number of discrete classes
approaches infinity. In the case of continuous age-structured disease models,
this approach recovers the NGO as previously defined for both separable and
non-separable interaction terms. For reaction-diffusion systems, we present a
new, closed-form formulation for the NGO for disease spread. The Fourier
methods illustrated here present a new approach for formulating a closed-form
next generation operator, which can then be used to provide a reproduction
number for more complex models, including the fractional derivatives used to
describe Lévy flight.

6.1 Introduction
At the core of modeling the progression of disease within a population is the
basic reproduction number, R0. This key parameter determines whether a dis-
ease will spread in a population, and allows for quantitative estimates of the
strength of control measures required to contain this spread [20, 27].

The next generation matrix (NGM) [35] offers an intuitively elegant and
well-studied method for calculating R0 for a disease affecting a population
of N discrete classes, that is, for disease dynamics described by a system of
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ordinary differential equations. The NGM is arguably the most widely used
approach for estimating the basic reproduction number in either discrete or
continuous time (as evidenced by the number of studies that rely on the method
[20]), equating the basic reproduction number to the spectral radius of a closed-
form matrix with a clear biological meaning. In recent work, Diekmann et al.
proposed a method of deriving the NGM directly from model parameters for
general epidemic models in discrete compartments [16]. A still more recent
study by Roberts and Heesterbeek characterizes the next generation matrix
and basic reproduction number, R0, for a variety of ecological models [32],
while Cushing and Diekmann explore how different physical interpretations of
the same model can result in different formulations of the NGM, by essentially
counting infections in different units [11]. Throughout this paper, for models
with discrete classes we will adopt the definition of the basic reproduction
number as the dominant positive eigenvalue with non-negative eigenvector of
the NGM [11, 34, 35].

In recent years, a number of extensions and alternatives to the NGM have
been proposed. For example, in discrete time models, Li and Schneider take
the novel approach of defining the projection matrix as a matrix sum [25],
which can then be used to calculate R0. In [31], Roberts et al. extend the idea
of the next generation matrix to develop new estimates of control efforts for
infectious disease. These estimates have the same threshold behaviour as R0,
but each estimate is applicable to one host type. Roberts et al. have also re-
cently proposed methods of extending and relating ecological dynamics to R0
in predator-prey systems [32]. In [22], Hyman and Li derive an explicit expres-
sion for R0 for an HIV model, demonstrating an equivalence between the next
generation matrix and the Jacobian of the system. R0 can also be calculated
in randomly fluctuating environments, for discrete population classes in either
discrete or continuous time [4].

In many model formulations, however, it is more intuitive to assume that
populations are structured along a continuum, as opposed to having discrete
classes. In the case of periodic infectibility, that is, assuming an interaction
term that depends both on continuous infection age and time, an expression
for R0 has also been obtained as the spectral radius of a matrix closely related
to the NGM [3, 12]. Other examples include models with continuous age
structure or spatially heterogeneous populations, that is, models described by
systems of partial differential equations. The basic reproduction number has
been determined for such infinite-dimensional models in a number of disease-
specific cases, as for example in dengue [10], nosocomial infections [9] and
infections in honey bee colonies [5]. Wang and Zhao [38] developed an elegant
method for determining the spectral radius of the next generation operator for
the special case of a reaction-diffusion system.

More generally, Greenhalgh first conjectured that the spectral radius of an
integral operator would provide a threshold criterion, R0, in the case of infinite-
dimensional population structure [17, 18]. This conjecture was confirmed by
Inaba [23], and in parallel work, the Next Generation Operator (NGO) was
defined by Diekmann et al. [15]. The connection between R0, defined as the
spectral radius of a positive bounded linear operator, and the spectral bound



6.2. The limit of the Next Generation Matrix 127

of a related linear operator, has also been elucidated in some detail by Thieme
[34].

Although the NGO is clearly the continuous analog of the NGM, the deriva-
tion of the NGO has typically proceeded either by defining the contribution of
infectious individuals to the “next generation” of infectious individuals [14],
or by deriving an operator whose spectral radius has the necessary threshold
behaviour [34]. Here, we take a different approach, explicitly demonstrating
the connection between the NGO and the NGM by taking the limit of the NGM
as the number of discrete classes approaches infinity. This approach allows us
to derive the NGO for a class of well-studied reaction-diffusion disease mod-
els. Specifically, we derive a new, closed-form expression for the NGO in
the case of a diffusing infected population with constant death rate, as well as
conjecture an operator for a diffusing population with general death rate.

The importance of reaction-diffusion models in mathematical biology can-
not be overstated. The construction and analysis of reaction-diffusion systems
are central to modelling and understanding the complex interactions of mobile
individuals, as elucidated in standard reference texts in mathematical biology
( [1, 2, 7, 8, 26, 29], see [30, 36] for review). In 2012, Wang and Zhao proved
that the next-generation operator exists for reaction-diffusion systems [38].
These authors also proved that the spectral radius of the operator does in-
deed yield the basic reproduction number. In an illustrative example, Wang
and Zhao consider an SEIR model with diffusion [38]. While a framework
to determine R0 is provided in this example, the exact closed-form expression
for the next generation operator, both generally and in the illustrative exam-
ple, remains open. The difficulty in determining such an operator lies in the
inversion of the non-infection related terms. These terms often involve explicit
spatial dependence as well as second derivative terms which complicate inver-
sion. The derivation of a closed-form solution, as we illustrate below, could
lead to a richer understanding of the dynamics and stability of this central class
of disease models.

In Section 2, we extend the next generation matrix into the continuum for
a general age-structured disease model, first with a separable interaction term
and then in a more general case. In Section 3, we consider a spatial reaction-
diffusion model, and present a closed form next generation operator in the
case of constant diffusion and constant disease-related death. We conjecture an
extension of this operator to models with spatially-dependent death. Section 4
applies these methods to a broader set of equations which include the fractional
derivative operators used to model Lévy flights. In Section 5 we extend the
methods used in [6] to derive an upper bound for R0 in the case of a general
interaction term for age-structured models.

6.2 The limit of the Next Generation Matrix

Consider an outbreak of infection in an age-structured population in which the
susceptible class, S (a, t), and infected class, I(a, t), both functions of age, a,
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and time, t, are governed by

∂S (a, t)
∂a

+
∂S (a, t)
∂t

= − fS (a)S (a, t) − S (a, t)
∫ ∞

0
β(a, a′)I(a′, t)da′ (6.1)

∂I(a, t)
∂a

+
∂I(a, t)
∂t

= − fI(a)I(a, t) + S (a, t)
∫ ∞

0
β(a, a′)I(a′, t)da′ (6.2)

S (0, t) = BS (6.3)

I(0, t) = 0 (6.4)

The function β(a, a′) is the infection term, allowing for localized or distant
interactions in age space, while the terms fS (a) and fI(a) are the flux through
each age class (assumed to be bounded and eventually positive, i.e. there exists
an A ∈ R+ such that f (a) > 0 for all a > A), and BS is the constant birth rate
of new individuals into the population. This simple model assumes that no
individuals are born infected.

6.2.1 Separable Interaction Term
In many cases, the term β(a, a′) creates difficulties in analyzing equations (6.1),
(6.2), (6.3), and (6.4). If a disease can be modeled via a separable interaction
term, i.e. β(a, a′) = α(a)γ(a′), the governing equations can be simplified to

∂S (a, t)
∂a

+
∂S (a, t)
∂t

= − fS (a)S (a, t) − α(a)S (a, t)
∫ ∞

0
γ(a′)I(a′, t)da′ (6.5)

∂I(a, t)
∂a

+
∂I(a, t)
∂t

= − fI(a)I(a, t) + α(a)S (a, t)
∫ ∞

0
γ(a′)I(a′, t)da′ (6.6)

S (0, t) = B (6.7)

I(0, t) = 0 (6.8)

where γ(a′) represents the infectiousness of an infected individual of age a′,
while α(a) is proportional to the susceptibility of susceptible individuals of age
a to infection.

The disease-free equilibrium for equations (6.5), (6.6), (6.7), and (6.8) is
given as the solution to the simple ordinary differential equation

dS (a)
da

= − fS (a)S (a) (6.9)

with initial condition

S (0) = BS . (6.10)

(6.11)

The equilibrium (obtained as a solution to equation (6.9) by separation of vari-
ables) is

S ∗(a) = BS exp
(
−

∫ a

0
fS (ã)dã

)
. (6.12)
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Brauer derives an expression for R0 in [6] for equations (6.6) and (6.8):

R0 =

∫ ∞

0
γ(a)e−Γ(a)

{∫ a

0
α(s)S ∗(s)eΓ(s)ds

}
da (6.13)

where

Γ(a) =

∫ a

0
fI(ã)dã. (6.14)

However, the method developed in [6] does not elucidate the relationship be-
tween this expression and the next generation matrix. Here, we will discretize
equations (6.5), (6.6) and (6.8) into N distinct age classes so that we may use
the next generation matrix to find R0. We will then show that the limit of this
expression is indeed equation (6.13).

Consider an age-structured ODE model with N age classes, each of size
∆a:

dS 1

dt
= BS − α1S 1

N∑
j=1

γ jI j −
S 1

∆a

dS i

dt
= − fS ,iS i − αiS i

N∑
j=1

γ jI j +
S i−1 − S i

∆a
2 ≤ i ≤ N (6.15)

dI1

dt
= − fI,iI1 + αiS 1

N∑
j=1

γ jI j +
−I1

∆a

dIi

dt
= − fI,iIi + αiS i

N∑
j=1

γ jI j +
Ii−1 − Ii

∆a
2 ≤ i ≤ N

where BS is some birth rate, and, as above, fi is the total rate of flux through a
particular age class. The last term in each equation specifically represents the
aging process. The number of classes, N, is directly related to the discretiza-
tion, ∆a, through

N =
amax

∆a
. (6.16)

Therefore, the limit ∆a→ 0 implies N → ∞.
The disease-free equilibrium for System (6.15) is given by

S ∗1 = ∆aBS , (6.17)

S ∗i =
S i−1

∆a

(
1

∆a
− fS ,i

)−1

, i ∈ [2,N]. (6.18)

Note here, as it will come into play when taking the limit as ∆a→ 0, that ∆a is
implicit in the S ∗i terms. This means that in order to transition smoothly from
the discrete to the continuous disease free equilibrium, we take the limit as

lim
∆a→0

S ∗i = Ŝ ∗i = S (a). (6.19)
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We can use the above to find the next generation matrix, FV−1, where the
components of F are given by

Fi j = αiγ jS ∗i 1 ≤ i, j ≤ N (6.20)

and those of V are given by

Vi j =


fI,i +

1
∆a

if i = j

−
1

∆a
if i = j + 1

0 otherwise

. (6.21)

We note here that F is of rank 1 since the columns are all multiples of one
another, therefore the product FV−1 must also be of rank 1 [28]. This means
the eigenvalues of the next generation matrix are λ1 = 0 with multiplicity N−1
and λ2 = Trace(FV−1). It follows immediately that R0 = λ2. The expression
for R0 is then

R̂0 =

N∑
i=1

∆aγi

 i∏
k=1

1
fI,k∆a + 1

 i∑
j=1

α jS ∗j

j−1∏
l=1

( fI,l∆a + 1). (6.22)

We can recover equation (6.13) by taking the limit of equation (6.22) as
∆a→ 0. In doing so, we use a result from product integration [33]:

lim
∆x→0

b∏
i=a

(1 + fi∆x) =

b∏
i=a

(1 + f (x)dx) = e
∫ b

a f (x)dx. (6.23)

In the limit as ∆a approaches 0, the sums in equation (6.22) become inte-
grals, and using equation (6.23) yields

lim
∆a→0

R̂0 =

∫ ∞

0
γ(a)e−Γ(a)

{∫ a

0
α(s)S ∗(s)eΓ(s)ds

}
da = R0. (6.24)

The trace of the FV−1 can equivalently be written as

R̂0 =

N∑
i=1

αiS ∗i ∆a

 i−1∏
k=1

fk∆a + 1

 N∑
j=i

γ j

j∏
l=1

1
fl∆a + 1

(6.25)

and again, taking the limit we find that

lim
∆a→0

R̂0 =

∫ ∞

0
S ∗(a)eΓ(a)

{∫ ∞

a
γ(s)e−Γ(s)ds

}
da = R0. (6.26)

We thus directly recover Brauer’s expression for R0 in a continuous age-
structured disease model [6], as the limit of the NGM as the number of age
classes approaches infinity.
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6.2.2 Non-separable Interaction Term
The next generation operator can also be recovered from the next generation
matrix in the more general case of an arbitrary interaction function β(a, a′). In
this case, we find that in the next generation matrix for a model with N age
classes, each of size ∆a, the components of F and V are given by

Fi j = βi jS ∗i i, j ∈ [1,N] (6.27)

and those of V are as in equation (6.21).
We seek a vector, ~I, with components Ii, where i ∈ [1,N] such that

λ~I = FV−1~I (6.28)

and λ = ρ(FV−1). As is, (6.28) gives us N equations. If we sum these equa-
tions, the result is one equation of the form

λ

N∑
i=1

Ii =

N∑
i=1

CiIi (6.29)

where

Ci = ∆a
i∏

l=1

( fi∆a + 1)
N∑

j=1

S ∗j

N∑
k=i

β jk∏k
m=1( fm∆a + 1)

. (6.30)

Multiplying both sides of (6.29) by ∆a and, as in Section 2.1, letting ∆a → 0
and making use of equation (6.23) allows us to rewrite equation (6.29) in the
limit as

λ

∫ ∞

0
I(a)da =

∫ ∞

0
S ∗(a)

∫ ∞

0
I(a′)eΓ(a′)

∫ ∞

a′
β(a, s)e−Γ(s)dsda′da. (6.31)

This makes it possible to extract the next generation operator

Na{I(a)} = S ∗(a)
∫ ∞

0
I(a′)eΓ(a′)

∫ ∞

a′
β(a, s)e−Γ(s)dsda′ (6.32)

thus we recover the operator proposed in [15] and [18]. The method demon-
strated here, however, offers the additional insight that the NGO is the contin-
uous limit of the NGM. We note that iterative methods for recovering the value
of R0 from such integral operators are well known [24].

6.3 Reaction-Diffusion System
Consider a spatial reaction-diffusion system:

∂S
∂t

+ LxS (x, t) = −S (x, t)
∫ ∞

−∞

β(x, y)I(y, t)dy (6.33)

∂I
∂t

=
d
dx

(
D(x)

dI
dx

)
− fI(x)I(x, t) + S (x, t)

∫ ∞

−∞

β(x, y)I(y, t)dy (6.34)
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where D(x) is the rate of diffusion of the infected population, and Lx is some

linear operator in x such as Lx = −
∂2S (x, t)
∂x2 + S (x, t) which would represent a

population diffusing at a constant rate, while dying at rate 1 individual per unit
time. Note that S and I are time-dependent functions, but the time argument
has been suppressed in equations (6.33) and (6.34) for the sake of readability.

In the special case of constant diffusion, D(x) = D, constant flux, fI(x) = f ,
and an interaction term that depends on the distance between two individuals,
β(x, y) = β(x − y), an operator for the basic reproduction number can be ob-
tained as follows. Making these substitutions, we obtain

∂S
∂t

+ LxS (x, t) = −S (x, t)
∫ ∞

−∞

β(x − y)I(y, t)dy (6.35)

∂I
∂t

= D
∂2I
∂x2 − f I(x, t) + S (x, t)

∫ ∞

−∞

β(x − y)I(y, t)dy. (6.36)

The disease-free equilibrium is once again denoted S ∗(x), and we use this
to linearize equation (6.36) about S ∗(x):

∂I
∂t

= D
∂2I
∂x2 − f I(x, t) + S ∗(x)

∫ ∞

−∞

β(x − y)I(y, t)dy. (6.37)

Discretizing equations (6.37) in x allows us to directly compute the NGM
which, as in Section 2, will the allow us to recover the NGO. To do so, we
approximate equation (6.37) as a series of N ODEs, each of spatial resolution
∆x. This yields the matrices

Fxi j = ∆xβi− jS ∗i (6.38)

and

Bi j =


f + 2D

∆x2 i = j
− D

∆x2 i = j ± 1
0 otherwise

. (6.39)

Matrix B is a tri-diagonal, symmetric matrix and its inverse can be found ana-
lytically [21], but it is unclear how to proceed in taking the limit of FB−1. Here
we proceed by taking the Fourier transform, F [·] of equation (6.37), from x-
space to s-space to obtain,

∂I

∂t
= −Ds2I(s, t) − fI(s, t) +

∫ ∞

−∞

S∗(s − l)B(l)I(l, t) dl (6.40)

where I(s, t) = F [I], B(s) = F [β] and S∗(s) = F [S ∗].
As in [38], we assume that near the disease-free equilibrium, the eigen-

function i(x) will evolve in time according to T (t). In other words, near the
disease-free equilibrium, we have I(x, t) = T (t)i(x), and consequently I(s, t) =

T (t)F {i(x)} (s). From here, we can affirm that if T ′(t) > 0 the infected pop-
ulation I(x, t) is growing. Since I(s, t) grows at the same rate as I(x, t) it is
clear that I(s, t) is also growing under this conditions, whereas if T ′(t) < 0
both I(x, t) and I(s, t) will approach 0 as t tends to infinity. Therefore, near
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the disease-free equilibrium, the exponential growth parameter of the infected
population is preserved under the Fourier transform. This will allow us to de-
termine a reproduction number in Fourier space which has the same threshold
behaviour as R0.

From Theorem 3.1 in [38], if we define σ(•) as the spectral radius of an
operator and define operators Fx and B as

Fx[I] = S ∗(x)
∫ ∞

−∞

β(x − y)I(y)dy (6.41)

and

B[I] = D
∂2I
∂x2 − f I(x) (6.42)

then σ(−FxB−1) − 1 and σ(A = B + Fx), and the exponential growth bound of
the eigenfunction I(x) all have the same sign.

Accordingly, in Fourier space, we define V[I] = −Ds2I − fI, F̂ [I] =∫ ∞
−∞
S∗(s − l)B(l)I(l)dl and A = F̂ + V, and appeal to Theorems 2.3 and

3.14 in [34] to conclude that σ(A), σ(−F̂V−1)−1 and the exponential growth
bound of I(s) all have the same sign. Since we have already shown that the
exponential growth bound is preserved under Fourier transform, it follows that
both systems will have the same threshold value R0 = 1, such that the disease-
free equilibrium is asymptotically stable for R0 < 1.

Discretizing equation (6.40) into N equations of the form,

dIi

dt
= −Ds2

i Ii − fIi +

N∑
j=0

S∗i− jB jI j∆l (6.43)

permits the use of the next generation matrix where

F̂i j = S∗i− jB j∆l (6.44)

and

Vi j =

 f + Ds2
i , i = j

0, i , j
(6.45)

for i, j ∈ [0,N].
Using the same techniques as described in Section 2.2, in the limit as ∆s→

0 we obtain the operator

Ns[I] =

∫ ∞

−∞

S∗(s − l)
B(l)

f + Dl2
I(l) dl. (6.46)

Since this equation is the limit of the next generation matrix as the number
of classes approaches infinity, the spectral radius of operator Ns can be inter-
preted as the basic reproduction number, R0 for equations (6.35) and (6.40).
Given the above arguments, R0 has the same threshold behaviour as the basic
reproduction number, R0, for equations (6.35) and (6.36). Figure 6.1 shows
numerically that not only are the threshold values the same for the spectral
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radii R0 and R0, but that indeed there are cases when R0 = R0. Elucidating the
conditions for equivalence is a clear avenue for future work.

Moreover, taking the inverse Fourier transform of equation (6.46) will
bring the problem back to real space, x.

F {Ns[I]} = F
{
S∗

}
F

{
BI

Ds2 + f

}
(6.47)

= S ∗(x)
∫ ∞

−∞

F

{
1

Ds2 + f

}
(x − y)F {BI} (y) dy (6.48)

=
S ∗(x)

2
√

D f

∫ ∞

−∞

L(x − y)
∫ ∞

−∞

β(y − z)I(z) dzdy (6.49)

where

L(x − y) = e−
√

f/D |x−y| (6.50)

Thus, we can define the operator

Nx[I] =
S ∗(x)

2
√

D f

∫ ∞

−∞

L(x − y)
∫ ∞

−∞

β(y − z)I(z) dzdy. (6.51)

Let λ be the spectral radius of Ns[I], then

Nx[I] = F [Ns[I]] = λF [I] = λI (6.52)

Therefore, λ is also the spectral radius of Nx[I].
The spectral radius of Nx[I] (denoted σ(Nx)) will again have the same

threshold behaviour as R0.

6.3.1 Inversion Formula: the expected infectious occu-
pation time
We can use Fubini’s Theorem to rewrite equation (6.51) as

Nx[I] =

∫ ∞

−∞

∫ ∞

−∞

S ∗(x)

2
√

D f
β(y − z)L(x − y)I(z)dydz. (6.53)

Numerically, estimates of the spectral radius of −FB−1 as defined in equa-
tions (6.41) and (6.42) are in perfect agreement with the spectral radius of

operator Nx[I] in equation (6.51). Here, we show that for B[I(x)] =
∂2I
∂x2 − f I,

B−1[I](x) =

(
d2I
dx2 − f I

)−1

(6.54)

=
−1

2
√

D f

∫ ∞

−∞

L(x − y)I(y)dy (6.55)

=
−1

2
√

D f

∫ ∞

−∞

e−
√

f/D|x−y|I(y)dy, (6.56)
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provided the integral exists.
This can be shown in a straightforward manner by considering the expres-

sion

−
1

2
√

D f

∫ ∞

−∞

e−
√

f/D|x−y| (Dw′′(y) − f w(y)
)

dy (6.57)

where w(y) is any smooth function for which∫ ∞

−∞

L(x − y)w(y) dy

exists. We split this into two integrals, which we can compute:

−
1

2
√

D f

∫ ∞

−∞

e−
√

f/D|x−y| (Dw′′(y) − f w(y)
)

dy = IL + IR (6.58)

where

IL = −
1

2
√

D f

∫ x

−∞

e−
√

f/D(x−y) (Dw′′(y) − f w(y)
)

dy (6.59)

and

IR = −
1

2
√

D f

∫ ∞

x
e−
√

f/D(y−x) (Dw′′(y) − f w(y)
)

dy. (6.60)

The result

−
1

2
√

D f

∫ ∞

−∞

e−
√

f/D|x−y| (Dw′′(y) − f w(y)
)

dy = w(x) (6.61)

comes from integrating by parts. When working with integrals of the form

−
1

2
√

D f

∫
e±
√

f/D(x−y)Dw′′(y) dy

we choose u = exp(±
√

f/D(x − y)) and dv = w′′(y) and for integrals of the
form

−
1

2
√

D f

∫
e±
√

f/D(x−y)(− f w(y)) dy

we choose u = f w(y) and dv = exp(±
√

f/D(x − y)). From here, equation (6.61)
follows easily.

Figure 6.3 shows some test functions which illustrate this inversion for-
mula. The functions are chosen to highlight three possible classes of functions:
those that decay as x → ±∞, those that are periodic and measurable, and fi-
nally those that are not integrable on (−∞,∞), but are less than exponential
order. In analogy with the previous sections, we interpret B−1[I](x) as the ex-
pected length of time an individual will be at position x before either dying or
moving to a new position.
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6.3.2 Conjecture
We conjecture that equation (6.56) can be extended to the case of a spatially
variable death rate. In this case, we have

B−1[I](x) =

(
d2I
dx2 − f (x)I

)−1

(6.62)

=
−1

2
√

D f (x)

∫ ∞

−∞

M(x − y)I(y)dy (6.63)

where

M(x − y) = e−
√

f (x)/D|x−y|. (6.64)

Of course, this requires f (x) , 0.
Figure 6.4 shows some test functions that support this conjecture. Numer-

ical exploration suggests that equation (6.63) may hold for periodic functions,
monotonically increasing functions that are less than exponential order, and
those that are bounded but not integrable; we show one example of each case.

6.4 Lévy Flight
The above methods can be generalized to other movement patterns including
Lévy flights [13]. The generalized system makes use of fractional derivatives:

∂S
∂t

+ LxS (x, t) = −S (x, t)
∫ ∞

−∞

β(x, y)I(y, t)dy (6.65)

∂I
∂t

= γ
∂αI
∂xα
− fI(x)I(x, t) + S (x, t)

∫ ∞

−∞

β(x, y)I(y, t)dy (6.66)

where 0 < α ≤ 2, γ is a movement constant and the fractional derivative is
defined through the Fourier transform, F as

F

[
∂αI
∂xα

]
= −|s|αF [I(x)]. (6.67)

Using the same methods and arguments as Section 3, we assume the disease-
free equilibrium exists and is denoted by S ∗(x), and that we may linearize
around S ∗(x), and apply a Fourier transform to equation (6.66). Doing so
allows us to write out a generalized next generation operator in Fourier space:

NL[I] =

∫ ∞

−∞

S∗(s − l)
B(l)

fI + |γl|α
I(l)dl (6.68)

where B, S∗ and I are defined as in Section 3 (below equation (6.40)).
The largest eigenvalue of this operator will have the same threshold be-

haviour as R0. Reverting to real space, x, is difficult and needs further investi-
gation.
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6.5 Approximating the Spectral Radius of the
Next Generation Operator
In order to obtain the basic reproduction number for a continuously age-structured
population, it is required to solve

R0I(a) = S ∗(a)
∫ ∞

0
I(a′)eΓ(a′)

∫ ∞

a′
β(a, s)e−Γ(s)dsda′ (6.69)

such that I(a) > 0 for all a. This problem may be intractable because of
the arbitrary nature of both β and Γ. Therefore, in the following section, we
attempt to find a closed-form approximation to R0.

We begin by adapting Brauer’s method [6] for the case of a separable in-
teraction term to a general interaction term. To do so, we linearize equation
(6.2) about S ∗(x),

∂I
∂a

+
∂I
∂t

= S ∗(a)
∫ ∞

0
β(a, a′)I(a′, t)da′ − ( fI(a)) I(a, t) (6.70)

and again use the ansatz that near the disease-free equilibrium, the infected
population, I(a, t) grows exponentially in time, proportional to the eigenfunc-
tion i(a) [6], that is

I(a, t) = eρti(a) . (6.71)

This yields

di
da

= S ∗(a)W(a) − ( fI(a) + ρ)i(a) (6.72)

where

W(a) =

∫ ∞

0
β(a, a′)i(a)da′. (6.73)

Solving equation (6.72) gives

i(a) = e−ρa−Γ(a)
∫ a

0
S ∗(s)W(s)eΓ(s)+ρsds. (6.74)

Substituting (6.74) into (6.73) gives

W(a) =

∫ ∞

0
β(a, a′)e−ρa′−Γ(a′)

∫ a′

0
S ∗(s)W(s)eΓ(s)+ρsds

 da′ (6.75)

and rewriting the integral yields

W(a) =

∫ ∞

0
S ∗(a′)eΓ(a′)+ρa′

{∫ ∞

a′
β(a, s)e−ρs−Γ(s)ds

}
W(a′)da′. (6.76)

This is a homogeneous Fredholm equation of the second kind for the func-
tion W(a) [39]. A non-trivial solution to equation (6.76) exists if W(a) is an
eigenfunction of the kernel, that is

K(a, a′, ρ) = S ∗(a′)eΓ(a′)+ρa′
{∫ ∞

a′
β(a, s)e−ρs−Γ(s)ds

}
(6.77)
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with associated eigenvalue λ = 1 [39].
Following the proof in [39], squaring equation (6.76) yields

W(a)2 =

[∫ ∞

0
K(a, a′, ρ)W(a′)da′

]2

(6.78)

and we may then use the Cauchy-Schwarz inequality to write

W(a)2 ≤

∫ ∞

0
K(a, a′, ρ)2da′

∫ ∞

0
W(a′)2da′. (6.79)

Integrating both sides of equation (6.79) with respect to variable a, we find:∫ ∞

0
W(a)2da ≤

∫ ∞

0
K(a, a′, ρ)2da′

∫ ∞

0
W(a′)2da′. (6.80)

Therefore, a non-trivial solution to equation (6.76) exists only if the value of
the growth parameter ρ is such that

||K||2 ≥ 1. (6.81)

Since K(a, a′, ρ) is a decreasing function of ρ, we know that if ||K(a, a′, 0)||2 <
1 then the only ρ values which satisfy equation (6.81) must be negative. There-
fore near the disease-free equilibrium, I(a, t) is a decreasing function of t as per
equation (6.71). In contrast, if ||K(a, a′, 0)||2 > 1 then by continuity there must
exist a ρ∗ > 0 such that ||K(a, a′, ρ∗)||2 = 1. In this case, every ρ < ρ∗ will
also satisfy condition (6.81). Therefore, the actual growth parameter ρ may be
positive or negative. Thus ||K(a, a′, 0)||2 is only an upper bound on the basic
reproduction number, R0. This differs from the case of a separable interaction
term in which the analogous condition is ||K(a, a′, ρ)||1 = 1 (see [6] for details),
and a unique ρ satisfies this condition, hence ||K(a, a′, 0||1 = R0.

6.6 Discussion
Arguably among the most well-studied tools in disease modelling are the next
generation matrix of discrete systems [2, 3, 16, 32, 35] and the next generation
operators used in continuum models [3, 15, 17, 18, 22, 34, 37, 38]. While
the two formulations are clear analogs of one another, in this study we show
that the NGO can be directly obtained as the limit of the NGM, as the number
of classes approaches infinity. This approach allows us to extend these limit
arguments to disease models described by reaction-diffusion equations, and to
derive a closed-form next generation operator for these well-known systems.

The relationship between the next generation matrix of discrete dynam-
ics and the next generation operator of continuum dynamics is critical to the
biological interpretation of these operators. The next generation matrix is un-
derstood easily as the force of infection, F, multiplied by the expected lifetime
in each compartment of an infected individual, V−1 [11]. When moving to the
continuum, these interpretations can be confounded by either the techniques
used to determine the operator [6] or by the more complicated nature of the
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mathematics involved (such as the convolution and exponential terms appear-
ing in equation (6.32)).

This equivalence between the discrete and continuum approaches makes
it possible to manipulate a simple reaction-diffusion model with non-local in-
fectibility to determine a closed-form next generation operator whose spectral
radius can be guaranteed to have the same threshold dynamics as R0, by con-
necting theorems found in [34, 38] and taking advantage of the linear prop-
erties of the Fourier transform. While the existence of such an operator has
previously been proven [34, 38], and while similar results have been applied to
various systems such as a dengue fever model [37] and a general model with
fixed latent period and nonlocal infection [19], a closed-form operator for R0
has remained elusive. Since in the present study the next generation operator
is derived as the limit of a discrete operator, this derivation provides an avenue
toward a threshold parameter in both the discrete and continuum models.

Our study also suggests that the Fourier transform may be a more natural
setting for computation of R0. We see that a closed-form integral operator
with the same threshold characteristics as the next generation operator can
be derived for both diffusion and Lévy flight equations, and can be trivially
extended to higher dimensions. A next step would be to generalize this method
to work with spatially-dependent death rates, in such a way that the validity of
the operator can be proven. Here, we provide such an operator as a conjecture.

Moreover, we offer a novel, closed-form expression for inversion of the

operator B[I] =
d2I
dx2 − f I. The ubiquity of reaction-diffusion operators in

mathematical biology indicates both the need for, and potential importance of,
such a closed-form inversion. The inversion operator gives the expected time
an individual will occupy position x before either dying or moving to a new po-
sition. Biologically this is relevant to many spatial models in ecology, and can
potentially be extended to an inversion formula for the expected ‘occupation
time’ of migrating populations. Mathematically, this formula makes it possible
to turn a reaction-diffusion equation into an eigenvalue problem, which allows
a wide range of techniques for solving a reaction-diffusion system analytically
and numerically.

We conclude with a technique to find a closed-form upper bound for the
basic reproduction number using the operators derived herein. This expression
may be useful for understanding the spread of disease in the context of contin-
uous age or space, and for deriving quantitative estimates of control measures.
While we show the approximation for the age-structured model, the method
can also be applied to equation (6.46) to determine a closed-form approxima-
tion for the upper bound of R0 for a spatially-explicit model.
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Figure 6.1: R0 and σ(A) calculated in both real space, x, (blue solid line) using FB−1 (as
defined in equations (6.38) and (6.39), with ∆x = 0.1001 and N = 2000). and Fourier space
s (magenta points) using equation (6.46) with ∆s = 0.1001. The interaction term used here is
β(x − y) = Cexp

(
−k(x − y)2

)
, C ∈ [0.01, 0.5], and Lx[S ∗] = xS ∗

′′

(x) + S ∗
′

(x) + 4x3S ∗(x). The
diffusion rate is set to D = 1 and the infected death rate, f = 1. We see that not only does the
system in Fourier space have the same threshold behaviour as the system in real space, but in
fact the values for R0 are identical.
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Figure 6.2: σ(−FxB−1) vs. σ(Nx). σ(−FxB−1) is calculated using equations (6.38) and (6.39),
with ∆x = 0.1001 and N = 2000. σ(Nx) is calculated using equation (6.51) with ∆x = 0.1001.
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Figure 6.3: Plots of several test functions to illustrate the validity of equation (6.61) in Section
3.1, namely equation (6.56). The test functions used are g(x) = exp

(
−x2

)
, g(x) = (x/10)3,

g(x) = sin(x)/x.
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Figure 6.4: Plots of several test functions to illustrate the accuracy of equation (6.63) in Section
3.2, with f (x) = x2 + 1 to ensure smoothness everywhere. The test functions used are w(x) =
2
π

arctan(x), w(x) = x3/103, w(x) = sin(x).
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Chapter 7

Discussion & Conclusions

The aim of this dissertation was to study models of honey bee colony dynam-
ics. Building upon the work of others, [10, 11, 15], I have developed and
analyzed three separate models of honey bee colony dynamics. Each exten-
sion to the model has allowed for new predictions or captured new behaviours
which were not within the scope of other models.

The first such model, as discussed in Chapter 2, was developed to incorpo-
rate high-level seasonality and disease dynamics into honey bee models. Two
key predictions came from this model. The first is the use of the Average Age
of Recruitment to Foraging (AARF) as an indicator of a diseased colony and,
ultimately, as a herald of colony extinction. The second is the role of the onset
of winter in the severity of disease. The model shows that diseases that occur
in late fall are predicted to have more severe long term effects on colony health
than an infection that is introduced in, say, early summer. This model, as a first
pass, was developed to be very general. The main aim was to highlight pre-
dictors and nonlinear dynamics that arise from the interplay between infection
and seasonality, and how a diseased colony can exhibit symptoms of colony
collapse.

Age structure was later added to the model and the dynamics were quite
different. In Chapter 3, we show the age demography of a healthy colony, con-
ditions for stability of the disease-free equilibrium as well as derive the basic
reproduction number, R0, for an age-structured model of honey bee colony dy-
namics. This expression for R0 is consistent with the expression derived in an
age-independent model, and is found to differ significantly from the latter as
the number of age classes is increased toward a continuum. Analysis of the
model also gives insights into the sensitivity of honey bee colonies to the in-
herent age polyethism in their societies. The time spent nursing is critical to
the survival of honey bee colonies.

In Chapter 4, we perform numerical simulations on the age-structured
model to extract more biological insights from the model. It is found that an
age-structured model successfully captures the phenomenon known as ‘spring
dwindle’ without explicitly building it into the model. The age-structured
model also refines the predictions of critical times for onset of infection in
a honey bee colony. The introduction of age structure into the model shows
that early spring and late fall are especially vulnerable times for honey bee
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colonies. Moreover, the model predicts that there is a compounding effect
when disease and seasonality are both considered. The model shows that an
endemic disease in a honey bee colony may cause destruction of the colony
many years later. This implies that the causes of honey bee declines, at least
locally on a colony-by-colony basis, may not be immediate.

The agent-based model in Chapter 5 further builds upon the previous mod-
els to incorporate environmental hazards and explicit space dependence. The
aim here was to develop an accurate model of honey bee dynamics which could
be used in order to help guide policy and conservation efforts. The model is
in good agreement with experimental data from the literature [4, 6, 14] and
behaves as expected in a range of biologically reasonable parameters. In par-
ticular, the AARF extracted from simulations is consistent with previous re-
sults [2, 10, 11, 13]. The model does show that sub-lethal pesticides are hid-
den from the AARF, even though the mortality of bees is increased indirectly
through, for example, hindered navigation. This particular example of a sub-
lethal pesticide effects is simulated and shows that this alone may contribute to
Colony Collapse Disorder, as many bees will die quite far away from the hive.

Currently, there is much work being done on honey bee genomics and se-
lectively breeding queens that are able to thrive in the current ecological land-
scape [7, 9, 12, 16]. With all the new data coming from these studies, and the
fact that honey bees are haploid-diploid, a model for the persistence of benefi-
cial mutations in honey bee colonies can help guide efforts to create colonies
that thrive, without disrupting the genetic diversity of managed honey bees.
It is in this direction that I will continue my work on models of honey bees.
Insights can be gained through dynamical systems models and through agent-
based simulations. The groundwork has been laid herein to then later study the
phenotypical responses at the colony level to genomic changes.

Of course, there is also much much to be done in the way of modeling
honey bee colony dynamics. The models herein take a simplified approach
to modeling the effect of temperature on forager dynamics. Honey bees are
not able generate enough heat in their muscles at low temperatures in order to
achieve flight [5]. As well, temperature of the brood has been shown to influ-
ence the behaviour of an adult honey bee [18]. Moreover, higher temperatures
will evaporate some of the water content in nectar, thus making it more diffi-
cult to extract [8]. Also, higher temperatures correlate to increases in flower
visiting speed and simultaneous decreases in the number of flowers visited [1].
These observed phenomena will greatly influence not only the dynamics of a
honey bee colony, but as well the bee-plant interactions within the ecosystem.
The importance of these temperature effects on the longterm health of honey
bees is particularly pertinent in the face of global warming [17].

Chapter 6 investigates the connections between the basic reproduction num-
ber for compartmental models and partial differential equation models. This
work was motivated by the similarities and differences found in the analysis of
R0 in Chapter 3. For general models, R0 is often difficult – if not impossible
– to write down analytically and so we focus on the connection between the
next generation matrix (NGM) and its continuous counterpart: the next gener-
ation operator (NGO). The basic reproduction number, R0, is then the spectral
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radius of the defined matrix/operator. We show that for age-structured models,
while other techniques exist for defining the NGO [3], one can also recover
the NGO as the limit of the NGM. This allows for an algorithmic way to deter-
mine the next generation operators for a wide class of advection models as well
as allows the techniques and tools developed in the context of compartmental
models to be used on models for which one parameter exists on a continuum.

In the case of reaction-diffusion models, we use the above technique to
develop a closed-form next generation operator which can be used to extract
R0. Some implications here are that R0 has the same threshold behaviour in
Fourier space as in real space, and often the NGO is easier to derive in Fourier

space. We are also able to recover an inverse for the operator
∂2

∂x2 − f and

conjecture that this inverse can be extended to operators of the form D(x)
∂2

∂x2 −

f (x).
The proof of the conjecture is open, and I believe can be of great value

both mathematically and biologically if proved. Moreover, there are many
ways to modify the simple exploratory models for which the NGOs above have
been derived. Future work would entail either developing the NGO for more
complex models using the above framework, or showing how perturbations to
the simple models will change the NGO.
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Appendix A

Age structure is Critical to the
Population Dynamics and
Survival of Honey Bee Colonies
– Supplementary Material

Table A.1: Parameter values and source references.
L maximum rate of egg laying 2000 eggs/day [5]
w number of hive bees for 50% egg survival 5000 bees [5]
am age at which hive bees begin brood care 3 days [7]
aT age at which hive bees end brood care 11 days [7]
aR minimum recruitment age 4 days [2]
k age at which rate of recruitment is 25% of max. 10 days
α maximum rate of recruitment 1 /day
1
σ

maximum fraction of colony that can be foraging 1
3 [5]

µ(a) natural death rate of foragers (summer) Figure 1 [1]
µw natural death rate of foragers and hive bees (winter) 1/180 /day [7]
b mass of food stored for 50% egg survival 500 g [4]
c food gathered per day per forager 0.1 g /day / bee [6]
γ daily food requirement per adult bee 0.007 g /bee [4]

dH(a) death rate of hive bees due to infection 0.14 /day or Figure 1 [3]
dF(a) death rate of hive bees due to infection 0.14 /day or Figure 1 [3]
β disease transmission rate variable
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Figure A.1: Time course of total bee population in a disease-free colony. Shaded area denotes
winter, during which no new hive bees are produced. Here we use more realistic food intake
c = 0.5 and consumption rates, γ = 0.07 [37]. We see that the dynamics of the colony are not
sensitive to the food intake and consumption rates.
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Figure A.2: Age distribution of a healthy colony at equilibrium during the active season, based
on the natural death rate, µ(a) presented in Figure 1.
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Figure A.3: Population dynamics with increasing effects of age-dependent parameters: clock-
wise from top-left (age-independent model) to bottom-left (fully age-dependent model).
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Figure A.4: An inverted Gaussian natural death rate, µ(a) = Ae−(a−25)2/B where A and B are
chosen such that the average death rate is µavg = 0.14 per day. Results based on this death rate
are shown below.



157

Figure A.5: Equilibrium age distribution of healthy colony under the natural death rate shown
in Figure A.4.
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Figure A.6: Time course of disease-free colony based on natural death rate µ(a) shown in
Figure A.4.
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Figure A.7: Time course of infected colony based on natural death rate µ(a) shown in Figure
A.4 and a constant disease death rate d(a) = d = 0.14 per day.
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Figure A.8: Time course of infected colony based on natural death rate µ(a) shown in Figure
A.4 and a disease death rate d(a) = µ(a).
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Figure A.9: An admittedly unrealistic linear natural death rate µ(a) = Aa where A is chosen so
once again the average is 0.14 per day. We show this death rate to illustrate that the qualitative
results of our model hold in even with drastically different parameter choices.
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Figure A.10: Equilibrium age distribution of healthy colony under the natural death rate shown
in Figure A.9. Note that the linear death rate leads to an unrealistically long lifespan.
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Figure A.11: Time course of disease-free colony based on natural death rate µ(a) shown in
Figure A.9. Despite the unrealistically large colony size and absurdly long lifetime of a bee,
we still observe the spring dwindle as a natural phenomena.
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Figure A.12: Time course of infected colony based on natural death rate µ(a) shown in Figure
A.9 and a Gaussian disease-related death rate, d(a). Note that the infection continues to spike
years after the initial infection.
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