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Abstract

The focus of this work is a family of maps from the space of n× n symmetric matrices, S n,

into the space S (n
k) for any k = 1, . . . , n, invariant under the conjugate action of the orthogonal

group On. This family, called generated k-isotropic functions, generalizes known types of

maps with similar invariance property, such as the spectral, primary matrix, isotropic functions,

multiplicative compound, and additive compound matrices on S n.

The notion of operator monotonicity dates back to a work by Löwner in 1934. A map

F : S n → S m is called operator monotone, if A � B implies F(A) � F(B). (Here, ‘�’ denotes

the semidefinite partial order in S n.) Often, the function F is defined in terms of an underlying

simpler function f . Of main interest is to find the properties of f that characterize operator

monotonicity of F. In that case, it is said that f is also operator monotone. Classical exam-

ples are the Löwner’s operators and the spectral (scalar-valued isotropic) functions. Operator

monotonicity for these two classes of functions is characterized in seemingly very different

ways.

The work in Chapter 1 extends the notion of operator monotonicity to symmetric functions

f on k arguments. The latter is used to define (generated) k-isotropic functions F : S n → S (n
k)

for any n ≥ k. Necessary and sufficient conditions are given for f to characterize an operator

monotone k-isotropic map F. Then, in Chapter 2, we give necessary and sufficient conditions

for the analyticity of (generated) k-isotropic functions.

When k = 1, the k-isotropic map becomes a Löwner’s operator and when k = n it becomes

a spectral functions. This allows us to reconcile and explain the differences between the con-

ditions for monotonicity and analyticity for the Löwner’s operators and the spectral functions.

We say that a function F : S n → S nk is k-tensor isotropic, if it satisfies

F(UAU>) = (U⊗k)F(A)(U⊗k)
>

for all U ∈ On and all A in the domain of F. Here, ‘⊗k’ denotes the k-th tensor power. The
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goal of Chapter 3 is to investigate the internal structure of the k-tensor isotropic functions and

formulate a canonical representation of F in terms of simpler functions on Rn. We achieve this

goal in the case when k = 2 for any natural n. In the process, we characterize the structure of

the matrices in the centralizer of certain orthogonal subgroups of Onk .

An orthogonally invariant class of operator functions, FH is studied in Chapter 4. Then,

we connect FH to (generated) k-isotropic functions, when it is restricted to block diagonal

matrices. This connection allows us to establish various smoothness properties of FH.

Keywords: Spectral function, primary matrix function, Löwner’s operator, isotropic func-

tion, k-isotropic function, symmetric function, analyticity, multiplicative compound matrix,

additive compound matrix, tensor product, anti-symmetric tensor product, operator monotone

function, Pick function, Bernstein function, positive map, k-tensor isotropic function, central-

izer, orthogonal group, differentiability, orthogonally invariant function
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Chapter 1

Introduction

Let Nn := {1, . . . , n}. Denote by Rn×n the space of all n × n real matrices and denote by S n the

space of all n×n symmetric matrices with inner product 〈A, B〉 := Tr (AB). Let On be the group

of n×n orthogonal matrices. Denote by Rn
≥ the convex cone in Rn consisting of all vectors with

coordinates non-increasingly ordered. For any A ∈ S n, let λ(A) ∈ Rn
≥ be the vector of ordered

eigenvalues of A. Denote by Diag x the n× n matrix with x ∈ Rn on the main diagonal. Denote

by Pn the collection of all n × n permutation matrices.

For any A ∈ S n, we use the notation A � 0, whenever A is positive semidefinite. Denote

by S n
+ the closed convex cone consisting of all positive semidefinite matrices in S n. The cone

S n
+ defines a partial order on S n in the following way. For any A, B ∈ S n, we use the notation

A � B, whenever A − B � 0.

Definition 1.0.1 A map F : S n → S m is called operator monotone, if

A � B implies F(A) � F(B)

for any A and B in the domain of F.

A characterization of operator monotonicity is as follows.

Proposition 1.0.2 Let F : S n → S m be a C1 map defined on a convex domain with non-empty
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2 Chapter 1. Introduction

interior. Then, F is operator monotone, if and only if ∇F(A)[H] � 0 for all H ∈ S n
+ and all A

in the domain of F.

The focus of this thesis is to show the operator monotonicity and analyticity of a class of

orthogonally invariant matrix-valued functions and study the connection to other types of or-

thogonally invariant matrix-valued functions. This class of functions captures three previously

investigated classes of orthogonally invariant matrix-valued functions. We start with the three

special cases.

Definition 1.0.3 A real-valued function F : S n → R is called a spectral function, if

F(UAU>) = F(A)

holds for all U ∈ On and all A ∈ S n in the domain of F.

Spectral functions are also known as scalar-valued isotropic functions. They have been

extensively studied and applied in various areas, for example, engineering, see [25], material

science, see [21], and optimization and variational analysis, see [14].

We say that a function f : Rn → R is symmetric, if f (Px) = f (x) holds for any x ∈ Rn and

any permutation matrix P ∈ Pn. The representation theorem of spectral functions is as follows

and can be found in [6] and [22].

Theorem 1.0.4 A real-valued function F : S n → R is a spectral function, if and only if there

exists a unique symmetric function f : Rn → R such that F(A) = ( f ◦ λ)(A) for all A ∈ S n.

Properties of a spectral function and its corresponding symmetric function f are closely

connected. For example, a spectral function F is differentiable at A, if and only if f is differen-

tiable at λ(A). The evolution of research in this area can be found in [13], [15], [19], [20], and

[23]. The analyticity of spectral functions has been proven in [24]: F is is analytic at A, if and

only if f is analytic at λ(A).



3

Examples of operator monotone spectral functions are shown as follow: det A, − det A−1

for A � 0, and Tr A. The next theorem shows the characterization of operator monotonicity of

spectral functions.

Theorem 1.0.5 Let f : Rn → R be symmetric function with corresponding spectral function

F : S n → R. Then, F is operator monotone, if and only if f is non-decreasing in each

argument.

We now introduce another class of orthogonally invariant functions.

Definition 1.0.6 A function F : S n → S n is called a primary matrix function, if there exists a

function f : R→ R such that

F(A) = U
(
Diag ( f (λ1(A)), . . . , f (λn(A)))

)
U>, (1.1)

where U ∈ On is such that A = U(Diag λ(A))U>.

Primary matrix functions are also known as Löwner’s operator functions. One can see that

primary matrix functions are well-defined, since the right-hand side of (1.1) does not depend

on the choice of the diagonalizing matrix U of A.

Several properties, for example, derivatives, operator monotonicity, and operator convex-

ity of primary matrix functions are studied and are characterized in terms of the underlying

function f , see for example [4, Chapter V] and [10, Chapter 6].

The primary matrix function F is a continuously differentiable at A, if and only if f : R→ R

is continuously differentiable at each λi(A) for i ∈ Nn, see [4, Theorem V.3.3]. The differential

of F is expressed by the first divided differences of f , see [4, Theorem V.3.3]. For any x ∈ Rn

in the domain of f , define the n × n divided difference matrix

( f [1](x))i j :=


f ′(xi) if xi = x j,
f (xi) − f (x j)

xi − x j
if xi , x j,

(1.2)



4 Chapter 1. Introduction

for i, j ∈ Nn. Then, we have

∇F(A)[H] = U
(
f [1](λ(A)) ◦ (U>HU)

)
U>

for any A in the domain of F and U ∈ On such that A = U
(
Diag λ(A)

)
U>. Here, ‘◦’ denotes the

Hadamard product between two matrices.

If f is analytic, then (1.1) becomes

F(A) =

∮
Γ

f (z)(zI − A)−1 dz,

where Γ is a Jordan curve in the complex plane enclosing the eigenvalues of A. Thus, the

primary matrix function F is analytic, if and only if f is analytic, see [12, Chapter 7].

Definition 1.0.7 A function f : R → R is called operator monotone of order n, if the corre-

sponding primary matrix function F : S n → S n is operator monotone. A function f : R → R

is called operator monotone, if the corresponding primary matrix function F : S n → S n is

operator monotone for all n.

The following examples are collected in [4, Chapter V]. The functions xr for x ≥ 0 and

r ∈ [0, 1], −1/x for x > 0, and x/(1 + x) for x > 0 are operator monotone. See [7] for more

examples. Operator monotonicity of order n is characterized as follows.

Theorem 1.0.8 Let I be an interval in R. A continuously differentiable function f : I → R

is operator monotone of order n, if and only if f [1](x) given by (1.2) is a positive semidefinite

matrix for every x ∈ Rn with coordinates in I.

Note that in Theorem 1.0.8, the matrix dimension n was implicitly fixed. An operator

monotone function f defined on an interval I can be characterized by a Pick function, see [4,

Theorem V.4.7] and Nevanlinna’s theorem [4, Theorem V.4.11].
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Theorem 1.0.9 A function f : I → R is an operator monotone function, if and only if

f (x) = a + bx +

∫ +∞

−∞

( 1
λ − x

−
λ

λ2 + 1

)
dµ(λ),

for some a ∈ R, b ≥ 0, and µ a positive Borel measure on R with zero mass on I, such that

∫ +∞

−∞

1
λ2 + 1

dµ(λ) < ∞.

In [18, Chapter 6], the connection between operator monotone functions and complete

Bernstein functions is explained. That is, a function f : (0,∞)→ [0,∞) is operator monotone,

if and only if it is a complete Bernstein function.

The class of primary matrix functions is a special case of the following class of functions.

Definition 1.0.10 A function F : S n → S n is called a tensor-valued isotropic function, if

F(UAU>) = UF(A)U>,

for all U ∈ On and all A ∈ S n in the domain of F.

An example of tensor-valued isotropic functions found in [21] is the Piola-Kirchhoff stress

function in an isotropic solid.

We say a function f : Rn → Rn is symmetric, if f (Px) = P f (x) holds for any x ∈ Rn

and any permutation matrix P ∈ Pn. The following representation theorem for tensor-valued

isotropic functions can be found in [21] and [22].

Theorem 1.0.11 A function F : S n → S n is a tensor-valued isotropic function, if and only if

there exists a symmetric function f : Rn → Rn such that

F(A) = U
(
Diag f (λ(A))

)
U>,

where U ∈ On is such that A = U(Diag λ(A))U>.
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Note that if f : Rn → Rn is such that f (x) = (g(x1), . . . , g(xn)) for some g : R → R, then the

tensor-valued isotropic function becomes primary matrix function (1.1).

We now introduce the class of functions that capture the spectral, the primary matrix func-

tions, and tensor-valued isotropic functions.

LetNn,k be the set of all subsets ofNn of size k ∈ Nn with elements ordered non-decreasingly.

Order the elements in Nn,k lexicographically so that we use them to index the coordinates of

vectors in R(n
k) and the entries of matrices in R(n

k)×(n
k). For any x ∈ R(n

k) and any ρ ∈ Nn,k, denote

by xρ the ρ-th element in vector x. For any A ∈ R(n
k)×(n

k) and any ρ, τ ∈ Nn,k, denote by Aρ,τ the

element in the ρ-th row and τ-th column of A.

Then, for any A ∈ Rn×n and any ρ, τ ∈ Nn,k, denote by Aρτ the k× k minor of A with indexes

in the intersection of ρ1-th , . . . , ρk-th rows and τ1-th , . . . , τk-th columns.

For A ∈ Rn×n, the k-th multiplicative compound matrix of A, A(k) ∈ R(n
k)×(n

k), is defined by

(A(k))ρ,τ := det(Aρτ) for any ρ, τ ∈ Nn,k.

Definition 1.0.12 A function F : S n → S (n
k) is called k-isotropic, if

F(UAU>) = U (k)F(A)(U (k))
>

for all U ∈ On and A ∈ S n in the domain of F.

Definition 1.0.13 A function f : Rn → R(n
k) is called symmetric, if the equation

Diag f(Px) = P(k)(Diag f(x)
)
(P(k))

>

holds for all x ∈ Rn and all permutation matrices P ∈ Pn.

The representation theorem of k-isotropic functions in [16] is shown as follows.
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Theorem 1.0.14 A function F : S n → S (n
k) is k-isotropic, if and only if there is a unique

symmetric function f : Rn → R(n
k) such that

F(A) = U (k)(Diag f(λ(A))
)
(U (k))

>
, (1.3)

for all A ∈ S n and U ∈ On such that A = U(Diag λ(A))U>.

For any x ∈ Rn and any ρ ∈ Nn,k, let

xρ := (xρ1 , . . . , xρk) ∈ R
k.

Any symmetric function f : Rk → R defines a symmetric function f : Rn → R(n
k), see [16], by

fρ(x) := f (xρ) for all x ∈ Rn and all ρ ∈ Nn,k.

In this case, (1.3) is called a (generated) k-isotropic function.

A (generated) k-isotropic function becomes a spectral function, if we take k = n. In that

case, we have U (k) = det(U) = ±1, since U is orthogonal and the set Nn,n contains only one

element {1, 2, . . . , n}. Thus,

F(A) = f (λ1(A), . . . , λn(A)).

A (generated) k-isotropic function becomes a primary matrix function, if we take k = 1. In

that case, we have U (1) = U and the set Nn,1 contains n elements {1}, . . . , {n}. Thus,

F(A) = U
(
Diag ( f (λ1(A)), . . . , f (λn(A)))

)
UT .

A k-isotropic function becomes a tensor-valued isotropic function, if we take k = 1. Similar

to the case of primary matrix functions, we have U (1) = U and the set Nn,1 contains n elements

{1}, . . . , {n}. Thus,

F(A) = U
(
Diag f(λ(A))

)
UT .
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Some other examples are shown as follows. If we take f (x1, . . . , xk) := x1 + · · · + xk, a

(generated) k-isotropic function becomes the k-th additive compound matrix, see [11, page

19]. If we take f (x1, . . . , xk) := x1 · · · xk, a (generated) k-isotropic function becomes the k-th

multiplicative compound matrix, see [17].

The main result shown as follows generalizes the results in [3], [20], and [23], when k = n,

and generalizes the result in [5], when k = 1, see [16].

Theorem 1.0.15 Suppose f : Rn → R(n
k) is symmetric and F : S n → S (n

k) is its corresponding

k-isotropic function. Then, F is Cr if and only if f is Cr for any r = 1, . . . ,∞.

The technique in [16] cannot show the analyticity of k-isotropic functions. Thus, a different

technique is used in Chapter 2. We lift a (generated) k-isotropic function to a map from S n to

S nk
. By proving the analyticity of such lifted map, we obtain that a (generated) k-isotropic

function is analytic at A, if and only if the underlying symmetric function f : Rk → R is

analytic at λ(A).

The main goal in Chapter 3 is to characterize operator monotonicity of the (generated) k-

isotropic functions in terms of the underlying symmetric function f : Rk → R. The main result

is shown as follows. Let Ik := I × · · · × I for k times. A symmetric, C1 function f : Ik → R is

operator monotone (of order n), if and only if the function f (·, ẋ) is operator monotone on I (of

order n − k + 1) for all ẋ ∈ Rk−1.

This result explains the apparent difference between Theorem 1.0.8 and Theorem 1.0.5, if

we increase k from 1 to n.

The class of orthogonally invariant functions studied in works [1], [2], [8], [9], and [26]

generalizes primary matrix functions to a class of functions on several operator arguments.

We now give the construction. For any fixed n1, . . . , nk, k-tuples inNn1×· · ·×Nnk are ordered

lexicographically. Any function f : Rk → R defines an operator map FH : S n1 × · · · × S nk →

S n1···nk by

FH(A1, . . . , Ak) := (⊗k
i=1Ui)

(
Diagl f (λl1(A1), . . . , λlk(Ak))

)
(⊗k

i=1Ui)
>

(1.4)
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for l = (l1, . . . , lk) ∈ Nn1 × · · · × Nnk , where Ui ∈ Oni are such that Ai = Ui
(
Diag λ(Ai)

)
Ui
> for

i ∈ Nk. Here, Diagl denotes a diagonal matrix with the values f (λl1(A1), . . . , λlk(Ak)) on the

main diagonal ordered lexicographically. Function (1.4) is well-defined, since the right-hand

side of the function does not depend on the choice of the diagonalizing matrices Ui for i ∈ Nk.

One can see that the map (1.4) becomes a primary matrix function (1.1), when k = 1.

The map defined by (1.4) is orthogonally invariant, that is,

FH(U1A1U1
>, . . . ,UkAkUk

>) = (⊗k
i=1Ui)FH(A1, . . . , Ak)(⊗k

i=1Ui)
>

(1.5)

for any Ui ∈ Oni , i ∈ Nk.

We want a representation theorem of functions FH : S n1 × · · · × S nk → S n1···nk that satisfy

(1.5) in the same pattern as we have for Theorems 1.0.11 and 1.0.14. In Chapter 4, we work

under a particular case, when n1 = · · · = nk =: n and A1 = · · · = Ak =: A ∈ S n to formulate a

representation theorem for maps F : S n → S nk , called k-tensor isotropic functions, satisfying

F(UAU>) = (⊗k
i=1U)F(A)(⊗k

i=1U)
>

for all U ∈ On and all A in the domain of F. We solve the problem fully in the case of k = 2.

In Chapter 5, we study the connection between the class of (generated) k-isotropic func-

tions and (1.4), when the underlying function is symmetric. It allows us to characterize the

differentiability of (1.4) by applying Theorem 1.0.15. Characterization of the analyticity of FH

in terms of f is obtained, where f is not necessarily symmetric.
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Chapter 2

A unified approach to operator monotone

functions

2.1 Introduction

2.1.1 Connecting operator monotone and spectral functions

Denote by Rn×n the space of all n × n real matrices. Denote by S n ⊂ Rn×n the Euclidean

space of symmetric matrices with 〈A, B〉 := Tr (AB) and Frobenius norm ||A|| :=
√

Tr (AA).

Let On be the group of n × n orthogonal matrices. Denote by Rn
≥ the convex cone in Rn of

all vectors with non-increasing coordinates. For any x, y ∈ Rn, we write that x ≥ y when

xi ≥ yi for all i = 1, . . . , n. For any A ∈ S n, let λ(A) ∈ Rn
≥ be the vector of eigenvalues of A,

ordered non-increasingly: that is, λi(A) is the i-th largest eigenvalue. For any vector x ∈ Rn, let

Diag x ∈ S n be the matrix with x on the main diagonal and zeros elsewhere. For any A ∈ Rn×n,

let diag A ∈ Rn be the diagonal of A.

For A ∈ S n, we write A � 0 when A is positive semidefinite matrix. The set of all positive

semidefinite matrices in S n is a closed convex cone, denoted by S n
+. This cone defines a partial

order on S n as follows. For any A, B ∈ S n, we write A � B, whenever A − B � 0. The focus of

this work is the monotonicity of functions with respect to this partial order.

13



14 Chapter 2. A unified approach to operator monotone functions

Definition 2.1.1 A map F : S n → S m is called operator monotone, if

A � B implies F(A) � F(B)

for any A and B in the domain of F.

A characterization of operator monotonicity is easy to obtain as we now recall.

Proposition 2.1.2 Let F : S n → S m be a C1 map defined on a convex domain with non-empty

interior. Then, F is operator monotone, if and only if ∇F(A)[H] � 0 for all H ∈ S n
+ and all A

in the domain of F.

Proof Suppose that F is operator monotone. Let A ∈ S n be in the interior of the domain of F

and let H ∈ S n
+. Then, we have F(A + tH) − F(A) � 0 for all small enough positive t. This

implies that ∇F(A)[H] is positive semidefinite. (Taking limit, the conclusion holds for all A in

the domain of F.)

For the other direction, suppose that ∇F(A)[H] � 0 for all H ∈ S n
+ and all A in the domain

of F. For any A, B ∈ S n with B � A, let A(t) := (1 − t)A + tB for t ∈ [0, 1]. Then, one can see

that

F(B) − F(A) =

∫ 1

0
∇F(A(t))[A′(t)] dt � 0,

since A′(t) = B − A � 0 for all t ∈ [0, 1].

Often, a function F on a domain of S n, is defined in terms of an underlying simpler function

f . In that case, of main interest is to find what properties of f characterize operator monotonic-

ity of F. Classical examples are the primary matrix functions and the spectral functions that

we now describe.

Definition 2.1.3 A real-valued function F : S n → R is called a spectral function, if

F(UAU>) = F(A)
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holds for all U ∈ On and all A in the domain of F.

Spectral functions are also known as scalar-valued isotropic functions. They have nu-

merous applications in the fields of optimization, engineering, and material science, see for

example [13], [23], and [27].

The following representation theorem of spectral functions is easy to deduce, see [5] or

[24]. A function f : Rn → R is symmetric, if f (Px) = f (x) holds for any n × n permutation

matrix P and any x ∈ Rn in the domain of f .

Theorem 2.1.4 A real-valued function F : S n → R is a spectral function, if and only if there

exists a unique symmetric function f : Rn → R such that F(A) = ( f ◦ λ)(A) for all A in the

domain of F.

The spectral functions are in one-to-one correspondence with the symmetric functions. Ef-

forts have been focused on identifying the properties of the spectral functions that are inherited

from the corresponding symmetric functions. For example, F is convex, if and only if the cor-

responding symmetric function f is, see [3]. Even though the eigenvalue map λ : S n → Rn is

not differentiable everywhere, F is differentiable at A, if and only if f is differentiable at λ(A),

see [12], [14], [21], [22], and [25]. Further, in [26], the authors show that F is analytic at A if

and only if f is analytic at λ(A). The list of such transferable properties is quite long, but not

every property of f is inherited directly by F, for example Gâteaux differentiability, see [12,

page 587].

Examples of operator monotone spectral functions include det A; − det A−1 for A � 0; and

Tr A. It is easy to see when a spectral function is operator monotone as the next result shows.

Its proof is easy and well-known, we include it for completeness.

Theorem 2.1.5 Let f : Rn → R be symmetric function with corresponding spectral function

F : S n → R. Then, F is operator monotone, if and only if f is non-decreasing in each

argument.
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Proof Suppose that F is operator monotone. For any x, y ∈ Rn with x ≥ y, we have f (x) =

F(Diag x) ≥ F(Diag y) = f (y).

For the other direction, suppose that the symmetric function f is non-decreasing in each

argument. For any A, B ∈ S n with A � B, by Weyl’s monotonicity theorem, see [2, Corollary

III.2.3], we have λ(A) ≥ λ(B). In that case, F(A) = f (λ(A)) ≥ f (λ(B)) = F(B).

We proceed with describing the primary matrix functions.

Definition 2.1.6 A function F : S n → S n is called a primary matrix function, if there exists a

function f : R→ R such that

F(A) = U
(
Diag ( f (λ1(A)), . . . , f (λn(A)))

)
U>,

where U ∈ On is such that A = U
(
Diag λ(A)

)
U>.

Primary matrix functions are also known as Löwner’s operator functions. It is easy to see

that they are well-defined, meaning that the value of F(A) does not depend on the choice of the

orthogonal matrix U diagonalizing A.

Characterizing when a primary matrix function F is operator monotone in terms of its cor-

responding function f has been the topic of extensive research in the past. One can specialize

Proposition 2.1.2 and for that we need a description of the differential of F. It is known that

F is a a continuously differentiable at A, if and only if f : R → R is such at each λi(A) for

i = 1, . . . , n, see [2, Theorem V.3.3]. The differential of F is described in terms of the first

divided differences of f as follows. For any x ∈ Rn, such that all x1, . . . , xn are in the domain

of f , define the n × n divided difference matrix

( f [1](x))i j :=


f ′(xi) if xi = x j,
f (xi) − f (x j)

xi − x j
if xi , x j,

(2.1)
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for i, j = 1, . . . , n. Then, see for example [2, Theorem V.3.3], we have

∇F(A)[H] = U
(
f [1](λ(A)) ◦ (U>HU)

)
U>

for any A in the domain of F and U ∈ On such that A = U
(
Diag λ(A)

)
U>. Here, ‘◦’ denotes the

Hadamard product between two matrices.

Definition 2.1.7 A function f : R → R is called operator monotone of order n, if the corre-

sponding primary matrix function F : S n → S n is operator monotone. A function f : R → R

is called operator monotone, if the corresponding primary matrix function F : S n → S n is

operator monotone for all n.

For example, xr, for x ≥ 0 is operator monotone for r ∈ [0, 1]; as well as −1/x for x > 0

and x/(1 + x) for x > 0 see for example [2, Chapter V]. See [6], among other places, for more

examples. Operator monotone functions of order n are characterized as follows.

Theorem 2.1.8 Let I be an interval in R. A continuously differentiable function f : I → R is

operator monotone of order n, if and only if f [1](x) is a positive semidefinite matrix for every

x ∈ Rn with coordinates in I.

Operator monotone function f defined on an interval I can be characterized by Pick func-

tions that take real values on I, see [2, Theorem V.4.7] and Nevanlinna’s theorem [2, Theorem

V.4.11].

Theorem 2.1.9 Let I be an interval in R. A function f : I → R is an operator monotone

function, if and only if

f (x) = a + bx +

∫ +∞

−∞

( 1
λ − x

−
λ

λ2 + 1

)
dµ(λ), (2.2)

for some a ∈ R, b ≥ 0, and µ a positive Borel measure on R with zero mass on I, such that

∫ +∞

−∞

1
λ2 + 1

dµ(λ) < ∞. (2.3)
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There is a connection between operator monotone functions and complete Bernstein func-

tions, as explained in [20, Chapter 6]. The class of complete Bernstein functions is equal to

the class of non-negative Pick functions on (0,∞). Hence, f : (0,∞) → [0,∞) is operator

monotone, if and only if it is a complete Bernstein function.

We now introduce the class of functions that unite the spectral and the primary matrix

functions. They will explain the apparent different nature of Theorems 2.1.5 and 2.1.8. That is

one of the main goals of this work.

Let f : Rk → R be symmetric and f : Rn → R(n
k) be defined by

fρ(x) := f (xρ1 , . . . , xρk)

for all x ∈ Rn and all ρ := (ρ1, . . . , ρk) that satisfy 1 ≤ ρ1 < · · · < ρk ≤ n. For any n × n matrix

U, denote by U (k) its k-th multiplicative compound matrix, where 1 ≤ k ≤ n. Section 2.2 gives

the precise definition and properties, but at the moment recall that U (k) is a
(

n
k

)
×

(
n
k

)
matrix that

is orthogonal, if U is.

Definition 2.1.10 A function F : S n → S (n
k) is called (generated) k-isotropic, if

F(A) := U (k)(Diag f(λ(A))
)
(U (k))

>
, (2.4)

where U ∈ On is such that A = U
(
Diag λ(A)

)
U>.

It can be shown that the right-hand side of (2.4) does not depend on the choice of the

diagonalizing matrix U, see [1] or [17]. The (generated) k-isotropic functions form a “bridge”

between the spectral and the primary matrix functions. Indeed, when k = n, one has U (n) =

det(U) = ±1 and Nn,n := {{1, . . . , n}}, thus (2.4) becomes a spectral function. When k = 1, one

has U (1) = U and Nn,1 := {{1}, . . . , {n}}, thus (2.4) becomes a primary matrix function.

A natural extension of Definition 2.1.7 is the following.
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Definition 2.1.11 A symmetric function f : Rk → R is called operator monotone of order n,

if the corresponding (generated) k-isotropic function F : S n → S (n
k) is operator monotone. A

symmetric function f : Rk → R is called operator monotone, if the corresponding (generated)

k-isotropic function F : S n → S (n
k) is operator monotone for every n ≥ k.

A main goal of this work is to characterize operator monotonicity of the (generated) k-

isotropic functions in terms of the corresponding symmetric function f : Rk → R. This is

achieved in Corollary 2.3.5. The comments after it describe how Theorem 2.1.8 connects to

Theorem 2.1.5 as k increases from 1 to n. Another connection between these theorems is the

second main result in this work. Its proof is at the end of Section 2.3.

Theorem 2.1.12 Let I be an interval in R and Ik := I × · · · × I, k times.

A symmetric, C1 function f : Ik → R is operator monotone (of order n), if and only if the

function f (·, ẋ) is operator monotone on I (of order n − k + 1) for all ẋ ∈ Rk−1.

The (generated) k-isotropic functions are maps on a single matrix argument. But since one

can vary n freely, as long as n ≥ k, one can obtain a function on several symmetric matrix

arguments, simply by

F (A1, . . . , Am) := F(Diag (A1, . . . , Am)),

where Ai ∈ S ni for all i = 1, . . . ,m with n = n1 + · · · + nm.

2.2 Main definition and notation

Denote by

Nn := {1, . . . , n}

the set of the first n natural numbers and denote byNn,k the set of all subsets ofNn of size k with

elements ordered increasingly, where k = 1, . . . , n. The elements of the set Nn,k are ordered
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lexicographically. For any x ∈ R(n
k), xρ denotes the ρ-th element in x, where ρ ∈ Nn,k. For any

A ∈ R(n
k)×(n

k), Aρ,τ denotes the element in the ρ-th row and τ-th column, where ρ, τ ∈ Nn,k. For

any x ∈ Rn and any ρ ∈ Nn,k, define xρ := (xρ1 , . . . , xρk) ∈ R
k. Finally, for any A ∈ Rn×n and

any ρ, τ ∈ Nn,k, denote by Aρτ the k × k minor of A with elements at the intersections of rows

ρ1, . . . , ρk and columns τ1, . . . , τk.

For any A ∈ Rn×n, the k-th multiplicative compound matrix of A, denoted A(k) ∈ R(n
k)×(n

k), is

defined by

(
A(k))

ρ,τ := det(Aρτ), for any ρ, τ ∈ Nn,k.

The following properties of the k-th multiplicative compound are well-known, see for ex-

ample [4]:

A(k)B(k) = (AB)(k) and (A(k))
>

= (A>)(k),

for any matrices A, B ∈ Rn×n, and if A is invertible,

(A(k))−1 = (A−1)(k).

Denote by {e1, . . . , en} the standard orthonormal basis in Rn and by {eρ : ρ ∈ Nn,k} the stan-

dard orthonormal basis in R(n
k). For any permutation σ : Nn → Nn, there exists a permutation

matrix P such that

Px = (xσ(1), . . . , xσ(n))>

for all x ∈ Rn or equivalently Peσ(i) = ei for all i = 1, . . . , n. Every permutation σ : Nn → Nn

defines a permutation σ(k) on Nn,k by

σ(k)(ρ) := the increasing rearrangement of {σ(ρ1), . . . , σ(ρk)} (2.5)
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for all ρ ∈ Nn,k. The corresponding permutation matrix P of σ(k) is defined by

Peσ
k(ρ) := eρ for all ρ ∈ Nn,k.

Let εσ,ρ be +1, if the permutation ordering (σ(ρ1), . . . , σ(ρk)) increasingly is even and be

−1, if it is odd. The relationship between P(k) and P can be shown to be:

P(k)eσ
(k)(ρ) = εσ,ρPeσ

(k)(ρ).

Any symmetric function f : Rk → R defines a function f : Rn → R(n
k) by

fρ(x) := f (xρ) for all x ∈ Rn and all ρ ∈ Nn,k. (2.6)

Such f is symmetric, in the sense that

f(Px) = Pf(x)

for all x ∈ Rn and all n × n permutation matrices P, see [1].

Definition 2.2.1 A function F : S n → S (n
k) is called (generated) k-isotropic, if

F(A) := U (k)(Diag f(λ(A))
)
(U (k))

>
, (2.7)

where U ∈ On is such that A = U
(
Diag λ(A)

)
U>; and we say F is generated by f .

For example, when k = n, one has U (n) = det(U) = ±1 and Nn,n := {{1, . . . , n}}, thus (2.7)

becomes a spectral function. When k = 1, one has U (1) = U and Nn,1 := {{1}, . . . , {n}}, thus

(2.7) becomes a primary matrix function.

In addition, if f : Rk → R taken to be f (x1, . . . , xk) := x1 · · · xk, then (2.7) turns into the

k-th multiplicative compound matrix of A ∈ S n, that is F(A) = A(k).
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And if f : Rk → R is taken to be f (x1, . . . , xk) := x1 + · · ·+ xk, then (2.7) turns into the k-th

additive compound matrix of A ∈ S n, denoted henceforth by ∆k(A).

2.2.1 A note about domains

Denote by dom f ⊆ Rk the domain of the symmetric function f : Rk → R. Naturally, dom f is

a symmetric set: Px ∈ dom f for all x ∈ dom f and all k × k permutation matrices P. Define

the set

domn f := {x ∈ Rn : xρ ∈ dom f for all ρ ∈ Nn,k}.

It is easy to see that domn f is a symmetric set. Indeed, choose any n× n permutation matrix P,

with corresponding permutation σ : Nn → Nn. Then, for any x ∈ domn f and any ρ ∈ Nn,k, one

sees by (2.5) that vector (Px)ρ = (xσ(ρ1), . . . , xσ(ρk)) is a permutation of xσ(k)(ρ). Since xσ(k)(ρ) ∈

dom f and the latter set is symmetric, we get (Px)ρ ∈ dom f . That is, Px ∈ domn f .

To avoid pathological situations, we

assume throughout that the set dom f ⊆ Rk is convex.

It is easy to see that this implies that domn f ⊆ Rn is convex.

Then, the domain of the k-isotropic function F : S n → S (n
k) generated by f : Rk → R is

dom F := {A ∈ S n : λ(A) ∈ domn f }

= {A ∈ S n : λρ(A) ∈ dom f for all ρ ∈ Nn,k}.

Since domn f is convex and symmetric, Theorem 7 in [15], asserts that dom F is a convex set

as well.
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2.2.2 The differential of a (generated) k-isotropic function

A well-known connection between the k-th multiplicative compound and the k-th additive com-

pound matrices is

∆k(A) =
d
dt

(I + tA)(k)
∣∣∣∣
t=0
, (2.8)

see for example [18].

We now state the main result from [1], which is also re-derived in a more general context

in [17].

Theorem 2.2.2 Let f : Rk → R be a symmetric function with corresponding (generated) k-

isotropic function F : S n → S (n
k). Then, F is C1 at A, if and only if f is C1 at λρ(A) for all

ρ ∈ Nn,k. In that case, the differential of F, at Diag x in the direction H ∈ S n, is given by

(
∇F(Diag x)[H]

)
ρ,τ =



k∑
i=1

∂ f
∂xρi

(xρ)Hρiρi if ρ = τ,

(−1)i+ j f (xρ) − f (xτ)
xρi − xτi

Hρiτ j if |ρ ∩ τ| = k − 1 and xρi , xτ j ,

(−1)i+ j ∂ f
∂xρi

(xρ)Hρiτ j if |ρ ∩ τ| = k − 1 and xρi = xτ j ,

0 if |ρ ∩ τ| < k − 1,

(2.9)

where in the second and the third cases, the indexes i, j ∈ Nk are such that ρi ∈ ρ \ τ and

τ j ∈ τ \ ρ. (Here, |ρ ∩ τ| denotes the number of common elements in ρ and τ.) For arbitrary

A ∈ S n, we have

∇F(A)[H] = U (k)(∇F(Diag λ(A))[U>HU]
)
(U (k))

>
(2.10)

for all U ∈ On such that A = U(Diag λ(A))U>.

Using formula (2.9), one can obtain an explicit expressions for the entries of the k-th addi-
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tive compound matrix (2.8). Indeed,

∆k(H) = lim
t→0

(I + tH)(k) − I(k)

t
= ∇F(I)[H],

where F is generated by f (x1, . . . , xk) := x1 · · · xk. Thus, we have

(∆k(H))ρ,τ =



k∑
i=1

Hρiρi if ρ = τ,

(−1)i+ jHρiτ j if |ρ ∩ τ| = k − 1 and ρi ∈ ρ\τ, τ j ∈ τ\ρ,

0 otherwise.

(2.11)

One may also refer to [1, Corollary 2.1] for a direct derivation of formula (2.11).

2.3 Characterization of operator monotone k-isotropic func-

tions

For any ρ̇ ∈ Nn,k−1 let

ρ̇c := Nn\ρ̇

be the complement of ρ̇ in Nn. Note that ρ̇c ∈ Nn,n−k+1.

While the j-th element of ρ̇ ∈ Nn,k−1 is denoted by ρ̇ j, to keep the notation lighter, the j-th

element of ρ̇c is denoted by ρ̇ j, that is

ρ̇ j := (ρ̇c) j.

For any s ∈ ρ̇c, let α(s) be the position of s in ρ̇c. That is,

α : ρ̇c → Nn−k+1 and s = ρ̇α(s). (2.12)
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We say that ρ ∈ Nn,k is an extension of ρ̇ ∈ Nn,k−1 by s, if s ∈ ρ̇c and ρ = ρ̇ ∪ {s}. Such

extensions are denoted by ρ̇ + s.

For any s ∈ ρ̇c, let β(s) be the position of s in ρ̇ + s. That is,

β : ρ̇c → Nk and s = (ρ̇ + s)β(s). (2.13)

Finally, for any i ∈ Nn−k+1, let γ(i) is the position of ρ̇i in the extension ρ̇ + ρ̇i. That is,

γ : Nn−k+1 → Nk and ρ̇i = (ρ̇ + ρ̇i)γ(i). (2.14)

Replacing s by ρ̇i in (2.13), we see that γ(i) = β(ρ̇i). Conversely, replacing i by α(s) in (2.14),

and using (2.12), one obtains

γ(α(s)) = β(ρ̇α(s)) = β(s)

for any s ∈ ρ̇c. That is, the following diagram commutes:

ρ̇c α
> Nn−k+1

Nk

γ

∨

β

>

The maps α, β, and γ depend on ρ̇ but we suppress that for the sake of simplicity.

For any fixed ρ̇ ∈ Nn,k−1, we introduce two linear maps:

lρ̇ : S n−k+1 → S n and Lρ̇ : S n−k+1 → S (n
k).

For any A ∈ S n−k+1 let

(
lρ̇(A)

)
i j

:=


Aα(i)α( j) if i, j ∈ ρ̇c,

0 otherwise.

In other words, A is the principal minor of lρ̇(A) at the intersection of the rows and columns
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with indexes in ρ̇c. The rest of the entries of lρ̇(A) are zero.

For any A ∈ S n−k+1 let

(Lρ̇(A))ρ,τ :=


Ai j if ρ = ρ̇ + ρ̇i and τ = ρ̇ + ρ̇ j,

0 otherwise.

In other words, A is the principal minor of Lρ̇(A) at the intersection of rows and columns with

indexes in {ρ̇ + ρ̇1, . . . , ρ̇ + ρ̇n−k+1}. If ρ or τ does not contain ρ̇ as a subset, then (Lρ̇(A))ρ,τ = 0.

Let En−k+1 ∈ S n−k+1 be the all-one matrix and let

Eρ̇ := lρ̇(En−k+1).

Trivially, we have

(
Eρ̇)

ρ̇cρ̇c = En−k+1. (2.15)

It is easy to see that both En−k+1 and Eρ̇ are positive semidefinite.

Note that when k = 1, we have one choice for ρ̇, namely ρ̇ = ∅ and ρ̇c = Nn. Then, α(s) = s

and β(s) ≡ 1 for all s ∈ Nn. In addition, lρ̇(A) = Lρ̇(A) = A for all A ∈ S n−k+1 and Eρ̇ = En.

Theorem 2.3.1 Let A ∈ S (n
k) with diag A = 0. Let J be an

(
n
k

)
×n matrix with Jρ,s = 0, whenever

s < ρ. Define a linear map T : S n → S (n
k) by

T(H) := A ◦ ∆k(H) + Diag (J(diag H)). (2.16)

Then, T(H) � 0 for all H � 0, if and only if T(Eρ̇) � 0 for all ρ̇ ∈ Nn,k−1.

Proof First, we decompose T(H) as a sum of
(

n
k−1

)
matrices of size

(
n
k

)
×
(

n
k

)
. The decomposition

is such that no two matrices in the sum have overlapping, non-zero, off-diagonal entries.
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For any ρ̇ ∈ Nn,k−1, define Tρ̇ ∈ S n−k+1 by

(
Tρ̇

)
i j

:=


Jρ̇+ρ̇i,ρ̇i if i = j,

(−1)γ(i)+γ( j)Aρ̇+ρ̇i,ρ̇+ρ̇ j if i , j,
(2.17)

for all i, j ∈ Nn−k+1. Then, we have

(Tρ̇ ◦ Hρ̇cρ̇c)i j = (Tρ̇)i j(Hρ̇cρ̇c)i j =


Jρ̇+ρ̇i,ρ̇i Hρ̇iρ̇i if i = j,

(−1)γ(i)+γ( j)Aρ̇+ρ̇i,ρ̇+ρ̇ j Hρ̇iρ̇ j if i , j,

for all i, j ∈ Nn−k+1. Thus,

(Lρ̇(Tρ̇ ◦ Hρ̇cρ̇c))ρ,τ =


(Tρ̇ ◦ Hρ̇cρ̇c)i j if ρ = ρ̇ + ρ̇i and τ = ρ̇ + ρ̇ j,

0 otherwise,

=


Jρ,ρ̇i Hρ̇iρ̇i if ρ = ρ̇ + ρ̇i and ρ = τ,

(−1)γ(i)+γ( j)Aρ,τHρ̇iρ̇ j if ρ = ρ̇ + ρ̇i, τ = ρ̇ + ρ̇ j and i , j,

0 otherwise,

=


Jρ,ρi Hρiρi if ρ̇ = ρ \ {ρi} and ρ = τ,

(−1)i+ jAρ,τHρiτ j if ρ̇ = ρ \ {ρi}, ρ̇ = τ \ {τ j} and |ρ ∩ τ| = k − 1,

0 otherwise.

After these preparations, we claim that

T(H) =
∑

ρ̇∈Nn,k−1

Lρ̇(Tρ̇ ◦ Hρ̇cρ̇c). (2.18)

To show (2.18), we are going to compare the diagonal and off-diagonal elements on both sides.

Fix ρ, τ ∈ Nn,k.

If |ρ ∩ τ| ≤ k − 2, then, using (2.11), it can be seen that the elements in position (ρ, τ) on
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both sides are all zero.

If |ρ ∩ τ| = k − 1, let ρ̇ := ρ ∩ τ. Then, ρ is an extension of ρ̇ by ρi; and τ is an extension of

ρ̇ by τ j for some i and j in Nk. Then, using (2.11), we obtain

(T(H))ρ,τ = (A ◦ ∆k(H))ρ,τ = (−1)i+ jAρ,τHρiτ j = (Lρ̇(Tρ̇ ◦ Hρ̇cρ̇c))ρ,τ.

For any other ζ̇ ∈ Nn,k−1, with ζ̇ , ρ̇, we have that ζ̇ is not a subset of both ρ and τ. This implies

(Lζ̇(Tζ̇ ◦ Hζ̇cζ̇c))ρ,τ = 0.

If ρ = τ, then one obtains

(Lρ̇(Tρ̇ ◦ Hρ̇cρ̇c))ρ,ρ =


Jρ,ρi Hρiρi if ρ̇ = ρ\{ρi} for some i ∈ Nk,

0 otherwise.

Thus,

(
T(H)

)
ρ,ρ =

(
Diag (J(diag H))

)
ρ,ρ = (J(diag H))ρ =

k∑
i=1

Jρ,ρi Hρiρi =

( ∑
ρ̇∈Nn,k−1

Lρ̇(Tρ̇ ◦ Hρ̇cρ̇c)
)
ρ,ρ
.

The last equality holds, since if ρ is not an extension of ρ̇ by ρi for some i ∈ Nk, then the

summand corresponding to ρ̇ is zero.

Next, we claim that Tρ̇ is a principle minor of the matrix T(Eρ̇). Indeed, if ρ is an extension

of ρ̇ by ρ̇i and τ is an extension of ρ̇ by ρ̇ j, with i , j, then ρ , τ and we have

(
T(Eρ̇)

)
ρ,τ = (A ◦ ∆k(Eρ̇))ρ,τ = (−1)γ(i)+γ( j)Aρ,τ(Eρ̇)ρ̇iρ̇ j = (−1)γ(i)+γ( j)Aρ,τ = (Tρ̇)i j.

For the second equality, we used (2.11). For the third equality, we used (2.15) and the fact that

ρ̇i, ρ̇ j ∈ ρ̇c. Finally, the last equality uses (2.17).

If ρ is an extension of ρ̇ by ρ̇i, then one has

(T(Eρ̇))ρ,ρ =
(
Diag (J(diag Eρ̇))

)
ρ,ρ = (J(diag Eρ̇))ρ =

n∑
s=1

Jρ,s(Eρ̇)ss = Jρ,ρ̇i = (Tρ̇)ii,
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where the fourth equality holds because Jρ,s = 0, if s < ρ and (Eρ̇)ss = 0, if s < ρ̇c. Thus, the

only (possibly) non-zero term corresponds to s = ρ̇i.

We are now in a position to prove the theorem. One direction is easy: If T(H) � 0 for all

H � 0, then T(Eρ̇) � 0 for all ρ̇ ∈ Nn,k−1, since Eρ̇ � 0.

For the other direction, suppose that T(Eρ̇) � 0 for all ρ̇ ∈ Nn,k−1. Then, since Tρ̇ is a

principle minor of T(Eρ̇), we obtain Tρ̇ � 0 for any ρ̇ ∈ Nn,k−1. Fix H � 0. Then, Hρ̇cρ̇c �

0, being a principle minor of H, for any ρ̇ ∈ Nn,k−1. Theorem 5.2.1 in [8] shows that the

Hadamard product of two positive semidefinite matrices is positive semidefinite, hence we

have Tρ̇ ◦ Hρ̇cρ̇c � 0. The latter implies that Lρ̇(Tρ̇ ◦ Hρ̇cρ̇c) � 0, by the definition of Lρ̇, and

T(H) � 0 follows from (2.18).

The proof of Theorem 2.3.1 has several revealing features that are going to be important

for us. We separate them in the next corollary.

Corollary 2.3.2 Let A, J, and T be as in Theorem 2.3.1. For any ρ̇ ∈ Nn,k−1, define Tρ̇ ∈ S n−k+1

by

(
Tρ̇

)
i j

:=


Jρ̇+ρ̇i,ρ̇i if i = j,

(−1)γ(i)+γ( j)Aρ̇+ρ̇i,ρ̇+ρ̇ j if i , j,
(2.19)

for all i, j ∈ Nn−k+1. Then,

T(H) =
∑

ρ̇∈Nn,k−1

Lρ̇(Tρ̇ ◦ Hρ̇cρ̇c)

and T(H) � 0 for all H � 0, if and only if Tρ̇ � 0 for all ρ̇ ∈ Nn,k−1.

Comparing formulas (2.9) and (2.11), one arrives at the following representation of first

differential of (generated) k-isotropic functions in the same pattern as (2.16).
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Proposition 2.3.3 Let f : Rk → R be a symmetric, C1 function with corresponding (generated)

k-isotropic function F : S n → S (n
k). Let J(x) be the

(
n
k

)
× n matrix defined by

J(x)ρ,s :=


∂ f
∂xs

(xρ) if s ∈ ρ,

0 otherwise.

If x ∈ Rn has distinct coordinates, then the differential of F can be written as

∇F(Diag x)[H] = A(x) ◦ ∆k(H) + Diag
(
J(x)(diag H)

)
, (2.20)

where

A(x)ρ,τ :=


f (xρ) − f (xτ)

xρi − xτ j

if |ρ ∩ τ| = k − 1 and ρi ∈ ρ\τ, τ j ∈ τ\ρ,

0 otherwise.

Note that matrix J(x) is just the Jacobian of f(x), defined by (2.6).

For each ρ̇ ∈ Nn,k−1 and each x ∈ Rn with distinct coordinates, define the divided difference

matrix Tρ̇(x) ∈ S n−k+1 by

Tρ̇(x)i j :=


∂ f
∂xρ̇i

(xρ̇+ρ̇i) if i = j,

(−1)γ(i)+γ( j) f (xρ̇+ρ̇i) − f (xρ̇+ρ̇ j)
xρ̇i − xρ̇ j

if i , j,
(2.21)

for all i, j ∈ Nn−k+1. Note that Tρ̇(x) is exactly (2.19) after replacing J by J(x) and A by A(x).

Thus, Corollary 2.3.2 and (2.20) imply

∇F(Diag x)[H] =
∑

ρ̇∈Nn,k−1

Lρ̇
(
Tρ̇(x) ◦ Hρ̇cρ̇c

)
, (2.22)

whenever x ∈ Rn has distinct coordinates.

The next lemma shows that any two divided difference matrices Tρ̇(x) and Tτ̇(x), where
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ρ̇, τ̇ ∈ Nn,k−1, are related to each other.

Lemma 2.3.4 If Tτ̇(x) � 0 for some τ̇ ∈ Nn,k−1 and all x ∈ domn f with distinct coordinates,

then Tρ̇(x) � 0 for all ρ̇ ∈ Nn,k−1 and all x ∈ domn f with distinct coordinates.

Proof Let τ̇ := {n − k + 2, . . . , n} ∈ Nn,k−1. Note that the function γ, defined by (2.14), corre-

sponding to τ̇ is such that γ(s) = 1 for all s ∈ τ̇c. Then, the divided difference matrix Tτ̇(x) is

given by

(
Tτ̇(x)

)
i j =


∂ f
∂xτ̇i

(xτ̇+τ̇i) if i = j,

f (xτ̇+τ̇i) − f (xτ̇+τ̇ j)
xτ̇i − xτ̇ j

if i , j,
(2.23)

for i, j ∈ Nn−k+1. Fix another index ρ̇ ∈ Nn,k−1. We are going to relate Tρ̇(x) to Tτ̇(x) Let

σ : Nn → Nn be the permutation that sends ρ̇i to τ̇i for i ∈ Nk−1 and sends ρ̇ j to τ̇ j for

j ∈ Nn−k+1. The corresponding permutation matrix P is

(Px)ρ̇i = xτ̇i for i ∈ Nk−1 and

(Px)ρ̇i = xτ̇i for i ∈ Nn−k+1.

Since f is a symmetric function, one can see

f ((Px)ρ̇+ρ̇i) = f ((Px)ρ̇, (Px)ρ̇i) = f (xτ̇, xτ̇i) = f (xτ̇+τ̇i) and

∂ f
∂(Px)ρ̇i

((Px)ρ̇+ρ̇i) =
∂ f
∂xτ̇i

(xτ̇+τ̇i).

Using (2.21), for i, j ∈ Nn−k+1 one obtains

(
Tρ̇(Px)

)
i j =


∂ f

∂(Px)ρ̇i
((Px)ρ̇+ρ̇i) if i = j,

(−1)γ(i)+γ( j) f ((Px)ρ̇+ρ̇i) − f ((Px)ρ̇+ρ̇ j)
(Px)ρ̇i − (Px)ρ̇ j

if i , j,
(2.24)
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=


∂ f
∂xτ̇i

(xτ̇+τ̇i) if i = j,

(−1)γ(i)+γ( j) f (xτ̇+τ̇i) − f (xτ̇+τ̇ j)
xτ̇i − xτ̇ j

if i , j,

where the function γ is the one associated with ρ̇. Define the matrix Aρ̇ ∈ S n−k+1 by

(Aρ̇)i j := (−1)γ(i)+γ( j).

Note that Aρ̇ is positive semidefinite, since

(Aρ̇)i j = (−1)γ(i)+γ( j) = (−1)γ(1)+γ(i)(−1)γ(1)+γ( j) = (Aρ̇)i1(Aρ̇)1 j,

that is

Aρ̇ = (Aρ̇)∗1(Aρ̇)>∗1 � 0,

where (Aρ̇)∗1 denotes the first column of Aρ̇. Comparing (2.23) to (2.24), we see that

Tρ̇(Px) = Tτ̇(x) ◦ Aρ̇,

for all x ∈ domn f with distinct coordinates. Thus, if Tτ̇(x) � 0, then by [8, Theorem 5.2.1], we

conclude Tρ̇(Px) � 0. The result follows from here.

Combining all of the results in this section, namely: Theorem 2.3.1, Proposition 2.3.3,

Corollary 2.3.2, and Lemma 2.3.4, we obtain a characterization of the operator monotonicity

of the (generated) k-isotropic function F in terms of its corresponding symmetric function f .

Recall also Definition 2.1.11.

Corollary 2.3.5 Let f : Rk → R be a symmetric, continuously differentiable function. Then, f

is operator monotone, if and only if Tρ̇(x) � 0, for some ρ̇ ∈ Nn,k−1 and every x ∈ domn f .

Proof By Proposition 2.1.2, F is operator monotone, if and only if ∇F(A)[H] � 0 for all
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H � 0 and all A in the domain of F. Using (2.10), one can see that this is equivalent to

∇F(Diag λ(A))[H] � 0 for all H � 0 and all A in the domain of F. (Since F is continuously

differentiable, it suffices to consider matrices A in the domain of F with distinct eigenvalues.)

Using (2.21), (2.22), and Corollary 2.3.2, the latter is equivalent to Tρ̇(λ(A)) � 0, for all ρ̇ ∈

Nn,k−1 and every A ∈ dom F with distinct eigenvalues. Finally, by Lemma 2.3.4, the latter is

equivalent to Tτ̇(λ(A)) � 0, for some τ̇ ∈ Nn,k−1 and every A ∈ dom F with distinct eigenvalues.

Note that Corollary 2.3.5 is a direct extension of Theorem 2.1.5. Indeed, when k = n,

the (generated) k-isotropic function becomes a spectral function. The possible values of ρ̇ are

{1, . . . , i − 1, i + 1, . . . , n} for i = 1, . . . , n. If ρ̇ = {1, . . . , i − 1, i + 1, . . . , n}, then Tρ̇(x) is a 1 × 1

matrix and (2.21) turns into

Tρ̇(x) =
∂ f
∂xi

(x).

Thus, the spectral function F is operator monotone, if and only if ∂ f (x)/∂xi ≥ 0 for all i =

1, . . . , n.

Note as well that Corollary 2.3.5 is a direct extension of Theorem 2.1.8. Indeed, when

k = 1, the (generated) k-isotropic function becomes a primary matrix function. We have ρ̇ = ∅

(the only choice for ρ̇) and the divided difference matrix Tρ̇(x) turns into (2.1).

Proof of Theorem 2.1.12 Fix ẋ ∈ Ik−1. Let y := (y1, . . . , yn−k+1) be any vector from In−k+1.

According to Theorem 2.1.8, the function f (·, ẋ) is operator monotone on I of order n − k + 1,

if and only if the divided difference matrix of f (·, ẋ):

D(y)i j :=


∂ f
∂yi

(yi, ẋ) if i = j,

f (yi, ẋ) − f (y j, ẋ)
yi − y j

if i , j,
(2.25)

where i, j ∈ Nn−k+1, is positive semidefinite for all y ∈ In−k+1. (By continuity, it suffices to

consider only vectors ẋ and y, such that together they have distinct coordinates.)

Let τ̇ := {n − k + 2, . . . , n}. The divided difference matrix (2.21), with respect to τ̇, turns
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into

(
Tτ̇(x)

)
i j =


∂ f
∂xτ̇i

(xτ̇+τ̇i) if i = j,

f (xτ̇+τ̇i) − f (xτ̇+τ̇ j)
xτ̇i − xτ̇ j

if i , j,
(2.26)

for i, j ∈ Nn−k+1. Note that τ̇i = i and xτ̇+τ̇i = (xi, xτ̇) for all i ∈ Nn−k+1. Let x := (y, ẋ) ∈ Rn and

observe that x ∈ domn f . We also have that xτ̇i = yi and xτ̇+τ̇i = (yi, ẋ) for all i ∈ Nn−k+1. Thus,

comparing (2.25) and (2.26), we conclude that

D(y)i j =
(
Tτ̇(x)

)
i j

for all i, j ∈ Nn−k+1.

If f is operator monotone, in the sense of Definition 2.1.11, then by Corollary 2.3.5 and

Lemma 2.3.4, we obtain that Tτ̇(x), and hence D(y), is positive semidefinite. Thus, f (·, ẋ) is

operator monotone on I of order n − k + 1.

If f (·, ẋ) is operator monotone on I of order n − k + 1, for all ẋ ∈ Rk−1, then the divided

difference matrix (2.25) is positive semidefinite for any y ∈ In−k+1 and the result follows by

reversing the steps in the previous paragraph.

Since the above arguments hold for any n ≥ k, the rest of the theorem follows.

Theorem 2.1.12 strengthens the connection between Theorem 2.1.5 and Theorem 2.1.8 and

fully explains the apparent differences in the criteria for operator monotonicity. Taking n = k,

the (generated) k-isotropic function becomes a spectral function. The fact that the symmetric

function f : Rn → R is operator monotone of order n implies that it is operator monotone

with respect to each argument of order one, that is, on 1 × 1 matrices. In that case, operator

monotonicity is the same as being non-decreasing.

Taking k = 1, the (generated) k-isotropic function becomes a primary matrix function. In

that case, the statement of Theorem 2.1.12 becomes trivial.
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2.4 Applications and examples

2.4.1 Connections with operator convex functions

A function F : S n → S m is said to be operator convex, if the inequality

(1 − t)F(A) + tF(B) � F((1 − t)A + tB)

holds for all A, B in the domain of F and all t ∈ [0, 1]. We say that F is operator concave, if

−F is operator convex.

Consider a function f : R→ R and its corresponding primary matrix function F : S n → S n.

The function f is called operator convex of order n, if F : S n → S n is operator convex. The

function f : R→ R is called operator convex, if F : S n → S n is operator convex for all n.

Examples of operator convex functions are given in [2, Chapter V], among them are the

functions xr for x > 0 with r ∈ [−1, 0] ∪ [1, 2]; and x log x for x > 0. A characterization of

operator convex functions f of order n, in terms of the second order divided differences of f is

given in [11]. There are many connections between the operator monotone functions and the

operator convex functions. We now state the one that we are going to exploit, see [2, Theorem

V.2.9].

Theorem 2.4.1 Let f : [0, α) → R be continuous with f (0) ≤ 0. The function f is operator

convex, if and only if x−1 f (x) is operator monotone on (0, a).

We should notice that unlike the characterization in [11], the characterization given in The-

orem 2.4.1 does not rely on the second derivatives.

Extending the notion of operator convexity to symmetric functions f : Rk → R is now

readily anticipated.

Definition 2.4.2 Consider a symmetric function f : Rk → R with its corresponding (gener-

ated) k-isotropic function F : S n → S (n
k). We say that f is operator convex of order n, if
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F : S n → S (n
k) is operator convex. We say that f is operator convex, if F : S n → S (n

k) is

operator convex for all n ≥ k.

A matrix K ∈ Rn×n is a contraction, if λ1(KK>) ≤ 1. The proof of the next result and its

corollary mimics parts of the proof of Theorem V.2.3 in [2].

Proposition 2.4.3 Let f : [0, α)k → R be symmetric and continuous with f (x) ≤ 0, whenever

xi = 0 for some i ∈ Nk. If a function f is operator convex, then the corresponding (generated)

k-isotropic function F satisfies

(K(k))
>

F(A)K(k) � F(K>AK) (2.27)

for all A in the domain of F and all contraction matrices K ∈ Rn×n.

Proof Let K ∈ Rn×n be a contraction and let M1 := (I − KK>)1/2 and M2 := (I − K>K)1/2.

Define

U :=

 K M1

M2 −K>

 ∈ O2n and V :=

 K −M1

M2 K>

 ∈ O2n.

Fix any A ∈ S n and let T := Diag (A, 0) ∈ S 2n. Then, matrices

U>TU =

K>AK K>AM1

M1AK M1AM1

 and V>TV =

 K>AK −K>AM1

−M1AK M1AM1

 ,
satisfy

U>TU + V>TV
2

=

K>AK 0

0 M1AM1

 .
The following calculation shows inequality (2.27). In it we consider matrices of size

(
2n
k

)
×(

2n
k

)
. Note that every set in Nn,k can be viewed in a natural way as an element of N2n,k. We
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focus our attention on the
(

n
k

)
×

(
n
k

)
block of elements with indexes ρ ∈ Nn,k. Without loss of

generality, we may permute rows and columns so that this block is in the upper-left corner and

write ‘∗’ to denote the remaining entries. Let Q ∈ On be such that A = Q(Diag λ(A))Q>. Since

A is in the domain of F, we have λ(A) ≥ 0 and this observation is used in the third equality

below:

F(T ) = F

A 0

0 0

 = F

Q(Diag λ(A))Q> 0

0 0

 (2.28)

=

Q(k) 0

0 0


Diagρ f (λρ(A)) 0

0 ∗


Q(k)> 0

0 0


�

Q(k) 0

0 0


Diagρ f (λρ(A)) 0

0 0


Q(k)> 0

0 0


=

F(A) 0

0 0

 ,
where the third line is obtained using the fact that f (x) ≤ 0, whenever xi = 0 for some i ∈ Nk.

The notation Diagρ f (λρ(A)) stands for a diagonal matrix with the elements { f (λρ(A)) : ρ ∈

Nn,k} on the diagonal, ordered lexicographically. We now continue the calculation. To justify

the first equality, we use the definition of a (generated) k-isotropic function (together with the

reordering convention used to bring the elements with indexes in Nn,k in the upper-left corner).

F(K>AK) ∗

∗ ∗

 = F

K>AK 0

0 M1AM1

 = F
(U>TU + V>TV

2

)
�

1
2

F(U>TU) +
1
2

F(V>TV)

=
1
2

(U (k))
>

F

A 0

0 0

 U (k) +
1
2

(V (k))
>

F

A 0

0 0

 V (k)
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�
1
2

(K
(k))> ∗

∗ ∗


F(A) 0

0 0


K(k) ∗

∗ ∗

 +

+
1
2

(K
(k))> ∗

∗ ∗


F(A) 0

0 0


K(k) ∗

∗ ∗


=

(K
(k))>F(A)K(k) ∗

∗ ∗

 .
The second line is obtained using the operator convexity of F and the forth line is obtained

using (2.28). Comparing the beginning with the end implies (2.27).

Corollary 2.4.4 Let f : [0, α)k → R be symmetric and continuous with f (x) ≤ 0, whenever

xi = 0 for some i ∈ Nk. If f is operator convex, then (x1 · · · xk)−1 f (x) is operator monotone on

(0, α)k.

Proof Let A, B ∈ S n
+ be invertible with A � B. Apply Proposition 2.4.3 to the contraction

K := A−1/2B1/2. The left-hand side of (2.27) turns into

(K(k))
>

F(A)K(k) = (B1/2A−1/2)(k)F(A)(A−1/2B1/2)(k) = (B1/2)(k)(A−1/2)(k)F(A)(A−1/2)(k)(B1/2)(k).

The right-hand side of (2.27) turns into

F(K>AK) = F(B1/2A−1/2AA−1/2B1/2) = F(B).

Thus, (2.27) implies that

(B1/2)(k)(A−1/2)(k)F(A)(A−1/2)(k)(B1/2)(k) � F(B),

that is,

(A−1/2)(k)F(A)(A−1/2)(k) � (B−1/2)(k)F(B)(B−1/2)(k).
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Since (A−1/2)(k) and F(A) are co-axial (simultaneously diagonalized), they commute. Thus,

(A−1)(k)F(A) � (B−1)(k)F(B),

whenever A � B. The proof follows since the k-isotropic function (A−1)(k)F(A) is is generated

by the symmetric function (x1 · · · xk)−1 f (x).

2.4.2 Constructing operator monotone functions on (0, α)k

To construct operator monotone functions, we use Theorem 2.1.12.

Example 2.4.5 Let I be an interval. If g : I → R is operator monotone, then

f (x1, . . . , xk) := g(x1) + · · · + g(xk)

is operator monotone on Ik.

If g : I → [0,∞) is operator monotone, then

f (x1, . . . , xk) := g(x1) · · · g(xk)

is operator monotone on Ik. More generally, for any 1 ≤ m ≤ k, we have that

f (x1, . . . , xk) :=
∑
ρ∈Nk,m

g(xρ1) · · · g(xρm)

is operator monotone on Ik.

Our extended notion of operator monotonicity for symmetric functions on k variables al-

lows us to see Theorem V.3.10 in [2] in an entirely new light.

Theorem 2.4.6 (Theorem V.3.10 in [2]) Let I be an interval. If f ∈ C2(I) and f is operator
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convex, then for each y ∈ I, the function

g(x) :=


f ′(x) if x = y,

f (x) − f (y)
x − y

if x , y,
(2.29)

is operator monotone on I.

The function on the right-hand side of (2.29) is symmetric and is operator monotone with

respect to each argument. Thus, using Theorem 2.1.12 we obtain the following interpretation.

Corollary 2.4.7 Let I be an interval. If f ∈ C2(I) and f is operator convex, then the function

g(x, y) :=


f ′(x) if x = y,

f (x) − f (y)
x − y

if x , y,

is operator monotone on I2.

Conversely, g is operator monotone on (0, α)2, then f is operator convex on [0, α).

Proof The first part follows by Theorem 2.1.12. For the converse, if g(x, y) is operator mono-

tone on (0, α)2, g(x, 0) is operator monotone on (0, α) by Theorem 2.1.12. Since f (x) − f (0) =

xg(x, 0) is operator convex on [0, α), by Theorem 2.4.1, and so is f (x).

Finally, we need another connection between operator monotone and operator convex func-

tions, see Theorem V.2.5 in [2].

Lemma 2.4.8 A function g : [0,+∞) → [0,+∞) is operator monotone, if and only if g is

operator concave.

In the next example, we use Theorem 2.1.9 and combine Corollary 2.4.7 with Lemma 2.4.8

inductively to obtain a family of symmetric operator monotone functions on k variables.
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Example 2.4.9 Let g : (0, α)→ (0,∞) be an operator monotone function, with integral repre-

sentation (2.2) for some a ∈ R, b ≥ 0, and a positive Borel measure µ on R with zero mass on

(0, α), satisfying (2.3). By Lemma 2.4.8, g is operator concave, hence −g is operator convex.

Then, by Corollary 2.4.7, the symmetric function

g1(x1, x2) :=


−g′(x1) if x1 = x2,

−
g(x1) − g(x2)

x1 − x2
if x1 , x2,

is operator monotone on (0, α)2. Using (2.2), it is easy to see that

g1(x1, x2) = −b −
∫ +∞

−∞

(λ − x1)−1(λ − x2)−1 dµ(λ).

By Theorem 2.4.1, the fact that g1(x1, x2) is operator monotone implies that f1(x2) :=

x2g1(x1, x2) is operator convex on [0, α) with integral representation

f1(x2) = −bx2 − x2

∫ +∞

−∞

(λ − x1)−1(λ − x2)−1 dµ(λ).

Let

g2(x1, x2, x3) :=


f ′1(x2) if x2 = x3,
f1(x2) − f1(x3)

x2 − x3
if x2 , x3.

The function g2(x1, x2, x3) is symmetric, since it is continuous and for any distinct x1, x2, x3, we

have

g2(x1, x2, x3) = −
x1

(x1 − x2)(x1 − x3)
g(x1) −

x2

(x2 − x1)(x2 − x3)
g(x2) −

x3

(x3 − x2)(x3 − x1)
g(x3).

By Corollary 2.4.7, it is operator monotone on (0, α)3 with integral representation

g2(x1, x2, x3) = −b −
∫ +∞

−∞

λ(λ − x1)−1(λ − x2)−1(λ − x3)−1 dµ(λ).
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Define functions fk : [0, α)→ R and gk+1 : (0, α)k+2 → R, for k ≥ 2, iteratively by

fk(xk+1) := xk+1gk(x1, . . . , xk+1),

gk+1(x1, . . . , xk+2) :=


f ′k (xk+1) if xk+1 = xk+2,
fk(xk+1) − fk(xk+2)

xk+1 − xk+2
if xk+1 , xk+2.

By induction, for any natural number k, we have for any distinct x1, . . . , xk+2

gk+1(x1, . . . , xk+2) = −

k+2∑
i=1

xk
i g(xi)

∏
j,i

(xi − x j)−1

with integral representation

gk+1(x1, . . . , xk+2) = −b −
∫ +∞

−∞

λn
k+2∏
i=1

(λ − xi)−1 dµ(λ).

This shows that gk+1(x1, . . . , xk+2) is a symmetric function.

If gk is operator monotone on (0, α)k+1, then by Theorem 2.4.1, fk is operator convex on

[0, α). Then, by Corollary 2.4.7 the divided difference gk+1 is symmetric and operator monotone

on (0, α)k+2. This completes the inductive step.

2.4.3 A connection with D-type linear maps

We conclude this work with a curious connection to the mathematics used in the field of quan-

tum entanglement.

A linear map T : Rn×n → Rn×n is called a D-type linear map, if it has the representation

T (H) = −H + Diag (D(diag H)) for all H ∈ Rn×n (2.30)

for some D ∈ Rn×n with non-negative elements. Such maps are studied in [10] in connection

with k-positive maps. A linear map T : Rn×n → Rn×n is called diagonal D-type linear map, if
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in addition D ∈ Rn×n is diagonal.

The linear map (2.16) extends diagonal D-type maps, as we now explain.

Corollary 2.4.10 Linear map (2.16) turns into a diagonal D-type linear map, when k = 1,

Jii ≥ −1 for i = 1, . . . , n, and

Ai j =


0 if i = j,

−1 otherwise.

Proof Let k = 1. Then, matrix J in (2.16) becomes diagonal matrix and we have that ∆k(H) =

H and A ◦ H = −H + Diag (diag H). Then, (2.16) turns into

T(H) = −H + Diag (diag H) + Diag (J(diag H))

= −H + Diag ((J + I)(diag H)) = −H + Diag (D(diag H)),

where D := J + I is diagonal with non-negative elements.

In [9] and [19], a necessary and sufficient condition on the matrix D is given, so that the

D-type linear map is positive. In the case when D is diagonal the condition turns into

n∑
i=1

1
Dii
≤ 1 and Dii > 0 for i = 1, . . . , n. (2.31)

This is equivalent with the condition obtained in Theorem 2.3.1, that is, T (En) � 0, where En

is the n × n all-one matrix. We conclude by showing the equivalence.

Proposition 2.4.11 Consider the map (2.30) for a diagonal D ∈ S n
+. Then, T (En) � 0, if and

only if (2.31) holds.

Proof Suppose that T (En) = D − En is positive semidefinite. Then, Dii ≥ 1 for all i. Consider

vector d := (1/D11, . . . , 1/Dnn) to obtain

0 ≤ d>(D − En)d =

n∑
i=1

1
Dii
−

( n∑
i=1

1
Dii

)2
,



44 Chapter 2. A unified approach to operator monotone functions

and (2.31) follows.

Suppose now that (2.31) holds. It can be shown that

det(D − En) = D11 · · ·Dnn −

n∑
i=1

∏
j,i

D j j.

Dividing by D11 · · ·Dnn, one concludes that det(D−En) ≥ 0. One can show analogously, that the

determinant of every principle minor is non-negative. Hence, D − En is positive semidefinite.
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Chapter 3

On the analyticity of k-isotropic functions

3.1 Introduction

Denote by Rn×n the space of all n × n real matrices and denote by S n the subspace of all n × n

symmetric matrices with inner product 〈A, B〉 := Tr(AB) and Frobenius norm ||A|| :=
√

Tr(AA).

Let On be the group of n × n orthogonal matrices: A ∈ On if and only if A>A = I. Denote the

convex cone in Rn of all vectors with non-increasing coordinates by Rn
≥. Then for any A ∈ S n,

let λ(A) ∈ Rn
≥ be the vector of ordered eigenvalues of A:

λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A).

For any vector x ∈ Rn, let Diag x be the n × n matrix with diagonal elements x and zeros

elsewhere. Denote by Pn the collection of all n × n permutation matrices.

The focus of this paper is to show the analyticity of a class of orthogonally invariant matrix-

valued functions that captures as a special case three previously investigated classes of orthog-

onally invariant matrix-valued functions. We begin by familiarizing the reader with the three

special cases.

48
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Definition 3.1.1 A real-valued function F : S n → R is called a spectral function if

F(UAU>) = F(A)

holds for all U ∈ On and all A ∈ S n in the domain of F.

The spectral functions have been extensively studied and applied in various areas ranging

from optimization and variational analysis, see [15], to engineering [25] and material science,

see [21], where spectral functions are also called scalar-valued isotropic functions. We say that

a function f : Rn → R is symmetric if for any x ∈ Rn, f (Px) = f (x) for any permutation matrix

P ∈ Pn. The following representation theorem is well-known, and can be found in [7] and [22].

Theorem 3.1.2 A real-valued function F : S n → R is a spectral function, if and only if there

exists a unique symmetric function f : Rn → R such that F(A) = ( f ◦ λ)(A) for all A ∈ S n.

Properties of the symmetric function f and its corresponding spectral function are tightly con-

nected and many investigations have focused on particular properties. For example, even

though the eigenvalue map λ : S n → Rn is not in general differentiable, F is differentiable

at A if and only if f is such at λ(A). One may refer to [14], [16], [19], [20], [23], and [24] for

an example of the evolution of such studies. The analyticity of spectral functions is shown in

[24] following the same pattern: F is is analytic at A if and only if f is analytic at λ(A).

We now define the second class of orthogonally invariant functions that concern us.

Definition 3.1.3 A function F : S n → S n is called a primary matrix function if there exists a

function f : R→ R such that

F(A) = U
(
Diag ( f (λ1(A)), . . . , f (λn(A)))

)
U>, (3.1)

where U ∈ On is such that A = U(Diag λ(A))U>.
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It can be shown that primary matrix functions are well-defined. That is, the right-hand side of

(3.1) does not depend on the choice of the orthogonal matrix U diagonalizing A.

Derivatives, operator monotonicity, and operator convexity of primary matrix functions are

studied and characterized in terms of the underlying function f , see for example [5, Chapter

V] and [10, Chapter 6]. If f is analytic, then (3.1) becomes

F(A) =

∮
Γ

f (z)(zI − A)−1 dz,

where Γ is a Jordan curve in the complex plane enclosing the eigenvalues of A. Thus, the

primary matrix function F is analytic if and only if f is analytic, see [12, Chapter 7].

Primary matrix functions are also known as Löwner’s operator functions. They are a special

case of the following class of maps.

Definition 3.1.4 A function F : S n → S n is called a tensor-valued isotropic function if

F(UAU>) = UF(A)U>,

for all U ∈ On and all A ∈ S n in the domain of F.

An example of tensor-valued isotropic function found in [21] is the Piola-Kirchhoff stress

function in an isotropic solid.

We say a function f : Rn → Rn is symmetric if for any x ∈ Rn, we have f (Px) = P f (x)

for any permutation matrix P ∈ Pn. The following representation theorem for tensor-valued

isotropic functions can be found in [21] and [22].

Theorem 3.1.5 A function F : S n → S n is a tensor-valued isotropic function if and only if

there exists a symmetric function f : Rn → Rn such that

F(A) = U
(
Diag f (λ(A))

)
U>,
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where U ∈ On is such that A = U(Diag λ(A))U>.

Note that if f : Rn → Rn is such that f (x) = (g(x1), . . . , g(xn)) for some g : R → R, then the

tensor-valued isotropic function becomes primary matrix function (3.1).

The construction in works [2], [3], [8], [9], and [26] generalizes primary matrix functions

to several operator arguments. We introduce the setting as follows. Let N be the set of natural

numbers and let

Nn := {1, 2, . . . , n}

be the set of the first n natural numbers. For any fixed n1, . . . , nk, consider the set of k-tuples in

Nn1 × · · · × Nnk endowed with the lexicographical order.

Any function f : Rk → R defines an operator map F : S n1 × · · · × S nk → S n1···nk by

F(A1, . . . , Ak) := (⊗k
i=1Ui)

(
Diagl f (λl1(A1), . . . , λlk(Ak))

)
(⊗k

i=1Ui)
>
, (3.2)

where l = (l1, . . . , lk) is in Nn1 × · · · ×Nnk and Ui ∈ Oni are such that Ai = Ui
(
Diag λ(Ai)

)
Ui
> for

i = 1, . . . , k. Here, Diagl denotes a diagonal matrix, where on the main diagonal we have the

values f (λl1(A1), . . . , λlk(Ak)) ordered lexicographically. The right-hand side of (3.2) does not

depend on the choice of the diagonalizing matrices Ui, i = 1, . . . , k. When k = 1, the map (3.2)

becomes a primary matrix function (3.1).

Note that the map (3.2) has the following invariance property

F(U1A1U1
>, . . . ,UkAkUk

>) = (⊗k
i=1Ui)F(A1, . . . , Ak)(⊗k

i=1Ui)
>
,

for any Ui ∈ Oni , i = 1, . . . , k. While construction (3.2) extends primary matrix functions to

the multi-variable setting, it cannot capture the class of spectral functions nor tensor-valued

isotropic functions. The focus of this paper is the class of orthogonally invariant maps intro-

duced in [1] and [17]. It captures all three classes of functions and the special case of (3.2),

when f : Rk → R is a symmetric function. Next two sections introduce the back ground,
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notation, and the construction.

3.2 Background

3.2.1 Tensor and anti-symmetric tensor power of Rn

Denote by ⊗kRn the k-th tensor product of Rn. This is the linear space of dimension nk of all

formal finite linear combinations of products {x1 ⊗ · · · ⊗ xk : x1, . . . , xk ∈ R
n}, where all the

necessary identifications are made so that the product is linear in each argument separately.

The inner product in ⊗kRn of any vectors u1 ⊗ · · · ⊗ uk and v1 ⊗ · · · ⊗ vk is given by

〈u1 ⊗ · · · ⊗ uk, v1 ⊗ · · · ⊗ vk〉 = 〈u1, v1〉 · · · 〈uk, vk〉.

Given k linear operators A1, . . . , Ak on Rn, their tensor product A1 ⊗ . . . ⊗ Ak is a linear

operator on ⊗kRn defined by

(A1 ⊗ · · · ⊗ Ak)(x1 ⊗ · · · ⊗ xk) := A1x1 ⊗ · · · ⊗ Akxk

and then extended by linearity. It is well-known that there are no inconsistencies in the exten-

sion process. Important properties of the tensor product include

(A1 ⊗ · · · ⊗ Ak)(B1 ⊗ · · · ⊗ Bk) = A1B1 ⊗ · · · ⊗ AkBk, (A1 ⊗ · · · ⊗ Ak)∗ = A∗1 ⊗ · · · ⊗ A∗k.

When A1, . . . , Ak are invertible, so is their tensor product and

(A1 ⊗ · · · ⊗ Ak)−1 = A−1
1 ⊗ · · · ⊗ A−1

k .

When all operators are the same, we use the short-hand notation ⊗kA := A ⊗ · · · ⊗ A.
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For any vectors x1, . . . , xk ∈ R
n, the k-th anti-symmetric tensor product is defined by

x1 ∧ · · · ∧ xk :=
1
√

k!

∑
σ:Nk→Nk

εσxσ(1) ⊗ · · · ⊗ xσ(k), (3.3)

where εσ is equal to 1 if the permutation σ is even and is equal to −1 if the permutation σ is

odd. It is easy to see that this product is anti-commutative:

x1 ∧ · · · ∧ xi ∧ · · · ∧ x j ∧ · · · ∧ xn = −x1 ∧ · · · ∧ x j ∧ · · · ∧ xi ∧ · · · ∧ xn.

Denote by ∧kRn the subspace of ⊗kRn spanned by all k-th anti-symmetric tensor products. The

dimension of ∧kRn is
(

n
k

)
. The inner product in ∧kRn is the restriction of the inner product on

⊗kRn. Explicitly, the inner product between u1 ∧ · · · ∧ uk and v1 ∧ · · · ∧ vk is given by

〈u1 ∧ · · · ∧ uk, v1 ∧ · · · ∧ vk〉 = det
(
〈ui, v j〉

k
i, j=1

)
.

The subspace ∧kRn is invariant under the operator ⊗kA, allowing one to denote by ∧kA the

restriction of ⊗kA to the space ∧kRn. This is known as the k-th anti-symmetric tensor power of

A. It can be shown that

(∧kA)(x1 ∧ · · · ∧ xk) = Ax1 ∧ · · · ∧ Axk.

Note that anti-symmetric tensor product between operators is not defined when the operators

are not all equal. The antisymmetric tensor power of an operator shares similar properties to

the tensor power:

(∧kA)(∧kB) = ∧k(AB), (∧kA)∗ = ∧kA∗. (3.4)



54 Chapter 3. On the analyticity of k-isotropic functions

When A is invertible, so is its antisymmetric tensor power and

(∧kA)−1 = ∧kA−1. (3.5)

3.2.2 Indexing in the spaces Rnk and R(n
k)

Let

Nk
n := Nn × · · · × Nn (k times),

and assume that the elements in Nk
n are ordered lexicographically. We use Nk

n to index the

coordinates of vectors in Rnk and the entries of matrices in Rnk×nk
. If x ∈ Rnk

, the xl denotes the

l-th element of x, for l ∈ Nk
n; and if A ∈ Rnk×nk

, then Al,m denotes the element in the l-th row

and m-th column, for l,m ∈ Nk
n.

Given n × n matrices A and B, their tensor product is defined by

A ⊗ B :=


A11B · · · A1nB
...

. . .
...

An1B · · · AnnB


Extend this inductively to products A1 ⊗ · · · ⊗ Ak of more than two matrices. We denote the

k-tensor power of a matrix A by

A⊗k := A ⊗ · · · ⊗ A.

(This notation distinguishes between the k-tensor power ⊗kA of an operator A.) It is easy to see

that

(A⊗k)l,m = Al1m1 · · · Alkmk for any l,m ∈ Nk
n.

The tensor product between matrices has analogous properties as those between operators on

Rn.

Let Nn,k be the set of all subsets of Nn of size k with elements ordered non-decreasingly,
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here 1 ≤ k ≤ n. That is, if ρ := {ρ1, . . . , ρk} ∈ Nn,k, assume that

ρ1 < ρ2 < · · · < ρk.

This assumption allows us to view Nn,k as a subset of Nk
n.

Order the elements in Nn,k lexicographically. In this way they are used to index the coordi-

nates of vectors in R(n
k) and the entries of matrices in R(n

k)×(n
k). For example, if x ∈ R(n

k), then for

any ρ ∈ Nn,k, denote by xρ the ρ-th element in vector x; and if A ∈ R(n
k)×(n

k), for any ρ, τ ∈ Nn,k,

Aρ,τ denotes the element in the ρ-th row and τ-th column of A.

If A ∈ Rn×n, then for any ρ, τ ∈ Nn,k, denote by Aρτ, the k × k minor of A obtained at the

intersection of rows with indexes ρ1, . . . , ρk and columns with indexes τ1, . . . , τk.

To avoid confusion, vectors in (resp. operators on) R(n
k) are denoted in bold font, such as x

and A, while vectors in (resp. operators on) Rn are in plain italics: x and A.

For A ∈ Rn×n, the k-th multiplicative compound matrix of A, denoted by A(k) ∈ R(n
k)×(n

k), is

defined by

(A(k))ρ,τ := det(Aρτ) for any ρ, τ ∈ Nn,k.

The following properties are well-known:

A(k)B(k) = (AB)(k), (A(k))
>

= (A>)(k), and (A(k))−1 = (A−1)(k),

corresponding to properties (3.4) and (3.5).

3.2.3 Identification of Rnk with ⊗kRn and of R(n
k) with ∧kRn

Denote the standard orthonormal basis in Rn by {e1, . . . , en}. Denote by {el : l ∈ Nk
n} the

standard orthonormal basis in Rnk and by {eρ : ρ ∈ Nn,k} the one in R(n
k). Fixing a basis, allows

one to view any linear operator on Rn as a matrix.
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The standard isometry between Rnk and ⊗kRn is denoted by T and defined by

T (el) := el1 ⊗ · · · ⊗ elk , for all l ∈ Nk
n,

extended by linearity. For an n × n matrix A (viewed also as an operator on Rn), we have the

relationship:

T ((A⊗k)x) = (⊗kA)(T x), for any x ∈ Rnk
.

The standard isometry, call itW, between R(n
k) and ∧kRn is given by

W(eρ) := eρ1 ∧ · · · ∧ eρk , for all ρ ∈ Nn,k

and then extended by linearity. For an n × n matrix A (viewed also as an operator on Rn), we

have the relationship:

W(A(k)x) = (∧kA)(Wx), for any x ∈ R(n
k).

Equivalently, we have the following commuting relationships:

WA(k) = (∧kA)W or A(k)W−1 =W−1(∧kA).

3.2.4 Permutation matrices

For any permutation σ : Nn → Nn, the corresponding permutation matrix P is such that

Px = (xσ(1), . . . , xσ(n))> for any vectors x ∈ Rn or in terms of basis vectors Peσ(i) = ei for all

i = 1, . . . , n.

Every permutation σ : Nn → Nn defines a permutation on Nn,k denoted by σ(k) in the
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following way

σ(k)(ρ) := the increasing rearrangement of {σ(ρ1), . . . , σ(ρk)},

for any ρ ∈ Nn,k. The corresponding
(

n
k

)
×

(
n
k

)
permutation matrix P of σ(k) satisfies

Peσ
(k)(ρ) = eρ, (3.6)

for any ρ ∈ Nn,k. Let εσ,ρ be +1 if an even number of transpositions are required to order vector

(σ(ρ1), . . . , σ(ρk)) increasingly; and let it be equal to −1 otherwise. The ralation between

matrix P and P(k) is:

P(k)eσ
(k)(ρ) = P(k)W−1(εσ,ρeσ(ρ1) ∧ · · · ∧ eσ(ρk)) = εσ,ρW

−1(∧kP)(eσ(ρ1) ∧ · · · ∧ eσ(ρk))

= εσ,ρW
−1(eρ1 ∧ · · · ∧ eρk) = εσ,ρeρ = εσ,ρPeσ

(k)(ρ),

for any ρ ∈ Nn,k.

3.2.5 Final remark

Let E be a Euclidean space with inner product 〈·, ·〉. An isomorphism T : E → E∗ between E

and its dual is defined by T (x)(a) := 〈x, a〉. Then, one can view that x ⊗ y ∈ E ⊗ E has a linear

map E → E defined by

(x ⊗ y)(a) := T (x)(a) ⊗ y = 〈x, a〉y.

Similarly, one can view that x⊗ y ∈ E ⊗ E has a bilinear map T (x)⊗ T (y) ∈ E∗ ⊗ E∗ defined by

(x ⊗ y)(a, b) := T (x) ⊗ T (y)(a, b) = T (x)(a)T (y)(b) = 〈x, a〉〈y, b〉.
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3.3 The main definition

Definition 3.3.1 A function G : S n → S (n
k) is called k-isotropic if

G(UAU>) = U (k)G(A)(U (k))
>

for all U ∈ On and A ∈ S n in the domain of G.

Definition 3.3.2 A function g : Rn → R(n
k) is called symmetric if the equation

g(Px) = Pg(x),

holds for all x ∈ Rn and all permutation matrices P ∈ Pn, with corresponding P defined by

(3.6).

The representation theorem of k-isotropic functions, stated in [17], is as follows.

Theorem 3.3.3 The function G : S n → S (n
k) is k-isotropic, if and only if there is a unique

symmetric function g : Rn → R(n
k) such that

G(A) = U (k)(Diag g(λ(A))
)
(U (k))

>
, (3.7)

for all A ∈ S n and U ∈ On such that A = U(Diag λ(A))U>.

The matrix G(A) corresponds to a self-adjoint operator on ∧kRn given by

W◦G(A) ◦W−1 =
∑
ρ∈Nn,k

gρ(λ(A))(uρ1 ∧ · · · ∧ uρk) ⊗ (uρ1 ∧ · · · ∧ uρk), (3.8)

where {u1, . . . , un} are the columns of U such that A = U(Diag λ(A))U>.

Example 3.3.4 When k = 1, map (3.7) reduces to tensor-valued isotropic function G : S n →

S n, since U (1) = U and G(A) = U
(
Diag g(λ(A))

)
U> for a unique symmetric g : Rn → Rn.
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For any x ∈ Rn and any ρ ∈ Nn,k, denote

xρ := (xρ1 , . . . , xρk) ∈ R
k.

Example 3.3.5 Let g̃ : Rk → R be symmetric and define g : Rn → R(n
k) by

gρ(x) := g̃(xρ), for all x ∈ Rn and all ρ ∈ Nn,k.

It was shown in [1], that g is symmetric in the sense of Definition 3.3.2. In this situation, we say

that g is generated by g̃. Using Theorem 3.3.3, consider the following subclass of k-isotropic

maps:

G(A) := U (k)(Diag g(λ(A))
)
(U (k))

>
= U (k)(Diagρ g̃(λρ(A))

)
(U (k))

>
, (3.9)

where U ∈ On is such that A = U
(
Diag λ(A)

)
U>.

The map G defined in (3.9) becomes a spectral function if we take k = n. In that case U (k) =

det(U) = ±1, since U is orthogonal. The set Nn,n contains only one element ρ = {1, 2, . . . , n},

and thus

G(A) = g̃(λ1(A), . . . , λn(A)).

The map G defined in (3.9) becomes primary matrix function if we take k = 1. In that case,

U (1) = U. The set Nn,1 contains n elements {1}, . . . , {n} and thus

G(A) = U
(
Diag (g̃(λ1(A)), . . . , g̃(λn(A)))

)
UT .

One can specialize even further. Taking

g̃(x1, . . . , xk) = x1 + · · · + xk,
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(3.9) becomes the well-known k-th additive compound matrix, see [11, page 19]. While taking

g̃(x1, . . . , xk) = x1 · · · xk,

(3.9) becomes the well-known k-th multiplicative compound matrix, see [18].

The main result in [17] states the following.

Theorem 3.3.6 Suppose g : Rn → R(n
k) is symmetric and G : S n → S (n

k) is its corresponding

k-isotropic function. Then G is Cr if and only if g is Cr for any r = 1, . . . ,∞.

Following the construction in Example 3.3.5, Theorem 3.3.6 extends the main result in [4],

[20], and [23] (see also [21]), when one puts k = n, and it extends one of the main results in

[6] (see also [19]), when one puts k = 1. When k = n, a spectral function is Cr if and only if

the corresponding symmetric function is Cr for r = 1, . . . ,∞.

In the more general case when g is symmetric but not generated by a symmetric g̃, as in

Example 3.3.5, then Theorem 3.3.6, applied with k = 1, extends Theorem 8.1.9 in [21] about

the Cr differentiability of tensor-valued isotropic functions, where r = 1, . . . ,∞.

The technique used in [17] is not suitable for showing the analyticity of k-isotropic func-

tions. That is precisely the focus of this note. The main result, see Theorem 3.7.4 below, states

necessary and sufficient conditions for the analyticity of k-isotropic functions that are generated

by a function g̃ : Rk → R, as explained in Example 3.3.5.

3.4 Additional notation and lemmas

A partition of Nn is a collection of non-empty, pairwise disjoint subsets of Nn with union Nn.

A set in a partition is called a block. In this note, partitions of Nn are generally denoted by the

letter I.

Every x ∈ Rn defines a partition Ix on Nn by having i and j in the same block if and only

if xi = x j. The blocks of a partition determined by x are denoted by Ix = {Ix
1 , . . . , I

x
r }, that is, r
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denotes the number of blocks.

For example, if x ∈ Rn
≥ and

x1 = · · · = xk1 > xk1+1 = · · · = xk2 > · · · > xkr−1+1 = · · · = xkr ,

then

Ix
1 = {1, . . . , k1}, Ix

2 = {k1 + 1, . . . , k2}, . . . , Ix
r = {kr−1 + 1, . . . , kr}.

We now explain how any x ∈ Rn generates a partition Ix on Nk
n. The blocks of this partition

are labelled by the elements of Nk
r , as follows. For any s = (s1, . . . , sk) in Nk

r , define a block in

the partition of Nk
n by

Ix
s B {l ∈ N

k
n : li ∈ Ix

si
, for any i ∈ Nk},

where Ix
si

are the blocks of the partition Ix. Equivalently, l,m ∈ Nk
n are in the same block of the

partition Ix if and only if xl = xm, where for x ∈ Rn and l ∈ Nk
n we denoted

xl := (xl1 , . . . , xlk) ∈ R
k.

For example the cardinality of Ix
s is

|Ix
s | = |I

x
s1
| · · · |Ix

sk
|.

For any fixed x ∈ Rn
≥, we say that a matrix A is Ix-block-diagonal if A can be written as

A = Diag (A1, A2, . . . , Ar) with Ai of size |Ix
i | for all i = 1, . . . , r.

Lemma 3.4.1 If a matrix A is Ix-block-diagonal, then A⊗k is Ix-block-diagonal with blocks of

size |Ix
s | for s ∈ Nk

n.
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Proof For any l,m ∈ Nk
n, the entry of A⊗k in l-th column and m-th row is calculated by

(A⊗k)l,m =
∏k

i=1 Alimi . For any a, b ∈ Nk
r with a , b, let l ∈ Ix

a and m ∈ Ix
b. Then, there ex-

ists at least one i ∈ Nk such that ai and bi are in different blocks of the partition Ix. Thus,

Alimi = 0 and we have (A⊗k)l,m = 0.

For any x ∈ Rn, we say that x ∈ Rnk
is Ix-block-constant, if xl = xm for any l,m in the same

block of Ix. Equivalently, for any l,m ∈ Nk
n we have xl = xm, whenever xl = xm.

We say that a function f : Rn → Rnk
is block-constant, if vector f (x) is Ix-block-constant,

for all x ∈ Rn. In other words, a function f : Rn → Rnk is block-constant if and only if

fl(x) = fm(x), whenever xl = xm

for all x ∈ Rn and all l,m ∈ Nk
n.

It is easy to see that, for any fixed x ∈ Rn, we have (Diag x)U = U(Diag x), for all U ∈ On

if and only if x has equal coordinates. We need a result analogous to this one about matrices

commuting with tensor powers of U.

For any x ∈ Rn
≥, define the following subgroup of On:

On
x := {W ∈ On : W is Ix-block-diagonal}.

The following lemma gives a necessary sufficient condition for diagonal matrices to commute

with tensor powers of matrices from On
x.

Lemma 3.4.2 For any fixed x ∈ Rn
≥ and x ∈ Rnk , we have

(Diag x)U⊗k = U⊗k(Diag x), (3.10)

for all U ∈ On
x, if and only if x ∈ Rnk is Ix-block-constant.
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Proof Suppose x ∈ Rn
≥ is fixed. Equation (3.10) holds, if and only if for any fixed l,m ∈ Nk

n,

((Diag x)U⊗k)l,m = (U⊗k(Diag x))l,m,

holds, that is,

(Diag x)l,∗(U⊗k)∗,m = (U⊗k)l,∗(Diag x)∗,m, (3.11)

holds where Al,∗ is the l-th row of A and A∗,m is the m-th column of A for all A ∈ Rnk×nk
.

Simplify (3.11) to obtain equivalently

xl(U⊗k)l,m = xm(U⊗k)l,m.

The last equality holds, if x is Ix-block-constant. In the other direction, choose U ∈ On
x, such

that (U⊗k)l,m , 0, then one can conclude xl = xm.

Lemma 3.4.3 Let f : Rn → Rnk and let F : S n → S nk be given by

F(A) := U⊗k(Diag f (λ(A))
)
(U⊗k)

>
, (3.12)

where U ∈ On is such that A = U(Diag λ(A))U>. The map F is well-defined, whenever f is

block-constant function.

Proof For this map (3.12) to be well-defined its value must not depend on the choice of U in the

spectral decomposition of A. Note that if U ∈ On is one matrix such that A = U(Diag λ(A))U>

then

On
λ(A) · U := {UW : W ∈ On

λ(A)}

are all orthogonal matrices that give the ordered spectral decomposition of A. Thus, map (3.12)
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is well-defined, whenever

U⊗k(Diag f (λ(A))
)
(U⊗k)

>
= V⊗k(Diag f (λ(A))

)
(V⊗k)

>

for any U,V giving ordered spectral decomposition of A. The properties of tensor powers give

equivalently

(V>U)⊗k(Diag f (λ(A))
)

=
(
Diag f (λ(A))

)
(V>U)⊗k.

Since V>U can be any element of On
λ(A), by Lemma 3.4.2, map (3.12) is well-defined, whenever

f is block-constant.

Matrix F(A) corresponds to an operator on ⊗kRn given by

T ◦ F(A) ◦ T −1 =
∑
l∈Nk

n

fl(λ(A))(ul1 ⊗ · · · ⊗ ulk) ⊗ (ul1 ⊗ · · · ⊗ ulk), (3.13)

where {u1, . . . , un} are the columns of U such that A = U(Diag λ(A))U>.

3.5 Lifting k-isotropic functions

Theorem 3.5.1 Let f : Rn → Rnk be a block-constant function and let F : S n → S nk be defined

by (3.12). Suppose that the following condition holds

fl(x) = fρ(x), for all l ∈ Nk
n, ρ ∈ Nn,k with l↑ = ρ and all x ∈ Rn, (3.14)

where l↑ is the non-decreasing rearrangements of l. Then, operator T ◦ F(A) ◦ T −1 on ⊗kRn

preserves subspace ∧kRn.

Proof We only have to show that for any x1 ∧ · · · ∧ xk ∈ ∧
kRn and any A ∈ S n, vector
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T ◦ F(A) ◦ T −1(x1 ∧ · · · ∧ xk) is in ∧kRn. By (3.13), we have

T ◦ F(A) ◦ T −1(x1 ∧ · · · ∧ xk) =
∑
l∈Nk

n

fl(λ(A))(ul1 ⊗ · · · ⊗ ulk) ⊗ (ul1 ⊗ · · · ⊗ ulk)(x1 ∧ · · · ∧ xk)

=
∑
l∈Nk

n

fl(λ(A))〈ul1 ⊗ · · · ⊗ ulk , x1 ∧ · · · ∧ xk〉(ul1 ⊗ · · · ⊗ ulk). (3.15)

Using definition (3.3) of the wedge product, one obtains

〈ul1 ⊗ · · · ⊗ ulk , x1 ∧ · · · ∧xk〉 =
1
√

k!
〈ul1 ⊗ · · · ⊗ ulk ,

∑
σ:Nk→Nk

εσxσ(1) ⊗ · · · ⊗ xσ(k)〉

=
1
√

k!

∑
σ:Nk→Nk

εσ〈ul1 ⊗ · · · ⊗ ulk , xσ(1) ⊗ · · · ⊗ xσ(k)〉

=
1
√

k!

∑
σ:Nk→Nk

εσ

k∏
i=1

〈uli , xσ(i)〉,

where εσ is +1 if the permutation σ is even and is −1 if the permutation σ is odd. Notice that

∑
σ:Nk→Nk

εσ

k∏
i=1

〈uli , xσ(i)〉 = det
(
〈uli , x j〉

k
i, j=1

)
by definition of determinant and notice that

det
(
〈uli , x j〉

k
i, j=1

)
= 0, whenever li = l j for some i , j.

Thus, in the sum (3.15), the possibly non-zero terms are those corresponding to indexes l ∈ Nk
n

with distinct elements. For every l ∈ Nk
n with distinct elements, there exists a ρ ∈ Nn,k such that

l↑ = ρ. Equivalently, there exist a ρ ∈ Nn,k and a permutation σ : Nk → Nk (depending on l)

such that ρσ(i) = li. Using (3.14), we continue

T◦F(A) ◦ T −1(x1 ∧ · · · ∧ xk) =
∑
l∈Nk

n

fl(λ(A)) det
(
〈uli , x j〉

k
i, j=1

) 1
√

k!
(ul1 ⊗ · · · ⊗ ulk)
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=
∑
ρ∈Nn,k

fρ(λ(A)) det
(
〈uρi , x j〉

k
i, j=1

) ∑
l:l↑=ρ

εσ
1
√

k!
(ul1 ⊗ · · · ⊗ ulk), (3.16)

since

det(〈uli , x j〉
k
i, j=1) = det(〈uρσ(i) , x j〉

k
i, j=1) = εσ det(〈uρi , x j〉

k
i, j=1),

holds, where εσ is the sign of the permutation σ that orders l non-increasingly. Notice that for

any fixed ρ ∈ Nn,k, we have

∑
l:l↑=ρ

εσ
1
√

k!
(ul1 ⊗ · · · ⊗ ulk) =

∑
σ:Nk→Nk

εσ
1
√

k!
(uρσ(1) ⊗ · · · ⊗ uρσ(k)) = uρ1 ∧ · · · ∧ uρk .

Finally, substituting into (3.16), gives

T ◦ F(A)◦T −1(x1 ∧ · · · ∧ xk) =
∑
ρ∈Nn,k

fρ(λ(A)) det
(
〈uρi , x j〉

k
i, j=1

)
(uρ1 ∧ · · · ∧ uρk), (3.17)

which is in the subspace ∧kRn.

Corollary 3.5.2 Let f : Rn → Rnk be a block-constant function and let g : Rn → R(n
k) be a

symmetric function. Suppose that f satisfies condition (3.14) and

fρ(x) = gρ(x) for all x ∈ Rn and all ρ ∈ Nn,k.

Let F : S n → S nk be defined by (3.12) and let G : S n → S (n
k) be the k-isotropic function

corresponding to g, see (3.7). Then,

T ◦ F(A) ◦ T −1
∣∣∣
∧kRn =W◦G(A) ◦W−1, (3.18)

for all A ∈ S n.
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Proof Straightforward calculation using (3.8), gives

W◦G(A) ◦W−1(x1 ∧ · · · ∧ xk)

=
∑
ρ∈Nn,k

gρ(λ(A))(uρ1 ∧ · · · ∧ uρk) ⊗ (uρ1 ∧ · · · ∧ uρk)(x1 ∧ · · · ∧ xk)

=
∑
ρ∈Nn,k

gρ(λ(A))〈uρ1 ∧ · · · ∧ uρk , x1 ∧ · · · ∧ xk〉(uρ1 ∧ · · · ∧ uρk)

=
∑
ρ∈Nn,k

gρ(λ(A)) det
(
〈uρi , x j〉

k
i, j=1

)
(uρ1 ∧ · · · ∧ uρk)

=
∑
ρ∈Nn,k

fρ(λ(A)) det
(
〈uρi , x j〉

k
i, j=1

)
(uρ1 ∧ · · · ∧ uρk)

= T ◦ F(A) ◦ T −1(x1 ∧ · · · ∧ xk),

where (3.17) was used for the last equality.

3.6 The structure of symmetric functions g : Rn → R(n
k)

In this section, we examine the structure of a symmetric function g : Rn → R(n
k). For any

ρ ∈ Nn,k, define ρc := Nn\ρ ordered increasingly as a member of Nn,n−k. For x ∈ Rn, let

xρc := (xρc
1
, . . . , xρc

n−k
).

For any ρ, τ ∈ Nn,k, and any permutation σ : Nn → Nn, such that ρ = σ(k)(τ), we have that σ

sends the elements of τc to the elements of ρc as well.

Theorem 3.6.1 A function g : Rn → R(n
k) is symmetric if and only if there exists a function

h : Rk × Rn−k → R symmetric in Rk and in Rn−k respectively such that

gρ(x) = h(xρ; xρc),

holds for all x ∈ Rn and all ρ ∈ Nn,k.
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Proof Suppose function g : Rn → R(n
k) is symmetric. Take a permutation σ : Nn → Nn,

with corresponding matrix P, which sends {1, . . . , k} to {1, . . . , k} and sends {k + 1, . . . , n} to

{k + 1, . . . , n}. By Definition 3.3.2, for all such permutations σ, using (3.6), we have

g{1,...,k}(Px) = (Pg(x)){1,...,k} = gσ(k)({1,...,k})(x) = g{1,...,k}(x),

holds for all x ∈ Rn. Thus, the coordinate functions g{1,...,k}(x) is symmetric in (x1, . . . , xk) as

well as in (xk+1, . . . , xn).

Define h : Rk × Rn−k → R by

h(x{1,...,k}; x{k+1,...,n}) := g{1,...,k}(x),

for all x ∈ Rn. For any ρ ∈ Nn,k, there exists a permutation σ : Nn → Nn, with corresponding

matrix P, such that σ(k)({1, . . . , k}) = ρ and sending {k + 1, . . . , n} to ρc. Calculate gρ(x) by

using (3.6) again:

gρ(x) = gσ(k)({1,...,k})(x) = (Pg(x)){1,...,k} = g{1,...,k}(Px) = h((Px){1,...,k}; (Px){k+1,...,n})

= h(xσ(1), . . . , xσ(k); xσ(k+1), . . . , xσ(n)) = h(xρ; xρc),

where in the last equality, we used that h is symmetric with respect to its first k, as well as its

last n − k, arguments. This is what we had to show.

For the other direction, let h : Rk × Rn−k → R be symmetric in Rk and in Rn−k separately.

Define function g : Rn → R(n
k) by

gρ(x) := h(xρ; xρc), for all x ∈ Rn and all ρ ∈ Nn,k.

To show that g is symmetric in the sense of Definition 3.3.2, take any permutationσ : Nn → Nn,
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with corresponding matrix P. Then, for any τ ∈ Nn,k, let ρ := σ(k)(τ), and consider

gτ(Px) = h((Px)τ; (Px)τc) = h((xσ(1), . . . , xσ(n))τ; (xσ(1), . . . , xσ(n))τc)

= h(xσ(τ1), . . . , xσ(τk); xσ(τc
1), . . . , xσ(τc

n−k)) = h(xρ; xρc) = gρ(x),

where the penultimate equality holds because h is symmetric in Rk and in Rn−k separately.

Since this holds for all x ∈ Rn, the proof is complete.

Corollary 3.6.2 If a function g : Rn → R(n
k) is symmetric, then

gρ(x) = gτ(x), whenever xρ = xτ

for all ρ, τ ∈ Nn,k and all x ∈ Rn.

Example 3.6.3 Let f : Rn → R be symmetric and continuously differentiable. It is easy

to show that the gradient ∇ f (x) : Rn → Rn is symmetric. By the Theorem 3.6.1, function

h : R × Rn−1 → R defined by

h(x1; x2, . . . , xn) :=
∂ f
∂x1

(x) for all x ∈ Rn

is symmetric with respect to its last n− 1 arguments. Every other partial derivative of f can be

expressed as

∂ f
∂xi

(x) = h(xi; x1, . . . , xi−1, xi+1, . . . , xn)

for i = 1, . . . , n.

Theorem 3.6.1 allows us to characterize the symmetric functions g : Rn → R(n
k) that are

generated in the sense of Example 3.3.5.
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Corollary 3.6.4 Let g : Rn → R(n
k) be symmetric and continuously differentiable. Then, g is

generated by a symmetric function g̃ : Rk → R if and only if for any ρ ∈ Nn,k

∂gρ
∂xi

(x) = 0, whenever i ∈ ρc for all x ∈ Rn. (3.19)

Proof Suppose that g is generated by symmetric function g̃ : Rk → R. For any ρ ∈ Nn,k, we

have

∂gρ
∂xi

(x) =
∂g̃
∂xi

(xρ) = 0, whenever i ∈ ρc for all x ∈ Rn.

For the other direction, since g is symmetric, by Theorem 3.6.1, we have gρ(x) = h(xρ; xρc)

for any ρ ∈ Nn,k and any x ∈ Rn. By (3.19) we have

∂h
∂xi

(xρ; xρc) =
∂gρ
∂xi

(x) = 0, holds whenever i ∈ ρc for all x ∈ Rn.

This implies that h(xρ; xρc) = h(xρ), so g is generated by g̃ := h.

3.7 Analyticity of generated k-isotropic functions

Notice that antisymmetric of operators A1, . . . , Ak is only defined when A1 = · · · = Ak. One

can see that a (generated) k-isotropic function cannot be represented by the Dunford-Taylor

integral directly, when the corresponding symmetric function g̃ : Rk → R has a Cauchy integral

representation. Thus, we lift a (generated) k-isotropic function to a function F : S n → S nk

defined by (3.12) and find the Dunford-Taylor representation of F, see Theorem 3.7.3. By

applying the identity (3.18), one can prove the analyticity of (generated) k-isotropic functions,

see Theorem 3.7.4.
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3.7.1 Lifting a symmetric function

We begin this section with a general extension problem, that is of some interest to us. Given an

analytic, symmetric function g : Rn → R(n
k), is there an analytic function f : Rn → Rnk that is

1. block-constant;

2. satisfies condition (3.14); and

3. fρ(x) = gρ(x) for all x ∈ Rn and all ρ ∈ Nn,k.

The last condition, says that the following diagram commutes

Rnk

Rn g
>

f
>

R(n
k)

Π
∨

(3.20)

where Π : Rnk
→ R(n

k) is the projection defined by Π(x) := (xρ)ρ∈Nn,k .

As the next example shows, constructing such an analytic extension f is easy when g is

generated by a symmetric function g̃ : Rk → R.

Example 3.7.1 Let g̃ : Rk → R be symmetric and analytic, then the generated symmetric

function g : Rn → R(n
k), given by gρ(x) := g̃(xρ) for all ρ ∈ Nn,k, is analytic.

Define f : Rn → Rnk by fl(x) := g̃(xl) for all l ∈ Nk
n. The three conditions are trivially

verified. Indeed, if l,m ∈ Nk
n are in the same partition of Ix then xl = xm, so fl(x) = g̃(xl) =

g̃(xm) = fm(x). The fact that g̃ is symmetric guarantees that condition (3.14) holds. Finally,

f is analytic since it is the composition of the analytic function g̃ and the projection map

x ∈ Rn 7→ xl ∈ R
k.

The next example shows that not only generated, symmetric functions g can be extended

analytically in the required way.
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Example 3.7.2 Let q : Rn → Rn be symmetric and analytic and let g̃ : Rk → R be symmetric

and analytic. Define g : Rn → R(n
k) by

gρ(x) := g̃(qρ(x)), for all x ∈ Rn and all ρ ∈ Nn,k.

Function g is analytic since it is the composition of g̃, the projection map x ∈ Rn 7→ xρ ∈ Rk,

and q and they are all analytic.

Function g is not generated since for any ρ ∈ Nn,k and i ∈ ρc, the derivative

∂gρ
∂xi

(x) =

k∑
j=1

g̃′j(qρ(x))
∂qρ j

∂xi
(x)

is not necessarily zero, see Corollary 3.6.4.

Function g is symmetric since for any ρ ∈ Nn,k and permutation σ : Nn → Nn, with

corresponding permutation matrix P, we have

gρ(Px) = g̃(qρ(Px)) = g̃(qρ1(Px), . . . , qρk(Px)).

Next, since q is symmetric we have q(Px) = Pq(x). That is, for any i = 1, . . . , k, we have

qρi(Px) = (Pq(x))ρi = qσ(ρi)(x) and we continue

gρ(Px) = g̃(qσ(ρ1)(x), . . . , qσ(ρk)(x)) = g̃(qσ(k)(ρ)(x)) = gσ(k)(ρ)(x) = (Pg(x))ρ.

Define the function f : Rn → Rnk by

fl(x) := g̃(ql(x)), for l ∈ Nk
n.

It is clearly analytic since it is the composition of analytic functions.

To show that f is block-constant, fix x ∈ Rn and choose l,m ∈ Nk
n such that xl = xm. We are

going to show that fl(x) = fm(x). Consider the transposition σi : Nn → Nn that maps li to mi
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and vice versa, keeping the rest of the elements of Nn fixed, for all i = 1, . . . , k. Let Pi be its

corresponding transposition matrix. Since xl = xm, we have that Pix = x for all i. The fact that

q is symmetric implies

qli(x) = qli(P
ix) = (Piq(x))li = qσ(li)(x) = qmi(x),

for all i = 1, . . . , k. Hence,

fl(x) = g̃(ql1(x), . . . , qlk(x)) = g̃(qm1(x), . . . , qmk(x)) = fm(x).

Function f satisfies (3.14) because g̃ is symmetric. Finally, diagram (3.20) trivially com-

mutes.

Note that Example 3.7.2 reduces to Example 3.7.1, when we let q(x) := x for all x ∈ Rn.

3.7.2 Analyticity of generated k-isotropic functions

The following lemma shows the analyticity of a sub-class of map F : S n → S nk defined by

(3.12).

Theorem 3.7.3 Let g̃ : Rk → R be symmetric and let f : Rn → Rnk be defined by

fl(x) := g̃(xl) for all x ∈ Rn and l ∈ Nk
n. (3.21)

Then, function F : S n → S nk defined by (3.12) is analytic if and only if g̃ is.

Proof Suppose g̃ : Rk → R is analytic. Then, the Cauchy integral representation of g̃ holds:

g̃(x1, . . . , xk) =
1

(2πi)k

∮
Γ

· · ·

∮
Γ

g̃(z1, . . . , zk)∏k
i=1(zi − xi)

dz1 · · · dzk,
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where Γ is a positively oriented circle in the complex plane enclosing the points {x1, . . . , xk}.

Function f , defined by (3.21) is clearly analytic, since g̃ is and the map x 7→ xl is analytic for

all l ∈ Nk
n.

For any x ∈ Rnk , denote by Diagl xl the nk × nk diagonal matrix with l-th diagonal element

xl. The Dunford-Taylor integral representation of F(A) for any A ∈ S n is

F(A) = U⊗k(Diag f (λ(A))
)
(U⊗k)

>
= U⊗k(Diagl g̃(λl(A))

)
(U⊗k)

>

= U⊗k
(
Diagl

1
(2πi)k

∮
Γ

· · ·

∮
Γ

g̃(z1, . . . , zk)∏k
i=1(zi − λli(A))

dz1 · · · dzk

)
(U⊗k)

>

=
1

(2πi)k

∮
Γ

· · ·

∮
Γ

g̃(z1, . . . , zk)U⊗k
(
Diagl

k∏
i=1

(zi − λli(A))−1
)
(U⊗k)

>
dz1 · · · dzk,

where U ∈ On is such that A = U
(
Diag λ(A)

)
U> and Γ is a positively oriented circle in the

complex plane enclosing all eigenvalues {λ1(A), . . . , λn(A)}. Notice that

U⊗k(Diagl

k∏
i=1

(zi − λli(A))−1)(U⊗k)
>

= (z1I − A)−1 ⊗ · · · ⊗ (zkI − A)−1,

holds. Thus, one obtains the integral representation

F(A) =
1

(2πi)k

∮
Γ

· · ·

∮
Γ

g̃(z1, . . . , zk)
(
(z1I − A)−1 ⊗ · · · ⊗ (zkI − A)−1) dz1 · · · dzk,

where Γ is a positively oriented circle in the complex plane enclosing all eigenvalues of A.

Since the eigenvalue map A 7→ λ(A) is a continuous function, the circle Γ also encloses eigen-

values of all matrices B in a small open neighbourhood of A. Thus,

F(B) =
1

(2πi)k

∮
Γ

· · ·

∮
Γ

g̃(z1, . . . , zk)
(
(z1I − B)−1 ⊗ · · · ⊗ (zkI − B)−1) dz1 · · · dzk

holds for every B in an open neighbourhood of A. Since for any fixed z1, . . . , zk ∈ Γ, the map

B 7→ (z1I−B)−1⊗· · ·⊗(zkI−B)−1 is also analytic in that open neighbourhood, the result follows.

For the opposite direction, one just needs to restrict F : S n → S nk to the subspace of S n of
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diagonal matrices.

As a corollary, we obtain the analyticity of the k-isotropic functions defined by (3.7) in the

case when the function g is generated by a symmetric function g̃.

Theorem 3.7.4 Let g̃ : Rk → R be symmetric and let g : Rn → R(n
k) be defined by

gρ(x) := g̃(xρ) for all x ∈ Rn and ρ ∈ Nn,k.

Then, the k-isotropic function G : S n → S (n
k) defined by (3.7) is analytic if and only if g̃ is.

Proof Suppose that g̃ : Rk → R is analytic. Define f : Rn → Rnk as in (3.21) and F : S n →

S nk by (3.12). By Example 3.7.1, function f satisfies the conditions in Corollary 3.5.2. By

Theorem 3.7.3, F is analytic, hence identity (3.18) implies the analyticity of G.

For the opposite direction, one just needs to restrict G : S n → S (n
k) to the subspace of S n of

diagonal matrices.

Theorem 3.7.4 contains two well-known special cases. Taking k = 1 in it, one obtains

the the analyticity of primary matrix functions, see for example [12, Chapter 7]. While taking

k = n in it, one obtains the analyticity of spectral functions, see [24].
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Chapter 4

Canonical representation of k-tensor

isotropic functions

4.1 Introduction

Denote by Rn×n the space of all n×n real matrices and by S n the subspace of all n×n symmetric

matrices with inner product 〈A, B〉 := Tr(AB) and Frobenius norm ||A|| :=
√

Tr(AA). Let On

be the group of n × n orthogonal matrices: A ∈ On, if and only if A>A = I. Denote by Rn
≥ the

convex cone in Rn of all vectors with non-increasing coordinates. For any A ∈ S n, let λ(A) ∈ Rn
≥

be the ordered vector of eigenvalues of A:

λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A).

For any vector x ∈ Rn, let Diag x be the n × n matrix with diagonal elements x and zeros

elsewhere. Denote by Pn the collection of all n × n permutation matrices.

There are several well-studied classes of matrix-valued functions that have orthogonally

invariant properties. We give a short summary.

Definition 4.1.1 A function F : S n → S n is called a primary matrix function, if there exists a

79
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function f : R→ R, such that

F(A) = U
(
Diag ( f (λ1(A)), . . . , f (λn(A)))

)
U>, (4.1)

where U ∈ On is such that A = U(Diag λ(A))U>.

It is easy to see that the primary matrix functions are well-defined, see [6, Chapter V]. That

is, the right-hand side of (4.1) does not depend on the choice of the orthogonal matrix U diago-

nalizing A. For example, the map F(A) = exp(A) is a primary matrix function. Primary matrix

functions are also known as Löwner’s operator functions. Works [12] and [19] characterize

operator monotone primary matrix functions in terms of Pick functions. Operator convex pri-

mary matrix functions are characterized in [17]. Other properties are studied in [2], [3], [10],

[11], and [13]. For more examples, see the monographs [6, Chapter V] and [14, Chapter 6].

Primary matrix functions are a special case of the following class of maps.

Definition 4.1.2 A function F : S n → S n is called a tensor-valued isotropic function, if

F(UAU>) = UF(A)U>

for all U ∈ On and all A ∈ S n in the domain of F.

The monographs [15] and [22] list numerous applications of the tensor-valued isotropic

functions in mechanics and engineering. For example, the Piola-Kirchhoff stress function in

an isotropic solid, given in [15, page 128] and [22, page 173] is an example of tensor-valued

isotropic function.

We say that a function f : Rn → Rn is symmetric, if f (Px) = P f (x) for any x ∈ Rn and any

permutation matrix P ∈ Pn. The following representation theorem for tensor-valued isotropic

functions can be found in [22] and [23].
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Theorem 4.1.3 A function F : S n → S n is a tensor-valued isotropic function, if and only if

there is a unique symmetric function f : Rn → Rn, such that

F(A) = U
(
Diag f (λ(A))

)
U>, (4.2)

for all A ∈ S n and U ∈ On, such that A = U(Diag λ(A))U>.

Note that, if f : Rn → Rn is such that f (x) = (g(x1), . . . , g(xn)) for some g : R → R, then the

tensor-valued isotropic function, given by (4.2), becomes primary matrix function, given by

(4.1).

In [1] and [20] an generalization of the tensor-valued isotropic functions was proposed. For

an n×n matrix A, let A(k) denote the k-th multiplicative compound matrix of A, where 1 ≤ k ≤ n,

see [21].

Definition 4.1.4 A function G : S n → S (n
k) is called k-isotropic, if

G(UAU>) = U (k)G(A)(U (k))
>

for all U ∈ On and A ∈ S n in the domain of G.

Since U (1) = U, the k-isotropic functions turn into the tensor-valued isotropic functions, when

k = 1. Moreover, when k = n the k-isotropic functions become spectral functions, see [18] for

an overview of their properties and applications. The k-isotropic functions have a representa-

tion in the spirit of (4.2). In order to describe it, we introduce the following notation.

Let Nn := {1, 2, . . . , n} and let Nn,k be the set of all subsets of Nn of size k, ordered non-

decreasingly, where k ∈ Nn. Order the elements in Nn,k lexicographically. In this way, they are

used to index the coordinates of vectors in R(n
k).

Every permutation σ : Nn → Nn defines a permutation on σ(k) : Nn,k → Nn,k in the
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following way:

σ(k)(ρ) := the non-decreasing rearrangement of {σ(ρ1), . . . , σ(ρk)}.

Definition 4.1.5 A function g : Rn → R(n
k) is called symmetric, if

gρ(xσ(1), . . . , xσ(n)) = gσ(k)(ρ)(x1, . . . , xn)

holds for all x ∈ Rn and all ρ ∈ Nn,k.

The representation theorem of k-isotropic functions, stated in [20], is as follows.

Theorem 4.1.6 A function G : S n → S (n
k) is k-isotropic, if and only if there is a unique

symmetric function g : Rn → R(n
k), such that

G(A) = U (k)(Diag g(λ(A))
)
(U (k))

>

for all A ∈ S n and U ∈ On, such that A = U(Diag λ(A))U>.

Several authors have pursued another direction for generalizing the primary matrix func-

tions. For example, in [4], [5], [8], [9], and [24] the primary matrix functions have been

generalized to function on several matrix arguments (not necessarily of the same size). We

now proceed to describe that extension.

Any function f : Rk → R defines a map F : S n1 × · · · × S nk → S n1···nk by

F(A1, . . . , Ak) := (⊗k
i=1Ui)

(
Diagl f (λl1(A1), . . . , λlk(Ak))

)
(⊗k

i=1Ui)
>
, (4.3)

where l = (l1, . . . , lk) is in Nn1 × · · · × Nnk and Ui ∈ Oni is such that Ai = Ui
(
Diag λ(Ai)

)
Ui
> for

all i = 1, . . . , k. In addition, Diagl denotes a diagonal matrix with the indicated values on the

main diagonal ordered lexicographically with respect to the k-tuples l.
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When k = 1, the function given by (4.3) turns into the primary matrix function given by

(4.1). While (4.3) extends primary matrix functions to the multi-operator setting, it does not

capture the class of tensor-valued isotropic functions.

The map defined by (4.3) has the following invariance property:

F(U1A1U1
>, . . . ,UkAkUk

>) = (⊗k
i=1Ui)F(A1, . . . , Ak)(⊗k

i=1Ui)
>

(4.4)

for any Ui ∈ Oni , i = 1, . . . , k. The opposite is not true. That is, if map F : S n1 × · · · × S nk →

S n1···nk satisfies (4.4), then one cannot conclude the existence of f : Rk → R, such that (4.3)

holds.

A natural goal is to formulate a representation theorem, in the spirit of Theorems 4.1.3 and

4.1.6, for functions F : S n1 ×· · ·×S nk → S n1···nk that satisfy (4.4). At present time, this problem

appears to be too challenging. A particular case is to let n1 = · · · = nk =: n, and assume that

the invariance (4.4) holds whenever A1 = · · · = Ak =: A ∈ S n. Further specialization is to

formulate a representation theorem for maps F : S n → S nk satisfying

F(UAU>) = (⊗k
i=1U)F(A)(⊗k

i=1U)
>

for all U ∈ On and all A in the domain of F. This work addresses the latter problem, and it

answers it fully in the case k = 2 and any n. That result is formulated in Corollary 4.4.4.

4.2 Background and notation

Denote by ⊗kRn the k-th tensor power of Rn. That is the linear space of all formal finite linear

combinations of products {x1 ⊗ · · · ⊗ xk : x1, . . . , xk ∈ R
n}, with all necessary identifications

made so that the product is linear in each argument separately. The dimension of ⊗kRn is nk.

The tensor product of k linear operators A1, . . . , Ak on Rn, A1 ⊗ · · · ⊗ Ak, is a linear operator
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on ⊗kRn defined by

(A1 ⊗ · · · ⊗ Ak)(x1 ⊗ · · · ⊗ xk) := A1x1 ⊗ · · · ⊗ Akxk

and extended by linearity. Important properties of the tensor product are as follows:

(A1 ⊗ A2)(B1 ⊗ B2) = A1B1 ⊗ A2B2, and (A1 ⊗ A2)∗ = A∗1 ⊗ A∗2. (4.5)

When A1 and A2 are invertible, so is their tensor product and

(A1 ⊗ A2)−1 = A−1
1 ⊗ A−1

2 . (4.6)

The notation ⊗kA := A ⊗ · · · ⊗ A is used, when A1, . . . , Ak are all equal to A.

The tensor product of two n × n matrices A, B is defined by

A ⊗ B :=


A11B . . . A1nB
...

. . .
...

An1B . . . AnnB


and can be extended to a tensor product of A1, . . . , Ak by A1 ⊗ · · · ⊗ Ak.

Analogous properties to (4.5) and (4.6) hold for tensor product of matrices as well. Taking

A1 = · · · = Ak =: A, the tensor product A1 ⊗ · · · ⊗ Ak turns into k-th tensor power of A, denoted

by A⊗k.

We now give the main definition of this work.

Definition 4.2.1 A function F : S n → S nk is called k-tensor isotropic, if

F(UAU>) = (U⊗k)F(A)(U⊗k)
>

holds for all U ∈ On and A ∈ S n in the domain of F.



4.2. Background and notation 85

A collection of non-empty, pairwise disjoint subsets ofNn with unionNn is called a partition

of Nn. A set in a partition is called a block. We generally use the letter I to denote a partition of

Nn. Every x ∈ Rn, defines a partition Ix on Nn by taking i and j in the same block, if and only

if xi = x j. Denote by Ix = {Ix
1 , . . . , I

x
r } the partition, and its blocks, determined by x, where r is

the number of blocks.

Let

Nk
n := Nn × · · · × Nn (k times)

and assume that the elements in Nk
n are ordered lexicographically. The set Nk

n is used to index

the coordinates of vectors in Rnk and the entries of matrices in Rnk×nk . If x ∈ Rnk , then xl denotes

the l-th element of x, for l ∈ Nk
n; and if A ∈ Rnk×nk , then Al,m denotes the element in the l-th row

and m-th column, for l,m ∈ Nk
n. Then, the entry in the l-th row and m-th column of A⊗k is

(A⊗k)l,m =

k∏
i=1

Alimi .

On the other hand, if x ∈ Rn and l ∈ Nk
n, then define the subvector

xl := (xl1 , . . . , xlk).

Any x ∈ Rn
≥ generates a partition Ix on Nk

n. The elements of Nk
r label the blocks of this

partition as follows. For any s = (s1, . . . , sk) ∈ Nk
r , define a block in the partition of Nk

n by

Ix
s B {l ∈ N

k
n : li ∈ Ix

si
, for any i ∈ Nk},

where Ix
si

is the si-th block of the partition Ix for i = 1, . . . , k. Equivalently, l,m ∈ Nk
n are in the

same block of the partition Ix, if and only if xl = xm. The cardinality of Ix
s is

|Ix
s | = |I

x
s1
| · · · |Ix

sk
|.
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Denote the standard orthonormal basis in Rn by {e1, . . . , en} and denote the standard or-

thonormal basis in Rnk by {el : l ∈ Nk
n}. A natural isometry T : Rnk

→ ⊗kRn is defined by

T (el) := el1 ⊗ · · · ⊗ elk for all l ∈ Nk
n

and extended by linearity.

For any fixed x ∈ Rn
≥, matrix A ∈ Rn×n is called Ix-block-diagonal, if A can be written as

A = Diag (A1, . . . , Ar) with Ai of size |Ix
i | for all i = 1, . . . , r. It is not difficult to see that, if

matrix A is Ix-block-diagonal, then A⊗k is Ix-block-diagonal with blocks of size |Ix
s | for s ∈ Nk

n.

For any x ∈ Rn
≥, a vector x ∈ Rnk is called Ix-block-constant, if xl = xm for any l,m in the

same block of Ix. Alternatively, x ∈ Rnk is Ix-block-constant, if xl = xm, whenever xl = xm

for all l,m ∈ Nk
n. We say that a function f : Rn

≥ → R
nk is block-constant, if vector f (x) is

Ix-block-constant for all x ∈ Rn
≥. In other words, a function f : Rn

≥ → R
nk is block-constant, if

and only if fl(x) = fm(x), whenever xl = xm for all x ∈ Rn
≥ and all l,m ∈ Nk

n.

We use the following notation throughout. For any x ∈ Rn
≥, let

On,k := {V⊗k : V ∈ On};

On
x := {V ∈ On : V is Ix-block-diagonal};

On,k
x := {V⊗k : V ∈ On

x}.

Observe that On
x = On holds, if x contains equal coordinates. A k-tensor isotropic function

F : S n → S nk is well-defined, if

(V>U)⊗kF(Diag λ(A)) = F(Diag λ(A))(V>U)⊗k

for any A ∈ S n and any U,V ∈ On, such that

A = U
(
Diag λ(A)

)
U> = V

(
Diag λ(A)

)
V>. (4.7)



4.2. Background and notation 87

It is easy to see that, if U,V ∈ On satisfy (4.7), then V>U ∈ On
λ(A). Moreover, every matrix

in On
λ(A) can be obtained in this way, that is, if W ∈ On

λ(A) and U ∈ On satisfies (4.7), then

V := UW> also satisfies (4.7) and W = V>U. Thus, F(Diag λ(A)) is in the centralizer of

On,k
λ(A). Finding a representation theorem for k-tensor isotropic functions reduces to finding the

centralizer of On,k
λ(A). With that in mind, denote the centralizer and the symmetric centralizer of

a collectionA of n × n matrices by

C(A) := {B ∈ Rn×n : AB = BA for all A ∈ A},

CS (A) := {B ∈ S n : AB = BA for all A ∈ A}.

The orthogonal group On has two connected components. One, consisting of orthogonal matri-

ces with determinant +1, forms a group called special orthogonal group and denoted by S On.

The other connected component consists of orthogonal matrices with determinant −1. We need

to specialize our notation further. For any fixed x ∈ Rn
≥, let

S On
x := {V ∈ S On : V is Ix-block-diagonal},

S On,k
x := {V⊗k : V ∈ S On

x}.

A matrix is called sign-identity, if it is a diagonal matrix with +1 or −1 on the main diagonal.

Denote by In
± the set of all n × n sign-identity matrices, and let

In,k
± := {V⊗k : V ∈ In

±}.

If x ∈ Rn
≥ has distinct coordinates, then In

± = On
x.
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4.3 The centralizer of On,k
x

The goal of this section is to obtain a system of linear equations that characterize the matrices

in the centralizer C(On,k
x ), for x ∈ Rn

≥. That is the statement of Theorem 4.3.11.

It is well-known that, for x ∈ Rn, Diag x is in the centralizer of On, if and only if x has equal

coordinates. Similarly, we have

C(On
x) = {Diag y : y ∈ Rn is Ix-block-constant}.

Next lemma gives an analogous statement for the group On,k
x , see Lemma 4.2 in [16].

Lemma 4.3.1 For x ∈ Rnk , we have

Diag x ∈ C(On,k
x ), (4.8)

if and only if x is Ix-block-constant.

4.3.1 A representation of C(On,k
x )

Lemma 4.3.2 For any A ∈ Rn×n, we have A ∈ C(On), if and only if A ∈ C(S On) and A

commutes with one orthogonal matrix with determinant −1.

Proof Let I−n be an n × n orthogonal matrix with determinant −1. Suppose that AI−n = I−n A and

AV = VA holds for all V ∈ S On. Notice that for any V ∈ On with determinant −1, we have

VI−n ∈ S On. Hence, A(VI−n ) = VAI−n = (VI−n )A holds for all V ∈ On with determinant −1. Thus,

AU = UA holds for all U ∈ On.

The other direction is obvious.

Analogous proof shows more generally, that for any x ∈ Rn
≥, we have

C(On
x) = C(In

±) ∩C(S On
x).
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Lemma 4.3.3 For any x ∈ Rn
≥, we have C(On,k

x ) = C(In,k
± ) ∩C(S On,k

x ).

Proof Fix x ∈ Rn
≥. It is clear that the centralizer on the left-hand side is contained in the

intersection on the right. In the other direction, for any B ∈ On
x, there exists a B1 ∈ S On

x and a

B2 ∈ In
±, such that B = B1B2. Then, for any matrix A ∈ C(S On,k

x ) ∩C(In,k
± ), we have

AB⊗k = AB⊗k
1 B⊗k

2 = B⊗k
1 AB⊗k

2 = B⊗k
1 B⊗k

2 A = B⊗kA,

completing the argument.

The next goal is to compute C(In,k
± ) and C(S On,k

x ) separately.

4.3.2 The centralizer of In,k
±

Lemma 4.3.4 We have that A ∈ C(In
±), if and only if A is diagonal.

Proof Suppose A ∈ C(In
±). Then, for any B ∈ In

± and i, j ∈ Nn, we have

0 = (AB − BA)i j = Ai jB j j − BiiAi j = Ai j(B j j − Bii).

Choosing B, such that B j j , Bii, whenever i , j, shows that Ai j = 0. The opposite direction is

trivial.

To characterize C(In,k
± ), we need the following notation.

1. For any l := (l1, . . . , lk) ∈ Nk
n and a permutation σ : Nk → Nk, let

σ(l) := (lσ(1), . . . , lσ(k)).

2. Define the map α : Nk
n → {0, 1}

n by

α j(l) :=


0 if j appears even number of times in l,

1 if j appears odd number of times in l,
(4.9)



90 Chapter 4. Canonical representation of k-tensor isotropic functions

for j = 1, . . . , n.

In other words, if l = (l1, . . . , lk), then we have

α(l) =

k∑
i=1

eli (mod 2).

The map α is transitive, in the sense that, if α(l1) = α(l2) and α(l2) = α(l3), then α(l1) = α(l3)

holds, for any l1, l2, l3 ∈ Nk
n. We are now ready to describe C(In,k

± ).

Proposition 4.3.5 We have that A ∈ C(In,k
± ), if and only if

Al,m = 0, whenever α(l) , α(m)

holds for all l,m ∈ Nk
n.

Proof Matrix A is in C(In,k
± ), if and only if for any B ∈ In

±,

0 = (AB⊗k − B⊗kA)l,m = Al,m((B⊗k)m,m − (B⊗k)l,l).

Thus, A ∈ C(In,k
± ), if and only if Al,m = 0, whenever (B⊗k)m,m , (B⊗k)l,l for some B ∈ In

±. Since

(B⊗k)l,l = Bl1l1 Bl2l2 · · · Blklk and (B⊗k)m,m = Bm1m1 Bm2m2 · · · Bmkmk ,

one sees that (B⊗k)m,m = (B⊗k)l,l for all B ∈ In
±, if and only if α(l) = α(m). The result follows.

For the rest of the subsection, we focus on some special matrices from C(In,k
± ). For any

l,m ∈ Nk
n and a permutation σ : Nk → Nk, define the nk × nk matrix Pσ by

(Pσ)l,m :=


1 if σ(l) = m,

0 otherwise.
(4.10)
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Notice that for any l ∈ Nk
n and a permutation σ on Nk, we have α(σ(l)) = α(l). Thus, using

Proposition 4.3.5, one can see that Pσ ∈ C(In,k
± ). For example, when k = 1, Pσ is identity, since

the only permutation on N1 is the identity. It should be clear that Pσ is a permutation matrix,

and its action on the standard basis of Rnk is

Pσem = eσ
−1(m)

for all m ∈ Nk
n. Thus, Pσ is the permutation matrix corresponding to the permutation on Nk

n

induced by σ. For later reference we record the fact:

Pσ
> = Pσ−1 .

Of course, not every nk × nk permutation matrix is of the form (4.10). What makes (4.10)

special is that it (or rather its corresponding operator) permutes vectors within the tensor prod-

ucts in ⊗kRn. Indeed, for any l ∈ Nk
n, we have

T ◦ Pσ ◦ T
−1(elσ(1) ⊗ · · · ⊗ elσ(k)

)
= T ◦ Pσeσ(l) = T

(
el) = el1 ⊗ · · · ⊗ elk .

Hence, by linearity

T ◦ Pσ ◦ T
−1(xσ(1) ⊗ · · · ⊗ xσ(k)) = x1 ⊗ · · · ⊗ xk

for any xi ∈ Rn, i = 1, . . . , k.

4.3.3 Linearizing the problem

Fix any x ∈ Rn
≥. By Lemma 4.3.3, in order to characterize the matrices in C(On,k

x ), we need to

find those in C(In,k
± ) that also commute with the matrices in S On,k

x . A direct approach appears

to be futile. Instead, we carry the calculations in the tangent space to the manifold S On,k
x at the
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identity matrix I. The following proposition is standard, we include the proof for completeness.

Proposition 4.3.6 Let t ∈ (−ε, ε) 7→ V(t) ∈ S On
x be a differentiable path with V(0) = I. Then,

V ′(0) is a skew-symmetric, Ix-block-diagonal matrix. In fact, any skew-symmetric, Ix-block-

diagonal matrix can be obtained in this way.

Proof Take the derivative on both sides of V(t)V(t)> = I with respect to t at t = 0 to obtain

V(0)V ′(0)> + V ′(0)V(0)> = 0, implying that V ′(0)> = −V ′(0). Since V(t) is Ix-block-diagonal

matrix, so is V ′(0). For any n × n skew-symmetric, Ix-block-diagonal matrix A, the smooth

curve V(t) := exp(tA) ∈ S On
x is such that V(0) = I and V ′(0) = A.

Let

Hn := {A ∈ Rn×n : A is skew-symmetric},

Hn
x := {A ∈ Rn×n : A is skew-symmetric and Ix-block-diagonal}.

Define a linear map Sk : Rn×n → Rnk×nk
by

Sk(A) := A ⊗ I ⊗ · · · ⊗ I + I ⊗ A ⊗ · · · ⊗ I + · · · + I ⊗ · · · ⊗ I ⊗ A.

The next step is to show that the centralizer of S On,k
x is equal to the centralizer of

Sk(Hn
x) := {Sk(A) : A ∈ Hn

x}.

For the next lemma, recall that exp(A + B) = exp(A) exp(B) whenever A, B are in Rn×n with

AB = BA, see [7, page 32].

Lemma 4.3.7 For any A ∈ Rn×n, the following equality holds,

exp(Sk(A)) =
(

exp(A)
)⊗k
. (4.11)
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Proof Since A ⊗ I ⊗ · · · ⊗ I, . . . , I ⊗ · · · ⊗ I ⊗ A commute, the left-hand side of (4.11) becomes

exp(Sk(A)) = exp(A ⊗ I ⊗ · · · ⊗ I + I ⊗ A ⊗ · · · ⊗ I + · · · + I ⊗ · · · ⊗ I ⊗ A)

= exp(A ⊗ I ⊗ · · · ⊗ I) · · · exp(I ⊗ · · · ⊗ I ⊗ A)

=
( ∞∑

i=0

(A ⊗ I ⊗ · · · ⊗ I)i

i!

)
· · ·

( ∞∑
i=0

(I ⊗ · · · ⊗ I ⊗ A)i

i!

)
=

∞∑
i1,...,ik=0

(A ⊗ I ⊗ · · · ⊗ I)i1 · · · (I ⊗ · · · ⊗ I ⊗ A)ik

i1! · · · ik!

=

∞∑
i1,...,ik=0

(Ai1 ⊗ I ⊗ · · · ⊗ I) · · · (I ⊗ · · · ⊗ I ⊗ Aik)
i1! · · · ik!

=

∞∑
i1,...,ik=0

Ai1 ⊗ Ai2 ⊗ · · · ⊗ Aik

i1! · · · ik!
=

( ∞∑
i=0

Ai

i!

)⊗k
=

(
exp(A)

)⊗k
,

which is what we had to show.

It is well-known that the map

A ∈ Hn
x 7→ exp(A) ∈ S On

x

is onto, see [7, page 58]. For the next theorem, recall that A exp(B) = exp(B)A, whenever A, B

are in Rn×n with AB = BA, see [7, page 31].

Corollary 4.3.8 We have C(S On,k
x ) = C(Sk(Hn

x)).

Proof Let A ∈ C(S On,k
x ). Take a smooth curve V(t) ∈ S On

x for t ∈ R with V(0) = I. Differenti-

ate both sides of

AV(t)⊗k = V(t)⊗kA

with respect to t at t = 0 to obtain

ASk(V ′(0)) = Sk(V ′(0))A.
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Since any matrix in Hn
x is equal to V ′(0) for some smooth curve, we conclude that A ∈

C(Sk(Hn
x)).

For the opposite inclusion, let A ∈ C(Sk(Hn
x)). For any A ∈ Hn

x , by Lemma 4.3.7, we have

A(exp(A))⊗k = A exp(Sk(A)) = exp(Sk(A))A = (exp(A))⊗kA.

Since every matrix in S On,k
x is of the form (exp(A))⊗k for some A ∈ Hn

x , we are done.

Since S On,k
x ⊆ S On,k ⊆ On,k, we have

C(On,k) ⊆ C(S On,k) ⊆ C(S On,k
x ).

The next proposition shows that every matrix Pσ is in C(On,k).

Proposition 4.3.9 We have Pσ ∈ C(On,k), for every permutation σ : Nk → Nk.

Proof Since Pσ is in C(In,k
± ), we only need to show that Pσ is in C(S On,k). That is, we have

to show that PσSk(A) = Sk(A)Pσ for all A ∈ Hn and all permutations σ : Nk → Nk. For any

l,m ∈ Nk
n, we have

(PσSk(A))l,m − (Sk(A)Pσ)l,m = (Pσ)l,σ(l)(Sk(A))σ(l),m − (Sk(A))l,σ−1(m)(Pσ)σ−1(m),m.

Now,

(Pσ)l,σ(l) = 1 and (Pσ)σ−1(m),m = 1

and

(Sk(A))σ(l),m =

k∑
i=1

Alσ(i)mi

∏
j,i

Ilσ( j)m j =

k∑
i=1

Alimσ−1(i)

∏
j,i

Il jmσ−1( j)
= (Sk(A))l,σ−1(m).

The proof follows from here.
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4.3.4 The centralizer of On,k
x

The following function allows us to compare two given indexes. Define θ : Nk
n × N

k
n → {0, 1}

by

θ(l,m) :=


1 if li∗ , mi∗ for some i∗ ∈ Nk and li = mi for all i , i∗,

0 otherwise,
(4.12)

for any l,m ∈ Nk
n. It is obvious that θ(l,m) = θ(m, l), for any l,m ∈ Nk

n.

Lemma 4.3.10 For any A ∈ Hn, Sk(A) is skew-symmetric and its elements are

(Sk(A))l,m =


Ali∗mi∗ if θ(l,m) = 1 with li∗ , mi∗ ,

0 if θ(l,m) = 0,

for any l,m ∈ Nk
n.

Proof The fact that Sk(A) is skew-symmetric follows from the properties of tensor product.

Without loss of generality, it suffices to consider the following three cases.

Case 1. If l = m, then θ(l,m) = 0, and since

(A ⊗ I ⊗ · · · ⊗ I)l,m = · · · = (I ⊗ I ⊗ · · · ⊗ A)l,m = 0,

we have (Sk(A))l,m = 0.

Case 2. If l1 , m1 and li = mi for all i , 1, then θ(l,m) = 1. Using that



(A ⊗ I ⊗ · · · ⊗ I)l,m = Al1m1 Il2m2 · · · Ilkmk = Al1m1 ,

(I ⊗ A ⊗ · · · ⊗ I)l,m = Il1m1 Al2m2 · · · Ilkmk = 0,
...

(I ⊗ I ⊗ · · · ⊗ A)l,m = Il1m1 Il2m2 · · · Alkmk = 0,

we obtain that (Sk(A))l,m = Al1m1 .



96 Chapter 4. Canonical representation of k-tensor isotropic functions

Case 3. If l1 , m1, l2 , m2 and li = mi for all i = 3, . . . , k, then θ(l,m) = 0. Using that

(A ⊗ I ⊗ · · · ⊗ I)l,m = · · · = (I ⊗ I ⊗ · · · ⊗ A)l,m = 0,

we obtain (Sk(A))l,m = 0.

Consider the following skew-symmetric matrices in Hn
x . For any s, t ∈ Nn, with s , t, such

that s and t are in the same block of Ix, let

(Ast
x )i j :=


1 if i = s and j = t,

−1 if i = t and j = s,

0 otherwise.

Thus, any A ∈ Hn
x can be written as

A =
∑
s>t

AstAst
x ,

where s, t ∈ Nn are in the same block of Ix. If the coordinates of vector x are all equal, then

Hn
x = Hn, so we drop the index x and write simply Ast, for all s, t ∈ Nn with s , t.

Define the set

β(l,m) := {l1 ∈ Nk
n : α(l) = α(l1) and θ(l1,m) = 1},

where α is given by (4.9) and θ is given by (4.12). Note that, in general, the sets β(l,m) and

β(m, l) are not equal.

Theorem 4.3.11 For any x ∈ Rn
≥, we have A ∈ C(On,k

x ), if and only if A ∈ C(In,k
± ) and satisfies

∑
l1∈β(l,m)

Al,l1(Sk(Ast
x ))l1,m =

∑
l1∈β(m,l)

(Sk(Ast
x ))l,l1Al1,m (4.13)

for all l,m ∈ Nk
n and all s, t in a same block of Ix, with s , t.
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Proof By Lemma 4.3.3, A ∈ C(On,k
x ), if and only if A ∈ C(In,k

± )∩C(S On,k
x ). By Corollary 4.3.8,

C(S On,k
x ) = C(S k(Hn

x)) and by the linearity of the map Sk, we have that A ∈ C(S k(Hn
x)), if and

only if

∑
l1∈Nk

n

Al,l1(Sk(Ast
x ))l1,m =

∑
l1∈Nk

n

(Sk(Ast
x ))l,l1Al1,m (4.14)

for all l,m ∈ Nk
n and all s, t in a same block of Ix, with s , t. If l1 < β(l,m) then either

α(l) , α(l1) or θ(l1,m) = 0. In the first case, by Proposition 4.3.5, we get Al,l1 = 0. In the latter

case, (Sk(Ast
x ))l1,m = 0. Thus, the left-hand side of (4.14) is equal to the left-hand side of (4.13).

Analogously, the terms on the right-hand side of (4.14) corresponding to l1 < β(m, l) are

zero.

Lemma 4.3.12 Fix any l,m ∈ Nk
n and s, t ∈ Nn, such that s and t are in a same block of the

partition Ix and s , t. Then, the left-hand side of (4.13) is not identically zero, if and only if at

least one coordinate of m is s or t and

α(l) = α(m) + es + et (mod 2). (4.15)

Proof By Lemma 4.3.10, one can see

(Sk(Ast
x ))l1,m =


(Ast

x )l1i∗mi∗
if θ(l1,m) = 1 with l1

i∗ , mi∗ ,

0 if θ(l1,m) = 0,

=


1 if θ(l1,m) = 1 with l1

i∗ = s,mi∗ = t,

−1 if θ(l1,m) = 1 with l1
i∗ = t,mi∗ = s,

0 otherwise,

(4.16)
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for any l1,m ∈ Nk
n, where the second equality is obtained after observing that

(Ast
x )i j =


1 if i = s, j = t,

−1 if i = t, j = s.

Suppose that the left-hand side of (4.13) is not identically zero. This implies that β(l,m) , ∅

and there is an l1 ∈ β(l,m), such that (Sk(Ast
x ))l1,m , 0. By (4.16), at least one coordinate of

m ∈ Nk
n is s or t. Let m := (m1,m2, . . . ,mk) and l1 := (l1

1, l
1
2, . . . , l

1
k). The k-tuples l1 and m are

almost the same, except that they differ in one position, namely i∗. In fact, (l1
i∗ ,mi∗) is equal to

(s, t) or (t, s). Thus,

α(l1) = el1i∗ +

k∑
i=1
i,i∗

el1i (mod 2) = el1i∗ +

k∑
i=1
i,i∗

emi (mod 2)

= emi∗ + es + et +

k∑
i=1
i,i∗

emi (mod 2) = α(m) + es + et (mod 2).

Since l1 ∈ β(l,m), we also have α(l) = α(l1).

For the other direction, suppose that m contains s or t and l and m satisfy (4.15). We only

need to find an l1 ∈ β(l,m) satisfying (Sk(Ast
x ))l1,m , 0.

Since m contains s or t, without loss of generality, assume m = (s,m2, . . . ,mk). Taking

l1 = (t,m2, . . . ,mk), one can see by (4.16), that (Sk(Ast
x ))l1,m , 0. The latter implies also that

θ(l1,m) = 1. By (4.15), one can see

α(l1) = et +

k∑
i=2

emi = es +

k∑
i=2

emi + et + es (mod 2) = α(m) + et + es (mod 2) = α(l).

Thus l1 ∈ β(l,m), completing the proof.
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4.4 The main results

In this section, we specialize to the case k = 2 and to considering only symmetric matrices in

the centralizer of On,2
x . It is easy to see CS (On,k

x ) = CS (In,k
± ) ∩ CS (S On,k

x ). Since C(S On,k
x ) =

C(Sk(Hn
x)), it is easy to see that CS (S On,k

x ) = CS (Sk(Hn
x)). We apply Theorem 4.3.11 to obtain

explicit representation of the matrices in CS (On,2
x ). To simplify the presentation, we first obtain

explicit representation of the matrices in CS (On,2). This is achieved in the next theorem, whose

proof is given in the Appendix.

Theorem 4.4.1 Any matrix A ∈ CS (On,2) can be expressed as

A = a1Q + a2P(1,2) + a3P(1)(2)

for some a1, a2, a3 ∈ R, where

Ql,m :=


1 if l1 = l2 and m1 = m2,

0 otherwise.

The permutation matrices P(1,2) and P(1)(2) in Rn2×n2 are defined by (4.10) and correspond to the

transposition and the identity permutations on N2.

For easy reference, we state P(1,2) and P(1)(2) explicitly:

(P(1,2))l,m :=


1 if l1 = m2 and l2 = m1,

0 otherwise,

(P(1)(2))l,m :=


1 if l1 = m1 and l2 = m2,

0 otherwise.

It is easy to see that Q and P(1,2) are symmetric and P(1)(2) is the identity matrix.

We now state the representation theorem for the matrices in CS (On,2
x ). The proof is in the

Appendix.
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Theorem 4.4.2 Fix any x ∈ Rn
≥. A matrix A ∈ CS (On,2

x ) has the following representation

A = Q(x1) +
(
Diag x2

)
P(1,2) +

(
Diag x3

)
P(1)(2), (4.17)

where x1, x2, x3 ∈ R
n2 are Ix-block-constant, such that

(x1)(l1,l2) = (x1)(l2,l1) and (x2)(l1,l2) = (x2)(l2,l1)

for all l ∈ N2
n. The map Q : Rn2

→ Rn2×n2 is defined by

(Q(x))l,m :=


x(l1,m1) if l1 = l2 and m1 = m2,

0 otherwise,
(4.18)

for all l,m ∈ N2
n.

One can verify that all three matrices on the right-hand side of (4.17) are in S n2
.

Remark 4.4.3 Representation (4.17) may not be unique, if the partition Ix of Nn contains a

block with one element. Indeed, from the proof of Theorem 4.4.2, one can see that, if {s} ∈ Ix

is a block of size one, then one can choose the values of (x1)(s,s), (x2)(s,s), and (x3)(s,s) freely, as

long as they satisfy

A(s,s),(s,s) = (x1)(s,s) + (x2)(s,s) + (x3)(s,s).

To resolve this issue and make representation (4.17) unique, for every block {s} ∈ Ix of size

one, we set

(x1)(s,s) := 0, (x2)(s,s) := 0, and (x3)(s,s) := A(s,s),(s,s).

Vectors x1, x2, x3 remain Ix-block-constant.

The representation of 2-tensor isotropic functions is as follows.
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Corollary 4.4.4 A function F : S n → S n2 is 2-tensor isotropic, if and only if there exist block-

constant functions f1, f2, f3 : Rn
≥ → R

n2 , such that

F(A) = U⊗2(Q( f1(λ(A))) +
(
Diag f2(λ(A))

)
P(1,2) +

(
Diag f3(λ(A))

)
P(1)(2)

)
(U⊗2)> (4.19)

for any U ∈ On, such that A = U
(
Diag λ(A)

)
U>. In addition, the functions f1 and f2 satisfy

( f1(x))(l1,l2) = ( f1(x))(l2,l1) and ( f2(x))(l1,l2) = ( f2(x))(l2,l1)

for all l ∈ N2
n. The map Q : Rn2

→ Rn2×n2 is defined as in (4.18).

Proof The right-hand side of (4.19) does not depend on the choice of the diagonalizing matrix

U ∈ On, since the expression

Q( f1(λ(A))) +
(
Diag f2(λ(A))

)
P(1,2) +

(
Diag f3(λ(A))

)
P(1)(2)

is in the centralizer CS
(
On,2
λ(A)

)
by Theorem 4.4.2. Thus, the value of the right-hand side of

(4.19) is well-defined.

Suppose that the value of F(A) is given by (4.19). For any V ∈ On, we have that

F(VAV>) = (VU)⊗2(Q( f1(λ(A))) +
(
Diag f2(λ(A))

)
P(1,2) + Diag f3(λ(A))

)
((VU)⊗2)>

= V⊗2U⊗2(Q( f1(λ(A))) +
(
Diag f2(λ(A))

)
P(1,2) + Diag f3(λ(A))

)(
U⊗2)>(V⊗2)>

= V⊗2F(A)(V⊗2)>,

implying that F is 2-tensor isotropic.

For the other direction, suppose that the function F : S n → S n2 is 2-tensor isotropic.

For each A ∈ S n, it is easy to see that F(Diag λ(A)) is in the centralizer CS (On,2
λ(A)). Hence,

by Theorem 4.4.2 and Remark 4.4.3, there are unique Iλ(A)-block-constant vectors x1, x2, x3,
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depending only on λ(A), such that

F(Diag λ(A)) = Q(x1) +
(
Diag x2

)
P(1,2) +

(
Diag x3

)
P(1)(2).

Defining fi(λ(A)) := xi for all i = 1, 2, 3, completes the proof.

4.5 Appendix

Proof of Theorem 4.4.1 We use (4.16) repeatedly without further mention. We should notice

that
(
S2(Ast)

)
l,m = 0, whenever no entry of m is s or t. We characterize the symmetric matrices

in CS (On,2), using Theorem 4.3.11. That is, we solve the following system of linear equations

in the entries of A ∈ S n2 :

∑
l1∈β(l,m)

Al,l1(S2(Ast))l1,m =
∑

l1∈β(m,l)

(S2(Ast))l,l1Al1,m (4.20)

for all l,m ∈ N2
n and all s, t ∈ Nn with s , t. By the definition of the set β(l,m), system (4.20)

does not involve entries Al,m from A for which α(l) , α(m). Such entries are necessarily zero

by Proposition 4.3.5.

Also, if β(l,m) = β(m, l) = ∅, then both sides of (4.20) are zero. Thus, we only need to

consider l,m ∈ N2
n, such that β(l,m) , ∅, or β(m, l) , ∅, or both to find all constrains on A. Note

that, if we transpose l and m in equation (4.20), then its both sides switch places and change

sign. Thus, we only need to consider cases when the left-hand side of (4.20) is non-zero. Fix

s, t ∈ Nn with s , t. Since at least one entry of m is s or t, the possible values of m ∈ N2
n are

(s, s), (t, t), (s, t), (t, s), (m1, s), (m1, t), (s,m2), and (t,m2),

where m1,m2 < {s, t}.

Case 1. Suppose m = (s, s). By Lemma 4.3.12, the possible values for l are (s, t) and (t, s).
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Case 1.a Suppose m = (s, s) and l = (s, t). Then, we have

β(l,m) = {(t, s), (s, t)} and β(m, l) = {(s, s), (t, t)}.

Equation (4.20) turns into

A(s,t),(t,s)(S2(Ast))(t,s),(s,s) + A(s,t),(s,t)(S2(Ast))(s,t),(s,s)

= (S2(Ast))(s,t),(s,s)A(s,s),(s,s) + (S2(Ast))(s,t),(t,t)A(t,t),(s,s),

which simplifies to

A(s,t),(t,s)(−1) + A(s,t),(s,t)(−1) = (−1)A(s,s),(s,s) + (+1)A(t,t),(s,s),

that is

A(s,s),(s,s) = A(s,t),(s,t) + A(s,t),(t,s) + A(t,t),(s,s). (4.21)

Case 1.b Suppose m = (s, s) and l = (t, s). Then, we have

β(l,m) = {(t, s), (s, t)} and β(m, l) = {(s, s), (t, t)}.

Equation (4.20) turns into

A(t,s),(t,s)(S2(Ast))(t,s),(s,s) + A(t,s),(s,t)(S2(Ast))(s,t),(s,s)

= (S2(Ast))(t,s),(s,s)A(s,s),(s,s) + (S2(Ast))(t,s),(t,t)A(t,t),(s,s),

which implies that

A(t,s),(t,s)(−1) + A(t,s),(s,t)(−1) = (−1)A(s,s),(s,s) + (+1)A(t,t),(s,s),
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that is

A(s,s),(s,s) = A(t,s),(t,s) + A(t,s),(s,t) + A(t,t),(s,s). (4.22)

Comparing (4.21) and (4.22), and using that A is symmetric matrix, one obtains

A(s,t),(s,t) = A(t,s),(t,s). (4.23)

Case 2. Suppose m = (t, t). By Lemma 4.3.12, the possible values for l are (s, t) and (t, s).

Case 2.a Suppose m = (t, t) and l = (s, t). Then, we have

β(l,m) = {(t, s), (s, t)} and β(m, l) = {(s, s), (t, t)}.

Equation (4.20) turns into

A(s,t),(t,s)(S2(Ast))(t,s),(t,t) + A(s,t),(s,t)(S2(Ast))(s,t),(t,t)

= (S2(Ast))(s,t),(s,s)A(s,s),(t,t) + (S2(Ast))(s,t),(t,t)A(t,t),(t,t),

which implies that

A(s,t),(t,s)(+1) + A(s,t),(s,t)(+1) = (−1)A(s,s),(t,t) + (+1)A(t,t),(t,t),

that is

A(t,t),(t,t) = A(s,t),(t,s) + A(s,t),(s,t) + A(s,s),(t,t). (4.24)

Case 2.b Suppose m = (t, t) and l = (t, s). Then, we have

β(l,m) = {(t, s), (s, t)} and β(m, l) = {(s, s), (t, t)}.
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Equation (4.20) turns into

A(t,s),(t,s)(S2(Ast))(t,s),(t,t) + A(t,s),(s,t)(S2(Ast))(s,t),(t,t)

= (S2(Ast))(t,s),(s,s)A(s,s),(t,t) + (S2(Ast))(t,s),(t,t)A(t,t),(t,t),

which implies that

A(t,s),(t,s)(+1) + A(t,s),(s,t)(+1) = (−1)A(s,s),(t,t) + (+1)A(t,t),(t,t),

that is

A(t,t),(t,t) = A(t,s),(t,s) + A(t,s),(s,t) + A(s,s),(t,t).

This equation is a consequence of (4.23), (4.24), and the fact that A is symmetric, so we discard

it.

Case 3. Suppose m = (s, t). By Lemma 4.3.12, the possible values for l are (l1, l1) for

l1 ∈ Nn.

Case 3.a Suppose m = (s, t) and l = (s, s). This case is the same as Case 1.a after transpos-

ing l and m.

Case 3.b Suppose m = (s, t) and l = (t, t). This case is the same as Case 2.a after transposing

l and m.

Case 3.c Suppose m = (s, t) and l = (l1, l1) for l1 < {s, t}. Then, we have

β(l,m) = {(s, s), (t, t)} and β(m, l) = ∅.

Equation (4.20) turns into

A(l1,l1),(s,s)(S2(Ast))(s,s),(s,t) + A(l1,l1),(t,t)(S2(Ast))(t,t),(s,t) = 0,
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which implies that

A(l1,l1),(s,s)(+1) + A(l1,l1),(t,t)(−1) = 0,

that is

A(l1,l1),(s,s) = A(l1,l1),(t,t) for all l1 < {s, t}. (4.25)

Case 4. Suppose m = (t, s). By Lemma 4.3.12, the possible values for l are (l1, l1) for

l1 ∈ Nn.

Case 4.a Suppose m = (t, s) and l = (s, s). This case is the same as Case 1.b after transpos-

ing l and m.

Case 4.b Suppose m = (t, s) and l = (t, t). This case is the same as Case 2.b after transpos-

ing l and m.

Case 4.c Suppose m = (t, s) and l = (l1, l1) for l1 < {s, t}. Then, we have

β(l,m) = {(s, s), (t, t)} and β(m, l) = ∅,

Equation (4.20) turns into

A(l1,l1),(s,s)(S2(Ast))(s,s),(t,s) + A(l1,l1),(t,t)(S2(Ast))(t,t),(t,s) = 0,

which implies that

A(l1,l1),(s,s)(+1) + A(l1,l1),(t,t)(−1) = 0,

that is

A(l1,l1),(s,s) = A(l1,l1),(t,t) for all l1 < {s, t},
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which is the same as (4.25).

Case 5. Suppose m = (m1, s) for some m1 < {s, t}. By Lemma 4.3.12, the possible values

for l are (m1, t) and (t,m1).

Case 5.a Suppose m = (m1, s) and l = (m1, t). Then, we have

β(l,m) = {(m1, t)} and β(m, l) = {(m1, s)}.

Equation (4.20) turns into

A(m1,t),(m1,t)(S2(Ast))(m1,t),(m1,s) = (S2(Ast))(m1,t),(m1,s)A(m1,s),(m1,s),

which implies that

A(m1,t),(m1,t)(−1) = (−1)A(m1,s),(m1,s),

that is

A(m1,t),(m1,t) = A(m1,s),(m1,s) for all m1 < {s, t}. (4.26)

Case 5.b Suppose m = (m1, s) and l = (t,m1). Then, we have

β(l,m) = {(m1, t)} and β(m, l) = {(s,m1)}.

Equation (4.20) turns into

A(t,m1),(m1,t)(S2(Ast))(m1,t),(m1,s) = (S2(Ast))(t,m1),(s,m1)A(s,m1),(m1,s),
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which implies that

A(t,m1),(m1,t)(−1) = (−1)A(s,m1),(m1,s),

that is

A(t,m1),(m1,t) = A(s,m1),(m1,s) for all m1 < {s, t}. (4.27)

Case 6. Suppose m = (m1, t) for m1 < {s, t}. By Lemma 4.3.12, the possible values for l are

(m1, s) and (s,m1).

Case 6.a Suppose m = (m1, t) and l = (m1, s). This case is the same as Case 5.a after

transposing l and m.

Case 6.b Suppose m = (m1, t) and l = (s,m1). Then, we have

β(l,m) = {(m1, s)} and β(m, l) = {(t,m1)}.

Equation (4.20) turns into

A(s,m1),(m1,s)(S2(Ast))(m1,s),(m1,t) = (S2(Ast))(s,m1),(t,m1)A(t,m1),(m1,t),

which implies that

A(s,m1),(m1,s)(+1) = (+1)A(t,m1),(m1,t),

that is

A(s,m1),(m1,s) = A(t,m1),(m1,t) for all m1 < {s, t},

which was obtained in (4.27).
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Case 7. Suppose m = (s,m2) for m2 < {s, t}. By Lemma 4.3.12, the possible values for l

are (t,m2) and (m2, t).

Case 7.a Suppose m = (s,m2) and l = (t,m2). Then, we have

β(l,m) = {(t,m2)} and β(m, l) = {(s,m2)}.

Equation (4.20) turns into

A(t,m2),(t,m2)(S2(Ast))(t,m2),(s,m2) = (S2(Ast))(t,m2),(s,m2)A(s,m2),(s,m2),

which implies that

A(t,m2),(t,m2)(−1) = (−1)A(s,m2),(s,m2),

that is

A(t,m2),(t,m2) = A(s,m2),(s,m2) for all m1 < {s, t}. (4.28)

Case 7.b Suppose m = (s,m2) and l = (m2, t). This case is the same as Case 6.b after

transposing l and m.

Case 8. Suppose m = (t,m2) for m2 < {s, t}. By Lemma 4.3.12, the possible values for l are

(s,m2) and (m2, s).

Case 8.a Suppose m = (t,m2) and l = (s,m2). This case is the same as Case 7.a after

transposing l and m.

Case 8.b Suppose m = (t,m2) and l = (m2, s). This case is the same as Case 5.b after

transposing l and m.

Now, we summarize the constrains (4.22), (4.23), (4.24), (4.25), (4.26), (4.27), and (4.28)

that we found and neglect the constrains which can be derived from the listed ones. Thus,
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matrix A ∈ S n2 satisfies the following conditions:

A(s,s),(s,s) = A(t,s),(t,s) + A(t,s),(s,t) + A(t,t),(s,s),

A(s,t),(s,t) = A(t,s),(t,s),

A(t,t),(t,t) = A(t,s),(t,s) + A(t,s),(s,t) + A(s,s),(t,t),

A(q,q),(s,s) = A(q,q),(t,t), (4.29)

A(q,t),(q,t) = A(q,s),(q,s),

A(t,q),(q,t) = A(s,q),(q,s),

A(t,q),(t,q) = A(s,q),(s,q),

for all distinct q, s, t ∈ Nn. As a consequence of these relationships, using the fact that A is

symmetric, one can obtain that there are constants a1, a2, a3, such that

A(t,t),(s,s) = a1, A(s,t),(t,s) = a2, A(t,s),(t,s) = a3, (4.30)

for any distinct s, t ∈ Nn, and

A(s,s),(s,s) = a3 + a2 + a1 for all s ∈ Nn.

Note that, if Al,m is such that α(l) = α(m), then Al,m is of the form A(t,t),(s,s), A(s,t),(t,s), A(t,s),(t,s),

or A(s,s),(s,s) for some t and s. As mentioned above Al,m = 0, whenever α(l) , α(m). Thus, all

entries of A are accounted for together with all relationships between them. The result follows

from here.

Proof of Theorem 4.4.2 Fix x ∈ Rn
≥. By Theorem 4.3.11, in order to characterize the matrices

in CS (On,2
x ), we need to solve the following system of linear equations in the entries of A ∈
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CS (In,2
± ):

∑
l1∈β(l,m)

Al,l1(S2(Ast
x ))l1,m =

∑
l1∈β(m,l)

(S2(Ast
x ))l,l1Al1,m (4.31)

for all l,m ∈ Nn,k and all s, t ∈ Nn, with s , t, in the same block of Ix.

Notice that, for any fixed s, t in the same block of Ix, equation (4.31) is the same as equation

(4.20), since Ast
x = Ast. Hence, relationships (4.30) obtained in the proof of Theorem 4.4.1 still

hold, but now the constants a1, a2, a3 depend on the block. Suppose that partition Ix contains

r blocks and let a1, a2, a3 ∈ R
r2 be three vectors (one may also view them as r × r matrices)

whose entries are free variables. Thus, if s, t are in the i-th block of Ix, then one can obtain

A(t,t),(s,s) = (a1)(i,i), A(s,t),(t,s) = (a2)(i,i), A(t,s),(t,s) = (a3)(i,i),

and

A(s,s),(s,s) = (a1)(i,i) + (a2)(i,i) + (a3)(i,i). (4.32)

If s ∈ Nn is in the i-th block of Ix and q is in the j-th block of Ix, then the last four relations in

(4.29) imply that

A(q,q),(s,s) = (a1)( j,i), A(s,s),(q,q) = (a1)(i, j),

A(s,q),(q,s) = (a2)(i, j), A(q,s),(s,q) = (a2)( j,i), (4.33)

A(q,s),(q,s) = (a3)( j,i), A(s,q),(s,q) = (a3)(i, j).

Since A is symmetric, we conclude that

(a1)( j,i) = (a1)(i, j) and (a2)(i, j) = (a2)( j,i).
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A clarification is in order. The relations in (4.29) were derived under the assumption that

we can choose distinct s and t in a same block of Ix. If s is the only element in the i-th block and

q is the only element in the j-th block, then there are no restrictions on the elements A(q,q),(s,s),

A(s,q),(q,s), A(q,s),(q,s), A(s,q),(s,q), and A(s,s),(s,s), so we may assume that (4.33) and (4.32) hold as

well.

Finally, define the vectors x1, x2, x3 ∈ R
n2 as follows

(x1)(s,t) := (a1)(i,i), (x1)(s,q) := (a1)(i, j),

(x2)(s,t) := (a2)(i,i), (x2)(s,q) := (a2)(i, j),

(x3)(s,t) := (a3)(i,i), (x3)(s,q) := (a3)(i, j), (x3)(q,s) := (a3)( j,i)

for all s, t in the i-th block and q in the j-th block, where i, j ∈ Nr and i , j. The verification of

(4.17) is routine.
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Chapter 5

On differentiability of a class of

orthogonally invariant functions on

several operator variables

5.1 Introduction

Let Nn := {1, . . . , n}. Denote by S n the space of all n × n symmetric matrices with inner

product 〈A, B〉 := Tr (AB). Let On be the group of n× n orthogonal matrices. Denote by Rn
≥ the

convex cone in Rn of all vectors with non-increasingly ordered coordinates. For any A ∈ S n,

let λ(A) ∈ Rn
≥ be the ordered vector of eigenvalues of A. Let Diag x be the n × n matrix with

x ∈ Rn on the main diagonal.

Fix natural numbers n1, . . . , nk and assume that the k-tuples in Nn1 × · · · × Nnk are ordered

lexicographically. For any function f : Rk → R define

FH : S n1 × · · · × S nk → S n1···nk by

FH(A1, . . . , Ak) := (⊗k
i=1Ui)

(
Diagl f (λl1(A1), . . . , λlk(Ak))

)
(⊗k

i=1Ui)
>
,

116
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where Ui ∈ Oni is such that Ai = Ui(Diag λ(Ai))Ui
> for i ∈ Nk. Here, Diagl xl denotes the

diagonal matrix with vector x ∈ Rn1···nk on the main diagonal and l ∈ Nn1 × · · · × Nnk .

Several properties of these functions have been studied. For example operator monotonicity

and operator convexity are extensively studied in [2], [3], [6], [7], [9], [11], and [12]. In [6],

the author shows that, for values m = 1, 2, function FH is Cm at (A1, . . . , Ak), if the underlying

f is Cp, where p > m + k/2, at (λl1(A1), . . . , λlk(Ak)) for all l ∈ Nn1 × · · · × Nnk .

To introduce the second class of functions, denote by Nn,k the set of all subsets of Nn of size

k with elements ordered increasingly, where 1 ≤ k ≤ n. The elements of the setNn,k are ordered

lexicographically and used to index the coordinates of vectors in R(n
k). Let f : Rk → R be a

symmetric function, that is invariant under permutations of its arguments. Define f : Rn → R(n
k)

by

fρ(x) := f (xρ1 , . . . , xρk)

for all x ∈ Rn and all ρ ∈ Nn,k. Finally, let U (k) be the k-th multiplicative compound matrix of

an n × n matrix U. It is known that U (k) is orthogonal, whenever U is, see Section 5.2 for more

details. For any symmetric f : Rk → R, define a function F : S n → S (n
k), called (generated)

k-isotropic, by

F(A) := U (k)(Diag f(λ(A))
)
(U (k))

>
,

where U ∈ On is such that A = U
(
Diag λ(A)

)
U>.

Function F is well-defined and satisfies F(UAU>) = U (k)F(A)(U (k))> for any U ∈ On and

any A in the domain of F, as shown in [10].

A characterization of C1 (generated) k-isotropic functions was obtained in [1] and that was

extended in in [10] to Cm for a larger class, called k-isotropic functions. The (generated) k-

isotropic function F is Cm at A, if and only if the underlying symmetric function f is Cm at

λρ(A) for all ρ ∈ Nn,k. That result holds for m = 0, 1, . . . Later on, [8] showed that, F is analytic
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at A, if and only if the underlying symmetric function f is analytic at λρ(A) for all ρ ∈ Nn,k.

The main goal in this work is to connect FH and F, when the underlying function f is

symmetric. This allows us to characterize differentiability of FH in terms of symmetric f ,

using the corresponding known properties of F. In addition, we characterize the analyticity of

FH in terms of f , not necessarily symmetric.

5.2 Main definition

5.2.1 Tensor products

Denote by ⊗k
i=1R

ni the tensor product of Rni , i ∈ Nk. This is a linear space of dimension n1 · · · nk

consisting of formal finite linear combinations of {x1 ⊗ · · · ⊗ xk : xi ∈ R
ni , i ∈ Nk}, with all

necessary identifications made so that the product is multi-linear. The inner product between

u1 ⊗ · · · ⊗ uk and v1 ⊗ · · · ⊗ vk in ⊗k
i=1R

ni is 〈u1, v1〉 · · · 〈uk, vk〉. The tensor product A1 ⊗ · · · ⊗ Ak,

between operators Ai on Rni , i ∈ Nk, is a linear operator on ⊗k
i=1R

ni defined by

(A1 ⊗ · · · ⊗ Ak)(x1 ⊗ · · · ⊗ xk) := (A1x1) ⊗ · · · ⊗ (Akxk)

and extended by linearity. For short introduction to tensor product and its properties, see [4,

Chapter I].

Denote by {e1
i , . . . , e

ni
i } the standard orthonormal basis in Rni for i ∈ Nk. Let {el : l ∈

Nn1 × · · · × Nnk} denote the standard orthonormal basis in Rn1···nk . An isometry T : Rn1···nk →

Rn1 ⊗ · · · ⊗ Rnk is defined by

T (el) := el1
1 ⊗ · · · ⊗ elk

k for all l ∈ Nn1 × · · · × Nnk .

Given any ni × ni matrix Ai for all i ∈ Nk and any x ∈ Rn1···nk , we have

T ((⊗k
i=1Ai)x) = (⊗k

i=1Ai)(T x),
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where on the right-hand side, Ai is viewed as an operator on Rni with respect to the standard

basis for all i ∈ Nk.

For any Ai ∈ S ni for all i ∈ Nk, the self-adjoint operator corresponding to the symmetric

matrix FH(A1, . . . , Ak) is

F H(A1, . . . , Ak) :=T ◦ FH(A1, . . . , Ak) ◦ T −1

=
∑

l∈Nn1×···×Nnk

f (λl1(A1), . . . , λlk(Ak))(⊗k
i=1uli

i ) ⊗ (⊗k
i=1uli

i ),

where Ui ∈ Oni is such that Ai = Ui
(
Diag λ(Ai)

)
Ui
> and uli

i denotes the li-th column of Ui for

all i ∈ Nk.

5.2.2 Anti-symmetric tensor products

The k-tuples in Nn,k are ordered lexicographically and used to index the coordinates of vectors

in R(n
k) and matrices of dimension

(
n
k

)
×

(
n
k

)
. For example, xρ is the ρ-th coordinate of a vector

x in R(n
k) and Aρ,τ is the (ρ, τ)-th element of an

(
n
k

)
×

(
n
k

)
matrix A. But if x ∈ Rn, then let

xρ := (xρ1 , . . . , xρk) ∈ R
k for any ρ ∈ Nn,k and if A is an n × n matrix, let Aρτ (without a comma)

be the k × k minor of an A with elements at the intersections of rows ρ1, . . . , ρk and columns

τ1, . . . , τk for any ρ, τ ∈ Nn,k.

The k-th multiplicative compound matrix of n × n matrix A is an
(

n
k

)
×

(
n
k

)
matrix, denoted

by A(k), such that A(k)
ρ,τ := det(Aρτ) for any ρ, τ ∈ Nn,k. For properties of k-th multiplicative

compound matrix, see for example [5].

For any vectors x1, . . . , xk ∈ R
n, their k-th anti-symmetric tensor product (wedge product)

is defined by

x1 ∧ · · · ∧ xk :=
1
√

k!

∑
σ:Nk→Nk

εσxσ(1) ⊗ · · · ⊗ xσ(k),

where the summation is over all permutations σ on Nk and εσ is defined to be +1, if σ is even
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and to be −1, if σ is odd. The wedge product is multi-linear and anti-commutative. Denote by

∧kRn the
(

n
k

)
-dimensional subspace of ⊗kRn spanned by all k-th anti-symmetric tensor products

with inherited inner product

〈u1 ∧ · · · ∧ uk, v1 ∧ · · · ∧ vk〉 = det
(
〈ui, v j〉

k
i, j=1

)
.

If A is an operator on Rn, then ⊗kA keeps the subspace ∧kRn invariant. Denote by ∧kA the

restriction of ⊗kA onto ∧kRn. It is called the k-th anti-symmetric tensor power (wedge power)

of A and satisfies

(∧kA)(x1 ∧ · · · ∧ xk) = (Ax1) ∧ · · · ∧ (Axk).

For properties of k-th wedge power of A, see [5].

Denote by {eρ : ρ ∈ Nn,k} the standard orthonormal basis in R(n
k). An isometryW : R(n

k) →

∧kRn is defined by

W(eρ) := eρ1 ∧ · · · ∧ eρk for all ρ ∈ Nn,k

and extended by linearity. The relationship between A(k) and ∧kA is:

W(A(k)x) = (∧kA)(Wx) for any x ∈ R(n
k),

where A is viewed as an operator and a matrix with respect to the standard basis.

For future reference, the self-adjoint operator on ∧kRn, corresponding to the symmetric

matrix F(A), is

F (A) :=W◦ F(A) ◦W−1 =
∑
ρ∈Nn,k

f (λρ(A))(uρ1 ∧ · · · ∧ uρk) ⊗ (uρ1 ∧ · · · ∧ uρk),

where {u1, . . . , un} are the columns of U ∈ On, such that A = U(Diag λ(A))U>.
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5.2.3 Operator functions on k variables

We are ready to introduce a class of operator functions on several variables by restricting

(generated) k-isotropic functions to block-diagonal matrices. Henceforth, we assume that

n = n1 + · · · + nk.

Let F∗ : S n1 × · · · × S nk → S (n
k) be defined by

F∗(A1, . . . , Ak) := F(A1 ⊕ · · · ⊕ Ak),

where A1⊕· · ·⊕Ak denotes the block-diagonal matrix with blocks Ai, i ∈ Nk. The corresponding

self-adjoint operator is

F ∗(A1, . . . , Ak) :=W◦ F(A1 ⊕ · · · ⊕ Ak) ◦W−1.

5.2.4 Note about domains

We assume that the domain of the symmetric function f : Rk → R, denoted by dom f ⊆

Rk, is a symmetric and open set. Then, it is easy to see that the set domn f := {x ∈ Rn :

xρ ∈ dom f for all ρ ∈ Nn,k} is also symmetric and open. Then, the domain of a (generated)

k-isotropic function F : S n → S (n
k) corresponding to f : Rk → R is

dom F := {A ∈ S n : λ(A) ∈ domn f }.

It is not too difficult to see that for any l ∈ Nn1 × · · · × Nnk , there is a ρ ∈ Nn,k, such that

λρ(A1 ⊕ · · · ⊕ Ak) is a permutation of (λl1(A1), . . . , λlk(Ak)). Since the set dom f is symmetric,

we see that A1 ⊕ · · · ⊕ Ak ∈ dom F implies that (A1, . . . , Ak) ∈ dom FH. Hence, the domain of

F∗ is the set of all k-tuples (A1, . . . , Ak) from S n1 × · · · × S nk that satisfy A1 ⊕ · · · ⊕ Ak ∈ dom F,

and this set is sufficient for our needs.
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5.3 Connecting FH to F∗

5.3.1 Introducing the linear map Π

We introduce a linear map Π that links the operator functions F H and F ∗, whenever both of

them are defined in terms of the same symmetric function f : Rk → R.

Let the linear map Πi : Rni → ⊕k
j=1R

n j for i ∈ Nk, be the embedding of Rni in ⊕k
j=1R

n j:

Πi(u) := 0 ⊕ · · · ⊕ u ⊕ · · · ⊕ 0 for any u ∈ Rni ,

where u appears in the i-th place of the direct sum.

Let Π : ⊗k
j=1R

n j → ∧k(⊕k
j=1R

n j) be a linear map defined by

Π(el1
1 ⊗ · · · ⊗ elk

k ) := Π1(el1
1 ) ∧ · · · ∧ Πk(e

lk
k ) = (el1

1 ⊕ · · · ⊕ 0) ∧ · · · ∧ (0 ⊕ · · · ⊕ elk
k ).

It can be extended by linearity to any vector in u1 ⊗ · · · ⊗ uk ∈ ⊗
k
i=1R

ni:

Π(u1 ⊗ · · · ⊗ uk) = Π1(u1) ∧ · · · ∧ Πk(uk). (5.1)

Next, we show that Π preserves the inner product.

Lemma 5.3.1 For any s1, . . . , sk ∈ Nk with s1 ≤ · · · ≤ sk, let u j ∈ R
n j and v j ∈ R

ns j for j ∈ Nk.

Define u := Π1(u1) ∧ · · · ∧ Πk(uk) and v := Πs1(v1) ∧ · · · ∧ Πsk(vk). The inner product between

u and v is given by

〈u, v〉 =


∏k

j=1〈u j, v j〉 if s1, . . . , sk are distinct,

0 otherwise.

Hence, Π preserves the inner product.
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Proof Case I. If all s1, . . . , sk are distinct, then si = i for i ∈ Nk and we have

v = Π1(v1) ∧ · · · ∧ Πk(vk)

with vi ∈ R
ni for i ∈ Nk. Calculate 〈u, v〉 by

〈u, v〉 = det
(
〈Πi(ui),Π j(v j)〉ki, j=1

)
=

k∏
j=1

〈u j, v j〉,

since 〈Πi(ui),Π j(v j)〉 = 0, whenever i , j.

Case II. Suppose now that s1, . . . , sk are not distinct. There exists a j ∈ Nk such that si , j

for all i ∈ Nk. Then, we calculate the inner product between u and v by

〈u, v〉 = 〈Π1(u1) ∧ · · · ∧ Πk−1(uk−1) ∧ Πk(uk),Πs1(v1) ∧ · · · ∧ Πsk−1(vk−1) ∧ Πsk(vk)〉

= 〈(u1 ⊕ · · · ⊕ 0) ∧ · · · ∧ (0 ⊕ · · · ⊕ uk−1 ⊕ 0) ∧ (0 ⊕ · · · ⊕ uk),

Πs1(v1) ∧ · · · ∧ Πsk−1(vk−1) ∧ Πsk(vk)〉

= det(〈Πi(ui),Πs j(v j)〉ki, j=1) = 0,

since the j-th row of the determinant is zero.

For any u := u1 ⊗ · · · ⊗ uk, v := v1 ⊗ · · · ⊗ vk ∈ ⊗
k
i=1R

ni , we have

〈u, v〉 = 〈u1 ⊗ · · · ⊗ uk, v1 ⊗ · · · ⊗ vk〉 =

k∏
i=1

〈ui, vi〉 = 〈Π(u),Π(v)〉,

hence, the linear map Π preserves the inner product.

The linear map Π : ⊗k
i=1R

ni → ∧k(⊕k
i=1R

ni) is an injection, so we can consider the inverse

map Π−1, defined on the range of Π. That is, Π−1 ◦ Π(u) = u for any u ∈ ⊗k
i=1R

ni .
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5.3.2 Connecting FH to F∗

Let n :=
∑k

i=1 ni and let A := A1 ⊕ · · · ⊕ Ak ∈ S n, where Ai ∈ S ni for all i ∈ Nk. Let Ui ∈ Oni be

such that Ai = Ui(Diag λ(Ai))Ui
> for all i ∈ Nk. Denote by uli

i the li-th column of Ui and uli
i is

the eigenvector corresponding to λli(Ai) for all i ∈ Nk. Matrix A is diagonalized by

A = (U1 ⊕ · · · ⊕ Uk)
(
Diag λ̃(A)

)
(U1 ⊕ · · · ⊕ Uk)>, (5.2)

where λ̃(A) := (λ(A1), . . . , λ(Ak)) is not necessarily ordered. For any t ∈ Nn, the t-th column of

U1 ⊕ · · · ⊕ Uk is denoted by ũt. For any such t, there exist unique i ∈ Nk and li ∈ Nni , such that

t =
∑i−1

j=1 n j + li and

ũt = Πi(u
li
i ). (5.3)

This notation allows us to obtain the following representation of F ∗.

Recall that any symmetric function f : Rk → R defines a function f : Rn → R(n
k) by

fρ(x) := f (xρ) for all x in the domain of f and all ρ ∈ Nn,k. Such function f : Rn → R(n
k) is

symmetric in the sense of

Diag f(Px) = P(k)(Diag f(x)
)
P(k)> (5.4)

for all x ∈ Rn and all n × n permutation matrix P, see [1].

Proposition 5.3.2 Let f : Rk → R be symmetric. For any A := A1 ⊕ · · · ⊕ Ak with Ai ∈ S ni for

i ∈ Nk, we have

F ∗(A1, . . . , Ak) =
∑
ρ∈Nn,k

f (λ̃ρ(A))(ũρ1 ∧ · · · ∧ ũρk) ⊗ (ũρ1 ∧ · · · ∧ ũρk).
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Proof Let P be an n × n permutation matrix, such that λ(A) = Pλ̃(A). Using (5.2), we obtain

A = (U1 ⊕ · · · ⊕ Uk)
(
Diag λ̃(A)

)
(U1 ⊕ · · · ⊕ Uk)>

= (U1 ⊕ · · · ⊕ Uk)
(
Diag P>λ(A)

)
(U1 ⊕ · · · ⊕ Uk)>

= (U1 ⊕ · · · ⊕ Uk)P>
(
Diag λ(A)

)
P(U1 ⊕ · · · ⊕ Uk)>.

Let U := (U1 ⊕ · · · ⊕ Uk)P> and let f : Rn → R(n
k) be defined by fρ(x) := f (xρ) for all ρ ∈ Nn,k

and all x ∈ Rn. Such f is symmetric in the sense of (5.4). Then, we have

F∗(A1, . . . , Ak) = F(A) = U (k)(Diag f(λ(A))
)
U (k)> = U (k)(Diag f(Pλ̃(A))

)
U (k)>

= U (k)P(k)(Diag f(λ̃(A))
)
P(k)>U (k)> = (UP)(k)(Diag f(λ̃(A))

)
(UP)(k)>

= (U1 ⊕ · · · ⊕ Uk)(k)(Diag f(λ̃(A))
)
(U1 ⊕ · · · ⊕ Uk)(k)>,

where we used (5.4). The rest follows.

Denote byM the collection of all ρ ∈ Nn,k satisfying

ρi ∈
{
(n1 + · · · + ni−1) + 1, . . . , (n1 + · · · + ni−1) + ni

}
for all i ∈ Nk

and letMc := Nn,k \M. Define the operator F ∗
M

by

F ∗
M

(A1, . . . , Ak) :=
∑
ρ∈M

f (λ̃ρ(A))(ũρ1 ∧ · · · ∧ ũρk) ⊗ (ũρ1 ∧ · · · ∧ ũρk)

and let F ∗
Mc(A1, . . . , Ak) := F ∗(A1, . . . , Ak) − F ∗M(A1, . . . , Ak).

The relationship between F H and F ∗ is given in the next theorem.

Theorem 5.3.3 Let f : Rk → R be symmetric and consider the corresponding operators F H,
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F ∗, and F ∗
M

. Then, for any Ai ∈ S ni , i ∈ Nk, the following diagram commutes

⊗k
i=1R

ni F H(A1,...,Ak)
> ⊗k

i=1R
ni

∧k(⊕k
i=1R

ni)

Π

∨
F ∗(A1,...,Ak)

> ∧k(⊕k
i=1R

ni)

Π

∨

Moreover, the operators F ∗(A1, . . . , Ak) and F ∗
M

(A1, . . . , Ak) coincide on subspace Π(⊗k
i=1R

ni).

Proof We need to show that for any v := v1 ⊗ · · · ⊗ vk ∈ ⊗
k
i=1R

ni , we have

Π ◦ F H(A1, . . . , Ak)(v) = F ∗(A1, . . . , Ak) ◦ Π(v). (5.5)

For the right-hand side, we have

F ∗(A1, . . . , Ak) ◦ Π(v) = F ∗
M

(A1, . . . , Ak) ◦ Π(v) + F ∗
Mc(A1, . . . , Ak) ◦ Π(v). (5.6)

Note that the elements ρ of M have the property that for any ρi ∈ ρ, there exists a unique

li ∈ Nni , such that ρi =
∑i−1

j=1 n j + li. Thus, using (5.3) and (5.1), we obtain

ũρ1 ∧ · · · ∧ ũρk = Π1(ul1
1 ) ∧ · · · ∧ Πk(u

lk
k ) = Π(ul1

1 ⊗ · · · ⊗ ulk
k ). (5.7)

With that we express the first term on the right-hand side of (5.6) as

F ∗
M

(A1, . . . , Ak) ◦ Π(v)

=
∑
ρ∈M

f (λ̃ρ(A))(ũρ1 ∧ · · · ∧ ũρk) ⊗ (ũρ1 ∧ · · · ∧ ũρk)
(
Π1(v1) ∧ · · · ∧ Πk(vk)

)
=

∑
ρ∈M

f (λ̃ρ(A))(ũρ1 ∧ · · · ∧ ũρk)〈ũρ1 ∧ · · · ∧ ũρk ,Π1(v1) ∧ · · · ∧ Πk(vk)〉

=
∑
ρ∈M

f (λ̃ρ(A))(ũρ1 ∧ · · · ∧ ũρk)〈Π1(ul1
1 ) ∧ · · · ∧ Πk(u

lk
k ),Π1(v1) ∧ · · · ∧ Πk(vk)〉

=
∑
ρ∈M

f (λ̃ρ(A))(ũρ1 ∧ · · · ∧ ũρk)
k∏

j=1

〈ul j

j , v j〉
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=
∑

l∈Nn1×···×Nnk

f (λl1(A1), . . . , λlk(Ak))
k∏

j=1

〈ul j

j , v j〉Π(ul1
1 ⊗ · · · ⊗ ulk

k ),

where in the last three equalities we used (5.7) and Lemma 5.3.1.

We now turn our attention to the second term on the right-hand side of (5.6). Note that the

elements ρ ofMc have the property that for any ρi ∈ ρ, there exists unique si ∈ Nk and li ∈ Nnsi
,

such that ρi =
∑si−1

j=1 n j + li. The important observation is that the indexes s1, . . . , sk are not

distinct and

ũρ1 ∧ · · · ∧ ũρk = Πs1(u
l1
s1

) ∧ · · · ∧ Πsk(u
lk
sk

).

With that, we calculate F ∗
Mc(A1, . . . , Ak) ◦ Π(v) by

F ∗
Mc(A1, . . . , Ak) ◦ Π(v)

=
∑
ρ∈Mc

f (λ̃ρ(A))(ũρ1 ∧ · · · ∧ ũρk) ⊗ (ũρ1 ∧ · · · ∧ ũρk)
(
Π1(v1) ∧ · · · ∧ Πk(vk)

)
=

∑
ρ∈Mc

f (λ̃ρ(A))(ũρ1 ∧ · · · ∧ ũρk)〈Πs1(u
l1
s1

) ∧ · · · ∧ Πsk(u
lk
sk

),Π1(v1) ∧ · · · ∧ Πk(vk)〉

= 0,

where the last equality is obtained using Lemma 5.3.1.

Combining the results for the two terms on the right-hand side of (5.6), gives

F ∗(A1, . . . , Ak) ◦ Π(v) =
∑

l∈Nn1×···×Nnk

f (λl1(A1), . . . , λlk(Ak))
k∏

j=1

〈ul j

j , v j〉Π(ul1
1 ⊗ · · · ⊗ ulk

k ).

This also shows that F ∗(A1, . . . , Ak) and F ∗
M

(A1, . . . , Ak) are the same map when restricted to

the subspace Π(⊗k
i=1R

ni).

For the left-hand side of (5.5), we have

Π ◦ F H(A1, . . . , Ak)(v)
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= Π ◦
∑

l∈Nn1×···×Nnk

f (λl1(A1), . . . , λlk(Ak))(⊗k
i=1uli

i ) ⊗ (⊗k
i=1uli

i )(v1 ⊗ · · · ⊗ vk)

= Π ◦
∑

l∈Nn1×···×Nnk

f (λl1(A1), . . . , λlk(Ak))〈⊗k
i=1uli

i , v1 ⊗ · · · ⊗ vk〉(⊗k
i=1uli

i )

= Π ◦
∑

l∈Nn1×···×Nnk

f (λl1(A1), . . . , λlk(Ak))
k∏

i=1

〈uli
i , v j〉(u

l1
1 ⊗ · · · ⊗ ulk

k )

=
∑

l∈Nn1×···×Nnk

f (λl1(A1), . . . , λlk(Ak))
k∏

i=1

〈uli
i , v j〉Π(ul1

1 ⊗ · · · ⊗ ulk
k ).

This shows that the diagram commutes.

Theorem 5.3.3 shows that

F H(A1, . . . , Ak) = Π−1 ◦ F ∗(A1, . . . , Ak) ◦ Π

= Π−1 ◦ F (A1 ⊕ · · · ⊕ Ak) ◦ Π and (5.8)

F (A1 ⊕ · · · ⊕ Ak) = Π ◦ F H(A1, . . . , Ak) ◦ Π−1,

where both sides of the last equality are assumed to be restricted to Π(⊗k
i=1R

ni).

Thus, one can use (5.8) to infer properties of F H from those of F .

5.4 Differentiability properties of FH

In this section, we study the differentiability properties of FH. We start with those associated

with a symmetric function f : Rk → R. The following is a special case of Theorem 5.1 in [10],

which was proven for the more general k-isotropic functions.

Theorem 5.4.1 Let f : Rk → R be symmetric with corresponding (generated) k-isotropic

function F : S n → S (n
k). Then, F is Cm at A, if and only if f is Cm at λρ(A) for any ρ ∈ Nn,k.

Here, m = 0, 1, . . .

Theorem 5.4.1, together with (5.8), allows us to see the following corollary.
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Corollary 5.4.2 Let f : Rk → R be symmetric with corresponding FH : S n1 × · · · × S nk →

S n1···nk . The function FH is Cm at (A1, . . . , Ak), whenever f is Cm at λρ(A1 ⊕ · · · ⊕ Ak) for any

ρ ∈ Nn,k. Here, m = 0, 1, . . .

Proof Suppose that f is Cm at λρ(A1 ⊕ · · · ⊕ Ak) for any ρ ∈ Nn,k. Using Theorem 5.4.1, one

can obtain that the corresponding (generated) k-isotropic function is Cm at A1 ⊕ · · · ⊕ Ak. Using

(5.8), the corresponding FH is Cm at (A1, . . . , Ak).

Restricting FH to diagonal matrices, we get the following converse.

Corollary 5.4.3 Let f : Rk → R be symmetric with corresponding FH : S n1 × · · · × S nk →

S n1···nk . The function f is Cm at (λl1(A1), . . . , λlk(Ak)) for any l ∈ Nn1 × · · · × Nnk , whenever FH

is Cm at (A1, . . . , Ak). Here, m = 0, 1, . . .

An inductive formula for the first and higher-order derivatives of k-isotropic functions was

the focus of [10]. A formula for just the first derivative of (generated) k-isotropic functions was

obtained in [1]. Thus, at least in theory, one can obtain the formula for the derivatives of FH

using (5.8).

Now, address the analyticity of FH. Here, the symmetricity of f : Rk → R is not necessary.

Theorem 5.4.4 Let f : Rk → R be a function with corresponding FH : S n1×· · ·×S nk → S n1···nk .

The function FH is analytic at (A1, . . . , Ak), if and only if f is analytic at (λl1(A1), . . . , λlk(Ak))

for all l ∈ Nn1 × · · · × Nnk .

Proof Suppose f : Rk → R is analytic. Then, the Cauchy integral representation of f holds as

follows

f (x1, . . . , xk) =
1

(2πi)k

∮
Γk

· · ·

∮
Γ1

f (z1, . . . , zk)∏k
j=1(z j − x j)

dz1 · · · dzk,

where Γ j is a positively oriented circle in the complex plane enclosing the points x j for all

j ∈ Nk. The Dunford-Taylor integral representation of FH(A1, . . . , Ak) for any A j ∈ S n j , j ∈ Nk
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is

FH(A1, . . . , Ak) = (⊗k
i=1Ui)

(
Diagl f (λl1(A1), . . . , λlk(Ak))

)
(⊗k

i=1Ui)
>

= (⊗k
j=1U j)

(
Diagl

1
(2πi)k

∮
Γk

· · ·

∮
Γ1

f (z1, . . . , zk)∏k
j=1(z j − λl j(A j))

dz1 · · · dzk

)
(⊗k

j=1U j)
>

=
1

(2πi)k

∮
Γk

· · ·

∮
Γ1

f (z1, . . . , zk)(⊗k
j=1U j)

(
Diagl

k∏
j=1

(z j − λl j(A j))−1
)
(⊗k

j=1U j)
>

dz1 · · · dzk,

where U j ∈ On j is such that A j = U j
(
Diag λ(A j)

)
U j
> and Γ j is a positively oriented circle in

the complex plane enclosing all eigenvalues {λl j(A j) : l j ∈ Nn j} for all j ∈ Nk. Notice that

(⊗k
j=1U j)

(
Diagl

k∏
j=1

(z j − λl j(A j))−1
)
(⊗k

j=1U j)
>

= (z1I − A1)−1 ⊗ · · · ⊗ (zkI − Ak)−1,

holds. Thus, we have the integral representation

FH(A1, . . . , Ak) =
1

(2πi)k

∮
Γk

· · ·

∮
Γ1

f (z1, . . . , zk)
(
(z1I − A1)−1 ⊗ · · · ⊗ (zkI − Ak)−1) dz1 · · · dzk.

Since the eigenvalue map A j 7→ λ(A j) is a continuous function, the circle Γ j encloses the

eigenvalues of all matrices in a small neighbourhood of A j for all j ∈ Nk. It is easy to see then,

that for each fixed (z1, . . . , zk), the integrand is analytic in (A1, . . . , Ak), and so is FH.

For the other direction, restrict the function FH to diagonal matrices.
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Chapter 6

Conclusion and further extensions of

research

6.1 Contributions

In this thesis, we study the orthogonally invariant functions, called k-isotropic functions. This

class of functions captures previously well-studied classes of functions, for example, spectral,

primary, and tensor-valued isotropic functions. We extend the notion of operator monotonicity

and analyticity.

We emphasize that the apparent differences in operator monotonicity and analyticity are

explained in this thesis by characterizing such properties of (generated) k-isotropic functions.

The first differential is used to characterize the operator monotonicity with a decomposition

represented by a series of divided difference matrices. This allows us to also decompose the

first differentials of spectral and primary matrix functions to connect the their results. To char-

acterized the analyticity of (generated) k-isotropic functions, we lift the underlying simpler

function to a higher dimension so that we can use Dunford-Taylor integral to represent the

k-isotropic function.

Then, we consider another orthogonally invariant class of functions, k-tensor isotropic func-

133
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tions that captures primary and tensor-valued isotropic functions. The k-isotropic functions can

be obtained when we restrict sub-class of k-tensor isotropic functions to the space spanned by

all k-th anti-symmetric tensor products. The representation is found when k = 2 in the spirit of

the result in [8].

Finally, we connect (generated) k-isotropic functions to orthogonally invariant functions FH

studied in [1], [2], [4], [5], [6], [9], and [10], when the underlying function f is symmetric. We

characterize differentiability of FH in terms of symmetric f , using the corresponding known

properties of (generated) k-isotropic functions. Characterization of the analyticity of FH in

terms of f is obtained, where f is not necessarily symmetric.

6.2 Further extensions of research

There are limitations and imperfections in the results we obtained, which shows potential re-

search directions. We list them as follows.

1. Characterization of operator monotonicity of all k-isotropic functions is unknown. No-

tice that the results of operator monotonicity are obtained when we consider a sub-class

of k-isotropic functions. We may study characterization of operator monotonicity of

tensor-valued isotropic functions first and then extend the result to k-isotropic functions.

2. Operator monotonicity can be extended to operator monotonicity on several variables

naturally. That is, we say that F : S n1 × · · · × S nk → S m is operator monotone, if

Ai � Bi, i ∈ Nk implies F(A1, . . . , Ak) � F(B1, . . . , Bk) for any Ai, Bi ∈ S ni , i ∈ Nk.

Korányi proposed a different notion of operator monotonicity on two variables, see [6]

and Hansen proposed another notion of operator monotonicity on several variables that

extends Theorem V.2.3 in [3], see [5]. The connections among different notions of oper-

ator monotonicity are worth studying.

3. The characterization of operator convexity of k-isotropic functions is unknown. One
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should notice that operator monotonicity and operator convexity are closely related, see

[3, Chapter V]. There are first-order condition and second-order condition to characterize

operator convexity. For k-isotropic functions, we may prefer to calculate the second

differential to study the characterization. Then, we would be able to generalize the Lieb’s

inequality

∧k(A + B)1/k � ∧kA1/k + ∧kB1/k

for all A, B ∈ S n
+, see [7].

4. Characterization of analyticity of all k-isotropic functions is unknown. Also, notice that

the result for analyticity is obtained when we consider (generated) k-isotropic functions.

We may study the characterization of analyticity of tensor-valued isotropic functions first

and then extend the result to k-isotropic functions.

5. For k-tensor isotropic functions, the representation when k > 2 is unknown. Properties

of differentiability and analyticity of k-tensor isotropic functions are also worth studying.
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