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Abstract 

Plant agricultural productivity relies heavily on nitrogenous fertilizers. Excess N fertilizer 

application can often lead to lower nitrogen use efficiency (NUE) along with energy 

waste and environmental problems. Therefore, understanding and improving NUE in 

plants are of key importance. The small monocot plant Brachypodium distachyon 

(Brachypodium) is rapidly emerging as a powerful model system to study questions 

unique to monocot crops (wheat, maize, rice, etc.). 

Here, through an intensive BLAST search, six putative orthologues of the Arabidopsis 

NRT2 gene family were identified in the fully sequenced Brachypodium genome 

(Phytozome v11.0), among which I isolated a T-DNA mutant (bdnrt2.1) lacking 

BdNRT2.1. Analysis of individual BdNRT2 gene expression, plant nitrogen uptake, 

assimilation, remobilization, metabolic change under different nitrogen sources, 

concentrations, and developmental stage in wild-type and the bdnrt2.1 was performed.  

Results demonstrate that BdNRT2 gene expressions are governed by internal nitrogen 

status rather than external nitrate concentrations. Genes in the BdNRT2 family have 

diverse roles differing from AtNRT2 in response to different nitrogen conditions. The 

BdNRT2.1 knock-out mutant showed an impaired inducible high-affinity transport 

system (iHATS), reduced nitrogen utilization efficiency (NUtE) and overall NUE (37% 

on average) under a N non-limited condition, whereas the constitutive high-affinity 

transport system (cHATS), low-affinity transport system (LATS) and nitrogen uptake 

efficiency (NUpE) were not affected. The mutant’s reduced NUE and iHATS phenotype 

could be rescued by complementation. Furthermore, BdNRT2.1 had a contrasting impact 

on nitrogen metabolism at different developmental stages, suggesting it serves a more 

important role (signal transducer) after anthesis. Finally, BdNRT2.1 overexpressing 

transgenic Brachypodium lines had significantly higher grain yield. This demonstrates 

that BdNRT2.1, serving as a key member of the family, is involved in nitrogen 

remobilization, and it has potential application for more efficient use of nitrogen fertilizer 
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in monocot crops. These results provide the possibility for future experiments to elucidate 

the specific roles of each NRT2 transporter in monocot plants. 

 

Keywords 
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1 General Introduction 

1.1 Current problems resulting from excess agricultural 
nitrogen supply 

In the last 45 years, the global annual amount of synthetic nitrogen (N) fertilizer applied 

to crops has risen dramatically, from merely 10.2 Tg in 1960 (Frink et al., 1999) to 109 

Tg in 2014 (FAOSTAT), resulting in significant increased crop yield and decreased 

world hunger (Good et al., 2004). However, nitrogen fertilizer captured by crops is 

usually inefficient, with only 30% to 50% of applied nitrogen being utilized (McAllister 

et al., 2012). Thus, more than 50% of the applied nitrogen is lost through a combination 

of different processes, including ground run-off, leaching, denitrification and ammonia 

volatilization (Garnett et al., 2009). The excess nitrogen (especially nitrate) can 

contaminate drinking water and adversely affect human health, including reproductive 

problems, methemoglobinemia, and cancer (Townsend et al., 2003). Nitrate excess in 

fresh water can lead to algal blooms (dead zone) and result in substantial disruption of 

marine biodiversity (Vitousek et al., 2009). Additionally, the excess use and production 

of N fertilizer also plays a role in ozone depletion and global warming through excess 

emissions of nitrous oxide (Wuebbles , 2009). These, along with increasing N fertilizer 

costs resulting from the energy intensive Haber-Bosch process (Xu et al., 2012), have 

created an urgent need to enhance nitrogen use efficiency (NUE) in crops, that is, crops 

that are better able to uptake, utilize and remobilize the nitrogen available to them. 

1.2 Understanding nitrogen use efficiency 

For crops, NUE is defined as grain yield per unit of applied N in the soil; for Arabidopsis, 

NUE is expressed as fresh or dry biomass per nitrogen content in the plant (Good et al., 

2004). In both cases, NUE is the combination of nitrogen uptake efficiency (NUpE, 

calculated as the ratio of plant acquired N to N supply) and nitrogen utilization efficiency 

(NUtE, calculated as the ratio of plant yield to plant acquired N), which is also the same 

expression as the optimal integration of nitrogen assimilation efficiency (NAE) and 

nitrogen remobilization efficiency (NRE) (Xu et al., 2012). 
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1.2.1 Nitrogen uptake 

Nitrate is the major form of inorganic N that can be used by crop plants in aerobic soils 

(see review of Xu et al., 2012) due to rapid nitrification of applied fertilizer and organic 

nitrogen. Plants take up nitrate mainly through members of two gene families, namely 

NPF (the nitrate transporter 1/peptide transporter family) which can be activated when 

external nitrate is abundant (>1 mM, mainly responsible for low-affinity transport 

system, LATS) and NRT2 (the nitrate transporter 2 family) which can be activated at low 

external nitrate (<1 mM, mainly responsible for high-affinity transport system, HATS) 

(see review of Tsay et al., 2007; Masclaux-Daubresse et al., 2010). Additionally, a 

secondary protein, NAR2, needs to be co-expressed with NRT2 to yield nitrate uptake 

(Zhou et al., 2000; Orsel et al., 2006; Yan et al., 2011). In response to changes in 

nitrogen demands and availability, the activity of these two nitrate uptake systems can be 

further fine-tuned by transcriptional regulation and post-translational modifications. 

Transporters of both families belong to the major facilitator superfamily (MFS) of 

secondary active transporters and are dependent on protons for nitrate transport (Pao et 

al., 1998; Law et al., 2008).Other plants, especially ammonium-preferring rice, take up 

ammonium mainly through the membrane-located AMT/MEP/Rh transporter (Khademi 

et al., 2004). 

1.2.2 Nitrogen assimilation 

Schematic presentation of the enzymes involved in the primary nitrogen assimilation 

pathway is illustrated in Fig. 1.1. Once nitrate is taken up by the cell, it is first reduced to 

nitrite by the enzyme nitrate reductase (NR) in the cytosol (Meyer and Stitt, 2001). 

Subsequently, nitrite is relocated to the plastid, where it is further reduced to ammonium 

by the enzyme nitrite reductase (NiR) (Meyer and Stitt, 2001). Ammonium, whether it 

originated from nitrate reduction, ammonium uptake or from photorespiration or amino 

acid recycling, is mainly assimilated through the GS/GOGAT cycle (Lea and Miflin, 

1974). The enzyme glutamine synthetase (GS) incorporates an ammonium onto a 

glutamate molecule to form glutamine. This glutamine subsequently reacts with 2-

oxoglutarate (from Krebs cycle) to form two molecules of glutamate, which is catalyzed 

by the enzyme 2-oxoglutarate amino transferase (or glutamate synthetase, GOGAT).  
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Figure 1.1 Schematic presentation of enzymes involved in the primary nitrogen 

assimilation pathway. 

Nitrate reductase (NR), glutamine synthetase isoenzyme 1 (GS1), and asparagine 

synthetase (AS) are localized in the cytosol; nitrite reductase (NiR), glutamine synthetase 

2 isoenzyme (GS2), glutamate synthase (GOGAT) within the plastids of mesophyll cells.  
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Thus, the net outcome from the GS/GOGAT cycle is the production of glutamate, which 

can be further converted into other amino acids through aminotransferases or 

transaminases (Forde and Lea, 2007). Two types of decameric GS isoforms are described 

in higher plants, including cytosolic GS1 and chloroplastic GS2 (Unno et al. 2006). 

Chloroplatic GS2 is mainly present in green leaf tissue and is responsible for the primary 

assimilation of ammonium reduced from nitrate in both C3 and C4 plants; it is also 

involved in re-assimilation of ammonium originating from photorespiration in C3 plants 

(Masclaux-Daubresse et al., 2010). In contrast, cytosolic GS1 present in various organs 

such as roots and stems is mainly responsible for ammonium recycling during particular 

developmental stages like leaf senescence; it is also involved in glutamine synthesis for 

relocation into the phloem sap (Bernard and Habash, 2009). Two types of GOGAT forms 

exist in higher plants, including Fd-GOGAT and NADH-GOGAT, which use ferredoxin 

and NADH as electron donors, respectively (Vanoni et al., 2005). Fd-GOGAT is 

predominantly present in leaf chloroplasts, while NADH-GOGAT mainly locates in non-

photosynthetic tissues such as roots, etiolated leaf tissues and companion cells 

(Masclaux-Daubresse et al., 2010). In addition to the GS/GOGAT cycle, other enzymes 

probably play important roles in ammonium assimilation. Cytosolic asparagine 

synthetase (AS) facilitates the amino group transfer from glutamine to aspartate to form 

glutamate and asparagine in an ATP dependent way. Asparagine has a higher N/C ratio 

than glutamine and can be used for long-distance transport and storage (Lam et al., 

2003). Mitochondrial NADH-glutamate dehydrogenase (GDH) catalyzes the equilibrium 

between ammonium and glutamate. However, the reverse reaction whereby GDH acts as 

a glutamate deaminase is proposed as its main function (Masclaux-Daubresse et al., 

2006). 

1.2.3 Nitrogen remobilization 

During the vegetative growth stage, the leaves are the major sink for N; during the 

reproductive stage (senescence), this N is remobilized and makes it way to the developing 

seeds, mainly as amino acids (Okumoto et al., 2011). However, the mechanisms of amino 

acid transporters which are coded by multiple gene families have been poorly understood 

for their roles in N remobilization during leaf senescence (Okumoto et al., 2011). 
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Increased asparagine (Asn) and glutamine (Gln) have been proposed to play a key role 

during N remobilization from senescent leaves (Masclaux-Daubresse et al., 2010). 

Additionally, leaf senescence involves age-dependent PCD (Programed cell death). PCD 

in leaf senescence is responsible for remobilization of nutrients from the leaf to other 

organs, and especially developing seeds (Lim et al., 2007). Many senescence-associated 

genes (SAGs) or enzymes, including some isoforms of GS1, GDH, AS, and certain 

transcriptional factors, such as NAC, WRKY, are strongly activated during leaf 

senescence and play key role in N remobilization and seed yield (Lim et al., 2007, 

Masclaux-Daubresse et al., 2010, Xu et al., 2012).  

1.3 Nitrate transporter 2 family  

The high-affinity nitrate transporter (NRT2) family plays a critical role as the gate keeper 

of nitrate uptake and is heavily involved in internal nitrate translocation (Tsay et al., 

2007). For the time being, NRT2 has been studied thoroughly in Arabidopsis thaliana, 

which is a model plant for dicots. There are seven members in the NRT2 family that have 

been identified in Arabidopsis as high-affinity nitrate transporters (Orsel et al., 2002). 

The high-level of redundancy suggests that members in the NRT2 family should function 

in various tissues, growth stages, and different environmental conditions. AtNRT2.1, 

AtNRT2.2, and AtNRT2.4 are involved in high-affinity nitrate transport in roots, and 

AtNRT2.1 is the main component, while AtNRT2.2 makes a small contribution; all three 

members can be induced by nitrate addition (Li et al., 2007; Kiba et al., 2012). 

AtNRT2.4 and AtNRT2.5 are expressed in both root and shoot, and are strongly induced 

by N starvation and may be involved in phloem loading of nitrate (Kiba et al., 2012; 

Lezhneva et al., 2014). AtNRT2.7 is expressed in mature seeds and is responsible for 

nitrate accumulation in the seeds (Chopin et al., 2007).  

1.4 Brachypodium distachyon as a genetic model system 

Angiosperms (flowering plants) can be categorized into two groups; monocotyledonous 

plants (monocots, one cotyledon per embryo) and dicotyledonous plants (dicots, two 

cotyledons per embryo). It is estimated that monocots branched off from dicots 140-150 

million years ago (Chaw et al., 2004), and since then many differences have evolved. For 
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example, the structure and physiology of plant cell walls, the development and chemical 

composition of endosperm, and the genetic basis for cold tolerance (Kellogg, 2015). The 

vast majority of plant molecular biology research has been conducted in dicots, with 

Arabidopsis thaliana as a model system. However, the major cereal crops, such as rice, 

wheat and maize, are all monocots, and fundamental differences had been shown between 

Arabidopsis and monocot grass species in the gene number, family structure and the 

phylogenetic tree of NRT2 (Plett et al., 2010), which does not make it possible to 

determine the function of NRT2 in cereals based on sequence homology to NRT2 that 

has been characterized in Arabidopsis.  

Rice (Oryza sativa L.) has often been used as a model monocot plant because of its 

relatively small genome (441MB), and it is also an agriculturally important crop. 

However, in many aspects, rice is not an ideal model organism for monocots NUE 

research, because it does not share some important agricultural traits with other cereal 

members. For instance, the root anatomy of rice is not a good model for Pooideae 

grasses, because rice roots normally grow submerged in water and have adapted to 

anaerobic conditions (Chochois et al., 2012). Ammonium is the main form of nitrogen 

(N) in a paddy soil, and consequently rice uses ammonium more than nitrate (Wang et al. 

1993) unlike other agriculturally important monocots (wheat, maize, barley, etc.) which 

use nitrate predominantly. Moreover, the large size of adult rice plants makes it 

inconvenient to monitor plant growth across a full generation under controlled 

experimental conditions. The small monocot plant Brachypodium distachyon 

(Brachypodium), which diverged from wheat 32-39 million years ago, and from rice 40-

53 million years ago (The International Brachypodium Initiative, 2010), is  rapidly 

emerging as a powerful model system (reviewed in Girin et al., 2014; Kellogg, 2015) to 

study questions unique to the monocot crops, due to its small genome (270 Mbp, Vogel et 

al., 2010), plant size (~20 cm), short life cycle (~2 month), efficient transformation, and 

ease of cultivation. 

1.5 Research objectives  

Better understanding of nitrogen uptake, assimilation, and nitrogen remobilization is 

needed to deal with the challenge of trying to increase NUE in agricultural crops. With 
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the aid of Brachypodium, a cereal model plant, I can pursue the questions that are unique 

to monocot crops, such as how plants take up nitrate efficiently from the soil, how 

nitrogen can be efficiently transported from N source to sink, and eventually lead to the 

question of how to increase crop yield. Because drastic divergence of the NRT2 gene 

family between Arabidopsis and Brachypodium has been found, their functional 

differences need to be addressed. The Brachypodium NRT2 gene family is comprised of 

a set of gene members. Whether the individual NRT2 members have redundant function 

or each member serves a different role needs to be investigated.  Furthermore, NRT2.1 

has been proposed as the key member in the NRT2 family in Arabidopsis and rice. 

Whether this can be extended to Brachypodium needs to be confirmed. Finally, functions 

of BdNRT2.1 other than nitrate uptake need to be explored. Therefore, the objectives of 

my research were:  

1) Characterizing genes of the BdNRT2 family and their nitrogen responses;  

2) Functional analysis of BdNRT2.1 and testing its potential to increase NUE when over-

expressed;  

3) Exploring potential functions of BdNRT2.1 other than root nitrate uptake.     
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2.1  Introduction 

Nitrate is the major form of inorganic N that can be used by crop in aerobic soils (see the 

review of Xu et al., 2012) due to rapid nitrification of applied fertilizer and organic 

nitrogen. Plants take up nitrate mainly through members of two gene families. The high-

affinity transport system (HATS), which consists of members of the NRT2 family, is 

mainly responsible for nitrate uptake with Michaelis constant (Km) values in the 

micromolar range, whereas the low-affinity transport system (LATS), comprising the 

PTR (the nitrate transporter 1/peptide transporter) family, transports nitrate at millimolar 

concentrations. (Tsay et al., 2007; Masclaux-Daubresse et al., 2010; Wang et al., 2012; 

Krapp et al., 2014; Krapp, 2015). Unlike NPF, which has diverse substrate specificity, all 

NRT2 isolated from land plants only transport nitrate (Tsay et al., 2007; Wang et al., 

2012). NRT2 has been studied thoroughly in Arabidopsis thaliana which is a model plant 

for dicots. As described in Chapter 1.3, seven members of the AtNRT2 family have 

diverse functions in various tissues, growth stages, and under different nitrogen 

conditions (Li et al., 2007; Kiba et al., 2012; Lezhneva et al., 2014; Chopin et al., 2007). 

However, the major cereal crops, such as rice, wheat, and maize are all monocots, and 

fundamental differences have been shown between Arabidopsis and monocot species in 

gene number, family structure and phylogenetic tree of NRT2 (Plett et al., 2010), which 

does not make it possible to determine the function of NRT2 in cereals based on 

sequence homology to NRT2 characterized in Arabidopsis. The small monocot plant 

Brachypodium distachyon (Brachypodium) is rapidly emerging as a powerful model 

system (reviewed in Girin et al., 2014; Kellogg, 2015) to study questions unique to the 

monocot crops due to its small genome (270 Mbp, Vogel et al., 2010), plant size (~20 

cm), short life cycle (~2 month), efficient transformation, and cultivation.  

In this study, I analyzed individual BdNRT2 gene expression under different nitrogen 

sources and concentrations in both the wildtype Brachypodium and the BdNRT2.1 knock-

out mutant. I discovered that BdNRT2 gene expressions are governed by internal nitrogen 

status rather than external nitrate concentrations. BdNRT2.1 is a key member of the 

family which exhibits strong regulatory ties with BdNRT2.2 and BdNRT2.6. I 

hypothesized that genes of the BdNRT2 family have different roles from members of 

AtNRT2 family with respect to tissue specificity and nitrogen responses.  
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2.2 Materials and Methods 

2.2.1 Plant material and growth conditions 

The BdNRT2.1 T-DNA insertion mutant line was obtained from the JGI Brachypodium 

collection (JJ12084). Homozygous T3 lines for the mutants were selected by genomic 

PCR using specific primers. Wild type (Bd21-3), and T3 homozygous mutant (based on 

the same ecotype Bd21-3) seeds were germinated and grown under aseptic conditions. 

Seeds were soaked in ddH2O for 2 hours at room temperature before the lemma were 

removed. For sterilization, seeds were first soaked in 70% ethanol for 30 seconds with 

gentle shaking, and then transferred into 1.3% hypoclorite solution for 4 minutes with 

gentle shaking, followed by three washes with sterilized ddH2O. Sterilized seeds were 

then placed on wet filter paper in a petri dish sealed with 3M Micropore tape and 

incubated for 4 d in the dark at 4 
o
C to synchronize germination. To initiate germination, 

seeds were transferred to a growth room with a 20 h photoperiod, a temperature of 23 
o
C, 

and a light intensity of 75 μmol/m
2
/s, for 5 d. Successfully germinated seedlings of 

similar size were transferred to sterilized Magenta
TM

 GA-7 Plant Tissue Culture Boxes 

(Sigma-Aldrich) containing 125 ml of modified Hoagland nutrient solution with the 

desired nitrate/ammonium contents (49 mg/L H3PO4, 250 mg/L CaCl2, 185 mg/L 

MgSO4·7H2O, 179 mg/L KCl, 58 mg/L NaCl, 2.86 g/L H3BO3, 1.81g/L MnCl2·4H2O, 

220 mg/L ZnSO4·7H2O, 51 mg/L CuSO4, and 120 mg/LNaMoO4·2H2O). The desired N 

concentrations were adjusted using KNO3, NH4Cl or NH4NO3, and pH was subsequently 

adjusted to 5.8. Plants were floated on the nutrient solution using Styrofoam rafts with 

holes and anchored with a strip of sterilized sponge so the roots were fully submerged in 

the solution. Four plants (same genotype) were grown in each Magenta
TM

 box. Plants 

from each Magenta
TM

 box were pooled as 1 biological replicate. Magenta
TM

 boxes were 

randomized and grown in the same growth room as described above for up to 5 weeks, 

and the hydroponic solution was renewed weekly at 3 pm on each Friday.  

2.2.2 Vector construction and plant transformation 

To generate BdNRT2.1 rescue lines, the full coding region of BdNRT2.1 was fused with 

its 2 kb upstream sequence (native promoter) and flanked by Gateway® attachment site 

sequences, then inserted into pEarleyGate 301 (Earley et al., 2006) using Gateway® 
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Technology (Hartley et al., 2000). Construct diagrams are detailed in Appendix 2.3. 

Transgenic Brachypodium plants were generated using the Agrobacterium tumefaciens 

mediated transformation method, as described previously (Alves et al., 2009) with slight 

modification. Calli of the bdnrt2.1 were induced from immature embryos on 

MSB3+Cu0.6 medium for 6 weeks, and co-cultured with Agrobacterium strain AGL1 

harboring the pEarleyGate 301 binary vector including BdNRT2.1 gene for 2 d, then 

transferred onto MSB3 + H100/B100 + T225 selective medium supplemented with 

100μg/L BASTA for pEarleyGate 301 for 4 weeks. Resistant calli were subsequently 

transferred onto MSR26 regeneration medium for shoot induction then MSR63 medium 

for root regeneration. The transgenic plantlets were then transferred to the growth room 

in pots of Pro-mix® BX Mycorrhizae growing medium (Premier Tech Horticulture) to 

grow and produce seeds. T4 homozygous seeds containing the transgene were harvested 

and three lines (RE7, RE8 and RE10) were used for further analysis.  

2.2.3 HATS determination 

Influx rate of 
15

NO3 was carried out based on the method previously described by Li et 

al. (2007). Brachypodium plants were grown hydroponically in nutrient solution 

containing 1 mM NH4NO3 for 4 weeks and then deprived of N for 1 week to deplete the 

internal N reservoir. Plants that had been starved for 7 d were transferred into nutrient 

solution containing 1 mM KNO3 for 6 h to induce nitrogen response, and then the flux 

upon immersion into 0.1 mM K
15

NO3 was measured (the plants were washed with 0.1 

mM CaSO4 for 1 min, then immersed in nutrient solution containing 0.1 mM K
15

NO3 

(atom%
15

N: 99%) for 10 min and finally to 0.1 mM CaSO4 for 1 min). This flux 

represented the HATS activity. Roots of tested plants were oven dried for 48 h at 60 
o
C 

and grounded into powder. Two and half mg of each subsample was shipped to the UC 

Davis Stable Isotope Facility (Davis, CA, USA) for 
15

N abundance determination, where 

samples were analyzed using a PDZ Europa ANCA-GSL elemental analyzer interfaced to 

a PDZ Europa 20-20 isotope ratio mass spectrometer (Sercon Ltd., Cheshire, UK). The 

15
N analyses were performed on 4 biological replicates. 
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2.2.4 RNA extraction, semi-quantitative real-time PCR and quantitative real-time 

PCR 

Total RNA were extracted using TRIzol® reagent (Thermo Fisher Scientific) from target 

tissues obtained from hydroponic culture at 3 pm on each Friday. The RNA concentration 

was determined using a Nanodrop™ 1000 spectrophotometer. First-strand cDNA was 

synthesized from 1 μg of DNase I (Thermo Fisher Scientific) treated total RNA using the 

iScript™ Reverse Transcription Supermix (BIO-RAD) according to the manufacturer’s 

instructions. Semi-quantitative RT-PCR was performed using GoTaq® DNA polymerase 

(Promega). Quantitative Real-Time PCR was performed on the cDNA templates using 

the qPCR reaction mix SsoFast™ EVAGreen® supermix (BIO-RAD) according to the 

manufacturer’s instructions in a CX96™ Real Time system – C1000 touch thermal 

cycler. BdSamDC was used as a housekeeping gene for the nitrogen treatment 

experiments, and BdUbi4 was used as a housekeeping gene for the different tissue 

analyses (Hong et al., 2008). The specific primers used for quantitative real-time PCR are 

detailed in Appendix 2.2. The specificity of the primer pairs was validated through 

sequencing the amplified products (Eurofins). The analyses were performed on 3 

biological replicates, each with 3 technical replicates.  

2.2.5 Statistical analysis 

The difference between two subjects was assessed using the two-tailed student t tests 

with equal variance. Differences among multiple subjects were assessed using one-way 

analysis of variance (ANOVA) followed by multiple comparisons using Fisher’s LSD 

method. Subsequently, the effect of nitrogen concentrations/nitrate resupply, including 

the interaction effect between nitrogen treatment and plant genotype, was examined using 

a general linear model with plant genotype, and nitrogen treatment as a continuous 

variable. All statistical analyses were conducted using SPSS 13.0 statistical software 

(SPSS Inc, Chicago, IL, USA). 
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2.3 Results 

2.3.1 Retrieval of Brachypodium NRT2 genes and construction of a phylogenetic 

tree 

With the assistance of previously identified Brachypodium NRT2 genes, and using the 

modified reciprocal best hit (RBH) approach against Arabidopsis NRT2 genes (Plett et 

al., 2010), another extensive BLAST search was carried out to identify all putative 

orthologues of the Arabidopsis NRT2 genes in the fully sequenced Brachypodium 

genome (Phytozome v11.0). In addition to the five previously identified BdNRT2 genes, 

I found the sixth member, which shared high amino acid similarity (66.1%) and 

contained the conserved major facilitator superfamily (MFS) domain (Pfam 31.0). Six 

genes encoding putative high-affinity nitrate transporters (BdNRT2) were named: 

BdNRT2.1 (Bradi3g01270.1), BdNRT2.2 (Bradi3g01250.1), BdNRT2.3 (Bradi3g01277.1), 

BdNRT2.4 (Bradi3g01290.1), BdNRT2.5 (Bradi2g47640.1), and BdNRT2.6 

(Bradi2g26210.1). The six genes were distributed on two out of five chromosomes in 

Brachypodium: BdNRT2.5 and BdNRT2.6 on chromosome 2, and the rest on chromosome 

3 (Fig 2.1). A phylogenetic tree of NRT2s was created after alignment of the seven NRT2 

members from Arabidopsis (Plett et al., 2010), the four Maize sequences (Garnett et al., 

2013), the four Rice sequences (Feng et al., 2011), and the six Brachypodium sequences 

identified here (Fig2.2). NRT2 genomic sequence data of the four model plants were 

compared using Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/), with the 

neighbour-joining analyses performed using FigTree (V1.4). Structural features of 

BdNRT2 genes and proteins are listed in Appendix 2.1. 

2.3.2 Tissue specificity of BdNRT2 gene expression 

To examine the tissue specificity of BdNRT2 gene expression, the wild type 

Brachypodium seeds were germinated and grown hydroponically under 1 mM NH4NO3 

(nitrogen non-limiting) for 25 d (after anthesis), then various organs were collected at 3 

pm for gene expression analysis. Expression of all six BdNRT2 gene members were 

analyzed using quantitative Real-Time PCR (data not shown) and semi-quantitative PCR 

(Fig. 2.3). BdNRT 2.1 and BdNRT 2.2 were strongly expressed in the root, consistent with 

AtNRT2.1.  
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Figure 2.1 Genomic localization and orientation of BdNRT2 genes on chromosomes of 

Brachypodium distachyon. 

The blue bars represent chromosome 2 (left) and 3 (right) of the Brachypodium genome. 

The genes shown to the left of the chromosome are transcribed in the positive orientation 

(from the top down); the genes shown to the right of the chromosomes are transcribed in 

the negative orientation (from the bottom up). 
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Figure 2.2 Phylogenetic relationship of the NRT2 family. 

Unrooted Neighbour-joining tree of NRT2 transporters in Arabidopsis (Black), Brachypodium 

(purple), Maize (Red), and Rice (Yellow). Bootstrap values were used to estimate the 

confidence limits of the nodes. The scale bar represents a 0.04 estimated nucleotide substitution 

per residue. 
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Figure 2.3 Semi-quantitative RT-PCR (30 cycles) used to detect the mRNA levels of 

BdNRT2s. 

Samples from root, leaf, stem, and spike were collected 25 DAG under 1 mM NH4NO3 

(N none-limiting) pooled with 3 biological replicates. BdUbi4 was used as a 

housekeeping gene.  
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However, BdNRT 2.1 also was strongly expressed in the stem, indicating it has versatile 

roles other than nitrate uptake. BdNRT 2.3 and BdNRT2.4 were preferably expressed in 

the leaf, with BdNRT2.5 mostly found in the spikelet, while BdNRT2.6 was weakly 

expressed across all organs. 

2.3.3 Expression of BdNRT2 genes in response to nitrate 

As a first step to characterize the six members of the Brachypodium NRT2 family, I 

analyzed their response to nitrate in a time-course experiment. Wild-type Brachypodium 

seedlings were grown hydroponically in nutrient solution containing 1 mM NH4NO3 for 

22 d and then deprived of N for 7 d to deplete the internal N reservoir. Then plants were 

re-supplied with 1 mM nitrate for up to 6h. Root samples were collected at T0 (right 

before nitrate resupply), T1 (10 min after nitrate resupply) and T2 (6 h after nitrate 

resupply); this time was picked because plant nitrogen response will be fully induced 

within 6 h (Li et al., 2007). The time-course experiment shown in Fig. 2.4 allowed the 

classification of the six tested BdNRT2 genes in three groups, namely nitrate inducible, 

nitrate repressible and nitrate constitutive (Criscuolo et al., 2012). The results showed 

that BdNRT 2.1 and BdNRT 2.2 were nitrate inducible genes (p=0.030 and p=0.012) and 

BdNRT 2.5 was a nitrate repressible gene (p=0.004). The rest were nitrate constitutive 

genes.  

2.3.4 Expression of BdNRT2 genes was governed by internal N status regardless of 

external nitrate and ammonium 

To further characterize the six members of the Brachypodium NRT2 family, I analysed 

their responses to nitrate and ammonium in gradient experiments. Wild-type 

Brachypodium seedlings were grown hydroponically in nutrient solution containing 

various concentration of nitrate or ammonium (ranging from 0 mM to 3.2 mM) for 15 d, 

root samples were collected at 3 pm. For the nitrate response (Fig. 2.5A), agreeing with 

the nitrate resupply experiment, the increased nitrate concentration induced BdNRT 2.1 

by 3.6 fold (p<0.001) and BdNRT 2.2 by 2.2 fold (p=0.001) expression and repressed 

BdNRT2.5 expression (10-fold repression, p<0.001). The rest were constitutively 

expressed across all nitrate concentrations. Interestingly, the same patterns were also 

observed if the nitrate was replaced by the same concentrations of ammonium (Fig. 2.5B) 
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Figure 2.4 Expression patterns of BdNRT2 genes in response to nitrate provision. 

RT-qPCR products were obtained from roots of 4-week-old Brachypodium plants, which were 

grown hydroponically for 3 weeks in solution containing 1 mM NH4NO3. Plants were N 

deprived for 1 week (0 h), and then re-supplied with 1 mM KNO3 for 10min–6 h. BdSamDC 

was used as the housekeeping gene. Values are mean ± SE (n=3; 3 trials with the average of 3 

biological replicates in each trial). For the q-PCR analysis of each gene, expression data of 

WT-T0 was normalized as 1 in each trial. 
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Figure 2.5 Expression patterns of BdNRT2 genes at a series of nitrate (A) and 

ammonium (B) concentrations. 

RT-qPCR products were obtained from roots of Brachypodium plants, which were 

grown hydroponically for 15 d in solution containing a range of KNO3 or NH4Cl 

concentrations (0-3.2 mM). BdSamDC was used as the housekeeping gene. Values are 

mean ± SE (n = 3). For the q-PCR analysis of each gene, expression data of WT-N0 was 

normalized as 1 in each replicate. 
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; that is, increased ammonium concentration also induced BdNRT 2.1 (5.2-fold increase, 

p<0.001) and BdNRT 2.2 (8.6-fold increase, p<0.001) expression and repressed BdNRT 

2.5 expression (33.3-fold repression, p<0.001). The rest were constitutively expressed 

across all ammonium concentrations. These results indicated the expression of BdNRT2 

genes was probably governed by internal N status regardless of external nitrate and 

ammonium concentrations. 

2.3.5 HATS was decreased in the BdNRT2.1 mutant 

The bdnrt2.1 mutant has a single T-DNA insertion on the only exon of BdNRT2.1. 

BdNRT2.1 transcript levels were minimal in both shoots and roots for the bdnrt2.1, and 

expression of truncated BdNRT2.1 also was undetectable using primers specific to the 5’-

UTR of the gene. Three representative homozygous BdNRT2.1 rescue lines, named RE-7, 

RE-8, RE-10, were obtained with the expression of BdNRT2.1 fully restored in the roots 

(Appendix 2.4). The 
15

NO3 Influx experiment (Fig. 2.6) showed HATS activity was about 

25 µmolg
-1

DWh
-1 

in the Brachypodium root. Like the results of Li et al. (2007) on 

Arabidopsis NRT2.1, I also found that HATS were significantly reduced for the bdnrt2.1 

compared with the wild type (Fig. 2.6, 30% reduction, p=0.03), and the nitrate influx was 

restored to the similar level as the wild type in the rescue lines, indicating that BdNRT2.1 

is responsible for HATS in Bachypodium. However, this reduction is observed to a much 

lesser extent compared to the 75% decrease of HATS in the AtNRT2.1 mutant (Filleur et 

al., 2001). 

2.3.6 BdNRT2.6 was up-regulated to compensate the loss of BdNRT2.1, and 

BdNRT2.2 was not inducible in the BdNRT2.1 mutant 

To investigate the impact of the absence of BdNRT2.1 on the other family members, I 

compared the expression of BdNRT2 genes between wild-type and the BdNRT2.1 mutant 

in response to nitrogen in the same nitrate resupply and gradient experiment condition 

described previously. As Fig. 2.7 shows, BdNRT2.1 expression was not detectible at all 

conditions in the BdNRT2.1 mutant (MU-red). BdNRT2.6 was up-regulated by 6.1-fold 

(Fig. 2.7A, p=0.01), 7.5-fold (Fig. 2.7B, p=0.04), and 35-fold (Fig. 2.7C, p<0.001) in the 

mutant compared with the wild type (WT-blue) regardless of the treatment. The  
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Figure 2.6 Root influx of 
15

N in wild type (WT), the bdnrt2.1 mutant (MU), and rescue 

lines (RE, equally pooled with RE-7, RE-8, RE-10). 

Values are mean ± SE (n = 4). Different letters above bars indicate significant differences 

(p<0.05).  
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Figure 2.7 Expression patterns of BdNRT2 genes under different N conditions in wild-type 

(WT-blue) and bdnrt2.1 (MU-red). 

(A) Relative expression in N resupply experiment; (B) Relative expression in gradient nitrate 

experiment; (C) Relative expression in gradient ammonium experiment. BdSamDC was used 

as the housekeeping gene. Values are mean ± SE (Panel A was based on 3 trials with the 

average of 3 biological replicates in each trial; Panel B, C were based on 3 biological 

replicates from 1 trial). For the q-PCR analysis of each gene, expression data of WT0 was 

normalized as 1 in each replicate. 
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BdNRT2.6 expression level was restored to the same level of wild-type in the BdNRT2.1 

rescue line (Appendix 2.5B). Intriguingly, regarding BdNRT2.2 expression, there were 

significant interactions between nitrogen treatment and plant genotype (Fig. 2.7A, 

p=0.001, Fig. 2.7B, p=0.002, Fig. 2.7C, p<0.001). BdNRT2.2 lost its nitrogen inducible 

property in the genetic background of the BdNRT2.1 mutant, and it could not be 

recovered in the BdNRT2.1 rescue line (Appendix 2.5A). BdNRT2.1 and BdNRT2.2 were 

tandem repeats on chromosome 3 with only 5.3 kb separating them. The regulatory 

change of BdNRT2.2 expression in the bdnrt2.1 could be explained by the possibility that 

the nitrogen responsive elements of BdNRT2.2 may be physically disrupted by T-DNA 

insertion on the BdNRT2.1 exon of the bdnrt2.1 mutant. 

2.4 Discussion 

The gene expression profiling of NRT2 has been well described in Arabidopsis (Orsel et 

al., 2002; Okamoto et al., 2003) and rice (Cai et al., 2008; Feng et al. 2011). Although 

rice is a monocot plant, its roots are usually grown in flooded paddy soils and only a trace 

amount of nitrate exists in its rhizosphere. Brachypodium is a typical monocot model 

plant that is closely related to many important cereal crops in various aspects. Six 

members were identified as NRT2 genes in Brachypodium. To gain more insight into 

those BdNRT2s, I first characterized their tissue specificity. Unlike the AtNRT2s, which 

were all highly expressed in the roots, except for AtNRT2.7 (mainly in seeds) (Orsel et 

al., 2002; Okamoto et al., 2003; Chopin et al., 2007), I discovered that only BdNRT2.1 

and BdNRT2.2 were strongly expressed in the root (Fig. 3), suggesting they are likely the 

main contributors to root nitrate uptake. BdNRT2.3 and BdNRT2.4 were preferably 

expressed in the leaf, BdNRT2.5 was mostly found in the root and spikelet, while 

BdNRT2.6 was weakly expressed across all organs. This difference in tissue specificity 

illustrated the phylogenetic divergence between Arabidopsis and Brachypodium (Fig. 

2.2) which has also been demonstrated by Plett et al. (2010). Additionally, BdNRT2.1 

also was strongly expressed in the stem, indicating that it has versatile roles other than 

nitrate uptake. This will be confirmed in Chapter 3, which demonstrates that BdNRT2.1 is 

responsible for N remobilization during leaf senescence. BdNRT2.3 and BdNRT2.4 were 
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tandem repeats on chromosome 3, 8.8kb apart from each other, and they exhibit the same 

tissue expression pattern. As the only member of BdNRT2 that shared the same branch 

with AtNRT2 on the phylogenetic tree, BdNRT2.5 may have similar functions as 

AtNRT2.5, which is likely responsible for phloem loading and is inducible under nitrogen 

starvation (Lezhneva et al., 2014). The latter was confirmed in my nitrogen provision 

experiments; that is, BdNRT2.5 was repressible under nitrate resupply (Fig. 2.4) and high 

nitrate (Fig. 2.5A) and ammonium (Fig. 2.5B) concentrations. Moreover, given that 

BdNRT2.5 had strong expression in spikes (Fig. 2.3) and is located on the same clade as 

AtNRT2.7 (Fig. 2.2), it could serve the same role as AtNRT2.7 (Chopin et al., 2007), and 

could be responsible for seed nitrogen filling in Brachypodium. Overall, the tissue 

specificity of BdNRT2 members differs from AtNRT2s. Among BdNRT2s, the tissue 

specificity varied with their genomic localization (Fig.2.1), and the neighboring genes 

tend to exhibit the same expression pattern, while BdNRT2.5 and BdNRT2.6, which were 

located on a different chromosome, had a unique expression pattern. 

The time-course nitrate resupply experiment shown in Fig. 2.5 allowed me to characterize 

BdNRT2.1 and BdNRT2.2 as nitrate inducible genes (10.6-fold and 3.3-fold induction, 

respectively, within 6 h), BdNRT2.5 as nitrate repressible gene (3.6-fold repression within 

6 h), and the rest as nitrate constitutive genes. The inductions of NRT2.1 and NRT2.2 in 

response to nitrate provision also were reported in Arabidopsis (Okamoto et al., 2003), 

and they were found to be responsible for the inducible high-affinity nitrate transport 

activity (Li et al, 2007). AtNRT2.4 was strongly repressed with nitrate provision 

(Okamoto et al., 2003; Kiba et al., 2012) and this was not observed in Brachypodium. 

BdNRT2.3 and BdNRT2.4 shared the same tissue specific expression pattern and were 

both constitutively expressed in response to nitrate provision. Interestingly, like 

AtNRT2.5, BdNRT2.5 is a nitrate repressible gene, however, none of the NRT2s in rice 

were found to be repressible (Cai et al., 2008; Feng et al., 2011). Nitrate is a signaling 

molecule. Within minutes, nitrate can trigger thousands of genes in primary N 

assimilation pathways, including NRT2.1 and NRT2.2 in Arabidopsis (reviewed by Wang 

et al., 2012). AtNLP7 has been proposed as the master regulator of early nitrate signaling 

(Marchive et al., 2013). It can directly bind both the 3’ and 5’ genomic regions of 

AtNRT2.1 and AtNRT2.2, and AtNRT2.1 was activated by nitrate in an AtNLP7 dependent 
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way (Marchive et al., 2013). Although, a so-called NRE (nitrate responsive element) is 

involved in nitrate regulation of gene coding for NIR1 (nitrite reductase) (Konishi and 

Yanagisawa, 2010), no conserved regulatory elements have been revealed in other nitrate 

responsive genes.  

To further confirm the nitrate response of each BdNRT2s, I analyzed their expression 

change in nitrate gradient experiments. As predicted, similar expression patterns were 

observed; that is, the mRNA level of BdNRT2.1 and BdNRT2.2 increased (3.6-fold 

induction and 2.2-fold induction, respectively) when external nitrate concentrations were 

high, and the expression patterns conformed to the general linear model. Similarly, the 

mRNA expression level of BdNRT2.5 decreased (10-fold repression) when external 

nitrate was high. To my knowledge, previous studies of NRT2s’s nitrogen response to a 

gradient of nitrate concentrations were performed on the basis of resupplying nitrate to 

nitrogen-starved plant in a time-course experiment (Orsel et al., 2002; Okamoto et al., 

2003; Cai et al., 2008; Feng et al. 2011; Criscuolo et al., 2012; Pellizzaro et al., 2015). 

My gradient experiment was carried out by growing the Brachypodium plant with 

different nitrate concentrations. The stabilized BdNRT2s expression change against 

varying concentrations was then investigated at 15 DAG. The fact that similar expression 

patterns were observed in such gradient experiments as in nitrate resupply experiments 

indicates that the expression of BdNRT2s can be regulated by nitrate provision and the 

regulation stays in effect for at least 15 DAG. In my gradient experiments using the same 

set of concentrations of ammonium to replace nitrate, similar gene expression patterns 

were observed. The mRNA expression level of BdNRT2.1 and BdNRT2.2 increased (5.2-

fold induction and 8.6-fold induction, respectively) when external ammonium 

concentration was high. Also, the mRNA expression level of BdNRT2.5 decreased (33.3-

fold repression) when external ammonium was high. These results indicate that the 

regulation of BdNRT2s is probably governed by its internal N status, because it is known 

that NRT2 does not transport ammonium. The linear nitrogen response makes BdNRT2.1 

and BdNRT2.2 two suitable genes to serve as nitrogen markers in Brachypodium. It has 

been suggested that the internal N metabolites pool, such as amino-acids within the plant, 

can provide a signal that can regulate N uptake and assimilation (Nunes-Nesi et al., 

2010). However, mainly negative regulations such as exogenous asparagine and 
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ammonium repression on N uptake and assimilation have been observed (Nunes-Nesi et 

al., 2010). NRT2.1 and NRT2.4 in Arabidopsis have been shown to be repressed by high 

external ammonium concentrations in different reports (reviewed by Wang et al., 2012). 

Our results did not reflect any ammonium repression effect in Brachypodium, which can 

be explained by the methodological difference, I grew the plant with various ammonium 

concentrations from germination for 15 d instead of treating N starved plants with various 

ammonium concentrations for a time course experiment. Furthermore, the highest 

ammonium level was 3.2 mM, which is much lower than the high ammonium treatment 

(~10 mM) of previous studies. What I discovered from the gradient experiments was a 

long-term regulation of BdNRT2s in response to two different nitrogen forms, and 

together with the nitrate provision results, I conclude that BdNRT2.1 and BdNRT2.2 was 

induced by high nitrogen condition and BdNRT2.5 was repressed by high nitrogen 

condition, while the other three members were not found to be regulated by different 

nitrogen treatment. It is still unknown how the perception of N by BdNRT2s works based 

on current understanding.     

In a BdNRT2.1 T-DNA mutant (bdnrt2.1), 
15

NO3 influx under low nitrate (0.1 mM) was 

reduced by 30%, indicating that BdNRT2.1 is responsible for HATS activity. However, 

this reduction is much less than the 75% decrease of HATS in the AtNRT2.1 mutant 

(Filleur et al., 2001).  It can be inferred that members in Brachypodium NRT2s other than 

BdNRT2.1 are also playing a key role in HATS. Perhaps, BdNRT2.2 will contribute 

significantly to HATS due to its strong expression in the roots, and its protein product is 

almost identical (93.8% at amino acids level, Appendix 2.1) to BdNRT2.1. I further 

examined the N response of BdNRT2s in the background of the bdnrt2.1 mutant, trying to 

find the impact of losing BdNRT2.1 on the rest of the family members. BdNRT2.6 was 

strongly up-regulated regardless of N conditions in the bdnrt2.1 mutant (Fig. 2.7ABC). 

This result indicates that BdNRT2.6 was up-regulated to compensate for the loss of 

BdNRT2.1. In a gene family with multiple members, the lack of one member often leads 

to compensation by another member from the family. However, BdNRT2.6 can only 

partially, if at all, compensate the root nitrate uptake, given the results that the HATS was 

still down-regulated in the root of the bdnrt2.1 mutant. Surprisingly, BdNRT2.2 lost its 

nitrogen inducible property in the background of the bdnrt2.1 mutant (Fig. 2.7ABC). 
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BdNRT2.1 rescue lines cannot recover this loss (Appendix 2.5A), suggesting that the T-

DNA insertion in the bdnrt2.1 mutant may physically disrupt the nitrogen regulatory 

elements of BdNRT2.2. Further research is needed to identify this nitrogen responsive 

motif of BdNRT2.2. 

In conclusion, I presented a molecular characterization of the NRT2 family in the 

monocot model plant Brachypodium, which differs from the NRT2 family in 

Arabidopsis. I showed a diversified picture of their expression patterns in response to 

various nitrogen conditions and in specific tissues, suggesting multifaceted connections 

between plant nitrogen status and individual BdNRT2 members. Although redundancy 

exists among members in the family, BdNRT2.1 has emerged to be the key member, the 

lack of which results in an altered nitrogen response of other family members. My work 

gives a sound foundation for future experiments that will help to elucidate the specific 

roles of each transporter in monocot plants. 

Study limitations:  

Due to the high experimental workload and time limitation, the nitrogen gradient 

experiments and HATS determination experiment were conducted only with 1 trial each, 

while the nitrate resupply experiment was conducted with three trials. Thus the 

interpretation of results generated by a single trial should be cautious. Also, reader should 

keep in mind that the bdnrt2.1 mutant was not out-crossed to eliminate the possibility of 

multiple mutations, although the bdnrt2.1 mutant was reported to have a single T-DNA 

insertion according to Brachypodium T-DNA collection’s information sheet.    

2.5  Appendices 
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Appendix 2.1 Structural features of BdNRT2 genes and proteins 

Gene Locus ID Length(aa) % similarity to BdNRT2.1 

BdNRT2.1 Bradi3g01270 498 100 

BdNRT2.2 Bradi3g01250 509 93.8 

BdNRT2.3 Bradi3g01277 507 86.1 

BdNRT2.4 Bradi3g01290 503 85.7 

BdNRT2.5 Bradi2g47640 515 68.5 

BdNRT2.6 Bradi2g26210 433 66.1 
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Appendix 2.2 Primers used for RT-qPCR of NRT2 genes. 

Gene name Primers 

BdNRT2.1 F: 5'- TTTCCTCTGTCCCAGCTACG -3' 

R: 5'- CGCAGCAAATGTGTAGTACCTC -3' 

BdNRT2.2 F: 5'- AAGCCGGCGCTCATGGAGAC -3' 

R: 5'- GAGGTTGTCGCGGATGATAG -3' 

BdNRT2.3 F: 5'- ATGGAGGTCGGCACTTCA -3' 

R: 5'- TACATGTTGGGGCGTGTTG -3' 

BdNRT2.4 F: 5'- ATGGAGGCCGGCTCTGCT -3' 

R: 5'- TATGTGCTCGGGCGACCCG -3' 

BdNRT2.5 F: 5'- ATGGGGGGGGAGTCGAAG -3' 

R: 5'- CACGTCGGCCGGCGGTGAT -3' 

BdNRT2.6 F: 5'- ATGGAACTGGAGGTGGGC -3' 

R: 5'- CTCCGAAGCGTAGTAGTCC -3' 

BdSamDC F: 5'- TGCTAATCTGCTCCAATGGC-3' 

R: 5'- GACGCAGCTGACCACCTAGA-3' 

BdUbi4 F: 5'- TGACACCATCGACAACGTGA -3' 

R: 5'- GAGGGTGGACTCCTTCTGGA -3' 
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Appendix 2.3 Circular map of vector constructs (pEarleygate301) used for BdNRT2.1 

complementation. 

Map was constructed using SeqBuilder (Lasergene 10) 
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Appendix 2.4 qPCR expression analyses of BdNRT2.1 gene in root of the wild type, 

mutant and rescue lines. 

Values are mean ± SE (n = 3). BdSamDC was used as the housekeeping gene. Different 

letters above bars indicate significant differences (p<0.05).  For the q-PCR analysis of the 

gene, expression data of WT was normalized as 1 in each replicate. 
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RT-qPCR products were obtained from roots of 4-week-old Brachypodium plants, which 

were grown hydroponically for 3 weeks in solution containing 1 mM NH4NO3. Plants 

were N deprived for 1 week (0 h), and then re-supplied with 1 mM KNO3 for 10min–6 h. 

BdSamDC was used as the housekeeping gene. Values are mean ± SE (n = 3). For the q-

PCR analysis of each gene, expression data of WT0 was normalized as 1 in each trial.  
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Appendix 2.5 Expression patterns of BdNRT2.2 (A) and BdNRT2.6 (B) in response to 

nitrate provision of wild-type (WT-blue), bdnrt2.1 (MU-red), and bdnrt2.1 rescue line 

(RE-green). 
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3.1 Introduction 

As described in Chapter 1.1, the world is experiencing many problems resulting from 

excess agricultural nitrogen supply. The global annual amount of synthetic nitrogen (N) 

fertilizer applied to crops has risen dramatically in the past few decades, resulting in 

significantly increased crop yields and decreased world hunger (Good et al., 2004). 

However, only a small portion of applied nitrogen is utilized (McAllister et al., 2012). 

More than half of the applied nitrogen is lost through a combination of different 

processes, including ground run-off, leaching, denitrification and ammonia volatilization 

(Garnett et al., 2009) which adversely affect our human health and eco-systems 

(Townsend et al., 2003;Vitousek et al., 2009; Wuebbles, 2009). In addition, the cost of N 

fertilizer is increasing, because it is derived from the energy intensive Haber-Bosch 

process (Xu et al., 2012). Together, this has created an urgent need to enhance nitrogen 

use efficiency (NUE) in crops; that is, crops that are better able to take up, utilize and 

remobilize the nitrogen available to them. For crops, NUE is defined as grain yield per 

unit of applied N in the soil; for Arabidopsis, NUE is expressed as fresh or dry biomass 

per nitrogen content in the plant (Good et al., 2004). In both cases, NUE is the 

combination of nitrogen uptake efficiency (NUpE)/nitrogen assimilation efficiency 

(NAE) and nitrogen utilization efficiency (NUtE)/nitrogen remobilization efficiency 

(NRE) (Xu et al., 2012).  

Nitrate is the major form of inorganic N that can be utilized by crop plants in aerobic 

soils (Xu et al., 2012). Plant roots generally have two systems for nitrate uptake, a high-

affinity nitrate transport system (HATS), which is activated under low external nitrate 

concentrations (< 500µM) and a low-affinity nitrate transport system (LATS), which is 

activated under high external nitrate concentrations (>500µM) (Noguero and Lacombe, 

2016). Both constitutive and inducible forms co-exist within each of these nitrate 

transport systems (Miller et al., 2007; Noguero and Lacombe, 2016). These four systems 

together ensure the efficient uptake of nitrate from the soil and distribution within the 

whole plant in response to various environmental and developmental conditions 

(reviewed in Tsay et al., 2007; Masclaux-Daubresse et al., 2010; Wang et al., 2012; 

Krapp et al., 2014; Krapp, 2015). There are seven members in the NRT2 family in 

Arabidopsis thaliana that are high-affinity nitrate transporters (Orsel et al., 2002). 
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AtNRT2.1, mainly expressed in the epidermal and cortical cells of mature roots (Wirth et 

al., 2007), has been demonstrated as the main component of HATS (Filleur et al., 2001; 

Li et al., 2007), and it is responsible for efficient use of nitrate when nitrate is limiting 

(Krapp, 2015). Besides its essential role in root nitrate influx, AtNRT2.1 is also involved 

in nitrate sensing independently; the loss of function mutant lin1 has the ability to initiate 

large numbers of lateral roots (Little et al., 2005). However, little or no impact of 

AtNRT2.1 on the NUE related phenotype was detected under N non-limiting conditions.  

The small monocot plant, Brachypodium distachyon (Brachypodium), is rapidly 

emerging as a powerful model system (reviewed in Girin et al., 2014; Kellogg, 2015) to 

study questions unique to monocot crops (wheat, maize, rice, etc.), due to its small 

genome (270 Mbp; Vogel et al., 2010) and plant size, short life cycle, efficient 

transformation and ease of cultivation. There are fundamental differences between 

Arabidopsis and grass species in gene number, family structure and the phylogenetic tree 

of NRT2 (Plett et al., 2010), which does not make it feasible to determine the functions 

of NRT2 genes in monocot plants simply based on homologuous genes identified in 

Arabidopsis. More importantly, like common monocot crops, Brachypodium can generate 

grain yield which is a desirable and inheritable trait for NUE research, and makes it an 

ideal system for study of such specific processes.    

In this study, I analyzed the function of a putative high-affinity nitrate transporter, 

BdNRT2.1, in Brachypodium with the aid of the bdnrt2.1 mutant, transgenic lines 

including BdNRT2.1 cDNA rescue lines and BdNRT2.1 over-expression lines. I showed 

that BdNRT2.1 is indispensable for NUE and also controls the nitrogen remobilization 

process during leaf senescence in Brachypodium under N non-limiting conditions. This 

higher expression of BdNRT2.1 can result in better NUE.      

3.2 Materials and Methods 

3.2.1 Plant material and growth conditions  

The BdNRT2.1 (Bradi3g01270) T-DNA insertion mutant line was obtained from the JGI 

Brachypodium collection (JJ12084). Wild type (Bd21-3), T3 homozygous mutant (based 

on Bd21-3) seeds and T4 homozygous transgenic seeds (based on Bd21-3) were grown in 

Pro-mix or hydroponic solution. Three lines of T4 BdNRT2.1 rescue plants (RE-7, RE-8, 
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RE-10) and three lines of T4 BdNRT2.1 overexpressing plants (O-2, O-4, O-13) were 

used in the experiments. A T-DNA insertion mutant line was obtained from the JGI 

Brachypodium collection (JJ12084). Homozygous T3 lines for the mutants were selected 

by genomic PCR using specific primers (Appendix 3.4). Wild type (Bd21-3), T3 

homozygous mutant seeds and T4 homozygous transgenic seeds were germinated on wet 

filter paper in a petri dish sealed with 3M Micropore tape and incubated for 4 days in the 

dark at 4
o
C to synchronize germination. To initiate germination, seeds were transferred to 

a growth room with a 20 h photoperiod, a temperature of 23
o
C, a light intensity of 75 

μmol/m
2
/s, for 5 days. Successfully germinated seedlings with similar size were planted 

(1 seedling per pot) in pots of Pro-mix® BX Mycorrhizae growing medium (500 g each 

pot, Premier Tech Horticulture) in the growth room (pots with different genotype were 

randomized on the shelf in the growth room) to grow and produce seeds (~2 months for 

each generation). The aerial parts of the plants were harvested for the measurement of 

yield, harvest index, spike number, number of seeds per spike and 100-seeds weight. 

Each pot was considered as 1 biological replicate. The measurements were performed on 

8 biological replicates.   

The hydroponic growth condition was described in chapter 2.2.2. The transformation 

process was described in Chapter 2.2.3. Over expressing DNA construct was generated 

by inserting the full coding region of BdNRT2.1 (Bradi3g01270) flanked by Gateway® 

attachment site sequences into pMDC99-101(Modified by Dr. Gang Tian) using 

Gateway® Technology (Hartley et al., 2000). One hundred μg/L hygromycin was used to 

select the resistant calli. Construct diagrams are detailed in Appendix 3.3. The specific 

primers used in vector construction are detailed in Appendix 3.5.  

3.2.2 RNA extraction and quantitative real-time PCR 

The methods were described in chapter 2.2.5. The specific primers used for quantitative 

real-time PCR are detailed in Appendix 3.6 & 3.7. 

3.2.3 Protein extraction and Western blot 

For protein immunoblot analysis, 100 mg of Brachypodium whole plant tissue was 

collected at 3 pm on Friday of the 4
th 

week of hydroponic culture. Samples were 
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homogenized using Tissuelyser (QIAGEN) and then direct lysis in laemli buffer 

consisting of 4% SDS, 20% glycerol, 0.004% bromophenol blue, 0.125 M Tris-HCl pH 

6.8 and 10% (v/v) beta-mercaptoethonol. The lysate was boiled for 5min before loading. 

An equal amount of protein (~30 μg) was seprated by SDS-PAGE (8%). The gel was 

blotted for 30 minutes to PVDF using a semi-dry transfer cell (BIO-RAD). Blots were 

blocked immediately following transfer in 5% (w/v) non-fat milk dissolved in Tris 

Buffered Saline pH 7.4 (Fisher, cat. no. 166103) with Tween-20 (TBST) for 1 h at room 

temperature with agitation. Blots were incubated in the primary antibodies (anti-GS, 

CEDARLANE cat. no. AS08292, at a dilution of 1:10000; anti-GOGAT, CEDARLANE 

cat. no. AS07242, at a dilution of 1:5000) for 1 h at room temperature with agitation. The 

anti-body solution was decanted and the blot was rinsed 3b × 15 min with TBST. Blots 

were incubated in secondary antibody (anti-Rabbit, Cell Signaling and Millipore, at a 

dilution of 1:5000) for 1 h at room temperature with agitation. Blots were washed as 

above. Proteins were detected using ECL Prime Western Blot detection reagents (GE 

health care Life Sciences, VWR cat. no. CA89168-782) and exposed to Classic Single-

Emulsion Autoradiography Film (Mandel Scientific). The films were exposed for 30 

seconds and 1 min for anti-GS and anti-GOGAT, respectively, and then automatically 

developed by an AGFA CP1000 X-Ray Film Processor and scanned with an UMAX 

Powerlook 1120 scanner. The blot was based on two trials; each trial was based on a 

pooled sample from 3 biological replicates. 

3.2.4 Metabolites analysis 

Fifty milligrams of freeze-dried material (both root and shoot, excluding spikelet) were 

homogenized using a tissue lyser and dissolved in 1 ml ice-cooled methanol:water (4:1, 

v/v) followed by vigorous vortexing. Samples were then sonicated for 15 mins in a water 

bath followed by gentle shaking @ 4
o
C for 15 mins before centrifuging at 13000 rpm for 

15 min at 4
o
C. Eight hundred μL of the supernatant was transferred into a fresh 

Eppendorf tube and evaporated to dryness using a vaccufuge at ambient temperature. The 

dried residue was re-dissolved in 400 μL of methanol by vigorous vortexing and diluted 

with 400 μL of water. Processed samples were then filtered using a 0.45 μm PTFE 

syringe filter (Whatman) and spiked with 5 µL of 1 µg/mL 
13

C6 phenylalanine internal 
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standard (Cambridge Isotopes, Tewksbury, USA). Samples were then subjected to LC-

MS/MS analysis. The measurements were performed on 3 biological replicates. 

3.2.5 15
NO3 influx  

The influx rate of 
15

NO3 was quantified as previously described by Li et al. (2007). 

Brachypodium plants were grown hydroponically in nutrient solution containing 1 mM 

NH4NO3 for 4 weeks and then deprived of N for 1 week to deplete the internal N 

reservoir. When such plants were first exposed to 0.1 mM K
15

NO3, the flux measured 

was due to cHATS. The plants were washed with 0.1 mM CaSO4 for 1 min, then 

immersed in nutrient solution containing 0.1 mM K
15

NO3 (atom%15N: 99%) for 10 min 

then finally in 0.1 mM CaSO4 for 1 min. Afterwards, plants that had been starved for 

nitrate for 7 d were transferred into nutrient solution containing 1 mM KNO3 for 6 h to 

induce a nitrogen response, and then exposed to 0.1 mM K
15

NO3. This flux represented 

the combination of cHATS and iHATS. By subtracting cHATS from the latter, iHATS 

activity was determined. Similarly, plants that had been nitrate induced for 6 h were 

treated with 5 mM KNO3 before influx measurement; this influx represented the total of 

cHATS, iHATS and LATS. Roots of the tested plants were oven dried for 48 h at 60
o
C 

and ground into powder, and 2.5mg of each subsample was shipped to UC Davis Stable 

Isotope Facility (Davis, CA, USA) for 
15

N abundance determination, where samples were 

analyzed using a PDZ Europa ANCA-GSL elemental analyser interfaced to a PDZ 

Europa 20-20 isotope ratio mass spectrometer (Sercon Ltd., Cheshire, UK). The 
15

N 

analyses were performed on 4 biological replicates. 

3.2.6 N remobilization test 

Brachypodium plants were grown hydroponically containing 5 mM K
14

NO3 until anthesis 

(3.5 weeks after germination). Plants were subsequently transferred into pots of 

vermiculite and sand growth medium (4 seedlings per pot, 500 g, contained no nutrients), 

and each pot was watered with nutrient solution containing 5 mM K
15

NO3 only weekly 

until maturation. Pots watered with 5 mM K
14

NO3 were used as control. Each pot was 

considered as 1 biological replicate. Mature seeds were harvested and ground (~2.5mg 

each sample) before being shipping to the UC Davis Stable Isotope Facility (Davis, CA, 
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USA) for 
15

N/
14

N abundance determination. The measurements was performed on 2 trials 

with 3 biological replicates in each trial (n=6). 

3.2.7 Statistical analysis 

The differences between two subjects were determined using the two-tailed student t test 

with equal variance. The differences among multiple subjects were assessed using one-

way ANOVA followed by multiple comparisons tests (Fisher’s LSD method). All 

statistical analysis was performed using SPSS 13.0 statistical software (SPSS Inc, 

Chicago, IL, USA). 

3.3 Results 

3.3.1 BdNRT2.1 is responsible for NUE, and can increase NUE when over-

expressed 

The bdnrt2.1 mutant has a T-DNA insertion on the only exon of BdNRT2.1 (Fig. 3.1A). 

BdNRT2.1 transcripts were the minimum in both shoot and root of bdnrt2.1 (Fig. 3.1B), 

and truncated expression of BdNRT2.1 was also undetectable using primers specific to 

the 5’-UTR of the gene. Three representative homozygous BdNRT2.1 rescue lines, named 

RE-7, RE-8, RE-10, were obtained with the expression of BdNRT2.1 fully restored in 

roots (Fig. 3.1C). RE-7 and RE-8 had approximately 2-fold overexpression of BdNRT2.1, 

and this did not affect the nitrate influx compared with RE-10 (data not shown), but it 

increased the grain yield compared with WT (Fig. 3.2). Three representative homozygous 

over-expression lines, named O-2, O-4, O-13, were obtained with the expression of 

BdNRT2.1, which reached 96-fold, 228-fold, and 341-fold increases, respectively, 

compared with the  wild type in roots (Fig.  3.1D).  

All Brachypodium plants were grown on the same amount of Pro-mix® BX Mycorrhizae 

growing medium (~2 mM nitrate) until mature. The bdnrt2.1 showed significant grain 

yield decrease compared to the wild type (37% decrease, p<0.001, Fig. 3.2 & Table 3.1), 

as well as reduced grain number per spike, 100-grain weight and harvest index (p 

<0.0001, p=0.012, p= 0.0017, respectively, Table 3.1). However, the number of spikelets 

per plant  
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Figure 3.1 (A) Schematic representation of the T-DNA insertion characterized in the 

bdnrt2.1 mutant. qPCR expression analyses of BdNRT2.1 gene at anthesis (3.5 weeks after 

germination) (B) in shoot and root of wild type and mutant; (C) in root of wild type, 

mutant and rescue lines; (D) in root of wild type and over-expression lines.  

Values are mean ± SE (n = 3). Different letters above bars indicate significant differences 

(p<0.05). For the q-PCR analysis of each gene, expression data of WT was normalized as 1 

in each trial. 
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Figure 3.2 Yield and growth of wild type, bdnrt2.1 mutant, over-expression lines and rescue.  

(A) average grain yield of wild type (WT), bdnrt2.1 mutant (MU), over-expression lines (O-2, 

O-4, O-13) and rescue lines (RE-7, RE-8, RE-10). Values are mean ± SE (n = 8). Different 

letters above bars indicate significant differences (p<0.05). (B) Phenotypes of WT and MU 

before maturing. (C) Phenotypes of WT and O-13 (O-2 and O-4 have similar phenotype) after 

maturing. 
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Table 3.1 Agronomic traits of the wild type (WT), the bdnrt2.1 mutant (MU), over-expression lines (O-2, O-4, O-13) and rescue lines 

(RE-7, RE-8, RE-10) in Pro-mix. 

Note: Values are mean ± SE (n = 8). * represents p<0.05. 

 

Genotype Grain yield 

(g/plant) 

p 

value 

Spikelet number 

(per plant) 

p value Grain number 

(per spike) 

p value 100-grain 

weight (g) 

p value Harvest index 

(HI) 

p 

value 

WT 0.92±0.05 N/A 20.1±1.2 N/A 9.0±0.2 N/A 0.51±0.01 N/A 0.53±0.02 N/A 

MU 0.59±0.07* 0.0020 51.1±4.9* <0.0001 2.6±0.3* <0.0001 0.45±0.02* 0.0120 0.39±0.03* 0.0017 

O-2 1.57±0.04* 0.0003 36.5±1.5* <0.0001 9.8±0.2 0.1226 0.44±0.01* 0.0188 0.51±0.03 0.6128 

O-4 1.27±0.13* 0.0232 31.7±2.5* <0.0001 9.5±0.7 0.5288 0.42±0.01* <0.0001 0.56±0.02 0.2440 

O-13 1.18±0.14* 0.0367 31.5±3.5* 0.0031 7.8±0.2* 0.0033 0.48±0.01 0.1532 0.54±0.02 0.7310 

RE-7 1.14±0.16 0.1855 47.0±6.0* 0.0004 4.9±0.3* <0.0001 0.52±0.01 0.5638 0.52±0.01 0.5678 

RE-8 1.04±0.10 0.2835 45.5±5.1* 0.0002 4.9±0.1* <0.0001 0.53±0.04 0.5714 0.51±0.03 0.6274 

RE-10 0.85±0.06 0.4369 35.3±4.8* 0.0014 4.8±0.4* <0.0001 0.51±0.01 0.9229 0.50±0.02 0.2987 
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was significantly higher in the mutant (p<0.0001, Table 3.1).  RE-7, RE-8, RE-10 could 

all restore the grain yield of the bdnrt2.1 to a similar level as the wild type (Fig. 3.2 & 

Table 3.1), but with significantly increased spikelet number per plant and reduced grain 

number per spikelet (p<0.01, Table 3.1). Furthermore, O-2, O-4 and O-13 overexpressing 

lines all could increase the yield significantly (p<0.001, p=0.02, p=0.04, respectively, 

Table 3.1) compared with the wild type. All three overexpression lines had a significantly 

increased spikelet number per plant (p<0.01, Table 3.1), O-2 and O-4 had a decreased 

100-grain weight (p=0.002 and p< 0.0001, respectively, Table 3.1), which can be 

explained by the potential negative correlation that the higher yield produced smaller 

grain. The fact that all rescue lines, including RE-7, RE-8, RE-10, increased spikelet 

number per plant compared with WT (while still smaller than MU), suggesting that the 

reduction of BdNRT2.2 (Chapter 2, Fig. 2.7), not the BdNRT2.1 gene itself, which may 

be responsible for the increase of the spikelet number per plant as BdNRT2.1 rescue lines 

did not recover the expressions of BdNRT2.2 (Chapter 2, Appedix 2.5). 

3.3.2 The bdnrt2.1 has decreased inducible high-affinity nitrate uptake 

The
 15

NO3 influx experiment showed HATS (iHATS+cHATS) and LATS each accounted 

for about half of the nitrate influx from the Brachypodium root (~25 µmolg
-1

DWh
-1 

each, 

Fig. 3.3ABC). Like the results of Li et al. (2007) on Arabidopsis NRT2.1, I also found the 

inducible HATS were significantly reduced in the bdnrt2.1 compared with the wild type 

(Fig. 3.3B, 35% reduction, p=0.0002), indicating BdNRT2.1 is a major component of 

iHATS in Bachypodium. In contrast, the mutant had no effect on cHATS and LATS (Fig. 

3.3A and 3.3C). Furthermore, the nitrate influx was restored to a similar level as the wild 

type in the rescue lines.  

3.3.3 BdNRT2.1 is responsible for N remobilization under N non-limiting condition  

In this study, nitrogen remobilization was measured in the wild type and the bdnrt2.1 

mutant plants through the “apparent remobilization” method (Masclaux-Daubresse et al., 

2010) with modifications. All plants were grown hydroponically with sufficient normal 

14
N-nitrate (5 mM) until anthesis after which they were fed with labeled 

15
N-nitrate (5  
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Figure 3.3 Root influx of 
15

N in the wild type (WT), the bdnrt2.1 mutant (MU), and 

rescue lines (RE, equally pooled with RE-7, RE-8, RE-10) representing (A) cHAT 

activity; (B) iHAT activity; (C) LATS activity. 

Values are mean ± SE (n = 4). Different letters above bars indicate significant differences 

(p<0.05). 
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Figure 3.4 (A) Plant dry biomass at anthesis (3.5 weeks after germination) of WT and MU 

under 5 mM nitrate. (B) Phenotype of WT and MU under 5 mM nitrate.  (C) Total N 

concentration of WT and MU at anthesis. 

Values are mean ± SE (n = 8).  
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Figure 3.5 N remobilization analysis in the wild type (WT) and bdnrt2.1 mutant (MU). 

(A) Average grain yield in WT and MU at 5 mM nitrate. (B) N content (%) in grains of 

WT and MU. (C) 
15

N amount per plant yield of WT and MU. (D) 
14

N amount per plant 

yield of WT and MU. Values are mean ± SE (n = 6). * above bars represents p<0.05, *** 

above bars represents p<0.01. 
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mM) until seed maturation. The 
15

N amount in mature seed reflected the post-flowering 

nitrate uptake and the 
14

N
 
amount in mature seed represented N remobilization from 

vegetative tissues that formed during the pre-flowering stage. There was no difference in 

whole plant fresh/dry weight at anthesis between the wild type and the bdnrt2.1 mutant 

(Fig. 3.4), suggesting NUpE was not affected in the mutant. However, consistent with the 

NUE results under Pro-mix® described previously, the bdnrt2.1 mutant had significantly 

reduced grain yield under 5 mM N-nitrate (Fig. 3.5A, p=0.028). Although the mutant had 

higher N
 
content in mature seeds (Fig. 3.5B, p=0.0024), total N was lower in the mutant 

mature seeds, among which the 
15

N
 
amount per plant was the same between the bdnrt2.1 

mutant and the wild type (Fig. 3.5C). This result indicated post flowering nitrate uptake 

was not affected in the mutant. In contrast, the 
14

N amount per plant was significantly 

reduced in the mutant (Fig. 3.5D, p=0.016), indicating N remobilization was impaired in 

the bdnrt2.1 mutant.   

3.3.4 BdNRT2.1 may act as a signal transducer to coordinate N remobilization with 

developmental cues 

Brachypodium NAC1 and NAC 71 were down regulated in the bdnrt2.1 mutant during 

leaf senescence (Fig. 3.6, p= 0.027 and p<0.001), suggesting a potential feed forward 

regulation role of BdNRT2.1 on NAC activation. The orthologous wheat TaNAC2-5 

(Appendix 3.1) binds to the promoter region of genes encoding nitrate transporter and 

glutamine synthetase (Garnett et al., 2013), providing a putative link between BdNRT2.1 

and nitrogen remobilization. Furthermore, cytosolic glutamine synthesis 1 (GS1), which 

plays a key role during N remobilization (Masclaux-Daubresse et al., 2010), also was 

found to be significantly down regulated during leaf senescence at both the mRNA 

abundance level (Fig. 3.7ABC, p=0.014, p=0.038 and p=0.028, respectively) and the 

protein level (Fig. 3.7D). In contrast with GS1, the chloroplastic glutamine synthesis 2 

(GS2) isoform was not affected (Fig. 3.7D). Moreover, glutamate synthases (Fd-GOGAT 

and NADH-GOGAT) also were not changed at either the level of mRNA or protein 

abundance (Appendix 3.2). Interestingly, glutamine (Gln) and asparagine (Asn), the 

major forms of N in phloem sap during senescence, significantly accumulated in the 

vegetative tissues of the bdnrt2.1 mutant (Table 3.2, p=0.016 and p<0.0001,  
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Figure 3.6 Transcriptional analysis of NAC transcription factors in the wild type(WT) and bdnrt2.1 

mutant (MU) whole plant tissue during leaf senescence (5 weeks after germination). 

(A) NAC1 expression of WT and MU (B) NAC20 expression of WT and MU. (C) NAC71 

expression of WT and MU. Values are mean ± SE (n = 3; 3 trials with the average of 3 biological 

replicates in each trial). * above bars represents p<0.05, *** above bars represents p<0.01.  
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Figure 3.7 Transcriptional and translational analysis of GS1 in wild type (WT) and 

bdnrt2.1 mutant (MU) whole plant tissue during leaf senescence (5 weeks after 

germination). 

(A) GS1 expression of WT and MU using generic primers (B) GS1.1 expression of 

WT and MU (C) GS1.2 expression of WT and MU (D) GS1 and GS2 protein levels 

of WT and MU. Values are mean ± SE (n = 3; 3 trials with the average of 3 

biological replicates in each trial).  * above bars represents p<0.05. The blot was 

based on two trials; each trial was based on pooled sample from 3 biological 

replicates. 
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Table 3.2 Concentration of amino acids in vegetative tissues of the wild type (WT) and 

the bdnrt2.1 mutant (MU) 

 

Glu (μg ml
-1

g
-1

) Gln (μg ml
-1

g
-1

) Asp (μg ml
-1

g
-1

) Asn (μg ml
-1

g
-1

) 2OG (μg ml
-1

g
-1

) 

WT  242.3±8    92.1±9.5  85.9±2.9    42.3±3.0  19.4±1.3  

MU 253.0±18.4  276.8±44.9  91.2±11.6  164.3±5.6  20.7±2.5  

p= 0.622 0.015 0.679 <0.001 0.665 

Note: Vegetative tissues including both root and shoot during leaf senescence (5 weeks 

after germination) excluding spikelet. Values are mean ± SE (n = 3).  
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respectively), indicating that N-rich amino acids have trouble relocating to the developing 

seeds in the mutant. 

3.4 Discussion 

The plant nitrate transporter NRT2.1 plays a major role in high-affinity nitrate uptake in 

Arabidopsis (Filleur et al., 2001; Li et al., 2007), and also presumably in maize (Garnett 

et al., 2013) and rice (Yan et al., 2011). In this study, I showed its role as an inducible 

high-affinity nitrate transport in the monocot model Brachypodium (Fig. 3.3). The 

fresh/dry weight of the bdnrt2.1 mutant was no different from that of the wild type at 

anthesis, suggesting the overall nitrogen uptake efficiency was not affected under non-

limiting nitrogen conditions and it had a limited role during vegetative growth. There are 

6 members in the NRT2 family in Brachypodium, and BdNRT2.6 was upregulated 

significantly to compensate for the loss of function of BdNRT2.1 (Chapter 2.3.5). This, 

together with the intact LATS, may contribute to the unaffected NUpE under non-

limiting N conditions. However, the previous studies of AtNRT2.1, which only examined 

the plant fresh weight in the atnrt2.1 single mutant, atnrt2.1-2.2 double mutant or even 

atnrt2.1-2.2-2.4 triple mutant of Arabidopsis (Cerezo et al., 2001; Filleur et al., 2001; Li 

et al., 2007; Kiba et al., 2012), failed to observe any plant growth reduction of atnrt2.1 

mutant under N non-limiting conditions. I evaluated the seed yield of Brachypodium and 

observed reduced overall NUE under non-limiting N conditions in the bdnrt2.1 mutant 

(Fig. 3.2A, Fig. 3.3A). The harvest index (HI), calculated as the ratio of grain yield to 

whole plant biomass, is an important indicator of nitrogen remobilization. The fact that 

the bdnrt2.1 mutant had reduced HI indicates nitrogen remobilization was affected in the 

mutant. Another nitrate transporter, AtNRT1.7, that controls nitrate remobilization from 

source to sink has been reported (Fan et al., 2009), however, no biomass reduction was 

spotted in the atnrt1.7 under N non-limiting conditions. Conversely, I also report that 

over-expression of BdNRT2.1 can enhance the grain yield by 24% on average under N 

non-limited conditions. The transgenic approach of overexpressing NpNRT2.1 and 

OsNRT2.1 was employed in Arabidopsis (Fraiser et al., 2000) and rice (Katayama et al., 

2009) with no elevated nitrate uptake observed, and post translational regulation of 

NRT2.1 is believed to be very strong in Arabidopsis (Fraiser et al., 2000). However, only 

the fresh weight of seedlings was examined in these studies due to the limitations of this 
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model plant system. Notably, two out of the three over-expression lines showed a 

decreased seed size (100-grain weight, Table 3.1), suggesting a potential trade-off if 

BdNRT2.1was over-expressed. In the three transgenic BdNRT2.1 over-expression lines, 

the HI was not affected, indicating the nitrogen remobilization was not enhanced by 

overexpression of BdNRT2.1. Nevertheless, it is difficult to measure a complicated trait 

like NUE reliably; multiple field trials with large numbers of plots must be performed 

(Han et al., 2015). Thus, the story behind the yield increase of over-expressing 

BdNRT2.1 requires further research.  Overall, these results indicate that BdNRT2.1 plays 

an important role during the reproductive stage and makes it indispensable to NUE in 

Brachypodium.  

Grain N typically originates from two distinct sources: nitrogen uptake and assimilation 

during the grain filling period and nitrogen remobilization from senescing vegetative 

organs (Taulemesse et al., 2015). To discriminate these two sources and to find out by 

which pathway BdNRT2.1 is mainly regulated, I switched the hydropic condition from 

regular 
14

N
 
nitrate to 

15
N labeled nitrate at anthesis. I found each source contributed 

roughly ~50% to the N in grains of the wild type Brachypodium (Fig. 3.5C&D). 

However, nitrogen remobilization from senescing vegetative organs was reduced in the 

bdnrt2.1 mutant (Fig. 3.5D) and the post anthesis nitrate uptake remained at the same 

level as in the wild type (Fig. 3.5C). Therefore, members in BdNRT2 may be redundant 

regarding their roles in nitrate uptake before or after anthesis when external nitrate is not 

limiting. However, BdNRT2.1 itself is not only responsible for root nitrate uptake, but 

also controls the N remobilization from source (vegetative tissue) to sink (grain seeds). 

BdNRT2.1 is expressed mainly in the roots, but is also expressed strongly in the stem 

(Chapter 2.3.1), which again suggests that it may play a versatile role other than root 

nitrate uptake. Recently, it has been reported that the nitrate-inducible NAC 

transcriptional factor TaNAC2-5A controls the nitrate response during leaf senescence in 

wheat and increases crop yield when over-expressed (He et al., 2015). I found that its 

homologous genes in Brachypodium, NAC1, NAC20 and NAC71 (You et al., 2015), were 

down-regulated in the bdnrt2.1 mutant, implicating a potential role of BdNRT2.1 as a 

signal transducer to coordinate the N remobilization during leaf senescence. Additionally, 

another NAC transcription factor (NAM-B1) also accelerated senescence and increased 
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nutrient remobilization from leaves to developing grains in wheat (Uauy et al., 2006). 

Thus, the decrease of NACs may have contributed to the reduction of N remobilization in 

the bdnrt2.1 mutant. To further investigate the remobilization process, genes encoding 

enzymes involved in primary nitrogen metabolism, such as cytosolic GS1, chloroplastic 

GS2 and GOGAT, were analyzed in both the wild type and the bdnrt2.1 mutant during 

senescence. Only GS1 was down regulated, whereas GS2 and GOGAT remained 

unaffected. This result is of great value, because GS1 is the key enzyme in nitrogen 

management, growth rate, yield and grain filling (Masclaux-Daubresse et al., 2010). 

Over-expressing GS1 had been conducted repeatedly in various plants and increased 

NUE often was achieved (see review of Xu et al., 2012). For example, overexpressing a 

GS 1 isoform (Gln1-3) constitutively in leaves increased maize kernel yield by 30% with 

unaffected shoot biomass (Martin et al., 2006). In the same study, they also reported that 

gln1-3, gln1-4 and gln1-3.gln1-4 double mutant showed a sharp decrease of maize yield, 

whereas nitrogen content was increased. The gln1-3 and gln1-3.gln1-4 mutants 

accumulate large amounts of amino acids in the source leaf below the ear and are 

dedicated for grain filling. Additionally, the gln1-2 mutant in Arabidopsis also 

accumulated amides in their old leaves when nitrate was not limiting; however, N-

remobilization was not affected in the mutant as demonstrated by a 
15

N labelling 

experiment (Lothier et al., 2011). Gln and Asn are the two major forms of nitrogen in the 

phloem sap during remobilization, and I discovered that they accumulated in the N source 

tissues (old leaves and roots) of the bdnrt2.1 mutant. This is likely due to the dysfunction 

in N-export from the phloem to the developing seeds. However, how BdNRT2.1 

coordinates those key players, such as NAC, GS1, during leaf senescence still remains 

unclear.   

In conclusion, BdNRT2.1 is not only responsible for inducible high-affinity nitrate 

uptake, but also controls N remobilization and the lack of BdNRT2.1 results in reduced 

NUE under non-limiting N conditions. Through networking with NAC transcriptional 

factors and cytosolic GS1 during leaf senescence, BdNRT2.1 may act as a potential signal 

transducer to coordinate N remobilization with developmental cues. I also showed that 

constitutively over-expressing BdNRT2.1 in Brachypodium may be a promising approach 

to improve NUE.  
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Study limitations:  

As detailed in the figure description, some experiments were conducted with only 1 trial 

although with multiple biological replicates, while some were conducted with 2 trials or 3 

trials. Thus, the interpretation of results generated by a single trial should be cautious. 

3.5 Appendices 
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Appendix 3.1 Comparison of NAC proteins. 

The amino acid sequences of TaNAC2-5A, BdNAC1, BdNAC20, and BdNAC71 were 

analyzed with the CLUSTAL Omega (1.2.4) multiple sequence alignment.  
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Appendix 3.2 Transcriptional and translational analysis of GOGAT in wild type (WT) and 

the bdnrt2.1 mutant (MU) whole plant tissue during leaf senescence (5 weeks after 

germination). 

(A) Fd-GOGAT expression of WT and MU (B) NADH-GOGAT expression of WT and MU. 

Values are mean ± SE (n = 3; 3 trials with the average of 3 biological replicates in each trial 

). (C) GOGAT protein levels of WT and MU. 
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 Appendix 3.3 Diagrams of vector constructs used to generate BdNRT2.1 complementation (A) and 

over-expression lines (B) 
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Appendix 3.4 Primers used for genotyping bdnrt2.1 mutant 

Position Primers 

BdNRT2.1 gene F: 5'- CGACCACTTCCACCTAGACC -3' 

R: 5'- GACCGATCGGAGTTACATGA -3' 

T-DNA-LB R: 5'- ACACAACATACGAGCCGGAAGCATA -3' 
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Appendix 3.5 Primers used for creating transgenic constructs through Gateway cloning 

Construct Primers 

BdNRT2.1 

complementation 

F: 5'- GGGGACAAGTTTGTACAAAAAAGCAGGCTACACAGACAGCGTTCTCACC -3' 

R: 5'- GGGGACCACTTTGTACAAGAAAGCTGGGTCGACGTGCTGGGGAGTGTTG -3' 

BdNRT2.1 

overexpression 

F: 5'- GGGGACAAGTTTGTACAAAAAAGCAGGCTACATGGCGGCGAAGAGCAAG  -3' 

R: 5'- GGGGACCACTTTGTACAAGAAAGCTGGGTCGACGTGCTGGGGAGTGTTG -3' 

Note: Letters underlined are the Gateway att sequence. 
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Appendix 3.6 Primers used for RT-PCR of BdNRT2.1 gene 

Gene Primers 

BdNRT2.1 (WT&MU) F: 5'- TTTCCTCTGTCCCAGCTACG -3' 

R: 5'- CGCAGCAAATGTGTAGTACCTC -3' 

BdNRT2.1 (RE lines) F: 5'- AGTGGGGCTCCATGCTCT -3' 

R: 5'- AGCGTAATCTGGAACATCGTATG -3' 

BdNRT2.1 (OE lines) F: 5'- CCTGAGCAAAGACCCCAAC -3' 

R: 5'- AGCGTAATCTGGAACATCGTATG -3' 

SamDC F: 5'- TGCTAATCTGCTCCAATGGC -3' 

R: 5'- GACGCAGCTGACCACCTAGA-3' 

Note: Members of NRT2 in Brachypodium are highly conserved. Gene specific primers 

need to be designed on the 3'-UTR. Gene specific primers for transgenic constructs were 

designed on HA tag since the transgenic constructs did not include 3'-UTR. Gene 

expressions were normalized by primer amplification efficiency. 
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Appendix 3.7 Primers used for RT-PCR of NAC, GS1 and GOGAT genes. 

Gene name Locus ID Primers 

BdNAC1  Bradi1g01640 F: 5'- GCTCCCAAAGGGGTTAAGAC -3' 

R: 5'- ACCATGTCCGACGACTCC -3' 

BdNAC20  Bradi1g58057 F: 5'- ATTCTGCCCAAGGAGGAGTT-3' 

R: 5'- TGGATGTGGAGAGCTCAGAA -3' 

BdNAC71  Bradi4g13570 F: 5'- GAACAACCACAACGCTCTCA-3' 

R: 5'- GCCGTAGAACCCGTAGTCTG-3' 

GS1-generic N/A F: 5'- CGCTCACACCAATTACAGCA-3' 

R: 5'- CCCCATTTGAAGGTGTTGAT-3' 

GS1.1 Bradi3g59970 F: 5'- AACCTCGACCTCTCCGACTC-3' 

R: 5'- GCCTGTGGGTAGAGGATGAC-3' 

GS1.2 Bradi1g69530 F: 5'- ACCTTAGTGACTGCACCGAC-3' 

R: 5'- TCCTTGAAAATGGCTTGAGG-3' 

Fd-GOGAT Bradi1g19080 F: 5'- ATGATGATGCTCGTCCCTGA-3' 

R: 5'- TGTTCTCCAATAGCGTGCTG-3' 

NADH-GOGAT Bradi2g46670 F: 5'- GCCATGAACAAACTTGGAGG-3' 

R: 5'- CCCCCTGAGCCATTTTTATC-3' 
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4.1 Introduction 

Nitrogen is the essential element for most biological molecules, including nucleotides, 

amino acids, proteins, cell wall components, hormones, chlorophylls, and vitamins. 

Nitrate (NO3
-
) is the major nitrogen (N) source for most land plants, and nitrate itself is 

also an important signaling molecule that can regulate many aspects of plant metabolism, 

growth, and development (Crawford, 1995; Lejay et al., 1999; Miller et al., 2007; Miller 

et al., 2008; Wang et al., 2012; Krapp et al., 2014; Medici and Krouk, 2014; Krapp, 

2015). As it was detailed in Chapter 1.2, plants take up nitrate mainly through the NPF 

and NRT2 families which are substrate concentration dependent (see review of Tsay et 

al., 2007; Masclaux-Daubresse et al., 2010;). Nitrate can be assimilated into ammonium 

through a combination of enzymes, such as nitrate reductase (NR) in the cytosol, and 

nitrite reductase (NiR) (Meyer and Stitt, 2001). Ammonium, whether originating from 

nitrate reduction, ammonium uptake, or from photorespiration and amino acids recycling, 

is mainly assimilated through the GS/GOGAT cycle (Lea and Miflin, 1974). In addition 

to GS/GOGAT cycle, other enzymes, such as cytosolic asparagine synthetase (AS), and 

mitochondrial NADH-glutamate dehydrogenase (GDH), probably play important roles in 

ammonium assimilation. Besides N uptake and assimilation, complex interactions via 

various biochemical networks of metabolite pathways exist in plant N metabolism 

(Kusano et al., 2011), and primary metabolites, such as amino acids, organic acids, 

sugars, and sugar phosphates, are key components of such complex biochemical 

networks (Kusano et al., 2011). Metabolomics can be used to take a snapshot of the 

metabolic status of the plant in a targeted or an untargeted manner (Weckwerth, 2003). 

My previous research (Chapter 3) demonstrated that a Brachypodium mutant deficient for 

the expression of a gene coding for a putative high-affinity nitrate transporter NRT2.1 

displayed reduced N remobilization efficiency and seed yield at maturity under non-

limited N conditions. However, at anthesis, shoot and root biomass were not affected in 

the bdnrt2.1 mutant under non-limited N conditions, indicating BdNRT2.1 played 

distinct roles at vegetative (before anthesis) and reproductive stages (after anthesis). On 

this basis, I investigated the physiological impact of BdNRT2.1 mutation on primary N 

metabolism during different developmental stages. mRNA abundance levels and protein 

levels of key enzymes involving primary N metabolism were examined. Additionally, 
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both targeted and untargeted metabolite profiling for detection of primary and other 

metabolites was applied. I hypothesized that BdNRT2.1 has a larger impact on nitrogen 

metabolism after anthesis than before anthesis. 

4.2 Materials and Methods 

4.2.1 Plant material and growth conditions 

Plants were grown hydroponically as described in Chapter 2.2.2 for up to 5 weeks. The 

hydroponic solution was renewed weekly at 3 pm on each Friday. Brachypodium plant 

flowers (anthesis) approximately 3.5 weeks after germination. At 2 and 5 weeks after 

germination, samples were collected to measure the change between the two typical 

developmental stages. 

4.2.2 RNA extraction and quantitative real-time PCR 

Methods were described in Chapter 2.2.5. The specific primers used for quantitative real-

time PCR are detailed in Appendix 4.1. 

4.2.3 Protein extraction and Western blot 

Methods were described in Chapter 3.4.3.  One hundred milligrams of Brachypodium 

root tissues was collected at 3 pm on Friday of the 2
nd

 and 5
th 

week of hydroponic culture. 

The blots were based on 3 trials; each trial was based on a pooled sample from three 

biological replicates. 

4.2.4 Total metabolites extraction 

Methods were described in Chapter 3.4.4. 

4.2.5 Metabolite measurements and instrument setup  

Samples were processed in triplicate as described in Chapter 3.2.4 and were subjected to 

metabolomics analysis by injecting 5 µl into an agilent 1290 high performance liquid 

chromatography (HPLC) system coupled to a Q-Exactive Quadrupole Orbitrap mass 

spectrometer (Thermo Fisher Scientific). Chromatographic separation of compounds was 

achieved using a SeQuant® ZIC®-HILIC column, 3.5µm, 100 Å, 100 ×2.1 mm (EMD 

Millipore), with a mobile phase 5 mM ammonium acetate, pH = 4.00 (A), B = 90% 
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acetonitrile, 0.1% formic acid) and the following gradient: 85% B for 3.5 minutes, 

decreased to 70% over the next 3.5 minutes followed by 20% within the next 2 minutes 

and held for 1 minute before returning to 85% over 1 minute. The following heated 

electrospray ionization (HESI) conditions were used: spray voltage, 3.9 kV (ESI+), 3.5 

kV (ESI-); capillary temperature, 250 °C; probe heater temperature, 100 °C; sheath gas, 

30 arbitrary units; auxiliary gas, 8 arbitrary units; and S-Lens RF level, 60%. Injections 

of 5 μl were used with a flow rate of 0.3 mL min
-1

.  Four compounds (glutamine, 

glutamate, asparagine and aspartate) were detected and monitored using a targeted 

MS/MS in positive ionization mode while 2-oxoglutarate was monitored in the negative 

ionization mode. Full MS spectra also were obtained between m/z 70-1150 at 17,500 

resolution, automatic gain control (AGC) target of 1e6, maximum injection time (IT) of 

64 ms and intensity threshold of 3.8e4. MS/MS spectrum were collected at 17,500 

resolution, AGC target 5e5, maximum IT set to auto and isolation window of 3 m/z. 

Normalized collision energy of 25 was used for the MS/MS method. All theoretical 

masses were calculated with Xcalibur™ software. The above described compounds were 

identified and quantified using commercial standards by generating standard curves.  

4.2.6 Statistical analysis 

The significance of differences between two subjects was determined using two-tailed 

student t tests with equal variance using SPSS 13.0 statistical software (SPSS Inc, 

Chicago, IL, USA). Metabolomics data analysis was carried out as follows: 

Full MS data files acquired in Thermo .RAW format from the instrument were converted 

to .mzml format using the peak picking filter in ProteoWizard software (Kessner et al., 

2008). The XCMS package in R was used for importing these files and features were 

detected using the Centwave method (Tautenhahn et al., 2008) followed by retention time 

correction using the obiwarp method (Prince and Marcotte, 2006).  Parameters for feature 

detection, retention time correction and grouping were optimized using the IPO package 

in R. The “fillPeaks” function was used with default settings and remaining zeros were 

imputed with two-thirds the minimum value on a per mass basis. Salt clusters and other 

ionization artefacts were removed from the feature list using the McMillan correction 

without applying the retention time filter (Mcmillan et al., 2016). All features were 
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exported to excel to test for statistical significance between treatments using a student’s t-

test and to generate volcano plots. 

4.3 Results 

4.3.1 BdNRT2.1 mutant 

The bdnrt2.1 mutant was characterized in Chapter 2.3.4. There was no significant change 

in BdNRT2.1 mRNA abundance levels before and after anthesis in the wild-type 

(Appendix 4.2, p=0.38). 

4.3.2 Contrasting impact of BdNRT2.1 on plant growth under N limited and N non-

limited conditions  

Previous research uncovered that the Brachypodium bdnrt2.1 mutant displayed reduced 

N remobilization efficiency and yield at maturity under non-limited N conditions 

(Chapter 3.3.3). At anthesis, shoot and root biomass was not affected (Chapter 3.2.3). I 

further compared the growth of the wild-type and the bdnrt2.1 mutant between N limited 

(0.1 mM) and non-limited (5 mM) conditions. Plant biomass and grain yield were 

measured subsequently (Fig. 4.1).  Under N limited conditions, plant biomass at anthesis 

was significantly reduced in the bdnrt2.1 mutant (Fig. 4.1-top left, p=0.022), and grain 

yield at maturity also decreased significantly (Fig. 4.1-bottom left, p=0.010). These 

results indicate that lack of BdNRT2.1 affects both vegetative growth and reproductive 

growth under N limited conditions. In contrast, under N non-limited conditions, plant  
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  Figure 4.1 Plant biomass (at anthesis) and yield (at maturity) of wild type (WT) and bdnrt2.1 

mutant (MU) under low N (0.1Mm) and high N (5mM) condition. 

Values are mean ± SE (n = 8). * above bars indicates p<0.05. 
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biomass at anthesis was not significantly affected in the bdnrt2.1 mutant (Fig. 4.1-top 

right), while grain yield at maturity decreased significantly (Fig. 4.1-bottom right, 

p=0.029). The total N concentrations of wild-type and mutant at anthesis were not 

affected by either N supply conditions (Appendix 4.3), suggesting N uptake was not 

affected in the mutant under N non-limited conditions.  These results indicate that a lack 

of BdNRT2.1 only affects reproductive growth, but not vegetative growth, under N non-

limited conditions. Thus, N non-limited conditions were used to further elucidate the 

contrasting phenotype of the bdnrt2.1 at distinct developmental stages. 

4.3.3 Transcriptional change of genes coding key enzymes in primary N 

metabolism  

To investigate the impact of the BdNRT2.1 mutation on primary N metabolism, I first 

examined the expression level of genes that code for key enzymes (including GS1, GS2, 

Fd-GOGAT, NADH-GOGAT, NR, NiR, GDH, and AS) involved in the N assimilation 

pathway. As it was shown in Fig. 4.1, there were no significant differences between the 

wild type and the bdnrt2.1 mutant for all the enzymes at week 2. In contrast, GS1, GS1.1, 

and GS1.2 transcript levels were all significantly down-regulated in the bdnrt2.1 mutant 

at week 5 (Fig. 4.2ABC, p=0.014, 0.035, 0.032, respectively), whereas gene expressions 

of the other enzymes were not affected. These results suggest that a lack of BdNRT2.1 

affects primary N metabolism after anthesis (mainly through the change of GS1), but not 

before anthesis. 

4.3.4 Translational change of genes coding key enzymes in primary N metabolism  

In order to confirm the transcriptional change of genes coding those key enzymes, I used 

the Western blot technique to verify the protein levels of important enzymes including 

GS1, GS2 and GOGAT. The pixel intensities of the bands were analyzed using image J 

(Fig. 4.3) and were subsequently compared between wild-type and the bdnrt2.1 mutant. 

Both GS and GOGAT were not significantly changed by the BdNRT2.1 mutation at week 

2 (Fig. 4.3A, p= 0.44 and 0.39, respectively). In contrast, GS1/GS2 was significantly 

down-regulated in the bdnrt2.1 mutant at week 5 (Fig. 4.3B, p=0.04), while GOGAT was 

not significantly affected (Fig. 4.3B, p=0.29).  
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  Figure 4.2 Transcriptional analyses of genes coding for key enzymes involved in N 

assimilation pathway in root of wild type (WT) and mutant (MU) before (week 2) and after 

anthesis (week 5). 

(A) GS1 expression change of the WT and MU using generic primers; (B) GS1.1 

expression change of the WT and MU; (C) GS1.2 expression change of the WT and MU; 

(D) GS2.1 expression change of the WT and MU; (E) Fd-GOGAT expression change of the 

WT and MU; (F) NADH-GOGAT expression change of the WT and MU; (G) NR 

expression change of the WT and MU; (H) NiR expression change of the WT and MU; (I) 

GDH expression change of the WT and MU; (J) AS expression change of the WT and MU. 

Values are mean ± SE (n = 3; 3 trials with the average of 3 biological replicates in each 

trial). * above dots indicates p<0.05 between WT and MU at a specific developmental 

stage. 
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Figure 4.3 Translational analyses of genes coding for key enzymes (GS1, GS2, and GOGAT) 

involved in N assimilation pathway in root of the wild type (WT) and mutant (MU). 

(A) Protein levels of the WT and MU at week 2 with the loading control. (B) Protein levels 

change at week 5 with the loading control. The blot was based on 3 trials with 3 plants pooled 

in each trial. The pixel intensities of the bands were quantified using image J. 
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4.3.5 Targeted metabolite change 

The key metabolites involved in N primary metabolism, including glutamate (Glu), 

glutamine (Gln), aspartate (Asp), asparagine (Asn), and 2-oxoglutarate (2OG), were 

targeted and quantified in both the wild type and the bdnrt2.1 at two developmental 

stages (Table 4.1). Gln and Asn significantly accumulated in the bdnrt2.1 at both week 2 

(p=0.036 and 0.010, respectively) and week 5 (p=0.015 and p<0.001, respectively). 

However, they were accumulated to a much greater extend in the mutant at week 5 than 

that at week 2: Gln and Asn have 1.5 and 2.3-fold accumulation at week 2, and it 

increased to 3.0 and 3.9-fold accumulation at week 5. Glu, Asp, and 2OG were not 

changed in the mutant at either developmental stage. 

4.3.6 Untargeted metabolite change  

Untargeted metabolite profiling allows us to obtain a broader insight into N metabolism 

involved in a variety of metabolic processes in plants.  The same samples from targeted 

metabolite analysis were used for profiling the primary metabolites involved in N 

metabolism. As illustrated in the volcano plot in Fig. 4.4A, 142 metabolites were 

significantly up-regulated in the mutant at week 2, 63 of which passed the 2-fold change 

threshold; 79 metabolites were significantly up-regulated in the wild-type at week 2, 33 

of which passed the 2-fold change threshold. Unfortunately, only three significant 

accumulated metabolites in the mutant were identified at week 2, including Gln (1.6-fold 

increase, p=0.027), Asn (2.6-fold increase, p=0.008), and Maleamic acid (2.6-fold 

increase, p=0.008), two of which had been already shown in the targeted analysis.  In 

contrast, almost all the significantly changed metabolites were accumulating in the 

bdnrt2.1 mutant at week 5 (Fig. 4.4B). One hundred and twenty seven metabolites were 

significantly up-regulated in the mutant, 91 of which passed the 2-fold change threshold; 

notably, only 2 metabolites were significantly up-regulated in the wild-type, 1 of which 

passed the 2-fold change threshold. Interestingly, lysine (Lys, 3.3-fold increase, p=0.003) 

and arginine (Arg, 3.7-fold increase, p=0.004) in addition to Gln (3.5-fold increase, 

p=0.004) and Asn (4.4-fold increase, p=0.0007) also  accumulated significantly in the  
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Table 4.1 Concentration of amino acids in whole plant fresh tissues of the wild type (WT) and the bdnrt2.1 mutant (MU) during two 

developmental stages 

 

Glu (μg ml
-1

g
-1

) Gln (μg ml
-1

g
-1

) Asp (μg ml
-1

g
-1

) Asn (μg ml
-1

g
-1

) 2OG (μg ml
-1

g
-1

) 

 WT 317.9±8.0 62.6±4.9 126.8±3.9 121.6±11.8 16.8±0.5 

Week2 MU 317.3±15.2 94.1±8.9 124.5±3.5 275.5±31.5 13.5±1.4 

 

p= 0.974 0.036 0.685 0.010 0.090 

 WT 242.3±8    92.1±9.5  85.9±2.9    42.3±3.0  19.4±1.3  

Week5 MU 253.0±18.4  276.8±44.9  91.2±11.6  164.3±5.6  20.7±2.5  

 

p= 0.622 0.015 0.679 <0.001 0.665 

Note: at week 5, vegetative tissues including both root and shoot excluding spikelet were analyzed.  

Values are mean ± SE (n = 3).  
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Figure 4.4 Volcano plot showing metabolomic data at week 2 (A) and week 5 (B). 

The arrows indicate points-of-interest that display both large magnitude fold-changes 

(x axis) and high statistical significance (p value, y axis). The dots colored in red 

shows significantly changed metabolites (n=3; p<0.05). The vertical line marks the 2 

(log2 = 1) fold change threshold. The dots to the left side represent metabolites 

accumulated in the mutant (MU) and the dots to the right side represent metabolites 

accumulated in the wild-type (WT).  
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mutant at week 5, and they all belong to the group of N-rich amino acids. Besides, 

maleamic acid (4.9-fold increase, p=0.0008), serine (Ser, 1.4-fold increase, p=0.05),  

ectoine (3.8-fold increase, p=0.0007) also accumulated significantly in the mutant at 

week 5. 

4.4 Discussion 

BdNRT2.1 is responsible for inducible high-affinity nitrate uptake and N remobilization 

during leaf senescence in Brachypodium (Chapter 3.2.3). Here, I compared the key 

enzymes in N assimilation as well as related metabolites from two developmental stages 

of both the wild type and the bdnrt2.1 mutant plants and proposed BdNRT2.1 may play 

more important roles in N metabolism during the reproductive stage. Results from 

different nitrate concentration experiments indicate that BdNRT2.1 has a distinct impact 

on plant growth before and after anthesis when external nitrate is non-limited (5 mM). 

The NRT2 family in Brachypodium has 6 members. BdNRT2.6 was strongly up-regulated 

in the bdnrt2.1 to compensate the functions of BdNRT2.1 (Chapter 2.3.5). Additionally, 

under N non-limited conditions (5 mM), both HATS and LATS were activated and 

resulted in the unchanged overall biomass at anthsis (Fig. 4.1-top right). When N is 

limited (0.1 mM), only HATS is in effect, reduced growth was shown (Fig. 4.1-top left) 

due to the fact that BdNRT2.1 is responsible for inducible HATS (Chapter 3.2.2).  Thus, 

BdNRT2.1 may play a redundant role in N metabolism before anthesis when N is not 

limited. Similarly, no impact of AtNRT2.1 on plant biomass was detected under N non-

limiting conditions in Arabidopsis (Li et al., 2007). As the plant ages (after anthesis), 

BdNRT2.1 becomes essential to growth under N non-limited condition (Fig. 2-bottom 

right) by acting as a potential signal transducer to coordinate N remobilization (Chapter 

3.2.4).  

In order to further investigate the molecular basis underlying the contrasting phenotype at 

different developmental stages, the expression change of genes coding for key enzymes 

in the N assimilation pathway was evaluated. The results are in good agreement with the 

phenotype; that is, the relative expression of those key genes were not affected in the 

mutant before anthesis while the genes coding for GS1 were down-regulated in the 

mutant after anthesis. Expression patterns of genes coding for GS/GOGAT enzymes were 



90 

 

also confirmed at the protein level. At the vegetative stage, the N in plant biomass mainly 

depends on de novo N assimilation. All the key enzymes involved in assimilation were 

not affected, which explained the unchanged biomass. However, at the reproductive 

stage, N that consists of the yield mainly originats from two sources: N remobilization 

from vegetative tissue and de novo N uptake and assimilation (Masclaux-Daubresse et 

al., 2010; Taulemesse et al., 2015). Key enzymes except for GS1 were not changed, 

which implies overall N assimilation processes may be not affected in the mutant after 

anthesis, and my previous results using 
15

N labelling have shown that de no nitrogen 

uptake is intact in the bdnrt2.1 mutant during leaf senescence (Chapter  3.2.3), which 

support such an assumption. Therefore, the lack of BdNRT2.1 mainly influences the 

remobilization process independently from nitrate uptake during the reproductive stage. 

As discussed earlier, GS1 is known to be involved in ammonium recycling during 

particular developmental stages like leaf senescence, and it is also involved in glutamine 

synthesis for relocation into the phloem sap (Bernard and Habash, 2009). The fact that 

only GS1 was down-regulated in the mutant after anthesis further supports the idea that 

the remobilization process is affected by the mutation in BdNRT2.1. However, it is still 

unclear how GS1 was affected by the nitrate transporter BdNRT2.1. My previous work 

demonstrated that BdNRT2.1 controls N remobilization through networking with the 

senescence associated transcription factors BdNAC1, BdNAC20, and BdNAC71, and 

reduced expression of NACs was found in the bdnrt2.1 mutant (Chapter 3.2.5). Recently, 

it has been reported that the nitrate-inducible NAC transcriptional factor TaNAC2-5A 

controls the nitrate response during leaf senescence in wheat, and it can directly bind the 

promoter regions and activate TaNRT2.1 and GS2, but not GS1 in wheat (He et al., 

2015). It is possible that BdNRT2.1 may serve as a signal transducer after anthesis and 

form a feed-forward loop with senescence induced transcription factor NACs, which in 

turn specifically target GS1 to regulate N remobilization in Brachypodium. Of course, 

further research is needed to test this possibility. 

Metabolite analysis showed accumulated levels of Gln and Asn in the bdnrt2.1 mutant for 

both of the two developmental stages, but with a stronger accumulation after anthesis. 

These findings are consistent with the changing pattern of key enzymes. One may expect 

no changes to metabolites before anthesis due to the unchanged enzyme activity. One 
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may also expect Gln to decrease after anthesis due to decreased GS1 activity. However, 

steady-state metabolite concentrations do not directly reflect the rate of associated 

biochemical reactions, they rather reflect a balance between maximizing enzyme 

efficiency and minimizing total metabolite load (Tepper et al., 2013). Thus, accumulated 

Gln and Asn indicate that the balances of their assimilations were disrupted in the 

bdnrt2.1 mutant at both developmental stages. Also, the feedback regulation of end-

product Gln on GS1 enzyme levels cannot be neglected in explaining the reduced GS1 in 

the mutant after anthesis. In general, Gln and Asn are the major N storage compounds for 

higher plant, and amides, including Gln and Asn, could be accumulated in response to 

mineral deficiency stress or salinity stress (Rabe, 1999; Mansour, 2000). The stronger 

accumulation of Gln and Asn after anthesis may suggest that the mutant plant was 

experiencing severer stress after anthesis than before. Furthermore, the metabolomics 

data revealed a dramatic shift of the significantly accumulated metabolite from week 2 

(Fig. 4.4A) to week 5 (Fig. 4.4B). Interestingly, an increase in Arg, which is also a major 

N storage compound and accumulates under mineral stress (Rabe, 1999), was found in 

the mutant at week 5. This again indicates that the mutant plant was probably 

experiencing more severe stress at the later stage. Besides, Lys, Arg, Gln, and Asn all 

belong to the group of six N-rich amino acids, and their accumulation in the vegetative 

tissue of the mutant at week 5 confirms the hypothesis that N remobilization was 

impaired in the bdnrt2.1 mutant during leaf senescence (Chapter 3.2.5). Coincidently, 

metabolomics results also revealed an accumulation of Ser; this, together with the 

accumulation of Lys, Arg, Gln, and Asn mimic the metabolites change in response to 

exogenous ammonia (Magalhaes and Wilcox, 1984). Therefore, it is possible that 

BdNRT2.1 may serve as a nitrate sensor/signal transducer after anthesis and its 

malfunction may lead to the plant perceiving a wrong signal such as ammonia stress. 

However, such a N sensor/signal transducer role would need assistance of certain 

senescence associated partner, probably NAC, due to its growth stage specificity. Nitrate 

is not only an essential element for plant growth, but also an important signal molecule 

that is involved in many physiological processes (reviewed by Wang et al., 2012; Krapp, 

2015; Noguero and Lacombe, 2016). Nitrate transporters, especially 

NPF6.3/NRT1.1/CHL1 and NRT2.1, have been reported as nitrate sensors (reviewed by 
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Noguero and Lacombe, 2016). AtNRT1.1 functions as a nitrate sensor and is able to 

promote physiological responses in the control of root system architecture (Krouk et al., 

2010) and to control primary nitrate response independently from nitrate uptake (Ho et 

al., 2009; Bouguyon et al., 2015). AtNRT2.1 also can functions as nitrate transducer to 

regulate lateral root initiation independently from its nitrate uptake property in 

Arabidopsis (Little et al., 2005). BdNRT2.1, in this study, could serve as a nitrate 

transducer mainly during the reproductive stage and coordinate N remobilization 

independently from de novo nitrate uptake.  

In conclusion, BdNRT2.1 has contrasting impacts on plant growth, N assimilation 

enzymes levels, and metabolic status between the vegetative and the reproductive stages. 

BdNRT2.1 may possess additional roles as a nitrate transducer which would affect N 

metabolic process, especially N remobilization, if interrupted at the reproductive stage. I 

believe these results established a good working basis for future research, especially 

useful to studies on genetic variability of nitrate transporter evolved with developmental 

changes.   

Study limitations:  

The metabolomics analysis was based on 3 biological replicates from 1 trial. Thus, the 

interpretation of results generated by a single trial should be cautious.  

 

4.5 Appendices 
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Appendix 4.1 Primers used for RT-qPCR of genes coding for key enzymes in the N 

assimilation pathway. 

Gene name Locus ID Primers 

GS1-generic N/A F: 5'- CGCTCACACCAATTACAGCA-3' 

R: 5'- CCCCATTTGAAGGTGTTGAT-3' 

GS1.1 Bradi3g59970 F: 5'- AACCTCGACCTCTCCGACTC-3' 

R: 5'- GCCTGTGGGTAGAGGATGAC-3' 

GS1.2 Bradi1g69530 F: 5'- ACCTTAGTGACTGCACCGAC-3' 

R: 5'- TCCTTGAAAATGGCTTGAGG-3' 

GS2.1 Bradi5g24550 R: 5'-AATGAACGGAGGTTGACAGG-3' 

R: 5'- GCTCCCAGAGAAGTGTGGTT-3' 

Fd-GOGAT Bradi1g19080 F: 5'- ATGATGATGCTCGTCCCTGA-3' 

R: 5'- TGTTCTCCAATAGCGTGCTG-3' 

NADH-GOGAT Bradi2g46670 F: 5'- GCCATGAACAAACTTGGAGG-3' 

R: 5'- CCCCCTGAGCCATTTTTATC-3' 

NR Bradi3g37940 F: 5'- CCATCAACGCATTCACGAC-3' 

R: 5'-CAGAAGCACCAGCACCAGTA-3' 

NiR Bradi3g57990 F: 5'- CAGGGACCTCGCCAAGAT-3' 

R: 5'-CCTTCCTCGCCGTACTTGT-3' 

GDH Bradi2g41130 F: 5'- TTTCCGTGTGCAGTTCAGTC -3' 

R: 5'- TGACAAAAACGCATTACCTCA -3' 

AS Bradi4g03827 F: 5'- CTGGTTGCACAATCAGGAAG -3' 

R: 5'- TTTGCCAACACTCTCACAGC -3' 

BdSamDC Bradi5g14640 F: 5'- TGCTAATCTGCTCCAATGGC -3' 

R: 5'- GACGCAGCTGACCACCTAGA -3' 
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Appendix 4.2 qPCR expression analyses of BdNRT2.1 gene in root of wild type and 

mutant before and after anthesis. Values are mean ± SE (n = 3; 3 trials with the average 

of 3 biological replicates in each trial). 
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Appendix 4.3 Total N concentrations (at anthesis) of the wild type (WT) and bdnrt2.1 mutant 

(MU) under low N (0.1 mM) and high N (5 mM) condition. 

Values are mean ± SE (n = 8). 
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5 General Discussion and Conclusions 

As a new monocot model plant, Brachypodium has a good potential to study questions 

that are unique to monocot crops. The fact that Brachypodium has significant grain yield 

makes it more suitable for NUE related studies. In chapter 2, for the first time, I isolated 

and characterized the six genes coding for NRT2 family in Brachypodium, and 

discovered that they played diverse roles in response to different nitrate and ammonium 

conditions. For example, BdNRT2.1 and BdNRT2.2 are nitrate inducible genes and 

controlled by internal N status rather than external nitrate, and BdNRT2.5 is a nitrate 

repressible gene. Interestingly, Arabidopsis NRT2.1 NRT2.2 and NRT2.5 have similar 

nitrate responses despite the divergence of NRT2s between Arabidopsis and 

Brachypodium (Plett et al., 2010), but they have different tissue specificities. I also 

reported that BdNRT2.1, BdNRT2.2 can be used as nitrogen markers to monitor N status 

in plants. Besides, none of the NRT2s in rice were found to be nitrate repressible (Cai et 

al., 2008; Feng et al., 2011). These results indicate that BdNRT2 have distinct roles from 

Arabidopsis, a model plant for dicots, and rice, an ammonium preferring monocot crop. I 

also observed a clear linkage of BdNRT2.1 and BdNRT2.2 regulatory machineries, which 

indicates that there is a novel cis- regulatory element in controlling nitrate response. 

Furthermore, the compensation by BdNRT2.6 in the BdNRT2.1 knock-out mutant was 

observed and makes it more interesting to investigate the interconnection among BdNRT2 

members. Results from chapter 2 indicate a potential key role of the BdNRT2.1 of the 

BdNRT2 family, which led to the functional characterization of BdNRT2.1 in chapter 3.     

In chapter 3, The knock-out mutant bdnrt2.1 showed an impaired inducible high-affinity 

transport system (iHATS) and reduced overall NUE (37% in average) under N non-

limited conditions, whereas the constitutive high-affinity transport system (cHATS), low-

affinity transport system (LATS) and nitrogen uptake efficiency (NUpE) were not 

affected. Reduced iHATS and unchanged cHATS and LATS when knocking out NRT2.1 

were reported in Arabidopsis (Li et al., 2007). Additionally, intact NUpE in the NRT2.1 

mutant also has been observed in many separate studies in Arabidopsis (Cerezo et al., 

2001; Filleur et al., 2001; Li et al., 2007; Kiba et al., 2012). However, to my knowledge, 

reducing NUE when knocking out NRT2.1 under N non-limited conditions has not been 
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reported elsewhere. This suggests a novel function of BdNRT2.1 that deserves further 

research. To further investigate the underlying mechanisms that caused the reduced NUE, 

I used 
15

N labelling to differentiate N uptake and N remobilization after anthesis and 

found that the BdNRT2.1 is involved in N remobilization, whereas the nitrogen uptake 

after anthesis is unchanged.  Moreover, senescence-related NAC transcription factor and 

cytosolic GS1 are responsible for the reduced N remobilization of the bdnrt2.1 mutant 

and they may form a regulatory network with BdNRT2.1 during leaf senescence. Thus, I 

propose a model (Fig. 5.1) that illustrates the difference of BdNRT2.1’s function between 

vegetative growth stage (before anthesis) and reproductive growth stage (after anthesis). 

Based on the results that the bdnrt2.1 mutant has intact NUpE/NAE, but has reduced 

NUtE/NRE, I hypothesized that BdNRT2.1 has contrasting impact on N metabolism 

related enzyme activity and metabolic status at different developmental stages, which was 

investigated in chapter 4.  

In chapter 4, I measured the mRNA and protein abundance levels of key genes coding for 

enzymes involved in the N assimilation pathway at two developmental stages: the 

vegetative stage (before anthesis) and reproductive stage (after anthesis). The results 

supported my hypothesis that BdNRT2.1 has contrasting impacts at different 

developmental stage, as illustrated in the proposed model in Fig. 5.1. Key enzymes were 

not affected by the mutant before anthesis, explaining the unchanged NUpE/NAE, but 

GS1, which is known to control N recycling (Bernard and Habash, 2009), was reduced, 

while other enzymes were unaffected after anthesis, which explained the reduced 

NUtE/NRE, but still unchanged nitrogen uptake. Metabolomics analysis also presented a 

contrasting metabolic status at two developmental stages with a significantly altered 

metabolites distribution in the bdnrt2.1 after anthesis. Overall, these results suggest a 

potential role of BdNRT2.1 as nitrate sensor/signal transducer in a developmental stage 

dependent and nitrate uptake independent manner. What’s more, the accumulation of N-

rich amino acids in the vegetative tissues of the bdnrt2.1 mutant further supports the 

hypothesis in chapter 3 that N remobilization to grain seeds is impaired by the mutation 

in BdNRT2.1, hence the accumulated N in the vegetative tissue.  
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Figure 5.1 Schematic representation of proposed model for BdNRT2.1 before and after 

anthesis. 

NRT2.1 and NAR2 are located on plasma membrane. NAC is senescence induced 

transcriptional factor and located in the nucleus. GS1 is located in the cytosol and is 

responsible for N remobilization. SAG represents senescence associated genes that are 

regulated by NAC. Black arrow represents regulatory direction, green arrow represents 

gene activation. For simplicity, all players are presented in the same cell, which might be 

not the case in a plant.   
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To pursue the goal of increasing NUE, I deployed transgenic tool to overexpress 

BdNRT2.1, as described in chapter 3, and the results were exciting: BdNRT2.1 over-

expression can enhance the grain yield by 24% on average under N non-limited 

conditions. However, in my three transgenic BdNRT2.1 over-expression lines, the HI was 

not affected, implying that the nitrogen remobilization probably was not enhanced by the 

overexpression of BdNRT2.1. The increase in yield was mainly due to the increased 

number of spikelets per plant. Thus, the question remains with respect to how BdNRT2.1 

over-expression contributed to the enhanced yield. It is plausible that over-expressing 

BdNRT2.1 may simply increase nitrate uptake or it may increase N management through 

its nitrate transducer related functions. Therefore, continuing work is still needed to 

answer the above-mentioned questions. Also, it would be interesting to find out the 

linkage of BdNRT2.1 and BdNRT2.2 regulatory machineries, Because they were tandem 

repeats on the same chromosome in many species, including Brachypodium, Arabidopsis, 

rice, maize, and Medicago truncatula (Orsel et al., 2002; Cai et al., 2008; Garnett et al., 

2013; Pellizzaro et al., 2015).  

In conclusion, a molecular and physiological characterization of the NRT2 family in the 

model monocot plant Brachypodium distachyon was carried out. Among six close-

related, but not completely redundant, family members, BdNRT2.1emerged to play the 

key role, and it is essential to nitrogen use efficiency. Finally, the distinct role of 

BdNRT2.1 at different developmental stages was demonstrated, and BdNRT2.1 may 

serve as a signal transducer to coordinate N remobilization during the reproductive stage. 

More importantly, constitutively over-expressing BdNRT2.1 is a promising approach to 

improve NUE.     
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