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Abstract 

The effects of turbulence in the atmospheric boundary layer (ABL) on surface pressures of a 

typical low-rise building roof are investigated in this thesis.  A 1/50 geometrically-scaled 

model of the Texas Tech University Wind Engineering Field Research Lab (WERFL) 

building model is used for pressure measurements in wind tunnel experiments.  ABL wind 

turbulence intensities ranging from about 10% to 30%, and length scales ranging from 6 to 

12 times of the building height (H) are generated.   

The effects of ABL turbulence on the mean roof pressures within the separated flow are 

explained from the time-averaged Navier-Stokes equations.  The pressure fields are 

reconstructed by integrating the pressure gradients using an analytic interpolation approach.  

For high turbulence intensity levels, the maximum suction coefficient on the roof surface was 

found to be increased.  Such increasing magnitudes are directly related to reduced sizes of 

mean separation bubbles, more rapid variation of the velocity magnitude near the leading 

edge and enhanced variation of the turbulence stresses.  On the other hand, higher surface 

pressure recovery found in the leeward portion of the separation bubble is mainly due to the 

more rapid variation of the turbulence stresses.   

The effects of ABL turbulences on the fluctuating roof surface pressures are explained by the 

quasi-steady (QS) theory.  Basically, the QS model assumes that the instantaneous roof 

surface pressure is induced by a modified local mean flow field.  The selection of the mean 

flow pattern and the amplification of the velocity magnitudes are determined so that the 

resulted instantaneous velocity vector is matched to the measurement at the reference 

location, i.e., 1H above the roof leading edge in this thesis.  The QS model is found to 

explain the effects of large length scale turbulences very well.  Better QS-predictions are 

observed if vertical component of the velocities are included.  A statistical method for 

estimating the surface pressure probability distribution, based on the assumptions from the 

QS model, is derived and validated.  This method relates the probability density function 

(pdf) of building surface pressures to the joint pdf of wind speed, azimuth angle, and 

elevation angle. 
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1  Coefficient associated with x-derivative of the analytic support,  .  

3  Coefficient associated with z-derivative of the analytic support,  .  

  Elevation angle of wind velocity vector. 
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Chapter 1  

1 Introduction 

1.1 Background  

Understanding the wind effects on structures can help engineers to design for assess the 

wind-induced risk caused by severe wind storms.  In the Enhanced Fujita Scale (WSEC, 

2016), for example, the typical types damages that are observed are shown in Figure 1-1 

(a) for typical residential houses in severe storms.  The Degrees of Damage (DOD) 

provide the typical sequence of damage observations as a function of wind speed.  These 

types of damages have been commonly observed in post-disaster surveys in both 

hurricanes (e.g., Hurricane Katrina, van de Lindt et al., 2007) and tornadoes (e.g., 

Tornado in Tuscaloosa, Alabama, van de Lindt et al., 2013).  Among these damages, 

roofs have been found to be particularly vulnerable to wind-induced uplift.  For example, 

the uplift failures of asphalt shingles (DOD 2, Figure 1-1 (b)), roof sheathing panels 

(DOD 4, Figure 1-1 (c)) and even the entire roof (DOD 6, Figure 1-1 (d)) have been 

observed in Angus Tornado (Kopp et al., 2016).  Once a portion of the roof has blown 

off, the subsequent rain-water penetration can immediately accumulate the loss of the 

house contents (Sparks et al., 1994).  Failed sheathing panels can also become flying 

debris (Kordi et al., 2010) and impact other buildings (Minor, 1994).  Hence, the wind- 

induced roof surface pressures, and the consequent roof failures, have been a focus of 

attention for low-rise buildings and houses.  
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Figure 1-1: (a) Degree of damages (DOD) and the corresponding range of failure 

wind speeds for typical one- and two-family residences (WSEC, 2006) (b) Examples 

of DOD 2.  (c) Example of DOD 4.  (d) Example of DOD 6. 
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Construction quality can greatly affect the resistance to wind-induced loads.  For 

example, He and Hong (2012) show that the typical toe-nailed, roof-to-wall connection 

are prone to error, leading to possible reductions of the uplift resistance of the roofs.  

However, using hurricane clips for the roof-to-wall connections can significantly increase 

the resistance of the entire roof (e.g., Amini and van de Lindt, 2014).  Building shape, on 

the other hand, can affect the aerodynamics of the roof significantly.  Hip roofs are found 

to receive less wind uplift than that of gable or flat roofs (Gavanski et al., 2013), although 

adding parapets (e.g., Kopp et al., 2005) or using rounded corners for the roof edges (e.g., 

Roberston, 1991) may reduce the wind induced suction.  In contrast, a large opening on 

the windward wall can pressurize the internal volume of the building and significantly 

increase the net uplift for the roof (e.g., Oh et al., 2007).  Changing the plan dimensions 

of the roof (e.g., Ho et al., 2005; Gavanski et al., 2013) or side walls (e.g., Akon and 

Kopp, 2016) can alter the flow pattern on roof and, hence, affect the wind induced 

suctions.          

The upstream flow and turbulence conditions in the atmospheric boundary layer (ABL) 

play important roles on the roof surface pressures.  In order to quantify the effects of 

turbulence on wind loading, the vertical profiles of the turbulence characteristics have 

been varied, along with separate measurements of building surface pressures (e.g., 

Tieleman, 1993; Tieleman et al., 1994).  Although this type of methodology (i.e., non-

simultaneous measurement of wind speed and surface pressures) is straightforward for 

typical engineering practice, the studying of the inherent physical mechanisms is limited.  

For example, Tieleman (1993) and Tieleman et al. (1994) observed significant 

dependence of the mean roof surface pressure to the upstream turbulence intensity for all 

wind directions.  However, because the interaction between the upstream turbulence and 

the local flow field cannot be observed directly with this type of measurement, the 

detailed physical mechanism causing the variation of the mean pressure variations cannot 

be directly explained. 

One benefit of modern flow field measurement technologies, such as particle image 

velocimetry (PIV), is that these tools can be used to investigate the detailed flow field 

near the building surfaces (e.g., Pratt and Kopp, 2014).  For example, Akon and Kopp 
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(2016), examined the mean flow field above the roof of a geometrically-scaled model of 

the Texas Tech University Wind Engineering Research Field Laboratory building (i.e., 

TTU WERFL, see Levitan and Mehta, 1992a).  For wind directions normal to the 

building walls, they found that increased upstream turbulence intensity reduces the sizes 

of the mean separation bubbles, with relatively little influence of the turbulence length 

scales over the range of their measurements.  The distribution of the mean roof surface 

pressures was found to be strongly related to the dimension of the separation bubbles and, 

hence, the upstream turbulence intensity.  Similar effects of the intensity (e.g., Kiya and 

Sasaki, 1983b; Saathoff and Melbourne, 1997) and length scales (e.g., Hillier and Cherry, 

1981; Nakamura and Ozono, 1987) of the free stream turbulence have also been observed 

for flow passing 2D rectangular prisms in uniform flow.  Although the mean surface 

pressure distribution is strongly related to the reattachment lengths, Akon and Kopp 

(2016) did not find a self-similar pressure distribution after applying a normalization 

based on the reattachment length and extreme value of the mean pressure coefficient.  

Thus, turbulence fundamentally alters the mean separation bubble in a way that changes 

in body geometry for a smooth free stream do not (Roshko and Lau, 1965). 

The fluctuating component of the roof surface pressures are strongly dependent on the 

upstream turbulence as well.  Increasing upstream turbulence intensity, in general, has 

been found to increase the fluctuations of the wind-induced suctions on roofs (e.g., 

Tieleman, 1993; Tieleman et al., 1994; Tieleman, 2003; Akon, 2017).  In addition to the 

intensity, the integral length scale of the upstream turbulence has been found to affect the 

pressure fluctuations.  For the flow passing a 2D rectangular prism, surface pressure 

measurements show that the pressure fluctuation can be amplified by increasing the 

length scale of the upstream turbulence without changing the turbulence intensity (e.g., 

Hiller and Cherry, 1981; Saathoff and Melbourne, 1997).  In addition, the largest 

magnitude fluctuations move closer to the leading edge because of the earlier transition to 

turbulence of the separated shear layer.  Similar trends had been observed on roof surface 

pressure fluctuation by Akon (2017) for ABL flow normal to the low-rise building wall.   

When the upstream flow is laminar (i.e., smooth), a laminar shear layer is formed by the 

flow separation at the leading edge.  Due to small disturbances, the laminar shear layer 
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rolls up into discrete Kevin-Helmholtz (KH) vortices.  These KH vortices can pair, 

forming larger vortices and further impinging the roof surface or shedding downstream, 

breaking into random turbulent eddies.  The fluctuating pressures under such separated 

flows are governed by the flow characteristics described above (e.g., Kiya and Sasaki, 

1983a).  The effects of turbulence on the separated shear layer have been investigated by.  

Gartshore (1973), who found that the turbulence on the stagnation streamline controlled 

the primary changes to the separated flow.  Lander et al. (2017) found that the separated 

flow becomes turbulent immediately after separation due to a by-pass transition 

mechanism.  Increased upstream turbulence intensity is reported to increase perturbation 

of the shear layer and, hence, the growth rate of roll up vortices in the shear layer (Kiya 

and Saski, 1983b;  Saathoff and Melbourne, 1997).  Increased length scale of the free 

stream turbulence, on the other hand, is found to increase the span-wise (normal to the 

flow direction) coherence of the vortex roll up while decreasing the perturbation from the 

small scale turbulence (Saathoff and Melbourne, 1997).  Hence, the increased surface 

pressure fluctuations can be, in part, explained by these enhanced vortices generated from 

the leading edge.         

Relatively large length scales of the ABL turbulence are usually encountered for typical 

low-rise buildings.  For example, the integral length scale of the ABL turbulence can be 

as large as 30 times the building height for the full scale TTU WERFL building (Levitan 

and Mehta, 1992b), with a turbulence intensity is of about 20%.  These large scale 

turbulent eddies are expected to produce a ‘buffeting’ type of effect (Tieleman, 2003).  

Hence, on top of its interaction on the building-generated turbulence (i.e., the separating-

reattached flow above the roof) discussed earlier, large scale turbulence is expected to 

produce more overall changes of the load.  Turbulent eddies of large length scales also 

imply significant transverse and vertical velocity fluctuations in the ABL.  The 

fluctuations of roof surface pressures may be influenced by the transverse (e.g., Tieleman 

et al, 1996) and vertical velocity component as well.  For example, the wind azimuth 

angle changes due to large scale turbulence can sway the axis of the conical vortices (e.g., 

Banks and Meroney, 2001;  Wu et al., 2001), influencing the location of maximum 

instantaneous suction on roof.  Large-scale upward wind can lift the axis of the conical 
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vortex so that its structure is better developed (i.e., more rounded vortex pattern) and, 

hence, enhance the suction beneath it (Wu et al., 2001).  

Therefore, in wind tunnel modelling of turbulent flow, the best approach is to match both 

the intensity and length scale of the turbulence, due to the awareness of their effects on 

roof surface pressures mentioned earlier.  However, the dimension of typical wind 

tunnels can limit its capability in simulating turbulences of very large length scale for 

structure models that are also large enough to resolve geometric details of interest.  For 

example, the wind tunnel study of cavity pressure between roof and roof top solar panels 

requires the length scale ratio of at least 1:20 (e.g., Stenabaugh and Kopp, 2015).  

Consider placing Stenabaugh and Kopp’s (2015) model (with full scale roof height being 

8 m) and assuming the integral length scale of turbulence being 30 times the building 

height as that measured in TTU WERFL site (see Levitan and Mehta, 1992b), this would 

require the model integral length scale of 12 m being simulated in the wind tunnel, which 

is generally not achievable in typical wind tunnels.  

After noticing the inadequacy of wind tunnel simulation of large length scale turbulence, 

Irwin (2008) argued that this issue may be resolved if the wind loading problems can be 

separated into the influences due to small and large length scale turbulence.  Following 

the argument of Irwin (2008), Asghari-Mooneghi et al. (2016) proposed to use the 

‘partial turbulence simulation method’ in wind tunnel to study the aerodynamic effect on 

the low-rise building roofs due to small length scale of turbulence.  For the missing 

portion of large length scale turbulence, they proposed to use Quasi-Steady theory for 

correcting the effect.  Although the Qausi-Steady model are not explicitly used in the 

approach of Asghari Mooneghi et al. (2016), the concept behind is worth for 

consideration.   

The objective of this research is to estimate or correct the ABL turbulence effects on roof 

surface pressures, particularly with respect to the large scale of turbulence.  In order to 

reach this goal, detailed understanding of the mechanisms between the near roof turbulent 

flow and roof surface pressure is required.  This is done through a more detailed 

investigation on relationship between the flow field near the roof and surface pressures 



7 

 

on roof.  For flow directions normal to the low-rise building wall, Akon (2017) conducted 

particle image velocimetry (PIV) measurements to study the flow within a vertical plane 

parallel to the stream direction near roof, along with the roof surface pressure 

measurements.  Part of his experimental data are used in this thesis to study the effect of 

turbulence on the mean roof surface pressures.  The momentum equations (i.e., the 

Navier-Stokes equations), which specify the relationship between the wind field and 

pressure field, offer a promising tool from the theoretical point of view.  This thesis 

shows an example of connecting the mean roof surface pressures to the mean flow and 

turbulence fields near the roof via the differential momentum equations.  Through this 

process, effects of the upstream turbulence on the mean surface pressure distributions 

observed in Akon and Kopp (2016) are further explained.   

For the pressure fluctuation on roof, however, three-dimensional and temporal flow field 

measurements of high resolution are usually required (e.g., de Kat and van Oudheusden, 

2012), if the instantaneous pressure is to be evaluated theoretically.  Such high cost in the 

flow field measurement, however, are generally not applicable for typical wind 

engineering applications and, hence, lead to impractical use of direct theoretical 

approaches.  On the other hand, the quasi-steady (QS) theory, which requires less cost in 

measurement and calculation, offers a convenient tool in relating the wind speed and roof 

surface pressures.  Basically, the QS method estimates the instantaneous building surface 

pressure analytically using vector information of the wind measured at a point location 

near the building.  Because the analytical function is established via building surface 

pressure measurements, the QS approach is of a semi-empirical approach.  For turbulence 

with length scales larger than the building dimension, the QS method are expected to be 

particular useful in relating wind field and building surface pressures (e.g., Tieleman, 

2003; Asghari Mooneghi et al., 2016).  Hence, in this thesis the effect of the ABL 

turbulence on the roof surface pressure fluctuation are explained via the QS theory.   

1.2 Time-averaged momentum equations 

As mentioned in Section 1.1, Akon and Kopp (2016) found that the mean roof surface 

pressure distribution is strongly related to the intensity but less to the length scale of the 

upstream ABL turbulence, through their PIV and roof surface pressure measurements.  
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With the capability of PIV measurements, the goal now is to look into more detailed 

influences of the ABL turbulence on the pressure field variation near the roof.  From the 

differential momentum equations (i.e., the Navier-Stokes equations), the flow fields can 

be directly connected to the pressure field so that the influence of turbulence on the 

pressure field can be examined.  By defining the pressure coefficient, Cp , as 
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Here p  denotes the pressure, 
p  is the ambient static pressure and   is the kinematic 

viscosity.  The overbars in Eq. (1-2) denote the time average, while τ  denotes the 

turbulent stress tensor with components '' jiij uu  and the prime denoting a fluctuating 

component.   

This Eulerian approach to pressure gradient evaluation, along with methods of pressure 

integration have been explored by many researchers as recently reviewed by van 

Oudheusden (2013).  The central difference scheme, which is of second order accuracy 

and relatively simple in operation, is usually used in determining the velocity gradients 

on the right hand side of Eq. (1-2) (e.g., Murai et al., 2007; de Kat and van Oudhuesden, 

2012).  On the side of pressure integration, however, more attention is needed.  Space-

marching techniques for pressure integration are relatively straightforward and fast (e.g., 

Baur and Kőngeter, 1999; van Oudheusden et al., 2007).  However sometimes the 

‘memory’ effects of integrated results along the integration path can occur (e.g., de Kat et 

al., 2008), which means the pressure integration can be path dependent with errors from 

either discretization or measurement (e.g., Sciacchitano and Wieneke, 2016) being 

accumulated along the integration path (Ettl et al., 2008).  Because of these drawbacks 
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for space-marching schemes, other types of optimization methods for pressure integration 

may be preferable.  The most common approach is to solve the Poisson equation for 

pressure with standard numerical techniques (e.g., Gurka et al., 1999; de Kat and van 

Oudheusden, 2012).  Note that boundary conditions of mixed type, i.e., a combination of 

Dirichlet and Neumann, are required for solving Poisson equations (van Oudheusden, 

2013).  In addition to these techniques, algorithms in CFD have also been used to 

determine pressure from velocity data.  For example, Jaw et al. (2009) calculated the 

pressure distribution through the SIMPLER algorithm, in which continuity is satisfied 

and no boundary condition is required.  In contrast to these methods, the current work 

applies the analytic interpolation approach proposed by Ettl et al. (2008).  The goal of 

this method is to keep the local details of integration while providing a globally 

optimized solution.  It has other advantages, such as no requirements for entire boundary 

conditions and the ability to remove bad gradient data.   

The area-averaged pressure is an important quantity in wind engineering applications for 

determination of cladding loads on, for example, roof panels (e.g., Gavanski et al., 2013).  

Instead of taking the average of integrated pressure from the differential momentum 

equation in Eq. (1-2), we use the integral momentum approach with a control volume 

(CV) docked at the target surface (e.g., a CV attached on top of a specified area on the 

roof surface).  By recalling the definition of pressure coefficient in Eq. (1-1) and 

neglecting the viscous terms (e.g., Kurtulus et al., 2007), the area-averaged mean pressure 

coefficient, avgCp , on the target surface, 
1S , of area, A , can be represented as: 
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where S  denotes the bounding surface of the CV, excluding the target surface 
1S ;  n and 

1n  denote the outward normal vector for CV bounding surfaces S  and 
1S , respectively.  

Note that instead of evaluating the total force acting on an object enclosed by the CV, as 

can be seen in the typical applications (e.g., Kurtulus et al., 2007; van Oudheusden, 



10 

 

2007), the current work applies the integral momentum equation to estimate the area-

averaged surface pressures.  The applications of time-averaged differential momentum of 

Eq. (1-2) and integral mention of Eq. (1-3) will be presented in Chapter 3 and Chapter 4, 

respectively.  

1.3 Quasi steady (QS) theory 

The quasi-steady theory (QS) has been a common approach in wind engineering for 

determination of instantaneous wind loads, either on low-rise buildings (e.g., Letchford et 

al., 1993) or tall buildings (e.g., Kawai, 1983).  A summary of recent applications of QS 

models is shown in Table 1-1.  This is a relatively simple approach as compared to the 

full momentum equations in terms of estimating instantaneous roof surface pressure 

coefficients, p , from instantaneous velocity vector, 
mu , measured at point m:  

 inst

2

m    5.0 Cppp u  , (1-4a) 

or alternatively in the form of pressure coefficient, according to Eq. (1-1), that   
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Note that the velocity vector used here is composed of the three components in Cartesian 

coordinate so that the magnitude of u satisfies 
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On the right hand side of Eq. (1-4b), the ratio 2

ref

2

m uu  accounts for the contribution of 

instantaneous dynamic pressure, whereas instCp  denotes the ‘instantaneous function’.  

One of the advantages in considering the QS formulation in Eq. (1-4) is that the 

instantaneous building surface pressure is separated into the contribution from the 

instantaneous dynamic pressure and the contribution from other aerodynamic effects, 

such as the body-generated turbulence, embedded in instCp .   

The variation of instCp  plays a crucial role in QS theory in estimating surface pressures 

based on the formulation in Eq. (1-4).  Some of the earlier researches applied QS theory 

(e.g., Kawai, 1983; Letchford et al., 1993) by considering the effects of wind azimuth 

variations.  To model the effects of wind azimuth variations, linear functions for  instCp  

had been often used for simplicity.  In particular, the slope and intercept of the linear 

function are evaluated from the mean values of pressure coefficients such that 

      


 
 

 
inst

d

Cpd
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Richards et al. (1995) proposed treating the wind azimuth effects non-linearly by 

representing  instCp  as a Fourier series with experimentally determined coefficients.  

These authors found that the instantaneous function is generally different than the mean 

pressure coefficients because of smoothing effects caused by the averaging of the mean 

wind direction in the mean pressure coefficients.  This has the effect of lowering the 

magnitudes of the peak values (Richards et al., 1995).  Banks and Meroney (2001) later 

compared the conditionally-averaged instantaneous function, |instCp , with a non-

linear QS model similar to that proposed by Richards et al. (1995).  They found that their 

non-linear model worked well for point pressures near the roof corner of a low-rise 

building, except for cases when the mean wind direction is approximately perpendicular 

to the roof edge.   
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Cook (1990) mentioned that the most comprehensive way to apply QS theory is to 

include both wind azimuth and elevation-angle variations in the instantaneous function, 

  ,instCp .  The effects of wind elevation angle have been investigated by several 

researchers (e.g., Letchford and Marwood, 1997; Sharma and Richards, 1999).  In these 

experimental studies, building models were tilted so that the surface pressures were 

altered by winds at different mean elevation angles.  Richards and Hoxey (2004) used a 

similar approach in their full-scale field study of roof point pressures by tilting the 6-

meter-tall Silsoe cube into the wind.  Based on these studies, it has been found that an 

upwardly directed wind angle is generally associated with higher magnitude 

instantaneous functions for locations on roof surfaces, with rates of change which are 

approximately linear with angle.  Although these works have revealed the relationships 

between instantaneous pressure coefficients and three-dimensional wind directions, 

experiments that include both rotating and tilting of buildings are cumbersome and are 

not routinely implemented in practice. 

Part of this thesis applies the QS vector model to include both wind azimuth and 

elevation angles in order to relate the instantaneous wind vector to instantaneous surface 

pressures.  The effects of wind azimuth variations are treated as non-linear functions and 

handled in a similar way as suggested by Richards et al. (1995).  Wind elevation-angle 

effects are also considered such that the instantaneous pressure coefficient will be a 

function of three-dimensional wind directions, i.e.,   ,instCp .  The appropriate 

estimate of instCp , is obtained through conditional averaging, as suggested by Banks and 

Meroney (2001), i.e., 

    ,|, instinst CpCp   (1-7) 

where   represents the expected value, in this case conditioned on the instantaneous 

values of both θ and β.  Wind elevation-angle effects on instCp  are obtained through 

synchronized surface pressure and local three-dimensional wind-velocity vector 

measurements.  Through this type of measurement technique, there are two main 



13 

 

advantages: (i) the method offers a relatively simpler alternative to measuring elevation-

angle effects when compared to what is required to tilt building models and (ii) a QS 

model can be used to predict time series of building surface pressures given an 

appropriate wind speed time history. 

A statistical method based on the QS vector model is also derived.  This method relates 

the joint probability of the three-dimensional wind-velocity components with the 

probability of surface pressures.  There are a few differences between the current 

formulation of the statistical method used in this thesis and the formulation proposed by 

Richards and Hoxey (2004).  By using a similar analytical form of the instantaneous 

functions for the QS model, the joint probability of measured wind turbulence is directly 

used in the current formulation.  This may offer an easier alternative when compared to 

the formulation proposed by Richards and Hoxey (2004) (from Eqs. 19–22 in their 

paper), where the joint probability between wind speed and wind elevation angle were 

simulated by superimposing a (negatively correlated) Reynolds stresses portion with the 

randomly generated portion.  Also, mutual independence is not found between wind 

velocity, azimuth, and elevation angles in our data.  So, in the present work, the original 

form of the joint probability of wind turbulence is retained and is not reduced to 

individual multiplication.  This is different to the formulation used by Richards and 

Hoxey (2004), where the individual multiplication is used and, therefore, mutual 

independence is implied.  

Although the QS method is not able to account for every aerodynamic effect on the 

building surface pressures (e.g., the building generated turbulence, Akon, 2017), it is able 

to explain some portion of point pressure fluctuations (Richards and Hoxey, 2012), and is 

probably more appropriate for turbulence of large length scale (e.g., Asghari Mooneghi et 

al., 2016) and for area-averaged pressures (e.g., Letchford et al., 1993).  In addition, the 

QS method would appear to be a useful tool in explaining building surface pressures for 

severe transient storms.  For example, buildings in such storms undergo intense wind that 

changes rapidly in both magnitude and direction due to the translation of the storm past 

the building.  The wind elevation angle may also be important for tornadoes (e.g., 

Blanchard, 2013), since this type of storm may produce more upwardly directed winds, 
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compared to typical atmospheric boundary layer winds.  Such rapid changes of wind are 

coupled with turbulence, resulting in a complex flow field.  

As mentioned earlier, the QS theory belongs to a semi-empirical approach because the 

instantaneous function is usually established on the measurements of the mean pressure 

coefficients.  Although the QS theory has been shown to be an efficient (and sufficient 

for some cases) method in wind engineering applications, little has been known about its 

theoretical background.  In order to bridge this gap, the inherent physical assumption of 

the QS approach is presented through simple algebraic manipulations of mean integral 

momentum equation, Eq. (1-3).  Through further comparisons to the instantaneous 

integral momentum equations, the missing physical mechanism on roof surface pressure 

estimation are further identified for the QS theory.  These physical assumptions are 

derived in Chapter 4 for a simpler QS model that counts for wind azimuth variation only.  

Applications and extensions of the QS model including both azimuth and elevation 

variations are further presented in Chapters 5 and 6. 

 

 

Table 1-1:  Summary of previous applications of quasi-steady models. 

Author Formulation in calculating 
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Probability and spectra 

of point pressures on 

tall building walls. 

Letchford et 

al., 1993 
     







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
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


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u
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1 2  

Probability and spectra 

of point and area 

average pressures on 

TTU WERFL roof. 

Uematsu & 

Isyumov, 

1999 

RMS of pressures of 

low-buildings. 
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Richards et 

al., 1995   inst

2

2

1
Cpu , where  instCp  is obtained 

from  Cp  and fitted nonlinearly (by Fourier 

Series or polynomial).  Smoothing effects of 

azimuth fluctuation on  instCp  are 

considered. 

RMS of point 

pressures on full scale 

Silsoe cube. 

Banks & 

Meroney, 

2001 

Synchronized velocity 

and pressure signals.  

Comparing time series, 

RMS and probability 

of the QS-predicted 

pressures. 

QS models considering magnitude, azimuth and elevation of the wind 

Letchford & 

Marwood, 

1997 
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the gradient 
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





Cp
 is obtained from tilted 

models. 

Synchronized velocity 

and pressure 

measurements.  RMS 

of point pressures 

along a line on a low-

building roof below 

corner vortices 

Sharma & 

Richards, 

1999 

Spectra of pressures on 

roof. 

Sharma & 

Richards, 

2004 

Spectra of point and 

area-averaged of the 

1/50 TTU windward 

wall. 

Richards & 

Hoxey, 2004 
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u
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where  instCp ’s are obtained from the 

similar way by Richards et al. (1995) ; 

 






Cp
’s are obtained by tilting the 

building; 
*u  denotes the Reynolds stresses 

between stream-wise and vertical velocities 

and random  is the randomly generated 

elevation angle fluctuations. 

Probability of the point 

pressures on the full 

scale Silsoe cube. 

Asghari 

Mooneghi et 

al., 2016 

Implicit use of formulation   ,
2

1
inst

2
Cpu

, where extreme value analyses were 

conducted on   ,instCp .  Effects of wind 

elevations are obtained by tilting the model. 

Peak point pressure 

values on TTU 

WERFL building and 

Silsoe Cube in both 

model and full scale. 
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1.4 Thesis layout 

The layout of this this thesis is presented as follows.  Six roughness terrain conditions 

were set up in the boundary layer wind tunnel in order to simulate the atmospheric 

boundary layer flows with a range of turbulence intensities and length scales.  The 

upstream wind characteristics, the surface pressure measurements of the geometrically-

scaled building model and wind field measurements near the roof are presented in 

Chapter 2.  The effects of upstream turbulence on the mean pressure distribution along 

the centerline of the roof are explained via differential momentum equations in Chapter 3.  

The integral momentum approach is introduced in Chapter 4 and applied for calculating 

the area-averaged roof surface pressures.  The inherent physical assumption in a 

traditional QS theory is also derived in this chapter through algebraic manipulations of 

the integral momentum equations.  In Chapter 5, the QS model that accounts for 

instantaneous wind speed vector of three-dimensions is established and validated for a 

single terrain roughness condition.  Chapter 6 further looks at the applicability of the QS 

model in estimating the roof surface pressure fluctuations for different upstream 

turbulence conditions.  The overall conclusions and suggestions for further research are 

presented in Chapter 7. 
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Chapter 2  

2 Experimental setup  

This chapter describes the experimental setup for the simulation of the atmospheric 

boundary layer flows.  The related surface pressure measurements on the geometrically-

scaled building model, along with the planar field and point measurements of velocity 

near the building, are also presented.   

2.1 Atmospheric boundary layer (ABL) flow simulation 
with various terrain roughness conditions 

Six upstream terrain roughness conditions created in Boundary Layer Wind Tunnel II in 

University of Western Ontario (UWO) are used in order to generate the turbulence with a 

range of intensities and length scales.  These ABL turbulent flows are simulated in the 

high speed section of the wind tunnel, which offers a fetch of 39 m for flow development 

and a cross-section of 3.36 m in width and 2.05 m in height at the test location.  At the 

upstream end, three spires with a height of 1.22 m and a base width of 0.1 m are placed.  

Sets of roughness blocks are distributed along the floor between the upstream end and 

test location.  By altering the heights of the roughness blocks, three distinct ABL 

turbulent flows, which are called ‘Flat’, ‘Open’ and ‘Suburban’ in this paper, are 

generated.  By further placing a barrier of 0.38 m (15 inch) height immediately after the 

spires, along with the same sets of roughness blocks mentioned earlier, another three sets 

of ABL flow are generated with altered integral scales.  In summary, the measurements 

were conducted with a total of six terrain roughness conditions.  Three of them with 15 

inch barrier at the upstream end are labelled as ‘F15’, ‘O15’and ‘S15’ for Flat, Open and 

Suburban roughness distributions, respectively;  The remaining three, without upstream 

barriers, are labelled as ‘F0’, ‘O0’ and ‘S0’, correspondingly.  Note that these six 

upstream terrain conditions were also used for discussions by Akon and Kopp (2016) and 

Akon (2017). 

Vertical profiles of the mean longitudinal velocity component, u , are measured using 

Cobra probes (TFI, Model no. 900, 311) without the building model in place for the six 

terrain conditions.  These mean longitudinal velocities are normalized by the mean 
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longitudinal velocity at the roof height, i.e., 
Huu , and are shown in Figure 2-1 (a) as a 

function of normalized height, Hz .  Here z  denotes the vertical distance from the 

wind tunnel floor and cm 8H  is the building height of the (geometrically-scaled) 

model.  Near the roof, i.e., 3Hz , similar vertical distributions of 
Huu  can be found 

for the Flat and Open terrains (i.e., ‘F0’, ‘F15’, ‘O0’ and ‘O15’) while a significant 

increase of shear can be observed in the Suburban terrains (i.e., ‘S0’ and ‘S15’).  The 

ratios of building height to roughness length, known as the Jensen number, are 540, 600, 

290, 600, 56 and 71 for terrains ‘F0’, ‘F15’, ‘O0’, ‘O15’, ‘S0’ and ‘S15’ respectively, as 

reported by Akon and Kopp (2016).  Figure 2-1 (b) shows the vertical profile for the 

corresponding turbulence intensity, uI , of six terrains.  Clear increases in turbulence 

intensities can be observed for increased roughness along the wind tunnel floor.  Adding 

the 15-inch barrier at the upstream end has less effect on turbulence intensity.  Hence the 

relative intensity of turbulence near the roof height can be a summarized as 

S15,S0,O15,O0,F15,F0, uuuuuu IIIIII   , where the terrains are labelled in the 

subscripts.     

The power spectral densities of the longitudinal velocity fluctuations were also obtained 

at the roof height for the six terrains.  Instead of using the typical normalization, 

''uufSuu , for the spectra, we have non-dimensionalized it using 
2ufSuu , where f 

denotes the frequency and uuS  is the auto-spectral density.  This normalization is similar 

to the conventional one, but with additional information on turbulence intensity, since 




0

2

f

uu dfuS  is in fact equal to 
2

uI .  So, the clear increases of turbulence intensity due to 

increased roughness that is observed in Figure 2-1 (b) are reflected in the magnitude 

changes in the reduced spectra in Figure 2-1 (c).  In addition to the magnitude of the 

fluctuations, the associated length scales can also be observed for the six upstream 

turbulence conditions.  The terrains with the 15-inch barrier at the upstream end produce 

turbulent flows of larger length scales as compared to terrains without the barrier.  For 

example, the reduced spectra obtained from F15 and O15 generally shift the F0 and O0 

counterparts toward the larger length scale side (Figure 2-1 (c)).  However S15 terrain not 
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only produces more large scale turbulence but maintains small scale turbulence 

equivalent to S0, leading to total increase of turbulence intensity shown in Figure 2-1 (b).  

These measured spectra are found to reasonably match the von-Karman spectrum.  Akon 

and Kopp (2016) reported the ratio of integral length scale to building height, HLux , as 

being 6, 8, 7, 13, 11 and 12 for terrains F0, O0, S0, F15, O15 and S15, respectively, 

where     *
0

2

* ' ' tduttutuuLux 


  and *t  is the time lag.  Note that these ABL flows 

produced from the six terrains are generally applicable for wind tunnel simulation of the 

real wind environment (Akon and Kopp, 2016). 
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 a b 

    
 c   

       

Figure 2-1: (a) Mean u-component velocity profiles, (b) turbulence intensity profiles 

and (c) reduced spectral density of u component at roof height distribution for 6 

terrains. 
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2.2 Surface pressure measurement on a low-rise 
building model 

The surface pressure measurements on the 1/50 geometrically-scaled model of Texas 

Tech University ‘WERFL’ Building (Levitan and Mehta, 1992a) are used throughout this 

thesis.  The modelled building has a plane dimension of 18.3 cm × 27.5 cm and an eave 

height of 7.8 cm.  Figure 2-2 (a) shows the total 204 uniformly distributed taps on the 

model surface.  A Cartesian coordinate used to define the space and velocity components 

are also included in this figure.  The origin of the coordinate system is located at the 

middle bottom of the building model longer wall.  Based on this definition, wind 

direction normal to the longer wall is 0˚ in azimuth, whereas the wind direction normal to 

the shorter wall is 90˚ in azimuth.  The building model was placed in the high speed test 

section of the wind tunnel, where the six upstream terrain roughness conditions described 

in Section 2.1 can be applied.  Detailed tubing system and frequency responses for the 

pressure measurement can be found in Ho et al. (2005).   
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Figure 2-2:  (a) Pressure tap locations for the 1/50 TTU building along with the 

Cartesian coordinate of the space and wind azimuth definition. (b) The planar 

image frames of PIV measurement near the TTU building model by Akon and Kopp 

(2016) (also indicated in plot (a));  (c) The point location m of the cobra probe 

velocity measurement (Wu and Kopp, 2016) (also indicated in plot (a)).   
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2.3 Velocity measurements above the roof  

The planar flow field above the roof centerline of the TTU model was measured by Akon 

(Akon and Kopp, 2016; Akon, 2017) using the Time-Resolved Particle Image 

Velocimetry (TR-PIV) system for the upstream mean wind direction of 0˚ azimuth.  The 

schematic setup in Figure 2-2 (a) and the example of exact setup photo in Figure 2-2 (b).  

The TR-PIV measurements are synchronized with the building surface pressure 

measurement.  The building surface pressure measured at the 9 taps along the roof 

centerline were sampled at a rate of 1108 Hz for 180 seconds and low-pass filtered to 

about 200 Hz due to the frequency response of the pressure measurement system.  The 

sampling rate of the TR-PIV system is 500 Hz.  Details about the TR-PIV system can be 

found in Akon (2017) and Taylor et al. (2010).  Figure 2-2 (a) shows the two fields of 

view, i.e., upstream field (Frame 1) and roof field (Frame 2), taken by the PIV system, 

along with the building model.  Also note that the planar PIV measurement only captures 

u-w velocity components in the x-z plane.  The final grid spacing between data points is 

cm 2.0 zx  for Frame 1 and cm 18.0 zx  for Frame 2 due to the slightly 

different fields of view used with the two cameras.  The resulting mean velocity, 

turbulence stresses and mean surface pressures (Akon, 2017) are used for analyses in 

Chapter 3 and Chapter 4 in this thesis.  

Simultaneous measurements of building surface pressures and wind velocity vectors at a 

point location (see Appendix B) were also conducted by the author in Boundary Layer 

Wind Tunnel II at UWO (see example of setup in Figure 2-2 (c)).  A Cobra probe (TFI 

Corp., model 900, probe #289) was placed at one building height above the leading edge 

of the roof surface at the mid-plane of the long wall.  This point location of the velocity 

measurement, which is denoted as m and shown in Figure 2-2 (a), was selected to obtain 

the velocities representative of the flow at the building location, while minimizing the 

effects on the building pressures (see Appendix D).  In addition, two additional 

simultaneous cobra probe measurements were made in these experiments.  However, 

preliminary analyses (see Appendix A) shows that the correlation of measured velocities 

between probes decreases significantly as the transverse separation distance increases.  

Hence, the velocities measured above the roof are mainly used for analyses throughout 
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this thesis.  These synchronized velocity and pressure measurements (see Appendix B for 

details) were conducted for mean wind azimuth angles varied from 0˚ to 90˚, in 

increments of 5˚ (Figure 2-2 (a)).  Furthermore, the measurement point m above roof was 

made fixed with respect to the building for each mean wind azimuth angle in order to 

analyze the velocity-pressure data using quasi-steady theory.  The synchronized pressure 

and velocity time series were sampled at 625 Hz for 200 seconds for each mean wind 

direction in these experiments.  These data are involved in quasi-steady analyses shown 

in Chapters 4, 5 and 6.  
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Chapter 3  

3 Evaluation of mean pressure field using time-averaged 
differential momentum equation 

In this chapter, a method to obtain the pressure field from the measured velocity field is 

developed by applying the differential momentum equations (i.e., the Navier-Stokes 

equations).  It is also used to explain the effects of the mean flow and turbulence fields to 

the mean pressure fields above the roof of the TTU WERFL model (see Section 2.2).  

The mean flow and turbulence fields were measured by Akon (2017) via planar TR-PIV 

mentioned in Section 2.3.  Synchronized roof surface pressure measurements by Akon 

(2017) are also used for discussion. 

3.1 Integration of planar pressure gradient data using 
the analytic interpolation technique 

The analytic interpolation technique proposed by Ettl et al. (2008) for surface 

reconstruction is explained and applied for integrating mean pressure gradient data in this 

section.  The Navier-Stokes equations, represented in Eq. (1-2), are used to determine the 

mean pressure gradient using planar PIV measurement data.  For wind normal to the 

building and a measurement plane above the centerline (see Figure 2-2 (b)), the mean 

flow field can be treated as symmetric and, hence, the gradients associated with out-of-

plane component are negligible.  The exact components used in Eq. (1-2) for evaluation 

of mean pressure gradient are: 
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On the right hand side of Eq. (3-1), the 1st and 2nd terms are associated with the mean 

convection, the 3rd and 4th terms are associated with turbulence and the 5th and 6th terms 

are associated with viscous stresses.   
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The analytic interpolation approach developed by Ettl et al. (2008) offers an effective tool 

for topological surface reconstruction by integrating measured gradient data.  Because the 

differential momentum equation offers gradient information of pressure, as shown in Eq. 

(3-1), the reconstruction method of Ettl et al. (2008) will be applicable to pressure 

reconstruction.  In this approach, the estimated pressure coefficient, eCp , at location x  is 

assumed as linear spatial superposition of analytic functions, i.e.,  

      
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31 xxxxx  , (3-2) 

where j1  and j3  are the appropriate coefficients for the x and z derivatives of analytic 

support centred at the j-th grid point, respectively;  N denotes total number of grid 

points.  Wenland’s function was selected by Ettl et al. (2008), and also here, for the 

analytic support,  .  This function is symmetric about its centre and resembles a bell-

shaped surface for the radial distance  r ≤ 1 and is zero for regions of  r > 1, i.e., 
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22 zxr  . (3-3) 

The support size, which is denoted as  , describes the range of influence of the radial 

support  .  As can be seen in Eq. (3-3), the support size is unity for the original 

Wenland’s function.  Adjustment of the support size may be needed in order to render 

smooth integration results for various grid spacing.  Such adjustment can be simply 

achieved by replacing original grid location, x , in Eq. (3-2) by the normalized one, x .  

Thus, the eCp  in Eq. (3-2) is directly related to j-th support if  jxx , while supports 

outside the influence region can be neglected in Eq. (3-2).  In order to determine the 

coefficients   and  , the gradient of eCp  represented by Eq. (3-2) is taken at grid point 

ix  and matched with the measured gradient data obtained from the Navier-Stokes 

equations, Eq.(3-1), such that 
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Once the linear system described in Eq. (3-4) is established, the coefficients can be 

solved by matrix inversion.  

There are a few notes regarding the application.  First, since the integration scheme is 

based on gradient data, the integrated values resulting from Eq.(3-2) only offer 

information of relative difference.  Therefore it is necessary to specify a constant of 

integration at a specified location within the domain of measurement.  Second, if a 

normalized grid location, x , is used in Eq. (3-2), the measured gradient data must be 

pre-multiplied by   before putting into vector d in Eq.(3-4), in order to account for the 

chain rule.  

The current interpolation method allows users to treat bad data points with two options 

because of the advantages of the mathematical nature of Eq. (3-2).  Assuming that there 

are a total of bN  bad gradient data points, scattered at locat1ions bx  within the 

measurement plane.  The first option is to exclude the radial basis supports located at bx  

in Eq. (3-2) while keeping full gradient data in d in Eq. (3-4).  In this case, A  becomes a 

non-square matrix of dimension  bNNN  22  and d  is still a vector of dimension 

12 N .  Then, a least-squares method can be used to solve for the coefficient vector c in 

Eq. (3-4), as mentioned in Ettl et al. (2008).  The second option is to remove both the 

supports at bx  in Eq. (3-2) and bad gradient data in vector d in Eq. (3-4).  The 

corresponding dimensions of matrices A  and d have sizes of    bb NNNN  22  and

  12  bNN , respectively, in this case.  Therefore, direct matrix inversion can be used 

again to solve the coefficient vector.  The reconstruction at bad gradient data locations 

can then be treated as extrapolation by simply evaluating  beCp x  in Eq. (3-2).  



28 

 

Interested readers are referred to Ettl et al. (2008) for more useful techniques for 

application.  

A review of the details used in current pressure integration is as follows.  Once the mean 

velocities and turbulence stresses are captured from the two PIV image frames in Figure 

2-2, a smoothing technique mentioned is applied to remove unreasonable data.  Due to 

the laser reflection near the model surface, some erroneous velocity and turbulence 

stresses can be found in the measurement in this region, especially for terrains that 

produce high upstream turbulence intensity.  These erroneous data are identified and 

replaced by the mean value of its neighbors.  This process can effectively reduce the 

number erroneous pressure gradient in the first place.  After that, the central difference 

scheme is applied to calculate the pressure gradient vectors according to differential 

momentum in Eq. (3-1).  Bad pressure gradient data are identified and removed in the 

reconstruction process if the magnitude or direction deviates extremely from that of its 

neighbors.  The size of the analytic support is chosen to be about 14 times that of the PIV 

data grid spacing in order to render reconstruction smoothness.  The mean pressure is 

assumed to be the same as the ambient value, i.e., 0Cp , at the roof height, upstream 

end of frame 1, i.e.,  HzHx    ,56.1 .  Reconstructed pressures in frame 2 are then 

adjusted by an integration constant through minimizing the difference of integrated 

pressures within the overlapped region between frames 1 and 2 (see Figure 2 and Ettl et 

al. (2008)). 

3.2 Application of the pressure integration technique in 
determination of pressure field due to a steady 2D 
vortical flow field 

This section provides a quick comparison of the pressure fields obtained from a simple 

line-wise integration and analytic interpolation approach introduced in 3.2.  In order to 

demonstrate the ideas, three identical 2D steady flow fields of elliptical pattern are 

created on the x-z plane and shown in Figure 3-1 (a).  Such flow fields are generated by 

placing the two vortex blobs (which can be think of two Rankine vortices, see Spalart, 

1998) near the origin along a line of different angles, i.e., 0˚ (horizontal), 45˚ (oblique) 

and 90˚ (vertical).  Note that the flow fields creating by this methods satisfied continuity 
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as well (Spalart, 1998).  Each of the two have a core radius of 2 m (i.e., the radial 

distance from center to location of maximum velocity) and are 4 m apart from each other.  

The resulting pressure gradient are shown in Figure 3-1 (b), which are calculated by only 

including the convection terms in Eq. (3-1).  Note that the three fields of pressure 

gradients are near identical and aligned with the lines of 0˚, 45˚ and 90˚.  For the regions 

where curvature of the streamlines are large (Figure 3-1 (a)), the magnitudes of pressure 

gradient are higher as well (see Figure 3-1 (b)).  

a 

 
b 

 

Figure 3-1: (a) Three identical steady flow fields generated by placing the two vortex 

blobs along different axes; (b) The corresponding gradient fields of Cp.  

In order show the value of the analytical interpolation approach for pressure integration, a 

simple line-wise integration technique is also used for comparison.  For the line-wise 

integration technique, the pressure along the bottom boundary of the field, i.e.,  m 8z

, is first prescribed by Bernoulli’s equation.  The fields of Cp’s are obtained by 

integrating the pressure gradients (shown in Figure 3-1 (b)) along the z-axis in the 
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upward direction.  Note that only vertical component of the gradient, i.e., dzdCp , is 

required for the line-wise integration because the integration path is parallel to the z-axis.   

The results of integrated pressure fields, which correspond to the flow fields shown in 

Figure 3-1 (a), obtained from the simple line-wise integration and the analytical 

interpolation technique are shown in Figure 3-2 (a) and (b), respectively.  As can be 

clearly seen in Figure 3-2 (a), the use of the simple line-wise integration leads to 

inconsistent results of integrated pressures.  The error can also be accumulated along the 

integration path as well (see the middle plot in Figure 3-2 (a)).  By using the analytic 

interpolation approach, however, the results are more consistent and the integration error 

appeared in middle graph in Figure 3-2 (a) are removed.  Hence, the use of the analytic 

interpolation approach for pressure integration is asserted for the following application on 

the PIV data. 

a 

 
b  

 

Figure 3-2:  Cp fields obtained from: (a) simple line-wise integration and (b) the 

analytical interpolation approach.   
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3.3 Application of the pressure integration technique in 
planar flow fields measured near the low-rise building 
roof 

3.3.1 Pressure gradients of the convection terms 

Planar PIV measurements were conducted near the building roof under six upstream 

terrain conditions mentioned in Section 2.3.  Figure 3-3 shows the ratio of the mean 

velocity magnitude, u , to a reference velocity, refu , for all six terrains.  Generally, a 

speed-up ratio of  4.17.0/0.1   can be found when comparing the mean upstream 

velocity at the roof height to the velocity on top of the roof of the same streamline.  Low 

velocities can be found within the stagnation region in front of the wall and in the 

recirculation region above the roof.  The contribution of the convection terms to the 

pressure gradient in Navier-Stokes equations, i.e., the 1st and 2nd terms on the right hand 

side of Eq. (3-1), is shown in Figure 3-4 for all six upstream terrain conditions.  

Generally the gradient vectors are found to radiate from the windward corner, with the 

magnitudes being the largest near the leading edge and reduced above the mean 

separation bubbles (which are also shown in Figure 3-4).  Over the regions further away 

from the leading edge and within the separation bubbles, relatively small gradient vectors 

can be observed. 

As already noted by Akon and Kopp (2016), the size of separation bubbles is much more 

sensitive to the intensity than the scale of the upstream turbulence, being smaller for 

greater values of turbulence intensity.  Their observation can be easily verified by 

reviewing the turbulence intensities in Figure 2-1 (b) and the mean separation bubbles in 

Figure 3-4.  Because the curvature of the streamlines increases as the size of separation 

bubbles is reduced, the convection-contributed pressure gradients above the separation 

bubbles are intensified for rougher terrains.  The terrain effects on relative mean velocity 

magnitude (see Figure 3-3) is not significant in general, although details of velocity 

variation near the leading edge are different when comparing the results in Figure 3-3 for 

terrains ‘F0’ and ‘S15’.  Lower velocity magnitude variation near the leading edge can be 

found for terrain ‘F0’ while higher variation can be observed for terrain ‘S15’.  More 

rapid spatial variations of velocity magnitude increases the convection-contributed 
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pressure gradients as well, so that the pressure gradients of terrain ‘S15’ are larger than 

that in terrain ‘F0’ near the leading edge (see Figure 3-4).      

 

 

Figure 3-3: Mean velocity ratio, refuu , near roof obtained for the six terrains. 
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Figure 3-4: Vectors of gradient Cp  of the mean convection term in the Navier-

Stokes equations for the six terrains along with streamlines. 

3.3.2 Pressure gradients of the turbulence terms 

The three distinct components of turbulence stress tensors, ''uu , ''ww  and ''wu , are 

normalized by reference velocity and shown respectively in Figures 3-5, 3-6 and 3-7.  

Once these turbulence stresses are measured, the turbulence contribution to the mean 

pressure gradient vectors, which is shown in Figure 3-8, can be obtained by evaluating 

the 3rd and 4th terms of Eq. (3-1).  For the distribution of 
2

ref'' uuu shown in Figure 3-5, 
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maximum values are found to coincide with the shear layer region while decreasing 

values can be found for the regions away from the shear layers.  By further comparing 

Figure 3-5 to Figures 3-6 and 3-7, it is observed that the ''uu  component dominates the 

turbulence stress tensor, with maximum magnitudes around 4 times that of the other two.  

Hence, according to Eq. (3-1a), the turbulence-contributed pressure gradient vectors 

generally radiate from the shear layer in a nearly horizontal direction.  For the 

distribution of 
2

ref'' uww  shown in Figure 3-6, larger magnitudes are found over the 

leeward half of the separation bubbles.  The spatial variation of 
2

ref'' uww  is responsible 

for the pressure gradients in the vertical direction, according to Eq. (3-1b).  For the 

distribution of 
2

ref'' uwu shown in Figure 3-7, a spatial migration of the positive peaks 

near the roof leading edge to the negative peaks over the leeward half of the separation 

bubbles can be found.  According to Eq. (3-1), the vertical gradient of 
2

ref'' uwu  is 

associated with the horizontal pressure gradient while the horizontal gradient of 
2

ref'' uwu  

is associated with the vertical pressure gradient.  

The effects of upstream terrain conditions on the turbulence-contributed pressure 

gradients are described here.  As shown in Figure 3-5, the maximum values of 
2

ref'' uuu  

increase by about 0.03 for changing a terrain to the next rougher level in these 

experiments, i.e. from ‘F0’ to ‘O0’, ‘O0’ to ‘S0’ and ‘O15’ to ‘S15’.  For the 
2

ref'' uwu  

distribution shown in Figure 3-7, higher positive peak values are found for rougher 

terrains, while negative peak values appear to be mostly independent from the terrain 

effects.  However, the distances between the high and low peak values of 
2

ref'' uwu  shrink 

as the sizes of separation bubbles reduce.  For the distribution of 
2

ref'' uww  shown in 

Figure 3-6, reduced effects of the upstream terrain conditions can be observed.  As a 

result of these variations, larger turbulence-contributed pressure gradients can be found 

for rougher terrains in Figure 3-8, for regions near the shear layers and roof surface.  

Overall, rougher terrains that produce higher intensities of upstream turbulence (see 
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Figure 2-1 (b)) and induce higher turbulence-contributed pressure gradients.  The effects 

of the turbulence length scales are observed to be less significant. 

 

Figure 3-5: Turbulent stress ratio, 
2

ref'' uuu , obtained for the six terrains. 
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Figure 3-6: Turbulent stress ratio, 
2

ref'' uww , obtained for the six terrains. 
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Figure 3-7: Turbulent stress ratio, 
2

ref'' uwu , obtained for the six terrains. 
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Figure 3-8: Vectors of gradient Cp  of turbulence term in the Navier-Stokes 

equations obtained for the six terrains. 
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3.3.3 Integrated pressure field 

For high Reynolds number flow, the viscous contribution is relatively small (e.g., van 

Oudheusden et al., 2007).  The contribution of the viscosity terms to the final integrated 

pressures are less than 1% for all the cases of our measurements.  By summing the 

contributions of convection, turbulence and viscosity in the Navier-Stokes equations, the 

total gradient of Cp  can be obtained, and is shown in Figure 3-9 for the six terrains.     

The analytic interpolation technique introduced in Section 3.1 is applied to integrate the 

total mean pressure gradients shown in Figure 3-9.  The reconstructed Cp  fields are 

shown in Figure 3-10 for the six terrain conditions.  Smooth distributions of the 

integrated Cp ’s can be observed for all terrains, with the lowest negative values centered 

at the windward portion of the mean separation bubbles (see Figure 3-10).  For regions 

far upstream of the building, relatively little variation of integrated pressures can be 

observed.  Hence, by assuming the pressure at an upstream point is equivalent to the 

ambient pressure, Bernoulli’s equation, i.e.,  

 
2

ref

2

 toproof

2

ref

2

upstream

upstream toproof
uu

CpCp
uu

 , (3-5) 

can also be applied to evaluate the pressure along the streamlines and, therefore, serve as 

a crosscheck for the integrated results.  In Eq. (3-5), 
upstreamCp  and upstreamu  denote, 

respectively, the mean pressure coefficients and velocity at an upstream location for the 

selected streamline, while 
 toproofCp  and  toproofu  denote, respectively, the mean pressure 

coefficient and velocity at a downstream location above the roof on the same streamline.  

Two streamlines are selected, in terrains ‘F0’ and ‘S15’, for this purpose (see Figures 3-8 

and 3-10):  The upper streamline starts at an upstream point near  HyHx 375.1;   

while the lower one starts at an upstream point near  HyHx 75.0;  .  Figure 3-11 

shows the comparison of Bernoulli-estimated Cp ’s to the integrated results extracted 

from the upper and lower streamlines in Figure 3-10.  Good agreement of Cp ’s can be 
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found between Bernoulli’s estimations and integrated results for the upper streamlines 

under the two selected terrain conditions.  Such agreement manifest the applicability of 

the analytic interpolation technique for pressure reconstruction introduced in Section 3.1.  

However, for the lower streamlines in both terrains, Bernoulli’s equation begins to 

undershoot the suction at  25.0Hx  and continues accumulating the underestimation 

for the rest of downstream region.  Such accumulating underestimation of Bernoulli’s 

equation is due to the absence of the turbulence-contributed pressure gradients near the 

shear layers.  By reviewing the sub-plots in Figure 3-8 for terrains ‘F0’ and ‘S15’, both of 

the lower streamlines are found to enter the region of large turbulence-contributed 

pressure gradients near  25.0Hx .  Because these turbulence-contributed pressure 

gradient vectors point in the direction opposite to the flow direction, the missing 

accumulation of these vectors along the positive flow direction leads to an 

underestimation of Bernoulli-estimated Cp ’s along the lower streamlines. 
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Figure 3-9: Vectors of total gradient Cp  obtained for the six terrains. 
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Figure 3-10: The Cp  field integrated from the gradient data using the analytical 

interpolation technique for the six terrains. 

 

 

 

 

 



43 

 

 

Figure 3-11: Cp  obtained from the integration technique and Bernoulli’s equation 

along upper and lower streamlines in terrains ‘F0’ and ‘S15’. 
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3.3.4 Surface pressures 

The mean roof surface pressure coefficients measured by Akon and Kopp (2016) are 

shown in Figure 3-12 for six upstream terrain conditions and compared to the integrated 

Cp ’s extracted from a horizontal line near the roof height in Figure 3-10.  As the 

upstream turbulence intensity increases, progressive variations of the Cp  distributions 

can be observed in the roof surface pressure measurements.  For terrains producing lower 

turbulence intensity, the Cp  distributions resemble a plateau for the windward portion of 

the separation bubbles.  As the upstream turbulence intensity increases, the plateau 

reduces to a prominent peak as a result of reduced size of the separation bubble.  The 

minimum Cp  can also be found to gradually decrease as the upstream turbulence 

intensity increases (Akon and Kopp, 2016).  For example, the   9.0min Cp  is 

observed for roof height %13uI  (see Figure 1 (b)) while   3.1min Cp  is observed 

for roof height %27uI .  However, as the distance from the leading edge increases, 

these minimum Cp ’s gradually recover to a common value of 2.0Cp .  Hence, higher 

rates of pressure recovery can be found for rougher terrains that produce higher 

turbulence intensities.  Because the Cp  distributions are strongly dependent on the sizes 

of the separation bubbles, Akon and Kopp (2016) also examined the universality of the 

mean pressure distributions by plotting Roshko and Lau’s (1965) reduced form of mean 

pressure coefficients, i.e.,  

 
 
 Cp

CpCp
Cp

min1

min
*




 , (3-6)  

against reduced distance, 
rxx .  Here *Cp  denotes the reduced pressure coefficients and 

rx  denotes the reattachment length.  From the results shown in Figure 3-13, Akon and 

Kopp (2016) found that, although the minimum mean pressures generally locate at 

25.0rxx  for these six terrains, the distribution of mean pressure coefficients is not 

self-similar.  
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The reconstructed field of Cp ’s are extracted from a horizontal line near roof height and 

compared to the roof surface measurements in Figure 3-12.  Good agreements between 

the results obtained from the Navier-Stokes equations and the roof surface measurement 

can be observed for terrains ‘F0’, ‘F15’ and ‘O0’.  However, some underestimation of the 

integrated results can be found near the leading edge for terrains ‘O15’, ‘S0’ and ‘S15’.  

These underestimations may be due to some missing details of velocity and turbulence 

information in this region near the leading edge surfaces (due to the reflections from the 

laser).  Despite this uncertainty, the trend of Cp  variation observed from surface 

measurements for the six terrains can also be observed from the integrated results to some 

extent.  As the upstream turbulence intensity increases, the minimum Cp  obtained from 

integration also decreases (see Figures 3-10 and 3-12).  By reviewing what has been 

discussed so far, for the gradient fields of the mean pressures, the decreasing minimum 

mean pressure is due to the increased pressure gradient obtained from both convection ( 

Figure 3-4) and turbulence (Figure 3-8) terms in the Navier-Stokes equations of Eq. (3-

1).  Higher rates of pressure recovery can be found in the integrated results as well.  

However, only the turbulence terms governs the pressure recovery for the region just 

above the roof (see Figure 3-8) and higher turbulence-contributed pressure gradients can 

be found in this region for rougher terrains that produce higher turbulence intensities.  

These increased pressure gradients, which lead to both the decreased minimum value and 

higher recovery rate of mean pressure, can be further linked back to the flow fields.  As 

mentioned earlier, the increased convection-contributed pressure gradient is attributed to 

the reduced size of separation bubble (Figure 3-4) and more rapid spatial variation of 

velocity magnitude near the leading edge (Figure 3-3).  On the other hand, the increased 

turbulence-contributed pressure gradients are attributed to the increased spatial variation 

of 
2

ref'' uuu  in Figure 3-5 and 
2

ref'' uwu  in Figure 3-7.  The summary of these effects for 

both the mean velocity and turbulence fields explains the variation of the Cp  distribution 

on the roof shown in Figures 3-12 and 3-13.  However, the turbulence-induced pressure 

gradients are not large enough to allow the reduced pressure coefficient distribution to be 

self-similar (see Figure 3-13).  As a result, the reduced pressure coefficient of Eq. (3-6) 

has a larger magnitude at reattachment for higher turbulence flows. 
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Figure 3-12: Roof surface Cp  obtained from measurement and integration for the 

six terrains. 
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Figure 3-13: Reduced coefficient *Cp  obtained from surface pressure 

measurements for the six terrains (Akon and Kopp, 2016). 

3.4 Summary  

The effects of the atmospheric boundary layer (ABL) turbulence intensity and length 

scales on the mean separated and reattached flow and roof surface pressure were 

examined by Akon and Kopp (2016).  The goal of the current work is to extend the 

understanding of their observations by further linking the velocity and turbulence fields 

to the pressure fields.  Time-resolved particle image velocimetry (TR-PIV) data were 

used to measure the flow field near a typical low-rise building, where surface pressure 

measurements were also synchronized.  Experiments were conducted under the six 

upstream terrain conditions, in which a range of turbulence intensities and length scales 

were simulated.  The main contributions and findings are summarized as follows.  

(i)  The Navier-Stokes equations are used to determine the gradient vectors of the 

mean pressure field from the planar PIV data.  The convection-contributed pressure 

gradients are identified by evaluating the terms associated with mean velocities in the 

Navier-Stokes equations.  The turbulence-contributed pressure gradients, on the other 
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hand, are identified by terms associated with the Reynolds stresses.  Effects of upstream 

turbulence on both of the convection- and turbulence-contributed pressure gradients can, 

hence, be examined. 

(ii) In order to obtain the pressure field from the velocity field, the analytical 

interpolation technique of Ettl et al. (2008) is applied to integrate the mean pressure 

gradient.  The reconstructed pressure fields match the Bernoulli’s equation well along a 

streamline away from the body and direct pressure measurement on the surface of the 

body.  Hence, the evaluation of pressure gradient using the Navier-Stokes equations and 

the corresponding pressure integration technique are validated. 

(iii) Akon and Kopp (2016) found that the minimum mean roof surface pressure 

coefficient,  Cpmin , decreases as the upstream turbulence intensity increases.  In the 

current work, these decreasing  Cpmin ’s are directly related to both increased 

convection- and turbulence-contributed pressure gradients over the windward region of 

the mean separation bubbles.  

(iv) As the upstream turbulence intensity increases, a more rapid pressure recovery 

can be found for the portion of roof surface on the leeward side of the location of 

 Cpmin .  Such increased surface pressure recovery rates are mainly due to the increased 

turbulence-contributed pressure gradients near the roof surface. 
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Chapter 4  

4 Use of integral momentum equation and quasi-steady 
theory on evaluation of the area-averaged roof surface 
pressures 

In this chapter, the time-averaged integral momentum equation is used to relate the mean 

flow and turbulence field above the roof to the mean area-averaged roof surface pressure.  

The fluctuations of area-averaged roof surface pressures, on the other hand, are related to 

the instantaneous velocity measurements at a point location above the roof via a simple 

QS model.  The QS model established in this chapter accounts for the magnitudes of the 

azimuth angles of the wind vectors.  Furthermore, the inherent physical assumptions of 

the QS model is explained via the integral momentum equation.   

4.1 Estimation of area-averaged mean pressure using 
integral momentum  

4.1.1 Background 

The integral momentum of Eq. (1-3) is now considered for the determination of area-

averaged mean roof surface pressure:   
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(Recall that the terms in Eq. (1-3) are defined in Chapter 1).  Similar to the differential 

momentum equation, the first and second term on the right hand side of Eq. (1-3) are 

associated with the contributions of mean convection and turbulence, respectively.  The 

third term on the right hand side of Eq. (1-3) is associated with the pressure contribution, 

which is not explicitly shown in differential momentum in Eq. (1-2) because of the 

definition of control volume here.  For the integral momentum approach, the first step is 

to specify a control volume (CV).  Here, the lower boundary surface (i.e., 1S  in Eq. (1-3)) 

is attached to the roof surface, where the area-averaged mean pressure is to be calculated.  
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Because the PIV is a planar measurement of wind velocity field, as shown in Figure 2-2 

(b), the ideal three-dimensional CV (as denoted by the red dashed lines in Figure 4-1 (a)) 

is reduced to the two-dimensional area (as denoted by the red solid lines in Figure 4-1(a)) 

and, hence, the area-averaging of pressure becomes the line-averaging of pressure.  On 

the right hand side of Eq. (1-3), the integrations are conducted for the remaining CV 

surfaces, S, excluding the bottom face, S1. 

The reduced two-dimensional CV on top of the target roof surface is schematically 

shown in Figure 4-1 (b).  Although the model mimics a gable-roof building, the roof is 

treated as an uniform horizontal surface in calculation because of its negligible slope.  

Therefore, the outward normal of the bottom face of CV, i.e. face ① in Figure 4-1 (b), is 

kn 1  for Eq. (1-3).  Because the bottom CV face ① is assumed to be very close to the 

roof surface, the velocity and turbulence quantities are assumed to be zero and, hence, 

only the pressure term is involved in Eq. (1-3) for this face.  Note that the resulted force 

obtained from integrating the mean pressure acting on face ①, as defined by the left 

hand side of Eq. (1-3), has a direction parallel to the z-axis.   

For the CV boundaries normal to the free stream direction, i.e., faces ② and ④ in 

Figure 4-1 (b), the surfaces are exactly aligned with the z-axis and, hence, their outward 

normal vectors are parallel to the x-axis.  As a result, the pressure along these two vertical 

boundaries are not involved in calculating the area-averaged pressure on face ① because 

of the orthogonality.  For the top face ③ shown in Figure 4-1 (b), a portion of the 

streamline is selected as the upper boundary CV face in order to facilitate the calculation.  

In this manner, there is no mass flux across the upper boundary and, hence, the mean 

convection term vanishes for this face.  This summarizes the terms that need to be 

considered in the momentum equilibrium of Eq. (1-3) for each of the four CV boundary 

faces. 

 

 

 



51 

 

a 

 

b 

 

Figure 4-1:  (a) Mean flow field around the low-rise building along with planar 

image frames of PIV measurement and control volume;  (b) Reduced 2D control 

volume on top of the roof surface where line-averaged pressure is calculated. 
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The integration of Eq. (1-3) can be calculated systematically by starting from the roof 

leading edge along the bottom CV border, progressing in a counter clockwise manner 

along the remaining CV boundaries (as indicated by the red arrows in Figure 4-1 (b)).  

The final form of time averaged momentum equation, as the result of reductions of Eq. 

(1-3) for the 2D CV shown in Figure 4-1 (b), can be shown as  
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Note that the dimension of A  is length now for Eq. (4-1), instead of length square for the 

ideal calculation of Eq. (1-3);  The S ’s in Eq. (4-1) denote the CV boundary surfaces 

with subscript indicating the specific face labeled in Figure 4-1 (b), whereas xn  and zn  

denote the components of the outward normal unit vector along the x and z direction, 

respectively.  

The contribution of mean convection and turbulence stresses to the line-averaged mean 

roof pressure can be directly evaluated from the measured PIV data.  The contribution of 

pressure on the top face of the CV, however, is not explicitly measured.  Fortunately 

Bernoulli equation along a streamline far away from the body can be used to relate the 

pressure at an upstream location and the pressure above the roof, as shown in Eq. (3-5) 

and demonstrated in Section 3.3.3.  Once the required parameters are obtained along the 

CV boundaries, multiple area-averaged pressures can be calculated by traversing the CV 

along the roof surface.  The calculated results will be compared in Section 4.1.2 to the 

surface pressure measurement and the estimations obtained from differential momentum.  

Another important reason of adding integral momentum approach, in addition to the 

differential momentum approach, is its explicit relation to the QS theory.  In order to 
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further address this argument, the integral momentum approach of Eq. (1-3) needs to be 

first validated. 

4.1.2 Results and discussion 

The integral momentum approach described in Section 4.1.1 is applied to estimate the 

area-averaged mean roof surface pressure for a mean wind azimuth of 0˚.  The control 

volume (CV) used in the current calculation has a bottom width of 0.25H (or 2 cm), as 

schematically indicated by the 2D solid red box in Figure 4-1.  Based on the applicability 

of Bernoulli’s estimation of mean pressure discussed in Section 3.3.3, the main criteria of 

selecting a streamline as the top CV boundary is to avoid its passage through the region 

of the high-turbulence-induced pressure gradients.  Hence, streamlines far above the 

separated shear layer would be appropriate for this purpose.  Here, we select the 

streamlines starting from the upstream point near  HzHx 375.1;  , which are consistent 

with the upper ones labeled ‘F0’ and ‘S15’ in Figures 3-8 and 3-10, respectively.  The 

area-averaged mean pressures can be obtained once the information of velocity, pressure 

and turbulence can be extracted on the CV boundaries.  Figure 4-2 shows the integral 

momentum results at the center of the five non-overlapped segments of CV bottom 

boundaries for a H25.1 (or 10 cm) fetch of roof surface.  The measured roof surface Cp , 

along with the results integrated from the differential momentum equation (see Figures 3-

10 and 3-12), are also attached for comparison in Figure 4-2.   

The distribution of 
avgCp ’s  estimated from the integral momentum equation are 

consistent with both the measurements and differential momentum results, as can be 

observed in Figure 4-2 for terrains ‘F0’, ‘F15’ and ‘O0’.  Hence, the integral momentum 

approach of Eq. (1-3) is validated, at least for these terrains.  However, it is important to 

note that there is some underestimation of both momentum approaches near leading edge 

for terrains ‘O15’, ‘S0’ and ‘S15’.  Perhaps, these underestimations are, again, due to the 

missing details of velocity and turbulence information close to the roof surface.  The 

contributions of convection, pressure, and turbulence to the area-averaged pressure 

estimated using integral momentum equation are plotted in Figure 4-3 for all six terrain 

conditions.  Generally, the convection term dominates the estimated 
avgCp ’s for areas  
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near the leading edge, with highest contribution of around 60% of the total.  For roof 

surfaces further downstream, the contribution of the pressure term to the estimated avgCp  

increased near linearly, being up to 80% for panels  HxH 25.1 .  The contributions 

of turbulence terms are generally less than 5% and are found to be negative values for 

most of the locations.  Note that these negative contributions of turbulence term are 

consistent to the pressure recovery observed along the leeward region of the separation 

bubbles described in the differential momentum approach (i.e., Figure 3-8 and Section 

3.3.2).      

 

Figure 4-2:  Surface pressure measurement and estimations for the six terrains. 
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Figure 4-3:  Contribution of convection, pressure and turbulence terms in integral 

momentum equation to the area-averaged mean roof surface pressure.   

4.2 A quasi-steady model incorporating magnitude 
and azimuth angle of instantaneous wind velocity  

4.2.1 Background 

A relatively simple version of quasi-steady (QS) theory is introduced in this section to 

incorporate both of the magnitude and azimuth angle of the velocity vectors as variables 

in the model.  By recalling the QS formulation introduced in Eq. (1-4) and Section 1.3, 

the wind azimuth is treated as an input variable in the instantaneous function, i.e., 

 instinst CpCp  , so that the instantaneous pressures estimated by the QS model become 



56 

 

   inst

2

m    5.0 Cppp u  , (4-2a)   

or alternatively,  

  inst2

ref

2

m
  Cp

u
Cp

u
 . (4-2b) 

A straightforward estimation of the instantaneous function can be obtained by taking the 

average of instCp  in Eq. (4-2) under the condition of a specific wind azimuth, i.e.,   

  


  at    evaluated   
2

m

2

ref

2

m

2

ref
instinst Cp

u
Cp

u
CpCp

uu
. (4-3) 

Here 
2

mu  and Cp  denote the averaged velocity squared and roof surface 

pressure, respectively, under the condition of specific wind azimuth.  Because of the 

existence of the statistical independence between velocity magnitude and wind azimuth 

for an ABL turbulent wind, the conditional average of velocity squared, 
2

mu , can be 

replaced by the mean value 
2

mu  obtained from the measurement of the specific mean 

wind azimuth   .  On the other hand, roof surface Cp ’s may be statistically 

dependent on  .  However, the conditional average of roof surface pressure coefficient, 

Cp , is assumed to be equivalent to the mean pressure coefficient, Cp , obtained from 

a measurement for the specific mean wind azimuth   .  This assumption is similar to 

those presented in earlier applications (e.g., Kawai, 1983; Letchford et al., 1993) and is 

easier for manipulations in later discussions. 

By using Eq. (4-3), discrete estimations of the instantaneous function can be obtained for 

each mean wind azimuth and for each surface pressure tap location.  Because of the 

periodicity of  instCp , the continuous form of the instantaneous function can be 

conveniently established by fitting the discrete values with a Fourier series (e.g., Richards 

et al., 1995), i.e.,  
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
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kk kakaCp
0

21inst sincos  ,  (4-4) 

where ka1  and ka2  are the k-th order coefficients to be determined while N denotes the 

maximum order being used.  Such fitting can be done by minimizing the residual 

between fitted and measured values while keeping the maximum order N as low as 

possible.   

Although it is applicable for pressure estimation at a single tap location, the QS theory 

has been found to perform better for area-averaged pressures (e.g., Letchford et al., 

1993).  Therefore, the averaged roof surface pressures over a selected area are chosen for 

analyses and discussions.  Acquiring the instantaneous function for the area-averaged 

pressure is relatively straightforward.  Once the instantaneous function, iCp  inst, , is 

established for each of the individual i-th taps within the specified area, the 

corresponding instantaneous function for an area-averaged pressure, i.e., avg inst,Cp , is 

simply the weighted average of the individual instantaneous functions, i.e., 


i

ii AACpCp  inst,avg inst, , because of the fact that  
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ref
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uu
  ,  (4-5)  

where avgCp  denotes the area-averaged pressure coefficient for the total specified area A 

while iCp  denotes the pressure coefficient at the i-th tap location of the tributary area Ai.  

4.2.2 The model 

Here a portion of roof surface area near the leading edge of the longer wall covering a 

total of 9 pressure taps is selected for the following analyses regarding the QS theory.  

Note that the selected roof surface area is covered by the 3D CV, as shown in Figure 4-1 

(a).  Only the terrain S15 (see Section 2.1) is selected for the following discussions.  

Because of the symmetrical distribution of the pressure taps, the mean pressures 

measured at a point on the building within a quadrant of wind directions can be extended 
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to the full range of wind directions (see Appendix C).  These mean pressure coefficients 

are then used to obtain the discrete estimations of the instantaneous function via Eq. (4-

5), which are further fitted using a Fourier series in Eq. (4-4) to generate the continuous 

form.  Note that the mean upstream longitudinal velocity at roof height is used as refu  for 

defining the pressure coefficients (see Eq. (4-2b)).  Figure 4-4 shows both of the discrete 

estimations and the resulting continuous form of the instantaneous function for the roof 

surface area.  Note that the magnitudes of the instCp ’s are the largest for wind direction 

near 0˚ and are reduced for wind directions normal to the shorter walls.  It can be also 

found that the slightly larger magnitudes are skewed to 30  because the selected area 

is slightly closer to the smaller wall facing the 90˚ azimuth wind.       

 

Figure 4-4:  Fourier series fit of the instantaneous function for the selected roof 

surface area in terrain S15. 
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4.3 Explanation of the physical assumptions in the 
quasi-steady model with respect to the integral 
momentum equations 

4.3.1 The physical assumptions 

As shown in Section 4.2 and Figure 4-4, the QS-estimation of the instantaneous roof 

surface pressure is essentially done by multiplying the instantaneous dynamic pressure by 

the mean roof surface pressure coefficient measured at an instantaneous wind azimuth 

angle, i.e.,   .  This statement becomes clear if the instantaneous function in Eq. (4-

5) is replaced by the representation of the mean area-averaged pressure coefficient, as 

shown in Eq. (4-3), i.e.,     2

m

2

refavgavg inst, uuCpCp   , so that the Eq. (4-5) 

becomes 
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In order to understand the inherent physical assumptions in the QS-theory, the mean area-

averaged roof surface pressure coefficient,   avgCp , on the right hand side of Eq. (4-

6) are further replaced by the integral momentum estimation shown in Eq. (1-3) so that 

Eq. (4-5) becomes  
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Note that the integral momentum approach in Eq. (4-7) implies placing a 3D CV on top 

of the selected roof area (see the dashed box in Figure 4-1 (a)) with upper boundary CV 

face defined by the stream surface (i.e. a collection of the streamlines) passing through 

the measurement point m.  The use of this 3D CV is to explain the conceptual ideas for 

the following discussions instead of direct evaluation of Eq. (4-7).  Also recall that the 
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integral momentum approach used here is already validated in Section 4.1.2 for the 2D 

flow scenario. 

By distributing the instantaneous velocity ratio, 
2

m

2

m uu , into each part of the 

convection term in Eq. (4-7), i.e.,  
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it becomes clear that the QS approach assumes two scenarios for this term:  

(i)  The direction of the instantaneous flow field is assumed to be the same as the 

direction of the mean flow field measured at the mean wind azimuth of the same 

value, i.e.,   .  Note that a reference location such as m in Figure 4-1 (a) is used 

to measure the instantaneous wind azimuth,  .  

(ii)  The magnitude of the instantaneous velocity is obtained by amplifying the 

corresponding mean velocity with an uniform rate, 
2

mm uu , throughout the field.  

In other words, the gust is uniform and of large size (with respect to the building). 

For the pressure term in Eq. (4-7), the goal now is to see if the two assumptions stated for 

the convection term are further applicable.  As discussed in Section 4.1.1, only the 

pressure on the upper CV boundary face is required for evaluating the area-averaged 

mean surface pressure of the horizontal roof area (i.e., the bottom face of the 3D CV 

shown in Figure 4-1 (a)).  Recall that the Bernoulli’s Eq. (3-5) along streamlines is used 

for calculating the mean pressure coefficient on the upper CV boundary, i.e.,  
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Hence, by substituting the top CV boundary Cp  in Eq. (4-7) by the Bernoulli’s Eq. (3-5) 

and assuming ambient upstream pressure, i.e., 0upstream Cp , the pressure contribution in 

Eq. (4-7) becomes  
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As can be clearly seen on the right hand side of Eq. (4-8b), the two physical assumptions 

of the QS model stated for the convection term are also valid for the pressure term.  

Similar QS assumptions can be found for the turbulence contribution by again 

distributing the velocity ratio in Eq. (4-7) into each component of the turbulence stress 

tensor, i.e., 
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Note that because the turbulence contribution may not be as significant as the convection 

or pressure terms, as already shown in Figure 4-3 for the 2D separated-reattached flow 
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scenario, the amplification of the turbulence term in QS theory is expected to give 

relatively minor contribution as well. 

In order to illustrate the two physical assumptions of the QS model, imagine two 

snapshots of the 3D flow fields near the roof are taken at instants 
1t  and 

2t , in which the 

instantaneous azimuths of the velocity vector measured at location m (Figure 4-1 (a)) are  

  01 t  and   302 t .  For the unknown 3D flow field near the roof, the QS model 

assumes the instantaneous flow pattern, i.e., the direction of the instantaneous flow field, 

to be the same as the mean flow pattern so that the mean azimuth at location m is 

equivalent to the instantaneous value.  This is the first assumption.  Therefore, for time 
1t  

the instantaneous flow pattern is assumed to be identical to the mean separated-reattached 

type of flow, as that measured at   01  t  (see Figure 4-5 (a)).  Similarly, the 

instantaneous flow at time 
2t  is assumed to be the mean conical-vortex type of pattern, 

exactly the same as that measured at   302  t (see Figure 4-5 (b)).   

Although the instantaneous flow direction is assumed to be identical to the mean, it is not 

necessarily the case for the instantaneous magnitude of the velocities.  In the QS model, 

the instantaneous magnitudes of the velocities are assumed to be the amplified version of 

the mean velocity magnitude with a uniform rate determined by the instantaneous 

velocity ratio measured at location m, i.e., 
2

mm uu .  Hence, for time 
1t  the 

instantaneous flow field is assumed to be the same as the mean separated-reattached flow 

shown in Figure 4-5 (a) but with mean velocity magnitudes amplified by a uniform rate, 

  2

m1m uu t ;  Similarly, the velocity magnitudes of mean conical-vortex flow shown 

in Figure 4-5 (b) are amplified by a rate of  
2

m2m uu t  for constructing the 

instantaneous flow field at time 
2t .   
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a 

                     

b 

 

Figure 4-5:  Schematic control volume and mean streamlines on top of the roof for 

mean wind azimuths: (a) 0  and (b) 30 .  

 

4.3.2 Missing physical mechanism in the QS model 

Since the QS model is usually established on the velocity measurements at a point such 

as m in Figure 4-1 (a), it is impossible to accurately capture the detailed volumetric flow 

field required for direct evaluation of instantaneous momentum equation.  However, 

missing physical considerations, may be identified by comparing the QS assumptions of 

Eq. (4-6) to the exact instantaneous integral momentum equation:   

m

m
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In order to make the QS assumptions for the convection and pressure terms as close as 

possible to the real scenarios of an instantaneous flow field, local deviations of the 

instantaneous flow pattern from the mean flow pattern needs to be minimized and the 

amplification rate, 
2

mm uu , measured at location m needs to be representative for the 

region near the roof.  This requirement may be better achieved if the QS model is applied 

in the ABL flow of large turbulence length scale, e.g., the upstream flow cases generated 

with 15” barrier (see Figure 2-1 (c)).   

For point velocities measured using an instrument like a Cobra probe (TFI Inc.), the 

instantaneous static pressure can be directly measured at point m.  This information may 

be used to approximate the instantaneous upper CV boundary pressure instead of using 

the QS assumption in Eq. (4-7).  In order to apply such a correction, the QS assumption 

on the pressure contribution is re-written using the mean static pressure coefficient 

measured at point m, m
Cp , i.e.,  
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Then, the correction is done by removing the QS assumption in the pressure term 

represented in Eq. (4-10) and compensating with the instantaneous static pressure 

coefficient measured at point m, mCp .  In this manner, a ‘static pressure corrected’ QS 

model can be derived from the original one in Eq. (4-5), i.e., 
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The missing flow acceleration term in the QS model can also be identified by comparing 

Eq. (4-7) to Eq. (4-9).  Note that because the acceleration contribution is a volume 

integral (over the entire CV), the coherence of the flow structure needs to be high so that 

the flow acceleration measured at point m, t mu , can be used to represent the overall 

flow acceleration within the CV.  Furthermore, because of the roof surface is horizontal 

(see Figure 4-1), only the acceleration of vertical velocity component plays a role.  

Hence, by adding the acceleration term to the static pressure corrected QS model of Eq. 

(4-10), the modified version becomes  
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where the last term on the right hand side adds the contribution of vertical velocity 

acceleration measured at point m and CVV  denotes the volume of the CV.   

 

4.3.3 Application of the QS models  

In this section the use of QS-model (denoted as ‘QS-ϴ’) established in Section 4.2.2 (see 

also Figure 4-4 and Eq. (4-5)) for prediction of roof surface pressure fluctuation is 

demonstrated for the ABL turbulent flow generated by the S15 terrain condition (see 

Figure 2-1).  The ideas of static pressure corrected QS model of Eq. (4-11) (denoted as 

‘QS-ϴ-p’) and further acceleration corrected version of Eq. (4-12) (denoted as ‘QS-ϴ-p-

a’) are also included for the discussion.  The comparison is done for measurements of 

mean wind azimuths   = 0˚, 30˚, 60˚ and 90˚.  The estimated time series of 

instantaneous avgCp ’s are compared to the measurements via the spectra ratio, coherence 

and probability density function (PDF).  The spectra ratio is used to compare the 

magnitudes of the predicted and measured fluctuations of avgCp  in frequency domain and 
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is defined as the ratio of the spectra of the QS-estimated avgCp ,  fSCpQS , to the spectra 

of measured avgCp ,  fSCpM , at frequency f , i.e.,    
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fS

CpM
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  ratio  Spectra  . (4-13) 

On the other hand, the coherence is used to evaluate the correlation between the predicted 

and measured avgCp  in the frequency domain and is defined as the real part of the 

normalized cross spectra between QS-estimation and measurement, i.e.,  
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where   fS CpM CpQS,Re  is the real part of cross spectra between QS-estimation and 

measurement. 

For mean wind azimuths of 0˚ and 30˚, near unity spectra ratio and high coherence 

(between 0.8 and 0.9) can be found respectively in Figures 4-6 and 4-7 for the large 

length scale fluctuations i.e., Hfu 13ref  .  This validates the QS-ϴ estimation of 

fluctuating avgCp  due to large length scale turbulence, i.e., Hfu 13ref  .  On the other 

hand, some under- and over-estimated spectra ratios (Figure 4-5), and near zero 

coherence (Figure 4-6), indicate poor QS-ϴ-predicted fluctuating avgCp  due to the small 

length scale turbulence, i.e., Hfu 13ref  .  However, because the spectra of avgCp  is 

relatively small for the small length scale fluctuations and is monotonically decreasing as 

the length scale reduces, the overall effect of the small length scale fluctuations is limited 

such that the overall QS-ϴ -estimated PDF’s of avgCp  shown in Figure 4-8 match well to 

the measurements (for   = 0˚ and 30˚).  For mean wind azimuth of 60 , both of the 

spectra ratio and coherence are slightly reduced for large length scale ( Hfu 13ref  ) as 

compared to cases of  = 0˚ and 30˚, while the conclusions of QS-ϴ-estimation on small 

length scale ( Hfu 13ref  ) remains the same.  A slightly underestimated avgCp  obtained 
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from QS-ϴ model can be found in the tail regions of PDF in Figure 4-7 for  = 60˚.  As 

the mean wind azimuth approaches to 90˚, both of the spectra ratio and coherence are 

further reduced for large length scale fluctuations.  A significant reduction of the spectra 

ratio (to around 0.3) for the large length scale fluctuations leads to the apparent 

underestimation of QS-ϴ model near the tail region of the PDF.    

By adding the instantaneous correction of the static pressure to the original QS-ϴ model 

of Eq. (4-5), the application of QS-ϴ-p model in Eq. (4-11) is also included for 

comparison in Figures 4-6, 4-7 and 4-8.  For mean wind azimuths of 0˚ and 30˚, 

observations from Figures 4-6 to 4-8 show that the performances of QS-ϴ-p model are 

near equivalent to QS-ϴ model.  Improved performance of using QS-ϴ-p model starts to 

appear for the case of  = 60˚, as slightly better matches of spectra ratio and PDF tail 

values can be observed.  The most apparent improvement for using QS-ϴ-p model can be 

observed for mean wind azimuth of 90˚.  In this case, the spectra ratio is near unity and 

good matches of PDF tail values can be observed for the QS-ϴ-p model.  Significant 

improvement of the coherence for using QS-ϴ-p model can also be observed for the 

middle range of  avgCp  fluctuation, i.e., HfuH 132 ref  .  Apparent improvement of 

QS-ϴ-p prediction may be expected for the re-attached flow region (i.e., the selected roof 

surface area for 90 ) because the roof surface avgCp  is more significantly controlled 

by the static pressure on the upper CV boundary in this situation, as can be seen in Figure 

4-3.     

The further correction of the QS-ϴ-p model by adding the acceleration of vertical 

velocity does not improve the prediction performance for all analyzed cases.  Direct use 

of vertical acceleration measured at point m, i.e., tw  m  in Eq. (4-12), leads to 

unreasonably large overestimation of small length scale avgCp  fluctuation.  This poor 

estimation implies low spatial coherence of vertical velocity field within the CV.  

However because it is impossible to fully resolve the spatial coherence of velocity field 

using a point velocity instrument, the vertical acceleration corrected QS model of Eq. (4-

11) is not practical for our current applications. 
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Figure 4-6:  The ratio of QS-estimated spectra to measured spectra of avgCp  for 

various mean wind azimuths in terrain S15.   
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Figure 4-7:  The coherence between QS-estimated and measured avgCp  for various 

mean wind azimuths in terrain S15.  
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Figure 4-8:  Probability density function (PDF) of QS-estimated and measured  

avgCp  for various mean wind azimuths in terrain S15. 

 

4.4 Summary 

In this chapter, the effects of the upstream turbulence on the area-averaged mean and 

fluctuating pressures are investigated.  The time-averaged integral momentum equations 

are used to relate the near-roof flow fields to the mean area-averaged pressures.  On the 

other hand, a simple quasi-steady model is established for estimating pressure 

fluctuations.  The main goal of this chapter is to derive the physical assumptions 

embedded in the QS model and investigate possible corrections based on these 

observations.  The main findings are summarized as follows: 
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 A time-averaged integral momentum approach is proposed to relate the mean flow 

and turbulence fields to the mean area-averaged roof surface pressures.  This is done 

by placing a control volume (CV) directly above the target roof panel, where the 

mean area-averaged pressure needs to be calculated.  This approach is validated by 

good agreements between the estimations and measured values (with maximum 

underestimation of 15%). 

 From the time-averaged perspective, the convection term (i.e., the net momentum 

flux through the CV) dominates the area-averaged pressures for panels beneath the 

separated flows.  For panels under the reattached flows, the static pressure just above 

the roof dominates the mean surface pressures.  The effects of turbulence stresses 

seem to be relatively minor.  

 A simple QS model is established to estimate the instantaneous area-averaged roof 

surface pressures.  This model accounts for the variation of magnitudes and azimuth 

angles of the instantaneous wind speed measured at the reference location, i.e., one 

building height above the leading edge.  Satisfactory performance of the typical QS 

model is found for region under flow separation.  

 The physical assumptions embedded in the QS model are explained from simple 

algebraic manipulation of the time-averaged integral momentum equation.  Two main 

finding are revealed:  

o The direction of the instantaneous flow field is assumed to be the same as the 

direction of the mean flow field.  This statements holds when the instantaneous 

wind azimuth measured at the reference point is equivalent to the mean wind 

azimuth.   

o The magnitude of the instantaneous velocity field is obtained by amplifying the 

mean velocity field with an uniform rate, 
2

mm uu , where 
mu  is the velocity 

vector measured at the reference location. 

 By further comparing the QS assumptions to the instantaneous integral momentum 

equation, the missing mechanisms of the QS-model can be elucidated:  
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o The best scenario for the QS assumption to be true is that the instantaneous flow 

pattern near the roof exactly matches the mean flow pattern.  This ideal scenario 

may be better approximated if the gusts have a very large scale.     

o By using a point velocity measurement, like a Cobra probe, the instantaneous 

static pressure can be directly measured.  Such information may be used to correct 

the QS assumptions associated with the static pressure above the roof.  The 

pressure-corrected QS model is found to work better for the region of flow re-

attachment.  However for a roof region under flow separation, little improvement 

can be found by using the pressure-corrected QS model.  This is due to the fact 

that the static pressure on top of the roof dominates the roof surface pressure for 

the flow following the re-attachment point, while momentum flux contributes 

more for the flow separation region. 

o A missing acceleration term of vertical velocity is identified in the QS 

assumption.  However, due to little spatial coherence of vertical velocities within 

the control volume (CV) on top of the roof, the use of the vertical velocity 

acceleration measured at the reference point overestimated the overall 

acceleration within the CV.  Therefore, adding the acceleration correction to the 

QS model via a point velocity measurement is not suggested for the practice. 
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Chapter 5  

5 Estimation of instantaneous roof surface pressures 
using quasi steady model and three-dimensional wind 
velocity vectors 

In this chapter, a quasi-steady (QS) model including the three-dimensionality of the wind 

speed vector is constructed and validated for the terrain condition S15.  The statistical 

version of the QS model is also introduced in order to calculate the roof pressure statistics 

based on a given set of turbulence statistics.    

5.1 Model construction 

For regions of building surfaces where the wind azimuth is the only significant variable 

for the instantaneous function,   ,instCp  can be reduced to  instCp .  This means that 

the estimation of  instCp  is obtained from    ,instCp , based on the definition 

given in Eq. (1-7),  

    ,, instinst CpCp  , (1-7) 

where   denotes the averaged value of β for the given wind azimuth condition, θ.  

Richards et al. (1995) proposed a method for estimating  instCp  from the mean pressure 

coefficients.  They first assumed that the building surface pressures respond to the 

incident wind in a way that exactly follows the QS assumption, such that the measured 

instCp  are assumed to fall on the predefined  instCp  curve.  Based on this 

assumption, the mean instantaneous function obtained from the measurements of each 

mean azimuth,  , can be represented as 

      




o

o

180

180

instinst



 dfCpCp , (5-1) 

where  f  is the probability density function (PDF) of the wind azimuth. 
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Based on Eq. (1-4a), i.e.,  

 inst

2

m    5.0 Cppp u  ,  (1-4a) 

the  instCp  on the left-hand side of Eq. (5-1) can be represented as 

  





 

2

m 5.0 upp , a quantity that is equivalent to 
2

m

2

ref uuCp  , based on Eq. (1-

4b), i.e.,  

 
inst2

ref

2

m
  Cp

u
Cp

u
 , (1-4b) 

which is relatively easy to obtain from wind tunnel measurements of each  .  A least-

squares method can be used to fit the measured the discrete  instCp  data with a Fourier 

series.  Richards et al. (1995) suggested that the fitting should minimize the error and the 

order of Fourier coefficients being used.  Once the fitting is done, finer resolution of 

 instCp  data points can be generated between the measured   values, and the  instCp  

on the right-hand side of Eq. (5-1) can be solved by applying the iterative method 

suggested by Banks and Meroney (2001).  For the iterative method, the  instCp  are first 

assumed to be equal to  instCp , then the left-hand side of Eq. (5-1) is updated.  The 

residual,  , obtained by subtracting the updated value from the original value of 

 instCp , can be calculated.  The solution is then updated by replacing  instCp  with 

   5.0old

inst Cp  for the next iteration.  The procedure is repeated until   is minimized.  

The final set of  instCp  is, again, obtained by the Fourier series of order 1N ,  

      



1

0

21inst sincos
N

k

kk kakaCp    (5-2) 

where ka1  and ka2  are the appropriate Fourier coefficients. 
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The wind elevation angle has been found to affect the variation of the instantaneous 

functions instCp  for regions on the roof (Letchford and Marwood, 1997; Sharma and 

Richards, 1999; Wu et al., 2001; Richards and Hoxey, 2004).  If a specific value of θ is 

selected and, thus,   is fixed and denoted as  , the variation of instCp  due to 

changing β has been found to be approximately linear (for the atmosphere boundary 

layers) by various researchers (Letchford and Marwood, 1997; Sharma and Richards, 

1999; Richards and Hoxey, 2004).  Therefore, it can be written as  

         ,, instinst BCpCp   (5-3) 

where B(θ) denotes the gradient, ddCpinst , at specific θ while    represents the 

fluctuating elevation angle,   .  Note that the   ,instCp  in Eq. (5-3) is represented 

by the Fourier series shown in Eq. (5-2).  In the current work, the changes of instCp  due to 

the changes of β are found by subtracting   ,instCp , defined in Eq. (5-2), from the 

conditional averaged values of   ,instCp , obtained from Eq. (1-7).  Because the 

gradient, ddCpinst , may also vary with respect to θ, B(θ) can also be represented by a 

Fourier series, 

      



2

0

43 sincos
N

k

kk kakaB    (5-4) 

 

5.2 Statistical version of the quasi-steady model 

The surface pressure coefficients can be directly estimated by using QS theory using Eq. 

(1-4b) if the time series of the measured wind vector, mu , is known, i.e., 

   ,inst2

ref

2

m
Cp

u
Cp

u
 . (1-4b) 
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For situations where the time series is not available, the statistical method based on QS 

formulation may be an alternative to estimate the statistics of surface pressures.  The 

objective here is to relate the PDF of the pressure coefficients,  Cpf , to the joint PDF of 

the wind turbulence   ,,refm uf u .   

By using the concept of auxiliary variables described by Papoulis and Pillai (2002), 

 Cpf  can be obtained by integrating the joint PDF,  21,, yyCpf , over two assumed 

variables,  

 
ref

m

1
u

y
u

    and   2y . (5-5) 

Then,  21,, yyCpf  can be connected to the joint PDF of wind turbulence through 

   

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




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
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
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
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
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













Nr

r

rr

r

rr

r

u
J

u
f

yyCpf
1

ref

m

ref

m

21

,,

,,

,,





u

u

, (5-6) 

where the subscript, r, denotes each root of the set   ,,refm uu  for a given input set 

 21,, yyCp .  Because a one-to-one relationship exists between  21, yy  and  ,refm uu , 

as assumed in Eq. (5-5), '  is the only root to be solved from Eqs. (1-4b) and (5-3), i.e., 

  
 

 




























 


 , 

1
inst

2

m

ref CpCp
u

B
r

u
. (5-7) 

Based on this formulation, only one root can be found for a given set of  21,, yyCp  such 

that 1rN  in Eq. (5-6).  The denominator on the right-hand side of Eq. (5-6) is the 

absolute value of the Jocobian, where 



77 

 

 

 

 

  





























































22

refm

2

11

refm

1

refm

ref

m ,,

yy

u

y

yy

u

y

CpCp

u

Cp

u
J

u

u

u

u
. (5-8) 

Substituting Cp  by Eq. (1-4b) and   ,instCp  by Eq. (5-3) for the right hand side of Eq. 

(5-8), then the absolute value of Jocobian can be obtained, i.e.,  

   B
uu

J

2

ref

m

ref

m ,, 





























 uu
. (5-9) 

The PDF of Cp  can be obtained by integrating the joint PDF,  21,, yyCpf , over 1y  and 

2y , i.e., 

     










1 2

1221,,
y y

dydyyyCpfCpf  (5-10) 

By replacing  21,, yyCpf  by Eq. (5-6) and using the Jocobian in Eq. (5-9), the PDF of 

Cp  can be re-written as 
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
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 (5-11) 

where r   is the solution of the given set of  ,, refm uCp u , which is solved earlier in 

Eq. (5-7).  If the three wind turbulence variables are mutually independent, the joint PDF 

in Eq. (5-11) can be reduced to individual multiplication (Papoulis and Pillai, 2002), i.e., 

        ffufuf refmrefm ,, uu  .  In Eq. (5-11), the joint PDF of wind speed to 

calculate the pressure statistics is directly used in the current work, instead of simulating 

the negatively correlated relationship between velocity and elevation angle, as proposed 
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in Richards and Hoxey (2004) (Eqs. 19–22 in their paper).  Once  Cpf  is obtained, the 

PDF of the surface pressure can also be calculated by using the definition in Eq. (1-4a), 

i.e., 

  
 

 
 

2

ref 5.0 u

Cpf

Cp
pp

Cpf
ppf



















  (5-12) 

5.3 Results and discussion  

5.3.1 Studied cases 

In this section the data obtained from the synchronized cobra probe and surface pressure 

measurements (see Appendix B) in terrain S15 described in Chapter 2 are used for 

discussion.  Pressures measured at various corner regions of the roof are selected for 

analyses.  The selected single tap in the corner region is denoted as case C1 and shown in 

Figure 5-1.  Various portion of roof area-averaged pressures are also shown in Figure 5-1.  

These regions include 4, 9, 16 and 36 pressures taps, which are denoted as C4, C9, C16 

and C36, respectively.  

 

Figure 5-1:  Pressure taps within specified regions on roof used for area-averaging 

analyses. 
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5.3.2 The quasi-steady model 

In this section, the QS coefficients are obtained, using the methods described in Section 

5.1.  Because of the symmetric shape of the building and the pressure tap layout (see 

Figure 2-2 a), the measurements between 0  and 90° can be extended to the full 

range of mean wind directions (see Appendix C).  Figure 5-2 shows the measured and 

Fourier-fitted values of instCp  for a pressure tap near the roof corner, C1.  By specifying 

an error threshold for fitting of %5.992 R , a total of nine orders of Fourier coefficients 

were used to fit the measured values of instCp .  Using the continuous form of instCp  from 

the fit, the instantaneous function,  instCp , is determined by the iteration procedure 

described in Section 5.1 and fitted using Eq. (5-2).  The resulting fitted function of 

 instCp  is also shown in Figure 5-2 for the point tap location C1.  As found by Richards 

et al. (1995), differences in magnitudes of  instCp  and   instCp  are observed, 

particularly for wind directions that cause peak pressures (e.g., for θ near 15° in Figure 

5-2).  This is attributed to the averaging process described by Eq. (5-1), i.e., the 

instantaneous azimuth sways about the mean value lead to a smoothing for the instCp  

curve. 

 

Figure 5-2:  instCp  obtained from each mean wind azimuth   along with the 

resulting  instCp  described by Eq. (5-2) for pressure tap, C1.   
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Once the instantaneous functions are obtained, it is useful to investigate the effects of 

elevation angle.  By using a similar approach as that of Banks and Meroney (2001), the 

wind-pressure data were first sorted and the data associated with the elemental 

instantaneous wind azimuth band were identified, i.e., 22  dd  .  These 

data were further separated into three bands associated with the fluctuating elevation 

angles, i.e., 5.250   , 5.25.2   , and 505.2   , where 

  .  Note that the ±50˚ is set by the measurement limitations of cobra probes.  

These three ranges were chosen for plotting and represent downward-acting, nearly 

horizontal, and upward acting wind angles, respectively.  The measured   ,instCp  were 

obtained by averaging for the condition of these three elevation angle bands, as indicated 

by Eq. (1-7).  The conditional averaging was repeated for the elemental azimuth band for 

several mean wind directions.  Figure 5-3 shows the resulting measured values of 

 ,|instCp   in discrete symbols along with the fit-  instCp  curve (described by Eq. (5-

2)) for pressure tap C1 for four mean azimuths 45 , 30˚, 15˚ and 0˚.  Because the 

total number of data points used for each   ,instCp  value are different, the attached 

color-scale denotes an example for the equivalent duration used in conditional averaging 

the data (i.e., number of accumulated data points divided by sampling rate), since there 

are relatively few data points for large excursions from the mean. 

As can be seen in Figure 5-3, both of the conditional averaged and the analytical 

instantaneous function are dependent on the azimuth angle for pressure tap C1.  

Regarding the functional variations, the  ,instCp  variations are found to follow the 

fit-  instCp  curve from Figure 5-3 for 15 , while keeping the same trend but with 

much milder slopes for 15 .  Banks and Meroney (2001) first reported similar effects.  

These authors attributed it to a hysteresis effect such that the instantaneous pressures 

could not respond to the fluctuations in the wind (azimuth) direction.  For example, 

conical (or corner) vortices dominate the flow structure and the corresponding low 

pressures at the tap C1 for mean wind azimuth 15 .  When the instantaneous wind 

suddenly sways to 0 , this flow structure does not change to separation bubble type 
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of flow found observed at 0  and, therefore, retrieve the instantaneous pressure.  The 

reverse situation is true for 0 , as shown in Figure 5-3. 

   

   

 
Figure 5-3:   ,instCp  and  instCp  (represented by Eq. (5-2)) for case C1, mean 

wind azimuths 0 and 15 ,30 ,45 .   

The fluctuating wind elevations also play a role in affecting the magnitude of the 

pressures at tap, C1.  In general, an upward wind (i.e., 0 ) leads to higher 

magnitudes of instCp , while a downward wind (i.e., 0 ) leads to lower magnitudes of 

instCp , with the degree of influence depending on the wind azimuth.  Similar observations 

were also presented by Letchford and Marwood (1997), Sharma and Richards (1999), Wu 

et al., (2001) and Richards and Hoxey (2004).  As expected, the measured values of 
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  ,instCp  tend to be closest to the fit-  instCp  curve (from Figure 5-3) for horizontal 

winds (i.e., 0 ), at least for   .  In order to further investigate the elevation-

angle effects on the magnitude of   ,instCp , the measured differences of the 

coefficients,     ,, instinst CpCp  , are examined.   Figure 5-4 shows the results, 

which were obtained for a 5°-band of wind azimuth around the mean (i.e., 

5.25.2   , where   ).  As in Figure 5-3, the gray-scale in the figure 

denotes the total number of data points used in conditional averaging as an effective 

duration.   

  

  

 

Figure 5-4:  The variation of instCp  versus    obtained from data points within 

azimuth band 5.25.2    for case C1, mean azimuths 0 and 15 ,30 ,45 .  
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Because the changes caused by the elevation angles to the instantaneous pressure 

coefficients are found to be linear (in most cases), a linear fit with zero intercept at 

0  is also plotted in the figure.  This fitting procedure was conducted for each mean 

wind azimuth and the corresponding gradients, ddCpB inst , were calculated.  Figure 

5-5 depicts the resulting gradients for each mean azimuth, along with a Fourier-series fit 

described by Eq. (5-4). 

 

Figure 5-5:  The  B  obtained from data points within azimuth band 

5.25.2    for each mean wind azimuths for case C1.   

Since there are clear variations of   ,instCp  for different ranges of wind elevation 

angle, it is worthwhile to look at the corresponding conditionally averaged elevation 

angles,  , for each elemental azimuth band 22  dd   for wind 

vector time series obtained without the building in place.  Figure 5-6 (a) shows the joint 

PDF for the fluctuating azimuth and fluctuating elevation angle,   ,f .  The nearly 

concentric shape of probability distribution data indicates a low correlation between   

and   .  Therefore, the   locus is quite uniform and nearly equal to +7°, 0°, and -7° 

for the upward, horizontal, and downward bins of elevation angle, respectively, as shown 
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in Figure 5-6 (b).  Although the upward-acting winds increase instCp  at pressure tap C1, 

as shown by Figures 5-3 and 5-4, the existence of Reynolds stresses, ''wu , in the 

atmosphere boundary layer has been reported by Sharma and Richards (1999) to suppress 

such fluctuations.  Basically, the Reynolds shear stresses imply that the positive gusts 

(i.e., increasing horizontal wind speeds) are generally associated with negative elevation 

angles.  This can be observed by Figure 5-6 (c), where the joint PDF between velocity 

square ratio,    
2

m

2

m uu  , and fluctuating elevation angle,   , were obtained with 

the building removed from the wind tunnel.  A clear negative correlation between 

   
2

m

2

m uu   and    can be observed.  Thus, based on Eq. (1-4), instantaneously 

high values of dynamic pressure are generally offset by instantaneous pressure 

coefficients of lower magnitude, leading to the suppression process of the surface 

pressures.  For events such as tornadoes, however, Reynolds stresses effects, and, in fact, 

the role of the vertical component of the wind, in general, is a largely unexplored issue.  

Thus, upward wind directions produced by these types of storms may induce roof 

pressures beyond the expectations obtained from typical boundary layer wind tunnel 

experiments. 
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a  b 

 

 c 

  

Figure 5-6:  (a)   ,f , (b)   loci for given ranges of  , and (c) 

      ,
2

m

2

m uuf  obtained from velocity measurement without building in 

place.   
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5.3.3 Comparison of measured pressures and quasi-steady theory 
predictions 

In this section, the QS model described in Eq. (1-4b) is used to calculate the pressure 

coefficients, Cp , and compare them to measurements.  Two forms of the model are used: 

one that only accounts for the instantaneous wind azimuth contribution (QS-θ), which 

utilizes only the   ,instCp  term in Eq. (5-3), and the other that includes both azimuth 

and elevation angles (QS-θ-β), i.e., the full model defined in Eq. (5-3).  The analysis 

involves four cases, including single point pressures (C1) and area-averaged pressures 

(C4, C9, and C16, as defined in Figure 5-1). 

Figure 5-7 shows the spectra of measured and QS estimates of Cp  for the four areas and 

the mean wind azimuth of 15°.  Generally, both the distribution and magnitude of the 

spectra obtained from QS models are similar to measurements.  The spectra obtained via 

the QS-θ model are found to be slightly higher in magnitude than the QS-θ-β prediction, 

which can be explained by the suppression process of pressure fluctuation when the wind 

elevation is included, as discussed by Sharma and Richards (1999) and in Section 5.3.2.  

The QS-θ-β model generally gives spectra of slightly lower magnitude compared to the 

measurements.   
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Figure 5-7:  Spectra of measured and quasi-steady predicted Cp  for cases C1, C4, 

C9, and C16, mean wind azimuth 15 .   

The frequency-dependent correlation coefficient between the measured and QS-predicted 

values of Cp  is also of interest.  For this purpose, the coherence, which is defined here as 

the real part of the normalized cross-spectra between measured and QS-predicted Cp  

values, i.e., Eq. (4-13), are obtained (see also Section 4.3.2),  

 
  

   fSfS

fS

CpMCpQS

CpM CpQS,Re
  Coherence   (4-13) 

is calculated, where  fSCpQS  and  fSCpM  denote the auto-spectra of QS-predicted and 

measured Cp  at frequency,  f , respectively, and  fS CpMCpQS,  is the cross-spectra 

between the prediction and the measurement.  Figure 5-8 shows the calculated values of 
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coherence for the four areas and a mean wind azimuth of 15°.  Generally, the QS 

predicted Cp  fluctuations are a better match for larger gusts, with coherence ≈ 0.9 for

Hfu 125 , noting that the integral scale is about 12.5H and the largest building length 

is 3.475H.  The level of correlation begins to decrease for Hfu 125  and is near zero 

for Hfu 10 .  Although low coherences are found for small gust sizes, the Cp  

fluctuations are relatively low over this region, as can be seen in the auto-spectra plots 

(Figure 5-7).  Furthermore, the QS-θ-β predictions are seen to have better correlations 

with the measured values, especially in middle range of frequencies  HfuH 12510 

, when compared to the QS-θ estimates. 

 

  

 

Figure 5-8:  Coherence between measured and QS-predicted Cp  for cases C1, C4,  

C9, and C16, mean wind azimuth 15 .   
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To better understand the impact of the results depicted in Figures 5-7 and 5-8, Figure 5-9 

shows the measured and (QS-θ-β)-predicted time series for 3 sec around a selected peak 

denoted as time, ptt  .  The figure indicates that the low-frequency portion of the 

fluctuations follow the measurements for case C1, while the tracking of the time series at 

higher frequencies is clearly lacking, leading to mismatches of the predicted peak values, 

with differences up to 30% are observed.  The better correlation of low frequency portion 

is a reflection of case C1 of Figure 5-8, while the underestimation of peaks may be 

attributed to underestimation of the spectral content for both the low and median 

frequency ranges of Figure 5-7.  The mismatch of QS-predicted pressures of small length 

fluctuations are partially due to the location of wind speed measurements, which is 1H 

above the roof leading edge (see Figure 2-2 (a) and Figure 5-1).  Because the small scale 

turbulences measured at point m are expected have little correlations to that just above the 

tap C1, the inclusion of these small scale turbulences in the QS model are expected to 

give little interpretation of pressure fluctuation measured at C1.  On the other hand, the 

point roof pressures may be better correlated to the strengths of shed vortices (from the 

leading edge), as shown by Akon (2017).  In order to account for these small scale, local, 

building generated vortices, a modified model that better captures the effects of these 

vortices is required for predicting point pressures near the roof leading edges.  

When more points were included in area-averaging, a gradual improvement in the QS-θ-β 

predictions can be observed for cases C4, C9, and C-16 in Figure 5-9.  This may be 

because of the fact that the area-averaging of closely spaced point pressures acts like a 

low-pass filter of the individual point pressures, which removes the low-correlation/high-

frequency portion of Cp  predicted by the model.  This observation of low-pass spatial 

filtering process was first discussed by Letchford et al. (1993) from their analysis of full-

scale measurements (noting that a linear QS-θ model was used in their work).   
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Figure 5-9:  Time series of measured and QS-predicted Cp  around a selected peak 

for cases C1, C4, C9, and C16, mean wind azimuth 15 .  

Finally, the zero-time-lag correlation coefficients between the measured and predicted 

pressure coefficients are shown in Figure 5-10, for the four areas and all mean wind 

azimuths.  For pressure tap C1, the correlation coefficients were found to be nearly 

uniform with wind direction and approximately equal to 50%, except for mean wind 

azimuths 7535  .  For area-averaged cases, the correlation coefficients are nearly 

uniform across all of the measured mean wind azimuths and gradually increases as the 

number of pressure taps included in the average increase, reaching 65% for the QS-θ-β 

model over the interval, 500  .  Such improvements, again, can be explained by 
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the low-pass filtering induced by the area-averaging process and indicate that the QS 

models are more appropriate for area-averaged pressures (see also Letchford et al., 1993). 

 

  

Figure 5-10:  Zero-time-lag correlation coefficient between measured and QS-

predicted Cp  for cases C1, C4, C9, and C16.    

The differences between the QS-θ and QS-θ-β models can also be observed in terms of 

correlation coefficients in Figure 5-10.  Generally, the QS-θ-β model gives slightly better 

correlated predictions than QS-θ model, with the magnitudes of the differences 

depending on wind azimuth.  The differences become more uniform for area-averages. 

Because of the better performance of the QS-θ-β model, it is selected for analyses for the 

following sections. 
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5.3.4 Statistics of measured and estimated pressures 

In this section, the statistics of Cp  time histories obtained from measurements and the 

QS-θ-β model are compared.  Figure 5-11 (a) shows the PDF of the measured and 

predicted values for case C1 with a mean wind direction of 15°.  This wind direction is 

selected arbitrarily for the demonstration of applying the statistical method, although it 

coincides with the maximum mean suction at point C1 (see Figure 5-2).  Of note, the 

statistical method based on the QS theory described in Section 5.2, was used to obtain the 

PDF and is denoted as ‘QS-statistics’.  These results are compared to those obtained 

directly from the estimated time history (using wind vector with the QS assumption), 

labeled as ‘QS-TH’.  The nearly equivalent values of the QS-TH and QS-statistics 

validate the use of the statistical method.  Thus, the results using the method in Section 

5.2 (QS-statistics) are presented in what follows, eliminating the need for calculating the 

time histories. 
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 a 

 
 b 

 

Figure 5-11:  (a) PDF and (b) CDF of Cp  obtained from measurement and QS-θ-β 

model for case C1 for mean wind azimuth 15 .   

Figure 5-11 indicates that the QS-θ-β model underestimates the peak values at tails of the 

distribution, consistent with the observations from the Cp  time-series segments shown in 

Figure 5-9.  Figure 5-11 (b) further shows that the corresponding cumulative density 
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functions (CDF),  CpProb , which is the probability of a pressure coefficient below a 

given value, is able to predict the probability of exceedance up to 0.3 but underestimates 

the values for probabilities of exceedance below 0.3.  If a probability of exceedance of 

0.01% is selected as the reference, the corresponding estimated peak value, 2.5Cp , is 

19% lower than the measured peak, 4.6Cp . 

Although the statistical method derived in Section 5.2 is for point pressures, it can easily 

be extended to area-averaged pressures.  This is done by simply replacing   ,instCp  

and  B  with the appropriate area averaged values,   
i

ii AACp  , inst,  and 

  
i

ii AAB  , respectively, in Eq. (5-3), where AAi  denotes the weight for i-th 

pressure tap within the specified region of total area A .  Figure 5-12 depicts the CDFs of 

four area-averaged coefficients obtained from measurements and prediction for a mean 

wind direction of 15°.  Again, if 0.01% is selected as the reference probability of 

exceedance, the (QS-θ-β)-predicted peak 4.5Cp  is now 10% less than the measured 

peak 0.6Cp  for C4. Thus, the underestimation is reduced, compared to the C1 case.  

The estimates continue to be improved as the total number of taps included in the area 

increases, and eventually, the (QS-θ-β)-predicted distributions are found to closely match 

the measurement cases, here for C16 and C-36.  The improvement of the QS-θ-β 

statistical method for area-averaged pressures is consistent with the observations found in 

QS-θ model by Letchford et al. (1993). 
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Figure 5-12:  CDF of Cp ’s obtained from measurement and QS-θ-β model for cases 

C4, C9, C16, and C36, mean wind azimuth 15 .  

To further investigate the general capability of the QS-θ-β statistical method, the peak 

pressure coefficients based on the 0.01% probability of exceedance were calculated and 

compared with measurements in Figure 5-13 for the four area-averages, for all measured 

mean wind azimuths.  For case C4, although the peaks predicted by QS follow the trend 

observed in measurement, the QS-predicted peaks underestimated the observed values for 

all wind directions, with larger values for the cases where 15 .  As for the results 

presented in Figure 5-12, the overall level of underestimation of QS-predicted peaks was 

reduced when more taps are included in the area-averages.  Excellent results are obtained 

for case C36, although C16 also is very good. 
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Figure 5-13:  Peak Cp  obtained from measurement and QS-θ-β model for cases C4, 

C9, C16, and C36.  

Finally, some comments are made about the statistical model described in Section 5.2, 

given by Eqs. (5-11) and (5-12), and the data used herein.  First, the joint PDF of the 

wind vector,   ,,refm uf u , should not to be reduced to the individual multiplication, 

      ffuf refmu , because of a lack of mutual independence between the 

instantaneous velocity ratio, wind azimuth, and elevation angle.  Therefore, the current 

use of   ,,refm uf u  is different from the use of       ffuf refmu  in Richards 

and Hoxey (2004).  However, the velocity ratio and wind azimuth was found to be 

independent such that the individual multiplication,    fuf refmu , can replace the 
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joint pdf,  ,refm uf u  when the QS-θ model is applied (e.g., Banks and Meroney, 

2001; Richards and Hoxey, 2004). 

Second, the joint pdf,   ,,refm uf u , used in this paper was obtained from a fixed 

position with respect to the building for each mean wind azimuth, which leads to 

questions about the possible distortion of measurements due to the building. 

Measurements showed that there is little difference between the joint pdf of the 

fluctuating quantities (i.e.,   ,,refm uf u ) measured with and without the building in 

place, with 
2R  values around 95% for all mean wind azimuths.  Although there are 

indeed some small changes of the mean quantities (i.e., mu ,   and  ) due to the 

placement of the building, there is no influence on evaluating the probability distributions 

based on the formulation described in Eq. (5-11).  However, small changes in mean wind 

speed may be considered in Eq. (5-12) for evaluating the probability distributions of 

surface pressures. 

Third, because the current building can be viewed as a sharp-edged bluff body, the 

typical pressure coefficients measured on the roof are largely Reynolds number 

independent (Holmes, 2001).  Thus, the statistical model in Eqs. (5-11) and (5-12) is a 

convenient tool for predicting the probability distributions of roof surface pressure over a 

range of mean wind speeds, presuming there are no changes in the structure of the wind 

with wind speed.  These invariant joint PDFs of the wind speed vector,   ,,refm uf u ,  

can be coupled with the instantaneous functions instCp , leading to an invariant distribution 

of Cp , based on Eq. (5-11).  Therefore, the PDF of roof surface pressures can be 

obtained from Eq. (5-12) by simply changing the mean wind speed, mu .  Once the PDF 

of surface pressured is obtained, other statistical quantities, e.g., probability of 

exceedance, can be derived.  For example, Figure 5-14 shows the probability of the 

building surface pressure exceeding -2 kPa for mean wind speeds ranging from 30 to 170 

m/s for the four area-averages (C4, C9, C16, and C36) for a 15° mean wind azimuth.  

These curves mimic the “fragility” curves, but are simplified examples with the 
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assumption of a fixed holding strength.  Actual fragility curves can be obtained by 

including the statistics of the panel holding strengths and more accurate failure 

mechanism; however, the QS statistical model of Eq. (5-11) and (5-12) can be used to 

simplify the process of accurately modeling the variations of the wind load. 

 

Figure 5-14:  Probability of QS-θ-β predicted pressures below -2 kpa for cases C4, 

C9, C16, and C36 for mean wind azimuth 15 .   

5.4 Summary 

The QS model assumes the instantaneous surface pressure as a multiplication of 

instantaneous dynamic pressure, 
2

m5.0 u , with the instantaneous function, instCp .  This 

method is applied and extended in this chapter to relate the wind speed to building 

surface pressure.  The effects of wind azimuth and elevation angle are included in the 

instantaneous function, i.e.,   ,instCp , in the QS vector model (QS-θ-β) with a linear 

effect of wind elevation found to be adequate for the range of fluctuating elevation angle, 

  , such that      ddCpCpCp instinstinst ,  .  The gradient ddCpinst  is found 

to vary with respect to wind azimuth so that the functional form is fit with a Fourier 

series.  The instantaneous functions in the model were evaluated from synchronized 

measurements of building surface pressures and local wind speed vectors.  The 
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experimental method used here eliminates the need to tilt the building model, which was 

required in the procedures suggested by the previous work, thereby facilitating a process 

for establishing the QS-θ-β model.  The main conclusions are as follows: 

(i)  Upward-acting winds (i.e.,    > 0) are generally associated with higher magnitudes 

of instCp  while the downward-acting winds (i.e.,    < 0) are generally associated with 

lower magnitudes of instCp .  The effect of the elevation angle can be as large as the effect 

of wind azimuths for certain mean incident wind angles.   

(ii)  Higher dynamic pressures, however, are generally associated with downward wind in 

the atmospheric boundary layer, leading to a suppression process of the actual observed 

peaks because of this.  These observations are consistent with previous published works.  

By contrast, tornadoes, which can have significant upwardly directed winds, could have 

significantly increased wind loads as a result of this.   

(iii)  A statistical method that uses the QS-θ-β model was also derived and validated. 

With this method, the probability density function (PDF) of building surface pressures is 

formulated as a double integral of the joint PDF between instantaneous wind speed ratio, 

wind azimuth, and elevation angle,   ,,refm uf u .   

(iv)  Because no mutual independence is found between refm uu , θ, and β, the joint PDF 

used here is not further reduced to       ffuf refmu , a formulation that has been 

used in previous works.  Furthermore, the direct use of joint PDF of wind turbulence in 

our formulation offers a more straightforward approach when compared to the procedures 

used in previous works.   

(v)  Peak pressures were predicted by applying this method and compared to the 

measured values for all mean incident wind angles.  Underestimation of peak pressures 

was observed for point pressures on the roof.  The accuracy of peak prediction increases 

as the number of points included in area-averages increases.  More specifically, the mean 

level of error (underestimation) was found be about 30% for a single pressure tap, while 
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this reduces to < 5% for area-averages of 16 and 36 taps (on the current building with the 

current tap layout).   

(vi)  The proposed QS-θ-β model is found to perform well for roof pressure estimation 

when relatively large areas of the roof are considered for this typical low-rise building.   
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Chapter 6  

6 Estimation of roof pressure fluctuations for different 
upstream turbulence conditions in atmospheric 
boundary layer flow using a quasi-steady model  

In this chapter, the effect of upstream turbulence on roof surface pressure fluctuations is 

investigated using the quasi-steady (QS) models introduced in Chapter 5.  As discussed in 

Chapter 5, the QS model performs better in estimating the pressures averaged over an 

area rather than obtained at a point location.  Hence, regions of roof panel areas near the 

roof corner, i.e., C9 and C16, and near the leading edge, i.e., L9 and L16, shown in 

Figure 6-1, are used mainly for analyses in this chapter.  However, pressures at the point 

location C1 are also included for the preliminary discussions. 

 

 

Figure 6-1: Roof panel areas used for pressure averaging. 
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6.1 Characteristics of ABL turbulence generated by 
the six upstream terrain conditions 

The quasi-steady (QS) estimation of fluctuating roof surface pressures is directly related 

to the three-dimensional turbulent flow measured at point m, as demonstrated in Chapter 

5.  Hence, in addition to the stream-wise turbulence characteristics measured at roof 

height (see Figure 2-1), the three-dimensional turbulent velocity vectors measured at 

point m (at height 2H without building in place) are further characterized by the spectra 

and probability density function (PDF) and shown in Figure 6-2.   

a  b 

  

Figure 6-2: Turbulence characteristics of three velocity components measured at 

location m for the six upstream terrain conditions without building in place: (a) 

Reduced spectra of u-, v- and w-components of velocity;  (b) Probability density 

function (pdf) of 
2

m

2

m uu , ϴ and β. 
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From the spectra shown in Figure 6-2 (a), the turbulence intensities of the three velocity 

components (i.e., the total area under the spectra) are strongly related to the roughness 

level of the upstream terrain conditions.  Adding the 15-inch barrier at the upstream end 

of the wind tunnel increases the intensity of the larger length scale turbulence for u- and 

v-components of the flow.  However the w-component fluctuation seems to be unchanged 

by adding the upstream barrier.  The PDF of the wind vector used in the QS model, i.e., 

the velocity square ratio, 





 2

m

2

m uuf , the azimuth angle,  f , and the elevation 

angle,  f , are shown in Figure 6-2 (b).  These PDF’s directly reflect the magnitudes of 

the turbulence intensities represented by the spectra plots, however the variations of 

turbulence length scales are masked. 

6.2 Use of large length scale turbulence in the quasi-
steady model 

In Chapter 5, the predictions of the roof surface pressure fluctuation for building in 

terrain S15 are done by the QS model established in same terrain condition.  By 

following the same procedure demonstrated in Chapter 5, the QS model can be 

established on each of the six terrain conditions with the corresponding ABL turbulences 

characteristics (shown in Figure 6-2).  The resultant instantaneous functions,  instCp , 

for the QS models (denoted as QS-ϴ) are shown in Figure 6-3 for the point location, C1, 

near the roof corner (see Figure 6-1).  The conditionally-averaged values of the 

instantaneous function,  ,|instCp , which are obtained from the instantaneous pressure 

and velocity measurement, are also shown for mean wind azimuths ranging from 0  

to 90 , with an increment of 15 .  Note that the data presented in Figure 6-3 are similar 

to what have been presented in Figure 5-3 but represent a summarized view for the 

performance of the QS model for each of the wind directions and terrain conditions. 

Generally, the measured  ,|instCp  are matched better to the QS-ϴ curve for 20  , 

with relatively poor performance for 20 .  Positive elevation angles, i.e., the upward 

wind directions, generally lead to higher magnitudes of instCp  for all wind azimuths, 
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with degree of influence depending on the wind azimuth.  These general observations are 

consistent to what have been found in terrain S15 and discussed in Section 5.3.3.  

However, some differences in the performance of the QS model can be observed for 

different upstream terrain conditions.  Relatively better matches of the modeled  instCp  

curve to the measured  ,|instCp  can be observed for the terrains with larger turbulent 

length scales.  Apparent examples can be found by comparing the  ,|instCp  loci 

measured at 30 .  That is, the slopes of the measured  ,|instCp ’s match better to 

the QS-ϴ model for terrains F15 and O15 than that of terrains F0 and O0.   
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Figure 6-3:  The instantaneous function  instCp  of the QS model established from 

each of the six upstream terrain conditions, along with the conditionally averaged 

values  ,|instCp  obtained from instantaneous velocity and pressure 

measurement at mean wind azimuths 09 and 75,60,45,30,15,0 , for tap 

location C1. 
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The results in Figure 6-3 implies that better performance of the QS-prediction can be 

observed in cases where the upstream turbulence has larger length scales.  In other words, 

it is the large length scales of upstream turbulence that are expected to be represented by 

the QS model in predicting the roof surface pressure fluctuation.  This expectation can 

again be seen by reviewing the coherence between the measured and QS-estimated roof 

surface pressures (see Figure 5-8) and the associated discussion in Section 5.3.3.  In order 

to filter out the large scale turbulence, the moving average technique is applied to smooth 

the raw time series of each velocity component in this chapter, i.e.,  

    



2

21

1 Ns

Nsis

s tit
N

t uu , (6-1) 

where Ns denotes the temporal window size used in smoothing;   tsu  denotes the 

smoothed version of the raw velocity vector  tu  at time t;  t  denotes the time step 

increment and equal to the inverse of the sampling rate, i.e., sf1 .  This moving average 

technique is relatively straightforward and has been used as a low pass-filter for signal 

processing, e.g., the low-pass filter for the pressure signals used in Asghari-Mooneghi et 

al. (2016).  No time-lag of the smoothed signals is observed by using the moving-

averaging technique of Eq. (6-1).  This provides an advantage as compared to other types 

of low-pass filters that generate a time-lag of the smoothed signals, e.g., the Butter-Worth 

filter used in Banks and Meroney (2001).  

It is also worthwhile to see the frequency response of moving-average filter of Eq. (6-1), 

as it is directly related to the re-distribution of turbulence energy along the frequency, or 

alternatively, the length scale axis (e.g., Figure 6-2 (a)) for the smoothed velocities.  If the 

cut-off length, Lc, is specified in order to extract turbulence energy of length scale larger 

than the cut-off length, the corresponding window size used in moving-average Eq. (6-1) 

can be calculated, i.e., 

 
mu

fL
N sc

s  ,  (6-2) 
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where  fs  denotes the sampling rate of the velocity signal and 
mu is the mean stream-wise 

velocity measured at location m (see Figure 6-1).  Once the window size and the 

sampling rate are established, the theoretical frequency response of the moving averaged 

filter can be determined (see e.g., Asghari Mooneghi et al., 2016), i.e.,  
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where H(f) denotes the response at frequency,  f .  The corresponding ratio of the spectra 

of the smoothed signal to the spectra of the raw signal is in fact the squared values of the 

frequency response.  Figure 6-4 shows an example of the spectra ratio (i.e., transfer 

function) for the smoothed velocity obtained by applying cut-off length equal to 5 

building height, i.e., HLc 5 .  Note that for length scales larger than 20 times of the cut-

off length (100 H), the energy level is unchanged for smoothed velocity.  For length 

scales smaller than 20 Lc, however, the spectra ratio start to decrease and down to zero at 

the length scale equivalent to the cut-off length.    

 

Figure 6-4:  The ratio of spectra of smoothed velocity to the spectra of raw velocity 

with cut-off length ( cL ) equal to 5 building height. 

By reviewing the coherence between the QS-predicted and measured roof surface 

pressure fluctuations shown in Figure 5-8, it is found that the coherence decreased to zero 
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for the multiple area cases near the roof corner at length scale of 5H.  Hence, the poorly 

correlated part of the QS-prediction on the small-length-scale pressure fluctuation can be 

removed by applying moving average on the raw velocity with Lc = 5 H.  The 

performance of the QS-model with smoothed velocities is examined again for point 

location C1 by comparing the measured  ,|instCp  to the QS function  instCp .  As 

shown in Figure 6-5, there clearly improved matches between  ,|instCp  and  instCp

, as compared to the results obtained from raw velocity signals (see Figure 6-3).  Better 

matches between |instCp  and  instCp  as a result of low-pass filtering the velocity 

signals were also reported by Banks and Meroney (2001), although the 5-th order Butter-

Worth low-pass filtered was used in their approach.   

Note that the effect of the upward wind direction (i.e., the positive elevation angle) on the 

measured values of  ,|instCp  is generally not altered by using moving averaged 

velocities with Lc = 5H, as can be observed by comparing the results shown in Figure 6-5 

to those in Figure 6-3.  However, if the cut-off length is further increased, the effects of 

wind elevation angle may not be observed because the length scale of most of the vertical 

velocity fluctuation may be smaller than the cut-off length (see an example of the 

comparison between the cut-off length and fluctuation length scale in Figure 6-2 (a)).   
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Figure 6-5:  The instantaneous function  instCp  of the QS model established from 

each of the six upstream terrain conditions, along with the conditionally averaged 

values  ,|instCp  obtained from moving averaged velocities (with HLc 5 ) and 

pressure measurements at mean wind azimuths 09 and 75,60,45,30,15,0 , 

for tap location C1. 
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As shown by Letchford et al. (1993) and the investigation in Chapter 5, the QS-model 

more accurately predicts the roof surface pressure fluctuations on a panel area, than for a 

point location.  Because of this, the focus of the following discussions are switched to the 

panel areas specified in Figure 6-1.  Pressures obtained from the panel areas including 9 

taps near the roof corner (C9) and near the leading edge of the long wall (L9) are 

considered.  Note also that the QS model established in terrain O0 is now selected for 

predicting pressures under other terrain conditions for the following discussions.  Though 

the appropriate use of the QS theory should be based on the QS-model established under 

the identical upstream turbulence condition.  These ‘cross-terrain’ applications of the QS-

model are based on the assumption that the variation of upstream turbulence 

characteristics does not have any significant aerodynamic effects.  The justification of 

this statement is deferred to the beginning of the next section.  However, this assumption 

is applied for the remainder of the discussion in this section. 

In order to examine the effects of the smoothed velocities, the coherence between the 

measured and QS-predicted, area-averaged roof surface pressures is first investigated.  

Pressures obtained from the roof panel C9 and mean wind azimuth 15  provide the 

first set of results, as shown in Figure 6-6 (a);  The second set of results, as shown in 

Figure 6-6 (b), are obtained from panel area L9 and 0 .  QS-predictions for pressures 

induced by upstream turbulence conditions F0, O0 and S15 are discussed for brevity.  For 

QS-predictions using instantaneous velocity signals (see green dots in Figure 6-6), the 

coherence values are maximum for length scales larger than 100 H and start to decay for 

length scale smaller than 100 H, vanishing at the cut-off scale of 5H.  Applying the 

moving average to the instantaneous velocities using cut-off length Lc = 5H and QS-ϴ-β 

model leads to almost identical coherence values (see black lines in Figure 6-6).   
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a b 

  

Figure 6-6:  The coherence between the measured and predicted area averaged 

pressures (QS-ϴ-β model established in O0, with Lc = 5H and without filter): (a) 

roof area C9, 15 ; (b) roof area L9, 0 . 

Figure 6-7 further shows the time-lag correlation coefficients of the QS-prediction for 

scenarios used in Figure 6-6.  It shows that the maximum correlation coefficient of 

prediction can be improved by up to 10% via using the smoothed velocities in the QS 

model.  This observation indicates that the improved correlation of the predicted 

pressures are the results of removing non-physical predictions obtained from the small-

scale turbulence while retaining the good predictions obtained from the large-scale 

turbulence.   
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a  b  

 

Figure 6-7:  The time-lag correlation coefficients between the measured and 

predicted area averaged pressures (QS-ϴ-β model established in O0, with Lc = 5H 

and without filter): (a) roof area C9, 15 ; (b) roof area L9, 0 . 

Figure 6-8 shows the ratio of QS-predicted spectra to the measured spectra of the 

fluctuating pressures (i.e. transfer functions) for the same scenarios used in Figure 6-6.  

For the predictions using instantaneous velocities (see green dots), the spectral ratios are 

generally near unity for length scales larger than 10H.  However, the use of instantaneous 

velocities in the QS model generally overestimate the pressure fluctuations for length 

scales smaller than 10H, and could be more than twice of the actual fluctuation for length 

scale less than 1H.  By using the smoothed velocities in the QS model, the results for the 

spectral ratios are also plotted using the black lines.  As can be observed, the uncorrelated 

(see Figure 6-6) and overestimated (Figure 6-8) small-length-scale fluctuations predicted 

using instantaneous velocities are eliminated by the low-pass filter of the moving 

average.   
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a  b 

 

Figure 6-8:  The ratio of QS-predicted pressure spectra to the measured pressure 

spectra. (Note: QS-ϴ-β model established in O0, with Lc = 5H and without filter). (a) 

roof area C9, 15 ; (b) roof area L9, 0 . 

Although the use of smoothed velocities in the QS-model improves the correlation 

coefficients between the predicted and measured pressures (see Figure 6-7), the 

significant missing portion of the small length scale fluctuation (see Figure 6-8) may 

raise the question of overall underestimation of the predicted pressure fluctuation.  In 

order to check this drawback, the probability density function (PDF) of the measured and 

QS-predicted pressures (with both of the instantaneous and smoothed velocities) of the 

same scenarios are further shown in Figure 6-9.  It shows that using the smoothed 

velocities in the QS model leads to slightly underestimated tail values of the PDFs of the 

predicted pressures.  This implies that the small-length-scale pressure fluctuations 

account for a relatively minor portion of the overall fluctuation for the area-averaged 

pressures and, hence, ignoring small-length-scale fluctuations in the QS model does not 
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lead to significant underestimation of the predictions.  Note also that both of the QS-

predicted PDF’s nearly agree the PDF of the measured pressures.  

a b  

 

Figure 6-9: The PDF of measured and predicted area averaged pressures (QS-ϴ-β 

model established in O0, with Lc = 5H and without filter): (a) roof area C9, 15 ; 

(b) roof area L9, 0 . 
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6.3 Estimation of roof surface pressure fluctuations 
under different ABL turbulence conditions  

In the typical application of the QS theory, the model used in prediction should be 

established under the identical upstream turbulence condition.  However, it would be 

more convenient and practically valuable if the QS model established in one turbulence 

condition could also be applicable for other turbulence conditions.  However, this 

assumption requires that the variation of the upstream turbulences do not significantly 

alter the aerodynamic mechanisms such that the use of the instantaneous function, i.e., 

  ,instCp , established in one turbulence condition can be used for another.  

In this section, the QS model established in upstream terrain condition O0 is used for 

estimating the fluctuating pressures induced by turbulence generated from other terrain 

conditions.  The selection of terrain O0 is simply based on its median degree of 

roughness level among the six terrains.  In order to justify the selection, the two critical 

functions in the QS model that account for the variation of wind azimuth, i.e.,  instCp , 

and elevation, i.e.,    |inst ddCpB  , established under the six upstream terrain 

conditions are plotted in Figure 6-10 and Figure 6-11, respectively, for each panel area 

shown in Figure 6-1.  Note that the procedures in obtaining the  instCp ’s and  B ’s 

are already demonstrated in Chapter 5.  As shown in Figure 6-10, the  instCp  curves 

obtained from each of the six upstream terrains generally collapse, although small 

differences between each other can be observed.  Similar conclusion can be observed for 

the  B  function shown in Figure 6-11, except for terrain F0.  Upstream terrain F0 

seems to produce higher magnitudes of  B ’s for all of the selected panel areas.  In 

summary, the selection of terrain O0 for establishing the QS-model should be appropriate 

for the pressure predictions for other upstream terrain conditions.  
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Figure 6-10: Instantaneous function  instCp  used in the QS model obtained from 

the six upstream terrain conditions for panel areas C9, C16, L9 and L16. 

   

 



117 

 

 

Figure 6-11:  B  (or  |inst ddCp ) function in the QS model obtained from the 

six upstream terrain conditions.  

In order to quantify the pressure fluctuations, the root mean square, rms(Cp), and the 

peaks, |min(Cp)|, of the measured and QS-estimated pressures are presented for panel 

areas C9, C16, L9 and L16 in Figures 6-12, 6-13, 6-14 and 6-15, respectively.  Note that 

the peak values are defined so that the probability of exceedance is equal to 0.01%.  The 

rms values shown in the figures are amplified by 4 times, for visibility.  The correlation 

coefficients between the measured and QS-predicted pressures are also attached in these 

figures. 

For area-averaged pressures measured on the corner panels, i.e., C9 in Figure 6-12 and 

C16 in Figure 6-13, the fluctuations are nearly uniform for all mean wind azimuths being 

considered.  For the leading edge panels, i.e., L9 in Figure 6-14 and L16 in Figure 6-15, 
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however, the pressure fluctuations are higher for the separated flow scenarios (i.e., 

60 ) while being reduced for reattached flow scenarios (i.e., 60 ).  Increased 

pressure fluctuations are mainly due to the increased levels of upstream turbulence 

intensity (Figure 6-2), as can be observed for all panel cases (i.e., Figures 6-12 to 6-15).  

Increased length scales in the upstream turbulence, on the other hand, can increase the 

pressure fluctuations as well, although the degree of influence is less than that of 

turbulence intensity.  In fact, increasing turbulence length scales can increase the spatial 

correlation of point pressures and, hence, enhance the overall fluctuations of the area-

averaged pressures.  To further visualize this statement, the spatial, zero time lag 

correlation coefficients between pressures measured at tap C1 and other locations on the 

building surface are shown in Figure 6-16 for mean azimuth 15 .  Similar plots are 

generated for tap location L1 and shown Figure 6-17 for 0 .  It can be clearly seen 

that, as the turbulence length scale increases, the area of high spatial correlation expands 

for the region near the target tap location. 

The zero time lag correlation coefficients (Corr. Coef.) between the QS-predicted and 

measured pressures are attached in Figures 6-12 to 6-15 as well, where the level axes are 

attached on the right hand side of these plots.  Note that the smoothed velocities with Lc = 

5H are used in the QS-model for pressure predictions.  For roof corner panels, i.e., C9 in 

Figure 6-12 and C16 in Figure 6-13, near uniform correlations can be found for all mean 

wind azimuths being considered.  For the leading edge panels, i.e., L9 in Figure 6-14 and 

L16 in Figure 6-15, higher correlations can be found for separated flow scenarios (i.e., 

60 ).  The correlation starts to decrease as the mean wind azimuth further increases 

for 60 , reaching the minimum value for the reattached flow scenario, i.e., 0 .  

Recall that the surface pressures under the reattached flows are dominated by the ambient 

static pressure just above the roof, as shown in Section 4.3.2.  Hence, the low correlation 

of the QS-prediction for pressures governed by the reattached flows can be partially due 

to the missing consideration of the instantaneous static pressures above the panel.  

Increasing length scale of the upstream turbulence improves the correlation of the QS-

predicted pressures, as can be seen for all panel cases shown in Figures 6-12 to 6-15.  

This again demonstrates that the QS model performance improves in capturing the effects 
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of large-length-scale turbulence.  Pressures averaged over larger panels areas (i.e. C16 

and L16) have higher correlation to the QS-predictions.  Shorter distances from the probe 

location, m, to the target panel area (see Figure 6-1) also improve the correlation of the 

QS-prediction, although the influence is minor for the current panel cases being 

examined. 

The rms and peak of the QS-predicted pressures are also shown in Figures 6-12 to 6-15 

for all panel cases.  The overall fluctuations represented by rms(Cp)’s agree well with the 

QS-predictions.  Hence, the QS model used here can account for most of the effects of 

the upstream turbulence on area-averaged surface pressure fluctuations.  The overall 

trends of the QS-predicted peak pressures, i.e., |min(Cp)|’s, generally match the measured 

values.  However, some underestimations can be found for the QS-predicted peaks.  

Relatively significant underestimation of the QS-predicted peak pressures can be found 

for the separated flow scenarios in suburban terrains (i.e., S0 and S15), i.e., up to 20% of 

underestimation for C9 and L9 and 15% of underestimation for C16 and L16.  These 

underestimations may be in part due to the missing consideration of the small scale 

vortices generated from the leading edges.  However, the effects of small-scale vortices 

are reduced as the panel area increases.  As can be seen for larger panel cases (i.e., C16 

and L16), the QS-predicted peaks matched better to the measured values and the degree 

of underestimations are reduced.    
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Figure 6-12:  Peaks and 4 times of root mean squares (rms) of the measured and the 

QS-ϴ-β estimated Cp over area C9 (with Lc = 5 H), along with the correlation 

coefficient (right hand side y-axis) between measurements and the QS model.  
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Figure 6-13:  Peaks and 4 times of root mean squares (rms) of the measured and the 

QS-ϴ-β estimated Cp over area C16 (with Lc = 5 H), along with the correlation 

coefficient (right hand side y-axis) between measurements and the QS model. 
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Figure 6-14:  Peaks and 4 times of root mean squares (rms) of the measured and the 

QS-ϴ-β estimated Cp over area L9 (with Lc = 5 H), along with the correlation 

coefficient (right hand side y-axis) between measurements and the QS model. 



123 

 

 

Figure 6-15:  Peaks and 4 times of root mean squares (rms) of the measured and the 

QS-ϴ-β estimated Cp over area L16 (with Lc = 5 H), along with the correlation 

coefficient (right hand side y-axis) between measurements and the QS model. 
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Figure 6-16: Contour of zero time lag correlation coefficients (%) between pressures 

measured at C1 and other surface locations, for all six terrain conditions and mean 

wind azimuth 15 . 
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Figure 6-17: Contour of zero time lag correlation coefficients (%) between pressures 

measured at L1 and other surface locations, for all six terrain conditions and mean 

wind azimuth 0 . 
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6.4 Summary 

The quasi-steady (QS) model is known to work better for capturing the effects of large 

scale turbulence on the roof surface pressure fluctuations.  This is due to the fact that 

small-scale turbulence measured relatively far away from building does not directly 

influence the pressure fluctuations on the roof.  In fact, it is the small-scale vortices 

separated from the leading edge that correlate more to the surface pressure fluctuations, 

as shown by Akon (2017).  These facts lead to the intent to remove the small-length-scale 

turbulence in QS- predictions in this chapter, while retaining the information of the large 

length scale turbulences.  Such a procedure is done by applying the moving average to 

the time series of each velocity component.  The use of the smoothed velocities improves 

the QS-predictions by removing the uncorrelated prediction of small length scale pressure 

fluctuations.  The cut-off length is selected as 5 building heights, for separating the small-

length-scale turbulence from the large-length-scale turbulence.  Appropriate cut-off 

lengths can be determined based on the length scale where the coherence between the 

measured and QS-predicted pressures vanishes.   

The wind-induced fluctuating pressures on panels of different areas, near the roof corner 

and leading edge are examined in this chapter for the six upstream turbulence conditions.  

It is found that the fluctuation of area-averaged pressures is dominated by the intensity of 

the upstream turbulence and to a lesser degree by the turbulence length scale.  A QS 

model accounting for the magnitude, azimuth and elevation angles of the instantaneous 

wind vector is used to predict the fluctuation of the area-averaged pressures.  It is found 

that the instantaneous function (of the QS model) established in terrain O0 is generally 

consistent with that obtained from other terrain conditions.  This implies that the 

variations of the upstream turbulence do not alter the flow structure significantly so that 

the mean area-averaged pressure coefficients are nearly similar.  Based on this 

observation, the QS model established from terrain O0 is used to predict the pressure 

fluctuations induced by turbulences generated from other terrain conditions. 

The ‘cross-terrain’ QS-predictions of pressure fluctuations generally works well for the 

roof panels being examined.  The QS prediction of the pressure root mean squares (rms) 

generally agree well to the measured values.  Hence, the QS model used here can account 
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for most of the effects of the upstream turbulence on pressure fluctuations.  However, 

underestimations up to 20% can be observed for the QS-predicted peak pressures for 

panels including 9 taps.  These underestimations usually happen for panels beneath flow 

separation.  Improved QS-predictions are observed for larger panel areas or, perhaps, by 

placing the velocity probe closer the target panel (although this has not been examined).     

 

 

 

 

 

 

 

 

 

 

 

 

        



128 

 

Chapter 7 

7 Conclusions and recommendations 

7.1 Conclusions 

This thesis investigates the effects of the atmospheric boundary layer turbulence (ABL) 

on the roof surface pressures.  For this reason, the six upstream turbulence conditions 

were generated in the Boundary Layer Wind Tunnel II in University of Western Ontario 

(UWO) in order to simulate the ABL turbulences featured by different intensities and 

length scales.  The 1/50 geometrically scaled model of the Texas Tech University Wind 

Engineering Research Field Laboratory (TTU WERFL) building is used for surface 

pressure measurements in the wind tunnel.  The intensities range from 10% to 30% and 

the integral length scale ranges from 6 to 12 times of the building height for the upstream 

turbulence near the roof height.   

The effects of the atmospheric boundary layer (ABL) turbulence intensity and length 

scales on the mean separated and reattached flow and roof surface pressure were 

examined by Akon and Kopp (2016).  In Chapter 3, the present work is extended to 

understand of their observations by further linking the velocity field to the pressure field.  

Time-resolved particle image velocimetry (TR-PIV) was used to measure the flow field 

near a typical low-rise building, where surface pressure measurements were also 

synchronized.  Experiments were conducted by Akon (2017) under the six upstream 

terrain conditions.  The main contributions and findings are summarized as follows.  

 The Navier-Stokes equations are used to determine the gradient vectors of the mean 

pressure field from the planar PIV data.  The convection-contributed pressure 

gradients are identified by evaluating the terms associated with mean velocities in the 

Navier-Stokes equations.  The turbulence-contributed pressure gradients, on the other 

hand, are identified by terms associated with the Reynolds stresses.  Effects of 

upstream turbulence on both the convection- and turbulence-contributed pressure 

gradients can, hence, be examined. 



129 

 

 In order to obtain the pressure field from the velocity field, the analytical 

interpolation technique of Ettl et al. (2008) is applied to integrate the mean pressure 

gradient.  The reconstructed pressure fields match Bernoulli’s equation well along a 

streamline away from the body and direct pressure measurement on the surface of the 

body.  Hence, the evaluation of pressure gradient using the Navier-Stokes equations 

and the corresponding pressure integration technique are validated. 

 Akon and Kopp (2016) found that the minimum mean roof surface pressure 

coefficient,  Cpmin , decreases as the upstream turbulence intensity increases.  In the 

current work, these decreasing  Cpmin ’s are directly related to both increased 

convection- and turbulence-contributed pressure gradients over the windward region 

of the mean separation bubbles.  

 As the upstream turbulence intensity increases, a more rapid pressure recovery can be 

found for the portion of roof surface on the leeward side of the location of  Cpmin .  

Such increased surface pressure recovery rates are mainly due to the increased 

turbulence-contributed pressure gradients near the roof surface.   

In Chapter 4, the effects of the upstream turbulences on the area-averaged mean and 

fluctuating pressures are investigated.  Time averaged integral momentum equation is 

used to relate the near-roof flow fields to the mean area-averaged pressures.  On the other 

hand, a simple quasi-steady model is established for estimating pressure fluctuations.  

The main goal of this chapter is to derive the physical assumptions embedded in the QS 

model.  The main findings are summarized as follows: 

 A time-averaged integral momentum approach is proposed to relate the mean flow 

and turbulence fields to the area-averaged roof surface pressures.  This is done by 

placing a control volume (CV) directly above the target roof panel, where the mean 

area-averaged pressure needs to be calculated.  This approach is validated by the 

successful comparison of the estimated and measured mean area-averaged roof 

surface pressures. 
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 From the temporal average aspect, the convection term (i.e., the net momentum flux 

through the CV) dominates the area-averaged pressures for panels beneath the 

separated flows.  For panels under the re-attached flows, the static pressure just above 

the roof dominates the mean pressures.  The effects of turbulence stresses are the 

same as what has been found in the differential momentum equations.  Note that the 

turbulence stresses play a minor role on affecting the mean area-averaged roof surface 

pressures, as compared to the convection and pressure terms.  

 A simple QS model is established to estimate the instantaneous area-averaged roof 

surface pressures.  This model accounts for the variation of magnitudes and azimuth 

angles of the instantaneous wind speed measured at the reference location, i.e., one 

building height above the leading edge.  Satisfactory performance of the QS model is 

found for regions under flow separation.  

 The physical assumptions embedded in the QS model are explained from simple 

algebraic manipulation of the time-averaged integral momentum equation.  Two main 

findings are revealed:  

o The direction of the instantaneous flow field is assumed to be the same as the 

direction of the mean flow field.  This statements holds when the instantaneous 

wind azimuth measured at the reference point is equivalent to the mean wind 

azimuth.   

o The magnitude of the instantaneous velocity field is obtained by amplifying the 

mean velocity field with an uniform rate, 
2

mm uu , where mu  is the velocity 

vector measured at the reference point. 

 By further comparing the QS assumptions to the instantaneous integral momentum 

equation, the missing mechanism of the QS-model can be elucidated.  Main findings 

are listed as follows:  

o The ideal scenario for the QS assumption to be true is that the instantaneous flow 

pattern near the roof exactly matches the mean flow pattern.  This ideal scenario 



131 

 

may be better approached if the upstream turbulences have a very large length 

scale.     

o By using a point velocity measurement like a cobra probe, the instantaneous static 

pressure can be directly measured.  Such information may be used to correct the 

QS assumptions associated with the static pressure above the roof.  As compared 

to the prediction using the typical QS model, the pressure-corrected QS model is 

found to work better for the regions below the flow re-attachment.  However for a 

roof surface under the flow separation, little improvement can be found by using 

the pressure-corrected QS model.  This is due to the fact that the static pressure on 

top of the roof dominates the roof surface pressure for the flow re-attachment 

region while momentum flux contributes more for the flow separation region. 

o A missing acceleration term of vertical velocity is identified in the QS model.  

However, due to little spatial coherence of vertical velocities within the control 

volume (CV) on top of the roof, using the velocities measured at the reference 

point overestimates the overall vertical velocity accelerations within the CV.  

Therefore, adding the acceleration correction to the QS model via a point 

velocity measurement is not suggested for the practice. 

In Chapter 5, the QS model accounts for three-dimensionality of the wind speed vector 

(measured at one building height above the leading edge) is established and used for 

estimating the pressure fluctuations.  The main conclusions are as follows:  

 The QS model assumes the instantaneous surface pressure as a multiplication of 

instantaneous dynamic pressure, 
2

m5.0 u , with the instantaneous function, instCp .  

The effects of wind azimuth, ϴ, and elevation angle, β, are included in the 

instantaneous function, i.e.,   ,instCp , in the QS vector model (QS-θ-β).  The 

instantaneous functions in the model were evaluated from synchronized 

measurements of building surface pressures and local wind speed vectors. 
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 Upward-acting winds (i.e.,    > 0) are generally associated with higher magnitudes 

of instCp  while the downward-acting winds (i.e.,    < 0) are generally associated 

with lower magnitudes of instCp .  The effect of the elevation angle can be as large as 

the effect of wind azimuths for certain mean incident wind angles.   

 Linear effect of wind elevation is found to be adequate for the range of fluctuating 

elevation angle,   , such that      ddCpCpCp instinstinst ,  .  The gradient 

ddCpinst  is found to vary with respect to wind azimuth so that the functional form 

is fit with a Fourier series.     

 Higher dynamic pressures, however, are generally associated with downward wind in 

the atmospheric boundary layer, leading to a suppression process of the actual 

observed peaks because of this.  These observations are consistent with previous 

published works.   

 A statistical method that uses the QS-θ-β model was also derived and validated. With 

this method, the probability density function (PDF) of building surface pressures is 

formulated as a double integral of the joint PDF between instantaneous wind speed 

ratio, wind azimuth, and elevation angle,   ,,refm uf u .  This approach is 

validated by successfully comparing the estimated pressure PDF’s to that obtained 

directly from the velocity time series. 

 Because no mutual independence is found between refm uu , θ, and β, the joint PDF 

used here is not further reduced to       ffuf refmu , a formulation that has been 

used in previous works.  Furthermore, the direct use of joint PDF of wind turbulence 

in our formulation offers a more straightforward approach when compared to the 

procedures used in previous works.   

 Peak pressures were predicted by applying the statistical method and compared to the 

measured values for all mean incident wind angles.  Underestimation of peak 

pressures was observed for point pressures on the roof.  The accuracy of peak 
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prediction increases as the number of points included in area-averages increases.  

More specifically, the mean level of error (underestimation) was found be about 30% 

for a single pressure tap, while this reduces to < 5% for area-averages of 16 and 36 

taps (on the current building with the current tap layout).  Hence, the proposed QS-θ-

β model is found to perform well for roof pressure estimation when relatively large 

areas of the roof are considered for this typical low-rise building. 

In Chapter 6 the applicability of QS model in predicting the area-averaged pressure 

fluctuations induced by the six upstream turbulence conditions are further examined.  

Fluctuations of area-averaged pressures are investigated for panels near the roof corner 

and leading edge.  Main findings are listed as follows: 

 The quasi-steady (QS) model are known to work better for capturing the effects of 

large scale turbulences on the roof surface pressure fluctuations.  Hence, the small 

length scale turbulences are removed in the QS model by applying the moving 

average on the time series of each velocity components.  The cut-off length is 

selected as 5 building height, for separating the small length scale of turbulence out 

from the large scale turbulence.  Appropriate cut-off length can be determined based 

on the length scale where the coherence between the measured and QS-predicted 

pressures vanishes.   

 It is found that the fluctuation of area-averaged pressures is dominated by the 

intensity of the upstream turbulence and to a lesser degree by the turbulence length 

scale.  However, more spatially coherent pressure fluctuations can be found for 

upstream turbulences of larger length scale. 

 The QS model accounting for the magnitude, azimuth and elevation angles of the 

instantaneous wind vector is used to predict the fluctuation of the area-averaged 

pressures.  The instantaneous function (of the QS model) established in a moderate 

roughness condition is generally collapsed with that obtained from the other terrain 

conditions.  This implies that the variations of the upstream turbulence do not alter 

the flow structure significantly so that the resulted mean area-averaged pressure 

coefficients are nearly similar.  Based on this observation, the QS model established 
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from the moderate roughness condition is used to predict the pressure fluctuations 

induced by turbulences generated from other terrain conditions. 

 The ‘cross-terrain’ QS-predictions of pressure fluctuations generally works well for 

the roof panels being examined.  The QS predictions of the pressure root mean 

squares (rms) generally agree well to the measured values.  Hence, the QS model 

used here can account for most of the effects of the upstream turbulence on pressure 

fluctuations.   

 However, underestimations up to 20% can be observed for the QS-predicted peak 

pressures for panels including 9 taps.  These underestimations usually happen for 

panels beneath flow separation.  These underestimations may be due to the missing 

consideration in the QS model for the small scale vortices generated from the leading 

edge.  Improved QS-predictions are observed for larger panel areas or by placing the 

velocity probe closer the target panel. 

 

7.2 Recommendations 

This thesis demonstrates that the quasi-steady (QS) model is capable for explaining the 

effects of large length scale upstream turbulences on the fluctuations of the area-averaged 

roof surface pressures.  However, only the flat roof building model (i.e., the 1/50 scaled 

model for the TTU WERFL building) is examined in this thesis.  In this regard, one of 

the future work can focus on the applicability of the proposed QS model to roofs with 

more complex geometries, e.g., gable or hip roofs (Gavanski et al, 2011).  

As shown by Akon (2017), the small length scale vortices separating from the leading 

edge of the roof (for wind normal to the building wall) are highly correlated to the point 

roof surface pressure fluctuations.  The QS models discussed in this thesis have not been 

able to incorporate these effects.  Future work regarding this issue may begin with the 

typical concept used in vortex method (e.g., Spalart, 1998), where the strength of 

shedding vortices have been studied.  Furthermore, the interaction between the upstream 

turbulence and these shed vortices needs to be studied as well.  
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In terms of other practical applications, the QS method is anticipated to provide a useful 

tool for pressure estimation during transient storms (e.g., microbursts, downbursts, 

tornadoes, etc.).  Due to the rapid spatial translation of these types of wind storms, 

buildings in their path can experience rapid and intense changes of wind speed and 

direction, especially when compared to the movements and development of large-scale 

synoptic storms.  For example, Kopp and Wu (2017) observed a strong dependence of the 

building surface pressure patterns on the direction of local wind vectors, as shown in 

Figure 7-1, for a translating tornado-like vortex passing the building generated in the 

WindEEE Dome.  These storms produce different wind fields that can have features such 

as upwardly directed gusts correlated with high wind speeds, different vortex structures, 

and other particular features.  Of particular interest is the vertical component of the wind. 

For example, Blanchard (2013) found that the elevation angle could be more than 20° at 

the moment when a tornado has its most intense horizontal wind speeds.  This contrasts 

with typical atmospheric surface layers, where gust speeds are generally correlated with 

downward acting winds.  Because the upward wind is generally associated with higher 

pressure coefficients on roofs, building surface pressures may be amplified in the 

tornado-induced wind, as compared to typical boundary layer winds, given similar 

dynamic pressures and that the QS model holds for both scenarios.  Further work is 

required to identify whether the linear relationship between pressure and elevation angle 

holds, or whether a non-linear contribution may be required in order to maintain accurate 

estimates of   ,instCp . 
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Figure 7-1:  Snapshots of ground and building surface pressures (reference to 

averaged building wall pressures) along with velocity vectors measured near 

building (Kopp and Wu, 2017).  The wind and pressure fields are induced by a 

translating tornado. 
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Appendices 

Appendix A: Correlation analyses for velocities measured 
near the building model 

In this section, the correlations between velocities measured at different locations near 

the TTU model building are investigated.  The motivation of this analyses arises from the 

heavy reliance on the instantaneous velocity measurements in the quasi-steady (QS) 

model for prediction of the instantaneous building surface pressures.  If the 

measurements cannot represent the instantaneous velocities near the building, then the 

QS predicted pressures produce little insight for actual physical mechanism.   

In order to specify the relative distances between the velocity probes, the origin of the 

global coordinate is fixed at the center of the turntable in the wind tunnel (see Figure A 

1).  The positive x-coordinate is aligned with the main stream direction (u-component of 

the velocities) whereas the positive z-coordinate denotes the vertical distance from the 

tunnel floor.  The y-coordinate denotes the transverse distance and its positive direction 

follows the right hand rule and the x- and z-coordinates.  In the wind-speed and pressure 

measurements regarding the QS applications in this thesis, a total three Cobra probes are 

involved in measurements, i.e., the ‘L-shaped’ probe with serial number #289 and two 

straight probes #311 and #313.  Corba probe #289 was placed at one building height 

above the middle roof leading edge of the longer wall, as shown in Figure A 1 (a) and (b).  

Note that this probe (#289) was fixed with respect to the building, such that the probe is 

on the positive y-coordinate for mean wind azimuth 90 and on the negative x-

coordinate for 0 .  The straight probe #311 was placed at the building height and 

away from the corner with a side and a upstream distance being Hy 3  and Hx 3 , 

respectively, for the setup of mean azimuth 90 , as shown in Figure A 1 (a).  The 

other straight probe #313 was placed at a mirrored location (with respect to x-coordinate) 

of probe #311.  Note that these two straight probes did not change their positions when 

the building is rotated in the wind tunnel testing (e.g., see the unchanged locations for 

0  in Figure A 1 (b)).     
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a 

 
b 

 
c 

 

Figure A 1:  Cobra probe locations with respect to the building model: (a) Typical 

measurement at 90 ; (b) Typical measurement at 0 ; (c) Additional 

measurement with an upstream probe.   
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Based on the probe setups for mean wind azimuths 90  shown in Figure A 1 (a) and 

0  in Figure A 1 (b), three combinations of relative distances between probes are 

used for the correlation analyses.  The largest separation in the transverse direction, i.e., 

Hy 29.8 , can be observed between the straight probes #311 and #313, where H 

denotes the building height of 8 cm.  The second large transverse separation can be 

observed between probes #311 and #289, i.e., Hy 14.4 , for mean wind azimuth of 

0 .  The third large transverse separation, i.e., Hy 3 , can be observed between 

the same probes (i.e., #311 and #289) for mean wind azimuth of 90 .  The fourth 

case is obtained by adding an additional setup, as shown in Figure A 1 (b), where the 

angled probe #289 was placed at the upstream location of the roof top probe #311 for a 

distance of Hx 58.4 .  The summary of these cases are shown in Table A 1.  As the 

case number increases, the transverse distance decreases while stream-wise distance 

increases.  The relative vertical distances are either zero or 1H.   

 

Table A 1:  Relative distances between the two probes for correlation study. 

Case Selected 

two 

probes 

Relative distance,  

|xa - xb| 

Notes 

(i) #311 

#313 

| Δx |/H = 0 

| Δy |/H = 8.28 

| Δz |/H = 0 

Figure A 1 (a), (b) 

(ii) #311 

#289 

| Δx |/H = 2.6 

| Δy |/H = 4.14 

| Δz |/H = 1 

Figure A 1 (b) 

(iii) #311 

#289 

| Δx |/H = 3.72 

| Δy |/H = 3 

| Δz |/H = 1 

Figure A 1 (a) 

(iv) #289 

#311 

| Δx |/H = 4.58 

| Δy |/H = 0 

| Δz |/H = 1 

Figure A 1 (c) 

The time lag correlation coefficients and coherences are calculated for the various probe 

separations summarized in Table A 1 and large length scale turbulence conditions (i.e., 

F15, O15 and S15 shown in Figure 2-1).  For stream-wise and transverse component of 
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the velocities shown respectively in Figure A 2 and Figure A 3, the results show that the 

correlation drops quickly as the transverse separation between probes increases.  On the 

other hand, increasing the stream-wise separation has restively minor effects on the 

correlations.  For the results of the vertical velocity components shown in Figure A 4, the 

spatial correlations are the smallest for as compared to that of the stream-wise and 

transverse components.  Significant correlation of the vertical velocities can only be 

observed when the probes are aligned with the main stream direction.  All these results 

imply the fact that the turbulent eddies are transported along the main stream direction. 

a 

 
b 

 

Figure A 2:  (a) Time-lag correlation coefficient and (b) coherence between u-

velocity components measured at two locations (specified in Table A 1) for the three 

upstream roughness conditions F15, O15 and S15.  
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a 

 
b 

 

Figure A 3:  (a) Time-lag correlation coefficient and (b) coherence between v-

velocity components measured at two locations (specified in Table A 1) for the three 

upstream roughness conditions F15, O15 and S15.  
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Figure A 4:  (a) Time-lag correlation coefficient and (b) coherence between w-

velocity components measured at two locations (specified in Table A 1) for the three 

upstream roughness conditions F15, O15 and S15. 
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Appendix B: Synchronization of point velocity and pressure 
measurements 

For the velocity-pressure studies regarding the quasi-steady (QS) theory, the original 

building surface pressures were logged by the system that was independent from that of 

wind velocities measured from the Cobra probes.  Manually triggering the logging 

process was conducted for the velocity-pressure measurements.  The Turbulent Flow 

Instrument (TFI) that was used to log the velocities, record the signals first.  This 

procedure is followed by the pressure logs.  Because of this manual operation, there may 

exist a time lag, lagt , between the velocity and pressure recordings, as shown in Figure B 

1 (a).  The sign and magnitude of the time lag can also vary for different sets of 

measurement.   

In order to synchronize the two logging systems, the sampling rate was first set to be 

identical for both of the TFI and Pressure data acquisition systems.  The second step is to 

determine the time lag between two logging systems.  This is done by first distributing a 

common signal into both of the systems, as schematically shown in Figure B 1 (a).  The 

time lag correlation coefficients between the common signals measured in TFI, 
TFIu , and 

in the pressure system, PSSu , are then calculated. i.e.,  

    

  5.0

TFIPSS

TFIPSS Coef. Corr.
uu

ttutu




 , (B-1) 

where t denotes time and Δt denotes the time lag.  Note that the common signals that are 

involved in correlation analyses are fluctuating components (i.e., deviations from the 

mean).  The measurement time lag can be determined by identifying the time lag 

corresponding to the maximum correlation coefficient, as schematically shown by Figure 

B 1 (b).  

The total available length of the “synchronized” data is lagtT  , where T denotes the the 

original sampling duration, as can be easily observed from Figure B 1.  The common 

signals used for these synchronization processes are the stream-wise velocities measured 
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by the Pitot tube near the wind tunnel ceiling.  The use of random signals such as the 

turbulent velocities has the advantage that there is only one maximum in the time lag 

correlation coefficients. 

 

a  

 

b   

         

Figure B 1:  (a) Schematic recordings of a common signal using TFI and Pressure 

logging systems;  (b) Schematic time lag correlation coefficients between the 

common signals measured at the two systems. 
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Appendix C: Use of symmetrical layout of pressure taps and 
building geometry in pressure measurements 

In order to establish a quasi-steady model that capturing the effect of all possible wind 

azimuths (see Figure 5-2 for an example), building surface pressure measurements need 

to be conducted for all mean wind azimuths in wind tunnel.  These measurement work 

can be greatly reduced if the building geometry and tap layout are in symmetry.  Given a 

roof of rectangular planar shape, as shown in Figure C 1 for example, wind tunnel 

measurements only need to be conducted for the wind azimuths within the first quadrant, 

i.e., 900   (as shown by the solid blue vector in Figure C 1).  The measured 

pressures not only capture the building aerodynamics due to the first quadrant wind, but 

also include the information due to wind azimuths of the remainder range, 36090 

.  In order to extract these implicit information due to other wind azimuths, empirical 

comparison is required to identify the scenarios where the relative wind direction with 

respect to tap location is similar.  This section provides a systematic approach to identify 

the case of symmetry. 

Consider a rectangular planar roof shape shown in Figure C 1 and the origin of the 

Cartesian coordinate, o, placed at the center of symmetry, with x- and y-axis aligned with 

the short and long walls respectively.  The roof region and wind directions are divided 

into the four quadrant, i.e., I, II, III and IV, as labeled in Figure C 1, based on the location 

of the origin.  The upstream wind velocity vector, u, of fixed magnitude is assumed to be 

two-dimensional.  This vector is placed at the origin as well, with component u  and v  

aligning with x- and y-coordinate, respectively.  The azimuth of wind vector is defined 

based on the polar coordinate system, i.e., 0  for u lying on the positive x-axis and 

90  for u lying on the positive y-axis.  For an arbitrary pressure tap labeled as ① in 

Figure C 1, its location on the roof, jix 111 yx  , is defined with respect to the origin as 

well. 
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Figure C 1:  The unit vector of wind direction and the location vector of a tap with 

respect to a Cartesian coordinate located at the center of symmetry for a 

rectangular roof.  

The mean pressures, for example, measured at tap ① represent the results obtained from 

the first quadrant winds, i.e., 900  .  In this case, the relative wind direction to the 

tap location can be characterize by the inner product, i.e.,  

 0  and  0for          y  111  vuvxuxu .   (C-1) 

By using the same magnitude of wind speed but reversing the direction of u-component 

in Figure C 1, as shown in the left plot in Figure C 2 (a), the wind azimuth is now 

180  and is confined to the 2nd quadrant, i.e.,   18018090   .  The inner 

product between the velocity and tap location vectors is now 111 y  vxu xu .  

Because there is no measurement conducted for the 2nd quadrant wind azimuth,  180

, the goal now is to determine an equivalent tap location such that the inner product is 

unchanged for measurement under azimuth  .  This can be done by simply interchanging 

the sign between the u-component of real velocity vector and the x-component of tap 

location, 1x , in the inner product, i.e.,  

①

x

y
o

ϴu

u

v
y

x
x1 = x1 i + y1 j

Top View of 
TTU model

0˚ ≤ ϴ ≤ 90˚

I

II III

IV
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  22211

111

y  y  

y  

xu

xu





vxuvxu

vxu
 for wind azimuth  180 .  (C-2) 

Based on Eq. (C-2), it is clear that the tap location, 2x , measuring the equivalent 

pressures due to the 2nd quadrant wind,  180 , can be obtained by simply reversing 

the sign of the x-component of the original tap location, i.e., 12 xx   and 12 yy  .  Such 

tap location is labeled as ② in the right plot of Figure C 2 (a), along with the wind 

vector of azimuth  .  

Similar to the second quadrant wind, the equivalent tap location ③, 3x , for the third 

quadrant wind azimuth  180  can be determined by calculating the inner product 

between the real velocity vector and the original tap location (as shown in left plot in 

Figure C 2 (b)), i.e.,  

 
    33311

111

y  y  

y  

xu

xu





vxuvxu

vxu
   for wind azimuth  180 . (C-3) 

From Eq. (C-3), it is clear that the tap location ③ can be obtained by interchanging the 

signs of both x- and y- components of the original tap location, i.e., 13 xx   and 

13 yy   (see the right plot of Figure C 2 (b)).  The equivalent tap location ④, 4x , for 

the fourth quadrant wind azimuth  360  can be also determined by taking the inner 

product between the real wind velocity vector and tap location (see left plot in Figure C 2 

(c)), i.e.,  

 
  44411

111

y  y  

y  

xu

xu





vxuvxu

vxu
   for wind azimuth  360 . (C-4) 

Hence, 4x  is the mirrored location of 1x  about y-coordinate, i.e., 14 xx   and 14 yy  .  
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a  

 

b 

 

c 

 

Figure C 2:  Equivalent tap locations for measurement wind directions between 0˚ 

and 90˚ for real wind directions: (a) 18090  , (b) 270180    and (c) 

360270  .   

An arbitrary tap ① located within the quadrant III region measures the pressures under 

the first quadrant wind azimuths, 18090  , as shown in Figure C 1.  The 
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corresponding equivalent tap locations for measurements of other quadrant wind 

azimuths are derived from Eqs. (C-1) to (C-4) and further shown in for Figure C 2.  

Following the rules established in Eqs. (C-1) to (C-4), the equivalent tap locations for all 

possible tap locations are further summarized in Figure C 3.   

 

Figure C 3:  Summary of the equivalent tap locations for measurement wind 

azimuths within the first quadrant, 900  .   

③

y

②

x

④

Quadrant  I  taps

②
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③

④

①
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② ③

④ ①
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④

①

①
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① denotes the original tap location fort the 
1st quadrant wind, 0˚ ≤ ϴ ≤ 90˚:

ϴ

180˚- ϴ
② denotes the equivalent tap location for 
2nd quadrant wind, 90˚ ≤ 180˚- ϴ ≤ 180˚:

③ denotes the equivalent tap location for 
3rd quadrant wind, 180˚ ≤ 180˚+ ϴ ≤ 270˚: 180˚+ ϴ

④ denotes the equivalent tap location for 
4th quadrant wind, 270˚ ≤ 270˚- ϴ ≤ 360˚:

360˚- ϴ



155 

 

An example of utilizing the symmetric property given in Figure C 3 is applied for 

determining the spatial Cp  distribution over the entire building surface for wind azimuth

60 .  The results are shown in Figure C 4 for Cp  measured in terrain ‘O15’ (see 

Section 2.1).  Note that Huu ref  for defining the pressure coefficient. 

 

Figure C 4:  Cp  measured at 60   and corresponding symmetric results for 

300 and 240 ,120  . 

Detailed Cp  distributions as results of utilizing the symmetric property (Figure C 3) are 

further shown in Figure C 5 for the roof corner tap C1 and leading edge tap L1 (see 

Figure 6-1).  Continuous Cp  distribution can be found for both cases.  Near symmetric 

pattern can be found for Cp  measured at L1. 
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a 

 
b 

 

Figure C 5:  Cp  distribution for entire range mean wind azimuths at taps: (a) C1 

and (b) L1 (see Figure 6-1). 
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Appendix D: Effects of the cobra probes on the pressure 
distributions on the building model 

In this thesis, the synchronized measurements of building surface pressures and local 

velocities are done by placing the three Cobra probes near the building model.  Examples 

of such setups are shown in Figure A 1 (a) and (b) for measurements at 90  and 0  

respectively.  Because of the placement of Cobra probes are close to the building, the 

surface pressures measured on the building model may be affected.  In order to see the 

degree of influence, the building surface pressures measured with and without the Cobra 

probes are examined.   

Spatial distributions of Cp  on the building surface measured with and without Cobra 

probes at mean wind azimuths 0 , 30˚ and 90˚ are shown in Figures D 1, D 2 and D 

3, respectively, for terrains F0, O0 and S15 (see Section 2.1).  Measurements of 30  

are selected because of the widest building projection width normal to the main stream 

direction and , hence, may be affected more by the two side probes (see Cobra #311 and 

#313 in Figure A 1 (a) and (b)).  On the other hand, measurements of 0  and 90˚ are 

selected because they are bounding scenarios of building orientations.  Figures D 4, D 5 

and D 6 further shows the  Cprms  for the probe effects on the overall pressure 

fluctuations.  Both mean and rms Cp  distributions are very similar for measurements 

obtained with and without Cobra probes, indicating the influences due to the setups of 

these probes are not significant.   
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c 

 

Figure D 1: Building surface Cp  contour measured at 0  with and without 

cobra probes for terrains (a) F0, (b) O0 and (c) S15. 
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c 

 

Figure D 2: Building surface Cp  contour measured at 30  with and without 

cobra probes for terrains (a) F0, (b) O0 and (c) S15. 
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Figure D 3: Building surface Cp  contour measured at 90  with and without 

cobra probes for terrains (a) F0, (b) O0 and (c) S15. 
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c 

 

Figure D 4: Building surface  Cprms  contour measured at 90  with and 

without cobra probes for terrains (a) F0, (b) O0 and (c) S15. 
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Figure D 5: Building surface  Cprms  contour measured at 30  with and 

without cobra probes for terrains (a) F0, (b) O0 and (c) S15. 
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c 

 

Figure D 6: Building surface  Cprms  contour measured at 90  with and 

without cobra probes for terrains (a) F0, (b) O0 and (c) S15. 
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