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Abstract

Pulmonary imaging, including pulmonary magnetic resonance imaging (MRI) and computed

tomography (CT), provides a way to sensitively and regionally measure spatially heterogeneous

lung structural-functional abnormalities. These unique imaging biomarkers offer the potential

for better understanding pulmonary disease mechanisms, monitoring disease progression and

response to therapy, and developing novel treatments for improved patient care. To generate

these regional lung structure-function measurements and enable broad clinical applications of

quantitative pulmonary MRI and CT biomarkers, as a first step, accurate, reproducible and

rapid lung segmentation and registration methods are required. In this regard, a 1H MRI lung

segmentation algorithm that employs complementary hyperpolarized 3He MRI functional in-

formation was developed for improved lung segmentation. The 1H-3He MRI joint segmentation

algorithm was formulated as a coupled continuous min-cut model and solved through convex

relaxation, for which a dual coupled continuous max-flow model was proposed and a max-flow-

based efficient numerical solver was developed. Experimental results on a clinical dataset of

25 chronic obstructive pulmonary disease (COPD) patients ranging in disease severity demon-

strated that the algorithm provided rapid lung segmentation with high accuracy, reproducibility

and diminished user interaction. Then a general 1H MRI left-right lung segmentation approach

was developed by exploring the left-to-right lung volume proportion prior. The challenging

volume proportion-constrained multi-region segmentation problem was approximated through

convex relaxation and equivalently represented by a max-flow model with bounded flow con-

servation conditions. This gave rise to a multiplier-based high performance numerical imple-

mentation based on convex optimization theories. In 20 patients with mild-to-moderate and se-

vere asthma, the approach demonstrated high agreement with manual segmentation, excellent

reproducibility and computational efficiency. Finally, a CT-3He MRI deformable registration

approach that coupled the complementary CT-1H MRI registration was developed. The joint

registration problem was solved by exploring optical-flow techniques, primal-dual analyses

and convex optimization theories. In a diverse group of patients with asthma and COPD, the
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registration approach demonstrated lower target registration error than single registration and

provided fast regional lung structure-function measurements that were strongly correlated with

a reference method. Collectively, these lung segmentation and registration algorithms demon-

strated accuracy, reproducibility and workflow efficiency that all may be clinically-acceptable.

All of this is consistent with the need for broad and large-scale clinical applications of pul-

monary MRI and CT.

Keywords: Anatomical CT, structural-functional MRI, COPD, asthma, regional pulmonary

structure-function, segmentation, registration, convex optimization
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Chapter 1

Introduction

Chronic Obstructive Pulmonary Disease (COPD) and asthma are the most chronic and ob-
structive lung disease characterized by airflow limitation resulting from inflammation. In this
Chapter, I will provide an overview of the burden of COPD and asthma, the underlying dis-
ease mechanisms, the current tools for disease management and their limitations. I will also
introduce a number of lung imaging methods that bring new hopes for improved lung disease
care and the image processing challenges associated with generating these imaging biomark-
ers, specifically, pulmonary magnetic resonance imaging and computed tomography. Finally,
I will provide an overview of the commonly used medical image segmentation and registration
algorithms and the valuation methods.

1.1 Burden of Obstructive Lung Disease

According to World Health Organization’s estimates, 600 million people are affected by chronic

obstructive pulmonary disease (COPD) [1] with 65 million suffering from moderate to severe

COPD [2] worldwide. In 2015, over three million people died of COPD as shown in Fig. 1.1

and this accounted for ∼5% of global deaths [3]. COPD was the fourth leading cause of death

globally [4] and recent estimates showed that it will rise to third by 2030 [2]. Asthma is another

debilitating obstructive lung disease that affects approximately 334 million people worldwide,

causing ∼345,000 deaths annually and is most common among children [5].

In Canada, it is reported that ∼4% of the population aged 35 to 79 has been diagnosed

with COPD although ∼13% of Canadians have clinical measurements indicative of COPD [6].

1
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Figure 1.1: Global leading causes of death. Adapted from the World Health Organization’s
Global Health Observatory (GHO) data (2015) [4].

Importantly, COPD caused ∼4.4% of all deaths in Canada in 2011 [7] and accounted for the

highest rate of hospitalization, followed by angina and asthma in the country [8], as shown in

Fig. 1.2. According to a recent study performed by Statistics Canada, asthma affects 2.4 million

or ∼8% of Canadians with a higher rate observed in Canadian children and youths [9]. In

Ontario, it was estimated over 780,000 (∼5.9%) Ontarians were living with COPD in 2011 and

the number will increase to ∼1.2 million (6.9%) by 2041 with the number of deaths increasing

from 36,000 to 57,133 [10]. The same study [10] estimated that asthma affected another ∼1.7

million (or 13.0%) Ontarians and the number will increase to ∼2.5 million (∼14.7%) by 2041.

The total economic burden, including direct costs in health care and indirect costs due to loss

of workplace productivity, were ∼$3.9 and ∼$1.8 billion for COPD and asthma, respectively.

Together, COPD and asthma represent an economic burden of ∼$5.7 billion out of the ∼$124

billion total expenses for the government of Ontario [11].
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Figure 1.2: Repeat hospitalizations by conditions at first admission. Adapted from Canadian
Institute of Health Information (2008) [12].

COPD and asthma have varying degrees of impacts on the physical, psychological and so-

cial aspects of daily life for patients living with these conditions [13, 14, 15]. COPD is not a

single disease but a group of progressive lung disorders that cause airflow limitation and diffi-

culty in breathing [16]. The most common subtypes of COPD include chronic bronchitis and

emphysema and many COPD patients have both conditions [17]. Typically, individuals with

COPD present a variety of symptoms, including shortness of breath, wheezing, chronic cough,

chest tightness and excessive mucus production, and the symptoms worsen with disease pro-

gression [18, 19]. While COPD encompasses both airway and lung parenchyma components,

asthma affects predominantly the airways [20, 21]. Although asthma patients present symp-

toms similar to COPD, there are striking differences between the two types of lung disease,

which will be discussed in more detail.
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In this Chapter, I will provide a summary of the relevant background knowledge neces-

sary to understanding the motivation behind the research presented in Chapters 2 to 4. I will

first briefly introduce the respiratory system (Sec. 1.2) before discussing the pathophysiol-

ogy and underlying disease mechanisms of COPD and asthma (Sec. 1.3), then introduce the

standard clinical tools for obstructive lung disease management (Sec. 1.4). Following this,

I will provide a summary of the currently available imaging methods and biomarkers devel-

oped to provide a better understanding of chronic lung disease (Sec. 1.5). The introduction

of imaging components for lung disease management fundamentally requires reliable image

processing techniques and accordingly I will provide a brief review of the currently available

and commonly used image analysis methods (Sec. 1.6). Finally, I will summarize the overall

and specific objectives of this thesis (Sec. 1.7).

1.2 The Respiratory System

The respiratory system provides oxygen into the body for cellular metabolism and removes

carbon dioxide to the external environment to sustain the body’s other physiological systems.

The respiratory system includes the oral and nasal cavities, the lung, the airways, nervous

systems that control the respiratory muscles, and the chest wall [22]. In this section, I will

discuss the pathways of airflow from the external environment to the sites of gas exchange

within the lung.

1.2.1 The Airways

During inspiration, air enters the nasal cavity and is filtered, heated to body temperature and

humidified. Air flows through the oral cavity, the pharynx, and the larynx followed by the

trachea. The trachea is a cartilaginous tube that bifurcates into the left and right main bronchi,

feeding the left and right lung, respectively. As shown in Fig. 1.3, the left and right bronchi

then divide into lobar bronchi that are related to the five lobes (two lobes for the left lung and
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Figure 1.3: Schematic representation of human airways with generations and dimensions. Re-
produced from Pulmonary Physiology, 8th edition [22].

three lobes for the right lung). The lobar bronchi then divide into segmental bronchi that supply

the 18-19 lung segments that are anatomically and functionally independent. As shown in Fig.

1.4, there are 10 segmental bronchi in the right lung with 3 in the upper lobe, 2 in the middle

lobe and 5 in the lower lobe. There are 8-10 segmental bronchi in the left lung with 4-5 in the

upper lobe and 4-5 in the lower lobe. The segmental bronchi continue to divide dichotomously

until they reach all regions of the lung. The small bronchi are bronchioles that have smooth

muscle but no cartilage and are subject to collapse when compressed. The airways branch into

more than 20 generations and become progressively narrower, shorter and more numerous.

Starting from the trachea, the first 16 airway generations comprise the conducting zone, which

ends with the terminal bronchioles [23]. It is important to note that the conducting zone is
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responsible for directing inhaled air to the respiratory zone and does not participate directly in

gas exchange. Therefore, following inspiration, some of the inhaled air remains in this space

without participating in gas exchange. This is also known as anatomic dead space and typically

has a volume of ∼150 ml for healthy adults [24].

Following the terminal bronchioles, the respiratory bronchioles compose the respiratory

zone that consists of the last seven generations of the airways. The respiratory bronchioles

have few alveoli lining the airway walls and as they divide, the number of alveoli increases

dramatically and forms the alveolar ducts followed by alveolar sacs that are comprised com-

pletely of alveoli, where gas exchange occurs. The respiratory bronchioles and the following

alveolar ducts and alveolar sacs are referred to as an acinus, the anatomical unit of the lung.

Due to the large number of branching bronchioles in the respiratory zone, although the diame-

ters are small, the total cross sectional area of these airways rapidly expands [25], reducing the

overall airflow resistance. The respiratory zone constitutes a majority of the lung volume with

a size of 2.5-3.0 L during rest [24].

1.2.2 The Alveoli

The respiratory bronchioles are terminated by the alveoli and are the primary site of gas ex-

change in the lung. There are ∼480 million alveoli on average in the human lung and the mean

size of a single alveolus is ∼4.2×106 µm3 or ∼200 µm in diameter [25]. Each alveolus is en-

veloped by a dense pulmonary capillary network that facilitates efficient gas exchange through

diffusion of oxygen and carbon dioxide across the blood-air barrier. The blood-air barrier

consists of the alveolar epithelium, the capillary endothelium, and a thin basement membrane

between them with a thickness of 0.2–0.5 µm [22]. The alveolar wall is a layer of epithelium

that contains two main types of cells with a thickness of ∼0.2 µm [22]. Type I or squamous

epithelial cells form the majority of the alveolar surface. Type II cells secrete surfactant to

lower the alveolar surface tension, allowing the membrane to separate and prevent the alveoli

from collapsing during exhalation. The numerous alveoli and pulmonary capillaries result in a
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Figure 1.4: Lobar and segmental bronchi (indicated by dark circles) that correspond to lung
lobes and segments. Adapted from Folch et al.. Seminars in respiratory and critical care
medicine [26].
Left lung: Apicoposterior–LB1-2, Anterior–LB3, Lingula–LB4-5, Superior lower lobe bronchus–LB6, An-
teromedial basal–LB8, Lateral basal–LB9, Posterior basal–LB7,10; Right lung: Apical–RB1, Posterior–RB2,
Anterior–RB3, Lateral–RB4, Medial–RB5, Superior lower lobe bronchus–RB6, Medial basal–RB7, Anterior
basal–RB8, Lateral basal–RB9, Posterior basal–RB10.

vast surface area of 50-100 m2 for gas exchange [22].

1.2.3 Ventilation and Diffusion

During inspiration, the contraction of the diaphragm and intercostal muscles causes the di-

aphragm to descend and ribs to rise, increasing the volume of the thoracic cavity and decreasing

the alveolar pressure. Inhaled air passes through the conducting airways and reaches the res-

piratory bronchioles and finally the alveoli, where the diffusion of gas becomes the dominant

mechanism of ventilation [24]. Expiration occurs when the respiratory muscles passively relax

and alveolar pressure increases. During a normal breath, approximately 500 ml of air is taken
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from the external environment and resides in the conducting zone and the respiratory zone, and

this is referred to as the tidal volume [24]. Total ventilation is calculated as the total volume of

air that leaves the lung per minute. For normal breathing at a rate of ∼15 breaths/min, the total

ventilation is ∼ 7.5 L/min [24]. However, the inhaled air that resides in the conducting zone

(∼150 ml) does not participate in gas exchange. Therefore, the volume of air that enters the

respiratory zone and participates in gas exchange is ∼ 5.25 L/min, which is termed as alveolar

ventilation [24].

When air reaches alveoli, it transfers across the blood-air barrier through diffusion accord-

ing to Fick’s law. That is, the rate of gas transfer though a tissue is proportional to the area

of the tissue, the difference in gas partial pressure between the two sides of the tissue, and in-

versely proportional to the tissue thickness [27]. The partial pressure of O2 in a red blood cell

entering the pulmonary capillaries is ∼ 40 mm Hg compared with that of ∼ 100 mm Hg in the

alveoli [24]. O2 in the alveoli diffuses across the blood-air barrier along the pressure gradient

and finally the pressure of O2 in the red blood cell reaches that in the alveoli. The large area of

blood-air barrier, the thin blood-air surface and the large differences in partial pressure of O2

ensure rapid gas exchange between the body and the external environment.

1.3 COPD and Asthma Pathophysiology

1.3.1 Normal Aging Lung

Aging is a biological factor that affects lung function. In order to better appreciate obstructive

lung disease, it is necessary to separate the physiological changes of the lung due to pulmonary

complications from normal aging. Here I briefly describe the effects of aging on pulmonary

function.

The predominant physiological changes [28, 29] in respiratory function related to aging

are due to decreases in: 1) lung elastic recoil, 2) chest wall compliance, and, 3) respiratory

muscle strength. The lung contains elastic fibers, collagen, smooth muscle, pulmonary blood,
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bronchial mucus, and surface-active materials and has elastic recoil properties similar to an

elastic band that tends to recoil when stretched. The elastic recoil of the lung decreases and the

compliance increases with aging [30] and this is most evident at high lung volumes, i.e., greater

than 40-50% of TLC. Compliance is the change in volumes relative to the change in pressure

[31]. The decline of lung elastic recoil is associated with lung connective tissue, i.e., elastin,

collagen and proteoglycans. However, the exact mechanism is not well understood and con-

flicting hypotheses have been proposed. Currently, it is hypothesized that changes in the spatial

arrangement or the cross-linking of the elastic fibers or the presence of a psedoelastin contribute

to lung elastic recoil decline [29]. The chest wall progressively stiffens due to decalcification

of the ribs, calcification of the costal cartilage, rib-vertebral articulations and narrowing of the

intervertebral disk space [29]. The shape of the chest may also change due to osteoporosis

that results in vertebral fractures, leading to increased dorsal kyphosis and anterior-posterior

diameter [29]. These changes not only decrease chest compliance (increasing the work for

breathing) [29] but also affect the force-generating abilities of the diaphragm during breath-

ing [28]. Respiratory muscle strength has been shown to be lower in elderly subjects than in

younger controls [32], as well as the generated pressure involved in breathing [33]. The loss of

respiratory muscle strength with age is thought to be due to a decrease in muscle mass, number

of muscle fibers, motor units, and alternations of neuro-muscular junctions. Other functional

deficits, i.e., oxygen content, heart failure and Parkinson’s disease, may also affect respiratory

muscle strength [28]. Minor changes were observed in airways during aging, including calcifi-

cation of bronchial cartilage in large airways (increased anatomic deadspace) [34] and decrease

in the diameter of bronchioles (loss of elastic recoil) [35]. In addition, alveolar ducts are dilated

typically after the age of 40 due to elastic fiber degeneration, resulting in enlarged airspaces

[36]. The alveoli appear more flattened and the alveolar surface area reduces from ∼70 m2 at

the age of 20 to ∼60 m2 at the age of 70 [29, 28], leading to decreased lung surface-to-volume

ratio [37]. The reduction of support tissue around small airways leads to premature closure of

small airways during tidal breathing [28].
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1.3.2 COPD and Asthma

COPD and asthma are obstructive lung disease characterized by airflow limitation resulting

from chronic inflammation. In this section, I briefly review the pathology and pathophysiology

related to COPD and asthma while the cellular mechanisms of the disease are out of the scope

of this thesis.

1.3.2.1 COPD

According to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines

[17], COPD is defined as “a preventable and treatable disease with some significant extra-

pulmonary effects that may contribute to the severity in individual patients. Its pulmonary

component is characterized by airflow limitation that is not fully reversible. The airflow limita-

tion is usually progressive and associated with an abnormal inflammatory response of the lung

to noxious particles or gases”. The risk factors that contribute to the development of COPD

include cigarette smoking in particular, as well as exposure to occupational dusts and chem-

icals, air pollution, respiratory infections in childhood, genetic conditions like α1-antitrypsin

deficiency, and socioeconomic status [17, 38]. Tobacco smoking is a major risk factor that

leads to the development of COPD [38] and ∼50% of elderly smokers developed COPD [39].

Non-smoking factors account for more than 50% of COPD cases but the relative contribution

of each risk factor varies [38]. COPD encompasses three clinical phenotypes including emphy-

sema, chronic bronchitis and small airway disease. Emphysema is defined as “a condition of

the lung characterized by abnormal, permanent enlargement of airspaces distal to the terminal

bronchioles, accompanied by the destruction of their walls, and without obvious fibrosis” [40].

Based on the morphology and anatomic distribution, emphysema can be divided into three

main subtypes: centrilobular, panlobular and paraseptal emphysema [41]. Centrilobular em-

physema mainly affects the respiratory bronchioles in the central portion of the acini while the

alveolar ducts and sacs are preserved. The disease is usually distributed to the upper zones of
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the lung with a patchy fashion. Panlobular emphysema, in contrast, uniformly affects the entire

acini from respiratory bronchioles to the alveoli and exhibits even distribution. This disease

is frequently associated with α1-antitrypsin deficiency but may also be associated with other

factors. Paraseptal emphysema predominately affects the distal acini with areas of destruction

often mitigated by inter-lobular septa. Chronic bronchitis is defined as “the presence of cough

and sputum production for at least 3 months in each of two consecutive years”. It is thought

that chronic cough and sputum production are associated with inflammation in the central and

large airways (>4 mm in diameter) and mucous glands. Small airway disease is associated with

the obstruction of small airways or bronchioles (<2 mm in diameter), which are considered as

the major sites of airflow limitation in COPD [42]. As the airways branch dichotomously, the

number of airways increases rapidly and their radii decrease with increased resistance per sin-

gle airway segment. However, the overall airway resistance of the small airways is small when

considering the total cross sectional area of the airways arranged in parallel. Previous studies

have shown the airway resistance is mainly attributed to large airways and the small airways

contributed very little [42]. This suggests that small airway disease may accumulate over long

timeframes without being detected.

COPD pathologies include changes in large airways, small airways, and alveolar space

[43]. Inhaled particles cause abnormal or enhanced inflammatory response throughout the

lung that is characteristic of COPD. The inflammatory process recruits and activates a number

of inflammatory cells that release a series of factors. The complex process results in destruc-

tion of alveolar wall and pulmonary capillaries, mucus hyper-production, degradation of elastin

fibers, loss of lung elastic recoil and alveolar attachments [43, 44, 45] typified by emphysema.

α1-antitrypsin is a type of proteinase inhibitor that protects lung tissues from being damaged

by neutrophil elastase. In subjects with α1-antitrypsin deficiency, the decreased production

and activity of proteinase inhibitor result in destruction of the elastin fibers in alveolar walls

and development of emphysema [43]. Airway epithelial cells can be activated by cigarette

smoke and generate mediators that induce airway fibrosis (chronic bronchitis) [44]. Inflam-
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mation in the large airways (>2 mm in diameter) also causes epithelial squamous metaplasia,

goblet cell hyperplasia and enlarged mucus gland that lead to ciliary dysfunction (difficulty in

expectorating), mucus over-production (or chronic bronchitis) but generally no airflow limi-

tation. Inflammation in the small airways, the major sites of airflow limitation, causes goblet

cell hyperplasia, increased number of mucus-secreting cells, smooth muscle hypertrophy and

inflammatory cell infiltration. These pathological changes results in peribronchial fibrosis and

airway narrowing (due to excess mucus, edema and cellular infiltration), as shown in Fig. 1.5.

Airway narrowing is further worsened due to the destruction of the alveolar attachments on the

outer walls that provide radial traction on the bronchioles. Destruction of small airways may

directly contribute to an increase in flow resistance through destruction of parallel conducting

pathways.

1.3.2.2 Asthma

According to the 2017 updates of Global Initiative for Asthma Report [46], asthma is “a het-

erogeneous disease, usually characterized by chronic airway inflammation. It is defined by

the history of respiratory symptoms such as wheeze, shortness of breath, chest tightness and

cough that vary over time and in intensity, together with variable expiratory airflow limita-

tion”. Asthma is a respiratory disorder resulting from complex gene-environment interactions

and characterized by airway inflammation, airflow obstruction, and bronchial hyperresponsive-

ness [47]. Environmental stimuli (i.e., allergens, respiratory viruses and other environmental

irritants) lead to airway inflammation in genetically susceptible individuals. Upon antigen

sensitization, asthma inflammatory cells are recruited and activated [48]. The activated inflam-

matory cells generate a series of cytokines [49, 50] that cause epithelial damage (a source of

airway hyperresponsiveness), vascular leakage and edema (a source of airway obstruction),

airway smooth muscle proliferation (airway remodeling) and contraction, mucous secretions

and acute exacerbation of asthma symptoms. Taken together, the asthma inflammatory pro-

cesses cause airway wall thickening, airway lumen narrowing, edema, mucous hypersecretion



1.4. CM  COPD  A 13

and bronchoconstriction, as shown in Fig. 1.5. These patholgies contribute to airway obstruc-

tion with increased airflow resistance typically found in asthmatics. These effects also lead to

increased difficulty in lung emptying and may result in hyperinflation.

Figure 1.5: Small airway and lung parenchyma pathologies. Top panel: normal, COPD and
asthma airways are shown from left to right. COPD airways: infiltration with inflammatory
cells, reduced airway caliber, thickened smooth muscle, connective tissue deposition, and dis-
rupted alveolar attachments; Asthma airways: inflammatory cells exudation, thickened smooth
muscle and basement membrane with increased airway wall thickness. Bottom panel: normal
and COPD lung parenchyma. Adapted from Hogg et al., Lancet (2004) [51] and Woods et al.,
Magnetic Resonance in Medicine (2006) [52].

1.4 Clinical Managements of COPD and Asthma

1.4.1 Lung Function Measurements

Pulmonary function tests (PFTs) provide the most common clinical measurements of lung

function for the diagnosis and management of obstructive lung disease. PFTs provide three

sets of overall lung function measurements including dynamic air flow, lung volumes and gas
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exchange. These measurements play an important role in pulmonary disease diagnosis, moni-

toring, and treatment effectiveness evaluation.

1.4.1.1 Spirometry

Spirometry provides a physiological evaluation of lung function by measuring the volume of

air that an individual inhales or exhales as a function of time [53]. Spirometry is usually

performed using a hand-held spirometer and provides two main measurements - the forced

expiratory volume in 1 second (FEV1) and the forced vital capacity (FVC). This procedure is

performed with the subject in a seated position and breathing through a mouthpiece attached to

the spirometer. The subject starts with normal breathing and then inhales maximally followed

by a maximally forced exhalation as fast and as long as possible. Figure 1.6 shows a spirometer

and the plot on the right depicts the volume of air inhaled and exhaled as a function of time

during this procedure. Following the maximal inhalation, the volume of air that is exhaled in

the first second is referred to as FEV1 and the total volume of air that can be maximally exhaled

is FVC, from which an additional index, FEV1/FVC, is derived. To mitigate the dependence

of FEV1 and FVC measurements on age, height, gender and ethnicity, these values are usually

reported in “percentage predicted” or %pred.

Time (s)
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Inspiration

Expiration
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FEV1 FVC

Figure 1.6: Handheld spirometer and volume-time airflow curve depicting FEV1 and FVC.
FEV1 = forced expiratory volume in one second, FVC = forced vital capacity.
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1.4.1.2 Plethysmography

Plethysmography is performed during a series of coached breathing manouvers in a closed

system. This procedure provides a number of lung volume and capacity measurements [54].

The tidal volume (TV) is the amount of air inhaled and exhaled during normal breathing.

The inspiratory reserve volume (IRV) is the volume of gas than can be maximally inhaled

at the end of normal inspiration. The expiratory reserve volume (ERV) is the volume of gas

the can maximally exhaled at the end of normal exhalation. The vital capacity (VC) is the

maximum amount of air that can be expelled after a maximum inhalation, and can be calculated

as IRV+TV+ERV. The residual volume (RV) is the amount of air that remains in the lung after

a maximal expiration. The functional residual capacity (FRC) is the volume of gas remaining

in the lung at the end of passive exhalation. The inspiratory capacity (IC) is the volume of

air that can be maximally inhaled from exhalation of tidal breathing. The total lung capacity

(TLC) is the volume of gas in the lung following a maximal inhalation. Figure 1.7 illustrates

the measurements and relationships of these lung volumes.

The subject is seated upright in an air-sealed plethysmograph chamber and breaths nor-

mally through a mouthpiece with a shutter. At the end of normal expiration, the shutter closes

the mouthpiece and the subject is instructed to make inhalation efforts, which expand the lung

and decrease the gas volume in the chamber. The gas pressure in the box before and after

the inhalation effort can be measured and the volume of the box is known. Following Boyle’s

law [55], the change in the lung volume (or the decrease of gas volume in the box) can be

calculated. In the meantime, the pressure at the mouthpiece before and after the inhalation

effort is measured, and with the calculated lung volume change, the resting lung volume FRC,

can be derived. Similarly, the other static volumes can be obtained though maximal inhala-

tion/exhalation, and normal inhalation/exhalation as well as the relationships between these

volumes in Fig. 1.7.
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Figure 1.7: Body plethysmograph and measurements of lung volumes using a volume-time
curve. Adapted from Wanger et al., European Respiratory Journal (2005) [54].
IC = inspiratory capacity, ERV = expiratory reserve volume, RV = residual volume, VC = vital capacity, IRV =

inspiratory reserve volume, TV = tidal volume, FRC = functional residual capacity, TLC = total lung capacity.

1.4.1.3 Diffusing Capacity

The diffusing capacity of the lung for carbon monoxide (DLCO) is an indirect measure of gas

diffusion across the alveolar-capillary membranes. In the plethysmograph chamber, the subject

is instructed to exhale to RV and then make a maximal inhalation to TLC by breathing in a

gas mixture of helium (∼10%), carbon monoxide (∼0.2%) and room air. The subject is then

instructed to hold his/her breath for ∼10 s and exhale through a mouthpiece [56]. During this

breath-hold, the carbon monoxide and helium diffuse across the alveolar membrane into the

blood. The exhaled gas is collected with the gas volume exhaled at the beginning discarded

(anatomic dead space) [56]. The remaining gas mixture is analysed to obtain the concentration

of carbon monoxide and helium in comparison with that before the breath-hold. Therefore, the

amount of carbon monoxide that diffuses into the pulmonary circulation can be estimated.

It should be noted that these PFT measurements require considerable patient efforts (po-

tentially problematic for children and patients with severe lung disease), lack reproducibility

and provide only global rather than regional measurements of pulmonary complications that

are thought to be highly heterogeneous. Nevertheless, PFTs are routinely performed in clinics

and remain the gold standard for clinical lung disease managements largely due to the low cost,
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wide availability and the relative ease of use.

1.4.2 Lung Functional Decline

1.4.2.1 Normal Aging

The physiological changes of the lung during aging result in changes of clinical measurements

of lung function including airflow, lung volumes and gas exchange. The seminal work by

Fletcher and Peto in 1977 [57] provides the basis for our current understanding of lung function

change during aging, as shown in Fig. 1.8. This study [57] shows that, starting from the

age of 25, FEV1 declines continuously at a rate of ∼42 ml/year over a lifetime without the

development of clinically significant airflow obstruction in most cases. Other studies have

shown lung volume changes due to the effects of aging. For example, previous studies [30, 28,

31] observed increases in RV, RV/TLC and FRC and decreases in VC while TLC shows no

significant change over time. The increase in RV (indicative of air trapping) and FRC is likely

due to the increased chest wall rigidity and diminished lung elastic recoil [28]. TLC remains

almost constant due to the balanced effects of decreased elastic recoil of the lung and increased

elastic recoil of the chest wall [30, 28]. There is also increase in the anatomic deadspace that

was thought due to calcification of the cartilage in large airways wall [58]. Regarding gas

exchange, previous studies [31] demonstrated a decline in DLCO with age, and this is likely

due to reduction of alveolar surface area, decreased density of lung capillaries and a decline in

pulmonary capillary blood volume [28].

1.4.2.2 Obstructive Lung Disease

The pathological changes (Sec. 1.3) involved in COPD result in pulmonary physiological

abnormalities including mucous over-production, ciliary dysfunction, airflow obstruction, hy-

perinflation, gas exchange abnormalities, pulmonary hypertension and systemic effects [45].

Mucous hypersecretion associated with chronic bronchitis however, does not necessarily cause
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Figure 1.8: Normal lung function decline during aging in never smokers and accelerated lung
function decline in regular smokers. However, following smoking cessation, lung function
decline rates return to normal. Adapted from Fletcher et al. British Medical Journal (1977)
[57].

airflow limitation. Ciliary dysfunction may result in difficulty in mucous expectoration. Small

airway pathologies (i.e., mucus production, edema, airway fibrosis, airway smooth hyperpla-

sia, loss of radial traction from alveoli) cause airway narrowing and reduced airway caliber,

leading to increased airway resistance, reduced airflow and hyperinflation. The degraded phys-

iological changes are reflected by reduced FEV1, FVC and FEV1/FVC. FVC is reduced and

RV is increased because of premature airway closure during expiration at abnormally high lung

volumes. Increased FRC, TLC and RV/TLC arise from hyperinflation due to the loss of lung

elastic recoil. The barrel-shaped chest common in COPD subjects is due to lung hyperinfla-

tion and decreased lung compliance, which result in increased efforts required for breathing.

Alveolar space enlargement, alveolar wall destruction and pulmonary capillary bed apopto-

sis result in decreased surface area for gas exchange (i.e., reduced DLCO in advanced stages)

and ventilation-perfusion mismatch. Gas exchange abnormalities and ventilation-perfusion

mismatch results in hypoxia, hypercapnia and pulmonary hypertension due to hypoxic vaso-
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constriction of pulmonary arteries. Severe COPD also involves severe systemic effects, i.e.,

cardiovascular disease. Clinically, a post-bronchodilator FEV1/FVC < 70% confirms the di-

agnosis of COPD and the severity is classified according to the Global Initiative for chronic

Obstructive Lung Disease (GOLD) criteria [17] as shown in Table 1.1.

Table 1.1: Grading of COPD airflow limitation severity based on post-bronchodilator FEV1

GOLD stage Severity FEV1/FVC < 70%
GOLD I Mild FEV1%pred≥80%
GOLD II Moderate 50%≤FEV1%pred<80%
GOLD III Severe 30%≤FEV1%pred<50%
GOLD IV Very severe FEV1%pred<30%

FEV1 = Forced expiratory volume in one second, FVC = Forced vital capacity,
%pred = Percent predicted value.

In asthma, the complex inflammation process causes airway smooth muscle hypertrophy,

mucous gland hyperplasia, basement membrane thickening, and continuing cellular infiltration.

The associated physiological changes, especially during an asthma attack, include changes

of airflow and lung volumes. For example, expiratory flow is reduced as reflected by FEV1

and FEV1/FVC due to increased airway obstruction. FVC is decreased and RV is increased

because of airway closure during expiration. FRC and TLC are increased due to lung hy-

perinflation and RV/TLC is increased, indicative of gas trapping. In clinical management of

asthma, it is important to assess asthma control and severity to evaluate patients and optimize

the treatments. Asthma control is defined as the extent to which the manifestations of asthma

are reduced by treatments, encompassing evaluation of current impairment and future risk [59].

According to the Global Initiative for Asthma 2017 [46], asthma control is categorized as either

“well-controlled” or “poorly-controlled”. Asthma severity refers to the difficulty in controlling

asthma with treatments [59] and can be classified as “mild”, “moderate” and “severe” [46].
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1.5 Pulmonary Imaging and Imaging Biomarkers

1.5.1 Chest x-ray

X-rays were discovered by Wilhelm Röntgen in 1895 and very quickly translated to clinical ap-

plications across the world. Today, x-rays are widely used as a preeminent imaging technique

of modern medicine [60]. X-rays are typically generated using an x-ray tube that converts

electrical power to electromagnetic radiation. An x-ray tube is a vacuum container housing

a tungsten filament, a cathode and an anode. When the filament is heated up by an electri-

cal current, electrons with enough thermal energy escape from the metal atoms. A very high

voltage (i.e., 30-150 kV) is applied between the cathode and the anode to accelerate the es-

caped electrons. The highly accelerated electrons strike the anode and the electron-anode atom

collision generates heat and importantly produces x-rays through bremsstrahlung and charac-

teristic emission. Bremsstrahlung is the process when the electrons interact with nuclei and

the lost kinetic energy is emitted as x-ray photons with many energies. Characteristic emission

is another way to generate x-ray photons through electron-electron collisions. The accelerated

electrons collide with the inner orbital electrons of the anode metal atom. When the energetic

electrons have enough energy, the inner orbital electrons are knocked off and the empty or-

bits are filled by electrons from higher energy orbits, releasing characteristic x-ray photons.

When the generated x-ray photons pass through body tissue, a number of interactions happen.

Coherent scattering occurs when low energy x-ray photons collide with tissue atoms, result-

ing in scattered photons without depositing energy to the tissue. Photoelectric effect occurs

when the energy of x-ray photons is below ∼25 keV. The incoming photon interacts with an

innermost orbital electron of the atom and the photon energy is completely absorbed, result-

ing in an escaped orbital electron that travels throughout the body tissue. When the energy of

x-rays increases, Compton effect becomes predominant over photoelectric effect. The incident

x-ray photons collide with outer orbital electron of tissue atom, transferring energy to eject the
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electron from the atom and resulting in scattered photons with loss of directional information.

The x-ray-tissue interactions result in removal of some of the photons, known as attenuation.

Attenuation coefficient is a term that determines the average intensity of x-rays at a specific

energy travelling through a specific material. Different tissues have different attenuation coef-

ficients and result in different average x-ray intensities that are measured by an image receptor

to generate a radiograph.

Chest x-ray is the most commonly used method to evaluate lung abnormalities because of

the wide availability, low cost, fast image acquisition and low radiation dose. Posterior-anterior

chest x-rays are performed in the upright position and the patients’ hands are placed on the back

of their hips with the elbows rolled slightly forward so that the scapulae are removed from the

field of view [61]. Lateral projections are also commonly acquired with the patients’ sagittal

plane parallel to the film and arms folded over the head to eliminate the presence of their arms

in the image [61]. When x-ray beams travel trough the body, part of them are absorbed, termed

as attenuation. Different tissues attenuate x-rays at different levels and this contributes to x-ray

image contrast. For example, high attenuating structures such as bone absorb many x-rays and

appear white while low attenuating tissues such as lung parenchyma absorb fewer x-rays thus

appear black in the image. The typical dose associated with a chest x-ray is around 0.01 mSv,

which is equivalent to approximately three days of background radiation [62]. The resulting

images provide poor soft tissue contrast, superposition of different tissues onto each other and

limited diagnostic information.

Chest radiographs have been used to detect a number pulmonary complications of COPD

and asthma. Chest radiographs are mostly useful for detecting COPD at advanced stages

i.e., emphysema. The abnormal findings typically include enlarged lung volumes, increased

anterior-posterior diameter of the chest, flattened diaphragm, reduced pulmonary vessels, thick-

ened bronchial wall, increased retrosternal space and focal hyper-lucent areas [63, 41], as

shown in Fig. 1.9. Radiographic abnormalities associated with asthma are generally subtle

and mainly include enlarged lung volumes, increased lung lucency, thickened bronchial wall
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and mild prominence of hilar vessels [41]. Although there are some conflicting views of the

utility of chest radiograph for obstructive lung disease management [64, 65, 66, 67], it is valu-

able in excluding pneumonia or other complications [68].

AsthmaHealthy COPD

Figure 1.9: X-ray radiograph of a healthy, COPD and asthma subject. Healthy case courtesy
of Dr. Ian Bickle, Radiopaedia.org, rID: 50318. COPD (predominantly emphysema) case
from The Townsville Hospital, Radiopaedia.org, rID: 19446. The lung is hyper-inflated as
evidenced by more than 10 posterior ribs, flattened diaphragm, narrowed mediastinum and
regions of hyper-lucency that are indicative of emphysema. Asthma case courtesy of Dr. Ian
Bickle, Radiopaedia.org, rID: 33470. Lung hyper-inflation is indicated by flattened diaphragm
and more than 6 anterior or 10 posterior ribs at the lung diaphragm level.

1.5.2 X-ray Computed Tomography

Although widely used, there are a number of limitations associated with plain x-ray imag-

ing including low image contrast and importantly, the inability to provide 3D visualization of

anatomical structures. An x-ray-related technique, computed tomography (x-ray CT) was de-

veloped in the 1970s to overcome these limitations and has been widely used in clinics. X-ray

CT employs elaborately organized x-ray sources and x-ray detectors to acquire a series of x-ray

projections and provides cross-sectional visualization of the inside of objects through appropri-

ate data manipulation. While several CT scanner designs are available, they typically integrate

an x-ray source and an x-ray detector array with fixed relationship. A fan-shaped x-ray beam

travels through body tissue and photon attenuation information of the tissue is measured by
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the detector array. The x-ray source and detector array are rotated around the object and a

number of projections are acquired for the current slice. Once complete, the x-ray source-

detector is moved to the next slice and the whole procedures are repeated until the desired

object is covered. The acquired x-ray attenuation information is then reconstructed to generate

cross-sectional images. The resultant images are represented by matrices, where each element

has a CT number (or Hounsfild unit (HU)) that is proportional to the actual voxel density and

calculated by comparing the attenuation coefficient of the tissue to water:

HU =
µtissue − µwater

µwater
× 1000 , (1.1)

where µtissue and µwater represent the attenuation coefficients of tissue and water, respectively.

Soft tissue such as liver has a CT number around 30 - 50 HU, blood around 80 HU, bone

around 1500 - 4000 HU, air around -1000 HU depending on pressure [69]. The radiation

dose associated with a typical chest CT is ∼8mSv [69], which is equivalent to ∼3.6 years

natural background radiation or 400 chest x-rays [69]. Figure 1.10 shows chest CT of a healthy

volunteer, COPD and asthma subject.

1.5.2.1 Lung Parenchyma Abnormalities

Chest CT has been routinely used to evaluate lung parenchyma and airway structural abnormal-

ities in COPD patients. Emphysema is a pathophysiological subtype of COPD characterized by

distal airspace enlargement due to alveoli destruction, leading to decreased lung parenchyma

density. Emphysematous regions of the lung appear dark in chest CT, and this has been previ-

ously evaluated by comparing chest CT and post-mortem measurements [70]. Previous studies

have demonstrated strong and significant correlations between chest CT gradings and patho-

logical findings of emphysema. However, these grading methods were mainly based on visual

inspection and introduced considerable intra- and inter-observer variability [71]. Later, com-

puterized chest CT analysis methods were developed to provide quantitative information about
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emphysema. One of the most commonly used methods separates emphysematous lung regions

from normal tissue by identifying inspiration CT voxels with HU below -950 [72]. Another

widely used method employs the lowest 15% of inspiration CT lung signal intensity histogram

to identify emphysematous lung parenchyma [72] and this method is preferred for longitudinal

evaluation of chest CT [72]. These automatic quantitative analysis results have demonstrated

correlation with radiologists’ interpretation [73], pulmonary function test results [74], macro-

scopic and microscopic pulmonary histology measurements [75, 76]. However, these single

threshold-based measurements may not best approximate radiologists’ interpretation prefer-

ence [77]. Recently, another approach was developed to provide optimal emphysema classifi-

cation using principle component analysis of whole lung and regional lung density histograms

[77]. Other methods have been developed to cluster emphysema based on the size and distribu-

tion of emphysematous lesions [78]. The relationship between the total number of emphysema

clusters and cluster sizes has been investigated for emphysema progression evaluation - fewer

but larger emphysematous bullae indicates more severe emphysema [78].

1.5.2.2 Airway Disease

Airway disease is another pathological feature associated with obstructive lung disease and

chest CT has been used to evaluate airway abnormalities. High resolution CT provides a way

to measure airway tree structure up to the fifth or sixth generation in 3D. Chest CT findings of

airway abnormalities associated with obstructive lung disease include bronchiectasis, bronchial

wall thickening, mucous plugging, atelectasis, and mosaic lung attenuation. Bronchiectasis

exhibits localized, dilated airways and is usually associated with increased internal bronchial

diameter than adjacent pulmonary arteries [41]. Bronchial wall thickening is usually present

with bronchiectasis with thicker airway wall and the identification is largely subjective [41].

Several approaches have been developed to segment the airway tree including commercial

implementations (Pulmonary Workstation V2.0, VIDA Diagnosis, Coralville, IA, USA). The

segmented airways are quantified to provide airway dimensions such as bronchial wall thick-
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ness, wall area, wall area percent and lumen area [79]. However, these analyses are limited

to large airways while small airways (diameters <2 mm), which are the major sites of airflow

obstruction in obstructive lung disease, cannot be directly assessed using CT due to spatial

resolution limitations [72]. Previous studies [80] have shown that small airway obstructions

resulted in prolonged time constants for lung filling and emptying, leading to gas trapping in

obstructive lung disease. Therefore, small airway abnormalities can be indirectly assessed by

quantifying expiration CT, where gas trapped regions exhibit low attenuation, i.e., mosaic at-

tenuation pattern. The extent of gas trapping can be estimated by thresholding the expiratory

CT using -856 HU [81] but emphysema-related hyperinflation cannot be differentiated. Other

approaches quantify gas trapping due to small airway disease regardless of emphysema by cal-

culating the relative volume change [82], mean lung signal ratio [83] and voxel-by-voxel signal

intensity relationships [84] between inspiratory and expiratory CT.

In asthma patients, previous studies have shown that CT-derived gas-trapping and airflow

limitation measurements were correlated with clinical measurements [85, 86, 87]. Other stud-

ies have shown that CT-derived air-trapping worsened following methacholine challenge [88,

89] and improved after bronchodilator treatment [88, 89, 90]. Further investigations demon-

strated that CT-determined gap-trapping was associated with disease duration [91], asthma

severity [86, 87, 91], and airway hyperresponsiveness [88, 87]. Regarding large airways, pre-

vious studies observed decreased bronchial wall area after salbutamol [89] and increased wall

thickness [92] associated with airflow obstruction [92, 93] in asthmatics than healthy controls.

Other studies [92] have shown greater bronchial wall thickness ratio and wall area percent in

asthmatics with deficient airflow reversibility than those without.

In COPD patient, previous studies have shown that CT-derived emphysema measurements

were inversely associated with exercise capacity [94, 95, 96], lung volumes and function

[74, 97, 98], dyspnea and quality of life [99], exacerbation [100], histological measurements

[75, 101] and radiologists’ assessments [73, 102]. In addition, chest CT provides a way to

differentiate subtypes of emphysema, i.e., centrilobular, panlobular, and paraseptal emphy-
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sema, based on the regional and anatomical distributions of CT findings [103]. Regarding large

airway abnormalities, previous studies have shown correlation between airway wall thicken-

ing and COPD symptoms [104], lung functional deficits [104, 105], exacerbation frequency

[95, 100] and bronchodilator responsiveness [106]. For small airways, previous studies have

demonstrated that CT measurements of gas trapping correlated well with spirometry measure-

ments, exercise capacity, quality of life [107] and other imaging measurements of lung function

[108].

Healthy AsthmaCOPD

Figure 1.10: Representative CT images of a healthy, COPD and asthma subject.

In addition to a wealth of unique and quantitative pulmonary structural abnormality mea-

surements, chest CT can also provide functional assessment of the lung in patients with COPD

and asthma. Xenon-CT employs inhaled radiodense xenon gases to change the density of local

lung region and airspaces that contain Xenon exhibit higher Hounsfild units indicating ven-

tilation [109]. Dual energy CT provides another way of assessing lung function. Previous

studies employed xenon-CT and dual-energy CT and observed ventilation, perfusion and ven-

tilation/perfusion ratio that were correlated with pulmonary function measurements in COPD

patients [110]. Other studies of asthmatics have shown that Xenon-CT ventilation defects were

associated with worse spirometry measurements and thicker airway walls [111], which were

increased and decreased following methacholine and salbutamol, respectively [112].
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1.5.3 Nuclear Medicine

Nuclear medicine techniques such as single photon emission computed tomography (SPECT)

and positron emission tomography (PET) utilize radioactive tracers, termed as radiopharma-

ceuticals, to acquire physiological function information. The radiopharmaceuticals are gen-

erated by bonding unstable radioactive atoms to pharmaceutically active molecules that are

involved in certain physiological processes through injection, oral ingestion or inhalation.

The bonded unstable radioactive atoms undergo radioactive decay to become more stable by

spontaneously emitting particles and/or photons. For example in nuclear medicine imaging,

technetium-99m (99mTc), which is a commonly used radionuclide, undergoes isomeric transi-

tion into stable 99Tc and emits a γ photon. A γ-ray detector (also known as Anger camera) is

placed around the patient to detect the emitted γ photons. The number and position of the emit-

ted γ photons are acquired and used to generate physiologically-relevant patient information.

A gamma camera selects γ-rays from a specific direction and converts the γ-rays’ energy into

visible light photons with a scintillation crystal, i.e., NaI. The generated visible photons are

collected and converted by photosensors, i.e., photomultipler tubes, into photoelectrons, which

are then amplified to detectable electrical signals that are proportional to γ-rays’s energy and

encode spatial location information of the γ-rays. A computer system is then used to compile

these signals, decode the location and intensity information and finally generate an image.

Similar to planar x-ray, a single static gamma camera only provides a 2D functional image

without depth information. SPECT, similar to CT, can provide 3D tomographic images by ro-

tating a gamma camera around the object or using multiple/ring gamma cameras to acquire a

number of projections at different angles. Designed based on gamma cameras, SPECT shares

some limitations as gamma cameras, including low spatial resolution, long scan time and inef-

ficient use of radionuclides. Another related technique is PET that detects photon pairs rather

than a single photon during radionuclide decay. PET employs radionuclides that undergo Beta+

decay with emission of positrons. The emitted positrons travel a short distance before interact-
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ing with atomic electrons. This interaction results in annihilation of the positron-electron pairs

and emission of two 0.511 MeV γ photons in opposite directions. These γ-ray pairs encode

not only the spatial location information but also importantly the direction information of γ

photons, which constitutes to higher sensitivity of PET over SPECT. The two γ photons are

detected by two detector elements and the location of radionuclide Beta+ decay is restricted to

that line, which is then sorted to construct a 3D image.

Nuclear medicine methods have been used to evaluate lung function including ventilation,

perfusion and ventilation/perfusion ratio through inhalation or injection of radiotracers. Ra-

dioactive gases (133Xe, 81mKr), aerosols (99mTc-diethylenetriamine pentaacetate (DTPA)) and

Technegas have been used for SPECT ventilation imaging through inhalation while 99mTc-

macroaggregates of albumin (MAA) are typically used for SPECT perfusion measurements

via intravenous injection [113]. Regional distributions of the radiotracers are used to mark

the physiological processes. 133Xe is the most traditional inhaled agent for SPECT ventilation

imaging for assessments of regional lung volume and ventilation [114]. Although relatively

inexpensive and readily available, 133Xe has a long half-life, low spatial resolution due to low

energy and requires significant patient cooperation [115]. 81mKr has an optimal energy, short

half-life and allows for spontaneous measurements of ventilation and perfusion. However,

81mKr is extremely expensive with limited availability, and has critical requirements on gener-

ators, prohibiting its routine use [115]. More recently, 99mTc-based radioactive aerosols have

been used to evaluate regional ventilation as they are relatively inexpensive, easy to use and

readily available [115]. However, a major concern is the size of the particles. For example, the

large particles (>1 µm), i.e., 99mTc-DTPA, result in hyperdeposition in the central airways with

limited ventilation information [113] while small particles (<1 µm), i.e.,Technegas, lead to

alveolar deposition with distortion due to alveolar-capillary clearance [113]. In general, Tech-

negas is preferred due to homogeneous distribution and less focal deposition in both large and

small airways [116]. SPECT perfusion images are typically acquired following intravenous

injection of 99mTc-MAA. The large size particles (10-150 µm) block the pulmonary arterial cir-
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culation, giving a relative measurement of regional blood flow. The radiation dose associated

with a typical SPECT scan using 99mTc for combined ventilation and perfusion is ∼2-3 mSv

[113]. SPECT-derived asthma airway closure measurements have been correlated with clini-

cal findings [117], and changes were observed following bronchoconstriction [118, 119] and

associated with peripheral airways disease [119]. Regional ventilation and perfusion changes

were observed following bronchodilator [118, 120], exercise [121], allergen challenge [122],

and histamine inhalation [123, 124]. In COPD patients, SPECT-derived airway obstruction

measurements have been correlated with lung function tests [125] and higher degree of air-

way obstruction was observed compared with healthy controls [126, 127]. SPECT ventila-

tion/perfusion mismatching was observed in emphysema patients with superior sensitivity than

CT [125, 128, 129] and was shown to be sensitive for early detection of obstructive lung disease

[130, 131]. Different ventilation/perfusion matching patterns were observed in emphysema pa-

tients compared to healthy controls [128].

PET employs positron emitters to generate regional physiological measurements of the lung

including ventilation, perfusion and cellular inflammation. 13N has been used for PET venti-

lation and perfusion [132] through inhalation or bolus injection. For example, through bolus

injection, 13N delivered in the blood stream diffuses across the alveolar membrane and enters

the lung due to its insolubility in blood or tissue. As a result, unventilated lung regions retain

the tracer due to gas trapping while ventilated areas do not. 18F-fluorodeoxyglucose (FDG), an

analogous glucose, is the most commonly used PET radiotracer due to high uptake in metabol-

ically active cells, i.e., cancer. In asthma patients, PET has revealed poor lung ventilation [133]

and systematically reduced regional perfusion [134] due to bronchoconstriction. Other stud-

ies have demonstrated the utility of using PET to quantify pulmonary neutrophilic [135] and

eosinophilic [136] inflammation. Another study [137] observed correlation between lung tissue

density and PET perfusion, ventilation/perfusion ratio measurements. In addition, high ven-

tilation/perfusion ratio was observed in emphysema dominant obstructive lung disease while

low ventilation/perfusion ratio tended to be more common in small airways disease. In COPD,
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PET demonstrated significantly higher heterogeneity of perfusion and ventilation/perfusion ra-

tio than healthy controls [138]. PET has demonstrated higher 18F-FDG uptake and increased

neutrophilic inflammation correlated with disease severity [139]. PET ventilation/perfusion

mismatch has demonstrated close correlation with the severity of gas exchange deficits mea-

sured using arterial partial pressure of oxygen [140].

Although promising, a number of limitations have restricted the routine use of nuclear

medicine methods for pulmonary disease management including low image resolution and

long image acquisition time for SPECT, and a need for a cyclotron and radiopharmaceutical

formulation for PET.

1.5.4 Pulmonary Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) makes use of the nuclear properties of atoms [141, 142].

Nuclei of of atoms with an odd number of protons and neutrons together generate spin and

small magnetic moments along the spinning axis. Hydrogen (1H) nuclei of water (proton), pro-

vide commonly named protons, and this is the most commonly used nucleus for medical MRI

due to its high concentrations (body tissues consist largely of water) and their strong magnetic

moments. In the absence of an external magnetic field, these nuclear magnetic moments are

randomly oriented in the body and the net macroscopic magnetic moment is zero. However,

when placed in a strong external magnetic field ~B0, such as provided by the MR scanner, these

magnetic moments align with ~B0 either in parallel or anti-parallel direction, corresponding to

lower and higher energy states, respectively. The magnetic field ~B0 generates spin torque,

which causes the spins to precess around ~B0 at a specific nuclear frequency ω (Larmor fre-

quency, i.e., ω ≈42.3 MHz/T for 1H). For tissues, the net magnetization ~M, which is the product

of the sum of the vector magnetic moments, is non-zero in ~B0 direction. However, the net mag-

netization ~M under the static external magnetic field ~B0 cannot be detected macroscopically. In

order to detect this signal, a radiofrequency (RF) pulse at the Larmor frequency with an energy

that equals the energy difference between the two energy states is applied perpendicular to ~B0.
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RF excitation results in a torque that tilts ~M away from ~B0 direction, generating a magnetiza-

tion component ~M′ in the transverse plane rotating at the Larmor frequency. The rotating ~M′

in the transverse plane induces a change of magnetic flux through a receiver coil and therefore,

generates a time-varying voltage at the Larmor frequency. The voltage in the receiver coil is

the MRI signal that is detected and decays over time, which is called free induction decay.

This free induction decay results from loss of coherence in the transverse component ~M′ due

to local variations in the magnetic field and spin-spin interactions, called transverse relaxation

(T2). The decay constant is termed T2∗, which is shorter than T2 due to local magnetic field

inhomogeneities. The longitudinal component ~M along ~B0 also decays back to the low energy

state due to interactions between spins and the surrounding environment, which is called lon-

gitudinal relaxation (T1). The MRI signal (or the receiver coil voltage) is determined by the

1H density in tissues, the main magnetic field strength, temperature, nuclear-specific magnetic

properties, and relaxation time (different tissue have different relaxation time). To acquire dif-

ferent MRI signals from the different anatomical regions, it is necessary to spatially vary the

magnetic field across the anatomy by incorporating three different magnetic field gradients (x,

y, and z). Conventionally, the process of multi-slice 2D MRI signal acquisition consists of slice

selection, frequency encoding and phase encoding procedures. The slice selection procedure

(combination of the frequency offset RF pulse with z-gradient determining slice thickness) re-

stricts signal responses from a region by selectively exciting the spins within a specific slice or

plane exposed to a specific magnetic field. Within the selected slice, a phase encoding gradient

or y-gradient selects the same phase line and the frequency encoding gradient or x-gradient

is turned on while the receiver is triggered. Thus, MR signals at different locations along the

frequency encoding direction with the same y-phase are detected. These x-y steps are repeated

a number of times until all the signals from selected plane are acquired to generate an image.
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1.5.4.1 1H MRI

MRI is an imaging method that provides excellent soft tissue contrast of the anatomy with high

spatial resolution and no ionizing radiation. Despite these advantages, conventional 1H MRI

of the lung has been technically challenging due to a number of reasons. The lung is largely

an air-filled organ with typically ∼800 g lung tissue distributed over a ∼4-6 L lung volume

[143, 144]. Since MRI signal intensity is proportional to 1H density in the tissue, the low

lung tissue density and low 1H atom density result in low MRI signal intensity. In addition,

an adult lung consists of ∼480 million alveoli [25] and the countless air-tissue interfaces lead

to local magnetic field inhomogeneities [145]. Since 1H spin precession frequency is deter-

mined by the local magnetic field, the 1H atoms at these air-tissue interfaces spin at different

rates, leading to increased dephasing of the magnetization and signal decay. Furthermore, due

to the relatively slow image acquisition speed, the respiratory and cardiac motion cause arte-

facts that further degrade MRI image quality. Because of these limitations, it was thought that

conventional pulmonary 1H MRI provides limited information about the lung, although a num-

ber of studies have demonstrated its clinical utility. For example, previous studies of asthma

anti-inflammatory treatments using conventional 1H MRI demonstrated different regional al-

lergic reaction with different allergen doses. The MRI-based treatment response measurements

corresponded to eosinophilic responses, suggesting the promising utility of MRI for asthma

management [146]. Other studies of asthma employed multiple 1H MRI acquisitions to gener-

ate ventilation measurements that were correlated to pulmonary function tests [147] and noble

gas MRI outcomes [148]. In COPD, previous studies observed inspiration-expiration 1H MRI

lung signal intensity changes that were correlated with airflow obstruction measurements [149].

Another study has revealed inflammatory bronchial wall thickening, mucus secretion, emphy-

sematous tissue loss, reduced blood volume in COPD using 1H MRI [150]. A recent study

demonstrated lower 1H MRI lung signal intensities that were related to CT emphysema mea-

surements and higher anterior-posterior signal intensity gradients in COPD patients compared

to never-smokers [151].
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Oxygen-enhanced MRI (OE-MRI) [152] was developed in the 1990s to provide regional

pulmonary ventilation information using molecular O2 as a contrast agent. Molecular O2 con-

tains two unpaired electrons in the outer shells and is weakly paramagnetic. The presence of

O2 will accelerate the longitudinal relaxation of protons in lung tissue depending in O2 con-

centration [152]. Previous studies have shown that MRI oxygen enhancement measurements

of COPD were correlated with lung diffusing capacity [153, 154], lung function measurements

[153, 155], CT emphysema score [153] and disease stages [155]. In asthma, studies have

shown different O2 enhancement ratio across asthma severities and correlation with lung func-

tion measurements [156, 157, 158]. Another study demonstrated decreased oxygen transfer

function after segmental allergen challenge and increased volume of lung tissue with prolonged

relaxation times that were correlated with the percentage of eosinophils measurements [159].

Fourier decomposition of free-breathing pulmonary 1H MRI (FDMRI) has been developed

for visualization and quantification of lung ventilation and perfusion using conventional MRI

systems [160]. FDMRI exploits fast acquisition and deformable registration of a series of free-

breathing conventional pulmonary 1H MRI without using exogenous contrast agents. In the

spatially aligned images, MRI signal intensity oscillations over time can be decomposed us-

ing Fast Fourier Transforms to generate functional ventilation and perfusion maps [161]. In

COPD, previous studies have shown that FD-derived lung ventilation measurements were cor-

related with 3He MRI lung ventilation outcomes (with high spatial overlap) [162, 163], airway

resistance [162] and CT emphysema score [162, 164]. However, limited work of using free-

breathing 1H MRI for asthma evaluation has been done so far. A pioneering study of lung

disease including asthma explored 1H MRI lung signal intensity changes during breathing as a

surrogate measurement of lung function [147]. This study demonstrated excellent correlation

between FDMRI-derived lung ventilation and pulmonary function measurements [147]. A re-

cent study of asthma [165] demonstrated that FDMRI-derived ventilation defect measurements

increased after methacholine challenge and decreased after salbutamol, and similar results were

observed using 3He MRI. Using the same technique, another study observed correlation be-
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tween free-breathing 1H MRI ventilation and 3He MRI ventilation measurements and lower

FDMRI ventilation outcomes in asthmatics compared to healthy volunteers [148].

As previously discussed, conventional 1H MRI of the lung is challenging due in part to

low tissue density and magnetic susceptibility that result in fast MR signal decay. As a result,

the lung appears as a black hole with limited structural information when conventional MR

spin-echo pulse sequences are used. Ultra-short echo-time (UTE) MRI acquisition methods

have been proposed to provide enhanced visualization of lung structure and function using

conventional MRI systems. UTE MRI employs short echo-time (time between the end of the

RF excitation to the beginning of data acquisition [166]) pulses to minimize signal decay and

motion artifacts and maximize the visibility of lung parenchyma [145]. Recent studies have

shown that UTE MRI provides enhanced visualization of pulmonary structures comparable to

CT [167, 168]. Figure 1.11 shows UTE MR images for a healthy, COPD and asthma subject

compared to conventional 1H MRI. In asthma, previous studies [169] have shown that UTE

MRI lung static and dynamic signal intensities were lower than healthy volunteers, correlated

with lung function and CT radiodensity measurements. In COPD, previous studies demon-

strated significant correlations between lung function measurements and both CT and UTE

MRI lung densities [170]. UTE MRI lung signal-intensity measurements were also correlated

with CT emphysema measurements and lung function tests [171]. UTE MRI T2∗ values were

lower for severe COPD than moderate COPD and were correlated with lung function measure-

ments, and CT-based functional lung volumes [172].

1.5.4.2 Inhaled Noble Gas MRI

The challenges associated with conventional MRI of the lung can be overcome using inhaled

gaseous contrast agents, i.e., 3He and/or 129Xe, which permit direct visualization of MRI lung

airspaces. However, the low spin density of 3He and 129Xe gases compared with solid tissue

prohibits its MR detectability under thermal equilibrium polarization. Since MR signals are

determined by spin polarization, one way to improve MR signals of the noble gases is through
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Figure 1.11: Representative conventional FGRE and UTE MR coronal images of a healthy,
COPD and asthma subject. In conventional FGRE MRI, lung structural abnormalities inherent
to obstructive lung disease cannot be visually distinguished due to low tissue and 1H density. In
contrast, UTE MRI provides enhanced visualization of the lung with higher signal intensities
and regions of low signal intensities are visible in obstructive lung disease compared to the
healthy volunteer.

hyperpolarization to enhance the visibility of gases in a MR scanner. Hyperpolarization of

noble gases with 1/2 spin is typically achieved through optical pumping of alkali metal vapour

(i.e., Rb) and spin exchange between excited alkali atoms and noble gas nuclei [173]. The opti-

cal pumping technique involves a glass cell filled with a mixture of Rb vapour and noble gases

placed in a small magnetic field. Circularly polarized laser light is used to excite the electrons

of Rb atoms and through collisions, the polarized Rb electrons transfer angular momentum to

noble gas nuclei. This process results in increased noble gas nuclear spin polarization up to

10,000 times higher than thermal polarization [174], suppressing the signals from other tis-

sues. Although the initial investigation of noble gas MRI of the lung employed hyperpolarized
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129Xe, the focus quickly shifted to hyperpolarized 3He MRI. This is mainly because 3He pro-

vides higher magnetic moments (hence higher gyromagnetic ratio of -32.3 MHz/T for 3He vs

-11.8 MHz/T for 129Xe) and higher achievable polarization level (∼50% for 3He vs ∼20% for

129Xe) [175]. Since 1996 when the first noble gas MRI of human lung was acquired [176],

this technique was quickly adapted for a variety of lung disorders including asthma, COPD,

cystic fibrosis and lung cancer. Importantly, previous studies have demonstrated the excellent

safety [177] and tolerability [178] profile of this technique across a wide range of respiratory

disorders. Recently, the area of noble gas lung MRI is transitioning back to 129Xe due to its

higher natural abundance and lower cost compared to 3He as well as the advancements of

hyperpolarization techniques.

Using this technique, two types of images including spin density and diffusion weighted

images can be acquired to provide lung structural and functional information. Spin density

images provide high resolution visualization of noble gas distribution in the lung and the MR

signal intensities reflect regional gas abundance and ventilation upon inhalation. As shown in

Fig. 1.12, homogeneous noble gas MR signals are observed in healthy lung suggesting that

all regions of the lung are equally ventilated. In contrast, heterogeneous MR signals are ob-

served in asthma and COPD lung indicating that lung regions with no or low signal intensities

are poorly ventilated or not ventilated within the breath-hold procedure. Importantly, previous

studies have shown highly reproducible noble gas MRI lung ventilation and ventilation defect

measurements through short-term repeated scans [179, 180, 181] and consistence with other

imaging modalities [182]. Initial investigation of noble gas MRI of the lung involved radiolo-

gists’ visual interpretation [182, 183, 184], as well as manual [185, 186, 187], semi-automated

[188, 189] and automated [190] segmentation of noble gas MR images. A number of metrics

have been developed to quantify noble gas MRI including ventilation defect volume, ventilation

volume, coefficient of variation of signal intensities, ventilation defect percent (VDP). Among

these metrics, VDP is a widely used noble gas MRI biomarkers that is calculated by normaliz-

ing ventilation defect volume to the thoracic cavity [188]. To date, a number of investigations



1.5. P I  I B 37

have been performed to evaluate COPD and asthma static ventilation abnormalities using noble

gas MRI. In asthma, previous studies [179, 191] observed increased number of 3He ventilation

defects compared to healthy subjects. Similar observations were reported in children with

asthma than those without [192]. Another study [183] demonstrated that in asthma, the num-

ber of 3He ventilation defects per slice was greater than controls, related to asthma severity and

correlated with lung function measurements. Other investigations reported correlation between

3He VDP and airway resistance and dyspnea [193]. Greater 3He ventilation defects were also

related to worse airflow obstruction, greater airways resistance, airway inflammation [194] and

asthma control [195]. In addition, high spatial overlap was observed between 3He MRI venti-

lation defects and CT gas trapping measurements and lobar differences of 3He MRI ventilation

levels were related to neutrophilic inflammation [196]. Regarding asthma treatment, previous

studies have shown greater ventilation heterogeneity [197], and number and size [191, 193] of

ventilation defects following methacholine and exercise challenge. Improvements of 3He ven-

tilation were observed after bronchodilator [179, 198] with partial recovery [191, 193, 199].

In COPD, noble gas MRI VDP was correlated with lung function measurements [200], COPD

exacerbations [201] and pulmonary emphysema measurements [202]. Importantly, previous

studies [203] demonstrated improved 3He distribution after bronchodilator therapy regardless

of changes of FEV1 in COPD.

Diffusion weighted noble gas MRI provides a way to quantify pulmonary microstructure

by sensing the movements of inhaled gas atoms. Both 3He and 129Xe are highly diffusive and

after inhalation, the diffusion of gas atoms due to random Brownian motion is restricted by

the alveolar wall, bouncing back and forth within the airspace. Therefore, the “apparent” dif-

fusion coefficient (ADC) during the diffusion time interval can be used to reflect the extent

of alveolar restriction of gas atom movements, providing a surrogate measurement of airspace

dimensions [204]. For example, increased ADC (cm2/s) values reflect enlarged airspace and

these are valuable tools for evaluating lung structural changes, i.e., emphysema-related airspace

enlargements. The majority of diffusion-weighted imaging for ADC involves 3He. However,
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it is important to note that 129Xe provides added value of measuring transmembrane diffusion

across the alveolar wall. Previous studies of 3He ADC measurements have demonstrated high

reproducibility [205, 206] and strong correlation with histological measurements of airspace

dimensions [52, 207]. In patients with COPD, studies have demonstrated elevated 3He and

129Xe ADC values compared to healthy volunteers [208, 186, 209], and correlations with age

[210, 209, 200], pulmonary function tests [208, 209, 200], CT measurements of emphysema

[210, 200], and gas trapping [108]. Another study [211] demonstrated that 3He ADC mea-

surements were more sensitive to early or pre-clinical lung structure changes than pulmonary

function measurements. Recently, investigations have shown decreased 3He ADC values in

COPD patients treated with bronchodilators [212], suggesting a reduction of regional gas trap-

ping. For asthma, limited work has been performed to investigate lung structure using dif-

fusion weighted noble gas MRI. Some studies [213, 214] observed elevated ADC values in

asthma compared to healthy volunteers while others [193] demonstrated no differences. Re-

garding asthma treatments, whole lung ADC was increased after methacholine challenge and

decreased after salbutamol administration [193], and correlated with CT gas trapping measure-

ments [214].

Healthy AsthmaCOPD

Figure 1.12: Representative co-registered hyperpolarized 3He (cyan) and 1H (gray) MR coronal
images of a healthy, COPD and asthma subject. Homogeneous 3He MRI signal intensities are
observed in the healthy while heterogeneous signal intensities are seen in obstructive lung
disease.
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1.6 Medical Image Segmentation, Registration and Evalua-

tion Methods

1.6.1 Image Segmentation

Image segmentation is the process of partitioning an image I(x), x ∈ Ω, into multiple regions

or classes such that the pixels within each region or class share some common characteristics,

i.e., signal intensity homogeneity [215, 216]. This thesis focuses on medical image segmen-

tation, which plays a crucial role in medical imaging applications [217, 218, 219, 220] such

as tumor or pathology localization, structure/function mapping, mass detection and quantifica-

tion, medical image registration, surgical planning or simulation, and computer-aided diagno-

sis, to name just a few. With respect to pulmonary imaging, which is the focus of this work,

lung segmentation is fundamentally required as a first step to quantify pulmonary structural-

functional abnormalities and generate imaging biomarkers with the hope to facilitate the de-

velopment of pulmonary medicine. In the following section, I will provide brief descriptions

of the commonly-used medical image segmentation algorithms before I present the pulmonary

MRI segmentation algorithms in Chapters 2–3.

1.6.2 Medical Image Segmentation Algorithms

1.6.2.1 Thresholding

Thresholding is perhaps the simplest segmentation approach, with fast implementation and in-

tuitive properties [221]. Thresholding is the procedure of determining a global threshold of

some image features, i.e., signal intensities, to divide the feature space into the “foreground”

and “background” regions. The “foreground” region represents the pixels with intensities that

are greater than or equal to the threshold and the “background” region contains the pixels with

intensities that are less than the threshold, resulting in “0-1” binary segmentation. Threshold-
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ing segmentation is based on the assumption that the difference or contrast of image signal

intensities from the “foreground” and “background” regions is high [218, 220]. Due the com-

plexity of medical images, usually more than one threshold is determined to segment an object

or multiple objects, which is called multi-thresholding segmentation [222]. Thresholds are usu-

ally generated interactively based on observers’ visual inspection, although automated methods

exit [221] including the Otsu’s thresholding method [223].

Global thresholding considers image signal intensity information exclusively without tak-

ing into account the spatial relationship between pixels. In medical images, due to signal

intensity inhomogeneity, imaging artifacts, various pathologies, and different levels of noise,

global thresholding is usually not sufficient. For these reasons, variations of classical thresh-

olding methods have been proposed including local/dynamic thresholding. These thresholding

schemes were developed to account for foreground/background signal intensity variation. The

basic idea is that the signal intensities may not be uniform across the whole image, but are

relatively homogeneous within a local region. Therefore, local thresholds can be determined

for different parts of the image [224] and these local segmentation can be merged to derive

the global segmentation. In practice, different statistical methods are used to generate the lo-

cal thresholds including mean, standard deviation, mean of the maximum or minimum values

[225], and local gradient [226].

1.6.2.2 Region Growing

Region growing is an image segmentation technique aimed to extract a connected region of

pixels with similar signal intensities [227]. In the simplest form, region growing requires a seed

point or region that belongs to the target region for initialization. The algorithm then grows

the current region by including more neighbouring pixels to the seeds under some similarity

criterion [228]. A simple similarity metric is the absolute difference between a candidate pixel

intensity f (x) and the current region’s mean signal intensity µr, i.e., S (x, r) = | f (x) − µr|. This

process is iterated until no more pixels can be added and the final “region” is obtained.
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Another similar but fundamentally different algorithm is region splitting [229] instead of

growing. This algorithm starts with an initial segmentation, i.e., the whole image, and recur-

sively splits the regions that do not satisfy a uniform criterion into new regions that are more

uniform, i.e., lower signal intensity variances. The splitting procedure is repeated on each of

the new regions until no further splitting is needed. This process results in a number of small

uniform regions, some of which are very homogeneous and can be merged. This leads to the

split-and-merge algorithm, which is used to combine the small uniform regions and generate

larger regions as the final segmentation [230, 231].

1.6.2.3 Watershed

Watershed is an image processing technique that employs the topography information in gray

level images. This technique was originally developed by Digabel and Lantuejoul [232] and

later adapted for image segmentation [233]. To appreciate this algorithm, one can consider a

2D image as a 3D topographic surface where the elevation at each pixel location is represented

by the grayscale value. Such a representation leads to catchment basins that are analogous

to regions to be extracted. Intuitively, a falling water drop will flow along the path with the

steepest slope until it reaches a local minimum or basin. The water drops from pixels that trace

to the same minimum are grouped to the same catchment basins, and the basin’s boundaries

are considered as watershed lines, resulting in the segmentation. This concept also applies to

higher-dimensional images and images with multiple regions to be extracted.

In general, there are two types of approaches to find the watersheds of an image: 1) flood-

ing approach, and 2) rainfalling approach. In the flooding approach, which is also called the

immersion approach, holes are pierced at the local minima of the surface and water flows are

injected through these holes to flood the respective catchment basins. If the water flow from

one basin is about to meet the other, a wall or watershed line is built to separate the two water

flows, and these watershed lines correspond to the boundaries of the regions in the image [234].

The rainfalling simulation, as the name suggests, flows water drops on image pixels along the



42 C 1. I

steepest paths until they reach a local minimum, which is labelled with a unique tag. The water

drops from pixels that accumulate in the same local minima are considered as a group. Once

all the pixels are related to a tagged local minima, image regions are identified and the seg-

mentation is generated [233]. A number of efficient algorithms have been developed to find

watersheds [235, 236].

1.6.2.4 Classifiers

Classification algorithms seek to assign pre-defined class labels to a given sample set and are

considered supervised processes. Classification and segmentation are closely related to each

other as segmentation implies a classification and classification implicitly represents segmen-

tation. Classification typically involves a training and a testing phase. In the training phase,

unique and distinguishing properties of different classes are generated. In the following test-

ing phase, samples are “recognized” and assigned a pre-defined class label based on generated

characteristic properties. In the following section, a brief review of some commonly-used clas-

sifiers is provided.

K-nearest neighbours: The K-nearest neighbour (K-NN) algorithm [237] is a simple and

non-parametric classifier. The training process consists of storing the samples and the asso-

ciated labels. The testing process measures the similarity between a query sample and the

stored samples based on some distance metric, which is not necessarily the Euclidean distance

(although it is commonly used). The K (i.e., a pre-defined integer) nearest neighbours from

the stored samples are selected and the associated labels are used to generate a label for the

query samples, i.e., through majority vote. This classifier requires minimal explicit training

and all the training data is used for testing. As a result, the computation cost is high in terms

of time and memory requirements. Although this algorithm enables multi-class classification,

it is sensitive to “noise”.

Support vector machines: Support vector machine (SVM) [238] is a supervised linear

classifier that aims to generate a hyperplane to separate the training samples. Such hyperplanes
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are generated to maximize the distances between the nearest samples in the two classes, so that

the risk of overall classification error is low. With the generated separating hyperplane, query

points are then mapped to one side of the plane in the same space and the class labels are de-

termined. Although SVM was initially designed as a two-class linear classifier, improvements

[239] have been made for multi-class applications. In addition, a non-linear SVM classifier

can be achieved by mapping the samples to a higher-dimensional kernel space such that they

become linearly separable. Another advantage of SVM classifiers is that they provide robust

classification and are relatively insensitive to noise or small sample sizes. In addition, SVM is

represented by a convex optimization problem and the global optimum exists. However, there

are a number of limitations associated with SVM including high computational burden during

both the training and the testing phase, and the choice of kernel can be tricky [240].

Maximum likelihood: Maximum likelihood is a supervised classifier developed based on

Bayes theorem. This algorithm aims to maximize the posterior probability p(i|w) =
p(ω|i)p(i)∑
j p(ω| j)p( j) ,

which is interpreted as the probability of assigning a class label i to a sample ω if p(i|w) is

greater than any p( j|w) for class label i , j. The prior probability p(i) represents the relative

frequency of the occurrence of class i, which can be estimated from the training samples.

The class-dependent term p(ω|i) represents the probability that a sample ω appears in class i,

which can be assumed to satisfy a parametric form, i.e., Gaussian distribution [241]. For a new

sample, the posterior probability for each class is calculated and the label of the class with the

highest probability is assigned to the sample, that is, the maximum likelihood. This classifier

requires a large amount of samples for each class, and does not perform well with small class

sizes. In addition, the training process is sensitive to pre-classification [220].

Artificial neural network: Artificial neural network (ANN) is an information process-

ing system inspired by the neuron systems in human brain. This model was first designed

in the 1940s [242] and later significantly improved [243]. An ANN consists of a large num-

ber of processing units that are called artificial neurons or nodes. These neurons or nodes

are highly inter-connected to generate a complex network, where the connection weights are
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tuned through learning or training processes. ANN represents a paradigm of machine learn-

ing and has been successfully applied to medical image processing, including segmentation

and classification [244] especially with the emergence of deep learning. ANNs are data-driven

self-adaptive classifiers and are very flexible in approximating the relationship between groups

with high accuracy [245]. However, a major drawback of ANNs is that the learning process is

slow and a large amount of computational power is required to generate reasonable outputs, as

reported by a recent study by Google [246].

1.6.2.5 Clustering

Clustering aims to organize a set of samples into distinct groups called clusters such that sam-

ples within a cluster are similar to each other based on some specified measurements and

dissimilar to samples in other clusters. Unlike classification, clustering does not rely on pre-

defined groups or training and is also known as unsurprised classification. Due to this property,

new patterns or features from large datasets can be discovered during the clustering procedure

without requiring intensive or extensive background knowledge [247]. In the following section,

I briefly review some representative clustering methods.

K-means: K-means [248] is a clustering algorithm that aims to partition a given dataset

with N samples {I1(x), I2(x) . . . IN(x)} into K clusters {N1(x),N2(x) . . .NK(x)}, such that the

cluster-wide dissimilarity is minimized, i.e., sum of squared differences from samples to the

cluster mean. For example, the K-means clustering algorithm can be mathematically formu-

lated as follows:

arg min
{N1,N2...NK }

K∑
k=1

|Nk |∑
j=1

∥∥∥I j(x) − µk

∥∥∥2
, (1.2)

where µk represents the mean of cluster k and |Nk| indicates number of samples in the kth cluster

Nk. This problem Eq.(1.2) is computationally difficult, but local optimization-based algorithms

exist. The most common K-means clustering algorithm employs an iterative implementation of

two alternating steps: 1) clustering (assignment) and 2) mean calculation (update) [249]. The

algorithm is started by defining a desired number of clusters K and assigning K arbitrary means
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to each cluster. In the clustering (assignment) step, each sample is associated to the closest

cluster based on the selected similarity measurement. In the mean re-calculation (update) step,

the mean is re-computed for each cluster. These two steps are iterated until no more changes

occur or a maximum number of iterations is reached.

It should be noted that this algorithm often leads to a local optimum and is sensitive to

noise and initial cluster assignment [250]. Another drawback is that the number of clusters K

needs to be pre-defined, although this can be overcome by adding an outer loop with increased

computation complexity [251].

Fuzzy C-means: The Fuzzy C-means algorithm [252] is a generalized form of K-means

clustering approach based on fuzzy set theory [253]. Instead of a hard (i.e., {0, 1}) assignment as

in the traditional K-means, Fuzzy C-means allows soft (i.e., [0, 1]) assignment of each sample

to a cluster by adding a weighting factor as follows:

arg min
{N1,N2...NK }

K∑
k=1

|Nk |∑
j=1

ωk, j ∗
∥∥∥I j(x) − µk

∥∥∥2
, (1.3)

where ωk, j ∈ [0, 1] is pre-defined and represents the probability or weight of assigning sample

j to cluster k. The numerical implementation of Fuzzy C-means is similar to the K-means

approach except that the mean of cluster k is calculated in a weighted manner and the weight

ωk, j is updated [252].

Expectation Maximization: Similar to the centroid and mean-based K-means [248] and

Fuzzy C-means [252] clustering algorithms, the expectation maximization algorithm [254] em-

ploys the same clustering procedure with the assumption that the samples follow a mixture of

Gaussian function. As reflected by the name, this algorithm involves an expectation stage and

a maximization stage for each iteration to maximize the likelihood estimation of the samples.

In the expectation stage, the posterior probability P(Nk|I j(x); φ) for assigning sample I j(x) to

cluster Nk is calculated based on a given statistical model φ. In the maximization stage, the

mean, sample distribution, and the coefficients of the mixture model are re-estimated using
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the updated probability measurements. The two stages are iterated until convergence and the

resulting “fuzzy” probabilities can be discretized to generate the final clusters. Due to differ-

ent similarity measurements, this algorithm addresses sample inhomogeneity problem only to

some extent. However, this algorithm is sensitive to initialization and the convergence rate is

slow especially when dealing with high-dimensional data.

1.6.2.6 Deformable Models

Since their introduction [255], deformable models have attracted a great deal of attention in

the area of object tracking/recognition, edge detection, image segmentation and modelling. In

general, deformable models are closed parametric curves in 2D or surfaces in 3D that are able

to expand or contract under the influence of internal, and external forces [256, 217, 219]. The

internal forces are designed to keep the continuity of the curve or surface and the external

forces are defined to fit the model to the desired object [256]. Depending on the representation

of the curves and surfaces, deformable models can be divided into two categories: 1) parametric

deformable models, and 2) geometric deformable models.

Parametric deformable models: Parametric deformable models, also known as active

contours or snakes, represent contours/surfaces explicitly using parameterized formulations

that can be solved under an energy minimization perspective. Let C denote a 2D contour

embedded in an image I(x, y), {x, y} ∈ Ω. The contour C is represented by a number of control

points v(s) = (x(s), y(s)), s ∈ [0, 1] in the normalized parameter domain with v(0) and v(1)

representing the first and last control point, respectively. The energy of contour C = {v(s) =

(x(s), y(s)) , s ∈ [0, 1]} can be generally formulated as follows:

E(C) = Eint + Eext . (1.4)
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The internal force Eint keeps the contour continuous and is defined as

Eint =

∫ 1

0

(
α(s)

∣∣∣∣∣∂C∂s

∣∣∣∣∣2 + β(s)

∣∣∣∣∣∣∂2C

∂s2

∣∣∣∣∣∣2 )
ds , (1.5)

where α and β represent the weights of the two components. In Eq. (1.5), the first component

controls the elasticity of the contour and the second term regulates the rigidity of the model.

The external force Eint attracts the contour towards the desired object boundaries and is given

by

Eext = −ω

∫ 1

0
|∇I(C(s))| ds , (1.6)

where ω provides the relative weight of the external force Eext to the internal potential Eint.

The optimal contour C∗ can be obtained by minimizing the object function Eq. (1.4) using an

analytical gradient decent approach.

The parametric deformable models are capable of generating closed contours/surfaces di-

rectly with sub-pixel accuracy, incorporating a variety of constraints (i.e., gradient vector flow),

prior knowledge, and are robust to image noise and boundary discontinuities. The model ini-

tialization can be performed manually or automatically, i.e., using the Hough transform and

region-growing. However, it should be noted that such parametric deformable models are

locally-optimized [257], and are sensitive to initialization and the initial contours are usually

placed close to the object to generate reasonable results. Another drawback of these models is

the associated difficulty of handling topological changes such as merging and splitting during

contour evolution [258, 259].

Geometric deformable models: Geometric deformable models were developed based on

level-set theories and are also known as level-set methods. As previously described [258], para-

metric deformable models have remarkable limitations in dealing with topology changes dur-

ing curve/surface evolution because of the required parametrization procedure. The level-set

method [258] was developed to address this problem by implicitly representing curves/surfaces

with a level set of higher-dimensional function. These level set function employs geometric
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measurements and are free from curve/surface parametrization. In other words, the level-set

method implicitly evolves curves/surfaces by updating the level set function and therefore is

able to handle topology changes during evolution.

Following the curve evolution theory [260], an evolving curve C(s, t) can be implicitly

represented by a level set function φ(x, y, t) at the zero level, i.e.,

φ(C(s, t), t) = 0 , (1.7)

where t represents time. With an initial φ at t = 0, it is possible to estimate φ at any time t by

differentiating the equation Eq. (1.7) with respect to t, i.e.,

∂φ

∂t
+ ∇φ

∂C

∂t
= 0 , (1.8)

where ∂C
∂t is the curve evolution speed along the normal direction dependent on local curvature

k, i.e., ∂C
∂t = F · ∇φ

|∇φ|
. The surface curvature k depends only on φ and is defined as follows:

k =
φxxφ

2
y − 2φxφyφxy + φyyφ

2
x

(φ2
x + φ2

y)3/2 , (1.9)

which can be calculated as previously described [258]. Thus, Eq. (1.8) can be re-written as

∂φ

∂t
+ F · |∇φ| = 0 . (1.10)

Clearly, Eq. (1.10) determines the motion of φ, which can be updated as follows:

φ(t + ∆t) = φ(t) − ∆t · F |∇φ| , (1.11)

where ∆t is the time step for evolution and the gradient |∇φ| can be calculated using a finite

difference method [258]. Depending on the applications, curvature, intensity gradient, shape,

and contour position information can be incorporated to construct the speed function F to
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generate desired results.

The level-set method [258] was later implemented by Cassels et al. [260] and Malladi

et al. [261] for image segmentation and generated promising results. However, there are a

number of limitations associated with these methods. For example, these methods involve

solving partial differential equations and estimating second order derivatives and are therefore

computationally expensive although fast implementations, i.e., narrow-band [262] and sparse-

field [263] methods are available. In addition, there are limitations on the evolution step size

for numerical stability and the convergence rate is slow. Importantly, level-set methods rely on

local optimization techniques, are sensitive to initialization and generate only local minima.

1.6.2.7 Markov Random Fields

Markov Random Field (MRF) represent a joint probability distribution model and was first

introduced to image processing in the 1980s [264]. For image segmentation, reconstruction and

labelling, MRF provides a way to model the interactions between image pixels by introducing a

series of hidden variables and representing the image as a graph [265]. Let G =< V, E > denote

a MRF graph for an image I(x), x ∈ Ω, where V is the set of nodes or vertices representing the

observations (i.e., signal intensities) of image pixels or superpixels, E is the set of undirected

edges between adjacent nodes i and j, {i, j} ∈ V . The hidden variables are associated with the

pixels and the adjacent pixel-pixel interactions are encoded in a form of edge dependencies.

For binary image segmentation, a hidden variable Li for node i takes random value of “0” or “1”

representing the desired background and foreground of the image, respectively. The resulting

joint probability of such a graph can be formulated as follows:

P(L, I) = Πi∈VΨ(Li, Ii) Πi, j∈VΦ(Li, L j) . (1.12)

In Eq. 1.12, Ψ(Li, Ii) represents the association between the label and the observation for node i,

i.e., the likelihood that node i belongs to label Li; Φ(Li, L j) indicates the pixel-pixel interactions
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encoded in the hidden variables for adjacent pixels i and j, {i, j} ∈ V . Taking the log form or

P(L, I) (Eq. 1.12) gives rise to

E(L, I) =
∑
i∈V

Ψ(Li, Ii) +
∑
i, j∈V

Φ(Li, L j) , (1.13)

The segmentation is then achieved by finding the maximum of the joint probability, which

can be obtained using gradient descent, simulated annealing or iterated conditional modes.

While MRF represents a powerful and elegant approach to complex data analysis, early-stage

solvers are nevertheless computationally demanding.

1.6.2.8 Graph-cut Methods

By representing digital images as MRF graph G =< V, E >, image segmentation can be viewed

as a labeling problem - assigning labels from a finite label set L to each voxel under some opti-

mal criterion constraints. The graph-based image segmentation problem can be formulated as

finding a finite set of labels under some given objection function that measures either “good-

ness” or “badness” of a solution [266]. The optimal segmentation or label set, can be achieved

by optimizing the formulated objective function through combinatorial optimization. For ex-

ample, the “0-1” image segmentation problem can be solved by finding a min-cut over the

image graph with minimal labeling cost and minimal segmentation surface area [266]. With

appropriate graph design, the process of finding a min-cut that divides an image graph is actu-

ally equivalent to optimizing the objective function. Thanks to the max-flow/min-cut theories

[267, 268], the min-cut problem can be further equivalently and efficiently solved through the

associated max-flow formulation in a globally optimal manner. A number of max-flow al-

gorithms have been proposed including the “augmenting paths” [267] and the “push-relabel”

[269] algorithms.

Pioneered in the early 2000s by Boykov and Kolmogorov [270], graph-cut methods have

been widely used in image segmentation and achieved tremendous success in medical applica-
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tions. However, such discrete graph-cut methods are limited by metrication error, high memory

load and computation burden [271]. Later, the discrete graph-cut methods were investigated

in spatially continuous settings [272, 273, 274] to avoid the grid biases and achieve high com-

putational efficiency with sub-voxel accuracy. A brief review of the discrete and continuous

graph-based max-flow/min-cut is provided in Appendix A.

1.6.3 Segmentation Performance Evaluation

When an image is segmented, the “goodness” of the segmentation is quantitatively evaluated to

determine the performance of the segmentation algorithm. Segmentation evaluation is typically

performed by comparing algorithm outputs to ground truth, which is, however, usually not

available. Physical and computational phantoms could serve as the ground truths, but there are

inherent limitations [217]. Expert manual delineation of the objects of interest, although not

always perfect, involves invaluable experiences and high-level human prior knowledge and is

often used as a surrogate of such ground truths. I briefly describe the segmentation evaluation

metrics, namely accuracy, reproducibility, and computational time as follows.

1.6.3.1 Accuracy

Region-, volume-, and distance-based metrics are commonly employed to evaluate the similar-

ity between algorithm and expert manual outputs.

Dice-similarity-coefficient (DSC) [275] is a commonly-used region-based metric to quan-

tify the overlap ratio of algorithm segmentation with respect to reference standards. Let RA and

RM denote the algorithm and manual segmentation of the same object, respectively. DSC is

calculated as follows:

DS C =
2(RM ∩ RA)

RM + RA
× 100% . (1.14)

DSC ranges from 0% to 100%, representing no overlap to perfect overlap between two seg-

mentation, respectively.
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Volume-based metrics including volume error δVE, absolute volume error |δVE |, percent

volume error δVP, and absolute percent volume error |δVP| measure the similarity of two seg-

mentation in terms of the physical sizes. Let |RA| and |RM | be the sizes of the object generated

from algorithm segmentation and expert manual delineation, respectively. Volume error δVE

and absolute volume error |δVE | are calculated as follows:

δVE = |RA| − |RM | , |δVE | =
∣∣∣∣ |RA| − |RM |

∣∣∣∣ . (1.15)

Percent volume error δVP and absolute percent volume error |δVP| are calculated as follows:

δVP =
|RA| − |RM |

|RM |
× 100% , |δVP| =

∣∣∣∣ |RA| − |RM |

|RM |

∣∣∣∣ × 100% . (1.16)

Distance-based measurements evaluate the discrepancies between two contours in 2D and

surfaces in 3D. Depending on the application, a number of different forms of distance mea-

surements can be calculated. Manual segmentation as a contour (in 2D) or a surface (in 3D) is

represented by a vertex set M = {mi | i = 1, . . . ,K} that consist of K vertices. Let d(mi, ∂RA) be

the Euclidean distance from a vertex mi to the algorithm surface ∂RA. Root-mean-squared-error

(RMSE) of the manual-algorithm surface distances is calculated as follows:

RMS E =

√√
1
K

K∑
i=1

d(mi, ∂RA)2 , (1.17)

mean absolute distance (MAD) is given as:

MAD =
1
K

K∑
i=1

d(mi, ∂RA) , (1.18)

and maximum absolute distance (MAXD) follows:

MAXD = max
i∈{1,...,K}

{
d(mi, ∂RA)

}
, (1.19)
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1.6.3.2 Reproducibility

For segmentation algorithms that involve user interaction, it is important to evaluate algo-

rithm segmentation reproducibility to determine their clinical utility especially for longitudi-

nal, cross-center and multi-observer studies. In addition, observers with less experience are

involved for interactive algorithm segmentation to provide a worst case scenario for algorithm

performance and simulate real-world applications. Both intra- and inter-observer reproducibil-

ity are evaluated using coefficient-of-variation (CoV), intra-class correlation coefficient (ICC)

and smallest detectable differences (SDD).

CoV is calculated as the ratio of standard deviation (SD) over the mean:

CoV =
S D

Mean
× 100% . (1.20)

Intra-CoV evaluates the measurement variability across repetitions and inter-CoV indicates

the measurement variability between multiple observers. Intra- and inter-ICC measure the

absolute agreements among repetitions and between observers. SDD provides an estimate of

the minimum measurement change that can be detected at a given confidence level and is

calculated as follows:

S DD = Zα/2

√
2 × S EM , (1.21)

where Zα/2 is the standard normal deviation corresponding to a probability α (i.e., α = 0.05,

Zα/2 = 1.96), and SEM is the standard error of measurement [276].

1.6.3.3 Computation Time

Computation time consists of the time required for manual interaction, registration (if applica-

ble) and computer-based implementation measured in the units of seconds or minutes.
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1.6.4 Image Registration

Image registration is the process of finding a geometrical mapping (or transformation) to cor-

respond points in two images [277], one is referred to as moving image and the other is fixed

image. According to Maurer and Fitzpatrick [278], image registration is defined as “the deter-

mination of a one-to-one mapping between the coordinates in one space and those in another

such that points in the two spaces that correspond to the same anatomical points are mapped

to each other”. A registration algorithm consists of four major components [279]:

• Feature space – the type of information contained in images that can be used for image

matching. Potential features include image signal intensities, geometric features such

as curves/edges/shapes/surfaces, user-defined objects, reference points/landmarks, and

hybrid features;

• Search space of transformation model – the type of geometric transformations that is used

to warp the moving images. Depending on the nature of the object of interest, different

transformation models are used for different registrations. For example, rigid transfor-

mation is suitable for bony and stiff structures like bone wheres deformable registration

may be more appropriate for deformable tissues such as breast, lung and prostate;

• Similarity metric – measurements (depends on the choice of feature space) that rate the

“goodness” of a matching and guide the next search. Commonly-used similarity mea-

surements include but not limit to distance between landmarks/edges/shapes, sum of

absolute differences, sum of squared differences, correlation coefficient, ratio image uni-

formity, mutual information, Fourier similarity of image signal intensities;

• Search strategy – how to derive the optimal transformation. Given a transformation

model, the optimal transformation parameters that match two images can be computed

either in closed-form (straightforward and fast) or through mathematical optimization

(i.e., Gauss-Newton minimization, gradient descent, Levenberg-Marquardt, Powell’s,



1.6. M I S, R  EM 55

and convex optimization methods) of the formulated multi-dimensional registration prob-

lems.

Medical image registration plays a vital role in a large number of clinical applications,

including disease diagnosis, treatment planning, evaluation of surgical or radiotherapy pro-

cedures [280]. Regarding the goals of this thesis, multi-modality pulmonary image registra-

tion provides a way to combine valuable and complementary image findings from different

sources for a better understanding of lung disease mechanisms and perhaps developing novel

treatments. There are many registration algorithms and these algorithms can be categorized

differently based on different criteria [277]. Here in this thesis, based on the nature of trans-

formation, medical image registration algorithms can be grouped into: rigid, affine, elastic,

deformable models (linear elastic, viscous fluid flow, diffusion models, curvature registration,

diffeomorphic flow, optical flow and others) [281]. In the following section, I will provide a

brief review of the commonly-used medical image registration methods before presenting the

pulmonary CT-MRI registration work in Chapter 4. For simplicity, 2D images are used here

but the concepts apply to 3D images.

1.6.5 Medical Image Registration Algorithms

1.6.5.1 Rigid Registration

Rigid transformation provides a point-point mapping model that preserves all distances, angles

and lengths [277]. Registration problems involves rigid transformation are referred to as rigid

registration that contains two components to optimize – rotation and translation. For example,

I′ =

cos(θ) −sin(θ)

sin(θ) cos(θ)

 · I +

tx

ty


= R · I + t ; (1.22)
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where R is a orthogonal rotation matrix with rotation angle of θ around the axis perpendicular

the image plane; t = {tx, ty}
T defines the translations along x and y directions, respectively.

Similarly, 3D rigid registration can be formulated by considering the rotation angle θ, and the

translation components in x,y and z axises.

Rigid-body registration is generally easy to optimize and is widely used to align bony and

stiff structure such as bone and skull [282]. In many registration problems, rigid registration is

employed to roughly align two images to account for large global misalignment that is difficult

for local deformable registration to compensate [283].

1.6.5.2 Affine Registration

In many medical image registration applications, i.e., inter-patient registrations, intra-patient

registrations, there are usually geometric distortions and rigid mappings are not sufficient to

compensate for this. Affine registration provides a way to compensate most of the large-scale

deformation [284] by adding a shearing and a scaling factor [285] to the rigid registration

model (1.22) as follows:

I′ =

a11 a12

a21 a22

 · I +

tx

ty


= A · I + t , (1.23)

where there is no restriction on the elements in matrix A. In affine transformation model,

angles or lengths are no longer preserved but parallel lines remain parallel after transformation.

Affine registration is also usually performed to initialize and facilitate the following deformable

registration [286]. It should be noted that affine transformation can be applied to sub-regions

of images and these local affine mappings can be combined [287, 288] to compose the output

registered images.
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1.6.5.3 Deformable Registration

Deformable registration employs non-linear dense transformation or a spatially varying defor-

mation model to map points in one image to points in another image [281]. For example, a

point x is mapped to another point x′ = f (x), where f (·) represents non-linear mapping func-

tion. A more comprehensive review of deformable registration is provided in [289, 281].

Thin-place spline: Thin-place spline (TPS) [290], or surface spline, is a popular de-

formable transformation model that has been widely used for deformable image registration.

TPS can be appreciated as a thin plastic plate that passes through a number of sparse “knots”

(control points) in the moving image while keeping the bending energy of the thin plates min-

imal [290, 291]. The generated transformation with low degree-of-freedom is used to estimate

a much denser transformation to deform each point. TPS model contains an affine component

to ensure that a solution exists for any configuration of control points [291] as follows:

x′ = f (x) = Ax + t +

N∑
i=1

Fir2
i lnr2

i , (1.24)

where ri = |x − xi| is the Euclidean distance between x and xi. The bending energy of TPS is

given as follows:

E( f ) =

∫ ∫ (∂2 f
∂x2

)2
+ 2

( ∂2 f
∂x∂y

)2
+

(∂2 f
∂y2

)2
dxdy , (1.25)

For image registration, one can combine the bending energy (1.25) with a similarity mea-

surement, i.e., distance between the corresponding control points in two images, and closed-

form solution can be readily achieved following previous studies [291]. A considerable ad-

vantage provided by TPS transformation is that the control points can be placed arbitrarily

[292, 277]rather than regularly, as required by cubic B-spline.

Free-form deformation: Free-form deformation (FFD) [293] is another expressive and

popular deformable transformation model and was pioneered by Rueckert et al. for breast MRI
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registration [286]. The basic idea of FFD, based on B-splines [294], is to transform an object by

deforming a grid of control points defined over the image domain. The transformation within a

rectangle of control points is modeled by a number of univariate polynomial (or splines) defined

only within that rectangle. The polynomial coefficients are chosen such that the derivatives up

to the 2nd order are continuous, producing the “cubic splines”.

For a mesh of control points φi, j (i and j are bounded by the size of the control point grid)

with uniform spacing defined over the image, the transformation of the image is formulated as

the tensor product of 1D cubic B-splines as follows:

T (x, y) =

3∑
l=0

3∑
m=0

Bl(u)Bm(u)φi+l, j+m , (1.26)

where Bl,m(u) is a segment of the cubic B-spline with value of 0 for {l,m} < [−1, 2] [286].

This formulation reduces the effects from motion of remote control points and provide “local

support” to the neighbourhood of the control point to capture local deformation. The resulting

dense deformation controls the shape of the entire object and produces a smooth and continuous

transformation with similar definition of bending energy (1.25).

As discussed above, a limitation of FFD is that it requires uniformly distributed control

point while TPS utilizes arbitrarily-place control points. However, unlike TPS, FFD does not

require solving as linear system to compute the deformation. In addition, TPS control points

influence the whole deformation domain while FFD provides only “local support” around con-

trol points and can model the local deformation.

Finite-element model: Finite-element model (FEM) is a biomechanical/biophysical model

that employs the anatomical and physiological properties of tissue to reliably estimate the de-

formation field [281]. FEM divides images into various tissues of interest and assigns them

with tissue-specific material properties to constraint the deformation. This approach requires

that the image domain is properly meshed, and the tissue/material properties are carefully de-

fined, which is challenging due to our limited understanding. However, FEM provides im-
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proved efficiency to generate deformation solution due to the limited search space. Another

advantage of FEM is that it, under some physically meaningful constraints, permits incor-

poration of the dynamic behavior of tissues into registration [295], and is more suitable for

intra-patient registration [281].

Other transformation models, i.e., elastic body, viscous fluid flow, diffusion, curvature,

flows of diffeomorphisms, that depict the physical behavior of objects are also widely used for

deformable medical image registration, as previously reviewed [281].

1.6.6 Registration Performance Evaluation

A number of metrics are commonly used to evaluate the performance of a registration, includ-

ing corresponding point distance, alignment of objects of interest, and computational efficiency.

1.6.6.1 Accuracy

Registration accuracy is usually measured by calculating the distances between corresponding

landmarks (termed as “targets” that are not used for registration). In rigid-body landmark-

based registration, registration error stems from three parts [296]: 1) fiducial localization error

(FLE) due to improper identification of fiducial targets, 2) target registration error (TRE) due

to misalignment of corresponding landmarks, and, 3) fiducial registration error (FRE) due to

the procedure of searching for the optimal transformation.

Let F1 = { f i
1 | i = 1, . . . ,N} and F2 = { f i

2 | i = 1, . . . ,N} be the set of N fiducials identified in

the fixed image I1(x) and the moving image I2(x), respectively. With the derived transformation

T , TRE [296] for the N pairs of fiducials, calculated in the root-mean-squared form, is gives as

follows:

TRE =

√√
1
N

N∑
i=1

∣∣∣ f i
1 − f i

2(T )
∣∣∣2 , (1.27)

where
∣∣∣ f i

1 − f i
2(T )

∣∣∣ is the Euclidean distance between the ith-pair of fiducials from I1(x) and I2(x)

under the transformation T . Since TRE is calculated in a root-mean-squared form, it gives an
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estimation of the standard deviation of the registration errors for all the targets.

FLE [296] provides a statistical measure of the registration error due to fiducial target lo-

calization variability. By comparing FLE with TRE, it is possible to determine if the fiducial

identification procedure dominates TRE measurements. For registration accuracy evaluation,

manual identification of multiple fiducial targets is usually performed by an experience ex-

pert on multiple occasions. FLE for the multi-occasion-multi-target identification procedure is

determined as follows:

FLE =

√√
1
N

N∑
i=1

(σ2
ix

+ σ2
iy

+ σ2
iz
) , (1.28)

where σ2
ix,y,z

represent the variances of the locations in x, y and z directions for the ith fiducial in

one image.

In landmark-based registration, FRE, in the root-mean-squared form, is a common measure

of overall fiducial misalignment because the registration is invariably flawed to some degree

by FLE [297]. For the K-pairs of corresponding landmarks X1 = {xi
1 | i = 1, . . . ,K} from I1(x)

and X2 = {xi
2 | i = 1, . . . ,K} from I1(x) used for registration, FRE is calculated as follows:

FRE =

√√
1
K

K∑
i=1

∣∣∣xi
1 − xi

2(T )
∣∣∣2 , (1.29)

Additionally, other secondary metrics [298, 299] for registration performance evaluation

include DSC, RMSE, δVE, δVP, |δVE |, and |δVP|, as defined in Sec. 1.6.3, given reliable seg-

mentation of the object of interest.

1.6.6.2 Computational Efficiency

Computational efficiency, i.e., in terms of runtime, including pre-processing and user interac-

tions (if applicable), is a commonly used metric to evaluate registration performance.
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1.7 Thesis Objectives

Pulmonary imaging, including traditional pulmonary MRI, inhaled hyperpolarized noble gas

MRI and pulmonary CT, provides the potential for sensitive and regional visualization and

quantification of lung structural and functional abnormalities. Importantly, these imaging

techniques provide unique biomarkers and tremendous insights into the pathophysiology of

obstructive lung disease, offering the potential for a better understanding of pulmonary dis-

ease mechanisms and providing patient-relevant information for improved patient care. To

facilitate research and clinical applications of these imaging techniques for large-scale, cross-

center and longitudinal studies of lung disease, image processing and analysis tools that can

provide clinically-acceptable and physiologically-relevant intermediate endpoints are urgently

required. Therefore, the overarching objective of this thesis is to develop pulmonary image

processing and analysis approaches that can be used to provide lung structure-function mea-

surements with the accuracy, reproducibility and computational efficiency required to support

research and clinical studies of lung disease.

In Chapter 2, our objective was to develop a pulmonary image processing pipeline to quan-

tify inhaled hyperpolarized noble gas MRI ventilation information. I wanted to provide lung

segmentation that is required for quantifying the associated noble gas MRI ventilation infor-

mation with accuracy, reproducibility and workflow efficiency suitable for broad research and

clinical translation. I wanted to generate lung segmentation in high agreement with expert

manual segmentation and high reproducibility to minimize inter and intra-observer variability

without requiring intensive training or special expertise. In addition, I wanted to develop image

segmentation tools that are applicable across a wide range of disease and disease severities to

maximize its clinical utility.

In Chapter 3, my objective was to develop a general pulmonary 1H MRI lung segmentation

approach for lung structure-function measurements that can be achieved through advanced im-

age processing and acquisition developments. While inhaled noble gas MRI provides promis-
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ing potential for respiratory disease monitoring/evaluation, the widespread clinical translation

is difficult because of requirements for specialized equipment (i.e., coil and polarizer) and

limited accessibility to noble gases. With the recent developments in pulmonary 1H MRI tech-

niques including traditional 1H MRI, Fourier-decomposition of free-breathing 1H MRI, multi-

volume 1H MRI analysis and ultra-short echo-time MRI acquisition, there is the potential to

provide lung structure-function measurements longitudinally and in response to treatments.

To translate 1H MRI for clinical applications, robust lung segmentation is needed as a first

step. Accordingly, I aimed to develop a 1H MRI lung multiregion segmentation approach for

widespread, cross-centre and longitudinal clinical managements of respiratory disease, com-

pare the spatial agreement between algorithm and manual segmentation, and evaluate the algo-

rithm reproducibility as well as computational efficiency.

In Chapter 4, my objective was to develop an image processing pipeline to generate regional

lung structure-function measurements using CT and noble gas MRI. CT provides tremendous

insight into the structural basis, i.e., lung parenchyma and airways, of lung disease. However,

CT provides only lung structural information and no information about how these structural

changes impact lung function. By combining the structural information from CT and func-

tional information using noble gas MRI, there is enormous opportunity to better understand

pulmonary disease mechanisms and develop novel regional treatments for improved patient

care. Accordingly, I aimed to develop a CT-3He MRI deformable registration approach with

high registration accuracy. In addition, I wanted to integrate the developed CT-3He MRI reg-

istration approach into a fully automated image processing pipeline to generate regional and

whole lung structure-function measurements in high agreement with a previously-validated

method. Finally, I wanted to minimize observers’ efforts when using our approach and im-

prove the computational efficiency for efficient clinical workflow.

Finally, in Chapter 5 I reviewed the clinical problems and the unmet clinical needs. We

summarized the work presented in Chapters 2–4 and reported the important findings. We then

discussed the general and study specific limitations of this thesis. Finally, I provided an outline



BIBLIOGRAPHY 63

of future work based on the knowledge generated by this work.
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Chapter 2

Globally Optimal Co-Segmentation of

Three-Dimensional Pulmonary 1H and

Hyperpolarized 3He MRI with Spatial

Consistence Prior

Previous methods for noble gas (3He/129Xe) MRI structural-functional information quantifica-
tion involve many low level and labourious user interactions, introduce high observer variabil-
ity and require significant amount of runtime. Here we developed and evaluated an automated
lung segmentation using the valuable and complementary information from both 1H and 3He
and the 1H-3He co-segmentation problem was solved using convex optimization techniques.

The contents of this chapter were previously published in Medical Image Analysis: F Guo, J
Yuan, M Rajchl, S Svenningsen, DPI Capaldi, K Sheikh, A Fenster and G Parraga. Globally
optimal co-segmentation of three-dimensional pulmonary 1H and hyperpolarized 3He MRI with
spatial consistence prior. Medical image analysis 23.1 (2015): 43-55. Permission to reproduce
this article was granted by Elsevier and is provided in Appendix G.

2.1 Introduction

According to World Health Organization, 64 million adults have been diagnosed worldwide

with chronic obstructive pulmonary disease (COPD) [1]. Recent studies reported that ∼10% of

103
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adults aged 40 years and older have clinically relevant COPD [2], but a minority have a clinical

diagnosis and are undergoing treatment [3].

With the recent emergence of functional pulmonary imaging approaches using inhaled hy-

perpolarized 3He/129Xe magnetic resonance imaging (MRI), there is now the potential to pro-

vide regional information about lung structure and function, allowing for COPD patient moni-

toring over time and in response to therapy [4, 5]. To quantify and analyze regional pulmonary

function, lung segmentation of the fused structural information from 1H MRI and functional

information from 3He MRI is required. In subjects with respiratory disease, 3He MRI pro-

vides visual evidence of ventilation heterogeneity - characteristic regions of signal void that

cannot be easily quantified and normalized [6] because these images provide little anatomical

information. On the other hand, segmentation of the lung from 1H MRI is also particularly

challenging due to poor image quality stemming from low proton density, magnetic suscepti-

bility and motion artifacts [7, 8], resulting in ghost contours of the chest wall, partial volume

effects and indistinguishable gray levels with surrounding tissues [9, 10, 11, 12].

Previous work showed that both structural and functional information can be derived from

images and provide complementary information that segmentation methods can exploit [13, 14,

15]. For example, 1H MRI has poorly defined edges around the mediastinum where the heart

and hilar structures move during breath-hold imaging. In contrast, and as shown in Fig. 2.1, 3He

MRI has poorly defined edges on the lung periphery, where ventilation defects are commonly

present. Here we identified a way to perform lung segmentation by exploring image features

of both 1H and 3He images and propose a way to simultaneously extract the lung from the two

input three-dimensional (3D) images.

2.1.1 Previous Studies

Previous work [16, 9] showed that pulmonary MRI segmentation is more complex than pul-

monary CT approaches, mainly because of the low proton and tissue density in pulmonary MR

images as compared to tissue contrast provided by CT. Approaches for extracting the lung from
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Figure 2.1: Complementary edge information in 1H and 3He MRI. Ai) 1H MRI coronal slice
with inset box A1 shown expanded in Aii) and A2 shown expanded in Aiii). Bi) 3He MRI coronal
slice with inset box B1 shown expanded in Bii) and B2 shown expanded in Biii).

pulmonary MRI have been developed mainly based on grey level thresholding, active contour

and modelling methods.

For 1H MRI lung segmentation, a multi-step automatic method that used histogram-based

thresholding and morphological operations was developed [12]. In another attempt, a model-

matching method was used to segment the lung by registering individual images to a lung

model created from manually segmented training dataset [17]. Another approach combined

supervised neural network classifier and parametric active contour techniques [18]. Merging

of multiple parametric active contours within homogeneous regions [19] was also piloted to

automatically segment the lung. Finally, lung was segmented using a modified geometric snake

model that integrated gradient flow forces and region constraints provided by a Fuzzy C-means

clustering method [9].
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With respect to 3He MRI lung segmentation, thresholding [20, 21] and a statistical model-

based method [22] using principle component analysis were developed. A 2D semi-automated

segmentation approach using registered pulmonary 1H-3He MR images was proposed [23]

consisting of k-means clustering of 3He MRI, region growing of 1H MRI and landmark-based

1H-3He registration.

While these approaches have provided promising results, some limitations still remain that

need to be tackled including improved algorithm performance and efficient workflow transla-

tion. For example, some of these approaches required substantial runtime [17, 23] while others

were restricted to certain region of interest [19] or dependent on robust grey level thresholding

[20, 12, 21]. Finally, other approaches required a substantial amount of user interaction [23],

extensive training and frequent updating with careful expert manual segmentation [18, 22].

2.1.2 Contributions

To address some of the limitations of the current approaches, here we introduce a convex

optimization based co-segmentation approach that exploits image features from both 1H and

3He MRI for lung segmentation. We summarize our main contributions as follows:

• We present a global optimization based approach to jointly segment pulmonary 1H and

3He MRI, and demonstrate that the global and exact optimum of the complicated combi-

natorial optimization problem can be achieved through convex relaxation.

• We propose a coupled continuous max-flow model and prove its duality to the studied

convex relaxed co-segmentation formulation. With the help of the coupled continuous

max-flow formulation, we show that the original complicated optimization problem can

be equivalently solved under a primal and dual perspective, which avoids tackling the

challenging optimization problem directly.

• We derive an efficient numerical algorithm based on the proposed coupled continuous

max-flow formulation using a modern duality-augmented algorithmic scheme, namely
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the coupled continuous max-flow algorithm, which is implemented on a GPU to achieve

high performance in numerics.

Recently, a graph-cut based method was developed to segment CT (anatomical) and PET

(functional) images simultaneously over two discrete graphs by enforcing an inter-surface con-

text cost [24]. This approach made use of image information from both modalities and incor-

porated the introduced context cost to achieve spatial consistency. It is well known that such

discrete graph-cut methods can yield excellent performance [25]. However, these discrete op-

timization based approaches are limited by grid bias or metrication error [26, 27]. Although

these errors can be reduced by increasing the number of neighboring nodes [26] or apply-

ing high order clique [28], extra memory and computational load are required [29]. Our pro-

posed approach is fundamentally distinct from previous work in that the image co-segmentation

problem was formulated and studied in spatially continuous settings, and globally optimized

under a convex relaxation perspective. Compared with discrete graph optimization based meth-

ods, the proposed convex optimization based approach successfully avoids metrication errors

[26, 27] and substantially improves segmentation accuracy, while providing great numerical

advantages with much lower memory load and higher computational efficiency [30, 31]. Re-

cently, a different joint segmentation approach [32] was developed to simultaneously segment

the whole gland (RWG) and the central gland (RCG) in a single 3D prostate MR image. This

previous approach also employed a coupled continuous max-flow model and convex optimiza-

tion techniques. However, our method employed a graph-based approach as opposed to the

level-set/contour evaluation based method. In addition, our approach incorporated the spatial

consistency between the 1H lung R1
L and 3He lung R2

L, (i.e., R1
L ≈ R

2
L), as opposed to the inter-

contour relationship, (i.e., RCG ⊂ RWG), resulting in a different flow configuration and different

optimization scheme.
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2.2 Methods

We introduce an image co-segmentation model in the spatially continuous settings to jointly

segment the lung from input 3D 1H and 3He MRI pairs. We demonstrate that the proposed

spatially continuous co-segmentation model can be globally optimized by means of convex

relaxation. In other words, the globally optimal lung masks can be obtained simultaneously

by solving a convex relaxation formulation, which is much simpler in theory and numeri-

cal computation than the original combinatorial optimization formulation, i.e., the proposed

spatially continuous co-segmentation model. In addition, we present a coupled continuous

max-flow formulation and demonstrate its equivalence to the convex relaxed co-segmentation

model through primal and dual analysis. The introduced coupled continuous max-flow formu-

lation allows us to directly derive an efficient duality-based algorithm to the studied spatially

continuous co-segmentation model. The derived algorithm can be easily implemented using

parallel computation architectures to achieve high computation performance.

2.2.1 Spatially Continuous Co-Segmentation Model

Given a 1H MR image I1(x) and a 3He MR image I2(x), x ∈ Ω, that are appropriately co-

registered, we propose to simultaneously segment both images into the lung, i.e., R1
L and R2

L,

and the associated complementary background, i.e., R1
B and R2

B, while imposing the spatial

consistency between the two segmented lung R1
L and R2

L.

2.2.1.1 Continuous Min-Cut Formulations

In this work, we focus on a spatially continuous convex optimization approach, which, due

to its computational efficiency, substantially decreases runtime for 3D image segmentation.

Additionally, the continuous optimization based approach is able to avoid metrication error

introduced by discrete graph-based approaches [26, 27], which, although can be improved

with more neighbouring nodes or high order cliques, extra memory and computation power
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are required [29]. We refer readers to Appendix A for comparison of the two categories of

algorithms.

Let ui(x) ∈ {0, 1}, i ∈ {1, 2}, be the indicator or labelling function of the corresponding

region Ri
L, such that

ui(x) =


1, where x ∈ Ri

L

0, otherwise
.

In view of the continuous min-cut model (A.1), the segmentation of each image I1(x) and

I2(x) can be achieved by minimizing the continuous min-cut energy:

Ei(ui) =
{ ∫

Ω

(1 − ui) Di
s(x) dx +

∫
Ω

ui Di
t(x) dx

}
+

∫
Ω

ωi(x) |∇ui| dx , i ∈ {1, 2} , (2.1)

where Di
t(x) and Di

s(x), i ∈ {1, 2}, represent the labelling cost function w.r.t. the lung Ri
L and the

background Ri
B, respectively. In addition, the boundary weight function ωi(x) ≥ 0, i ∈ {1, 2}, in

(2.1) is non-negative, and the associated total-variation function in (2.1) properly encodes the

weighted total area of the segmented lung Ri
L in 3D.

2.2.1.2 Spatial Consistency Prior

Upon observation of the 1H and 3He MR images, there is signal intensity overlap between lung

R1
L and R2

L in the two spatially aligned MR images. For example, for healthy subjects with-

out ventilation defects, there are regions of diminished signal intensity in 1H MR images and

enhanced signal intensity in 3He images. For patients with disease, there are also regions of

diminished signal intensity in 1H MR images and both diminished and greater signal intensities

in 3He images. Instead of exploiting the “binary” diminished-to-enhanced signal intensities,

we utilized a “relaxed” correlation where diminished signal intensity in 1H MRI lung can be

mapped to both enhanced and diminished signal intensity in 3He MRI lung, the extent of which

was controlled or weighted to facilitate segmentation. For example, in terms of the cost func-

tion, the sampled ventilation defect voxels within 3He images had a greater probability (or
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lower cost) of being assigned a foreground label, compared with the zero or lower probabil-

ity (higher cost) in the case of “binary” signal intensity mapping correlations. While the lung

boundary information in 3He images might also be influenced by the edges between ventilation

and ventilation defect regions within the lung, we would like to emphasize that the associated

1H image signal intensity information as well as the regularization terms could interact to min-

imize this effect. Therefore, we exploited this information by enforcing a spatial similarity

between the two extracted lung (R1
L and R2

L) as a constraint and then penalizing the differences

of the two lung R1
L and R2

L such that

E3(u1, u2) =

∫
Ω

|u1 − u2| dx . (2.2)

To take advantage of image information from the two modalities, we present a continuous

co-segmentation formulation by coupling the spatial similarity (2.2) to the two independent

segmentation (2.1) such that

min
u1,2(x)∈{0,1}

E1(u1) + E2(u2) + β E3(u1, u2) , (2.3)

where β > 0 weights the contribution of the spatial dissimilarity of the two lung to the total

continuous min-cut energy. By denoting the inner product of two function, i.e., h(x) and g(x),

as 〈h, g〉 =
∫

h(x)g(x) dx, the above optimization problem (2.3) can be rewritten as follows:

min
u1,2(x)∈{0,1}

〈
1 − u1,D1

s

〉
+

〈
u1,D1

t

〉
+

∫
Ω

ω1(x) |∇u1| dx +〈
1 − u2,D2

s

〉
+

〈
u2,D2

t

〉
+

∫
Ω

ω2(x) |∇u2| dx + β

∫
Ω

|u1 − u2| dx , (2.4)

where the energy function contains two independent continuous min-cut segmentation prob-

lems (2.1) w.r.t. the two lung R1
L and R2

L and the spatial regional similarity prior (2.2).
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2.2.2 Convex Relaxed Co-Segmentation Model

Given the highly non-smooth total-variation and absolute volume difference terms, the above

binary-constrained optimization problem (2.4) results in a very challenging combinatorial op-

timization problem. Based on the recently developed convex relaxation techniques [33], the

challenging non-convex optimization problem (2.4) can be solved globally and exactly by

means of convex relaxation, i.e., the convex relaxed formulation of (2.4) as follows:

min
u1,2(x)∈[0,1]

〈
1 − u1,D1

s

〉
+

〈
u1,D1

t

〉
+

∫
Ω

ω1(x) |∇u1| dx +〈
1 − u2,D2

s

〉
+

〈
u2,D2

t

〉
+

∫
Ω

ω2(x) |∇u2| dx + β

∫
Ω

|u1 − u2| dx , (2.5)

where the voxel-wise binary constraints u1,2(x) ∈ {0, 1} in (2.4) are relaxed to the respective

convex intervals u1,2(x) ∈ [0, 1]. Clearly, (2.5) gives rise to a convex optimization problem,

which can be optimized globally.

In the following sections, we show the convex relaxed co-segmentation formulation (2.5)

also solves the original binary-constrained co-segmentation problem (2.4) exactly.

2.3 Coupled Continuous Max-Flow Approach

We present a coupled continuous max-flow model and show that it is mathematically equiva-

lent to the studied convex relaxed co-segmentation problem (2.5). Moreover, we demonstrate

that the introduced combinatorial optimization problem (2.4), the continuous co-segmentation

model, can be solved exactly.

2.3.1 Coupled Continuous Max-Flow Model

The coupled flow-maximization setup was configured by combining two independent standard

flow-maximization graphs and these independent elements were previously developed and de-

scribed [34]. The original contribution of the current approach is that an extra flow r(x) was
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introduced to link the two independent graphs, which, at a first glance, looks similar to but quite

different from previous studies about joint segmentation of MRI femoral lumen and outer wall

with a “nesting” layout constraint [35]. Figure 2.2 shows a schematic diagram of the coupled

flow-maximization configuration.

S1 S2

t1 t2

x x

P (x)    s
     1 P (x)    s

     2

P (x)    t
     2P (x)    t

     1

q (x)    2
q (x)
    1

r(x)

Figure 2.2: Coupled flow-maximization settings. For two image domains Ωi, i ∈ {1, 2}, two
source terminals si and two sink terminals ti were linked to each pixel x ∈ Ωi. The source flow
pi

s(x) was directed from si and the sink flow pi
t(x) was directed to ti along with a spatial flow

qi(x) around each x. An extra flow r(x) was also directed from x ∈ Ω1 to the same position in
Ω2.

• We employed two copies Ω1 and Ω2 of the image domain Ω w.r.t. the two continuous

min-cut graphs, respectively; we added a source terminal si and a sink terminal ti to the

image domain Ωi, i ∈ {1, 2}. We linked si to each pixel x ∈ Ωi, along which a source

flow pi
s(x) was directed. Similarly, we linked each x ∈ Ωi to ti, along which a sink flow

pi
t(x) was directed. Moreover, within Ωi, a spatial flow qi(x) around each pixel x ∈ Ωi

was specified.

• At each pixel x ∈ Ω1, there was an extra link to the same position x ∈ Ω2 and describing

an additional flow r(x).
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Following the flow configuration demonstrated in Fig. 2.2, we formulate the coupled con-

tinuous max-flow model by maximizing the total flow that is allowed to send from the two

source terminals s1 and s2:

max
p1,2

s ,p1,2
t ,q1,2,r

∫
Ω

p1
s dx +

∫
Ω

p2
s dx , (2.6)

subject to the following constraints of the flow function:

• For the two source flow fields p1,2
s (x) and each pixel x ∈ Ω1,2, we defined the respective

flow capacity constraints such that

p1
s(x) ≤ D1

s(x) , p2
s(x) ≤ D2

s(x) . (2.7)

• For the two sink flow fields p1,2
t (x) and each pixel x ∈ Ω1,2, the respective flow capacity

constraints are given by

p1
t (x) ≤ D1

t (x) , p2
t (x) ≤ D2

t (x) . (2.8)

• For the two spatial flows q1,2(x) and each pixel x ∈ Ω1,2, the flow capacity constraints are

defined as

|q1(x)| ≤ ω1(x) , |q2(x)| ≤ ω2(x) . (2.9)

• The extra coupled flow field r(x) is constrained by

|r(x)| ≤ β . (2.10)

• In addition to the flow capacity constraints, for ∀x ∈ Ω1, the flow fields (p1
s(x), p1

t (x), q1(x),
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r(x)) are balanced, i.e., the flow conservation constraint, such that

F1(x) := div q1(x) + p1
t (x) − p1

s(x) + r(x) = 0 ; (2.11)

for ∀x ∈ Ω2, the flow fields (p2
s(x), p2

t (x), q2(x), r(x)) are balanced such that

F2(x) := div q2(x) + p2
t (x) − p2

s(x) − r(x) = 0 . (2.12)

2.3.2 Duality and Exactness of Convex Relaxation

The coupled continuous max-flow model (2.6) maximizes the linear total-flow function subject

to the flow capacity and conservation constraints (2.7) - (2.12). Now we prove the equiva-

lence between the proposed coupled continuous max-flow model (2.6) and convex relaxed co-

segmentation formulation (2.5) under the primal and dual perspective of convex optimization,

i.e.,

Proposition 1 The proposed coupled continuous max-flow model (2.6) is equivalent or dual

to the convex relaxed co-segmentation formulation (2.5) such that

(2.6) ⇐⇒ (2.5) .

The proof follows variational facts: we introduce the multiplier function u1(x) and u2(x) to

the two flow conservation conditions (2.11) and (2.12), respectively. Therefore, we have the

following primal-dual optimization formulation, which is equivalent to (2.6):

min
u1,2

max
ps,pt ,q,r

∫
Ω

p1
s dx +

∫
Ω

p2
s dx +

∫
Ω

u1(x)F1(x) dx +

∫
Ω

u2(x)F2(x) dx , (2.13)

subject to the flow capacity constraints (2.7) - (2.10). Given the definitions of function (2.11)

and (2.12), the primal-dual optimization problem (2.13), after re-organizing the function terms,
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finally amounts to the optimization problem such that:

min
u1,2

max
ps,pt ,q,r

∫
Ω

(1 − u1)p1
s dx +

∫
Ω

u1 p1
t dx +∫

Ω

(1 − u2)p2
s dx +

∫
Ω

u2 p2
t dx +∫

Ω

u1 div q1 dx +

∫
Ω

u2 div q2 dx +

∫
Ω

(u1 − u2)r dx (2.14)

subject to the flow capacity constraints (2.7) - (2.10).

Similar to the work previously described [34], maximizing the energy (2.14) over the flow

function p1,2
s (x), p1,2

t (x), q1,2(x) and r(x), subject to the respective flow capacities (2.7) - (2.10),

results in the convex relaxed co-segmentation formulation (2.5). As a result, the duality or

equivalence between (2.6) and (2.5) is proven such that

(2.6) ⇐⇒ (2.13) or (2.14) ⇐⇒ (2.5) .

With the help of the coupled continuous max-flow formulation (2.6) and proposition 3,

we can also simply threshold the global optimum u∗1,2(x) ∈ [0, 1] of the convex relaxed co-

segmentation problem (2.5) by any γ ∈ (0, 1] to generate global binary optimum of (2.4). The

proof follows the similar analytical procedures given by [34] and the fact that thresholding of

(A.8) does not change the sign of u∗1(x) − u∗2(x) for ∀x ∈ Ω, i.e., if u∗1(x) − u∗2(x) ≥ 0, then

uγ1(x) − uγ2(x) ≥ 0; if u∗1(x) − u∗2(x) ≤ 0, then uγ1(x) − uγ2(x) ≤ 0.

2.3.3 Coupled Continuous Max-Flow Algorithm

Observing the primal-dual formulation (2.13) and proposition 1, it is obvious that the optimal

labelling function u1,2(x) of the convex relaxed co-segmentation problem (2.5) can be com-

puted by the optimal multipliers of its equivalent primal-dual problem (2.13) alternatively,

which is the essential idea of the coupled continuous max-flow algorithm proposed in this sec-

tion. We show that such a coupled flow-maximization based numerical scheme successfully
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avoids tackling the non-smooth total-variation and absolute function terms in the proposed

co-segmentation problem (2.4) by means of simple projection steps, and results in efficient

convergence.

In view of the primal-dual formulation (2.13), where the energy function is just the La-

grangian function of the coupled continuous max-flow model (2.6), we define its augmented

Lagrangian function as follows:

Lc(u, ps, pt, q, r) =

∫
Ω

p1
s dx +

∫
Ω

p2
s dx +

∫
Ω

u1F1 dx+∫
Ω

u2F2 dx −
c
2
‖F1‖

2
−

c
2
‖F2‖

2 , (2.15)

where c > 0.

By means of the augmented Lagrangian algorithm [36, 37], we propose the coupled con-

tinuous max-flow algorithm using an augmented optimization scheme. This scheme splits the

optimization problem into sub-flow-maximization problems exploiting independent flow vari-

ables, thus it can be independently optimized at each k-th iteration as follows:

1. Maximize Lc(u, ps, pt, q, r) over |q1(x)| ≤ ω1(x) by fixing the other variables, which gives

qk+1
1 = arg max

|q1(x)|≤ω1(x)
−

c
2

∥∥∥div q1 − T k
1

∥∥∥2
,

where T k
1 = (p1

s)
k − (p1

t )k − rk + (u1)k/c. It can be implemented by the one-step gradient-

projection:

qk+1
1 = Proj|q1(x)|≤ω1(x)(q

k
1 + α∇(div qk

1 − T k
1)) . (2.16)

We refer the well-known Chambolle’s scheme [38] for its detailed implementation.

2. Maximize Lc(u, ps, pt, q, r) over p1
s(x) ≤ D1

s(x) by fixing the other variables, which gives

(p1
s)

k+1 = arg max
p1

s (x)≤D1
s (x)

∫
Ω

p1
s dx −

c
2

∥∥∥p1
s −Gk

1

∥∥∥2
,
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where Gk
1 = div qk+1

1 + (p1
t )k + rk − (u1)k/c. It can be solved exactly by:

(p1
s)

k+1 = min(Gk
1 + 1/c,D1

s) . (2.17)

3. Maximize Lc(u, ps, pt, q, r) over p1
t (x) ≤ D1

t (x) by fixing the other variables, which gives

(p1
t )k+1 = arg max

p1
t (x)≤D1

t (x)
−

c
2

∥∥∥p1
t + Hk

1

∥∥∥2
,

where Hk
1 = div qk+1

1 − (p1
s)

k+1 + rk − (u1)k/c. It can be solved exactly by:

(p1
t )k+1 = min(−Hk

1,D
1
t ) . (2.18)

4. Following the similar steps as (1)-(3), we maximize Lc(u, ps, pt, q, r) over the flow fields

(q2, p2
s , p2

t ), and compute the new values of qk+1
2 , (p2

s)
k+1 and (p2

t )k+1.

5. Maximize Lc(u, ps, pt, q, r) over the coupled flow field |r(x)| ≤ β by fixing the other

variables, which gives

rk+1 = arg max
|r(x)|≤β

−
c
2

∥∥∥r + Jk
1

∥∥∥2
−

c
2

∥∥∥r − Jk
2

∥∥∥2
,

where Jk
1 = div qk+1

1 −(p1
s)

k+1+(p1
t )k+1−(u1)k/c and Jk

2 = div qk+1
2 −(p2

s)
k+1+(p2

t )k+1−(u2)k/c.

It can be computed exactly by

rk+1 = (Jk
2 − Jk

1)/2 . (2.19)

6. Update the labelling function uk+1
i (x), i ∈ {1, 2}, by

uk+1
i (x) = uk

i (x) − c Fk+1
i (x) , (2.20)
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where, by observing (2.11) and (2.12), the function Fk+1
i (x), i ∈ {1, 2}, are computed as

below:

Fk+1
1 = div qk+1

1 − (p1
s)

k+1 + (p1
t )k+1 + rk+1

and

Fk+1
2 = div qk+1

2 − (p2
s)

k+1 + (p2
t )k+1 − rk+1 .

7. Let k = k + 1 and repeat the above steps until convergence.

At each iteration, the two labelling function u1(x) and u2(x) are changed by the values

cF1(x) and cF2(x) respectively. Hence, we evaluate the average total labelling change per each

pixel:
c
( ∫

Ω
|F1| dx +

∫
Ω
|F2| dx

)
|Ω|

≤ δ,

where |Ω| stands for the total image volume in the unit of voxels and δ > 0 is the convergence

criterion. In this paper, we set δ to 10−4 for convergence measurements.

The proposed coupled continuous max-flow algorithm was implemented using a parallel

computing platform (GPGPU), which significantly accelerated the numerical computation.

2.4 Experiments

2.4.1 Study Subjects

In total, 25 ex-smokers were evaluated including five asymptomatic ex-smokers (ES) and

twenty COPD ex-smokers who provided written informed consent to a study protocol approved

by Health Canada and a local research ethics board (Appendix H). COPD subjects with a clin-

ical diagnosis were classified according to the Global Initiative for chronic Obstructive Lung

Disease (GOLD) criteria as previously described [39]. Subject demographic characteristics are

provided in Table 2.1.
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Table 2.1: Subject demographic and pulmonary function measurements
ES/GOLD U GOLD I/II GOLD III/IV

Mean(SD) (n = 9) (n = 8) (n = 8)
Age yrs 67(11) 76(6) 71(9)
Male n 3 5 6
BMI kg.m−2 28(5) 28(5) 26(4)
Pack yrs 32(14) 38(17) 66(41)
FEV1%pred 87(23) 72(16) 30(8)
FVC%pred 85(24) 96(6) 64(15)
FEV1/FVC 78(7) 53(11) 34(4)
TLC%pred 101(14) 109(10) 119(14)
RV/TLC 48(11) 41(15) 64(8)
DLco%pred 74(26) 48(16) 37(9)
VDP(%) 8(4) 18(10) 28(3)

BMI = Body mass index, FEV1 = Forced expiratory volume in
one second, FVC = Forced vital capacity, TLC = Total lung ca-
pacity, RV = Residual volume, DLco = Diffusing capacity for car-
bon monoxide, %pred = Percent predicted value, VDP= Ventila-
tion defect percent [23].

2.4.2 MRI

MRI was performed using a whole-body 3.0 Tesla Discovery MR750 MRI system (General

Electric Health Care [GEHC], Milwaukee, WI, USA) with broadband imaging capability [40].

Subjects were instructed to inhale a gas mixture from a 1.0 L Tedlar bag (Jensen Inert Products,

Coral Springs, FL, USA) from functional residual capacity (FRC) and image acquisition was

performed in coronal plane with a breath-hold maneuver.

For 1H MRI acquisitions, subjects were scanned in breath-hold inspiration after inhaling

1.0 L medical grade nitrogen (N2) (Spectra Gases, Alpha, NJ, USA) from functional residual

capacity (FRC). Conventional 1H MRI was acquired using an eight-channel, transmit/receive

whole-body radiofrequency (RF) coil (127 MHz, maximum excitation power 8.0 kW delivered

by a narrow-band RF power amplifier, GEHC, Milwaukee, WI, USA), and a 2D multi-slice

fast gradient-recalled echo sequence (12 s acquisition time, repetition time (TR) = 4.3 ms, echo

time (TE) = 1.2 ms, flip angle = 20◦, field of view (FOV) = 40 cm×40 cm, bandwidth = 25

kHz, matrix = 128 (phase encoding) × 80 (frequency encoding), 14–17 slices, slice thickness
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= 15 mm, 0 mm gap), as previously described [41]. Auto shimming was used for 1H MRI

acquisitions (chest region) for the centre slice. The maximum magnetic field gradient strength

was 5 G/cm for x,y and z gradients and image distortion compensation was enabled by default.

Images were reconstructed from original k-space data using Fourier transforms with Matlab

R2013a (The Mathworks Inc., Natick, MA, USA).

For 3He MRI acquisition, subjects were instructed to inhale 1.0 L hyperpolarized 3He (30-

40% polarization, 5 ml/kg of body weight) diluted with medical grade (N2) (Spectra Gases, Al-

pha, NJ, USA) from FRC. Static ventilation images were acquired using a single-channel, rigid,

linear birdcage transmit/receive elliptical chest coil (Rapid Biomedical, Wuerzburg, Germany,

97.3 MHz, maximum excitation power 3.2 kW delivered by an AMT 3T90 broad-band RF

power amplifier (GEHC, Milwaukee, WI, USA)), and a 2D multi-slice fast gradient-recalled

echo sequence (10 s acquisition time, TR = 3.8 ms, TE = 1.0 ms, flip angle = 7◦, FOV = 40

cm×40 cm, bandwidth = 49 kHz, matrix = 128 (phase encoding) × 80 (frequency encoding),

14–17 sections, slice thickness = 15 mm, 0 mm gap), as previously described [41]. Due to

hardware limitation, we used previously determined 1H MRI shimming settings for all hyper-

polarized gas MRI acquisitions (chest region) for the centre slice. The maximum magnetic field

gradient strength was 5 G/cm for for x,y and z gradients and no image distortion compensation

was used. Images were reconstructed from original k-space data using Fourier transforms with

Matlab R2013a (The Mathworks Inc., Natick, MA, USA).

2.4.3 Segmentation Pipeline

The main components of the proposed segmentation pipeline are shown in Fig. 2.3, including

image resampling, 3He to 1H MRI rigid registration, user seeding of representative regions to

generate the respective probability density functions (PDF) and max-flow computation with

spatial consistency constraint. Here we describe the pipeline in detail.
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Interpolation in 
sagittal direc-
tion

Input 1H and 
3He MRI 
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generates intensity 
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ation

1H-3He co-segmenta-
tion consistency 
constraint

Dual coupled continu-
ous max-�ow model 
and GPU-based 
convex optimization

3He -1H rigid
registration

Figure 2.3: Block diagram of the proposed co-segmentation pipeline.

2.4.3.1 Pre-processing

The voxel sizes of the original 1H and 3He MR images were 3.125 × 3.125 × 15 mm3. We

resampled the original images into approximately isotropic voxels with a size of ∼3 × 3 × 3

mm3 to ensure that the classical 3D total-variational function regularizes along the three direc-

tions equally. Prior to segmentation, all 3He images were rigidly registered to the associated 1H

MRI to compensate for potential patient movement during image acquisition procedure. For

this purpose we employed a block-matching approach [42] implemented within the NiftyReg

package [43] using default parameters.

2.4.3.2 User Interaction

The proposed algorithm was implemented in Matlab R2013a (The Mathworks Inc., Natick,

MA, USA) with a graphical user interface (GUI). The sole user interaction involved was sam-

pling the lung tissue and the background on a single 1H and 3He MR slices in coronal plane

using a 2D brush tool (see Fig. 2.4). Specifically, we selected the coronal slice where the

trachea is most obvious or where it is challenging to separate the trachea from the lung cavity,

such as when the trachea attaches the lung parenchyma. For normal images, we simply cut the

main bronchi to separate it from the lung cavity. In the case of intensity overlap between the

bronchi and the lung, we placed seeds on the trachea and/or the main bronchi to ensure that

they were separated. The sampled voxels were used: 1) to estimate the PDF of the image inten-

sities for both the lung and the background; 2) as hard constraints, i.e., resulting in minimum
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and maximum cost for the object and background labels, respectively, as previously described

[44].

A B C

Figure 2.4: User seeds on co-registered 3He and 1H MRI. A) Combined view of 3He (cyan) and
1H MRI (grayscale). B) User-defined seeds on 1H MRI. C) User-defined seeds on 3He MRI.

2.4.3.3 Optimization

All computation was performed on a Linux desktop (CentOS 6.5) with 16 G RAM and an

Intel(R) Core (TM) i7-3770 CPU running at 3.4 GHz and a GeForce GTX680 GPU (NVIDIA

Corp., Santa Clara, CA, USA). Users were asked to place lung and background seeds as shown

in Fig. 2.4. Data terms D1
s,t and D2

s,t in (2.1) were computed for the 1H and 3He MR images,

respectively. The data terms are designed following a previous method [45], as the cost of

assigning a background and foreground label to a voxel x, such that

Di
s,t(x) = − log hs,t(Ii(x)) , i ∈ {1, 2} , (2.21)

where hs(Ii(x)) and ht(Ii(x)) are the PDF for the background and the lung, respectively. Fur-

thermore, the edge weight function ω1,2(x) in (2.5), which penalizes the image gradients such

that the segmentation results would be more likely to converge at strong image boundaries,

was given as: ωk(x) = λk
1 + λk

2exp(−λk
3 |∇Ii(x)|2), k ∈ {1, 2}, where λk

1,2,3 ≥ 0 can be adjusted by

users according to the results. For the duration of the experiments, all parameters were adjusted
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heuristically on another three subjects not included in the experiments. Table 2.2 contains all

segmentation parameters used in the experiments.

Table 2.2: Parameters for 1H-3He co-segmentation and 1H MRI single segmentation
Co-segmentation Single segmentation

Parameters 1H MRI 3He MRI 1H MRI
λ1 0.1 0.04 0.15
λ2 2.5 0.2 5
λ3 90 30 40
β 1.5 0

See Sec. 2.4.3.3 and (2.4) for the definition of these parameters.

2.4.4 Evaluation Methods

The performance of the proposed algorithm was evaluated against manual segmentation per-

formed by an expert observer (SS), who has more than 4 years-experience in pulmonary 1H

MRI segmentation. Algorithm results were compared with manual outcomes using a mix of

region-, volume- and distance-based metrics.

2.4.4.1 Region-based Metric

We calculated the Dice-similarity-coefficient (DSC) to measure the overlap ratio of manual and

algorithm-generated lung masks as follows:

DS C =
2(RM ∩ RA)

RM + RA
, (2.22)

where RM and RA represent the lung masks generated by manual and algorithm segmentation

of the same subject, respectively.
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2.4.4.2 Volume-based Metrics

Let VA and VM be the lung volumes generated from our algorithm and manual segmentation of

the same subject, respectively. Volume accuracy was calculated using total volume error δVE:

δVE = (VA − VM) , (2.23)

and percent volume error δVP:

δVP =
VA − VM

VM
× 100% . (2.24)

Absolute total and percent volume errors |δVE | (2.23) and |δVP| (2.24) were also com-

puted for direct variance measurements. Univariate relationships of algorithm and manually-

generated lung volumes were determined using linear regression (r2) and Pearson correlation

coefficients (r) with GraphPad Prism version 6.00 (GraphPad Software, San Diego, CA, USA).

2.4.4.3 Distance-based Metrics

We also employed root-mean-squared-error (RMSE) and maximum absolute distance (MAXD)

of the two sets of lung surface vertices to measure the agreement of lung surfaces. We denote

the manual lung surface M as a set of vertices {mi : i = 1, . . . ,K} and algorithm lung surface A

as {ai : i = 1, . . . ,N}, where K and N are the number of vertices that comprise the manual and

algorithm lung surfaces, respectively. Let d(mi, A) be the Euclidean distance from a vertex mi

to the surface A. RMSE and MAXD were calculated as follows:

RMS E =

√√
1
K

K∑
i=1

d(mi, A)2 (2.25)

MAXD = max
i∈[1,K]

{d(mi, A)} . (2.26)
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The overall performance of the proposed algorithm in terms of the above metrics was deter-

mined by averaging the DSC, RMSE, MAXD, δVE, δVP, |δVE | and |δVP| for each subgroup as

well as the entire dataset. In addition, we recorded the runtime for each subject, including

pre-processing, user interaction and the following max-flow optimization. We also compared

the runtime required by the CPU and GPU-based implementation of the max-flow optimization

procedure and reported the mean runtime for all subjects in the dataset.

2.4.5 Comparison to Single Modality Segmentation

We assessed the effectiveness of incorporating multi-channel image information by comparing

1H-3He co-segmentation results with single 1H MRI segmentation. For the two comparative

algorithms, we optimized the parameters (Table 2.2) independently on the same training sub-

jects. The two methods used exactly identical initializations except the weighting parameter

β in (2.5) was set to 1.5 for joint segmentation and 0 for single 1H MRI segmentation. The

results from the two algorithm segmentation were reported for all the evaluation metrics: DSC,

RMSE, MAXD, δVE, δVP, |δVE | and |δVP|.

Paired t-tests were used to compare the performance of the two algorithms. Normality

of data was determined using Shapiro-Wilk tests and when significant, the Mann-Whitney U

test for nonparametric data was performed using Statistical Package for the Social Sciences

(SPSS version 22, SPSS Inc, Chicago, IL, USA). In addition, a one-way analysis of variance

(ANOVA) was performed for statistical comparison of the differences (single 1H and joint 1H-

3He segmentation) between the three subgroups. All results were considered significant when

the probability of making a type I error was less than 5% (p < 0.05).

2.4.6 Sensitivity to 1H-3He MRI Registration Error

The proposed co-segmentation algorithm employs complementary features from both 1H and

3He images, thus requiring them to be properly aligned. To test its robustness to 1H-3He MRI

registration accuracy, which is usually difficult to achieve, we added artificial registration error
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to the resultant rigid 3He-1H MRI transformation. Following [24], we added ±10% rotation and

±10% translation perturbation (signs were randomly chosen) to the obtained transformation

matrix in the three directions independently for all the subjects, resulting in additional six sets

of data with artificially perturbed 3He-1H rigid registration. We re-calculated all the metrics

and compared them with the results before those artificial errors were added.

2.4.7 Operator Variability

Our algorithm is near-automated except for the user seeding step. To estimate the segmentation

variability, we calculated inter- and intra-operator variability by applying our algorithm to the

whole dataset independently randomized for two observers. The two observers performed

algorithm segmentation five times [46] on five different days separated by at least 24 hours

each to minimize memory bias with independent initializations.

We computed the coefficient-of-variation (CoV, calculated as S D
Mean ∗ 100%) and intra-class

correlation coefficient (ICC) for DSC and RMSE to evaluate the precision of the algorithm.

Intra-CoV measures the variability of five repetitions with respect to the mean for a single

operator, while inter-CoV measures the variability of the repeated measurements between mul-

tiple users. ICC measures the absolute agreement of different repetitions by computing the

proportion of variance between them and was determined using SPSS. In addition, the 95%

confidence intervals (CI) for CoV and ICC were also determined.

2.5 Results

2.5.1 3D Co-Segmentation: Representative Results

Figure 2.5 shows representative co-segmentation results for a COPD GOLD II subject (57 yr

male, FEV1 = 72%pred, FEV1/FVC = 62%). The associated 3He images are shown in Fig.

2.4A and 2.4C. Figure 2.5A shows the segmented anterior to posterior lung slices and Fig.
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2.4B shows the segmented lung rendered in 3D.

A B

Figure 2.5: Representative algorithm co-segmentation for a single COPD subject. A) Three-
dimensional co-segmentation results are shown for two-dimensional anterior to posterior slices.
B) Co-segmented whole lung volume rendered result. (Yellow: manual segmentation, purple:
co-segmentation. DS C = 94.3%, RMS E = 3.4 mm, δVE = 0.15 L, δVP = 2.3%)

2.5.2 Comparison to Manual Segmentation

The performance of the proposed coupled continuous max-flow approach for segmenting the

entire database is shown in Table 2.3 and 2.5. The co-segmentation method yielded a mean

DSC of 91.0% for all the subjects. The mean DSC for the ES/GOLD U, GOLD I/II and GOLD

III/IV groups were 90.3%, 91.0% and 91.7%, respectively. For the whole database, the overall

DSC ranged from 78.1% (one subject with very low SNR) to 94.6%. We also observed low SD

< 4%.

The RMSE and SD for all the subjects were 4.3 mm and 0.7 mm, respectively, which are

equal to ∼ 1.4 and 0.2 times the voxel width (3.125 mm isotropic voxel size). The mean RMSE

ranged from 4.0 mm to 4.5 mm and SD from 0.5 mm to 0.7 mm for all the subgroups. We

observed a slightly increasing trend of RMSE from ES/GOLD U to GOLD III/IV groups. The

mean MAXD was 21.4 mm and we observed comparable MAXD for the three groups.

The overall mean |δVP| was 8.8% and the mean |δVE | was 0.42 L, compared with the whole

lung volume with a typical value of ∼5-8 L. In addition, we observed an increasing trend in

the generated absolute volume and its percentage errors from ES/GOLD U to GOLD III/IV
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Table 2.5: Co-segmentation and single 1H MRI segmentation performance. *p < 0.0001
Segmentation 1H MRI 1H-3He MRI
DS C (%) 89.3±2.0 91.0±2.8∗
RMS E (mm) 5.5±0.9 4.3±0.7∗
MAXD (mm) 26.1±5.3 21.4±5.1∗
|δVE | (L) 0.70±0.33 0.42±0.31∗
|δVP| (%) 14.9±6.4 8.8±6.3∗
δVE (L) 0.68±0.37 0.27±0.44∗
δVP (%) 14.5±7.2 5.4 ±9.4∗

groups. The obtained volume errors were on average of 0.27 L or 5.4%, suggesting slightly

higher lung volumes generated by the proposed method.

The Pearson correlation coefficients and the 95% CI for algorithm and manually-generated

lung volumes were also calculated for each group and the whole dataset, as shown in Table 2.6.

The algorithm-generated lung volumes for subgroups and the whole dataset were significantly

correlated with manual reference standard (r: 0.90–0.94, p < 0.0001) (see Table 2.6 and Fig.

2.6A). In addition, Bland-Altman analysis, shown in Fig. 2.6B, showed a bias of 0.27 L for

algorithm-generated lung volumes.

Table 2.6: Relationship of algorithm and manually-generated lung volumes by subject sub-
group

ES/GOLD U GOLD I/II GOLD III/IV All
(n = 9) (n = 8) (n = 8) (n = 25)

Pearson r 0.94 0.90 0.92 0.94
95% CI 0.92 - 0.96 0.85 - 0.94 0.87 - 0.95 0.92 - 0.95
p-value <0.0001 <0.0001 <0.0001 <0.0001

We also performed expert manual segmentation on multiple occasions and these were

used as the reference standard, and evaluated manual segmentation variability using a one-

way ANOVA. Specifically, the same expert (SS) manually segmented the same 25 subjects on

three occasions separated by at least 48 hours, resulting in three sets of algorithm segmentation

results (Round1-3), shown in Table 2.7. As shown in Table 2.7, there were no significant differ-

ences for the multiple expert manual segmentation results (p > 0.05). Additionally, we altered

the co-segmentation parameters λ1,2,3 (for 1H MRI), λ1,2,3 (for 3He MRI) and β, as shown in
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Figure 2.6: Relationship and agreement of algorithm- (VA) and manually- (VM) generated lung
volumes. A) Linear correlation of algorithm- and manually-generated lung volumes. B) Bland-
Altman plots of algorithm- and manually-generated lung volumes, solid line indicates the mean
difference and dotted lines represent the 95% limits of agreement.

Table 2.2, by ±40%, ±15%, ±10%, ±40%, ±50%, ±30% and ±25%, respectively, and applied

the algorithm to a random round of initialization by one user. We altered one parameter at a

time while keeping the others fixed and measured the change of DSC (∆DSC). We obtained

∆DSC of 0.14%, 0.09%, 0.06%, 0.09%, 0.02%, 0.03% and 0.02% for the above parameter

changes, respectively.

Table 2.7: Impact of manual segmentation: co-segmentation results based on three rounds of
manual segmentation

Segmentation Round1 Round2 Round3 p-value
DS C (%) 91.0±2.8 91.1±2.6 91.2±2.6 0.73
RMS E (mm) 4.3±0.7 4.2±0.7 4.2±0.6 0.35
MAXD (mm) 21.4±5.1 21.6±4.9 21.4±5.4 0.79
|δVE | (L) 0.42±0.31 0.40±0.29 0.36±0.26 0.07
|δVP| (%) 8.8±6.3 8.3±5.9 7.5±5.3 0.06
δVE (L) 0.27±0.44 0.22±0.44 0.20±0.40 0.22
δVP (%) 5.4±9.4 4.2±9.2 4.0±8.3 0.21
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2.5.3 Comparison to Single Modality Segmentation

Comparative results of the proposed 1H-3He MRI co-segmentation method and single 1H MRI

segmentation for each subgroup and the whole group are shown in Table 2.3 and 2.5, respec-

tively. The co-segmentation yielded significantly different accuracy measurements than seg-

mentation that employed only 1H MRI information (see Table 2.3 and 2.5 , all p < 0.05). For

example, the mean DSC and RMSE for co-segmentation were 91.0±2.8% and 4.3±0.7 mm,

respectively, compared with 89.3±2.0% and 5.5±0.9 mm from single 1H MRI segmentation.

ANOVA results show that the differences between single an co-segmentation for the three sub-

groups are significantly different (except in terms of MAXD). For example, we calculated δVP

of 14.6%, 9.8% and 2.3% for ES/GOLD U, GOLD I/II and GOLD III/IV groups, respectively.

δVE follows the same trend.

Both segmentation methods yielded positive total and percent volume errors, suggesting

a systematically greater lung volumes for algorithm segmentation. However, this effect was

less obvious in the proposed co-segmentation method. Representative cases are shown in Fig.

2.5A, where 1H MRI segmentation presents leakage in the superior lung area and we observed

that the co-segmentation-generated boundaries are closer to the manual reference standard.

2.5.4 Influence of 1H-3He MRI Registration on Co-Segmentation

Co-segmentation results with artificial registration errors added to the base 1H-3He transforma-

tion matrix are shown in Table 2.4. Small differences were observed for the additional six sets

of results compared with base co-segmentation outcomes, none of which were significantly

different. In addition, small differences were observed between the six sets of results. These

results suggest that the proposed algorithm is robust to certain 3He-1H registration error.
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2.5.5 Operator Variability

Quantitative assessment of algorithm segmentation variability is shown in Table 2.8. As can

be seen, the CoV are small and the ICC are high. For example, for Observer1, we obtained for

DSC: CoV of 0.6% and ICC of 0.975, for RMSE: CoV of 3.7% and ICC of 0.985. In addition,

the absolute agreement between the two observers was also high with a small variance, i.e.,

inter- CoV and ICC for DSC were 0.7% and 0.990, respectively.

Table 2.8: Intra and inter-observer variability
Observer1 Observer2 Inter-observer

DSC (%) 90.8±2.6 91.1±2.9 91.0±2.8
CoV(%) 0.6 0.6 0.7

ICC 0.975 0.992 0.990
RMSE (mm) 4.4±0.8 4.2±0.7 4.3±0.7

CoV(%) 3.6 4.8 5.1
ICC 0.985 0.977 0.988

2.5.6 Computation Time

Initialization of our approach included rigid registration 3He and 1H MRI and user interactions

in the form of placing seeds on the object and background for the two images using a Matlab

GUI. The mean time required for initialization was approximately 20 s, including ∼ 15 s for

1H and 3He MRI registration and less than 5s for user seeding. Table 2.9 compares the runtime

for manual, CPU and GPU-based implementation of the co-segmentation method.

Table 2.9: Time required for manual segmentation and partial runtime (s) for co-segmentation
algorithm

Segmentation Manual CPU-based GPU-based
Rigid registration N/A ∼15 ∼15
User seeding N/A ∼5 ∼5
Max-flow optimization N/A ∼40 ∼5
Total ∼1000 ∼60 ∼25
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2.6 Discussion

We developed an approach to segmenting the lung from both 1H and 3He MR images by prop-

erly imposing the spatial consistency between the lung of two input MR images, which gener-

ated a spatially continuous co-segmentation model. We studied the challenging combinatorial

optimization problem of the proposed continuous co-segmentation model by means of convex

relaxation, for which we introduced a convex dual formulation, namely the coupled continuous

max-flow model, and derived a coupled continuous max-flow algorithm based on a multiplier

augmented scheme. We showed that the convex relaxed optimization model solves the original

combinatorial optimization problem globally and exactly, and is much simpler to optimize in

mathematics. Experimental results demonstrated that the proposed approach achieved great

advantages in terms of high accuracy, low user interaction and variability, high computational

efficiency and robustness to inaccurate 1H-3He MRI registration.

2.6.1 Accuracy

Comparing co-segmentation with expert manual segmentation, the proposed method agreed

with manual results and yielded comparable performance for patient groups with progressive

disease states. For example, DSC for all subgroups were greater than 90% with small SD. We

observed slightly higher to lower accuracy in terms of mean RMSE and volume errors from

ES/GOLD U to GOLD III/IV groups. This might be explained by the fact that 3He images

become more and more incomplete with the progression of pulmonary disease severity, thus

providing less useful information for the co-segmentation algorithm, resulting in degradation

of the segmentation accuracy. Due to the nature of the proposed co-segmentation algorithm,

which incorporates useful features from both images, the more complete the images are, the

more useful image information they provide and hence the more accurate the results would be.

The obtained results from the proposed algorithm demonstrated the correlation of 3He-derived

lung function and that measured according to the GOLD criterion. In fact, this relation was
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investigated by [20], suggesting that our results are in agreement.

RMSE and MAXD report the surface agreement between algorithm and manual lung seg-

mentation. The mean RMSE ranged from 4.0 mm to 4.5 mm for all groups with an overall

mean of 4.3 mm for the whole patient group. Considering the 3 × 3 × 3 mm3 voxels, the RMSE

was less than 1.5 times in-plane voxel width. The surface agreement for each group followed

a similar trend as DSC, and the same reason above applies. We observed that the main surface

disagreement occurs in the regions where both high curvature structures from 1H MRI and in-

sufficient functional information from 3He images are present. For example, the costophrenic

presents high curvature in 1H MRI (Fig. 2.4B) and less information from 3He images (Fig.

2.4A), resulting in under-segmentation shown in Fig. 2.5A. However, the true edges could also

be successfully segmented in regions with strong features from both images, even with weak

boundaries or high curvatures (see the cardiac notch in Fig. 2.5A).

The volume errors and their percentages as well as the absolute values were relatively low

(Table 2.5). The overall positive δVE and δVP indicate a systematic lung volume difference

of 0.27 L between algorithm and expert manual segmentation. Considering that a typical lung

volume is 5–8 L, these errors are likely clinically acceptable. In addition, we observed that

the major volume difference occurred at the most posterior and/or anterior slices, where there

is little image information contained and the image quality is generally poor. Because these

regions are so difficult to segment manually, it is not clear that more user interaction (i.e., more

seeds in these regions) will be helpful. We anticipate that, by removing these most posterior

and/or anterior slices, the differences in the algorithm and manually-generated volumes would

decrease significantly. It is also important to note that these slices typically make a small

contribution to the total volume and therefore their removal may be clinically acceptable.

We evaluated manual observer segmentation variability and these results show that on the

basis of three rounds of segmentation (Table 2.7), there were no significant differences and this

reproducibility was used as the reference for algorithm performance evaluation. In addition,

the small variation of DSC (∆DSC) suggests that λ1,2,3 and β in Table 2.2 are not sensitive to
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co-segmentation results.

2.6.2 Co-Segmentation vs Single Segmentation

The proposed co-segmentation algorithm enforced the spatial consistency between the two

lung and thus generated results similar to the manual reference standard. The results from the

proposed co-segmentation approach and single segmentation are provided in Table 2.3 and 2.5.

These data suggests significant improvements in accuracy (p < 0.05) for the co-segmentation

approach. This may stem from the incorporation of image information from multiple channels

that facilitated localizing the true boundaries that are not available using either channel alone.

In this study, 3He information was used in a complementary fashion to assist 1H segmentation

especially in challenging regions (i.e., the hilum and mediastinum), that are plagued by image

artifacts stemming from cardiac movement and blood flow. On the other hand for 3He MRI,

the hilum and mediastinum is relatively easily segmented because the boundaries are very clear

given that there is no 3He signal in the heart. Even in COPD subjects with peripheral ventilation

defects, 3He information in the hilum and mediastinum contributed to 1H MRI segmentation

improvements. In fact, we investigated the region-specific influence of 3He information by

placing a bounding box over the mediastinum/hilum region in the centre slices (in the coronal

plane) in 1H MRI. The same bounding box was then mapped to 1H MRI manual segmentation,

1H-3He co-segmentation as well as 1H MRI single segmentation masks. We calculated DSC

inside and outside the bounding box for both co-segmentation and single 1H MRI segmentation,

resulting in four sets of DSCs (DSCin
co, DSCin

H, DSCout
co , and DSCout

H ). These data was used to

determine the regional improvements and showed an overall improvement of ∼1.5% inside

the bounding box and ∼0.2% outside the bounding box in terms of DSC (data not shown).

In addition, the improvement inside the bounding box was significantly greater (p < 0.05)

than that outside the bounding box, and this is consistent with the notion of greater 3He MRI

segmentation influence in the mediastinum/hilum region.

We also recognize that with disease progression (i.e., more numerous and larger functional
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defects), there might be “confounding” lung boundaries when using the proposed approach.

Therefore here, we weighted the contribution of 1H MRI segmentation energy (E1, (2.1)),

3He MRI segmentation energy (E2, (2.1)) and the dissimilarity term (E3, (2.2)) to the total

energy (2.3) so that we can properly make use of 3He image features to facilitate but not de-

grade the segmentation. In fact, our measurements showed that E1, E2 and E3 account for

81.07±0.28%, 18.86±0.29% and 0.06±0.06% of the total energy, respectively, which means

that 3He segmentation, as expected was complementary, did not dominate. Additionally, this

“confounding” effect can be controlled in a few ways: 1) for user interaction with high level

prior knowledge applied on 3He images, we not only place seeds on ventilated regions but

also on defect regions; 2) the soft constraint parameter β in (2.3) can be learned and adjusted

to ensure the dissimilarity of two segmented lung volumes, which means that the segmented

lung from 1H and 3He images can be different. Similarly, the weight of E1, E2 and E3 to the

total energy can also be learned and adjusted; 3) we can also penalize the difference between

1H and weighted 3He segmentation based on 3He image signal intensity, which will be in our

future work. In fact, our experiments exploited patient subgroups with wide range of disease

states. The mean ventilation defect percent measured using the method previously described

by [23] was 8%, 18% and 28%, respectively. Although the improvement in segmentation de-

creased in the patients subgroups with more severe functional defects, which is expected, they

are significant. This provides evidence to support the use of functional information for 1H MRI

segmentation.

2.6.3 Influence of Pre-Registration for Co-Segmentation

The proposed co-segmentation requires that the two input images are properly aligned. How-

ever, registration itself is usually problematic. Moreover, acceptable registration often accom-

panies high computation cost, resulting in lower efficiency, especially when high resolution

images are being generated. In fact, the 3He-1H MRI registration in this study is particularly

challenging and few investigations have been contributed. The proposed approach, using the
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default settings for the simple rigid registration provided by NiftyReg, aims to compensate for

patient movement during image acquisition and avoids distortion introduced by affine or de-

formable registration approaches. We want to emphasize that the proposed approach does not

require accurate registration as a prerequisite (see Table 2.4 for details). This is reflected in the

soft constraint (2.2) that tolerates while penalizes the differences between individual segmen-

tation, and the strength can be adjusted.

2.6.4 Reproducibility

The proposed method was highly reproducible in terms of DSC and RMSE (see Table 2.8 for

details). The CoV of DSC within and between users were low (< 0.7%), suggesting the ro-

bustness toward the operator-specific biases. The ICC for all measurements were high, i.e.,

> 0.975, indicating high absolute agreement between multiple measurements. Since our al-

gorithm is not fully automated, the reproducibility is of great importance especially for multi-

center and longitudinal clinical trials. The results in Table 2.8 indicate low user variability

and high agreement between different repetitions, users and initializations, suggesting that our

algorithm is robust to repetitions and easy to use, and requiring less expertise and workload for

radiologists, compared with manual segmentation.

2.6.5 Runtime

The proposed algorithm was implemented using non-optimized Matlab code. The GPU-based

implementation required ∼25 s to segment a pair of input 1H and 3He images, from which ∼5

s (20%) was used for computing the co-segmentation on GPU and the remaining 80% was

used for 1H-3He image registration (∼60%) and user initialization (∼20%). The efficiency of

our algorithm can be further improved, for example, using optimized Matlab built-in func-

tion, advanced C/C++ language, etc.. We want to emphasize that the runtime for the GPU-

implemented algorithm can also be further improved by employing more advanced hardware,

i.e., modern CPU and GPU, which are now economically available. In addition, ∼60% of the



138 C 2. P 1H-3HMRI C-S

time was spent on 1H-3He MRI rigid registration [42], which is inherently parallelable, thus im-

provement of the overall computation efficiency is possible. Currently, our approach requires

very little observer interaction in order to improve speed and workflow. However, because

both precision and accuracy are important for clinical applications, we want to emphasize that

further user interaction involving high level prior knowledge, which may increase the time for

image processing, might be useful to improve the performance.

2.6.6 Comparison to Previous Studies

1H MRI lung segmentation was previously reviewed [47] and typically, region, edge and

model-based methods were used and validated. There are a number of limitations related to

these methods that have motivated our work. For example, while most MRI is now acquired

in 3D, these methods were often performed using two dimensional slices. However, nearly a

generation ago, a 3D model-based method [17] was also developed, although boundary dif-

ferences (∼10 mm) and runtime (2–20 min) were substantial and not compatible with efficient

clinical workflow. Over a decade ago, merging of multiple snakes method [19] was devel-

oped and showed that both smooth and sharp edges were preserved, but this was restricted to

homogeneous regions in 2D. Another approach that incorporated grey level thresholding and

morphological operations [12] achieved an average Jaccard index of about 0.82. Unfortunately

however, because of intrinsic physiological and hardware variability [48], MR images can-

not be processed based exclusively on signal intensities. The combined neural network and

active contour method [18] also required extensive training and updating with careful expert

manual segmentation. The template-based method [22] was highly novel and used unbiased

shape/intensity template construction, statistical lung shape descriptions and level set segmen-

tation in 3D. Although promising, performance was not reported. We developed the proposed

algorithm to try to address the limitations of these previous approaches.
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2.7 Conclusion

We developed a global optimization based approach to jointly segment the lung cavity from

pulmonary 1H and 3He MRI. We evaluated the performance of the proposed approach on a

clinical dataset of 25 subjects across a wide range of COPD GOLD stages. Experimental

results showed that the proposed approach made efficient use of useful image features from

multiple imaging channels and provided high computational efficiency, good agreement with

expert manual segmentation and high reproducibility with low user interaction. Therefore,

our approach might be suitable for evaluation of lung diseases using multi-modality imag-

ing components, providing the potential for a better understanding of the bio-mechanical and

physiological abnormalities in subjects with respiratory disease.
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Chapter 3

Anatomical Pulmonary Magnetic

Resonance Imaging Segmentation for

Regional Structure-Function

Measurements of Asthma

1H (free-breathing and ultra-short echo-time) MRI provides new hopes for lung disease care
but lung segmentation is generally required for 1H MR image analysis and quantification of the
derived structural-functional information. Here we developed and evaluated a segmentation
approach that treated the left and right lung separately and integrated the prior knowledge
about the relative size of the two lung to facilitate 1H MRI lung segmentation.

The contents of this chapter were previously published in Medical Physics: F Guo, S Sven-
ningsen, RL Eddy, DPI Capaldi, K Sheikh, A Fenster and G Parraga. Anatomical pulmonary
magnetic resonance imaging segmentation for regional structure-function measurements of
asthma. Medical physics 43.6 (2016): 2911-2926. Permission to reproduce this article was
granted by John Wiley and Sons and is provided in Appendix G.

3.1 Introduction

Asthma is a common chronic respiratory disease that affects ∼300 million people worldwide

and this is estimated to increase to ∼400 million by 2025 [1]. Currently, spirometry mea-
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surements are widely-used for asthma diagnosis and for monitoring disease progression and

response to treatment [2]. Recently, pulmonary imaging measurements have shown that the

pathophysiological characteristics of asthma are regionally heterogeneous [3, 4]. This is im-

portant because current clinical measurements like the forced expiratory volume in 1 s (FEV1)

provide a global lung function measurements without regard to regional differences. It is per-

haps for this reason that FEV1 is weakly predictive of treatment response, disease progression

and patient outcomes in obstructive lung disease [5].

Pulmonary imaging methods, including x-ray computed tomography (CT) [6, 7, 8], nuclear

medicine [9, 10], and magnetic resonance imaging (MRI) [11, 12] have been developed as non-

invasive ways to visualize the structural and functional abnormalities in asthma. In contrast to

x-ray CT and nuclear medicine methods, MRI, including conventional 1H MRI, noble gas

[12, 13] /oxygen enhanced [14] MRI, Fourier Decomposition (FD) [15, 16, 17] and short/ultra-

short echo-time (UTE) MRI [18], provides quantitative, sensitive and regional lung structure

and function without the risk that stems from ionizing radiation. Therefore, pulmonary MRI is

suitable for intensive, serial and longitudinal studies of asthma.

Anatomical 1H MRI may be combined with inhaled hyperpolarized noble gas (3He and

129Xe) MRI [11] to quantify regional ventilation abnormalities and these measurements de-

pend on image registration and segmentation techniques [19]. 1H MRI has also been used to

generate biomarkers of segmental inflammatory response after allergen challenge in asthma

[20] and to evaluate regional ventilation using image registration [21] and multi-volume MRI

techniques[22].

To quantitatively measure the pulmonary structure and function using MRI, segmentation

of the thoracic cavity needs to be optimized because this is the first step required. However,

as shown in Fig. 3.1, lung segmentation remains challenging due to low tissue and proton

density, magnetic susceptibility and inherent motion artifacts [18] that result in poorly defined

edges and non-uniformly distributed intensities. In the context of an algorithm pipeline for

MRI structure-function biomarker measurements, we think that shape prior, including equiva-
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lence of topologies, volume/area, dynamic shape priors, size, covariance and other high order

moment constraints may be helpful for improving segmentation performance [23, 24]. There-

fore, here we developed a new way to rapidly segment pulmonary 1H MRI using a convex

optimization-based approach that incorporates the left-to-right lung volume proportion as a

constraint for simultaneous left and right lung segmentation. We think that the developed seg-

mentation approach is an important step for widespread clinical translation of pulmonary 1H

MRI.

Figure 3.1: Pulmonary 1H MRI segmentation challenges. Centre coronal 1H MRI slices for
three asthma participants with yellow arrows showing representative weak edges and protrud-
ing structures.

3.2 Materials and Methods

3.2.1 Study Subjects and Data Acquisition

Twenty participants including 15 severe poorly-controlled and five mild-to-moderate well-

controlled asthmatics provided written informed consent to a protocol that was approved by

Health Canada and a local research ethics board (Appendix H). Spirometry and plethysmogra-

phy were performed using whole-body plethysmography (MedGraphics Corporation, St. Paul,

MN, USA) according to the American Thoracic Society guidelines [25].

MR imaging was performed on a whole body 3.0 Tesla MR750 system with broadband
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imaging capability (Excite 12.0, GE Healthcare, Milwaukee, WI, USA). Subjects were posi-

tioned supine and coronal images were acquired during a breath-hold of 1.0 L medical grade

nitrogen (N2) inhaled from a Tedlar bag (Jensen Inert Products, Coral Springs, FL, USA)

from functional residual capacity (FRC). Conventional 1H MRI was performed using an eight-

channel, transmit/receive whole-body radiofrequency (RF) coil (127 MHz, maximum excita-

tion power 8.0 kW delivered by a narrow-band RF power amplifier, GEHC, Milwaukee, WI,

USA), and a 2D multi-slice fast gradient-recalled echo sequence (FGRE) [26] (∼10 s acquisi-

tion time, 4.3 ms repetition time, 1.2 ms echo time, 20◦ flip angle, 40 cm×40 cm field of view,

25 kHz bandwidth, 128 (phase encoding) × 80 (frequency encoding) matrix, 14–17 slices and

15 mm slice thickness, 0 gap). Auto shimming was used for 1H MRI acquisitions (chest re-

gion) for the centre slice. The maximum magnetic field gradient strength was 5 G/cm for

x,y and z gradients and image distortion compensation was enabled by default. Images were

reconstructed from original k-space data using Fourier transforms with Matlab R2013a (The

Mathworks Inc., Natick, MA, USA).

3.2.2 Pulmonary 1H MRI Multi-Region Segmentation with Volume Pro-

portion Prior

We derived a volume proportion preserved Potts model, which is approximated by means of

convex relaxation and further represented by a dual volume proportion preserved max-flow

model. The derived max-flow model encodes the volume proportion prior and leads to a linear

programming problem subject to convex and linear equality constraints. Here we describe the

algorithm in detail as follows:

3.2.2.1 A Volume Proportion Preserved Potts Model & Convex Relaxation

We denote I(x) ∈ Z, x ∈ Ω, as a three-dimensional (3D) pulmonary 1H MR image, where Z

is the image intensity set, Ω is the image domain and x represents a voxel. We aim to segment

the image I(x) into three mutually disjoint regions: the left lung Rll, the right lung Rrl and the
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background Rb with the following region layout:

Ω = Rll ∪ Rrl ∪ Rb ,

Rll ∩ Rrl = ∅ , Rrl ∩ Rb = ∅ , Rll ∩ Rb = ∅ . (3.1)

Here we focus on the proportion prior, the relative size of the left lung to right lung for

pulmonary 1H MRI segmentation. Such proportion prior was previously investigated and

demonstrated significant improvements, i.e., accuracy/stability, on natural image sequences

[27]. Here, we exploit the proportion prior we developed based on the augmented Lagrangian

algorithm for the optimization problem. This is important because previous studies have shown

that there is a relationship between the left and right lung volumes. Specifically, the study of

a group of 78 subjects [28] showed that the right lung was ∼1.13 times larger than the left

lung. Another investigation [29] of lung volumes at different breathing levels showed that the

right lung volume was ∼1.1 - 1.18 times greater than the left lung. In a recent study[30], 99

subjects ranging in physical and physiological conditions were examined and the left lung was

shown to be smaller than the right lung by a factor in the range of 1.12 to 1.22 with a mean of

1.18. Additionally, we segmented and validated a separate dataset of 15 randomly selected CT

images (acquired at the same lung volume as their associated 1H MR scans) using Pulmonary

Workstation 2.0 (VIDA Diagnosis Inc., Coralville, IA, USA) and observed 1.16 ± 0.05 times

smaller left lung than the right lung. Based on these observations, we choose a left-to-right

lung volume ratio of 1/1.15 for this study. Therefore, we propose to incorporate the left-to-

right lung volume proportion prior to assist locating the left lung Rll and the right lung Rrl by

penalizing the following function:

α
∣∣∣∣ |Rll| − γ |Rrl|

∣∣∣∣ , (3.2)

where |Rll| and |Rrl| represent the volume sizes of the left and right lung, respectively. γ > 0

represents the target ratio (∼1.15) of |Rll| and |Rrl| and α > 0 denotes the soft constraint to
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the dissimilarity between the target and measured left-to-right lung volume ratio. Clearly, the

introduced volume proportion prior (3.2) enforces the measured volume ratio |Rll| / |Rrl| to be

close to γ, i.e., |Rll| / |Rrl| ∼ γ.

The Potts model [31] provides a way to segment an image into n mutually disjoint sub-

regions {Ri : i = 1 . . . n} with minimal labeling cost and surface area in the continuous settings.

Using this approach, each voxel is assigned a cost that represents the probability of being

assigned a label associated with that region. Here we use the probability density function (PDF)

πi(I(x)), i ∈ L = {ll, rl, b}, to generate the cost ρi(x) for each x by taking the the log-likelihoods

of the respective PDF [32], i.e., ρi(x) = − log
(
πi(I(x))

)
, i ∈ L . As such, we propose to

segment the left and right lung from the given image I(x) by minimizing the total labeling

cost while achieving a “tight” total surface area for all the segmentation regions, together with

minimizing the difference between the measured and target volume proportion (3.2) as follows

min
Rll,rl,b

∑
i∈L

∫
Ri

ρi(x) dx +
∑
i∈L

∫
∂Ri

ds + α
∣∣∣∣ |Rll| − γ |Rrl|

∣∣∣∣ , (3.3)

subject to the disjoint region layout constraint (3.1). α > 0 weights the contribution of volume

proportion difference to the total energy (3.3). In this paper, we call (3.3) the volume-proportion

preserved Potts model.

Let ξi(x), i ∈ L, be the characteristic function for the corresponding region Ri, such that

ξi(x) = 1 for x ∈ Ri and 0 otherwise. Accordingly, the region layout (3.1) can be formulated as∑
i∈L ξi(x) = 1,∀x ∈ Ω, and the volume proportion constraint (3.2) can be written as

α
∣∣∣∣ ∫

Ω

ξll dx − γ
∫

Ω

ξrl dx
∣∣∣∣ . (3.4)

Therefore, the volume-proportion preserved Potts model (3.3) is actually equal to:

min
ξi(x)∈{0,1}

∑
i∈L

{
〈ξi, ρi〉 +

∫
Ω

g(x) |∇ξi| dx
}

+ α
∣∣∣∣ ∫

Ω

ξll dx − γ
∫

Ω

ξrl dx
∣∣∣∣ , (3.5)
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subject to the labeling constraints
∑

i∈L ξi(x) = 1,∀x ∈ Ω. g(x) ≥ 0 weights the total-variation

function |∇ξi| and
∫

Ω
g(x) |∇ξi| dx measures the weighted total surface area for each region Ri,

i ∈ L, which is equivalent to
∫
∂Ri

ds in (3.3).

However, the proposed volume-proportion preserved Potts model (3.5) is challenging to op-

timize because of the non-convex binary representation ξi(x), i ∈ L, non-smooth total-variation

function, and the absolute function term. Previous studies [33, 34] provide a way to approxi-

mate the original optimization problem through convex relaxation, i.e.,

min
ξi(x)∈[0,1]

∑
i∈L

{
〈ξi, ρi〉 +

∫
Ω

g(x) |∇ξi| dx
}

+ α
∣∣∣∣ ∫

Ω

ξll dx − γ
∫

Ω

ξrl dx
∣∣∣∣ , (3.6)

subject to the linear equality constraint
∑

i∈L ξi(x) = 1,∀x ∈ Ω. The binary function ξi(x) ∈

{0, 1}, i ∈ L, in (3.5) is relaxed to take values in the continuous set ξi(x) ∈ [0, 1] in (3.6),

resulting in the convex relaxed volume-proportion preserved Potts model. In the convex do-

main, mature and robust optimization theories are readily available, and thus the approximated

problem (3.6) becomes easier to solve mathematically.

3.2.2.2 A Dual Bounded Continuous Max-Flow Model

Here we introduce a continuous max-flow approach that is dual to the convex relaxed volume-

proportion preserved Potts model (3.6) to solve the optimization problem (3.6).

Based on the conventional continuous max-flow configurations for the classical Potts model

[31], we configure the proposed continuous max-flow model associated with (3.6) as shown in

Fig. 3.2A.

• We added two terminals, the source s and the sink t to the flow graph. We put three

copies Ωll, Ωrl and Ωb of the image domain Ω corresponding to the left lung, right lung

and the background in parallel.

• We linked the source terminal s to the same position x in Ωi, i ∈ L, along which an

unconstrained flow ps(x) was defined; we linked each voxel x in Ωi, i ∈ L, to the sink
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Figure 3.2: The volume-proportion preserved approach and pipeline for pulmonary 1H MRI
multi-region segmentation. A) Max-flow configuration for the volume-proportion preserved
Potts model. B) Pipeline for volume-proportion preserved multi-region 1H MRI segmentation.

terminal t, along which a sink flow pi
t(x), i ∈ L, was directed; moreover, within each

Ωi, i ∈ L, a spatial flow qi(x) was specified at x.

• Additionally, an extra constraint flow r(x) was directed from Ωll, and amplified by γ to

the same position in Ωrl.

Note that, the source flow ps(x) is the same for x ∈ Ωi, i ∈ L, the sink flow fields pi
t(x)

may be different and the spatial flow fields qi(x) may also be different from each i. Based on

the above specified continuous flow “network”, we propose the volume-proportion preserved

continuous max-flow model, which maximizes the total flow that is allowed to send from the

source s, i.e.,

max
ps,pt ,q,r

∫
Ω

ps(x) dx (3.7)

which implicitly encodes the volume proportion prior subject to:

• Flow capacity constraints: The sink flows pi
t(x), the spatial flows qi(x) and r(x), i ∈ L,

suffice:

pi
t(x) ≤ ρi(x) ,

∣∣∣qi(x)
∣∣∣ ≤ g(x) , |r| ≤ α ; (3.8)
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• Flow conservation constraints: We introduce a residual flow pi
w, i ∈ L, to the above flow

configurations. Obviously, the total flow vanishes at each x, ∀x ∈ Ωb,

(
div qb − ps + pb

t
)
(x) = −pb

w(x) = 0 ; (3.9)

the total flow does not vanish at x, ∀x ∈ Ωll, i.e.,

(
div qll − ps + pll

t
)
(x) = −pll

w(x) = −r ; (3.10)

the total flow does not vanish at x, ∀x ∈ Ωrl, i.e.,

(
div qrl − ps + prl

t
)
(x) = −prl

w(x) = γr . (3.11)

Clearly, the proposed volume-proportion preserved continuous max-flow model (3.7) is dif-

ferent from the classical continuous max-flow model [31] in that: the flow residue vanishes at

each voxel x ∈ Ωb; the flow residue does not vanish at each x ∈ Ωll, but equals to a constant

−r in the range of [−α, α]; the flow residue does not vanish at each x ∈ Ωrl, but equals to a

constant γr in the range of [−γα, γα].

We can also prove that the volume-proportion preserved continuous max-flow model (3.7)

is dual/equivalent to the convex relaxed volume-proportion preserved Potts model (3.6). The

proof is provide in the Appendix D.

3.2.2.3 An Efficient Numerical Solver to The Volume Proportion Preserved Max-Flow

Model

Direct optimization of (3.6) is challenging due to the nonlinear and non-smooth terms in-

volved. Through variational analysis we demonstrate that, instead of dealing with the mini-

mization problem (3.6), we can alternatively convert the min-cut problem into its dual flow-

maximization form (3.7), a linear programming problem with simple convex and linear con-
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straints. The model (B.4) provides the Lagrangian form of (3.7) with the linear equality con-

straints (B.1), (B.2),and, (B.3) multiplied by the characteristic function ξi(x), i ∈ L. Hence, by

the theory of augmented multiplier algorithms [35], we can derive an efficient numerical solver

to the volume proportion preserved max-flow model (3.7). In our implementation, we split

the overall optimization problem into a series of simpler sub-problems that can be parallelized

within each step. The details of the numerical implementation are provided in Appendix C.

3.2.3 Algorithm Implementation

Figure 3.2B shows the main components of the proposed segmentation approach with more

details described as follows. Prior to segmentation, we resampled the original FGRE MR

images into 3 × 3 × 3 mm isotropic space using the Convert3D command line tools [36]

to ensure equal total variation regularization along the three directions. We then loaded the

resampled images for graphical view using ITK-SNAP [36]. We used the two-dimensional (2D)

brush tool to sample the left lung, right lung and the background on a single coronal plane. The

coronal slice was chosen when the segmentation was deemed challenging visually, i.e., when

the trachea attaches to the lung, prominent protruding structures, weak separation between the

left and the right lung, etc.. These user inputs provide the appearance models or the probability

density function for respective regions for the algorithm, and importantly incorporate high level

knowledge to supervise the segmentation. These sampled voxel set S i(x), i ∈ {ll, rl, b}, were

used to estimate the respective PDFs πi following πi(z) =

∫
S i

K(z−I(x)) dx

A(S i)
, ∀z ∈ Z , where z is

the intensity bin and A(S i) denotes the size of region S i. K(x) represents the Gaussian kernel

function in the form of 1
√

2πσ2
exp(−x2/2σ2), where σ is the kernel width. Figure 3.3 shows

three different examples of user seeds and the respective probability density function. Note

that the one-voxel wide thin seeds in the top panel of Fig. 3.3 were only used to illustrate the

seeding procedure and we used four-voxel wide brushes for our algorithm implementation. We

chose four-voxel wide seeds because: 1) the trachea and the tissue between left/right lower

lobes, which are challenging to segment, has a similar size and the four-voxel wide brush
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can sufficiently sample these regions with less user interaction/variability and saves time; 2)

the four-voxel wide seeds can generate intensity models that are more likely to characterize

the signal intensities in the lung, and, 3) the algorithm can benefit as the seeds that encode

human prior knowledge influence the segmentation of their neighbouring regions. The derived

probability density function were then used to generate the labeling cost ρi in (3.3) following

[32]. In addition, these seeded regions incorporate high level human knowledge about the

object of interest and therefore were hard-constrained to their own labels and excluded from

other labels. Such operation offers the flexibility to tackle especially suspicious situations and

can be readily and easily implemented in the proposed framework, i.e., ρi(x) = 0, ρ j(x) =

+∞, ∀x ∈ S i, where ∀i, j ∈ L, i , j.
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Figure 3.3: Representative user seeds and the generated probability density function for al-
gorithm segmentation for three asthmatic subjects. Top panel: Green, blue and purple lines
represent user seeds on the left and right lung and image background. Bottom panel: Cor-
responding MRI signal intensity distributions shown in colour as demonstrated in the middle
panel images.

The surface weight function g(x) in (3.5) was designed based on image edge information,
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i.e., g(x) = λ1 +λ2 ∗ exp(−λ3 ∗ |∇I(x)|), where λ1,2,3 ≥ 0 are scales. We optimized these param-

eters on a separate training dataset of five asthma subjects and kept them constant throughout

the experiments, i.e., λ1,2,3 = 0.05, 1.0 and 80, respectively; α in (3.2) was chosen to be 0.2.

With the constructed data ρi(x) and regularization g(x) terms, we implicitly encoded the left-

to-right lung volume proportion prior in the max-flow model (3.7). The associated augmented

optimization algorithm was parallelized on a graphics card for speed-up.

The algorithm was implemented on a Linux desktop (CentOS 6.5, 16 G RAM) with a CPU

(Intel(R) i7-3770, 3.40 GHz) and a GPU (GeForce, GTX 680, NVIDIA Crop., Santa Clara, CA,

USA) to parallelize the convex optimizer. The label cost ρi(x), x ∈ L = {ll, rl, b}, and the reg-

ularization term g(x) were calculated on the CPU with Matlab R2013a (The Mathworks Inc.,

Natick, MA, USA) and the convex optimization was implemented on the GPU with CUDA

(CUDA, NVIDIA Crop., Santa Clara, CA, USA). The CPU provides the calculated data and

regularization terms to the GPU and the GPU performs parallel implementation of the numer-

ical solver following Appendix C with single precision. We used single precision calculations

for algorithm implementation and observed convergence within 300 iterations and convergence

error < 10−4, similar as shown previously [37].

3.2.4 Evaluation Methods

Algorithm segmentation was performed by two newly-trained graduate students (blinded to

independently randomized dataset) five times each on five different days [38]. We used newly

trained graduate students in order to provide a very conservative estimate of algorithm perfor-

mance. For example, for manual segmentation, observer training and expertise are always re-

quired and here this was performed by an expert observer. The two newly trained graduate stu-

dents who performed algorithm segmentation provided a worst case scenario for algorithm per-

formance and better simulated real-world use in clinical trials at different sites where observer

training is often not monitored or controlled. Algorithm segmentation accuracy was evaluated

by comparing algorithm outputs to manual reference standard using Dice-similarity-coefficient
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(DSC), root-mean-squared-error (RMSE) of the Euclidean surface distance (the shortest dis-

tance from a vertex in the manual surface to the algorithm-generated surface), absolute volume

error (|δVE |) and absolute percent volume error (|δVP|, for region-, surface- and volume-based

similarity measurements. Manual segmentation was also performed by an expert observer

(SS, five years experience in 1H MRI segmentation) five times on five consecutive days and

these were used as five sets of reference standards for algorithm segmentation to compare

with. Each of the 10 sets (five for each observer) of algorithm outputs were compared to the

multiple manual reference standard, resulting in 10 sets (five for each observer) of algorithm

segmentation accuracy measurements. Instead of using multiple reference segmentation, it is

also possible to employ simultaneous truth and performance level estimation [39] to estimate

a single mean reference standard from multiple reference segmentation. We evaluated all the

measurements independently because it helps the reader better understand how each and ev-

ery measurement was derived and this provides excellent statistical power to detect significant

differences. We also reported the mean runtime for the GPU-implemented multi-observer algo-

rithm segmentation to evaluate computational time, and calculated DSC, RMSE, |δVE | and |δVP|

for the left (L), right (R) and whole (W) lung. The overall algorithm accuracy was obtained by

taking the mean of the 10 sets (five for each observer) of algorithm accuracy measurements for

the two observers, which were also used to evaluate algorithm segmentation reproducibility.

Both intra- and inter-observer algorithm segmentation variability were evaluated by calculat-

ing the coefficient-of-variation (CoV) and intra-class correlation coefficient (ICC) of the DSC

and RMSE for the L, R and whole lung. CoV (calculated as the standard division divided by the

mean) was used to evaluate the variability among repeated measurements, and ICC measures

the reliability or the absolute agreement between repeated measurements. We also calculated

the smallest detectable difference (SDD) [40] of individual and whole lung volumes, which

also reflects measurement uncertainty as follows:

S DD = Zα/2

√
2 ∗ S EM , (3.12)
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where SEM is the standard error of measurement,Zα/2 is determined from the standard normal

distribution and corresponds to the chance of mistakenly concluding that change has occurred

when it has not (i.e., α = 0.05 andZα/2 = 1.96).

In addition, we compared the multi-region segmentation results with two-region segmen-

tation [41] outcomes. Specifically, the two approaches took the same user initializations as in-

puts and the two sets of whole lung segmentation were compared with the same expert manual

segmentation. The correlation between algorithm and manually-generated lung volumes was

measured using Pearson correlation coefficients (r) and Bland-Altman analysis with GraphPad

Prism version 6.02 (GraphPad Software Inc, San Diego, CA, USA). Two-way random-effects

intra-class correlation coefficient (ICC) to measure the absolute agreement within and between

observers was determined using Statistical Package for the Social Science (SPSS version 23,

SPSS Inc., Chicago, IL, USA). Intra- and inter- coefficient-of-variation (CoV) were also de-

termined. Both intra- and inter-ICC and CoV were calculated in terms of DSC and RMSE.

For paired t-tests, Shapiro- Wilk normality tests were first performed and when the data did

not satisfy normal distribution, non-parametric Mann-Whitney U-tests were performed using

SPSS. Results were considered significant when the probability of two-tailed type I error was

less than 5% (p < 0.05). All comparisons were performed for the L, R and whole lung.

3.3 Results

3.3.1 Subject Demographics

Table 3.1 provides a summary of the demographic characteristics of five mild-to-moderate

well-controlled (2 males/3 females, 28±6 years) and 15 severe, poorly-controlled (5 males/10

females, 47±13 years) asthmatics. For the well-controlled subgroup, mean FEV1 was 86±9%pred

(range = 73–96%pred), FEV1/FVC was 83±7% (range = 75–93%), FRC was 2.2±0.6 L (range

= 1.4–2.8 L), and total lung capacity (TLC) was 5.5±1.2 L (range = 4.4–7.1 L). For the severe,

poorly-controlled subgroup, mean FEV1 was 72±27%pred (range = 35–115%pred), FEV1/FVC
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was 66±17% (range = 37–94%), FRC was 2.9±0.9 L (range = 1.5–4.8 L), and TLC was

5.6±1.6 L (range = 4.0–9.1 L).

Table 3.1: Subject demographics and pulmonary function measurements
Parameter All Well-controlled asthma Severe, poorly controlled asthma
Mean(±SD) (n = 20) (n = 5) (n = 15)
Age (yr) 42(14) 28(6) 47(13)
Male (n) 7 2 5
BMI (kg.m−2) 28(6) 25(6) 29(6)
FEV1 (%pred) 76(24) 86(9) 72(27)
FVC (%pred) 87(16) 88(6) 86(18)
FEV1/FVC (%) 70(17) 83(7) 66(17)
IC (%pred) 103(24) 108(9) 101(28)
FRC (L) 2.7(0.9) 2.2(0.6) 2.9(0.9)
TLC (L) 5.6(1.4) 5.5(1.2) 5.6(1.6)
TLC (%pred) 96(12) 97(8) 96(13)
RV/TLC (%) 34(11) 26(6) 37(11)

Note: BMI = body mass index, FEV1 = forced expiratory volume in one second, FVC = forced vital
capacity, FRC = functional residual capacity, IC = inspiratory capacity, TLC = total lung capacity,
RV: residual volume, %pred: percent predicted value.

3.3.2 Algorithm and Manual Segmentation Measurement Reproducibil-

ity

Figure 3.4 shows representative manual and algorithm segmentation results in the coronal,

sagittal and axial view as well as 3D rendered lung volumes for the right and left lung. Manual

and algorithm segmentation variability for each subject is also provided in Table 3.2. For

manual segmentation, the smallest detectable difference for lung volumes were 0.11 L, 0.12

L and 0.22 L for the left, right and whole lung, respectively. In addition, one-way analysis

of variance (ANOVA) showed that there was no significant difference between the five sets of

manually measured lung volumes (p = 0.98 for L, R, and W). The smallest detectable difference

for lung volumes generated using the algorithm was 0.10 L for the left, 0.14 L for the right and

0.24 L for whole lung. Table 3.3 shows that the inter-observer CoV for DSC between the two

observers were 0.5%, 0.6% and 0.5% for the left lung, right lung and whole lung, respectively.
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Similarly, the inter-observer ICC for DSC were 0.99, 0.91 and 0.97 for the L, R and whole lung

respectively and there were very similar results for RMSE. Table 3.4 provides the DSC, RMSE

for the repeated algorithm segmentation for the two observers.

Table 3.2: Algorithm and manual segmentation reproducibility
Mean lung volumes five rounds repeated measurement mean(SD)

Manual segmentation Algorithm segmentation
Subject L R W L∗ R∗ W∗

S1 1.57(0.02) 1.68(0.05) 3.25(0.07) 1.57(0.00) 1.77(0.01) 3.34(0.01)
S2 2.02(0.03) 2.30(0.03) 4.32(0.07) 1.72(0.07) 2.00(0.12) 3.72(0.18)
S3 1.87(0.03) 2.09(0.11) 3.96(0.14) 1.91(0.02) 2.24(0.03) 4.15(0.05)
S4 1.34(0.03) 1.62(0.02) 2.97(0.05) 1.25(0.03) 1.48(0.03) 2.73(0.06)
S5 1.55(0.04) 1.77(0.04) 3.32(0.07) 1.59(0.01) 1.85(0.02) 3.44(0.03)
S6 1.57(0.04) 1.98(0.06) 3.55(0.10) 1.56(0.01) 1.95(0.01) 3.51(0.02)
S7 1.33(0.05) 1.61(0.02) 2.94(0.06) 1.33(0.02) 1.60(0.04) 2.93(0.06)
S8 2.77(0.06) 2.96(0.05) 5.73(0.10) 2.76(0.04) 3.00(0.06) 5.76(0.09)
S9 1.97(0.02) 2.19(0.02) 4.16(0.03) 2.05(0.04) 2.36(0.05) 4.41(0.08)
S10 1.79(0.03) 1.99(0.04) 3.78(0.06) 1.67(0.03) 1.89(0.07) 3.56(0.09)
S11 2.36(0.06) 2.89(0.03) 5.25(0.08) 2.39(0.03) 2.99(0.08) 5.38(0.09)
S12 1.87(0.03) 2.19(0.04) 4.06(0.07) 1.94(0.04) 2.26(0.05) 4.20(0.09)
S13 1.45(0.02) 1.79(0.01) 3.23(0.03) 1.39(0.06) 1.74(0.06) 3.13(0.12)
S14 1.95(0.06) 2.62(0.05) 4.57(0.10) 2.29(0.01) 2.73(0.03) 5.02(0.03)
S15 1.40(0.03) 1.68(0.03) 3.08(0.06) 1.46(0.01) 1.76(0.01) 3.22(0.01)
S16 1.98(0.03) 2.29(0.02) 4.27(0.05) 2.16(0.06) 2.55(0.07) 4.71(0.12)
S17 1.54(0.01) 1.74(0.03) 3.28(0.05) 1.45(0.03) 1.68(0.02) 3.13(0.06)
S18 1.56(0.07) 1.79(0.04) 3.34(0.10) 1.56(0.07) 1.79(0.07) 3.35(0.13)
S19 1.76(0.02) 2.10(0.03) 3.85(0.05) 1.80(0.04) 2.16(0.05) 3.96(0.08)
S20 2.19(0.05) 2.64(0.06) 4.83(0.11) 2.08(0.02) 2.45(0.02) 4.53(0.04)
SDD 0.11 0.12 0.22 0.10 0.14 0.24

L = left lung, R = right lung, W = whole lung volume.
∗No significant difference between manual and algorithm measurements of left (p = 0.6), right (p
= 0.2) and whole lung (p = 0.35) volumes. SDD=smallest detectable difference.

3.3.3 Multi-region Segmentation and Parameter Sensitivity

In Fig. 3.5, three-region versus two region segmentation are directly compared and paired

t- tests showed significant differences when the three-region method was used. For example,

RMSE decreased by 0.8 mm (or ∼17%) (p < 0.0001) and absolute volume error decreased by

0.17 L (or ∼43%) (p < 0.0001) using the three-region approach. In addition, as shown in Fig.
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Figure 3.4: Representative 1H MRI left (green) and right (blue) lung segmentation results.
Solid and dashed lines represent algorithm and manual segmentation, respectively. A) 2D and
3D coronal view of the lung contours and the rendered left and right lung volumes. B) 2D and
3D sagittal view of the lung boundaries and the rendered lung volumes. C) 2D and 3D axial
view of the lung contours and the rendered individual lung volumes.
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Table 3.3: Dice-similarity-coefficient and RMSE reproducibility
Coefficient-of-variation (%) Intra-class correlation coefficient
Left Right Whole Left Right Whole

Dice-similarity-coefficient
Observer1 0.3 0.5 0.4 0.99 0.98 0.99
Observer2 0.2 0.4 0.3 0.99 0.98 0.99
Interobserver 0.5 0.6 0.5 0.99 0.91 0.97

Root-mean-squared-error
Observer1 3 4 3 0.99 0.98 0.99
Observer2 3 3 3 0.99 0.99 0.99
Interobserver 4 4 4 0.97 0.93 0.96

Table 3.4: Dice-similarity-coefficient and root-mean-squared-error for algorithm segmentation
within and between observers

Dice-similarity-coefficient (%) Root-mean-squared-error (mm)
Left Right Whole Left Right Whole

Observer1 90.7(4.0) 91.5(3.4) 91.1(3.5) 4.1(1.1) 4.1(0.8) 4.1(0.8)
Observer2 91.1(3.9) 91.7(3.3) 91.4(3.5) 4.0(1.2) 3.9(0.8) 3.9(0.8)
Interobserver 90.9(2.8) 91.6(1.8) 91.3(2.1) 4.1(1.2) 4.0(0.8) 4.0(0.8)

3.6, results are shown when the parameters , λ1,2,3 and α are altered by -15%, -10%, -5%, 0%,

5%, 10%, 15% of base values.

3.3.4 Relationship and Agreement of Manual and Algorithm Lung Vol-

umes

Pearson correlation coefficients for algorithm and manual lung volumes provided in Fig. 3.7

show strong and significant correlations for algorithm with expert manual measurements (r2:

0.89 - 0.91, p < 0.0001). As shown using Bland-Altman analysis in Fig. 3.7, the algorithm

yielded systematically greater left, right and whole lung volumes (with biases of 0.02 L, 0.04

L and 0.06 L, respectively), but there was no significant difference (p = 0.6, 0.2 and 0.35)

for the left, right and whole lung, respectively (Table 3.2). We also compared algorithm and

plethysmography FRC+1 whole lung volumes in Fig. 3.7E) and F) and this showed a relatively

strong correlation (r = 0.75, r2 = 0.56, p = 0.0002) between the two sets of lung volumes. Table
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Figure 3.5: Comparison of two and three-region segmentation approach. A) Whole lung Dice-
similarity-coefficient and RMSE, and, B) absolute volume error and absolute percent volume
error for the three-region (white) and two-region (gray) segmentation approaches. Values are
means for all subjects and error bars are SD. *p < 0.0001.

3.5 provides the DSC, RMSE as well as absolute and percent volume error using the repeated

manual segmentation measurements as the reference standard. DSC ranged from 79% to 95%

for the left lung (mean 91±3%) and 84% to 94% (mean 92±2%) for the right lung. Similarly,

mean RMSE were 4±1 mm for the left lung and 4±1 mm for the right lung along with a 4±1

mm surface distance error for the whole lung. The absolute and percent volume errors were
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Figure 3.6: Algorithm segmentation parameter sensitivity tests. The optimized parameters
(α: red, λ1: green, λ2: blue, λ3: black ) were changed by -15% ∼ 15% and the algorithm
segmentation accuracy results are shown in terms of A) DSC, B) RMSE, C) absolute volume
error, and D) absolute percent volume error for the left lung.

0.11 L (6%) for the left lung, 0.13 L (6%) for the right lung, and 0.23 L (6.0%) for whole lung.

There was significantly different DSC (p < 0.0001) and RMSE (p < 0.0001) for the right lung

compared with the left lung.

3.3.5 Computation Time

We evaluated algorithm computation time by averaging the runtime for two observers who

performed segmentations for all 20 subjects on five different occasions on five consecutive

days. The GPU-based implementation required 3.4±0.6 s for convex max-flow optimization

in addition to 6.0±1.4 s for user initialization, resulting in a total runtime of approximately 9

s for each segmentation (data not shown). This compares to roughly 30 minutes for manual
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Figure 3.7: Relationships and Agreement for algorithm- and manually-generated Lung vol-
umes. Black dots show linear regression for algorithm- and manually-generated A) left (VAL

and V ML), C) right (VAR and V MR), and, E) whole (VAW and V MW) lung volumes. Bland-
Altman analysis of agreement is shown for B) left (VAL and V ML), D) right (VAR and V MR),
and, F) whole (VAW and V MW) lung. Dotted lines indicate the upper and lower limits and solid
lines represent the biases. Coloured circles identify three algorithm to manual lung volume
outliers corresponding to S2 (red), S14 (blue) and S16 (green) in Table 2. Gray dots in E) and
F) represent the linear correlation (r = 0.75, p = 0.0002, y = 0.7x+1.33) and Bland-Altman
plots for algorithm and plethysmography measured (FRC+1L) lung volume.
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measurements and 15 minutes for semi-automated segmentation results previously reported

[19].

Table 3.5: Expert manual segmentation variability for five rounds (R1-R5): mean(SD). (n =

20)
Round1 Round2 Round3 Round4 Round5 Mean p∗

DSC (%) L 90.8(2.8) 91.0(2.9) 91.0(2.8) 90.9(2.8) 90.9(2.7) 90.9(2.8) 0.92
R 91.5(1.8) 91.4(1.8) 91.7(1.8) 91.5(1.9) 91.7(1.9) 91.6(1.8) 0.66
W 91.2(2.1) 91.3(2.1) 91.4(2.1) 91.2(2.0) 91.3(2.1) 91.3(2.1) 0.85

RMSE (mm) L 4.1(1.2) 4.0(1.2) 4.0(1.2) 4.1(1.2) 4.1(1.2) 4.1(1.2) 0.98
R 4.0(0.7) 4.1(0.8) 4.0(0.8) 4.0(0.8) 4.0(0.8) 4.0(0.8) 0.88
W 4.0(0.8) 4.0(0.8) 4.0(0.8) 4.0(0.8) 4.0(0.8) 4.0(0.8) 0.99

|δVE | (L) L 0.12(0.09) 0.11(0.10) 0.11(0.10) 0.11(0.10) 0.12(0.11) 0.11(0.10) 0.87
R 0.12(0.10) 0.13(0.09) 0.12(0.10) 0.13(0.10) 0.12(0.09) 0.13(0.09) 0.65
W 0.23(0.18) 0.24(0.18) 0.23(0.19) 0.23(0.18) 0.24(0.19) 0.23(0.18) 0.92

|δVP| (%) L 6.4(4.8) 6.3(5.1) 6.0(5.0) 6.0(5.0) 6.5(5.7) 6.2(5.1) 0.88
R 5.5(4.2) 6.5(4.4) 5.8(4.2) 6.1(4.6) 5.9(4.2) 6.0(4.3) 0.23
W 5.8(4.2) 6.3(4.2) 5.7(4.3) 5.9(4.2) 6.0(4.5) 6.0(4.3) 0.71

*p-value was determined using an ANOVA.

3.4 Discussion

Although manual image segmentation is always an option, it is generally labour-intensive,

time-consuming, and prone to intra- and inter-observer variability [42]. More importantly,

manual segmentation methods inherently restrict translation to large-scale clinical and research

studies. In recognition of this and the potential for pulmonary 1H MRI structure-function in-

formation to help clinically manage patients with asthma, we developed a multi-region seg-

mentation method for volumetric lung measurements. As a way to improve 1H MRI segmenta-

tion, we exploited the inherent left-to-right lung volume proportion prior and dual optimization

techniques and demonstrated: 1) excellent agreement with expert manual segmentation, 2)

clinically-acceptable reproducibility, and 3) rapid implementation that is consistent with clini-

cal and research requirements.

The proposed algorithm yielded lung volumes, DSC, RMSE and volume errors that showed

excellent agreement with expert manual segmentation results. The algorithm-generated lung
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surfaces also agreed with expert manual delineations (4 mm RMSE or 1.3 times in-plane voxel

width) and considering that a typical lung volume is 3–6 L, the mean absolute whole lung

volume errors (0.2 L/6%) are clinically-acceptable as they are similar to those of pulmonary

function tests. The CoV and ICC (≥ 0.91) also reflected excellent agreement within and be-

tween observers. Furthermore, the SDD (0.10 L, 0.14 L and 0.24 L) were comparable with

those of expert observer with 5 years segmentation experience. We also observed DSC and

RMSE that were different for the left and right lung; these differences, while not large, were

significant and may stem from severe motion artifacts and shape changes in the left lung around

the heart (i.e., the thin and elongated shape of the cardiophrenic angle), which, although small,

poses extreme challenges for algorithm segmentation.

We tested our approach on a dataset of mild-to-moderate and severe, poorly-controlled

asthma patients, and demonstrated some potential for use in a broad range of asthma patients.

This is important because in respiratory diseases such as asthma and chronic obstructive pul-

monary disease there are changes to the thoracic cavity shape and size concomitant with dis-

ease progression. This also provides an opportunity to test the algorithm in outlier cases such as

Subjects 2, 14 and 16 in whom there was the lowest agreement with manual measurements. For

Subject 2 the weakened agreement may have stemmed from the bright pulmonary vessels, that

by virtue of the regularization term resulted in the algorithm converged at these strong edges.

This issue may be mitigated by weighting the regularization term or alternatively, by adding

more correcting seeds. In fact, after additional correcting seeds were added (227 voxels/54%

more for the left lung and 191 voxels/43% more for the right lung) using the brush tool, whole

lung re-segmentation was improved with DSC = 90%, RMSE = 4.8 mm and volume errors of

0.11 L and 2.6%. Two other outliers indicated by green and blue circles likely stemmed from

very poor image quality that resulted in weak edges especially in the periphery and anterior

regions, making them challenging to segment manually and algorithmically. Such issues may

be addressed using correcting seeds or by employing more advanced data terms.

We segmented the left and right lung separately, resulting in a multi-region segmentation
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approach that was superior to two-label segmentation. The two-region segmentation method

[41] treats the left and right lung as a whole and the regularization term controls the segmen-

tation to achieve a tight total surface. In inflated lung, i.e., functional residual capacity + 1L,

there is usually weak separation between the two lung especially in the posterior and anterior

regions, where the background and foreground signal intensities overlap substantially. Using

the two-region segmentation method, the background regions that poorly separate the two lung

are likely to be segmented as the lung to maintain a minimum surface, leading to lower segmen-

tation accuracy in these regions. By regularizing the two lung separately, the left and right lung

will not be influenced by the other and each will achieve its own minimum independently. As a

result, the total regularization cost may or may not be greater than that obtained using the two-

region segmentation method but leakage in these suspicious regions can be improved, and this

was confirmed by the comparison between the three-region and two-region segmentation meth-

ods (all p < 0.0001), as shown in Fig. 3.5. Although promising, the segmentation, especially

for the left lung, is still problematic due to motion artifacts of the beating heart. By incorpo-

rating the left-to-right lung volume proportion prior, we, for the first time, “relate” the left and

right lung to each other for 1H MRI lung segmentation. As a result, the left lung segmentation

will likely be improved by the right lung because it is generally relatively easier to segment. In

fact, we observed that, compared with the three-region segmentation method (without the vol-

ume proportion prior), the proposed method achieved 1.3% (left lung) and 0.6% (right lung)

increase in DSC, 3.1% (left lung) and 0.9% (right lung) decrease for absolute volume percent

error (|δVP|). In addition, we observed that, although the differences for segmentation accuracy

for the two three-region segmentation methods are small, there is substantial decrease in SD for

DSC for proposed method, suggesting that the proposed left-to-right lung volume proportion

prior might improve the segmentation reproducibility. In summary, the three-region segmen-

tation method (without volume proportion prior) directly separates the two lung and improves

leakage between the left and right lung compared with the two-region method. This provides a

way for more regional lung structure-function measurements, i.e., individual left and right lung
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(even lobar or segmental with the developments of 1H MRI techniques) vs whole lung evalu-

ation. In addition, the two lung may be independently used to facilitate pulmonary 1H MRI

applications that involve challenging image processing. For example, free-breathing and/or

multi-volume 1H MRI whole lung registration is challenging because of the large deforma-

tion, and previous studies [43] have shown that lung image registration can be improved by

treating the two lung separately. The proposed volume proportion prior, for the first time, re-

lates the two lung, improves left lung segmentation and decreases segmentation variation. This

speaks to the advantages of the proposed volume proportion preserved three-region segmen-

tation approach. It is important to note that the proportion prior that we used is only one of

many different approaches. As previously described [27], it is also possible to use proportion

distribution prior. Another straightforward approach is to constrain the ratio between the two

lung within a range, i.e.,
∫
Ω
ξlldx∫

Ω
ξrldx

∈ [γl, γu] , where γl and γu are the lower and upper bounds

of the ratio, respectively. This form of constraint can be further rewritten as two restrictions:

γl

∫
Ω
ξrldx−

∫
Ω
ξlldx ≤ 0 and

∫
Ω
ξlldx−γu

∫
Ω
ξrldx ≤ 0, which can be incorporated by a different

max-flow/min-cut model. Due to the variability of left-to-right lung volume ratio and the pres-

ence of various pathologies, it might be appropriate to constrain the measured left-to-right lung

proportion within a pre-determined range. This incorporation of the proportion prior might be

beneficial for this situation. In other words, the left-to-right lung proportion distribution, once

determined, could be exploited to address the non-uniform distribution of the left-to-right lung

volume proportion.

Although this segmentation approach employed diminished user interaction with high re-

producibility, we must acknowledge a number of limitations. We used an intensity appearance

model to build the data terms for the energy function, and it will be necessary to investi-

gate more advanced data term formulations such as intensity distribution matching, distance

constraints [44], segmentation moments [45]. In addition, other information such as textures

[46, 47] may be useful for improved segmentation performance. The proposed approach is not

fully automated, and this is also a shortcoming. Advanced and automated segmentation meth-
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ods have also been applied to very challenging tasks including whole heart segmentation [48].

In addition, atlas and multi-atlas- based segmentation [36, 49] has also been used to automate

these processes but there is a compromise between work flow efficiency and computational

burden and possibly other potential sources of error. In addition, the proposed approach was

only tested on conventional fast spoiled gradient echo (FGRE) MR pulse sequences. In fu-

ture, we will compare algorithm performance using other image acquisition pulse sequences

including ultra-short echo time methods that improve signal and contrast. Furthermore, a lung

cavity segmentation gold standard is not available, and so we used multiple manual segmen-

tation as the reference. We also used resampled isotropic images as previously suggested [36]

to ensure equal regularization in all three directions; it was also possible to independently reg-

ularize the total variation term for anisotropic images. We also want to emphasize that it is

possible to acquire isotropic images, and we are in the process of optimizing image acquisition

methods to generate these. It is also worth noting that in this study MRI was acquired with

patients inhaling an anoxic N2 breath-hold and not room air which is approximately 80% N2.

For this reason, we do not expect significant differences in contrast or segmentation precision

when room air is used as contrast. Importantly, our proposed approach assumed a constant

ratio between the left and right lung and this is a limitation for certain pathologies (i.e., tu-

mors, severe cystic fibrosis, and congenital diaphragmatic hernia), which significantly weaken

or even contradict the assumption and thus this method must be optimized for these cases. In

these special cases, we can decrease the weight of the proportion prior or even remove the

constraint in order to achieve a segmentation that is acceptable. We have not evaluated this

algorithm on MRI acquired at full inhalation or full exhalation and it is worth noting that MRI

of fully-emptied lung typically show high contrast pulmonary vessels that makes segmentation

complex. To address this, tubular filters and optimized data terms for the energy model may

be helpful and will be exploited in future. Next steps include 1H to 129Xe MRI co-registration

- both acquired at FRC+1 L as well as 1H MRI tidal breathing (FRC+∼1L) co-segmentation,

both of which will be used to generate ventilation measurements. In our current implementa-
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tion, we employed straightforward probability density functions to generate the cost ρi(x) by

considering the intensity information (I(x)) only. However, other spatial information, i.e., the

geometry of the neighbourhood of x (GN(x)), might be beneficial for improved segmentation

performance, as previously demonstrated [50]. In this case, we can design the cost as vector

ρi(x) = {I(x),GN(x)}, leading to segmentation in higher dimensions.

While this approach is not automatic, it does provide some opportunity for observer inter-

actions which can be beneficial [32, 36] in some circumstances although methods [51] have

been proposed to fulfill object recognition for automated image segmentation. In our imple-

mentation, we introduced “clues” to assist the algorithm in segmenting challenging regions.

For example, seeds placed on the protruding major vessels, and regions with severe artifacts

were immediately segmented as background. In order to improve the segmentation of these

structures, for this task, we used one slice that encompassed the majority of these challenges,

rather than a slice at random. User seeding provides important information of the foreground

and background and it is important to note that when the seeding slice number was varied by

±3, there was no significant difference in segmentation results. We also tested seeding using

two different and newly-trained undergraduate students who had no previous experience in 1H

MRI segmentation. They performed algorithm segmentation of an additional 25 patients with

chronic obstructive pulmonary disease three times each (on three different days) with a coef-

ficient of variation of 0.5% and 3% for both DSC and RMSE, respectively. This speaks to the

relatively small influence of seeding variation on algorithm segmentation results. We also note

for the reviewer that a previous study [52] showed that the probability density function gener-

ated from sampled voxels provided a global and statistical description of the object of interest

that was more appropriate than the commonly used Gaussian mixture of intensities or appear-

ances. Indeed, our approach may represent an appropriate compromise between reproducibility

and accuracy.

The GPU-based implementation required ∼10 s to segment each image, while manual and

semi-automated approaches take about 15 min with substantial observer interactions. We also
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want to emphasize that currently we are in the process of optimizing the code using advanced

C/C++ language and an improved parallelization scheme in the numerical solver to enhance

computational efficiency. The proposed approach significantly outperformed manual methods

in terms of time and this bodes well for implementation in large-scale, multi-centre applica-

tions. As currently implemented, the lung may be segmented with very little user interaction

but with good agreement with the manual reference standard. However, as we transition to clin-

ical applications, challenging anatomic regions can be better segmented at the cost of slightly

lower computational efficiency.

To directly and quantitatively compare our method with previous efforts requires that dif-

ferent datasets, evaluation metrics and ground truths are considered. The multi-step approach

[53] is sensitive to initial model placement and there were substantial boundary differences

(∼10 mm) and computational cost (2–20 min). Merging of multiple snakes [54] was also pi-

loted to segment pulmonary 1H MRI in 2D but this was highly dependent on edge information

and restricted to homogeneous regions, which is challenging in pulmonary 1H MRI. An ac-

tive contour method [55] was also previously developed using a neural network classifier but

this required intensive training and frequent updating of the neural network. Another approach

[56] used a region-aided geometric snake model combined with gradient information and a

Fuzzy C-means clustering method which was prone to local minima and accumulated segmen-

tation error from slice to slice. The hybrid approach [57] incorporated grey-level thresholding,

regional shape descriptors, and morphological operations and a similar approach [58] used

histogram thresholding, region growing and morphological operations to segment the left and

right lung in 3D. However, pulmonary 1H MRI segmentation is extremely challenging and

previous studies [55, 56] have shown that optimum MRI segmentation cannot be achieved

using this information exclusively. In another attempt [59], the lung was segmented by de-

forming two meshes and this resulted in > 20% volume errors and efficiency comparable to

manual approaches. Statistical methods were also developed to segment 3D 1H MRI by ex-

ploiting voxel-wise correlation coefficients [60] and this required 1.4 s to segment a 3D dataset
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with a spatial overlap ratio of ∼0.7±0.1. An atlas-based approach [61] was also developed and

while accurate, this required numerous registrations and label fusion (30 min) to generate target

segmentation. Other recent methods rely on complementary functional pulmonary MRI infor-

mation through convex optimization techniques [37], region-growing and substantial amount

of time for user editing [19] with relatively low reproducibility. Compared to these methods,

the propose approach demonstrated the necessary and sufficient precision, computational effi-

ciency and accuracy required for research and clinical studies.

3.5 Conclusion

1H MRI has the potential to provide high resolution structural and functional information of

the asthmatic lung. Here we developed and evaluated a multi-region segmentation approach

that incorporates the left-to-right lung volume proportion prior as a first step in a segmentation

and registration pipeline urgently needed for quantifying lung structure-function in asthma. We

demonstrated algorithm accuracy with respect to manual measurements as well as the neces-

sary and sufficient reproducibility and speed required for large-scale, multi-centre and clinical

applications.
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[59] Thomas Böttger, Tobias Kunert, Hans P Meinzer, and Ivo Wolf. Application of a new

segmentation tool based on interactive simplex meshes to cardiac images and pulmonary

MRI data. Academic radiology, 14(3):319–329, 2007.
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Chapter 4

Thoracic CT-MRI Co-Registration for

Regional Pulmonary Structure-Function

Measurements of Obstructive Lung

Disease

COPD and asthma are spatially and temporally heterogeneous disease and it is important to
identify the exact location of lung structural-functional abnormalities. Here we developed and
evaluated a deformable registration approach that employed the valuable information from 1H
MRI to assist the target CT-3He MRI registration and an automated regional lung structure-
function measurement pipeline for regional evaluation of obstructive lung disease.

The contents of this chapter were previously published in Medical Image Analysis: F Guo, S
Svenningsen, M Kirby, DPI Capaldi, K Sheikh, A Fenster and G Parraga. Thoracic CT-MRI
co-registration for regional pulmonary structure-function measurements of obstructive lung
disease. Medical Physics 44.5 (2017): 1718-1733. Permission to reproduce this article was
granted by John Wiley and Sons and is provided in Appendix G.

4.1 Introduction

Chronic obstructive pulmonary disease (COPD) [1] and asthma [2] represent a staggering bur-

den on patients, their caregivers and the health-care system worldwide. A major goal of COPD
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and asthma research is to regionally understand disease mechanisms, provide a way to pre-

dict disease progression and measure response to therapies. In this regard, pulmonary imag-

ing methods, including x-ray computed tomography (CT) [3], nuclear medicine methods [4],

and magnetic resonance imaging (MRI) [5, 6], provide regional measurements of pulmonary

structural-functional abnormalities. Hyperpolarized noble gas (3He/129Xe) MRI is emerging as

a way to provide airway/airspace structure and physiological function that is complementary to

CT. Importantly, noble gas MRI allows for visualization of pulmonary functional abnormalities

and how they change overtime or in response to therapy [7] with high spatial and temporal res-

olution. By combining the structural information from CT and functional information from no-

ble gas MRI, there is enormous potential to better understand pulmonary disease mechanisms

and develop treatments for improved patient outcomes, i.e., lung volume reduction surgery [8],

airway stent and valve placement in COPD [9] and airway-targeted bronchial thermoplasty in

asthma [10].

To facilitate regional evaluation of pulmonary structure-function relationships and to as-

sist in the development of novel regional therapies, fusion of anatomical CT and physiological

noble gas MRI information is required. Therefore, our objective was to develop a clinically

practical and physiologically relevant image analysis pipeline incorporating CT-noble gas MRI

registration for regional evaluation of pulmonary measurements. CT-MRI registration is chal-

lenging due to a number of reasons. For example, the lung is a highly deformable organ [11],

and the image quality is influenced by breathing and cardiac motion [6]. Furthermore, in-

consistent breath-hold lung volumes during image acquisition between CT and MRI scans and

geometric distortions associated with different image acquisition methods also pose challenges.

Previously, 3He MRI was co-registered with CT using rigid [12] and affine [13] meth-

ods based on manually identified fiducial markers. The rigid registration method [12] was

also optimized [14] and automated by registering CT to 1H MRI [15], which was acquired

simultaneously to 3He MRI. Another approach [16] involved CT-3He MRI affine registration

for the left and right lung using manual control points. A similar approach [17] was devel-
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oped to match the manually identified lung shapes for CT and 1H MRI for CT-3He MRI reg-

istration by assuming that the 1H and 3He images were inherently registered; this approach

[17] was automated by registering both CT and 3He MRI to 1H MRI [18] using NiftyReg

(http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg) affine and deformable registration tools

[19]. Similarly, 1H and 3He MRI were directly and indirectly registered to CT [20] using the

affine and deformable registration tools provided by Advanced Normalization Tools (ANTs,

http://stnava.github.io/ANTs/) [21]. It is important to note that although promising, none of

these previous approaches are being used in research or clinical workflows due to a number of

limitations. For example, some methods [12, 16, 13, 17] involved substantial user interaction or

required special expertise to identify image features, while the others [14, 17] relied on single-

breath image acquisition techniques. While individual CT-1H, 3He-1H and/or CT-3He MRI

registration approaches [18, 20] were previously evaluated, the potential of image information

from multiple imaging methods was not fully exploited. By incorporating image information

from multiple methods [22, 23, 24, 25, 26, 27], we propose to register CT to sequentially ac-

quired 1H and noble gas MRI simultaneously using a consistency prior (i.e., the similarity of

the displacement field from individual CT-1H and CT-noble gas MRI registration). Therefore,

here, we describe a way to co-register CT and 3He MRI by using 1H MRI (Fig. 4.1A) in a

coupled manner and by solving the optimization problem through convex optimization joint

CT-1H/3He MRI deformable registration.

4.2 Materials and Methods

4.2.1 Study Subjects and Image Acquisition

Thirty-five patients including 15 severe, poorly-controlled asthma and 20 COPD patients pro-

vided written informed consent to a study protocol approved by Health Canada and a local

research ethics board (Appendix H). COPD subjects with a clinical diagnosis were classified

according to the Global Initiative for chronic Obstructive Lung Disease (GOLD) criteria [28],
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and the asthma patients were classified as severe and poorly-controlled according to the Global

Initiative of Asthma (GINA) treatment step criteria [29].

For 1H MRI acquisitions, subjects were scanned in breath-hold inspiration after inhaling

1.0 L medical grade nitrogen (N2) (Spectra Gases, Alpha, NJ, USA) from functional residual

capacity (FRC). MRI was acquired at 3.0 Tesla (Discovery MR750, General Electric Health

Care [GEHC], Milwaukee, WI, USA) as previously described [30]. Subjects were instructed to

inhale a gas mixture from a 1.0 L Tedlar bag (Jensen Inert Products, Coral Springs, FL, USA)

from functional residual capacity (FRC+1) and images were acquired at inspiration breath-

hold. 1H MRI was performed using an eight-channel, transmit/receive whole-body radiofre-

quency (RF) coil (127 MHz, maximum excitation power 8.0 kW delivered by a narrow-band

RF power amplifier, GEHC, Milwaukee, WI, USA), and a 2D multi-slice fast gradient-recalled

echo sequence with patients holding their breath at 1.0 L of medical grade nitrogen (N2) (12

s acquisition time, repetition time/echo time/flip angle = 4.3 ms/1.2 ms/20◦; field-of-view =

40 cm×40 cm; bandwidth = 25 kHz; matrix = 128 (phase encoding) × 80 (frequency encod-

ing); 14–17 coronal slices, 15 mm slice thickness, 0 gap, 62.5% partial-echo percent). Auto

shimming was used for 1H MRI acquisitions (chest region) for the centre slice. The maximum

magnetic field gradient strength was 5 G/cm for x,y and z gradients and image distortion com-

pensation was enabled by default. Images were reconstructed from original k-space data using

Fourier transforms with Matlab R2013a (The Mathworks Inc., Natick, MA, USA).

Hyperpolarized 3He MRI was enabled using a single-channel, rigid, linear birdcage trans-

mit/receive elliptical chest coil (Rapid Biomedical, Wuerzburg, Germany, 97.3 MHz, maxi-

mum excitation power 3.2 kW delivered by an AMT 3T90 broad-band RF power amplifier

(GEHC, Milwaukee, WI, USA)). A turn-key system (HeliSpin, Polarean Inc., Durham, NC,

USA) was used to polarize 3He gas to 30-40% and doses of 5 ml/kg body weight were admin-

istered to 1.0 L Tedlar bags diluted by N2. 3He static ventilation images were acquired using

a 2D multi-slice fast gradient-recalled echo sequence (10 s acquisition, repetition time/echo

time/flip angle = 3.8 ms/1.0 ms/7◦; field-of-view = 40 cm×40 cm; bandwidth = 49 kHz; ma-
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trix = 128 (phase encoding) × 80 (frequency encoding); 14–17 coronal slices, 15 mm slice

thickness, 0 gap, 62.5% partial-echo percent). Due to hardware limitation, we used previously

determined 1H shimming settings for all hyperpolarized gas MRI acquisitions (chest region)

for the centre slice. The maximum magnetic field gradient strength was 5 G/cm for for x,y

and z gradients and no image distortion compensation was used. Images were reconstructed

from original k-space data using Fourier transforms with Matlab R2013a (The Mathworks Inc.,

Natick, MA, USA).

CT was performed on a 64-slice Lightspeed VCT scanner (GEHC, Milwaukee, WI, USA).

A spiral acquisition of the entire lung from apex to base was performed with subjects in breath-

hold after inhaling 1.0 L N2 from a Tedlar bag (detector configuration: 64 × 0.625 mm colli-

mation, 120 kVp, 100 effective mA, 500 ms tube rotation time, 1.0 pitch, 25-30 cm×36 cm×36

cm field-of-view). Data was reconstructed to a slice thickness of 1.25 mm and in-plane voxel

size of ∼ 0.7 × 0.7 mm2 using a standard convolution kernel, as previously described [30].

4.2.2 Overview

Figure 4.1A shows representative CT, 1H and 3He MRI for an asthma and COPD patient.

Figure 4.1B provides a schematic of a CT structure-3He MRI function measurements pipeline.

While some of the main components in Fig. 4.1B were previously explored [18], here we

describe a way to jointly register CT to spatially aligned 1H and 3He MRI for the target CT-

3He MRI registration. Briefly, as shown in Fig. 4.1B, 1H, 3He MRI and CT images were

entered into the pipeline as inputs. 3He MRI was first registered to the associated 1H MRI

using a rigid registration method that employed a block matching algorithm [31] followed by

a deformable step that used B-spline free-form deformation techniques [32]. The same rigid

registration method was used to initialize CT-1H MRI registration. With the transformed 3He

and CT images, we proposed a deformable registration approach to simultaneously register

CT to 1H and 3He MRI by coupling the displacement field from the independent CT-1H and

CT-3He MRI registrations.
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3He MR images were segmented to generate ventilation defect volumes using a hierarchical

K-means clustering approach [33]. CT lobes and airway trees were generated using Pulmonary

Workstation 2.0 (VIDA Diagnosis Inc., Coralville, IA, USA) and the labeled airway trees were

used to identify lung segments, which were deformed using the CT-1H MRI rigid transfor-

mation and CT-3He MRI displacement field. Whole lung and segmental 3He MRI ventilation

defect percent (VDP) were calculated by normalizing the volumes of 3He ventilation defects

to the spatially matched CT whole lung and lung segments.

4.2.2.1 CT-1H/3He MRI Registration with Consistent Displacement

Given two three-dimensional (3D) images I1(x) and I2(x), x ∈ Ω, to be registered, the optimal

displacement field ~φ(x) =
[
φx(x), φy(x), φz(x)

]T that corresponds to directions D = {x, y, z} can

be achieved by optimizing the objective function:

min
~φ(x)

S
(
I1(x), I2(x); ~φ(x)

)
+ α · R(~φ(x)) , (4.1)

where S (I1(x), I2(x); ~φ(x)) represents the similarity measurements that quantify the level of

alignment between I1(x) and I2(x) under the displacement field ~φ(x). R(~φ(x)) is the regulariza-

tion term that tackles the optimization problem [34] to generate smooth displacement field ~φ(x)

and the smoothness measurement is weighted by α ≥ 0.

We denote ICT (x), IH(x) and IHe(x) as the CT, 1H and 3He MRI of a subject, respectively.

With the help of (4.1), CT to 1H MRI deformable registration can be formulated as:

min
~φ1

E1(~φ1) = S
(
IH(x), ICT (x); ~φ1

)
+ α1 · R(~φ1) . (4.2)

Similarly, CT to 3He MRI registration can be achieved through:

min
~φ2

E2(~φ2) = S
(
IHe(x), ICT (x); ~φ2

)
+ α2 · R(~φ2) . (4.3)

In general, optimization-based image registration consists of three main components – a
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Figure 4.1: Representative CT, 1H/3He MR images, and the proposed CT-3He MRI structure-
function measurements workflow. A) CT, 1H and 3He MR images of an asthma and a COPD
patient. B) CT-3He MRI structure-function measurements workflow in three steps (S1, S2 and
S3). S1-A) CT to 1H MRI rigid registration. S1-B) 3He to 1H MRI rigid and deformable regis-
tration. S2-A) Joint CT-1H and CT-3He MRI deformable registration. S2-B) CT lung segments
generation using segmented airways. S2-C) 3He MRI ventilation and defects segmentation.
S3-A) Segmental 3He MRI VDP calculation.

similarity measurement, a transformation model and an optimization scheme, as comprehen-

sively reviewed [26]. Here we employ the self similarity context (SSC) [35] as an image repre-
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sentation for cross-modality image registration and the similarity between two images can be

obtained by measuring the similarity of their representations, i.e., sum of absolute difference

(SAD) of the SSC. As previously described [35], SSC defines a vector for each voxel x as:

S S C(x) = exp(−
S S D(p, q; x)

σ2 ) , (p, q) ∈ Nx , (4.4)

where Nx is the neighbourhood of x, i.e., the six-neighbourhood of x in 3D space; p, q are the

neighbours of x with a Euclidean distance of
√

2 between them; S S D(p, q; x) represents the

sum of squared difference between p and q and is calculated based on signal intensity within

the same scan; σ2 estimates the level of noise in Nx or the whole image domain. Therefore,

the voxel-wise similarity measurements between the image representations of S S CIH (x) and

S S CICT (x) under the displacement field ~φ1 can be calculated using SAD as follows:

S
(
S S CIH (x), S S CICT (x); ~φ1

)
=

∫ ∣∣∣S S CIH (x) − S S CICT (x + ~φ1)
∣∣∣ dx . (4.5)

The vector S S C(x) was further quantised to 64 bits and the SAD operation (4.5) was simplified

using a hamming window approach [35]. Similarly, 3He MRI and CT similarity measurements

S (S S CIHe(x), S S CICT (x); ~φ2) was calculated in the same way.

Because of complex small feature motion (vessels and airways) and sliding motion between

organs (diaphragm motion with approximately rigid rib cage), which results in displacement

field discontinuity, we chose total variation of ~φ(x) as the regularization term R(~φ) in (4.1) to

allow for large deformation and to preserve sharp discontinuities [36] as follows:

R(~φ) =
∑
j∈D

∫ ∣∣∣∇φ j(x)
∣∣∣ dx . (4.6)

Based on image similarity (4.5) and regularization (4.6) measurements, here we proposed

to co-register CT and 3He MRI by coupling the image information from the same individual’s

1H MRI. Specifically, we registered CT to 3He and 1H MRI simultaneously and used the dis-

placement from one registration to guide the other, namely multi-modality joint CT-1H/3He
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MRI deformable registration. The proposed joint deformable registration approach uses 3He

MRI and CT (aligned with 1H MRI) as inputs. We enforced the spatial consistency of the two

displacement field ~φ1(x) and ~φ2(x) from independent CT-1H MRI (4.2) and CT-3He MRI (4.3)

deformable registration and penalized the differences of the deformation field as follows:

E3(~φ1, ~φ2) =
∑
j∈D

∫ ∣∣∣φ j
1(x) − φ j

2(x)
∣∣∣ dx . (4.7)

Combining (4.2), (4.3), (4.5), (4.6) and (4.7), we can formulate the joint CT-1H/3He MRI

deformable registration approach that simultaneously registers CT to 1H and 3He MRI with the

following objective function:

min
~φ1,2

E(~φ1, ~φ2) = ω1 · E1(~φ1) + ω2 · E2(~φ2) + β · E3(~φ1, ~φ2)

= ω1 · S
(
S S CIH (x) , S S CICT (x) ; ~φ1

)
+ ω1α1 · R(~φ1) +

ω2 · S
(
S S CIHe(x) , S S CICT (x) ; ~φ2

)
+ ω2α2 · R(~φ2) +

β ·
∑
j∈D

∫ ∣∣∣φ j
1 − φ

j
2

∣∣∣ dx , (4.8)

where ω1, ω2, β are positive constraints and balance the weights of energy E1(~φ1) (4.2), E2(~φ2)

(4.3) and E3(~φ1, ~φ2) (4.7), respectively. In addition, (4.8) couples the image information from

1H MRI when extracting the CT-3He MRI displacement field to align CT and 3He MRI.

4.2.2.2 Multi-Level CT-1H/3He MRI Registration Framework and Linearization

We used a multi-level framework to reduce the computational complexity and avoid local min-

ima. The image representations S S CIm(x),m ∈ {H,CT,He}, were represented by a three-level

pyramid sub-image descriptors, i.e., S S CIm(x) = {S S Cl
Im

(x); l = 3, 2, 1}, where S S C1
Im

(x) and

S S C3
Im

(x) represent the finest and coarsest level of the original image representation S S CIm(x),

respectively. Similarly, we denoted (~φi)l(x), i ∈ {1, 2}, as the extracted displacement field in the

lth-level for independent CT-1H MRI (4.2) and CT-3He MRI (4.2) deformable registration. We

initiated the joint registration process from the coarsest level (l = 3) and re-sampled the result-
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ing displacement filed (~φ1,2)3(x) to the next level (l = 2) and deformed the corresponding image

representation S S C2
ICT

(x). For example, we solved the lth-level problem of (4.8) as follows:

min
~dl

1,2

ω1 · S
(
S S Cl

IH
(x) , S S Cl

ICT
(x + (~φ1)l) ; (~d1)l

)
+ ω1α1 · R

(
(~φ1)l + (~d1)l

)
+

ω2 · S
(
S S Cl

IHe
(x) , S S Cl

ICT
(x + (~φ2)l) ; (~d2)l

)
+ ω2α2 · R

(
(~φ2)l + (~d2)l

)
+

β ·
∑
j∈D

∫ ∣∣∣(φ j
1)l + (d j

1)l − (φ j
2)l − (d j

2)l
∣∣∣ dx , (4.9)

where (~φi)l(x), l ∈ {3, 2, 1}, is the displacement field obtained from the previous level (~φi)l+1(x);

(~di)l is the displacement field to be extracted for the current level l. The total displacement field

(~φi)l+(~di)l in the current level were carried over to the next level l−1 as the initial displacement.

These steps were iterated until the finest level was reached, leading to the final displacement

field associated with the original images/image representations. In fact, the joint registration

(4.8) is a special case of its lth-level implementation (4.9), i.e., when (~φi)l = 0, i ∈ {1, 2} for the

coarsest level l = 3. Therefore, we focused on (4.9) as a generalized form of the proposed joint

registration problem (4.8).

Now we consider (4.9): the similarity term S (·) in (4.5) is nonlinear hence the energy

model (4.9) is also nonlinear. Previous studies [37, 38] proposed to linearize (4.5) through

variational optical-flow estimation and derived (~di)l for the current level l by estimating a series

of incremental displacement field ~ξi, i.e., (~di)l =
∑~ξi, following a previous study [39]. As a

result, the problem (4.9) is represented by a series of sub-problems as follows:

min
~ξ1,2

ω1 ·

∫ ∣∣∣∣S 0
1 + ∇S 1 · ~ξ1

∣∣∣∣ dx + ω1α1 ·
∑
j∈D

∫ ∣∣∣∣∇((φ j
1)l + ξ

j
1

)∣∣∣∣ dx +

ω2 ·

∫ ∣∣∣∣S 0
2 + ∇S 2 · ~ξ2

∣∣∣∣ dx + ω2α2 ·
∑
j∈D

∫ ∣∣∣∣∇((φ j
2)l + ξ

j
2

)∣∣∣∣ dx +

β ·
∑
j∈D

∫ ∣∣∣(φ j
1)l + ξ

j
1 − (φ j

2)l − ξ
j
2

∣∣∣ dx , (4.10)

where S 0
1 = S S Cl

ICT
(x + (~φ1)l) − S S Cl

IH
(x) and ∇S 1 = ∇S S Cl

ICT
(x + (~φ1)l). S 0

2 and ∇S 2 can
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be calculated in a similar manner as previously described [38]. The estimated incremental

displacement field ~ξi were then used to update ~φl
i hence S 0

i and ∇S i, i ∈ {1, 2}. Clearly, (4.10)

gives rise to a series of convex optimization problem and through variational analysis, we have:

Proposition 2 The convex minimization problem (4.10) can be solved through the following

maximization problem:

max
εi,η

j
i ,r

j
L =

∫ (
ε1 · S 0

1 +
∑
j∈D

(φ j
1)l · div η j

1 +
∑
j∈D

r j · (φ j
1)l

)
dx +∫ (

ε2 · S 0
2 +

∑
j∈D

(φ j
2)l · div η j

2 −
∑
j∈D

r j · (φ j
2)l

)
dx , (4.11)

subject to

G j
1(x) := ε1 · ∂

jS 1 + div η j
1 + r j = 0 (4.12)

and

G j
2(x) := ε2 · ∂

jS 2 + div η j
2 − r j = 0, (4.13)

where |εi| ≤ ωi, |η
j
i | ≤ ωi · αi and |r j| ≤ β for i ∈ {1, 2}, j ∈ D.

The proof of Proposition 2 is provided in Appendix D.

4.2.2.3 An Efficient Dual Optimization-based Numerical Solver

The min-max formulation (D.6) gives an equivalent representation of the minimization problem

(4.10) associated with the general form (4.9) for the joint CT-1H/3He MRI registration problem
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(4.8). In addition, (D.6) conforms to the Lagrangian form:

max
εi,η

j
i ,r

j
min
ξ

j
i

L +

2∑
i=1

∑
j∈D

〈
ξ

j
i ,G

j
i

〉
, (4.14)

of the maximization problem (4.11) and involves the displacement field ξ j
i , i ∈ {1, 2}, j ∈ D, as

the multiplier function of the respective linear equality constraints (4.12) and (4.13). Therefore,

instead of directly solving the challenging non-smooth and non-linear minimization problem

(4.10), we can alternatively optimize its equivalent form, the dual maximization problem (4.11)

by virtue of Proposition 2. Here we derive an efficient duality-based optimization scheme based

on the augmented Lagrangian algorithm [40] as follows:

max
εi,η

j
i ,r

j
min
ξ

j
i

L +

2∑
i=1

∑
j∈D

〈
ξ

j
i ,G

j
i

〉
−

c
2

2∑
i=1

∑
j∈D

∣∣∣∣∣∣G j
i

∣∣∣∣∣∣2 , (4.15)

where c is a positive scale and the quadratic penalty function is applied to ensure the constraints

(4.12) and (4.13) vanish. The numerical implementation of (4.15) is described in Appendix E.

4.2.3 Algorithm Implementation

Our approach was implemented in a pipeline through a single Linux bash script by integrat-

ing the main components as shown in Fig. 4.1B. In the first step of the implementation,

we resampled the original 1H and 3He MRI to approximately 1.56×1.56×1.56 mm3 voxel

space using convert3D (http://www.itksnap.org/pmwiki/pmwiki.php?n=Downloads.C3D) [41]

to ensure equal regularization of the displacement field in all three directions. We chose

∼1.56 mm in-plane voxel width for better visualization of 3He MRI fiducials and CT fea-

tures. We want to emphasize that it is also possible to perform independent anisotropic reg-

ularization of the displacement field for the three directions and we are also currently in the

process of developing MR image acquisition methods to acquire images with high resolu-

tion and isotropic voxel sizes. The pipeline was implemented in series in three steps, each
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of which comprised of multiple operations. Briefly, step 1 (S1) initializes CT-1H and 3He-

1H MRI alignment using the rigid and deformable registration methods provided by NiftyReg

[19] (http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg) with default parameters. Step 2 (S2)

refines the CT-3He MRI registration using the joint CT-1H/3He MRI deformable registration

method described in Sec. 4.2 and the parameters in (4.8) were optimized on a separate dataset

of five COPD/asthma patients ({ω1, α1, ω2, α2, β} = {0.5, 5.0, 0.8, 8.0, 0.5} for joint CT-1H/3He

MRI deformable registration, {ω1, α1} = {1.0, 10.0} for direct CT-1H MRI deformable regis-

tration and {ω2, α2} = {1.0, 50.0} for direct CT-3He MRI deformable registration). 3He MRI

ventilation defects were segmented using a hierarchical k-means clustering method [33]. CT

lung/lobes and airways were provided by Pulmonary Workstation 2.0 and the lung segments

were determined by assigning each lung mask voxel to the closest bronchial tree (right bronchi

1-10 = RB1-10 and left bronchi 1-9 = LB1-9) in the same lobe [42]. Finally, step 3 (S3) calcu-

lates whole lung and segmental VDP by normalizing the 3He ventilation defects to the whole

lung and each lung segment [18] deformed using the transformation and displacement field

obtained from S1 and S2.

These image analyses were implemented using Matlab (The Mathworks, Inc., Natick, MA,

USA) and CUDA (CUDA v6.0, NVIDIA Crop., Santa Clara, CA, USA) programming on

a Linux (CentOS 6.7) desktop (Inter(R) CPU i7-3770, 3.4 GHz, 16 G RAM) with a GPU

(GeForce, GTX680, NVIDIA Crop., Santa Clara, CA, USA). The CPU read the images, gen-

erated the pyramid registration framework, and provided the image descriptors (SSC (4.4)) and

similarity measurements to the GPU. The GPU performed parallel implementation of the nu-

merical solver described in Sec. 4.2.2.3 and returned the optimized incremental displacement

field to the CPU to deform the image descriptors. These steps were iterated for each level until

convergence. We used single precision calculations for the GPU-based algorithm implementa-

tion and observed convergence errors < 10−3 within 250 iterations.
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4.2.4 Validation Methods

4.2.4.1 Joint CT-1H/3He MRI Registration Accuracy

CT-3He MRI registration accuracy was evaluated using manually identified fiducial markers in

CT and 3He MRI. A single observer (FG with 4 years experience) manually identified 2–5 fidu-

cial pairs for each CT-3He MRI dataset pair, five times, at least one week apart. The fiducials

were identified in the coronal plane and the locations were refined by checking the axial and

sagittal planes as any recognizable and distinct features such as the apex/bottom of the lung,

cardiophrenic angle, trachea bifurcation and vessels that were identifiable in both images. In

total, N = 109 fiducial pairs (46 for asthma, 34 for COPD GOLD II and 29 for COPD GOLD

III) were identified in 35 patients. Figure 4.2A shows representative fiducial pairs used to eval-

uate CT-3He registration accuracy; the transformation and displacement fields were used to

transform these fiducials. CT-3He registration accuracy was measured using target registration

error (TRE) [43]. For example, for the ith, i ∈ {1, . . .N}, pair of fiducials in 3He ( f i
He) and CT

( f i
CT ), TREi was calculated as the Euclidean distance between the two points under the dis-

placement T , i.e., TREi =

√
( f i

He − f i
CT (T ))2. We also measured the fiducial localization error

(FLE) [43] to determine if fiducial identification provided a dominant contribution to TRE. For

the ith, i ∈ {1, . . .N}, fiducial in CT or 3He MRI, FLEi was calculated as
√
σ2

ix
+ σ2

iy
+ σ2

iz
,

where σ2
ix,y,z

represent the variances of the locations for the ith fiducial in x, y and z directions,

respectively.

4.2.4.2 Regional CT-3He MRI Structure-Function Measurements

We evaluated and compared whole lung VDP generated using the automated pipeline and a

semi-automated method, previously validated [33]. We also measured mean runtime for the

main components and the whole pipeline in Fig. 4.2B.
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Figure 4.2: Representative CT and 3He MRI fiducials and the spatial distribution throughout
the lung. A) Top panel: a CT fiducial within inset boxes expanded and identified by crosshairs
in coronal, sagittal and axial plane. Bottom panel: a 3He MRI fiducial within inset boxes ex-
panded and identified by crosshairs in coronal, sagittal and axial plane. B) Spatial distribution
of the 109 pairs of CT (“+”) and 3He (“x”) MRI fiducials projected in coronal, sagittal and
axial plane. Each fiducial position is normalized to the respective image and shown in ante-
rior/posterior, right/left and superior/inferior directions with “0” representing the right-most,
anterior-most and inferior- most, “1” for the left-most, posterior-most and the superior-most of
the respective images.

4.2.4.3 Comparison with Other CT-3He MRI Registration Methods

The proposed joint CT-1H/3He MRI registration method was compared with four different ap-

proaches while using the same 3He-1H MRI registration and CT-1H MRI inputs as follow:
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1) direct CT-1H MRI rigid registration using the block matching method [31] using NiftyReg

[19]; 2) direct CT-1H MRI deformable registration using the proposed convex optimization-

based registration without coupling 3He MRI information; 3) direct CT-3He MRI deformable

registration using the proposed convex optimization-based method without coupling 1H MRI

information; and, 4) direct CT-1H MRI registration using B-spline free-form deformation (F3d)

[32] with NiftyReg [19].

4.2.4.4 Impact of CT-1H MRI Alignment

As shown in Fig. 4.1B, the proposed pipeline involves 3He-1H MRI registration (S1-A) and

CT-1H MRI registration (S1-B) as inputs prior to joint CT-1H/3He MRI deformable registration

(S2-A). In this approach, and as previously described, CT-1H MRI registration is the most chal-

lenging step [44]. To evaluate the effect of CT-1H MRI pre-alignment on overall registration

accuracy, we explored modification of the CT-1H MRI transformation matrix by ±10% rotation

(Rotationx,y,z) and translation (Translationx,y,z) and re-ran the joint CT-1H/3He MRI deforma-

tion registration. This modification resulted in six sets of joint CT-1H/3He MRI registration

accuracy measurements.

4.2.4.5 Statistical Analysis

The difference in registration accuracy using joint deformable CT-1H/3He MRI registration and

rigid CT-1H MRI registration was tested using paired t-tests. Normality of data was determined

using Shapiro-Wilk test and when significant, the Mann-Whitney U test for nonparametric data

was performed using Statistical Package for the Social Sciences (SPSS version 24, SPSS Inc.,

Chicago, IL, USA). Differences in CT-3He MRI registration accuracy using other comparative

methods were evaluated using a one-way analysis of variance (ANOVA) with a Tukey test for

post hoc pairwise comparisons using SPSS. Automated and semi-automated 3He MRI whole

lung VDP (WL VDP) were compared using paired t-tests with SPSS and the correlation was

measured using Pearson correlation coefficient (r) and Bland-Altman analysis with GraphPad
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Table 4.1: Subject demographics and pulmonary function measurements
All Asthma COPD GOLD II COPD GOLD III

Mean(SD) (n = 35) (n = 15) (n = 10) (n = 10)
Age yrs 59(15) 46(12) 67(6) 69(12)
Male n 21 6 6 9
BMI kg.m−2 28(5) 29(6) 26(3) 27(5)
Pack yrs - - 49(17) 36(34)
FVC%pred 88(16) 92(14) 94(15) 77(13)
FEV1%pred 63(24) 79(25) 62(8) 40(5)
FEV1/FVC 54(17) 68(16) 50(8) 39(7)
IC%pred 97(26) 107(25) 104(16) 75(21)
FRC%pred 121(38) 89(20) 126(22) 164(27)
RV%pred 143(46) 107(34) 150(26) 191(28)
TLC%pred 122(14) 97(12) 116(14) 122(14)
RV/TLC%pred 127(28) 108(28) 128(12) 154(18)
DLco%pred - - 60(16) 43(6)
VDP 15(12) 8(8) 14(8) 28(9)

BMI=Body mass index, FVC=Forced vital capacity, FEV1=Forced expiratory vol-
ume in one second, IC=Inspiratory capacity, FRC=Functional residual capacity,
RV=Residual volume, TLC=Total lung capacity, DLco=Diffusing capacity for car-
bon monoxide, %pred=Percent predicted, VDP=Hyperpolarized 3He MRI ventila-
tion defect percent.

Prism version 7.0 (GraphPad Software, Inc., San Diego, CA, USA). Results were considered

significant when the probability of making a type I error was less than 5% (p < 0.05).

4.3 Results

4.3.1 Subject Demographics

Table 4.1 provides demographic information for all participants including 15 asthma (6 males/9

females, 42±12 years), 10 COPD GOLD II (6 males/4 females, 67±6 years) and 10 COPD

GOLD III (9 males/1 female, 69±12 years) patients. For this diverse patient group that in-

cluded both COPD and asthma patients with a wide range of MRI ventilation and CT structural

abnormalities, mean forced expiratory volume in 1 s (FEV1) and FEV1/forced vital capacity

(FVC) were abnormal, as were lung volumes.
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Table 4.2: CT-3He MRI registration accuracy using the comparative registration methods for
the entire and each patient group. (n=35)

TRE(mm)
All Asthma COPD GOLD COPD GOLD

Registration Methods (n=35) (n=15) II (n=10) III (n=10)
Direct CT-1H MRI rigid1 7.2±2.8∗ 7.8±2.9∗ 6.3±2.5∗ 7.3±2.7∗

Direct CT-1H MRI deformable2 6.5±2.4∗ 6.9±2.6∗ 5.6±1.8∗ 7.0±2.6∗

Direct CT-3He MRI deformable3 6.8±2.7∗ 6.5±2.7∗ 6.7±1.9∗ 7.1±3.3∗

Direct CT-1H (F3d)4 5.5±2.1∗ 5.9±2.2∗ 4.7±1.7† 5.6±2.1‡

Joint CT-1H/3He MRI deformable 4.4±2.0 4.5±2.0 4.0±1.7 4.8±2.3
ANOVA <0.0001 <0.0001 <0.0001 <0.0001

*p < 0.0001, †p = 0.001, ‡p = 0.007 for pairwise comparisons of the joint CT-1H/3He MRI registra-
tion method with the other methods; registration methods 1, 2, 3, and 4 correspond to the comparative
approaches described in Sec. 4.2.4.3.

4.3.2 Joint CT-1H/3He MRI Registration Accuracy

Figure 4.3A shows joint CT-1H/3He MRI deformable registration results for a COPD GOLD

III subject using the proposed registration framework. Table 4.2 shows the performance of the

joint CT-1H/3He MRI deformable registration framework for the entire database. For manual,

observer-driven CT-3He fiducial pair identification, FLE was 0.16 mm and 0.34 mm for 3He

MRI and CT, respectively. Figure 4.2B shows the distribution of 109 CT-3He MRI fiducial

pairs (from a single manual round) normalized and projected to right/left, inferior/superior and

anterior/posterior directions. Using these fiducials and all other components in Fig. 4.1B as

fixed, mean TRE was 7.2±2.8 mm and 4.4±2.0 mm using rigid CT-1H MRI and joint CT-

1H/3He MRI deformable registration methods, respectively. Figure 4.3A provides the TRE

distribution using both methods and shows that joint CT-1H/3He MRI deformable registration

TRE was shifted to lower values and these were statistically significant (p < 0.0001).

Figure 4.3B and 4.3C show the strong and significant relationships of whole lung VDP

measured using the proposed pipeline and a semi-automated segmentation method [33] (r

= 0.93, p < 0.0001) and there were no significant differences (p = 0.37). Segmental VDP

(VDPRB1−10, LB1−9) for each patient was also generated and is provided in the supplementary

Table F.1 in Appendix F.
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Figure 4.3: CT-3He MRI registration accuracy and 3He MRI WL VDP measurements. A)
TRE distribution for joint deformable CT-1H/3He MRI registration (black), direct CT-1H MRI
free-form deformation registration (gray), and direct CT-1H MRI rigid registration (light gray).
Representative improvements of using the joint CT-1H/3He MRI registration method are in-
dicated by yellow arrows. B) Linear correlation of two sets of WL VDP generated by the
proposed approach and a semi-automated method. C) Bland-Altman analysis of the two sets
of WL VDP. Dotted lines indicate the upper and lower limits and solid lines represent the bias
(0.97%).

4.3.3 Effect of Coupled 1H MRI on Registration Accuracy

Table 4.2 provides CT-3He MRI registration accuracy by patient subgroup and shows that there

were statistically significant differences for the different registration methods (p < 0.0001).

The TRE for multi-modality joint CT-1H/3He MRI deformable registration was significantly
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decreased for the whole group and sub-groups (all pairwise p < 0.01).

4.3.4 Effect of CT-1H MRI Rigid Registration Matrix and Choice of β on

Registration Accuracy

Table 4.3 provides CT-1H/3He registration TRE values that were generated by modifying the

CT-1H MRI rigid registration matrix (Rotationx,y,z and Translationx,y,z). We also evaluated the

influence of β (as shown in (4.8)) that controls the weight of the consistent displacement field

prior on CT-1H/3He MRI deformable registration. We altered β = 0.5 by -15%, -10%, -5%,

5%, 10%, and 15% and observed differences of 0.08, 0.07, 0.02, 0.03, 0.06, and 0.07mm (or

2.0%, 1.6%, 0.6%, 0.7%, 1.5% and 1.9% changes), respectively.

Table 4.3: Influence of CT-1H MRI initial rigid alignment on joint CT-1H/3He deformable
registration accuracy. Rotationx,y,z represent ±10% error (random sign) added to the rotation
components of base CT-1H MRI rigid transformation matrixes. Translationx,y,z represent ±10%
error (random sign) added to the translation components of base CT-1H MRI rigid transforma-
tion matrixes. (n=35)

±10% error TRE (mm)
Rotationx 4.6±2.0
Rotationy 4.6±2.0
Rotationz 4.7±2.1
Translationx 4.6±2.1
Translationy 5.3±2.3
Translationz 5.3±2.4
Base 4.4±2.0

4.3.5 Runtime

As shown in Fig. 4.1B, the proposed pipeline was fully automated and as shown in Table

4.4, the entire pipeline required ∼11 min to generate whole lung and segmental CT-3He MRI

structure-function measurements for each dataset including ∼6.5 min for step 1, ∼4 min for

step 2, and ∼0.1 min for step 3. The joint CT-1H/3He MRI deformable registration (S2-A in

Fig. 4.1B) required ∼2.5 min for GPU-based implementation compared with ∼40 min running
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on a CPU. While the previously validated semi-automated approach [33] requires ∼15 min,

only whole lung VDP may be estimated; segmental VDP cannot be measured using this semi-

automated approach without substantial, additional observer interactions.

Table 4.4: Computation time [mean(SD)] of the regional CT-3He MRI structure-function mea-
surements workflow shown in Fig 4.1B. (n=35)

Time(min) CPU GPU
S1-A 3.5(0.2) 3.5(0.2)
S1-B 3(0.3) 3(0.3)
S2-A 40(0.5) 2.5(0.1)
S2-B 0.5(0.1) 0.5(0.1)
S2-C 1(0.1) 1(0.1)
S3-A 0.1(0.0) 0.1(0.0)
Total 47(0.8) 11(0.4)

S1-A,B, S2-A,B,C and S3-A correspond to the main components in the image anal-
ysis workflow in Fig. 4.1B.

4.4 Discussion

Together, CT lung structure-function measurements and MRI function measurements provide

a way to improve our understanding of pulmonary disease pathogenesis and perhaps more im-

portantly, develop and evaluate novel regional therapies. Accordingly, here we developed and

evaluated a fully automated pipeline to generate regional pulmonary structure-function mea-

surements by jointly registering CT to 1H and 3He MRI in a coupled manner. We made some

important observations including: 1) joint CT-1H/3He MRI deformable registration resulted in

significantly improved registration accuracy which is important for segmental measurements,

2) there were strong correlations for VDP generated using the joint registration approach with

VDP estimated using a previously validated semi-automated method, and, 3) computational

speed was consistent with research workflows.

To provide some context, we note that previously described methods [12, 13, 16, 17] re-

lied on manual interactions to identify image features (i.e., landmarks, lung shapes), which

require special expertise. In addition, such image features may not be readily available due to
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image information content, image quality and physiological abnormalities. Yet other methods

[18, 20] co-registered CT and MRI directly or indirectly without optimizing the use of 1H MRI

information and one of these [20] generated CT-3He MRI TRE of ∼15 mm in ∼30 min. In

addition, the state-of-art B-spline free-form deformable registration approach [32] yielded an

overall registration accuracy of 5.5±2.1 mm for TRE, which was significantly different from

the proposed appraoch (p < 0.0001), as shown in Table 4.2. These previous pioneering ap-

proaches motivated us to continue to discover and design optimal ways to co-register CT, 1H

and functional 3He MRI. Our method is different from others because of the way we utilized

1H MRI information by coupling the two individual registrations, rather than treating them sep-

arately. By optimizing 1H MRI information, the CT-1H/3He MRI joint deformable registration

approach achieved a registration accuracy of 4.4±2.0 mm for TRE and this was an improvement

of ∼2.8 mm (or ∼40%) compared to rigid registration methods. The joint registration approach

employed image information from both 1H and 3He MRI and because 3He MRI signal voids

increase with increasing disease severity, it is more challenging to establish the CT-3He MRI

correspondences in these cases. To address this important issue, it is important to consider

weighting the similarity and/or the regularization terms of the registration model so that there

is more weight for regions with greater inhaled gas MRI signal intensity and vice versa.

Multi-modality medical image registration is challenging and this is due in part due to the

complexity in measuring the correspondence between images [26]. Here we employed a point-

wise self similarity context that utilizes image signal intensity information for cross-modality

image similarity measurements. We want to emphasize that other nonlinear global similarity

metrics including mutual information [45] and cross correlation [46, 47] are widely used and

may be adapted and incorporated into our registration framework. It is also important to note

that previous studies [48] performed image registration by coupling geometric features such

as image surfaces with image signal intensity information, and this may be useful for CT-3He

MRI registration. Furthermore, individual lung registration, i.e., left-left and right-right lung

registration, may warrant further investigation.
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We observed improved joint CT-1H/3He MRI registration accuracy as compared with reg-

istering CT to 1H or 3He MRI separately and this differs from previous studies [12, 13, 14, 15,

16, 17, 18, 20], where the value of complementary 1H and 3He MR image information was

not fully exploited. Notably, previous methods treated the complementary 1H/3He image in-

formation separately and registered CT to 1H or 3He MRI independently. In contrast, our work

exploited the valuable complementary 1H/3He MRI information explicitly by relating the two

independent CT-1H MRI and CT-3He MRI registrations. Direct anatomic CT and functional

3He MRI registration is challenging due to the fundamentally different image information con-

tent and the presence of 3He signal voids. Consequently, CT may be inappropriately deformed

to match 3He MRI especially in regions with low signal intensities (Fig. 4.4, row 3 column 1),

leading to underestimation of whole lung or segmental VDP. This is important in severe lung

disease, where there are large regions of MRI signal voids. Previous work [15, 17, 18, 20]

also proposed to include 1H MRI to facilitate registration by registering CT and 1H MRI to

3He MRI individually and then summing the two separate registrations together. However, we

previously observed significant CT-1H MRI registration inaccuracies (Fig. 4.4, row 2 column

2) because of poor 1H MR image quality [49]. By “adding” the individual registrations, these

individual registration inaccuracies may propagate to the target CT-3He MRI registration and

result in accumulated registration errors. It is in this context that we proposed a way to maxi-

mize the complementary 1H/3He MRI information by relating the individual registrations in a

coupled manner.

We constrained the similarity of the displacement field between individual CT-1H MRI and

CT-3He MRI to provide information as to how to supervise each single registration. For ex-

ample, single CT-1H MRI registration in problematic regions (Fig. 4.4, row 2 column 2) was

enhanced with the guidance of single CT-3He MRI displacement field (Fig. 4.4, row 3 column

2), leading to the joint CT-1H/3He MRI registration (Fig. 4.4, row 4 column 2) that was not sig-

nificantly influenced by 1H MRI. We also observed that the joint CT-1H/3He MRI registration

displacement field (purple arrows within yellow inset boxes in Fig.4.4 row 4 column 2) shared
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similarity with both single registration displacement field while dominated by CT-3He regis-

tration, and this supports the notion of a consistent displacement field prior. Similarly, with

the guidance of single CT-1H MRI registration (Fig. 4.4, row 2 column 1), the joint CT-1H/3He

MRI registration (Fig. 4.4, row 4 column 1) was not significantly compromised in the presence

of problematic single CT-3He MRI registration (Fig. 4.4, row 3 column 1). Similarly, the joint

registration displacement field (purple arrows within yellow inset boxes in Fig. 4.4 row 4 col-

umn 1) was similar to both single registration displacement field but dominated by CT-1H MRI

registration. However, in situations where both single CT-1H and CT-3He MRI registration

were suboptimal, the joint CT-1H/3He MRI registration must be optimized. Supplementary

Fig. F.1 in Appendix F provides representative results using the consistent displacement field

prior for CT-1H/3He MRI registration.

While we observed promising CT-3He MRI registration results by coupling complementary

1H MRI information, we want to emphasize that the two single registrations require balance in

order to assist rather than degrade the target CT-3He MRI registration. This was achieved by

weighting the contributions of the two individual registrations and the consistent displacement

field constraint. After registration, the three components (4.2), (4.3) and (4.7) contributed to the

joint registration problem (4.8) by ∼39%, ∼61% and ∼0.2%, respectively. The joint CT-1H/3He

MRI deformable registration approach requires pre-registered 3He-1H MRI and coarsely reg-

istered CT-1H MRI as inputs. Therefore, when 3He-1H MRI registration and/or CT-1H MRI

initial alignment are problematic, the joint CT-1H/3He MRI registration may be affected. How-

ever, these issues can be mitigated in a few ways. For example, it is important to note that

we endeavoured to minimize breath-hold differences (and lung volumes) across scans by train-

ing and continuously coaching subjects during image acquisition. As a result, the 3He and 1H

MRI are inherently registered and very minor co-registration effort is required. In situations

where further 3He-1H MRI registration refinements are required, the state-of-art registration

methods provided by NiftyReg can be employed. In addition, we think that our joint regis-

tration approach may accommodate minor 3He-1H MRI registration inaccuracies because two
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Figure 4.4: Illustration of joint CT-1H/3He MRI registration using consistent deformation prior. The 1st

row shows representative registered 3He (cyan) and 1H (gray) MRI as inputs. The 2nd, 3rd and 4th rows
show CT-3He MRI registration by registering CT to 1H MRI (no 3He information), 3He MRI (no 1H
information), and both 1H and 3He MRI, respectively, where the respective displacement fields (purple
vectors) within the inset boxes are shown expanded in yellow boxes. The 1st column shows represen-
tative improvements of joint CT-1H/3He MRI registration on image edges compared with individual
CT-1H MRI and CT-3He MRI registration, where the joint registration displacement field is consistent
with both individual registration but dominated by CT-1H MRI registration (no 3He information). The
2nd column shows similar results on image landmarks, where the joint registration displacement field is
consistent with both individual registration but dominated by CT-3He MRI registration (no 1H informa-
tion). Note that CT-1H MRI, CT-3He MRI and joint CT-1H/3He MRI registration were independently
optimized.
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registrations are performed, rather than one, with greater weighting on CT-1H MRI alignment.

Although the two registrations were related to each other in a coupled manner, the strength

of the “similarity” constraint on the two displacement field may be adjusted to accommodate

3He-1H MRI registration inaccuracies. Regarding CT-1H MRI initial alignment, it is important

to note that our joint registration approach only requires coarse CT-1H MRI registration as a

first step and subsequently refines the alignment by coupling 3He MRI information. In situa-

tions where CT-1H MRI initial alignment is not sufficient, the deformable registration approach

provided by NiftyReg may be employed and the generated deformation field could be used to

initialize the following joint CT-1H/3He MRI deformable registration. These procedures could

be employed to assure the general applicability of our approach.

The relatively small differences for the six sets of TRE measurements caused by altering

the base CT-1H MRI rigid alignment suggest that the proposed joint deformable registration

approach allows for relatively large CT-1H MRI initial registration errors. We note that the

relatively large differences for Translationy,z were due to the large translation components

in the base CT-1H MRI rigid transformation matrixes. In addition, we observed small TRE

changes (< 2.0%) after altering the weight (β in 4.8 of the similarity measurements between

individual registration displacement field. These results suggest that the proposed joint CT-

1H/3He MRI deformable registration approach is relatively insensitive to CT-1H MRI rigid

registration inaccuracies and the weight of the consistent CT-1H and CT-3He MRI displacement

field prior.

The GPU-based implementation of our approach required ∼11min to generate segmental

CT structure-3He MRI function measurements. The overall computational efficiency may be

improved in several ways. For example, as shown in Fig. 4.1B, 3He-1H MRI registration and

CT-1H MRI rigid alignment can be performed in parallel; joint CT-1H/3He MRI deformable

registration (S2-A), 3He MRI ventilation segmentation (S2-B) and CT lung segments gener-

ation (S2-C) can also be implemented simultaneously. The GPU-optimized joint CT-1H/3He

deformable registration required ∼2.5min (∼50% of the time for SSC calculation) compared
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with ∼40min for CPU-based implementation, and thus greatly enhanced the computational

efficiency.

Although this work provides some promising results, we must acknowledge a number of

limitations. Previous work suggested that global/local mutual information [50, 51] and cross-

correlation [51, 46] may improve cross-modality image similarity measurements and registra-

tion performance. While we focused on point-wise image similarity measurements and prior

knowledge, relaxation or bound optimization techniques [52] may also be employed to incor-

porate these nonlinear global metrics to the proposed registration framework. The proposed

approach performed CT-3He MRI registration using full images without lung segmentation

[53]. We want to emphasize that our approach provides a generic registration framework when

segmentation is not readily available. In addition, we did not enforce that the registration was

inverse consistent/symmetric or that the deformation was diffeomorphic, as previously demon-

strated [44, 46], and this warrants further investigation. Furthermore, as there was no gold

standard for CT-3He MRI fiducial pairs and there were 3He signal intensity voids where 3He

fiducials could not be identified, we used manually identified CT-3He fiducial pairs on multiple

occasions and calculated TRE in 3He MRI-ventilated lung regions. Therefore, TRE measure-

ments were limited to lung regions with adequate inhaled gas MRI signal and this is certainly

a limitation of our approach, especially in more severe lung disease where ventilation is highly

abnormal. It is important to note that we are in the process of optimizing pulmonary MRI using

hyperpolarized 129Xe gas, which is substantially more abundant and less expensive than 3He

gas, making it more suitable for widespread clinical translation. We are also optimizing a novel

pulmonary MRI method using ultra-short echo-time (UTE) sequences to provide enhanced vi-

sualization of pulmonary structures. We think UTE-129Xe MRI analysis may provide a promis-

ing alternative for regional pulmonary structure-function measurements and UTE-129Xe MRI

registration and segmentation will be a focus of our future work. Finally, our approach incor-

porated external software (Convert3D and NiftyReg) to facilitate CT-3He MRI registration and

regional lung structure-function measurements. For the pipeline, we integrated these Linux
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tools and other image processing components (Fig. 4.1B) into a single Linux bash script that

was fully automated on a Linux terminal. The outputs from these external software tools were

automatically entered into the other components without user interaction. We also want to

emphasize that we are in the process of developing C/C++ tools and integrating these compo-

nents into a C/C++-based implementation with a graphical user interface for clinical users and

applications.

4.5 Conclusion

Regional lung structure-function measurements provide a way to better understand pulmonary

disease pathogenesis and develop optimal regional therapies for patients with obstructive lung

disease. Here we developed a fully automated pulmonary CT-noble gas MRI image processing

pipeline that is required for regional regional lung structure-function analysis. We evaluated the

performance of our approach using a diverse patient dataset of 35 COPD and asthma subjects

and achieved CT-3He MRI registration accuracy, regional structure-function measurements and

workflow efficiency suitable for research and clinical applications.
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Chapter 5

Conclusions and Future Directions

In this final chapter, I will provide an overview of the research questions and summarized
the important findings and conclusions of Chapters 2–4. I will also provide general and study-
specific limitations of this thesis with some potential solutions. Finally, based on these findings,
I will discuss some future directions of pulmonary MRI studies.

5.1 Overview of Rationale and Research Objectives

COPD and asthma represent a staggering burden on patients, economies and health-care sys-

tems worldwide. Despite decades of research, therapeutic interventions than can modify COPD

and asthma patient outcomes are still lacking partly due to their high dependence on spirom-

etry measurements made at the mouth [1]. In other words, COPD and asthma are universally

diagnosed and monitored based on airflow limitations using FEV1 measured at the mouth as

the primary endpoints [1]. Simple and inexpensive, FEV1 provides only a global sum of con-

tributions of different pathologies and is insensitive to subtle changes and treatment responses

[2, 3]. Therefore, there is an urgent need to develop novel biomarkers to regionally evaluate

COPD and asthma.

It has been recently recognized that, in COPD and asthma, the structural and functional

abnormalities are regionally heterogeneous [2, 4]. This novel information may be employed to

optimize treatment plans, monitor interventional efficacy and develop new treatments. The re-
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cent developments in hyperpolarized noble gas (3He/129Xe) MRI open a way to understanding

the regional nature of pulmonary structural and functional abnormalities. In noble gas MRI,

lung function is typically quantified based on signal intensity, which is interpreted as “venti-

lation”, and regions of signal voids are referred to as ventilation defects that are believed to

represent areas of the lung that do not participate in gas distribution [5]. A commonly used no-

ble gas MRI biomarker is ventilation defect percent, which is calculated by normalizing noble

gas ventilation defect volumes to the lung cavity. In addition, recent developments in 1H MR

image acquisition and processing techniques provide a way for visualization and quantification

of pulmonary structure and function using existing hospital equipment without exogenous con-

trast agents. For example, Fourier decomposition of free-breathing MRI (FDMRI) [6] allows

for visualization and quantification of pulmonary ventilation/perfusion and multi-volume MRI

registration [7, 8] permits assessments of regional lung function. Furthermore, MRI acquisition

using ultra-short echo-time (UTE) sequences provides enhanced visualization of lung structure

comparable to CT [9]. Moreover, registration of the complementary structural information

from CT and functional information from noble gas MRI provides promising potential for bet-

ter understanding pulmonary disease mechanisms and developing novel treatments [10, 11, 12]

for improved patient outcomes.

Clearly, the quantitative evaluation of the regional lung structural and functional informa-

tion derived from noble gas MRI, conventional 1H MRI, and combined CT-noble gas MRI is

highly dependent on lung cavity segmentation and cross-modality image registration. How-

ever, structural and functional MRI lung segmentation and registration are particularly chal-

lenging due to a number of reasons, i.e., low tissue and MRI signal intensity, signal inten-

sity inhomogeneity, magnetic susceptibility, motion artifacts, dramatic changes in lung shapes

and protruding vessels. Previous studies have shown that the incorporation of image infor-

mation from multiple imaging methods [13, 14, 15] and use of high level prior knowledge

[16, 17] may benefit image analysis. Therefore, the specific objectives of this thesis were:

1) simultaneous lung segmentation from conventional 1H and noble gas MRI by coupling the
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complementary structural and functional information from respective images (Chapter 2), 2)

conventional 1H MRI (in the absence of noble gas MRI) multi-region segmentation using the

known left-to-right lung volume proportion prior for regional quantification of lung structural

and functional abnormalities (Chapter 3), and, 3) deformable CT-3He MRI registration under

the guidance of complementary CT-1H MRI registration to generate lobar and segmental lung

structure-function measurements (Chapter 4).

5.2 Summary and Conclusions

In Chapter 2, a joint segmentation algorithm was developed to segment the lung from pul-

monary 1H MRI by incorporating the associated hyperpolarized 3He MRI information for the

purpose of understanding the regional nature of pulmonary structural-functional abnormalities.

The joint segmentation problem was formulated as a coupled continuous min-cut model and

the challenging combinatorial optimization problem was solved globally and exactly by means

of convex relaxation. A coupled continuous max-flow model that is dual to the convex relaxed

min-cut formulation was introduced by means of primal-dual variational analysis. The simpler

max-flow formulation gave rise to an efficient duality-augmented coupled continuous max-flow

algorithm that was implemented on a graphics processing unit for speed-up. For a clinical

dataset of 25 COPD patients ranging in disease severities, an overall DSC of 91.0±2.8%, RMSE

of 4.3±0.7 mm, |δVE | of 0.42±0.31 L and |δVP| of 8.8±6.3% as well as high agreement between

algorithm and expert manual lung volumes were achieved. Importantly, significant differences

in DSC, RMSE, MAXD, δVE, δVP, |δVE | and |δVP| between the co-segmentation and single 1H

MRI segmentation were observed (all p < 0.0001), suggesting the effectiveness and superi-

ority of incorporating image features from multi-modalities. In addition, two inexperienced

observers initialized the algorithm on multiple occasions and low CoV (< 1% for DSC and <

5% for RMSE) and high ICC (> 0.97 for both DSC and RMSE) were achieved, suggesting that

the algorithm is able to generate highly reproducible noble gas MRI structure-function mea-
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surements. Furthermore, the GPU-based implementation required ∼25 s with diminished user

interaction and this highlights the potential for efficient clinical workflow using this approach.

With the advancements in novel 1H MRI image processing and acquisition methods, i.e.,

FD MRI, UTE MRI, and multi-volume 1H MRI analysis, there is potential to provide regional

lung structure-function measurements in the absence of noble gas MRI. In Chapter 3, a gen-

eral segmentation algorithm was developed to extract the lung from 1H MRI for quantitative

measurements of pulmonary structural-functional abnormalities. The prior knowledge that

the right lung is approximately 1.15 times larger than the left lung was employed to assist

the segmentation. This prior information was incorporated into a Potts model and a volume

proportion-preserved Potts model was derived, which was approximated through convex re-

laxation and further represented by a dual volume proportion-preserved max-flow model. This

formulation led to a linear optimization problem with convex and linear equality constraints

that implicitly encoded the proportion prior. Two observers initialized the segmentation algo-

rithm by seeding each lung and background of five healthy and 15 asthma subjects five times on

five different days. DSC of 91±3% for the left lung, 92±2% for the right lung, and 91±2% for

the whole lung with RMSE of 4±1 mm for all three measurements as well as high agreement

between algorithm and manually-generated left, right and whole lung volumes were observed.

For the two observers, intra- and inter-CoV (ICC) were < 0.5% (> 0.91) for DSC and < 4.5%

(> 0.93) for RMSE for whole lung segmentation. In addition, improvements in lung segmen-

tation leakage compared to a two-region segmentation method, decrease in SD for DSC, and

greater improvements in left lung segmentation than the right lung using the proportion prior

was observed. This speaks to the advantages of the proposed volume proportion-preserved

multi-region 1H MRI segmentation approach. These findings indicate that the segmentation

algorithm may provide the necessary and sufficient accuracy, reproducibility and speed for

large-scale and multi-center clinical applications of pulmonary 1H MRI.

In Chapter 4, a deformable registration approach was developed to generate regional (lobar

and segmental) CT-noble gas MRI structure-function measurements. CT was jointly registered
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to pre-registered 1H and 3He MRI by enforcing the similarity of the displacement field from

the two individual registrations. A coarse-to-fine registration framework, variational analysis

methods were employed and a dual registration model was derived to solve the original opti-

mization problem under a primal-dual perspective. The dual optimization model gave rise to

a multiplier-augmented numerical solver that was parallelized on a graphics processing unit

for speed-up. CT-3He MRI registration accuracy was measured using TRE with repeatedly-

identified CT and 3He MRI fiducial markers, and the algorithm-generated 3He MRI whole

lung VDP was compared with a semi-automated reference method. For a diverse group of pa-

tients with COPD and asthma, a mean TRE of 4.4±2.0 mm was achieved with FLE of 0.16 mm

for 3He MRI and 0.34 mm for CT, respectively. Whole lung VDP generated using the pipeline

was strongly correlated (r = 0.93, p < 0.0001) with the reference method with no signifi-

cant differences (p = 0.37). The fully automated pipeline required 11±0.4 min for GPU-based

implementation and these findings suggest that the algorithm provides a way to incorporate

regional lung CT-3He MRI biomarkers into clinical research and patient care.

5.3 Limitations

5.3.1 General Limitations

This thesis focused on developing and evaluating pulmonary MRI and CT image processing

and analysis algorithms. While evaluation is important to determining the performance of

these algorithms and it is extremely difficult to obtain the ground truth, repeated lung segmen-

tation and fiducial identification provided by experienced observers were used as reference

standards. Although highly reproducible, these ground truth surrogates may not be perfect,

and the sources of the measured disagreement between algorithm results and the “ground truth”

cannot be ascertained. In addition, the segmentation algorithms in Chapters 2 and 3 were not

fully automated although diminished user interaction was involved. However, previous studies

[18, 19] have demonstrated the advantages of such user interactions, i.e., flexibility in refining
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and updating the results, and these diminished interactions may be clinically-acceptable and

consistent with clinical workflow efficiency. In addition, a fully-automated 1H MRI segmen-

tation algorithm has been recently developed, which will be discussed later. The automated

segmentation algorithm has been applied to a number of UTE MR images which are extremely

challenging to segment. Visual inspection demonstrated the promising potential of this ap-

proach for UTE MRI lung segmentation.

Another limitation is that in Chapters 2 and 3, the original images were interpolated prior to

segmentation for isotropic segmentation regularization in all the three directions. Alternatively,

it is possible to implement anisotropic or independent (regularize one direction more than the

others) regularization of the original images without interpolation.

The lung segmentation and registration algorithms presented here were evaluated using pul-

monary MRI (anatomical 1H, 3He/129Xe, free-breathing and UTE MRI) acquired at 3.0 Tesla.

Currently, both 1.5 Tesla and 3.0 Tesla MR systems are widely used clinically. A few studies

have investigated the influence of main magnetic field strength on lung images and biomarkers.

For example, a previous study [20] compared 3He MRI at 1.5 Tesla (48.6 MHz) and 3.0 Tesla

(97.3 MHz) using a similar single-channel, rigid, transmit/receive elliptical chest coils with

multi-slice 2D fast-spoiled gradient-recalled echo [FGRE], and reported no significant differ-

ences in imaging biomarker measurements. This suggests that the image segmentation and

registration algorithms developed here, can be translated to 1.5 Tesla systems. Previous studies

have shown that lung T2∗ is >2.0 ms at 1.5 Tesla [20] and 0.4–0.9 ms [21, 22] at 3.0 Tesla.

The typical echo-time (TE) is 0.01–0.1 ms for UTE [23, 24] and 1.0 ms for FGRE/balanced

steady-state free precession [bSSFP] [25] at 3.0 Tesla. UTE MRI overcomes the challenges

of very short T2∗ (0.01–0.1 ms < 0.4 ms). Therefore, it is expected that the 3.0 Tesla MR

systems provide improved image quality as compared to 1.5 Tesla because of greater thermal

polarization of protons (10 ppm vs 5 ppm). However, this does not mean that UTE MRI of

the lung is impossible at 1.5 Tesla [26], and further evaluation/verification is required to de-

termine the utility of the presented image processing algorithms for 1.5 Tesla systems. For
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conventional 1H MRI (FGRE and bSSFP sequences), T2∗ for lung tissue is larger than TE at

1.5 Tesla (2.0 ms > 1.0 ms) [20] and shorter at 3.0 Tesla (0.9 ms < 1.0 ms) [25]. Therefore, it

is expected that conventional 1H MRI (FGRE and bSSFP) lung signal intensities are greater at

1.5 Tesla than 3.0 Tesla [20]. Image distortion is another factor that influences the performance

of image processing algorithms. It is well recognized that the main magnetic field inhomo-

geneity causes image distortion but this is substantially less obvious at 1.5 Tesla. It should

also be noted that different MRI scanner manufacturers employ different shimming methods

to improve the main magnetic field inhomogeneity. For these reasons, while we do not expect

major challenges when translating the presented segmentation and registration algorithms to

1.5 Tesla pr different scanner systems, we need to be aware of potential issues.

Finally, it is worth noting that the developed segmentation and registration algorithms in

Chapters 2–4 were implemented through Linux command lines rather than a graphical user

interface (GUI), which is urgently required for widespread clinical applications of these algo-

rithms. With this regard, I am currently developing a GUI-based platform to integrate these

algorithms and to provide straightforward algorithm implementation and results visualization.

5.3.2 Specific Limitations

Chapter 2: 1H and 3He MRI were jointly segmented by enforcing the similarity of individual

image segmentation. However, the characteristic regions of signal voids in 3He MRI may ren-

der the “similarity” prior invalid (i.e., the individual segmentation may be different) although

the way of coupling 1H and 3He MRI information was optimized. To mitigate the “contradict-

ing” effects and facilitate 1H MRI segmentation, 3He MRI information may be incorporated as

an additional channel to 1H MRI but without imposing the “similarity” prior (u1 ≈ u2). For

example, fused 1H-3He MRI signal intensity {IH, IHe} information instead of {IH} may be used

to generate new data term and the regularization term will be dominated by 1H MRI edge infor-

mation. This formulation does not impose the similarity prior but may lead to further issues.

For example, model-fitting approaches are not suitable for separating high dimensional image
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features and are prone to local minima [27]. In addition, other features such as spatial proxim-

ity may be useful for segmentation. In this regard, new features in the form of {IH, IHe, X,Y,Z},

where X,Y and Z represent the spatial location of voxels, may be exploited. Previous studies

[28, 29] have shown that such complex image features are non-linearly separable but can be

well identified using kernel-based approaches. These approaches map the original features into

a higher-dimensional Hilbert space, leading to simple linear separation in the new space. This

feature formulation may lead to improved segmentation performance but the associated high-

order data terms are challenging to optimize directly. Bound optimization techniques [30] may

be employed to simplify the original challenging optimization problem by iteratively optimiz-

ing the upper-bound formulation until convergence, as previously demonstrated [31]. Another

limitation is that the accuracy or reproducibility of the clinically-relevant measurements, i.e.,

3He MRI VDP, was not evaluated, and this will be performed in the future. In addition, the

segmentation algorithm will be released to the pulmonary imaging research community.

Chapter 3: A general 1H MRI multi-region segmentation approach was developed to eval-

uate lung structure and function using advanced 1H MRI image processing and acquisition

methods in the absence of noble gas MRI. The relationship of the left and right lung volume

sizes was investigated to develop a left-to-right lung volume ratio (∼1/1.15) preserved multi-

region segmentation approach. The constant left-to-right lung volume ratio may limit the ap-

plication of this approach for patients with pathologies, i.e., congenital diaphragmatic hernia

and tumors. To generalize this approach, the left-to-right lung volume ratio may be constrained

to a range or following a learned distribution prior [32]. Similarly, the interactive segmentation

approach may be automated using the aforementioned iterative bound optimization techniques

[31]. In addition, the segmentation approach was not tested on 1H MR images acquired using

other methods, i.e., ultra-short echo-time (UTE) MRI, which demonstrate promising potential

for lung disease care. UTE MRI provides exquisite visualization of lung structures using short

echo-time pulse sequences to minimize the free-induction decay of MR signals and to improve

image signal intensities and the contrast in lung parenchyma. While this approach is ideally
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suited for studying lung disease especially for patients in whom radiation burden is a major

concern, it must be acknowledged that the required image processing, especially lung seg-

mentation, is extremely challenging. Moving forward, the proposed adaptive kernel K-means

approach that is capable of incorporating high-dimensional image features may help with the

challenging segmentation problem. Furthermore, with the rapid developments of 1H MRI ac-

quisition methods, there is the possibility to visualize lung lobes using 1H MRI techniques in

the future. Accordingly, there is a need to identify lung lobes and/or segments in 1H MRI for

lung disease management and the proposed volume ratio-preserved multi-region segmentation

approach might help.

Chapter 4: A deformable registration algorithm was developed to register CT to spatially-

aligned 1H and 3He MRI by enforcing the similarity of the displacement fields from the two

individual registrations. The joint registration approach enforced a uniform similarity of the

two individual displacement fields. The study subjects present different levels of 3He venti-

lation defects (∼15%) and this may confound the use of the uniform “similarity” prior. This

limitation may be mitigated by weighting the similarity of the displacement fields based on 3He

MRI signal intensities - more similar displacement fields in higher 3He MRI signal intensity

regions and vice versa. The deformable registration algorithm was not symmetric or diffeo-

morphic, but this may be implemented following the previous methods [33, 34] to mitigate

the biases of choosing fix/moving images. In addition, robust cross-modality image similarity

measurements including cross-correlation and mutual information may be incorporated into the

registration framework to improve the registration performance but this may lead to challeng-

ing optimization problems. Bound optimization techniques [35, 30] provide a way to simplify

high-order optimization problems and may be employed to optimize these similarity measure-

ments. Furthermore, the registration approach was not evaluated using 129Xe MRI, which is

more abundant in nature and relatively less expensive as compared to 3He, making it more

suitable for widespread clinical applications. Another limitation is that the obtained lobar or

segmental structure-function measurements were not quantitatively validated because of the
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lack of reference standard.

5.4 Future Directions

5.4.1 2D Free-Breathing 1H MRI Ventilation Measurements Pipeline

In Chapters 2 and 4, pulmonary MRI and CT segmentation and registration methods were de-

veloped to generate and quantify whole lung and regional ventilation maps with the use of

inhaled noble gas MRI. These noble gas MRI-derived imaging biomarkers provide promising

potential for a better understanding of lung disease mechanisms, monitoring disease progres-

sion and developing novel treatments. It is well also recognized that the recent developments

of MR image acquisition and processing techniques provide another way to regionally evaluate

lung disease using existing MR systems, making them ideally suitable for broad, large-scale,

serial and longitudinal evaluations of patients with lung disease including children.

For example, Fourier decomposition of free-breathing pulmonary magnetic resonance imag-

ing (FDMRI) provides a way to visualize and quantify pulmonary ventilation and perfusion

without the need for exogenous contrast [6]. FDMRI exploits fast acquisition and deformable

registration of a series of free-breathing conventional pulmonary 1H MR images. In the spa-

tially aligned images, MRI signal intensity oscillations over time can be decomposed using Fast

Fourier Transforms to generate functional ventilation and perfusion maps[36]. Although highly

promising, widespread clinical translation has been slow due to a number of reasons including

complex image processing components. For example, deformable registration of a whole lung

image series is challenging due to the large deformation associated with breathing. Previous

studies [37] have demonstrated that image registration can be improved by isolating the object

of interest to mitigate the influences from the background. In addition, quantitative evaluation

of the derived functional information fundamentally requires lung cavity segmentation. With

this regard, the objective was to develop a free-breathing 1H MRI lung series segmentation,

registration and FD ventilation quantification pipeline to facilitate broad research and clinical
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applications of FDMRI.

5.4.1.1 Free-Breathing 1H MRI Lung Series Multi-Region Segmentation

A coupled Potts model was proposed to simultaneously segment 1H MRI lung series I(x) =

{Ii(x), i ∈ 1 . . .N}, x ∈ Ω, into the left lung Rll, right lung Rrl and the background Rb by

employing the inherent similarity of the lung between adjacent slices. Let ξl(x), l ∈ L =

{ll, rl, b}, be the indicator function for the segmentation of region Rl with ξl(x) = 1 for x ∈ Rl

and 0 otherwise. Observers placed seeds in the left lung, right lung and background to generate

appearance models with prior knowledge of each region and to determine the cost ρl(x) [18]

for assigning a label ξl(x) to a pixel x, l ∈ L. The overall 1H MRI lung series segmentation

model was formulated as follows:

min
ξi

l∈{0,1}

N∑
i=1

{∑
l∈L

〈
ξi

l, ρ
i
l

〉
+

∫
Ω

g(x)
∣∣∣∇ξi

l

∣∣∣ dx
}

+ α ·

N−1∑
i=1

∑
l∈L

∫
Ω

∣∣∣ξi
l − ξ

i+1
l

∣∣∣ dx , (5.1)

where α > 0 balances the weight of the Potts energy [38] and the dissimilarity of adjacent

image segmentation, and g(x) was calculated based on image edges.

The segmentation model (5.1) is non-convex and the optimization problem is challenging

to solve directly. Here the original segmentation model was approximated by relaxing (5.1) to

the continuous domain, i.e., ξl(x) ∈ [0, 1], l ∈ L [38]. The convex-relaxed model was further

simplified by deriving an equivalent coupled continuous max-flow model as follows:

max
psi,ptil ,q

i
l,r

i
l

N∑
i=1

∫
Ω

pi
s(x) dx , (5.2)

subject to a series of linear equality and convex constraints following the variational analysis

similar to that in Chapter 2. The simplified coupled continuous max-flow model was formulated

in a Lagrangian form and an efficient coupled continuous max-flow algorithm was developed

to derive the globally optimal lung series segmentation ξi
l(x), l ∈ L, i ∈ {1 . . .N}.
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5.4.1.2 Free-Breathing 1H MRI Lung Series Registration

The segmented lung series were registered to a slice I0(x) at the end of inhalation phase us-

ing a three-level coarse-to-fine deformable registration framework to account for large de-

formation and to improve the computational efficiency. A pixel-wise modality-independent-

neighbourhood-descriptor (MIND) [34] was employed to measure the similarity between I0(x)

and Ii(x), i ∈ {1 . . .N}, and the total-variation of the estimated displacement field was used to

regularize the registration problem in the lth level as follows:

min
t(x)

∫
Ω

∣∣∣∣MINDl
0(x) − MINDl

i(x + T l−1 + tl)
∣∣∣∣dx + α

∑
d∈{X,Y}

∫
Ω

∣∣∣∇(T l−1
d + tl

d)(x)
∣∣∣ dx , (5.3)

where T l−1
d (x) is the displacement field from the (l−1)th level, tl

d(x) represents the displacement

field estimated from the current level l in direction d, and α balances the weight of the similarity

and regularization terms. Through optical flow estimation and variational analysis similar to

that in Chapter 4, the original registration problem (5.3) can be re-written in a much simpler

form by introducing two dual variables ω and q as follows:

max
|w,q|≤1,α

∫
Ω

(w · P0 +

2∑
d=1

T i−1
d · div qd)dx (5.4)

under the constraint: div qd − w · ∂dP = 0, where P0 and P were calculated as previously de-

scribed [39]. The displacement field tl
d of the current level was decomposed into a series of

incremental displacement field that acted as multipliers of the constraints. Therefore, a con-

vex optimization-based deformable registration algorithm was designed following the previous

analysis in Chapter 4. All the pair-wise lung registrations (5.3) were implemented in parallel

to further improve the computational efficiency of the workflow.

5.4.1.3 Fourier Decomposition Analysis

With the registered lung series aligned along the time axis, Fast Fourier transforms of MR

signal intensity oscillations for each pixel x and the concurrently acquired respiratory bellow
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data were performed. The frequency of the first ventilation harmonic, corresponding to the

respiratory rate, was determined. The magnitude of the MRI signal frequency spectrum at

the determined ventilation frequency was used to generate the FD ventilation measurements,

as previously described [36]. In the derived FD ventilation map, ventilation defects were de-

termined using a hierarchical K-means approach and quantified as ventilation defect percent

(VDP), as previously described [5].

5.4.1.4 A FDMRI Pipeline and Preliminary Results

These individual image processing components were integrated into a pipeline that was im-

plemented on a Linux Desktop (CentOS 6.7, 16 G RAM, Inter(R) i7-3770, 3.4 GHz) with

a NVIDIA graphics processing unit (GeForce, GTX TITAN BLACK, NVIDIA Crop., Santa

Clara, CA, USA). Free-breathing 1H MRI lung series algorithm segmentation was initialized

by a single observer (FG) by seeding the left lung, right lung and the background on a single 1H

MRI slice. Algorithm lung segmentation accuracy was evaluated by comparing algorithm lung

masks with expert manual outcomes (FG with 4 years experience) for one breathing cycle (∼30

slices) using Dice-similarity-coefficient (DSC). The derived FD ventilation information was

quantified by clustering the FD ventilation maps into five clusters using a hierarchical k-means

segmentation method [5], where the first cluster represents FD ventilation defects. FD VDP

was determined by normalizing the ventilation defect volume to the thoracic cavity volume

and compared with 3He VDP using Pearson correlation coefficient (r) and Bland-Altman anal-

ysis with GraphPad Prism version 7.00 (GraphPad Software Inc., San Diego, CA, USA). The

reproducibility of the pipeline was measured using coefficient-of-variation (CoV) and intra-

class correlation coefficient (ICC) for DSC and FD VDP with Statistical Package for the Social

Sciences (SPSS) v24.0 (SPSS Inc., Chicago, IL, USA).

The performance of the FDMRI pipeline was evaluated on a clinical dataset of 10 COPD

patients. Figure 5.1 shows the derived FD and 3He ventilation images of a COPD patient and

Fig. 5.2 illustrates the relationships between FD and 3He VDP for the patient dataset. The
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Figure 5.1: FD (left) and hyperpolarized 3He MRI (right) ventilation maps for a COPD patient.
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Figure 5.2: Algorithm lung segmentation accuracy and FD-VDP measurements for the 10 sub-
jects. A) Comparison of algorithm lung segmentation and manual lung delineation using DSC.
B) Pearson correlation of algorithm FD-VDP and 3He MRI VDP. C) Bland-Altman analysis
of agreement for FD-VDP and 3He-VDP, where solid lines indicate the mean difference and
dotted lines represent the upper and lower limits.

pipeline yielded a whole lung DSC of 95.7±1.7% for 1H MRI lung series segmentation, with a

minimum and maximum of 91.2% and 97.5%, respectively. FD VDP was strongly correlated

with 3He VDP (r = 0.81, p = 0.004) with a systematic bias of -7.0±6.6%. CoV (ICC) were

0.4% (0.98) and 4.1% (0.98) for whole lung DSC and FD VDP, respectively. For each patient,

the pipeline required ∼45 min to generate FD VDP, including ∼20 s for user seeding, ∼2 min

for lung series segmentation, ∼40 min for lung series registration and ∼2 min for FD analysis.
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These preliminary results demonstrated that the pipeline yielded lung series segmentation,

registration and ventilation measurements with high computational efficiency and reproducibil-

ity consistent with clinical workflows. This suggests the utility of this approach for large-scale,

multi-centre and longitudinal research and clinical applications of free-breathing 1H MRI for

obstructive lung disease.

5.4.2 Fast and High Resolution MRI Acquisition and Reconstruction

MRI provides excellent soft-tissue contrast and is ideally suited for serial and longitudinal

evaluation of lung disease, especially for pediatric patients and young adults because it does

not require ionizing radiation. However, compared with other imaging methods such as CT,

a major limitation of MRI is the relatively low image acquisition speed due to physical and

physiological constraints [40, 41], leading to restricted clinical utility of pulmonary MRI. For

example, many lung MR images are acquired during breath-hold conditions, which might be

difficult for patients with lung disease because of physiological conditions [42]. Previous work

has proposed to improve MRI acquisition speed by undersampling k-space data, but this gener-

ally results in decreased image quality, i.e., aliasing, motion artifacts and low image resolution

[42, 43]. As a result, a number of important pulmonary MRI applications have been restricted

unless rapid MRI acquisition can be performed.

For example, free-breathing pulmonary 1H MRI provides a way for visualization and quan-

tification of pulmonary ventilation and perfusion without the need for exogenous contrast

agents [6]. Unfortunately, free-breathing pulmonary MRI is currently limited to provide only

2D structural-functional information because of low image acquisition speed [44] while it has

been well recognized that COPD and asthma are spatially heterogeneous disease [2, 4]. There-

fore, there is an urgent need to develop 3D free-breathing MRI techniques to evaluate the

whole lung. This fundamentally requires rapid acquisition of dynamic free-breathing 1H MRI

volumes, as well as extension of current 2D free-breathing pulmonary 1H MRI image process-

ing methods to 3D. Recently, pulmonary 1H MRI using ultra-short echo-time (UTE) sequences
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has been developed as contrast agent-free alternatives to provide enhanced visualization of lung

structure-function using conventional MR systems [23, 24, 9]. UTE MRI employs ultra-short

echo-time pulse sequences to minimize signal decay and maximize the visibility of pulmonary

parenchyma, airways and vessels [45, 46]. This technique is ideally suited for serial and longi-

tudinal evaluation of pediatric patients and young adults as it does not require ionizing radiation

or exogenous contrast and provides lung images with quality that is comparable to thoracic CT

[9]. Although highly promising, a major limitation associated with UTE MRI is the low im-

age acquisition speed and poor spatial/temporal image resolution due to over-sampling of the

centre of k-space [24].

Paralleling imaging [47, 48] has been developed to reduce MRI scan time, improve im-

age quality and increase spatial/temporal resolution. This technique employs multiple receiver

coils to acquire k-space data of the object at a reduced sampling rate. The sensitivity profiles of

these receiver coils are measured and used to eliminate aliasing artifacts and to reconstruct the

image with full field-of-view. A decade ago, compressive sensing (CS) [49, 50] was first devel-

oped in the area of Information Theory and Approximation Theory to reconstruct and recover

signals with good accuracy by measuring far fewer signals. CS exploits the compressibility

of signals and preforms signal reconstruction using undersampled data, i.e., below the Nyquist

sampling rate, without significant loss of information. This technique quickly became popular

and has been applied to medical imaging including MRI [40] to reduce scan time and CT [51]

to reduce the dose. CS is based on three major requirements [40, 41]: 1) sparse representation

of the underlying images in some domain, 2) incoherent measurements achieved through irreg-

ular sampling such as random sampling, and 3) sparsity-constrained non-linear reconstruction.

Since MRI signals give the k-space representation of the object which are implicitly sparse and

the k-space undersampling results in incoherent artifacts, it is possible to develop some non-

linear reconstruction methods to generate the underlying images by enforcing both the sparsity

of k-space measurements and the consistency with the acquired data.

The CS-based image reconstruction problem will be formulated as a two-compartment
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model [40]. The first part will minimize the absolute differences (L1 norm) between under-

sampled k-space data and the data that corresponds to CS-reconstructed images. The second

part will constrain the reconstruction problem by minimizing the total variation (TV) of image

intensities. In Chapters 2–4, primal-dual analysis basis methods and convex optimization tech-

niques have been developed to optimize TV-L1 energy function. These components provide

the foundation to develop and implement CS (potentially combining paralleling imaging meth-

ods [41]) for fast and high resolution pulmonary MRI acquisition and reconstruction. These

fast image acquisition and reconstruction techniques, once implemented, may facilitate more

widespread research and clinical applications of pulmonary MRI including noble gas, 2D/3D

free-breathing and UTE MRI for lung disease management.

5.4.3 UTE MRI Lung Structure-Function Measurements

Conventional 1H MRI of the lung is more challenging than most other organs due to a number

of limitations including low proton density, magnetic susceptibility, and motion artifacts [52,

45]. As a result, the lung appears as a black hole and provides little morphological information

when conventional MRI pulse sequences are used. In addition, the image quality is generally

poor due to motion and partial volume effects. Therefore, clinical applications of conventional

pulmonary 1H MRI have been limited although the potential has been realized [53].

Recently, ultra-short echo-time (UTE) MRI has been developed to provide enhanced visu-

alization of the lung anatomy using conventional MRI systems. UTE MRI employs short echo-

time pulse sequences to minimize signal decay and maximize the visibility of lung parenchyma

[45], leading to higher tissue contrast and greater signal intensity inhomogeneity. Previous

studies [23, 54, 24] have demonstrated the potential of UTE MRI biomarkers to phenotype

lung structural-functional abnormalities and perhaps facilitate the development of novel lung

disease treatments. To generate these imaging biomarkers and enable widespread clinical appli-

cations of UTE MRI, accurate, reproducible and rapid lung segmentation methods are required.

However, UTE MRI lung segmentation is particularly challenging because of MRI signal in-
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tensity inhomogeneity, magnetic susceptibility, motion artifacts [52, 45], dramatic change of

lung shapes and protruding structure. Previous studies have shown that optimal pulmonary

MRI segmentation cannot be achieved using gray level information exclusively [55] and high-

dimensional image features may assist complex image segmentation [56]. Motivated by the

previous work [56], image signal intensity I(x), x ∈ Ω, and voxel spatial location information

{X(x),Y(x),Z(x)} were combined to generate high-dimensional features {I(x), X(x),Y(x),Z(x)}

for improved segmentation. An adaptive kernel-based K-means clustering approach as opposed

to the commonly-used log-likelihood formulation was employed to construct the data term for

a continuous max-flow segmentation model [57].

To test the segmentation approach, a dataset of UTE lung images were acquired in 10

asthma patients who provided written informed consent to a study protocol approved by Health

Canada (Appendix H) and the demographic characteristics are provided in Table 5.1. UTE MRI

was performed at 3.0 Tesla (Discovery MR750 system, General Electric Health Care [GEHC],

Milwaukee, WI, USA) using an eight-channel transmit body coil (127 MHz, maximum ex-

citation power 8.0 kW delivered by a narrow-band RF power amplifier (GEHC, Milwaukee,

WI, USA)), a 32-channel torso receive coil (GEHC, Milwaukee, WI, USA) and a proprietary

research 3D cones UTE sequence [24]. Coronal image acquisition was performed during in-

spiration breath-hold of 1.0 L medical grade nitrogen from functional residual capacity (15 s

acquisition time; repetition time/echo time/flip angle = 3.5 ms/0.03 ms/5◦; field-of-view = 40

cm×40 cm; bandwidth = 125 kHz; matrix = 200 (phase encoding) × 200 (frequency encoding);

18 slices and 10 mm slice thickness), as previously described [24]. Auto shimming was used

for UTE MRI acquisitions (chest region) for the centre slice. The maximum magnetic field gra-

dient strength was 5 G/cm for x,y and z gradients and image distortion compensation was en-

abled by default. Prior to algorithm implementation, the original UTE images were resampled

to ∼2 mm isotropic voxel size, and one observer seeded the lung and background on a single

slice three times on three different days. Algorithm segmentation accuracy was evaluated by

comparing algorithm lung masks with manual outputs generated by an experienced observer.
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Dice-similarity-coefficient (DSC), root-mean-squared-error (RMSE) of the distances between

two lung surfaces, and absolute percent volume error (|δVP|) were employed as region-, surface

distance- and volume-based similarity measurements for algorithm and manual results. Al-

gorithm segmentation reproducibility was evaluated by calculating the coefficient-of-variation

(CoV) and intra-class correlation coefficient (ICC) for DSC and RMSE. The computational

efficiency of this approach was measured using runtime.

Table 5.1: Subject demographics and pulmonary function measurements. (n=10)
Mean(SD) Asthma (n=10)
Age yrs 46(9)
Male n 5
FEV1%pred 67(19)
FVC%pred 96(12)
FEV1/FVC 57(15)
RV%pred 140(31)
TLC%pred 107(9)
RV/TLC%pred 39(8)

FEV1: Forced expiratory volume in one second, FVC: Func-
tional vital capacity, RV: Residual volume, TLC: Total lung
capacity, %pred: Percent predicted.

Representative UTE MRI lung and voxel labeling probability maps are shown in Fig. 5.3.

For ten asthma patients, the segmentation approach yielded a DSC of 92.8±2.5%, RMSE of

2.9±0.6 mm and |δVP| of 7.2±3.6%. CoV(ICC) were 0.4%(0.98) and 1.6%(0.97) for DSC and

RMSE, respectively. The mean runtime for my approach was ∼8 min using a GPU including

∼5 s for user seeding.

High reproducibility is required for studies involving large datasets and multiple research

investigations such that reliable measurements can be obtained from multiple observers in-

dependent of the level of experience. Although high reproducibility and flexibility with lim-

ited user interactions were achieved, fully automated segmentation may further benefit clinical

translations of UTE MRI by enabling efficient and high throughput clinical workflows. It has

been observed that the variability of the user seeding procedure did not markedly influence

the segmentation and this might be in part due to the iterative implementation of the algo-
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A CB

Figure 5.3: Representative UTE MRI lung and voxel labelling probability maps using the adap-
tive kernel K-mean approach. A) UTE MRI lung signal intensity inhomogeneity and example
user seeds (red). B) K-nearest neighbour (cyan) of the user seeds (red) using signal intensity
only. C) K-nearest neighbour (cyan) of the user seeds (red) by combining signal intensity and
voxel spatial location information. The density of cyan dots relates to the probability of as-
signing a “lung” label to the voxels. Yellow contours represent manual segmentation and the
arrows indicate improvements by incorporating voxel spatial location information (same user
seeds used for B) and C)).

rithm that refines the segmentation with previous solutions. Based on this observation, the

segmentation algorithm was fully automated using a single atlas image. The atlas image was

registered to each individual image and the atlas lung mask was transformed to initialize the

iterative segmentation algorithm, as shown in Fig. 5.4. The automated segmentation approach

was applied to three asthma subjects with remarkably distinct lung sizes and the preliminary

results, as shown in Fig. 5.5, demonstrated promising potential of this approach to address the

challenging UTE MRI lung segmentation problem.

In summary, the proposed approach avoids over-fitting of the appearance models generated

from user-seeds and algorithm segmentation. The incorporation of spatial location informa-

tion further improved algorithm segmentation by favoring compact segmentation regions. As

a result, the proposed approach required less user seeding and outperformed current methods

which use only fixed signal intensity models to describe the object of interest. This new ap-

proach involves minimal user interaction, and generates highly reproducible lung segmentation

with high computational efficiency consistent with clinical workflows. All of this is consistent

with the need for widespread pulmonary UTE MRI in clinical applications.
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Figure 5.4: Automated UTE MRI lung segmentation workflow and example results for three
asthma patients. An atlas image is registered to each individual volume and the pre-segmented
lung mask is deformed to initialize the segmentation algorithm. Dash contours represent de-
formed atlas lung masks and solid contours indicate automated algorithm segmentation results.

5.4.4 Pulmonary Imaging Platform: A GUI-Oriented Pulmonary MRI

and CT Image Processing Platform

A number of pulmonary image processing algorithms presented in Chapters 2–4 have been

developed and evaluated. The majority of these algorithms were integrated into simple im-

age processing pipelines and implemented through Linux command lines. While easy-to-use,

computationally efficient and likely clinically-acceptable, the clinical utility of these algorithms

may be further enhanced when a GUI-based implementation platform is provided. For exam-
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Figure 5.5: Preliminary automated UTE MRI lung segmentation results. Anterior-to-posterior
slices and 3D-rendered lung volumes are shown from upper left to lower right.

ple, a GUI can be used to integrate the image processing components, hide these complex

algorithms from end users as “black boxes”, and provide intuitive interaction with images

and straightforward visualization of the results. In recognition of this, it is necessary and ur-

gent to “pack” these image processing and analysis algorithms into a GUI-based platform for

widespread research and clinical applications of the pulmonary imaging methods and imaging

biomarkers. I am in the process of developing a GUI-oriented Pulmonary Imaging Platform

(PIP) with Microsoft Visual Studio and the .net framework to integrate these individual algo-

rithms and a prototyped GUI is shown in Fig. 5.6.

PIP will have the following features:

• Simple user interactions for image seeding using a brush tool to initialize and/or refine

the segmentation;
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Figure 5.6: Graphical user interface of Pulmonary Imaging Platform.

• Noble gas and 1H MRI co-segmentation to generate regional and whole lung structural-

functional information, i.e., whole lung VDP;

• 1H MRI segmentation to provide lung structure-function measurements;

• CT and functional MRI registration for regional lung structure-function measurements,

i.e., lobar/segmental VDP and potential treatment decisions;

• 2D and/or 3D free-breathing 1H MRI segmentation, registration and functional informa-

tion quantification, i.e., FD VDP and specific ventilation;

• Interactive and/or fully automated UTE MRI segmentation and multi-volume UTE MRI

analysis, i.e., whole lung and/or regional static and/or dynamic signal intensity maps,

high/low signal intensity percentage;

• Multi-volume CT-CT, MRI-MRI and CT-MRI parametric response map analyses;
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• 2D and/or 3D visualization of the segmentation, registration and quantification results in

different views.

These individual components were developed and evaluated in Chapters 2–4. The core algo-

rithms for each component were implemented using C/C++/CUDA that are compatible with

PIP. The next step is to integrate these algorithms into the PIP-GUI and release a robust ver-

sion of the software sytem to the pulmonary imaging research community.

5.5 Significance and Impact

COPD and asthma represent a staggering burden on patients, economies and health-care sys-

tems worldwide. Despite decades of research, therapeutic breakthroughs that can modify dis-

ease progression and patient outcomes have not occurred. This is likely due to their high

dependence on spirometry airflow measurements made at the mouth. These measurements,

although important, have significant limitations and this has motivated us to develop tools to

better understand pulmonary disease pathophysiology, design and develop novel treatments

with the hope to improve patient care. Pulmonary imaging including pulmonary MRI and CT

provides the potential to develop regional and quantitative imaging biomarkers of obstructive

lung disease and advance the scope of pulmonary disease research. To facilitate broad clinical

applications of these imaging methods, it is urgent to develop image analysis tools that can pro-

vide clinically-acceptable and physiologically-relevant intermediate endpoints for pulmonary

disease management while compatible with efficient clinical workflow.

In this thesis, optimized pulmonary MRI and CT segmentation, registration and quantifi-

cation algorithms have been developed to provide a number of imaging biomarkers for lung

disease care that require intensive and extensive human expertise. High-level prior knowledge

in combination with modern optimization techniques were exploited and rapid implementation

of these algorithms were provided. These image analysis algorithms demonstrated excellent

agreement with reference standards, high computational efficiency and reproducibility with di-
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minished and/or without user interactions across a range of respiratory conditions. In addition,

the GUI-oriented implementation of these algorithms highlights the capability of clinical trans-

lation of these tools. Armed with these powerful computational tools, there is enormous po-

tential to generate sensitive and regional imaging biomarkers, understand disease mechanisms

(perhaps the etiology of noble gas ventilation defects), identify disease phenotypes, monitor

disease treatment response and perhaps inform therapies in large-scale and multi-center re-

search and clinical investigations of lung disease. Taken together, this work not only fosters

the developments of computational image processing theories but also facilitates widespread

research and clinical applications of pulmonary imaging methods for lung disease management

and advances the scope of pulmonary medicine research.
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Appendix A

Discrete and Continuous

Min-Cut/Max-Flow

Energy minimization has been successfully established and used in the area of modern image

segmentation [1, 2]. For an image domain Ω, extracting a single foreground s, (i.e., with

a value 1), from the background Ω\s, (i.e., with a value 0), results in solving the following

min-cut problem:

min
s

∫
Ω\s

Ds(x) dx +

∫
s
Dt(x) dx + α |∂s| , (A.1)

which aims to minimize the total region cost (determined by the foreground cost Dt(x) and

background cost Ds(x)) and the total area |∂s| of the segment s weighted by α.

Previous studies have shown that the min-cut formulation (A.1) can be globally optimized

in discrete domain through combinatorial optimization [1, 3] and in continuous domain [2, 4, 5]

via convex optimization. Here, we briefly revisit the two categories of algorithms.
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Figure A.1: Max-flow/min-cut graph in A) discrete and B) continuous domain.

Discrete Min-cut/Max-flow

In discrete domain, segmentation of an image can be achieved by minimizing the following

energy function [1, 3]:

E( f ) =
∑
p∈P

Dp(lp) +
∑

(p,q)∈N

Vp,q(lp, lq) , (A.2)

where Dp(lp) measures the cost for assigning a label lp to pixel p, and Vp,q(lp, lq) measures

the cost for assigning labels lp and lq to two neighboring pixels (p, q) ∈ N. Such energy

minimization problem can be solved using graph-based methods.

Let G = 〈V, E〉 be a graph consisting a vertex set V and an edge set E that connects the

vertices, as shown in Fig. A.1 (A). The vertex set V consists of normal nodes such as image

pixels and two additional terminals, the source s and the sink t, which correspond to the labels

that can be assigned to pixels. The edge set E consists of two types of edges in the graph:

spatial edge en that connects neighboring pixels, terminal edges es and et that link pixels to
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the terminals s and t, respectively. The spatial edges en penalizes the discontinuity between

neighboring pixels and the terminal edges es and et correspond to the cost for assigning labels

lp and lq to pixels p and q. A min-cut divides the vertex set V into two disjoint sets Vs and Vt

such that s ∈ Vs and t ∈ Vt and the achieved cost for all the edges from Vs to Vt is the smallest.

Let C(en), Cs(v) and Ct(v) be the non-negative cost of edges en, es, and et, respectively.

Considering each edge e as a pipe, the respective cost can be regarded as the capacity or “max-

imum amount of water”. It has been proved that the min-cut can be equivalent achieved by

maximizing the flow streaming from s to t [6], i.e.,

max
ps

∑
v∈V\{s,t}

ps(v) , (A.3)

where the spatial flow p(en), the source flow ps(v) that connects s to a node v and the sink flow

pt(v) that connects a node v to t suffice:

• Flow capacity constraints:

|p(en)| ≤ C(en) ; (A.4)

0 ≤ ps(v) ≤ Cs(v) ; (A.5)

0 ≤ pt(v) ≤ Ct(v). (A.6)

• Flow conservation constraints:

∑
en∈Nv

p(en) − ps(v) + pt(v) = 0 . (A.7)

Continuous Min-cut/Max-flow

Recently, [7] employed binary-valued labeling function u(x) ∈ {0, 1} to study the min-cut prob-

lem (A.1) in spatially continuous settings and formulated the segmentation problem as a contin-

uous min-cut model. In addition, they proposed to solve the challenging non-convex continuous
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min-cut problem by means of convex relaxation, where u(x) ∈ {0, 1} was relaxed to the convex

domain u(x) ∈ [0, 1], and proved that:

Proposition 3 Thresholding the optimum u∗(x) ∈ [0, 1] of the convex relaxed continuous min-

cut model by any parameter α ∈ (0, 1] gives the binary function

uα(x) =


1 , u∗(x) ≥ α

0 , u∗(x) < α
, (A.8)

which solves the original continuous min-cut problem globally and exactly.

Compared with the original challenging combinatorial optimization problem, the convex

relaxed continuous min-cut model gives rise to a convex optimization problem, which is much

simpler in theory and numerical implementation. Furthermore, in analogy with the discrete

max-flow model Fig. A.1 (A), [7] proposed a generalized max-flow model in spatially contin-

uous settings, as shown in Fig. A.1 (B),

max
ps,pt ,q

∫
Ω

ps(x) dx (A.9)

to maximize the total flow streaming from the source to the sink, subject to a series of flow

capacity and flow conservation constraints (see [7] for more details).

Through variational analysis, they proved that the continuous max-flow model (A.9), under

the condition of simple convex constraints and linear equality constraints, is equivalent to the

convex relaxed continuous min-cut problem as well as the original continuous min-cut problem.

Based on the modern augmented Lagrangian theories, [7] developed an efficient continuous

max-flow based algorithm that employs simple flow-maximization steps and achieved efficient

convergence. Compared with the discrete min-cut/max-flow algorithms, the continuous max-

flow/min-cut algorithm provides sub-pixel accuracy and can be easily parallelized on modern

commercially available graphics hardware to achieve high computational efficiency.
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Appendix B

Duality of the Volume

Proportion-Preserved Max-Flow Model

and Convex Relaxed Potts Model

Proof We can rewrite the flow conservation constraints (3.9), (3.10) and (3.11) as follows:

Gb(x) :=
(

div qb − ps + pb
t + pb

w
)
(x) = 0 ; (B.1)

Gll(x) :=
(

div qll − ps + pll
t + pll

w
)
(x) = 0 ; (B.2)

Grl(x) :=
(

div qrl − ps + prl
t + prl

w
)
(x) = 0 . (B.3)

By introducing the multiplier function ξi(x), i ∈ L, to the linear equality constraints (B.1) -

(B.3), the continuous max-flow model (3.7) can be equivalently expressed as the primal-dual

model as follows:

max
ps,pt ,q,r

min
ξ

∫
Ω

ps dx +
∑
i∈L

〈ξi,Gi〉 , (B.4)
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subject to the flow capacity constraints (3.8). Obviously, we have

(3.7) ⇐⇒ (B.4) .

Following [1], the energy function (B.4) is linear in both the multiplier ξi, i ∈ L, and flow

variables (ps, pt, q, r) and the min/max operators are inter-changeable.

Through simple re-organizing of (B.4), we have:

max
ps,pt ,q,r

min
ξ

〈
1 −

∑
i∈L

ξi, ps

〉
+

∑
i∈L

〈
ξi, pi

t

〉
+

∑
i∈L

〈
ξi, div qi

〉
+ r

( ∫
Ω

ξll − γ

∫
Ω

ξrl
)
. (B.5)

Similar to the analysis [2], maximization over the free source flow ps results in
∑

i∈L ξi(x) =

1, ∀x ∈ Ω , since ps is unconstrained. Maximization of the sink flow pi
t, i ∈ L, in (B.5) over

sink flow constraints (3.8), leads to

max
pi

t(x)≤ ρi(x)

∑
i∈L

〈
ξi, pi

t

〉
=

∑
i∈L

〈ξi, ρi〉 (B.6)

Following the analysis [3], maximization of the spatial flow qi, i ∈ L, in (B.5) over the spatial

flow restrictions in (3.8) gives rise to

max
|qi(x)|≤ g(x)

∑
i∈L

〈
ξi, div qi

〉
=

∑
i∈L

∫
Ω

g(x) |∇ξi| dx. (B.7)

In addition, with the help of conjugate representation of absolute function, we can equally

rewrite the last term in (3.6) as

α
∣∣∣ ∫

Ω

ξll − γ

∫
Ω

ξrl

∣∣∣∣ = max
|w|≤1

αw
( ∫

Ω

ξll − γ

∫
Ω

ξrl
)

= max
|r|≤α

r
( ∫

Ω

ξll − γ

∫
Ω

ξrl
)
. (B.8)

We refer the readers to [2] for more details for these variational analysis.
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With the help of the analysis (15) and (16), we can conclude the equivalence of the volume

proportion preserved max-flow model (7) and the convex relaxed volume proportion preserved

min-cut model (6).
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Appendix C

A Volume Proportion-Preserved

Continuous Max-Flow Algorithm

We explored the augmented Lagrangian function in an iterative manner:

max
ps,pt ,q,r

min
ξ

∫
Ω

ps dx +
∑
i∈L

〈ξi,Gi〉 −
c
2

∑
i∈L

‖Gi(x)‖2 , (C.1)

subject to the flow capacity constraints (3.8) with scale c > 0. The optimization problem (C.1)

can be split into smaller sub-problems that involve optimization of independent flow variables

and labeling function simultaneously. For example, at each k-th iteration:

• Optimize (C.1) over the spatial flows qi(x), i ∈ L, s.t. (3.8) with the initial/updated

variables (ξ; ps, pt, r)k, which gives rise to

(qi)k+1 := arg max
|qi(x)|≤g(x)

−
c
2

∥∥∥div qi − Fk
i

∥∥∥2
,

where Fk
i = (ps)k − (pi

t)
k − (pi

w)k + (ξi)k/c. This can be solved by the projected gradient

algorithm [1]:

Proj|qi(x)|≤g(x)((qi)k + τ∇(div(qi)k − Fk
i )) , (C.2)
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where τ > 0 is the step-size for convergence.

• Optimize (C.1) over the sink flows pi
t(x), i ∈ L, s.t. (3.8) with the initial/updated variables

(ξ; ps, q, r)k, which amounts to

(pi
t)

k+1 := arg max
pi

t(x)≤ρi(x)
−

c
2

∥∥∥pi
t + T k

i

∥∥∥2
,

where T k
i = div(qi)k+1 − (ps)k + (pi

w)k − (ξi)k/c. This can be solved exactly by:

(pi
t)

k+1 = min(ρi,−T k
i ) . (C.3)

• Optimize (C.1) over the free source flow ps(x) with the initial/updated variables (ξ; pt, q, r)k,

which results in

(ps)k+1 := arg max
ps(x)

∫
Ω

ps dx −
c
2

∑
i∈L

∥∥∥ps − Jk
i

∥∥∥2
,

where Jk
i = div(qi)k+1 + (pi

t)
k+1 + (pi

w)k − (ξi)k/c, i ∈ L. This can be explicitly solved by:

(ps)k+1 =

∑
i∈L Jk

i + 1/c
3

. (C.4)

• Optimize (C.1) over r ∈ [−α, α], with the initial/updated variables (u; ps, pt, q)k, which

leads to

(r)k+1 := arg max
|r|≤α

−
c
2

∥∥∥r + Hk
1

∥∥∥2
−

c
2

∥∥∥γr − Hk
2

∥∥∥2
,

where Hk
1 = div(qll)k+1 − (ps)k+1 + (pll

t )k+1 − (ξll)k/c and Hk
2 = div(qrl)k+1 − (ps)k+1 +

(prl
t )k+1 − (ξrl)k/c. This can be computed by:

(r)k+1 =
−

∫
Ω

Hk
1 + γ

∫
Ω

Hk
2

(1 + γ2)
, (C.5)
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which is then used to update pi
w, i ∈ L, following (3.9), (3.10) and (3.11).

• Update the characteristic function ξi(x), i ∈ L, by

(ξi)k+1 = (ξi)k − c · (Gi)k+1(x) , (C.6)

where (Gi)k+1 is the flow residue in the current iteration.

• Update k = k + 1 and repeat the above steps until convergence.

The final optimum integer characteristic function ξ∗i (x) can be obtained by finding the max-

imum value of ξi(x), i ∈ L, across the 4th dimension.
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Appendix D

Proof of Proposition 2

Proof Given function f (x), its absolute function | f (x)| can be equally rewritten in its conjugate

form, i.e., | f (x)| = max|g(x)|≤1 g(x) · f (x). As such, we can rewrite the 1st and 3rd terms in (4.10)

as

ω1 ·

∫ ∣∣∣∣S 0
1 + ∇S 1 · ~ξ1

∣∣∣∣ dx + ω2 ·

∫ ∣∣∣∣S 0
2 + ∇S 2 · ~ξ2

∣∣∣∣ dx =

max
|ε1,2|

∫
ε1 · (S 0

1 + ∇S 1 · ~ξ1) dx +

∫
ε2 · (S 0

2 + ∇S 2 · ~ξ2) dx , (D.1)

where |εi| ≤ ωi, ~ξi = [ξx
i , ξ

y
i , ξ

z
i ]

T , i ∈ {1, 2}. Similarly, the 2nd term can be reformulated as:

ω1α1 ·
∑
j∈D

∫ ∣∣∣∇((φ j
1)l + ξ

j
1)
∣∣∣ dx = max∣∣∣∣η j

1

∣∣∣∣
∑
j∈D

∫
η

j
1 · ∇((φ j

1)l + ξ
j
1) dx

= max∣∣∣∣η j
1

∣∣∣∣
∑
j∈D

∫
div η j

1 · ((φ
j
1)l + ξ

j
1) dx ,

∣∣∣η j
1

∣∣∣ ≤ ω1α1 , (D.2)

and the 4th term can be expressed in a similar manner:

ω2α2 ·
∑
j∈D

∫ ∣∣∣∇((φ j
2)l + ξ

j
2)
∣∣∣ dx = max∣∣∣∣η j

2

∣∣∣∣
∑
j∈D

∫
η

j
2 · ∇((φ j

2)l + ξ
j
2) dx

= max∣∣∣∣η j
2

∣∣∣∣
∑
j∈D

∫
div η j

2 · ((φ
j
2)l + ξ

j
2) dx ,

∣∣∣η j
2

∣∣∣ ≤ ω2α2 . (D.3)
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In addition, the 5th term can be represented by:

β ·
∑
j∈D

∫ ∣∣∣((φ j
1)l + ξ

j
1) − ((φ j

2)l + ξ
j
2)
∣∣∣ dx =

max
|r|

∑
j∈D

∫
r j · ((φ j

1)l + ξ
j
1 − (φ j

2)l − ξ
j
2) dx , (D.4)

where
∣∣∣r j

∣∣∣ ≤ β.

By combining (D.1), (D.2), (D.3) and (D.4), we can see that (4.10) can be written as:

min
ξ

j
i

max
εi,η

j
i ,r

j

∫
ε1 · (S 0

1 + ∇S 1 · ~ξ1) dx +

∫
ε2 · (S 0

2 + ∇S 2 · ~ξ2) dx +

∑
j∈D

∫
div η j

1((φ j
1)l + ξ

j
1) dx +

∑
j∈D

∫
div η j

2((φ j
2)l + ξ

j
2) dx +

∑
j∈D

∫
r j · ((φ j

1)l + ξ
j
1 − (φ j

2)l − ξ
j
2) dx , (D.5)

where |εi| ≤ ωi,
∣∣∣η j

i

∣∣∣ ≤ ωi · α1,2 and
∣∣∣r j

∣∣∣ ≤ β, i ∈ {1, 2}. Through simple re-organizing, we

observe that (D.5) leads to:

min
ξ

j
i

max
εi,η

j
i ,r

j

∫
(ε1 · S 0

1 +
∑
j∈D

∇(φ j
1)l · η

j
1 +

∑
j∈D

r j · (φ j
1)l) dx +∫

(ε2 · S 0
2 +

∑
j∈D

∇(φ j
2)l · η

j
2 −

∑
j∈D

r j · (φ j
2)l) dx +

∑
j∈D

∫
ξ

j
1 · (ε1 · ∂

jS 1 + div η j
1 + r j) dx +

∑
j∈D

∫
ξ

j
2 · (ε2 · ∂

jS 2 + div η j
2 − r j) dx . (D.6)

Clearly, variational analysis of the free variables ξ j
i , i ∈ {1, 2}, j ∈ D, shows that (D.6) actually

leads to the linear equality constraints (4.12) and (4.13) and the maximization problem (4.11).

Therefore, Proposition 2 is proved.
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Appendix E

An Efficient Numerical Solver

The augmented Lagrangian function (4.15) that involves three dual variables ε, η and r can be

optimized by splitting the overall problem into a series of sub-problems, each of which opti-

mizes one variable while keeping the others fixed and the process is iterated until convergence.

The k-th iteration involves the following steps:

• Let k = 1 and initialize (εi)k, (η j
i )

k, (r)k and (ξ j
i )k, i ∈ {1, 2}, j ∈ D, to 0.

• Maximize (ε1)k+1 by keeping the other variables {(η j
1, r

j, ξ
j
1)k}, j ∈ D, fixed. This leads to

the following optimization problem:

max
|ε1 |≤ω1

∫
ε1 · S 0

1 dx −
c
2

∑
j∈D

∣∣∣∣∣∣G j
1

∣∣∣∣∣∣2 , (E.1)

which can be computed exactly with:

(ε1)k+1 =
S 0

1 − c
∑

j∈D ∂
jS 1 · (div η j

1 + r j)
c
∑

j∈D(∂ jS 1)2 .

• Maximize (η j
1)k+1, j ∈ D, using the updated variables {(ε1)k+1, (r j, ξ

j
1)k}, i.e.,

max∣∣∣∣η j
1

∣∣∣∣≤ω1·α1

∫
η

j
1 · ∇(φ j

1)l dx −
c
2

∣∣∣∣∣∣G j
1

∣∣∣∣∣∣2 . (E.2)
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This leads to three convex optimization problems where Chambolle’s projected gradient

algorithm [1] applies.

• Maximize (ε2)k+1 and (η j
2)k+1 following the similar steps as for (ε1)k+1 and (η j

1)k+1.

• Maximize (r j)k+1, j ∈ D, by fixing the other updated variables {(εi, η
j
i )

k+1, (ξ j
i )k}, i ∈ {1, 2}.

This can be solved by

max
|r j|≤β

∑
j∈D

∫
r j · (φ j

1)l dx −
c
2

∑
j∈D

∣∣∣∣∣∣G j
1

∣∣∣∣∣∣2 −∑
j∈D

∫
r j · (φ j

2)l dx −
c
2

∑
j∈D

∣∣∣∣∣∣G j
2

∣∣∣∣∣∣2 . (E.3)

Clearly, (r j)k+1 can be obtained by

(r j)k+1 =
{
(φ j

1)l + c · (ε2 · ∂
jS 2 + div η j

2) − (φ j
2)l − c · (ε1 · ∂

jS 1 + div η j
1)

}/
2 , (E.4)

truncated by β, i.e., (r j)k+1 = max(min((r j)k+1, β),−β).

• Re-calculate (ξ j
i )k+1, i = {1, 2}, j ∈ D, using the updated variables {(εi, η

j
i , r

j)k+1} for G j
i

following

(ξ j
1)k+1 = (ξ j

1)k − c ·G j
1 (E.5)

and

(ξ j
2)k+1 = (ξ j

2)k − c ·G j
2 . (E.6)

• Let k = k + 1 and iterate the above steps until convergence.

The obtained incremental deformation field ~ξi were used to generate the final deformation

~φi, i ∈ {1, 2} in (4.2) and (4.3) and deform CT towards 1H and 3He MRI.
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