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Abstract 

NUAK1, a downstream substrate of the stress metabolism regulator Liver kinase B1 (LKB1), 

has been implicated as an oncogene and tumor suppressor, with distinct roles in cell cycle, 

senescence and cell adhesion. Epithelial ovarian cancer (EOC) spheroids remain dormant 

during intraperitoneal metastasis with reduced proliferation and metabolism to survive 

metabolically harsh conditions, possibly implicating a role of NUAK1 in EOC spheroid 

biology. I hypothesize that NUAK1 is regulated by LKB1 to promote dormancy in EOC. I 

demonstrate that NUAK1 expression and phosphorylation is regulated by LKB1 in EOC cell 

lines. NUAK1 is largely under-expressed in many established and new ascites-derived EOC 

cell lines; in fact, further NUAK1 knockdown increases spheroid cell viability, size, and 

reattachment capability. Pharmacologic NUAK1/2 inhibition increased EOC cell growth and 

clonogenicity. Collectively, my data supports NUAK1 as having tumour suppressive activity 

downstream of LKB1 in EOC. 

Keywords 
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Chapter 1  

1 Introduction 

1.1 Epidemiology, Clinical Presentation and Treatment of 
Epithelial Ovarian Cancer 

Epithelial ovarian cancer (EOC) is rare with respect to other malignancies affecting 

Canadian women, with approximately 2500 new cases each year. Despite its rarity, EOC 

is very aggressive in nature, causing approximately 1750 deaths each year (Canadian 

Cancer Society Statistics, 2015). The high death-to-incidence ratio associated with EOC 

is due to limited progress made with diagnosis and treatment. In most cases EOC is 

diagnosed when the disease has metastasized distantly in stages III or IV. As such, there 

continues to be a strong push for the research community to identify early detection 

methods and late stage therapies to reduce both morbidity and mortality associated with 

this group of diseases. 

 

EOC has a low frequency in the general population, and it is believed that 1 in 70 women 

will develop ovarian cancer in their lifetimes (Han and Coleman, 2007). Oral 

contraceptive use and pregnancy are known to be protective against ovarian cancer, in 

support of the incessant ovulation hypothesis (Boscetti et al, 2002). According to this 

hypothesis, inflammation and damage to the fallopian tube and ovarian epithelium during 

the menstrual cycle increases the likelihood of mutation. Interrupting the cycle through 

pregnancy or oral contraceptive use is therefore thought to decrease the onset of cancer 

causing mutations (Fathalla, 1971). Likewise, risk factors for ovarian cancer include age, 

fertility treatment, hormone replacement therapies, and family history. Age is the leading 

risk factor, as the risk of developing ovarian cancer increases with age and most 

commonly occurs in post-menopausal women (Quirk and Nataraja, 2005). Ovulation 

stimulating drugs such as clomiphene citrate, used for the treatment of infertility, are 

known to increase the risk of ovarian cancer (Rossing et al, 1994). Clomiphene citrate in 

particular is known to increase cell proliferation in the ovarian and fallopian tube 

epithelium (Tomao et al, 2014). Hormone and estrogen replacement therapies increase 
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the risk of ovarian cancer by 60% in post-menopausal women (Lacey et al, 2002). Lastly, 

family history and hereditary mutations are known to cause between 10-15% of ovarian 

cancers (American Cancer Society, 2016). Germline mutations in the DNA repair genes, 

BRCA1 and BRCA2, are the most common for risk of ovarian cancer. For this reason, 

genetic screening for BRCA1 and BRCA2 has become increasingly common and it is 

recommended that women bearing these mutations have their ovaries and fallopian tubes 

resected after child-bearing.  

EOC is diagnosed in late stages because disease presentation is often vague and 

seemingly insignificant. Symptoms of ovarian cancer include abdominal pain, bloating, 

feeling full, weight change, gas, and nausea (Karst and Drapkin, 2010). These vague 

symptoms are often mistaken for conditions such as dyspepsia, menstruation and 

menopause. Staging for EOC is divided into 4 groups, and treatment efficacy decreases 

as the disease advances. Stage I is usually localized to one or both of the ovaries and does 

not involve the formation of ascites until stage IC. Treatment for stage I disease is often 

successful and surgery is sufficient to treat these patients, without the need for 

chemotherapy. Stage II involves locally metastatic disease, with extension to the pelvis. 

Stage III involves spread to the upper abdomen. Lastly, stage IV involves more distant 

metastasis to the liver, spleen and pleural parenchyma (Forstner et al, 2010).  

Since most EOC patients are diagnosed during late-stage disease, treatment usually 

involves extensive disease management. Cytoreductive surgery is the most effective 

treatment to-date for EOC patients. This surgery involves removal of tumors within the 

peritoneal cavity, metastatic lesions, and locally affected organs such as the uterus and 

colon. “Optimal debulking,” is considered complete once residual disease is less than 

1cm in diameter (Schorge et al, 2010). Ovarian cancer management follows two arms of 

treatment: adjuvant and neoadjuvant. Adjuvant therapy is used for healthy patients, with 

no pre-existing conditions, and involves performing cytoreductive surgery prior to 

administering chemotherapeutics to reduce residual disease. Neoadjuvant therapy is used 

for patients with pre-existing conditions, who are not ideal surgical candidates, and 

involves shrinking the tumor with chemotherapy prior to cytoreductive surgery (Naora 

and Montell, 2005). While cytoreductive surgery is critical for reducing macroscopic 
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disease, therapeutic options for treatment of microscopic ovarian cancer are limited. 

Current chemotherapeutics involve the use of a combination of carboplatin and paclitaxel 

as standard of care. Carboplatin is a DNA damaging agent, containing platinum that is 

able to coordinately bind to DNA and prevent DNA replication (Naora and Montell, 

2005). Paclitaxel is a microtubule stabilizing agent that causes mitotic catastrophe in 

rapidly dividing cells (Naora and Montell, 2005). It is common for patients to develop 

resistance to carboplatin upon recurrence, making treatment options limited. Furthermore, 

these chemotherapeutics are only able to target rapidly proliferating cells, letting dormant 

disease go untouched. Recent innovation has introduced the PARP inhibitor, Olaparib, 

into clinical trials for ovarian cancer treatment. Olaparib functions by taking advantage of 

the principle of synthetic lethality in BRCA deficient patients. By targeting the second 

arm of DNA repair, Olaparib is able to effectively kill ovarian cancer cells (Bixel and 

Hays, 2015). While Olaparib offers excellent innovation for BRCA deficient patients, 

there is still much progress to be made in terms of treatment options. 

1.2 Origin and Subtypes of EOC 

Historically it was believed that EOC arose from a structure lining the surface of the 

ovary, known as the ovarian surface epithelium (OSE). The OSE is composed of a single 

layer of cuboidal epithelium which lines the surface of the ovary. The OSE origin theory 

suggests that during repetitive ovulations and follicular ruptures, there may be 

invaginations of the OSE into the underlying stroma, leading to the formation of cortical 

inclusion cysts. It is thought that the influence of factors within the ovarian environment 

promotes metastatic transformation of these cysts (Auersperg et al, 1984). Evidence for 

this theory is supported by in vitro experiments using mouse and rat OSE in culture. 

Godwin et al. (1992) and Roby et al. (2000) demonstrated that repeated culture of mouse 

and rat OSE results in spontaneous transformation of tissue into a malignant phenotype. 

However, these studies were conducted on mouse and rat OSE which unlike human OSE, 

do not undergo senescence in culture, and therefore may not be representative of human 

EOC pathogenesis (Vanderhyden et al, 2003). Further evidence against this hypothesis 

may come from the fact that ovarian carcinomas resemble epithelial cells from extra-

ovarian origins, such as the fallopian tube, rather than the OSE (Dubeau, 2008). It has 
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also been noted that women who have undergone resection of the ovaries can still 

develop ovarian cancer, suggesting an origin which is independent of the OSE (Dubeau, 

2008). For these reasons, it is unlikely that the OSE is the true origin of epithelial ovarian 

cancers. 

It is now widely accepted that Müllerian derived tissues are likely the origin of epithelial 

ovarian cancers, notably the fallopian tube in the case of high-grade serous ovarian 

cancer. To provide evidence for this, Marquez et al (2005) suggested that the gene 

expression profile of high grade serous ovarian cancer is more similar to the fallopian 

tube than the OSE. Additionally, the fallopian tube originates from the Müllerian duct 

during embryonic development, whereas the ovaries are derived from multiple embryonic 

structures such as the coelomic epithelium, subcoelomic epithelium, and primordial germ 

cells. PAX8 is a common marker of Müllerian derived tissues, such as the fallopian tube, 

uterus and vagina. It has been demonstrated that high-grade serous ovarian carcinomas 

express PAX8, suggesting a tubal origin of EOC (Kurman and Shih, 2010). Some more 

convincing evidence for the Müllerian origin of EOC came from Piek et al (2001) 

through analysis of tubal segments from women undergoing preventative bilateral 

salpingo oophorectomies. The authors found that in women with BRCA mutations and a 

strong genetic predisposition for EOC, 6 out of the 12 samples had cellular dysplasia at 

the fimbriated end of the fallopian tube which morphologically resembled high-grade 

serous EOC samples. For these reasons, it is likely that EOC subtypes that resemble 

Müllerian epithelium, such as the mucinous, serous and endometrioid subtypes, are likely 

derived from regions descended from the Müllerian duct rather than the OSE.  

There are five histological subtypes of EOC, which are entirely distinct diseases at the 

molecular and cellular levels: low and high-grade serous ovarian cancers, endometrioid 

ovarian cancer, clear cell carcinomas and mucinous ovarian cancers. Serous ovarian 

cancers are recognized by enlarged nuclei and stromal invasion, and consist of two types: 

low-grade serous ovarian cancer and high-grade serous ovarian cancer (HGSOC). Low-

grade serous ovarian cancers have been thought to originate from adenofibromas or 

borderline tumors (Vang et al, 2010). Low-grade tumors can be characterized by 

mutations in KRAS, BRAF and ERRB2, and it is estimated that two thirds of all low-grade 
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tumors have mutations in one of these genes (Vang et al, 2010). These 3 genes are 

upstream regulators of the MAPK pathway, therefore mutation results in uncontrolled 

proliferation (Vang et al, 2010). Surprisingly, low-grade tumors are typically more slow 

growing than high-grade tumors, and are characterized as type I EOC tumors (Vang et al, 

2010). HGSOC is the most common form and has been identified as the most 

genomically unstable subtype of EOC, with 95% of tumors involving mutations in TP53 

(Karst and Drapkin, 2010). In addition to mutations in TP53, HGSOC tumors present 

with highly unstable genomes containing a significant number of chromosomal deletions 

and amplifications (Kuo et al, 2009). HGSOC is thought to arise from the fimbriated end 

of the fallopian tube epithelium, particularly from a lesion known as the serous tubal 

intraepithelial carcinoma (STIC) (Carlson et al., 2008). STIC lesions present with TP53 

mutations, similar to HGSOC tumors, and are thought to seed into the ovary to allow for 

the formation of HGSOC. HGSOC is the most common and possibly the most aggressive 

form of EOC, and is therefore the most well-studied disease site within ovarian cancer. 

Endometrioid ovarian tumors resemble the stratified columnar epithelium of the 

endometrium, and like HGSOC are derived from Müllerian epithelium. Endometrioid 

ovarian cancers are believed to be linked to endometriosis, and it is thought that 

endometriosis lesions may be a precursor to this subtype (Karst and Drapkin, 2010). 

Some endometrioid tumors are known to bear mutations in PTEN.  Mucinous ovarian 

cancers represent less than 5% of all EOC tumors, and are more common in younger 

women aged 20-40 (Frumovitz et al, 2010). Histologically, these cells resemble intestinal 

epithelium. Mutationally, a significant proportion of mucinous tumors have alterations in 

KRAS and HER2, with recent innovation offering patients Herceptin as a treatment option 

(Brown and Frumovitz, 2014). Mucinous tumors are more epithelial in nature and have 

higher expression of E-cadherin compared to serous tumors (Brown and Frumovitz, 

2014). Lastly, clear cell carcinomas of the ovary are so termed because they contain large 

glycogen filled granules which cause them to appear clear upon staining with 

hematoxylin and eosin. Clear cell carcinoma can be linked to endometriosis, with 25% of 

cases arising from patients with known endometriosis (Karst and Drapkin, 2010). These 

tumors have also been known to bear mutations in ARID1A, which regulates 

heterochromatin remodeling, and PIK3CA, which mediates cytokine production. 
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Unfortunately, current therapies have not widely exploited mutational or gene expression 

signatures of these histotypes of EOC. Therefore, it is important to understand the disease 

mechanisms behind each of these histotypes to better create targeted therapies which can 

respond to heterogeneity in EOC.  

1.3 EOC Metastasis and Experimental Model Systems 

EOC is distinct from other cancers, and has a unique metastatic mechanism that is usually 

contained within the abdominal cavity. A critical feature which is both a contributing 

factor and result of metastasis is ascites formation. Ovarian cancer patients typically 

present with ascites fluid, which collects in the abdomen. Ascites forms from a 

combination of vascular leakage and lymphatic blockage by the primary tumor. It is 

drained from a patient’s abdomen during paracentesis or surgery (Naora and Montell, 

2005). Ascites contributes to a complex tumor microenvironment because it contains a 

variety of cells in suspension, such as: cells disseminated from the primary tumor, 

fibroblasts, mesothelial cells, macrophages and leukocytes (Lengyel, 2010). This evident 

symptom of EOC is usually indicative of later stage disease progression and is an 

important feature of EOC metastasis.  

EOC metastasis differs from that of other cancers, which metastasize via the vasculature 

and lymphatics. Instead, EOC has a unique metastatic mechanism that is usually limited 

to the peritoneal cavity (Kuwabara et al., 2008; Lengyel, 2010). The first step involves 

formation of the primary tumor in either the ovaries or fallopian tubes. In the case of 

HGSOC, cancer arises in the fallopian tubes upon loss of function mutations in TP53, 

causing further genomic instability and uncontrolled proliferation. Following primary 

tumor formation, single cells will disseminate from the primary tumor, and undergo 

epithelial-to-mesenchymal transition (EMT) becoming mesenchymal in nature; where 

these cells are exposed to the nutrient-deprived ascites environment. Exposed to 

deattachment stress, these single cells are subject to cell death through anoikis. To evade 

cell death and respond to the nutrient-deprived environment, these detached cells 

aggregate together and form spheroids, and are frequently observed in native ascites 

samples from patients (Lengyel, 2010). EOC spheroids enter a state of dormancy due to a 

nutrient-poor environment (Lengyel, 2010; Correa et al., 2012). Dormancy in spheroids is 
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characterized by reduced proliferation, reduced metabolism and increased autophagy 

(Correa et al., 2012; Condello et al., 2015). This adaptation permits ovarian tumor cell 

survival during nutrient deprivation. Secondary tumor formation occurs when spheroids 

undergo a dormant-to-proliferative switch to initiate reattachment on to various peritoneal 

surfaces (Lengyel, 2010; Correa et al., 2012). The dormant-to-proliferative switch is 

characterized by an increase in proliferation, motility and invasion (Correa et al., 2012). 

This process is continually occurring within the peritoneal cavity to cause the 

development of multiple tumor nodules (Fig. 1.1A). 

This unique metastatic model can be studied in vitro, using both cell lines and primary 

cells from EOC patients. In the case of primary cells, ascites fluid can be drained from a 

patient’s abdomen during surgery or paracentesis. Ascites fluid often contains 

endogenous spheroids, which have likely metastasized from the primary tumor. These 

spheroids can be plated on regular tissue culture plastic, allowing the spheroid to disperse 

and form an adherent monolayer of cells. These adherent cells can be taken and plated on 

ultra-low attachment (ULA) dishes, which are hydrophilic and neutrally charged. This 

allows for aggregation of cells and causes the formation of spheroids in vitro; permitting 

the study of spheroid biology. Subsequently, these spheroids can be taken out of ULA 

culture and reattached onto regular tissue culture plastic to mimic the process of spheroid 

reattachment on to peritoneal surfaces (Fig. 1.1B) (Shepherd et al, 2006).  

Spheroids are a unique aspect of EOC metastasis that have interesting survival 

mechanisms in response to nutrient deprivation. Firstly, spheroids are held within the 

nutrient-poor microenvironment found within ascites fluid. To adapt to this nutrient-poor 

microenvironment, spheroids enter a state of dormancy which is characterized by reduced 

proliferation, decreased metabolism, and increased autophagy (Correa et al., 2012; 

Condello et al., 2015). The dormant and anti-proliferative state of spheroids make them 

less sensitive to both platinum and taxol based chemotherapies (Sutherland et al., 1976). 

L’Esperance and colleagues (2008) performed gene expression profiling of EOC 

spheroids following treatment with chemotherapeutics and noted differential gene 

expression of genes implicated in proliferation, growth, cell assembly, cell death and cell 

cycle. They found that genes associated with DNA repair and cell cycle arrest were 
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Figure 1.1. Mechanisms of EOC metastasis in vitro and in vivo. (A) EOC metastasis 

within the peritoneal cavity. EOC begins with the primary tumor in either the ovaries or 

fallopian tubes. Cells de-attach from the primary tumor, at which point there is an 

increase in cell death by anoikis. To evade anoikis, cells aggregate together and form 

dormant spheroids, where they conserve energy by decreasing proliferation. Spheroids 

can trigger secondary tumor development by reattaching to the wall of the peritoneal 

cavity, at which point there is a dormant to proliferative switch. (B) Modelling metastasis 

in vitro. Ascites samples, extracted from patients during surgery, contain spheroids in 

suspension. Spheroids from ascites can be plated on tissue culture plastic to produce an 

adherent monolayer of cells. Adherent cells can then be plated on ultra-low attachment 

plates to induce spheroid formation. Secondary tumor development can be mimicked 

using a reattachment assay, where spheroids are re-plated onto tissue culture plastic. 
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significantly upregulated in spheroids, while genes implicated in metabolism and 

inflammatory response were significantly downregulated; relative to adherent culture. To 

that end, Correa and colleagues (2012) found that spheroids exhibit reduced proliferation 

through decreased Akt activity; and despite displaying a phenotype that is similar to 

quiescence, spheroids can rapidly reinitiate proliferation and Akt activity upon 

reattachment. It is therefore critical to study EOC spheroids and understand the 

mechanistic behavior of spheroids. Therapies targeting EOC spheroids may allow for 

blockade of metastatic disease within the peritoneal cavity.  

1.4 LKB1-AMPK in EOC Metastasis 

A key limitation of all cells is that they must guarantee nutrient availability prior to 

proliferation. Nutrient availability is recognized by a variety of stress response factors, 

one of which is Liver Kinase B1 (LKB1). The LKB1-AMPK signaling pathway has been 

well documented as a fast-acting responder to nutrient starvation and metabolic stress 

(Mihaylova and Shaw, 2011). Under stress conditions (cell deattachment, hypoxia, 

glutamine/glucose deprivation, etc), LKB1 has been observed to phosphorylate AMPK to 

initiate a dormancy-like state and alter metabolic homeostasis in a wide-variety of 

cellular contexts.  

 

Under nutrient starvation or cell stress conditions, phosphorylated LKB1 complexes with 

the pseudokinases STRAD and MO25 (Alexander and Walker, 2011), causing 

phosphorylation of the α subunit of AMPK at Thr172. The AMPK αβ subunits can then 

complex with the γ subunit, initiating downstream signaling to reduce glucose and lipid 

metabolism, decrease protein translation, trigger cell cycle arrest and increase 

autophagy(van Veelen et al., 2011; Shaw et al., 2004; Yang et al., 2010) (Fig. 1.2). The 

responses elicited by the LKB1-AMPK pathway are critical in helping cells respond to 

stress conditions. 

LKB1, encoded by the STK11 gene on chromosome 19p13, was originally identified as a 

tumor suppressor gene due to its association with an inherited cancer disorder known as 

Peutz-Jeghers Syndrome (PJS). Patients with PJS have heterozygous mutations in STK11, 

with one allele lacking a functional protein product. PJS families have a strong cancer  
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Figure 1.2. Summary of LKB1 signaling. During conditions of cell stress (cell 

detachment, hypoxia, low nutrients) LKB1 complexes with the pseudokinases STRAD 

and MO25 to initiate downstream signaling through p53, AMPK and the AMPK related 

kinases (ARKs). This downstream signaling acts to reduce proliferation and metabolism 

(red arrows), while positively regulating cell polarity (green arrows). These downstream 

signals are important to tumor suppression because they restrict normal cells from 

displaying neoplastic behaviour. These functions could also be important to tumor 

dormancy after tumor formation, allowing tumors to survive metabolically challenging 

conditions. LKB1 can be post-translationally modified by SIRT1, RSK, PKA and aPKC. 

Figure generated by Dr. Trevor Shepherd.  
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history, and are at risk of developing gastrointestinal cancers, pancreatic cancer, cervical 

cancer, ovarian cancer and breast cancer (Whittle et al., 2011). It is also common for 

patients to develop benign polyps in the stomach and intestinal tract (Whittle et al., 

2011). In addition to PJS, STK11 is commonly mutated in non-small cell lung cancer 

(NSCLC), with 15-35% of tumors bearing mutations in STK11 (Shackleford and Shaw, 

2009). Furthermore, STK11 is mutated in 20% of cervical carcinomas (Shackleford and 

Shaw, 2009). In mice, heterozygous deletion of LKB1 causes the development of 

gastrointestinal polyps, similar to PJS patients (Miyoshi et al., 2002). Likewise, site 

specific deletion of LKB1 in various epithelial tissues leads to tumor formation. For 

instance, LKB1 deletion in the endometrial epithelium of female mice has been shown to 

lead to invasive adenocarcinoma (Contareas et al., 2008). Additionally, loss of LKB1 in 

the skin of mice promotes squamous cell carcinoma development (Gurumurthy et al., 

2008). The notion of LKB1 being a tumor suppressor can be supported by its role in 

stress response and nutrient deprivation. Under cell stress conditions, LKB1 acts to 

stimulate p53 activity, decrease proliferation, and decrease cellular metabolism (Tiainen 

et al., 2002). All of these outcomes would in theory be counterproductive for cancer 

initiation and tumor progression, hence, loss of LKB1 drives tumor formation in many 

cancer models. 

Recent evidence has brought to light the possible pro-metastatic function of LKB1, 

suggesting that the role of LKB1 in tumor formation or tumor suppression may be 

context dependent. Peart and colleagues (2015) uncovered an oncogenic role of LKB1, 

suggesting its importance in tumor progression in ovarian cancer. They screened 7 ascites 

derived ovarian cancer patient samples and found that LKB1 and its direct downstream 

substrate, AMPK, were phosphorylated and activated, suggesting that the LKB1-AMPK 

pathway is active, rather than suppressed, in metastatic ovarian cancer cells (Peart et al., 

2015).Furthermore, using 3 cell lines and 3 ascites derived patient samples, they 

discovered that LKB1-AMPK signaling is activated specifically in dormant ovarian 

cancer spheroids. This suggests that LKB1 mediated signaling is important to maintain 

dormancy or promote survival in spheroids during the unique metastatic process of this 

disease. 
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Although the authors noted that LKB1-AMPK signaling is likely important to spheroids, 

it appears that this may not be the only pathway involved. Using siRNA against STK11 

and PRKAA1, encoding for AMPKα1, they found that knockdown of LKB1 but not 

AMPKα decreased cell viability in the presence or absence of carboplatin (Peart et al., 

2015). This indicates that there may be other downstream targets of LKB1, independent 

of AMPK, which promote cell viability, chemoresistance and dormancy in EOC 

spheroids. 

1.5 AMPK-Related Kinases and Their Potential Importance 
in EOC Metastasis 

The AMPK Related Kinases (ARKs) are a group of 12 kinases that are known to be 

phosphorylated by LKB1 at threonine residues similar to that on AMPK (Lizcano et al., 

2004). These 12 kinases consist of the nua kinases (NUAKs), Microtubule affinity 

regulatory kinases (MARKs), Salt inducible kinases (SIKs), Brain specific serine-

threonine kinases (BRSKs) and Sucrose non-fermenting 1 (SNF) related kinase (SNRK). 

Some of these kinases have been documented as stress responders downstream of LKB1, 

independent of AMPK. 

The NUAKs consist of two family members, and have been implicated in processes such 

as cell senescence (Humbert et al., 2010), suppression of cell death during glucose 

starvation (Suzuki et. al, 2003), inhibition of protein synthesis and mitochondrial 

respiration (Liu et al., 2012), and tumor invasion through stimulation of 

metalloproteinase (MMP) secretion (Suzuki et al., 2004). In cancer, NUAK family 

functions have been regarded as both tumor suppressive and oncogenic (Chen et al., 

2013; Lu et al., 2013, Namiki et al., 2011; Ye et al., 2014; Tsuchihara et al., 2008; Sun et 

al., 2013). Downstream of LKB1, NUAKs have been observed to promote cell 

detachment and trigger cell cycle arrest through p53 activation (Hou et al., 2011).  In a 

single study involving NUAK1 cell signaling in ovarian cancer by Zhang et, al. (2015), 

NUAK1 was seen to trigger epithelial-to-mesenchymal transition (EMT) through 

suppression of microRNAs which promote mesenchymal-to-epithelial transition (MET). 

Similarly, a recently published study by Phippen et. al (2016) suggested that increased 

NUAK1 expression at the RNA level was associated with poor prognosis in HGSOC 
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patients. However, these studies did not interrogate NUAK1 signalling in the context of 

ovarian cancer models such as EOC spheroids and dormancy maintenance. 

The MARKs consist of four family members and in many cases can act to phosphorylate 

downstream targets, making them docking sites for the 14-3-3 protein, a mediator of 

subcellular localization (Lizcano et al., 2004). MARK signaling has been implicated in 

processes such as cell cycle arrest (Bachmann et al., 2004), epithelial cell polarity 

(Lewandowski et al., 2014), and activation of Wnt signaling (Spicer et al., 2003). 

Downstream of LKB1, MARKs have been implicated in cell adhesion in melanoma 

(Chan et al., 2014), inhibition of EMT (Goodwin et al., 2014), and localization of histone 

deacetylases (Lizcano et al., 2004). Many of these functions may be important in the 

context of ovarian cancer spheroids and have yet to be studied. 

The SIKs consist of three family members and have been observed in processes including 

inhibition of NFĸB signaling (Yong Kim et al., 2013), autophagy (Yang et al., 2014), and 

cell cycle transition (Chen et al., 2014). Downstream of LKB1, SIKs have been 

implicated in nucleocytoplasmic transport of histone deacetylates (Walkinshaw et al., 

2013), intracellular junction stability in epithelial cells (Eneling et al., 2012), and p53-

dependent anoikis (Cheng et al., 2009). In ovarian cancer, SIK2 has been seen to trigger 

mitotic initiation through recruitment of the centrosome linker protein, C-nap1 (Ahmed et 

al., 2010). Likewise, SIK3 is involved with G1S transition in ovarian cancer, and 

overexpression has been observed to promote tumor progression in mice 

(Charoenfuprasert et al., 2011). 

The BRSKs consist of two family members and are predominantly expressed in the 

mammalian brain, and have been implicated mainly in neuronal polarity (Bright et al., 

2008). These kinases have not been well documented in cancer, or in the context of 

cancer dormancy, and thus remain to be investigated in the context of EOC spheroids.  

Lastly SNRK, or sucrose nonfermenting 1 (SNF-1) related kinase, has been largely 

described as a plant kinase. However, one study has looked at the effects of SNRK in 

colon cancer. Rines et, al. (2012) found that SNRK antagonizes β-catenin signaling to 

reduce proliferation in colon cancer cells. This model may be relevant in the context of 
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ovarian cancer dormancy, potentially downstream of LKB1, but remains to be 

investigated. 

Many of the ARKs have been documented in the literature to have roles related to 

metabolic stress response and dormancy, but few have been investigated in ovarian 

cancer and remain largely understudied in the context of EOC dormancy.  

Through the course of my project, I have gathered evidence to suggest that NUAK1 plays 

an important role in EOC cell and spheroid viability, downstream of LKB1, and have 

thus focused my project exclusively on the role of NUAK1 in EOC metastasis. 

1.6 NUAK1 Regulation and Function 

NUAK1, also known as ARK5, is encoded on chromosome 12 on cytogenetic band q23.3 

(Scherer et al., 2006). The NUAK1 gene is encoded as 2 isoforms, with isoform 1 being 

the canonical sequence (Scherer et al., 2006). It is highly expressed in the brain, spinal 

cord and heart, with lower expression in skeletal muscle, ovaries, fallopian tube, placenta, 

lung and liver (Kusaki et al., 2004). It is predominantly localized cytoplasmically within 

the cell (Hou et al., 2011).  

NUAK1 is regulated by LKB1 at Thr211 to initiate kinase activity. There is also evidence 

to suggest that NUAK1 is positively regulated by AKT at Ser600 to mediate downstream 

signalling (Suzuki et al., 2013). NUAK1 is negatively regulated by PLK1 and CDKs at 

Ser476, Ser480 and Ser445 (Banerjee et al., 2014). Upon phosphorylation by these 

negative regulators, NUAK1 is tagged for ubiquitination and subsequent degradation 

(Fig. 1.3).  

Functionally, NUAK1 kinase activity has been implicated in cell cycle arrest during the 

G1S phase of cell cycle through phosphorylation of Ser15 and Ser392 on p53, which in 

turn mediates p21 transcription to promote cell cycle arrest (Hou et al., 2012). NUAK1 

can also phosphorylate LATS1, leading to its degradation. Degradation of LATS1 

promotes increases in cell size, aneuploidy and senescence (Humbert et al., 2011). 

Furthermore, NUAK1 can interact with myosin phosphatase targeting subunit 1 

(MYPT1) to trigger cell detachment and regulation of the mitotic checkpoint kinase 
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Figure 1.3. NUAK1 regulation and function. (upper panel) NUAK1 is regulated by 

LKB1 at Thr211 within its kinase domain to activate kinase activity. It is also positively 

regulated by AKT at S600. NUAK1 is negatively regulated by CDKs and PLK1 to trigger 

ubiquitination and degradation. Interaction with USP9X triggers de-ubiquitination. 

NUAK1 can interact with and phosphorylate MYPT1 to mediate changes with 

actomyosin signaling. (middle panel) NUAK1 mutants. Mutation at T211 and W305 

prevent activation by LKB1. (inset) NUAK1 functions to phosphorylate several 

downstream substrates implicated in cell cycle and actomyosin dynamics. (Hou et al., 

2011, Humbert et al., 2010, Banerjee et al., 2014) Figure generated by Dr. Trevor 

Shepherd. 
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PLK1, affecting cell cycle transition (Zagórska et al., 2010). In 2014, Banerjee and 

colleagues demonstrated that NUAK1 is reciprocally regulated with PLK1, in that 

NUAK1 expression during G1S phase acts to inactivate PLK1 and PLK1 expression 

during G2M phase acts to induce degradation of NUAK1. NUAK1 has also been 

implicated as an upstream regulator of AMPK and can cause decreased protein synthesis 

through mTORC1 inhibition (Liu et al., 2011). NUAK1 suppresses Fas induced 

apoptosis, through phosphorylation of caspase 6 (Suzuki et al., 2004). This anti-apoptotic 

response may be important for cancer cell survival. 

The most well-characterized downstream target of NUAK1 is MYPT1. Encoded by the 

PPP1R12A gene, MYPT1 is a member of the PP1β phosphatase complex. MYPT1 is 

important to regulation of cell motility and control of cell cycle. In regard to cell motility, 

MYPT1 acts as a negative regulator of myosin light chain 2 (MLC2) and acts to 

dephosphorylate MLC2 to trigger cell adhesion. Phosphorylation of MYPT1 by NUAK1 

at Ser445, Ser472, or Ser909 promote MYPT1 interaction with 14-3-3, thus preventing 

MYPT1 from inactivating MLC2 (Zagorska et al., 2010). In terms of cell cycle, NUAK1 

can phosphorylate MYPT1, preventing MYPT1-mediated dephosphorylation and 

inactivation of PLK1, thus causing G2M transition (Banerjee et al., 2014).  

Using MYPT1 phosphorylation as a readout of NUAK1 activity, Banerjee and colleagues 

(2014) classified two novel NUAK1 inhibitors. WZ4003 was originally developed as a 

structurally inactive inhibitor of EGFR signalling, but was found to specifically inhibit 

NUAK activity (Zhou et al., 2009). WZ4003 can inhibit both NUAK species. HTH-01-

015 is a NUAK1-selective inhibitor which is relatively ineffective for inhibition of 

NUAK2. Upon EDTA-induced detachment of HEK293 cells, Banerjee and colleagues 

noted that treatment with WZ4003 or HTH01-015 led to dose-dependent decreases in 

MYPT1 phosphorylation. To this end, the authors also noted that NUAK inhibition using 

both compounds led to decreased cell migration in MEF cells. Lastly in both U2OS and 

MEF cell lines, the authors noted that treatment with both inhibitors led to decreased 

proliferation. Banerjee and colleagues propose that both compounds act as ATP mimetic 

inhibitors, according to their structures (Banerjee et al., 2014). Their results identify the 

potency of both inhibitors and warrant the use of these compounds in vitro.  
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To date, there have been many interesting functions of NUAK1 brought to light in 

cancer, both as an oncogene and tumor suppressor. However, NUAK1 has not been 

studied in the context of cancer dormancy and more specifically, in dormant ovarian 

cancer spheroids. Previously identified mechanisms of NUAK1 signalling may be 

relevant to the context of EOC spheroids. Furthermore, the discovery of reagents for 

NUAK inhibition allow for optimal study of NUAK1 function in vitro. Therefore, it may 

be worthwhile to study the role of NUAK1 in EOC spheroids to see if it may be 

contributing to dormancy and viability maintenance in this unique metastatic model.  

1.7 Research Goal, Hypothesis and Experimental 
Objectives 

LKB1-mediated regulation of NUAK1 has not previously been studied in EOC spheroids. 

Our lab has previously identified LKB1 as an important master kinase in ovarian cancer, 

particularly in spheroids. The next step would be to understand how one of its 

downstream kinases, NUAK1, is involved in EOC signal transduction. In particular, it 

would be critical to address if NUAK1 is involved with maintenance of dormancy and 

chemoresistance in ovarian cancer spheroids.  

I hypothesize that NUAK1 is activated by LKB1 and maintains dormancy and viability in 

EOC spheroids. To investigate this hypothesis, I first aimed to characterize NUAK1 

expression across a wide array of cell lines and determined how NUAK1 was regulated 

by LKB1 in EOC spheroids. Secondly, I investigated if NUAK1 was important to 

viability in EOC spheroids and characterized a possible mechanism by which NUAK1 

was affecting EOC cell and spheroid viability. This project has allowed me to delve into 

the important role of NUAK1 in EOC dormancy and viability, and has opened new 

potential avenues to high risk, high reward therapy in the treatment of ovarian cancer.  
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Chapter 2  

2 Materials and Methods 

2.1 Cell Culture 

OVCAR8 (ATCC), HEYA8, HEY (gift from G.Mills, MD Anderson), 

OVCAR8STK11KO (CRISPR-Cas9 performed by Dr. Trevor Shepherd), and 

HEYA8STK11KO (CRISPR-Cas9 performed by Dr. Trevor Shepherd) cells were 

cultured using RPMI-1640 (Wisent), supplemented with 5% fetal bovine serum (FBS, 

Wisent). CAOV3, TOV21G, TOV112D, SKOV3, OVCAR3, OVCAR4, and OVCAR5 

(ATCC) were cultured in DMEM-F12 (Gibco), supplemented with 10% FBS.  FT190 and 

FT237 (gift from R. Drapkin, UPenn) were cultured in DMEM-F12, supplemented with 

10% FBS. COV318 and COV362 (gift from Z. Khan, UWO) were cultured in RPMI-

1640, supplemented with 5% FBS. Early passage ascites-derived cell lines (iOvCa) were 

established by Dr. Gabriel DiMattia and cultured in DMEM-F12, supplemented with 

10% FBS. Ascites-derived cell lines (Table 2.1) were established according to protocol 

previously described by Shepherd and colleagues (2006). All work with patient materials 

has been approved by The Univeristy of Western Ontario Health Sciences Research 

Ethics Board (protocol number 12668E). 

Cells were kept in culture using 10cm dishes (Sarstedt). For protein isolation in adherent 

culture, cells were seeded at a density of 1 x 105 cells/well in a 6-well dish (Sarstedt) and 

lysate was extracted 3 days post-seeding. For protein isolation in spheroid culture, cells 

were seeded at a density of 3 x 105 cells/well in 6-well ultra-low attachment dishes (ULA, 

Corning) and lysate was extracted 3 days post-seeding. Most experiments involved 

plating cells in parallel in adherent and spheroid culture using various formats. For 24-

well format, cells were seeded at a density of 5 x 104 cells/well in adherent (Sarstedt) and 

ULA (Corning) plates. For 96-well format, cells were seeded at a density of 2 x 103 

cells/well in adherent (Sarstedt) and ULA (Corning) plates. For drug treatments, 

spheroids were treated with indicated drug concentrations at time of seeding. Cells in 

adherent culture were treated with indicated concentrations one day post-seeding. 



19 

 

Table 2.1. Summary of low-passage, ascites-derived cell lines. 

Cell Line Tumor Histotype Patient 

Stage 

Chemonaïve Known mutations 

iOvCa97 grade III serous adenocarcinoma IIIC x NA 

iOvCa105 HGSOC NA  TP53 

iOvCa112 Grade II HGSOC IIII  TP53 

iOvCa129 HGSOC IIIC x TP53 

BRCA2 

iOvCa130 HGSOC IIIC x PIK3CA 

iOvCa131 HGSOC NA  TP53 

iOvCa142 HGSOC NA  TP53 

iOvCa147 HGSOC NA  TP53 

iOvCa168 HGSOC IIIC  TP53 

iOvCa170 HGSOC IIIC  TP53 

iOvCa185 Clear cell carcinoma NA  TP53 

iOvCa195 HGSOC NA  TP53 

BRCA1 

iOvCa198 HGSOC NA  NA 

iOvCa233 HGSOC NA  NA 

iOvCa241 LGSOC NA  KRAS 

iOvCa246 HGSOC NA  TP53 

iOvCa247 LGSOC IIIC  TP53 

PIK3CA 

iOvCa256 HGSOC IV  TP53 

iOvCa270 HGSOC NA  TP53 

iOvCa291 NA NA  NA 

iOvCa304 HGSOC NA  TP53 

iOvCa313 HGSOC NA  TP53 

HGSOC = High-grade serous ovarian cancer 

LGSOC = Low-grade serous ovarian cancer 

NA = not available 
  



20 

 

2.2 Generation of OVCAR-STK11KO Cells 

The 20-nucleotide guide sequence targeting the STK11 gene 5’-AGCTT GGCCC 

GCTTG CGGCG-3’ was selected using the online in silico CRISPR Design Tool at 

http://tools.genome-engineering.org. Complementary oligonucleotides 5’-CACCG 

AGCTT GGCCC GCTTG CGGCG-3’ and 5’-AAACC GCCGC AAGCG GGCCA 

AGCTC-3’ (synthesized by Sigma-Genosys) were annealed and ligated into the BbsI-

digested restriction endonuclease site of pSpCas9(BB)-2A-Puro plasmid (gift from Dr. 

Fred Dick, Western University) as per the protocol described in Ran et al. (2014) to 

generate the pSpCas9-sgSTK11 plasmid. OVCAR8 cells were seeded at 2 x 105 cells/well 

into 6-well plates and transfected with 1 g of pSpCas9-sgSTK11 plasmid into each well 

using LipofectAMINE 2000 (Invitrogen) according to manufacturer’s instructions. The 

next day, media was replaced with complete growth media containing 1 g/mL 

puromycin. Puromycin selection was performed for only one day, then cells were allowed 

to expand in complete growth media within each original well of the 6-well plate. Cells 

were trypsinized, counted, and seeded into 96-well plates at ~1 cell/well to perform 

limiting dilution subcloning of potential STK11-knockout OVCAR8 cells. Wells 

containing single colonies were expanded into 24-well plates then 6-well plates for 

protein isolation and confirmation of STK11 knockout by western blotting for LKB1 

expression. Five clones lacking LKB1 protein expression were positively identified and 

subsequently mixed in equal ratios to generate the OVCAR8-STK11KO cell line 

population. This OVCAR8-STK11KO cell line is routinely verified to have sustained loss 

of LKB1 expression. 

2.3 Western Blot 

RIPA buffer was prepared for lysis using 50mM HEPES (pH 7.4), 150mM NaCl, 10% 

Glycerol, 1.5mM MgCl2, 1mM EGTA, 1% Triton X-100, and 0.1% SDS, and stored at 

4ºC. Lysis buffer was prepared using RIPA buffer, 1mM sodium orthovandate, 250mM 

β-glycerophosphate, 10mM sodium pyrophosphate, 10mM NaF, 1% sodium 

deoxycholate, 1mM PMSF, and 1X protease inhibitor cocktail (Roche). For adherent 

cultures, cells were washed twice with PBS prior to addition of lysis buffer and scraped. 
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Spheroids were collected and centrifuged at 2000rpm for 5 minutes. Media was aspirated 

from spheroid pellet, and the pellet was resuspended in PBS and centrifuged at 2000rpm 

for 5 minutes. Lysis buffer was added to spheroid pellet, after PBS was aspirated. 

Adherent and spheroid lysates were incubated in lysis buffer on ice for 30 minutes, with 

vortexing every 5 minutes. After 30 minutes, both adherent and spheroid lysates were 

centrifuged at 14 800 rpm for 20 minutes. Supernatant was isolated post-centrifugation 

and lysates were stored at -80ºC. Protein concentration was quantified using Bradford 

assay, with Biorad protein assay reagent (Bradford, 1976). 

Protein samples were prepared using 50μg of protein, determined according to Bradford 

assay, and 4x protein loading buffer. Protein loading dye was prepared using 62.5 mM 

Tris-HCl pH 6.8, 2.5 % SDS, 0.002 % Bromophenol Blue, 0.7135 M (5%) β-

mercaptoethanol, and 10 % glycerol. Samples were boiled for 5 minutes prior to 

electrophoresis on 8% acrylamide gels. Electrophoresis was run for ~2 hours, followed 

by a 1 hour wet-transfer onto a PVDF membrane (Immobilon-P). Membranes were 

blocked for 1 hour with 5% milk (NUAK1) or 5% BSA (LKB1, MYPT1). Primary 

antibody was left on membranes overnight at 4ºC. Antibodies used included NUAK1 

(1:1000 dilution in 5% milk, Cell Signaling #4448), LKB1 (1:1000 dilution in 5% BSA, 

Cell Signaling #3050). pMYPT1 Ser472, pMYPT1 Ser445, pMYPT1 ser909 and GST-

MYPT1 were purchased from MRC Protein Phosphorylation and Ubiquitination Unit 

(University of Dundee, Scotland) and prepared 1:1000 in 5% BSA. Anti-tubulin antibody 

was purchased from Sigma and applied for 1 hour at 1:1000 dilution in 5% BSA. 

Following overnight incubation, membranes were washed 3x with TBST for a total of 30 

minutes and incubated for 1 hour with secondary antibody (1:10 000 dilution) using HRP 

horseradish peroxidase-conjugated anti-rabbit and anti-mouse (GE healthcare) and anti-

sheep (Sigma) secondaries. Membranes were washed 3x with with TBST for a total of 30 

minutes and imaged using Luminata Forte substrate (Millipore) on Biorad Gel-doc. 

Images were taken from 20 – 900 seconds, and all western blots shown and quantified are 

from 300 second exposure, except tubulin which is shown and quantified at a 35 second 

exposure. 
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2.4 Phostag™ Western Blot 

Phostag™ lysis buffer was prepared similar to above, however EGTA, sodium 

pyrophosphate and β-glycerophosphate were excluded from preparation. Protein lysates 

were prepared in the same way as described above.  

Phostag™ gels were prepared using Phostag™ solution (Wako Chem) and 10mM MnCl2, 

as 8% acrylamide gels, according to manufacturer’s protocol. Electrophoresis was run for 

~3 hours, after which gels were washed for 10 minutes with 1x transfer buffer with 1mM 

EDTA, followed by 10 minutes with 1x transfer buffer without EDTA. Wet transfer was 

run for 1 hour on PVDF membranes (Immobilon-P). Membranes were incubated in 

primary antibody for 2 days, and imaging was performed as described above. Images 

were taken from 20 – 900 seconds. Images shown and quantified are from 900 second 

exposure.  

2.5 siRNA-mediated knockdown 

Transfections were performed as previously described by Peart and colleagues (2015), 

using 2μL of siRNA for each well. Cells were seeded at a density of 1 x 105 cells/well in 

a 6-well dish and transfected with siRNA the following day. siRNA transfections were 

performed using DharmaFECT-1, according to manufacturer’s protocol, in 2mL 

media(GE Life Sciences). Media was supplemented with an additional 2mL of growth 

media 24 hours after transfection. Cells were trypsinized and counted (TC10 cell counter, 

Biorad) and seeded for experimental conditions after 72 hours (6-well, 24- well, 96-well). 

Plates were extracted 3 days post-seeding for cell viability readings (see below). Western 

blot knockdown analysis was performed on lysates extracted from 6-well adherent 

culture, 3 days post-seeding.  

Double knockdown experiments were done using the same volume of DharmaFECT-1 as 

single knockdown conditions, to prevent toxicity. siRNA amounts for each individual 

siRNA were halved in double knockdown conditions.  
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2.6 Reattachment Assays 

Day 3 transfected spheroids, from 24-well ULA plates, were plated on to 6-well plates. 

Cells were left in culture for 48 hours, after which point cells were fixed and stained 

using Hema3 staining (Protocol). Fixed and stained colonies were counted. 

2.7 Clonogenic Assays 

OVCAR8 and TOV21G cells were seeded at 500 cells/well in a 6-well dish. OVCAR4 

and HEYA8 cells were seeded at 1000 cells/well in a 6-well dish. The following day, 

cells were treated with DMSO, WZ4003 (Tocris), or HTH-01-015 (Tocris) at indicated 

concentrations. Cells were left in culture for 10 days, after which point colonies were 

fixed and stained using Hema3 staining (Protocol). Fixed and stained colonies were 

counted. 

2.8 CellTiter-Glo® Viability Assay 

For adherent and spheroid cells in 96-well format, all media was aspirated off each well 

after 72 hours in culture. Aspiration was carefully performed to ensure spheroids 

remained intact. A 1:1 mixture of CellTiter-Glo® reagent (Promega) and media was 

prepared. 200μL of prepared mixture was added to each well. Cells were triturated, 

approximately 20 times/well, to lyse cells and spheroids. Plates were left overnight at -

80ºC to ensure lysis. The following day, 100μL was transferred from each well into a 

new white-walled 96-well plate. Readings were measured on Wallac 1420 Victor 2 

spectrophotometer plate reader, measuring luminescence.  

For adherent cells in 24-well format, all media was aspirated off after 72 hours in culture. 

A 1:1 mixture was prepared as described above. 200μL of prepared mixture was added to 

each well. Cells were triturated, approximately 20 times/well, to lyse cells. Plates were 

left overnight at -80ºC to ensure lysis. The following day, 100μL was transferred from 

each well into a new white-walled 96-well plate. Luminescence was measured on Wallac 

1420 victor 2 spectrophotometer. For cells in spheroid culture in 24-well format, 

spheroids were collected in 1.5mL Eppendorf tubes and centrifuged at 4000rpm for 5 

minutes. Media was aspirated from cell pellets until 100μL of media was remaining. An 
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additional 100μL of CellTiter-Glo® reagent was added directly to each tube. Spheroid 

pellets were lysed by trituration, approximately 40 times/sample. Spheroid pellets were 

left overnight at -80ºC to ensure lysis. The following day, 100μL was transferred from 

each sample into a new white-walled 96-well plate. Readings were measured on Wallac 

1420 Victor 2 spectrophotometer plate reader using luminescence setting (Kangas et al., 

1984).  

2.9 CyQUANT® Viability Assay 

Spheroids from 24-well ULA plates were transferred to 1.5mL Eppendorf tubes and 

centrifuged at 4000rpm for 5 minutes. Media was completely aspirated from tubes, 

without disturbing spheroid pellet. Samples were left overnight at -80ºC. The following 

day, CyQUANT® (Life Technologies) reagent was prepared according to manufacturer’s 

protocol. 100μL of mixture was added to each sample. Spheroid pellets were mixed with 

CyQUANT® reagent and triturated, approximately 40 times/sample. Samples were 

transferred from tubes into white-walled 96-well plates and incubated in dark for 60 

minutes. Viability readings were measured on Wallac 1420 Victor 2 spectrophotometer 

plate using fluorescence setting, with an excitation wavelength of 480nm and an emission 

wavelength of 520nm (Jones et al., 2001).  

2.10 Trypan Blue Exclusion Viability Assay 

Spheroids from 24-well ULA plates were transferred to 1.5mL Eppendorf tubes and 

centrifuged at 4000rpm for 5 minutes. Media was completely aspirated from tubes, 

without disturbing spheroid pellet. Pellets were washed twice with 1mL of PBS, and 

centrifuged at 4000rpm for 5 minutes between each wash. A volume of 250μL of trypsin-

EDTA (0.25%) was added to each sample and pellet was resuspended in trypsin-EDTA. 

Samples were left in 37ºC water bath for 30 minutes, and were vortexed every 10 minutes 

during this time. After incubation, 250μL of FBS was added to each sample to inactivate 

trypsin. Pellet was resuspended in mixture and completely dissociated using trituration. 

50μL of each sample was aliquoted into new Eppendorf tubes. An additional 50μL of 

Trypan Blue dye (ThermoFischer Scientific) was added to each tube and vortexed. 15μL 

of mixture was pipetted on to cell counter slide and viability readings were taken using 
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TC10 cell counter (Biorad). Total cell number and live cell number were recorded, 

indicating Trypan Blue excluded cells (Strober, 2001).  

2.11 IC50 Determination 

Cells were seeded in 96-well adherent culture at a density of 2000 cells/well. The 

following day, cells were treated with DMSO, 10-fold serial dilutions of WZ4003 or 10-

fold serial dilutions of HTH01-015 (as indicated in experiment). For IC50 in spheroid 

culture, cells were seeded in 96-well adherent culture at a density of 2000 cells/well and 

immediately treated with DMSO or 1-100μM (as indicated in experiment) of carboplatin 

(Bicaku et al., 2012). 

AlamarBlue (Thermofischer) and CellTiter-Glo® viability readings were used for 

WZ4003 IC50 determination. For AlamarBlue assay, 11% v:v dye was added to cells 72 

hours post-treatment. Viability readings were taken each hour after addition of dye, up 

until 5 hours after dye addition, on Synergy H4 plate reader (Biotek) by measuring 

fluorescence using an excitation wavelength of 560nm and an emission wavelength of 

590nm (Nakayama et al., 1997). Dose-response curves shown are from 3-hour viability 

readings. For CellTiter-Glo® viability, assay was performed as described above for 

CellTiter-Glo® in 96-well adherent culture.  

Incucyte ZOOM (Essen Bioscience) growth curves were used for HTH01-015 IC50 

determination. Cells were treated with inhibitor, one day post-seeding, and left in the 

Incucyte ZOOM for 72 hours, with images being captured every 3 hours. 4 images were 

captured for each well, and percent confluence was calculated for each time point by the 

Incucyte system by taking the average of 6 wells. Growth curves were graphed using 

Graphpad PRISM (version 6). Doubling times were calculated using Graphpad PRISM, 

using non-linear regression. 

Carboplatin IC50 in spheroids was determined using CellTiter-Glo®, as described above 

for CellTiter-Glo® in 96-well spheroid culture. 
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2.12 Incucyte ZOOM Growth Curves 

Cells were seeded in 96-well adherent culture at a density of 2000 cells/well. The 

following day, cells were treated with DMSO or WZ4003 at 0.1μM, 0.5μM, or 2.5μM. 

Cells were left in the Incucyte ZOOM for 72 hours after treatment, with image capture 

every 3 hours. Percent confluence was calculated by Incucyte for each time point, by 

taking the average from 4 images. Data was plotted on Graphpad PRISM to generate 

growth curves. Doubling times were calculated using Graphpad PRISM, using non-linear 

regression analysis.  

2.13 Quantitative Real-time PCR 

Cells from single and double siRNA-mediated knockdown experiments were trypsinized, 

counted and seeded for viability experiments 72 hours after transfection. The remainder 

of the cell suspension was centrifuged at 2000rpm for 5 minutes and the media was 

aspirated. Cell pellets were frozen at -80ºC to begin lysis. Cell pellets were thawed and 

RNA isolation was performed using RNA extraction kit (Qiagen) per manufacturer’s 

protocol. Optional DNAse step was performed to prevent genomic contamination. RNA 

was eluted into 40μL of RNAse-free water. RNA concentration was quantified by 

measuring RNA on UV-VIS spectrophotometer (Nanodrop).  

For cDNA preparation, two tubes were prepared for each sample. One of the two tubes 

was used to ensure that RNA was not contaminated with genomic DNA (no RT sample). 

cDNA was prepared using 2μg of RNA, and was calculated according to concentration 

indicated by UV-VIS spectrophotometer. Random primer (300ng/μL), dNTP (10mM), 

and RNAse-free water were added to reaction mixture. Mixtures were vortexed, 

denatured at 65ºC for 5 minutes and promptly placed on ice. 5x first strand buffer 

(Invitrogen) and 0.1M DTT (Invitrogen) were added to each sample, and samples were 

briefly centrifuged using quickspin setting. Samples were incubated at room temperature 

for 2 minutes. To one set of tubes only, Superscript™ II RT (Invitrogen) was added, and 

mixed in by swirling with pipette tip. cDNA synthesis was performed in iCycler (Biorad) 

by incubating for 10 minutes at 25ºC, followed by 50 minutes at 42ºC. Reaction 

inactivation was performed at 70ºC for 15 minutes.  
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For the next step, PCR was performed for GAPDH to assess RNA quality. Master mix 

was prepared containing 10x PCR Buffer (Invitrogen), 50mM MgCl2, 10mM dNTP, 

10μM GAPDH forward primer, 10μM GAPDH reverse primer (Table 2.2), and Taq DNA 

polymerase (5U/μL, Invitrogen). Master mix was added to each cDNA sample in a 

separate tube. PCR was performed in iCycler (Biorad), beginning with a 4-minute 

denaturation at 95ºC. 29 repetitive cycles of denaturing, annealing and extending were 

performed with 30 seconds at 95ºC, 30 seconds at 60ºC and 30 seconds at 72ºC 

respectively. Reaction inactivation was performed at 72ºC for 10 minutes. Samples were 

cooled to 4ºC and maintained at this temperature until removal. 

PCR samples were run on an agarose gel to assess cDNA quality and rule out genomic 

contamination.  DNA gels were made as 1% agarose DI-LE in 1x TBE. Redsafe™ dye 

(InTRON Biotechnology) was added into DNA gels as a substitute for ethidium bromide. 

Samples were run in DNA gel for 30 minutes at 110V. Gels were imaged on Biorad Gel-

doc using Ethidium-Bromide setting.  

Samples for quantitative PCR was prepared using a master mix. Master mix was prepared 

using Cyber green master mix (Invitrogen), 1:1000 Rox reference dye (Invitrogen), 1:50 

forward primer, 1:50 reverse primer, and RNAse-free water. Master mix was added to 

each cDNA sample in a separate tube. Primers used were GAPDH forward, GAPDH 

reverse, NUAK1 forward, NUAK1 reverse, NUAK2 forward and NUAK2 reverse (Table 

2.2). Quantitative PCR was performed using Quantstudios 3 (Applied Biosystems) 

starting with 50ºC for 2 minutes. This was followed by a denaturing step of 95ºC for 10 

minutes, followed by 40 repetitive cycles of 95ºC for 15 seconds and 60ºC for 15 

seconds. deltaCt values were used to determine relative mRNA levels for genes of 

interest, to verify siRNA knockdown (Livek and Scmittigen, 2001). 
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Table 2.2. qPCR primer sequencesa 

Gene Forward Primer (5’3’) Reverse Primer (5’3’) 

GAPDH 5’CATGAGAAGTATGACAACAGCCCT 5’AGTCCTTCCACGATACCAAAGT 

NUAK1 5’ATGCTAAGTACCCTCTGAATG 5’GCAACAAGCAGTCAGTCGATC 

NUAK2 5’GTCAATCCGGAAGGACAAAA 5’TCACGATCTTGCTCTTC 

a Primers purchased from Sigma Aldrich 
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2.14 Tritiated Thymidine Incorporation Assay 

Cells were seeded in adherent and spheroid culture in 24-well format, at a density of 50 

000 cells/well. Spheroids were immediately treated with 0.5μM WZ4003 at time of 

seeding. Adherent cells were treated with 0.5μM WZ4003 the following day. Cells were 

exposed to tritiated thymidine 24 hours after treatment.  

Tritiated thymidine was added (1 µCi/µL) to each well and incubated for either 24 hours 

for spheroids or 2 hours for adherent cells. For spheroids, media was collected and cells 

were pelleted. Cell pellets were washed twice in cold 1x PBS followed by cold 10% TCA 

(trichloroacetic acid, Sigma). Cells were lysed by adding 500 µL of lysis buffer (1N 

NaOH/0.1% SDS) to the pellet and resuspending. For adherent cells, wells were washed 

twice in cold 1x PBS followed by a wash with cold 10% TCA. Cells were lysed in the 

wells by adding 500 µL of lysis buffer. For spheroids and adherent cells, 400 µL of cell 

lysate was then added to 400 µL of 1N HCl and mixed with 5 mL of scintillation fluid 

(ScintiVerse BD Cocktail, Fisher Chemical) in scintillation vials. Counts per minute 

(cpm) was measured using a liquid scintillation counter (MacDonald et al., 2017). Assay 

was performed in collaboration with Piru Perampalam and Dr. Fred Dick.  

2.15 Spheroid size determination 

Phase contrast images of spheroids were captured using 10x setting on Leica DMI 4000B 

inverted microscope. Horizontal and vertical diameters were measured using ImageJ 

(NIH). Spheroid area (πr2) was determined using average of horizontal and vertical 

diameters.  

2.16 Graphing and Statistical Analysis 

Waterfall plot of NUAK1 expression was generated using Microsoft Excel 2016, all other 

graphs were generated using Graphpad PRISM 6 (Graphpad Software, version 6). 

Analyses were performed using Student’s t-tests, one-way ANOVA and two-way 

ANOVA tests followed by Tukey’s post-hoc test. Significance was set to p< 0.05 (*, 

p<0.05, **, p<0.01, ***, p<0.005, ****, p<0.0001) 
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Chapter 3 

3 Results 

3.1 NUAK1 has limited profile in EOC 

To begin, a survey of NUAK1 expression was conducted in a variety of EOC cell lines in 

adherent culture. This was an important first step to determine which cell lines would be 

good candidates to work with in subsequent experiments.  

Well-established EOC cell lines were screened first for NUAK1 expression to compare 

with previously published literature. Results indicated that NUAK1 had a limited 

expression profile in EOC cell lines, with few cell lines having high expression levels of 

NUAK1. NUAK1 is highly expressed in OVCAR8, TOV21G and COV362 cells, but has 

low to undetectable expression in all other lines (Fig. 3.1B, Fig 3.2). These results 

differed from a previous survey of NUAK1 expression in well-established cell lines, 

which suggested that NUAK1 was evenly expressed in EOC (Zhang et al., 2015). 

Our lab has access to patient-derived ascites samples, from which spheroids in 

suspension can be used to create cell lines. NUAK1 expression was screened, using these 

early passage cell lines (generated by Dr. Gabriel DiMattia). Out of the 22 cell lines 

screened, NUAK1 was only expressed in 6, with high expression in the iOvCa198, 

iOvCa168 and iOvCa256 cell lines (Fig. 3.1C, Fig. 3.2). Interestingly, the iOvCa198 and 

iOvCa247 cell lines were derived from the same patient at different times during 

treatment. iOvCa198, which highly expresses NUAK1, was isolated after the patient had 

undergone 6 cycles of carboplatin and paclitaxel, and had stage IIIB disease. The latter 

cell line, iOvCa247 was derived a year later when the patient had developed carboplatin-

resistant disease and was treated with 13 cycles of paclitaxel; this latter cell line lacks 

NUAK1 expression.  

The fallopian tube epithelial cell lines can be used to study the importance of various 

proteins and kinases at the site of origin of high-grade serous ovarian cancers 

(Fotheringham et al., 2011). To compare NUAK1 expression in cancer cell lines to  
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Figure 3.1.Representative western blots of NUAK1 expression in EOC. Western blot 

conducted using day 3 adherent culture lysates. (A) NUAK1 is expressed in fallopian 

tube epithelial cell lines (Gift from R. Drapkin, UPenn) (n=3) (B) NUAK1 is expressed 

in well-established EOC cell lines (n=3) (C) NUAK1 is expressed few in newly-

established, low-passage, human EOC ascites derived cell lines, established by Dr. 

Gabriel DiMattia (Translational Ovarian Cancer Research Program, UWO). (n=3) 
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Figure 3.2. Quantification of NUAK1 expression across 38 cell lines. Y-axis represents 

ratio of NUAK1/Tubulin adjusted volumes, measured using Imagelab. Well-established 

cell lines are shown in navy (n=14), low-passage ascites derived cell lines are shown in 

yellow (n=24), and immortalized fallopian tube epithelial lines are shown in red (n=2). 
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normal tissue, the immortalized fallopian tube epithelial cells were used. The data 

suggests that NUAK1 is expressed in these cell lines, but at a low level (Fig. 3.1A, Fig. 

3.2).  

This screen of NUAK1 expression enabled us to identify ideal cell lines to use for 

expression knockdown and kinase inhibitor experiments.  

3.2 NUAK1 expression decreases in spheroid culture 

To understand the importance of NUAK1 in EOC metastatic behavior, NUAK1 

expression was assessed in spheroids established over 3 days and compared to expression 

in adherent culture. Trends suggest that NUAK1 expression decreases from adherent to 

day 3 spheroid culture in most the well-established lines, possibly implicating that 

NUAK1 levels may remain low during dormancy in EOC spheroids (Fig 3.3).  

3.3 NUAK1 is regulated by LKB1 

After noting that NUAK1 is expressed in some EOC cell lines, I proceeded to assess if 

NUAK1 is regulated by LKB1 (Peart et al., 2015). In these experiments, NUAK1 

expression and phoshorylation was assessed to determine if LKB1 mediated changes in 

NUAK1 regulation. For these experiments, OVCAR8 STK11KO cells were utilized, 

which were engineered using CRISPR-Cas9 to ablate LKB1 expression, (Buensuceso and 

Shepherd, unpublished data) and were compared to expression in OVCAR8 cells, which 

have high NUAK1 expression levels. 

To understand how NUAK1 was regulated by LKB1, western blot was performed to see 

how total NUAK1 protein levels were impacted by loss of LKB1. Results indicated that 

NUAK1 levels decreased in STK11KO cells relative to OVCAR8 LKB1-wildtype cells in 

both adherent and day 3 spheroid culture conditions (Fig. 3.4A). This suggests that 

NUAK1 expression is regulated by LKB1.  

To examine this further, and assess how NUAK1 was regulated by LKB1, western blot 

was performed to analyze NUAK1 phosphorylation by LKB1. Currently, there are no 

commercially available antibodies that can detect NUAK1 phosphorylation at threonine  
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Figure 3.3. NUAK1 expression decreases in spheroid culture of some well-established 

cell lines.  Western blot performed on day 3 adherent and spheroid lysates. (A) 

Representative western blots showing that NUAK1 expression decreases in adherent 

(ML) to day 3 spheroid (sph) culture. (B) Quantification of NUAK1/Tubulin (n=3) 
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Figure 3.4. NUAK1 is regulated by LKB1. (A) Representative western blot showing 

LKB1 knockout. STK11KO cells lack expression of LKB1 and were created by CRISPR-

Cas9 technology. (B) Representative western blot showing NUAK1 expression in 

OVCAR8 parental and STK11KO cells using monolayer (ML) and day 3 spheroid (sph) 

lysates. In OVCAR8 cells, NUAK1 levels decrease from wildtype (WT) to STK11KO 

cells. (n=3) Quantification on right using 3 replicates. There is a significant decrease in 

NUAK1 expression between OVCAR8 WT cells in monolayer and STK11KO cells in 

spheroid culture. Data is plotted as mean ±SD, analysis using one-way ANOVA and 

Tukey’s post-hoc test (*, p<0.05) (C) Representative western blot showing p-NUAK1 

expression in OVCAR8 parental and STK11KO cells using monolayer (ML) and day 3 

spheroid (sph) lysate on Phostag™ acrylamide gels. p-NUAK1 decreases upon loss of 

LKB1. Quantification on right using 3 replicates. There is a significant decrease in p-

NUAK1 upon loss of LKB1 in sph. Data is plotted as mean ±SD, analysis using one-way 

ANOVA and Tukey’s post hoc test (*, p<0.05) 
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211 (LKB1-mediated phosphorylation site). To overcome this, Phostag™ acrylamide gels 

were used. Phostag™ gels work by labeling phosphorylated protein residues using the 

Phostag™ substrate such that phosphorylated proteins become higher in molecular 

weight and resolve independently from their non-phosphorylated counterparts (Kosako, 

2009). Any antibody that recognizes total protein can be used on these gels to resolve 

phosphorylated proteins. Phostag™ reagent was used on western blot of lysates from 

OVCAR8 WT and STK11KO cells and results indicated that phosphorylation of NUAK1 

decreases upon loss of LKB1 in OVCAR8 cells (Fig. 3.4B). These results are consistent 

with total NUAK1 western blot findings, suggesting that LKB1 is likely required to 

phosphorylate NUAK1 and perhaps stabilize its expression.  

3.4 NUAK1 knockdown increases EOC spheroid cell 
viability 

LKB1 is a critical regulator of EOC spheroid viability and chemoresistance, therefore it 

was important to investigate if its downstream substrate, NUAK1, was implicated in 

spheroid viability. To interrogate NUAK1 function in spheroids, siRNA-mediated 

knockdown of NUAK1 was conducted in OVCAR8 and HeyA8 cells, which have high 

and low levels of NUAK1 respectively (Fig. 3.2). Initial experiments entailed use of the 

CyQUANT viability assay, which measures viability based on DNA content within a 

sample. Surprisingly, results showed that siNUAK1 day 3 spheroids were more viable 

than the siNT control spheroids by 40-60% (Fig. 3.5B), with significantly higher viability 

in OVCAR8 spheroids (p=0.046). To further understand this phenotype, a spheroid 

reattachment assay was conducted. This assay involves plating day 3 spheroids in 6-well 

plates to assess how many spheroids are able to reattach, indirectly indicating the 

metastatic potential of spheroids. siNUAK1 spheroids exhibited a significantly higher 

reattachment potential (OVCAR8, 150% increase ± 37% SEM; HeyA8, 120% increase ± 

26% SEM) than siNT spheroids in both cell lines (OVCAR8 p=0.009, HeyA8 p=0.007) 

(Fig. 3.7C, D). To interrogate the effects of NUAK1 knockdown in primary cells, siRNA-

mediated knockdown of NUAK1 was performed in the iOvCa198 cell line which has 

high expression of NUAK1 (Fig. 3.2). For this experiment, siRNA-mediated knockdown 

of NUAK1 was performed in adherent and day 3 spheroid culture and the metabolic  
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Figure 3.5.NUAK1 knockdown increases spheroid viability and reattachment. (A) 

Western blot confirming NUAK1 knockdown. (B) CyQUANT spheroid viability. 

siNUAK1 spheroids appear to be more viable than siNT spheroids in both cell lines (n=3). 

Data is plotted as mean ±SD, analysis performed using Student’s t-test (*, p<0.05) (C) 

Spheroid reattachment images taken using Zeiss Axiozoom Stereo macroscope at 4x. 

Plates were fixed and stained with Hema3 to count spheroids. (D) Spheroid reattachment 

quantification. siNUAK1 had higher reattachment counts than control (n=3) Data is 

plotted as mean ± SD, analysis performed using Student’s t-test (***, p<0.005) (E) 

CellTiter-Glo® viability for day 3 monolayer (ML) and spheroid (SPH) samples from 

iOvCa198 cell line. siNUAK1 cells and spheroids are more viable than siNT treated cells. 

Data is plotted as mean ±SD, analysis performed using Student’s t-test (*, p<0.05) (n=3) 
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based CellTiter-Glo® assay was used to assess cell viability. Loss of NUAK1 

significantly increased both adherent (16% increase ± 2.2% SEM, p < 0.001) and day 3 

spheroid (20% increase ± 5.4% SEM, p=0.0162) viability (Fig. 3.2E). These initial 

experiments suggest that loss of NUAK1 confers increased spheroid cell viability, with 

the subsequent higher capacity to reattach.  

To ensure that the increase in viability upon loss of NUAK1 was not a result of the 

CyQUANT and CellTiter-Glo® viability assays, knockdown of NUAK1 was performed 

and viability was analyzed using the Trypan Blue exclusion assay. The Trypan Blue 

assay used for this experiment involves the use of a diazo blue dye that accumulates 

within dead cells, which are unable to pump the dye out (Stober, 2001). As a result, using 

this dye allows one to measure the proportion of both viable cells and dead cells and thus 

offers a direct measure of cell viability. In this experiment, I also determined whether loss 

of NUAK2, the most closely related family member to NUAK1, had similar effects on 

day 3 spheroid viability. Results indicated that loss of NUAK1 caused a significant 

increase (OVCAR8, 110% increase ± 27% SEM, p=0.004, HeyA8, 220% increase ± 19% 

SEM, p<0.0001) in viable cell number in spheroids, in both lines (Fig. 3.6). However, 

reduction of NUAK2 had no effect on viable spheroid number. Once again, this suggests 

that specific loss of NUAK1 confers more viable spheroids, as seen by the increase in 

viable cell number within spheroids.  

3.5 NUAK1 and NUAK2 are unable to functionally 
compensate for each other 

To study the effects of NUAK compensation, and to understand the importance that both 

NUAKs hold in EOC cell viability, single and double knockdowns of NUAK1 and 

NUAK2 were conducted. This experiment was performed in 96-well format to identify 

the significance of NUAK1/2 knockdown on single spheroids. Single and double 

NUAK1/2 knockdown was conducted using siRNA against NUAK1 and NUAK2, 

independently and together. This experiment was originally done in 7 well-established 

cell lines. However, after qRT-PCR knockdown analysis, only cell lines which had >50% 

knockdown of NUAK species were chosen for further analysis (Fig. 3.7).  
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Figure 3.6.NUAK1 knockdown increases viable cell number in spheroids. Viability 

readings from Trypan Blue exclusion assay, demonstrating in both cell lines that loss of 

NUAK1 confers significantly increased viable cell number (n=3). Data is plotted as mean 

± SD, analysis using one-way ANOVA and Tukey’s post hoc test (***, p<0.005) (for 

viable cells) 
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Data illustrates that loss of NUAK1 alone increases spheroid size and significantly 

increases spheroid viability in OVCAR4 and HeyA8 cells (Figs. 3.8, 3.9). Where 

spheroid viability is increased, adherent cell viability is also significantly increased to 

roughly the same extent, and is significant in OVCAR4 and HeyA8 cells (Fig. 3.9). Loss 

of NUAK2 significantly increases spheroid size, spheroid viability and adherent viability 

in OVCAR4 cells, but decreases viability in HEYA8, OVCAR8 and TOV21G cells (Figs. 

3.8, 3.9). Loss of NUAK1 and NUAK2 together significantly increases adherent and 

spheroid cell viability in and OVCAR4 and HeyA8 cell lines, but decreases viability in 

TOV21G and OVCAR8 cells (Fig. 3.9). TOV21G cells had a significant decrease in 

adherent and spheroid viability in all loss of NUAK scenarios (Fig. 3.9). This may 

because TOV21G cells lack expression of LKB1 (TCGA, 2011), the direct activator of 

NUAKs, therefore loss of LKB1 may be affecting NUAK1/2 functionality in these cells. 

Effective knockdown was confirmed in all cell lines using qRT-PCR (Fig. 3.7). In terms 

of compensation at the mRNA level, NUAK1 mRNA increases in response to NUAK2 

loss in OVCAR4, OVCAR8 and TOV21G cells (Fig. 3.8). However, NUAK2 is unable 

to compensate for loss of NUAK1.  

Overall these results suggest that loss of NUAK1 has a significant effect on adherent and 

spheroid viability, and can compensate for loss of NUAK2 at the mRNA level in most 

cell lines screened. Double knockdown results more closely mirror NUAK1 knockdown 

alone in OVCAR4 and HeyA8 cells, possibly indicating that NUAK1 is the more 

important of the two species. Functional compensation may be occurring in OVCAR8 

cells, which decrease in spheroid viability upon loss of both NUAK species. This data 

may indicate that functional compensation may be a cell line specific effect which is not 

uniform across all EOC cell lines. Thus, inhibitor studies may be important to understand 

the behavior which both NUAK species have in EOC.  
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Figure 3.7. Validation of knockdown from single and double NUAK knockdown 

experiments. (A) NUAK1 mRNA expression, relative to GAPDH, in siNT, siNUAK1 and 

siNUAK1/2 treatments. Data is plotted as mean±SD.(B) NUAK2 mRNA expression, 

relative to GAPDH, in siNT, siNUAK2 and siNUAK1/2 treatments. Data is plotted as 

mean±SD. (n=3) 
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Figure 3.8. Assessment of single and double NUAK knockdown on EOC spheroids. (A) 

Representative spheroid images taken at 10x magnification (250µM scalebar). (B) 

Quantification of spheroid area. Spheroids were quantified by taking the horizontal and 

vertical diameter using ImageJ, and averaging diameters to calculate area. Data is plotted 

as mean ±SD, analysis performed using one-way ANOVA and Tukey’s post hoc test (*, 

p<0.05, **, p<0.01) (n=3) 

  



43 

 

 

Figure 3.9. Viability from single and double NUAK knockdowns. (A) CellTiter-Glo® 

based viability in adherent culture in 4 cell lines. Data is plotted as mean ±SD, analysis 

performed using one-way ANOVA and Tukey’s post hoc test (*, p<0.05, **, p<0.01, 

***,p<0.005, ****, p<0.0001). (B) CellTiter-Glo® based viability in spheroid culture in 

4 cell lines. Data is plotted as mean ±SD, analysis performed using one-way ANOVA 

and Tukey’s post hoc test (*, p<0.05, ****, p<0.0001). (n=3) 
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3.6 NUAK1 inhibition increases EOC cell growth and 
clonogenicity 

After noting that NUAK1 knockdown increased EOC cell and spheroid viability, I 

wanted to explore the effects of NUAK1/2 inhibition using other assays in adherent 

culture. To begin studying this we obtained the WZ4003 dual NUAK inhibitor (Banerjee 

et al., 2014). Prior to testing the inhibitor using various assays, dose response curves were 

generated for the compound using OVCAR8 and HEYA8 cells. To generate dose-

response curves alamarBlue, a metabolism-based viability assay which indirectly 

measures mitochondrial activity, and CellTiter-Glo® were used as two different measures 

of cell viability. Interestingly, complete dose response curves were not formed with the 

chosen concentrations, as the initial concentrations of WZ4003 used seemed to increase 

adherent cell viability, producing a biphasic response (Fig. 3.10). Only at 100μM was 

there significant cell death in both cell lines. Upon consideration of published drug 

concentrations known to affect NUAK1/2 activity (Banerjee et., al, 2014), and the 

increased cell viability observed at lower concentrations, 0.1μM, 0.5μM, and 2.5μM 

concentrations were chosen for treatment in various assays. 

To explore NUAK inhibition, the WZ4003 NUAK1/2 inhibitor was used to investigate 

growth kinetics. To do this the Incucyte ZOOM live cell imaging system was used. This 

system monitors cell growth over time by capturing images at frequent intervals (every 3 

hours in this study) and calculating percent confluence. For these growth curve 

experiments, OVCAR4, OVCAR8, HeyA8 and TOV21G cell lines were used. The 

effects of NUAK inhibition on the FT190, immortalized fallopian tube epithelial cell line, 

were also tested to assess if NUAK inhibition altered growth kinetics of non-transformed 

cells. In addition to growth curve analysis, Graphpad PRISM was used to calculate 

doubling time in the presence of WZ4003. Data indicated that NUAK inhibition 

significantly increased growth in OVCAR4 and HEYA8 cell lines at later time points, but 

does not significantly impact the growth curve in OVCAR8 and TOV21G cells (Fig. 

3.11). FT190 cells did not show increased confluence in response to WZ4003, but did see 

a significant decrease in growth at the highest concentration used, suggesting toxicity 

(Fig 3.11A). In regards to doubling time, all cell lines tested exhibited a shortening of 
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doubling time at the 0.5μM dose (Table 3.1). The doubling time decreases suggested that 

NUAK inhibition may increase the proliferative potential of cells. 

The clonogenic assay was also used to test the effects of NUAK inhibition. The 

clonogenic assay involves plating cells at a low density in 6-well adherent culture plates 

and assessing the ability of those cells to form colonies under an extended period of time. 

In this study, the clonogenic assay was used to assess the effects of NUAK1/2 inhibition 

on colony forming potential. This assay was done in the same four EOC cell lines used to 

generate growth curves. Results from OVCAR8 and HeyA8 cells indicate that there is a 

significant dose-dependent increase in clonogenicity with use of the WZ4003 NUAK 

inhibitor (Fig. 3.12, 3.13). Results from OVCAR4 and TOV21G cells suggest a trend 

towards a similar dose-dependent increase in clonogenicity, however this was not found 

to be statistically significant (Fig 3.13). These results suggest that NUAK inhibition is 

increasing clonogenicity, which may be due to increased proliferation or decreased 

apoptosis.  

3.7 Specific NUAK1 inhibition increases EOC cell growth 

WZ4003 is a dual NUAK inhibitor and can thus target NUAK2 in addition to NUAK1; 

however, my siRNA-mediated knockdown experiments indicated a more important role 

of NUAK1 in EOC. To further this, we acquired the HTH-01-015 inhibitor which is 

known to specifically inhibit NUAK1 (Banerjee et al., 2014). To begin, the appropriate 

dose of HTH-01-015 was calculated. A range of HTH-01-015 doses was assessed by 

measuring cell growth using the confluence function in the Incucyte ZOOM. Similar to 

WZ4003 results, HTH-01-015 was able to increase cell growth at low doses, as seen by 

the shift in the growth curves for both OVCAR8 and HEYA8 cell lines (Fig. 3.14). 

Concurrently with this growth curve shift, a decrease in doubling time was observed at 

the low dose treatments (Table 3.2). However, the decreased doubling time observed at 

the low doses was not as dramatic as the change in doubling time observed with 

WZ4003.Upon evaluating dose-response, concentrations of 0.5μM and 2.5Μm were 

chosen as optimal concentrations for future experiments. These concentrations increased 

EOC cell growth, a phenotype that was examined further. 
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Figure 3.10. Dose-response curves using WZ4003 NUAK inhibitor, treated with 

concentrations as indicated. (A) alamarBlue based cell viability readings. Data is plotted 

as mean±SD, analysis performed using one-way ANOVA and Tukey’s post hoc test 

(****, p<0.001). (n=3) (B) CellTiter-Glo® based cell viability readings. Data is plotted 

as mean±SD, analysis performed using one-way ANOVA and Tukey’s post hoc test (***, 

p<0.005, ****, p<0.001) (n=3). 
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Figure 3.11.Treatment with WZ4003 influences growth kinetics of EOC cell lines. (A) 

FT190, immortalized fallopian tube epithelial cells, treated with 3 concentrations of 

WZ4003. Cells were seeded at 2000cells/well in 96 well format in 150μL and treated 

with the listed treatments the following day. Cells were monitored in the Incucyte ZOOM 

system for 72h. Confluence was calculated using the Incucyte ZOOM software. 

Confluence was plotted on Graphpad PRISM to create growth curves, analysis was 

conducted using two-way ANOVA to identify timepoints where treatments became 

significant, followed by Tukey’s post hoc test, (*, p<0.05). (B) OVCAR4, HEYA8, 

OVCAR8 and TOV21G cells treated with various concentrations of WZ4003. Cells were 

seeded at 2000cells/well in 96 well format in 150μL and treated with the listed treatments 

the following day. Cells were monitored in the Incucyte ZOOM system for 72h. 

Confluence was calculated using the Incucyte ZOOM software. Confluence was plotted 

on Graphpad PRISM to create growth curves, analysis was conducted using two-way 

ANOVA, followed by Tukey’s post hoc test, (*, p<0.05). (n=3) 
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Table 3.1. Doubling timesa for WZ4003 treatment. 

Cell Line Treatment Doubling Time (h) 

FT190 DMSO 32.76 ± 0.28 

0.1µM WZ4003 32.36 ± 1.24 

0.5µM WZ4003 30.99 ± 2.03 

2.5µM WZ4003 33.55 ± 2.22 

OVCAR4 DMSO 35.27 ± 3.09 

0.1µM WZ4003 31.61 ± 1.84 

0.5µM WZ4003 31.37 ± 1.97 

2.5µM WZ4003 33.54 ± 3.14 

OVCAR8 DMSO 24.93 ± 1.57 

0.1µM WZ4003 23.12 ± 0.39 

0.5µM WZ4003 22.91 ± 0.77 

2.5µM WZ4003 25.23 ± 1.64 

HeyA8 DMSO 23.71 ± 0.88 

0.1µM WZ4003 22.13 ± 0.82 

0.5µM WZ4003 21.10 ± 0.22 

2.5µM WZ4003 25.12 ± 1.28 

TOV21G DMSO 20.69 ± 0.37 

0.1µM WZ4003 20.61 ± 0.52 

0.5µM WZ4003 19.69 ± 0.65 

2.5µM WZ4003 22.43 ± 1.31 

aDoubling time calculated using non-linear regression, exponential fit curves, in 

Graphpad PRISM. The doubling time shown is the average ±SD from 3 experiments, 

using the mean of means. (N=3) 
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Figure 3.12. Treatment with WZ4003 produces a dose-dependent increase in 

clonogenicity. (A) HeyA8 cells treated with WZ4003. Cells were seeded at a density of 

1000cells/well, treated the day after seeding, and fixed and stained 7 days after treatment. 

Top images show whole-well taken using Zeiss Axiozoom stereomicroscope at 4x. 

Bottom images show 100x magnification views of wells using Leica light microscope 

(100μM scalebar). (n=3). (B) OVCAR8 cells treated with WZ4003. Cells were seeded at 

a density of 500cells/well, treated the day after seeding, and were fixed and stained 7 

days after treatment. Top images show whole-well taken using Zeiss Axiozoom 

stereomicroscope at 4x. Bottom images show 100x magnification views of wells using 

Leica light microscope (100μM scalebar). 
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Figure 3.13. WZ4003 clonogenic assay colony quantification. Data is plotted as 

mean±SD, analysis performed using one-way ANOVA and Tukey’s post hoc test (****, 

p<0.001) (n=3) 
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To test the effects of HTH-01-015 on EOC cells, the clonogenic assay was performed 

using OVCAR8 and HEYA8 cells. Treatment with HTH-01-015 had no significant effect 

on clonogenic capacity in both EOC cell lines (Fig. 3.15). This may suggest that NUAK1 

and NUAK2 loss both contribute to colony forming ability in EOC cells. 

3.8 NUAK1 inhibition is insufficient to induce platinum 
sensitivity 

NUAK1 knockdown and WZ4003 treatment produces increases in EOC cell viability, 

which may be attributed to increased proliferation. If this increased cell viability caused 

by NUAK1 inhibition was due to increased proliferation, then this may sensitize 

spheroids to platinum based chemotherapy. To test this, a combination therapy 

experiment was employed to see if WZ4003 and carboplatin together could decrease 

spheroid viability and promote platinum sensitivity. However, prior to doing this 

experiment it was necessary to determine the appropriate concentration of carboplatin to 

use for treating EOC spheroids with. In 96-well format, OVCAR4, OVCAR8 and 

HEYA8 were dosed with concentrations of carboplatin between 1-100μM (Fig. 3.16). A 

dose of 50μM was selected since it was sufficient to modestly affect spheroid viability, 

but not cause complete cell killing. 

After determining the appropriate dose of carboplatin, the combination therapy 

experiment was performed in both adherent and spheroid culture in 96-well format, using 

the CellTiterGlo® assay. Results indicated that treatment with carboplatin alone and in 

combination with WZ4003 resulted in a significant decrease in adherent and spheroid 

viability. However, there was no significant difference in viability between the 

carboplatin treatment and the combination therapy treatment (Fig 3.17). These results 

suggest that NUAK inhibition is not sufficient to further sensitize spheroids to platinum-

based chemotherapy.  
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Figure 3.14. Dose response of HTH01-015 on EOC cell growth. OVCAR8 and HEYA8 

cells were seeded at 2000cells/well in 150μL. The following day, cells were treated with 

DMSO or various concentrations of HTH01-015 listed above, in an additional 50μL. 

Cells were left in the Incucyte ZOOM for 72h after which confluence was calculated. 

Growth curves were formed on Graphpad PRISM and data was analyzed using two-way 

ANOVA and Tukey’s post hoc test, (*, p<0.05) (n=3) 
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Table 3.2. Doubling times
a
 for HTH01-015 treatment. 

Cell Line Treatment Doubling Time (h) 
OVCAR8 DMSO 23.78h ± 0.179h 

0.01µM HTH01-015 23.07h ± 0.62h 
0.1µM HTH01-015 23h ± 0.226h 
1µM HTH01-015 23.54h ± 0.158h 
10µM HTH01-015 42.15h ± 1.94h 
100µM HTH01015 -193.15h ± 20.93h 

HEYA8 DMSO 21.99h ± 0.627h 
0.01µM HTH01-015 21.80h ± 0.78h 
0.1µM HTH01-015 21.03h ± 0.87h 
1µM HTH01-015 20.61h ± 0.92h 
10µM HTH01-015 40.87h ± 5.95h 
100µM HTH01015 -118.15h ± 16.78h 

aDoubling time calculated using non-linear regression, exponential fit curves, in 

Graphpad PRISM. The doubling time shown is the average ±SD from 3 experiments, 

using the mean of means. (n=3) 
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Figure 3.15. Treatment with HTH01-015 has no effect on clonogenicity. (A) Cells 

treated with HTH01-015, or WZ4003, as indicated. Cells were seeded at a density of 

1000cells/well, treated the day after seeding, and fixed and stained 7 days after treatment. 

Top images show whole-well taken using Zeiss Axiozoom stereomicroscope at 4x. (B) 

Quantification of colony formation. Data is plotted as mean±SD, analysis performed 

using one-way ANOVA and Tukey’s post hoc test (n=3) 
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3.9 NUAK1 inhibition does not affect thymidine 
incorporation 

To investigate why the combination therapy experiment did not work as predicted, and to 

determine if in fact NUAK inhibition is directly affecting proliferation, tritiated 

thymidine incorporation assays were performed. The tritiated thymidine incorporation 

assay involves incorporation of radioactively labeled thymidine into cells that are actively 

synthesizing new DNA. Higher radioactivity readings are indicative of higher DNA 

content in S-phase, which is reflective of increased proliferation (Gieni et al., 1995). For 

this assay, cells were treated in adherent and spheroid culture with 0.5μM WZ4003 and 

pulsed with thymidine 24 hours after treatment. Results from OVCAR4, OVCAR8 and 

HEYA8 cells suggested that there was no difference between thymidine incorporation in 

DMSO and WZ4003-treated cells, in adherent and spheroid culture (Fig. 3.18). This 

suggests that NUAK inhibition does not influence proliferation, and may instead 

influence other processes. This supports our results in which WZ4003 treatment had no 

further carboplatin sensitization effect on spheroids.  
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Figure 3.16. Carboplatin dose-response curves in spheroids. OVCAR4, OVCAR8 and 

HEYA8 cells were seeded at 2000cells/well in 96 well ULA plates, in 150μL. 

Immediately after seeding, cells were treated with concentrations of carboplatin between 

1-100μM, as indicated. Cells were extracted after 72h for CellTiterGlo® based viability 

readings. Data is plotted as mean±SD for 6 replicates, analysis performed using one-way 

ANOVA and Tukey’s post hoc test. (*, p<0.05, **, p<0.01, ****, p<0.001). (n=2) 
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Figure 3.17. WZ4003 does not further sensitize EOC cells to carboplatin. CellTiterGlo® 

data suggests that NUAK inhibition does not sensitize cells and spheroids to carboplatin 

based therapy. (monolayer) Cells were seeded in 96-well format, with 2000cells/well, in 

150μL, and treated with either DMSO, 0.5μM WZ4003, 0.5μM carboplatin or a 

combination of both treatments the following day. Cells were extracted after 72h and 

CellTiterGlo® was added to measure viability. Relative cell viability, as mean±SD, was 

plotted using Graphpad PRISM, analysis was performed using one-way ANOVA and 

Tukey’s post hoc test, (****, p<0.001). (spheroid) Cells were seeded in 96-well format 

with 2000cells/well, in 150μL, and treated immediately after seeding with treatments 

listed above. Cells were extracted after 72h and CellTiterGlo® was added to measure 

viability. Relative cell viability, as mean±SD, was plotted using Graphpad PRISM, 

analysis was performed using one-way ANOVA and Tukey’s post hoc test, (****, 

p<0.001). (n=3) 
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Figure 3.18.NUAK inhibition does not affect thymidine incorporation. Cells were seeded 

in 6- well format at 100 000cells/well in adherent culture and 200 000 cells/well in 

spheroid culture. Cells were treated with DMSO and 0.5μM WZ4003 at time of seeding 

for spheroids and 1-day post-seeding for adherent culture. Spheroids were pulsed with 

tritiated thymidine for 24 hours, 1 day post-treatment. Adherent cells were pulsed with 

tritiated thymidine for 2 hours, 1 day post-treatment. Data is plotted as mean±SD for 3 

replicates, analysis performed using Student’s t-test. (*, p<0.05) (n=3) Experiment 

conducted in collaboration with Piru Perampelam and Dr. Fred Dick 
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Chapter 4  

4 Discussion 

4.1 Summary of findings 

Results presented in this thesis offer new insight into the previously unknown role of 

NUAK1 in EOC. To begin, the array of NUAK1 expression was demonstrated in well-

established EOC cell lines, newly- established early-passage EOC cell lines, and 

immortalized fallopian tube epithelial lines. This screen of NUAK1 protein expression 

indicated that NUAK1 has limited expression in EOC. This differs from previously 

published literature on NUAK1 in EOC, which suggested that NUAK1 is evenly 

expressed in EOC cell lines (Zhang et al., 2015). It was also noted that NUAK1 levels 

decrease from adherent to spheroid culture, which may permit increased survival in 

spheroids. Results indicated that NUAK1 is regulated by LKB1 in EOC cells, and that its 

expression and phosphorylation are dependent upon intact LKB1.Transient knockdown 

data indicated a unique and unexpected phenotype, whereby NUAK1 knockdown 

increases viable cell number within spheroids derived from EOC cell lines. Alongside 

increased viable cell number, data suggested that NUAK1 knockdown drastically 

increases reattachment potential, which may be an indirect indication of the metastatic 

potential of spheroids. Single and double knockdown experiments outlined the more 

important role of NUAK1 in EOC cell and spheroid viability. These experiments 

suggested that NUAK2, the most closely related family member to NUAK1, is not as 

important to EOC cell and spheroid viability, yet functional compensation may be a cell 

line specific event. To further explore the roles of NUAKs in EOC, the WZ4003 dual 

NUAK inhibitor was used. Inhibitor studies indicated that NUAK1/2 inhibition results in 

increased cell growth and increased clonogenicity. Studies using the HTH-01-015, 

NUAK1 specific inhibitor, indicated that NUAK1 inhibition alone increased EOC cell 

growth, however this was not followed by increased clonogenicity. Lastly, results 

suggested that the increased viability phenotype that is seen upon NUAK inhibition could 

not be exploited to further sensitize spheroids to platinum-based chemotherapy. This may 

be because NUAK1 does not affect cell cycle, as indicated by the tritiated thymidine 

incorporation assay, and NUAK inhibition is affecting processes which are independent 
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of proliferation. Data presented in this study has indicated the unique role of NUAK1 in 

EOC and has identified a unique survival mechanism which spheroids may use to 

increase viability.  

Data presented here showing NUAK1 regulation by LKB1 is in line with data that has 

been recently observed by our laboratory. Our lab has recently conducted a Kinobead 

assay, a technique used to analyze changes in kinome activity. The assay involves the use 

of multiplexed inhibitor beads combined with tandem mass spectrometry, to capture and 

analyze active kinases within lysates (Cooper et al., 2013). Results from this assay, using 

the OVCAR8 and OVCAR8 STK11KO cell lines, suggested that NUAK1 was the only 

ARK species regulated by LKB1, and that NUAK1 activity decreases upon loss of LKB1 

in both adherent and spheroid culture (Buensuceso and Shepherd, unpublished data). This 

assay validated my pursuit of NUAK1 as our ARK of interest, and suggests that NUAK1 

activity is regulated by LKB1 in EOC cells. 

4.2 Potential growth suppressive of NUAK1 in EOC 

Findings presented in this study indicate that NUAK1 may have growth suppressive, and 

potential tumor suppressive, activity in EOC cells and spheroids. Firstly, it was noted that 

NUAK1 is expressed at the protein level in a very limited subset of EOC cell lines. These 

results are supported by the publicly available Human Protein Atlas dataset, which 

suggests that NUAK1 has low-undetectable staining in EOC tissue samples (Uhlen et al., 

2015).  This may be an indication that NUAK1 expression is not beneficial for growth 

and viability in EOC cells. For example, NUAK1 was lost in the latter of two cancer cell 

lines which were derived from the same patient during different times in her treatment. 

Perhaps it may even be advantageous for EOC cells to decrease NUAK1 expression to 

enhance chemoresistance. Furthermore, transient knockdown experiments suggested that 

NUAK1 knockdown releases spheroids into a more viable state, with higher viable cell 

number in siNUAK1 spheroids and NUAK1 knockdown increases spheroid reattachment 

potential. This data suggests that NUAK1 expression may be restricting spheroid 

potential and that NUAK1 loss may in fact enhance spheroid integrity and ability to 

further metastasize through reattachment. Inhibitor data supplements knockdown 

findings, as NUAK inhibition increases cell growth and clonogenicity. These findings 
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suggest that NUAK1 expression may be restricting EOC cell growth or adhesion. 

Overall, results indicate that NUAK1 may be maintaining tumor suppressive activity and 

that loss of NUAK1 may drive EOC cells and spheroids into a more viable and metastatic 

state. Therefore, it may be possible to exploit this potential tumor suppressive role of 

NUAK1 and create NUAK1 agonist therapies to reactivate NUAK1 and reduce 

metastatic disease burden. 

Results presented in this study differ from previously published literature regarding 

NUAK1 function in EOC. In 2015, Zhang and colleagues gathered evidence to suggest 

that NUAK1 promotes epithelial-to- mesenchymal transition (EMT) by inhibiting a 

promoter of mesenchymal-to-epithelial transition (MET), miR-1181. They show that 

miR-1181 acts to induce degradation of HOXA10, a target that triggers EMT in ovarian 

cancer cell lines. Furthermore, the authors suggest that NUAK1 is evenly expressed in 

EOC cell lines, but our results in the same cell lines (OVCAR8, OVCAR3, Hey, SKOV3) 

show that NUAK1 has a limited expression profile and is not expressed at the protein 

level in many of these lines. Zhang and colleagues suggest that NUAK1 has an oncogenic 

role, since its expression acts to induce a metastatic phenotype; yet our results suggest 

that NUAK1 has potential tumor suppressive activity in EOC cell lines. In support of the 

hypothesis proposed by Zhang and colleagues, Phippen and colleagues (2016) suggest 

that NUAK1 is associated with poor prognosis in HGSOC. The authors conducted 

analysis of NUAK1 transcript expression in 34 HGSOC patient samples and monitored 

progression free survival. They noted that NUAK1 expression is correlated with lower 

progression free survival in patient samples. Furthermore, they knocked down NUAK1 

using RNAi in 2 cell lines and found that NUAK1 knockdown decreased cell motility in 

vitro. While this study offers additional insight into NUAK1 in EOC, it has only 

considered NUAK1 expression at the RNA level. For this reason, my work with NUAK1 

at the protein level may offer better insight into NUAK1 function in HGSOC.  

My results suggest that NUAK1 has tumor suppressive activity in EOC, and can be 

supported by previously published studies in other cancer sites suggesting that NUAK1 

has tumor suppressive function. Hou and colleagues (2011) describe a tumor suppressive 

role of NUAK1 by which NUAK1 activates p53. Using various cancer cell lines from 
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different sites, the authors show that LKB1-mediated activation of NUAK1 triggers p53 

phosphorylation, causing p21 transcription and cell cycle arrest at the G1 border. This 

may be a mechanism by which NUAK1 is exerting tumor suppressive activity in EOC, 

but only in tumors or cell lines with intact p53, such as the HeyA8 cell line (Domcke et 

al., 2013). Most HGSOC tumors and cell lines lack functional p53 (Ahmed et al., 2010), 

therefore this mechanism may not be applicable to all cell lines in which I have 

conducted this study. In 2014, Banerjee and colleagues described a mechanism by which 

LKB1-activated NUAK1 controls cell cycle through indirect regulation of PLK1 via 

interaction with the MYPT1-PP1β complex. To this end, Werle and colleagues (2014) 

demonstrated that LKB1 activates NUAK1 to enhance the binding of PP1γ with MYPT1-

PLK1-NUAK1. This interaction results in inactivation of PLK1, preventing G2M 

transition and mitotic progression. This tumor suppressive function of NUAK1 may be 

applicable to my results and the observed phenotype in EOC cells. Although results from 

the tritiated thymidine incorporation assay indicated that that NUAK1 inhibition did not 

significantly alter proliferation, the assay is limited to evaluating proliferation based on 

the S-phase. Perhaps NUAK1 is still affecting proliferation through PLK1 inhibition, and 

is instead affecting G2M. Additionally in support of NUAK1 having tumor suppressive 

activity, Humbert and colleagues (2010) observed that NUAK1 expression induces gross 

aneuploidies and premature senescence, using WI-38 human diploid fibroblasts. The 

authors noted that NUAK1 knockdown increased cell growth and colony formation, 

while decreasing senescence, which mirrors my data from EOC cell lines. LATS1 acts as 

a regulator of genomic stability and senescence, and decreased LATS1 expression is 

associated with increased senescence (Takahasi et al., 2006). Humbert and colleagues 

demonstrated that NUAK1 phosphorylates LATS1 at S464, enabling LATS1 degradation 

to induce senescence. Current theories suggest that cellular senescence can act as a tumor 

suppressive mechanism to prevent pre-malignant cells from undergoing malignant 

transformation upon oncogenic expression (Lowe et al., 2004). It may be possible that 

EOC cells are downregulating NUAK1 to attain a more viable state, and preventing 

NUAK1-mediated senescence in certain cell populations. The mechanisms of NUAK1-

mediated tumor suppression proposed by these 3 studies may be applicable to my 

findings. 
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4.3 Therapeutic implications of results 

Initially, I believed that the increased spheroid cell viability seen upon loss of NUAK1 

may have been due to increased cell proliferation, which could render the cells more 

sensitive to chemotherapy. However, combination therapy results indicated that I was 

mistaken, and that NUAK inhibition is insufficient to further induce platinum 

sensitization. Along with the increased clonogenicity and lack of sensitization with 

carboplatin, inhibition of NUAK1 is unlikely to be an effective therapeutic strategy in 

EOC. 

Results presented in this study imply the tumor suppressive nature of NUAK1 in EOC, 

therefore it may be useful to develop NUAK1 agonists and evaluate their potential 

therapeutic use. If we consider our knockdown and inhibitor results, then we could, in 

theory, activate NUAK1 signalling to reduce spheroid viability and reattachment. NUAK 

agonists could be used to reduce microscopic metastatic disease burden in late-stage 

EOC, and help minimize this clinically significant problem in EOC treatment. However, 

this will need to be evaluated further by first overexpressing NUAK1 or using 

constitutively-active NUAK1 mutants in EOC cells, as a complementary set of 

experiments to those proposed in this thesis.  

4.4 NUAK1 and LKB1 

Results gathered by Peart and colleagues (2015) suggested that LKB1 functions as a key 

mediator of spheroid viability in EOC. In this study, results suggested that NUAK1 acts 

as the direct downstream substrate of LKB1, yet the phenotype observed upon NUAK1 

knockdown is the opposite of LKB1. To explain this discrepancy, we must consider that 

LKB1 is a master kinase involved with stress metabolism, while NUAK1 is one of the 13 

direct downstream effectors of LKB1 (Hardie and Alessi, 2013).  LKB1 signalling 

regulates a multitude of processes, and only a subset of these processes may be affected 

by NUAK1. 

Despite this discrepancy in knockdown phenotypes, targeting of NUAK1 through the use 

of NUAK1 agonists may still be beneficial to EOC treatment. We cannot directly target 
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LKB1 since loss of LKB1 activity may affect stress metabolism in normal cells in many 

other critical tissues. Furthermore, LKB1 has been widely implicated as a tumor 

suppressor and systemic administration of LKB1 inhibitors may cause neoplastic 

transformation within other epithelial sites (Zhao and Xu, 2014). If we could instead 

independently target NUAK1 intraperitonially without affecting LKB1 signaling, we 

would avoid risks associated with LKB1 inactivation in normal cells. Therefore, it may 

be worth further exploring the development and use of NUAK1 agonists for EOC 

treatment. 

4.5 Limitations of current study 

My study helped to uncover a novel role of NUAK1 in EOC, however there are aspects 

of the study which have limitations that could be addressed through further 

experimentation. 

Firstly, analysis of NUAK1 phosphorylation was only done using Phostag™ acrylamide 

gels. We were fortunate enough to obtain these gels to confirm results from the Kinobead 

assay (Buensusceso and Shepherd, unpublished data), where we discovered that NUAK1 

activity is regulated by LKB1. However, this system is limited because the 

phosphorylation residues cannot be identified, thus I cannot confirm that we are seeing 

phosphorylation of NUAK1 at the Thr211 residue. To combat this limitation, we would 

need to synthesize our own antibody to detect NUAK1 phosphorylation at the Thr211 

residue and conduct site-specific mutagenesis to ensure we are seeing phosphorylation of 

NUAK1.  

Additionally, use of the WZ4003 NUAK inhibitor may be potentially problematic since I 

was unable to detect whether the inhibitor is functioning in these cell lines at the chosen 

doses. Previous studies using the WZ4003 compound have been conducted in U2OS, 

HeLa, HEK293, and MEF cell lines using concentrations between 1-10μM, and have 

verified the efficacy of the inhibitor using MYPT1 phosphorylation as a readout 

(Banerjee et al., 2014; Zagorska et al., 2010). Despite my best efforts, I was unable to 

detect decreases in MYPT1 phosphorylation upon treatment with the WZ4003 

compound. It is possible that this experiment may require further optimization in EOC 
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cells, or that NUAK1 is acting independently of MYPT1 in EOC cells. To combat this, 

we could also consider looking at LATS1 phosphorylation at the S464 residue to see if 

NUAK inhibition is affecting LATS1, instead of MYPT1, in EOC cells (Humbert et al., 

2010).  

My choice of the tritiated thymidine incorporation assay to measure proliferation may 

have resulted in us missing critical information regarding NUAK1 function. The tritiated 

thymidine incorporation assay, like other thymidine analogue assays, is a measure of 

DNA synthesis which occurs during S-phase (Cavanagh et al., 2011). By choosing an 

assay which is biased towards S-phase, I may have missed the potential impact of NUAK 

inhibition on other phases of cell cycle. Perhaps NUAK1 functions to elicit cell cycle 

arrest at the G2M phase by inhibiting PLK1 (Werle et al., 2013). To combat this, in the 

future we should consider conducting flow cytometry to assess if NUAK1 inhibition 

alters the relative amount of cells present in G2M phase.  

4.6 Future Work 

While I have discovered an interesting and unique role of NUAK1 in EOC, there of 

course remain several experiments to conduct to potentially translate this discovery to the 

clinic. However, I would encourage prioritizing two categories of experiments. First, it 

would be critical to mechanistically understand the increased viability phenotype seen 

upon loss of NUAK1. Following this classification, it would be important to further 

interrogate the potential tumor suppressive function of NUAK1 in EOC cells. 

Loss-of-function experiments for NUAK1 produced an increase in cell and spheroid 

viability and metastatic potential. In an attempt to determine the mechanism behind this 

increased viability, the tritiated thymidine incorporation assay was used and data 

indicated that NUAK1 inhibition did not affect cell cycle; at least this was not observable 

through DNA replication in S-phase. While we cannot entirely rule out cell cycle as a 

mechanism, it may suggest that NUAK1 affects viability independent of proliferation. 

This increased viability phenotype may instead be attributed to a block of apoptosis. 

Perhaps loss or inhibition of NUAK1 is resulting in decreased apoptosis, and thereby 

leads to increased viability. There are multiple methods that can be used to detect 
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changes in apoptosis, and there are three methods that could be directly employed in both 

EOC cells and spheroids: the cleaved caspase 3 assay, the Caspase-Glo® assay and flow 

cytometry using Annexin V. To conduct these experiments, I recommend first 

establishing CRISPR-Cas9 engineered cells which lack NUAK1 expression. Ablation of 

NUAK1 in cells will allow for more consistency when classifying cellular processes 

regulated by NUAK1. The cleaved caspase 3 assay is based on extrinsic cell death 

signals. In extrinsic death, caspase 8 is activated by binding of the FADD ligand to the 

death receptor on the cell membrane. This results in cleavage of the executioner caspases 

(3, 6, and 7) to mediate apoptosis. Pro-caspase 3 (32kDa) is cleaved into 17 and 12 kDa 

subunits which are detectable using western blot (McIlwain et al., 2013). I recommend 

using NUAK1 WT and NUAK1KO cells in both adherent and spheroid culture, to see if 

caspase 3 cleavage decreases upon loss of NUAK1. The Caspase-Glo® assay follows the 

same principle of tracking caspase-3 cleavage as the cleaved caspase western blot. The 

assay involves the use of a luciferin substrate which can bind to cleaved caspase 3, and 

can be quantified using luminescence (Riss et al., 2013). Like the cleaved caspase 3 

western blot, I recommend quantifying apoptosis using the Caspase-Glo® assay in both 

adherent and spheroid culture. The advantage of this assay is that it can be conducted in 

96-well or 24-well format, to look at the effects of apoptosis in single spheroids or a 

small population of spheroids. Lastly, Annexin V staining can be used to assess if 

apoptosis is affected by NUAK1 function. During apoptosis phosphatidylserine, which is 

normally localized cytoplasmically, becomes exposed to the outer leaflet of the 

cytoplasmic membrane. Annexin V binds to phosphatidylserine to allow for detection of 

apoptosis using flow cytometry (Wlodkowic et al., 2009). While use of NUAK1KO cells 

may be useful for experimental consistency in the experiments described above, it would 

also be worth treating cells with WZ4003 to assess the effects of NUAK inhibition on 

apoptosis. I predict that NUAK1 loss or inhibition would decrease the proportion of 

apoptotic cells, resulting in increased cell viability. 

My experiments have identified the potential tumor suppressive nature of NUAK1 in 

EOC. This remains to be further confirmed to evaluate if NUAK1 agonists may be 

potentially beneficial as therapeutic agents. There are several assays that can be 

conducted to evaluate the tumor suppressive role of NUAK1, some of which have been 
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already completed in this study. We have recently established stable NUAK1 

overexpression clones in OVCAR3 and HeyA8 cells (Collins and Shepherd, unpublished 

data), which under normal circumstances have little NUAK1 expression (Fig. 3.2). The 

next step with these overexpression clones would be to test the effect of NUAK1 

overexpression on proliferation and viability. I predict that NUAK1 overexpression will 

decrease cell viability and potential proliferative potential in EOC cells. To better 

understand the true tumor suppressor nature of NUAK1, we could also make use of 

immortalized fallopian tube epithelial cells (Karst and Drapkin, 2012). I have determined 

that FT190 and FT237 cells have low, but detectable, levels of NUAK1. If we were to 

ablate NUAK1 expression and activity using CRISPR-Cas9 in fallopian tube cells we 

could test, using in vitro models, to see if loss of NUAK1 induces a more malignant 

phenotype. I recommend using fallopian tube epithelial NUAK1KO cells to test changes 

in growth kinetics, clonogenicity, spheroid formation potential and reattachment. I 

predict that loss of NUAK1 in these immortalized “normal” cells will result in a more 

malignant phenotype. In fact, I currently have evidence to support our prediction, as 

FT190 cells treated with WZ4003 had a shortened doubling time (Table 3.1).  

Mouse models can also be used to assess the tumor suppressive activity of NUAK1. 

Possibly one of the first steps in evaluating the tumor suppressive activity of NUAK1 in 

vivo would be using EOC cancer cell lines, with ablated NUAK1, and assessing tumor 

formation. I recommend using CRISPR-Cas9 to knock out NUAK1 in OVCAR8 cells 

and orthotopically inject these cells into immunocompromised mice. I predict that mice 

injected with OVCAR8 NUAK1KO cells will have a higher tumor burden and decreased 

survival. To truly test if NUAK1 is tumor suppressive in EOC, we should consider 

generating inducible Nuak1-ko mice. NUAK1 must be deleted using an inducible method 

because Nuak1 null mice are embryonic lethal, since NUAK1 loss prevents closure of the 

ventral body wall (Hirano et al., 2006). I recommend deleting Nuak1 in an inducible and 

site-specific manner, by targeting the fallopian tube epithelium in female mice after 

puberty (Perets et al., 2013). This may lead to spontaneous tumor development. However, 

I realize that loss of NUAK1 on its own may be insufficient to induce neoplastic 

transformation. Therefore, we may also consider inducible knockout of Trp53 and Nuak1 

to see if loss of NUAK1, alongside p53, furthers disease progression. 
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If we are successful in characterizing the tumor suppressive ability of NUAK1 in vitro 

and in vivo, we should then consider designing NUAK1 agonists. This process may 

possibly require determination of the protein structure of NUAK1, using X-ray 

crystallography; as this has not yet been done for NUAK1. We may then have to 

determine the correct domain of NUAK1 to target using a small molecule, and design a 

structure accordingly. However, discovery of X-ray structures are usually required for 

design of peptide-based agonists (Hruby, 2012), and may not be applicable to NUAK1 

activation. We may also consider conducting a random chemical screen to test the 

efficacy of non-peptide compounds on NUAK1 activation. Like the NUAK1 antagonist 

screen conducted by Banerjee and colleagues (2014), we could conduct a similar screen 

of drug compounds and assess for increased NUAK1 kinase activity using an in vitro 

kinase activity assay. Furthermore, compounds must be tested in vitro and in vivo using 

mouse models to identify potential adverse effects. While conducting these studies, we 

must also consider disease heterogeneity and realize that not all patients may respond to 

NUAK1 agonist therapies. We should conduct studies to investigate which subset of 

patients will respond best to NUAK1 agonist therapies, and classify this based on 

NUAK1 expression and possibly LKB1 status. 

4.7 Overall Conclusion 

Overall, I have contributed to growing ARK literature and have identified a novel and 

unique role of NUAK1 in EOC. I have shown that NUAK1 is regulated by LKB1 in EOC 

cells and have demonstrated its tumor suppressive potential. My results support the tumor 

suppressive role of NUAK1 to help address the ongoing debate of NUAK1 as an 

oncogene and a tumor suppressor (Sun et al., 2013). From this study, we have gained 

further insight into context dependence in cancer. Many previous studies have implicated 

NUAK1 as an oncogene, through various mechanisms (Sun et al., 2013). Yet our study 

has identified the potential tumor suppressive nature of NUAK1 in a model of EOC 

metastasis. This suggests that NUAK1, like its upstream regulator LKB1, can have 

opposing functions in different tissue sites (Peart et al., 2015). This study has helped us 

appreciate context dependence and the role which NUAK1 may be playing in the normal 

fallopian tube and EOC.  
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My studies began with an investigation of the downstream substrates of LKB1, which has 

metastatic promoting properties in EOC, to identify which substrate was critical for EOC 

spheroid viability (Peart et al., 2015). My initial hope with this project was to determine 

which ARK, downstream of LKB1, could be used as a therapeutic target to reduce 

spheroid viability and permit chemosensitivity. My results led me on a unique path, 

where I discovered that NUAK1 is regulated by LKB1 in these cells, but that intact 

NUAK1 is not critical for spheroid viability and chemosensitization. Instead I found the 

opposite effect of LKB1, whereby loss of NUAK1 promoted spheroid viability. Although 

I ended on a different path than where I had planned, I have gained new insight into 

mechanisms of tumor suppression in EOC and future studies could uncover a potential 

alternate route of reducing metastatic burden by activating NUAK1. If we can identify 

ways to block spheroid growth, survival, and reattachment, then this could be a 

worthwhile strategy for reducing disease burden in late-stage ovarian cancer patients. 
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Chapter 5 

5 Appendices 

5.1 Appendix A: ARK mutations and mRNA expression 

Prior to the discovery of NUAK1 as our ARK of interest, we conducted wide scale 

analyses on all ARKs to see which was the most relevant in EOC.  

These studies began by using publicly available datasets, to see if the ARKs were 

mutated, or potentially important, in high grade serous tumor samples. We analyzed 

cBioportal data using The Cancer Genome Atlas (TCGA, 2011) provisional data, and 

found that several of the ARKs are mutated in ovarian tumor samples (Fig. 5.1A). Data 

indicated that NUAK2 was the most mutated ARK species, with 7% of tumors having 

NUAK2 amplification. However, NUAK1 was not highly mutated in EOC tumor 

samples. We then analyzed ARK expression, at the mRNA level in 47 EOC cell lines, 

using Cancer Cell Line Encyclopedia (CCLE), and found that several ARKs are 

expressed at the mRNA level (Fig. 5.1B). NUAK1 had the highest, yet most variable, 

expression profile in EOC and was followed closely by NUAK2. To analyze NUAK data 

more closely, we looked exclusively at the mRNA expression profiles of NUAK1 and 

NUAK2 (Fig. 5.2). We noticed that NUAK1 and NUAK2 mRNA expression was directly 

proportional in most cell lines, other than the OVCAR8 cell line which has amplified 

NUAK1 levels. We compared the CCLE mRNA data to our own NUAK1 protein 

expression data (Fig. 3.2) and noticed that it did not correlate well. CCLE data indicated 

that OVCAR4 cells have high NUAK1 expression, while COV362 cells have low 

NUAK1 expression. Our protein data indicates the opposite trend, where OVCAR4 cells 

have low NUAK1 levels, and COV362 cells have high NUAK1 levels. Perhaps this 

indicates a discrepancy between NUAK1 mRNA and protein levels, since NUAK1 can 

be tagged for ubiquitination (Banerjee et al., 2014).  
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Figure 5.1.(A) Copy number and mutational status of ARK genes in serous ovarian 

cancer (TCGA provisional dataset, Gao et al., 2013). NUAK1 is not highly genomically 

altered in EOC, yet NUAK2 is the most amplified ARK in EOC. Figure generated by Dr. 

Trevor Shepherd. (B) mRNA expression levels of ARKs and PRKAAs across 47 ovarian 

cancer cell lines. Shown in red is ARKs we conducted preliminary siRNA knockdown 

screen on. (Cancer cell line encyclopedia) (TCGA, 2011; Gao et al., 2013) 

  

B 
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Figure 5.2.NUAK1 and NUAK2 mRNA expression from 47 EOC cell lines (CCLE, 

cBioportal). Data is plotted as mean (solid lines) and z-scores. Coloured dots indicate cell 

lines available in our program. NUAK1 and NUAK2 are expressed at similar levels in 

EOC cell lines. Figure generated by Dr. Trevor Shepherd. 
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To assess ARK mRNA expression further in EOC, we conducted an Affimetrix 

microarray in 5 ascites derived patient samples (Peart and Shepherd, unpublished data) 

(Fig. 5.3A). We noted that our data from patient samples correlated with CCLE cell line 

data, and that NUAK1 had the highest expression profile amongst patient samples. 

However, we noted that there was less variability between NUAK1 expression in patient 

samples than in cell lines, as indicated by CCLE data.  

Using qPCR on our set of well-established ovarian cancer cell lines, we explored to see if 

ARKs are expressed at the mRNA level (Kobylecky and Shepherd, unpublished data) 

(Fig. 5.3B). We confirmed that many of the ARKs are expressed at the mRNA level in 

ovarian cancer cell lines and that our data diverged slightly from CCLE data. Out of the 

10 cell lines we screened, we noted that MARK species had the highest expression levels 

of all the ARKs in EOC. This divergence between datasets may be due to our limited 

sample size.  

Our analysis of publicly available datasets alongside our own experiments helped us to 

understand ARK expression in EOC. Particularly, we determined that NUAK1 is one of 

the least mutated and most-variably expressed ARK species in EOC.  

5.2 siARK Screen 

The siARK screen is a project that we carried out to determine which ARKs are 

functionally relevant to EOC spheroid viability (Ramos-Valdes and Shepherd, 

unpublished data). This project involved siRNA mediated knockdown of all ARK 

species, LKB1, and AMPK subunits in 11 EOC cell lines, consisting of both well-

established and early-passage ascites-derived cell lines. CellTiterGlo® was used to assess 

day 3 adherent and spheroid viability in transfected cells (Fig 5.4).  

Results suggested that knockdown of NUAK species improved viability in many of the 

cell lines screened (Fig. 5.4B). Knockdown of SIK species and SNRK decreased cell 

viability in a few of the cell lines (Fig. 5.4B). Despite some promising results with 

NUAK species, SIK species, and SNRK, there was no consistent target that was critical  
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Figure 5.3. (A) Affimetrix microarray analysis of ARK expression levels in 5primary 

ascites samples. Experiment conducted by Teresa Peart (B) Relative mRNA expression 

level of ARKs among 10 ovarian cancer cell lines using qRT PCR. (n=3) Experiment 

conducted by Elizabeth Kobylecky 

  

A 
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Figure 5.4. siRNA screen of all ARKs in 11 EOC cell lines. (A) Experimental protocol 

describing which cell lines and siRNAs were used. Experimental timeline provided. (B) 

Bar graph describing cell viability, plotted as spheroid viability divided by adherent cell 

viability (N=1). Each bar represents one cell line with one siRNA knockdown treatment. 

The inset represents treatments with the highest viabilities and the lowest viabilities (red 

boxes). NUAKs are outlined in red. MARKs are outlined in purple. STK11 is outlined in 

green. SIKs are outlined in yellow. SNRK is outlined in blue. BRSK is outlined in grey. 

Figure courtesy of Dr. Trevor Shepherd.Experiment conducted by Yudith-Ramos Valdes. 
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for viability in all cell lines screened. However, our data from the siARK screen further 

supported our inclination to pursue NUAK1 as a target in EOC.  

5.3 MARK3 studies in EOC 

Prior to pursuing NUAK1 as a target in EOC, I investigated the potential role of MARK3 

in EOC cell and spheroid viability. To begin, I surveyed MARK3 expression in EOC cell 

lines and found that MARK3 has an even expression profile across all EOC cell lines 

(Fig. 5.5). This may be because MARK3 is ubiquitously expressed in many tissue sites. I 

also investigated MARK3 expression in adherent and spheroid culture, using well-

established EOC cell lines. I noted that MARK3 expression decreased from adherent to 

spheroid culture in OVCAR3, OVCAR5, SKOV3 and TOV21G cells (Fig. 5.6). To 

examine potential changes in MARK3 phosphorylation between adherent and spheroid 

culture I used a pan-phospho MARK antibody. I found that pMARK expression 

decreased from adherent to spheroid culture in all cell lines tested (Fig 5.6A). However, 

this may not be necessarily indicative of MARK3 phosphorylation decreasing, and may 

be attributed to one of the other 3 MARK species instead.  

I then examined the potential link between MARK3 and LKB1, using our CRISPR-Cas9 

engineered STK11KO cells. I assayed for MARK3 expression to assess changes in total 

levels upon loss of LKB1 (Fig. 5.6B). I noted that unlike NUAK1, loss of LKB1 did not 

affect total MARK3 expression. In terms of pMARK expression, I saw opposite trends in 

OVCAR8 and HeyA8 cells. In OVCAR8 cells, pMARK expression increased in 

STK11KO cells relative to wildtype cells (Fig. 5.6B). In HeyA8 cells, pMARK 

expression decreased in STK11KO cells relative to wildtype cells (Fig. 5.6B). These 

opposing trends suggested that MARK3 expression and activity was not regulated by 

LKB1, which was further supported by our data from the Kinobead assay.  

To understand if MARK3 was relevant to EOC spheroid viability or spheroid 

reattachment potential, I performed siRNA-mediated knockdown of MARK3 in spheroid 

experiments. I measured day 3 spheroid viability using Cyquant® and found that loss of 

MARK3 had no effect (Fig. 5.7B). To this end, I also noted that siMARK3 spheroids did 

not differ in reattachment potential, compared to siNT spheroids (Fig. 5.7C).  
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Figure 5.5. MARK3 is expressed in EOC cell lines. Protein expression detected using 

Western blot of EOC cell lysates. MARK3 is highly expressed in OVCAR3 and 

TOV21G cells and is moderately expressed among all other cell lines. (N=3) 
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Figure 5.6. (A) pan phospho-MARK (p-MARK) expression in monolayer and day 3 

spheroids in 8 cell lines (n=3). p-MARK expression decreases in spheroids in all cell 

lines (bottom) MARK3 expression in monolayer and spheroid in 8 cell lines (n=3). Total 

MARK3 expression decreases from adherent to spheroid culture in OVCAR3, OVCAR5, 

TOV21G and SKOV3 cells. Expression levels of MARK1,2, and 4 are unknown. (B) 

Evaluation of MARK expression levels in LKB1 intact and LKB1 knockout cell lines. 

pMARK and MARK3 expression in OVCAR8, HeyA8, OVCAR8 STK11KO and 

HeyA8 STK11KO cells using ML and day 3 sph lysates. STK11KO cells lack expression 

of LKB1 and were created by CRISPR-Cas9 technology. In OVCAR8 cells, pMARK 

expression increases from WT to STK11KO cells in both ML and sph, however, HeyA8 

cells show the opposite trend where pMARK levels decrease from WT to STK11KO for 

both ML and sph. MARK3 levels appear to be relatively unchanged. (n=5) 

  

A 
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Figure 5.7. MARK3 does not affect spheroid viability or reattachment potential. (A) 

Western blot in day 3 adherent cells transfected with siNT and siMARK3, indicating 

successful siRNA mediated knockdown of MARK3. (B) Day 3 spheroid viability in 

OVCAR8 and HeyA8 cells transfected with siRNA against MARK3. There is no 

significant difference between siNT and siMARK3 spheroid viability. Data plotted as 

mean ± SD, analysis performed on Graphpad PRISM using unpaired t-test (N=3). (C) 

Day 3 spheroid reattachment showing no difference between reattachment potential of 

siNT and siMARK3 spheroids. Data plotted as mean ± SD, analysis performed on 

Graphpad PRISM using unpaired t-test (n=3). 
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Collectively, my data illustrates that MARK3 is likely not relevant to spheroid viability 

and dormancy, downstream of LKB1.   
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