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Abstract

We present a programming language in which every well-typed program halts in time
polynomial with respect to its input and, more importantly, in which upper bounds on
resource requirements can be inferred with certainty.

Ensuring that software meets its resource constraints is important in a number of
domains, most prominently in hard real-time systems and safety critical systems where
failing to meet its time constraints can result in catastrophic failure. The use of test-
ing in ensuring resource constraints is of limited use since the testing of every input or
environment is impossible in general. Static analysis, whether via the compiler or com-
plementary programming tool, can generate proofs of correctness with certainty at the
cost that not all programs can be analysed.

We describe a programming language, Pola, which provides upper bounds on resource
usage for well-typed programs. Further, we describe novel features of Pola that make it
more expressive than existing resource-constrained programming languages.

Keywords: programming language, static analysis, resource bounds, type inference,
polynomial time, time complexity, category theory.
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Chapter 1

Introduction

Nearly every programming language in common use today—for instance, C, Java, Lisp,
PHP, Perl, Javascript, Matlab—is universally powerful. That is, anything which can
be computed can be computed using these languages1. This is a benefit in allowing an
expressive and natural style of programming, and in allowing computationally intensive
functions, such as exponential-time functions, to be written, but it is an impediment to
static analysis. It is a clear consequence of the Church-Turing thesis that one cannot
provide a method which, in general, will determine the running time of a function. This
thesis will explore inferring running times, but will focus on a computational model which
is not universally powerful and hence to which the Church-Turing thesis is not applicable.

This thesis describes the programming language Pola, a programming language which
is not universally powerful. Specifically, it is limited to the polynomial-time functions:
it is impossible in Pola to write a function which does not halt in time polynomial with
respect to the size of its input. We will then show how this restriction placed on Pola
allows the practical bounds of running times of functions written in the language to be
automatically inferred by a Pola interpreter or compiler.

The primary applications of a language like Pola can most clearly be seen in hard
real-time software systems, such as medical devices, automotive controls or industrial
controllers. These systems consider any software component which does not meet its
specified time constraints to be a system failure. Having an automated guaranteed bound
on running time from a compiler would relieve the burden from the programmer and
would be more reliable than testing to ensure the software meets its specifications. Since
Pola is not universally powerful, it would likely never comprise the totality of a software
system, but could provide the primary CPU-bound components in conjunction with other
software components.

1.1 Functional languages

Pola is a functional programming language. The two hallmarks of functional program-
ming are: firstly, that functional programs are declarative, in that functions consist of
expressions to evaluate, rather than featuring a sequence of statements or instructions

1This ignores the technicality that on a physical computer one is bound by a fixed amount of memory.

1
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1 public static int sumArray(int[ ] xs) {
2 int sum = 0;
3 for (int i = 0; i < xs .length; i++)
4 sum += xs [i];
5 return sum;
6 }

Figure 1.1: A Java method which sums the elements of an array of integers and returns
that sum.

1 sumArray [ ] = 0
2 sumArray (x : xs) = x+ sumArray xs

Figure 1.2: A Haskell function which sums the elements of a list of integers and returns
that sum.

to execute, as in an imperative language; and secondly, that functional programs do
not allow for side-effects such as global variables or direct access to memory locations.
The second hallmark mentioned allows what is sometimes called referential transparency,
wherein a term or subterm may be considered in isolation since its behaviour is guaran-
teed to be the same regardless of the state of the rest of the program.

To demonstrate by way of example, consider the Java method given in figure 1.1
which sums the elements of an array of integers. Note its use of a for loop and the use
of assignment statements, on lines 2 and 4, which change the value of a variable. In
contrast, consider the Haskell function given in figure 1.2, which does not use statements
or destructive updates, but rather relies on recursion and pattern-matching. On line 1
we match the case that the input list is empty. On line 2 we match the case that the
input list is not empty, but rather has a head x (an integer) and a tail xs (a list of
integers), with the resulting value being declared as an arithmetic expression involving
those two. Finally, consider figure 1.3 which is the same function written in Pola. It is
more verbose than that of the Haskell function and requires the “on-the-fly” introduction
of a recursive function, f , to accomplish the task, but is structurally similar to that of
the Haskell function. Line 2 matches the case where the list is empty (the Nil case) and
line 3 matches the case where it is not empty (the Cons case), where it has a head z and
a tail zs.

Practical general-purpose functional languages, such as Lisp, Haskell or Concurrent

1 sumArray = x | .fold f(y) as {
2 Nil.0;
3 Cons(z,− | zs).add(z, f(zs)) }
4 in f(x);

Figure 1.3: A Pola function which sums the elements of a list of integers and returns
that sum.
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Clean, find some way to allow I/O—which is a side-effect—to be integrated into the
functional framework of the language. This is currently absent in Pola, primarily as it
would needlessly complicate the language and distract from the main focus of this thesis.

1.2 Implementation

An implementation of the Pola language can be downloaded and examined, available un-
der a free software licence. The implementation is an interpreter written in the Haskell
programming language. It performs parsing and type inference according to the specifi-
cations for the Pola language given in chapter 3 and evaluates expressions according to
the operational semantics of chapter 3. Note that, in chapter 3, two different notations
are given for the language: Compositional Pola, which is useful for exposing the rules
of inference for the language with great precision; and Pola, which is the language the
implementation targets, and is more useful for programming use.

The implementation also offers automated size and bounds inference, as discussed in
chapter 5.

The Dangerous Pola variant of Pola discussed in section 6.3.3 is implemented, as it
offers a greater level of expressiveness to the programmer than Pola. However, none of
the other variants discussed in chapter 6 are supported by the implementation.

To aid the reader in navigating the source code, Pola’s implementation has been
written in a literate style, a style of programming developed by Donald Knuth to aid in
programmer comprehension [24].

The reader is invited to explore the source code for the reference implementation of
Pola at the following website and git code repository:

https://gitlab.com/professormike/pola

1.3 Summary

This thesis introduces a functional language, Pola, which is restricted to polynomial-time
functions. Chapter 2 gives an overview of past research which this thesis builds upon,
and previous ideas in a similar vein. Chapter 3 introduces Compositional Pola, a com-
positional language based on lambda calculus to provide the semantics and typing. Pola
is introduced as syntactic sugar atop Compositional Pola. Novel contributions in this
chapter are the type inference algorithm and proof of well-typing and the representation
using compositional notation. The syntax, semantics and core typing involved collabo-
ration with Robin Cockett and Brian Redmond, then both at the University of Calgary.
Chapter 4 gives an overview of an implementation of Pola and references to download
and examine the source code in greater detail. Chapter 5 gives a description of size and
time bounds and gives an algorithm to automatically infer practical bounds. Proof of
correctness and, as a corollary, a proof that the language is constrained to polynomial
time is provided. The entirety of the chapter is a novel contribution. Chapter 6 discusses
the limitations on expressiveness due to the type restrictions in the language and also
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discusses variants of the language with different expressive and computational power.
Chapter 7 gives a conclusion of the results and main contributions.



Chapter 2

Literature survey

Static analysis is the process of inferring, from a description of a computation, significant
properties of that computation. The proof of the undecidability of the halting problem—
i.e., the problem of giving an algorithm to universally decide if a Turing machine halts or
not—provides an early upper bound on the capabilities of static analysis. An algorithm
to determine how long any C program takes to run, for example, is clearly impossible, as
the halting problem can be reduced to it.

Even if determining a running time were possible, it may not be useful. A static
analysis which takes as long to compute as the computation under analysis is not of
great use.

In spite of these barriers, there is a pressing need for static analysis. Software pub-
lishers might like to know how long a computation will take, or how much memory it will
require, or, conversely, what the minimum hardware specifications are for some task. In
embedded systems, for example, or systems with real-time requirements, it is imperative
that it can be guaranteed with certainty that software will not exceed pre-determined
requirements.

This chapter will deal with previous work in statically determining the consumption
of resources, namely time and memory usage. These two resources are not the only
resources that a piece of software might require, but they are the most general, and
in any case the techniques used to determine them can be modified to determine other
resource requirements.

2.1 Abstract interpretation

Abstract interpretation involves interpreting a language, usually a universally powerful
language, in an “abstract” manner. For instance, consider the following C program:

static int foo(int x) {

return x * 2;

}

int main(void) {

int a = foo(3);

5



6 Chapter 2. Literature survey

int b = foo(4);

return a + b;

}

We begin interpreting (or executing) the program from main as usual. One way to carry
out abstract interpretation is to have a global binding for foo’s x variable, not dependent
on any context. During the first function call to foo, x has a value of 3 and we assign a
value of 6 to a. During the second function call to foo, x has a value of 3, 4 (either 3 or
4, since we can’t distinguish x based on where it’s called from) and b gets a value of 6, 8.
We say, abstractly, that the program returns a value of 12, 14.

Different abstract interpreters offer different abstract semantics. In abstract inter-
pretation we “interpret” the program according to the usual program flow, i.e., for a C
program we start “interpreting” at the first statement and move towards the last state-
ment. Also, for any construct which offers the possibility of undecidability, we “abstract”
the semantics to deal with sets of values instead of concrete values.

Gustafsson et al. provide a simple abstract semantics for C as described above, as a
means of determining flow analysis [15]. The information from the flow analysis, deter-
mining the value ranges of variables before and after loops, is then used to help determine
worst-case execution time.

The idea of abstract interpretation came from Cousot and Cousot [8] and had very
strict semantics for a program represented as a lattice. It encompassed data flow analysis,
in that all data flow analysis could be written as abstract interpretation [8]. This model
has limited utility with functional languages due to the referential transparency provided
by those languages.

2.2 Restricted models of computation

The implications of the undecidability of the halting problem are that, to determine the
running time of a computation more generally, one must abandon the hope of certainty,
or one must abandon the hope of universality. The latter is promising because much
of the software written today is, in the grand scheme of computability theory, not very
complex: many software problems would be in the class of polynomial time or maybe
even more restricted complexity classes such as those in logarithmic space. Many of the
algorithms in use today halt in a time polynomial with respect to their input, and so
for many uses it will suffice to have a static analysis which only works on that class of
algorithms.

Strategies for restricting computational power, while still allowing useful programs
to be written, include limiting the growth of the functions, limiting the structure of the
programs and the primitives provided and using types.

2.2.1 Primitive recursion

The class of primitive recursion functions is well-studied [31]. A function, f , with tuples of
the natural numbers as domain and natural numbers as co-domain is primitive recursive
if and only if one of the following is true:
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1. f(x) = 0 (zero);

2. f(x) = x+ 1 (successor);

3. f(x1, . . . , xn) = xi for some i, n ∈ N such that i ≤ n (projection);

4. f(x1, . . . , xn) = h(g1(x1, . . . , xn), · · · , gm(x1, . . . , xn)) for some m,n ∈ N where h
and each gi are primitive recursive (composition); or

5. f(0, x1, . . . , xn) = g(x1, . . . , xn) and
f(y + 1, x1, . . . , xn) = h(x1, . . . , xn, y, f(y, x1, . . . , xn)) for some n ∈ N where g and
h are primitive recursive functions (primitive recursion).

This general model of primitive recursion, of recursing over the structure of a datum
(in this case, the structure of a natural number expressed in Peano arithmetic), will
become a strong part of Pola, as seen in section 3.1.2.

Limited recursion and the Grzegorczyk hierarchy

A limited recursive function is a primitive recursive function, as described above, with
the restriction that its value must be bounded by some base function, i.e., one that is
not built up through recursion. We take the definition of primitive recursion above and
modify clause 5. Consequently, the clauses for defining a function f are as follows:

1. f(x) = 0 (zero);

2. f(x) = x+ 1 (successor);

3. f(x1, . . . , xn) = xi for some i, n ∈ N such that i ≤ n (projection);

4. f(x1, . . . , xn) = h(g1(x1, . . . , xn), · · · , gm(x1, . . . , xn)) for some m,n ∈ N where h
and each gi are primitive recursive (composition); or

5. f(0, x1, . . . , xn) = g(x1, . . . , xn) and
f(y + 1, x1, . . . , xn) = h(x1, . . . , xn, y, f(y, x1, . . . , xn)) for some n ∈ N where g and
h are primitive recursive functions and also f(y, x1, . . . , xn) ≤ j(y, x1, . . . , xn) for
all y, x1, . . . , xn where j is some function previously defined by rules 1 to 4 (limited
recursion).

The definition of limited recursion has great influence in the definition of the Grzegorczyk
hierarchy, and has the unfortunate side-effect that it becomes undecidable whether or not
some function is limited recursive.

The Grzegorczyk hierarchy [31] is a hierarchy of sets of functions. We first define a
set of functions, Ei, for all i ∈ N. E0, the first function, has two parameters, x, y ∈ N.
All other Ei functions have a single parameter. The Ei functions are defined as follows:

E0(x, y) = x+ y (2.1)

E1(x) = x2 + 2 (2.2)

En(x) = Ex
n−1(2) (2.3)
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From these functions we can define the hierarchy of sets of functions, denoted E i for
some natural number i. The first set in the hierarchy, E0, is equal to the zero functions, the
successor functions, the projection functions, the composition functions (over functions
in E0), and the limited recursive functions over functions in E0. Of note, no Ei functions
are in E0. Stated precisely, a function, f , is in E0 if and only if:

1. f(x) = 0 (zero);

2. f(x) = x+ 1 (successor);

3. f(x1, . . . , xm) = xi for some i, n ∈ N such that i ≤ n (projection);

4. f(x1, . . . , xm) = h(g1(x1, . . . , xm), · · · , gp(x1, . . . , xm)) for some m, p ∈ N where h
and each gi are in E0 (composition); or

5. f(0, x1, . . . , xm) = g(x1, . . . , xm) and
f(y+1, x1, . . . , xm) = h(x1, . . . , xm, y, f(y, x1, . . . , xm)) for some n ∈ N where g and
h are in E0 and also f(y, x1, . . . , xm) ≤ j(y, x1, . . . , xm) for all y, x1, . . . , xm where
j is in E0 (limited recursion).

For each n > 0, we define En as the basic functions (zero, successor, projection),
composition functions (over functions in En), limited recursive functions (ibid), as well
as the functions E0 and En. Stated precisely, a function, f , is in En for some n ∈ N, n > 0
if and only if:

1. f(x) = 0 (zero);

2. f(x) = x+ 1 (successor);

3. f(x1, . . . , xn) = xi for some i, n ∈ N such that i ≤ n (projection);

4. f(x1, . . . , xn) = h(g1(x1, . . . , xn), · · · , gm(x1, . . . , xn)) for some m,n ∈ N where h
and each gi are in En (composition); or

5. f(0, x1, . . . , xn) = g(x1, . . . , xn) and
f(y + 1, x1, . . . , xn) = h(x1, . . . , xn, y, f(y, x1, . . . , xn)) for some n ∈ N where g and
h are in En and also f(y, x1, . . . , xn) ≤ j(y, x1, . . . , xn) for all y, x1, . . . , xn where j
is in En (limited recursion); or

6. f = Ek for k < n.

Note that E1 includes all functions in which the result is a constant number of addi-
tions of its parameters, E2 includes all functions in which the result is a constant number
of multiplications or additions of its parameters, E3 includes all functions in which the
result is a constant number of exponentiations, multiplications or additions, and so on.
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Predicting time complexity of recursive functions

Restricted models of computation can prove useful for predicting time complexity of
functions. The Grzegorczyk hierarchy itself comprises the exponential hierarchy [2],
though there is the possibility to provide more precise predictions.

R.W. Ritchie [30] was one of the first to formalize predicting resource requirements for
functions in a primitive recursive scheme. He created a hierarchy F1, F2, F3, . . . between
E2 and E3. Where F0 = E2, a function f ∈ F1 if ∃g ∈ F0 such that, if Tf (x) is the time
required to compute f , then Tf (x) ≤ g(x). Similarly, for all i ∈ N, f ∈ Fi+1 if ∃g ∈ Fi
such that Tf (x) ≤ g(x) for all x.

Perhaps more interesting, however, was Ritchie’s formalizing of a method to express
the running time of primitive recursive functions, using a very abstract computational
model for determining “time.” For the base functions, the definitions of Tf are more
obvious. For composition and primitive recursion, though, they are less obvious. He
showed that:

• if f(x, y) = h(x, g(y)), then Tf (x, y) = |x|+ |y|+ max{|x|+Tg(y), Th(x, g(y))}; and

• if f(0, x) = g(x); f(y + 1, x) = h(x, y, f(y, x)), then Tf (y, x) = 2(|x| + |y| +
max{maxz≤y{Th(x, z, f(z, x))}, Tg(x)}.

Limitations to primitive recursion

Löıc Colson showed some practical concerns with using primitive recursion as a basis for
programming languages [7]. The function:

min(a, b) =

{
a , if a < b
b , otherwise

can be implemented quite easily in a primitive recursive framework. However, there does
not exist a primitive recursion algorithm which will compute it in O(min(a, b)) time.
While this specific instance can be resolved easily in a practical programming language,
for example by the introduction of a constant-time less-than (‘<’) operator, it neglects
the wider problem presented, namely that in a primitive recursive scheme, one cannot
efficiently recurse through two data simultaneously. Any function which needs to do
something of the sort has a greater time complexity in primitive recursive frameworks
than in unrestricted computational frameworks [7].

2.2.2 Hofmann survey

Martin Hofmann presents an excellent survey of programming languages capturing com-
plexity classes [21]. A programming language is said to capture a complexity class C if
every well-defined program in that language has time complexity in C. Of especial note
is that in the introduction to this survey, Hofmann specifically brings up the example of
guaranteeing resource restrictions in embedded systems.

He starts off with a paper by Alan Cobham [4]. This is a seminal paper on restricting
computational power to limit programs to what he felt was intrinsic feasibility. Cob-
ham used a scheme of limited recursion, except that it recursed “on notation,” i.e., it
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recursed on the length of x (when written as a string), not on the value of x. Successor
functions were notation-wise, so if the number were represented in binary, there would
be two successor functions, S0(x) = 2x and S1(x) = 2x + 1, effectively adding a ‘0’ or
‘1,’ respectively, to the end of x. Cobham showed that these successor functions, zero
functions, composition functions, projection functions, limited recursion by notation, and
the smash function, x#y = 2|x|·|y|, equal the polynomial-time functions.

The same paper also showed that all functions in E2, the third set in the Grzegorczyk
hierarchy, require at most linear space.

Gurevich showed that primitive recursion over a finite domain, i.e., where the succes-
sor function has an upper limit, is exactly the class of programs operating in logarithmic
space [14].

The two previous models can be regarded as being somewhat awkward or artificially
restricted, Cobham’s method especially because it is undecidable whether a program is
well-formed or not. Bellantoni and Cook provide a model based on primitive recursion
more naturally bounded to polynomial-time functions [1]. Function parameters are di-
vided into “normal” and “safe” parameters, denoted as f(x; y), where parameters before
the semi-colon (x) are “normal” and parameters after the semi-colon (y) are “safe.” Nor-
mal parameters may recursed over, but safe parameters may only be used in composition.
Further, the result of a recursive function may only be used in composition.

While Pola does not directly use the idea of “normal” and “safe” parameters, it does
borrow the notion of having two classes of variables which have differing restrictions on
them, as will be seen in section 3.1.2.

Loop programs

One model of computation proposed in the late 1960s is that of loop programs, which is
equivalent in power to the class of the primitive recursive functions [26]. A loop program
operates over an aribtrary, but finite, number of named registers (canonically X and Y
and so on). Each register holds a natural number of unbounded size. A loop program is
a finite sequence of instructions, where each instruction is one of:

1. X = Y for two registers X and Y ;

2. X = X + 1 for some register X;

3. X = 0 for some register X;

4. LOOP X for some register X; or

5. END .

There is a further restriction upon the structure of loop programs, which is that LOOPX
and END instructions must be paired.

The semantics of loop programs are as can be expected. X = Y instructions overwrite
the contents of register X with the contents of register Y . The X = X + 1 increments
by one the contents of register X. X = 0 instructions set the value of register X to zero.
For a block of instructions, LOOP X, I1, . . . , In,END where the LOOP X and END
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instructions are “paired,” the instructions I1, . . . , In will be executed serially X times.
For instance, if X has the value 3 when such a block is encountered, the instructions
I1, . . . , In, I1, . . . , In, I1 . . . , In will be executed. The variable which is used to control the
loop (X, in this case) must be invariant.

2.2.3 The Hume languages

Hume, the Higher-order Unified Meta-Environment, is a hierarchy of programming lan-
guages aimed at writing correct and verifiable code for embedded systems. The simplest
layer of Hume, HW-Hume, disallows recursion entirely, allowing only constant transfor-
mations between input bits and output bits. FSM-Hume allows non-recursive first-order
functions and non-recursive data types. Template-Hume allows pre-defined higher-order
functions (such as map or iter, found in typical functional languages), user-defined first-
order functions, and inductive data types. PR-Hume allows primitive recursive functions
over inductive data types. Finally, Full Hume is an unrestricted, Turing-complete lan-
guage [17].

Michaelson early on develops a method for bounding recursion in a simple lambda-
calculus–based language, either by eliminating recursion entirely or by allowing a primi-
tive recursion [27].

Hardware level

The lowest level of Hume is HW-Hume (hardware Hume), which provides simple pattern
bindings [16]. For instance, a parity checker can be written as follows:

box parity

in (b1 :: Bit, b2 :: Bit)

out (p :: Bit)

match

(0, 0) -> 0

| (0, 1) -> 1

| (1, 0) -> 1

| (1, 1) -> 0

No recursion or iteration is offered [16], which limits its computational utility.

Finite state machine

The finite state machine level of Hume, FSM-Hume, provides a syntax for describing
the behaviour of generalized finite state machines (abstracted to inductive data types in
general, not just symbols) in the expression syntax of Hume [18]. Figure 2.2.3 contains
a finite state machine for determining if a binary number is divisible by 3.

In FSM-Hume, this would be written as:

data State = Rem0 | Rem1 | Rem2;

type Bit = Word 1;

box div3
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Rem1
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Figure 2.1: A finite state machine to decide if a binary number is divisible by 3.

in (s :: State, inp :: Bit)

out (s’ :: State, out :: Bool)

match

(Rem0, 0) -> (Rem0, True)

| (Rem0, 1) -> (Rem1, False)

| (Rem1, 0) -> (Rem2, False)

| (Rem1, 1) -> (Rem0, True)

| (Rem2, 0) -> (Rem1, False)

| (Rem2, 1) -> (Rem2, False)

The remainder of the program must happen at one level lower, in HW-Hume, to wire
the new “box.”

stream input from "std_in";

stream output to "std_out";

wire input to div3.inp;

wire div3.s’ to div3.s initially Rem0;

wire div3.out to output;

Templates

Applying a finite transducer to input, as in FSM-Hume, works for simple examples, but
becomes tedious when trying to apply the same transformation to each bit in a vector,
for instance. Template-Hume offers some pre-defined higher-order functions to achieve
this end [18].

For instance, to square each number in a vector:

square :: Int -> Int;

square x = x * x;

squareVector :: vector m of Int -> vector m of Int;

squareVector v = mapvec square v;

This makes use of the predefined higher-order function mapvec.
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Primitive recursion

PR-Hume is a typical functional programming language, permitting recursion, but bound-
ing the recursion to the class of primitive recursive functions [18]. Since determining if an
arbitrary function is primitive recursive is undecidable and PR-Hume offers no structural
restrictions to bound the recursion, PR-Hume relies on partial analysis to determine if a
function is primitive recursive [18].

The mechanism for turning unrestricted expressions into forms that guarantee primi-
tive recursion relies on single-step reductions and looking for syntactic expressions of the
form:

pr y x = f y x (pr (h y) (g x))

where y is the variable which must strictly decrease in size, h is a “size-reducing” function
and f and g are functions already analysed to be primitive recursive [27].

2.2.4 Categorical approaches

Category theory has offered a few approaches to creating restricted programming lan-
guages, often called categorical computing. Common among categorical approaches is
the use of inductive and coinductive datatypes.

For instance, stateless attribute grammars used in parsing can be written as catamor-
phisms [12]. The grammars are written as inductive data types, with each alternative in
a grammar rule corresponding to a constructor in an inductive datatype. Parsing then
is taken as a catamorphism over this datatype [12].

Paramorphisms

One method of bounding recursion is to disallow explicit recursion entirely and allow
primitives for performing recursion. As Dijkstra famously warned of the perils of goto
statements [11], Meijer et al. warn of the perils of unrestricted recursion [25]. They
provide a proposal to build more structured programs, based on category theory and
unrestricted inductive data types, using various primitives for recursion.

Catamorphisms are a class of functions which replace the constructors of an induc-
tively defined data structure, effectively recursing through each node in the structure.
For instance, consider the inductive definition of a binary tree:

T (α) := Leaf | Node(α, T (α), T (α))

A catamorphism to sum the nodes of a tree could, in a typical language allowing recursion,
be written as:

c(v) =

{
0 , if v = Leaf
va + c(v1) + c(v2) , if v = Node(va, v1, v2)

For brevity and clarity, the authors suggest the use of “banana brackets” to write cata-
morphisms, so that the above function would be written as:

c = (|0, λa.λl.λr.a+ l + r|)
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Note that the expression describing the Leaf component of the banana bracket is
nullary (i.e., is abstracted over no parameters) whereas the expression describing the
Node component of the banana bracket is ternary, corresponding to the fact that the
Node constructor has 3 subterms.

Anamorphisms are a class of functions which allow one to construct a member of an
inductive type from a seed value. In the context of a function g : α → (β, α, α) and a
predicate function p : α→ Bool, an example anamorphism might be written in a typical
functional language as:

f(v) =

{
Leaf , if p(v)
Node(a, l, r) , otherwise, where (a, l, r) = g(v)

One thing to note is that even though anamorphisms often produce data structures of
infinite size, in a lazy language, a catamorphism which acts on an anamorphism will
always halt. Secondly, unlike with catamorphisms, anamorphisms are almost always
given in the context of a function, in this case g.

The authors use “concave lenses” to denote anamorphisms, and the above example
would be written as:

a = [(g, p)]

A sort of combination of the two, holomorphisms are recursive functions in which the
call tree is isomorphic to an inductive data structure. For instance:

h(v) =

{
c , if p(v)
va + h(v1) + h(v2) , otherwise, where(va, v1, v2) = g(v)

This is written using “envelope” notation, and the authors write it as:

h = [[(c, λa.λl.λr.a+ l + r), (g, p)]]

They also show that for any data type and for any a, b, c, d:

[[(a, b), (c, d)]] = (|a, b|) ◦ [(c, d)]

Meijer et al.’s paper was the first to formally introduce paramorphisms to a program-
ming language. A paramorphism is exactly like a catamorphism but the constituent
functions accept extra arguments for attributes which have not undergone recursion. For
instance, consider the factorial function over the unary natural numbers:

f(n) =

{
1 , if n = Zero
(1 + p) · f(p) , if n = Succ(p)

Note that the attribute p is used both on its own and as an argument to the recursion.
Being able to use p on its own is what distinguishes this from a catamorphism. The
authors propose “barbed wire” notation for writing paramorphisms, and this would be
written as:

f = {1, λpp̂.(1 + p̂) · p}
These paramorphisms strongly relate to the fold constructs in Pola, as introduced in
section 3.1.2.

Finally the authors provide operational semantics and prove termination properties
and categorical properties of the recursive structures [25].
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Charity

Charity is the most successful categorical programming language. It is centred around
inductive and coinductive datatypes, with computations performed using catamorphisms
(“folds”) and anamorphisms (“unfolds”) [5, 13]. It is not universally powerful—every
program must halt given finite user input—but it is strictly more powerful than primitive
recursion.

More properly stated, Charity offers three combinators (and their duals): the “fold”
or catamorphism (“unfold” or anamorphism), map (also a “map” in the dual), and case
(record). Maps and cases (records) are special cases of catamorphisms (anamorphisms),
however.

A Master’s student of Cockett’s extended the language to Higher-order Charity [34].
Inductive types were left unchanged, but coinductive types could have their destructors
parameterized over some higher-order function, which led to efficient min and zip func-
tions. Further, Higher-order Charity offered an object-oriented system, built on top of
higher-order coinductive types, where an unapplied anamorphism was a class, an applied
anamorphism was an instance, and a parameterized destructor was a method.

Cockett describes the workings of the standard Charity interpreter, describing the
basic datatypes (natural numbers, lists, trees) and co-datatypes (co-natural numbers,
co-lists, co-trees). He also explains how to use common programming idioms in Charity
such as “dualing” (converting between a datatype and its cognate co-datatype) and
dynamic programming in Charity [5].

As a proof that Charity is more powerful than primitive recursion, a program to
calculate Ackermann’s function is provided [6]. Ackermann’s function is defined as:

ack(0, n) = n+ 1 (2.4)

ack(m+ 1, 0) = ack(m, 1) (2.5)

ack(m+ 1, n+ 1) = ack(m, ack(m+ 1, n)) (2.6)

One can consider an infinite table, where the value at column m and row n is ack(m,n).
Equation 2.4 says that each entry has value n+ 1 in column 0 for row n:

0 · · ·
0 1 · · ·
1 2 . . .
...

...
. . .

In other words, column 0 is tail(nats) where nats is the infinite list of natural numbers.
Equation 2.5 says that each entry in row 0 has the same value as in row 1 of the previous
column:

0 1 · · ·
0 1 2 · · ·
1 2 · · ·
2 3 · · ·
...

...
...

. . .
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Finally, equation 2.6 says that for some other row and column m+ 1 and n+ 1, we look
in the table at co-ordinates (m + 1, n) to find value i, then look again in the table at
co-ordinates (m, i) to find the new value at (m+ 1, n+ 1). Since all values needed have
been previously defined, this is a dynamic programming problem, and we end up with
the correct infinite table of:

0 1 2 3 · · ·
0 1 2 3 5 · · ·
1 2 3 5 13 · · ·
2 3 4 7 29 · · ·
...

...
...

...
...

. . .

Cockett’s Ackerman construction creates a Charity function, col m, which takes as its
argument the infinite coinductive list of the previous column. It uses an unfold to destruct
that list into a new infinite coinductive list. With the use of another function to retrieve
an element from the infinite list at a particular index, it follows that we can compute
ack(m,n) for any given natural numbers m and n, thus making Charity able to compute
functions beyond primitive recursive, while still remaining recursive.

Like Charity, Pola does have possibly-infinite coinductive structures much like Charity
does, as will be seen in section 3.1.3, but will have typing restrictions to ensure that
nothing super-polynomial can be produced through them.

2.3 Type theoretic approaches to determining re-

source consumption

A popular area of research in attempting to track memory usage, or resource consumption
in general, is type theory. For instance, Herding’s Master’s thesis describes how to
augment functions in the specification language CASL to track memory state [19]. The
general idea is to encode resource consumption information into the type of a symbol (e.g.,
a variable or function). This allows composing components of a larger program together
using type matching or type inference to gain information on the resource consumption of
the program as a whole. We will see in chapter 5 that considering resource consumption
to be a part of a symbol’s type information will become useful for Pola.

2.3.1 Stack language

Saabas and Uustalu offer a type-theoretic approach to stack-based programs [33, 32],
interesting because it deals specifically with programs with jumps (“gotos”) without any
explicit structure. The major motivation is to provide techniques for generating proof-
carrying code for low-level programs.

The first paper dealt with simple unstructured code with gotos [33]. The second
paper extended the language to allow operand stack operations [32].

The Push language described in [33] defines “a piece of code” (program) to be a
finite subset of P(N × Instr), i.e., a set of pairs of labels and instructions. It generally
deals with what it calls “well-defined pieces of code,” where each label defines a unique
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instruction. Instr, the set of instructions, is defined as the instructions load, store, push,
goto (unconditional jump), gotoF (conditional upon the top operand, read as “goto if
false”), plus some simple stack-based logical and arithmetic operations (add, eq, and so
on). There is also a finite set of registers used by the load, store and push instructions.
All of load, store and push have a single register operand; goto and gotoF have natural-
number constants as their sole operands; add, eq and so on take their operands from the
stack and do not deal with registers at all.

The authors structure the Push code into a finite union of non-overlapping labelled
instructions, creating a new language called SPush, where an SPush program is a
binary tree of labelled instructions, i.e., a binary tree where each leaf is a (N, Instr) pair.
Construction is associative. The semantics are identical between Push and SPush, but
using SPush allows the definition of a Hoare logic through composition. The authors
construct a sound and complete Hoare logic.

Finally, the authors weaken the Hoare logic into a typing system. The type system
ensures safe stack usage [33]. Any operations beyond stack usage are not considered.

2.3.2 Memory bounds

Hofmann and Jost provide a method for finding linear bounds on memory allocation
in a first-order functional language, called LF, but in the context of explicit memory
deallocation and in the presence of a garbage collector [22]. The authors excuse the
restriction to first-order functions foremost because it is fruitful to do so, but also because
one can work around it through code duplication. They introduce types with simple
first-order functions in which data must be units (the data type with only one datum in
its domain, often written as 1 or () in functional languages), Booleans, lists, Cartesian
products, or unions:

A := 1 | B | L(A) | A⊗ A | A+ A (2.7)

F := (A, . . . , A)→ A (2.8)

where A is a zero-order type and F is a first-order type. The function SIZE(−), which
returns the natural number indicating the number of memory cells needed to store a
datum of that type, is defined on all zero-order types.

A defining characteristic of the LF language presented is that it has two methods for
pattern-matching: the match construct (destructive pattern matching) and the match’
construct (non-destructive pattern matching) [22]. In the former, the datum being
matched is deallocated from memory, while in the latter, the datum being matched
can be referenced in subsequent parts of the program.

For the purposes of determining memory usage, the authors define a new language,
LF♦, in which the data types are augmented with size annotations, where Q+ is the set
of positive rational numbers:

A := 1 | B | A⊗ A | R +R | L(R) (2.9)

R := (A, k) for some k ∈ Q+ (2.10)

F := (A, . . . , A, k)→ R for some k ∈ Q+ (2.11)
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The R types are read as “rich types” because they carry information about their memory
requirements. Note that functions accept parameters of “plain” (A) types, but return
a rich value. They set up type judgements to determine resource requirements. For
instance, the simple rule which types the expression () to be of the unit type:

n ≥ n′

Γ, n `Σ () : 1, n′

is read as “in the context Σ under environment Γ with n free memory cells, () is of
type 1 with n′ or more unused memory cells left over.” More interesting cases are to
see how memory requirements change when doing a destructive pattern match on a list
(equation 2.12) as compared to a non-destructive pattern match on a list (equation 2.13):

Γ, n `Σ e1 : C, n′ Γ, xh : A, xt : L(A, k), n+ SIZE(A⊗ L(A, k)) + k `Σ e2 : C, n′

Γ, x : L(A, k), n `Σ match x with (nil ⇒ e1; cons(xh, xt)⇒ e2) : C, n′ (2.12)

Γ, n `Σ e1 : C, n′ Γ, xh : A, xt : L(A, k), n+ k `Σ e2 : C, n′

Γ, x : L(A, k), n `Σ match x with (nil ⇒ e1; cons(xh, xt)⇒ e2) : C, n′ (2.13)

Finally, the authors devise a system for inferring annotations in the program, such that
the programmer does not necessarily need to explicitly annotate sizes for each function
or datum.

Hofmann and Jost also introduce an amortized system of determining memory bounds [23].
They propose a Java-like language where each value carries with it some “potential” and
each operation carries with it some amortized costs. The sum of the amortized costs plus
the potential of the input to an operation then provides a bound.

Each class is augmented into a “refined class,” which is a class that has some potentials
attached, through what are called views. For instance, in the view a, the Cons class
carries a potential of 1 (indicating that operations on it have an extra cost of 1, stripping
off the potential associated with the Cons) whereas in another view b, the same Cons
class carries a potential of 0. Note that a single object in the Java-like language can be,
and often is, considered from different views with different potentials and thus can be of
different types.

A view carries three pieces of information: the potential of the class itself, the potential
of each attribute (where each attribute has both a “get-view,” the potential of reading the
attribute, and a “set-view,” the potential of writing to the attribute) and the potentials
for each of its methods, which are functions of its arguments.

For instance, consider a program to append two lists:

abstract class List { abstract List append(List x); };

class Nil { List append(List x) { return x; } };

class Cons {

int head;

List tail;

List append(List x) {

List r = new Cons();
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r.head = this.head;

r.tail = this.tail.append(x);

return r;

}

};

We introduce two views: a and b. In the view a, Cons has potential 1 and all other
classes have potential 0; in the view b, all classes have potential 0. The method append
is well-defined only as Lista × Listb → Listb, i.e., it is only defined as operating on lists in
the view a, taking arguments in the view b and returning values in the view b.

To prove (correctly) that summing a list consumes memory proportional to its first
operand, but irrespective of its second operand, we need to prove judgements such as:

this : Nila, x : Listb `0
0 (return x) : Listb (2.14)

this : Consa, x : Listb `1
0 (List r = new...) : Listb (2.15)

Here the notation `mm′ carries the semantics that the amount of free heap space must be
at least m plus the potential of the expression given on the right-hand side, and that
the m plus the potential of the result is at most the amount of free heap space after
execution. In this case, since the operand is in the a view, it carries the cost of the
execution in terms of its potential (e.g., since the potential of Cons is 1, a list of length
5 will have 5 Conses and thus have a potential of 5) and the cost of the append function
will be 1 for each potential of the input.

The authors prove soundness of the typing system. One nice feature of the system is
that it is not weak with respect to divide-and-conquer methods as similar systems are.
For instance, when writing Quicksort in the näıve way (choosing the first element of a
list as the pivot), one often has to judge that, after splitting up the remainder of the list,
both lists have maximum size n − 1, where n is the length of the list. When merging
the two lists back together, one finds a bound on the size of the list as 2n − 1, rather
than the proper n. This can erroneously lead one to believe that Quicksort consumes
exponential space. In this system, one requires explicit judgements for contraction, so
that when aliasing objects, the potential is divided among them [23].

The major downside of the Hofmann and Jost system is that memory bound inference
is not considered and neither is any type inference system.

2.4 Static memory management

Particularly as memory accesses become increasingly costly in future computer architec-
tures, alternative memory management models are being explored. Memory manage-
ment has moved from simple stack-based models [10] to explicit heap management via
C’s malloc and free to trace-based garbage collection schemes used in most popular
languages today such as Java, C], Lisp or Haskell. However, in the interest of increased
performance, namely fewer memory accesses, and better safety, there is a push to make
memory management more “static” once again.
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Region-based memory management is a memory management model added to the ML
language [36]. It annotates ML types and ML expressions with region variables where a
region variable refers to a statically allocated and deallocated region of memory. Unlike
in a simple stack-based memory management system, we have a finite stack of not just
finite memory cells, but a finite stack of unbounded regions of memory which can grow
dynamically. Like a simple stack-based memory management system, the regions are
lexically scoped and deallocated in constant time.

The major changes to the language are the at expression and the letregion expres-
sion. The letregion expression creates a new region, and introduces a corresponding
region variable, which exists only within the lexical scoping of the letregion expression.
The at expression is used for atomic constructions indicating which region to allocate it
in. As an example:

(λ x.letregion ρ in λy.(y,Nil@ρ) at ρ end x) 10

This function creates a region, ρ, and allocates an object, Nil, in that region. Once the
expression is evaluated, ρ is deallocated (and the Nil is destroyed with it).

A fully annotated region-based expression becomes quite unwieldy and there has been
work done to automatically infer which regions to place objects in [35].

2.5 Conclusion

There has been work done in the past to study both static analysis techniques on existing
programming languages and in developing more explicitly or rigidly structured programs
to aid in resource analysis. Developing a flexible programming model that lends itself
to automatic inference of resource requirements is still something missing in today’s
programming languages, however.

The next chapter will now introduce Pola, a programming language which borrows
some aspects from past work, such as restricted recursion and typing restrictions on
different classes of variables, and adds novel ideas to provide a practical programming
language restricted to polynomial time. This will allow future chapters to provide an
method to infer running-time bounds and memory-consumption bounds.



Chapter 3

Compositional Pola

Twe expositions of a functional language constrained to polynomial-time functions are
presented here, Pola and Compositional Pola. Both languages are equivalent in their
typing and semantics. Pola is the variant which has been implemented (see chapter 4)
and would be used by programmers. However, the language constructs contained within
it would be far more complicated to describe and so, in the interest of clarity, a composi-
tional form of the language called Compositional Pola is described in this chapter, which
simplifies and clarifies exposition, definitions and proofs of the language. For most of
the chapter, and for all of the introductory examples, we will present examples using the
syntaxes of both Pola and Compositional Pola. Pola can be thought of as a “sugared”
Compositional Pola, a syntax which makes the constructs more readable. Proofs and
detailed descriptions will be based off of Compositional Pola only, however.

3.1 Introductory examples

3.1.1 Recursion-free examples

Figure 3.1 shows simple Pola code that does not use any recursion or complicated data
types. It attempts to define two different functions, one called f and the other called g.
Both functions aim to have a single parameter, called x, and return a tuple that contains
the value of x in both positions of the tuple. The syntax for defining functions in Pola
is to begin with the name of the function, followed by an equal sign, following by a list
of parameters segregated such that opponent parameters are on the left of a vertical bar
and player parameters on the right, followed by a dot, followed by a term.

The example demonstrates one crucial part of Pola which permeates the language:
two different types of variables. The function f in figure 3.1 declares the parameter x

1 f = x | .(x, x);
2 g = | x.(x, x);

Figure 3.1: A demonstration of the distinction between opponent and player variables.
The function f is legal in Pola, but the function g is illegal.

21
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1 data Nat→ c
2 = Zero :→ c
3 | Succ : c→ c;
4 data List(a)→ c
5 = Nil :→ c
6 | Cons : a, c→ c;
7 add = x | y.fold f(a, b) as {
8 Zero.b;
9 Succ(− | n).f(n, Succ(b)) }

10 in f(x, y);
11 append = l | m.fold f(a, z) as {
12 Nil.z;
13 Cons(x1,− | x2).Cons(x1, f(x2, z)) }
14 in f(l,m);

Figure 3.2: An example of inductive data types and folds in Pola.

before the vertical bar, making it an opponent variable. An opponent variable has no
restrictions on where it can be used or how often it can be used. Function f is therefore
a legal function.

The function g, in contrast, declares its parameter x after the vertical bar, designating
it as a player variable. Player variables have an important restriction on their use, namely
that they cannot be repeated multiple times in the same term. This will later prove to
be an invaluable tool in restricting the computational power of the language. Because
the function g attempts to use the parameter x twice, the function g is illegal in Pola.

3.1.2 Inductive data types and folds

Figure 3.2 gives an example of a Pola program which uses inductive data types and folds,
inductive data types being those which can be constructed inductively (e.g., Booleans,
characters, integers, strings, lists, trees) and folds being the mechanism for recursion over
inductive data structures. The program in figure 3.2 defines two inductive data types,
those of the natural numbers and lists, and defines two functions, the add function which
adds two natural numbers, and the append function which appends two lists together. At
this point it is worthy of mention that Pola does not have any predefined primitive types
(such as integers) nor any predefined primitive operators (such as addition). Though the
language could easily be extended to offer such things in the interest of efficiency, that is
not considered in this thesis because it distracts from the main contribution of the thesis.

After lines 1–3, the type Nat will be defined. The expression Zero is of type Nat; the
expression Succ(e) will be of type Nat for any expression e which is also of type Nat.
Within the definition of the type itself, the type variable c is used to stand recursively
for that of the type being defined: in this case, the type variable c stands for the type
Nat. Consequently, Zero :→ c can be read as defining the constructor Zero, which takes
no parameters (there are no types to the left of the → symbol) and produces a value
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of type Nat. Succ : c → c can be read as defining a constructor, Succ, which takes one
parameter of type Nat and produces a value of type Nat.

From these two constructors one can define the natural numbers. From this point
forward we will, for clarity, denote natural numbers constructed from these expressions
as Arabic numerals with an overhead bar. For instance, the expression Succ(Succ(Zero))
will be denoted as 2̄.

Lines 4–6 define the inductive type of lists. The expression Nil is of type List(a) for
all types a. The expression Cons(h, t) is of type List(a) for all expressions h of type a
and expressions t of type List(a). For example, the expression Cons(Zero,Nil) is of type
List(Nat). a in this context is a type variable—not itself a concrete type—and List(a) is
a parameterized type.

From this point forward we will, for clarity, denote lists constructed from these ex-
pressions within square brackets. For instance, the expression Cons(3̄,Cons(7̄,Nil)) will
be denoted as [3̄, 7̄].

Lines 7–10 define the function add. On line 7, x and y are introduced as parameters to
the function. x being placed to the left of the vertical bar (|) denotes it as an “opponent”
variable and y being placed to the right of the vertical bar denotes it as a “player”
variable. Opponent variables are used to drive recursion, and consequently x is required
to be an opponent variable in this case. The remaining parameter, y, could be declared
either an opponent or player variable and the addition function would work properly in
either case, though it is often preferred to have it as a player variable, for reasons that
will be made clear in section 3.4. Since y is a player variable in this function, it cannot
drive a recursion, which is acceptable in this case as there is no need for y to drive a
recursion.

The fold keyword allows the introduction of an “on-the-fly” recursive function, f .
Within the scope of the fold construct we may refer to f to recurse, under some typing
restrictions that will be explained in section 3.1.2 and section 3.4. a and b are the
parameters to the recursive function, f , with a (the first parameter named) being the
variable which is being recursed over, and b (and any number of other parameters) being
extra parameters to the recursive function. Every parameter of a fold function is a player
parameter. Within the fold is an implicit pattern-matching on the first parameter, a.
If a is of value Zero then we will evaluate the expression on line 8; otherwise we will
evaluate the expression on line 9. The “coda” to the fold construct, given on line 10,
provides initial values to the function f .

It should be noted at this point that, in Pola, it is an error to refer to a function
which has not yet been defined. For instance, it would be a typing error for the function
add to be referred to within the definition of add itself. It would also be an error for
the function add to refer to the function append, as that function would not be defined
at that point. Referencing previously defined functions is allowed by the typing system,
however: append could make reference to the function add.

The pattern-matching syntax on line 9 requires explanation. Succ(− | n) should be
read as matching if the first parameter, a, is a Succ value. The parameter to the Succ
constructor is bound twice: once in the opponent context and once in the player context.
In this case, which is the usual case, the variable is not of use when bound in the opponent
context, and so we bind it to the anonymous variable, −. Variable n, then, is bound in
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1 add = x | y.fold f(a, b) as {
2 Zero.b;
3 Succ(− | n).f(n, Succ(b)) }
4 in f(x, y);
5 mul = x, y | .fold f(a, b) as {
6 Zero.b;
7 Succ(− | n).f(n, add(y, b)) }
8 in f(x,Zero);

Figure 3.3: Addition and multiplication functions defined in Pola.

the player context. To demonstrate by example, suppose that the initial values to the
function add were x = 3̄ and y = 1̄. The initial values within the recursive function, f ,
then are a = 3̄ and b = 1̄. After matching the Succ branch of the fold, we introduce n
with a value of 2̄, since a = Succ(2̄).

Variable n is a special variable, which will be called a “recursive” variable from here
on. Any variable which is used in the first position of a call to a recursive function is
a recursive variable. All recursive variables are player variables. In this case n is used
in the first position in a call to recursive function f . Note that the add function is not
considered recursive in this context, but the f function contained within it is.

Typing restrictions on folds

We briefly offer some intuition to the reader on the importance of opponent types and
player types, and particularly how they interact to ensure that every well-typed function
in Pola will halt in polynomial time. The matter will be discussed rigorously in section 3.4.

Figure 3.3 gives two well-typed functions, add and mul, which naturally define ad-
dition and multiplication on the natural numbers that were defined in figure 3.2. The
add function is exactly as it was defined in figure 3.2, where addition is performed via
repeatedly taking the successor. Should we make a call to add(6̄, 2̄), tracing through
the recursive calls in the fold we find that we recurse 6 times, thus performing 6 Succ
operations and ending up with a value of 8̄. The mul function is defined nearly identi-
cally to the add function with three modifications: firstly, that the accumulated value
begins at 0̄, as seen on line 8; secondly, and most importantly, that instead of repeatedly
performing a Succ construction, the function repeatedly performs an addition operation;
thirdly, the second parameter, y, is an opponent variable, not a player variable, which will
be explained in the next paragraph. Consequently, should we make a call to mul(6̄, 2̄),
we would again recurse 6 times, performing 6 addition operations, each time adding 2̄,
yielding a final value of 12.

The reason that the parameter y could be a player variable in the case of add is that
y is not used to drive a recursion. However, in the case of mul, the parameter y is used as
the first argument to the function add, necessarily an opponent argument. The parameter
y in the case of mul is (indirectly via add) driving a recursion, and thus the typing system
enforces that it be an opponent variable. Because both parameters x and y are used to
drive recursions in the case of mul, both must be opponent variables. We reiterate at



3.1. Introductory examples 25

1 exp = x, y | .fold f(a, b) as {
2 Zero.b;
3 Succ(− | n).f(n,mul(y, b)) }
4 in f(x, Succ(Zero));

Figure 3.4: A failed attempt at writing an exponential function in Pola. This example
will lead to a typing error.

1 z = x | .fold f(x, y) as {
2 Zero.y;
3 Succ(− | n).f(n, f(n, Succ(y))) }
4 in f(x,Zero);

Figure 3.5: An exponential function which would yield a typing error in Pola.

this point that every formal parameter to a recursive function—i.e., the parameters a
and b in our example—is a player variable. Thus, attempting to rewrite the expression
on line 7 to read f(n, add(b, y)) (putting b in the first position of the addition) will yield
a typing error as b is not an opponent variable but add’s first parameter is an opponent
parameter.

If arithmetic is performed using the Peano representation of natural numbers given
in figure 3.2, it must be impossible to write an exponential function. The reason is that
computing an exponential using Peano arithmetic requires an exponential number of Succ
constructions. Figure 3.4 gives a natural attempt at writing an exponential function
in Pola, following the style of arithmetic functions given in figure 3.3. If addition is
iterated successors and multiplication is iterated addition, then exponential is iterated
multiplication. The function in figure 3.4 yields a typing error: specifically, the mul
function requires both arguments to be opponent and, on line 3 of figure 3.4, the variable
b is a player variable. The typing system thus enforces that writing an exponential
function in such a style is impossible. We will later prove that writing an exponential
function is impossible in general.

Duplication of variables—that is, making reference to the same player variable more
than once within a single evaluated term—in the player world is disallowed. Consider
the program given in figure 3.5. The function z would compute 2x−1 and would operate
in time exponential with respect to the size of x, due to the two recursive calls to f .
This program would yield a typing error in Pola due to the fact that the variable n is
duplicated. n is necessarily a player variable, because all recursive variables are player
variables, and there is a general restriction on the duplication of any player variable.

There is one major exception to the restriction on duplication player variables just
mentioned, which is that players may be duplicated between branches of a fold, an
unfold (seen in section 3.1.4) and case and peek constructs (seen in section 3.1.5). For
instance, the variable y in figure 3.5 is duplicated within the fold: it is used once in the
Zero branch and once in the Succ branch of the fold, which is permitted. However, the
variable n is duplicated within the same function call, which causes the typing violation.



26 Chapter 3. Compositional Pola

1 data c→ Prod(a, b)
2 = P1 : c→ a
3 | P2 : c→ b;

Figure 3.6: An example of a coinductive data type in Pola, representing the product of
two values.

3.1.3 Coinductive data types

Coinductive data types introduce objects which are evaluated or explored lazily. By that,
we mean that values within a coinductive object are not computed immediately upon
creation of the object, but only when requested—only at the time when the object can
be destructed. Consider the example Prod coinductive data type, parameterized over the
type variables a and b, given in figure 3.6. Rather than having constructors, coinductive
data types have destructors1. Line 2 gives the first destructor, P1, of Prod, and gives it
type c→ a. That is, an object of type Prod(a, b) can be destructed with the P1 destructor
and yield a value of type a. Line 3 gives the second destructor, P2, which is similar to
the P1 destructor. The Prod data type captures the data type of pairs: the coinductive
data type which holds two values.

For a reader familiar with object-oriented programming, a good intuition for coinduc-
tive data types is that of classes. A coinductive data type definition can be thought of
as a class, and a destructor can be thought of as a method declaration.

Coinductive values are created by “records”, which are terms corresponding to de-
structors enclosed within parentheses. By convention we put white space on the insides
of the parentheses of a record to more clearly distinguish them. An example coinductive
value of type Prod(Nat,Bool) would be ( P1 : 3̄;P2 : False ). This denotes a coinductive
value where the first destructor is bound to term 3̄ and the second destructor is bound to
the term False. Using the object-oriented analogy, this would be analogous to defining an
object where invoking the nullary method P1 would evaluate and return the term 3̄ and
invoking the nullary method P2 would evaluate and return the term False. Note that the
terms within the body of the record—in this example, 3̄ and False—are not evaluated at
the time the record is created, but at the time the record is destructed.

Square bracket notation is used to denote the destruction of a record. The name of
the destructor is given first and the record to be destructed is given in square brackets
adjacent to that. For instance, the term P1[( P1 : 3̄;P2 : False )] denotes invoking the
P1 destructor on the given record and would evaluate to the value 3̄. This would be
analogous to invoking a method in object-oriented programming. Note that the destruc-
tors (“methods”) of Prod are not parametric, though in general destructors may be. If a
destructor has parameters, arguments for destruction are given after the square brackets,
as can be seen in example 3.7.

Lines 1–2 of figure 3.7 define the Fn coinductive data type, the type of closures. Fn has
a single destructor which takes in one parameter, of type a, and returns a value of type
b. For example, Fn(Bool,Nat) is the type of closures from Booleans to natural numbers.

1The usage of the word “destructor” bears no resemblance to the notion of an object destructor in
some object-oriented languages such as C++.
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1 data c→ Fn(a, b)
2 = Eval : c, a→ b;
3 apply = | f, x.Eval[f ](x);

Figure 3.7: An example of a coinductive data type in Pola.

1 data c→ Fn(a, b)
2 = Eval : c, a→ b;
3 data c→ InfList(a)
4 = Head : c→ a
5 | Tail : c→ c;
6 allNats = | .unfold g(x) as (
7 Head : x;
8 Tail : g(Succ(x)) )
9 in g(Zero);

10 map = | f, l.unfold g(l) as (
11 Head : Eval[f ](Head[l]);
12 Tail : g(Tail[l]) )
13 in g(l);

Figure 3.8: Infinite lists in Pola.

Line 3 gives a function, apply, which takes in two player parameters: f , a closure of type
Fn(a, b); and x, a value of type a. It then evaluates to the result of destructor f with the
value of x, in effect applying the function f to the value x.

An example of using the function apply would be in the expression apply(( Eval :
x.Succ(x) ), 2̄). The record ( Eval : x.Succ(x) ) is of type Fn(Nat,Nat), a closure taking
values from Nat to Nat. The expression within the record, Succ(x), is evaluated lazily: it
is not evaluated until the closure is “destructed”. apply(( Eval : x.Succ(x) ), 2̄) binds the
value ( Eval : x.Succ(x) ) to f and 2̄ to x, giving the term Eval[( Eval : x.Succ(x) )](2̄).
We destruct the given record with the Eval destructor, using the value 2̄ for the bound
variable x, and are left with the term Succ(2̄), which yields the returned value of 3̄.

3.1.4 Unfolds

Because the body of a record is lazy, coinductive data allow the use of infinite data
structures. Figure 3.8 gives an infinite data structure, the InfList. Lines 3–5 define the
infinite list data structure. The Head destructor given on line 4 evaluates and returns
the first element of the list; the Tail destructor given on line 5 returns the tail of the list,
which itself is an infinite list.

Because the InfList data type is recursive, namely via the Tail destructor, it is not
possible to define an InfList object merely with the record syntax. A recursive construct
is required, which is the unfold construct. The function allNats, given on lines 6–9,
defines an infinite list using this construct. Like the fold construct, it introduces a
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1 data BinaryTree(a)→ c
2 = Leaf : a→ c
3 | Node : c, c→ c;
4 data Bool→ c
5 = True : → c
6 | False : → c;
7 isLeafOpp = x | .case x of {
8 Leaf(−).True;
9 Node(−,−).False };

10 isLeafPlayer = | x.peek x of {
11 Leaf(−).True;
12 Node(−,−).False };

Figure 3.9: Examples of using the case and peek constructs.

recursive function, in this case g, which can only be used within the unfold. Unlike
the recursive functions introduced by fold constructs, the recursive functions introduced
by unfold constructs require zero or more parameters, not one or more. In the case
of g defined on line 6, it takes one parameter, x, which is necessarily a player variable.
On line 9 it is given an initial value of Zero. The unfold construct itself performs no
computation whatsoever; however, if the object it produces is ever destructed, then the
expressions given within the body of the unfold will be computed accordingly.

The infinite list produced by the allNats function has type InfList(Nat), the infinite list
of natural numbers. Evaluating Head[allNats()]—i.e., performing the Head destruction
of the object produced by allNats—yields the value 0̄, since that is the initial value of x.
Evaluating Tail[allNats()] yields an infinite list, but one where the value of x has been
incremented to 1̄. Evaluating Head[Tail[allNats()]] thus yields a value of 1̄. We see, then,
that allNats produces the infinite list of all natural numbers, i.e., [0̄, 1̄, 2̄, . . .]. Elements
of the list are only produced so long as we perform Tail destructions, of which there must
be finitely many.

The map function given in figure 3.8 is a function which takes in two parameters: a
closure f representing a function to apply to elements of a list, and an infinite list l. The
function produces its own infinite list of elements and is evaluated lazily.

3.1.5 Cases and peeks

When dealing with inductive data, it can be useful to perform pattern-matching outside
the setting of a fold construct. The case and peek constructs allow for this, as shown
in figure 3.9. Lines 1–3 introduce a binary tree inductive data type, where the leaves
of the tree are populated with data but the nodes are not. Lines 4–6 introduce the
type of Booleans. Lines 7–12 then introduce two functions which perform the same task:
to return a Boolean value of true or false accordingly if the input parameter, a binary
tree, is a leaf. The difference between the two functions is whether the parameter is an
opponent variable or a player variable. This highlights the sole distinction between the
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Named type TypeExpr := typeName
Type variable TypeExpr := typeVar
Type application TypeExpr := (TypeExpr TypeExpr)
Tuple type TypeExpr := TypeExpr × TypeExpr
Opponent type TypeExpr := o(TypeExpr)
Recursive type TypeExpr := r(typeVar ,TypeExpr)
Branch type TypeExpr := br(TypeExpr)
Co-branch type TypeExpr := b̄r(TypeExpr)
Arrow type TypeExpr := TypeExpr → TypeExpr

Figure 3.10: Type expressions in Compositional Pola.

case and peek constructs: a case construct deals with values in the opponent world and
the peek construct deals with values in the player world. The patterns on lines 8, 9, 11
and 12 have variables bound to the Leaf and Node constructors being anonymous: this is
not a requirement, but is commonplace in case and peek constructs whenever the data
contained within are not used for anything.

3.2 Types

In this section we introduce types, which are of paramount importance to understanding
Pola. All of the restrictions which constrain Pola to polynomial-time running times are
enforced by the typing system. The use of types and typing will become clearer in future
sections, namely section 3.4 and section 3.6. For now we look at the syntax and structure
of types in Pola.

3.2.1 Syntax of type expressions

The structure of types in Compositional Pola is given in figure 3.10. Named types refer to
concrete types which have been already introduced, such as Nat or Bool. Some types may
be parameterized over type variables: for instance, (List Nat) refers to a list of natural
numbers and (List α) refers to a list of elements with unknown type. Tuple types represent
pairs, which can be composed for more general tuples of any arity. An opponent type
gives a typing restriction that the term can be composed only of symbols in the opponent
context, a restriction which will be explained in section 3.4. The recursive type is used
to control safe recursion inside fold and unfold constructs, which will be explained in
section 3.4.3. Branch and co-branch types are used for terms which have meaning only
within inductive case constructors—e.g., peek or case constructs—or within coinductive
constructions—e.g., record or unfold constructs. Arrow types are used for higher-order
terms.

Typical in the course of algorithms and proofs about the type correctness is the
reliance on structure in the types. By abstracting over the various forms of type structure
we can improve clarity and brevity in the proofs by reducing the number of cases to
consider. This will be of primary use when making proofs about the correctness of
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Type definition TypeDefn := data TypeName → typeVar Inductive type
= Constructor ∗;

TypeDefn := data typeVar → TypeName Coinductive type
= Destructor ∗;

Type name TypeName := typeName(typeVar ∗) Parametric type
Constructor Constructor := consName : TypeExpr ∗ → typeVar
Destructor Destructor := destName : typeVar ,TypeExpr ∗ → TypeExpr

Figure 3.11: Abstract syntax for type definitions in Compositional Pola.

typing, as we can avoid having to consider each structure of type separately.

Notation 1. Abstractly we consider that a type has structure Tx(α1, . . . , αn) for some
concrete form of structure x and parameterized over some types α1, . . . , αn. Specifically:

• A type variable x has structure Tv(x);

• A named type X has structure TT (X);

• A type application (α β) has structure Ta(α, β);

• A tuple of type α× β has structure T×(α, β);

• An opponent type o(α) has structure To(α);

• A recursive type r(α) has structure Tr(α);

• A branch type br(α) has structure Tbr(α);

• A co-branch type b̄r(α) has structure Tb̄r(α);

• An arrow type α→ β has structure T→(α, β);

3.2.2 Syntax of type definitions

At the top level, Pola consists of a list of definitions of data types, both inductive and
coinductive algebraic data types, and functions. Because general recursion is disallowed in
Compositional Pola, the order in which symbols are declared or defined is important. By
convention we will show keywords in bold, type names, destructors and constructors in
sans-serif, and identifiers in italics. Specifically, non-terminals will be italicized beginning
with an upper-case letter and terminals will be italicized beginning with a lower-case
letter.

The syntax for data type definitions is given in figure 3.11. Examples of inductive
data types are shown in figure 3.12.

Coinductive data types can be less intuitive due to their relative rarity in functional
languages. Coinductive data types are used to store potential computation for a later
time, to be “destructed”. Examples of coinductive data types are given in figure 3.13.



3.2. Types 31

Natural numbers
1 data Nat→ c
2 = Zero : → c
3 | Succ : c→ c;

Linked lists
1 data List(a)→ c
2 = Nil : → c
3 | Cons : a, c→ c;

Binary trees (data on leaves)
1 data Tree(a)→ c
2 = Leaf : a→ c
3 | Node : c, c→ c;

Binary trees (data on internal nodes)
1 data Tree2(a)→ c
2 = Leaf2 : → c
3 | Node2 : c, a, c→ c;

Optional type
1 data Maybe(a)→ c
2 = Nothing : → c
3 | Just : a→ c;

Coproduct
1 data Either(a, b)→ c
2 = Left : a→ c
3 | Right : b→ c;

Figure 3.12: Example inductive data types in Pola.

Closure
1 data c→ Fn(a, b)
2 = Eval : c, a→ b;

Infinite list
1 data c→ InfList(a)
2 = Head : c→ a
3 | Tail : c→ c;

Figure 3.13: Example coinductive data types in Pola.
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Opponent typing is used exclusively within arrow types to designate that a particular
argument to a function may not contain player terms. Branch and co-branch types are
used to enforce typing agreement between, respectively: branch constructs (i.e., peek,
case, fcase) and their branches; and records and their co-branches. For instance, the
keyword peek per se has a type of (br(α → β) → αβ) and the terms which perform
pattern-matching within the peek have a type of (br(α → β). In this way, the use of
branch and co-branch typing ensures that a matching expression follows a keyword like
peek.

3.2.3 Constructor and destructor typing

Associated with each program is a global context, Ξ, which maintains the types of all
global symbols, such as constructors and destructors and previously-defined functions.
Each data type definition adds to this global context, Ξ.

Consider the following inductive data type definition for type A:

1 data A(x1, . . . , xn)→ c
2 = C1 : τ1,1, . . . , τ1,p1 → c
3 | · · ·
4 | Cm : τm,1, . . . , τm,pm → c;

For each constructor, Ci : τi,1, . . . , τi,pi → c we add, to Ξ, the following type signature:

Ci : (τi,1 × . . .× τi,pi)→ A(x1, . . . , xn)

It is taken implicitly that the constructor is parameterized over type variables x1, . . . , xn.
For coinductive types, consider the following coinductive data type definition for type

B:
1 data c→ B(x1, . . . , xn)
2 = D1 : c, τ1,1, . . . , τ1,p1 → υ1

3 | · · ·
4 | Dm : c, τm,1 . . . , τm,pm → υm

For each destructor, Di : c, τi,1, . . . , τi,pi → υi we add, to Ξ, the following type signature:

Di : (B(x1, . . . , xn)× τi,1 × · · · × τi,pi)→ υi

As with constructors, destructors are parametric over type variables x1, . . . , xn.
In our examples, we will typically not include constructors and destructors in the def-

inition of Ξ in the interest of brevity. It is assumed that all constructors and destructors
are implicitly in Ξ for data types that are in scope.

3.3 Terms

Here we introduce the terms of Compositional Pola, which are given in a compositional
syntax. Later we will see syntactic sugar atop this compositional syntax to define the
syntax of Pola, the sugared version of Compositional Pola, as seen in section 3.1. A
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Constructor Term := consName
Destruction Term := destName
Case Term := case
Peek Term := peek
Fold Term := fold
Fold case Term := fcase
Function Term := fName
Tuple pair Term := Term × Term
Variable reference Term := varName
Opponent lambda Term := λovarName.Term
Player lambda Term := λpvarName.Term
Inductive recursive lambda Term := λf fName.Term

Coinductive recursive lambda Term := λf̄ fName.Term
Constructor pattern Term := λCconsName.Term
Variable pattern Term := λopvarName varName.Term
Tuple match Term := ♦.Term
Unit tuple match Term := O.Term
Opponent application Term := (Term (Term)o)
Player application Term := (Term Term)
Branch composition Term := Term + Term
Unfold Term := unfold
Record Term := record
Destructor pattern Term := λDdestName.Term
Record composition Term := Term ⊕ Term

Figure 3.14: Syntax for terms in Compositional Pola.

program in Compositional Pola consists of a number of type declarations and a number
of symbol declarations, where each symbol is bound to a term. The form of compositional
Pola terms is given in figure 3.14.

Constructions, destructions and function calls all look similar in Compositional Pola:
each is a symbol—either a constructor symbol, destructor symbol or function symbol—
juxtaposed with zero or more arguments. Cases and peeks are just a keyword (either case
or peek) juxtaposed with the subject and a branch term, the distinction being whether
the subject is allowed to reference player variables (peek) or not (case). A fold case
(fcase) is semantically identical to a peek but has a typing restriction that allows its use
only within a fold construct, preventing the duplication of the subject. A branch term
is one or more branches composed together with “+”, where a branch is a constructor
pattern, a tuple match, or a variable pattern. A fold is the keyword fold juxtaposed
with function lambda term which introduces the recursive function and which includes
an fcase term in its body. Tuples are built syntactically by composing terms with the
“×” symbol. See figure 3.15 for an example of inductive terms in Compositional Pola.

Multiple syntaxes for applications—opponent applications, player applications and
higher-order applications—are most useful for type inference, described in section 3.6,
where the inference engine can determine up-front whether to perform inference with the
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add = λox.λpy.(λff.(f xo y))
(fold (λff.λpa.λpb.fcase a

(λCZero.O.b
+ λCSucc.♦.λopx1 x2.O.(f x2 (Succ (b× ()))))))

append = λol.λpm.(λff.(f lo m))
(fold (λff.λpa.λpz.fcase a

(λCNil.O.z
+ λCCons.♦.λopx1 x3.♦.λopx2 x4.O.Cons (x1 × ((f x4 z))× ()))))

Figure 3.15: An example of Compositional Pola syntax, defining two functions, add and
append, which operate on inductive data.

allNats = (λfg.(g (Zero ())))

(λf̄g.λpx.record (λDHead.x
⊕ λDTail.(g (Succ (x× ())))))

map = λpf.λpl.(λfg.(g l))

(λf̄g.λpl.record (λDHead.(f Eval (l Head))
⊕ λDTail.(g (l Tail))))

Figure 3.16: An example of Compositional Pola syntax, defining two functions, allNats
and map, which operate on coinductive data.

player context included or not.

Records—and, by extension, unfolds—are composed of individual “co-branches”,
where one co-branch is a mapping between a destructor name and the term, as shown in
figure 3.16.

3.3.1 Syntactic sugar

To aid in the clarity of the language, we introduce some syntactic sugar for commonly
used constructs, which will be used in all future examples in this chapter, and which have
already been seen in section 3.1.

• where clauses are introduced, binding to either player or opponent variables.
t where x = u will stand for (λpx.t) u and t where x := u will stand for (λox.t) u.

• Tuples are presented in a more conventional way. (t1, t2) will stand for t1×(t2×());
(t1, t2, t3) will stand for t1 × (t2 × (t3 × ())); and so on.

• Constructions are presented in a more conventional way and will always be pre-
sented in sans-serif typeface. True will stand for True (), the constructor True
applied to the unit tuple; Succ(n) will stand for Succ (n× ()).
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• Destructions are presented in a square bracket syntax to clearly distinguish them
from constructions, but will also be written in sans-serif typeface. For instance,
Eval (x× (y × ())) is written as Eval[x](y).

• Patterns are reformatted to obsolesce the usage of ♦ and O. True.t will stand for
λCTrue.O.t; Succ(x).t will stand for λCSucc.♦.λpx.O.t; and Cons(a, b | c).t will stand
for λCCons.♦.λoa.♦λopbc.O.t.

• Branches are grouped together with curly braces and separated by semicolons.

• Co-branches are grouped together with parentheses and separated by semicolons.

• Function applications use a more familiar parenthesis style as compared to jux-
taposition, and the usage of subscripted o is dropped: whether an argument to
a function is opponent or player is implied. For instance, add xo y is written as
add(x, y).

The sugared version is the version more useful for a programmer, and is the version
provided by the reference implementation of Pola. For any Pola term, there is a clear
and direct corresponding Compositional Pola term. The Compositional Pola notation is
given in this document to provide simplicity in some of the rules of inference.

3.4 Typing and well-typedness

We will consider the process of type inference in section 3.6, but first we need to de-
fine well-typedness of a Compositional Pola term. The operational semantics given in
section 3.5 depend on a term being well-typed.

3.4.1 Contexts and sequents

We consider three contexts to be present at all times: Ξ, the context of global sym-
bols, namely function symbols, constructors and destructors; Γ, the context of opponent
variables in scope; and ∆, the context of player symbols in scope.

Each of the contexts, Ξ,Γ,∆, is a list of mappings from symbols to types. We will
consider these contexts to be unordered and without duplication. For instance, some
rules may require a split in the player context ∆, written as ∆1,∆2. This splitting of
the player context, as in linear logic, enforces that player variables cannot be duplicated.
Without loss of generality, we consider that these rules hold for ∆2,∆1 as well, and in
cases where at least one of ∆1 or ∆2 is empty.

We consider a term to be well-typed if and only if there is at least one type, as defined
in section 3.2, associated with a term and there is a proof that the term is of that type, by
the sequent rules given in this section. A term may have multiple related types. E.g., the
function length, to determine the length of a list, has type length : List(Nat) | → Nat and
length : List(Bool) | → Nat and an infinite number of other types. The type inference
system given in section 3.6 will give the most general type of a term; in the case of length,
the most general type would be length : List(α) | → Nat for all types α.
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A rule is of the following form:

Ξ1‖Γ1 | ∆1 ` t1 : α1 · · · Ξn‖Γn | ∆n ` tn : αn
Ξ0‖Γ0 | ∆0 ` t0 : α0

Each Ξi,Γi,∆i is a context as mentioned previously. Each ti is a Compositional Pola
term. Each αi is a Compositional Pola type. The rule reads that, given the premises,
of which there may be zero in the case of an axiom, the Compositional Pola term in the
conclusion has the given type, for the given contexts.

3.4.2 Simple terms

Figure 3.17 gives the typing rules for simple terms, ignoring coinductive constructs. Fig-
ure 3.18 gives simple rules involving branches and pattern-matching.

3.4.3 Recursive inductive terms

The typing system is the sole mechanism to ensure safe recursion and thus to ensure
that all Compositional Pola programs execute within polynomial time. The primary
mechanism to accomplish this is the introduction of a type variable which cannot be
matched with any other type and which is used to drive recursion. This mechanism
prevents a recursive function from being called with an improper parameter. For instance,
should one wish to write a Compositional Pola function which recurses over the natural
numbers, driving the recursion with the natural number n, it is imperative that only the
natural number n− 1 be used to call the recursive function the next time, and n− 2 the
time after that, and so on. Structurally we mean that driving a recursive function with
the term Succ(t), for some natural number term t in normal form, we must guarantee
that one may only be able to recurse using the term t as a parameter to the recursive
function.

We accomplish this by ensuring that any variable which is used to call a recursive
function has a particular type, a type unique to the recursive function in question, which
cannot be matched with any other type. We require a unique type for each recursive
function, as opposed to a more obvious solution of using one recursive type per concrete
type, to ensure that recursive variables used in nested fold constructs refer only to their
own respective recursive functions.



3.4. Typing and well-typedness 37

Symbol
reference

(x : α) ∈ Γ or (x : α) ∈ ∆ or (x : α) ∈ Ξ

Ξ‖Γ | ∆ ` x : α

Construction

(Ci : β → α) ∈ Ξ Ξ‖Γ | ∆ ` t : β

Ξ‖Γ | ∆ ` Ci t : α

Opponent application

Ξ‖Γ | ∆ ` t : o(α)→ β Ξ‖Γ | ` u : α

Ξ‖Γ | ∆ ` t (u)o : β

Player application

Ξ‖Γ | ∆1 ` t : α→ β Ξ‖Γ | ∆2 ` u : α

Ξ‖Γ | ∆1,∆2 ` t u : β

Tuple unit Ξ‖Γ | ∆ ` () : ()

Tuple composition

Ξ‖Γ | ∆ ` t : α Ξ‖Γ | ∆ ` u : β

Ξ‖Γ | ∆1,∆2 ` t× u : (α× β)

Opponent lambda

Ξ‖(x : α),Γ | ∆ ` t : β

Ξ‖Γ | ∆ ` λox.t : o(α)→ β

Player lambda

Ξ‖Γ | (x : α),∆ ` t : β

Ξ‖Γ | ∆ ` λpx.t : α→ β

Recursive lambda

Ξ, (x : α→ β)‖Γ | ∆ ` t : γ → β

Ξ‖Γ | ∆ ` λfx.t : r(α, γ)→ γ → β

Fold-variable lambda

Ξ‖(x1 : α),Γ | (x2 : γ),∆ ` t : β

Ξ‖Γ | ∆ ` λopx1x2.t : r(γ, α)→ β

Fold-variable non-recursive lambda

Ξ‖(x : α),Γ | ∆ ` t : β

Ξ‖Γ | ∆ ` λox.t : r(γ, α)→ β

Figure 3.17: Typing rules for simple terms.
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Ξ‖Γ | ∆ ` peek : br(α→ β)→ α→ β Peek

Ξ‖Γ | ∆ ` case : br(o(α)→ β)→ o(α)→ β Case

Ξ‖Γ | ∆ ` t : α

Ξ‖Γ | ∆ ` O.t : ()→ α Unit tuple match

Ξ‖Γ | ∆ ` t : α

Ξ‖Γ | ∆ ` O.t : o(())→ α Opponent unit tuple match

Ξ‖Γ | ∆ ` t : α

Ξ‖Γ | ∆ ` O.t : r(β, ())→ α Recursive unit tuple match

Ξ‖Γ | ∆ ` t : α→ β → γ

Ξ‖Γ | ∆ ` ♦.t : (α× β)→ γ Tuple match

Ξ‖Γ | ∆ ` t : o(α)→ o(β)→ γ

Ξ‖Γ | ∆ ` ♦.t : o(α× β)→ γ Opponent tuple match

Ξ‖Γ | ∆ ` t : r(δ, α)→ r(δ, β)→ γ

Ξ‖Γ | ∆ ` ♦.t : r(δ, α× β)→ γ Recursive tuple match

(Ci : γ → α),Ξ‖Γ | ∆ ` t : γ → β

(Ci : γ → α),Ξ‖Γ | ∆ ` λCCi.t : br(α→ β) Branch

Ξ‖Γ | ∆ ` t : br(α) Ξ‖Γ | ∆ ` u : br(α)

Ξ‖Γ | ∆ ` t+ u : br(α) Branch composition

Figure 3.18: Typing rules for simple branches and pattern-matching.

(Ci : γ → α),Ξ‖Γ | ∆ ` t : r(δ, γ)→ β

(Ci : γ → α),Ξ‖Γ | ∆ ` λCCi.t : br(r(δ, α)→ β) Recursive branch

Ξ‖Γ | ∆ ` fcase : α→ br(r(β, α)→ γ)→ γ Fold case

Ξ‖Γ | ∆ ` fold : (r(β, α)→ α→ γ)→ o(α)→ γ

where β does not
match any other

fold type
Fold

Figure 3.19: Typing rules for inductive recursive terms.
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not = λpy.peek (λCFalse.O.True () + λCTrue.O.False ()) y
parity = λoz.(fold (λff.λpx.fcase x

(λCZero.O.True () + λCSucc.♦.λopx1 x2.O.(not (f x2)))))
(z)o

1 not = | y.peek y of {
2 False.True;
3 True.False };
4 parity = z | .fold f(x) as {
5 Zero.True;
6 Succ(x1 | x2).not(f(x2)) }
7 in f(z);

Figure 3.20: The parity function, which determines the parity of the natural number x,
and its auxiliary function not, both given in both Pola and Compositional Pola syntaxes.
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(not : Bool→ Bool),
(f : α→ Bool)

‖ (z : Nat),
(x1 : Nat)

| ` not : Bool→ Bool

· · · ,
(f : α→ Bool)

‖ · · · | ` f : α→ Bool · · · ‖ · · · | (x2 : α) ` x2 : α

(not : Bool→ Bool),
(f : α→ Bool)

‖ (z : Nat),
(x1 : Nat)

| (x2 : α) ` f x2 : Bool

(not : Bool→ Bool), (f : α→ Bool)‖(z : Nat), (x1 : Nat) | (x2 : α) ` not (f x2) : Bool

(not : Bool→ Bool), (f : α→ Bool)‖(z : Nat), (x1 : Nat) | (x2 : α) ` O.(not (f x2)) : r(α, ())→ Bool

(not : Bool→ Bool), (f : α→ Bool)‖(z : Nat) | ` λopx1 x2.O.(not (f x2)) : r(α,Nat)→ r(α, ())→ Bool

(not : Bool→ Bool), (f : α→ Bool)‖(z : Nat) | ` ♦.λopx1 x2.O.(not (f x2)) : r(α,Nat× ())→ Bool

(not : Bool→ Bool), (f : α→ Bool)‖(z : Nat) | ` λCSucc.♦.λopx1 x2.O.(not (f x2)) : br(r(α,Nat)→ Bool)

Figure 3.21: A continuation of the derivation below.

· · · ‖(z : Nat) | ` True : ()→ Bool · · · ‖(z : Nat) | ` () : ()

(not : Bool→ Bool), (f : α→ Bool)‖(z : Nat) | ` True () : Bool

(not : Bool→ Bool), (f : α→ Bool)‖(z : Nat) | ` O.True () : r(α, ())→ Bool

(not : Bool→ Bool), (f : α→ Bool)‖(z : Nat) | ` λCZero.O.True () : br(r(α,Nat)→ Bool) Continued in figure 3.21

(not : Bool→ Bool), (f : α→ Bool)‖(z : Nat) | ` λCZero.O.True ()
+ λCSucc.♦.λopx1 x2.O.(not (f x2))

: br(r(α,Nat)→ Bool)

Figure 3.22: A continuation of the derivation below.
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· · · ‖ · · · | ` fcase : Nat→ br

(
r(α,Nat)
→ Bool

)
→ Bool · · · ‖ · · · | (x : Nat) ` x : Nat

(not : Bool→ Bool),
(f : α→ Bool)

‖(z : Nat) | (x : Nat) ` fcase x : br

(
r(α,Nat)
→ Bool

)
→ Bool Continued in figure 3.22

(not : Bool→ Bool),
(f : α→ Bool)

‖(z : Nat) | (x : Nat) `
(

fcase x (λCZero.O.True ()
+ λCSucc.♦.λopx1 x2.O.(not (f x2)))

)
: Bool

(not : Bool→ Bool),
(f : α→ Bool)

‖(z : Nat) | `
(

λpx.fcase x (λCZero.O.True ()
+ λCSucc.♦.λopx1 x2.O.(not (f x2)))

)
: Nat→ Bool

(not : Bool→ Bool)‖(z : Nat) | `

 λff.λpx.fcase x
(λCZero.O.True ()

+ λCSucc.♦.λopx1 x2.O.(not (f x2)))

 : r(α,Nat)→ Nat→ Bool

Figure 3.23: A continuation of the below derivation.

· · · ‖(z : Nat) | ` fold : (r(α,Nat)→ Nat→ Bool)→ o(Nat)→ Bool Continued in figure 3.23

(not : Bool→ Bool)‖(z : Nat) | `

 fold (λff.λpx.fcase x
(λCZero.O.True ()

+ λCSucc.♦.λopx1 x2.O.(not (f x2))))

 : o(Nat)→ Bool · · · ‖(z : Nat) | ` z : Nat

(not : Bool→ Bool)‖(z : Nat) | `

 (fold (λff.λpx.fcase x
(λCZero.O.True () + λCSucc.♦.λopx1 x2.O.(not (f x2)))))

(z)o

 : Bool

(not : Bool→ Bool)‖ | `

 λoz.(fold (λff.λpx.fcase x
(λCZero.O.True () + λCSucc.♦.λopx1 x2.O.(not (f x2)))))

(z)o

 : o(Nat)→ Bool

Figure 3.24: A type derivation of the parity function given in figure 3.20.
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Figure 3.19 gives the typing rules for recursive terms. Consider the parity function
given in figure 3.20. Figure 3.24 gives a full type derivation of the function, resulting in a
correct typing of parity : o(Nat)→ Bool, proving that the parity function is well-typed.

3.4.4 Coinductive terms

Figure 3.25 gives the rules for coinductive terms in Compositional Pola. There is no rule
for destruction as this is just a special case of symbol application. There are effectively
two kinds of coinductive terms: non-recursive records and recursive records (unfolds).
Recursive coinductive data types may have non-recursive destructors to them, which
necessitates non-recursive co-branches of recursive records.

Figure 3.29 gives a complete typing derivation of the allNats function given in fig-
ure 3.26.
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Ξ‖Γ | ∆ ` t : β

Ξ‖Γ | ∆ ` λDDi.t : b̄r(α)
where (Di : α→ β) ∈ Ξ

Non-recursive co-branch

Ξ‖Γ ` t : β

Ξ‖Γ | ∆ ` λDDi.t : b̄r(r(δ, α))

where (Di : α→ β) ∈ Ξ,
α 6= β Non-recursive co-branch

of recursive record

Ξ‖Γ | ∆ ` t : δ

Ξ‖Γ | ∆ ` λDDi.t : b̄r(r(δ, α))
where (Di : α→ α) ∈ Ξ

Recursive co-branch

Ξ‖Γ | ∆ ` t : b̄r(α) Ξ‖Γ | ∆ ` u : b̄r(α)

Ξ‖Γ | ∆ ` t⊕ u : b̄r(α) Co-branch composition

(g : α),Ξ‖Γ | ∆ ` λf̄g.t : r(α, β)→ γ

Ξ‖Γ | ∆ ` λf̄g.t : r(α, β)→ γ
where (g : ζ) /∈ Ξ Coinductive recursive lambda

introduction

(g : δ → β),Ξ‖Γ | ∆ ` λf̄g.t : r(α, ε)→ γ

(g : β),Ξ‖Γ | ∆ ` λf̄g.t : r(α, δ → ε)→→ γ
Coinductive recursive lambda

with parameter

(g : β),Ξ‖Γ | ∆ ` t : β[γ/α]

(g : β),Ξ‖Γ | ∆ ` λf̄g.t : r(α, δ)→ γ
Coinductive recursive lambda

without parameter

Ξ‖Γ | ∆ ` record : b̄r(α)→ α Record

Ξ‖Γ | ∆ ` unfold : (r(α, β)→ b̄r(r(α, β)))→ β Nullary unfold

Ξ‖Γ | ∆ ` unfold : (r(α, γ)→ δ)→ δ

Ξ‖Γ | ∆ ` unfold : (r(α, β → γ)→ β → δ)→ o(β)→ δ Unfold with parameter

Figure 3.25: Typing rules for coinductive terms.
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allNats = unfold (λf̄g.λpx.(λDHead.x⊕ λDTail.g (Succ (x× ())))) (Zero ())o

1 data c→ InfList(a)
2 = Head : c→ a
3 | Tail : c→ c;
4 allNats = | .unfold g(x) as (
5 Head.x;
6 Tail.g(Succ(x)) )
7 in g(Zero);

Figure 3.26: The allNats function, which produces the infinite list of all natural numbers.



3
.4
.

T
y
p
in
g

a
n
d

w
e
l
l
-t
y
p
e
d
n
e
ss

45

(g : Nat→ α)‖ | ` g : Nat→ α

· · · ` Succ : (Nat× ())→ Nat

· · · | (x : Nat) ` x : Nat · · · ` () : ()

(g : Nat→ α)‖ | (x : Nat) ` x× () : Nat× ()

(g : Nat→ α)‖ | (x : Nat) ` Succ (x× ()) : Nat

(g : Nat→ α)‖ | (x : Nat) ` g (Succ (x× ())) : α

(g : Nat→ α)‖ | (x : Nat) ` λDTail.g (Succ (x× ())) : b̄r(r(α, InfList(Nat)))

Figure 3.27: A continuation of the below derivation.

(g : Nat→ α)‖ | (x : Nat) ` x : Nat

(g : Nat→ α)‖ | (x : Nat) ` λDHead.x : b̄r(r(α, InfList(Nat))) Continued in figure 3.27

(g : Nat→ α)‖ | (x : Nat) ` λDHead.x⊕ λDTail.g (Succ (x× ())) : b̄r(r(α, InfList(Nat)))

(g : Nat→ α)‖ | ` λpx.(λDHead.x⊕ λDTail.g (Succ (x× ()))) : Nat→ b̄r(r(α, InfList(Nat)))

(g : Nat→ α)‖ | ` λf̄g.λpx.(λDHead.x⊕ λDTail.g (Succ (x× ()))) : r(α, InfList(Nat))→ Nat→ b̄r(r(α, InfList(Nat)))

(g : α)‖ | ` λf̄g.λpx.(λDHead.x⊕ λDTail.g (Succ (x× ()))) : r(α,Nat→ InfList(Nat))→ Nat→ b̄r(r(α, InfList(Nat)))

‖ | ` λf̄g.λpx.(λDHead.x⊕ λDTail.g (Succ (x× ()))) : r(α,Nat→ InfList(Nat))→ Nat→ b̄r(r(α, InfList(Nat)))

Figure 3.28: A continuation of the below derivation.
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· · · ` unfold :

(
r(α, InfList(Nat))

→ b̄r(r(α, InfList(Nat)))

)
→ InfList(Nat)

· · · ` unfold :

 r(α,Nat→ InfList(Nat))
→ Nat

→ b̄r(r(α, InfList(Nat)))

 → o(Nat)
→ InfList(Nat)

Continued in figure 3.28

‖ | ` unfold (λf̄g.λpx.(λDHead.x⊕ λDTail.g (Succ (x× ())))) : o(Nat)→ InfList(Nat)

· · · ` Zero : ()→ Nat · · · ` () : ()

‖ | ` Zero () : Nat

‖ | ` unfold (λf̄g.λpx.(λDHead.x⊕ λDTail.g (Succ (x× ())))) (Zero ())o : InfList(Nat)

Figure 3.29: A type derivation of the function allNats given in figure 3.26.



3.5. Operational semantics 47

Arguments to an unfold construct are necessarily in the opponent world. Allowing
player-world variables into an unfold construct can allow super-polynomial functions.
The hypothetical exponential function given in figure 3.30 demonstrates this. We define
two functions: exp, which computes the infinite list of all multiples of 2x for the parameter
x; and the function expX which computes just 2x. E.g., exp 0 computes the infinite
list [1, 2, 3, 4, . . .], the list of all multiples of 20. By selecting every other element of
that list we arrive at exp 1 which yields the infinite list [2, 4, 6, 8, . . .], the list of all
multiples of 21; if [2x, 2 · 2x, 3 · 2x, 4 · 2x, . . .] is the infinite list of multiples of 2x, then
selecting every other element yields [2 · 2x, 4 · 2x, 6 · 2x, 8 · 26, . . .] which is the same as
[2x+1, 2·2x+1, 3·2x+1, 4·2x+1, . . .]. The expX function then simply returns the first element
of one of these generated infinite lists, thus returning the value 2x.

The complication in this case is the coda to the unfold in the Succ case, namely
(λfg.(g (f x2))). In effect, f(n) = g(f(n − 1)) where f is the inductive fold recursive
function and g is the coinductive unfold recursive function. As a consequence, f(n) =
g(n)(z) where z is the record defined in the Zero case; i.e., z = (λfg.(g (Zero ())))
(λfg.λpy.(λDHead.y ⊕ λDTail.(g (Succ (y × ())))). For example, f(3) = g(g(g(z))). In
the definition of the Tail branch of the record defined in the Succ branch of the fold,
we apply the Tail destructor twice, effectively skipping over every other element in the
parameterized list. Since the g function is being applied to itself n times, we end up
skipping over 2n elements in the Tail destructor.

In this case the typing error is on line 9, where the coda of the unfold reads g(f(x2)).
x2 is a player variable and thus this term cannot be typed. In order for an unfold to be
typed correctly, the coda must consist only of opponent variables.

3.4.5 Summary

At this point, we have provided a programming language which offers typing rules that
constrain programs to halt within polynomial time, though the latter has not been proved
yet. Before we can make the principal claims of this thesis, we need operational semantics
for the language, described in section 3.5 and describe a novel type-inference system,
described in section 3.6.

3.5 Operational semantics

The small-step operational semantics are given in figure 3.31 and in figure 3.32. In
practice this style of semantics would involve adding values for variables to a store, as
opposed to performing substitutions, though for clarity we present in substitution style.
The notation t[u/x] is used to stand for the term t with the free occurrences of x replaced
by term u.

Due to the fact that we are constraining ourselves to well-typed programs, there are
some syntactic cases that need not be considered in the operational semantics. These
are as follows:

• For the “constructor match” and “constructor non-match” rules, we are guaranteed
that the term we are matching against will eventually have a match in the branches,
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exp = λox.fold (λf̄f.λpx.fcase x
(λCZero.O.unfold (λfg.λpy.(λDHead.y ⊕ λDTail.g (Succ (y × ())))) (Succ (Zero ()))

+λCSucc.♦.λopx1 x2.O.unfold

(λf̄g.λpy.(λDHead.(y Tail) Head
⊕λDTail.g ((y Tail) Tail)) (f x2)))) (x)o

expX = λox.((exp x) Head)

1 exp = x | .fold f(x) as {
2 Zero.unfold g(y) as (
3 Head : y;
4 Tail : g(Succ(y)) )
5 in g(Succ(Zero));
6 Succ(x1 | x2).unfold g(y) as (
7 Head : Head[Tail[y]];
8 Tail : g(Tail[Tail[y]]) )
9 in g(f(x2)) }

10 in f(x);
11 expX = x | .Head[exp(x)];

Figure 3.30: A hypothetical exponential function which does not rely on duplication of
player variables. expX would compute the value 2x for any natural number x if it were
able to be typed.
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t⇒ t′

C t⇒ C t′ Constructor

t⇒ t′ b t′ ⇒ b′

case (t)o b⇒ b′ Case

t⇒ t′ b t′ ⇒ b′

peek t b⇒ b′ Peek

t⇒ t′ b t′ ⇒ b′

fcase t b⇒ b′ FCase

t⇒ λff.u u[fold (λff.u)/f ]⇒ u′

fold t⇒ u′ Fold

t⇒ λox.t′ u⇒ u′ t′[u′/x]⇒ v

t (u)o ⇒ v Opponent application

t⇒ λpx.t′ u⇒ u′ t′[u′/x]⇒ v
t u⇒ v Player application

t⇒ (Ci xi) ui xi ⇒ u′i
(λCCi.ui + b) t⇒ u′i Constructor match

t⇒ (Ci xi) b (Ci xi)⇒ u′i
(λCCj.uj + b) t⇒ ui

where Ci 6= Cj
Constructor non-match

t⇒ λopx1x2.t
′ u⇒ u′ t′[u′/x1, u

′/x2]⇒ v
t u⇒ v Variable match

t⇒ () u⇒ u′

(O.u) t⇒ u′ Unit tuple match

t⇒ (t1 × t2) (u t1) t2 ⇒ u′

(♦.u) t⇒ u′ Tuple match

Figure 3.31: Operational semantics for inductive terms in compositional Pola.
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t⇒ λfg.u u[λfg.u/g]⇒ u′

unfold t⇒ u′ Unfold

ui ⇒ u′i
Di (λ

DDi.ui ⊕ b)⇒ u′i Destruction match

Di b⇒ u′i
Di (λ

DDj.uj ⊕ b)⇒ u′i Destruction non-match

Figure 3.32: Operational semantics for coinductive terms in compositional Pola.

due to typing restrictions.

• Similarly, for the “destructor match” and “destructor non-match” rules, we are
guaranteed to find a match in the record we are destructing.

• For the “unit tuple match” and “tuple match” rules, we are guaranteed that the
tuple we are matching against will have the appropriate number of elements to be
matched.

The following shows the computation 1 + 2 in an equivalent small-step operational
semantics. Annotations for opponent or player arguments—e.g., xo or x—are elided for
clarity. The operational semantics first reduce the problem of 1 + 2 to the addition of
0 + 3, as follows:

(fold (λff.λpa.λpb.fcase a (λCZero.O.b
+λCSucc.♦.λopx1 x2.O.f x2 (Succ (b× ()))))) 1̄ 2̄

⇒ (λpa.λpb.fcase a (λCZero.O.b
+λCSucc.♦.λopx1 x2.O.(fold · · · ) x2 (Succ (b× ())))) 1̄ 2̄

⇒ (λpb.fcase 1̄ (λCZero.O.b+ λCSucc.♦.λopx1 x2.O.(fold · · · ) x2 (Succ (b× ())))) 2̄
⇒ fcase (Succ ((Zero ())× ())) (λCZero.O.2̄

+λCSucc.♦.λopx1 x2.O.(fold · · · ) x2 (Succ (2̄× ())))
⇒ (Succ ((Zero ())× ())) (λCSucc.♦.λopx1 x2.O.(fold · · · ) x2 (Succ (2̄× ())))
⇒ (♦.λopx1 x2.O.(fold · · · ) x2 (Succ (2̄× ()))) ((Zero ())× ())
⇒ ((λopx1 x2.O.(fold · · · ) x2 (Succ (2̄× ())))) (Zero ())) ()
⇒ (O.(fold · · · ) 0̄ (Succ (2̄× ()))) ()
⇒ (fold (λff.λpa.λpb.fcase a (λCZero.O.b

+λCSucc.♦.λopx1 x2.O.f x2 (Succ (b× ())))) 0̄ 3̄

At this stage we have reduced the problem of computing 1 + 2 to the problem of
computing 0 + 3. We have performed one recursion to make this reduction. The rest
of the computation, reducing the problem of 0 + 3 to the value of 3, requires no further
recursion. The following shows this computation in the big-step operational semantics.
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⇒ (λpa.λpb.fcase a (λCZero.O.b
+λCSucc.♦.λopx1 x2.O.(fold · · · ) x2 (Succ (b× ())))) 0̄ 3̄

⇒ (λpb.fcase 0̄ (λCZero.O.b+ λCSucc.♦.λopx1 x2.O.(fold · · · ) x2 (Succ (b× ())))) 3̄
⇒ fcase (Zero ()) (λCZero.O.3̄

+λCSucc.♦.λopx1 x2.O.(fold · · · ) x2 (Succ (3̄× ())))
⇒ (O.3̄) ()
⇒ 3̄

3.6 Type inference

We present here a type inference system, novel with respect to the fact that it works
with the constructs of Compositional Pola, most important of which being the universal
types required to safely type fold constructs.

Type inference is an important component to any programming language, removing
from the programmer the burden of annotating the code with typing information. The
goal of a type inference system is that, with a minimum of annotations, the system should
efficiently infer the most general type for any term. The rules of type inference given in
this section will, in many cases, match quite closely the rules given in section 3.4; however,
there is a restriction on the format of a rule of inference which is required to reflect the
fact that we may not know any concrete types until type inference and unification have
completed.

As is usual in type inference, the process is broken into two stages: the collection of
type equations followed by the unification of those type equations.

3.6.1 Sequents

There are three forms of sequents used in type inference:

• Ξ‖Γ | ∆ ` t : α, which infers the type of term t where Ξ,Γ,∆ are contexts and α
is a type variable;

• Ξ‖Γ | ∆ ` to : α, which infers the pattern-matching term t in the context of a case
construct; and

• Ξ‖Γ | ∆ ` tr : α, which infers the pattern-matching term t in the context of an
fcase construct.

It is required that α is always a type variable, never a concrete type. Typing con-
straints are introduced by generating type equations, which appear on the right-hand side
of a rule of inference. They are generally of the form (αBΨ) where α is a possibly-empty
list of fresh type variables, guaranteed not to match any other type variable introduced
and where Ψ is a possibly-empty list of type equations. The complete structure of type
equations is given in section 3.6.4. All type equations have a type variable—never a
concrete type—on the left-hand side of the equal sign, which can be quantified.
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The usage of t
o

and t
r

only has consequence for terms of the form ♦.t, O.t, t + u
and λCCi.t, where the typing equations generated for those four term structures become
slightly different. Specifically, the usage of t

o
and t

r
indicates whether the pattern ulti-

mately is to be of an opponent type (t
o
), a recursive type (t

r
) or a player type (unadorned

t).

The type inference system used in Pola has two additional unique properties that
distinguish it from an ordinary Hindley-Milner type inference system: the restrictions
on duplication in the player world; and the use of a “universal type” which cannot be
matched with any other type.

3.6.2 Inductive terms

Figure 3.33 gives rules of inference for basic Compositional Pola terms. The variable
reference rule of inference says that if a term is associated with type variable α, that α
must be constrained to be equal to the type of the variable in the appropriate context.
The application and lambda rules set up arrow-type constraints.

Figure 3.34 gives rules of inference for pattern-matching in inductive—i.e., fold, fcase,
case and peek—constructs. The case rule requires no split in its contexts because the
subject of the case, t, must consist only of opponent variables. In the peek rule, however,
we must split the player context into ∆1, the context used for the subject t and ∆2, the
context used for the body of the peek. The branch composition rules require that all
branches be of the same type. The constructor match rules ensure that variables bound
within the patterns match the type of data type being matched. For instance, if the
subject of a case is of type List(Nat) and there is a pattern λCCons. � .λox. � .λoxs .Ot, we
must ensure that x is of type Nat. In the case of the opponent constructor match rule, δ
would be constrained to equal List and γ would be constrained to equal Nat. The unit
match rules are used when there are no variables left to be bound in a pattern and the
term within the body can be inferred.

Figure 3.37 gives rules of inference for fold, fcase, case and peek constructs. Fig-
ure 3.36 gives rules of inference for both constructing tuples and performing matching
on tuples.

Figure 3.43 gives an example inference of the parity function given in figure 3.20.
From this inference process we generate a type equation, working from the bottom-up
and working from left-to-right in a depth-first manner. The type equation generated by
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Variable
reference

(x : β) ∈ Γ or (x : β) ∈ ∆ or (x : β) ∈ Ξ

Ξ‖Γ | ∆ ` x : α
Bα = β

Construction

(Ci : γ → δ) ∈ Ξ Ξ‖Γ | ∆ ` t : β

Ξ‖Γ | ∆ ` Ci t : α
β B α = δ, β = γ

Opponent application

Ξ‖Γ | ∆ ` t : β Ξ‖Γ | ` u : γ

Ξ‖Γ | ∆ ` t (u)o : α
β, γ B β = o(γ)→ α

Player application

Ξ‖Γ | ∆1 ` t : β Ξ‖Γ | ∆2 ` u : γ

ΞΓ | ∆1,∆2 ` t u : α
β, γ B β = γ → α

Tuple unit Ξ‖Γ | ∆ ` () : α
Bα = ()

Tuple composition

Ξ‖Γ | ∆1 ` t : β Ξ‖Γ | ∆2 ` u : γ

Ξ‖Γ | ∆1,∆2 ` (t× u) : α
β, γ B α = β × γ

Opponent lambda

Ξ‖(x : β),Γ | ∆ ` t : γ

Ξ‖Γ | ∆ ` λox.t : α
β, γ B α = o(β)→ γ

Player lambda

Ξ‖Γ | (x : β),∆ ` t : γ

Ξ‖Γ | ∆ ` λpx.t : α
β, γ B α = β → γ

Recursive lambda

Ξ, (f : δ → β)‖Γ | ∆ ` t : β

Ξ‖Γ | ∆λff.t : α
β, γ, δ B α = r(δ, γ)→ β → γ

Fold variable lambda

Ξ‖(x1 : β),Γ | (x2 : γ),∆ ` tr : δ

Ξ‖Γ | ∆ ` λopx1x2.t
r

: α
β, γ, δ B α = r(γ, β)→ δ

Figure 3.33: Basic rules of type inference.
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Peek

Ξ‖Γ | ∆1 ` t : β Ξ‖Γ | ∆2 ` b : γ

Ξ‖Γ | ∆1,∆2 ` peek t b : α
β, γ B γ = br(β → α)

Case

Ξ‖Γ | ` t : β Ξ‖Γ | ∆ ` bo : γ

Ξ‖Γ | ∆ ` case t b : α
β, γ B γ = br(o(β)→ α)

Unstructured
branch

composition

Ξ‖Γ | ∆ ` b1 : α Ξ‖Γ | ∆ ` b2 : β

Ξ‖Γ | ∆ ` b1 + b2 : α
β, γ, δ B

α = β,
α = br(γ → δ)

Structured
branch

composition

Ξ‖Γ | ∆ ` b1
X

: α Ξ‖Γ | ∆ ` b2
X

: α

Ξ‖Γ | ∆ ` b1 + b2
X

: α
γ, δ B α = br(γ → δ)

Opponent
constructor

match

(Ci : δ),Ξ‖Γ | ∆ ` to : β

(Ci : δ),Ξ‖Γ | ∆ ` λCCi.t
o

: α
β, γ, η B

β = br(o(γ)→ η),
α = br(o(δ(γ))→ η)

Recursion
constructor

match

(Ci : δ),Ξ‖Γ | ∆ ` tr : β

(Ci : δ),Ξ‖Γ | ∆ ` λCCi.t
r

: α
β, γ, η, ζ B

β = br(r(ζ, γ)→ η),
α = br(r(ζ, δ(γ))→ η)

Player
constructor

match

(Ci : δ),Ξ‖Γ | ∆ ` t : β

(Ci : δ),Ξ‖Γ | ∆ ` λCCi.t : α
β, γ, η B

β = br(γ → η),
α = br(δ(γ)→ η)

Opponent
variable
match

Ξ‖(x : β),Γ | ∆ ` to : γ

Ξ‖Γ | ∆ ` λox.to : α
β, γ B α = br(o(β)→ γ)

Opponent
variable

match (fold)

Ξ‖(x : β),Γ | ∆ ` tr : γ

Ξ‖Γ | ∆ ` λox.tr : α
β, γ, δ B α = br(r(δ, β)→ γ)

Player
variable
match

Ξ‖(x : β),∆ ` t : γ

Ξ‖Γ | ∆ ` λpx.t : α
β, γ B α = br(β → γ)

Figure 3.34: Rules of type inference for pattern matching.
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Halt
player

pattern
matching

Ξ‖Γ | ∆ ` t : β

Ξ‖Γ | ∆ ` tp : α

where t is not pattern matching
β B α = br(β)

Halt
opponent
pattern

matching

Ξ‖Γ | ∆ ` t : α

Ξ‖Γ | ∆ ` to : α

where t is not pattern matching
β B α = br(β)

Halt
recursive
pattern

matching

Ξ‖Γ | ∆ ` t : β

Ξ‖Γ | ∆ ` tr : α

where t is not pattern matching
β, γ B α = br(r(γ, β))

Figure 3.35: Rules for halting pattern matching.

Opponent
tuple match

Ξ‖Γ | ∆ ` to : β

Ξ‖Γ | ∆ ` ♦.to : α
β, γ, δ, η B

β = br(o(γ)→ br(o(δ)→ η)),
α = br(o(γ × δ)→ η)

Recursive
tuple match

Ξ‖Γ | ∆ ` tr : β

Ξ‖Γ | ∆ ` ♦.tr : α
β, γ, δ, η, ζ B

β = br(r(ζ, γ)→ br(r(ζ, δ)→ η)),
α = br(r(ζ, γ × δ)→ η)

Player
tuple match

Ξ‖Γ | ∆ ` t : β

Ξ‖Γ | ∆ ` ♦.t : α
β, γ, δ, η B

β = br(γ → br(δ → η)),
α = br(γ × δ → η)

Opponent
unit match

Ξ‖Γ | ∆ ` to : β

Ξ‖Γ | ∆ ` O.to : α
β, γ B β = br(γ), α = br(o(())→ γ)

Recursive
unit match

Ξ‖Γ | ∆ ` tr : β

Ξ‖Γ | ∆ ` O.tr : α
β, γ, δ B β = br(γ), α = br(r(δ, ())→ γ)

Player
unit match

Ξ‖Γ | ∆ ` t : β

Ξ‖Γ | ∆ ` O.t : α
β, γ B β = br(γ), α = br(()→ γ)

Figure 3.36: Rules of type inference for tuples.
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Fold Ξ‖Γ | ∆ ` fold : α
β, γ B α = ∀X.(r(X, β)→ β → γ)→ o(β)→ γ

Fold
case

Ξ‖Γ | ∆ ` s : β Ξ‖Γ | ∆2 ` t
r

: γ

Ξ‖Γ | ∆1,∆2 ` fcase s t : α
β, γ, δ B γ = br(r(δ, β)→ α)

Figure 3.37: Rules of type inference for fold constructs.

the inference given in figure 3.43 is as follows:

∃α1, α2.α0 = o(α1)→ α2,∃α3, α4.α3 = o(α4)→ α2,∃α5.α4 = α5 → α3,
∃α6, α7.α4 = ∀X.(r(X,α6)→ α7)→ o(α6)→ α7,
∃α8, α9, α10, α5 = r(α10, α9)→ α8 → α9,∃α11, α12.α10 = α11 → α12,
∃α13, α14, α15.α14 = br(r(α15, α13)→ α12), α13 = α11,
∃α16, α17.α14 = br(α16 → α17),∃α18, α19, α20, α21 → α18 = br(r(α21, α19)→ α20),
α14 = br(r(α21,Nat)→ α20),∃α22, α23, α24.α22 = br(α23), α18 = br(r(α24, ())→ α23),
α22 = Bool,∃α25, α26, α27, α28.α25 = br(r(α28, α26)→ α27),
α14 = br(r(α28,Nat)→ α27,
∃α29, α30, α31, α32, α33.α29 = br(r(α33, α30)→ br(r(α33, α31)→ α32),
α25 = br(r(α33, α30 × α31)→ α32),∃α34, α35, α36.α29 = r(α35, α34)→ α36,
∃α37, α38, α39.α37 = br(α38), α36 = br(r(α39, ())→ α38), ∃α40, α41.α37 = br(r(α41, α40)),
∃α42, α43.α42 = α43 → α40, α42 = Bool→ Bool,∃α44, α45.α44 = α45 → α43,
α44 = α8 → α9, α4 = α1

This equation is unified as described by the process in section 3.6.4 to ensure proper
typing and to determine the types of symbols.
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(not : Bool→ Bool),
(f : α8 → α9)

‖ · · · | ` f : α44

Bα44 = α8 → α9

(not : Bool→ Bool), (f : α8 → α9)‖(z : α1), (x1 : α34) | (x2 : α35) ` f x2 : α43

α44, α45 B α44 = α45 → α43

Figure 3.38: A continuation of the below derivation.
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(not : Bool→ Bool),
(f : α8 → α9)

‖ · · · | ` not : α42

Bα42 = Bool→ Bool

Continued in figure 3.38

(not : Bool→ Bool),
(f : α8 → α9)

‖(z : α1), (x1 : α34) | (x2 : α35) ` not (f x2) : α40

α42, α43 B α42 = α43 → α40

(not : Bool→ Bool),
(f : α8 → α9)

‖(z : α1), (x1 : α34) | (x2 : α35) ` not (f x2)
r

: α37

α40, α41 B α37 = br(r(α41, α40))

(not : Bool→ Bool),
(f : α8 → α9)

‖(z : α1), (x1 : α34) | (x2 : α35) ` O.not (f x2)
r

: α36

α37, α38, α39 B
α37 = br(α38),

α36 = br(r(α39, ())→ α38)

(not : Bool→ Bool),
(f : α8 → α9)

‖(z : α1) | ` λopx1 x2.O. not (f x2)
r

: α29

α34, α35,
α36

B α29 = r(α35, α34)→ α36

(not : Bool→ Bool),
(f : α8 → α9)

‖(z : α1) | ` ♦.λopx1 x2.O. not (f x2)
r

: α25

α29, α30, α31,
α32, α33

B
α29 = br(r(α33, α30)→
br(r(α33, α31)→ α32),

α25 = br(r(α33, α30 × α31)→ α32)

(not : Bool→ Bool),
(f : α8 → α9)

‖(z : α1) | ` λCSucc.♦.λopx1 x2.O. not (f x2)
r

: α14

α25, α26,
α27, α28

B
α25 = br(r(α28, α26)→ α27),
α14 = br(r(α28,Nat))→ α27)

Figure 3.39: A continuation of the below derivation.
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...
· · · ‖(z : α1) | ` True () : α22

Bα22 = Bool

· · · ‖(z : α1) | ` True ()
r

: α22

· · · ‖(z : α1) | ` O.True ()
r

: α18

α22,
α23, α24

B
α22 = br(α23),

α18 = br(r(α24, ())→ α23)

· · · ‖(z : α1) | ` λCZero.O.True ()
r

: α14

α18,
α19,
α20,
α21

B
α18 = br(r(α21, α19)→ α20),
α14 = br(r(α21,Nat)→ α20)

Continued in
figure 3.39

(not : Bool→ Bool),
(f : α8 → α9)

‖(z : α1) | ` λCZero.O.True () + λCSucc.♦.λopx1 x2.O. not (f x2)
r

: α14

α16, α17 B α14 = br(α16 → α17)

Figure 3.40: A continuation of the below derivation.
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· · · ‖(z : α1) | (x : α11) ` x : α13

Bα13 = α11
Continued in figure 3.40

(not : Bool→ Bool),
(f : α8 → α9)

‖(z : α1) | (x : α11) `
fcase x (λCZero.O.True ()
+ λCSucc.♦.λopx1 x2.O.

not (f x2))
: α12

α13, α14, α15 B α14 = br(r(α15, α13)→ α12)

(not : Bool→ Bool),
(f : α8 → α9)

‖(z : α1) | ` λpx.fcase x (λCZero.O.True ()
+ λCSucc.♦.λopx1 x2.O.(not (f x2)))

: α10

α11, α12 B α10 = α11 → α12

(not : Bool→ Bool)‖(z : α1) | ` λff.λpx.fcase x (λCZero.O.True ()
+ λCSucc.♦.λopx1 x2.O.(not (f x2)))

: α5

α8, α9, α10 B α5 = r(α10, α9)→ α8 → α9

Figure 3.41: A continuation of the below derivation.

· · · ‖(z : α1) | ` fold : α4
α6, α7 B α4 = ∀X.(r(X,α6)→ α7)→ o(α6)→ α7

Continued in figure 3.41

(not : Bool→ Bool)‖(z : α1) | ` fold (λff.λpx.fcase x (λCZero.O.True ()
+ λCSucc.♦.λopx1 x2.O.(not (f x2))))

: α3

α4, α5 B α4 = α5 → α3

Figure 3.42: A continuation of the below derivation.
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Continued in figure 3.42 (not : Bool→ Bool)‖(z : α1) | ` z : α4

Bα4 = α1

(not : Bool→ Bool)‖(z : α1) | `
(fold (λff.λpx.fcase x

(λCZero.O.True () + λCSucc.♦.λopx1 x2.O.(not (f x2)))))
(z)o

: α2

α3, α4 B α3 = o(α4)→ α2

(not : Bool→ Bool)‖ | `

 λoz.(fold (λff.λpx.fcase x
(λCZero.O.True () + λCSucc.♦.λopx1 x2.O.(not (f x2)))))

(z)o

 : α0

α1, α2 B α0 = o(α1)→ α2

Figure 3.43: Type inference of the parity function given in figure 3.20.
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Non-recursive co-branch

(Di : γ → δ) ∈ Ξ Ξ‖Γ | ∆ ` t : β

Ξ‖Γ | ∆ ` λDDi.t : α
β B β = δ, α = b̄r(γ)

Co-branch composition

Ξ‖Γ | ∆ ` t : β Ξ‖Γ | ∆ ` u : γ

Ξ‖Γ | ∆ ` t⊕ u : α
β, γ, δ B α = β, α = γ, α = b̄r(δ)

Record Ξ‖Γ | ∆ ` record : α
β B α = b̄r(β)

Figure 3.44: Rules of inference for non-recursive coinductive terms.

3.6.3 Coinductive terms

Figure 3.44 gives the type inference rules for non-recursive coinductive terms. These
correspond directly to rules for non-recursive coinductive terms given in the type checking
section in figure 3.25.

Figure 3.45 gives the type inference rules for recursive coinductive terms. Only the
rules for nullary and unary unfold are given, though rules exist for every arity. For
unfold constructs where the g function has arity greater than 1, the type equations
for α and δ are modified as appropriate, and the extra parameters are introduced into
the player context along with x. Note that the arity needs to be known at the time of
inference and hence the structure of an unfold is strict.

Figure 3.48 shows the type inference process on the allNats function given in fig-
ure 3.26. After unification, the equations generated would correctly infer a type of
InfList(Nat) for the allNats function.
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Non-recursive co-branch
of recursive record

(Di : γ → δ) ∈ Ξ,
γ 6= δ

Ξ‖Γ | ∆ ` t : β

Ξ‖Γ | ∆ ` λDDi.t
r

: α
β, η B

β = δ,
α = b̄r(r(η, γ))

Recursive co-branch

(Di : γ → γ) ∈ Ξ Ξ‖Γ | ∆ ` t : β

Ξ‖Γ | ∆ ` λDDi.t
r

: α
β,Bα = b̄r(r(β, γ))

Composition of
recursive co-banches

Ξ‖Γ | ∆ ` tr : α Ξ‖Γ | ∆ ` ur : α

Ξ‖Γ | ∆ ` t⊕ ur : α

Nullary unfold

(g : ()→ X),Ξ‖Γ | ` tr : γ

Ξ‖Γ | ∆ ` unfold (λf̄g.t) : α
β B ∀X.β = b̄r(r(X,α))

Unary unfold

(g : β → X),Ξ‖Γ | (x : β) ` tr : γ

Ξ‖Γ | ∆ ` unfold (λf̄g.λpx.t) : α

β, γ,
δ
B
∀X.γ = b̄r(r(X, δ)),

α = o(β)→ δ

Figure 3.45: Rules of inference for recursive coinductive terms.
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(g : α3 → X)‖ | (x : α3) ` g : α11
Bα11 = α3 → X

· · · ‖ | (x : α3) ` x : α14

Bα14 = α3· · · ‖ | · · · ` () : ()
Bα15 = ()

(g : α3 → X)‖ | (x : α3) ` x× () : α13

α14, α15 B α13 = α14 × α15

(g : α3 → X)‖ | (x : α3) ` Succ (x× ()) : α12
α13 B α12 = Nat, α13 = (Nat× ())

(g : α3 → X)‖ | (x : α3) ` g (Succ (x× ())) : α9

α11, α12 B α11 = α12 → α9

(g : α3 → X)‖ | (x : α3) ` λDTail.g (Succ (x× ())) : α4

α9, α10 B α4 = b̄r(r(α9, InfList(α10)))

(g : α3 → X)‖ | (x : α3) ` λDTail.g (Succ (x× ()))
r

: α4

Figure 3.46: A continuation of the derivation below.

(g : α3 → X)‖ | (x : α3) ` x : α7

Bα7 = α3

(g : α3 → X)‖ | (x : α3) ` xr : α7

(g : α3 → X)‖ | (x : α3) ` λDHead.x : α4

α7, α8 B α4 = b̄r(r(α8, InfList(α7)))
Continued in figure 3.46

(g : α3 → X)‖ | (x : α3) ` λDHead.x⊕ λDTail.g (Succ (x× ()))
r

: α4

‖ | ` unfold (λf̄g.λpx.(λDHead.x⊕ λDTail.g (Succ (x× ())))) : α1

α3, α4,
α5

B
∀X.α4 = b̄r(r(X,α5)),
α1 = o(α3)→ α5

Figure 3.47: A continuation of the derivation below.

Continued in figure 3.47

...
‖ | ` Zero () : α2

Bα2 = Nat

‖ | ` unfold (λf̄g.λpx.(λDHead.x⊕ λDTail.g (Succ (x× ())))) (Zero ())o : α0

α1, α2 B α1 = o(α2)→ α0

Figure 3.48: Type inference on the allNats function given in figure 3.26.
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3.6.4 Unification

From the process of type inference we collect a set of type equations. Consider a sequent
of the following form:

s2 s3
s1

β1, . . . , βm B γ1 = δ1, . . . , γn = δn

Consider further that s2 generates type equations Φ2 and that s3 generates type equa-
tions Φ3. The type equations created by the given sequent are defined to be Φ1 =
(∃β1. · · · .∃βm.γ1 = δ1, . . . , γ1 = δn,Φ2,Φ3).

More precisely, a set of type equations is defined to be:
Empty set Φ := ∅
Equation Φ := α = δ
List of equations Φ := Φ,Φ
Existentially quantified type variable Φ := ∃α.Φ
Universally quantified type variable Φ := ∀α.Φ

By the process of unification we desire both to ensure that a given set of type equations
is satisfiable and to determine the most general types for the type variables which would
make the type equations satisfiable.

The algorithm for type equation unification in Pola is Hindley-Milner type inference [9,
28, 29] with the complication of ensuring that universal types—those introduced by fold
and unfold constructs to maintain polynomial time constraints—are enforced.

The algorithm removes equations one at a time, starting at the rightmost equation.
Each equation removed necessarily adds a binding with a new type variable. Each time
a binding is added, we unify that binding against existing bindings and against type
equations yet to be removed. When the type equations yet to be removed are unified
against a new binding, they may generate new equations. The notation Φ[δ/α] refers to
Φ with the variable δ substituted for the type equation α.

Where equations are to the left of the ‖ symbol and bindings are to the right of the ‖
symbol, we describe the unification process via the following rewriting rules. δ does not
contain the variable α, Υ does not contain the variable α, and β is a type variable such
that β 6= α.

Φ,∃α.δ ‖ Ψ⇒ Φ, δ ‖ Ψ (3.1)

Φ, α = δ ‖ Ψ⇒ Φ[δ/α] ‖ Ψ[δ/α], α = δ (3.2)

Φ,∀α.∅ ‖ α = β,Ψ⇒ Φ ‖ Ψ (3.3)

Φ,∀α.∅ ‖ Υ⇒ Φ ‖ Υ (3.4)

Note, in particular, that there is no rewriting rule to remove a universal quantifier, ∀α,
in the case that α is bound to a concrete type. This would indicate a typing error.

Unification stops when all equations have been removed, which indicates successful
typing, or when there is no rule to apply, which indicates failed typing.

Definition 1. A type equation, Φ, unifies successfully, denoted Φ  Φ′, if and only if
unification of Φ reaches ∅
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Definition 2. A type equation Φ generates a binding, α′, for a type variable α, denoted
Φα  α′, if and only if one of the following two conditions is true:

1. Φ Φ′ and (α = α′) ∈ Φ′; or

2. Φ Φ′ and α = α′ and 6 ∃β.(α = β) ∈ Φ′.

Substitution and matching

Unifying involves substituting type variables. Φ[δ/α] is defined as the type equations
Φ where the type δ is replaced by the type variable α. This involves matching type
equations in α with the given substitution and potentially creating more type equations.
For instance, matching the types List(α3) and List(Nat) generates the equation α3 = Nat
where α3 is a type variable.

First we must consider when two types are considered to match. Much of the process
of unification is determining whether type equations generated in disparate parts of the
derivation tree of type inference match and, if they do match, which new type equations
are generated. If a program is not well-typed, it is only because some type equations will
be found to not match.

Definition 3. We say v(α) to denote that the type α is a type variable.

Definition 4. We say α " β if and only if the type α contains the type variable β.
α" β if and only if at least one of the following is true:

• α = β;

• α = Tx(α1, . . . , αn) for some structure x, using the type structure notation given in
section 3.2.1, and types α1, . . . , αn and there is an i such that 1 ≤ i ≤ n such that
αi " β.

The rules of matching, denoted α $ β (α matches with β, which may generate new
type equations, are as follows:

α $ α⇒ ∅ (3.5)

α $ β ⇒ α = β where v(α) and β 6" α (3.6)

α $ β ⇒ β = α where v(β) and α 6" β (3.7)

Tx(α1, . . . , αn) $ Tx(β1, . . . , βn)⇒ α1 $ β1, . . . , αn $ βn (3.8)

All other cases are a mismatch error and indicate a Compositional Pola program which
is not well-typed.

Now that we have a definition of two types matching, we can define how substitution
of types is performed in type equations. The rules of substitution are as follows, where
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γ 6= α. In each of these cases, the type δ is substituted for the type variable α:

(∅)[δ/α]⇒ ∅ (3.9)

(α = δ)[δ/α]⇒ ∅ (3.10)

(α = γ)[δ/α]⇒ γ $ δ (3.11)

(Φ,Υ)[δ/α]⇒ Φ[δ/α],Υ[δ/α] (3.12)

(∃γ.Φ)[δ/α]⇒ ∃γ.(Φ[δ/α]) (3.13)

(∀γ.Φ)[δ/α]⇒ ∀γ.(Φ[δ/α]) (3.14)

The following shows the process of unification of the type equation generated from
the allNats function given in section 3.6.3:

∃α0.∃α1.∃α2.α1 = (o(α2)→ α0), α2 = Nat,∃α3.∃α4.∃α5.∀X.α4 = b̄r(r(X,α5)),
α1 = (o(α3)→ α5),∃α7.∃α8.α4 = b̄r(r(α8, InfList(α7))), α7 = α3,
∃α9.∃α10.α4 = b̄r(r(α9, InfList(α10))),∃α11.∃α12.α11 = (α12 → α9), α11 = (α3 → X),
∃α13.α12 = Nat, α13 = (Nat× ()),∃α14.∃α15.α13 = α14 × α15, α14 = α3, α15 = ()

α1 = (o(α2)→ α0), α2 = Nat,∀X.α4 = b̄r(r(X,α5)), α1 = (o(α3)→ α5),
α4 = b̄r(r(α8, InfList(α7))), α7 = α3, α4 = b̄r(r(α9, InfList(α10))), α11 = (α12 → α9),
α11 = (α3 → X), α12 = Nat, α13 = (Nat× ()), α13 = α14 × α15, α14 = α3, α15 = ()

α1 = (o(α2)→ α0), α2 = Nat,∀X.α4 = b̄r(r(X,α5)), α15 = ()
α1 = (o(α3)→ α5), α4 = b̄r(r(α8, InfList(α7))), α7 = α3,
α4 = b̄r(r(α9, InfList(α10))), α11 = (α12 → α9), α11 = (α3 → X),
α12 = Nat, α13 = (Nat× ()), α13 = α14 × (), α14 = α3

α1 = (o(α2)→ α0), α2 = Nat,∀X.α4 = b̄r(r(X,α5)), α14 = α3

α1 = (o(α3)→ α5), α4 = b̄r(r(α8, InfList(α7))), α7 = α3, α15 = ()
α4 = b̄r(r(α9, InfList(α10))), α11 = (α12 → α9), α11 = (α3 → X),
α12 = Nat, α13 = (Nat× ()), α13 = α3 × ()

α1 = (o(α2)→ α0), α2 = Nat,∀X.α4 = b̄r(r(X,α5)), α13 = α3 × ()
α1 = (o(α3)→ α5), α4 = b̄r(r(α8, InfList(α7))), α7 = α3, α14 = α3

α4 = b̄r(r(α9, InfList(α10))), α11 = (α12 → α9), α11 = (α3 → X), α15 = ()
α12 = Nat, α3 = Nat

α1 = (o(α2)→ α0), α2 = Nat,∀X.α4 = b̄r(r(X,α5)), α3 = Nat
α1 = (o(Nat)→ α5), α4 = b̄r(r(α8, InfList(α7))), α7 = Nat, α13 = Nat× ()
α4 = b̄r(r(α9, InfList(α10))), α11 = (α12 → α9), α11 = (Nat→ X), α14 = Nat
α12 = Nat α15 = ()
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α1 = (o(α2)→ α0), α2 = Nat,∀X.α4 = b̄r(r(X,α5)), α3 = Nat
α1 = (o(Nat)→ α5), α4 = b̄r(r(α8, InfList(α7))), α7 = Nat, α12 = Nat
α4 = b̄r(r(α9, InfList(α10))), α11 = (Nat→ α9), α11 = (Nat→ X) α13 = Nat× ()

α14 = Nat
α15 = ()

α1 = (o(α2)→ α0), α2 = Nat,∀X.α4 = b̄r(r(X,α5)), α3 = Nat
α1 = (o(Nat)→ α5), α4 = b̄r(r(α8, InfList(α7))), α7 = Nat, α11 = Nat→ X
α4 = b̄r(r(α9, InfList(α10))), X = α9 α12 = Nat

α13 = Nat× ()
α14 = Nat
α15 = ()

α1 = (o(α2)→ α0), α2 = Nat,∀X.α4 = b̄r(r(α9, α5)), α3 = Nat
α1 = (o(Nat)→ α5), α4 = b̄r(r(α8, InfList(α7))), α7 = Nat, α11 = Nat→ α9

α4 = b̄r(r(α9, InfList(α10))) α12 = Nat
α13 = Nat× ()
α14 = Nat
α15 = ()
X = α9

α1 = (o(α2)→ α0), α2 = Nat, ∀X.α5 = InfList(α10), α3 = Nat
α1 = (o(Nat)→ α5), α8 = α9, α7 = α10, α4 = b̄r(r(α9, InfList(α10)))
α7 = Nat α11 = Nat→ α9

α12 = Nat
α13 = Nat× ()
α14 = Nat
α15 = ()
X = α9

α1 = (o(α2)→ α0), α2 = Nat, ∀X.α5 = InfList(α10), α3 = Nat
α1 = (o(Nat)→ α5), α8 = α9, α10 = Nat α4 = b̄r(r(α9, InfList(α10)))

α7 = Nat
α11 = Nat→ α9

α12 = Nat
α13 = Nat× ()
α14 = Nat
α15 = ()
X = α9
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α1 = (o(α2)→ α0), α2 = Nat,∀X.α5 = InfList(Nat), α3 = Nat
α1 = (o(Nat)→ α5), α8 = α9 α4 = b̄r(r(α9, InfList(Nat)))

α7 = Nat
α10 = Nat
α11 = Nat→ α9

α12 = Nat
α13 = Nat× ()
α14 = Nat
α15 = ()
X = α9

α1 = (o(α2)→ α0), α2 = Nat,∀X.α5 = InfList(Nat), α3 = Nat
α1 = (o(Nat)→ α5) α4 = b̄r(r(α9, InfList(Nat)))

α7 = Nat
α8 = α9

α10 = Nat
α11 = Nat→ α9

α12 = Nat
α13 = Nat× ()
α14 = Nat
α15 = ()
X = α9

α2 = Nat, α0 = α5, α2 = Nat,∀X.α5 = InfList(Nat), α1 = (o(Nat)→ α5)
α3 = Nat
α4 = b̄r(r(α9, InfList(Nat)))
α7 = Nat
α8 = α9

α10 = Nat
α11 = Nat→ α9

α12 = Nat
α13 = Nat× ()
α14 = Nat
α15 = ()
X = α9
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α2 = Nat, α0 = InfList(Nat), α2 = Nat,∀X.∅ α1 = o(Nat)→ InfList(Nat)
α3 = Nat
α4 = b̄r(r(α9, InfList(Nat)))
α5 = InfList(Nat)
α7 = Nat
α8 = α9

α10 = Nat
α11 = Nat→ α9

α12 = Nat
α13 = Nat× ()
α14 = Nat
α15 = ()
X = α9

α2 = Nat, α0 = InfList(Nat), α2 = Nat α1 = o(Nat)→ InfList(Nat)
α3 = Nat
α4 = b̄r(r(α9, InfList(Nat)))
α5 = InfList(Nat)
α7 = Nat
α8 = α9

α10 = Nat
α11 = Nat→ α9

α12 = Nat
α13 = Nat× ()
α14 = Nat
α15 = ()

α0 = InfList(Nat) α1 = o(Nat)→ InfList(Nat)
α2 = Nat
α3 = Nat
α4 = b̄r(r(α9, InfList(Nat)))
α5 = InfList(Nat)
α7 = Nat
α8 = α9

α10 = Nat
α11 = Nat→ α9

α12 = Nat
α13 = Nat× ()
α14 = Nat
α15 = ()

As termination successfully finished, we can see that the result of the unfold term is
inferred to be of type InfList(Nat).
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3.6.5 Correctness of type inference

In this section we show the correctness of the type inference system in relation to the
typing rules introduced in section 3.4. Due to the large number of typing rules and
corresponding type inference rules, a full proper proof linking all typing rules with all
type inference rules would be onerous to list here, especially since type inference is not
the major focus of the thesis. Instead, we give a sketch of the structure of the proof, and
follow by giving some general properties about the relationship between the two.

Proposition 1. For any Compositional Pola term, t, and any valid Compositional Pola
environments, Ξ,Γ,∆, if Ξ‖Γ | ∆ ` t : α generates the type equation Φ and Φα  α′,
then there is a valid type checking derivation of Ξ‖Γ | ∆ ` t : α′.

Proof. For axiomatic rules of inference, those with no premise, there is also no quantifier
introduced for these rules, so the correspondence with type checking rules is clear from
inspection. For example, the type inference rule Ξ‖Γ | ∆ ` () : α generates the equation
Φ = (α = ()). Unification yields Φ  (α = ()) and hence α′ = (). The type checking
rule Ξ‖Γ | ∆ ` () : () is a complete derivation. Other axiomatic rules follow similarly.

For all rules of inference with premises and existential quantifiers only, each premise
is assigned an existentially quantified type and the correspondence with type checking
follows via induction. For instance, the type inference rule Ξ‖Γ | ∆ ` t × u : α yields
the type equation Φ = (∃β.∃γ.α = β× γ). Following unification, we will have Φ (α =
β′ × γ′),Ψ where, by induction, β′ × γ′ are valid in a type checking derivation. Other
rules with only existential quantifiers follow similarly.

In the case of the fold type inference rule, the generated universally quantified equa-
tion of ∀X.(r(X, β)→ β → γ)→ o(β)→ γ matches the type given for the type checking
rule, of (r(β, α)→ α→ γ)→ o(α)→ γ with the constraint that β must not match any
other fold variable. Due to the resolution of universal quantifiers during the unification
process, a successful unification means that the variable X in the type inference rule
cannot be matched with any other type and thus it cannot match with any other fold
type variable. Therefore, there is a valid derivation under the type checking rules.

In the case of the unfold type inference rules, we combine the rules of type-checking
for unfold per se and for the coinductive recursive lambda construct.

• In the case of a nullary unfold construct, t ≡ (unfold (λf̄g.u)), the type of unfold
per se is (r(α, β)→ b̄r(r(α, β)))→ β. The term (λf̄g.u) has a type of r(α, β)→ γ
via the coinductive recursive lambda rule. As the term is well-typed, γ is thus
necessarily of type b̄r(r(α, β)) and hence the type of t is β.

The type inference rule for nullary unfold assigns g the same type and assures that
the term u has the appropriate type of b̄r(r(α, β)) where α cannot be matched with
any other type. The ultimate type of the term t is thus β.

• For an unfold of arity n (n > 0), we can assume via induction that the type
inference process produces correct typing for an unfold of arity n−1. The unfold
rule for arity n− 1 generates type equations of the following form:

∃β1, . . . , βn−1, γ, δη.∀X.δ = β0 → · · · → βn−1 → X, γ = b̄r(r(X, η)),
α = o(β1)→ · · · → o(βn−1)→ η



72 Chapter 3. Compositional Pola

The corresponding type-checking rule for an unfold of arity n− 1 is as follows:

unfold : (r(α, γ1 → · · · → γn−1 → β)→ γ1 → · · · → γn−1 →
b̄r(r(α, γ1 → · · · → γn−1 → β)))→ o(γ1)→ · · · → o(γn−1)→ β

We extend the generated type equations and type-checking formulas to include the
extra unfold parameter. The generated type equations for arity n then are as
follows:

∃β1, . . . , βn, γ, δη.∀X.δ = β0 → · · · → βn → X, γ = b̄r(r(X, η)),
α = o(β1)→ · · · → o(βn)→ η

The type-checking rule for arity n is as follows:

unfold : (r(α, γ1 → · · · → γn → β)→ γ1 → · · · → γn →
b̄r(r(α, γ1 → · · · → γn → β)))→ o(γ1)→ · · · → o(γn)→ β

With an extra opponent argument applied to the unfold, the generated type equa-
tions will then match the type-checking formulas.

As this concludes all cases, the type inference equations soundly determine a correct type
for a Compositional Pola term according to section 3.4.
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Pola implementation

FIXME: write this.
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Chapter 5

Bounds inference

The primary motivation and contribution of this thesis is the automatic, efficient inference
of time bounds. In this section we describe the mechanism by which we may efficiently
infer upper bounds on running time for any well-typed Pola program.

Through this section, the reader may consider that a somewhat simpler bounds infer-
ence system could be constructed if we were satisfied with very loose bounds. However,
here we provide a bounds inference system that provides bounds tight enough to be of
practical use.

5.1 Sizes

Before considering time bounds, we necessarily need to define the size of a term. Space
bounds of a function will be polynomials parameterized over the sizes of the parameters
of that function and it is important to define the sizes appropriately, especially in the
interest of obtaining useful time bounds. Consider a list of natural numbers, [4, 756, 0].
How we represent the size of this list will impact the bounds we can infer for differing
type of operations. If we care only to compute the length of the list, the large number
of 756 carries no importance. However, the magnitude of the elements of the list is more
important than the length of the list if we are computing the summation of the elements
of the list. With a goal of providing bounds of practical use, representing the size of such
a list as a single number would not suffice. Rather than rely on a scalar representation,
here we present here a more structured representation of sizes suitable for any use in Pola
programs.

There are eight general forms to describe the size of a term, denoted Φ. The notation
N[V] is used to denote polynomials over variables in V with coefficients which are natural
numbers. The forms of Φ are as follows:

74



5.1. Sizes 75

f = λpx.Cons ((Zero ())× x)

Figure 5.1: A short compositional Pola function which prefixes its argument, a list of
natural numbers, with the number 0.

Zero Φ := 0
Constructor Φ := 〈Ci : N[V],Φ | Φ〉
Destructor Φ := ΦD

Tuple Φ := Φ× Φ
Polynomial Φ := N[V]
Variable Φ := Φv

Lambda Φ := λv.Φ
Destructor application Φ := Φ.Di

The destructor sizes, denoted ΦD, are represented as follows:

Recursive destructor ΦD := λDiλy.ΦD

Non-recursive destructor ΦD := 〈Di : Φ | ΦD〉
Finally, variable sizes, Φv, are represented as follows:

Variable name Φv := v
Constructor count Φv := Φv.Ci
Tuple projection Φv := Φv.N

Consider the example given in figure 5.1. Given a list x, it will construct the list
Cons(0, x). The size of the term returned by the function is λx.〈Nil : 1, 0 | 〈Cons :
1 + x.Cons, (〈Zero : 1, 0 | 〈Succ : x.Cons.0.Succ, 0〉〉 × 0)〉〉, indicating a list with exactly
one Nil constructor and a number of Cons constructors one more than that of its input
parameter x. The greatest element of the list returned will be no greater than the greatest
element in the input list. The inferred bound in this case, using the system of inference
described in section 5.1.2, is the same as the actual bound, though it should be noted
that the bounds we will eventually infer will, in general, not be exactly this precise. In
the interest of brevity and clarity, we will rewrite bounds to elide “0” sizes where they
are not interesting and to compress chained 〈·〉 notations. The bound of the function, f ,
then, would be written as λx.〈Nil : 1 | Cons : 1+x.Cons, 〈Zero : 1 | Succ : x.Cons.0.Succ〉〉.

The intuition behind this size is that it keeps a count of the produced list—the
produced list will have 1 Nil constructor and 1 more Cons than the list x did—and the
size of the each natural number in the list is bounded from above by the maximum size
of the natural numbers of the list x. Ultimately, the sizes are upper bounds on counts of
the constructors present in the data.

5.1.1 Operations on sizes

Before considering the mechanism of size inference, we need to consider algebraic op-
erations on sizes. The process of inference will require us to perform many arithmetic
operations on sizes. We use the notation u[t/x] to stand for the term u with the term t
substituted for the term x.
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Addition

The only possible sizes for a term with arrow type are polynomial size, lambda size or
destructor application size. If both operands are of lambda size, λx.t and λy.u, then
we define their summation to be |λx.t| + |λy.u| = λx.|t| + |u[x/y]|; if one operand is of
lambda size, then their summation is |λx.t| + u = λx.(|t| + |u|); if neither is of lambda
size, then they must either be zero or polynomial size, and addition is then defined to be
the usual polynomial addition.

If a term has variable type, it cannot have any constructor, destructor or tuple infor-
mation associated with it or else type inference would have unified it to a non-variable
type. It must be either the zero size, a destruction size, or a polynomial size over vari-
ables. We take the size of 0 to be the polynomial 0. Addition is then defined to be usual
polynomial addition.

If a term has tuple type, then it cannot have any constructor or destructor information
or else it would not unify with tuple type. A term of tuple type has either zero size,
polynomial size, a destructor application size or a tuple size. For any given size for a
term of tuple type, α, we define (α)i for i ∈ N, as follows:

(0)i = 0.i
(v)i = v.i

(Φ.Dj)i = Φ.Dj.i
(α× β)0 = α

(α× β)n+1 = βn

In other words, the (α)i operation is a projection of the ith component of a tuple size.
Where term a and b both have tuple type of arity n, we define |a|+ |b| = (|a|1 + |b|1)×
((|a|2 + |b|2) + · · ·+ (|a|n + |b|n))).

If a term has inductive type, then it has zero size, destructor application size, poly-
nomial size or constructor size. For any given size for a term of inductive type, α, we
define (α)Ci

for any constructor Ci of the appropriate type, as follows:

(0)Ci
= 0.Ci

(v)Ci
= v.Ci

(Φ.Dj)Ci
= Φ.Dj.Ci

(〈Ci : x, x′ | Φ〉)Ci
= xi

(〈Cj : x, x′ | Φ〉)Ci
= (Φ)Ci

The (α)Ci
thus gives us the number of constructors of a particular value. For determining

the maximum size of data associated with a constructor, we define (α)′Ci
as follows:

(0)′Ci
= 0.C′i

(v)′Ci
= v.C′i

(Φ.Dj)
′
Ci

= Φ.Dj.C
′
i

(〈Ci : x, x′ | Φ〉)′Ci
= x′i

(〈Cj : x, x′ | Φ〉)′Ci
= (Φ)′Ci

The only difference between (α)Ci
and (α)′Ci

for sizes of values with inductive type is
whether to evaluate to xi or x′i. For instance, the list t = [3, 5] has size |t| = 〈Nil : 1 |
Cons : 2, 〈Zero : 1 | Succ : 5〉〉. (|t|)Cons = 2 and (|t|)′Cons = 〈Zero : 1 | Succ : 5〉.
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For any two terms, a and b, of the same inductive type with n constructors C1, . . . ,Cn,
we define addition as follows:

|a|+ |b| = 〈C1 : (|a|)C1 + (|b|)C1 ,max((|a|)′C1
, (|b|)′C1

) | · · · |
Cn : (|a|)Cn + (|b|)Cn ,max((|a|)′Cn

, (|b|)′Cn
)〉

Subtraction

The operation of subtraction is required in the case of inferring recursive coinductive
sizes. This carries out similarly to addition, with coefficients of the subtrahend being
negated in the obvious way. In practice we will use a monus operation, wherein the

results are constrained to be non-negative, denoted
◦
−. Consider the following example

to demonstrate:

〈A : x2 + 2x+ 4 | B : x+ 2〉
◦
− 〈A : x2 + x+ 1 | B : x2 + 3〉 = 〈A : x+ 3 | B : x〉

In this case we can see an element-wise subtraction of terms, such that any negative term
in the difference is replaced with 0.

Multiplication

All sizes may be multiplied by a polynomial size, as by repeated addition by terms.

Maximum

Due to the novel structure of sizes, we introduce a novel definition of a maximum func-
tion over size values. Unlike typical maximum functions, it is not always the case that
max(a, b) ∈ {a, b}. It is always the case that max(a, b) ≤ a + b, however. Consider
max(a2 + b, 2b), which we define to be a2 + 2b in the absence of any known values for
variables a and b. We see that a2 + b < max(a2 + b, 2b) and 2b < max(a2 + b, 2b) and
max(a2 + b, 2b) < a2 + b+ 2b.

Polynomial maximum between two polynomials p, q ∈ N[V], where each polynomial

is a summation of terms, namely p =
np∑
i=1

ai

npi∏
j=1

v
pi,j
j and q =

nq∑
i=1

bi

nqi∏
j=1

v
qi,j
j where each

pi,j, qi,j, ai, bi ∈ N, is defined as follows:

max(p, q) =
∑

i,∀j.pi,j=qi,j

max(ai, bi) +
∑

i,∃j.pi,j 6=qi,j

(ai

npi∏
j=1

v
pi,j
j + bi

nqi∏
j=1

v
qi,j
j )

In other words, we take the maximum of the coefficients for like terms; for unlike terms, we
simple add them. As an example, max(3a2 +3ab+6, 2a2 +4a2b+1) = 3a2 +4a2b+3ab+6.

If the two terms have arrow type, they must be of polynomial size, lambda size
or destruction application size. If they both have lambda sizes, λx.t and λy.u, then
max(λx.t, λy.u) = λx.max(t, u[x/y]). If one term has lambda size, λx.t and the other
term has size u, then max(λx.t, u) = λx.max(t, u). If neither has lambda size, then
they have zero, destruction application or polynomial size and maximum is defined as
polynomial maximum.



78 Chapter 5. Bounds inference

If the two terms have variable type, then they have zero, destructor application or
polynomial size and maximum is defined as polynomial maximum.

If the two terms have tuple type, then they have zero, destructor application, polyno-
mial or tuple size. Similarly to defining addition, we define max(a, b) = max(|a|1, |b|1)×
max(|a|2, |b|2)× · · · ×max(|a|n, |b|n).

If the two terms have inductive type, then they have zero, destructor application,
polynomial or inductive size. Similarly to defining addition, we define maximum for
inductive sizes as follows:

max(a, b) = 〈C1 : max((|a|)C1 , (|b|)C1),max((|a|)′C1
, (|b|)′C1

) | · · · |
Cn : max((|a|)Cn , (|b|)Cn),max((|a|)′Cn

, (|b|)′Cn
)〉

Dot product

For inferring the bounds on fold constructs, it is necessary to perform a dot product
between the size of the input and the sizes of the branches. We define dot product as
follows:

0 · () = 0
〈Ci : x, y | Φ〉 · (Ψ1 ×Ψ2) = xΨ1 + Φ ·Ψ2

Application

Application of size terms is only valid between two operand sizes where the first is a
lambda size. In other words, t u is well-defined if and only if t is of the form λv.Φ.
The result in this case is as expected, where (λv.Φ) u = Φ[u/v], i.e., the size Φ with all
references to the variable size v replaced by the size u.

Destructor application

Invocation of a non-recursive destructor Di in a size t is written as t[Di]. This operation
is defined as:

〈. . . | Di : α | . . . 〉[Di] ≡ α
α[Di] ≡ α.Di

Invocation of a recursive destructor requires a modification of potentially all elements
of a coinductive size. This occurs when an object is destructed via a recursive destructor.
See section 5.1.2 for more detail on size bounds and recursive deconstructions. The
notation α[Di/x/y] indicates that any reference to the recursive destructor Di over bound
variable x is replaced with size term y. Consider the following example:

(λTailλx.λHead.x+ 1)[Tail/z/z + 1] = λTailλx.λHead.x+ 2

In this case the variable x has been replaced with the size term x + 1, yielding a size
term of x+ 2.
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Variable reference

(x : α) ∈ Γ or (x : α) ∈ ∆ or (x : α) ∈ Ξ

Ξ‖Γ | ∆ ` x : α

Construction

Ξ‖Γ | ∆ ` Ci : α Ξ‖Γ | ∆ ` t : β

Ξ‖Γ | ∆ ` Ci t : α β

Opponent application

Ξ‖Γ | ∆ ` t : αt Γ | ∆ ` u : αu
Ξ‖Γ | ∆ ` t (u)o : αt αu

Player application

Ξ‖Γ | ∆ ` t : αt Γ | ∆ ` u : αu
Ξ‖Γ | ∆ ` t u : αt αu

Tuple unit Ξ‖Γ | ∆ ` () : 0

Tuple composition

Ξ‖Γ | ∆ ` t : αt Ξ‖Γ | ∆ ` u : αu
Ξ‖Γ | ∆ ` t× u : αt × αu

Opponent lambda

Ξ‖(x : x),Γ | ∆ ` t : αt
Ξ‖Γ | ∆ ` λox.t : λx.αt

Player lambda

Ξ‖Γ | (x : x),∆ ` t : αt
Ξ‖Γ | ∆ ` λpx.t : λx.αt

Figure 5.2: Basic rules of size inference.
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5.1.2 Inferring size bounds

Figure 5.2 gives rules of inference for defining sizes of simple Compositional Pola terms.
Each sequent is of the form Ξ‖Γ | ∆ ` t : α where Ξ,Γ,∆ are mappings of symbol names
to sizes, t is a term and α is the size of term t. In all of these cases, the resultant size is a
direct reflection of the term: in effect the size is an encoding of the structure of the term.
In the interest of tight size bounds, we avoid any sort of contraction of term structure
wherever possible.

In the case of control structures such as peek and case constructs, we cannot effec-
tively encode the structure of term comprehensively in the size because the value of the
subject is unknown. The rules of size inference for these terms is given in figure 5.3. As
we can see in the branch composition rule, we use the max operation to get a bound on
these terms.

The rules for constructor matching and variable matching require special explanation.
They use the two special variables C and N , which we consider to be unique from any
other variable. The variable C is used to indicate the subject of a peek or case as it
is currently being considered. The variable N is used to indicate the current index of
the variable to be considered next. For example, consider the term peek x (λCNil.O.t+
λCCons.♦.λpy.♦.λpz.O.u). When performing size inference of the branch λCNil.O.t, we
will consider the size of C to be C.Nil and N will never be anything other than 0. When
performing size inference on the branch λCCons.♦.λpy.♦.λpz.O.u, we will consider the size
of C to be C.Cons. Initially the value of N will be 0, yielding a size for y of C.Cons.0. N
will take on the value of 1, though there are no further non-recursive variables that are
introduced. Since the variable z is recursive—i.e., of the same type as the term being
peeked in itself—it takes on the size of C.Cons.

Folds

Inferring size bounds for fold constructs is a two-stage process. We first infer the size
of the branches with the recursive function, f , producing zero-sized values: this allows
us to determine the fixed size of the value produced by the fold. We then infer the size
of the branches again, but with the recursive function, f , producing values of the size
indicated in the first step, and with the bound variables having zero size: this allows us
to determine the increase in size of the value produced by the fold each time a recursion
is performed. From these two steps we get two sizes: the fixed size and the increase in
size per recursion. A bound on the ultimate size of the value produced by the fold is
then an affine function over the size of the input, with these two values as coefficients.

Figure 5.4 gives the rule of inference for inferring sizes from fold constructs. Within
the sequents, we use the notation Ξ‖Γ | ∆ ` t : α to indicate that we are inferring in
stage 1; we use the notation Ξ‖Γ | ∆ ` t : α to indicate that we are inferring in stage 2.
The α that is tagged with the overline indicates the name of the recursive function (or
“0” if the name is not known yet); the α that is tagged with the underline indicates the
size the returned value of the recursive function (or “0” if it is no longer needed).

An example of inductive recursion size bound inference is given in figure 5.11 gives an
example derivation of size bounds on the function add given in figure 3.3. The resultant
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Peek

Ξ‖Γ | ∆ ` b : αb Ξ‖Γ | (C : αb)∆ ` t : αt
Ξ‖Γ | ∆ ` peek t b : αb αt

Case

Ξ‖Γ | ∆ ` b : αb Ξ‖Γ | (C : αb)∆ ` t : αt
Ξ‖Γ | ∆ ` case t b : αb αt

Branch composition

Ξ‖Γ | ∆ ` b1 : α1 Ξ‖Γ | ∆ ` b2 : α2

Ξ‖Γ | ∆ ` b1 + b2 : max(α1, α2)

Constructor match

Ξ‖Γ | (C : C.Ci), (N : −1),∆ ` t : αt

Ξ‖Γ | (C : C),∆ ` λCCi.t : λC.αt

Opponent variable match

Ξ‖Γ | (C : αC), (x : αC),∆ ` t : αt
Ξ‖Γ | (C : αC),∆ ` ♦.λox.t : αt

x is recursive

Opponent variable match

Ξ‖(x : αC .n),Γ | (C : αC), (N : n+ 1),∆ ` t : αt
Ξ‖Γ | (C : αC), (N : n),∆ ` ♦.λox.t : αt

otherwise

Player variable match

Ξ‖Γ | (C : αC), (x : αC)∆ ` t : αt
Ξ‖Γ | (C : αC),∆ ` ♦.λpx.t : αt

x is recursive

Player variable match

Ξ‖Γ | (C : αC), (N : n+ 1), (x : αC .n),∆ ` t : αt
Ξ‖Γ | (C : αC), (N : n),∆ ` ♦.λpx.t : αt

otherwise

Fold variable match

Ξ‖(x : αC),Γ | (y : αC),∆ ` t : αt
Ξ‖Γ | (C : αC),∆ ` λopxy.t : αt

Unit match

Ξ‖Γ | ∆ ` t : αt
Ξ‖Γ | (C : c), (N : n),∆ ` O.t : αt

Figure 5.3: Rules of size inference for case constructs.
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Fold

Ξ‖Γ | ∆ ` t0 : β Ξ‖Γ | ∆ ` tβ : γ Ξ‖Γ | ∆ ` u : δ

Ξ‖Γ | ∆ ` fold t u : δ · γ + β

Recursive lambda (pass 1)

Ξ, (f : 0)‖Γ | ∆ ` tf : α

Ξ‖Γ | ∆ ` λff.t
0

: α

Fold parameter (pass 1)

Ξ, (f : x→ β)‖Γ | ∆, (x : x) ` tf : α

Ξ, (f : β)‖Γ | ∆ ` λpx.tf : α

Fcase (pass 1)

Ξ‖Γ | ∆ ` x : βx Ξ‖Γ | (C : βx),∆ ` b : α

Ξ‖Γ | ∆ ` fcase x b
f

: α

Recursive lambda (pass 2)

Ξ, (f : β)‖Γ | ∆ ` t0 : α

Ξ‖Γ | ∆ ` λff.t
β

: α

Fold parameter (pass 2)

Ξ, (f : x→ γ)‖Γ | ∆, (x : 0) ` t0 : α

Ξ, (f : γ)‖Γ | ∆ ` λpx.t0 : α

Fcase (pass 2)

Ξ‖Γ | ∆ ` x : βx Ξ‖Γ | (C : βx),∆ ` b : α

Ξ‖Γ | ∆ ` fcase x b0 : α

Figure 5.4: Rules of size inference for fold constructs.
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size bound inferred is 〈Zero : y.Zero | Succ : x.Succ + y.Succ〉, indicating that the value
produced by adding the two natural numbers x and y is a number number containing, at
most, the same number of Zero constructors as y did and containing, at most, a number
of Succ constructors equal to the sum of the two operands. Since every natural number
has exactly one Zero constructor, the resultant value has exactly one Zero constructor.

As a concrete example, consider that we wished to add the numbers x = 4̄ and y = 9̄.
x has size 〈Zero : 1 | Succ : 4〉 and y has size 〈Zero : 1 | Succ : 9〉. The inferred bound
tells that the add function applies to these two operands will yield a value of at most
〈Zero : 1 | Succ : 13〉, i.e., the number 13.

It is clear to see that in all cases of the add function, we yield a natural number with
a number of Succ constructors equal to the sum of its two operands. Consequently, in
this case, the inference process has inferred a size metric which is exactly right for all
inputs. In general we cannot assume the bound inferred to be exactly accurate, but it
will be a valid upper bound.
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(f : λx.λy.y)‖(x : 0) | (y : 0), (z : 0) ` y : 〈Zero : 0 | Succ : 0〉
(f : λx.λy.y)‖(x : 0) | (y : 0), (z : 0) ` Succ y : 〈Zero : 0 | Succ : 1〉

Figure 5.5: A continuation of the derivation given in figure 5.6.

(f : λx.λy.y)‖ · · · | · · · ` f : λx.λy.y · · · ‖ · · · | (y : 0), (z : 0) ` z : 0

(f : λx.λy.y)‖(x : 0) | (y : 0), (z : 0) ` f z : λy.y Continued in figure 5.5

(f : λx.λy.y)‖(x : 0) | (y : 0), (z : 0) ` f z (Succ y) : 〈Zero : 0 | Succ : 1〉

Figure 5.6: A continuation of the derivation given in figure 5.7.

(f : λx.λy.y)‖(x : 0) | (y : 0) ` y : 0

(f : · · · )‖(x : 0) | (C : 0), (N : −1),
(y : 0)

` O.y : 0

(f : · · · )‖(x : 0) | (C : 0), (y : 0) ` λCZero.O.y : 0

Continued in figure 5.6

(f : · · · )‖(x : 0) | (C : 0), (N : 0),
(y : 0), (z : 0)

` O.f z (Succ y) : 〈Zero : 0 | Succ : 1〉

(f : · · · )‖(x : 0) | (C : 0), (N : 0),
(y : 0)

` λop − z.O.f z (Succ y) : 〈Zero : 0 | Succ : 1〉

(f : · · · )‖(x : 0) | (C : 0), (N : −1),
(y : 0)

` ♦.λop − z.O.f z (Succ y) : 〈Zero : 0 | Succ : 1〉

· · · ‖(x : 0) | (C : 0), (y : 0) ` λCSucc.♦.λop − z.O.f z (Succ y) : 〈Zero : 0 | Succ : 1〉

(f : λx.λy.y)‖(x : 0) | (C : 0), (y : 0) ` λCZero.O.y
+ λCSucc.♦.λop − z.O.f z (Succ y)

: 〈Zero : 0 | Succ : 〈Zero : 0 | Succ : 1〉〉

Figure 5.7: A continuation of the derivation given in figure 5.8.
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(f : λx.λy.y)‖(x : 0) | (y : 0) ` x : 0 Continued in figure 5.7

(f : λx.λy.y)‖(x : 0) | (y : 0) ` fcase x (λCZero.O.y + λCSucc.♦.λop − z.O.f z (Succ y))
0

: 〈Zero : 0 | Succ : 〈Z : 0 | S : 1〉〉
(f : λx.λy.y)‖(x : 0) | (y : y) ` λpy.fcase x (λCZero.O.y + λCSucc.♦.λop − z.O.f z (Succ y))

0
: λy.〈Zero : 0 | Succ : 〈Z : 0 | S : 1〉〉

(f : λx.λy.y)‖(x : x) | (y : y) ` λpx.λpy.fcase x (λCZero.O.y + λCSucc.♦.λop − z.O.f z (Succ y))
0

: λx.λy.〈Zero : 0 | Succ : 〈Z : 0 | S : 1〉〉
‖(x : x) | (y : y) ` λff.λpx.λpy.fcase x (λCZero.O.y + λCSucc.♦.λop − z.O.f z (Succ y))

λx.λy.y
: λx.λy.〈Zero : 0 | Succ : 〈Z : 0 | S : 1〉〉

Figure 5.8: A continuation of the derivation given in figure 5.11.

· · · ‖ | (x : x), (y : y) ` y : y

· · · ‖ | (C : x.Zero), (N : −1), (x : x), (y : y) ` O.y : y

· · · ‖ | (C : x), (x : x), (y : y) ` λCZero.O.y : y

· · ·
(f : λx.λy.0)‖ | (x : x), (y : y), (z : x.Succ) ` f z (Succ y) : 0

(f : λx.λy.0)‖ | (C : x.Succ), (N : 0), (x : x), (y : y), (z : x.Succ)) ` O.f z (Succ y) : 0

(f : λx.λy.0)‖ | (C : x.Succ), (N : 0), (x : x), (y : y) ` λop − z.O.f z (Succ y) : 0

(f : λx.λy.0)‖ | (C : x.Succ), (N : −1), (x : x), (y : y) ` ♦.λop − z.O.f z (Succ y) : 0

(f : λx.λy.0)‖ | (C : x), (x : x), (y : y) ` λCSucc.♦.λop − z.O.f z (Succ y) : 0

(f : λx.λy.0)‖ | (C : x), (x : x), (y : y) ` λCZero.O.y + λCSucc.♦.λop − z.O.f z (Succ y) : max(y, 0) = y

Figure 5.9: A continuation of the derivation given in figure 5.10.
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· · · ‖ | (x : x), (y : y) ` x : x Continued in figure 5.9

(f : λx.λy.0)‖ | (x : x), (y : y) ` fcase x (λCZero.O.y + λCSucc.♦.λop − z.O.f z (Succ y))
f

: y

(f : λx.0)‖ | (x : x), (y : y) ` λpy.fcase x (λCZero.O.y + λCSucc.♦.λop − z.O.f z (Succ y))
f

: λy.y

(f : 0)‖(x : x) | (y : y) ` λpx.λpy.fcase x (λCZero.O.y + λCSucc.♦.λop − z.O.f z (Succ y))
f

: λx.λy.y

‖(x : x) | (y : y) ` λff.λpx.λpy.fcase x (λCZero.O.y + λCSucc.♦.λop − z.O.f z (Succ y))
0

: λx.λy.y

Figure 5.10: A continuation of the derivation given in figure 5.11.

Continued in figure 5.10 Continued in figure 5.8 ‖(x : x) | (y : y) ` x : x

‖(x : x) | (y : y) ` fold

(
λff.λpx.λpy.fcase x (λCZero.O.y

+ λCSucc.♦.λop − z.O.f z (Succ y))

)
x : λy.y + 〈Zero : 0 | Succ : x.Succ〉 ‖ · · · | (y : y) ` y : y

‖(x : x) | (y : y) ` fold

(
λff.λpx.λpy.fcase x (λCZero.O.y

+ λCSucc.♦.λop − z.O.f z (Succ y))

)
x y : 〈Zero : y.Zero | Succ : x.Succ + y.Succ〉

Figure 5.11: Size bound inference for the add function given in figure 3.3.
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Destructor

Ξ‖Γ | ∆ ` t : α

Ξ‖Γ | ∆ ` λDDi.t : 〈Di : α〉
Di is not recursive

Record

Ξ‖Γ | ∆ ` t : α

Ξ‖Γ | ∆ ` record t : α

Co-branch composition

Ξ‖Γ | ∆ ` t : α Ξ‖Γ | ∆ ` u : β

Ξ‖Γ | ∆ ` t⊕ u : 〈α | β〉

Destruction

Ξ‖Γ | ∆ ` t : α

Ξ‖Γ | ∆ ` t Di : α[Di]

Figure 5.12: Rules of size inference for non-recursive coinductive size bounds.

Non-recursive coinductive sizes

For the size of an inductive term we can map the inferred size onto some real-world
concept of memory usage. A value of type List(Bool) that has aggregate size 12 can
be thought of as consuming more memory than a value of type List(Bool) that has
size 4, for instance. The metrics for sizes used to describe the size of an inductive
value is abstracted away from the underlying representation, taking a näıve idea that
each constructor consumes the same amount of memory, but the asymptotic size bound
inferred will directly correlate with the asymptotic memory consumption in a real-world
representation.

This does not hold for coinductive types. Every value of coinductive type will have
constant size and that constant size is completely dependent on the underlying represen-
tation, specifically the amount of memory it takes to represent a closure. For the scope of
this document we do not wish to consider the details of the underlying representation and
representing the size bounds of a coinductive value in this way would distract from our
target, which is to meaningfully bound the sizes of values that arise from the interplay
between inductive types and coinductive types.

A general intuition for this section is to consider that coinductive types and coin-
ductive values have no purpose per se, but exist only to be later “unwound”—via a
destruction operation—by an inductive term. In that light, we consider the size bounds
of a coinductive term to be a potential size bound, i.e., the size of the term that could be
if the coinductive value were destructed.

As an example, consider the coinductive product type given in figure 3.6. If one were
to construct a product of that type with the Pola term ( P1 : 3;P2 : 1 ), we would consider
the potential size of that term to be 〈P1 : 〈Zero : 1 | Succ : 3〉 | P2 : 〈Zero : 1 | Succ : 1〉〉 to
represent the size of the resultant term should that coinductive value ever be destructed
with either the P1 or P2 destructor.

Figure 5.12 gives rules of inference for coinductive terms that do not involve an
unfold. For the “Destruction” rule, the size 〈Di : α | β〉 may not always have the Di size
first; we assume without loss of generality that the terms will be reordered appropriately.
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Figure 5.13 gives an example of size bound inference for the Pola record ( Eval :
x.Succ(x) ), which is of type Fn(Nat,Nat), a type introduced in figure 3.6. We see that
the term has size bound 〈Eval : λx.〈Zero : x.Zero | Succ : 1 +x.Succ〉〉 to show that, if the
Eval destructor were applied to the record with argument x, the result would be a term
with one Succ constructor more than x.
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‖ | (x : x) ` Succ : λy.〈Zero : y.Zero | Succ : 1 + y.Succ〉 ‖ | (x : x) ` x : x

‖ | (x : x) ` Succ x : 〈Zero : x.Zero | Succ : 1 + x.Succ〉
‖ | ` λpx.Succ x : λx.〈Zero : x.Zero | Succ : 1 + x.Succ〉

‖ | ` λDEval.λpx.Succ x : 〈Eval : λx.〈Zero : x.Zero | Succ : 1 + x.Succ〉〉

Figure 5.13: Size bound inference on the non-recursive coinductive Pola term ( Eval : x.Succ(x) ).
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Recursive coinductive sizes

A recursive coinductive size—i.e., a coinductive term involving an unfold construct—will
generally have an unbounded potential size. The potential size of the term yielded via
destruction depends on the number of times it is destructed. This is most plainly seen
in the allNats function given in figure 3.8, which produces an infinite list of all natural
numbers. Destructing the value yielded by allNats with the Head destructor yields a
term with size 〈Zero : 1 | Succ : 0〉; destructing the value yielded by allNats with the
Tail destructor yields another coinductive term such that destructing that with the Head
destructor would yield a term with a larger size. In general we can say that the size of the
term yielded by applying the term to the Head destructor is 〈Zero : 1 | Succ : t〉 where
t ∈ N is the number of times the Tail destructor had been used prior. Up until now,
we had not considered sizes that included variables, though it is a necessity for recursive
coinductive terms. We say that the term yielded by allNats has size λTailλt.〈Head : 〈Zero :
1 | Succ : t〉〉. The remainder of this subsection will deal with the mechanisms to infer
these sorts of bounds.

Take special note of the fact that the size term for allNats does not actually contain
a size for the Tail destructor. I.e., it does not contain a record that looks like 〈Head : α |
Tail : β〉 for some sizes α, β: rather, Head is the only destructor which yields a concrete
size and so the term will look like λTailλx.〈Head : α〉 where α is a size term over the bound
variable x. This is true for all recursive coinductive data types: only the non-recursive
destructors will yield concrete sizes; recursive destructors may only influence the sizes
yielded by non-recursive destructors.

An example of inference of size bounds on recursive coinductive structures is given in
figure 5.17, which infers the size bound of the allNats function given in figure 3.16. We
infer the following size bound:

λTailλt.〈Head : 〈Zero : 1 | Succ : t〉〉

This aligns with our intuition about the size of an object defined by coinductive recursion.
The Head destructor is the only destructor which yields a non-recursive value. The Tail
destructor determines the size of the (inductive) value yielded by the Head destructor.
For instance, Head(allNats()) yields a value of size 〈Zero : 1 | Succ : 0〉, specifically the
numeral 0, while Tail(Tail(Head(allNats()))) yields a value of size 〈Zero : 1 | Succ : 2〉,
i.e., the numeral 2. It is not possible to give a finite size bound without any free variables
on a recursive coinductive object because, in general, there is no bound on the number
of recursive destructors that may be applied to it, and each recursive destruction may
increase the size of the object.
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Recursive destruction

Ξ‖Γ | ∆ ` t : α

Ξ‖Γ | ∆ ` Di t : α[Di/x/x+ 1]

Unfold

Ξ‖Γ | ∆ ` t : α Ξ‖Γ | ∆ ` tDi,α
: λdi.βi

Ξ‖Γ | ∆ ` unfold t : λDiλdi.α +
∑

i βi

for each recursive
destructor Di

Unfold function (pass 1)

Ξ‖Γ | (g : 0),∆ ` tg : α

Ξ‖Γ | ∆ ` λfg.t : α

Unfold function
parameter (pass 1)

Ξ‖Γ | (x : x), (g : λβ.0),∆ ` tg : α

Ξ‖Γ | (g : β),∆ ` λpx.tg : α

Unfold non-recursive
destructor (pass 1)

Ξ‖Γ | ∆ ` t : α

Ξ‖Γ | ∆ ` λDDi.t : 〈Di : α〉

Unfold recursive
destructor (pass 1)

Ξ‖Γ | ∆ ` λDDi.t : 0

Unfold co-branches (pass 1)

Ξ‖Γ | ∆ ` t : α Ξ‖Γ | ∆ ` u : β

Ξ‖Γ | ∆ ` t⊕ ug : 〈α | β〉

Unfold function (pass 2)

Ξ‖Γ | (g : β),∆ ` tDi
: α

Ξ‖Γ | ∆ ` λfg.t
Di,β

: α

Unfold function
parameter (pass 2)

Ξ‖Γ | (x : 0), (g : β)∆ ` tDi
: α

Ξ‖Γ | (g : β),∆ ` λpx.tDi
: λx.α

Unfold non-matching
destructor (pass 2)

Ξ‖Γ | ∆ ` λDDj.t
Di

: 0
Di 6= Dj

Unfold matching
destructor (pass 2)

Ξ‖Γ | ∆ ` t : α

Ξ‖Γ | ∆ ` λDDi.tDi
: λd.α

Unfold co-branches (pass 2)

Ξ‖Γ | ∆ ` tDi
: α Ξ‖Γ | ∆ ` uDi

: 0

Ξ‖Γ | ∆ ` t⊕ uDi
: α

Figure 5.14: Rules of size inference for recursive coinductive size bounds.
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‖ | (x : 0),
(g : · · · ) ` λ

DHead.xTail : 0

‖ | (x : 0),
(g : λx.〈Head : x〉) ` g : λx.〈Head : x〉

‖ | (x : 0),
(g : · · · ) ` x : 〈Zero : 0 | Succ : 0〉

‖ | (x : 0),
(g : · · · ) ` Succ x : 〈Zero : 0 | Succ : 1〉

‖ | (x : 0), (g : λx.〈Head : x〉) ` g (Succ x) : 〈Head : 〈Zero : 0 | Succ : 1〉〉
‖ | (x : 0), (g : λx.〈Head : x〉) ` λDTail.g (Succ x)

Tail
: λt.〈Head : 〈Zero : 0 | Succ : t〉〉

‖ | (x : 0), (g : λx.〈Head : x〉) ` λDHead.x⊕ λDTail.g (Succ x)
Tail

: λt.〈Head : 〈Zero : 0 | Succ : t〉〉+ 0

‖ | (g : λx.〈Head : x〉) ` λpx.λDHead.x⊕ λDTail.g (Succ x)
Tail

: λx.λt.〈Head : 〈Zero : 0 | Succ : t〉〉
‖ | ` λfg.λpx.λDHead.x⊕ λDTail.g (Succ x)

Tail,x→〈Head:x〉
: λx.λt.〈Head : 〈Zero : 0 | Succ : t〉〉

Figure 5.15: A continuation of the derivation given in figure 5.17.

‖ | (x : x), (g : λx.0) ` x : x

‖ | (x : x), (g : λx.0) ` λDHead.x
g

: 〈Head : x〉 ‖ | (x : x), (g : λx.0) ` λDTail.g (Succ x))
g

: 0

‖ | (x : x), (g : λx.0) ` λDHead.x⊕ λDTail.g (Succ x))
g

: 〈Head : x〉
‖ | (g : 0) ` λpx.λDHead.x⊕ λDTail.g (Succ x))

g
: x→ 〈Head : x〉

‖ | ` λfg.λpx.λDHead.x⊕ λDTail.g (Succ x)) : x→ 〈Head : x〉

Figure 5.16: A continuation of the derivation below.
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Continued in figure 5.16 Continued in figure 5.15

‖ | `
unfold

(λfg.λpx.λDHead.x
⊕ λDTail.g (Succ x))

: λy.λTailλt.〈Head : 〈Zero : y.Zero | Succ : y.Succ + t〉〉 ‖ | ` Zero : 〈Zero : 1 | Succ : 0〉

‖ | ` (unfold (λfg.λpx.λDHead.x⊕ λDTail.g (Succ x))) Zero : λTailλt.〈Head : 〈Zero : 1 | Succ : t〉〉

Figure 5.17: Size inference on the allNats function.
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5.1.3 Correctness of inference

To show that size bounds correctly infer sizes, we need a notion of what the correct sizes
are. There are two competing concerns when considering size bounds in Compositional
Pola. We are interested in the amount of computer memory required to store a value in
the programming language, though this will be a secondary concern in this thesis. Of
primary concern is the ability to determine how many recursions a data structure may
yield if it is used to drive a recursion via the fold construct.

When considering the amount of computer memory required to store a value, we will
abstract over any computer architecture details such as machine word size, references or
pointers to substructures or other structures, and shared memory between data struc-
tures. We will assume a computer architecture with uniform memory addressing, but
beyond that no specifics. Atomic values in the language are all given a size bound of 1,
indicating that they are of constant size. In a real implementation of the language, the
sizes of these objects will not all be the same, though they can still be bounded by above
from some constant, which is what we designate as 1 for our purposes.

Of special note is the coinductive values, which are not given any concrete size at all
in this section. In all practicality, representing a coinductive value in an implementation
can be thought of in two ways: (1) as a “multi-closure”, i.e., a collection of functions all
sharing the same bound free variables; or (2) as an object in the object-oriented sense, a
collection of methods all sharing the same instance variables. In this section we do not
concern ourselves with the memory required to store executable code, though the reader
may assume that the real size required to store a coinductive value is O(n+m) where n
is the size of the free variables and m is the aggregate size of the syntax tree representing
the stored destructors.

Defining the potentially recursive size of a term,
�
./

For determining how many recursions a data structure might yield, we will give a formal
definition of what we consider to be correct size.

Definition 5. In the context of environments Ξ,Γ,∆, for any term t of inductive type T ,
without loss of generality, say T has recursive constructors C1, . . . ,Cn and non-recursive
constructors B1, . . . ,Bm. Further, t→ t′ (t evaluates to the term t′) under the operational
semantics, wherein each recursive constructor Ci having ki recursive subterms and li non-
recursive subterms and each non-recursive constructor Bi having pi subterms, without loss
of generality, all recursive subterms come before all non-recursive subterms, we say that

t has inductive size a, denoted t
�↑
./ a, if and only if the following term takes time b under

the operation semantics and
n∑
i=1

a.Ci +
m∑
i1

a.Bi ≥ b−3
3

:

fold (λff.λpa.λpb.fcase a
(λCC1.♦.λop − r1. . . . .♦.λop − rk1 .♦.λps1. . . . .♦.λpsl1 .O.f r1 · · · (f rk−2 (f rk−1 ()))

+ · · ·
+ λCCn.♦.λop − r1. . . . .♦.λop − rkn .♦.λps1. . . . .♦.λpsln .O.f r1 · · · (f rk−2 (f rk−1 ()))

+ λCB1.♦.λps1. . . . .♦λpsp1 .() + · · ·+ λCBm.♦.λps1. . . . .♦λpspm .b))
(t)o ()
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The fold term in definition 5 indicates a term which does nothing but recurse on all
recursive subvalues. We subtract 3 time units from the value b to negate the effects of
evaluating t, calling function f initially and evaluating the fold initially. We divide b by
3 to negate the effects of constructing the unit () and to negate the effects of evaluating
an fcase through each recursion.

The motivation behind definition 5 is to define the size of a term as the number of
recursions that it can force via a fold. This follows from the foundation that the fold is
the only construct which allows (bounded) recursive computation.

For terms without inductive size, we still need to ensure that the sizes inferred are
meaningful and correct, which leads to the next definition.

Definition 6. In the context of environments Ξ,Γ,∆, for any term t of coinductive type
and where t → 〈D1 : α1 | · · · | Dn : αn〉 under the operational semantics, we say that t

has coinductive size a, denoted t
↓�
./ a, if and only if, for all 1 ≤ i ≤ n, αi

�
./ a, where the

notation α
�
./ a is given in definition 9.

In other words, coinductive sizes represent sizes which can either immediately be
destructed into inductive sizes or which can be destructed into coinductive sizes. Ulti-
mately, any coinductive size must be able to yield an inductive size to have any utility
in the context of Compositional Pola.

There is one type of size that still needs to be related to how it can force a fold,
which is the tuple size, given in the following definition.

Definition 7. In the context of environments Ξ,Γ,∆, for any term t of tuple type and
where t→ α1×· · ·×αn× () under the operational semantics, we say that t has tuple size

a, denoted t
()�()
./ a, if and only if, for all 1 ≤ i ≤ n, αi

�
./ a, where the notation α

�
./ a is

given in definition 9.

The definition for arrow sizes follows in a similar vein.

Definition 8. In the context of environments Ξ,Γ,∆, for any term t of arrow type and
where t→ (x→ α) under the operational semantics, we say that t has arrow size x→ a,

denoted t
�→�
./ (x → a), if and only if α

�
./ a, where the notation α

�
./ a is given in

definition 9.

From definition 5, definition 6, definition 7 and definition 8, we define the following
notation for the potentially recursive size of a term, which we will use to prove the
correctness of size bounds.

Definition 9. In the context of environments Ξ,Γ,∆, a Compositional Pola term t is

said to have potentially recursive size a, denoted t
�
./ a, if and only if one of the following

four conditions holds:

1. t
�↑
./ a;

2. t
↓�
./ a;
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3. t
()�()
./ a; or

4. t
�→�
./ a.

Definitions of inferred size bounds,
?
./

Next we introduce the definition of a size as it corresponds to the size bounds inference
process described in this chapter, so that we can relate it to the ideal definition of size
given in definition 9.

Definition 10. For environments Ξ,Γ,∆ and Compositional Pola term, t, we say t

infers inductive size bound a, denoted t
?↑
./ a, if and only if Ξ‖Γ | ∆ ` t : 〈· · · | Ci :

xi, yi,1, . . . , yi,ki | · · · 〉 and a =
∑
i

xi under the rules of size bound inference given in this

chapter.

For example, the Pola term t = [3, 8, 2] will have inferred size 〈Nil : 1 | Cons : 3, 〈Zero :

1 | Succ : 8〉〉. In this case, 1 + 3 = 4 and so t
?↑
./ 4.

We introduce, also, the concept of a relationship between a coinductive size and our
notion of size relating to bounding a recursion.

Definition 11. For environments Ξ,Γ,∆ and Compositional Pola term, t, we say t infers

coinductive size bound a, denoted t
↓?
./ a, if and only if Ξ‖Γ | ∆ ` t : 〈· · · | Di : αi | · · · 〉

and, for all 1 ≤ i ≤ n, αi
?
./ ai and

n
max
i=1

ai = a. The notation αi
?
./ ai is given in

definition 14.

The same can be done for tuple sizes.

Definition 12. For environments Ξ,Γ,∆ and Compositional Pola term, t, we say t infers

tuple size bound a, denoted t
()?()
./ a, if and only if Ξ‖Γ | ∆ ` t : α1 × · · · × αn × () and,

for all 1 ≤ i ≤ n, αi
?
./ ai and

n
max
i=1

ai = a. The notation αi
?
./ ai is given in definition 14.

Similarly for arrow sizes.

Definition 13. For environments Ξ,Γ,∆ and Compositional Pola term, t, we say t infers

arrow size bound a, denoted t
?→?
./ a, if and only if Ξ‖Γ | ∆ ` t : (x → α) and α

?
./ a.

The notation αi
?
./ ai is given in definition 14.

Similarly to how a consolidated metric was defined in section 5.1.3, we can give a
consolidated metric for inferred size bounds.

Definition 14. For environments Ξ,Γ,∆ and Compositional Pola term, t, we say t infers

size bound a, denoted t
?
./ a, if and only if one of the following four conditions holds:

1. t
?↑
./ a; or

2. t
↓?
./ a; or
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Notation Description Reference

t
�↑
./ a t has inductive size a (can force a recursions

in a fold)
Definition 5

t
↓�
./ a t has coinductive size a (can have inductive

size a after destruction)
Definition 6

t
()�()
./ a t has tuple size a Definition 7

t
�→�
./ (x→ a) t has arrow size a Definition 8

t
�
./ a t has potentially recursive size a (one of the

above 4 definitions)
Definition 9

t
?↑
./ a t has inferred inductive size a Definition 10

t
↓?
./ a t has potential inferred size a Definition 11

t
()?()
./ a t has inferred tuple size a Definition 12

t
?→?
./ (x→ a) t has inferred arrow size a Definition 13

t
?
./ a t has inferred size a (one of the above 4 def-

initions)
Definition 14

Figure 5.18: A brief summary of each of the 10 definitions introduced in this section.

3. t
()?()
./ a; or

4. t
?→?
./ a.

The above 10 bowtie definitions are summarized in a “cheat sheet” seen in figure 5.18.

Relationship between potential recursive size and inferred size bound

Before we move on to the main proof of this section, we need to introduce a bound on
the number of recursions within a fold construct, as it is vital to all the bounds given in
this thesis.

Definition 15. For a term t of inductive type T , we say that t has n immediate recursive
constructors, denoted cT (t) = n, if t ≡ Ci(x1, . . . , xn−1, y1, . . . , ym) for some constructor
Ci if, without loss of generality, constructor Ci has n − 1 recursive attributes and m
non-recursive attributes.

Definition 16. For a term t of inductive type T , we say that t has n total recursive
constructors, denoted c∗T (t) = n, if one of the following two conditions holds:

• cT (t) = 1 and n = 1; or

• t ≡ Ci(x1, . . . , xp, y1, . . . , ym) and
p∑
i=1

c∗T (xi) = n− 1.

Lemma 1. t
�↑
./ n if and only if c∗T (t) = n.
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Proof. • Assume t
�↑
./ n. Thus, the time it takes to evaluate the fold construct in

definition 5 is 3n+ 3 time units and consequently the number of recursive function
calls is n. As the fold construct performs a recursive function call on every total
recursive constructor, c∗T (t) = n.

• Assume c∗T (t) = n. Consquently, the number of total recursive constructors is
n. Applying the term to the fold construct given in definition 5 will perform n

recursive calls, consuming 3n+ 3 time units and hence t
�↑
./ n.

Lemma 2. By the operational semantics given in section 3.5, there may only be at most
one invocation of the recursive function f per constructor of the term being folded over.

Proof. Because the body of a fold is an fcase, it suffices to show that each branch in
the body of the fcase has at most 1 invocation of f . A branch is a constructor match,
matching on constructor Ci, followed by the introduction of variables for constructor Ci,
followed by the term to be evaluated. Without loss of generality, we say constructor Ci
has n recursive variables and m non-recursive variables. A branch is then of the form
λCCi. � .λopx1,1x1,2. � . . . . .λopxn,1xn,2. � .λpy1. . . . . � λpym.O.t for some term t. Because of
the typing restrictions on f , only the variables xi,2 for 1 ≤ i ≤ n can be used to cause
an invocation of f . Because xi,2 for 1 ≤ i ≤ n is a player variable, it may not appear
twice in the same term. Consequently, the number of invocations of f for the branch is
at most n.

By lemma 1, then, the total number of invocations of recursive function f is at most
c∗T (n).

A consequence of lemma 2 is that, no matter how the body of a fold is constructed,
the number of invocations of the recursive function f is bounded by the number of
constructors in the term being folded over.

Given the definitions in section 5.1.3 and section 5.1.3, we can prove the relationship
between them, which is sufficient to prove that the size bound inference process is correct.

Proposition 2. If t
?
./ a and t

�
./ b, then a ≥ b.

Proof. This proof is by induction on the structure of t. The following bullet points
comprise all possible cases for the form of t:

• t ≡ x for some variable x. If x is in scope with size a, then x
�
./ a and x

?
./ a.

• t ≡ Ci u for some constructor Ci and some term u. By the induction hypothesis,

we can say u
?
./ au and u

�
./ bu where au ≥ bu. It must be that the size was inferred

by the Construction rule in figure 5.2 and so a = a + 1. From the Construction
rule given in figure 3.31, we can see that b = bu + 1. Therefore, a ≥ b.

• t ≡ u (v)o or t ≡ u v. u necessarily has arrow type and we can say that u
?→?
./ (x→

au) and u
�→�
./ (x→ bu where au ≥ bu by the induction hypothesis. Further, we can
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see that v
?
./ av and v

�
./ bv where au ≥ bu. It follows by the Opponent application

and Player application rules given in figure 5.2 and Opponent application and
Player application rules given in figure 3.31 that (au av) ≥ (bu bv).

• t ≡ (). t
()?()
./ 0 and t

()�()
./ 0. Therefore, a = b.

• t ≡ u× v. By the induction hypothesis, u
()?()
./ au, u

()�()
./ bu, v

()?()
./ av and v

()�()
./ bv

where au ≥ bu and av ≥ bv. a = au + av and b = bu + bv. Therefore, a ≥ b.

• t ≡ λox.u, t ≡ λpx.u, t ≡ λfx.u or t ≡ λopx1x2.u. By the induction hypothesis,

u
?
./ au and a

�
./ bu where au ≥ bu. t

?→?
./ (x → au) and t

�→�
./ (x → bu) and

consequently a ≥ b.

• t ≡ peek r, t ≡ case r or t ≡ fcase x r. In this case, t
?→?
./ (x → ar) and

t
�→�
./ (x → br) where ar ≥ br, by the induction hypothesis. Necessarily, the term

r evaluates to a composition of n branches, having inferred sizes a1, . . . , an and
potential recursive sizes b1, . . . , bn. By the Constructor match and Construct non-
match rules given in figure 3.31, we see that t evaluates to one of the branches.
Hence b = (x→ bi) for some 1 ≤ i ≤ n. Since ∀1 ≤ i ≤ n, ai ≥ bi, it must be that
n

max
i=1

ai ≥ b and hence a ≥ b.

• t ≡ O.u, t ≡ �.u, t ≡ λCi .u, t ≡ λDi.u. From the Unit tuple match rule of figure 3.31
and the Unit match rule of figure 5.3, and by the induction hypothesis, we see that
a = au + 1 and b = bu + 1 where a ≥ b and hence a ≥ b.

• t ≡ fold (λff.r) x. Here t
?
./ (x → α · δ + β) where x

?
./ α, δ is the size increase

inferred in r per invocation of the recursive function f and β is the size of r
independent of any invocations of f . By lemma 2, the number of invocations of f

by the operation semantics is bound by α. Consequently, where r
�
./ br, we know

that α · δ + β ≥ br and hence a ≥ b.

• t ≡ Di u. In this case, it must be that u
?↓
./ 〈D1 : a1 | · · · | Dn : an〉 and

u
�↓
./ 〈D1 : b1 | · · · | Dn : bn〉 where ∀1 ≤ i ≤ n, ai ≥ bi. By the Destruction match

and Destruction non-match rules in figure 3.32, we see that the destruction yields

one of the subterms of u and so t
�
./ bi. Since ai ≥ bi by the induction hypothesis,

the Destruction rule given in figure 5.12 shows that a ≥ b.

• t ≡ u⊕ v. u
?↓
./ au and u

�↓
./ bu where au ≥ bu. Similarly, v

?↓
./ av and v

?↓
./ bv where

av ≥ bv. By the Destruction match and Destruction non-match rules in figure 3.32,
destruction of this term must yield a size of either bu or bv. Since au ≥ bu and
av ≥ bv, max(au, av) ≥ bu and max(au, av) ≥ bv, as per the Co-branch composition

rule in figure 5.12. Since t
?↓
./ max(au, bu), a ≥ b.
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• t ≡ unfold (λfg.u). In this case, the term u is a set of cobranches. By the Unfold

rule in figure 5.14, it must be that t
↓?
./ tm where, for each cobranch ui in u, ui

?
./ zi

and ∀i, zi ≤ tm. Further, by the definition given in figure 5.14, tm = α +
∑
i

βi for

some upfront cost α and some aggregate potential cost
∑
i

βi. We can see from the

“Pass 2” rules in figure 5.14 that every βi is 0 except for one matching cobranch,
which we will designate βmatch.

t
�→�
./ (x → r). Without loss of generality, we will say r = rupfront + rpotential.

We can see from figure 3.32 that the operational semantics will evaluate u. When
applied to an argument, the term u, which consists of a series of cobranches, will
perform the “Destruction non-match” rules into a “Destruction match” rule is
found. This mimics the “pass 1” rules from figure 5.14 and consequently we can say
that rupfront = α. The cost of executing the actual destruction is given by evaluating
the inner term, as can be seen by the “Destruction non-match” rule of figure 3.32.
This mirrors the “Unfold matchind destructor (pass 2)” rule of figure 5.14. Thus,
by the induction hypothesis, we can assume that rpotential ≤ βmatch . It follows then
that a ≥ b.

• t ≡ record u. This follows as the case for the unfold, but with the “Record” rule
from figure 5.12.

And so, the potential recursive size of a term bounds the number of recursions which
may take place as a consequence of using that term in a computation.

5.2 Times

The size bound inference described in section 5.1.2 can be useful information in and of
itself, as a bound of the size of the term produced by a computation also gives a bound
on the maximum value that can be produced, as well. However, calculating a size bound
has another very useful property which is that it is necessary for calculating time bounds
in general. The computation time required to execute a Compositional Pola program is
generally determined by the use of fold constructs and there the number of iterations is
set by the size of the term that is being folded over.

The time required to execute Compositional Pola programs is, for most operations,
a constant, which we will always denote as 1 in this thesis. When inferring practical
bounds, it would be necessary to consider different constants for each operation depending
on the time required to perform an operation on a particular computer architecture.
The interesting operations—those that do not have constant time bounds—are function
applications (and, similarly, destructions) and fold constructs. The fold construct alone
provides the most significant source of computational power in Compositional Pola and
it is this that will require attention when computing time bounds for fold constructs.
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A time bound sequent is of the form Ξ‖Γ | ∆ 3 t l α where Ξ,Γ,∆ are mappings
of symbols to size bounds, t is a Compositional Pola term and α is a time, defined in
section 5.2.1.

Note that many rules of time inference necessarily require the clause to infer the size of
a term or subterm, though the reverse is not true. Sequents of the form Ξ‖Γ | ∆ ` t : α
will be inferring sizes, as described in section 5.1.2. Rules described in section 5.2.5
require the usage of potential time inference, which is denoted as Ξ‖Γ | ∆  t l α where
α is a time.

5.2.1 Times

A time is generally a polynomial over the variable sizes, as defined in section 5.1, i.e.,
over the variables of the form v, v.Ci, v.N where v is a symbol in the contexts Ξ,Γ,∆,
v.Ci is a constructor count of a symbol and v.N is a tuple projection of a symbol. The
context Ξ maps symbols to both time and size bounds (typically lambda times), but
Γ,∆ map symbols to only size bounds. Lambda times are also required when considering
time bound inference compositionally, though a well-typed Compositional Pola program
should never yield a lambda time bound ultimately. Lambda times will be denoted as
λTx.Ω where x is a bound variable representing a size and Ω is itself a time bound.
Application is between a lambda and a size term and is carried out as expected.

A time bound, Ω, is one of the following:

Polynomial N[V ]
Lambda λTx.Ω
Application (Ω V )
Constructor pattern λCCi.Ω
Branch composition 〈Ω | Ω〉
Destructor pattern λDDi.Ω
Co-branch composition Ω⊕ Ω

Note that V is the set of variable sizes, as described above.

Operations on times

As with size bounds, we need to be able to perform some arithmetic operations on time
bounds within the sequents. Maximum is defined as in section 5.1.1, with maximums
of polynomials taken term-wise and maximums of other bounds done by subsize over
the structure of the bound and further define the notion of a maximum across branch
composition times bounds:

max(〈Ω1 | Ω2〉) = max(Ω1,max(Ω2))
max(Ω) = Ω where Ω is not of the form 〈Ω1 | Ω2〉
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For example:

max(〈3 | x2 + 2 | x〉)
= max(3,max(〈x2 + 2 | x〉))
= max(3,max(x2 + 2,max(x)))
= max(3,max(x2 + 2, x))
= max(3, x2 + 2)
= x2 + 3

Multiplication between time bounds and size bounds needs to be defined in order to
define bounds inference on the fcase rule. Where α is a time bound and β is a size
bound, we define α · β as:

(λCCi.δ) · β = δ · β.Ci
(δ + γ) · β = δ · β + γ · β

These two rules are sufficient to describe time bound inference with fcase constructs.

5.2.2 Environments

When inferring time bounds, we require two views of the symbols in the function envi-
ronment, Ξ. Inferring time bounds is inherently dependent on being able to infer size
bounds owing to the fact that the time spent computing a fold construct is proportional
to the size of the data structure being folded over. When inferring time bounds involving
function application, we need to know a time bound of a function with respect to the
size of its inputs and we also may need the size bound of a function to compute those
sizes of inputs.

As an example, consider the Pola term f(g(3)). If the functions f and g both take
parameters in the opponent world and have time bounds as a function of those parame-
ters, then the time bound of the term as a whole is the summation of four parts: (1) the
time to construct the value 3; (2) the time to compute the g function; (3) the time to
compute the f function; and (4) the constant overhead of function application. However,
in order to be able to infer the time to compute the f function, we necessarily need to
infer the size of the term produced by the g function.

In our context, Ξ, we will have symbol bindings both of the form (f : Φ), indicating
a size bound, and (f l α), indicating a time bound.

5.2.3 Sequents

As described in section 5.2.2, there are two views of the global environment that need to
be considered—(f : Φ) and (f l α)—the size bounds of a function and the time bounds
of a function, respectively. Ultimately what we infer is the time bounds of evaluating a
term, which is a third consideration, and thus we have a mixture of two different sequents.
Table 5.1 gives an overview of the two different sequents used in time bound inference.
Note that both sequents use the same environments, which allows easy mixing between
them.
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Sequent use Sequent form Result (form of α)

Size bound inference Ξ‖Γ | ∆ ` t : α Size

Time bound inference Ξ‖Γ | ∆ 3 t l α Time

Table 5.1: The three forms of sequents used during time bound inference.

The size bound inference sequents are described in section 5.1.2. Note that a sequent
with a conclusion of type size bound lookup will never have a premise that is not a size
bound lookup.

Time bound inference sequents will comprise the remainder of this section. It is
common for a sequent with time bound inference conclusion to have a premise or multiple
premises which are not time bound inferences.

5.2.4 Inductive terms

Figure 5.19 gives time bounds for simple Compositional Pola terms. Inferring time
bounds for these cases essentially means determining the time bounds of the subterms
and adding them, plus a constant (1). Note that, in the case of player lambda and player
application, the size of the argument cannot possibly contribute to the computational
time of the function as a player variable cannot drive a recursion.

When computing upper time bounds on branches and associated constructs, we are
typically interested in finding the maximum across the branches. Figure 5.20 gives rules
of inference for time bounds of these constructs.

Figure 5.24 gives the time bound inference for the add function given in figure 3.3,
namely a bound of x.Zero + 5x.Succ + 5. I.e., the time required to compute the add
function is independent of the variable y (which must be the case because y is a player
variable and cannot drive a recursion) and requires time units bounded by the number
of Zero constructors in x plus 5 times the number of Succ constructors plus a constant
5 time units. Since it is not possible for a natural number to have a number of Zero
constructors other than one, the time bound is actually 5x.Succ + 6, or five times the
value of x plus 6 time units. Ignoring the coefficients, this aligns with our expectation of
what the time required to compute addition in Peano arithmetic should be.

Note that the multiplication operation to correctly compute the affine time bounds
of the add function is done by the fcase rule.
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Constructor Ξ‖Γ | ∆ 3 Ci l 0

Variable reference Ξ‖Γ | ∆ 3 x l 1
where x ∈ (Γ ∪∆)

Opponent application

Ξ‖Γ | ∆ 3 t l αT Ξ‖Γ | ∆ ` u : βZ Ξ‖Γ | ∆ 3 u l βT
Ξ‖Γ | ∆ 3 (t (u)o) l αT [βZ ] + βT + 1

Player application

Ξ‖Γ | ∆ 3 t l α Ξ‖Γ | ∆ 3 u l β

Ξ‖Γ | ∆ 3 (t u) l α + β + 1

Tuple unit Ξ‖Γ | ∆ 3 () l 1

Tuple pair

Ξ‖Γ | ∆ 3 t l α Ξ‖Γ | ∆ 3 u l β

Ξ‖Γ | ∆ 3 t× u l α + β + 1

Opponent lambda

Ξ‖(x : x),Γ | ∆ 3 t l α

Ξ‖Γ | ∆ 3 λox.t l λTx.α

Player lambda

Ξ‖Γ | (x : x),∆ 3 t l α

Ξ‖Γ | ∆ 3 λpx.t l α

Figure 5.19: Time bounds for simple Compositional Pola terms.
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Peek

Ξ‖Γ | ∆ 3 s l α Ξ‖Γ | ∆ ` s : γ Ξ‖Γ | (C : γ),∆ 3 b l β

Ξ‖Γ | ∆ 3 peek b s l α + max(β)

Case

Ξ‖Γ | ∆ 3 s l α Ξ‖Γ | ∆ ` s : γ Ξ‖Γ | (C : γ),∆ 3 b l β

Ξ‖Γ | ∆ 3 case b s l α + max(β)

FCase

Ξ‖Γ | ∆ ` x : αZ Ξ‖Γ | ∆ 3 x l αT Ξ‖Γ | ∆ 3 y l βT
Ξ‖Γ | ∆ 3 fcase x t l βT · αZ + αT

Fold

Ξ‖Γ | ∆ 3 b l α

Ξ‖Γ | ∆ 3 fold (λff.λpx.b) l λTx.α

Branch composition

Ξ‖Γ | ∆ 3 t l α Ξ‖Γ | ∆ 3 u l β

Ξ‖Γ | ∆ 3 t+ u l 〈α | β〉

Constructor match

Ξ‖Γ | (C : C.Ci), (N : 0),∆ 3 t l α

Ξ‖Γ | (C : C).∆ 3 λC.Ci.t l λCi .α

Opponent variable match

Ξ‖Γ | (C : αC), (x : αC)∆ 3 t l αt
Ξ‖Γ | (C : αC),∆ 3 ♦.λox.t l αt

x is recursive

Opponent variable match

Ξ‖(x : αC .n),Γ | (C : αC), (N : n+ 1),∆ 3 t l αt
Ξ‖Γ | (C : αC), (N : n),∆ 3 ♦.λox.t l αt

otherwise

Player variable match

Ξ‖Γ | (C : αC), (x : αC)∆ 3 t l αt
Ξ‖Γ | (C : αC),∆ 3 ♦.λpx.t l αt

x is recursive

Player variable match

Ξ‖Γ | (C : αC), (N : n+ 1), (x : αC .n),∆ 3 t l αt
Ξ‖Γ | (C : αC), (N : n),∆ 3 ♦.λpx.t l αt

otherwise

Fold variable match

Ξ‖(x : αC),Γ | (y : αC),∆ 3 t l αt
Ξ‖Γ | (C : αC),∆ 3 ♦.λopxy.t l αt

Unit match

Ξ‖Γ | ∆ 3 t l αt
Ξ‖Γ | ∆ 3 O.t l αt

Figure 5.20: Time bounds for inductive constructs in Compositional Pola.
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· · · 3 f l 0 · · · 3 z l 1

(f : 0), (f l 0)‖(x : x) | (z : x.Succ), (y : y) 3 f z l 2

· · · 3 Succ l 0 · · · 3 y l 1

(f : 0),
(f l 0)

‖(x : x) | (z : x.Succ),
(y : y)

3 Succ y l 2

(f : 0), (f l 0)‖(x : x) | (z : x.Succ), (y : y) 3 f z (Succ y) l 5

Figure 5.21: A continuation of the derivation below.

(f : 0), (f l 0)‖(x : x) | (y : y) 3 y l 1

(f : 0),
(f l 0)

‖(x : x) | (C : x.Zero),
(N : 0), (y : y)

3 O.y l 1

(f : 0),
(f l 0)

‖(x : x) | (C : x),
(y : y)

3 λCZero.O.y l 〈Zero : 1〉

Continued in figure 5.21

(f : 0), (f l 0)‖(x : x) | (C : x.Succ), (N : 0),
(z : x.Succ), (y : y)

3 O.f z (Succ y) l 5

(f : 0),
(f l 0)

‖(x : x) | (C : x.Succ),
(N : 0), (y : y)

3 ♦.λop − z.O.f z (Succ y) l 5

(f : 0),
(f l 0)

‖(x : x) | (C : x),
(y : y)

3 λCSucc.♦.λop − z.O.f z (Succ y) l 〈Succ : 5〉

(f : 0), (f l 0)‖(x : x) | (C : x), (y : y) 3 λCZero.O.y + λCSucc.♦.λop − z.O.f z (Succ y) l 〈Zero : 1 | Succ : 5〉

Figure 5.22: A continuation of the derivation below.

(f : 0), (f l 0)‖(x : x) | (y : y) ` x : x (f : 0), (f l 0)‖(x : x) | (y : y) 3 x l 1 Continued in figure 5.22

(f : 0), (f l 0)‖(x : x) | (y : y) 3 fcase x (λCZero.O.y + λCSucc.♦.λop − z.O.f z (Succ y)) l x.Zero + 5x.Succ + 2

(f : 0), (f l 0)‖(x : x) | (y : y) 3 λpy.fcase x (λCZero.O.y + λCSucc.♦.λop − z.O.f z (Succ y)) l x.Zero + 5x.Succ + 2

‖(x : x) | (y : y) 3 fold (λff.λpx.λpy.fcase x (λCZero.O.y + λCSucc.♦.λop − z.O.f z (Succ y))) l λTx.(x.Zero + 5x.Succ + 2)

Figure 5.23: A continuation of the below derivation.
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Continued in figure 5.23 ‖(x : x) | (y : y) ` x : x ‖(x : x) | (y : y) 3 x l 1

‖(x : x) | (y : y) 3 fold

(
λff.λpx.λpy.fcase x (λCZero.O.y

+ λCSucc.♦.λop − z.O.f z (Succ y))

)
(x)o l x.Zero + 5x.Succ + 3 ‖(x : x) | (y : y) 3 y l 1

‖(x : x) | (y : y) 3 fold

(
λff.λpx.λpy.fcase x (λCZero.O.y

+ λCSucc.♦.λop − z.O.f z (Succ y))

)
(x)o y l x.Zero + 5x.Succ + 5

Figure 5.24: Time bound inference for the add function given is figure 3.3.
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5.2.5 Coinductive terms

Similarly to how bounds inference on coinductive terms was handled when inferring size
bounds in section 5.1.2 and section 5.1.2, time bounds with respect to coinductive terms
are dealt with by representing the potential of the term. E.g., for a typical record, the
up-front time cost is a small constant (1, with respect to the operational semantics), but
there is also a potential time bound of what the time cost would be if the term were
destructed.

As described in section 5.2, there is a form of sequent, Ξ‖Γ | ∆  t l α, which
is used to infer potential time bounds. This extra form of sequent is required because
inference on a record will necessarily need to infer two time bounds: an upfront—or
concrete—bound and a potential bound.

Figure 5.25 gives rules of inference for non-recursive coinductive terms. Here we re-
quire two different types of time bound inference: upfront time bounds and potential
time bounds. Upfront time bounds are upper bounds on the number of computational
steps required, as per the operational semantics, to evaluate the expression. These are
generally a very low constant for coinductive objects and do not vary with the complexity
of the terms defined within the destructors: because the semantics surrounding coinduc-
tive objects corresponding simply to “packing up” the terms to be executed later, there is
no substantial computational cost. The potential cost corresponds to the computational
cost of destructing the object with a given destructor.

As an example, consider the Pola1 term ( P1 : 3;P2 : [ ] ), which would have a size of
〈P1 : 〈Zero : 1 | Succ : 3〉 | P2 : 〈Nil : 1 | Cons : 0, 0〉〉. The upfront time bound on this
term is 2, corresponding to the cost to packaging up each destructor. The potential time
bound is 〈P1 : 4 | P2 : 1〉. Consequently, the term P1[( P1 : 3;P2 : [ ] )] has time bound
1+2+4 = 7, which corresponds exactly to what the cost would be under the operational
semantics.

When dealing with recursive coinductive constructs, any extra potential computa-
tional cost is carried by the act of destruction, and thus the unfold construct per se does
not add any additional potential cost.

Note that each rule of inference for inductive constructs given in figures 5.19 and 5.20
needs a corresponding rule for inferring a potential bound, in case a coinductive construct
is produced via an inductive construct. Figures 5.26 and 5.27 give potential rules of
inference for inductive constructs.

5.2.6 Correctness of inference

Here we show that the type inference rules are correct, in that they provide an upper
bound on the running time necessary to compute a particular Compositional Term, under
the operational semantics given in section 3.5. The structure of the proof follows in a
similar style to the correctness of size inference bounds given in section 5.1.3 with the

1In Compositional Pola, this would be written as follows:

record (λDP1.Succ(Succ(Succ((Zero ())× ())× ())× ())⊕ λDP2.Nil ())
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Destruction

Ξ‖Γ | ∆ 3 t l β Ξ‖Γ | ∆  t l α

Ξ‖Γ | ∆ 3 t Di l β + α[Di] + 1

Record (upfront)

Ξ‖Γ | ∆ 3 t l α

Ξ‖Γ | ∆ 3 record t l α

Record (potential)

Ξ‖Γ | ∆  t l α

Ξ‖Γ | ∆  record t l α

Co-branch composition (upfront)

Ξ‖Γ | ∆ 3 t l α Ξ‖Γ | ∆ 3 u l β

Ξ‖Γ | ∆ 3 t⊕ u l α + β

Co-branch composition (potential)

Ξ‖Γ | ∆  t l α Ξ‖Γ | ∆  u l β

Ξ‖Γ | ∆  t⊕ u l 〈α | β〉

Destructor (upfront) Ξ‖Γ | ∆ 3 λDDi.t l 1

Destructor (potential)

Ξ‖Γ | ∆ 3 t l α

Ξ‖Γ | ∆  λDDi.t l 〈Di.α〉
Di is not recursive

Unfold (upfront)

Ξ‖Γ | ∆ 3 t l α

Ξ‖Γ | ∆ 3 unfold (λfg.t) l α + 1

Unfold (potential)

Ξ‖Γ | ∆  t : α

Ξ‖Γ | ∆  unfold (λfg.t) l α

Figure 5.25: Time bounds for coinductive terms.
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Variable reference Ξ‖Γ | ∆  x l x
where x ∈ (Γ ∪∆)

Opponent application

Ξ‖Γ | ∆  t l αT Ξ‖Γ | ∆ ` u : βZ
Ξ‖Γ | ∆  (t (u)o) l αT [βZ ]

Player application

Ξ‖Γ | ∆  t l αT Ξ‖Γ | ∆ ` u : βZ
Ξ‖Γ | ∆  (t u) l αT [βZ ]

Opponent lambda

Ξ‖(x : x),Γ | ∆  t l α

Ξ‖Γ | ∆  λox.t l λTx.α

Player lambda

Ξ‖Γ | (x : x),∆  t l α

Ξ‖Γ | ∆ 3 λpx.t l λTx.α

Figure 5.26: Potential time bounds for simple Compositional Pola terms.

simplification that there is no question about the best definition to use for considering
the time of a term as there was when considering the size of a term.

Definition 17. In the context of environments Ξ,Γ,∆, for any term t, we say t has time

a, denoted t
�� a, if t⇒ t′ for some term t′ taking precisely a steps under the operational

semantics.

There is one complication when considering time bounds, though, which is that time
bound inference has a more complex interplay with potential bounds than size bound
inference did. When inferring time bounds of coinductive terms, we infer both a potential
size and potential time bound, where both may be relevant to the ultimate time bound.
Even in the case of inductive terms, the size bound of a term can be required to determine
the time bound of a fold construct. In this sense we will necessarily assume correctness of
any size bounds, as given in section 5.1.3. This interplay will become evident in lemma 3
where we prove the relationship between time bound and inferred time bound.

We introduce now the notion of an inferred time bound, which we will relate to
definition 17.

Definition 18. For environments Ξ,Γ,∆ and Compositional Pola term, t, we say t infers

time bound a, denoted t
?� a, if and only if Ξ‖Γ | ∆ 3 t l p under the rules of size

bound inference given in this chapter for some polynomial p.

Note that we need no definition for potential time bounds, as we only need to worry
about the correspondence between actual time bounds and times at this point.

Lemma 3. If t
?� a and t

�� b, then a ≥ b.

Proof. This proof is by induction on the structure of t.
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Peek

Ξ‖Γ | ∆ ` s : γ Ξ‖Γ | (C : γ),∆  b l β

Ξ‖Γ | ∆  peek b s l max(β)

Case

Ξ‖Γ | ∆ ` s : γ Ξ‖Γ | (C : γ),∆  b l β

Ξ‖Γ | ∆  case b s l max(β)

FCase

Ξ‖Γ | ∆ ` x : αZ Ξ‖Γ | ∆  y l βT
Ξ‖Γ | ∆  fcase x t l βT · αZ

Fold

Ξ‖Γ | ∆  b l α

Ξ‖Γ | ∆  fold (λff.λpx.b) l λTx.α

Branch composition

Ξ‖Γ | ∆  t l α Ξ‖Γ | ∆  u l β

Ξ‖Γ | ∆  t+ u l 〈α | β〉

Constructor match

Ξ‖Γ | (C : C.Ci), (N : 0),∆  t l α

Ξ‖Γ | (C : C).∆  λC.Ci.t l λCi .α

Opponent variable match

Ξ‖Γ | (C : αC), (x : αC)∆  t l αt
Ξ‖Γ | (C : αC),∆  ♦.λox.t l αt

x is recursive

Opponent variable match

Ξ‖(x : αC .n),Γ | (C : αC), (N : n+ 1),∆  t l αt
Ξ‖Γ | (C : αC), (N : n),∆  ♦.λox.t l αt

otherwise

Player variable match

Ξ‖Γ | (C : αC), (x : αC)∆  t l αt
Ξ‖Γ | (C : αC),∆  ♦.λpx.t l αt

x is recursive

Player variable match

Ξ‖Γ | (C : αC), (N : n+ 1), (x : αC .n),∆  t l αt
Ξ‖Γ | (C : αC), (N : n),∆  ♦.λpx.t l αt

otherwise

Fold variable match

Ξ‖(x : αC),Γ | (y : αC),∆  t l αt
Ξ‖Γ | (C : αC),∆  ♦.λopxy.t l αt

Unit match

Ξ‖Γ | ∆  t l αt
Ξ‖Γ | ∆  O.t l αt

Figure 5.27: Potential time bounds for inductive constructs in Compositional Pola.



112 Chapter 5. Bounds inference

• t ≡ x for some variable x, t ≡ (), t ≡ λox.u, t ≡ λpx.u, t ≡ λfx.u or t ≡ λopx1x2.u.
a = b = 1.

• t ≡ Ci u for some constructor Ci and some term u. By the induction hypothesis,

we can say u
?� au and u

�� bu where au ≥ bu. b = bu + 1. a = au + 1. Therefore,
a ≥ b.

• t ≡ u (v)o or t ≡ u v. u necessarily has arrow type and we can say that u infers
potential time bound λTx.au and that u evaluates to either λpx.zu or λox.zu where

and zu
�� bu and au ≥ bu by the induction hypothesis. Considering the immediate

computational costs of evaluating u before application, we see that u
?� xu and

u
�� yu where xu ≥ yu. Further, we can see that v

?� av and v
�� bv where au ≥ bu.

It follows that (au av) ≥ (bu bv). t
?� xu + au[av] + 1 and t

�� yu + bu[bv] + 1 and
hence a ≥ b.

• t ≡ u × v. By the induction hypothesis, u
(?
� au, u

�� bu, v
?� av and v

�� bv where
au ≥ bu and av ≥ bv. a = au + av + 1 and b = bu + bv + 1. Therefore, a ≥ b.

• t ≡ peek b r, t ≡ case b r or t ≡ fcase r b. In this case, r
?
./ ar and r

�
./ br

where ar ≥ br. By the induction hypothesis, we also see that b
?� ab and b

�� bb
where ab ≥ bb. It follows that ab[ar] ≥ bb[br]. Necessarily, the term b evaluations
to a composition of n branches, having inferred times a1, . . . , an and actual times
b1, . . . , bn. By the operational semantics, t evaluates to one of the branches and
hence bb[br] = bi for some 1 ≤ i ≤ n. Since ∀1 ≤ i ≤ n, ai ≥ bi, it must be that
max
i=1

nai ≥ b. It follows, then, that a ≥ b.

• t ≡ O.u, t ≡ �.u, t ≡ λCi .u, t ≡ λDi.u. This follows immediately from the induction
hypothesis.

• t ≡ fold (λff.r) x. Here (fold (λff.r))
?� λTx.ar where r

?� ar and r
�� br where

ar ≥ br. Due to lemma 2, the number of calls to f is bounded by zx where x
?
./ zx

and x
�
./ yx where zx ≥ yx. Note also that x

?� ax and x
�� bx where ax ≥ bx.

Consequently, it must be that b ≤ br · yx + bx. Since ar ≥ br, zx ≥ yx, ax ≥ bx, it
must be that ar[zx] + ax ≥ b and hence a ≥ b.

• t ≡ Di u. Because of the rule of time bound inference for destruction, specifically
determining Ξ‖Γ | ∆  u l ua, where ua ≡ 〈D1 : ua,1 | · · · | Dn : ua,n〉, we know

that, for all destructors D1, . . . ,Dj, . . . ,Dn, (Dj u)
�� bj and aj ≥ bj. Consequently,

ai ≥ bi and hence a ≥ b. In short, the time required to evaluate a destruction is
that of the potential time of the record, which is bound correctly via the induction
hypothesis.

• t ≡ u ⊕ v. u
?↓
� au and u

�↓
� bu where au ≥ bu. Similarly, v

?↓
� av and v

?↓
� bv where

av ≥ bv. By the operational semantics, destruction of this term must yield a time of
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either bu or bv. Since au ≥ bu and av ≥ bv, max(au, av) ≥ bu and max(au, av) ≥ bv.

Since t
?↓
� max(au, bu), a ≥ b.

• t ≡ unfold (λf .r) x or t ≡ record r x. We consider two aspects to this: the
upfront cost (the cost of evaluating the (λf .r) term), and the potential cost (the
cost of applying a destruction). The inferred, upfront cost, as is seen in figure 5.25,
is 1 more than the upfront cost of r itself. As the actual upfront cost, according to
the operational semantics, as can be seen in figure 3.32, is 1 more than the cost of
evaluating the term r. By the induction hypothesis, the upfront cost incurred by
the operational semantics is bounded by the upfront inferred cost. The potential
cost, which is the cost after a destruction is performed, is equal to the cost of r.
Thus, by the induction hypothesis, the potential cost is bounded by the inferred
cost.

This lemma demonstrates the correctness of the bounds inferred by the given rules
of inference.

5.3 Polynomial time constraint

In this section we discuss the equivalency between P , the class of decision problems which
can be decided by a Deterministic Turing Machine in time polynomial with respect to
the size of their input, and the class of functions that can be described in Pola. That
Pola is a superset of P is of particular importance because it affects the expressiveness
of the language, as described further in chapter 6.

Definition 19. For clarity, we denote CP to be the set of decision problems that can be
decided in Compositional Pola. Note that Compositional Pola is a language which deals
with functions, not only decision problems, but to form a relationship with the class of
decision problems P, we limit CP to functions which yield a boolean value, thus allowing
a direct comparison with decision problems.

Proposition 3. CP = P.

Proof. We show CP ⊇ P . For any problem p in P , there is a Deterministic Turing
Machine M which computes p in time q(x) for some polynomial q, relative to input size
x. Without loss of generality, we assume M contains three tape symbols (zero, one,
blank). From M we can construct a Compositional Pola function transition which
has two player parameters: the current tape symbol and the current state, and returns
the next state, direction to move the tape head and the new tape symbol. From this
transition function, we can construct a Compositional Pola function step which has
1 opponent parameter (the beginning of the work tape) and 2 player parameters (the
current state, and the tail of the work tape) and returns the new state, the new beginning
of the work tape, and the new tail of the work tape. We also define a Compositional Pola
function accepting, which has one player parameter (the current state) and returns a
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value of true or false indicating whether the given state is an accepting state. We can
also construct a Compositional Pola function q which takes an opponent parameter, a
natural number, representing the length of the input on the tape, and returns a natural
number which is greater than or equal to the number of steps needed to compute M to
a halting state. Then, for input input, we can construct a fold construct which recurses
q(length(input)) times, each time applying the step function. The accepting function
is applied to the final state in the fold construct to decide if the input is accepted.
This successfully simulates the Turing Machine M to a halting state, as can be seen in
figure 5.28. Hence, CP ⊇ P .

We show CP ⊆ P . Consider some Compositional Function, f ∈ CP, which is well-
typed, and thus has an inferred time bound. From lemma 3, we can see that every time
bound inferred by the rules of time bound inference given in section 5.2 correctly bound
from above the number of steps needed to evaluate f via the operational semantics. Thus,
the number of steps required to evaluate f is a polynomial with respect to the size of its
input. We construct a Deterministic Turing Machine, M , which simulates the function
via Compositional Pola’s operational semantics. The size of the variable environment in
Compositional Pola is bounded by the number of steps needed to complete the evaluation,
according to the operational semantics. As the time required by M to simulate the
operational semantics of the language is bounded by the size of the environment, and
the number of steps in the operational semantics is polynomial with respect to the size
of the input, M must necessarily halt in polynomial time and thus is deciding a problem
in P . Hence, CP ⊆ P .

Thus, the class of algorithms which can be expressed in Compositional Pola is equiv-
alent to P .
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1 data TapeSymbol→ c
2 = Blank : ()→ c
3 | Marked : ()→ c;
4 data TapeDirection→ c
5 = L : ()→ c
6 | R : ()→ c;
7 length = x | .fold f(x) as {
8 Nil.Zero;
9 Cons(−,− | t).Succ(f(t)) }

10 in f(x);
11 append = n | l, v.fold f(n, l) as {
12 Zero.Cons(v,Nil);
13 Succ(− | n).peek l of {
14 Nil.Cons(v,Nil);
15 Cons(x,− | xs).Cons(x, f(n, xs)) } }
16 in f(n, l);
17 removeLast = n | l.fold f(n, l) as {
18 Zero.Nil;
19 Succ(− | n).peek l of {
20 Nil.Nil;
21 Cons(x, xs).peek xs of {
22 Nil.Nil;
23 Cons(−,−).Cons(x, f(n, xs)) } } }
24 in f(n, l);
25 first = | l.peek l of {
26 Nil.Blank;
27 Cons(x,−).x };
28 removeFirst = | l.peek l of {
29 Nil.Nil;
30 Cons(−, l′).l′ };
31 step = n | s, h, t.peek transition(s, first(t)) of {
32 (s′, v, L).(s′, append(n, h, v), removeFirst(t));
33 (s′, v,R).(s′, removeLast(n, h),Cons(v, t)) };
34 sim = input | .fold f(n, s, h, t) as {
35 Zero.accepting(s);
36 Succ(− | n).peek step(q(length(input)), h, s, t) of {
37 (s′, h′, t′).f(n, s′, h′, t′) } }
38 in f(q(length(input)),Zero,Nil, input);

Figure 5.28: A simulation of a Deterministic Turing Machine in Pola. This depends on
the functions step, accepting and q to be defined appropriately for the given Turing
Machine.
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Expressiveness

6.1 Expressing simple functions

In this section we explore simple functions which have historically been very difficult to
express in a natural way in a constrained programming language. We show that the
typing constraints necessary to provide polynomial-time bounds still allow high levels of
expressiveness in the language.

Cobham’s initial description of a primitive recursive programming language disal-
lowed the implementation of an efficient less-than-or-equal-to function, leq. Specifically,
Cobham’s model allowed implementation of leq in time complexity Ω(n2) even though a
general recursive model would yield leq in time complexity O(min(m,n)). More recent
models have addressed this issue and Pola is no exception. Figure 6.1 gives a linear-time
implementation of leq in Pola. Figure 6.8 gives a derivation of the time bounds of leq,
specifically 3x.Zero + 4x.Succ + 3. I.e., for natural numbers n,m, we can compute leq in
time O(min(m,n)), which is optimal when using Peano arithmetic.

Beyond the leq function, we can consider the expression of another simple function
as a means to study the expressive power of Compositional Pola, insertion sort. We first
introduce the insert function, which inserts a natural number into an already sorted list
of natural numbers. Previous polynomial-time systems have been incapable of expressing
insertion sort in a natural way [20]. Figure 6.9 gives an example insert function in Pola.
Note that in Pola, this function requires the use of an auxiliary “driver” variable, d. The
reason we require two opponent variables, d and e, in insert is that we need one opponent
variable to drive the recursion (d) and one separate opponent variable to drive the leq
function (e).

In the interest of brevity, we won’t consider a full derivation of the time bounds
inference for the insert function. We see that the function consists of one fold about the
d variable, with each recursion invoking leq(e, x3) in the worst case. We see, then, that
we will infer time bounds for insert in the order of O(de), as expected.

Once insert has been defined, insertionSort is a simple function to repeatedly insert.
The Pola definition of insertion sort is given in figure 6.10. The inferred upper time bound
for insertionSort is O(x.Cons2 x.Cons.0.Succ), i.e., quadratic in the number of elements
in the list and linear in the magnitude of the largest element. In a practical system which

116
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leq = λox.λpy.(fold (λff.λpx.λpy.fcase x
(λCZero.O.True ()

+ λCSucc.♦.λopx4 x5.O.peek (λCZero.O.False () + λCSucc.♦.λpx2.O.(f x5 x2)) y)))
(x)o y

1 leq = x | y.fold f(x, y) as {
2 Zero.True;
3 Succ(x4 | x5).peek y of {
4 Zero.False;
5 Succ(x2).f(x5, x2) } }
6 in f(x, y);

Figure 6.1: An implementation of the less-than-or-equal-to function, leq, in Composi-
tional Pola and Pola.

implemented natural numbers as machine words, leq would be a constant-time operator,
and we would get the expected bound of O(x.Cons2).
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(f : 0), (f l 0)‖ · · · | · · · 3 f l 0 · · · ‖ · · · | (x2 : 0), (x5 : x.Succ), (y : y) 3 x5 l 1

(f : 0), (f l 0)‖(x : x), (x4 : x.Succ) | (x2 : 0), (x5 : x.Succ), (y : y) 3 f x5 l 1 · · · ‖ · · · |
(x2 : 0),

(x5 : x.Succ),
(y : y)

3 x2 l 1

(f : 0), (f l 0)‖(x : x), (x4 : x.Succ) | (x2 : 0), (x5 : x.Succ), (y : y) 3 f x5 x2 l 2

Figure 6.2: A continuation of the derivation given below.

· · · ‖ · · · | · · · 3 False l 1 · · · ‖ · · · | · · · 3 () l 1

(f : 0), (f l 0)‖ · · · | · · · 3 False () l 3

(f : 0),
(f l 0)

‖ · · · | (C : 0), (N : 0),
· · · 3 O.False () l 3

(f : 0),
(f l 0)

‖ · · · | (C : 0),
· · · 3 λCZero.O.False () l 〈Zero : 3〉

Continued in figure 6.2

(f : 0), (f l 0)‖ · · · |
(C : 0), (N : 0),

(x2 : 0), (x5 : x.Succ),
(y : y)

3 O.(f x5 x2) l 2

(f : 0), (f l 0)‖ · · · |
(C : 0), (N : 0),
(x5 : x.Succ),

(y : y)
3 λpx2.O.(f x5 x2) l 2

(f : 0), (f l 0)‖ · · · |
(C : 0), (N : 0),
(x5 : x.Succ),

(y : y)
3 ♦.λpx2.O.(f x5 x2) l 2

(f : 0),
(f l 0)

‖ · · · |
(C : 0),

(x5 : x.Succ),
(y : y)

3 λCSucc.♦.λpx2.O.(f x5 x2) l 〈Succ : 2〉

(f : 0), (f l 0)‖ (x : x),
(x4 : x.Succ)

| (C : 0),
(x5 : x.Succ), (y : y)

3 λCZero.O.False () + λCSucc.♦.λpx2.O.(f x5 x2) l 〈Zero : 3 | Succ : 2〉

Figure 6.3: A continuation of the derivation given below.
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(f : 0), (f l 0)‖(x : x), (x4 : x.Succ) | (x5 : x.Succ), (y : y) 3 y l 1 Continued in figure 6.3

(f : 0),
(f l 0)

‖ (x : x),
(x4 : x.Succ)

| (x5 : x.Succ),
(y : y)

3
peek (λCZero.O.False ()

+ λCSucc.♦.λpx2.O.(f x5 x2)) y
l 1 + max〈Zero : 3 | Succ : 2〉 = 4

(f : 0), (f l 0)‖ (x : x),
(x4 : x.Succ)

| (C : x.Succ), (N : 0),
(x5 : x.Succ), (y : y)

3 O.peek (λCZero.O.False () + λCSucc.♦.λpx2.O.(f x5 x2)) y l 4

(f : 0), (f l 0)‖(x : x) | (C : x.Succ), (N : 0), (y : y) 3 λopx4 x5.O.peek (λCZero.O.False () + λCSucc.♦.λpx2.O.(f x5 x2)) y l 4

(f : 0), (f l 0)‖(x : x) | (C : x.Succ), (N : 0), (y : y) 3 ♦.λopx4 x5.O.peek (λCZero.O.False () + λCSucc.♦.λpx2.O.(f x5 x2)) y l 4

(f : 0), (f l 0)‖(x : x) | (C : x), (y : y) 3 λCSucc.♦.λopx4 x5.O.peek (λCZero.O.False () + λCSucc.♦.λpx2.O.(f x5 x2)) y l 〈Succ : 4〉

Figure 6.4: Continuation of the derivation given below.

(f : 0), (f l 0)‖(x : x) | (y : y) 3 True l 1 (f : 0), (f l 0)‖(x : x) | (y : y) 3 () l 1

(f : 0), (f l 0)‖(x : x) | (y : y) 3 True () l 3

(f : 0), (f l 0)‖(x : x) | (C : x.Zero), (N : 0), (y : y) 3 O.True () l 3

(f : 0), (f l 0)‖(x : x) | (C : x), (y : y) 3 λCZero.O.True () l 〈Zero : 3〉 Continued in figure 6.4

(f : 0), (f l 0)‖(x : x) | (C : x), (y : y) 3

λCZero.O.True ()
+ λCSucc.♦.λopx4 x5.O.peek

(λCZero.O.False () + λCSucc.♦.λpx2.O.(f x5 x2))
y

l 〈Zero : 3 | Succ : 4〉

Figure 6.5: Continuation of the derivation given below.
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(f : 0), (f l 0)‖(x : x) | (y : y) ` x : x (f : 0), (f l 0)‖(x : x) | (y : y) 3 x l 1 Continued in figure 6.5

(f : 0),
(f l 0)

‖(x : x) | (y : y) 3
fcase x (λCZero.O.True ()

+ λCSucc.♦.λopx4 x5.O.peek (λCZero.O.False () + λCSucc.♦.λpx2.O.(f x5 x2)) y)
l 3x.Zero + 4x.Succ + 1

(f : 0),
(f l 0)

‖(x : x) | (y : y) 3
λpy.fcase x (λCZero.O.True ()

+ λCSucc.♦.λopx4 x5.O.peek (λCZero.O.False () + λCSucc.♦.λpx2.O.(f x5 x2)) y)
l 3x.Zero + 4x.Succ + 1

(f : 0), (f l 0)‖(x : x) | (y : y) 3
λpx.λpy.fcase x (λCZero.O.True ()

+ λCSucc.♦.λopx4 x5.O.peek
(λCZero.O.False () + λCSucc.♦.λpx2.O.(f x5 x2)) y)

l x→ 3x.Zero + 4x.Succ + 1

‖(x : x) | (y : y) 3
λff.λpx.λpy.fcase x (λCZero.O.True ()

+ λCSucc.♦.λopx4 x5.O.peek (λCZero.O.False () + λCSucc.♦.λpx2.O.(f x5 x2)) y)
l x→ 3x.Zero + 4x.Succ + 1

Figure 6.6: A continuation of the derivation given below.

Continued in figure 6.6 ‖(x : x) | (y : y) 3 x l 1 ‖(x : x) | (y : y) ` x : x

‖(x : x) | (y : y) 3
(fold (λff.λpx.λpy.fcase x (λCZero.O.True ()

+ λCSucc.♦.λopx4 x5.O.peek (λCZero.O.False () + λCSucc.♦.λpx2.O.(f x5 x2)) y)))
(x)o

l 3x.Zero + 4x.Succ + 2

Figure 6.7: A continuation of the derivation given below.
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Continued in figure 6.7 ‖(x : x) | (y : y) 3 y l 1

‖(x : x) | (y : y) 3

(fold (λff.λpx.λpy.fcase x
(λCZero.O.True ()

+ λCSucc.♦.λopx4 x5.O.peek (λCZero.O.False () + λCSucc.♦.λpx2.O.(f x5 x2)) y)))
(x)o y

l 3x.Zero + 4x.Succ + 3

Figure 6.8: Time bound inference for the leq function given in figure 6.1.
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insert = λod.λoe.λpl.(λff.(f d l)) (fold
(λff.λpd.λpl.fcase d

(λCNil.O.Cons (e× (Nil ())× ()) +
λCCons.♦.λopx7 x9.♦.λopx8 x1.O.peek

(λCNil.O.Cons (e× (Nil ())× ()) +
λCCons.♦.λpx5.♦.λpx6.O.(λpsubject2.peek
(λCFalse.O.Cons (x3 × ((f x1 x4))× ()) +

λCTrue.O.Cons (e× (Cons (x3 × x4 × ()))× ())) subject2) ((leq e x3))) l)))

1 insert = d, e | l.fold f(d, l) as {
2 Nil.Cons(e,Nil);
3 Cons(x7 | x9, x8 | x1).peek l of {
4 Nil.Cons(e,Nil);
5 Cons(x3 | x5, x4 | x6).peek subject2 of {
6 False.Cons(x3, f(x1, x4));
7 True.Cons(e,Cons(x3, x4)) }
8 where subject2 = leq(e, x3) } }
9 in f(d, l);

Figure 6.9: An implementation of the insert function, insert, in Compositional Pola and
Pola.

6.2 Limits

We have shown two historically important functions, leq and insertionSort, can be written
in a natural style in Pola and have tight bounds inferred. Where Pola fails in its expres-
siveness is in the “divide and conquer” algorithms. The typing system of Pola is not
amenable to breaking up data structures, aside from how they’re explicitly structured.
For example, one cannot split a list in two pieces in Pola and then recurse separately on
each half of the list, due to restrictions on the number of recursive calls. This implies
that one cannot write mergeSort in a natural style.

6.3 Variations of Pola

So far, we have discussed Compositional Pola and Pola, two related languages which allow
functions equal to the polynomial-time functions. In this section, we have two interests:
to consider variations that allow different complexity constraints; and to consider vari-
ations of Pola that allow more programming expressiveness without compromising the
restriction to polynomial time.

6.3.1 An elementary-recursive language

Consider a variant of Compositional Pola that allows full duplication in the player world,
which we will call Affine-Free Compositional Pola. Figure 6.11 shows the modification
to the type inference rule for the peek construct (originally in figure 3.34 for Affine-Free
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insertionSort = λox.(λff.(f x (Nil ()))) (fold (λff.λpx.λpacc.fcase x
(λCNil.O.acc + λCCons.♦.λox1.♦.λopx2 x4.O.(f x4 ((insert x x1 acc))))))

1 insertionSort = x | .fold f(−, acc) as {
2 Nil.acc;
3 Cons(x1, x2 | x4).f(x4, insert(x, x1, acc)) }
4 in f(x,Nil);

Figure 6.10: An implementation of the insertion sort function, insertionSort, in Compo-
sitional Pola and Pola.

Peek in Compositional Pola

Ξ‖Γ | ∆1 ` t : β Ξ‖Γ | ∆2 ` b : γ

Ξ‖Γ | ∆1,∆2 ` peek b t : α

Peek in Affine-Free Compositional Pola

Ξ‖Γ | ∆ ` t : β Ξ‖Γ | ∆ ` b : γ

Ξ‖Γ | ∆ ` peek b t : α

Figure 6.11: A comparison of type inference rules for the peek construct in Compositional
Pola (top) and Affine-Free Compositional Pola (bottom).

Compositional Pola. Although figure 3.34 shows only one such rule, all type inference
constructs that rely on the split between player context ∆1,∆2 in section 3.6 would be
modified to exclude this split. In effect, this means that there is no restriction on the
number of occurrences of any player variable.

We can quickly see that this modification allows computations beyond polynomial
time. Figure 6.12 gives a Affine-Free Compositional Pola program which defines the exp2
function, a function which will compute 2x for any natural number x. Because each
natural number, x, in Affine-Free Compositional Pola is represented via x applications
of the Succ constructor, necessarily computational time is at least 2x according to the
operational semantics, and thus Affine-Free Compositional Pola allows super-polynomial
computation.

The complexity class of elementary-recursive, written EL, is the set of decision prob-
lems which can be decided in time bounded by the exponential hierarchy, i.e., 2n ∪ 22n ∪
222

n

∪· · · . It is a strict subset of the Primitive Recursive class studied in section 2.2.1. The
set of functions computable by an Affine-Free Compositional Pola program will hereafter
be denoted AFCP.

Proposition 4. AFCP = EL.

Proof. This proof requires two parts, to show equivalence.

1. AFCP ⊇ EL.

We show this by demonstrating that any decision problem in EL can be decided in
time f(x), for some function f(x), within the exponential hierarchy. Further, the
function f(x) can be computed in AFCP.
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1 data BinaryTree→ c
2 = Leaf :→ c
3 | Node : c, c→ c;
4 genTree = x | .fold f(x) as {
5 Zero.Leaf;
6 Succ(− | n).Node(f(n), f(n)) }
7 in f(x);
8 countTree = t | .fold f(t, s) as {
9 Leaf.Succ(s);

10 Node(− | t,− | u).f(t, f(u, Succ(s))) }
11 in f(t);
12 exp2 = x | .countTree(genTree(x));

Figure 6.12: An example of exponential-time behaviour in Affine-Free Compositional
Pola.

If f(x) ≤ cx—i.e., f(x) is a simple exponential, we can use the AFCP code in
figure 6.12 to compute f(x). If c = 2, the function can be used as-is. In the case
that c > 2, we can modify the definition of the Node constructor to have c subterms
instead of 2 subterms.

If f(x) ≤ cg(x) where g(x) is a function in the exponential hierarchy, we can as-
sume there is a AFCP function g which computes g(x). As in figure 6.12, we can
then construct a function exp2 which computes 2x and evaluate the AFCP term
exp2 (g(n)) to compute f(x). In the case that c > 2, we can again modify the Node
constructor to set the number of subterms accordingly.

As Affine-Free Compositional Pola can compute any function in the exponential
hierarchy, it can simulate any Turing machine which halts in a time bounded by a
function in the exponentional hierarchy, and thus AFCP ⊇ EL.

2. AFCP ⊆ EL.

Similarly to lemma 2, we can see the number of invocations of a recursive function
f is constant in Affine-Free Compositional Pola per constructor of the term being
folded over. Further, because each recursive call necessarily requires a player vari-
able, namely the first argument to the recursive function f , of universal type, it is
not possible to use the result of a recursive call to drive another recursion.

Because the number of invocations to a recursive function is a constant, c ∈ N,
the total computational cost of evaluation a fold in Affine-Free Compositional Pola
must be withinO(cg(n)) where n is the number of constructors within the term being
folded over and g(n) is the computational cost of the body of the fold construct,
ignoring invocations to the recursive function.

Because nested fold constructs can be used, g(n) is itself in the exponential hier-
archy, and consequently the cost of evaluating a fold must be in the exponential
hierarchy and consequently halt within elementary time.
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Since AFCP ⊆ EL and AFCP ⊇ EL, it follows that AFCP = EL.

One interesting note of the result of proposition 4 is that it is distinguished from
other “categorical” programming languages, such as Charity described in section 2.2.4.
Charity is also strictly recursive—all well-typed programs must necessarily halt—and also
uses folds on inductive types and unfolds on coinductive types. However, Ackermann’s
function can be written in Charity, making it strictly more powerful than primitive
recursive while still being recursive, whereas Ackermann’s function is impossible to write
in Affine-Free Compositional Pola.

The distinction between the two in terms of computational power can be seen in the
division between opponent variables and player variables, a division which does not exist
in Charity. In Charity one can freely use the result of a fold as an argument to an unfold,
or use the result of a recursive function call to drive a fold, two things which are forbidden
in Affine-Free Compositional Pola, which gives Charity more computational power.

6.3.2 A PSPACE language

We will now consider a restrained version of Affine-Free Compositional Pola, called Ex-
ploratory Compositional Pola, hereafter denoted ECP. Rather than allow unrestricted
duplication of player variables, we will allow duplication of player variables only in one
context: the peek construct. The typing restriction on the new peek construct is the
same as is shown in figure 3.34. Of note, compared to Pola, the player context (∆) in
ECP may be duplicated between the subject of the peek and the body of the peek.

We add one further typing restriction, which is that every inductive type must have at
least one constructor which is not recursive. In practice, this is not a serious restriction,
as an object of an inductive type without a non-recursive constructor could never be
constructed.

Since the peek is the only context in which duplication is permitted, the style of
exponential functions given in figure 6.12 is not permitted. However, computational
power beyond that of polynomial-time functions is permitted.

A solution to the Quantified Boolean Formula Problem is given in figure 6.13. The
Quantified Boolean Formula problem determines a solution to a Boolean formula, Φ,
where Φ, has one of the following forms:

• Φ ≡ x (a variable);

• Φ ≡ Φ ∧ Φ (conjunction);

• Φ ≡ Φ ∨ Φ (disjunction);

• Φ ≡ ¬Φ (negation);

• Φ ≡ ∃x.Φ (existentially quantified);

• Φ ≡ ∀x.Φ (universally quantified).
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1 data QBF→ c
2 = Variable : Nat→ c
3 | And : c, c→ c
4 | Or : c, c→ c
5 | Not : c→ c
6 | Exists : c→ c
7 | Forall : c→ c;
8 head = | list .peek list of { Cons(x,−).x };
9 tail = | list .peek list of { Cons(−, xs).xs };

10 lookup = var | env .fold f(x, env) as {
11 Zero.head(env);
12 Succ(− | x).f(x, tail(env)) }
13 in f(var , env);
14 eval = eq | env .fold f(x, env) as {
15 Variable(x).lookup(x, env);
16 And(− | a,− | b).peek f(a, env) of {
17 False.False;
18 True.f(b, env) }
19 Or(− | a,− | b).peek f(a, env) of {
20 False.f(b, env);
21 True.True }
22 Not(− | a).peek f(a, env) of {
23 False.True;
24 True.False }
25 Exists(− | a).peek f(a,Cons(False, env)) of {
26 False.f(a,Cons(True, env));
27 True.True }
28 Forall(− | a).peek f(a,Cons(False, env)) of {
29 False.False;
30 True.f(a,Cons(True, env)) }
31 in f(eq , env);

Figure 6.13: A solution to the Quantified Boolean Formula problem, given in Exploratory
Compositional Pola.
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In the solution given in figure 6.13, we take a slightly modified version of quantified
formulas, which is to represent them in point-free notation. Rather than represent vari-
ables symbolically, we represent them as a natural number indicating the distance to the
quantifier in which they were introduced. The distance indicates the number of other
quantifiers that have been introduced after the intended quantifier in the same scope. For
example, the formula ∀x.∃y.y∧(∀z.(∃w.w∧z)∨x) would be given as ∀.∃.0∧(∀.(∃.0∧1)∨2)
in point-free notation.

Proposition 5. Exploratory Compositional Pola is complete in polynomial space. I.e.,
ECP ⊇ PSPACE.

Proof. Figure 6.13 gives a solution to the Quantified Boolean Formula problem. The
Quantified Boolean Formula problem is complete in PSPACE.

To complete the proof that Exploratory Compositional Pola is equal to PSPACE,
we now prove soundness. To do this, we will need to make a transformation on ECP
programs.

Lemma 4. For any Exploratory Compositional Pola term peek t b, there exists a Com-
positional Pola term t′ that is evaluated in constant time such that peek t′ b is well-typed.

Proof. Because of the typing restrictions on the peek construct, t is necessarily an induc-
tive type. Because every inductive type in an ECP program necessarily has at least one
non-recursive constructor, Ct, replacing t with Ct will not change the type of the peek
body b. Further, since the constructor is not recursive, there necessarily exists some term
x which evaluates in constant time such that Ct x is well-typed. t′ = Ct x.

Following from lemma 4, we define a transform p →θ p
′, where p is an Exploratory

Compositional Pola program and p′ is a Compositional Pola program with exactly the
same structure of p′ except that the subjects of all peeks are stubbed out, according to
lemma 4. p′ is necessarily a well-typed Compositional Pola program.

Proposition 6. Every function in Exploratory Compositional Pola consumes at most
polynomial space. I.e., ECP ⊆ PSPACE.

Proof. We rely on the fact that every Alternating Turing Machine which halts in polyno-
mial time consumes at most polynomial space [3], and thus it suffices to show that every
function in Exploratory Compositional Pola can be simulated via an Alternating Turing
Machine in polynomial time.

An Alternating Turing Machine is a non-deterministic Turing Machine in which every
state is labelled as a ∧ states or a ∨ state. States labelled as ∨ states must have at least
one non-deterministic path reach an accept state; states labelled as a ∧ state must have
every non-deterministic path reach an accept state. Deterministic states can be labelled
as either without any change in semantics.

Owing to proposition 3, we know that, for any Compositional Pola program, there
is a Turing Machine M which simulates the program in polynomial time. Thus, for
any Exploratory Compositional Pola program, p, there is a Turing Machine Mp′ which
simulates the program p′ in polynomial time, where p →θ p

′. As every deterministic
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Ξ‖Γ | ∆1 ` t : α Ξ‖Γ | ∆2 ` b : β

Ξ‖Γ | ∆1,∆2 ` peek t b : β Peek (Compositional Pola)

Ξ‖Γ | ∆1,∆2 ` t : α Ξ‖Γ | ∆1,∆3 ` b : β

Ξ‖Γ | ∆1,∆2,∆3 ` peek t b : β
∆1 is safe

Peek (Dangerous Compositional Pola)

Figure 6.14: The simplified typing rules of the peek construct in Compositional Pola
(top) and Dangerous Compositional Pola (bottom). The introduction of variables of type
α is not given in these rules, for brevity.

Turing Machine can be easily transformed to an Alternating Turing Machine, by labelling
each state as a ∧ state, we can say that Mp′ is an Alternating Turing Machine.

We can then transform Mp′ by replacing each peek construct. Each peek construct
in Mp′ is has a representation for peek t′ (C1.e1 + · · ·+ Cn.en) in the Alternating Turing
Machine Mp′ . We replace this with (t′ is C1 ∧ C1.e1) ∨ · · · ∨ (t′ is Cn ∧ Cn.en) where
the notation (t′ is Ci) indicates an evaluation of t′ and an assertion that it matches
constructor Ci, leading to a reject state if the assertion fails.

This constructed Turing Machine is an Alternating Turing Machine which halts in
polynomial time. Thus, ECP ⊆ PSPACE .

Consequently, we can see that ECP = PSPACE , and thus allowing unrestricted dupli-
cation of player variables allows computational complexity equal to allowing polynomial
space.

6.3.3 A more expressive P-complete language

Finally we consider a variant of Compositional Pola, denoted Dangerous Compositional
Pola (DCP), which remains constrained to polynomial-time functions, but allows more
expressive power to the programmer, by selectively relaxing the restrictions on duplication
in the player world.

We introduce two new types in DCP: safe and dangerous. Both are parametric types
and will be denoted 〈α〉 (safe type α) and 〉α〈 (dangerous type α). Types of variables
in the opponent context will not be designated as safe or dangerous; conversely, every
variable in the player context will be designated as either safe or dangerous. Safe variables
are those that may be duplicated and dangerous variables are those which could be used
to cause super–polynomial-time behaviour if duplicated.

The only term which duplicates safe variables is the peek construct, as described
in figure 6.14. The player context is divided into two sub-contexts, ∆1, which contains
only safe variables, and (∆2,∆3), which contains only dangerous variables. ∆1 can be
duplicated between the subject and the body of the peek construct, whereas (∆2,∆3)
may not be duplicated and must be split between the subject and the body.

Almost all terms from Compositional Pola generate safe types. There are two terms
which can generate dangerous types. Recursive variables—i.e., those of universal type—
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1 data c→ Fn(a, b)
2 = Eval : c, a→ b;
3 both = | rec.peek Eval[rec](False) of {
4 False.False;
5 True.Eval[rec](True) };
6 either = | rec.peek Eval[rec](False) of {
7 False.Eval[rec](True);
8 True.True };
9 eval = eq | env .fold f(x, env) as {

10
...

11 Exists(− | a).either(( Eval : z.f(a,Cons(z, env)) ));
12 Forall(− | a).both(( Eval : z.f(a,Cons(z, env)) )) }
13 in f(eq , env);

Figure 6.15: An example of how to generate an exponential-time function if safe and
dangerous type restrictions are not put on records.

Ξ‖Γ | ∆ ` record : b̄r(α)→ 〈α〉 ∆ is safe
Record

Ξ‖Γ | ∆ ` record : b̄r(α)→〉α〈
∆ is dangerous

Record

Figure 6.16: Modified typing rules for records in Dangerous Compositional Pola.

are dangerous. Records can also be have dangerous type because they can be used to
implicitly duplicate a dangerous variable. Figure 6.15 gives an example of exponential-
time behaviour that could occur if dangerous records were permitted to be duplicated. It
is a modification of the QSAT problem given in figure 6.13, except with slight modifica-
tions to the evaluations of determining the ∃.Φ and ∀.Φ cases, shown on lines 11 and 12.
Rather than duplicate the recursive variable a explicitly, we envelop it in a record and
then pass that record to the both or either function, which duplicates the record and eval-
uates it both with False and True. As QSAT is PSPACE-complete and PSPACE ⊃ P ,
the function is super-polynomial.

A more subtle example of exponential-time behaviour resulting from dangerous records
is given in figure 6.17. Note that, in this case, the recursive variable n is never included

1 g = n | .fold f(x, y) as {
2 Zero.both(y);
3 Succ(− | n).f(n, ( Eval : z.both(y) )) }
4 in f(n, ( Eval : z.z ));

Figure 6.17: A second example of an exponential-time function if safe and dangerous
type restrictions are not properly put on records.
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in the constructed record and never duplicated, but running time is still exponential with
respect to n. Duplication of any record constructed in the context of a dangerous variable
consequently needs to be considered dangerous.

Thus it is clear that records can be considered dangerous: in DCP, we would require
both and either to have type signatures of | 〈Fn(Bool,Bool)〉 → Bool and for the records
generated on lines 11 and 12 to have type signatures of 〉Fn(Bool,Bool)〈, thus disallowing
this function from type-checking correctly.

Figure 6.16 gives the modified rules of typing to account for safe records and dangerous
records. A record is dangerous if and only if it has any dangerous variables in its player
context at the time of its construction.

A careful reading of the typing rules in figure 3.25 for Compositional Pola shows
that they disallow the use of player variables within the coda of an unfold construct.
Figure 3.30 shows a function to demonstrate the reasoning behind this, specifically
that the use of a recursive function call within the code of an unfold can lead to
exponential-time behaviour. The function exp given in figure 3.30 generates the infi-
nite list [2n, 2n+1, 2n+2 2n+3, . . .]. Consequently evaluating the term Head[exp(n)] would
compute 2n for any natural number n.

The restriction on disallowing player variables within the coda of an unfold can
be relaxed in Dangerous Compositional Pola to make the language less restrictive, but
figure 3.30 shows why restrictions are still required. Specifically, the restriction must be
made that only safe player variables be permitted within the coda.

With these restrictions in place, Dangerous Compositional Pola is still constrained to
polynomial-time functions, with slightly more freedom and expressiveness offered to the
programmer, as compared to Compositional Pola.



Chapter 7

Conclusion

We have defined a novel programming language, Pola, in which every well-typed pro-
gram halts in time polynomial with respect to its input. It is a functional programming
language allowing algebraic inductive or coinductive datatypes to be used during compu-
tation. A practical bounds-inference algorithm is provided. Variations on the language
are considered to allow greater expressiveness or computational power.
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