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Abstract

Islanded microgrids powered primarily by photovoltaic (PV) arrays present a challenging

control problem due to the intermittent production and the relatively close scale between the

sources and the loads. Energy storage in such microgrids plays an important role in balancing

supply with demand, and in extending operation during periods when the PV supply is not

available or insufficient. The efficient operation of such microgrids requires effective manage-

ment of all resources. A predictive energy management strategy can potentially avoid or effec-

tively mitigate upcoming outages. This thesis presents an energy management system (EMS)

for such microgrids. The EMS uses a predictive approach to set operational schedules in order

to (a) prolong the supply to critical system loads and (2) minimize the chances and duration of

system-wide outages, specifically through pre-emptive load shedding. Online weather forecast

data has been combined with the PV system model to assess potential energy production over a

48 hour period. These predictions, along with load forecasts and a model of the energy storage

system, are used to predict the state-of-charge of the storage devices and characterize potential

power shortages. Pre-emptive load shedding is subsequently planned and executed to avert

outages or minimize the duration of unavoidable outages. A bounding technique has also been

proposed to account for uncertainties in estimates of the stored energy. The EMS has been im-

plemented using an event-driven framework with network communication. The approach has

been validated through simulations and experiments using recorded real-world solar irradiance

data. The results show that the outage durations have been reduced by a factor of 87% to 100%

for an example operating scenario, selected to demonstrate the features of the scheme. The im-

pact of uncertainties in the prediction models has also been investigated, specifically for the PV

system rating and the battery capacity. A technique has been developed to compensate for such

uncertainties by analyzing the data streams from the source and storage units. The technique

is applied to the developed EMS strategy, where it is able to shorten the total outage duration

by a factor of 12% over a 42-day scenario exhibiting a variety of irradiance conditions.

Keywords: Microgrids, energy storage, photovoltaic systems, energy management.
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Chapter 1

Introduction

1.1 Motivation

At present approximately 1.2 billion people, or 16% of the global population, have no access to

electricity [1]. This energy poverty problem is a critical barrier to economic and social devel-

opment in a world that has become increasingly dependent on information and communication

technologies for commerce and education. In addition, a significant portion of the population

that does have access to electricity is under-served, and must contend with rolling blackouts,

unreliable service, and poor quality power. This sporadic electricity supply also inhibits eco-

nomic and social growth, particularly for the poor who are least likely to be able to afford

backup power alternatives.

Microgrids have been proposed as a part of the solution to this energy poverty problem,

particularly in areas where economic realities make traditional grid extension projects infea-

sible [2]. In such cases, microgrids can be used to supply electricity in remote areas, or as

building blocks for electrification in the developing world [3]. When powered by renewable

energy sources, these microgrids can provide a low-carbon path to electrification while avoid-

ing the pollution and climate impacts of traditional approaches [4]. The microgrid approach

also allows for easy expansion, resulting in a modular and robust alternative that can comple-

1
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ment traditional centralized generation [5]. Microgrids can also provide enhanced reliability in

situations where electricity is supplied over transmission lines that are subject to natural dis-

ruptions, such as avalanches or mudslides. As the costs of renewable energy technologies and

storage systems decrease, such microgrids become more economically feasible.

In the Canadian context, most parts of the country have ready access to electricity. How-

ever, in many remote Indigenous communities electricity is primarily provided by diesel gen-

eration [6], and there are approximately 200,000 people living in such off-grid locations. This

approach to providing electricity comes with high operational and environmental costs, as the

only way to deliver diesel fuel to some of these communities is through very expensive charter

flights, or via winter-access ice roads [7,8]. Compounding the issue, climate change is reducing

the operating season of some ice roads, further impacting the cost of generation, and increasing

the risk of disruption to the electricity supply. Therefore, there is the potential to both reduce

the operational cost and improve the environmental impact of electricity generation in these

communities by using stand-alone microgrids powered by renewable energy sources.

The operation of islanded microgrids based on renewable energy, however, presents several

challenging control problems. Microgrids must perform the operational tasks that are needed

in any power system autonomously, such as frequency regulation, power management, and

generation scheduling. This is particularly difficult when the main energy sources are wind and

solar, due to their intermittent nature. In such systems, energy storage is utilized to maintain the

power balance between supply and demand, effectively making up for short-term imbalances

by charging or discharging as needed. However, there are practical limitations to the operation

of such energy storage systems that must be accommodated, such as finite storage capacity and

charge/discharge rate limitations [9].

These constraints lead to issues that are not typically encountered in traditional power gen-

eration systems, where a high priority is placed on availability of supply. From a traditional

residential customer’s perspective, the grid is, ‘by definition,’ always available. However, in an

islanded photovoltaic based microgrid this assumption is not necessarily valid. In the absence
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of a larger grid, an islanded microgrid may experience outages that could have been avoided by

judicious management of the available energy resources and loads. This energy management

task, with the goal of reducing the duration of outages, is the main focus of investigation in this

thesis.

In addition, another key enabling feature of microgrid technology is the capacity for self-

configuration. One of the early goals of the microgrid concept is that such systems should

be modular and easily reconfigurable, which is often referred to as having “plug-and-play”

capabilities. Such features result in less situation-specific engineering work, and make it pos-

sible for microgrids to automatically accommodate variations in their operating environment.

Ideally, a technician would be able to install and upgrade such systems with a minimum of

configuration steps, and the system itself would be able to address any issues accordingly. The

investigation of such self-configuration features is also a topic of interest, specifically the ability

of the microgrid to use operational data to detect and compensate for parameter uncertainties

that may be caused by configuration errors or component degradation.

1.2 Problem Statement

This section presents a brief description of the problems under investigation in this thesis. A

detailed description of the problem is formulated in Chapter 2.

The main question under investigation is how to design a predictive energy management

system (EMS) for islanded photovoltaic microgrids, with an emphasis on automated techniques

that can improve the performance of such microgrids with the available energy resources.

Specifically, the question of how to perform energy management using pre-emptive load shed-

ding to reduce the duration of outages is considered in this work.

In addition, to improve the self-configuration capability of the microgrid, the question of

how to use existing data to compensate for prediction uncertainties that can affect the quality

of energy management decisions is also addressed. Specifically, the compensation of uncer-
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tainties in the PV system rating and battery capacity parameters has been considered.

1.3 Background

In this section, the key developments in the literature are considered, starting with a brief

review of microgrids and microgrid control, and then moving to the microgrid energy man-

agement areas under investigation in this thesis. Finally, the existing literature on the effect of

uncertainties in both predictions and prediction model parameters is discussed.

1.3.1 Microgrids

The key ideas behind the microgrid concept were introduced by Lasseter [10] in 1998, and grew

into a significant field of research in the years that followed [11–13]. The CIGRE definition of

a microgrid is: “Microgrids are electricity distribution systems containing loads and distributed

energy resources, (such as distributed generators, storage devices, or controllable loads) that

can be operated in a controlled, coordinated way either while connected to the main power

network or while islanded.” [14]. Control of the microgrid is structured such that the microgrid

as a whole appears to the larger grid as a single load (or generator). The original microgrid

examples were fossil fuel generator based, and included a thermal network as a key part of

the concept [15], but most recent research activities do not include this aspect. An illustrative

microgrid configuration is shown in Fig. 1.1.

Microgrids can be used for improving the reliable delivery of power within the existing

grid [16], and as an incremental approach to electrification in developing nations [3]. Mi-

crogrids can also play a role in integration of renewable energy resources, though the task is

much more challenging an an islanded mode of operation [4]. While islanded, the microgrid

controllers must maintain the power balance between power supply and load demand, in the

presence of intermittent renewable resources, which requires coordination of storage, auxiliary

generation, and/or controllable loads.
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Microgrid Controller

Microgrid

Storage
PV

PV Wind

Switch

Substation

Figure 1.1: Illustrative microgrid structure

Some form of storage is often included in a microgrid in order to perform frequency reg-

ulation, maintain power balance, and to enable grid-connected operating strategies, such as

peak shaving. Commercial battery systems with the potential for microgrid integration are

starting to appear on the market, both as home-scale solutions such as the Panasonic/Tabuchi

Eco Intelligent Battery System and the Tesla Powerwall, and as neighbourhood-level systems

like the AEP Community Energy Storage offering. Storage is particularly critical for islanded

operation when the microgrid is dominated by intermittent renewable generation sources such

as solar photovoltaic arrays and wind generators. In this case the energy storage system is

usually the only element that can regulate the frequency and maintain the power balance when

a renewable energy source supply fluctuates. Therefore, the control of microgrids, including

storage, is of critical importance, and is an active topic of research.

1.3.2 Microgrid Control

The control of inverter-based microgrids is typically separated into four layers [17–21], which

loosely correspond to the timescale separation that is often used to characterize a larger power
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system [22]. The fastest and most fundamental “zero-th” layer includes the low-level real-

time control of the power electronic converters. This layer includes inner current loops and,

where appropriate, outer voltage control loops that allow the converters to regulate the output

to follow a desired setpoint. These layers are illustrated conceptually in Fig. 1.2.

Primary

Secondary

Tertiary

“Zero-th”

$

Inner PI loops

Power Sharing

Setpoint
management

Voltage, current

Centralized, droop,
stability control

Frequency restoration, 
storage operation

On-grid buying/selling

Examples:Layers:

Figure 1.2: Microgrid control hierarchy

The primary control layer is concerned with sharing of power among the converters, in-

cluding the problem of maintaining the power balance, either by using a single grid-forming

unit and current control of renewable sources [23], or by using techniques that integrate multi-

ple voltage-controlled sources. This control of power, or power management, can be achieved

through either centralized or distributed control mechanisms [24–26]. Centralized power man-

agement requires high-speed communication links to each of the units, and runs the potential

risk for catastrophic failure if these communication links are disrupted.

Distributed control of power sharing can be achieved through a droop mechanism [27, 28],

which operates entirely based on measurements at the terminals of the unit, and does not re-

quire any communication links to maintain the power balance. This technique is related to

the droop characteristics that balance power flow and system frequency to maintain synchro-

nization among generators in a larger power grid. One challenge that can arise at this layer is

the accommodation of the operating limits of the storage devices. Recently, a real-time tech-

nique to smoothly handle the state-of-charge limits of a PV/battery hybrid system by using
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an adaptive droop approach without using central communication [29–31] has been presented.

The work has also been extended to non-hybrid configurations where the storage system and

the PV system are connected to the microgrid through separate voltage source converters, and

managed using a multi-segment adaptive droop approach [28]. A generalized approach to

cyber-synchronous machines based on synchonverter technology and robust droop control is

discussed in [32], where the concepts are extended to include power-electronic interfaced load

participation in system stabilization without the need for explicit communication.

The secondary microgrid control layer is concerned with managing setpoints of the units in

the microgrid, and includes functions such as frequency restoration, voltage profile regulation

in multi-bus microgrids, and management of reactive power sharing [33–36]. The secondary

layer is also concerned with managing the use of storage within the microgrid, which is re-

quired in order to serve the load demand when the primary sources cannot fully support the

demand, and to deal with peak loads [19].

Finally, the tertiary layer is mostly focused on the economic operation of the microgrid

in relation to the external grid. At this layer, price-based decisions about buying and selling

electricity are made, which may also include agreements relating to provisioning of reserve ca-

pacity and operational requirements for participation in the grid under contingency conditions.

1.3.3 Energy Management

In general, energy management is a task of orchestrating various sources, storage, and con-

trollable loads to meet the operational objectives (e.g. economic, environmental, reliability) of

the power system. Energy management in a centralized electric power system is separated into

two major tasks: unit commitment, and economic dispatch. Unit commitment is performed on

a day-ahead to week-ahead basis, and consists of assigning the necessary generation resources

to meet the forecast load demand while respecting the various system constraints and specific

constraints of the chosen generators. A committed generator is “on” and its full capacity is

presumed to be available on demand. Economic dispatch is the related minutes-ahead process
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of adjusting the setpoints of the committed generators to meet the load demand at a minimum

operational cost.

1.3.4 Energy Management in Microgrids

In microgrids, similar essential energy management tasks must be performed, except at a much

smaller scale and without any operator involvement [37]. Microgrid energy management in-

volves the scheduling of generation, loads, and storage to meet operational objectives such as

availability, cost, and/or environmental goals [38]. There are two general approaches: real-time

immediate techniques that adjust the operating points of the microgrid without considering the

future behaviours of the system [39], and predictive techniques which use forecasts and/or

historical data to generate predictions of future generation and load demand, and then select

setpoints to meet the assigned objectives over time.

Predictive techniques generally follow the approach of obtaining generation and load fore-

casts, and then creating a prediction of the microgrid behaviour into the future. The predictions

can be used to optimize certain performance criteria to meet the chosen operational objec-

tives [40]. When the profiles of the loads and/or generation can be predicted, it is possible to

improve the performance of the system by taking advantage of the additional information when

making operational decisions. For example, foreknowledge of an expected increase in load can

lead to dispatch of additional generation, or shedding of less critical loads in advance. Also,

weather forecasts can be used to predict the future availability of renewable power generation,

although the accuracy of such forecasts can vary. Typically, the accuracy of such predictions

degrades as the prediction horizon extends further into the future, since the uncertainty in-

creases with time [41].

Note that predictive techniques require forecasts of power production and load demand.

The forecasting of photovoltaic generation is based on historical data, predictive weather mod-

els, or a combination of the two. The two key variables that affect the power generated by

a photovoltaic system are the solar insolation on the panel and the local temperature. While
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both of these variables show significant random behaviour in the short term, the dominant di-

urnal and seasonal patterns can be used to generate a forecast if only historical information is

available, however this information will be subject to a significant short-term error.

Recent research on photovoltaic forecasting is well described in the IEA report by Pelland,

et al. [42]. The report reviews techniques including the use of numerical weather prediction

(NWP) models, satellite and sky imagery, and local measurements to create predictions of

solar production from timescales of a few minutes to several hours. The report also presents

a survey of 15 organizations who contributed information on case studies of solar forecasting,

which gives an overview of the resolution, time horizons, and, for some cases, uncertainty

measures of the forecasting techniques.

In the highly cited paper by Villalva, et al. [43], a physics-based model is developed along

with the techniques to determine the model parameters. In Mahmoud, et al. [44] simplified

models for a PV array are developed. In Beltran, et al. [45] a cloudiness coefficient is defined

and used to modify the projected generation estimates of the chosen model. These improved

estimates are then used to better manage the charge/discharge behaviour of the energy storage

system discussed in the paper. Furthermore, the technique results in an estimate of a minimum

energy storage requirement for the system.

There are several possible approaches to creating the load predictions [46,47], including the

use of historical data. Microgrid scale load forecasting has also been investigated using back

propagation neural networks [48], a bilevel strategy for a self-optimizing hyrbid forecaster [49],

and using self-organizing maps [50].

The energy management tasks are performed by the energy management system in the

microgrid, which monitors the key measurements and makes decisions to meet the overall op-

erational goals of the microgrid [38]. The architectures of the microgrid EMS can be either cen-

tralized or decentralized, and operational scheduling strategies can be optimization-based [51],

stochastic [52], or heuristic [53] in nature. Several of these approaches focus on economi-

cal operation of the system, and are structured in a model predictive framework [54], with
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the optimization formulated as a mixed-integer linear programming problem [55]. The model

predictive approach is often used to handle prediction errors in the forecast process without

explicitly modeling them, since the approach makes use of the latest state information from the

real system in each new prediction.

The work of Kanchev, et al. [53] presents a deterministic energy management approach

for a microgrid containing so-called photovoltaic active generators. The active generators are

hybrid units that combine a photovoltaic array and one or more storage devices with a 3-phase

inverter. Each unit is controlled such that it delivers a desired level of real power, constrained

by the storage system limits and available PV production. Controllable loads are also defined

as part of the microgrid, along with natural gas microturbines. The microgrid EMS in [53]

operates at multiple time scales, with the long-term planning problem considering emissions,

market pricing, and renewable energy predictions. The shorter term actions manage control-

lable loads, storage, and local controller setpoints. Predictions are made on a 24-hour horizon

with half-hour steps. At each step the requested real power reference is sent to the active gen-

erator, which is used along with the SOC to manage storage charging and MPP tracking. The

approach is heuristic, with multiple if-then rules presented as flow charts.

The receding horizon approach is used in [41], with emphasis on economic operation. This

work notably includes some details on the implementation architecture, and makes use of a

lead acid battery model that accounts for SOC-dependent charging rate limitations. A load

shifting demand response scheme is chosen, but uncertainties in stored energy have not been

considered explicitly and no experimental results are presented, though plans for such studies

are mentioned.

In order to reduce the computational complexity of the problem, a knowledge-based expert

system is discussed in [56]. However, demand response and load shedding are not considered.

The main focus is on the scheduling of storage operation to reduce the use of a dump load.

The design, planning, and management of a laboratory-scale microgrid is presented in the

work of Valverde, et al. [57]. This system includes a battery, a fuel cell, an electrolyzer, and
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metal hydride hydrogen storage. All the sources are integrated through a DC bus, with AC

loads fed via a single inverter. Charge and discharge actions are triggered based on the status

of the SOC, with hysteresis and a dead band included to reduce state chattering. The focus here

is on managing the operation of the hydrogen storage system and demonstrating the approach

experimentally.

Another aspect of energy management can be found in more complex multi-bus microgrids,

where the distribution network within the microgrid adds additional constraints [58, 59]. For

example, it has been demonstrated that the use of a detailed three-phase model within a predic-

tive energy management strategy can improve the control system performance of an islanded

microgrid, even with a high degree of imbalance in the loads [60].

The works of Parisio and Glielmo are generally concerned with the operational manage-

ment of grid-connected microgrids [52, 55, 58, 61, 62]. In [58] the problem is formulated as a

mixed-integer linear programming model, which is evaluated with commercial solvers to mini-

mize the operating cost of the microgrid. This model is then used as part of a model-predictive

control scheme in [55, 61], which is simulated and also tested experimentally on the CRES

microgrid test bed in Greece. Further extensions include a stochastic formulation [52], and a

variation that considers multiple operating objectives [62].

While most of the energy management strategies focus on the scheduling of generation,

the use of controllable loads can provide additional management options [63]. The increas-

ing availability of smart devices and ubiquitous connectivity make fine-grained control of

loads possible [64], though the communication infrastructure requirements can present a chal-

lenge [32]. Load management can be performed using market demand response, which en-

courages voluntary load reduction through economic incentives, or by emergency load shed-

ding [65]. Emergency load shedding is an action for dealing with imminent contingencies in the

grid [66]. To facilitate emergency load shedding, the loads in a microgrid can be categorized in

terms of their criticalities, with less-critical controllable loads identified, and the mechanisms

to turn them on and off are made available to the intelligent load shedding module [67]. Load
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shedding in microgrids has also been discussed in [68], specifically during the transition from a

grid-connected to an islanded mode, under circumstances when the available generation within

the island cannot meet the total load demand. Additionally, some works consider loads such

as hot water heaters, refrigeration devices, or water pumps with reservoirs, where the load may

be shifted in time in order to optimize the operation of the microgrid [65, 69].

The majority of the work discussed above has been focused on economic optimization,

and is illustrated with scenarios where the combined energy production and energy storage is

able to meet the load demand. When this condition is not met, the islanded microgrid will

have to suffer from outages. The use of a predictive approach has the potential to predict and

characterize upcoming outages, and to eliminate or minimize the outage duration by using

pre-emptive load shedding. This approach forms the central theme in this thesis.

1.3.5 Stored Energy Prediction Uncertainties

Since intermittent renewable sources, such as PV and wind, and the load demand both have

a significant degree of variability, there have been several approaches taken to account for

these variations in the energy management system. In many cases, no explicit attempt has

been made to model such uncertainties. Instead, model-predictive control strategies are used,

which base the starting point of their decisions on the most recent information available from

the system operating variables. Another approach is to attempt to establish proper bounds on

the variations [70, 71] and to use these bounds in the decision making process. In addition to

deterministic approaches, several investigators have pursued the use of stochastic formulations

in this regard [52, 72–75].

While these approaches do account for variations in the power production and load demand,

none have considered prediction uncertainties in the SOC estimate caused by limitations in the

accuracy of the SOC prediction mechanism. Therefore, this aspect is considered within the

energy management strategy developed in this thesis.
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1.3.6 Model Parameter Uncertainties

The mathematical model of the microgrid plays a critical role in predictive EMS approaches,

as it is used to predict the microgrid behaviour, and to plan operational actions. Errors in

these models will result in incorrect predictions, leading to poor decisions. A discrete battery

model is often used within predictive microgrid EMS formulations, which integrates the power

flowing in or out of the battery and accounts for storage losses [53, 76]. This type of model

is generally computationally efficient, and can provide an appropriate level of abstraction for

energy management purposes, as opposed to detailed equivalent-circuit models [77].

Note that the separate but related SOC estimation problem is typically handled by the real-

time controller associated with the battery dc-dc converter [78, 79]. Since the interior state

of the battery is not easily determined from measurements taken at the battery terminals, this

SOC estimate sometimes contains errors. However, for energy management purposes the SOC

estimate provided by the real-time controller is assumed to be accurate, and the the model of

concern within the EMS is the simplified model used for prediction.

Since a stand-alone microgrid is meant to work without an operator and with minimum

maintenance, parameter errors may go un-noticed, which can lead to less than optimal perfor-

mance. For example, an incorrect parameter representing the size of the battery may result in

an inaccurate estimate of the SOC. Actions planned based on this incorrect information could

result in either unnecessary load shedding, or in unexpected outages when the stored energy

is depleted earlier than was expected. Such uncertainties in the microgrid prediction mod-

els can be caused by incorrect configuration of the EMS during system installation, or by the

degradation of the battery itself over time [80].

Note that none of the existing energy management solutions discussed so far in the literature

address the problem of uncertainties in the model parameters, though, as previously mentioned,

some deal with uncertainties in the predictions [52, 70, 72–74].

While little work has been done on the question of incorrect prediction model parameters in

energy management systems for islanded microgrids, the work described in [81] does consider
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the problem of the difference between real and predicted photovoltaic production in a grid-

connected microgrid. A scaling factor which is based on the ratio of the most recent two

real PV power measurements relative to the most recent two forecast predictions has been

introduced. The scaling factor is used in a model predictive control scheme that minimizes the

energy drawn from the grid. However, this method is sensitive to the significant variations in

forecast accuracy that can occur, particularly during low solar irradiance levels.

Given that relatively little work has been done to deal with model parameter uncertainties

in microgrids, it is desirable to investigate this problem in depth and to develop methods to

compensate for such uncertainties, preferably without requiring additional information beyond

what is available to the EMS. This research is also included as a part of this thesis work.

1.4 Research Objectives and Scope

In this section, an overview of the research objectives and the scope is presented.

The system under consideration is a single-bus three-phase microgrid operating in an is-

landed mode. The microgrid contains a photovoltaic source, its associated dc-dc converter, and

an inverter that connects to the microgrid bus. It also contains a battery storage system, con-

sisting of a battery bank, dc-dc converter, and inverter. The loads in the microgrid include both

controllable and independent ones, representing sheddable and critical loads, respectively. The

elements of the microgrid communicate over an Ethernet network to a central control platform

that houses the energy management system.

The objectives of this research are to:

1. Develop a predictive energy management strategy for islanded photovoltaic microgrids

that can extend the operational duration of critical loads given limited energy resources.

2. Consider the impact of uncertainties in the estimation of the stored energy within the

system, and account for these uncertainties in making energy management decisions.
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3. Explore the impact of model parameter uncertainties on the predictions used in energy

management, and develop techniques to compensate for these uncertainties.

4. Demonstrate the effectiveness of the developed strategies on both simulated and physical

platforms.

The effectiveness of these techniques is assessed using two metrics: the number and dura-

tion of outages that affect the critical loads.

Also, in defining the scope of this thesis, the following points have not been considered:

1. Specific load prediction algorithms: An accurate load prediction is presumed to be avail-

able.

2. The presence of additional dispatchable generation: The only primary source of energy

is the PV array.

3. Reactive power management, phase imbalance, or voltage profiles within the microgrid:

The configuration under investigation is a simple single-bus microgrid with balanced

resistive loads.

4. Stochastic formulations or techniques: The problem is posed and solved in a determin-

istic domain.

5. Communication disruptions or delays: The communication links are presumed to be

reliable.
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1.5 Contributions

The contributions of this research can be summarized as:

1. Development of a deterministic microgrid energy management strategy that uses pre-

emptive load shedding to reduce the number and length of outages. The strategy makes

use of online weather forecasts to predict the photovoltaic power production, and then

uses that information together with the load profile to predict upcoming outages. The

shedding of non-critical loads is then scheduled to eliminate or reduce the duration of

the outages [82, 83].

2. Consideration of a bounding technique that considers uncertainties in the SOC predic-

tions over time. This bound can be used to adjust the timing and duration of the load

shedding actions [83].

3. Investigation of compensation strategies to reduce the effect of uncertainties in the PV

system rating and battery capacity parameters that are used in the prediction model.

4. Design of an implementation framework that enables energy management functionality

within an experimental laboratory-scale microgrid. This framework allows for both sim-

ulation and experimental studies to be performed using previously recorded data from a

real system, in order to evaluate the performance of the developed energy management

strategies [83].

5. Design and construction of an experimental microgrid facility with data communication

features that has also been used to support research into real [28–31] and reactive [35,36]

power sharing strategies.1

1The author’s contribution to these studies was in the design and implementation of the network communica-
tion software and hardware, and in the collaborative design and construction of the power electronic converters.
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1.6 Thesis Organization

The remainder of the thesis is structured as follows: The energy management and model param-

eter uncertainty problems are formalized in Chapter 2, including the necessary assumptions,

key models, and core problem statements. In Chapter 3, the solutions are presented in de-

tail, starting with the predictive energy management strategy, followed by the techniques for

model uncertainties compensation. The experimental apparatus and software architecture are

discussed in Chapter 4, along with a description of the validation scenarios. The results of

the simulation and experimental studies are presented in Chapter 5. Finally, the conclusions

and suggestions for future work are provided in Chapter 6. The appendix provides additional

implementation details that may be of interest to practitioners who are performing related in-

vestigations.



Chapter 2

Problem Description

In this chapter, the problems under investigation are described and formalized. First, the prob-

lems are presented conceptually with illustrated examples of the key issues of concern. Fol-

lowing that, the system structure is described, and the underlying assumptions are laid out.

The predictive energy management problem is then formulated, followed by a description of

the model parameter uncertainty problem.

2.1 Concept Overview

2.1.1 Energy Management in Microgrids

The energy management problem is fundamentally the supervisory task of ensuring that energy

is available for the desired applications at the times when it is needed. This involves managing

the startup/shutdown/dispatch of energy resources, the charging/discharging of energy storage

devices, and the management of controllable loads. In a modern power system, this energy

management task is mostly hidden from end users, although one routinely performs such tasks

in other contexts. For example, any automobile driver is familiar with the responsibility of

managing when and where to fuel up the vehicle. In addition, managing charging of mobile

devices is a daily reality for the 2.3 billion smartphone users worldwide. As electricity market

18
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mechanisms such as time-of-use pricing are adopted, some customers will change their en-

ergy utilization habits for financial gains. Within an islanded microgrid, however, the effects

of energy management decisions can be much more immediate and consequential. One can

therefore benefit from additional automation and decision support tools.

In an islanded photovoltaic powered microgrid, the load can be served when the available

PV power meets or exceeds the load demand. Using storage devices, the load can also be

served during periods when the PV production is lower than the load demand, when the battery

has been adequately charged. However, if the battery is not charged enough, the microgrid can

experience an outage at some point in time, as illustrated for a constant load case in Fig. 2.1.

The outage starts when the battery state-of-charge (SOC) drops below its lower limit, forcing

the microgrid to shut down, and it returns back to service when the available PV production

again reaches the level needed to serve the load demand.

Cloudy Period

Figure 2.1: Outage caused when the battery is depleted and the PV supply cannot meet the
load demand.

In this case, it may be possible to improve the situation by employing an energy manage-

ment strategy. If the upcoming outage can be predicted, preventative actions can be taken to

either dispatch additional generation resources, if they are available, or to reduce the load de-

mand. If non-critical portions of the loads can be shed pre-emptively for a period of time, such

a strategy may be able to eliminate the outage, or at least reduce its duration.
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2.1.2 Model Parameter Uncertainties

The problem of energy management in microgrids is often treated within a model predictive

framework, and as such requires models that represent various elements in the microgrid. These

models are used to predict the behaviour of the microgrid up to a prediction horizon. The

presence of incorrect parameters within these models can lead to inaccurate predictions, and

thus to poor energy management decisions. Therefore, online identification of such model

uncertainties and their effective compensation are also within the scope of investigation in this

research.

Since the microgrid operates autonomously, the effects of model uncertainties may be

masked by feedback actions and not be noticeable immediately. However, over the course

of prolonged operation, the accumulated effects can be detrimental to the performance of the

overall system. For example, suppose that the capacity of the PV system has been overrated,

which could lead to overconfidence in the amount of PV production. This situation can be

illustrated by a practical example as shown in Fig. 2.2, where the actual PV production results

in an earlier than expected outage.
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Figure 2.2: Effect of uncertainties in the PV system rating.

A similar situation can also be observed in Fig. 2.3, where an uncertainty in the battery

capacity specification parameter used in the prediction model leads to an inaccurate prediction
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of the SOC, and therefore the upcoming outage is not detected. This outage could potentially

have been averted, or at least reduced in duration, by energy management actions if an ac-

curate prediction had been available. Therefore, the differences in outage durations shown in

Fig. 2.2 and Fig. 2.3 represent potential performance improvements that could be gained if the

prediction accuracy can be improved by compensating for the model parameter uncertainties

properly.
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Figure 2.3: Effect of uncertainties in the battery capacity.

2.2 Preliminaries

2.2.1 System Description

The system under investigation is a 3-phase islanded microgrid shown in Fig. 2.4. Note that

the developed techniques can be extended to more complex configurations with more energy

sources and storage units. The renewable energy source is a PV array connected to the bus

through a dc-dc converter and an inverter. The dc-dc converter uses a maximum power-point

tracking (MPPT) algorithm and can also be commanded to curtail its output via dc-link voltage

signalling. An energy storage unit consisting of a battery bank, a bidirectional dc-dc converter,

and an inverter is also connected to the bus. The low-level controllers of the inverters use

a droop mechanism, similar to the strategy described in [28], to control the voltage and fre-

quency, and to maintain the power balance within the system. The strategy also includes a

mechanism to curtail the surplus PV power production when the battery is fully charged and
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the potential PV production exceeds the load demand. The battery converter is also respon-

sible for estimating the SOC using the Coulomb counting technique. The load is separated

into a critical part, and a controllable part that can be shed if necessary. An Ethernet network

connects the power electronic converters and the sheddable load controller to the central EMS.

This network is used to transmit periodic power measurements and SOC estimates from the

converters to the EMS, and to deliver load shedding signals from the EMS to the sheddable

load.
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Figure 2.4: System structure of the microgrid used to develop and validate the EMS.
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2.2.2 Assumptions

It is assumed that the measurements from the PV and battery units are made available to the

EMS in the form of data sequences sampled at a rate of 1/Ts, where Ts is the sampling interval.

PV Unit

For the PV unit, the power production can be represented by a data sequence P:

P = {PPV[k] | k = 0, . . . ,N} (2.1)

where PPV is the power measurement in W and N is the index of the most recent sample. In

the current system, the sampling interval is 2 minutes.

Battery Unit

The power exchanged with the battery unit can be characterized by the dataset B:

B = {Pbatt[k],SOC[k] | k = 0, . . . ,N} (2.2)

where Pbatt is the measured power in W flowing into or out of the battery, and SOC is the

estimate of the state-of-charge provided by the battery dc-dc converter.

Note that the information on the amount of stored energy is represented in terms of the

SOC as a percentage. The relationship between these values can be expressed by

SOC[k] =
Ebatt[k]
Emax

batt

· 100% (2.3)

where Ebatt is the energy stored in the battery, and Emax
batt is the battery capacity in Wh.
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Irradiance Forecast

The irradiance up to the horizon can be represented by the set F :

F = {G[k] | k=0, . . . ,N} (2.4)

where G is the forecast irradiance in W/m2. This forecast is produced by processing the data

provided by a weather forecast service for a chosen location, and the horizon is the duration of

the available forecast data.

Load Forecast

A forecast for the load is also assumed to be available, and is represented by the set L:

L = {Pload[k] | k=0, . . . ,N} (2.5)

where Pload is the forecast load in W. In this case, an averaged characteristic daily load profile

is used, with the emphasis being placed on the PV production predictions.

Sheddable Load

A portion of the load is designated as less critical or sheddable. The proposed shedding sched-

ule, which is an outcome of the EMS strategy, is represented by the set S:

S = {Pshed[k] | k=0, . . . ,N} (2.6)

where Pshed[k] is the amount of load in W to be shed at time step k.
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2.2.3 Operating States

Four operating states of the microgrid can be defined as shown in Fig. 2.5. These states are

a subset of the operating states commonly used in conventional power systems [22]. The

definitions and transitions between the states are as follows:

Normal

Restorative

In extremis

Alert

Figure 2.5: Microgrid operating states and transitions

Normal State

In the normal state, the battery system is able to maintain the balance between the energy

production and the load, and no energy imbalance will occur.

Alert State

In the alert state, the battery system is still able to maintain the balance between energy produc-

tion and the load demand, however an energy imbalance has been predicted to occur at some

point in the future. This state will initiate the necessary outage mitigation actions.

In extremis State

When the available power from the generators and storage cannot meet the load demand, the

microgrid will shut down and stay in this state until the available power becomes sufficient

again to restore the system. This state is also referred to as the shutdown or outage state.
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Restorative State

In this state, the black start procedures necessary to restart the microgrid will be performed,

including bringing up the first inverter to establish the desired voltages at some key points and

the frequency, then synchronizing additional inverters, and finally reconnecting the controllable

loads back into the system.

2.2.4 Modeling

Modeling of PV Production

The predicted power output from the PV unit can be expressed by using the irradiance forecast

as follows [84]

P̂PV[k] =
G[k]
1000

Pmax
PV ηMPP (2.7)

where ηMPP is the efficiency of the unit at the maximum power point. The sequence P̂PV[k] is

then used by the EMS algorithm to predict the future behaviour of the microgrid.

Power Balance

Any imbalance between the PV generation and the load consumption must be provided or

absorbed by the battery. Hence, the predicted power supplied (i.e. P̂batt > 0) or absorbed (i.e.

P̂batt < 0) by the battery can be expressed as:

P̂batt[k] = P̂load[k] − P̂PV[k] (2.8)

where P̂load is the forecast load demand.
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Modeling of Battery Charging and Discharging Process

The amount of energy stored in the battery can be estimated using the battery model and the

actual energy flowing into or out of the battery unit [53]. Therefore, the relationship between

the stored energy and the charging/discharging power can be represented as follows:

Êbatt[k] = Êbatt[k−1] − (P̂batt[k] + εbatt)Tsηbatt (2.9)

where Êbatt[k] (Wh) is the estimated energy stored in the battery at k, and εbatt and ηbatt are pa-

rameters that account for losses and the efficiency of the battery charging/discharging systems,

respectively.

Furthermore, the battery capacity is limited by the constraint

Emin
batt < Êbatt[k] < Emax

batt (2.10)

where Emax
batt is the storage capacity of the battery, and Emin

batt is the minimum discharge level,

below which the battery will stop supplying power.

2.3 Predictive Energy Management in Microgrids

The overall objective of this energy management strategy is to improve the uptime of the critical

loads in the microgrid by avoiding or minimizing the duration of any outages. This is achieved

by using generation and load predictions to schedule pre-emptive load shedding as needed

to ensure that the stored energy is effectively managed to serve the critical load, whenever

possible. Predictions of the amount of stored energy are used to identify upcoming outages.

Therefore, the key variable of interest is the SOC.

More specifically, the objective of the energy management scheme is to use the measure-

ment data sets P, B, and the forecasts F and L to predict the SOC up the the horizon. Based

on this information, an effective load shedding schedule S will be developed to eliminate, if
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possible, or reduce the duration of any outages.

2.4 Model Parameter Uncertainties

For the microgrid illustrated in Fig. 2.4, the presumed PV array rating is Pmax
PV-0, and the pre-

sumed battery capacity is Emax
batt-0. Due to the lack of complete knowledge of the exact condi-

tions of the PV system and battery, there are potential uncertainties in these two parameters.

Thus, using them to predict the PV production and stored energy can lead to erroneous re-

sults. As these are two relatively constant parameters, it is assumed that the true values of these

parameters, Pmax
PV and Emax

batt , are in proportion to the presumed values, Pmax
PV-0 and Emax

batt-0:

Pmax
PV = γPVPmax

PV-0 (2.11)

and

Emax
batt = γbattEmax

batt-0 (2.12)

where γPV and γbatt are known as the PV and battery compensation factors, respectively.

The objective of this investigation is to use the measurement data setsP, B, and the forecast

F , to accurately determine the compensation factors γPV and γbatt so that the PV production

prediction, P̂PV, and the stored energy prediction, ŜOC, use more accurate values of Pmax
PV and

Emax
batt , such that

∣∣∣PPV − P̂PV

∣∣∣ < ∣∣∣PPV − P̂PV-0

∣∣∣ (2.13)

where
∣∣∣PPV − P̂PV

∣∣∣ represents the error between the actual PV production and the compensated

prediction, and
∣∣∣PPV − P̂PV-0

∣∣∣ represents the error between the actual PV production and the
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original uncompensated prediction. For the SOC,

∣∣∣∣SOC − ŜOC
∣∣∣∣ < ∣∣∣∣SOC − ŜOC0

∣∣∣∣ (2.14)

where
∣∣∣∣SOC − ŜOC

∣∣∣∣ represents the error between the actual SOC and the compensated predic-

tion, and
∣∣∣∣SOC − ŜOC0

∣∣∣∣ represents the error between the actual SOC and the original uncom-

pensated prediction.

The effectiveness of these compensation factors will also be demonstrated by showing the

improvement in critical load outage performance that can be achieved when using the technique

within a predictive energy management system.

2.5 Summary

This chapter has described the single-bus microgrid under investigation, laid out the key as-

sumptions and definitions, and presented the predictive energy management problem and the

model parameter uncertainty problem.



Chapter 3

Methodology for Energy Management and

Parameter Uncertainties Compensation

The proposed methodology is presented in two parts: the solution to the energy management

problem is presented first, including a bounding technique to deal with modeling uncertain-

ties in the SOC. The second part introduces techniques to compensate for model parameter

uncertainties in the PV system rating and the battery capacity specifications.

3.1 Proposed Predictive Energy Management Strategy

3.1.1 Overview

The proposed energy management strategy can be separated into three steps:

1. PV production forecasting

2. Prediction of microgrid behaviour, including characterization of potential outages

3. Scheduling of load shedding actions to avoid or reduce the duration of outages for critical

loads

30
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A simplified flowchart of the strategy is shown in Fig. 3.1. A PV prediction is made using

information from a weather forecast service, and a load forecast is presumed to be available

based on historical data. These forecasts are then applied to a model of the microgrid in order

to predict the SOC, starting from the latest SOC value reported by the battery unit controller.

If the SOC prediction indicates an upcoming outage, the pre-emptive shedding of some less

critical load will be scheduled and carried out.

Load
model

Prediction of
battery SOC

Outage 
predicted?

N

Y

Schedule 
pre-emptive load 

shedding

Weather 
forecast 
service

PV
system 
model

weather
forecast generation

prediction

load
prediction

Historic
load data

Battery 
controller

SOC estimate

Data Flow

Control Flow

Sheddable
load 

controller

Figure 3.1: Predictive energy management strategy

3.1.2 PV Production Forecasting

PV Prediction Approach

A power production prediction for the PV array is created based on forecasts of accumulated

solar flux and temperature provided by an online weather forecast service. These forecasts

are calculated by the service on a periodic basis using a numerical weather prediction (NWP)

model [42]. Such services are available in many parts of the world, including the Americas,

Europe, and Asia, and are typically offered free of charge. While the accuracy of such forecasts
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varies significantly based on the nature of the underlying model, the monthly average root

mean square error ranged between 4 % and 14 % for the systems evaluated in [42]. Note that

while there will be some differences between the forecasts and the actual irradiance incident

on the PV array, particularly under cloudy conditions, the forecasts will still result in an overall

improvement in the operation of the system over time. The forecast for a given location and

time is combined with the specifications of the given solar array to build an effective PV power

generation forecast as discussed in [85].

Weather 
Forecasting 

Service

Site-Specific 
Irradiance  
Extraction

PV System 
Model

weather
forecast

irradiance 
forecast

generation
forecast

Figure 3.2: PV production forecasting.

An overview of the process used to create the PV production forecast is shown in Fig. 3.2.

The weather forecasts are from the Environment Canada Global Environmental Multiscale

NWP model, which is a free service provided by the Government of Canada. The specific

service selected is the experimental High Resolution Deterministic Prediction System dataset,

which provides a 48 hour forecast for points on a 2.5 km grid covering most of Canada and the

northern United States [86]. The forecasts have a 1-hour time resolution, so they have to be

interpolated to match the EMS update rate and then processed through the PV system model

to create a PV production forecast as shown in Fig. 3.3.

The weather forecast is only updated four times a day at six hour intervals, and there is

also a processing interval of up to eight hours between the start time of the forecasting process

and the time when the full weather forecast is available for download. The resulting forecast

horizon will therefore vary from 40 hours (for a fresh forecast) to just over 34 hours (for a

forecast that is about to be replaced with a new one). This rolling set of forecasts is shown in

Fig. 3.4, with an example illustrating the changing forecast horizon.
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Figure 3.3: Examples of the accumulated downward incident solar flux forecast, extracted
irradiance, and interpolated PV production forecast.

Day n Hour 0 Forecast

Time (h)

Day n Hour 6 Forecast

Day n Hour 12 Forecast

Day n Hour 18 Forecast

Day n+1 Hour 0 Forecast

t0

Processing Interval (forecast unavailable)

Figure 3.4: Weather forecast horizons, where the shaded areas indicate the 8 hour processing
interval when the forecast is not yet publicly available. For example, at t = t0 the active forecast
is the Day n Hour 0 Forecast, which has a horizon of 35 hours. The active forecast will switch
to the Hour 6 Forecast when it becomes available in another hour, at which point it will have a
horizon of 40 hours.
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3.1.3 Prediction of Energy Imbalance

The battery unit is responsible for maintaining the power balance in the system, supplying

power when the load exceeds the PV supply, and charging when the available PV power ex-

ceeds the load. An outage can be predicted by determining if and when the energy available

from the PV source and the battery will be unable to balance the load demand.

With the information on PV generation and load predictions, the microgrid behaviour can

be calculated from the current timestep k to k + N, where N is the number of timesteps to the

horizon, by applying the predictions as inputs to the microgrid model and calculating its state

and output behaviour up to the prediction horizon. The step size Ts is chosen to be 2 minutes.

The current estimate for the energy stored in the battery is provided by the battery converter

running the SOC estimation function. Although new information from the PV forecasts is only

available every 6 hours, the prediction algorithm is executed more frequently, in this case at 4

minute intervals, in order to incorporate the updated SOC information.

From (2.8), the predicted generation/load power imbalance at each step of the prediction

can be expressed as

P̂batt[k] = P̂load[k] − P̂PV[k]. (3.1)

Since the battery will try to supply or absorb this power imbalance, it can be used to predict

the amount of energy stored at each point up to the horizon using (2.9)

Êbatt[k] = Êbatt[k−1] − P̂batt[k]Ts (3.2)

where Êbatt[k − 1] is the prediction of the energy stored in the battery at the previous timestep

k − 1, measured in Watt-hours (Wh). Note that the capacity limit of the battery must also be

accounted for. As the stored energy in the battery nears its full capacity, the battery converter

will signal the PV system to curtail its output to prevent the battery from overcharging, and this
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feature is reflected in the stored energy prediction implementation. Also, at the other extreme,

when the stored energy prediction drops below the lower limit, the prediction continues to

reflect the effect of the power imbalance in order to calculate the energy deficit as shown below.

An outage can be predicted if the stored energy level drops below its lower limit as illus-

trated in Fig. 3.5. The timestep koutage where Êbatt is predicted to reach the discharge limit can

be used to calculate the remaining time until the outage. The estimate of the predicted outage

energy deficit, Edeficit, can be found by integrating the predicted battery power supplied during

the outage. First, krecover is identified as the timestep where Êbatt returns from its excursion be-

low the lower limit, or, if it does not return, the timestep of the horizon. The outage duration is

therefore

Toutage = (krecover − koutage)Ts. (3.3)

The outage energy deficit in Watt-hours can then be calculated as

Edeficit =

krecover∑
j=koutage

P̂>0
batt[ j]Ts. (3.4)

where P̂>0
batt is the prediction of the power required to be supplied by the battery.
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Figure 3.5: Lower stored energy limit and energy deficit region.
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If the prediction results in multiple outages only the first outage is identified and character-

ized. Subsequent outages will be considered as the horizon advances.

3.1.4 Mitigation of Outages

Once a potential outage has been predicted, actions can be scheduled immediately to mitigate

the severity of the outage by reducing its duration or delaying its occurrence. Pre-emptively

shedding a less critical part of the load, for example non-critical lighting loads, at an appropriate

time and for the needed duration can potentially reduce the length of the outage, or eliminate

it altogether.

The required reduction in the energy consumed must be at least equal to Edeficit to avoid the

outage. It is presumed that there is a fixed amount of load, Psheddable available to be shed. The

load shedding must therefore occur for a period of

Tshedding =
Edeficit

Psheddable
. (3.5)

Once the duration of the load shedding action is determined, the next decision to be made

is when to shed it. A conservative choice is to start shedding immediately, when the potential

outage is first identified. However, this can result in unnecessary shedding if the situation

improves. Alternately, the shedding endpoint kendshed can be selected to be the timestep koutage,

thus delaying the shedding action until closer to the predicted outage. Note that a choice

somewhere between these extremes may be optimal based on the degree of confidence in the

quality of the predictions. However, for the purpose of this discussion kendshed = koutage is the

chosen approach.

The timestep of the shedding start point kstartshed can then be calculated, based on the previ-

ously calculated shedding period, as

kstartshed = kendshed −
Tshedding

Ts
(3.6)
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The resulting shedding action is then scheduled as shown in Fig. 3.6. As the forecasts

are updated and up-to-date SOC estimates are received from the battery converter, which are

based on the actual PV and load behaviour, the timing and/or duration of the predicted outage

will change. Therefore, the start and end times (points A and B, respectively) of the shedding

schedule will be recalculated. Once the current time reaches the scheduled shedding start time

at point A, then the shedding action will begin.
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Figure 3.6: Pre-scheduling of load shedding action prior to the start of shedding.

Once shedding has started, the scheduling algorithm is adaptively adjusted as shown in

Fig. 3.7, where the shed end time at point D can be adjusted according to the latest information

in the prediction. This adaptive approach prevents the chattering that can otherwise occur if

the shedding is completely re-scheduled.
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Figure 3.7: Scheduling of load shedding endpoint after shedding has begun.
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Note that if an outage is predicted, Pshedable will be shed for at least Ts , which may result in

shedding more than the minimum energy necessary to avoid the outage. On the other hand, if a

large energy deficit has been predicted, it may not be possible to avoid an outage completely. In

this case, the noncritical load shedding will start immediately, and the outage will be deferred

for as long as possible.

The technique can be extended to cases where there are multiple controllable loads avail-

able to be shed, and the necessary communication infrastructure to reach them all. A priori-

tized list of these loads can be established. Once the lowest priority load shedding event has

been scheduled, an attempt can be made to resolve the remaining balance of the energy deficit

by scheduling the shedding of the next-lowest priority loads in a similar fashion, with the

procedure continuing until the deficit is accommodated or there are no more sheddable loads

available to be scheduled.

Note that if the actual PV generation is greater than predicted, then the shedding will be

postponed further with each timestep (or shortened if shedding has already started), and may

potentially not even be necessary. If the actual PV generation is lower than predicted, then

subsequent evaluations will cause a longer shedding event to be scheduled.

3.1.5 Uncertainties in Prediction

One issue with the technique described above is that uncertainty in the stored energy estimate

has not been considered. One possible solution to handling such uncertainty is to assign a

safety margin to the shedding schedule, for example by shedding the load for a 10% longer

period than the minimum required. However, this approach is somewhat arbitrary, and does

not account for the fact that the uncertainty changes with time, with near-term forecasts being

generally more accurate than the forecasts out at the horizon.

Recognizing the fact that the amount of stored energy becomes known only when the bat-

tery is at the fully charged or discharged state [87], one can use an error bound on the amount of

stored energy to capture such uncertainty. The bound will increase with time, as the confidence
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in the value of the estimate decreases.

At each timestep, the bound on the stored energy can be calculated as

E+
batt[k] = Ebatt[k] + δ[k] (3.7)

E−batt[k] = Ebatt[k] − δ[k] (3.8)

where δ[k] represents the uncertainty in the amount of stored energy, with

δ[k] = δ[k − 1] + ε (3.9)

where ε is the per-timestep bounding parameter. This parameter is chosen empirically, and

accounts for the potential sources of error in the stored energy estimate, such as inaccuracies

in the battery model, and errors in the measurement of power flow in and out of the battery. In

this study the bounding parameter is chosen to be 0.3% per hour to illustrate the concept. The

resulting cumulative uncertainty bound will be monotonically increasing with time, reflecting

the decrease in certainty about the amount of stored energy as a function of the time since the

last fully charged or fully discharged state. The bounding approach is applicable to both the

estimation of the actual stored energy based on measurements from the converters, and to the

prediction of the future stored energy trajectory. The use of the bound is illustrated in Fig. 3.8,

where the lower bound is used to determine the potential time, extent, and energy deficit of the

outage.

The bound is reset when the battery terminal behaviour indicates that the battery is in the

fully charged or fully discharged state, during which time δ[k] = 0. Note that in practice, if

the battery does not reach either state over a long period of time, the bound will continue to

grow and will eventually exceed the practical limits of the battery itself. Therefore some limits

must be placed on the growth of the bound, however the details of such a mechanism will be

explored in future work.
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Figure 3.8: Lower stored energy limit with the uncertainty bounds.

3.2 Model Parameter Uncertainties

3.2.1 Overview

The two parameter uncertainties under investigation are the PV system rating and the battery

capacity. For the PV system rating, the approach taken is to identify intervals where the pre-

diction of the PV power is expected to be well correlated with the actual PV power. A 1-day

history of the incoming data from the inverters is stored, along with the matching prediction of

the PV generation based on the weather forecast. Days that are relatively cloud-free are then

identified, and the peak ratio of the predicted PV power generation versus the actual measured

production is determined. The resulting ratio is then used to adjust the prediction in order to

improve its accuracy. For the battery capacity parameter, the measured power charging or dis-

charging the battery system is recorded and then used as an input to the battery model to create

an SOC prediction. The resulting SOC profile is then compared against the actual recorded

SOC profile, and a least-squares fit is used to determine the battery capacity compensation

factor.

By following this approach and applying the adjusted model parameters in the predictions,

the resulting improvements in prediction accuracy can potentially improve the operational per-

formance of the microgrid. For example, it will be demonstrated that when the technique is
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used in a predictive EMS system the result is a 12% reduction in the total duration of outages.

Also, by using only relatively cloud-free days to calculate the PV adjustment, the impact of

forecast variability is minimized, which improves upon the previous state of the art solution.

3.2.2 Compensation Factor for Uncertainties in the PV System Rating

The key concept for determining γPV from (2.11) is to compare the actual measured PV power

production against the forecast predicted production under a clear-sky condition. Note that

the proposed technique uses only the measurements from the converters and the forecasts, and

does not depend on any additional sensors.

On a cloud-free day, the PV production will follow the rise and set of the sun, with a peak

at approximately mid-day. Under these conditions, it is sufficient to consider just the peak

values in the measured and predicted datasets to calculate the compensation factor. However,

this approach is complicated by the variability of the PV power production, caused mostly by

changes in the cloud cover during the day. Comparing the peaks on a cloudy day is unlikely

to result in an accurate compensation factor. However, if relatively cloud-free days, where the

forecast PV profile is similar to the actual PV profile, are identified then this variability can be

removed from the problem.

To determine whether a given day is relatively cloud free, the root-mean-squared error

between PPV and P̂PV can be used

RMSEPV =

√√
1

N − 1

N−1∑
i=0

(PPV[i] − P̂PV[i])2 (3.10)

where, for an ideal day with a correct value for γPV, the resulting RMSEPV would be near zero.

However, given that γPV is unknown, the stored data must be normalized first, and the effects

of any outages must be removed so that the comparison is valid. Therefore, the resulting

solution is separated into four steps: PV dataset normalization, removal of outage periods,

determination of cloud-free conditions, and calculation of the PV compensation factor. These
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steps are illustrated in Fig. 3.9.

PV Dataset
Normalization

Removal of 
“zeros”

Determination
of cloud-free
conditions

Calculation of 
compensation

factor

1-day dataset 
of actual 

& 
predicted 
PV power

Figure 3.9: PV compensation steps

PV Dataset Normalization

First, the peaks of the actual PV measurements and the PV prediction datasets are determined

using

PPV-peak =
N−1
max

i=0
PPV[i] (3.11)

P̂PV-peak =
N−1
max

i=0
P̂PV[i] (3.12)

where i indexes the dataset of N values stored during the previous day. These peak values are

used for both normalization and later for determining the PV compensation factor.

The datasets are normalized by using

PPV-nor[i] = 100
PPV[i]
PPV-peak

, i=0, . . . ,N−1 (3.13)

P̂PV-nor[i] = 100
P̂PV[i]
P̂PV-peak

, i=0, . . . ,N−1 (3.14)

where PPV-nor and P̂PV-nor are the normalized datasets containing the actual PV power measure-

ments and the forecast PV power predictions, respectively. This approach has the added benefit
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of removing the artificially low error level that would otherwise occur during very cloudy days

if absolute measures were used in the comparison.

Removal of Outage Periods

An additional challenge is that the actual recorded PV data will also show the effects of control

actions, such as a shutdown due to an outage, but these actions will not appear in the prediction.

To resolve this issue, a subset of the data that contains just the non-zero PV production periods

is used for the comparison. This subset can be found using the algorithm illustrated in Fig. 3.10,

where PPV-nz and P̂PV-nz are the non-zero datasets of normalized PV power measurements and

the forecast PV power predictions, respectively, and M is the length of the non-zero datasets.

Start

Y

N

Y

N

End

PPV-nor[i] ⇡ 0

P̂PV-nor[i] ⇡ 0
or

P̂PV-nz[j] = P̂PV-nor[i]
PPV-nz[j] = PPV-nor[i]

j = 0
i = 0

i = i + 1

i < N

j = j + 1

M = j

Figure 3.10: Flowchart of algorithm to remove near-zero datapoints.
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Determination of Cloud-free Conditions

The root-mean-squared error can now be found using (3.10), after substituting PPV-nz for PPV,

P̂PV-nz for P̂PV, and m for n

RMSEPV-nz =

√√
1

M − 1

M−1∑
i=0

(PPV-nz[i] − P̂PV-nz[i])2 (3.15)

If the calculated RMSEPV-nz is less than a threshold L then the agreement is deemed to

be good, suggesting that the day is relatively cloud-free. The threshold value L is chosen

experimentally, and in this case it was found that a limit of 10% effectively discriminated

between sunny and cloudy days, approximately corresponding with the metrological criteria

separating a “sunny” forecast from a “mostly sunny” one.

Calculation of the PV Compensation Factor

Given that the day in question has been determined to be relatively cloud-free, the PV compen-

sating factor can now be calculated using

γPV =
PPV-peak

P̂PV-peak
(3.16)

This factor is then applied to subsequent predictions in order to improve their accuracy, as

will be demonstrated in Section 5.2.1.

3.2.3 Compensation Factor for Uncertainties in the Battery Capacity

The battery capacity compensation factor γbatt from (2.12) is found by comparing the SOC

profile calculated using the battery model from the recorded Pbatt values, against the actual

recorded SOC values. First, substitute for Êbatt in (2.9) using (2.3) to obtain the battery model
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in terms of the predicted state-of-charge (ŜOC).

ŜOC[i] = ŜOC[i−1] −
100%
Emax

batt

(P̂batt[i] − εbatt)Tsηbatt (3.17)

The calculated ŜOC profile can then be found by iterating over the recorded Pbatt values,

starting with the initial value ŜOC[0] = SOC[0] reported by the battery unit at the start of the

period.

Second, the two datasets are differenced to create a linear algebraic problem that can be

solved using least-squares.

∆SOC[i] = SOC[i+1] − SOC[i], i=0, . . . ,N−1 (3.18)

∆ŜOC[i] = ŜOC[i+1] − ŜOC[i], i=0, . . . ,N−1 (3.19)

A least-squares fit is then calculated to determine the battery capacity compensation factor

γbatt = slope of the linear least squares fit of ∆SOC and ∆ŜOC (3.20)

which is applied to future predictions.

3.3 Summary

The predictive EMS described in this chapter uses weather forecasts to predict the behaviour

of the microgrid up to the horizon. When an upcoming outage is predicted, the EMS attempts

to avert or reduce the duration of the outage by shedding a less critical load pre-emptively. In

order to account for uncertainties in the SOC, a bound is applied to the SOC estimate, and the

lower limit of this bound is used in the outage prediction strategy.

A solution to the problem of model parameter uncertainties in the PV system rating and the



Chapter 3. Methodology for EnergyManagement and Parameter Compensation 46

battery capacity specification is also presented. The PV compensation factor is determined by

detecting relatively cloud-free days where the variability of clouds are not a factor, and then

calculating the peak ratio of the measured versus the predicted PV production on these days.

This factor is then used to adjust the future PV predictions. The SOC compensation factor is

found by applying the recorded Pbatt data for the most recent one-day period to the microgrid

model, and then comparing the resulting SOC prediction against the actual recorded SOC data

for the same day. The compensation factor is determined from the solution to the least-squares

fit of the two datasets, and is then used to adjust the battery capacity parameter for future

predictions.
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Experimental Setup

The energy management system has been implemented in software and validated against an

experimental microgrid constructed by the author and his colleagues in the laboratory. This

configurable PV/battery microgrid has been used for previous studies on reactive power sharing

and adaptive droop techniques involving both hybrid and independent configurations. It has

been equipped with a communication network to facilitate data collection and analysis, and

this capability is also used to enable the EMS strategy under investigation here.

In addition, an accelerated software simulation of the microgrid has been developed to

allow for debugging and testing of the proposed EMS strategy without requiring operation of

the microgrid hardware. The implementation of the EMS, and the hardware and software of the

experimental microgrid, are presented in this chapter. The the system hardware and firmware

elements are presented first, followed by the details of the software implementation.

4.1 Apparatus

4.1.1 Overview of the Experimental Microgrid

The main components of the experimental setup are shown in Fig. 4.1, along with a photograph

of the apparatus in Fig. 4.2. The setup is equipped with a microgrid bus that interconnects the ac

47
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sources and loads. The PV converters shown include the PV dc-dc converter and its associated

3-phase inverter. The power source for the PV dc-dc converter is the Chroma PV simulator.

The battery converters are a bidirectional dc-dc converter and its associated inverter, which

are connected to a lead-acid battery bank. The programmable NHR 3-phase load emulates

the critical and sheddable loads in the system. All the controllers are interconnected with the

computer running the EMS software over an Ethernet network. Details on these components

are provided in the sections that follow.

Microgrid ac-bus

Inverter 1 Inverter 2 NHR
ac load

PV dc-dc
converter
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converter
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Figure 4.1: Experimental microgrid overview
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Figure 4.2: Experimental microgrid

4.1.2 Specifications

The key specifications of the system are presented in Table 4.1.

Table 4.1: System Parameters

Description Parameter Value

PV System Rating Pmax
PV 1400 W

Battery System Rating Pmax
batt 1000 W

Battery Capacity (nominal) Emax
batt 7000 Wh

EMS Update Period Tu 4 minutes

Prediction Step Size Ts 2 minutes

Acceleration Multiplier Ka 120 times

Sheddable Load Psheddable 75 W

Battery SOC Lower Limit SOCmin 30 %

Note that the system can be configured to operate in an accelerated mode, where the exe-

cution time of the test scenarios has been accelerated by 120 times. This means that 2 minutes

of real time are executed in 1 second. This allows the chosen multi-day scenarios to be tested

in approximately an hour, rather than requiring multi-day runs of the experimental system.
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4.1.3 Power Electronic Converters

The dc-dc converters and the 3-phase inverters share several common elements, including the

microcontroller boards and the sensor circuitry. These common elements are described first,

including some details on the chosen firmware architecture, followed by descriptions of the PV

dc-dc converter, the battery dc-dc converter, and the inverter implementations.

Controller Implementation

Each of the converter controllers is implemented using a Spectrum Digital eZdsp board con-

taining a Texas Instruments TMS320F28335 32-bit floating-point microcontroller running at

150 MHz. The microcontroller board is shown in Fig. 4.3. These microcontrollers are targeted

at the real-time control market, and include sophisticated analog to digital converter (ADC),

multi-phase pulse-width modulation (PWM), and serial communication (SCI) subsystems to

support complex power electronic control algorithms.

Figure 4.3: TMS320F28335 microcontroller board.

The microcontrollers are programmed using the Simulink Embedded Coder / Code Com-

poser Studio toolchain. This approach allows the controller structure to be easily defined and

revised using Simulink blocks, and then uses the code generation capability of Simulink to

automatically create the corresponding C code. The main hardware elements of the micro-

controller are accessed using platform-specific interface blocks, which enable access to the
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hardware features in a user-friendly form. For example, blocks are provided to access the

ADCs, the PWM subsystem, and the SCI port.

Once the C program for the controller is generated, the TI Code Composer Studio applica-

tion is used to compile the program into binary executable code. This code is then downloaded

into the flash memory on-board the microcontroller, and runs once the microcontroller is reset.

By default, the code generated from the Simulink model will run in a main line loop at a

sample rate determined by the shortest time constant in the model. However, this approach

can result in significant jittering or even the loss of synchronization between the hardware

and the executed code. To resolve this, the structure of the model has been split in such a

way that the relatively slow external functions (processing of switch inputs, indicator lights,

serial communication) are run in the main line, and the critical real-time functions are moved

into an interrupt routine. Smooth control behaviour has been obtained by configuring the PWM

subsystem to initiate an ADC cycle each time the PWM counter is reset to zero. The completion

of the ADC cycle, which scans multiple analog input channels, then triggers the interrupt that

runs the controller code. The C-code generated by the Simulink Embedded Coder toolchain

is relatively well structured, and reflects the naming of the elements from the Simulink model,

so the code can be manually checked (and modified) if needed to ensure the desired results are

obtained. Note also that a triangle shaped pattern is chosen for the PWM counter configuration,

which keeps the ADC conversions away from the noisy switching transients, at least for the

dc-dc cases.

Care must be taken in the design of the controller to ensure that the controller model can

be run within the available cycle time prior to the arrival of the next interrupt. Otherwise,

if the controller model takes too long to execute, the next interrupt may be missed, resulting

in a controller that executes at half of the expected speed. This is further complicated if the

controller contains potential multiple paths of execution (for example, logic that enables and

disables internal functions or loops), since this can result in variable execution times which can

be difficult to detect and debug. In particular, lookup functions were found to be problematic,
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since the default models used iterative interpolation algorithms that caused widely varying time

delays. The use of an output signal toggled at each model execution step, combined with an

oscilloscope that can be trigged by a configurable pulse width range, have been used to detect

overflowing interrupt cases, and the controller models are adjusted accordingly to eliminate

them.

Sensor Signal Conditioning

In all the converters, measurements of current and voltage are taken internally using LEM Hall-

effect sensors, and the resulting signals are scaled, level-shifted (if needed for bipolar signals

such as the battery current and the ac measurements), and filtered to match the 0 to 3.0 Volt

range of the ADC inputs. A typical example of a single channel showing the sensor and the

signal conditioning circuitry for a unipolar case is shown in Fig. 4.4(a), and the level shifter

circuit is shown in Fig. 4.4(b). These signals are sampled by the ADC, and are utilized by the

low-level controllers. Selected signals are also down-sampled and periodically sent over the

Ethernet link to the central EMS.

Internal Protection

While the laboratory facility is relatively low power (sub-10 kW), the converters operate at volt-

ages (150 V to 410 V) and currents (up to 10 A peak) which are high enough to pose a safety

concern. The controllers use an averaged current-mode control strategy, and can therefore

limit the range of the internal current reference signals to avoid exceeding the specifications

of the power electronic devices. However, during development the interactions between the

converters in the system did occasionally lead to over-voltage conditions that required emer-

gency shutdown of the converter so that the devices would not be damaged. This over-voltage

shutdown has been achieved by combining the voltage sensor ADC measurements with the

trip-zone mechanism of the microcontroller PWM subsystem, allowing a near-immediate con-

trolled shutdown and de-energizing of the converter. In particular, for the battery dc-dc con-
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Figure 4.4: Current and voltage sensor signal conditioning circuitry: (a) typical unipolar inter-
face circuit; (b) level shifter for bipolar signals.

verters and the inverters, the trip zone mechanism ensures that all power electronic switches

are opened and locked in a safe state. The power-circuit terminal contactors are also opened

to isolate the converter, and the dc filter capacitor bleeder resistors dissipate any remaining

charge and de-energize the converter fully. In this case the trip zone mechanism is triggered by

a designated digital input pin. This input is looped back to a digital output that is triggered by

a comparator, which evaluates whether the measured voltage exceeds its limit.

PV dc-dc Converter

The PV dc-dc converter is a boost topology configuration built using a discrete MOSFET, as

shown in Fig. 4.5. The apparatus includes the necessary gate driver and an RCD snubber (not

shown). A picture of the PV dc-dc converter is shown in Fig. 4.6. The converter uses averaged

current-mode control, and includes a perturb-and-observe maximum power point tracker to
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maximize PV power production when possible. The pulse-width modulation (PWM) switching

frequency is 40 kHz.
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Figure 4.5: Simplified schematic of the PV dc-dc converter.

Figure 4.6: PV dc-dc converter.
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Battery dc-dc Converter

The battery dc-dc converter is a synchronous-boost topology as shown in Fig. 4.7, and is built

with discrete MOSFETS and isolated drivers.
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Figure 4.7: Simplified schematic of the battery dc-dc converter.

The primary function of this converter is to maintain the desired fixed dc-link voltage at

the output, and to manage charging and discharging of the battery. A series-resistor pre-charge

circuit is also included to limit the inrush current and allow controlled charging of the filter

capacitor from the battery during system startup. The converter uses averaged current-mode

control with a PWM frequency of 40 kHz to regulate its output at 400V dc, and charges or

discharges the battery as needed to maintain the output voltage. The battery dc-dc converter

controller also contains the SOC estimation function, which uses the Coulomb-counting tech-

nique to provide the SOC values used by the EMS. More details on the real-time control of

the battery converter are presented in [29]. The constructed battery dc-dc converter is shown

in Fig. 4.8, prior to being packaged in its enclosure. Note that this converter topology is par-

ticularly sensitive to the dead-time setting within the PWM subsystem, and requires careful

snubber design and thermal management to operate reliably.
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Figure 4.8: Battery dc-dc converter, prior to packaging.

Inverters for PV and Battery

The inverters are 2-level 3-phase voltage-sourced converters as shown in Fig. 4.9, rated at 3 kW

each. A partially assembled inverter is shown in Fig. 4.10. The heart of the inverter is a Powerex

PS22A78-E six-switch IGBT module. The switched waveform is passed through an LC filter,

a software-controllable connection contactor, an interface inductor and a delta-wye isolation

transformer. The inverter is connected to the microgrid through a manually operated fused

disconnect. The current and voltage sensors identified in Fig. 4.9 are used for feedback control,

internal power measurements for the EMS, and waveform synchronization prior to closing the

interface contactor. The internal control scheme is based on dq-frame current-mode control,

and the PWM switching frequency is 10 kHz. These inverters are controlled using a multi-

segment adaptive droop approach based on [28], and include the necessary sychronization

mechanism to allow the PV inverter to connect in to the microgrid and share power once the

initial voltage and frequency are established by the battery inverter.
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Figure 4.9: Schematic of the 3-phase inverter.

Figure 4.10: 3-phase 3 kVA Inverter, disassembled with the controller chassis on the right.
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4.1.4 Supporting Apparatus

PV Array Simulator

The PV array is emulated by a 5 kW Chroma 62050H Solar Array Simulator, which is operated

in the PV setpoint mode. In this mode, the active I-V characteristic curve is specified by

sending sets of (Vmp, Imp,Voc, Isc) parameters to the solar simulator over the Ethernet network.

This device is used to play back previously recorded PV profiles at an accelerated rate. In this

work, the PV array is operated with a nominal working voltage of 200 V and a current setpoint

ranging from 0 to 7 A.

Electronic Loads

The load is emulated by a programmable NHR 3-phase balanced load operated in the constant

power mode with a unity power factor. The NHR load is managed by an intermediate Windows

XP computer running custom software described in Section 4.2.3.

Microgrid Bus

The inverters and load are interconnected via the 3-phase 4-wire ac bus. Each node of the bus

is fused and instrumented, and includes a safety disconnect and emergency stop contactor. In

addition, several nodes are equipped with power quality analyzers that can capture detailed

traces of events for offline analysis.

Battery Bank

The battery bank consists of 16 series-connected East Penn 8AU1 12 V 32 Ah AGM lead-acid

batteries. The nominal terminal voltage is 192 V, and ranges in practice from 189 V to 230 V,

depending on the SOC and charge/discharge current level. In the experiments, the battery

capacity is intentionally limited in the dc-dc converter firmware to emulate the behaviour of

a smaller scaled battery in order to examine the features of the proposed system. The lead-
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acid battery chemistry was chosen because its provides a robust and economical solution for

laboratory work, however the developed techniques are equally applicable to other battery

chemistries.

EMS Platform

The EMS software is run on a Dell Optiplex computer, under the Ubuntu Server 12.04.5 LTS

operating system using the default Python 2.7 interpreter, along with the corresponding re-

quired Python support libraries. The computer has two Ethernet connections: one is connected

to the Internet, for accessing the Environment Canada weather forecasts, and the other to the

internal microgrid communication network that connects to the power electronic converters,

loads, and instrumentation.

Communications Infrastructure

The devices in the microgrid are interconnected using a 10/100 Base-T Ethernet network and

Netgear switches. The eZdsp boards are connected to the Ethernet network using Texas In-

struments serial-to-Ethernet adapters, shown in Fig. 4.11. These adapters buffer bidirectional

datastreams that are represented within the Simulink model as periodically sampled signals,

and therefore provide a mechanism for transferring data from the controllers to the outside

world. The datastreams are exposed through a raw TCP/IP socket interface that starts stream-

ing as soon as a connection is made to the adapter. However, the presence of a buffer means

that a received datapoint may not be the most current one, which can lead to the datasets from

the different converters being out of synchronization. The EMS software is therefore designed

to flush the buffer so that the time accuracy of the data can be established and that the EMS is

always acting on the most up to date information.
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Figure 4.11: Serial-to-Ethernet adapter.

4.2 Software Architecture

The high-level operation of the microgrid is managed and supported by a set of software appli-

cations described in this section. They include the EMS software itself, a microgrid emulator

used to simulate the hardware protocols, a PV and load sequencer that provides stimuli to the

system, an application to interface to the NHR load, and a set of visualization tools.

4.2.1 EMS Software

Predictive energy management inherently involves communication with multiple devices over

communication networks. Since each of these devices operates with its own independent clock,

the communication is asynchronous. The lower layers of the network protocols ensure that the

messages are successfully sent and received, but the EMS application must still be structured

to deal with these incoming messages effectively. Mutitasking and multithreading are both

potential solutions to this challenge, however these techniques can add considerable complexity

to the programming task. Implementation using low-level multithreading constructs requires

careful design, and can easily fall victim to synchronization issues. Another alternative is

to make use of an event-driven framework, which can be thought of as an abstraction of the

classical interrupt-driven mechanism used within micro-controller hardware.

Event-driven frameworks are often used in situations that must accommodate many asyn-

chronous inputs, the classic example of which is the Microsoft Windows graphical user inter-

face. This characteristic makes the approach a good foundation for a microgrid EMS, which
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has to handle inputs from multiple devices and make time-sensitive decisions. Such frame-

works are structured around a single-threaded event loop, which essentially waits for events

to occur and dispatches handlers as needed to process the events. Actions that require long

execution times are handled using callback mechanisms, which stops them from blocking the

main event loop. When these actions are completed the callback is triggered, which is acted on

like another event.

The event driven framework selected for this application is the open-source Twisted net-

working engine [88]. The main conceptual focus of this framework is on defining protocols

that are used for the different device communication tasks, which in this case involves com-

munication with the power electronic converters and loads. Periodic tasks such as forecast

processing and prediction can be defined as timer driven events that are managed by the event

loop.

The energy management system software is implemented in the Python language, and uses

the SciPy [89] library for mathematical functions and the PyTables library [90] to store the

collected data and interim results. The EMS software architecture is shown in Fig. 4.12, and is

described in detail below. An online graphical user interface has been implemented to provide

visualization of the running simulation or experiment, and a TCP command channel is provided

to allow for online interaction with the EMS.

Device Protocol Handlers

Incoming information from the power electronic converters is gathered by asynchronous event

handlers for each device, as shown in Fig. 4.12. The execution of these handlers is managed

by the event processor, which triggers each custom protocol handler when data arrives at the

corresponding network socket. The framework provides supporting network services, such as

buffering, connection timeouts/restoration, and message parsing. A rolling 1-day history of

each datapoint is retained internally, and the full dataset is stored in a file for later analysis.
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Figure 4.12: Architecture of the EMS.

Outage Detection and Pre-emptive Load Shedding

The predictive strategy described in Section 3.1 is executed by a periodic timed event. The

resulting SOC predictions are used to plan the load shedding actions, which are then executed

by sending messages to the Load Sequencer software to shed a portion of the load. Interim

results from the algorithm are also stored for later analysis.
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4.2.2 Model Parameter Uncertainties Compensation Features

The parameter compensation technique described in Section 3.2 is implemented as a part of

the prediction mechanism within the EMS. On a once-daily basis, the previously stored val-

ues and forecast predictions are used to calculate the corresponding compensation factors, and,

when the technique is enabled, these factors are used to adjust the future predictions. One chal-

lenge encountered with the developed EMS architecture is that extended runs of the simulation

were time consuming due to the protocol overhead, which limited the execution speed of the

simulation. To solve this issue, an accelerated version of the EMS simulator was developed.

This required replacing the network protocol layers with direct function calls, allowing the

simulation to operate at the full single-threaded speed of the host processor.

4.2.3 Supporting Software Applications

Microgrid Emulator

To facilitate testing and debugging without requiring the full operation of the microgrid, a

software application was created by the author to emulate the microgrid at a network level.

The program emulates the network interfaces of the PV simulator, the NHR AC Load, and the

four power electronic converters. Internally the program executes a simplified model of the

microgrid that takes the PV and load profiles as inputs, and then calculates the corresponding

battery power, SOC, and resultant output data streams from the converters. The microgrid

emulator accounts for microgrid losses, PV curtailment, and shutdown behaviour. It does not,

however, attempt to calculate any internal measurements beyond those required for the EMS,

so values such as the dc-link voltages and internal currents, which can be found in the real

converter data streams, are set to fixed placeholder values in the emulator data streams.
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PV and Load Sequencer

The key external stimuli for the systems under investigation are the PV power and the load

demand profiles. In both the real and simulated systems, these values are stored in a flat file,

and are presented in sequence, at one second intervals, to the PV simulator and the NHR Load

Controller software (or their simulated versions) by the sequencer application.

NHR Load Controller

The manufacturer-supplied application for the NHR loads does not provide the networking

features required to execute the proposed experimental scenarios. Therefore, a custom applica-

tion was written in Visual Basic running under Windows XP that used the NHR driver DLL to

perform the low-level RS-232 communication with the load, and provided manual, sequenced,

and network automated control of the device. The key feature required for the experiments was

the ability to receive load setpoint values over the Ethernet network, and therefore emulated

any desired load profile. The user interface for this application is shown in Fig. 4.13.

Visualization Tools

Three different types of tools were developed to support visualization of the data from the

EMS. The first set of programs generated the EMS results plots in this thesis from the HDF5

datafiles using either the Python MatPlotLib library, or within MATLAB. The second, a wx-

Python application, produced a live updated animation of the EMS strategy in action, and was

used in both experimental and simulation scenarios to gain insight into the system operation

in real-time. Finally, a visualization utility was created using the Bokeh library to generate

publication-quality plots of the intermediate daily prediction results in real-time.
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Figure 4.13: Developed NHR load controller software user interface.

4.3 Summary

The key elements of the hardware and software implementations of the system under investi-

gation have been presented. The custom-built PV and battery dc-dc converters and their cor-

responding 3-phase inverters are connected to the ac-bus to form the experimental microgrid,

and the PV simulator and programmable load are used to execute the operational scenarios. A

software emulator for these devices has also been developed to facilitate offline testing. The en-

ergy management system itself is programmed in Python using the Twisted framework, and is

executed on a Linux platform. An accelerated simulation version of the software has also been

developed to facilitate the long-running operational scenarios needed to evaluate the parameter

compensation techniques.
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Validation and Discussion

First, the scenarios used to validate the proposed techniques are presented. Then the results

showing the operation of the developed predictive EMS are presented, followed by the results

that demonstrate the effectiveness of the model parameter uncertainties compensation tech-

niques.

5.1 Validation Scenarios

5.1.1 Predictive Energy Management

The purpose of the simulations and experiments is to demonstrate the operation of the devel-

oped predictive energy management strategy, and to show how this strategy can result in the

elimination or the reduction in duration of outages affecting the critical loads in the micro-

grid. Furthermore, the use of the bounding technique to accommodate uncertainty in the SOC

estimate is also explored.

Irradiance and Load Profiles

In order to accurately represent the behaviour of the PV array, a set of data from rooftop

irradiance and temperature sensors was recorded. This dataset was then filtered, subsampled,

66
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and rate-limited to create a photovoltaic generation profile that can be used to represent the

PV resource in the simulated microgrid. A subset of four days is selected to demonstrate

the behaviour of the energy management strategy under both sunny and cloudy conditions.

An arbitrary real power load profile based on a typical aggregated residential dataset is also

chosen. The selected generation and load profiles are shown in Fig. 5.1, with a mostly-sunny

first day followed by two variable-cloudy days, and ending with the morning of a sunny day.

The load profile shows characteristic morning and evening peaks, and does not include any

phase imbalance or reactive loads (i.e. X � R). The sheddable portion of the load in this

scenario is chosen to be 75 W. This value is meant to represent, for example, a portion of a

lighting load, and its magnitude is approximately 18 % of the peak load in the chosen profile.

An outage occurs if the battery SOC drops below 30%.
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Figure 5.1: Chosen four day PV generation and load profiles.

The corresponding set of Environment Canada HRDPS weather forecasts for the same

period has also been collected and is made available in a file to the EMS.

Simulation and Experimental Scenarios

The EMS strategy described in Chapter 3 is validated using the microgrid emulator software,

and then tested on the laboratory-scale experimental microgrid. In each case, a test scenario is

run first with the outage mitigation mechanism disabled. Then, the scenario is repeated with

the predictive EMS strategy enabled, but without using the bounding mechanism. Finally, the
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scenario is re-run with the bounded EMS feature fully enabled. The key metrics in each case

are the number and duration of outages.

5.1.2 Model Parameter Uncertainties Compensation

The simulations conducted in this section will demonstrate the effect that uncertainties in the

PV system rating and battery capacity parameters can have on the operation of the predictive

EMS. The developed parameter compensation technique will then be applied to evaluate its

effectiveness in dealing with these uncertainties, and restoring the correct operation of the

microgrid.

Simulation Scenarios

An extended PV dataset collected from the rooftop irradiance sensor is used to supply the simu-

lation with PV production data so that the effects of the technique can be clearly demonstrated.

Note that while the need for the technique was inspired by observations taken during the ex-

perimental work, the technique itself is only explored in simulation. The extended 42-day PV

profile is shown in Fig. 5.2, and exhibits a variety of irradiance conditions. The daily load pro-

file is the same as the one used in the energy management scenarios. The corresponding 42-day

set of Environment Canada weather forecasts has also been collected and is made available to

the EMS. Note that the four-day profile used for the EMS validation is a subset of this 42-day

dataset.

The two model parameters under investigation are deliberately incorrectly specified in the

prediction model. The PV system rating is overrated by a 14%, and the battery capacity is

overrated by 12%.

PV System Rating

The RMSE between the predicted PV power production and the actual production is compared,

both on a daily basis over the 42 day period, and for an illustrative day. This is done in order
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Figure 5.2: Chosen 42 day PV generation profile.

to demonstrate the effectiveness of the PV system rating parameter compensation technique in

improving the accuracy of the prediction.

Battery Capacity

The RMSE between the predicted SOC and the actual SOC is compared, both on a daily basis

over the 42 day period, and for an illustrative day, in order to demonstrate the effectiveness of

the battery capacity parameter compensation technique.

Determining the Effect on Microgrid Outages

Three scenarios will be simulated to demonstrate the effectiveness of the model parameter un-

certainties compensation technique when it is applied within the EMS. The predictive EMS

described in Section 3.1.4 (not the bounded EMS) is used in the evaluation. The key perfor-

mance indicators of interest are the number and duration of any outages. In the first scenario,

the correct parameters are used in the prediction algorithm to provide a baseline set of results.

In the second scenario, the incorrect parameters are used to illustrate the effect of the param-

eter uncertainties. In the third scenario, with the incorrect parameter settings, the parameter

compensation technique is enabled.
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5.2 Predictive Energy Management

To demonstrate the operation of the predictive EMS, the microgrid is operated using the pre-

viously discussed 42-day profile for the three scenarios: predictive EMS disabled, predictive

EMS enabled, and bounded EMS feature enabled. The results for the simulated scenarios are

presented first, followed by the results for the experimental microgrid.

5.2.1 Analysis of Simulation Results

Predictive EMS Disabled

The result of a run of the simulated microgrid with the selected profiles is shown in Fig. 5.3,

with the EMS operating to collect the data only, but with the predictive mechanisms disabled.
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Figure 5.3: Simulated results with the predictive EMS disabled.

In this case, the available PV power is adequate to fully charge the battery on the first day.
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After the battery is fully charged, the PV power is curtailed to maintain the generation/load

balance (see A in Fig. 5.3). On the following day, there is not enough PV power available to

charge the battery adequately, so there is a brief outage (marked B in Fig. 5.3) in the early

morning of Day 3 where the microgrid is shut down and the load is disconnected. The micro-

grid restarts and the load is re-connected once the PV production is large enough to support the

load, but there is very little excess energy available to charge the battery. This low level of PV

power production leads to a long outage (marked C) during the following night.

Predictive EMS Enabled

When the same scenario is run with the predictive EMS enabled, the EMS strategy is able to

detect potential upcoming outages and characterize their energy deficits. It then schedules a

pre-emptive load shedding actions as shown in Fig. 5.4, where the distinct 75 W steps in the

Pbatt plot indicate where the load shedding begins. This result demonstrates that the first outage

has been averted, and that the duration of the second outage (marked A) has been shortened. In

this test scenario, the developed algorithm leads to three shedding events with a total duration

of approximately 43 hours, which results in a reduction of the total outage length by a factor

of 87%.

An intermediate prediction taken on Day 2 at 15:30 illustrates the shedding scheduling

process in Fig. 5.4. The predicted powers P̂load and P̂PV are used to calculate the predicted

SOC (marked B on Fig. 5.4), which indicates an upcoming outage. The planned shedding

schedule shows the action planned (see C on Fig. 5.4), but not yet initiated, to avoid the outage.

Note that as new information becomes available, the predictions are updated, both with new

SOC estimates and with new PV production forecasts, which will result in a change to the

predicted SOC (marked B) as the prediction start time advances to the right. This will then

lead to adjustments in the planned shedding schedule that incorporates this new information.
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Figure 5.4: Simulated results with the predictive EMS enabled, including an intermediate pre-
diction taken on Day 2 at 15:30.
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Bounded EMS Feature Enabled

When the bounded EMS functionality is enabled, the EMS detects the upcoming outages based

on the lower SOC bound, and ultimately schedules two load shedding events with a total dura-

tion of approximately 50.5 hours as shown in Fig. 5.5. The results demonstrate that in this case

both outages have been averted. One feature to note is that at approximately 01:00 on Day 3,

the system briefly stops shedding (marked A in Fig. 5.5). At this point in time the previously

detected outage has been averted, shedding has stopped, and no upcoming outage is predicted.

However, a new PV forecast arrives a few minutes later, and this new forecast reflects a reduc-

tion in the expected PV production from the previous prediction. The prediction based on this

new information indicate a large upcoming outage, which leads to the scheduling of a shedding

event that starts immediately.

An example intermediate prediction on Day 2 at 15:00 is shown in Fig. 5.5, and illustrates

a shedding event (marked B) that is scheduled. The bounds are clearly visible in this example,

and the lower bound leads to an earlier detection of the upcoming outage and a more conserva-

tive measure of the energy deficit. At the time of the prediction, shedding has already started,

so only the shedding endpoint is being adjusted.

5.2.2 Analysis of Experimental Results

Predictive EMS Disabled

A baseline experiment is run first, and the results are shown in Fig. 5.6, where the prediction

and shedding features are disabled. This result shows the PV curtailment mechanism activating

when the SOC nears its upper limit (see A in Fig. 5.6), thus reducing the incoming PV power

so that the battery bank does not get overcharged. The result also shows the two outages that

occurred when the low-irradiance days did not provide enough power to re-charge the battery

bank, and the timing and durations of these outages show good agreement with the simulation

results. Note that due to limitations in the design of the experimental apparatus, specifically
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Figure 5.5: Simulated results with the bounded EMS feature enabled.
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the lack of an auto-start mechanism, the inverters remain connected and operating during the

outage, where the load is set to zero. Therefore, the experimental results show some charging

action during PV startup (marked B in Fig. 5.6), and show some decline in the SOC during

the outage, which is caused by the need for the battery to continue supplying the system losses

during the outage. This behaviour would not be present in a fully shut-down system.
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Figure 5.6: Experimental results with the predictive EMS disabled.

Predictive EMS Enabled

The experimental results from the laboratory microgrid with the predictive EMS enabled are

shown in Fig. 5.7. The first outage is eliminated completely, and the duration of the second

outage is reduced significantly, demonstrating good agreement with the simulation results.

Note the thicker traces for the power plots, which reflect small amounts of measurement noise

present in the real data that is not seen in the simulation.
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Figure 5.7: Experimental results with the predictive EMS enabled.

Bounded EMS Feature Enabled

The experimental results with the bounded EMS prediction and shedding features fully enabled

are shown in Fig. 5.8.

As previously shown in the simulation, the bounded approach results in an additional shed-

ding duration of approximately 7.5 hours, leading to the elimination of both outages. Note that,

while not illustrated in this result scenario, once the battery becomes fully charged again the

bound will reset to zero, reflecting the known SOC once that condition is reached.
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Figure 5.8: Experimental results with the bounded EMS feature enabled.

5.3 Model Parameter Uncertainties Compensation

The performance of the PV system rating and battery capacity parameter compensation tech-

niques are presented first, followed by a demonstration of the effectiveness of such compensa-

tions on the overall outage performance of the microgrid using a predictive EMS.

5.3.1 Improvement in the Accuracy of PV Production Predictions

The effect of the uncertainty compensation of the prediction of the PV production is illustrated

in Fig. 5.9 over a period of one day. The original, uncompensated forecast PV prediction is

denoted P̂PV-0. It can be seen that the compensated prediction matches the actual PV produc-

tion much more accurately than the original uncompensated prediction, with a reduction in

the root-mean-squared prediction error of 58% for this particular day. This represents a sig-

nificant improvement in the accuracy of the PV prediction, which will ultimately improve the

effectiveness of the EMS.
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Figure 5.9: The original forecast PV prediction, the compensated forecast PV prediction, and
the measured PV power for Day 21.

To evaluate the effectiveness of the approach over time, the difference between the actual

and predicted PV production based on the weather forecast is determined on a daily basis. The

root-mean-squared error (RMSE) measured in W between these datasets is then calculated for

each day in the dataset. The resulting RMSE values are shown in Fig. 5.10.
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Figure 5.10: Daily PV actual vs. forecast RMSE, with and without uncertainty compensation.
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Note that for the initial nine days no compensation was carried out, since those days were

mostly cloudy. None of them can be used to set the reference for determining the compensation

factors. On the tenth day, a near full-sun irradiance day has been detected and subsequently

used as a reference for the PV compensation factor calculation. On the eleventh day this

resulted in a noticeable improvement in the RMSE between the actual and predicted values,

improving the error by 300 W. By using this compensation factor, the accuracy of the PV

production prediction has been improved significantly. In fact, an improvement in terms of

the RMSE statistic is obtained for 80% of the remaining days. Over the 42 days the average

daily improvement in RMSE shown by this technique is 17%, which represents a considerable

improvement in the PV power production prediction accuracy.

5.3.2 Improvement in the Accuracy of SOC Predictions

To evaluate the effectiveness of the battery capacity parameter uncertainty compensation tech-

nique, the predicted SOC with and without compensation over a period of one day are shown

in Fig. 5.11. The uncompensated prediction is labeled as ŜOC0. It can be seen that the com-

pensation has almost completely eliminated the error in the prediction.
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ŜOC

Figure 5.11: The predicted SOC with and without compensation for a period of one day.
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The daily RMSE values for the SOC predictions with and without compensation are also

presented in Fig. 5.12. It can be seen that the compensation can indeed improve the perfor-

mance of the SOC predictions, which will result in an improvement in the outage performance

of the microgrid, as will be shown in the next section.
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Figure 5.12: The RMSE between the actual and predicted SOCs with and without compensa-
tion.

5.3.3 Effect of Model Parameter Uncertainties Compensation on Outage

Durations

The ultimate objective of the developed compensation technique is to obtain more accurate pre-

dictions of PV production and the SOC so that the predictive EMS can make more informed

decisions to minimize both the number and the duration of any outages. To demonstrate the

effectiveness of the compensation scheme, three case studies have been performed for the same

duration of 42 days, but with various levels of parameter uncertainties and degrees of compen-

sation.

The results, when the correct prediction model parameters are used, are shown in Fig. 5.13.
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Figure 5.13: The behavior of the microgrid with the exact model parameters. (Scenario 1)

There are 8 outages totalling 101 hours. This represents the best possible outcome for this

algorithm under these conditions. As a comparison, in the same system operating environment,

if no predictive EMS is used, there would have been 21 outages totaling 208 hours.

In the second scenario, it is assumed that there are some uncertainties in the model parame-

ters. The PV system rating is overrated by a factor of 14%, and the battery capacity is overrated

by a factor of 12%. The corresponding results are shown in Fig. 5.14. There are 11 outages

registered with a total duration of 117 hours.

Under the same level of initial parameter uncertainties as in the above case, the third sce-

nario employs the uncertainty compensation scheme developed in Section 3.2. The results

are shown in Fig. 5.15. As can be seen, the microgrid has experienced 8 outages in total, of

collectively 103 hours in duration. This is a 12% reduction in the overall outage duration.

The results have demonstrated that the developed technique can almost completely recover the

performance to near the same level as when the correct parameters are used in the model.
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Figure 5.14: The behavior of the microgrid with incorrect model parameters. (Scenario 2)
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Figure 5.15: The behavior of the microgrid with the developed uncertainty compensation
scheme enabled. (Scenario 3)
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The results of the above studies are summarized in Table 5.1.

Table 5.1: Performance Improvement using Parameter Uncertainties Compensation

Scenario Outages Total Outage Time

EMS with Exact Parameters 8 101 hours

EMS with Incorrect Parameters 11 117 hours

EMS with Corrected Parameters 8 103 hours

No EMS (worst case) 21 208 hours

5.4 Summary

In this chapter, the techniques developed in this research work have been validated using both

simulation and experimental studies. The simulation and experimental scenarios used to val-

idate the predictive energy management system and the model parameter uncertainty com-

pensation techniques were presented. For the EMS, a four-day scenario is run for a baseline

case, an EMS-enabled case, and a bounded EMS-enabled case. The parameter compensation

techniques are evaluated using a 42-day set of profiles, and the effectiveness of the technique is

shown through error measurements and through evaluating its effect on the outage performance

of the EMS.

The predictive EMS is shown to be able to reduce the duration of microgrid outages, and

in some cases eliminate them entirely, by scheduling pre-emptive load shedding actions based

on the predicted battery storage behaviour. The model parameter uncertainty compensation

technique has been shown to be able to compensate for uncertainties introduced into the PV

system rating and battery capacity parameters, and is able to recover the outage performance

to near the level seen when the correct parameters are used in the prediction schemes.



Chapter 6

Conclusions and Future Work

6.1 Summary

6.1.1 Predictive Energy Management System

A predictive energy management system for an islanded PV-powered microgrid with battery

storage has been developed in this work. The EMS uses forecasts of PV production and the

expected load to predict the future state of charge and determine when outages may occur. A

pre-emptive load shedding mechanism is proposed that can minimize or avert the outage. The

approach is enhanced with a bounding approach to accommodate potential errors in the SOC

estimate. An implementation of the proposed scheme using an event-driven framework has

been carried out. Both simulation and experimental studies have been conducted to validate the

performance of the proposed scheme in a laboratory-scale microgrid. The results demonstrate,

for the chosen test scenario, a reduction in the outage duration of 87% to 100% is achievable.

The technique can be extended to larger microgrids containing multiple storage and generation

units. The approach requires only modest computational resources, making it cost effective to

implement the EMS in an embedded system.

84
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6.1.2 Compensation of Model Parameter Uncertainties

A method for tuning incorrect model parameters in a predictive microgrid energy management

system has also been developed. The technique uses measurements provided by the power

electronic converters, along with weather forecast data, to improve the accuracy of the pre-

dictions, which are then used to plan outage mitigation actions using the predictive EMS. No

additional information is required in order to apply the technique, and it is computationally

efficient to execute within the EMS. The technique was implemented within a predictive EMS

and tested using previously recorded data. The results show that additional outages caused by

incorrect model parameters can be almost completely mitigated by using the proposed tuning

technique, resulting in a 12% improvement in performance over the uncompensated case.

6.2 Conclusions

The predictive EMS developed in this work has been shown to be effective at improving the

performance of an islanded photovoltaic microgrid by either eliminating or reducing the du-

ration of critical load outages. The enhancement provided by the bounding technique helps

to account for uncertainties in the stored energy estimate. Finally, the proposed compensation

techniques can be used to improve the quality of the predictions in the presence of model pa-

rameter uncertainties, and therefore improve the overall system performance, without requiring

additional instrumentation beyond that required for the EMS.

The EMS software framework used in this research can be expanded upon and implemented

in real world islanded photovoltaic microgrids and isolated power systems, and the developed

EMS techniques can be used to improve the performance of such systems. Broader trends,

including the continuing reduction in the cost of PV arrays and batteries, and the increasing

availability of network-connected “smart” power devices that enable load management, make

such energy management approaches more and more feasible in practice. This can ultimately

contribute to an efficient and environmentally sound path to electrification in the developing
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world, and to reductions in fossil fuel consumption in isolated communities.

6.3 Future Work

There are several possible extensions to this work that can be investigated with respect to the

handing of uncertainties. While a simple constant bounding parameter was presented here, a

useful enhancement would be to develop a time-varying bounding parameter that incorporates

additional information, such as the time history of the SOC, to refine the bound.

Another direction of investigation is to consider the information contained in the overlap-

ping solar irradiance forecasts. In the current technique, older forecasts are simply replaced by

the most recent one. However, previous forecasts, where they overlap with the new one, can

reflect the change in volatility of the solar resource over time, and therefore suggest the level

of uncertainty for a given prediction.

More complex load configurations also represent an important area of research. For exam-

ple, the presence of multiple shiftable loads, such as refrigeration or air conditioning systems,

presents another set of factors that could be incorporated into the EMS strategy.

The compensation factors discussed in this work have been calculated based on analysis of

a single day dataset. Given that the parameters under discussion are unlikely to change drasti-

cally (except under a failure mode), another enhancement to consider would be averaging and

outlier removal to take advantage of the time history of the compensation factors. In addition,

these values could also be used to detect sudden changes in parameter values which might in-

dicate a fault, and subsequently trigger alerting and/or reconfiguration actions to mitigate the

issue.

Finally, all the techniques explored herein are deterministic in nature, which provides sim-

plicity in analysis and implementation. However, the the solar resource and the loads exhibit

stochastic behaviour, which may be characterized using random processes. Therefore, the

analysis and development of stochastic techniques to approach the problem also represents a
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direction that could lead to many possible research contributions. Such techniques could be

developed and tested within the hardware and software architecture presented here.

In conclusion, the research reported in this thesis has resulted in a flexible energy manage-

ment system framework, a predictive EMS that can reduce critical load outage durations by

using pre-emptive shedding of less critical loads, and a parameter compensation approach that

can improve the quality of energy management decisions. This work can ultimately be devel-

oped further and deployed in real world islanded microgrid settings to improve the performance

of such systems.
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Appendix A

Supporting Tools

A.1 Rooftop Data Acquisition

In order to characterize the solar insolation, an apparatus to collect irradiance and temperature

data was constructed and used to collect a dataset in the fall of 2015. The apparatus consisted

of a Bruhl and Kjier pyranometer, a TM01 temperature sensor, an Arduino Uno embedded

platform with a real-time clock and SD card shield, and the necessary interfacing circuitry and

power supply, as shown in Fig. A.1. This apparatus was installed on the solar array located on

the roof of the Claudette McKay-Lassonde Pavillion at Western University.

Figure A.1: Rooftop data acquisition apparatus.
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The software running on the Arduino platform recorded timstamped samples at 1-second

intervals and stored them into a text file on an SD card. Note that this sampling rate is much

greater than what is required for energy management purposes, however the higher fidelity

recording gives a better sense of the actual solar variation, and can be post-processed as needed

for multiple applications. This data was manually retrieved every week and post-processed

using MATLAB. The datasets were averaged and sub-sampled to provide a representation suit-

able for the energy management algorithm. They were also rate-limited to meet the slew rate

limitations of the Chroma solar simulator system when running the accelerated experiments.

A.2 High-speed Ring Buffer

One fundamental challenge when testing low-level control algorithms on microcontrollers is

the difficulty in accessing the internal variables as the discretized control algorithms are ex-

ecuted. In this case the controllers operate at frequencies between 10 kHz and 40 kHz, so

any of the communication techniques available on the target are unable to transfer the internal

variables at full rate to the host computer. One technique is to use a pulse-width modulated

digital-to-analog converter to view the signal, but since this signal is by definition low-pass

filtered it can miss short events of importance. It also suffers from the inability to provide an

absolute output and a lack of resolution (typically 8-12 bits), which is a challenge when dealing

with 32-bit floating-point values.

The other approach is to sample the internal signal and send it out as a digital bitstream via

a serial port. This approach provides full resolution, but still suffers from the lack of real-time

fidelity, with typically hundreds of interim steps between each sampled datapoint.

To solve these challenges it was noted that the controllers under development were of the

high-speed, low-memory-use type, where a large part of the available RAM was left unused on

the microcontroller. Therefore, there was room available in the memory to store a considerable

amount of data. A ring-buffer was built to store variables of interest during each cycle, as
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shown in Fig. A.2.

Figure A.2: High-speed ring buffer.

The ring-buffer is either free running, in which case it holds the most recent several seconds

of data, or it can be triggered by some internal event. This event can be generated using an

internal measurement of interest, for example a voltage that exceeds a chosen limit. The ring

buffer logic places a marker the buffer so that the starting point can be found later during

post-processing. A manual front panel switch is used to trigger the dumping of the buffer to

the serial port, where it can be picked up by an external application and stored on the EMS

computer. An example of a full-rate current waveform recorded using the ring-buffer is shown

in Fig. A.3. The tool proved to be indispensable in finding and correcting issues during the

testing of both the inverters and the dc-dc converters.
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Figure A.3: Example of data recorded by the high-speed ring buffer.
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