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Abstract 

Cholesterol-lowering statins, or the 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) 

reductase inhibitors, are one of the leading treatments for hypercholesterolemia and are 

recognized for their ability to prevent cardiovascular events. Though safe and effective for 

most, statin therapy has recently been associated with new-onset diabetes, with risk varying 

depending on potency and dose. Additionally, in vitro data suggest statin-mediated 

alterations in insulin secretion; however, the exact mechanism is currently unknown. Statins 

are known substrates of various membrane transporters belonging to the organic anion-

transporting polypeptides (OATPs), on which they rely heavily for hepatic uptake and 

therapeutic efficacy. We have recently reported expression of OATP1B3 in healthy human 

pancreas, localized to insulin-secreting β cells in the islets of Langerhans. Given the evidence 

for statin-induced diabetes and potential expression of statin-transporting OATPs in the 

pancreas, we hypothesize that expression and activity of OATP transporters in pancreatic β 

cells regulate statin entry and contribute to statin-induced impairment of insulin secretion 

through disruption of mitochondrial function and ATP-dependent signalling. We 

demonstrated gene and protein expression of OATP1B3 and OATP2B1 in human adult islets, 

with differential distribution to α and β cells, respectively. Quantitative analysis showed 

variable co-localization of OATP1B3 with endocrine cells in relation to age. Our in vitro 

findings support a role of OATPs in mediating statin-induced impairment of insulin secretion 

and β cell function via mitochondrial dysfunction. Overall, our results suggest a link between 

pancreatic OATP expression and statin-induced effects on glucose-stimulated insulin 

secretion and provide novel insights into a currently unexplored mechanism. 
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1.1 Significance of Study 

Statins are widely prescribed due to their therapeutic efficacy and ability to prevent 

cardiovascular events (Vaughan et al. 2013). They exert their cholesterol-lowering effects 

through inhibition of 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, 

resulting in the upregulation of low-density lipoprotein cholesterol (LDL-C) receptors 

(Skarlovnik et al. 2014; Vaughan et al. 2000). Statin therapy is generally safe and 

effective; however, it has been associated with some undesirable side effects including 

new-onset diabetes (Navarese et al. 2013; Preiss et al. 2011). The growing clinical 

evidence supporting statin-induced incident diabetes has prompted the United States 

Food and Drug Administration and Health Canada to approve safety label changes on 

nearly all statins to reflect the small but significant increased risk (Sattar and Taskinen 

2012; Health Canada 2013). Statin treatment has been associated with alterations in 

insulin secretion in vitro; however, some findings are conflicting and various mechanisms 

have been proposed (Zhou et al. 2014; Abe et al. 2010; Salunkhe et al. 2016; Yada et al. 

1999; Yaluri et al. 2015; Zhao and Zhao 2015). 

Statins are known substrates of the organic anion-transporting polypeptides (OATPs) 

(Konig et al. 2006), a family of membrane-bound uptake transporters found in many 

organs including the liver, kidney, and intestine (Hagenbuch and Stieger 2013). We have 

recently reported expression of the statin carrier OATP1B3 in healthy pancreas, localized 

to the beta (β) cells of the islets of Langerhans (Meyer Zu Schwabedissen et al. 2014). 

Given that OATP1B3 mediates statin transport, the recent discovery of pancreatic OATP 

expression taken together with evidence of statin-induced impaired insulin secretion point 

to a potential link in a currently unexplored mechanism. 

1.2 Organic Anion-Transporting Polypeptides 

Transport proteins expressed on the cell surface are essential in facilitating the 

transmembrane movement of various molecules. Many crucial signalling factors, 

nutrients, and therapeutic drugs cannot readily diffuse across the lipid bilayer and thus 

require pathways by which they can enter the cell. Of equal importance is the clearance 

of various substances from the cell which may also require transport proteins (Hagenbuch 
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and Stieger 2013; Iusuf et al. 2012a). The solute carrier gene (SLC) superfamily contains 

genes coding for more than 300 of these transport proteins divided into 55 different 

families (He et al. 2009). Each SLC family is made up of proteins that share at least 40% 

of their amino acid sequence identity and proteins can be further classified into 

subfamilies in which they have at least 60% shared amino acid sequence identity with 

other members (Hagenbuch and Stieger 2013). 

1.2.1 OATP Structure and Mechanism of Transport 

The organic anion-transporting polypeptides (human OATPs, rodent Oatps) are encoded 

by six SLCO gene families in humans (Slco in rodents) and have been recognized for 

their importance in the cellular uptake of many endogenous substrates as well as 

xenobiotics. Accordingly, OATPs are classified into six families (OATP1, OATP2, 

OATP3, OATP4, OATP5, OATP6) and various subfamilies (OATP1A, OATP1B, 

OATP1C, etc.) (Hagenbuch and Stieger 2013). To date, at least 11 human OATPs have 

been identified, including OATP1A2, OATP1B1, OATP1B3, OATP1C1, OATP2A1, 

OATP2B1, OATP3A1, OATP4A1, OATP4C1, OATP5A1, and OATP6A1 (Cheng et al. 

2005; Glaeser et al. 2010). Due to genetic divergence and gene duplication within the 

SLCO family, rodent Oatps do not correspond exactly to their human OATP orthologues; 

the rodent Oatp1a subfamily currently comprises of 5 proteins (Oatp1a1, rat Oatp1a3, 

Oatp1a4, Oatp1a5, Oatp1a6) corresponding to the single human OATP1A2 (Cheng et al. 

2005), while there exists a lone rodent orthologue (Oatp1b2) for human OATP1B1 and 

OATP1B3 (Meyer Zu Schwabedissen et al. 2009; Zaher et al. 2008). 

Based on structural modelling, OATPs are believed to contain 12 transmembrane 

domains with multiple glycosylation sites on the second and fifth extracellular loops. The 

fifth extracellular loop is large and contains several conserved cysteine residues, some of 

which may be involved in transport activity (Glaeser et al. 2010; Roth et al. 2012; 

Hagenbuch and Stieger 2013).  

The transport mechanisms of OATPs have not been fully characterized and remain 

somewhat controversial. OATPs are regarded as ATP- and sodium-independent uptake 

transporters, and studies suggest transport occurs through electroneutral exchange, with 
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anionic substrates exchanged for intracellular bicarbonate, glutathione, or glutathione 

conjugates; however, most of these studies have been conducted only with some rodent 

Oatps and the findings do not appear to be consistent for all OATPs (Ho and Kim 2005; 

Roth et al. 2012; Hagenbuch and Stieger 2013). There is evidence that uptake activity of 

OATPs can be affected by extracellular pH; OATP1B3 transport activity of 

cholecystokinin-8 and OATP2B1 uptake activity of rosuvastatin have shown to be 

stimulated with decreasing pH (Schwarz et al. 2011; Knauer et al. 2013). The driving 

force for OATP substrate transport is not yet known, but the coupled exchange of anion 

substrates for intracellular molecules may indicate dependence on substrate concentration 

gradients (Briz et al. 2006; Hagenbuch and Meier 2004).  

1.2.2 Tissue Distribution  

OATP expression has been primarily detected in polarized epithelial cells of many tissues 

throughout the body, mediating uptake of substrates from portal circulation or across 

luminal membranes (Hagenbuch and Stieger 2013; Ho and Kim 2005). The OATP1A/1B 

and OATP2B subfamilies have been thoroughly studied and very well characterized 

compared to the other OATP families.  

1.2.2.1 OATP1A/Oatp1a Subfamily 

OATP1A2, the lone human member of the OATP1A subfamily, exhibits the most 

abundant mRNA expression in the brain but has also been detected in kidney, liver, 

placenta, lung, testes, and prostate. OATP1A2 protein expression has been detected in the 

blood-brain barrier, distal nephron, bile duct, and ciliary body (Hagenbuch and Meier 

2003; Hagenbuch and Stieger 2013). With respect to the rodent Oatp1a subfamily 

members, Oatp1a1 and Oatp1a4 are both highly expressed in mouse and rat liver, and 

Oatp1a1 at a comparable level in mouse kidney. Oatp1a5 is also expressed in liver but at 

relatively low levels (Hou et al. 2014; Cheng et al. 2005). Oatp1a6 appears to be 

predominantly expressed in kidney in both mouse and rat, with some mRNA expression 

detected in mouse liver (Cheng et al. 2005; Choudhuri et al. 2003). A recent study has 

demonstrated mRNA and protein expression of Oatp1a subfamily members in mouse and 

rat pancreas (Abe et al. 2010). This study demonstrated gene expression of Oatp1a1, 
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Oatp1a4, and Oatp1a5 in rat whole pancreas and showed localization of these proteins to 

the islets of Langerhans. The same study also examined the pancreata of db/db mice, a 

model for diabetic dyslipidemia, and showed mRNA expression of Oatp1a4 and Oatp1a5 

in pancreas and immunostaining for Oatp1a5 protein in mouse islets (Abe et al. 2010).  

1.2.2.2 OATP1B/Oatp1b Subfamily 

The members of the OATP1B/Oatp1b subfamily (human OATP1B1 and OATP1B3, 

rodent Oatp1b2) are considered liver-specific transporters. While both carriers are highly 

expressed in human liver under physiological conditions, extrahepatic expression of 

OATP1B3 has previously been shown in various cancers (Thakkar et al. 2013b; Obaidat 

et al. 2012). In pancreas, increased expression of OATP1B3 has been observed in various 

disease states such as chronic pancreatitis and pancreatic ductal adenocarcinoma (PDAC) 

(Hays et al. 2013; Thakkar et al. 2013b; Pressler et al. 2011). In addition to the expected 

high expression in liver, Cheng et al. reported low but detectable mRNA expression of 

Oatp1b2 in stomach (Cheng et al. 2005). Furthermore, Oatp1b2 protein was found to be 

abundant in rat ciliary body epithelium (Gao et al. 2005). Little is known regarding 

OATP expression in the normal human pancreas, specifically in the islets of Langerhans; 

however, we recently reported the presence of OATP1B3 in human adult islets with 

likely distribution in β cells (Meyer Zu Schwabedissen et al. 2014).  

1.2.2.3 OATP2B/Oatp2b Subfamily 

OATP2B1 and Oatp2b1 make up the human and rodent members, respectively, of the 

OATP2B subfamily. In contrast to members of the OATP1B family, human OATP2B1 is 

present in many tissues throughout the body, with the greatest abundance of mRNA 

detected in liver (Kullak-Ublick et al. 2001). Protein expression of OATP2B1 has also 

been confirmed in intestine, kidney, muscle, placenta, epidermis, mammary gland, heart, 

and brain (Roth et al. 2012; Hagenbuch and Meier 2004; Knauer et al. 2010). Similar 

tissue distribution is seen in mouse and rat with Oatp2b1 highly expressed in liver and 

detectable in many of the same tissues as human OATP2B1 (Choudhuri et al. 2003; 

Cheng et al. 2005; Hagenbuch and Meier 2004). 
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1.2.3 OATP Substrate Specificity and Function 

Generally, OATP substrates are anionic and amphipathic with a molecular weight greater 

than 450 kilodaltons (kDa) (Hagenbuch and Meier 2004). OATPs are able to transport a 

diverse spectrum of endogenous molecules as well as xenobiotics (Hagenbuch and Meier 

2003; Konig et al. 2006; Glaeser et al. 2010). More specifically, OATP1B1, OATP1B3, 

and OATP2B1 are now recognized as major players in several physiological processes 

and in drug disposition (Ho and Kim 2005). These transport proteins, along with their 

rodent orthologues, have shown overlapping substrate specificity including various 

substrates such as steroid conjugate estrone-3-sulfate, thyroid hormones, and cholesterol-

lowering statins (Hagenbuch and Meier 2003; Ho and Kim 2005; Cheng et al. 2005; 

Choudhuri et al. 2003).  

The role of OATPs in liver physiology has been well established. Expressed at the 

basolateral membrane of hepatocytes, OATP1B1 and OATP1B3 mediate uptake of 

endogenous substrates such as bile acids and bilirubin into the liver, and are therefore 

essential components of enterohepatic circulation of bile acids and bilirubin metabolism 

(Iusuf et al. 2012a). This is supported by studies in transporter-deficient animal models 

such as the Oatp1a/1b-/- cluster knockout mouse lacking five genes of the Oatp1a and 

Oatp1b subfamilies, that demonstrate considerably increased total plasma bilirubin levels 

compared to wild-type (WT) mice under physiological conditions (van de Steeg et al. 

2010). In humans, the characteristic conjugated hyperbilirubinemia that presents in Rotor 

syndrome is associated with a complete deficiency of OATP1B1 and OATP1B3 genes 

(van de Steeg et al. 2012). In terms of the relevance of OATPs in drug disposition, 

Oatp1a/1b-/- mice demonstrated altered pharmacokinetics of the anticancer agent 

methotrexate and the antihistamine fexofenadine; plasma drug levels were substantially 

increased and hepatic accumulation of both drugs reduced compared to WT mice (van de 

Steeg et al. 2010). Furthermore, mice deficient in Oatp1b2 showed significantly reduced 

hepatic accumulation and elevated plasma concentrations of the antibiotic rifampicin 

compared to WT mice (Zaher et al. 2008). Taken together, these findings support the 

critical role of OATPs/Oatps in distribution and clearance of endogenous and xenobiotic 

compounds. 
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1.3 Endocrine Pancreas 

The pancreas acts both as an exocrine and an endocrine gland. The exocrine pancreas 

makes up the majority of the organ at 95-99% of total pancreatic mass. Exocrine tissue is 

comprised mostly of acinar cells, which produce many enzymes required for digestion in 

the duodenum (Williams 2010; Dolensek et al. 2015; Stanger and Hebrok 2013). The 

endocrine pancreas constitutes only 1-5% of the total pancreatic volume, and is 

composed of the islets of Langerhans (Dolensek et al. 2015; Lazo de la Vega-Monroy 

and Fernandez-Mejia 2011). 

1.3.1 Islets of Langerhans 

The islets of Langerhans contain five different endocrine cell types, each of which 

secretes a unique hormone. Insulin-producing beta (β) cells are the predominant cell type 

as they constitute 50-70% of cells in human islets. Alpha (α) cells secrete glucagon and 

are the second most abundant, accounting for 20-40% of islet cells. Delta (δ) cells and PP 

cells produce somatostatin and pancreatic polypeptide, respectively, and are less 

abundant at less than 10% of islet cells. Epsilon (ε) cells are responsible for the 

production of ghrelin and make up less than 1% of cells (Lazo de la Vega-Monroy and 

Fernandez-Mejia 2011; Dolensek et al. 2015). The composition of islets is different in 

humans and in mice; in humans, the distribution of cell types is scattered while in mice, β 

cells are largely concentrated in the middle of the islet and α cells are seen around the 

periphery (Dolensek et al. 2015). Additionally, mice have a slightly higher proportion of 

β cells than humans at 60-80% of islet cell volume, while α cells make up 10-30% of 

islets (Lazo de la Vega-Monroy and Fernandez-Mejia 2011; Dolensek et al. 2015) 

1.3.2 Regulation of Glucose Homeostasis  

The endocrine cells of the islets of Langerhans play an important role in the tight 

regulation of glucose homeostasis, working in a complex yet organized fashion to detect 

and respond to changes in blood glucose levels. The β and α cells are arguably the most 

important islet cells in glucose homeostasis due to their prominence in the islet and the 

function of their secreted hormones (Quesada et al. 2008). 
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1.3.2.1 Beta Cells and Insulin 

Of the islet cell types, β cells have been most comprehensively studied; thus, the insulin 

secretion pathway is relatively well understood. In states of elevated blood glucose, β 

cells respond by releasing insulin to reduce glucose levels throughout the body. Insulin 

counteracts elevated glucose by stimulating glucose uptake into tissues like adipose, 

muscle, and liver, and by promoting glucose storage in glycogen or fat (Quesada et al. 

2008). Glucose enters the β cell through glucose transporters (GLUT1 in humans, 

GLUT2 in rodents) and is phosphorylated by glucokinase to form glucose-6-phosphate. 

This phosphorylation step has been recognized as being crucial in glucose-stimulated 

insulin secretion such that glucokinase is considered the glucose sensor for the β cell 

(Dolensek et al. 2015). Glucose-6-phosphate then continues through cellular respiration 

to produce ATP, which closes ATP-sensitive potassium (K+) channels (KATP). Closure of 

KATP channels prevents K+ ion efflux while sodium (Na+) ions continue to enter the cell, 

disrupting the balance of charge and causing depolarization of the cell membrane. This 

membrane depolarization opens voltage-dependent T-type calcium (Ca2+) and Na+ 

channels, flooding the cell with more Na+ and Ca2+ ions and causing further 

depolarization. L-type voltage-dependent calcium channels open, triggering action 

potentials that increase intracellular Ca2+ levels. The increase of intracellular Ca2+ levels 

stimulates the movement of insulin-containing granules to the plasma membrane, where 

they fuse and release insulin (Dolensek et al. 2015; Hiriart and Aguilar-Bryan 2008). 

1.3.2.2 Alpha Cells and Glucagon 

Αlpha cells act opposite to β cells, secreting glucagon that acts to increase blood glucose 

levels. Glucagon primarily targets the liver and induces glycogenolysis and 

gluconeogenesis to release more glucose into the blood (Quesada et al. 2008). Like β 

cells, α cells respond to changes in extracellular glucose, and as such KATP channels are 

crucial in initiating the glucagon secretion process. In conditions of low glucose, KATP 

channels close to increase the membrane potential to a voltage where the T-type Ca2+ 

channels open. The opening of T-type channels further depolarizes the membrane and 

activates Na+ and N-type Ca2+ channels that produce regenerative action potentials. 
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Glucagon secretion is induced by the influx of Ca2+ caused by opening of N-type 

channels (Quesada et al. 2008). 

1.3.3 Risk Factors for Type II Diabetes 

Type II diabetes is characterized by impaired insulin secretion brought on by a 

progressive decrease in β cell mass and function, and insulin insensitivity (Butler et al. 

2003). Many risk factors associated with the development of type II diabetes have been 

identified, including family history of type II diabetes, race, obesity, hypertension, 

elevated blood glucose, and dyslipidemia (Xu et al. 2010; Roy et al. 2016). Some of these 

risk factors may contribute directly to β cell pathophysiology; persistently high levels of 

glucose and fatty acids can cause endoplasmic reticulum (ER) stress and subsequent 

dysfunction in the β cell (Volchuk and Ron 2010).  

1.4 HMG-CoA Reductase Inhibitors 

The HMG-CoA reductase inhibitors, or statins, represent one of the leading treatments 

for the management of hypercholesterolemia. In the United States, an estimated 100 

million prescriptions are filled annually for about 25 million patients (Vaughan et al. 

2013). They are generally safe and have been proven to be very effective in managing 

cholesterol levels and reducing the likelihood of cardiovascular events (Thompson et al. 

2003). 

1.4.1 Mechanism of Action 

Statins act by competitively inhibiting HMG-CoA reductase, the rate-limiting enzyme in 

the cholesterol synthesis pathway, and by upregulating expression of LDL-C receptors, 

thereby promoting cholesterol uptake into tissues and lowering plasma LDL levels (Burg 

and Espenshade 2011; Marcoff and Thompson 2007; Vaughan et al. 2000). Inhibition of 

HMG-CoA reductase prevents the formation of mevalonate, which is a crucial step in the 

production of cholesterol. By blocking the mevalonate pathway of de novo cholesterol 

synthesis, statins effectively reduce elevated levels of LDL-C (Thompson et al. 2003). 

Statins slightly differ in their extent of HMG-CoA reductase inhibition, also referred to as 

potency. Atorvastatin, rosuvastatin, and simvastatin (IC50 values in nM: 8.2, 5.4, 11.2, 

respectively) are considered the most potent statins, while pravastatin (IC50: 44.1 nM) is 
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labelled as a low-potency statin (Carter et al. 2013; Chan et al. 2015; Hargreaves et al. 

2005). 

1.4.2 Statin Pharmacokinetics 

Cholesterol-lowering largely differ in their physicochemical characteristics such as 

lipophilicity, as illustrated by differing logD values (distribution coefficient) (Table 1.1) 

(Ho et al. 2006; Shitara and Sugiyama 2006). Lipophilic statins such as atorvastatin, 

simvastatin, or lovastatin, are characterized by higher logD values and more readily 

diffuse across membranes, often resulting in higher tissue distribution (Bonsu et al. 2013; 

Shitara et al. 2003). On the other hand, less lipophilic statins such as rosuvastatin and 

pravastatin are thought to require active transport systems to efficiently enter the cell 

(Shitara and Sugiyama 2006). As amphipathic molecules, statins are ionizable and thus 

their membrane permeability further varies with pH (Iusuf et al. 2012b; Shitara and 

Sugiyama 2006; Knauer et al. 2013). 

1.4.2.1 OATPs and Statin Pharmacokinetics 

Most statins require OATP transport for their uptake into liver, the main target tissue, and 

subsequent clearance from the body, despite considerable differences in their lipophilicity 

(Ho and Kim 2005; Shitara and Sugiyama 2006) An overview of physicochemical 

characteristics and OATP/Oatp substrate specificity for different statins is provided in 

Table 1.1.  

Implications of OATP transport in statin pharmacokinetics were explored after first 

observations that, although not considerably metabolized in humans, statin plasma 

concentrations showed great interindividual variability (Neuvonen et al. 1998). Several 

single-nucleotide polymorphisms (SNPs) in genes encoding OATPs, mainly OATP1B1, 

have been identified that may contribute to changes in systemic exposure of statins. 

Perhaps the best-known of these SNPs is OATP1B1 521T>C, which is associated with 

decreased OATP1B1 protein function; reduced transport activity due to impaired cell 

surface trafficking was demonstrated in vitro (Tirona et al. 2001) and clinical data in 

individuals with this polymorphism show a marked increase in statin plasma levels and 

significantly reduced effects on cholesterol synthesis inhibition (Niemi et al. 2004; Niemi 
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et al. 2005; DeGorter et al. 2013). Importantly, a genome-wide association study found a 

strong association of the OATP1B1 521T>C polymorphism with statin-induced myopathy 

(muscle pain or weakness) in patients on high dose simvastatin treatment (Link et al. 

2008). Despite many SNPs having been identified in OATP1A2, OATP1B3, and 

OATP2B1, their implications on statin transport and potential clinical outcomes are less 

clear. Functional validation studies performed in vitro for various SNPs in OATP1B3 

(OATP1B3 699G>A, 1559A>C, 1679T>C) indicated impaired rosuvastatin transport 

activity of the variant allele compared to wild-type (Schwarz et al. 2011). Various 

polymorphisms have also been described in OATP1A2, and while not specifically tested 

for statin transport, a few have shown altered transport activity for other drug substrates 

in vitro (Lee et al. 2005). Very few polymorphisms have been identified in OATP2B1; 

however, one study was able to demonstrate reduced transport activity for OATP2B1 

43C>T and 601G>A (Stieger and Meier 2011).  

In addition to genetic factors contributing to statin pharmacokinetics, interactions of 

OATPs with other drugs can result in changes in statin disposition in the body. 

Cyclosporine is an immunosuppressant commonly administered concomitantly with 

statins in patients who develop hypercholesterolemia following transplantation (Shitara et 

al. 2003). Though largely recognized as an inhibitor of the drug-metabolizing enzyme 

cytochrome P450 3A4 (CYP3A4), cyclosporine also inhibits OATP1B1 and OATP1B3 

and has been associated with increased statin plasma concentrations (Simonson et al. 

2004; Shitara et al. 2003; Karlgren et al. 2012). The antibiotic rifampicin, when 

administered acutely, has also shown inhibitory effects on OATP1B1 and OATP1B3, 

whereas chronic administration leads to strong induction of CYP3A4 and other enzymes 

(Anderson et al. 2013; Reitman et al. 2011). Therefore, in vitro statin transport activity of 

OATP1B1 and OATP1B3 is inhibited by co-treatment with rifampicin, and clinical data 

show increased statin plasma concentration following concomitant administration with 

rifampicin (Karlgren et al. 2012). Another antibiotic, clarithromycin, significantly 

increased patients’ systemic exposure of pravastatin, simvastatin, and atorvastatin when 

co-administered (Jacobson 2004). In a separate in vitro study, clarithromycin inhibited 

uptake activity of OATP1B1 and OATP1B3; however, these two findings have not been 

investigated and validated together (Karlgren et al. 2012). 
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Table 1.1. OATP/Oatp substrate specificity and physicochemical characteristics of 

statins. 

Species Protein 
Statin  

(Km value in µM) 

Statin LogD 

(pH 7 or 7.4) 
Reference 

Human OATP1A2 Pitavastatin (3) 

Rosuvastatin (3) 

1.5 

-0.25 – -0.50 

Fujino et al. (2005) 

Ho et al. (2006) 

OATP1B1 Atorvastatin (10) 

Cerivastatin (4) 

Fluvastatin (1.4-3.5) 

 

Pitavastatin (3) 

 

Pravastatin (14-35)  

 

Rosuvastatin (4-7.3) 

Simvastatin acid (NR) 

1.53 

2.32 

1.75 

 

1.5 

 

-0.47 

 

-0.25 – -0.50 

4.4 

Lau et al. (2006) 

Shitara et al. (2003) 

Kopplow et al. (2005);  

Noe et al. (2007) 

Fujino et al. (2005);  

Hirano et al. (2004) 

Hsiang et al. (1999); 

Nakai et al. (2001) 

Ho et al. (2006) 

Pasanen et al. (2006) 

OATP1B3 Atorvastatin (NR) 

Fluvastatin (7) 

Rosuvastatin (9.8) 

Pitavastatin (3.25) 

1.53 

1.75 

-0.25 – -0.50 

1.5 

Schwarz et al. (2011) 

Kopplow et al. (2005) 

Ho et al. (2006) 

Hirano et al. (2004) 

OATP2B1 Atorvastatin (0.2) 

 

Fluvastatin (0.7) 

 

Pitavastatin (1.17) 

Pravastatin (2.25) 

Rosuvastatin (2.4) 

1.53 

 

1.75 

 

1.5 

-0.47 

-0.25 – -0.50 

Kalliokoski and Niemi 

(2009) 

Kopplow et al. (2005);  

Noe et al. (2007) 

Hirano et al. (2006) 

Nozawa et al. (2004) 

Ho et al. (2006) 

Rat Oatp1a1 Pravastatin (30) 

Rosuvastatin (NR) 

-0.47 

-0.25 – -0.50 

Hsiang et al. (1999) 

Ho et al. (2006) 

Oatp1a4 Atorvastatin (22.2) 

Pravastatin (38) 

Rosuvastatin (NR) 

1.53 

-0.47 

-0.25 – -0.50 

Lau et al. (2006) 

Tokui et al. (1999) 

Ho et al. (2006) 

Oatp1a5 Pitavastatin (2.4) 

Pravastatin (NR) 

Rosuvastatin (NR) 

1.5 

-0.47 

-0.25 – -0.50 

Shirasaka et al. (2011) 

Shirasaka et al. (2010) 

Ho et al. (2006) 

Oatp1b2 Atorvastatin (7.12) 

Rosuvastatin (NR) 

1.53 

-0.25 – -0.50 

Lau et al. (2006) 

Ho et al. (2006) 

Oatp2b1 Pitavastatin (NR) 

Pravastatin (NR) 

1.5 

-0.47 

Shirasaka et al. (2011) 

Shirasaka et al. (2010) 

Adapted from Konig et al. (2006), Shitara and Sugiyama (2006), and Roth et al. (2012); 

Km – Michaelis constant, logD – distribution coefficient; NR – not reported 
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1.4.2.2 Other Carriers and Statin Pharmacokinetics 

Though statin pharmacokinetics are greatly influenced by many OATPs, it is important to 

recognize other key transport proteins involved in the disposition of statins. There is a 

crucial interplay between uptake transporters and efflux transporters resulting in 

absorption, systemic distribution, and excretion of statins (Knauer et al. 2010).  

The organic anion transporter (OAT) family is another important group of uptake 

transporters belonging to the SLC superfamily. Like OATPs, OATs are present in many 

human tissues and demonstrate a wide and diverse substrate specificity. Abundantly 

expressed in the kidneys, they are largely recognized for mediating active transport of 

substrates from blood to urine across renal proximal tubule cells (VanWert et al. 2010; 

Roth et al. 2012). Most human OATs, including OAT1 and OAT3, have shown transport 

activity for statins; the latter having been detected in liver and thus more relevant in statin 

pharmacokinetics (VanWert et al. 2010). There is limited knowledge of OAT3-associated 

drug-drug interactions and polymorphisms affecting statin pharmacokinetics; however, 

an in vitro study has demonstrated a dose-dependent inhibition of OAT1 and OAT3 

transport with fluvastatin and simvastatin up to 120 µM (Takeda et al. 2004). 

The ATP-binding cassette (ABC) efflux transporters have been well established as key 

players in statin disposition. In particular, breast cancer resistance protein (BCRP), 

multidrug resistance-associated protein 2 (MRP2), and P-glycoprotein (P-gp) are thought 

to be important in mediating statin clearance from tissues. Each of these ATP-dependent 

efflux transporters has shown uptake activity of various statins, including common 

substrate specificity for pitavastatin, pravastatin, and rosuvastatin (Hirano et al. 2005; 

Huang et al. 2006; Kitamura et al. 2008). Like with the OATPs, statin pharmacokinetics 

were shown to be affected by various common impaired-function polymorphisms or 

drug-drug interactions involving BCRP, MRP2, and P-gp. A clinical study in healthy 

volunteers found that individuals expressing the BCRP 421C>A polymorphism had a 

significantly increased area under the curve (AUC) for rosuvastatin plasma concentration 

(Zhang et al. 2006). The MRP2 1446C>G SNP has been associated with significantly 

reduced pravastatin plasma concentration AUC in heterozygous individuals (Niemi et al. 

2006). Concomitant administration of simvastatin acid with antiretroviral drugs ritonavir 
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or saquinavir was reported to cause a 30-fold increase in simavastatin acid AUC due to 

dual inhibition of OATP1B1 and P-gp (Neuvonen et al. 2008).  

Thus, in addition to OATPs, OAT uptake transporters and ABC efflux transporters are 

also important in the distribution and elimination of statins from the body.  

1.4.3 Statin-Induced Muscle Toxicity 

Though statins are among the most effective treatments for hypercholesterolemia, they 

have been associated with the development of skeletal muscle side effects. These can 

range from mild muscle pain or weakness to life-threatening rhabdomyolysis (Marcoff 

and Thompson 2007). Though rhabdomyolysis is very rare, up to 15% of patients on 

statin therapy experience some form of muscle side effect (myopathy) that can cause 

treatment cessation (Vaughan et al. 2013; Marcoff and Thompson 2007). Among other 

potential culprits, a role of depleted CoQ10 in statin-induced muscle toxicity has been 

proposed but is still controversial as studies have shown conflicting findings regarding 

the effectiveness of CoQ10 supplementation in improving muscle symptoms (Vaughan et 

al. 2013; Marcoff and Thompson 2007).  

1.4.4 Statin-Induced Incident Diabetes 

In addition to muscle toxicity, statin therapy has also recently been associated with an 

increased risk for new-onset diabetes. While the clinical relevance of this correlation is 

still debated, there is a growing body of literature supporting potential diabetogenic 

effects of statins that may relate to altered insulin sensitivity and/or secretion.  

1.4.4.1 Clinical Evidence 

Several meta-analyses of major clinical statin trials have provided evidence for statin-

induced incident diabetes. A meta-analysis by Sattar et al. included nearly all large 

randomized placebo-controlled statin trials up until 2010 involving atorvastatin, 

rosuvastatin, pravastatin, simvastatin, and lovastatin treatment, consisting of over 90,000 

patients (Sattar et al. 2010). Though the rate of new-onset diabetes over the mean follow-

up of 4 years varied from trial to trial, the combined data from these thirteen trials 

showed an additional 174 cases of new-onset diabetes in previously nondiabetic patients 
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treated with statins compared to placebo control, representing a 9% increased risk of 

developing incident diabetes with statin treatment (Sattar et al. 2010). Preiss et al. 

analyzed five different randomized clinical trials including more than 30,000 non-

diabetic patients prescribed atorvastatin or simvastatin who were followed up for an 

average of approximately 5 years (Preiss et al. 2011). They reported that 8.4% of 

participants developed diabetes during the follow-up period (Preiss et al. 2011). Another 

group studied three randomized atorvastatin trials (two of which overlap with the study 

by Preiss et al.) with an average follow up of 5 years and reported an up to 34% increased 

risk of developing new-onset diabetes with atorvastatin treatment (Waters et al. 2011). A 

more recent population-based cohort study in almost 9000 non-diabetic men evaluated 

changes in insulin sensitivity and insulin secretion with statin therapy over 6 years 

(Cederberg et al. 2015). After adjusting for several confounding factors including age and 

body mass index (BMI), statin therapy was associated with a 46% increased risk for new-

onset diabetes (Cederberg et al. 2015).  

1.4.4.2 Risk Factors for Statin-Induced Incident Diabetes 

Several clinical risk factors have been described to contribute to statin-induced new-onset 

diabetes, such as lower overall high-density lipoprotein (HDL) cholesterol, and higher 

blood pressure, BMI, fasting glucose, and triglycerides (Waters et al. 2011; Cederberg et 

al. 2015). In addition, two SNPs in the HMG-CoA reductase (HMGCR) gene 

(rs17238484 and rs12916) have been identified as predictors of new-onset diabetes in a 

genome-wide association study (Swerdlow et al. 2015). These SNPs demonstrated strong 

associations with lower circulating LDL cholesterol, and gene expression data 

demonstrated reduced hepatic expression of HMGCR associated with the variant T allele 

of rs12916 (Swerdlow et al. 2015), suggesting a potential relevance of the extent of 

HMG-CoA reductase inhibition, or potency of statins, in incident diabetes. This is further 

supported by experimental and clinical data comparing high-potency statins (atorvastatin, 

rosuvastatin) to moderate-potency (simvasatatin) and low-potency statins (fluvastatin, 

lovastatin, pravastatin) (Carter et al. 2013). Pravastatin, a low-potency hydrophilic statin, 

has shown minimal effects on insulin secretion and calcium signalling in vitro compared 

to more potent lipophilic statins such as atorvastatin and simvastatin (Ishikawa et al. 
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2006; Yada et al. 1999). Clinical data have demonstrated neutral or even protective 

effects of pravastatin when evaluating the risk for new-onset diabetes; atorvastatin, 

rosuvastatin, and simvastatin treatment has been associated with a significantly greater 

risk for incident diabetes compared to pravastatin treatment (Carter et al. 2013; Sattar et 

al. 2010). Atorvastatin therapy has also been associated with higher rates of new-onset 

diabetes compared to simvastatin therapy (Waters et al. 2011). Furthermore, there may 

also be a dose-dependent effect of statins. The above noted meta-analysis of five statin 

trials involving over 30,000 patients found that, of 2749 patients that developed diabetes, 

149 more developed incident diabetes (odds ratio 1.12) on intensive-dose statin therapy 

than moderate-dose statin therapy (Preiss et al. 2011). Moreover, high dose atorvastatin 

therapy was associated with a slight increase in new-onset diabetes compared to low-dose 

atorvastatin therapy (Waters et al. 2011). Simvastatin and atorvastatin treatment were 

found to increase risk of incident diabetes and reduce insulin secretion in a dose-

dependent manner (Carter et al. 2013). Taken together, the risk of incident diabetes with 

statin therapy appears to vary with type of statin, potency, and dose. 

1.4.4.3 Proposed Mechanisms for Statin-Induced Alterations in Insulin Secretion  

Based on the available experimental and clinical evidence, statins are thought to either 

impair insulin sensitivity or insulin secretion (Cederberg et al. 2015), the latter of which 

being the focus of this project. While the exact molecular mechanisms for statin-induced 

impairment of insulin secretion are currently unknown, multiple mechanisms have been 

proposed, most of which suggest disruptions in signalling that prevent secretion of insulin 

from β cells. Various in vitro studies have been conducted to elucidate potential 

mechanisms of statin effects on insulin secretion; an overview of their findings is 

provided in Table 1.2.  

 



17 

 

Table 1.2. Overview of in vitro studies with statin-induced altered insulin secretion. 

Cell Type 

Used 

Statin(s) 

Tested 

(Time) 

Effect on Insulin 

Secretion 

Proposed Mechanism Reference 

Rat islets Simvastatin  

(30 min) 

Pravastatin 

(30 min) 

0.3 µg/mL: ↓ with 

HG 

100 µg/mL: no 

effect 

Inhibition of L-type 

Ca2+ channels impairs 

responsiveness to 

glucose  

Yada et al. 

(1999) 

Mouse 

islets 

 

Atorvastatin 

(24 hr) 

Simvastatin 

(24 hr) 

Pravastatin 

(24 hr) 

100 nM, 1 µM, 10 

µM: no effect 

100 nM, 1 µM, 10 

µM: no effect 

100 nM, 1 µM, 10 

µM: no effect 

No effect on insulin 

secretion in ex vivo 

islet studies 

Ishikawa 

et al. 

(2006) 

MIN6 

(Mouse) 

Lovastatin 

(24 hr) 

10 µM: ↑ with LG, 

↑ with HG,  

↓ insulin content, 

increased SG size 

Increase in basal and 

stimulated insulin 

suggests disruption of 

insulin secretion; effect 

reversed with 

mevalonate and 

squalene treatment; 

depleted cholesterol 

may weaken SG 

membranes 

Tsuchiya 

et al. 

(2010) 

INS-1e 

(Rat) 

 

Mouse 

islets 

Pravastatin 

(48 hr) 

 

Pravastatin 

(48 hr) 

30 µM: ↑ with HG 

 

 

30 µM: ↑ with HG 

Reduction of β cell 

cholesterol by statins 

prevents toxic lipid 

accumulation and 

promotes insulin 

secretion 

Abe et al. 

(2010) 

MIN6 

(Mouse) 

Simvastatin 

(48 hr) 

2 µM: ↓ with LG,  

5 µM: ↓ with LG 

10 µM: ↓ with LG, 

↓ with HG 

Upregulation of 

potassium channel 

Kir6.2, suppression of 

VG Ca2+ channel and 

GLUT2 prevent 

membrane 

depolarization and 

Ca2+ influx 

Zhou et al. 

(2014) 
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MIN6 

(Mouse) 

Simvastatin 

(30 min) 

Pravastatin 

(30 min) 

14.3 µM: ↓ with 

LG, ↓ with HG 

26.3 µM: ↑ with HG 

Reduced insulin 

secretion mediated by 

alternative pathways 

(ACh, GLP, lipid-

sensing receptors); 

inhibition of VG Ca2+ 

channels 

Yaluri et 

al. (2015) 

Human 

islet β 

cells 

Atorvastatin 

(24 hr) 

Pitavastatin 

(24 hr) 

Pravastatin 

(24 hr) 

Rosuvastatin 

(24 hr) 

100 nM: ↓ SI 

 

100 nM: ↓ SI 

 

10 nM: ↓ SI 

100 nM: ↓ SI 

100 nM: ↓ SI  

Dose-dependent effects 

for all statins; altered 

expression of GLUT-2 

(reduced with 

atorvastatin and 

pravastatin, increased 

with rosuvastatin and 

pitavastatin); β cell 

apoptosis induced by 

upregulation of p-p38 

MAPK 

Zhao and 

Zhao 

(2015) 

INS-1 

832/13 

(Rat) 

Rosuvastatin 

(48 hr) 

200 nM: ↓ with HG  

2 µM: ↑ with LG,  

↓ with HG  

20 µM: ↑ with LG, 

↓ with HG 

Reduced Ca2+ currents 

through VG Ca2+ 

channels prevent 

exocytosis of insulin 

granules; treatment 

with mevalonate but 

not squalene reversed 

effect 

Salunkhe 

et al. 

(2016) 

LG: low glucose stimulation (represents basal insulin secretion); HG: high glucose 

stimulation (represents glucose-induced insulin secretion); SI: stimulation index (high 

glucose insulin secretion/low glucose insulin secretion); VG: voltage-gated; GLUT2: 

glucose transporter 2; ACh: acetylcholine; GLP: glucagon-like peptide; p-p38 MAPK: 

phosphorylated p38 mitogen-activated protein kinase 
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Dose-dependent statin-induced alterations in gene expression of ion channels and glucose 

transporters have been reported in vitro that may contribute to statin-mediated effects on 

insulin secretion, as both are important in maintaining proper electrophysiology and 

voltage-dependent signalling in the β cell (Zhou et al. 2014; Zhao and Zhao 2015). Some 

statins (rosuvastatin, simvastatin) have been shown to affect ion channel activity via 

inhibition of channels or ion flow disturbance (Salunkhe et al. 2016; Yada et al. 1999). 

Function of the β cell may also be affected by statins in a dose-dependent manner, as 

exemplified by reduced insulin secretion and induction of apoptosis in β cell models 

following statin treatment (Zhou et al. 2014; Ishikawa et al. 2006; Zhao and Zhao 2015).  

Insulin secretion from β cells may be influenced in opposite ways by statin-mediated 

changes in intracellular cholesterol levels. Reduction of β cell cholesterol by statins may 

improve insulin secretion by mitigating lipotoxicity associated with intracellular lipid 

accumulation; indeed, pravastatin treatment has been associated with increased insulin 

secretion (Abe et al. 2010; Yaluri et al. 2015). Conversely, decreased intracellular 

cholesterol may impair insulin secretion by disrupting insulin secretory granules 

(Tsuchiya et al. 2010). Secretory granule membranes contain high levels of endogenous 

cholesterol which can be depleted with statin treatment, resulting in compromised 

membrane integrity and leakage of insulin within the β cell (Tsuchiya et al. 2010). 

Lastly, inhibition of the mevalonate pathway (Figure 1.1) has been proposed as a 

mechanism for statin-induced changes in insulin secretion (Salunkhe et al. 2016; 

Tsuchiya et al. 2010). Inhibition of HMG-CoA reductase by statins can also prevent 

production of other intermediate compounds such as farnesyl pyrophosphate (Salunkhe et 

al. 2016). Farnesyl pyrophosphate is an important intermediate not only in cholesterol 

synthesis but also in synthesis of CoQ10 and prenylated proteins (Marcoff and Thompson 

2007; Goldstein and Brown 1990). CoQ10 is an essential component of the electron 

transport chain and critical in proper mitochondrial function and in ATP production, the 

latter of which is required to initiate glucose-stimulated insulin secretion (Vaughan et al. 

2013; Lazo de la Vega-Monroy and Fernandez-Mejia 2011). Prenylated proteins include 

guanosine triphosphate (GTP)-binding proteins (also known as GTPases) such as Rac and 

Rab, which are both reported to be involved in glucose-stimulated insulin secretion 
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(Kowluru and Veluthakal 2005). A schematic of currently proposed mechanisms for 

statin-induced alterations in insulin secretion is shown in Figure 1.2. 
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Figure 1.1. Mevalonate pathway and relevance for beta cell function. Inhibition of 

this pathway by statins reduces cholesterol synthesis and prevents the production of 

intermediates essential in insulin secretion. Adapted from Goldstein and Brown (1990), 

Kowluru and Veluthakal (2005), and Salunkhe et al. (2016). 
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Figure 1.2. Hypothesized mechanisms of statin effects on β cells. Several different 

pathways have been proposed for statin-mediated effects on insulin secretion and β cell 

function. Adapted from Chan et al. (2015) and Tsuchiya et al. (2010). 
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1.5 Rationale, Hypothesis, and Specific Aims 

1.5.1 Rationale 

OATPs have been most extensively studied in excretory organs such as the liver, kidney, 

and intestine, as well as at blood-tissue barriers including the brain and placenta. In 

pancreas, increased expression of OATP1B3 has been observed in chronic pancreatitis 

and pancreatic ductal adenocarcinoma (PDAC) (Hays et al. 2013; Pressler et al. 2011; 

Thakkar et al. 2013b). Little is known about OATP expression in the normal pancreas, 

specifically in the islets of Langerhans where they may be involved in islet function. We 

recently reported the presence of OATP1B3 in human adult islets with likely distribution 

in β cells (Meyer Zu Schwabedissen et al. 2014). We observed that transient 

overexpression of OATP1B3 enhanced the insulinotropic effect of the sulfonylurea 

glibenclamide, a substrate of OATP1B3, in the mouse β cell line MIN6 (Meyer Zu 

Schwabedissen et al. 2014).  

Meta-analyses of recent clinical trials indicate an up to 34% increased risk of new-onset 

diabetes associated with statin therapy (Waters et al. 2011), with risk varying with statin 

type, potency, and dose (Bonsu et al. 2013; Ishikawa et al. 2006; Yada et al. 1999; Preiss 

et al. 2011). Based on limited experimental and clinical evidence, statins are thought to 

either affect insulin sensitivity or insulin secretion (Cederberg et al. 2015). While the 

exact mechanisms in stain-induced impairment of insulin secretion have not been 

elucidated, the role of CoQ10 in modulating islet β cell function offers an intriguing link. 

Inhibition of HMG-CoA reductase lowers cholesterol but also synthesis of CoQ10, the 

latter required as an electron carrier during mitochondrial oxidative phosphorylation to 

generate ATP. β cell depletion of CoQ10 by statins may diminish ATP, preventing closure 

of ATP-sensitive K+ channels and membrane depolarization, resulting in reduced insulin 

release; additionally, mitochondrial dysfunction may also be a consequence. While statins 

have been shown to inhibit glucose-induced insulin secretion (Salunkhe et al. 2016; Zhou 

et al. 2014; Zhao and Zhao 2015), suppress CoQ10 synthesis (Marcoff and Thompson 

2007), and production of ATP (Zhou et al. 2014), a role for OATP-mediated statin 

transport in this mechanism has not been explored.  
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1.5.2 Hypothesis 

We hypothesize that expression and activity of OATP transporters in pancreatic β cells 

regulate statin entry and contribute to statin-induced impairment of insulin secretion 

through disruption of mitochondrial function and ATP-dependent signalling. 

1.5.3 Specific Aims 

The aims of this project are: 

1) To characterize the presence and interindividual variation of OATP1B3 and other 

key statin carriers in human adult pancreatic islets as well as their co-localization 

with α and β cells to gain first insights to specific endocrine roles 

2) To elucidate the role of statin transport in β cell function using a murine β cell 

model with altered OATP expression 
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2 Materials and Methods1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1Specific Aim 1 reproduced (adapted) from: Kim M, Deacon P, Tirona RG, Kim RB, Pin CL, 

Meyer zu Schwabedissen HE, Wang R, and Schwarz UI (2017). Characterization of OATP1B3 

and OATP2B1 transporter expression in the islet of the adult human pancreas. Histochemistry 

and Cell Biology, doi:10.1007/s00418-017-1580-6, with permission of Springer © Springer-

Verlag Berlin Heidelberg 2017. 
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2.1 Specific Aim 1: Characterization of statin carrier expression and 

OATP subcellular localization in human pancreatic islets 

2.1.1 Histologic sections of pancreata, isolated islets and other tissues  

Normal human adult hepatic RNA (N=1) and pancreatic RNA (N=1) were purchased 

from Biochain (Newark, California, USA) or RNA extracted from a liver tissue sample 

(N=1) obtained through the Liver Tissue Cell Distribution System (Minneapolis, 

Minnesota; funded by NIH Contract #N01-DK-7-0004/HHSN267200700004C) and from 

a pancreas tissue sample (N=1; gift by Dr. V. McAllister) with approval by the Health 

Science Research Ethics Board (HSREB) at the University of Western Ontario (protocol 

HSREB-2597). Isolated human adult islets from 4 different individuals (approximately 

5000 islet equivalents per subject received) were provided by the Juvenile Diabetes 

Research Foundation Centre for Islet Cell Replacement at the McGill University Health 

Centre, and RNA extracted for analysis as previously described (Krishnamurthy et al. 

2011).  

Formalin fixed paraffin-embedded tissue sections of normal pancreata were purchased 

(N=3; Biochain) or obtained as previously reported (N=7) (Krishnamurthy et al. 2011). 

Diseased pancreatic tissues including tumour-adjacent pancreas (NP, sections from N=3 

patients), chronic pancreatitis (INFP, N=3) and pancreatic ductal adenocarcinoma (PDAC, 

N=3) were obtained from the Pathology Archive (London Health Science Centre, Ontario, 

Canada) with approval from the HSREB at the University of Western Ontario (protocol 

HSREB-17012). All tissue sections and subject characteristics are summarized in Table 

2.1.  
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Table 2.1. Subject characteristics of paraffin-embedded pancreatic tissue sections 

utilized for immunostaining. 

Sample ID Age 

(years) 

Sex Histology Source Analyses 

B105098 76 Male Normal BioChain IF/ MM 

analysis  

B903130, 

B903132 

77 Male Normal BioChain IF/ MM 

analysis 

B605108 71 Male Normal BioChain IHC, IF/ 

MM 

analysis 

AHP 1, AHP 3, 

AHP 4 

39 Male Normal JDRF, McGill 

University 

IF/ MM 

analysis 

AHP 2 20 Unknown Normal JDRF, McGill 

University 

IF/ MM 

analysis 

05SH44 60 Female Normal JDRF, McGill 

University 

IHC; IF/ 

MM 

analysis 

05SH45 60 Female Normal JDRF, McGill 

University 

IF/ MM 

analysis 

05SH46 46 Male Normal JDRF, McGill 

University 

IHC; IF/ 

MM 

analysis 

05SH47 61 Male Normal JDRF, McGill 

University 

IF/ MM 

analysis 

05SH57 56 Male Normal JDRF, McGill 

University 

IF/ MM 

analysis 

09-30492 A3 

[P1-NP]  

Unknown Unknown Tumour-

adjacent  

Pathology 

archive, 

UWO 

IHC 

09-37568 B11 

[P2-NP] 

Unknown Unknown Tumour-

adjacent 

Pathology 

archive, 

UWO 

IHC 

93-11845 N  

[P3-NP] 

Unknown Unknown Tumour-

adjacent 

Pathology 

archive, 

UWO 

IHC 
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01-25068 A8 

[P4-INFP] 

Unknown Unknown Chronic 

inflammation 

Pathology 

archive, 

UWO 

IHC 

94-3136 H  

[P5-INFP] 

Unknown Unknown Chronic 

inflammation 

Pathology 

archive, 

UWO 

IHC 

00-31340 B3 

[P6-INFP]  

Unknown Unknown Chronic 

inflammation 

Pathology 

archive, 

UWO 

IHC 

10-941 C6 

[P7-PDAP] 

Unknown Unknown Adenocarcinoma 

 

Pathology 

archive, 

UWO 

IHC 

06-5970 E4 

[P8-PDAP] 

Unknown Unknown Adenocarcinoma  Pathology 

archive, 

UWO 

IHC 

06-10423 H8 

[P9-PDAP]  

Unknown Unknown Adenocarcinoma  Pathology 

archive, 

UWO 

IHC 

JDRF, Juvenile Diabetes Research Foundation Centre for Islet Cell Replacement; UWO, 

University of Western Ontario; IHC, immunohistochemistry; IF, immunofluorescence; 

MM analysis, morphometric analysis 
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2.1.2 Gene expression analysis 

Total RNA was reverse transcribed (2 μg) into cDNA using TaqMan® Reverse 

Transcription Reagents (Applied Biosystems, Carlsbad, CA). Relative mRNA expression 

of statin transporters OATP1B3, OATP1B1, OATP1A2, OATP2B1, BCRP, MRP2, and P-

gp in human pancreas and islets was examined compared to liver or kidney, tissues with 

known expression, by quantitative real-time polymerase chain reaction (qRT-PCR) with 

SYBR® Green (ABI Prism 7700, Applied Biosystems) utilizing previously optimized 

primer sets (Glaeser et al. 2007; Prentice et al. 2014) (Primer sequences in Table 2.2). 

Due to reported lack of expression for OATP1B1 and OATP1B3, kidney represents a 

negative control for these two genes. Reactions were performed in duplicate for human 

islet preparations, and in triplicate for all other tissues. Gene expression levels for each 

tissue were normalized to 18S ribosomal RNA expression (TaqMan Assay 

Hs99999901_s1), and analyzed using the ΔCT method (ΔCT = CT, target - CT, 18S) 

(Schmittgen and Livak 2008). Data are presented as the fold-difference in transporter 

gene expression in islets or other tissues compared to that of liver (i.e. mean 2-ΔCT for 

OATP1B3 in islets or other tissues/ mean 2-ΔCT for OATP1B3 in liver). All qRT-PCR 

consisted of an initial denaturation at 95°C for 20 seconds, followed by 40 cycles at 95°C 

for 1 second, 60°C for 20 seconds. RNAse-free water was used as the non-template 

control.  
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Table 2.2. Primers used for qRT-PCR analysis of human statin transporter 

expression. 

Origin Gene Forward (5'-3') Reverse (5'-3') Reference 

Human OATP1A2 AAGACCAACGCAG

GATCCAT 

GAGTTTCACCCATT

CCACGTACA 

Glaeser et 

al. (2007) 

 OATP1B1 TGAACACCGTTGG

AATTGC 

TCTCTATGAGATGT

CACTGGAT 

Glaeser et 

al. (2007) 

 OATP1B3 GTCCAGTCATTGGC

TTTGCA 

CAACCCAACGAGA

GTCCTTAGG 

Glaeser et 

al. (2007) 

 OATP2B1 CTTCATCTCGGAGC

CATACC 

GCTTGAGCAGTTGC

CATTG 

Glaeser et 

al. (2007) 

 OAT3 CGATGTCCCAGCCA

AGTTCA 

AAGGGCACAAAGG

TGAGAGC 

Prentice et 

al. (2014) 

 BCRP TGGCTGTCATGGCT

TCAGTA 

GCCACGTGATTCTT

CCACAA 

Glaeser et 

al. (2007) 

 MRP2 ATGCTTCCTGGGGA

TAAT 

TCAAAGGCACGGA

TAACT 

Glaeser et 

al. (2007) 

 P-gp GTCCCAGGAGCCC

ATCCT 

CCCGGCTGTTGTCT

CCAT 

Glaeser et 

al. (2007) 
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2.1.3 Immunostaining of human pancreatic tissue 

Paraffin-embedded pancreatic tissue sections were stained for OATP1B3, OATP2B1, 

insulin and glucagon according to standard immunohistochemistry (IHC) or 

immunofluorescent (IF) protocols. Briefly, slides were deparaffinized, rehydrated, and 

subjected to antigen retrieval using Retrievit 8 (pH 8.0, BioGenex, Fremont, California), 

citrate buffer (0.01 M, pH 6.0), or EDTA buffer (0.01 M, pH 8), followed by blocking 

with 5% fetal bovine serum (FBS) in phosphate-buffered saline (PBS). Subsequently, 

sections were incubated at 4°C overnight with the following primary antibodies: rabbit 

polyclonal anti-OATP1B3 (dilution 1:150, custom-made) (Ho et al. 2006), rabbit 

polyclonal anti-OATP2B1 (1:50, custom-made) (Knauer et al. 2010), mouse monoclonal 

anti-insulin (1:1000; I2018, Sigma-Aldrich, St. Louis, Missouri, USA), and mouse 

monoclonal anti-glucagon (1:1000; G2654, Sigma-Aldrich). Sections were then 

incubated with the appropriately labeled secondary antibodies. For IHC, the avidin-biotin 

complex (ABC) method was used to detect rabbit or mouse primary antibodies via 

secondary biotinylated antibodies and streptavidin-horseradish peroxidase or alkaline 

phosphatase conjugates, respectively (Vectastain ABC kit rabbit IgG or ABC-AP kit 

mouse IgG, Vector Laboratories Inc., Burlingame, California, USA). Positive signals 

were visualized via the appropriate substrate/chromogen (AEC or Vector® Red, Vector 

Laboratories Inc.). Nuclei were counterstained using hematoxylin. For IF, slides were 

incubated with fluorescently labelled antibodies conjugated to Alexa Fluor® 488 or 633 

(Thermo-Fisher Scientific, Waltham, Massachusetts, USA). Slides were counterstained to 

mark nuclei using mounting medium containing DAPI (VECTASHIELD, Vector 

Laboratories Inc.). Stained sections were viewed using a Nikon Eclipse 80i microscope 

(Nikon Instruments Inc., Melville, New York, USA) or by confocal microscopy (LSM 

510 Meta laser scanning microscope, Carl Zeiss, Jena, Germany). 
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2.1.4 Quantitative imaging analysis of endocrine pancreatic morphology and 

colocalization 

Quantitative imaging analysis has been performed on normal human pancreatic sections 

of 10 subjects (Table 2.1) after dual immunofluorescent staining for insulin or glucagon 

with OATP1B3. Relative α- and β-cell area as well as the percentage colocalization of 

OATP1B3 with α and β cells within islets were analyzed by sex and age using the NIS 

Elements Basic Research Microscope Imaging Software (Nikon Instruments Inc.). 

To estimate α- and  β-cell populations in all individuals, the relative β-cell area was 

calculated as the ratio of β-cell area to exocrine area (Butler et al. 2003). To measure 

these ratios, consecutive immunostained sections from each subject were examined. For 

each individual, a representative area of a section was randomly chosen at 4x objective 

magnification for subsequent imaging analysis. Subsequently, images of 20 islets per 

subject were captured at 20x objective magnification. Islets, defined as a grouping of at 

least 4 insulin or glucagon positive cells, were selected in a systematic fashion across 

each tissue section. Using the analysis software, the total tissue area of each image was 

first quantified. Thereafter, the areas stained for insulin and glucagon were quantified 

based on signal intensity after performing an intensity threshold on a binary layer, and a 

region of interest (ROI) automatically created around the thresholded area(s). The 

resulting thresholded binary areas for a specific fluorophore allowed the calculation of 

the relative β-cell or α-cell area to exocrine tissue area (total tissue area minus β-cell or α-

cell area of the image), respectively, as well as β-cell to α-cell ratio. For each individual, 

mean relative β-cell and α-cell areas (in percent) and β-cell to α-cell ratio were calculated 

based on the results from 20 islets, and average data ( SD) for all individuals as well as 

by age and sex presented. 

Subsequently, the percentage of OATP1B3 colocalized with α and β cells and variability 

by age and sex was determined on the above described images of normal pancreatic 

tissues (N=10, Table 2.1) assessing 20 islets per individual using the NIS imaging 

software. To determine colocalization with β cells, areas positive for OATP1B3, insulin 

as well as areas with overlapping staining for OATP1B3 and the endocrine marker, 

referred to as Intersection Mean Binary Area, were quantitatively assessed by performing 
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an intensity threshold and ROI on multiple binary layers including the two fluorophores 

as described earlier. Subsequently, colocalization with α cells was also assessed. The 

percentage of cells where OATP1B3 co-localized with either β or α cells was calculated 

as the ratio of the Intersection Mean Binary Area to insulin-positive binary area or 

glucagon-positive binary area, and reported in percent. Data were expressed as mean  

SD of islets, and differences among ages assessed by an unpaired Student’s t test.  

IF co-staining for OATP2B1 with endocrine markers was not feasible, therefore we 

visually explored co-expression of OATP2B1 with endocrine islet cells using IHC after 

serial staining for OATP2B1 followed by insulin or glucagon in a subset of normal tissue 

sections from selected 3 patients. 

Furthermore, explorative analysis of variable OATP1B3 islet expression was performed 

in diseased pancreatic tissue sections (tumour adjacent, chronic inflammation, 

adenocarcinoma) of 9 different patients (Table 2.1) by immunostaining (IHC only).  
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2.2 Specific Aim 2: Elucidating the role of OATP-mediated statin 

transport in pancreatic islet cell function using a murine β cell model 

2.2.1 Cell culture and maintenance 

INS-1 cells were seeded in 75 cm2 Falcon™ tissue culture treated flasks (Thermo-Fisher 

Scientific) with RPMI 1640 medium (Gibco 31800-022, Thermo-Fisher Scientific) 

supplemented with 10% FBS, 25 mM HEPES, 2 mM L-glutamine, 50 µM 2-

mercaptoethanol, 23.8 mM sodium bicarbonate, and 1 mM sodium pyruvate. When 

confluent, cells were washed with Dulbecco’s phosphate-buffered saline (Gibco 14040-

182, Thermo-Fisher Scientific) and digested with 0.05% trypsin (Gibco 25300-054, 

Thermo-Fisher Scientific). Once all cells were detached, trypsin was deactivated by 

adding RPMI growth medium and resuspended cells transferred to a new flask with fresh 

growth medium at the desired ratio. 

2.2.2 Gene expression analysis 

RNA was extracted from INS-1 rat insulinoma β cell line with TRIzol® according to the 

manufacturer’s instructions (Thermo-Fisher Scientific, Waltham, Massachusetts, USA). 

Gene expression analysis was performed in INS-1 (N=3) and rat liver (N=1, pool of 10 

donors, B204116, BioChain) as described in Section 2.1.2 using previously published 

primers (Hou et al. 2014) (Primer sequences in Table 2.3). Reactions were performed in 

triplicate for each sample. Gene expression levels for INS-1 and rat liver were normalized 

to Gapdh and analyzed using the ΔCT method (ΔCT = CT, target - CT, 18S) (Schmittgen and 

Livak 2008). Data are presented as described in Section 2.1.2, with the fold-difference in 

gene expression in INS-1 or other tissues compared to liver. All qRT-PCR consisted of 

an initial denaturation at 95°C for 20 seconds, followed by 40 cycles at 95°C for 1 

second, 60°C for 20 seconds. RNAse-free water was used as the non-template control.  
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Table 2.3. Primers used for qRT-PCR analysis of rat statin uptake transporter 

expression. 

Origin Gene Forward (5'-3') Reverse (5'-3') Reference 

Rat Oatp1a1 AGGTCGAGAATGA

CGGAGAA 

ATTCCGGAGGAAG

GGAAGTGT 

Custom-

designed 

 Oatp1a4 CCTAGGCATAGGC

ATTTGGA 

TCAACCAAAGCAC

AAAGCAG 

Hou et al. 

(2014) 

 Oatp1a5 GCAGGATGATGTG

GATGGAACTAAC 

GCATGTAAATCGG

ATTGCAGGAG 

Hou et al. 

(2014) 

 Oatp1b2 AACATGCTTCGTGG

GATAGG 

CATGGAAGTGTGC

CCTTCTT 

Hou et al. 

(2014) 

 Gapdh AACTTGGCATTGTG

GAAGGG 

GGATGCAGGGATG

ATGTTCT 

Hou et al. 

(2014) 
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2.2.3 Adenoviral transduction 

An adenoviral vector for human OATP2B1 was previously created using the ViraPower 

Adenoviral Expression System (Invitrogen) (Knauer et al. 2010) and used to confer 

transient overexpression of human OATP2B1 in INS-1 cells. A previously purified LacZ 

adenovirus (Yin 2014) was used as a negative control. Cells were plated in multiwell 

plates and adenovirus diluted in phenol red free RPMI medium was added the following 

day at the desired multiplicity of infection (MOI) as previously determined. After 24 

hours, growth medium was changed and cells were allowed to grow for an additional 24 

hours before the desired experiments were performed. 

2.2.4 Rosuvastatin transport and uptake inhibition studies in INS-1 cells 

INS-1 cells were plated in 12-well plates at a density of 2.0 x 105 cells/mL and incubated 

for 24 hours at 37°C and 5% CO2. Following the 24-hour incubation, growth medium 

was replaced with pre-warmed Opti-MEM and cells were incubated for 30 minutes. To 

initiate transport, radiolabeled [3H]-rosuvastatin (0.1 µM) was applied to cells for 30 

minutes, then cells were washed with ice-cold PBS to arrest transport activity. Cells were 

lysed with 1% sodium dodecyl sulfate (SDS) and radioactivity of cell lysates 

subsequently assessed by liquid scintillation spectrometry to quantify intracellular 

accumulation of radiolabeled substrate.  

To assess uptake inhibition, INS-1 cells were co-treated with [3H]-rosuvastatin and 

known OATP inhibitors rifampicin (1000 µM) or indomethacin (100 µM) for 30 minutes 

and analyzed as described above.  

Rosuvastatin transport studies were also performed in INS-1 cells following 48-hour 

adenoviral transduction with human OATP2B1 (Ad-OATP2B1) compared to INS-1 cells 

transduced with LacZ adenovirus control (Ad-LacZ). 

2.2.5 ATP concentration assay 

ATP concentration was measured using a CellTiter-Glo® Luminscent Viability Assay 

(Promega Corporation, Madison, Wisconson, USA). In brief, INS-1 cells were plated in 

96-well plates at 2.5 x 105 cells/ml and incubated for 24 hours at 37°C and 5% CO2, after 
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which growth medium was replaced with rosuvastatin, atorvastatin, or pravastatin (10, 1, 

0.1, 0.01 μM) or DMSO control (0.01%) diluted in phenol red free growth medium for an 

additional 24 hours. To quantify ATP concentration, CellTiter-Glo® reagent was added 

to each well and cell lysis was induced by shaking for 2 minutes. Luminescence from 

each well was measured by a GloMax® 20/20 Luminometer (Promega). ATP 

concentration was also measured following 24-hour statin treatment in INS-1 cells 

transduced with Ad-OATP2B1 compared to Ad-LacZ control. 

2.2.6 Glucose-stimulated insulin secretion 

INS-1 cells were plated in 48-well plates at 1.0 x 105 cells/ml and incubated for 48 hours, 

with RPMI medium changed after 24 hours. RPMI medium was replaced with phenol red 

free RPMI containing rosuvastatin, atorvastatin, or pravastatin (10, 1, 0.1 μM) with or 

without rifampicin (100 μM) for 24 hours. Subsequently, glucose-stimulated insulin 

secretion (GSIS) was performed. First, growth medium was collected from each well and 

cells were washed with Krebs-Ringer HEPES (KRH) wash buffer. Low-glucose KRH 

buffer (2.2 mM glucose) stimulation for basal insulin secretion occurred as two 

consecutive 1-hour incubations, followed by a 1-hour incubation in high-glucose KRH 

buffer (22 mM); supernatant was collected every hour. Glucose concentrations and KRH 

buffers were adapted from previously published methods (Wang et al. 2004; Pedersen et 

al. 2007; Orecna et al. 2008). All collected supernatants were stored at -20°C for insulin 

quantification. For this study, samples from the second low-glucose stimulation and the 

high-glucose stimulation were used for analysis. Stimulation index (SI), calculated as 

insulin concentration following high-glucose stimulation divided by insulin concentration 

following low-glucose stimulation, was used as a normalized measure of insulin 

secretion. 

GSIS was also performed in Ad-OATP2B1 INS-1 cells following 24-hour statin 

treatment with or without rifampicin and compared to INS-1 cells transduced with Ad-

LacZ control. 
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2.2.7 Enzyme-linked immunosorbent assay 

Insulin concentrations were quantified by enzyme-linked immunosorbent assay (ELISA) 

using an Ultra-Sensitive Rat Insulin ELISA Kit (Crystal Chem, Downers Grove, Illinois, 

USA). Samples were diluted ten-fold and incubated in a 96-well antibody-coated 

microplate for 2 hours at 4°C. Each well was washed five times with wash buffer and 

incubated with 100 uL anti-insulin enzyme conjugate for 30 minutes at RT. Wells were 

washed seven times and then incubated in the dark with 100 uL light-sensitive enzyme 

substrate solution. The reaction was stopped after 40 minutes with 100 uL enzyme 

reaction stop solution and absorbance values at 450 and 630 nm (A450 and A630) were 

measured on a Multiskan Spectrum microplate spectrophotometer (Thermo-Fisher 

Scientific). Insulin concentrations (ng/mL) were calculated by subtracting A630 values 

from A450 values and interpolating from a rat insulin standard curve. 

2.2.8 Immunofluorescent staining of cultured cells 

INS-1 cells were seeded onto a 4-well lysine-coated CultureSlide (Thermo-Fisher 

Scientific) at a density of 5.0 x 105 cells/mL and transduced with OATP2B1 adenovirus 

at an MOI of 100 as previously described. Cells were fixed onto the slide with 4% 

paraformaldehyde (1:4 diluted from 16% formaldehyde, CAAA43368-9M, VWR 

International, Mississauga, Ontario), washed, and then blocked for 1 hour at RT with 5% 

FBS in PBS containing 0.01% TritonX-100 (Sigma-Aldrich). Slides were then incubated 

overnight at 4°C with a commercial anti-OATP2B1 antibody (1:200, H-189, Santa Cruz 

Biotechnology, Dallas, Texas, United States) diluted in 5% FBS in PBS. After an 

additional blocking step, slides were incubated with AlexaFluor® 488 (Thermo-Fisher 

Scientific) for 1 hour, washed thoroughly, and VECTASHIELD® Antifade Mounting 

Medium with DAPI (Vector Laboratories Inc.) was added to each section. Images were 

taken with a Nikon Eclipse 80i microscope (Nikon Instruments Inc.). 

2.2.9 Evaluation of mitochondrial function 

Caspase-9 activity was used as a measure of mitochondrial function and was evaluated 

with the Caspase 9 Assay Kit (Colorimetric) (Abcam Inc, Toronto, ON, Canada). INS-1 

cells were plated at a density of 5.0 x 105 cells/mL in a 12-well plate and transduced with 
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either LacZ or OATP2B1 adenovirus the following day as previously described. Medium 

was then replaced with 0.1% DMSO, 1 µM rosuvastatin, or 10 µM rosuvastatin diluted in 

phenol red free RPMI medium on the fourth day. After a 24-hour incubation, cell lysates 

were collected in lysis buffer and incubated on ice for 10 minutes. Lysates were 

centrifuged at 10,000 x g for 1 minute to pellet cell debris. The supernatant was 

transferred to a fresh tube and protein was quantified using a BCA assay (see below). 

Following protein quantification, protein lysates were diluted to 2 µg/µL in lysis buffer 

and plated onto a 96-well plate. An equal volume of reaction buffer containing 10 mM 

DTT was added to each sample and then the reaction was initiated with 5 µL of LEHD-

pNA substrate. The plate was incubated at 37°C for 2 hours and then absorbance was 

read at 405 nm on a Multiskan Spectrum microplate spectrophotometer (Thermo-Fisher 

Scientific). Caspase activity was expressed as fold-difference from DMSO.  

2.2.10 Protein quantification 

INS-1 cells were grown to 80-90% confluency in 12-well plates then lysed with chilled 

Pierce IP Lysis Buffer (Thermo-Fisher Scientific) supplemented with Protease Inhibitor 

Cocktail (P8340, Sigma-Aldrich). Cell lysates were transferred to microcentrifuge tubes 

and incubated on ice for 5 minutes, then centrifuged at 13,000 x g for 10 minutes at 4°C 

to pellet cell debris. The supernatant was transferred to a fresh tube and quantified using 

the Pierce BCA Protein Assay Kit (Thermo-Fisher Scientific). In brief, 25 µL of protein 

lysate and 200 µL of BCA Working Reagent were added per well of a 96-well microplate 

and incubated at 37°C for 30 minutes. The absorbance value of each well was read at 562 

nm on a Multiskan Spectrum spectrophotometer and concentrations calculated from a 

BCA standard curve. 

2.2.11 Western blot analysis 

An XCell SureLock Mini-Cell electrophoresis system (Thermo-Fisher Scientific) was 

used to perform gel electrophoresis. Protein lysates were collected as previously 

described and loaded onto a NuPage 4-12% Bis-Tris Protein Gel (Thermo-Fisher 

Scientific). The XCell SureLock Mini-Cell was run at 150 volts (V) for 1 hour and 30 

minutes and then proteins were transferred onto a nitrocellulose membrane in an XCell II 
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Blot Module (Thermo-Fisher Scientific) at 30 V for 1 hour and 30 minutes. The 

nitrocellulose membrane was washed in Phosphate Buffered Saline-Tween (PBS-T, 0.1% 

Tween-20) and incubated in blocking buffer (5% milk and 1% bovine serum albumin in 

PBS-T) for 1 hour at RT. The membrane was then incubated overnight at 4°C with an 

anti-OATP2B1 antibody diluted in PBS-T with 0.1% BSA (1:200, H-189, rabbit, Santa 

Cruz Biotechnology, Dallas, Texas, USA). Following the incubation with primary 

antibody, the membrane was washed with PBS-T and an HRP-conjugated secondary 

antibody was added (1:20,000, 172-1019, goat anti-rabbit, Bio-Rad, Hercules, California, 

USA) for 1 hour at RT. To visualize protein, 2 mL of Amersham ECL Western Blotting 

Detection Reagent (GE Healthcare Life Sciences, Mississauga, Ontario, Canada) was 

added to the membrane for 1 minute and then the membrane was exposed on an 

ImageQuant LAS 500 imager (GE Healthcare Life Sciences). 

2.3 Statistical analyses 

All statistical analyses were performed using GraphPad Prism 5 (GraphPad Software 

Inc., La Jolla, CA, USA). Unpaired Student’s t test, Mann-Whitney U test, Kruskal-

Wallis test followed by Dunn’s Multiple Comparison test, and two-way ANOVA 

followed by Bonferonni post-hoc analysis were performed as appropriate after testing for 

normal distribution of the data. Results were considered statistically significant at 

P<0.05. 
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1Specific Aim 1 reproduced (adapted) from: Kim M, Deacon P, Tirona RG, Kim RB, Pin CL, 

Meyer zu Schwabedissen HE, Wang R, and Schwarz UI (2017). Characterization of OATP1B3 

and OATP2B1 transporter expression in the islet of the adult human pancreas. Histochemistry 

and Cell Biology, doi:10.1007/s00418-017-1580-6, with permission of Springer © Springer-

Verlag Berlin Heidelberg 2017. 
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3.1 Specific Aim 1: Characterization of statin carrier expression and 

OATP subcellular localization in human pancreatic islets 

3.1.1 Statin transporter gene expression in human pancreatic islets 

Based on our previous report (Meyer Zu Schwabedissen et al. 2014), we assessed relative 

mRNA expression of OATP1B3 as well as other important members of the OATP1 and 

OATP2 families in normal adult pancreatic islets compared to liver, kidney and pancreas 

(Figure 3.1). 

In human islets, marked mRNA expression of uptake transporters OATP1B3 (CT: 29.3  

2.09), OATP2B1 (CT: 25.6), and OATP1A2 (CT: 28.4  0.54) was detected. Compared to 

human liver, a tissue recognized for its abundant expression of OATP1B3 and OATP2B1, 

expression in islets was 13.5-fold lower for OATP1B3, and 7.3-fold higher for OATP2B1. 

Interestingly, OATP1A2 islet expression was 49-fold higher than liver, and 64-fold higher 

than kidney, the latter tissue also known to express OATP1A2. Human islets showed 

abundant mRNA expression of statin efflux transporters BCRP and P-gp (mean CT 

values: 20.3, 24.6); expression was 320- and 24.3-fold greater than liver, respectively 

(Figure 3.2). We detected very low levels of uptake transporters OATP1B1 and OAT3 

and efflux transporter MRP2 in islets (mean CT values: 34.7, 34.7, and 33.4, respectively) 

and no OATP1B1 or OATP1B3 mRNA in kidney (negative control). 

To evaluate differential expression in endocrine to exocrine pancreas, we compared islet 

expression of uptake and efflux transporters to human pancreas. On average, islet 

expression of uptake transporters OATP2B1, OATP1B3, and OATP1A2 was 54.0-, 5.1-, 

and 199-fold higher, respectively, than that observed in total pancreatic tissue. Efflux 

transporters P-gp and BCRP were detected in islets at levels 2091- and 204-fold greater 

than pancreas. 



  

 

 

 

 

 

Figure 3.1. Statin uptake transporter expression in human tissues. Relative mRNA 

expression of OATP2B1, OATP1B3, OATP1A2, OATP1B1, and OAT3 normalized to 18S 

ribosomal RNA. Results are represented as mean fold-difference of mRNA expression 

compared to liver. OATP2B1, OATP1B3, and OATP1A2 were detected in adult human 

islets. Each data point represents one individual and mean ± SEM for each organ is 

shown. 
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Figure 3.1. Statin uptake transporter gene expression in human tissues. 
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Figure 3.2. Statin efflux transporter expression in human tissues. Relative mRNA 

expression of BCRP, P-gp, and MRP2 normalized to 18S ribosomal RNA. Results are 

represented as mean fold-difference of mRNA expression compared to liver. High levels 

of BCRP and P-gp were detected in human islets. Each data point represents one 

individual and mean ± SEM for each organ is shown. 
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3.1.2 Characterization of OATP1B3 protein expression and distribution in normal 

adult islets 

After demonstrating marked gene expression of OATP1B3 in human islets, we next 

assessed its expression and distribution within the islet by co-staining with the endocrine 

markers insulin or glucagon in sections of normal pancreatic tissue. Dual 

immunofluorescent staining (Figures 3.3, 3.4) confirmed OATP1B3 islet expression and 

showed that within islets, OATP1B3 was primarily detected in glucagon-positive (α) 

cells, and in only a few insulin-positive (β) cells. Using confocal microscopy, staining 

was largely observed within the endocrine cells (Figure 3.3B).  



46 

 

 

Figure 3.3. Representative images of OATP1B3 co-localization with α and β cells in 

adult pancreatic islets. Using immunofluorescent staining, pancreas sections of a 39-

year old male subject were double-stained for OATP1B3 [green] with insulin [red] or 

glucagon [red] and DAPI [blue]. Separate and merged images are shown (A, 40x 

objective; B, 100x objective). Scale bars in 50 or 10 µm. White arrows indicate co-

localization. 
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Figure 3.4. Representative images of OATP1B3 co-localization with α and β cells by 

age in a series of adult individuals. Using immunofluorescent staining, pancreatic tissue 

sections were stained for OATP1B3 [green] with glucagon [red] (A) or insulin [red] (B) 

and DAPI [blue]. Separate and merged images are shown (20x objective). Scale bar in 

100 µm. White arrows indicate co-localization. 
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We further quantitatively explored variability in co-expression and the effect of age and 

sex on the presence of OATP1B3 in these endocrine cell types in normal pancreatic tissue 

sections of 10 subjects (Figure 3.6). We first evaluated relative α and β cell area and 

relative β to α cell ratio in studied normal pancreatic tissue sections (Figure 3.5). 

Relative α and β cell area (%) was 4.4 ± 1.2% and 4.6 ± 2.5%, respectively, and the β to α 

cell area ratio was 1.35 ± 1.08 (min, max; 0.44, 3.92), indicating no difference of 

endocrine cell populations between the studied age groups (Figure 3.5). We observed 

overall variable expression of OATP1B3 with both endocrine cell types (Figure 3.6). 

Among all subjects, 10.7  8.3% (mean  SD) of insulin-positive cells also showed 

staining for OATP1B3 compared to 40.4  25.1% of glucagon-positive cells. Stratified 

by age, 2- to 3-fold higher percentage of OATP1B3 co-localized with endocrine cells was 

observed in older individuals (≥60 years) compared to those <60 years. The age cutoff of 

60 years is commonly used in studies assessing type II diabetes risk in older individuals; 

furthermore, type II diabetes prevalence is thought to peak at 60-74 years of age 

(Kirkman et al. 2012; De Tata 2014). Age-related differences reached statistical 

significance for OATP1B3 co-localized with β cells (<60 years: 4.5  2.0% and ≥60 

years: 14.9  8.4%; p=0.0449), but were not significant for OATP1B3 co-localized with 

α cells (<60 years: 22.2  7.6% and ≥ 60 years: 52.6  25.7%; p=0.054); representative IF 

images are shown in Figure 3.4. We were not able to assess sex-related differences due 

to the limited sample size (2 females due to unknown sex of one subject).  
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Figure 3.5. Quantitative analysis of endocrine cell area in healthy human pancreatic 

tissue sections from 10 individuals. (A) Relative α-cell area expressed as percentage of 

surrounding exocrine tissue area. (B) Relative β-cell area expressed as percentage of 

surrounding exocrine tissue area. (C) Ratio of β-cell area to α-cell area. No significant 

age-related difference was detected for endocrine cell area or endocrine cell area ratio. 

Results shown as mean ± SD. Statistical analyses performed using an unpaired Student’s 

t test. 
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Figure 3.6. Quantitative analysis of OATP1B3 co-localization in normal human 

pancreatic tissue sections from 10 individuals. (A) Co-localization of OATP1B3 with 

α cells, expressed as percentage of α cell area. (B) Co-localization of OATP1B3 with β 

cells, expressed as percentage of β cell area. Statistical significance was reached for age-

related differences, with individuals older than 60 years of age having greater co-

localization (p=0.0449).  Results shown as mean ± SD. Statistical analyses performed 

using an unpaired Student’s t test.  
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3.1.3 Characterization of OATP2B1 protein expression and distribution in normal 

adult islets 

OATP2B1 mRNA expression was also abundant in islets, exceeding that of liver. In 

contrast to OATP1B3, OATP2B1 was primarily detected in insulin-positive (β) cells, and 

only to a more limited extent in glucagon-positive (α) cells (Figure 3.7) using serial 

immunocytochemistry staining of OATP2B1 and endocrine markers in normal pancreatic 

tissues from 3 different individuals. 



  

 

 

 

Figure 3.7. Immunohistochemical staining of OATP2B1 in human pancreatic tissue 

sections from 3 individuals. For each individual, consecutive pancreatic sections were 

stained for OATP2B1 (brown staining - AEC), insulin (purple - Vector® Red), glucagon 

(purple) alone (A, top 2 rows), or co-stained for OATP2B1 with insulin or glucagon (A, 

bottom row; B; C), resulting in two visible chromogens per section (brown and purple). 

Images were taken at 10x or 40x objective. No primary antibody was used for control 

(A). Scale bar in 100 µm (10x objective) or 50 µm (40x objective). Black arrows indicate 

areas of co-localization. 

 



52 

 

 

Figure 3.7. Immunohistochemical staining of OATP2B1 in human pancreatic tissue 

sections from 3 individuals.  
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3.1.4 Characterization of OATP1B3 expression in islets of the diseased pancreas 

We further evaluated by immunocytochemistry, if pancreatic disease affects OATP1B3 

islet expression, and observed more intense OATP1B3 staining in islets from patients 

with chronic pancreatitis as well as PDAC compared to tumour-adjacent normal 

pancreatic tissues (Figure 3.8).  
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Figure 3.8. Immunocytochemical detection of OATP1B3 in paraffin-embedded 

human diseased pancreatic tissue sections. Immunohistochemical staining of 

OATP1B3 in human pancreatic tissue sections from 9 patients with chronic pancreatitis 

(INFP; P4-P6) and pancreatic ductal adenocarcinoma (PDAP; P6-P9) compared to 

normal tumour-adjacent pancreatic tissue. Images suggest highly variable OATP1B3 

expression among diseased pancreatic tissues (staining observed: INFP>PDAP>NP), 

largely restricted to islets. Representative images were taken at low power (Objective, 

scale bar; 10x, 100 m). Black arrows indicate OATP1B3 detection in islets.  
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3.2 Specific Aim 2: Elucidating the role of OATP-mediated statin 

transport in pancreatic islet cell function using a murine β cell model 

3.2.1 Statin transporter gene expression analysis in INS-1 cells 

Gene expression analysis of rat Oatp isoforms, many capable of statin transport (Ho et al. 

2006), was performed in the rat β cell model INS-1 and compared to rat liver. We 

detected abundant expression of Oatp1a5 in INS-1, whereas other Oatp isoforms were 

expressed at very low levels (Oatp1a1, Oatp1a4) or likely lacking (Oatp1b2) (Figure 

3.9). 
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Figure 3.9. Statin uptake transporter gene expression in INS-1. Relative mRNA 

expression of statin uptake transporters in INS-1 normalized to rat Gapdh. Results are 

expressed as fold-difference of INS-1 mRNA expression compared to liver. Expression 

of Oatp1a5 was detected in INS-1 cells while little to no expression of other Oatps was 

seen. Results are shown as mean ± SD. 
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3.2.2 Inhibition of rosuvastatin uptake in INS-1 cells by OATP inhibitors  

The INS-1 rat insulinoma cell line was selected as a β cell model due to its ability to 

secrete insulin in response to glucose (Pedersen et al. 2007). Due to the abundant 

expression of the statin carrier Oatp1a5, we next evaluated the uptake activity of 

rosuvastatin in this beta cell line. To assess statin uptake activity, transport experiments 

with [3H]-rosuvastatin were performed over 30 minutes as described. Dependence of 

statin uptake on rat Oatps was evaluated by co-incubation of INS-1 with rosuvastatin and 

two known OATP inhibitors, rifampicin or indomethacin. Uptake of [3H]-rosuvastatin in 

INS-1 cells was demonstrated and intracellular accumulation was significantly reduced 

(P<0.01) when [3H]-rosuvastatin was coadministered with rifampicin (1000 µM) or 

indomethacin (100 µM) (34.3% and 41.9% of control, respectively) (Figure 3.10). 

Statistical analyses performed using Kruskal-Wallis test with Dunn’s Multiple 

Comparison Test. 
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Figure 3.10. Intracellular accumulation of [3H]-rosuvastatin in INS-1 cells. 

Coadministration of known OATP inhibitors rifampicin (1000 µM) and indomethacin 

(100 µM) significantly reduced [3H]-rosuvastatin uptake at 30 minutes (**, P<0.01), as 

determined by Kruskal-Wallis test with Dunn’s Multiple Comparison Test. Results are 

shown as mean ± SD, n=3. 
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3.2.3 ATP concentration in INS-1 cells following statin treatment 

INS-1 intracellular ATP concentration was evaluated following a 24-hour treatment with 

rosuvastatin, atorvastatin, and pravastatin at concentrations ranging from 0.01-10 µM, 

since statin-induced reductions in ATP production have been previously reported (Zhou 

et al. 2014; Knauer et al. 2010). Compared to DMSO control, cell viability was only 

significant reduced when treated with 10 µM of rosuvastatin and atorvastatin (P<0.05 and 

P<0.001, respectively), but not pravastatin (Figure 3.11). Despite statistical significance, 

rosuvastatin and atorvastatin treatment at 10 µM only slightly reduced INS-1 ATP 

concentration to about 89.7% and 82.5% of DMSO control, respectively. 

Results for this experiment consist of a total of 6 mean values per treatment from three 

separate experimental days (n=3). Statistical analyses performed using two-way ANOVA 

followed by Bonferroni post-hoc test. 
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Figure 3.11. ATP concentration in INS-1 cells following 24-hour statin 

treatment.ATP concentration as percentage of DMSO control in INS-1 cells following 

24-hour treatment with rosuvastatin (●), atorvastatin (■), or pravastatin (▲), as 

determined by a luminescent assay. Significant reduction of ATP concentration was 

observed in INS-1 cells after 10 µM rosuvastatin (*, P<0.05) and atorvastatin (***, 

P<0.001) compared to DMSO control (100%), as determined by two-way ANOVA 

followed by Bonferroni post-hoc test. Results shown as mean ± SD, n=3. 
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3.2.4 Glucose-stimulated insulin secretion following statin treatment in INS-1 cells 

After ruling out biologically relevant changes in cell viability among the assessed 

concentration range of statins, glucose-stimulated insulin secretion (GSIS) was next 

evaluated in statin-treated INS-1 cells after 24-hour incubation with rosuvastatin, 

atorvastatin, and pravastatin at 0.1, 1, and 10 μM. Rosuvastatin significantly impaired 

high glucose-stimulated insulin secretion compared to DMSO control at a concentration 

of 10 µM (P<0.05), which is further reflected in a significant reduction in stimulation 

index (SI) (P<0.01) (Figure 3.12). Dose-dependent reductions of high glucose-stimulated 

insulin secretion and SI were observed for rosuvastatin; a significant difference was 

detected between insulin secretion at 0.1 µM and 10 µM rosuvastatin. Atorvastatin 

treatment at 1 µM significantly decreased SI compared to control (P<0.05). No 

significant changes in insulin secretion were detected with pravastatin treatment at all 

concentrations. Statistical analysis was not performed for 10 µM atorvastatin treatment 

due to small sample size with data from only two experimental days. 

Results for this experiment, except atorvastatin at 10 µM consist of a total of 8 mean 

values per treatment from three separate experimental days (n=3). Statistical analyses 

performed using two-way ANOVA followed by Bonferroni post-hoc test. 



  

 

 

 

Figure 3.12. Glucose-stimulated insulin secretion (GSIS) in statin-treated INS-1 cells. 

Insulin secretion for low glucose (LG) and high glucose (HG) conditions represented as 

percentage of DMSO control. Significant reductions in HG-stimulated insulin secretion 

and stimulation index for rosuvastatin (10 µM) and atorvastatin (1 µM) compared to 

DMSO control. Dose-dependent effects were seen with rosuvastatin treatment. Results 

are shown as mean ± SD, n=3 (with the exception of atorvastatin 10 µM, n=2). Statistical 

analysis performed by two-way ANOVA followed by Bonferroni post-hoc test (*, 

P<0.05; **, P<0.01). Test results for atorvastatin at 10 µM are not presented due to small 

sample size.  
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Figure 3.12. Glucose-stimulated insulin secretion (GSIS) in statin-treated INS-1 

cells.  
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The GSIS experiment was repeated in INS-1 cells co-incubated with statins at 1 and 10 

µM and the known Oatp inhibitor rifampicin in order to evaluate if unspecific inhibition 

of intracellular statin accumulation would rescue impaired insulin secretion. A significant 

overall effect of the inhibitor on SI was detected for rosuvastatin treatment (P=0.0259); 

however, no significant differences were observed after pairwise comparison for any of 

the assessed outcomes after 24-hour treatment of INS-1 cells with rosuvastatin, 

atorvastatin, and pravastatin at 1 and 10 µM with or without rifampicin (Figure 3.13).  

Results for this experiment consist of a total of 6 mean values per treatment from three 

separate experimental days (n=3). Statistical analyses performed using two-way ANOVA 

followed by Bonferroni post-hoc test. 
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Figure 3.13. Insulin secretion in INS-1 cells treated with statins and rifampicin. 

GSIS was assessed in INS-1 cells after 24-hour treatment with (A) rosuvastatin, (B) 

atorvastatin, and (C) pravastatin with or without Oatp inhibitor rifampicin (100 µM). No 

significant difference in insulin secretion was observed in INS-1 cells treated with statins 

compared to INS-1 cells treated with statins and rifampicin, as determined by two-way 

ANOVA followed by Bonferroni post-hoc test. Results for low-glucose (2.2 mM) and 

high-glucose (22 mM) stimulation expressed as percentage of DMSO control. All results 

are shown as mean ± SD, n=3.  
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3.2.5 Validation of Ad-OATP2B1 INS-1 cells as an OATP overexpression model 

To directly assess the role of OATP2B1 statin transport on insulin secretion, we 

transduced INS-1 cells with human OATP2B1 adenovirus (Ad-OATP2B1) as a β cell 

model with OATP overexpression which was compared to LacZ adenovirus control (Ad-

LacZ) in subsequent in vitro studies. To confirm OATP2B1 protein expression in Ad-

OATP2B1 INS-1 cells, Western blot analysis and immunofluorescent staining were 

applied. When probing for OATP2B1 on a Western blot, protein lysates from OATP2B1-

transduced INS-1 cells (MOI 100) showed the appropriate bands at the expected size of 

75 kDa (Hanggi et al. 2006), while intensity increased with protein concentration (Figure 

3.14). INS-1 cells transduced with LacZ adenovirus did not show any OATP2B1 

expression (Figure 3.14). Immunofluorescent staining for OATP2B1 confirmed 

predominant membrane expression of OATP2B1 protein in Ad-OATP2B1 INS-1 cells, 

whereas no staining was detected in control Ad-LacZ INS-1 (Figure 3.14). 
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Figure 3.14. Overexpression of human OATP2B1 adenovirus in INS-1 cells. (A) 

Western blot showing expression of OATP2B1 adenovirus (Ad-OATP2B1) in INS-1 

cells following transduction. (B) Immunofluorescent staining for OATP2B1 in INS-1 

cells transduced with Ad-OATP2B1 4x (1) and 20x (3) magnification. LacZ control (2,4) 

showed no staining for OATP2B1 (4x and 20x magnification). Scale bars in 500 µM (4x) 

and 100 µM (20x). 
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3.2.6 Statin transport activity of INS-1 cells transduced with OATP2B1 

adenovirus 

Rosuvastatin transport activity was assessed using [3H]-rosuvastatin as described 

previously to functionally validate INS-1 cells 24 hours after transduction with Ad-

OATP2B1. Rosuvastatin uptake in INS-1 cells increased in a dose-dependent manner 

when transduced with Ad-OATP2B1 compared to Ad-LacZ control at increasing MOIs 

(Figure 3.15). An MOI of 100 resulted in a 1.54-fold greater intracellular accumulation 

of [3H]-rosuvastatin in Ad-OATP2B1 INS-1 cells compared to LacZ, and was chosen for 

subsequent experiments as a β cell model with OATP2B1 overexpression. 
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Figure 3.15. Intracellular accumulation of [3H]-rosuvastatin in transduced INS-1 

cells. Uptake of [3H]-rosuvastatin shown as percentage of LacZ control. INS-1 cells 

expressing OATP2B1 showed an increase in rosuvastatin uptake. Results are shown as 

mean ± SD, n=2. Statistical analysis has not been performed. 
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3.2.7 ATP concentration in OATP2B1-overexpressing INS-1 cells after statin 

treatment 

We then assessed ATP concentration using a luminescent assay as described previously. 

ATP concentration was measured in Ad-OATP2B1 versus Ad-LacZ INS-1 cells 48 hours 

after transduction (MOI 100) following 24-hour statin treatment with rosuvastatin, 

atorvastatin, or pravastatin at 1 µM and 10 µM. Our results showed no significant 

difference between INS-1 cells transduced with LacZ control or OATP2B1 adenovirus 

(Figure 3.16).  

Results for this experiment consist of a total of 9 mean values per treatment from three 

separate experimental days (n=3). Statistical analyses performed using two-way ANOVA 

followed by Bonferroni post-hoc test. 
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Figure 3.16. ATP concentration in INS-1 following adenoviral transduction and 

statin treatment. ATP concentration shown as percentage of DMSO control. No 

significant change in ATP concentration was observed following 24-hour statin treatment 

in Ad-OATP2B1 INS-1 cells compared to Ad-LacZ control. Results shown as mean ± 

SD, n=3. Statistical analysis performed by two-way ANOVA followed by Bonferroni 

post-hoc test. 
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3.2.8 Glucose-stimulated insulin secretion in Ad-OATP2B1 INS-1 cells treated 

with statins 

In order to evaluate direct effects of OATP2B1-mediated statin transport on insulin 

secretion, GSIS was performed in INS-1 cells transduced with Ad-OATP2B1 compared 

to Ad-LacZ. High glucose-stimulated insulin secretion was significantly impaired in Ad-

OATP2B1 INS-1 cells compared to Ad-LacZ INS-1 cells when treated with 1 µM and 10 

µM rosuvastatin (0.31-fold reduction, P<0.001; 0.29-fold reduction, P<0.01, 

respectively) (Figure 3.17A).  Ad-OATP2B1 INS-1 cells treated with 1 µM pravastatin 

showed a 0.40-fold reduction in high glucose-stimulated insulin secretion compared to 

Ad-LacZ INS-1 cells (P<0.001), and a 0.41-fold reduction when treated with 10 µM 

pravastatin (P<0.001) (Figure 3.17C). No significant difference was detected between 

Ad-OATP2B1 INS-1 cells compared to Ad-LacZ cells treated with atorvastatin (1 µM) 

for any of the assessed outcomes. Statistical analysis was not performed for 10 µM 

atorvastatin due to the small sample size of two experimental days.  

Additionally, a significant increase in high glucose-stimulated insulin secretion was 

observed in Ad-LacZ INS-1 cells after pravastatin treatment at 1 µM compared to DMSO 

control (P<0.001, not shown on graph). Although this is not an OATP-mediated effect, 

this increase in insulin secretion with pravastatin treatment should be noted as it supports 

observations in literature (Abe et al. 2010). 

Results for this experiment, except for atorvastatin 10 µM, consist of a total of 6 mean 

values per treatment from three separate experimental days (n=3). Statistical analyses 

performed using two-way ANOVA followed by Bonferroni post-hoc test. 
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Figure 3.17. Insulin secretion in statin-treated INS-1 cells transduced with human 

OATP2B1 adenovirus.GSIS was assessed in INS-1 cells after treatment with (A) 

rosuvastatin, (B) atorvastatin, and (C) pravastatin after adenoviral transduction with 

human OATP2B1 or Ad-LacZ control. Results for low-glucose (2.2 mM) and high-

glucose (22 mM) stimulation expressed as percentage of Ad-LacZ or Ad-OATP2B1 

DMSO control. High glucose-stimulated insulin secretion in Ad-OATP2B1 INS-1 was 

significantly reduced with rosuvastatin and pravastatin (**, P<0.01; ***, P<0.001) 

compared to Ad-LacZ control, as determined by two-way ANOVA followed by 

Bonferroni post-hoc test. All results are shown as mean ± SD, n=3 (with the exception of 

atorvastatin 10 uM, n=2). 
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3.2.9 Mitochondrial function in Ad-OATP2B1 INS-1 cells treated with statins 

To further evaluate the mechanism of OATP-mediated statin-induced impairment of 

insulin secretion, we next evaluated caspase-9 activity as a measure of mitochondrial 

function in rosuvastatin-treated INS-1 cells at 1 and 10 µM with or without OATP 

overexpression. In Ad-OATP2B1 INS-1 cells, caspase activity was significantly 

increased compared to Ad-LacZ control after 24-hour treatment with rosuvastatin at 1 

µM and 10 µM (P<0.01 and P<0.001, respectively), with mean 1.24- and 1.48-fold 

differences, respectively (Figure 3.18).  

Results for this experiment consist of a total of 9 mean values per treatment from three 

separate experimental days (n=3). Statistical analyses performed using two-way ANOVA 

followed by Bonferroni post-hoc test. 
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Figure 3.18. Mitochondrial function in statin-treated INS-1 cells overexpressing 

human OATP2B1. Caspase-9 activity used as a marker for mitochondrial function. A 

significant increase in caspase-9 activity was observed in rosuvastatin-treated Ad-

OATP2B1 INS-1 cells compared to Ad-LacZ control (**, P<0.01; ***, P<0.001), as 

determined by two-way ANOVA followed by Bonferroni post-hoc test. Results shown as 

mean ± SD, n=3.  
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4 Discussion and Conclusions1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1Excerpts from this section reproduced (adapted) from: Kim M, Deacon P, Tirona RG, Kim RB, 

Pin CL, Meyer zu Schwabedissen HE, Wang R, and Schwarz UI (2017). Characterization of 

OATP1B3 and OATP2B1 transporter expression in the islet of the adult human pancreas. 

Histochemistry and Cell Biology, doi:10.1007/s00418-017-1580-6, with permission of Springer © 

Springer-Verlag Berlin Heidelberg 2017. 
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4.1 Summary of Findings  

OATPs are membrane-bound uptake transporters that are recognized for their role in 

important physiological pathways and in the pharmacokinetics of many clinically 

relevant drugs. Expression and function of key members of the OATP1 and OATP2 

family have been well characterized in excretory organs like the liver; however, our 

recent report demonstrated the presence of OATP1B3 in the islets of the human pancreas, 

co-localized with insulin-producing β cells (Meyer Zu Schwabedissen et al. 2014). 

Recent clinical and in vitro evidence (Cederberg et al. 2015; Zhao and Zhao 2015) have 

suggested cholesterol-lowering statins, many of them known OATP substrates, may 

disrupt insulin secretion. While the exact molecular mechanism is currently unknown, 

mitochondrial dysfunction and increased apoptosis of β cells (through HMG-CoA 

reductase inhibition) has been previously suggested, yet a role of OATP-mediated statin 

transport in this mechanism has not been established. We hypothesized that statin carriers 

of the OATP1 and OATP2 families are expressed in the β cell, and that OATPs mediate 

intracellular stain entry and contribute to statin-induced impairment of insulin secretion 

through mitochondrial dysfunction. 

4.1.1 Specific Aim 1: To characterize statin carrier expression and OATP 

subcellular localization in human pancreatic islets 

This study systematically assessed gene expression and cellular localization of important 

OATP1 and OATP2 family members in the human adult islet (Figures 3.1, 3.3, 3.4, 3.7). 

Our findings confirm our previous report showing OATP1B3 expression in human islets 

(Meyer Zu Schwabedissen et al. 2014); however, we showed predominant co-localization 

of OATP1B3 with α rather than β cells (Figures 3.3, 3.4, 3.5). We further demonstrated 

substantial gene expression of two other OATPs in islets, OATP2B1 and OATP1A2, 

compared to very low expression of OATP1B1 and OAT3 (Figure 3.1). We also show a 

distinct distribution of OATP2B1 and OATP1B3 within the islet suggesting specific roles 

in different endocrine cell types (Figures 3.3, 3.4, 3.7). In addition, abundant mRNA 

expression of the statin efflux transporters BCRP and P-gp was detected in islets, while 

MRP2 was found at very low levels in islets (Figure 3.2). Overexpression of OATP1B3 
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was observed in islets of patients with chronic pancreatitis and pancreatic ductal 

adenocarcinoma, compared to tumour adjacent normal pancreatic tissue (Figure 3.8). 

4.1.2 Specific Aim 2: To elucidate the role of OATP-mediated statin transport in 

pancreatic islet cell function using a murine β cell model 

The rat insulinoma cell line INS-1 was used as a β cell model to evaluate statin effects on 

insulin secretion, as well as a direct role of OATP2B1 statin transport in mediating these 

effects after heterologous expression. 

Using INS-1 cells, we first demonstrated expression of the rat statin carrier Oatp1a5, and 

inhibition of rosuvastatin accumulation by known OATP inhibitors rifampicin and 

indomethacin (Figures 3.9, 3.10). Despite no relevant changes in cell viability, glucose-

stimulated insulin secretion of INS-1 cells was significantly reduced with atorvastatin and 

rosuvastatin treatment, but not pravastatin (Figures 3.11, 3.12); however, we did not 

demonstrate reversal in statin-induced impairment of insulin secretion with the co-

administration of the OATP inhibitor rifampicin (Figure 3.13).  

In order to study direct effects of OATP2B1 transport on statin-induced impaired insulin 

secretion, we transduced INS-1 cells with Ad-OATP2B1 or Ad-LacZ control. We first 

confirmed OATP2B1 protein expression and increased rosuvastatin accumulation in Ad-

OATP2B1 transduced cells when compared with Ad-LacZ INS-1 cells (Figures 3.14, 

3.15). No significant reduction in cell viability was observed with statin treatment at any 

concentration (Figure 3.16). Overexpression of human OATP2B1 in INS-1 cells resulted 

in a marked reduction in insulin secretion with high-glucose stimulation when cells were 

treated with 1 µM and 10 µM rosuvastatin and pravastatin, whereas no significant 

differences were detected between Ad-OATP2B1 and Ad-LacZ control with atorvastatin 

(Figure 3.17). Mitochondrial function was significantly impaired in Ad-OATP2B1 INS-1 

treated with rosuvastatin compared to Ad-LacZ control, as demonstrated by a significant 

increase in caspase-9 activity (Figure 3.18).  
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4.2 Comparison and Contribution of Findings to Existing Literature 

4.2.1 OATPs and other statin transporters are expressed in the endocrine 

pancreas 

At present, OATP1B3 and OATP1B1 are widely considered liver-specific transporters 

(Ho et al. 2006). In comparison, OATP2B1 has been detected in many tissues throughout 

the human body, including liver, skeletal muscle, intestine and placenta (Kullak-Ublick et 

al. 2001), and OATP1A2 in the distal tubule of the kidneys, cholangiocytes, and at the 

blood brain barrier (Lee et al. 2005). Very few studies have examined OATP expression 

in the normal pancreas, let alone their cell type distribution in the islet. Our results 

showed high mRNA levels of OATP1B3, OATP1A2 and OATP2B1 in islet preparations 

of normal human adult pancreas compared to total pancreatic tissue, where OATP2B1 

islet expression even exceeded that of liver, a tissue known to harbor high transcript 

levels of OATP2B1 (Kullak-Ublick et al. 2001). Previously undetected pancreatic OATP 

expression in the islets may be in part explained by the fact that endocrine tissue 

constitutes only about 1% to 4% of the total pancreas (Dolensek et al. 2015). Studies 

more frequently use preparations of total pancreas, which is most reflective of exocrine 

tissue making up the vast majority of pancreatic cells. In contrast, islet expression of 

OATP1B1 was overall very low, a result in concordance with recent findings suggesting 

very limited OATP1B1 mRNA expression in isolated normal human islets from 20 organ 

donors compared to liver (Kloster-Jensen et al. 2015). Gene expression of OATP1B3 and 

OATP2B1 but not OATP1B1 has been also recently reported in normal human pancreas 

in a study which examined a panel of 384 samples from various cancers matched to 

normal controls (Pressler et al. 2011). 

Importantly, here we demonstrate distinct patterns of cellular expression for OATP1B3 

and OATP2B by dual immunostaining against insulin or glucagon. Whereas OATP2B1 

was predominantly observed in β cells, OATP1B3 was more frequently found in α cells, 

suggesting differences in their functional roles within the normal endocrine pancreas. 

Concerning OATP1B3 distribution, these results contrast with our previous report where 

OATP1B3 co-localized with β cells but not α cells (Meyer Zu Schwabedissen et al. 

2014). This may be explained by differences in the applied immunostaining methods. 
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Whereas the current study used dual immunofluorescent staining of mirrored pancreatic 

sections in a larger sample set, individual immunofluorescent stainings were previously 

performed in pancreatic sections of only 3 individuals, likely resulting in the observed 

discrepancy. Similarly, distinct islet expression patterns have been reported for murine 

Oatps closely related to human OATP1A2 when assessed with immunocytochemistry; rat 

Oatp1a1 largely localized to β cells, rat Oatp1a4 to α cells, and rat Oatp1a5 to both 

endocrine and exocrine tissues (Abe et al. 2010).  

If present within the endocrine pancreas, the question emerges concerning the subcellular 

localization and function of these generally membrane-bound transport proteins. In case 

of OATP1B3, immunostaining patterns obtained with confocal microscopy appear to be 

more consistent with an intracellular site of action than a function at the plasma 

membrane. One may speculate OATPs primarily localize to the membrane of insulin- (or 

glucagon-) containing secretory granules of the β (or α) cells. Vesicular membrane 

expression in α and/or β cells has been previously reported for the vesicular nucleotide 

and vesicular glutamate uptake transporters (belonging to the solute carrier 17 [Slc17] 

phosphate transporter family), mediating ATP and glutamate uptake, respectively, into 

hormone-containing granules (Geisler et al. 2013; Sreedharan et al. 2010; Bai et al. 

2003). As well, ATP-sensitive KATP channels have been primarily shown in the insulin-

containing secretory granules of β cells, and are involved in the second-phase of insulin 

release (Geng et al. 2003). 

The roles of OATP transporters in normal liver physiology are well established, and 

include bilirubin detoxification and bile acid homeostasis (Iusuf et al. 2012a); however, 

little is known regarding their contribution to islet cell function. These solute carriers are 

known to transport endogenous substrates of potential relevance to β cell survival, insulin 

secretion/synthesis, and glucose homeostasis such as thyroid hormones (Blanchet et al. 

2012; Ianculescu et al. 2010; Mastracci and Evans-Molina 2014), sex hormone 

conjugates (Kullak-Ublick et al. 2001; Tiano and Mauvais-Jarvis 2012a; Tiano and 

Mauvais-Jarvis 2012b) and the gastrointestinal hormone cholecystokinin (Ahren et al. 

2000; Kuntz et al. 2004; Linnemann and Davis 2016; Schwarz et al. 2011). Recently, a β-

cell specific isoform of the hepatocyte nuclear factor-4 alpha (HNF4a), a transcription 
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factor belonging to the nuclear receptor superfamily, has been reported in β cells (Harries 

et al. 2009; Ihara et al. 2005). HNF4a, recognized as a central regulator of hepatocyte 

function, is essential for hepatic gene expression and lipid homeostasis (Hayhurst et al. 

2001) including transcriptional regulation of the uptake carriers Oatp1a1, Oatp1a4, 

Oatp2b1, and sodium/taurocholate co-transporting polypeptide (Ntcp) as shown in mice 

lacking hepatic Hnf4a (Lu et al. 2010). Recent evidence also linked HNF4a with 

regulatory functions in the pancreas, most notably in islets (Harries et al. 2009). 

Mutations in the HNF4a gene is known to cause maturity-onset diabetes of the young 

(MODY1) (Byrne et al. 1995), a disorder characterized by impaired insulin secretion and 

progressive β cell-failure. Moreover, islets of mice with β-cell specific deficiency of 

Hnf4a showed impaired insulin secretion after stimulation by glucose or sulfonylurea 

derivatives (Miura et al. 2006). We previously identified and characterized HNF4a as a 

transcription factor regulating human OATP2B1 (Knauer et al. 2013), a transporter 

herein identified in human β cells, and showed that transient overexpression of 

OATP1B3 in a murine β-cell line (MIN6) enhances the insulinotropic effect of the 

sulfonylurea glibenclamide (Meyer Zu Schwabedissen et al. 2014), further supporting a 

possible role of OATPs in insulin secretion.  

While we were unable to detect mRNA expression of OAT3 in human islets, a recent 

study reported the presence of OAT3 in human β cells (Prentice et al. 2014). 

Predominantly acknowledged for its role in renal drug excretion of organic anion 

compounds by facilitating uptake into renal proximal tubular cells (Lin et al. 2015), this 

recent report now suggests an additional role of OAT3 in the development of diabetes 

through intracellular uptake of a diet-derived furan fatty acid metabolite into the 

pancreatic β cell, ultimately leading to β cell dysfunction and impaired insulin 

biosynthesis (Prentice et al. 2014).  

Our findings also indicate high abundance of two important efflux transporters of the 

ABC transporter superfamily, P-gp (also MDR1 or multidrug resistance protein 1) and 

BCRP, in human adult islets. Known to mediate multidrug resistance, these carries 

mediate active removal of chemotherapeutics from cells (DeGorter et al. 2012). The 

presence of the P-gp in normal human islets had been previously reported (Bani et al. 
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1992; Kloster-Jensen et al. 2015). Bani et al. described P-gp membrane staining of 

endocrine islet cells as well as endothelial cells of islet capillaries (Bani et al. 1992). 

Recently, a much larger study utilizing isolated islets from 20 donors showed high 

ABCB1 gene transcript levels encoding P-gp and comparable to its hepatic expression 

(Kloster-Jensen et al. 2015). Immunofluorescent staining of dispersed islets supported 

limited co-expression with insulin- and glucagon positive islet cells (Kloster-Jensen et al. 

2015). High levels of BCRP, as determined in this study, have been previously observed 

in human islets (Montanucci et al. 2011). Interestingly, marked expression of BCRP and 

MDR1 was also found in human islet-derived β precursor cells (also pancreatic stem 

cells) (Lechner et al. 2002; Montanucci et al. 2011), suggesting a plausible role of these 

transporters in β cell differentiation. The low levels of MRP2 we reported in islets are 

consistent with the findings of a previous study where only weak membrane staining was 

observed in human pancreatic islets (Sandusky et al. 2002). 

4.2.2 OATP1B3 expression is upregulated in diseased pancreas 

Upregulation of OATPs, particularly OATP1B3, has been previously shown in chronic 

pancreatitis and pancreatic cancer compared to normal or tumour-adjacent tissues 

(Kounnis et al. 2011; Pressler et al. 2011; Thakkar et al. 2013a; Hays et al. 2013). We 

observed intense OATP1B3 staining in islets of patients with chronic pancreatitis and 

PDAC compared to tumour-adjacent pancreatic tissue in a subset of 9 patients, 

supporting increased expression of this transporter in the diseased pancreas. OATP1B3 is 

known to facilitate cellular uptake of hormones with tumour-growth stimulating effects 

(sex hormones, cholecystokinin) (Konduri and Schwarz 2007; Baldwin and Shulkes 

2007; Hajri and Damge 1998) and chemotherapeutics (platinum agents, anthracyclines) 

(Lancaster et al. 2013; Durmus et al. 2016). Given its broad substrate specificity and 

specific expression pattern in pancreatitis and early stages of PDAC, this carrier may play 

an important role in cancer progression but also enable more effective therapeutics. On 

the other hand, a tumour-specific variant of OATP1B3 with limited transport activity has 

been identified in colon and pancreatic cancer (Thakkar et al. 2013b) and while its 

biological relevance is still unclear, the impairment of substrate uptake may also 

contribute to the pathophysiology of these cancers. Extent of OATP1B3 upregulation has 
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shown variability within pancreatic cancer depending on the tumour type and cancer 

stage (Hays et al. 2013). Taken together, these findings support altered OATP expression 

in diseased pancreas and point toward potential differences in pancreatic OATP 

expression in type II diabetes, particularly statin-induced diabetes, warranting further 

study in assessing transporter expression in the diabetic pancreas.  

4.2.3 Rosuvastatin and atorvastatin, but not pravastatin, alter glucose-stimulated 

insulin secretion in INS-1 

This study demonstrated that rosuvastatin and atorvastatin treatment result in a significant 

dose-dependent reduction of insulin secretion, determined as stimulation index (SI). 

These results are supported by previous studies in murine β cell lines as well as human β 

cells showing dose-dependent reductions in glucose-stimulated insulin secretion with 24- 

to 48-hour statin treatments (Zhou et al. 2014; Salunkhe et al. 2016; Zhao and Zhao 

2015) (Table 1.2). Interestingly, no significant impairment of insulin secretion was seen 

with pravastatin treatment. Though there is literature supporting a lack of effect of 

pravastatin on insulin secretion (Yada et al. 1999; Yaluri et al. 2015; Ishikawa et al. 

2006), there are also conflicting reports demonstrating enhanced insulin secretion (Abe et 

al. 2010) and reduced insulin secretion (Zhao and Zhao 2015) with pravastatin treatment. 

Dose-dependence may suggest a role of HMG-CoA reductase inhibition in this 

mechanism (Ishikawa et al. 2006). Therefore, a lack of effect for pravastatin up to a 

concentration of 10 µM may be explained by differences in potency (IC50: 44.1 nM) 

compared to rosuvastatin and atorvastatin (IC50: 5.4 and 8.2 nM) (Hargreaves et al. 2005) 

4.2.4 OATP inhibitor rifampicin did not improve statin-induced impairment of 

insulin secretion in INS-1 

In this study, we assessed a potential role of OATP transport in statin effects on β cell 

function. We confirmed previously reported expression of rat Oatp1a5 in INS-1 cells 

(Abe et al. 2010) and demonstrated uptake of rosuvastatin, a known substrate of Oatp1a5 

(Ho et al. 2006) that was markedly reduced via unspecific OATP inhibitors. Though we 

demonstrated impaired insulin secretion with rosuvastatin and atorvastatin treatment, we 

were unable to show a significant improvement in insulin secretion when INS-1 cells 

were co-treated with statins and the OATP inhibitor rifampicin. Despite rifampicin 
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having been well-studied as an OATP inhibitor, it has not been widely explored as a 

method of mitigating OATP-mediated statin effects on insulin secretion. Abe et al. 

demonstrated inhibition of pravastatin uptake by rifampicin (300 µM); however, no 

subsequent insulin secretion studies were performed since rifampicin treatment alone 

resulted in impaired insulin secretion at this high concentration (Abe et al. 2010). Lack of 

effect reversal may be therefore explained by insufficient inhibition of rosuvastatin 

uptake by rifampicin at the used concentration or direct effects of rifampicin on insulin 

secretion. Though no inhibition studies have been performed with rifampicin and rat 

Oatp1a5, potent inhibition of rat Oatp1a5 transport activity has been reported with 

azithromycin and clarithromycin, which belong to the same antibiotic class as rifampicin 

(Lan et al. 2009). Clarithromycin and rifampicin have both shown inhibition of 

OATP1B1 and OATP1B3 (Karlgren et al. 2012; Jacobson 2004). On the other hand, 

differential inhibition has been observed for rat Oatp1a1 and Oatp1a4 with rifampicin at 

100 µM (Fattinger et al. 2000). Lastly, the lack of significant effect reversal in our study 

may also have been in part due to the variability in glucose-stimulated insulin secretion 

between experiments; INS-1 cells have shown batch-to-batch variability as well as 

changes over time and increased passage number (Hohmeier et al. 2000; Merglen et al. 

2004), thus a more stable, clonal cell line highly responsive to glucose is frequently 

applied to overcome this limitation (Merglen et al. 2004).  

4.2.5 Overexpression of human OATP2B1 in INS-1 contributes to statin-induced 

changes in insulin secretion 

Since the role of OATPs in mediating statin effects on β cell function is largely 

unexplored, we overexpressed human OATP2B1 adenovirus (Ad-OATP2B1) in INS-1 

cells as a model to evaluate a direct role of OATP statin transport in insulin secretion. We 

compared GSIS in INS-1 cells transduced with Ad-OATP2B1 to Ad-LacZ control to 

evaluate any change in statin effects with OATP overexpression. High glucose-stimulated 

insulin secretion was significantly reduced in Ad-OATP2B1 INS-1 compared to Ad-LacZ 

INS-1 treated with rosuvastatin and pravastatin, but not atorvastatin (Figure 3.17). A 

similar effect of Ad-OATP2B1 on insulin secretion demonstrated with rosuvastatin and 

pravastatin treatment is reasonable when considering substrate affinity; the OATP2B1 

Michaelis constant (Km) values are similar for rosuvastatin and pravastatin (2.4 and 2.25, 
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respectively) (Nozawa et al. 2004; Ho et al. 2006) (Table 1.1). Conversely, the same 

logic cannot be applied for the lack of effect observed on insulin secretion with 

atorvastatin in Ad-OATP2B1 INS-1 compared to Ad-LacZ control, since OATP2B1 has 

been reported to have a very high affinity for atorvastatin (Km = 0.2, Table 1.1) 

(Kalliokoski and Niemi 2009). The effects may have been masked by a higher degree of 

INS-1 cell apoptosis for atorvastatin compared to rosuvastatin and pravastatin at the 

applied concentrations (Schirris et al. 2015; Sadighara et al. 2017); however, this was not 

investigated in our study. 

Interestingly, high glucose-stimulated insulin secretion was moderately but significantly 

enhanced in Ad-LacZ INS-1 treated with 1 µM rosuvastatin and pravastatin. These 

results are not unexpected for pravastatin, which has previously been reported to enhance 

insulin secretion (Abe et al. 2010); however, it is slightly surprising in the context of 

rosuvastatin, which has more often been shown to impair insulin secretion in vitro 

(Salunkhe et al. 2016; Zhao and Zhao 2015). Though these results may be due to 

experimental variability, since high glucose-stimulated insulin secretion was not 

increased for any statins at 1 µM with statin-treated INS-1 cells (Figure 3.12), they may 

be in part explained by the mechanism described by Abe et al. to explain their observed 

insulinotropic effect of pravastatin (Abe et al. 2010). Inhibition of cholesterol synthesis 

by statins can also have a protective effect against lipotoxicity within the β cell, in which 

lipid accumulation reaches harmful levels and leads to cell death and loss of insulin 

secretion (Abe et al. 2010). Reduction of intracellular cholesterol in the β cell has been 

reported to enhance insulin secretion (Brunham et al. 2008), thus the relatively low 

concentration of rosuvastatin may have been more favourable for insulinotropic effects. 

On the contrary, though statins lower de novo cholesterol synthesis, upregulation of LDL 

receptors due to HMG-CoA reductase inhibition can elevate intracellular LDL cholesterol 

levels, potentially affecting β cell function via increased oxidation of LDL cholesterol 

resulting in inflammation, decreased mitochondrial function and β cell apoptosis (Chan et 

al. 2015; Sattar and Taskinen 2012). 
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4.2.6 OATP2B1 contributes to mitochondrial dysfunction in INS-1 cells after 

rosuvastatin treatment 

In order to determine the underlying mechanism of OATP2B1-mediated impairment of 

insulin secretion by rosuvastatin, we assessed caspase-9 activity in INS-1 cells transduced 

with Ad-OATP2B1 and treated with statins in order to evaluate mitochondrial function. 

We observed a significant increase in caspase-9 activity in OATP2B1-expressing INS-1 

cells from LacZ control when treated with rosuvastatin at concentrations of 1 and 10 µM. 

Caspase-9 activity in INS-1 cells transduced with Ad-OATP2B1 was increased about 

1.24- and 1.48-fold from LacZ control with 1 µM rosuvastatin and 10 µM rosuvastatin, 

respectively. Similarly, Knauer et al. also reported a 1.5-fold increase in caspase-3/7 

activity after treatment with 10 µM rosuvastatin in muscle cells transduced with Ad-

OATP2B1 versus Ad-LacZ control (Knauer et al. 2010). Consequently, our results 

indicate that statin-induced activation of caspase-9 is mediated by OATP2B1 transport, 

and further suggest mitochondrial dysfunction and initiation of intrinsic apoptosis 

signalling as a potential mechanism of statin toxicity in the β cell. Rat pancreas 

mitochondrial function has recently been evaluated with a specific focus on statin 

treatment (Sadighara et al. 2017). Atorvastatin treatment resulted in mitochondrial 

swelling, increased production of reactive oxygen species (ROS), and induction 

mitochondrial apoptosis signalling via release of cytochrome c, a pro-apoptotic protein 

(Sadighara et al. 2017). 

ATP concentration was not reduced in INS-1 cells expressing Ad-OATP2B1 treated for 

24 hours with rosuvastatin, atorvastatin, or pravastatin at concentrations of up to 10 µM 

compared to Ad-LacZ control. These findings, though they appear to suggest no effect of 

statins on ATP, are in line with the findings of Knauer et al. Their study involved 48-hour 

statin treatment up to 100 µM in primary human skeletal muscle myoblast cells 

transduced with Ad-OATP2B1 (Knauer et al. 2010). No significant change in ATP level 

was reported after 48-hour treatment with rosuvastatin and atorvastatin at 10 µM; ATP 

levels were only reduced to about 80-85% of control. Thus, the lack of a significant 

change in ATP concentration at statin concentrations of up to 10 µM in our study is 

supported by literature, and suggests that viability of INS-1 cells is not compromised. 
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The two studies discussed above may seem contradictory in the context of our 

hypothesis; however, comparing the different pathways to cell death provides some 

support for our results. Apoptosis is a programmed and energy-dependent process 

consisting of activation of caspases and a complex set of events leading to cell death 

(Elmore 2007). Conversely, necrosis is a toxic and degradative process that is ATP-

independent, over which cells have no control (Elmore 2007). Apoptosis and necrosis are 

not mutually exclusive events; an apoptotic process can be converted to necrosis if 

caspases are not readily available or if intracellular ATP is decreased (Leist et al. 1997; 

Lelli et al. 1998). The cytotoxic effects of statins have been shown to be largely due to 

induction of apoptosis (Sadighara et al. 2017; Schirris et al. 2015; Knauer et al. 2010). A 

study comparing mechanisms of cytotoxicity for eight different statins reported that 

apoptosis, and not necrosis, was the main cytotoxic mechanism for almost all statins, 

including rosuvastatin, atorvastatin, and pravastatin (Schirris et al. 2015). Furthermore, 

mitochondrial ATP production was not affected by atorvastatin, pravastatin, and 

rosuvastatin in their active acid forms, which were used in our study (Schirris et al. 2015; 

Knauer et al. 2010). Thus, the results observed in our study, unchanged ATP 

concentration reflecting cell viability and increased caspase-9 activity, are consistent with 

mitochondrial dysfunction and initiation of the apoptosis pathway, and are supported by 

previous findings (Schirris et al. 2015; Knauer et al. 2010).  

4.3 Limitations of Study 

4.3.1 Statin transporter expression data limited by sample size and methodology  

A significant limitation of our gene expression data is the small sample size for human 

islets and other tissues. Particularly, due to limited volumes of RNA from human islets, 

we were only able to test between 1 and 3 islet samples for each gene of interest. 

Although we further validated protein expression in human islets for OATP1B3 and 

OATP2B1 by immunostaining, the islet mRNA expression of OATPA2, BCRP, and P-gp 

we observed remains exploratory up to this point due to small sample size and lack of 

confirmation on the protein level. 
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Our quantitative analysis of OATP1B3 protein expression and co-localization with 

endocrine markers also had a few limitations. First and foremost, although pancreatic 

tissue sections were labelled as normal, there may have been unknown factors for various 

diseases or disorders that may have further influenced co-localization analysis in these 

individuals. Additionally, our analyses for variability in expression were limited by the 

relative lack of female subjects (out of 10 patients, only 2 were female) due to the 

unknown sex of one individual. Additional female samples would have provided us with 

enough statistical power to perform the appropriate analyses for sex-related differences. 

Yet another limitation is that due to not knowing morphological characteristics of the 

complete pancreas such as pancreas volume or weight, our measurements for the 

endocrine and exocrine pancreas area were an estimate based on a small fraction of the 

pancreas.  

In this study, the estimated relative β and α cell area of 4.4% and 4.6%, respectively, 

exceed previously reported values; endocrine islet cells typically represent less than 4% 

of the total pancreas volume (Dolensek et al. 2015). This may be the result of the 

quantitative image assessment at higher magnification, leading to a potential bias towards 

the islets themselves, a potential limitation of this study; however, it should be noted that 

similar methods for pancreatic morphometric analysis have been reported (Butler et al. 

2016; Butler et al. 2003). At the level of islets, the here determined β cell to α cell area 

ratio of 1.34 (min-max, 0.44-3.92) is reflective of previously observed islet cell 

compositions for β (50-70%) and α cells (20-40%) in humans. Furthermore, our study did 

not detect any age or sex dependent differences in fractional β cell or α cell area; this may 

relate to the small sample size, another potential limitation of this study. Nevertheless, 

information on changes of β cell mass with age or sex are limited. A recent study in 106 

lean nondiabetic subjects aged 20 to 100 years reported that the fractional β cell area to 

exocrine area increased with age, likely due to atrophy of exocrine tissue with advanced 

age, whereas the calculated β cell mass remained constant; no sex-dependent differences 

were observed (Saisho et al. 2013).  These data suggest that mass as well as number of β 

cells are relatively well preserved despite increased age, supported by other research that 

further indicates insulin secretion may increase with age in human β cells (Arda et al. 

2016).  
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Due to the inability to optimize conditions for immunofluorescent staining of OATP2B1 

in human pancreatic tissue sections with our anti-OATP2B1 antibodies, we used 

immunohistochemistry to detect OATP2B1 in human pancreatic islets. We employed a 

consecutive staining strategy in an attempt to identify whether OATP2B1 was expressed 

on insulin-producing β cells or glucagon-producing α cells. We were able to see 

differences in staining patterns when OATP2B1 was double stained with insulin or with 

glucagon; as mentioned previously, OATP2B1 and insulin stains appeared to overlap 

more than OATP2B1 and glucagon stains. Although we are fairly confident in this 

association, the results would be far more convincing with dual immunofluorescent 

staining. Thus, immunofluorescent co-staining of OATP2B1 with insulin or glucagon in 

human pancreatic tissue sections and subsequent quantitative analysis should be 

performed to validate our conclusions that OATP2B1 is expressed primarily on β cells. 

4.3.2 Use of heterogeneous INS-1 cell line 

As alluded to previously, some of our results may have been affected by day-to-day 

experimental variability. This variability is likely due to the choice of INS-1 as our β cell 

model. Since its generation more than a decade ago, the INS-1 cell line has been 

recognized as being a more variable cell line, particularly in terms of glucose-stimulated 

insulin secretion (Hohmeier et al. 2000). INS-1 glucose responsiveness weakens over 

time and as passage number increases (Hohmeier et al. 2000), which would explain some 

of the discrepancies in our data as we did not use the same passage number for each 

experiment. In order to address these issues a more stable INS-1 cell line, INS-1E, has 

been created. INS-1E demonstrates improved stability compared to INS-1 and can 

apparently be used up to passages of 100; glucose-stimulated insulin secretion from INS-

1E cells remained comparable to rat islets from passages 54-95 (Merglen et al. 2004). 

Thus, use of the stable INS-1E β cell line likely would have reduced our inter-experiment 

variability and provided more clarity in the effects of OATPs in mediating statin-induced 

changes in insulin secretion. 

Another major limitation of using INS-1 cells is that due to their derivation from 

radiation-induced rat insulinoma cells (Asfari et al. 1992), they are not representative of 

normal β cell function in a physiological setting. For instance, the insulin content in INS-



89 

 

1 cells is quite similar to tumour cells (Asfari et al. 1992), and insulin secretion only 

increases about 2- to 4-fold in response to glucose compared to an about 15-fold increase 

seen in freshly isolated primary islets (Hohmeier et al. 2000). Additionally, the INS-1 cell 

line has demonstrated heterogeneity – that is, it contains a mixture of glucose-responsive 

cells and glucose-unresponsive cells (Hohmeier et al. 2000). The use of primary islet cell 

culture in our experiments would be a favourable alternative as a more representative 

model of physiological β cell function. 

4.3.3 ATP concentration as a marker of cell viability 

In our study, ATP concentration was used as a marker to assess the effects of statins on 

INS-1 cell survival. Though it can be argued that ATP content may not be reflective of 

cell viability due to energy-dependent mechanisms of programmed cell death such as 

apoptosis and autophagy (Elmore 2007), previous in vitro studies have similarly 

measured cytotoxicity using intracellular ATP concentration following statin treatment. 

One study assessed the cytotoxic effects of statins on primary human skeletal muscle 

myoblast, measuring ATP concentration and using an MTT assay to detect formazan 

formation (Knauer et al. 2010). Another group examined statin-induced effects on 

cellular respiration and mitochondrial ATP production and reported inhibition of ATP 

production and impaired cell viability (Schirris et al. 2015). Furthermore, the luminescent 

ATP assay we used in this study has been shown to be quite sensitive with little chemical 

interference (Riss et al. 2004). Nonetheless, our study may have been strengthened with 

the use of alternative cell viability assays to supplement our findings. 

4.4 Future Directions 

4.4.1 Statin transporter expression in human pancreatic islets 

This study has confirmed gene and protein expression of two OATP isoforms in human 

pancreatic islets. In addition to confirmed protein expression of OATP1B3 and 

OATP2B1 in human pancreatic islets, we reported gene expression of OATP1A2, BCRP, 

and P-gp. Due to limited sample size for islet gene expression, further studies are 

required in order to confirm our findings. Furthermore, confirmation of protein 

expression and localization for OATP1A2 and efflux transporters is required to provide 
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more insight regarding the interplay of transporters in statin disposition within pancreatic 

islets.  

Another important follow-up study would be the intracellular localization of statin 

transporters within the β or α cells. Though OATPs are considered to be membrane-

bound uptake transporters (Ho and Kim 2005; Hagenbuch and Stieger 2013), our 

immunostaining for OATP1B3 and OATP2B1 in human pancreatic tissue sections 

appeared to display more of an intracellular distribution of the protein. As described 

previously, this may be due to localization of OATPs to the membranes of secretory 

granules of islet cells. A two-step subcellular fractionation method has been previously 

used to investigate insulin secretory granule membranes (Brunner et al. 2007; Chen et al. 

2015), and would be an effective tool in determining localization of various statin 

transporters including OATPs within the endocrine cells of the islets of Langerhans.  

4.4.2 OATP loss-of-function studies  

A more precise mechanism of confirming the role of OATPs in statin-mediated effects on 

insulin secretion may be knockdown or silencing of OATP genes. Silencing of OATPs in 

β cell models may provide more conclusive evidence of the role of OATPs in mediating 

statin-induced impairment of insulin secretion. We and others have reported that Oatp1a5 

is lone Oatp expressed in INS-1 (Abe et al. 2010); thus, Oatp gene silencing in this 

particular β cell model would be fairly straightforward. The CRISPR/Cas9 has recently 

been identified as an easy, efficient, and specific method of genome editing and would be 

a viable option for the silencing of Oatp1a5 in INS-1 cells (Sakuma et al. 2014).  

Knockout mouse models have been widely used in characterizing physiological and 

pharmacological roles of hepatic Oatps (van de Steeg et al. 2010; Zaher et al. 2008); thus, 

important insights may be gained by assessing Oatp gene silencing in the context of the 

endocrine pancreas and statins. Exploratory gene expression analysis in mouse tissues 

showed expression of mouse Oatp1a1, Oatp1a4, Oatp1a5, and Oatp1a6 in mouse islets 

(Supplementary Figure 1) and, as mentioned previously, Abe et al. reported mRNA 

expression of Oatp1a4 and Oatp1a5 in pancreata of db/db mice (Abe et al. 2010); thus, 
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an Oatp1a-/- cluster knockout mouse model may be a logical choice in assessing the role 

of Oatps in the endocrine pancreas.  

Other preliminary data show mRNA and protein expression of mouse Oatp2b1 in wild-

type mouse islets (Supplementary Figures 2, 3) and interestingly, preliminary metabolic 

studies in Oatp2b1-/- mice show significantly increased fasting blood glucose compared 

to wild-type mice (Supplementary Figure 4). Though these data are purely exploratory, 

they may point toward the usefulness of Oatp2b1-/- mice as a model to elucidate the 

relevance of Oatp2b1 in glucose homeostasis. 

4.4.3 Statin-induced apoptosis in β cell models mediated by OATPs 

Although our study provides more insight into the mechanism by which statins reduce 

insulin secretion, more investigation is required considering this very complex 

mechanism supported by extensive yet still inconclusive literature. We showed induction 

of caspase-9 activity only with rosuvastatin at two concentrations, thus it would be 

pertinent not only to show a wider dose response range but also to explore the effects of 

different statins. This would not only provide support for the hypothesis that statin-

mediated reduced insulin secretion is brought on by mitochondrial dysfunction, but also 

provide more context for the reported discrepancy in effects depending on the type and 

potency of statins (Ishikawa et al. 2006; Carter et al. 2013).  

Other methods have been employed to assess mitochondrial function. One study, in 

investigating the mechanism of statin-induced myopathy, evaluated the effects of statins 

on cellular respiration (Schirris et al. 2015). This study was quite comprehensive, in that 

it examined eight different statins and their differential impacts on cellular respiration 

markers in a myoblast cell line, including ATP production, basal respiratory rates, and 

respiration driven by and enzyme activity of each mitochondrial complex (Schirris et al. 

2015). A similar approach applied in β cell models or primary islet cultures may 

illuminate specific mechanisms of statin-induced mitochondrial dysfunction and 

subsequent effects on insulin secretion. 
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4.4.4 Exploration of proposed mechanisms for statin-induced impairment of 

insulin secretion using an OATP overexpression system 

As outlined previously, there are many different mechanisms that have been proposed in 

how statins mediate their effects on insulin secretion. To summarize, these mechanisms 

propose a wide variety of contributing factors including calcium signalling impairment, 

glucose signalling disruption, secretory granule cholesterol depletion, and 

electrophysiological imbalance. These studies have all been performed in various β cell 

models and isolated murine or human islets; however, an OATP overexpression system 

may further strengthen these studies by introducing a well-characterized and easily 

manipulated model to provide more insight into the mechanisms of statin-induced insulin 

secretion impairment. 

4.5 Conclusions 

In summary, we describe abundant expression of important solute uptake carriers of the 

OATP1 and OATP2 family in human adult islets, further revealing differential 

distribution of OATP1B3 and OATP2B1 among β and α cells. Variable co-expression of 

OATP1B3 with endocrine cells was observed in relation to age and pancreatic disease. 

Our in vitro findings in a murine β cell model confirm impairment of insulin secretion by 

rosuvastatin and atorvastatin, and support a role of OATPs in mediating statin-induced 

impairment of β cell function via mitochondrial dysfunction. Thus, this study has 

provided novel evidence of OATP expression and localization in the human endocrine 

pancreas and also contributed to the currently limited knowledge of the role of OATPs in 

statin-induced effects on insulin secretion. Since these membrane-bound carriers mediate 

transport of many endogenous and xenobiotic substrates of potential relevance to islet 

cell function, their physiological and clinical implications in pancreatic islets warrant 

further study. 
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Appendix B: Exploratory Evaluation of Oatp Expression in Mouse 

Supplementary Materials and Methods 

Statin transporter gene expression analysis in mouse pancreatic islets  

Total mouse liver and pancreatic RNA were purchased from BioChain (N=1 each) and 

mouse pancreatic cDNA (N=2) was generously donated by Dr. Chris Pin (Children’s 

Health Research Institute, Victoria Hospital, London, Ontario). RNA from flash-frozen 

mouse tissues (liver and kidney, N=3 each) were extracted with TRIzol® (Thermo-Fisher 

Scientific).  

Islets from adult male C57BL/6 (WT) and Oatp2b1-/- (KO) mice were isolated following 

a modified version of a previously published protocol (Li et al. 2009). Briefly, mice were 

euthanized by isoflurane overdose and the abdomen cut open. The pancreas was perfused 

with collagenase V (1 mg/mL, C9263, Sigma-Aldrich) enzyme solution via the common 

bile duct then removed and placed in a tube containing enzyme solution for digestion. 

Once homogenous, the pancreas suspension was washed and centrifuged multiple times, 

resuspended, then passed through a 70 µM cell strainer. The islets, now captured on the 

cell strainer, were rinsed onto a cell culture dish and 10-20 islets per mouse were 

subsequently hand-picked for RNA extraction and gene expression analysis. 

Normal adult mouse (C57BL/6) islet cDNA (N=4) was provided by Dr. Rennian Wang 

(Children’s Health Research Institute); however, due to limited islet cDNA volumes per 

mouse, we could only reach 1-2 samples (N=1-2) for each gene expression analysis. 

RNA samples were quantified and reverse transcribed as outlined in Section 2.1. Gene 

expression of mouse Oatp1a1, Oatp1a4, Oatp1a5, Oatp1a6, Oatp2b1, and Oat3 was 

examined by qRT-PCR using previously published primers (Supplemental Table 1). 

Expression was normalized to mouse Gapdh as an internal control and fold-differences in 

expression determined as previously described. Runs for mouse Oatp1a1, Oatp1a4, and 

Oatp1a5 were executed following a previously published method: denaturation at 94°C 

for 3 minutes; 35 cycles at 94°C for 45 seconds, 57°C for 1 minute, 72°C for 2 minutes; 

and a 72°C hold for 10 minutes (Abe et al. 2010).  
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Supplementary Table 1. qRT-PCR primers used to evaluate gene expression of 

mouse statin transporters. 

Gene Forward (5’-3’) Reverse (5’-3’) Reference 

Oatp1a1 TTAGCTGGCATTCCGGC

ACCTG 

CTTTAAAGTTCAGTGTGT

GCGTCA 

Abe et al. 

(2010) 

Oatp1a4 AACTAGGAAGACCATTG

GCCCTTTG 

ATCCGAGGCATATTGGA

GGTAACATG 

Abe et al. 

(2010) 

Oatp1a5 CACGCATTTTGCACAAG

AATATTCGCTGGCATCCC 

AAGGTTTTACTCTAAGAT

GATTTTGAAAGTAGCAC 

Abe et al. 

(2010) 

Oatp1a6 AACTGCACAACCAACAC

CAA 

TCAATGGGAGCTTTGAG

ATG 

Primer 

depot 

Oatp1b2 TGGGCATTGGGAGTATT

CTGA 

CCAGGTGTATGAGTTGG

ACCC 

Knauer 

(2012) 

Oat3 TCTCCGAGATTCTGGACC

GT 

CACTTCTCAGGCTTCCCG

TT 

Primer 

depot 

Oatp2b1 CTTCATCTCAGAACCATA

CC 

ACTGGAACAGCTGCCAT

TG 

Knauer 

(2012) 

Gapdh CGTCCCGTAGACAAAAT

GGT 

TTGATGGCAACAATCTC

CAC 

Primer 

depot 
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Immunofluorescent staining of mouse pancreatic tissue 

Pancreata from C57BL/6 mice 12-16 weeks of age were extracted and immediately fixed 

in 10% neutral buffered formalin solution (HT5014, Sigma-Aldrich), then embedded in 

paraffin and sectioned onto slides by the Molecular Pathology Facility at Robarts 

Research Institute (Robarts Research Institute, London, Ontario). Immunofluorescent 

staining of paraffin-embedded pancreatic tissue sections was performed to detect 

expression of mouse Oatp2b1 (anti-Oatp2b1 antibody 1:50; M-153; Santa-Cruz), insulin, 

and glucagon as following the previously described protocol (Section 2.3). 

Intraperitoneal glucose tolerance test in Oatp2b1-/- mice 

Male C57BL/6 mice (WT) and Oatp2b1-/- mice (KO) aged 12-16 weeks (n=6 for WT, 

n=6 for KO) were fasted for 16 hours with free access to water. Fasting blood glucose 

was measured with a OneTouch Verio Blood Glucose Meter (LifeScan Canada, Burnaby, 

British Columbia) and a 2 mg/g dose of glucose was administered intraperitoneally. 

Blood glucose was measured with the glucometer at 15, 30, 60, and 120 minutes.  
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Supplementary Results 

Mouse pancreatic islet gene expression of statin transporters 

Statin uptake transporter gene expression was assessed in mouse liver, pancreas, kidney, 

and islets. Mouse islets showed abundant expression of mouse statin transporters 

Oatp1a1, Oatp1a4, Oatp1a5, and Oatp1a6 (mean CT values: 25.5, 28.3, 26.3, 27.7) 

(Supplementary Figure 1). The respective fold-differences to liver for islet expression 

of these transporters were 16.0, 8.32, 384.1, and 514.4. Very low islet expression of 

Oatp1b2 and Oat3 (mean CT values: 35.2, 34.5) was detected; Oat3 islet expression only 

appears abundant when compared to the very low expression liver. 

Expression of mouse Oatp2b1 was low but detectable in wild-type mouse islets (mean CT 

value: 31.5), while negligible in islets of Oatp2b1-/- mice (mean CT value: 35.4) 

(Supplementary Figure 2). 
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Supplementary Figure 1. Gene expression analysis of statin transporters in mouse 

pancreatic islets.  Relative mRNA expression of statin uptake transporters in mouse 

tissues normalized to mouse Gapdh and shown as fold-difference from liver. Mouse islet 

cDNA and mouse pancreas cDNA (n=2) kindly provided by Dr. Rennian Wang and Dr. 

Chris Pin. Abundant expression of mOatp1a1, mOatp1a4, mOatp1a5, and mOatp1a6 was 

detected in mouse islets. Results shown as mean ± SD. 
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Supplementary Figure 2. Gene expression analysis of Oatp2b1 in mouse 

islets.Expression of mouse Oatp2b1 was detected in wild-type (WT) mouse islets, while 

expression in Oatp2b1-/- mouse islets was very low. Results shown as mean ± SD. 
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Protein expression of Oatp2b1 in mouse pancreatic islets 

Expression of mouse Oatp2b1 protein was localized to mouse pancreatic islets. Dual 

immunofluorescent staining of Oatp2b1 with insulin or glucagon showed a great extent of 

co-localization with insulin, whereas co-localization with glucagon was less apparent 

(Supplementary Figure 3). 
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Supplementary Figure 3. Immunofluorescent staining of mouse pancreatic tissue. 

Immunofluorescent staining performed as previously described. (A) Oatp2b1 expression 

was detected in wild-type mouse islets with some co-localization with insulin (10x). 

Scale bar in 100 µm. (B) Some co-localization of Oatp2b1 was observed with glucagon 

(40x). Scale bar in 50 µm. Co-localization indicated by white arrows. 
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Glucose handling in Oatp2b1-/- mice following intraperitoneal glucose dose 

Potential differences in glucose handling were evaluated in WT and Oatp2b1-/- mice 

following a 16 hour fast and administration of a 2 mg/g intraperitoneal glucose dose. No 

significant differences in blood glucose level AUC was detected between WT and 

Oatp2b1-/- mice for all measured timepoints. Interestingly, mean fasting blood glucose 

after 16 hours was significantly higher in Oatp2b1-/- mice (P=0.005) than in WT mice. 

Statistical analyses performed by Mann-Whitney U test (Supplemental Figure 4). 
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Supplementary Figure 4. Intraperitoneal glucose tolerance test in Oatp2b1-/- 

mice.(A) Blood glucose over 120 minutes following intraperitoneal administration of 2 

mg/kg glucose. (B) Fasting blood glucose following a 16 hour fast. Blood glucose was 

significantly higher in Oatp2b1-/- mice compared to C57BL/6 mice. The fasting blood 

glucose of Oatp2b1 KO mice was significantly higher (P=0.005) after a 16-hour fast as 

determined by a Mann-Whitney U test. Results shown as mean ± SD, n=6 per group.  
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Appendix C: Animal Use Protocol Approval 

 

 

AUP Number: 2015-080 

PI Name: Schwarz, Ute 

AUP Title: Role of Statin transport by OATPs in pancreatic islet cell function 

Official Notification of AUS Approval: A MODIFICATION to Animal Use Protocol 

2015-080 has been approved. 

The holder of this Animal Use Protocol is responsible to ensure that all associated 

safety components (biosafety, radiation safety, general laboratory safety) comply 

with institutional safety standards and have received all necessary approvals. Please 

consult directly with your institutional safety officers. 

Submitted by: Kinchlea, Will D  

on behalf of the Animal Use Subcommittee  
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