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Abstract

The rationality problem for algebraic tori is well known. It is known that any algebraic torus
is unirational over its field of definition. The first purpose of this work is to solve rational-
ity problem for 5 dimensional stably rational algebraic tori with an indecomposable character
lattice. In order to do so, we have studied the associated character lattices of the mentioned
algebraic tori. For each character lattice L, either we see the lattice as an associated lattice to
a root system (of which rationality of its corresponding algebraic torus is known) or we find
a reduced component of L so that we can relate rationality of the associated algebraic torus to
lower dimensions. Using these two main methods from [23], we solve rationality problem in
some cases.

The second problem of which we are concerned with here, is to give a constructive proof
for the No Name Lemma. Let G be a finite group, K be a field, L be a permutation G-lattice
with the standard basis and K[L] be the group algebra of L over K. The No Name Lemma
asserts that the invariant field of the quotient field of K[L], K(L)G is a purely transcendental
extension of KG. In other words, there exist y1, . . . , yn which are algebraically independent over
KG such that K(L)G � KG(y1, . . . , yn). For a Galois extension K/F with G = Gal(K/F) we have
introduced Y = {y1, . . . , yn} ⊂ K[L]G with desired properties. Moreover, Y can be used to get
a concrete description of K[L]G. For a sign permutation G-lattice L, a more general argument
is given so that we can concretely find a transcendence basis of K(L)G over KG. Since the
coordinate ring (resp. the rational function field) of an algebraic torus is given as invariant ring
(resp. field), K[L]G (resp. K(L)G) where L is the character lattice of the algebraic torus, the
given proof can be used to construct the group ring or rational function field of a quasi split
algebraic torus.

Keywords: Algebraic tori, multiplicative invariant, No Name Lemma.
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Chapter 1

Introduction

An interesting problem in algebraic geometry is the rationality problem, i.e. for a given alge-
braic variety, determine if it is rational or not. A more general problem is to classify algebraic
varieties up to birational isomorphism classes.

In order to simplify the classification, we try to find coarser classes. Thus we define stable
rationality and unirationality. Although these are geometric notions, in some cases there is a
nice translation of these to algebraic language and this is the key to give a partial solution to
the simplified problem.

But what do we mean by rationality? If X is an algebraic variety, we say X is rational if it
is birationally isomorphic to An for some n. For a coarser class, we say that X is stably rational
if X × An is rational (for some n). We call X unirational if there exist a finite degree dominant
rational map from An (for some n) to X.

Rational varieties

Stably Rational Varieties

Unirational Varieties

To understand classes we need to find some birational invariants (properties which hold for all
elements in a birational class) of algebraic varieties. A birational invariant of algebraic varieties
is dimension. Another one is the function field of varieties which belong to the same class. Our
approach here is to study the function fields.

In this dissertation we study two problems about algebraic tori. The first one is to examine
rationality of 5 dimensional algebraic tori which are known to be stably rational. The other

1



2 Chapter 1. Introduction

problem is finding an explicit algebraic description of quasi split algebraic tori. In what fol-
lows we briefly explain the mentioned problems and known results.

An algebraic F-torus T is an algebraic group defined over a field F, which is a torus over
an algebraic closure F̄. Since a torus is a finite product of Gm into itself, we say T splits over
F̄. In general F̄ is not the smallest field such that T splits over it. It is known that an algebraic
F-torus T splits over a finite Galois extension of F. If T splits over K/F and G = Gal(K/F),
then G is called the splitting group of T .

The rationality problem for an algebraic torus is to determine whether a given algebraic torus
is rational (stably rational or unirational). Algebraic tori are in some sense the simplest alge-
braic groups, so it is reasonable to solve the difficult problem of rationality in these cases. Our
approach to solve the problem is to use the relation between algebraic tori and multiplicative
invariants.

Assume L is a free Z-module of finite rank (i.e. a lattice) and G is a finite group acting by
automorphism on L. This type of action is called a multiplicative action. If R is a commutative
unital ring, we can extend the action on L to an action on R[L] (the group ring of L over R).
Now L becomes a multiplicative group in R[L]. The multiplicative invariants are the invariant
elements in R[L] under the action of G.

Multiplicative invariants occur in different contexts such as centers and prime ideals of group
algebras, representation rings of Lie algebras and rationality problems. Since we are interested
in the rationality problem, we present Noether’s problem here. Assume K/F is a rational field
extension i.e. K = F(x1, . . . , xn) where xi’s are algebraically independent over F. Moreover,
assume that a group G acts on K by automorphism and maps F to itself. Noether’s rationality
problem asks under what conditions the extension KG/FG is also rational. The origin of the
problem goes back to some problems in constructive Galois theory (see [29] and [17]). The
special case of multiplicative G-fields (here, K(L) for some lattice L with a multiplicative ac-
tion of G) for a finite group G has received particular attention. One of the main reasons of this
attention is the connection of multiplicative invariants with algebraic tori.

There is a duality between the category of algebraic tori which split by G and G-lattices (a
lattice equipped with a G action). For a given algebraic torus T with splitting group G, its char-
acter module Hom(T,Gm) is a G-lattice. If L is a G-lattice, then Spec(K[L]G) is an algebraic
torus with splitting group G.

On the other hand having a G-lattice L means we have

G −→ GL(L) � GL(n,Z),
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where n is the rank of L. If G is a finite group acting on L then the image of G inside GL(n,Z)
(under the representation map) is a finite subgroup of GL(n,Z). Also if G is a finite subgroup
of GL(n,Z) then it acts naturally by multiplication on the standard basis of Zn which gives a
G-lattice. The dualities explained for a fixed Galois extension K/F with Galois group G, are
summarized as

{isomorphism classes of n dimensional algebraic tori}

l

{isomorphism classes of G-lattices of rank n}

l

{conjugacy classes of finite subgroups of GL(n,Z)}.

By a celebrated theorem by Jordan [18], the number of finite subgroups of GL(n,Z) is finite
(up to conjugacy) for any natural number n. This means that up to isomorphism, we have
finitely many algebraic tori in each dimension. When we say a finite subgroup of GL(n,Z) or
a G-lattice is rational, we mean their corresponding algebraic torus is rational. An algebraic
torus T is called hereditarily rational if all subgroups of the group associated to T are rational.

In order to classify birational classes of algebraic tori, one should first find non-conjugate finite
subgroups G in GL(n,Z). The information about finite subgroups of GL(n,Z) for n up to 4 is
contained in the GAP package CrystCat. The GAP package Carat contains all finite subgroups
of GL(n,Z), for n up to 6.

As we mentioned before, one of the problems we are concerned with here, is the rational-
ity problem for 5 dimensional algebraic tori. In order to present the main results in rationality
problem for algebraic tori we need to present some information first.

The GAP ID of finite subgroups of GL(n,Z) for n ≤ 4 is used frequently in classification
of 4 and 5 dimensional algebraic tori. A group with GAP ID (n,m, i, j) is the finite subgroup
of GL(n,Z) of the jth Z-class of the ith Q-class of the mth crystal system. In [15] the authors
introduced Carat ID. A group with Carat ID (n, i, j) is the finite subgroup of GL(n,Z) of the ith
Z-class of the jth Q-class.

It is known that any algebraic tori is unirational over its field of definition. The rationality
problem for one dimensional tori is straight forward. Voskresenskii showed that all two dimen-
sional algebraic tori are rational (see [44]). He used a geometric argument to show this result.

In [21], Kunyavski solved the rationality problem for algebraic tori of dimension 3. He proved
that except for 15 algebraic tori, the rest of them are rational. Moreover he proved that the
exceptional algebraic tori are not stably rational (see Table 1.1).
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GAP ID Structure #G GAP ID Structure #G GAP ID Structure #G
(3,3,1,3) C2

2 4 (3,4,7,2) D8 ×C2 16 (3,7,5,3) S 4 ×C2 48
(3,3,3,3) C3

2 8 (3,7,2,2) A4 ×C2 24 (3,7,5,2) S 4 ×C2 48
(3,4,4,2) D8 8 (3,7,3,3) S 4 24 (3,4,3,2) C4 ×C2 48
(3,4,6,3) D8 8 (3,7,3,2) S 4 24 (3,3,3,4) C3

2 8
(3,7,1,2) A4 12 (3,7,4,2) S 4 24 (3,7,2,3) A4 ×C2 24

Table 1.1: Non-rational groups of rank 3.

Hoshi and Yamasaki classified algebraic tori of dimension 4 and 5 up to stable rationality [15].
Their proof is based on computations using GAP. In dimension 4, there are 487 (up to isomor-
phism) algebraic tori which are stably rational. In [23], Lemire proved that in dimension 4, all
stably rational algebraic tori are rational, except for possibly ten of them. In dimension five,
there are 311 stably rational algebraic tori, found by Hoshi and Yamasaki, with indecompos-
able character lattices. In [15] stable rationality of the 311 was proven by considering maximal
groups among them.

We have studied the rationality of the mentioned groups in Chapter 3. Our approach to solve
the rationality problem is similar to the approach used in [23]. We apply two main methods on
lattices associated to the mentioned 311 groups. The first method is to see them as an isomor-
phic copy of a lattice which corresponds to a known rational torus. The second method is to
find a short exact sequence of lattices with a specific condition on the cokernel. For a G-lattice
L, we are interested in finding a short exact sequence of lattices

0 −→ M −→ L −→ P −→ 0

where P is a G-lattice (preferably of rank 1) such that there exist a Z-basis of P which is per-
muted by G. It is known that the existence of such sequence shows that K(L)G is rational over
K(M)G and rationality of K(M)G over F implies rationality of K(M)G over F as desired.

There are cases of which none of the above ideas work. In some of those cases, we have
considered subgroups for which the above methods work. We have provided some information
in the cases for which the rationality is unknown yet (see Section 3.3.17).

The rationality results of Chapter 3 are summarized in Table 1.2. The groups presented in
Table 1.2 are hereditarily rational.
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CARAT ID Group Structure #G Description.
[5, 942, 1] Imf(5, 1, 1) 3840 The root lattice of B5

[5, 953, 4] S 6 720 The root lattice of A5

[5, 726, 4] C4
2 o S 4 384 reduced component [4, 32, 21, 1 ]

[5, 911, 4] S 5 120 reduced component [4, 31, 4 , 1 ]
[5, 341, 6] D8 × S 3 48 reduced component [4, 20, 17, 2 ]
[5, 531, 13] C2 × S 4 48 reduced component [4, 25, 9 , 2 ]
[5, 245, 12] C2

2 × S 3 24 reduced component [4, 14, 10, 2 ]
[5, 81, 54] C2 × D8 16 reduced component [4, 13, 7 , 5 ]
[5, 389, 4] D12 12 reduced component [4, 21, 3 , 2 ]
[5, 901, 3] D10 10 reduced component [4, 27, 3 , 1 ]
[5, 22, 14] C2 ×C2 ×C2 8 reduced component [4, 6 , 1 , 9 ]
[5, 98, 28] D8 8 reduced component [4, 13, 3 , 3 ]
[5, 99, 57] D8 8 reduced component [4, 12, 4 , 7 ]
[5, 174, 2] S 3 6 reduced component [4, 17, 1 , 3 ]
[5, 174, 5] S 3 6 reduced component [4, 17, 1 , 2 ]
[5, 18, 28] C2 ×C2 4 reduced component [4, 4 , 3 , 4 ]
[5, 19, 14] C2 ×C2 4 reduced component [4, 5 , 1 , 10]
[5, 57, 8] C4 4 reduced component [4, 7 , 1 , 2 ]
[5, 164, 2] C3 3 reduced component [4, 11, 1 , 1 ]
[5, 6, 3] C2 2 reduced component [4, 2 , 2 , 2 ]

Table 1.2: Hereditarily rational groups among 311 indecomposable stably rational groups
found by Hoshi and Yamasaki.

A G-lattice L, is called permutation (resp. sign permutation) if it has a Z-basis which is per-
muted (resp. up to sign changes) by G. In chapter 4 we will see that a G-lattice of rank n is a
permutation lattice if and only if G is conjugate to a subgroup of Sn where

Sn = 〈σ =

 0 1
In−1 0

 , τ =


0 1
1 0

0

0 In−2

〉.

Among algebraic tori there are families with permutation or sign permutation character lat-
tices. An algebraic torus with a permutation character lattice is called quasi split. These two
families are known to be rational. Although computationally we do not have an efficient algo-
rithm to decide whether a given lattice is permutation, the structure of a quasi split torus is well
understood.

The No Name Lemma asserts that if L is a permutation G-lattice and K is a G-field , then
K(L)G is rational over KG. This shows that a quasi split torus is rational. Providing a concrete
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proof for the No Name Lemma is another problem which is solved in this dissertation. The
proof is based on a generalization of the Moore determinant [13, Section 1.3].

For G ≤ GL(n,Z), let LG be the G-lattice of rank n, generated by the standard basis {ei}
n
i=1,

where (ei) j = δi j. For a field K, the group algebra K[L] is isomorphic to the ring of Lau-
rent polynomials over K, i.e. K[x±1

1 , . . . , x
±1
n ] and G acts both on K and L. For g ∈ G,

gei =
∑n

j=1 ci je j for some ci j ∈ Z. The action of g on xi is given by gxi =
∏n

j=1 xci j

j .

Assume G is the Galois group of K/F and TG is the algebraic torus associated to LG. The
coordinate ring of TG is K[LG]G � K[x±1

1 , . . . , x
±1
n ]G. The invariant field of the quotient field

of K[LG], K(LG)G � K(x1, . . . , xn)G is the rational function field of TG. It is known that TG is
rational if and only if K(LG)G is rational over FG.

Theorem 1. Let G ≤ Sn ≤ GL(n,Z) and LG be the lattice corresponding to G as defined above,
which is a permutation lattice with the standard basis. Let K/F be a finite Galois extension
with Galois group G. Let α ∈ K be a normal element for the Galois extension K/F.

K[L]G � K[x±1
1 , x

±1
2 , . . . , x

±1
n ]G = F[y1, . . . , yn]x1···xn

where yi is given by
S =

∑
σ∈G

σ ∈ Z[G]

yi = S (αxi) for 1 ≤ i ≤ n.

Theorem 2. Let G ≤ GL(n,Z) and LG be the lattice corresponding to G as defined above.
Assume LG is a sign permutation lattice with the standard basis. Let K/F be a finite Galois
extension with Galois group G. Let α ∈ K be a normal element for the Galois extension
K/F. Then K(x1, . . . , xn)G is rational over F with transcendence basis y1, . . . , yn where yi =

S (α(1 + xi)−1) and S =
∑

g∈G g ∈ Z[G].

The constructiveness of the proof can be turned into an algorithm to find the rational function
field and the coordinate ring of a quasi split algebraic tori.



Chapter 2

Preliminaries

This chapter is devoted to covering the necessary background for studying the rationality prob-
lem for algebraic tori and the other results proven in chapter 4.

Definition 1. [37, Examples 3, 4] Any ring R determines the ringed space (Spec(R),O) where
O is the structure sheaf. We call (Spec(R),O) an affine scheme.

Definition 2. [39, Tag 01IJ] A scheme is a locally ringed space with the property that every
point has an open neighbourhood which is an affine scheme. A morphism of schemes is a
morphism of locally ringed spaces.

Definition 3. [39, Tag 01RS] Let X, Y be schemes.

1. Let f : U → Y , g : V → Y be morphisms of schemes defined on dense open subsets U,
V of X. We say that f is equivalent to g if f |W = g|W for some W ⊂ U ∩ V dense open in
X.

2. A rational map from X to Y is an equivalence class for the equivalence relation defined
in (1).

Definition 4. [39, Tag 020C] Let k be a field. A variety is a scheme X over k such that X is
integral and the structure morphism X → Spec(k) is separated and of finite type.

For simplicity we define rationality notions for varieties.

Definition 5. A rational mapping ϕ : X → Y such that it has a rational inverse, is called a
birational isomorphism.

Now we can define a rational variety.

Definition 6. Let k be a field and X be a k-variety. We say X is k-rational (or simply rational)
if there exists a birational isomorphism X

∼
−→ An.

In general for a given variety it is not easy to say if it is rational or not, so as usual we try some
relaxed notions of rationality to give an approximation of rationality.

7
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Definition 7. With the assumptions of the previous definition we say X is stably k-rational if
there exists a birational isomorphism

ϕ : X × An ∼
−→ Am

where n 6 m.

Definition 8. A morphism ϕ : X → Y between two varieties is said to be dominant if ϕ(X) is
dense in Y.

Definition 9. Again with above assumptions X is k-unirational if there exist a dominant rational
map

ϕ : An → X.

We can see
rationality⇒ stably rationality⇒ unirationality. (2.1)

Now we want to translate these notions to algebraic equivalents so we can deal with them
more easily. In order to do so, we define rationality (stable rationality, unirationality) of a field
extension. After doing that we say a variety is rational (resp. stably rational or unirational) if
the function field of the variety is rational (resp. stably rational or unirational) over the base
field. In the below definitions assume K/k is a finitely generated field extension.

Definition 10. K is said to be rational over k, if K � k(x1, . . . , xn) for some algebraically
independent x1, . . . , xn over k.

Definition 11. K is called stably rational over k, if K(y1, . . . , ym) is rational over k for some
algebraically independent elements y1, . . . , ym over K.

Here we define another rationality type for which we did not give a geometric equivalent since
Saltman first defined it algebraically.

Definition 12. K is called retract rational if it contains a k-algebra R satisfying the following:
i) K be the quotient field of R.
ii) the identity map id : R→ R factors through a localized polynomial ring over k.

Definition 13. K is called unirational over k if

k ⊆ K ⊆ k(x1, . . . , xn)

for some algebraically independent elements x1, . . . , xn over k.

Another useful notion is stable isomorphism. Let G be a group and F and F′ be two G-fields
(i.e. fields equipped with a G action). We say F and F′ are stably isomorphic as G-fields if

F(x1, . . . , xr) � F′(y1, . . . , ys)

We note that letting G = {1} we can get the stable isomorphism for fields. Having next propo-
sition in hand, it is easy to see that
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rationality⇒ stable rationality⇒ retract rationality⇒ unirationality.

Proposition 14. [25, Theorem 9.3.3] Let F/K and E/K be field extensions.
(a) If F and E be stably isomorphic over K and F/K be retract rational, then E/K is retract
rational.
(b) If F/K is stably rational then it is also retract rational.

Later on when we provide some more machinery, we can see these inclusions easier for alge-
braic tori.

None of the above implications are reversible in general. In other words we have varieties
(one can see same statement for their function fields) which are unirational but not retract ra-
tional, there are retract rational examples which are not stably rational and there are stably
rational varieties which are not rational.

2.1 G-Lattices

It is known that there is a duality between algebraic tori and G-lattices. In order to be able to
discuss the duality, we briefly introduce G-lattices in this section. For a more detailed discus-
sion see [25, Chapters 1 and 2].

A lattice is a free Z-module of finite rank. As a Z-module, it is isomorphic to Zn for some
n. If we have a group G, we can endow the lattice with an action of G. If G acts on a lattice L
by automorphisms i.e. there exists

G −→ GL(M) � GL(n,Z),

we say L is a G-lattice. We can equivalently say that G-lattices are free Z-modules of finite
rank which is also Z[G]-modules, for Z[G] the integral group ring over G. A G-equivariant,
Z-linear map between G-lattices is called a homomorphism of G-lattices.

For a given G-lattice L we define

LG = {l ∈ L : g.l = l, ∀g ∈ G}.

Example 15. Let G = D8 = 〈r, s : r4 = s2 = 1, rs = sr−1〉 be the dihedral group of order
8 and L = Ze1 ⊕ Ze2 be a lattice. The following can be checked to be an injective group
homomorphism.

ρ : G −→ GL2(Z)

r −→
(
0 −1
1 0

)
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s −→
(
−1 0
0 1

)
This gives a G-lattice, L. Since g.x = ρ(g)(x) the action on the basis {e1, e2} is given by

r · e1 = e2

r · e2 = −e1

s · e1 = −e1

s · e2 = e2

We can see that LG = 0. G-lattices L with LG = 0 are called effective.

Now let R be an arbitrary commutative (unital) ring. For any G-lattice L we can form the group
algebra R[L] and the action of G on L can be extended to an action on R[L]. The subalgebra of
all G-invariant elements in R[L]

R[L]G = {l ∈ R[L] : g.l = l, ∀g ∈ G}

is called the multiplicative invariant algebra. Studying this algebra is the subject of multiplica-
tive invariant theory.

The group algebra R[L] of a G-lattice, is isomorphic to the Laurent polynomial algebra
R[x±1

1 , x
±1
2 , . . . , x

±1
n ] and the lattice itself becomes a multiplicative subgroup of all monomi-

als.

Going back to the previous example we can write R[L] � R[x±1
1 , x

±1
2 ] and the multiplicative

action is given by

r · x1 = x2, r · x2 = x−1
1 , s · x1 = x−1

1 , s · x2 = x2

If L and L′ are two G-lattices then HomZ(L, L′), the set of all Z-linear maps from L to L′, is a
G-lattice with the following action

(g. f )(m) = g.( f (g−1.m)).

For L′ = Z (with trivial action of G), we get the G-lattice L∗ = HomZ(L,Z) which is called
the dual lattice of L.

Suppose L is a G-lattice and H is a subgroup of G. L can be considered as an H-lattice.
The new H-lattice is called restricted and is denoted by L ↓G

H.

Assume H is a finite index subgroup of G and L is an H-lattice. The G module Z[H] ⊗Z[G] L is
a G-lattice which is called the induced G-lattice and is denoted by L ↑G

H.
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Definition 16. A G-lattice L is called a permutation lattice if there exists a Z -basis X for L
such that, G acts as permutation group on X. We denote L by Z[X].

Example 17. Let H be a finite index subgroup of a group G and G/H = {g1H, g2H, . . . , gnH}
be a complete representative set of left cosets of H in G. Then Z[G/H] is a G-lattice with the
action g.giH = (ggi)H. It is easy to see that G acts as a permutation group on the basis so it is
a permutation lattice.

It is known that the permutation G-lattice Z[G/H] is isomorphic to Z ↑G
H.

Lemma 18. [5, Proposition 10.28] If L is a H-lattice and H is a subgroup of G of finite index,
then

L∗ ↑G
H� (L ↑G

H)∗.

Lemma 19. [25, Section 2.2] A G-lattice L is a permutation lattice if and only if L �
⊕

H Z[G/H]
where H is a finite index subgroup of G.

Since the trivial H-lattice Z is self dual, as a corollary of the above lemmas we can conclude
that, any permutation lattice is self dual.

It is important to notice that direct sum (and tensor product) of permutation lattices is still
permutation.

Definition 20. We call a G-lattice L, decomposable if there are nontrivial G-lattices L1 and L2

such that L � L1 ⊕ L2. L is called indecomposable if it is not decomposable.

If L is decomposable then it is reducible, but the converse is not true for lattices.

Definition 21. A G-lattice L is called reducible if L has a nontrivial G-invariant subspace M
such that L/M is torsion free. L is called irreducible if it is not reducible.

Now let L and L′ are two G-lattices. L and L′ are stably permutation equivalent if and only if
there exist permutation lattices P and P′ such that

L ⊕ P � L′ ⊕ P′.

In fact the above notion defines an equivalence relation on G-lattices. We denote the equiva-
lence class of L by [L].

Definition 22. A G-lattice L is called stably permutation if [L] = [0] i.e. there exist permutation
lattices P and P′ such that

L ⊕ P � P′

We can also define addition on the set of all equivalence classes of stably permutation equiva-
lence relation. For G-lattices L and L′, define

[L] + [L′] = [L ⊕ L′]
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Note that it is well defined.

Having this addition on the set of equivalence classes turns the set to an additive monoid which
we denote it by SPG. This is obviously a commutative monoid with [0] as the identity.

Definition 23. A G-lattice is called permutation projective or invertible if its corresponding
class in SPG is invertible. i.e. there exists an L′ such that [L] + [L′] = [0].

The above definition says, there are P and P′ permutation lattices such that L⊕ L′ ⊕P � P′. So
L is invertible if and only if L is a direct summand of a permutation lattice.

Let G be a finite group. Let us denote the Tate cohomology functor by Ĥi(G, .) (for i ∈ Z)
(See [4, Chapter 6]). Here we are just interested in Ĥ±1(G, .).

Definition 24. A G-lattice L is Ĥi- trivial if Ĥi(H, L) = 0 for all H 6 G.

Definition 25. We call a G-lattice L, flasque (coflasque) if it is Ĥ−1- trivial (Ĥ1- trivial).

Lemma 26. [25, Page 36] Let L be a G-lattice then

Ĥi(G, L) � Ĥ−i(G, L∗).

Definition 27. An exact sequence of G-lattices

0 −→ L −→ P −→ F −→ 0

is called a flasque resolution of L, if P is a permutation lattice and F is flasque. Similarly, we
can define a coflasque resolution of L as

0 −→ C −→ P −→ L −→ 0

where C is coflasque.

Theorem 28. [25, Lemma 2.6.1] For any given G-lattice L, there exists a coflasque (flasque)
resolution. Furthermore, if

0 −→ C −→ P −→ L −→ 0

and
0 −→ C′ −→ P′ −→ L −→ 0

are two coflasque resolutions of L, then [C] = [C′] (statement is true for flasque resolutions).

Lemma 29. [25, Lemma 2.5.1] Permutation projective G-lattices are both flasque and coflasque.

We can see that in particular permutation lattices are flasque and coflasque. As an example one
can consider the augmentation map

εG/H : Z[G/H]→ Z
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gH → 1

Let IG/H = KerεG/H. We can obtain the below exact sequence

0→ IG/H
i
−→ Z[G/H]

εG/H
−−−→ Z→ 0.

Considering the dual sequence where JG/H = I∗G/H we get

0→ Z→ Z[G/H]→ JG/H → 0.

Note that Z and Z[G/H] are both flasque and coflasque.

In general there is a construction for finding a coflasque resolution of a given lattice L. Let

P =
⊕

H

LH ↑G
H .

where H ranges through all subgroups of G. It can be shown that P is a permutation G-lattice .
On the other hand we can extend the inclusion

LH → L

to a G-equivariant epimorphism
φ : P� L

with φ(PH) = LH for all H ≤ G. Now letting C = kerφ we obtain an exact sequence

0→ C → P→ L→ 0.

Still we need to check if C is a coflasque G-lattice. By applying the cohomology functor to the
above sequence we get

· · · → PH → LH → H1(H,C)→ H1(H, P)→ · · ·

But we know that H1(H, P) = 0. Since φ is a surjection from PH to LH, we conclude that
H1(H,C) = 0.

Definition 30. Let L be a G-lattice. The flasque class of L, which is denoted by [L] f l is [F] ∈
SPG where F is the cokernel in any flasque resolution of L.

We write
L ∼ f l L′ ⇐⇒ [L] f l = [L′] f l

Note that [0] f l = [0] and [L⊕L′] f l = [L] f l+[L′] f l, since the direct sum of two flasque resolutions
for L and L′ is a flasque resoulution for L ⊕ L′.
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Definition 31. A G-lattice L which L ∼ f l 0 is called quasi-projective i.e. L is quasi projective
if and only if there exists a flasque resolution for L

0 −→ L −→ P −→ Q −→ 0

where Q is a permutation G-lattice.

In order to summarize important facts about lattices we can mention the below diagram

permutation ⇒ stably permutation ⇒ invertible ⇒ flasque and coflasque

⇓ ⇓

[M] f l = 0 ⇒ [M] f l is invertible.

2.2 Root Systems and Their Associated Lattices

In this brief section we define root systems and present the root lattice of An. For a more de-
tailed discussion we invite the reader to see [2], [16, Chapter 3].

Assume V is a vector space over R and V∗ be its dual. Suppose 〈., .〉 : V∗ × V → R denote the
usual evaluation pairing.

Definition 32. A subset Φ ⊂ V is called a reduced root system in V if it satisfies the following
properties,

i. Φ is finite, 0 < Φ and V = 〈Φ〉R.

ii. ∀v ∈ Φ there exists v̂ ∈ V∗ such that 〈v̂, v〉 = 2 and the reflection sv(u) = u − 〈v̂, u〉v maps
Φ to itself.

iii. ∀v ∈ Φ, 〈v̂,Φ〉 ⊂ Z.

iv. v ∈ Φ⇒ 2v < Φ

A root system Φ in V is called irreducible, if it is not possible to write V = V1 ⊕ V2 (Vi , 0)
and Φ = Φ1 ∪ Φ2 and root systems Φi in Vi. The irreducible reduced root systems are well
understood and classified. We only need the root systems of types An (n ≥ 1) and Bn (n ≥ 2).

Definition 33. The automorphism group of a reduced root system Φ in V is denoted by Aut(Φ)
and is defined as

Aut(Φ) = {g ∈ GL(V) : g(Φ) ⊂ Φ}.

Moreover, the Weyl group of Φ is denoted by W(Φ) and is generated by sv defined in Definition
32[ii] i.e.

W(Φ) = 〈sv : v ∈ Φ〉.
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Note that W(Φ) ⊂ Aut(Φ) and Aut(Φ) is a finite group.

Definition 34. A subset ∆ of a root system Φ ⊂ V is called a base for Φ if

• ∆ is a basis of V

• u ∈ Φ⇒ u =
∑
δ∈∆ cδδ or u = −

∑
δ∈∆ cδδ where cδ are non negative integers.

Definition 35. The root lattice L(Φ) of a root system Φ is defined by

L(Φ) = ZΦ = {
∑
v∈Φ

cvv : cv ∈ Z}.

We are just interested in types An, and Bn. Let V denote the nullspace of the linear map
Rn+1 → R sending the standard basis {ei}

n+1
i=1 of Rn+1 to one. One can verify that

Φ = {ei − e j : i , j, 1 ≤ i, j ≤ n + 1}

is a root system in V , and it is called the root system of type An. The set {ei − ei+1}
n
i=1 is a base

of Φ.

The Weyl group of Φ, W(An), is S n+1 and it acts on Φ by its standard action on ei’s, i.e

∀g ∈ S n+1, g(ei) = eg(i).

Moreover, the automorphism group of Φ is Aut(Φ) = C2 × S n+1 where C2 =< σ > is the cyclic
group of order two. σ acts on Φ by multiplication with −1.

The root lattice ZAn is given by

{

n∑
i=1

ciei : ci ∈ Z,
∑

i

ci = 0} = 〈e1 − e2, . . . , en − en+1〉Z.

The root lattice of An can be given as the kernel of the augmentation map. Identify Sn as
StabSn+1(n + 1) of Sn+1. It is clear that Z[Sn+1/Sn] is isomorphic to the permutation Sn+1-lattice
⊕iZei with g ∈ Sn+1 acting by g(ei) = eg(i). The kernel of the augmentation map ε : ⊕iZei → Z,
ε(ei)→ 1, is ZAn.

For the root system of type Bn let V = Rn (n ≥ 2). One can verify that Φ = {α : (α, α) = 1 or 2}
is a root system in V and it is called the root system of type Bn. The set {ei − ei+1}

n−1
i=1 ∪ {en} is a

basis of Φ. The Weyl group of Φ, W(Bn) is Cn
2 oSn (the wreath product) where C2 is the cyclic

group of order two and Sn is the symmetric group of order n. For more detail see [16, Chapter
3].

Proposition 36. [25, Proposition 1.1] Let Φ be an irreducible reduced root system not of type
C4 and L = L(Φ) be its root lattice. the action of Aut(Φ) on L realizes Aut(Φ) as a maximal
finite subgroup of GL(L).
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2.3 Algebraic Groups

In this small section the aim is to introduce the main definitions of algebraic groups and alge-
braic tori. For a more detailed discussion see [16, Chapter 2], [1, Chapter 1] and [44, Chapter
1].

Theorem 37. [45, Page 5] Let F be a functor from k-algebras to sets. If the elements in F(R)
correspond to solutions in R of some family of equations, there is a k-algebra A and a natural
correspondence between F(R) and Homk(A,R). The converse also holds.

Such an F is called representable and we say A represents F. An affine group scheme is a
representable functor from category of k-algebras to category of groups (see [45, Chapter 1] or
[44, Chapter 1]). An affine group scheme, G is called algebraic, if its representing algebra is
finitely generated.

Example 38. GLn is the affine algebraic group scheme represented by Spec(Z[x11, . . . , xnn,D−1])
where D = det(xi j). GLn(K) is the set of all invertible matrices in Mnn(K).

Example 39. Since we can embed Sn(symmetric group of order n) into GLn, it is an algebraic
group. More precisely for σ ∈ Sn we can send it to the action of σ on In. Furthermore applying
Cayley’s theorem, we see that any finite group is an algebraic group.

Example 40. We denote GL1 by Gm (where m refers to multiplicative). Gm is represented by
Spec(Z[x, x−1]). Ga is the algebraic group represented by Z[x]. Another way to look at Ga is
given by below embedding:

x −→
(
1 x
0 1

)
∈ GL2

From now on when we say algebraic group we mean an affine algebraic group. We call a map
f : G −→ G′ a morphism of algebraic groups if it is a morphism of varieties and homomor-
phism of groups. A character of an algebraic group is χ : G −→ Gm which is a morphism
of algebraic groups. It is well known that the set of characters of an algebraic group form an
abelian group and it is denoted by χ(G).

In the simplest terms, an algebraic torus over a field k, is an algebraic group which over k̄
it looks like a torus i.e. it will be the product of some copies of Gm. In order to define an
algebraic torus more formally we need the following definition.

Definition 41. Let F/K be a field extension and X be a K-scheme. We say a K-scheme Y is an
F/K-form of X if the following holds(as F-schemes)

X ⊗ F � Y ⊗ F

if F = K̄ we say Y is a K-form.
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Now an algebraic torus is a an algebraic group, which is a K-form of Gd
m for some d.

The Weil restriction is a functor such that for any field extension K/F and any affine group
scheme, G over K, produces an F-group scheme RK/F(G). If A is a K-algebra, then RK/F(G)(A) =

G(A ⊗F K) (see [44, Section 1.3.12]).

The simplest example of an algebraic torus is Gm. Another well understood example is RK/F(Gm)
where RK/F is the Weil restriction for a Galois extension K/F.

Definition 42. [44, Example 19] An algebraic torus representable as a direct product of groups
of the form RK/F(Gm) is called a quasi split torus.

We say that an algebraic group G, is diagonalizable if the coordinate ring of G, can be spanned
by its character group. This is equivalent to say G is isomorphic to a subgroup of Dn (consisting
of diagonal matrices) for some n > 0.

Later on when we want to see the duality between algebraic tori and G-lattices we will use
it.

Theorem 43. [1, Page 114] The following are equivalent:
a) T is an n dimensional torus.
b) T is a connected diagonalizable group of dimension n.
c) T is a diagonalizable group and χ(T ) = Zn.

Remark. A quasi split torus is characterized by the condition that its character lattice is a
permutation lattice.

2.4 Duality Between Algebraic Tori and G-lattices

As mentioned before there is a duality between category of algebraic tori split by a G-Galois
extension and category of G-lattices. In this section we want to briefly take a look at the duality.
For more discussion see [44, Section 3.4].

Let Y be a k-form of a k-scheme X. A field k ⊆ F is called a splitting field of Y if

X ⊗k F � Y ⊗k F.

It turns out that there exists a separable extension of k, which is a splitting field of Y . Let ks be
the separable closure of k and G be the absolute Galois group of ks/k.
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Let T be an algebraic k-torus which splits over ks and G as above. Also let T̂ be the char-
acter group of T . One can see that there is an action of G by means of automorphisms on T̂ .
Let the action be given by the representation

h : G → Aut(T̂ ).

Note that h is continuous, Aut(T̂ ) has the discrete topology and G is compact (in the profinite
topology). Hence the image of G is compact in Aut(T̂ ). This obviously implies that h(G) is a
finite subgroup of Aut(T̂ ). This is telling us the kernel of h, which is acting trivially, is of finite
index in G. Let H = ker h and assume F is the fixed field of ks under the action of H. Hence
H = Gal(ks/F). Note that the quotient G/H � Gal(F/k) and F/k is a finite Galois extension.

Since everything can be reduced to the finite case, let us take a closer look at it. Let T be
an algebraic torus over K and let L be a finite Galois extension of K such that T splits over L.
Assume that the Galois group of L/K is G = Gal(L/K). In the light of Theorem 43 we know
that the character group of T is a lattice and we can endow it with the action of Galois group.
In other words for any algebraic torus of dimension n, we have Hom(T,Gm) as a G-lattice.

On the other hand for a given G-lattice M, Spec(L[M]G) is an algebraic torus. In this case
L[M]G is the coordinate ring of the torus.

Lemma 44. Suppose V is a vector space over a field F and W , 0 is a non-empty subset of V.
If any F-linear function φ : V → F annihilating W, is zero, then W contains an F-basis of V.

Proof. Assume any linear map from V to F which annihilates W, is zero. If W does not contain
a basis of V then V \ spanF(W) is nonempty. Let t , 0 be an arbitrary element of V \ spanF(W).
We can extend {t} to B, a F-basis for V . Now we define a linear map φ : V → F such that
φ(t) = 1 and ∀v ∈ B \ {t}, φ(v) = 0. It is clear that W ⊂ spanF(B \ {t}). Hence φ is a linear map
annihilating W which is nonzero and this is a contradiction. �

The main key to this correspondence is the below proposition.

Proposition 45. [38] (Speiser’s Lemma) Let V be an F-vector space and G be a finite group
which acts faithfully on F and acts on V by the property

∀l ∈ F, v ∈ Vand g ∈ G g.(lv) = (g.l)(g.v)

i.e. V is a G-module with above property. Then VG contains an F-basis for V.

Now let T be an algebraic K-torus which splits over a Galois extension F and G = Gal(F/K).
Considering its character group M we get a G-lattice. We can construct an algebraic torus out
of M by considering Spec(F[M]G) with coordinate ring F[M]G.
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We note that T is diagonalizable (Theorem 43), so over F, its coordinate ring is F[M]. Apply-
ing the proposition to F[M]G we see that

F[M]G ⊗K F � F[M]

So over F, T and Spec(F[M]G) has the same coordinate ring.

Up to now we know that there is a one to one correspondence between algebraic tori split
by a G-Galois extension and G-lattices or equivalently integral representations of G. In other
words for an algebraic K-torus T of dimension n, which splits over finite Galois extension F
with G = Gal(F/K), T is determined by h : G −→ GL(n,Z). We call h(G) the splitting group
of T , which is a finite subgroup of GL(n,Z). So in order to classify algebraic tori of dimension
n over k, we have to investigate in all conjugacy classes of finite subgroups of GL(n,Z). As we
mentioned earlier Jordan proved that the number of finite subgroups of GL(n,Z) for any n, up
to conjugacy, is finite.

2.5 Basic Results

In this section we present some important results about rationality problem for algebraic tori.
Before presenting the results we need the following definition to avoid repeating the same
assumptions.

Definition 46. If G is a finite subgroup of GL(n,Z), then the corresponding lattice to G which
is denoted by LG is the rank n lattice generated by the standard basis, i.e. LG = 〈ei : i =

1, . . . , n〉Z where (ei) j = δi j. The action of G on LG is given by multiplication from right on
the ei’s. Moreover, if G � Gal(K/F) for some finite Galois extension K/F then K[LG] �
K[x±1

1 , . . . , x
±1
n ], that is the Laurent polynomial ring, and K(LG) which is the quotient field of

K[LG] is isomorphic to K(x1, . . . , xn) (xi’s are algebraically independent over K) are equipped
with an action of G as

• G acts as Galois group on K

• ∀g ∈ G, g(xi) =
∏ j=n

j=1 xai j

j where ai j’s are given by g(ei) =
∑ j=n

j=1 ai je j.

Also TG is the corresponding algebraic torus to LG i.e. TG is an algebraic torus defined on F
which splits over K, with character lattice LG.

By the duality explained before, K(LG)G is the rational function field of TG. From now on
we work with finite subgroups of GL(n,Z) (up to conjugacy) and when we consider their
corresponding lattice (or algebraic torus), LG (TG), we mean the lattice (algebraic torus) defined
in Definition 46.
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Theorem 47. [38] (No Name Lemma) Let M be a permutation G-lattice and F be a G-field.
Then F(M)G is rational over FG.

Proof. Let {x1, . . . , xn} be a Z-basis which is permuted by G and V =
∑n

i=1 Fxi be a F vector
space. Applying Proposition 45 to V , we find y1, . . . , yn ∈ VG such that V =

∑n
i=1 Fyi. This

implies F(M) = F(x1, . . . , xn) = F(y1, . . . , yn). Hence

F(M)G = F(y1, . . . , yn)G = FG(y1, . . . , yn).

�

Note that if G = Gal(F/K), then FG = K. For another version of the No Name Lemma see [9].

Theorem 48. [25, Proposition 9.5.1] Assume L is a sign permutation G-lattice and F is a
G-field. Then F(M)G is rational over FG.

The rationality problem for algebraic tori of dimension one was concrete. For dimension two
Voskresenskii used a geometric method to prove the below result.

Theorem 49. [42] Any 2 dimensional algebraic torus over k, is k-rational.

We talked about the duality between category of algebraic tori and category of G-lattice. Hav-
ing the duality in hand one may ask how to interpret the notions from one side to the other side.
One of the important results about translating the facts about the rationality of algebraic tori,
into the language of G-lattices is given below.

Theorem 50. [43] Let M and M′ be two G-lattices and F/K be a finite Galois extension with
Galois Group G. Then [M] f l = [M′] f l if and only if F(M)G and F(M′)G are stably isomorphic.

The next two results give us necessary and sufficient conditions for stable rationality and retract
rationality in terms of G-lattices. Having these two criteria gives us some control over the
birational classification of algebraic tori of small dimension.

Theorem 51. [25, Theorem 9.5.4] Let M be a G-lattice and F/K be a finite Galois extension
with Galois group G. [M] f l is invertible if and only if F(M)G is retract K-rational.

Theorem 52. [10, Theorem 1.6]Let M be a G-lattice and F/K be a finite Galois extension with
Galois group G. [M] f l = 0 if and only if F(M)G is stably K-rational.

The above two theorems can be used to see any stably rational algebraic torus is retract rational.

The following two theorems classifies algebraic tori of dimension 4 and 5 up to stable ra-
tionality. In [15] the authors gave a complete classification of mentioned tori, however they did
not say anything about rationality of tori of dimension 4 and 5. The main idea of their work
was to investigate the last 3 results above, by means of computer algebra system, GAP.
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Theorem 53. [15, Theorem 1.9] Let F/K be a finite Galois extension with Galois Group G 6
GL(4,Z). Assume G acts on L = F(x1, x2, x3, x4) as above. (For tables of the below subgroups
see [15, Page 4])
(i) LG is stably K-rational if G is (up to conjugacy) one of a list of 487 subgroups of GL(4,Z).
(ii) LG is not stably but retract K-rational if G is (up to conjugacy) one of a list of 7 subgroups
of GL(4,Z).
(iii) LG is not retract K-rational if G is (up to conjugacy) one of a list of 216 subgroups of
GL(4,Z).

In 2015, Lemire showed that except for possibly ten, all stably rational groups found by Hoshi
and Yamasaki are rational (see [23]).

Theorem 54. [15, Theorem 1.12] Let F/K be a finite Galois extension with Galois Group
G 6 GL(5,Z). Assume G acts on L = F(x1, x2, x3, x4, x5) as above. (for tables of below
subgroups see [15, Pages 134-144])
(i) LG is stably K-rational if G is (up to conjugacy) one of a list 3051 subgroups of GL(5,Z).
(ii) LG is not stably but retract K-rational if G is (up to conjugacy) one of a list 25 subgroups
of GL(5,Z).
(iii) LG is not retract K-rational if G is (up to conjugacy) one of a list of 3003 subgroups of
GL(5,Z).

There are examples of varieties which are stably rational but not rational. So in general be-
ing stably rational is not the same as being rational. However, there is a conjecture about the
equivalence of stable rationality and rationality for algebraic tori.

Conjecture. [44, Section 2.6.1] Any stably rational algebraic torus is rational.

According to Theorem 54 we know all stably rational algebraic tori of dimension 5. How-
ever, the theorem does not say anything about rationality of those tori. An interesting problem
is to find all rational tori between 3051 mentioned tori in the theorem.

We call G ≤ GL(n,Z) irreducible (resp. indecomposable), if the corresponding lattice to G
be irreducible (resp. indecomposable).

2.6 Families of Rational Algebraic Tori

In the next chapter, we investigate on rationality of stably rational algebraic tori of dimension
5. We will try to reduce their rationality to the rationality of some well understood algebraic
torus. In this small section we present some families of algebraic tori which are rational, so that
we can relate our algebraic tori to one of these families. It is already mentioned that every n
dimensional algebraic torus has a corresponding finite subgroup of GL(n,Z). In order to study
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the rationality of algebraic tori, we study its corresponding group. We would rather to consider
maximal groups and prove rationality for their subgroups, instead of proving it case by case.
The following definitions are borrowed from [23].

Definition 55. Let L be a G-lattice for G ≤ GL(n,Z). If all algebraic tori with character lattice
L ↓G

H and splitting group H are rational, for any subgroup H ≤ G, then we call L hereditarily
rational.

Definition 56. If T is an algebraic torus and L is its corresponding lattice, then T is called
hereditarily rational if L is hereditarily rational.

By Theorem 47, a quasi-split torus is rational. For a permutation G-lattice L and any subgroup
H ≤ G, since L ↓G

H is a permutation lattice, the corresponding torus to L ↓G
H is rational. In other

words a quasi split torus is hereditarily rational. Simillarly by Theorem 48 and above argument
for (a sign permutation lattice), we conclude that any algebraic torus with a sign permutation
character lattice is hereditarily rational.

In particular this is true for an algebraic torus with character lattice the root lattice ZBn as
an W(Bn)-lattice. It is also known that any rank n sign permutation lattice, is isomorphic to the
restriction of ZBn to a subgroup of W(Bn).

Proposition 57. [24, Proposition 1.5] Suppose P is a permutation projective G-lattice and G
is the Galois group of a finite Galois extension, K/F. If

0 −→ M −→ L −→ P −→ 0

is an exact sequence of G-lattices, then the fields K(L)G and K(M ⊕ P)G are isomorphic over
F.

One can use the above proposition and Theorem 47 to conclude the following theorem.

Theorem 58. [24, Proposition 1.6] Suppose P is a permutation G-lattice and G is the Galois
group of a finite Galois extension, K/F. If

0 −→ M −→ L −→ P −→ 0

is an exact sequence of G-lattices, then K(L)G is rational over K(M)G.

An important corollary of the above theorem will be used frequently in chapter 3, in order to
prove the rationality of algebraic tori.

Corollary 59. Suppose P is a permutation G-lattice and G is the Galois group of a finite Galois
extension, K/F. If

0 −→ M −→ L −→ P −→ 0

is an exact sequence of G-lattices and K(M)G is rational over F, then K(L)G is rational over
F.
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In [44, Section 2.4.8] the author has shown that any algebraic torus with an augmentation ideal
lattice is hereditarily rational. More precisely let T be an algebraic torus defined over F and
splits over K and G = Gal(K/F). Assume the character lattice of T is IX (the kernel of the
augmentation map), and Z[X] is a G-permuattion lattice, where

0 −→ IX −→ Z[X]
ε
−→ Z −→ 0 (2.2)

is an exact sequence and ε : Z[X] → Z, x → 1 is the augmentation map. The exact sequence
(2.2) corresponds to the exact sequence of F algebraic tori

0 −→ Gm −→ RK1/F(Gm) × · · · × RKt/F(Gm) −→ T −→ 0

where Ki/F (for i = 1, . . . , t) are intermediate fields of K/F and K/Ki is Galois. Now T =∏t
i=1 RKi/F(Gm)/Gm and is rational. We note that for any subgroup H of G, IX ↓

G
H is also an

augmentation ideal. Hence an algebraic tori with augmentation ideal character lattice is hered-
itarily rational.

It is worth mentioning that passing to dual lattices in 2.2 we get

0 −→ Z −→ Z[X]
ε
−→ JX −→ 0

where JX = I∗X is called Chevalley module. The corresponding algebraic torus to JX has inter-
esting properties and is called norm one torus. Chevalley was the first one who discovered that
norm one torus is not necessarily rational.

The following lemma was used in [23] to show that a given G-lattice is isomorphic to JG/H.

Lemma 60. [23, Remark 4.1] Let L be a G-lattice. If there exist x ∈ L such that,

• 〈G.x〉Z = L

• StabG(x) = H

•
∑

g∈G gx = 0,

then L � JG/H.
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Rationality Problem for Five Dimensional
Algebraic Tori

In 2012 Hoshi and Yamasaki published a paper [15] in which they classified algebraic tori of
dimensions 4 and 5 up to stable rationality. Their classification is based on computing the
flasque classes of algebraic tori in GAP. They showed that in rank 5, there are exactly 311
indecomposable G-lattices which are stably rational. More precisely they showed their stable
rationality by finding the maximal groups and proved stable rationality of their subgroups. The
following table presents the maximal groups they found.

24
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Number CARAT ID G #G
1 (5, 942, 1) Imf(5, 1, 1) 3840
2 (5, 953, 4) S6 720
3 (5, 726, 4) C4

2 o S4 384
4 (5, 919, 4) C2 × S5 240
5 (5, 801, 3) C2 × (S2

3 o C2) 144
6 (5, 655, 4) D2

8 o C2 128
7 (5, 911, 4) S5 120
8 (5, 946, 2) S5 120
9 (5, 946, 4) S5 120
10 (5, 947, 2) S5 , 120
11 (5, 337, 12) D8 × S3 48
12 (5, 341, 6) D8 × S3 48
13 (5, 531, 13) C2 × S4 48
14 (5, 533, 8) C2 × S4 48
15 (5, 623, 4) C2 × S4 48
16 (5, 245, 12) C2

2 × S3 24
17 (5, 81, 42) C2 × D8 16
18 (5, 81, 48) C2 × D8 16

Table 3.1: The maximal 18 groups in the 311 cases found by Hoshi and Yamasaki in [15].

In 2015 Lemire [23], proved that, except for possibly ten of the 4 dimensional stably rational
algebraic tori found by Hoshi and Yamasaki, all of them are rational. The rationality of the
ten exceptional cases is still unknown. The author did not use any computer based arguments
except for finding generating sets of groups and lattices of subgroups in GAP. The rationality
results we are presenting are based on the ideas used in [23]. We present algorithms which
may be applied to character lattices of algebraic tori, in order to investigate their rationality.
These algorithms provide machinery to reduce the rationality problem in a specific dimension
to lower dimensions.

From now on we will call the groups mentioned in Table 3.1 respectively G1 to G18. LG repre-
sents the corresponding G-lattice to a finite subgroup of GL(n,Z), G, as defined in Definition
46. When we say a group or a lattice is rational we mean their corresponding algebraic torus is
rational. By a decomposable (matrix) group, we mean its corresponding lattice is decompos-
able. We say G′ is the dual group of G if G′ is the corresponding group to the dual of LG.

In this chapter we will investigate the rationality of G1, . . . ,G18. In some cases, we prove
that the group is hereditarily rational. There are two main methods that we will use, both of
which were used in [23]. The first method is reducing the rationality of a five dimensional
torus to rationality in lower dimensions. The second one is to see them as lattices of which the
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rationality is known.

3.1 GAP: Carat and CrystCat

GAP [11] stands for Groups, Algorithms, Programming, and is a computer algebra system for
computations in discrete algebra with emphasis on computations in group theory. GAP is an
open source system which is accessible directly or in SAGE [8]. GAP provides various pack-
ages for computations in matrix groups and representation theory. For our purposes we need
Carat and CrystCat packages of GAP.

The GAP package Carat provides functions of the stand-alone programs of CARAT , which
is a package for the computations related to crystallographic groups. Carat contains the catalog
of all conjugacy classes of finite subgroups of GL(n,Z) for n up to six. More precisely the
Carat package gives access to all Q-classes and Z-classes and maximal classes over Z (for the
number of these classes see Table 3.2).

Remark. The Q-classes are conjugacy classes over Q. We note that some Z-classes may
belong to the same conjugacy class over the rationals.

# conjugacy classes # conjugacy classes # conjugacy classes
n of finite subgroups of maximal finite of finite subgroups

of GL(n,Z) subgroups of GL(n,Z) over Q
1 2 1 2
2 13 2 10
3 73 4 32
4 710 9 227
5 6079 17 955
6 85308 39 7103

Table 3.2: Numbers of conjugacy classes which are accessible in Carat.

It is worth mentioning that Carat contains information about crystallographic groups which we
will not use. The CrystCat Package in GAP also provides a catalog of crystallographic groups
up to dimension 4. The catalog mostly covers the data in [3]. CrystCat and Carat are comple-
ment of each other.

The GAP ID, (n,m, l, k) of a finite subgroup G of GL(n,Z) means that G is of rank n and
belongs to k-th Z class of the l-th Q-class of the m-th crystal system. This works for 2 ≤ n ≤ 4.
Hoshi and Yamasaki wrote a GAP code using the Carat package to have easy access to the j-th
Z-class of the i-th Q-class group of rank n. They called this Carat ID. The GAP scripts written
by Hoshi and Yamasaki are available from
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http://www.math.h.kyoto-u.ac.jp/ yamasaki/Algorithm/

The algorithms introduced in the next section are implemented in GAP (needs some functions
from the codes written by Hoshi and Yamasaki) and the code is available from

https://github.com/armin-jamshidpey/Algebraic-Tori

Since the actions of matrix groups in GAP are considered from right, throughout this chapter
we work with row vectors instead of columns. One may also use the columns by considering
the dual groups.

3.2 Reduction Algorithms

Assume
0→ M → LG → N → 0

is a short exact sequence of G-lattices such that N is a permutation projective G-lattice. If K/F
is a finite Galois extension with G � Gal(K/F), then by Theorem (58), K(LG)G is rational over
K(M)G. Thus, rationality of K(M)G over F implies rationality of K(LG)G over F.

Suppose LG is an indecomposable G-lattice. In this section, we present methods to exam-
ine the possibility of existence of such a short exact sequence for LG, with N a permutation
G-lattice.

Although sign permutation lattices are not permutation projective, constructing a short exact
sequence of G-lattices

0→ M → LG → N → 0

where N is a rank one sign permutation G-lattice might help to determine rationality of the as-
sociated algebraic torus to LG. Note that existence of such a sequence does not directly imply
rationality. However, under some conditions the rationality may be concluded.

The goal of this section is to provide tools to get exact sequences mentioned above for a given
indecomposable G-lattice. The idea behind all of the methods is a simple fact which we explain
briefly here.

A lattice LG, is reducible as a G-lattice if and only if QLG = LG ⊗Z Q has a proper Q[G]-
submodule W of dimension 0 < m < n. Let LG be a G-lattice of rank n and W is an m
dimensional proper Q[G]-submodule of QLG. Then LG ∩ W is a sublattice of LG of rank m
such that Q(LG ∩W) = W. Then

0→ LG ∩W → LG → LG/(LG ∩W)→ 0
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is a short exact sequence of G-lattices. Note that this implies in particular that LG/(LG ∩W) is
torsion free so that a Z-basis of LG ∩W can be extended to a Z-basis of LG.

In the next paragraphs we are specifically looking for an n − 1 dimensional proper Q[G]-
submodule of QLG.

If we start with the dual lattice L∗G, and we are able to find a rank 1 permutation sublattice
of L∗G, we get

0→ Z→ L∗G → M → 0,

where M = L∗G/Z is of rank n − 1. Then by dualizing the sequence we have

0→ M∗ → LG → Z→ 0

as desired.

Now, we explain how to find a permutation rank one sublattice of L∗G. In order to get a one di-
mensional Q[G]-submodule of QL∗G, we use the eigenspaces of the transposes of a generating
set of G. Let {σ1, . . . , σm} be the transposes of a generating set of G and let G∗ = 〈σ1, . . . , σm〉.
Suppose E1,σi is the left nullspace of σi − I over Q. We define

E1 = E1,σ1 ∩ · · · ∩ E1,σn .

Note that G∗ acts trivially on E1. If E1 , 0 then we can choose a nonzero vector u ∈ E1.
Let u = ( a1

b1
, a2

b2
, . . . , an

bn
) ∈ E1 such that gcd(ai, bi) = 1. If m = lcm(b1, . . . , bn) then mu =

(a′1, . . . , a
′
n) ∈ Zn. If gcd(a′1, . . . , a

′
n) = d then v = m

d u ∈ LG ∩ E1 and the gcd of its entries is 1.

As a consequence, we can extend {v} to a Z-basis of L∗G. A general algorithm to do this exten-
sion is given by Magliveras et al in [27]; GAP also has a function which does the job. In most
of the cases that we will see in the next section, v had a ±1 as an entry, which makes the basis
extension so simple: if v j is ±1 then {e1, . . . , e j−1, e j+1, . . . , en, v} forms a Z-basis for L∗G.

Since it is possible to extend v to a basis for the lattice L∗G, there exists a change of basis
matrix T in GL(n,Z) such that

TσiT−1 =

 δi ∗

0 1


for some δi ∈ GL(n−1,Z). Since we consider the finite subgroups of GL(n,Z) up to conjugacy,
we can work with G′ = TG∗T−1. By considering the first n − 1 vectors of the standard basis of
the G′-lattice LG′ (which is isomorphic to L∗G), can form the G′-lattice M such that LG′/Z = M
and we get

0 −→ Z −→ LG′ −→ M −→ 0.

By dualizing the sequence we get

0 −→ M∗ −→ L∗G′ −→ Z −→ 0.
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Note that L∗G′ is isomorphic to LG.

The explained method above is presented as an algorithm here.

Algorithm 1 Fixed Point Algorithm
Input: A finite subgroup G of GL(n,Z), given by its generators {σ1, . . . , σm}.

Output: A matrix T ∈ GL(n,Z) such that Tσt
iT
−1 =

 δi ∗

0 1

 where δi ∈ GL(n − 1,Z), and

sublattices M,N such that 0 −→ N −→ L∗G −→ M −→ 0 is an exact sequence of lattices.

1: E ←
[
σt

1 − I σt
2 − I · · · σt

n − I
]

2: W ← LeftNullspace(E)
3: if W is not zero then

choose a nonzero v ∈ W
if v < Zn

find c ∈ Z s.t cv ∈ Zn and gcd(cv) = 1
v← cv

end if
apply the algorithm in [27] to extend v to a basis B = {β1, . . . , βn−1, v} for LG

T ←
[
β1 · · · βn−1 v

]t

N ← Zv
M ← L/N
return M,N,T
end if

else
return fail

end if

Remark. If the algorithm returns a matrix T then for σ ∈ {σt
1, . . . , σ

t
m},

TσT−1 = σ′

where

σ′ =

 δ ∗0 1

 .
for some δ ∈ GL(n − 1,Z). More precisely

Tσ = σ′T

and the last row of Tσ is nothing but vσ = v. This implies that the last row of σ′ = [0 . . . 0 1].
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Example 1. Let G ≤ GL(4,Z) be generated by
0 −1 0 0
−1 −1 −1 −1
1 1 1 0
1 1 0 1

 and


0 1 0 0
−1 0 0 0
0 −1 0 −1
0 −1 −1 0

 .
The transposes are

σ =


0 −1 1 1
−1 −1 1 1
0 −1 1 0
0 −1 0 1

 and τ =


0 −1 0 0
1 0 −1 −1
0 0 0 −1
0 0 −1 0

 .
Then the E1,σ is the left nullspace of

σ − I4 =


−1 −1 1 1
−1 −2 1 1
0 −1 0 0
0 −1 0 0

 .
One can verify that

{
[
1 −1 1 0

]
,
[
1 −1 0 1

]
}

is a basis for E1,σ. Similarly E1,τ is the left nullspace of

τ − I4 =


−1 −1 0 0
1 −1 −1 −1
0 0 −1 −1
0 0 −1 −1


and it is generated by

[
0 0 −1 1

]
.

It is not hard to see
[
0 0 −1 1

]
∈ E1,σ. Thus

E1 = E1,σ ∩ E1,τ = 〈
[
0 0 −1 1

]
〉

and
[
0 0 −1 1

]
∈ L. Now

{
[
1 0 0 0

]
,
[
0 1 0 0

]
,
[
0 0 1 0

]
,
[
0 0 −1 1

]
}

forms a Z-basis for L. The change of basis matrix T is
1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1 1
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Hence

TσT−1 =


0 −1 2 1
−1 −1 2 1
0 −1 1 0
0 0 0 1


TσT−1 =


0 −1 0 0
1 0 −2 −1
0 0 −1 −1
0 0 0 1


Now by dualizing we get

0 −1 0 0
−1 −1 −1 0
2 2 1 0
1 1 0 1

 and


0 1 0 0
−1 0 0 0
0 −2 −1 0
0 −1 −1 1


as a generating set for a conjugate of G. By defining M ⊂ LG generated by e1, e2 and e3 the
following exact sequence will be obtained

0 −→ M −→ LG −→ Z −→ 0

We call the above process the fixed point algorithm. One can generalize it as follows. Assume
Eλ,σ be the left kernel of σ − λI over the rationals. Now define E±1,σ to be the set {E1,σ, E−1,σ}.
Assume E±1,G is the Cartesian product of E±1,σ for all σ ∈ G∗, i.e.

E±1,G = E±1,σ1 × · · · × E±1,σn .

If there exist A ∈ E±1,G such that W =
⋂
B∈A

B , 0, then we can find a nonzero v ∈ L∗G ∩W. As

we have seen in the fixed point algorithm, we can extend a multiple of v to a Z-basis for L∗G.
Then we can get a change of basis matrix T , such that

TσiT−1 =

 δi ∗

0 ±1


for some δi ∈ GL(n − 1,Z). Thus by a similar argument we can use the new representative of
the conjugacy class of G∗ to form an equivalent lattice and similarly by choosing the first n− 1
elements of the standard basis of LG′ we can produce

0 −→ Z− −→ LG′ −→ M −→ 0.

By dualizing the sequence we get

0 −→ M∗ −→ L∗G′ −→ Z− −→ 0.
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Again note that L∗G′ is isomorphic to LG.

This process will be called the sign fixed point algorithm and it is presented as an algorithm
here.

Algorithm 2 Sign Fixed Point Algorithm
Input: A finite subgroup G of GL(n,Z), given by its generators {σ1, . . . , σm}.

Output: A matrix T ∈ GL(n,Z) such that Tσt
iT
−1 =

 δi ∗

0 1

 where δi ∈ GL(n − 1,Z), and

sublattices M,N such that 0 −→ N −→ L∗G −→ M −→ 0 is an exact sequence of lattices.

1: for g in {σt
1, . . . , σ

t
m} do

Eg ← the set of left nullspaces of g ± I over Q
end do

2: E ← Eσt
1
× Eσt

2
× · · · × Eσt

m

3: W ← 0
4: while W = 0 and E , ∅ do

A← a random element of E
W ←

⋂
a∈A

a

E ← E \ A
end do

5: if W is not zero then
choose a nonzero v ∈ W
if v < Zn

find c ∈ Z s.t cv ∈ Zn and gcd(cv) = 1
v← cv

end if
apply the algorithm in [27] to extend v to get a basis B = {β1, . . . , βn−1, v} for L
T ←

[
β1 · · · βn−1 v

]t

N ← Zv
M ← L/N
return M,N,T
end if

else
return fail

end if
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Example 2. Let G ≤ GL(4,Z) be generated by
−1 1 0 1
0 0 0 1
−1 0 1 1
0 1 0 0

 and


0 1 0 0
0 0 1 0
0 0 0 −1
−1 1 0 1

 .
The transposes are

σ =


−1 0 −1 0
1 0 0 1
0 0 1 0
1 1 1 0

 and τ =


0 0 0 −1
1 0 0 1
0 1 0 0
0 0 −1 1

 .
Then

σ − I4 =


−2 0 −1 0
1 −1 0 1
0 0 0 0
1 1 1 −1


σ + I4 =


0 0 −1 0
1 1 0 1
0 0 2 0
1 1 1 1


τ − I4 =


−1 0 0 −1
1 −1 0 1
0 1 −1 0
0 0 −1 0


τ + I4 =


1 0 0 −1
1 1 0 1
0 1 1 0
0 0 −1 2

 .
By computing the left nullspaces we get

E1,σ = 〈[0, 0, 1, 0], [1, 1, 0, 1]〉

E−1,σ = 〈[[2, 0, 1, 0], [1,−1, 0, 1]]〉

E1,τ = 〈[−1,−1,−1, 1]〉

E−1,τ = 〈[1,−1, 1, 1]〉

So
E1,σ ∩ E1,τ = 0
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E1,σ ∩ E−1,τ = 0

E−1,σ ∩ E1,τ = 〈[1, 1, 1,−1]〉

E−1,σ ∩ E−1,τ = 0

Let W = E−1,σ ∩ E1,τ. So [1, 1, 1,−1] ∈ L ∩W is extendable to a basis for L by vectors

[1, 0, 0, 0] , [0, 1, 0, 0] and [0, 0, 1, 0]

and the corresponding transformation is

T =


1 0 0 0
0 1 0 0
0 0 1 0
1 1 1 −1



σ′ = TσT−1 =


0 1 −1 −1
1 0 1 0
0 0 1 1
0 0 0 −1


τ′ = TτT−1 =


0 0 −1 0
1 0 1 0
1 1 0 −1
0 0 0 1

 .
Now by dualizing we get

0 1 0 0
1 0 0 0
−1 1 1 0
−1 0 1 −1

 and


0 1 1 0
0 0 1 0
−1 1 0 0
0 0 −1 1


as a generating set for a conjugate of G. By defining M ⊂ LG generated by e1, e2 and e3 the
following exact sequence will be obtained

0 −→ M −→ LG −→ Z− −→ 0.

In general to get a Q[G]-submodule W of QL, where L = LG is a G-lattice, one can use the
decomposition of QL (provided that it is decomposable). It is not always easy to find the de-
composition of a Q[G]-module. The most well-known tool for module decomposition is the
meataxe algorithm. The algorithm was first introduced by Parker in [31] in order to check
irreducibility of a finite dimensional module over a finite field and finding explicit submodules
in case of reducibility. Later on Parker extended the idea of the meataxe algorithm to charac-
teristic zero (see [32]). His algorithm can be used to decompose an integral representation of
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a finite group. In [33], the authors provided machinery which enables us to decompose Q[G]-
modules up to dimension 200. So there are algorithms which give the decomposition over Q.
We invite the reader to see [26] and [14] for more details.

Assume G ≤ GL(n,Z) is finite and QL = L ⊗Z Q is the Q-vector corresponding space to
L. If QL is a decomposable Q[G]-module, then there exists a change of basis matrix such that
generators of the Q-class of G can be written as block diagonal matrices

TσiT−1 =

 δi 0
0 γi


where δi ∈ GL(m,Q) and γi ∈ GL(m′,Q) for some m,m′ ∈ Z. Let {e1, . . . , em, em+1, . . . , em+m′}

be the standard basis for QL. The QM and QN generated respectively by {e1, . . . , em} and
{em+1, . . . , em+m′} are invariant (set wise) under the action of G and QL = QM ⊕ QN. Now
T−1(QM) is a G-stable subspace and

M = L ∩ T−1(QM)

is G stable. Then we get

0 −→ M −→ L −→ L/M −→ 0

as an exact sequence of lattices.

The above idea can be turned into an algorithm. In order to do so, one need to compute the
decomposition of QL (meataxe or any other algorithm can be applied). If in the previous step
the change of basis, namely T , to get the decomposition is not computed, it should be done
next. The next step is to choose a component of the decomposition, say QM and a basis of it.
After that, M = T−1(QM) ∩ L is a sublattice of L. The last step is to extend a basis of M to L
(see [27] for an algorithm).

Here is an example which shows the above idea in practice. The Q-class of the group is
presented from the list of Q-classes in rank 4 provided in [15].

Example 3. Consider the group G generated by

σ =



0 0 −1 0 1
−1 0 0 0 1

0 1 0 0 0
0 0 1 −1 −1
0 0 −1 0 0


and τ =



−1 0 0 −1 0
0 0 −1 0 1
0 0 0 0 −1
1 −1 0 0 −1
−1 0 0 0 0


.

The Q-class of G is accessible in the list of rank 4 groups in [15] by the name cryst4[149]. The
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generators of the Q-class are

σ′ =



0 0 1 0 0
1 −1 1 0 0
0 −1 0 0 0
0 0 0 0 1
0 0 0 1 0


and τ′ =



1 −1 1 0 0
1 0 0 0 0
0 0 −1 0 0
0 0 0 0 1
0 0 0 −1 −1


.

Considering the orders of matrices we can figure out there exist an invertible integral matrix T
such that

TσT−1 = σ′

TτT−1 = τ′.

Assume 25 indeterminates t00, . . . , t44 and the matrix

T =



t00 t01 t02 t03 t04

t10 t11 t12 t13 t14

t20 t21 t22 t23 t24

t30 t31 t32 t33 t34

t40 t41 t42 t43 t44


.

Then

T ·



0 0 −1 0 1
−1 0 0 0 1

0 1 0 0 0
0 0 1 −1 −1
0 0 −1 0 0


=



0 0 1 0 0
1 −1 1 0 0
0 −1 0 0 0
0 0 0 0 1
0 0 0 1 0


· T

T ·



−1 0 0 −1 0
0 0 −1 0 1
0 0 0 0 −1
1 −1 0 0 −1
−1 0 0 0 0


=



1 −1 1 0 0
1 0 0 0 0
0 0 −1 0 0
0 0 0 0 1
0 0 0 −1 −1


· T.

The transformation T can be found by solving (and replacing parameters) the linear system
obtained from above equations as

T =



−1 1 −2 1 1
−1 2 −1 0 −1

0 −1 −1 −1 0
1 −2 1 0 −1
1 0 −1 0 1


.
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Define QM = 〈e1, e2, e3〉Q, since

T−1 =



−1
4

1
4 −1

4
1
4

3
4

−1
4

1
4 −1

4 −1
4

1
4

−1
4 −1

4 −1
4 −1

4 −1
4

1
2 0 −1

2
1
2 0

0 −1
2 0 −1

2 0


we have

T−1(e1) =

[
−

1
4
,

1
4
, −

1
4
,

1
4
,

3
4

]
T−1(e2) =

[
−

1
4
,

1
4
, −

1
4
, −

1
4
,

1
4

]
T−1(e3) =

[
−

1
4
, −

1
4
, −

1
4
, −

1
4
, −

1
4

]
Hence T−1(QM) = 〈

[
−1

4 ,
1
4 , −

1
4 ,

1
4 ,

3
4

]
,
[
−1

4 ,
1
4 , −

1
4 , −

1
4 ,

1
4

]
,
[
−1

4 , −
1
4 , −

1
4 , −

1
4 , −

1
4

]
〉Q Now

M = L ∩ T−1(QM) = 〈
[

1 0 1 0 −1
]
,
[

0 1 0 0 1
]
,
[

0 0 0 1 1
]
〉Z

By extending the above basis of M to a basis of L (by adding [0, 0, 1, 0, 0] and [0, 0, 0, 0, 1])
and forming the change of basis matrix we get

S =



1 0 1 0 −1
0 1 0 0 1
0 0 0 1 1
0 0 1 0 0
0 0 0 0 1


which gives

1 0 1 0 −1
0 1 0 0 1
0 0 0 1 1
0 0 1 0 0
0 0 0 0 1





0 0 −1 0 1
−1 0 0 0 1

0 1 0 0 0
0 0 1 −1 −1
0 0 −1 0 0





1 0 1 0 −1
0 1 0 0 1
0 0 0 1 1
0 0 1 0 0
0 0 0 0 1



−1

=



0 1 0 0 0
−1 0 0 0 0

0 0 −1 0 0
0 1 0 0 −1
0 0 0 −1 0




1 0 1 0 −1
0 1 0 0 1
0 0 0 1 1
0 0 1 0 0
0 0 0 0 1





−1 0 0 −1 0
0 0 −1 0 1
0 0 0 0 −1
1 −1 0 0 −1
−1 0 0 0 0





1 0 1 0 −1
0 1 0 0 1
0 0 0 1 1
0 0 1 0 0
0 0 0 0 1



−1

=



0 0 −1 0 0
−1 0 0 0 0

0 −1 0 0 0
0 0 0 0 −1
−1 0 0 1 −1


Now we can get the following exact sequence of lattices

0 −→ M −→ L −→ L/M −→ 0.
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3.3 Rationality Problem for 5 Dimensional Indecomposable
Stably Rational Algebraic Tori

Up to now we have presented some algorithms to reduce a lattice and form exact sequences
of specific type. In this section we apply those algorithms to the 18 indecomposable lattices
which are maximal in the set of indecomposable stably rational rank 5 lattices found in [15].

In some cases instead of applying any algorithm we interpret the lattice as a root lattice of
a root system. The general idea is to identify the given lattice as a lattice in one of the heredi-
tarily rational families of lattices. We also try to reduce some lattices to one of those families.

There are also cases where our reduction does not provide enough information to decide about
the rationality. In these cases we reduce the lattice and provide some information which may
help to decide about their rationality. There are also irreducible lattices among the 18 maximal
ones. A partial lattice of maximal subgroups of the irreducible cases is provided so that our
algorithms work for maximal subgroups.

Throughout this section for a finite subgroup G ≤ GL(n,Z), the corresponding algebraic torus
and the corresponding lattice (see Definition 46) is denoted respectively by TG and LG. When
we say a group is rational or a lattice is rational we mean the corresponding algebraic torus is
rational.

3.3.1 Case G1

G1 is one of the 7 maximal indecomposable finite subgroups of GL(5,Z). This is the auto-
morphism group of root system B5. So we can recognize the lattice as (Z(B5),Aut(B5)). This
lattice is hereditarily rational (see [23]).

Alternatively by looking at the generators of G1



0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


and



0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −1
1 0 0 0 0


One can also see that the corresponding lattice is sign permutation which implies rationality of
LG1
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3.3.2 Case G2

This is a group isomorphic to S6. Following [23] we show that the dual lattice is isomorphic to
Chevalley module JS6/S5 . The group G2 is generated by

1 1 0 0 0
0 −1 0 0 1
0 1 1 0 0
0 1 0 0 0
0 −1 0 −1 0


and



0 1 0 0 −1
0 −1 −1 0 0
1 1 0 0 0
0 1 0 0 0
0 −1 0 −1 0


.

The dual lattice corresponds to the group generated by

A =



1 0 0 0 0
1 −1 1 1 −1
0 0 1 0 0
0 0 0 0 −1
0 1 0 0 0


and B =



0 0 1 0 0
1 −1 1 1 −1
0 −1 0 0 0
0 0 0 0 −1
−1 0 0 0 0


The following computations show that e1 is a cyclic generator of L∗G2

.

e1B =
[
1 0 0 0 0

]


0 0 1 0 0
1 −1 1 1 −1
0 −1 0 0 0
0 0 0 0 −1
−1 0 0 0 0


=

[
0 0 1 0 0

]

e1B2 =
[
1 0 0 0 0

]


0 −1 0 0 0
0 0 0 −1 0
−1 1 −1 −1 1
1 0 0 0 0
0 0 −1 0 0


=

[
0 −1 0 0 0

]

e1B3 =
[
1 0 0 0 0

]


−1 1 −1 −1 1
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0


=

[
−1 1 −1 −1 1

]

e1B3A =
[
1 0 0 0 0

]


−1 1 −1 −1 1
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0





1 0 0 0 0
1 −1 1 1 −1
0 0 1 0 0
0 0 0 0 −1
0 1 0 0 0


=

[
0 0 0 1 0

]

Now we have to make sure that the stabilizer subgroup of e1 is isomorphic to S5.
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gap> GD2:= GroupByGenerators([A,B]);

<matrix group with 2 generators>

gap> S:= Stabilizer(GD2 ,e1);

<matrix group with 6 generators>

gap> StructureDescription(S);

"S5"

The last step is to check if
∑

g∈H e1.g = 0

gap> n:= [0,0,0,0,0];

0

gap> for g in GD2 do n:= n + (e1*g); od;

gap> n;

[ 0, 0, 0, 0, 0 ]

This shows that the lattice is isomorphic to JS6/S5 and its dual is isomorphic to the augmentation
ideal IS6/S5 . This implies that G2 is hereditarily rational.

3.3.3 Case G3

The order of group suggests that there is a relation between the lattice and the rank 4 lattice for
ZB4. The group is generated by

1 0 1 1 0
0 0 −1 0 0
−1 0 0 0 −1
0 1 0 0 0
−1 0 −1 0 0


and



1 1 0 0 0
−1 0 0 0 −1
0 0 1 0 0
0 −1 0 0 0
−1 −1 0 −1 0


.

The dual group is generated by

1 0 −1 0 −1
0 0 0 1 0
1 −1 0 0 −1
1 0 0 0 0
0 0 −1 0 0


and



1 −1 0 0 −1
1 0 0 −1 −1
0 0 1 0 0
0 0 0 0 −1
0 −1 0 0 0


By applying algorithm(1) we get the change of basis matrix

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 −1
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Now changing the basis and dualizing gives us the group

0 −1 0 0 0
0 0 0 −1 0
1 0 0 0 0
0 0 1 0 0
0 1 1 0 1


and



0 0 0 −1 0
0 1 0 0 0
−1 0 0 0 0
0 0 −1 0 0
1 0 0 0 1


This yields the following exact sequence of lattices

0 −→ M −→ LG3 −→ Z −→ 0

where M corresponds to H generated by
0 −1 0 0
0 0 0 −1
1 0 0 0
0 0 1 0

 and


0 0 0 −1
0 1 0 0
−1 0 0 0
0 0 −1 0


GAP ID for the above group is

gap> G3info:= Rank1PermQuot(G3);;

gap> G3info.ZClassSubLat;

[ 4, 32, 21, 1 ]

In [23] the author has proved the corresponding lattice to [ 4, 32, 21, 1 ] is ZB4 which is hered-
itarily rational. This proves that TG3 is hereditarily rational.

Alternatively one can see from the above generators of H, that M is a sign permutation lat-
tice which is hereditarily rational.

3.3.4 Case G4

The group is generated by

1 0 0 0 0
−1 0 1 0 1
0 0 1 0 0
0 0 0 1 0
1 1 −1 0 0


and



1 0 0 0 −1
−1 −1 1 0 1
0 −1 0 −1 0
1 1 0 0 0
0 0 0 0 −1


The dual group is generated by

1 −1 0 0 1
0 0 0 0 1
0 1 1 0 −1
0 0 0 1 0
0 1 0 0 0


and



1 −1 0 1 0
0 −1 −1 1 0
0 1 0 0 0
0 0 −1 0 0
−1 1 0 0 −1
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Algorithm (2) produces the change of basis matrix

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 −1 −1 2


With the above transformation we can see the new representative for G4 is generated by

0 1 0 1 0
0 1 0 0 0
0 0 1 0 0
1 −1 0 0 0
0 0 0 0 1


and



−1 1 0 1 0
−1 0 −1 −1 0
1 0 0 −1 0
0 0 0 1 0
0 0 0 −1 −1


Now by considering MG4 to be the corresponding lattice to

0 1 0 1
0 1 0 0
0 0 1 0
1 −1 0 0

 and


−1 1 0 1
−1 0 −1 −1
1 0 0 −1
0 0 0 1


we can produce

0 −→ MG4 −→ LG4 −→ Z− −→ 0.

MG4 corresponds to [4,31,7,1]. The generators of [4,31,7,1] are
1 0 0 0
1 0 −1 0
1 0 0 −1
1 −1 0 0




0 0 1 −1
−1 0 1 0
0 −1 1 0
0 0 1 0




0 0 0 −1
0 0 −1 0
−1 0 0 0
0 −1 0 0


The generators of the dual group are

1 1 1 1
0 0 0 −1
0 −1 0 0
0 0 −1 0




0 −1 0 0
0 0 −1 0
1 1 1 1
−1 0 0 0




0 0 −1 0
0 0 0 −1
0 −1 0 0
−1 0 0 0


e := [1, 0, 0, 0]

e


1 1 1 1
0 0 0 −1
0 −1 0 0
0 0 −1 0

 = [1, 1, 1, 1]
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e


0 −1 0 0
0 0 −1 0
1 1 1 1
−1 0 0 0

 = [0,−1, 0, 0]

e


0 0 −1 0
0 0 0 −1
0 −1 0 0
−1 0 0 0

 = [0, 0,−1, 0]

gap> H:= GDual(MatGroupZClass(4,31,7,1));;

gap> S:= Stabilizer(H,e);

<matrix group with 15 generators>

gap> StructureDescription(S);

"S4"

gap> n:= [0,0,0,0];

[ 0, 0, 0, 0 ]

gap> for h in H do n:= n + e*h; od; n;

[ 0, 0, 0, 0 ]

which shows M is the Chevalley module JS5/S4 , thus its dual lattice is hereditarily rational.
However, since LG4/MG4 is sign permutation, we can not conclude rationality of G4.

3.3.5 Case G5

The group is generated by



1 0 0 0 0
0 1 0 0 0
0 0 0 0 −1
0 0 0 1 0
0 0 −1 0 0


,



0 0 1 −1 0
0 0 0 −1 −1
1 0 0 1 0
0 0 0 1 0
0 −1 0 −1 0


and



−1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0


The generators of the group corresponding to the dual lattice are



1 0 0 0 0
0 1 0 0 0
0 0 0 0 −1
0 0 0 1 0
0 0 −1 0 0


,



0 0 1 0 0
0 0 0 0 −1
1 0 0 0 0
−1 −1 1 1 −1
0 −1 0 0 0


and



−1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
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Algorithm (2) produces the change of basis matrix

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 1 0 −1 0


With the above transformation we can see the new generators for G4 are given by

1 0 0 0 0
0 0 0 −1 0
0 0 1 0 0
0 −1 0 0 0
0 0 0 0 1


,



0 1 0 1 0
1 0 1 0 0
0 0 0 −1 0
0 0 −1 0 0
0 0 −1 −1 1


and



−1 0 −1 0 0
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 0 1 0 −1


Now by considering MG5 to be the lattice corresponding to the grouop generated by

1 0 0 0
0 0 0 −1
0 0 1 0
0 −1 0 0




0 1 0 1
1 0 1 0
0 0 0 −1
0 0 −1 0



−1 0 −1 0
0 0 0 1
0 0 1 0
0 1 0 0


we can produce

0 −→ MG5 −→ LG5 −→ Z− −→ 0.

The corresponding group to MG5 has GAP ID [4,29,9,2].

3.3.6 Case G6

The group is generated by

1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1


,



−1 0 0 0 0
0 0 −1 0 0
0 −1 0 0 0
1 0 0 0 1
1 0 0 1 0


and



1 1 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 −1 0 0 1


The group corresponding to the dual lattice is generated by

1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1


,



−1 0 0 1 1
0 0 −1 0 0
0 −1 0 0 0
0 0 0 0 1
0 0 0 1 0


and



1 0 0 0 0
1 −1 0 0 −1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
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Algorithm (2) produces the change of basis matrix

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 −1


With the above transformation we can see the new generators for G6 are given by

0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1





0 −1 0 0 0
−1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 −1


and



−1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 1


Now by considering MG6 to be the corresponding lattice to , H, generated by

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1




0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

 and


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


we can produce

0 −→ MG6 −→ LG6 −→ Z− −→ 0.

MG6 is a sign permutation lattice and therefore hereditarily rational. However, since LG6/MG6

is sign permutation, we can not conclude rationality of G6.

3.3.7 Case G7

The group is generated by

1 0 0 0 0
−1 0 1 0 1
0 0 1 0 0
0 0 0 1 0
1 1 −1 0 0


and



1 0 −1 −1 −1
−1 0 0 1 1
0 0 0 1 0
0 −1 0 −1 −1
1 0 0 −1 0


The group corresponding to the dual lattice is generated by

1 −1 0 0 1
0 0 0 0 1
0 1 1 0 −1
0 0 0 1 0
0 1 0 0 0


and



1 −1 0 0 1
0 0 0 −1 0
−1 0 0 0 0
−1 1 1 −1 −1
−1 1 0 −1 0
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Algorithm (1) produces the change of basis matrix

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 −1 −1 2


With the above transformation we can see the new representative for G7 is generated by

0 1 0 1 0
0 1 0 0 0
0 0 1 0 0
1 −1 0 0 0
0 0 0 0 1


and



0 0 1 1 0
0 −1 0 −1 0
−1 −1 −2 −2 0
0 2 1 2 0
0 −1 −1 −1 1


Now by considering MG7 to be the corresponding lattice to the group generated by

0 1 0 1
0 1 0 0
0 0 1 0
1 −1 0 0

 and


0 0 1 1
0 −1 0 −1
−1 −1 −2 −2
0 2 1 2


we can produce

0 −→ MG7 −→ LG7 −→ Z −→ 0.

On the other hand the GAP ID of MG7 is given as

gap> G7info:= Rank1PermQuot(G7);;

gap> G7info.ZClassSubLat;

[ 4, 31, 4, 1 ]

The dual of [4,31,4,1], H, is isomorphic to S5 and can be generated by
0 0 1 0
0 0 0 1
1 0 0 0
−1 −1 −1 −1

 ,


0 0 0 1
−1 −1 −1 −1
0 1 0 0
0 0 1 0

 and


0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

 .
For e1 = [1 0 0 0],

e1


0 0 1 0
0 0 0 1
1 0 0 0
−1 −1 −1 −1

 = [0 0 1 0]
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e1


0 0 0 1
−1 −1 −1 −1
0 1 0 0
0 0 1 0

 = [0 0 0 1]

e1


0 0 0 1
−1 −1 −1 −1
0 1 0 0
0 0 1 0




0 0 1 0
0 0 0 1
1 0 0 0
−1 −1 −1 −1

 = [−1 − 1 − 1 − 1]

The stabilizer subgroup of e1 in H can be calculated as

gap> S:= Stabilizer(H,e);

<matrix group with 7 generators>

gap> StructureDescription(S);

"S4"

Moreover,

gap> n:= [0,0,0,0];

[ 0, 0, 0, 0 ]

gap> for h in H do n:= n + e*h; od; n;

[ 0, 0, 0, 0 ]

which shows the corresponding lattice to H is the Chevalley module JS5/S4 Alternatively in
[23] the author has proved that [4,31,7,1] is hereditarily rational. Using GAP we can verify
that [4,31,4,1] (up to conjugacy) is a subgroup of [4,31,7,1]. This proves rationality of TG7 .

3.3.8 Cases G8, G9 and G10

It is well known that a representation ρ is absolutely irreducible if and only if 〈χρ, χρ〉 = 1
where χρ is the corresponding character to ρ. Since the groups are of small order, 120, we can
test if 〈χρ, χρ〉 is one or not. We recall

〈χρ, χρ〉 =
1
n

∑
σ∈G

(tr(σ)2)

where G ≤ GL(n,Q) and |G| = n.

gap> n:= 0;

0
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gap> for g in AsList(G8) do

> n:= n+ (1/Size(G8))*Trace(g)ˆ2;

> od;

gap> n;

1

gap> n:= 0;

0

gap> for g in AsList(G9) do

> n:= n+ (1/Size(G9)) *Trace(g)ˆ2;

> od;

gap> n;

1

gap> n:= 0;

0

gap> for g in AsList(G10) do

> n:= n+ (1/Size(G10))*Trace(g)ˆ2;

> od;

gap> n;

1

Since all 3 groups are irreducible, we consider their maximal subgroups up to conjugacy and
check if their maximal subgroups are reducible. In case that a maximal subgroup is irreducible
we consider its maximal subgroups again and continue this process.

Figures 3.1, 3.2 and 3.3 respectively present lattices of subgroups of G8, G9 and G10. These
are not the complete lattices of the mentioned groups. We just considered the lattices up to the
level where algorithm one returns an output. Appendix (a) is devoted to show that the shaded
groups are hereditarily rational.
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G8

[5, 389, 4]

[5, 607, 4]

[5, 98, 28]

[5, 174, 2]

[5, 580, 4]

[5, 19, 14]

[5, 164, 2]

[5, 917, 3]

[5, 57, 8]

[5, 901, 3]

[5, 952, 4]

[5, 174, 5]

[5, 580, 4]

[5, 19, 14]

[5, 164, 2]

[5, 901, 3]

Figure 3.1: Conjugacy classes of subgroups of G8. Algorithm (1) works for the gray ones.
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G9

[5, 389, 4]

[5, 607, 9]

[5, 98, 28]

[5, 174, 5]

[5, 580, 4]

[5, 19, 14]

[5, 164, 2]

[5, 917, 4]

[5, 57, 8]

[5, 901, 3]

[5, 952, 2]

[5, 174, 2]

[5, 580, 4]

[5, 19, 14]

[5, 164, 2]

[5, 901, 3]

Figure 3.2: Conjugacy classes of subgroups of G9. Algorithm (1) works for the gray ones.
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G10

[5, 391, 4]

[5, 18, 28]

[5, 173, 4]

[5, 6, 3]

[5, 164, 2]

[5, 174, 2]

[5, 461, 4]

[5, 6, 3]

[5, 164, 2][5, 608, 4]

[5, 99, 57]

[5, 173, 4]

[5, 6, 3]

[5, 164, 2]

[5, 580, 4]

[5, 19, 14]

[5, 164, 2]

[5, 918, 4]

[5, 952, 2]

[5, 174, 2]

[5, 580, 4]

[5, 19, 14]

[5, 164, 2]

[5, 901, 3]

Figure 3.3: Conjugacy classes of subgroups of G10. Algorithm (1) works for the gray ones.
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3.3.9 Case G11

The group is generated by

−1 0 0 0 0
0 1 −1 −1 −1
0 0 0 −1 0
0 0 −1 0 0
0 0 0 0 −1





1 0 1 1 1
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1


and



0 −1 0 1 1
−1 0 0 −1 −1
0 0 0 0 −1
0 0 1 0 0
0 0 0 −1 0


The dual group is generated by

−1 0 0 0 0
0 1 0 0 0
0 −1 0 −1 0
0 −1 −1 0 0
0 −1 0 0 −1





1 0 0 0 0
0 −1 0 0 0
1 0 −1 0 0
1 0 0 −1 0
1 0 0 0 −1


and



0 −1 0 0 0
−1 0 0 0 0
0 0 0 1 0
1 −1 0 0 −1
1 −1 −1 0 0


Algorithm (2) produces the change of basis matrix

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 −1 −2 −2 2


With the above transformation we can see a new representative for G11 is generated by

−1 −1 −1 −1 0
0 2 1 2 0
0 1 2 2 0
0 −2 −2 −3 0
0 1 1 1 −1





1 1 1 1 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1


and



−1 0 0 0 0
2 0 2 1 0
2 1 2 2 0
−2 0 −3 −2 0
1 0 1 1 1


Now by considering MG11 to be the corresponding lattice to the group H generated by

−1 −1 −1 −1
0 2 1 2
0 1 2 2
0 −2 −2 −3




1 1 1 1
0 −1 0 0
0 0 −1 0
0 0 0 −1

 and


−1 0 0 0
2 0 2 1
2 1 2 2
−2 0 −3 −2


we can produce

0 −→ MG11 −→ LG11 −→ Z− −→ 0.

H GAP ID is [4,20,20,4]. A generating set for [4,20,20,4] is given by
0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

 ,


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 −1

 and


0 1 0 0
−1 0 0 0
0 0 1 1
0 0 −1 0
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As we can see its corresponding lattice decompose into 2 rank two lattices which are heredi-
tarily rational.

3.3.10 Case G12

The group is isomorphic to D8 × S4 and is generated by

1 0 1 0 1
0 1 −1 0 −1
0 0 0 0 −1
0 0 0 1 0
0 0 −1 0 0


,



0 1 −1 −1 −1
1 0 1 1 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


and



1 0 0 1 1
0 −1 1 0 0
0 0 0 0 −1
0 0 1 0 0
0 0 0 −1 0


.

Its dual is generated by

1 0 0 0 0
0 1 0 0 0
1 −1 0 0 −1
0 0 0 1 0
1 −1 −1 0 0





0 1 0 0 0
1 0 0 0 0
−1 1 1 0 0
−1 1 0 1 0
−1 1 0 0 1


and



1 0 0 0 0
0 −1 0 0 0
0 1 0 1 0
1 0 0 0 −1
1 0 −1 0 0


Algorithm(1) provides the matrix 

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 −1 −2 −2 2


as our desired change of basis which gives us a new representative for the conjugacy class of
G12, namely the group generated by

1 0 0 0 0
0 2 0 1 0
0 2 1 2 0
0 −3 0 −2 0
0 1 0 1 1





1 0 0 0 0
−2 −1 −2 −2 0
−2 −2 −1 −2 0
2 2 2 3 0
−1 −1 −1 −1 1


and



1 1 1 1 0
0 −2 0 −1 0
0 −1 0 0 0
0 2 −1 0 0
0 −1 0 0 1


Now we can define MG12 to be the corresponding lattice to the group generated by

1 0 0 0
0 2 0 1
0 2 1 2
0 −3 0 −2




1 0 0 0
−2 −1 −2 −2
−2 −2 −1 −2
2 2 2 3

 and


1 1 1 1
0 −2 0 −1
0 −1 0 0
0 2 −1 0
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we get the following exact sequence for LG12

0 −→ MG12 −→ LG12 −→ Z −→ 0

The ZClass of MG12 is given by GAP as

gap> G12info:= Rank1PermQuot(G12);;

gap> G12info.ZClassSubLat;

[ 4, 20, 17, 2 ]

A generating set of [4,20,17,2] is given by
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 −1

 and


0 −1 0 0
1 0 0 0
0 0 −1 −1
0 0 1 0

 .
and its corresponding lattice is decomposable to rank 2 lattices which we know their rationality.
Thus, MG12 is hereditarily rational and this implies that TG12 is hereditarily rational.

3.3.11 Case G13

A generating set of G13 is

1 0 0 0 0
0 0 −1 0 1
0 −1 0 0 1
0 0 0 1 0
0 0 0 0 1


and



0 1 0 1 −1
0 −1 1 0 0
0 −1 0 0 0
1 −1 0 0 1
0 −2 0 0 1


The dual group is generated by

1 0 0 0 0
0 0 −1 0 0
0 −1 0 0 0
0 0 0 1 0
0 1 1 0 1


and



0 0 0 1 0
1 −1 −1 −1 −2
0 1 0 0 0
1 0 0 0 0
−1 0 0 1 1


.

By algorithm (1) we have the following transformation matrix

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 1 0
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which provides the new generators of the representative of the conjugacy class of G13 as

0 −1 0 1 0
−1 0 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


and



−1 1 0 0 0
−1 0 0 0 0
−2 0 −1 2 0
−2 0 0 1 0
1 0 1 −1 1


Now by defining MG13 to be the corresponding lattice to the group generated by

0 −1 0 1
−1 0 0 1
0 0 1 0
0 0 0 1

 and


−1 1 0 0
−1 0 0 0
−2 0 −1 2
−2 0 0 1


we can get

0 −→ MG13 −→ LG13 −→ Z −→ 0.

On the other hand GAP returns the GAP ID of MG13 as

gap> G13info:= Rank1PermQuot(G13);;

gap> G13info.ZClassSubLat;

[ 4, 25, 9, 2 ]

In [23] the author has proved that [4,25,9,2] is hereditarily rational which means TG13 is hered-
itarily rational.

3.3.12 Case G14

A generating set of G14 is

0 −1 1 1 1
1 −1 0 1 1
0 −1 0 0 0
0 0 0 0 1
0 0 0 1 0


and



0 −1 1 1 1
0 −1 0 1 1
−1 0 1 0 0
0 0 0 1 0
0 0 0 0 1


The dual group is generated by

0 1 0 0 0
−1 −1 −1 0 0
1 0 0 0 0
1 1 0 0 1
1 1 0 1 0


and



0 0 −1 0 0
−1 −1 0 0 0
1 0 1 0 0
1 1 0 1 0
1 1 0 0 1
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By algorithm (1) we have the following transformation matrix

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 1 −1 1 1


which provides the new representative of the conjugacy class of G14 as

0 1 1 1 0
1 0 1 1 0
−1 0 −1 0 0
−1 0 0 −1 0
1 0 1 1 1


and



0 1 1 1 0
−1 1 1 1 0
0 0 0 −1 0
0 0 −1 0 0
0 0 1 1 1


Now by defining MG14 to be the corresponding lattice to the group generated by

0 1 1 1
1 0 1 1
−1 0 −1 0
−1 0 0 −1

 and


0 1 1 1
−1 1 1 1
0 0 0 −1
0 0 −1 0


we can get

0 −→ MG14 −→ LG14 −→ Z −→ 0.

On the other hand GAP returns the GAP ID of MG14 as

gap> G14info:= Rank1PermQuot(G14);;

gap> G14info.ZClassSubLat;

[ 4, 25, 8, 5 ]

In [23] it is shown that the subgroups of [4,25,8,5] are rational except for possibly 8 subgroups

[4, 6, 2, 11], [4, 12, 4, 13], [4, 13, 2, 6], [4, 13, 3, 6], [4, 13, 7, 12], [4, 24, 4, 6], [4, 25, 4, 5], [4, 25, 8, 5].

Each of the above groups corresponds to a subgroup of G14 and except for them, the rest are
rational.

3.3.13 Case G15

The group G15 is isomorphic to C2 × S4 and is generated by

0 0 −1 0 1
−1 0 0 0 1
0 1 0 0 0
0 0 1 −1 −1
0 0 −1 0 0


and



−1 0 0 −1 0
0 0 −1 0 1
0 0 0 0 −1
1 −1 0 0 −1
−1 0 0 0 0


.
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This is the G-lattice discussed in Example 3. So the information is being recalled from that
example.

T =



1 0 1 0 −1
0 1 0 0 1
0 0 0 1 1
0 0 1 0 0
0 0 0 0 1


which provides a new representative of the conjugacy class of G15 as the group generated by

0 1 0 0 0
−1 0 0 0 0
0 0 −1 0 0
0 1 0 0 −1
0 0 0 −1 0


and



0 0 −1 0 0
−1 0 0 0 0
0 −1 0 0 0
0 0 0 0 −1
−1 0 0 1 −1


.

Now we can define M = 〈e1, e2, e3〉Z ⊂ LG15 to get

0 −→ M −→ LG15 −→ L/M −→ 0.

One can see that L/M is a rank 2 lattice which is the corresponding lattice to the group, H
generated by [

0 −1
−1 0

]
and

[
0 −1
1 −1

]
.

H is isomorphic to S3 and its corresponding lattice is not even sign permutation. We can
consider maximal subgroups of G15 as we did for the irreducible lattices.
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G15

[5, 81, 54]

[5, 391, 4]

[5, 18, 28]

[5, 173, 4]

[5, 6, 3]

[5, 164, 2]

[5, 174, 2]

[5, 461, 4]

[5, 6, 3]

[5, 164, 2][5, 606, 4]

[5, 22, 14]

[5, 461, 4]

[5, 6, 3]

[5, 164, 2]

[5, 580, 4]

[5, 19, 14]

[5, 164, 2][5, 607, 4]

[5, 98, 28]

[5, 174, 2]

[5, 580, 4]

[5, 19, 14]

[5, 164, 2][5, 608, 4]

[5, 99, 57]

[5, 173, 4]

[5, 6, 3]

[5, 164, 2]

[5, 580, 4]

[5, 19, 14]

[5, 164, 2]

Figure 3.4: Conjugacy classes of subgroups of G15. Algorithm (1) works for the gray ones.
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3.3.14 Case G16.

A generating set of G16 is

1 0 −1 −1 1
0 1 −1 −1 1
0 0 1 0 0
0 0 −1 0 1
0 0 1 1 0





1 0 −1 −1 0
0 1 −1 −1 0
0 0 0 0 1
0 0 −1 −1 −1
0 0 1 0 0


and



−1 0 0 1 −1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


The dual group is generated by

1 0 0 0 0
0 1 0 0 0
−1 −1 1 −1 1
−1 −1 0 0 1
1 1 0 1 0





1 0 0 0 0
0 1 0 0 0
−1 −1 0 −1 1
−1 −1 0 −1 0
0 0 1 −1 0


and



−1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 0 0 1 0
−1 0 0 0 1


By algorithm (1) we have the following transformation matrix

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0


which provides the new generators of the representative of the conjugacy class of G16 as

1 −1 −1 1 0
0 1 0 0 0
0 −1 0 1 0
0 1 1 0 0
0 −1 −1 1 1





1 −1 −1 0 0
0 0 0 1 0
0 −1 −1 −1 0
0 1 0 0 0
0 −1 −1 0 1


and



−1 0 1 −1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


Now by defining MG16 to be the corresponding lattice to the group generated by

1 −1 −1 1
0 1 0 0
0 −1 0 1
0 1 1 0




1 −1 −1 0
0 0 0 1
0 −1 −1 −1
0 1 0 0

 and


−1 0 1 −1
0 1 0 0
0 0 1 0
0 0 0 1


we can get

0 −→ MG16 −→ LG16 −→ Z −→ 0.

On the other hand GAP returns the GAP ID of MG16 as
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gap> G16info:= Rank1PermQuot(G16);;

gap> G16info.ZClassSubLat;

[ 4, 14, 10, 2 ]

In [23] it is shown that [4, 31, 7, 1] is hereditarily rational. Using GAP one can verify that
[4,14,10,2] (up to conjugacy) is a subgroup of [4,31,7,1] which means TG16 is hereditarily ra-
tional.

3.3.15 Case G17

A generating set of G17 is

0 0 −1 0 0
0 1 0 0 0
−1 0 0 0 0
0 0 0 1 0
0 0 0 0 1





−1 0 0 1 −1
0 −1 0 −1 1
0 0 −1 −1 1
0 0 0 1 0
0 0 0 0 1


and



1 1 0 0 0
0 −1 0 0 0
0 −1 1 0 0
0 1 0 1 0
0 −1 0 0 1


The dual group is generated by

0 0 −1 0 0
0 1 0 0 0
−1 0 0 0 0
0 0 0 1 0
0 0 0 0 1





−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
1 −1 −1 1 0
−1 1 1 0 1


and



1 0 0 0 0
1 −1 −1 1 −1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


By algorithm (1) we have the following transformation matrix

1 0 0 −1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 1


which provides the new generators of the representative of the conjugacy class of G17 as

0 0 −1 0 0
0 1 0 0 0
−1 0 0 0 0
1 0 1 1 0
−1 0 −1 0 1





−2 0 0 −1 0
1 −1 0 1 0
1 0 −1 1 0
3 0 0 2 0
−3 0 0 −1 1


and



1 1 0 0 0
0 −1 0 0 0
0 −1 1 0 0
0 −3 0 1 0
0 2 0 0 1
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Now by defining MG17 to be the corresponding lattice to the group generated by
0 0 −1 0
0 1 0 0
−1 0 0 0
1 0 1 1



−2 0 0 −1
1 −1 0 1
1 0 −1 1
3 0 0 2

 and


1 1 0 0
0 −1 0 0
0 −1 1 0
0 −3 0 1


we can get

0 −→ MG17 −→ LG17 −→ Z −→ 0.

On the other hand GAP returns the GAP ID of MG17 as

gap> G17info:= Rank1PermQuot(G17);;

gap> G17info.ZClassSubLat;

[ 4, 13, 7, 12 ]

In [23] it is shown that the subgroups of [4,13,7,12] are rational except for possibly 5 subgroups

[4, 6, 2, 11], [4, 12, 4, 13], [4, 13, 2, 6], [4, 13, 3, 6], [4, 13, 7, 12]

Each of the above groups corresponds to a subgroup of G17 and except for them, the rest are
rational.

3.3.16 Case G18

A generating set of G18 is

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 −1
0 0 0 −1 0





0 −1 1 1 −1
−1 0 −1 0 0
0 0 −1 −1 1
0 0 0 0 −1
0 0 0 −1 0


and



0 0 −1 0 0
0 1 0 0 0
−1 0 0 0 0
0 0 0 1 0
0 0 0 0 1


The dual group is generated by

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 −1
0 0 0 −1 0





0 −1 0 0 0
−1 0 0 0 0
1 −1 −1 0 0
1 0 −1 0 −1
−1 0 1 −1 0


and



0 0 −1 0 0
0 1 0 0 0
−1 0 0 0 0
0 0 0 1 0
0 0 0 0 1


By algorithm (1) we have the following transformation matrix

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 −1 1 −1
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which provides the new generators of the representative of the conjugacy class of G18 as

1 0 0 0 0
0 1 0 0 0
0 0 0 −1 0
0 0 −1 0 0
0 0 0 0 1





0 −1 0 0 0
−1 0 0 0 0
1 −1 −1 0 0
−1 1 0 −1 0
−1 1 1 −1 1


and



1 0 0 0 0
0 −1 0 0 0
0 1 1 0 0
0 −1 0 1 0
0 −1 0 0 1


Now by defining MG18 to be the corresponding lattice to the group generated by

1 0 0 0
0 1 0 0
0 0 0 −1
0 0 −1 0




0 −1 0 0
−1 0 0 0
1 −1 −1 0
−1 1 0 −1




1 0 0 0
0 −1 0 0
0 1 1 0
0 −1 0 1


we can get

0 −→ MG18 −→ LG18 −→ Z −→ 0.

On the other hand GAP returns the GAP ID of MG18 as

gap> G18info:= Rank1PermQuot(G18);;

gap> G18info.ZClassSubLat;

[ 4, 13, 7, 12 ]

In [23] it is shown that the subgroups of [4,13,7,12] are rational except for possibly 5 subgroups

[4, 6, 2, 11], [4, 12, 4, 13], [4, 13, 2, 6], [4, 13, 3, 6], [4, 13, 7, 12]

Each of the above groups corresponds to a subgroup of G18 and except for them, the rest are
rational.

3.3.17 Conclusion

The 18 maximal indecomposable stably rational lattices found in [15] are divided into 4 fami-
lies. The first family are the ones interpreted as lattices of root systems which are hereditarily
rational. The second family contains all lattices on which Algorithm 1 will not fail. The third
family contains lattices on which Algorithm 2 does not fail while Algorithm 1 fails. The last
family contains all lattices on which either, both Algorithms 1 and 2 fail but still the general
idea of reduction works, or they are irreducible.

All lattices of the first family are hereditarily rational. The second family contains lattices
of which after reduction, rationality of the reduced component is unknown. By arguments in
the previous sections we have proved the following theorem.

Theorem 4. The groups presented in Table 3.3 are hereditarily rational.
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CARAT ID Group Structure #G Description.
(5, 942, 1) Imf(5, 1, 1) 3840 The root lattice of B5

(5, 953, 4) S6 720 The root lattice of A5

(5, 726, 4) C4
2 o S4 384 reduced component [4, 32, 21, 1]

(5, 911, 4) S5 120 reduced component [4, 31, 4, 1]
(5, 341, 6) D8 × S3 48 reduced component [4, 20, 17, 2]
(5, 531, 13) C2 × S4 48 reduced component [4, 25, 9, 2]
(5, 245, 12) C2

2 × S3 24 reduced component [4, 14, 10, 2]

Table 3.3: Hereditarily rational groups among the maximal 18 groups found in [15].

The exceptional cases of the second family are presented in Table 3.4. In each case the reduced
component is stably rational as proved in [15]. Their rationality is unknown yet. In [23] the
author has proved that subgroups of [4, 25, 8, 5] are rational except for possibly

[4, 6, 2, 11], [4, 12, 4, 13], [4, 13, 2, 6], [4, 13, 3, 6], [4, 13, 7, 12], [4, 24, 4, 6], [4, 25, 4, 5], [4, 25, 8, 5].

There will be precisely one subgroup of G14 with each of the dimension 4 reduced components
in the above list, so except for possibly those subgroups of G14 the rest are rational. The ex-
ceptional cases are presented in Table 3.5.

From the above list

[4, 6, 2, 11], [4, 12, 4, 13], [4, 13, 2, 6], [4, 13, 3, 6], [4, 13, 7, 12]

are subgroups of [4, 13, 7, 12] which means we have the same problem for cases G17 and G18.
Hence except for possibly the subgroups of G17 and G18 associated to above list their rest of
subgroups are rational. For the exceptional cases see Table 3.6 and Table 3.7.

CARAT ID Group Structure #G Description.
(5, 533, 8) C2 × S4 48 reduced component [4, 25, 8, 5]
(5, 81, 42) C2 × D8 16 reduced component [4, 13, 7, 12]
(5, 81, 48) C2 × D8 16 reduced component [4, 13, 7, 12]

Table 3.4: Groups among 18 maximals which are reduced but rationality of rank 4 sublattice
is unknown
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CARAT ID Group Structure #G Description.
(5, 32, 52) C2 ×C2 ×C2 8 reduced component [4, 6, 2, 11]
(5, 99, 53) D8 8 reduced component [4, 12, 4, 13]
(5, 103, 22) C4 ×C2 8 reduced component [4, 13, 2, 6]
(5, 98, 22) D8 8 reduced component [4, 13, 3, 6]
(5, 81, 50) C2 × D8 16 reduced component [4, 13, 7, 12]
(5, 522, 15) S4 24 reduced component [4, 24, 4, 6]
(5, 521, 15) S4 24 reduced component [4, 25, 4, 5]
(5, 533, 8) C2 × S4 48 reduced component [4, 25, 8, 5]

Table 3.5: Subgroups of G14 that have associated tori which are stably rational but whose
rationality is unknown.

CARAT ID Group Structure #G Description.
(5, 32, 49) C2 ×C2 ×C2 8 reduced component [4, 6, 2, 11]
(5, 99, 52) D8 8 reduced component [4, 12, 4, 13]
(5, 103, 16) C4 ×C2 8 reduced component [4, 13, 2, 6]
(5, 98, 16) D8 8 reduced component [4, 13, 3, 6]
(5, 81, 42) C2 × D8 16 reduced component [4, 13, 7, 12]

Table 3.6: Subgroups of G17 that have associated tori which are stably rational but whose
rationality is unknown.

CARAT ID Group Structure #G Description.
(5, 32, 46) C2 ×C2 ×C2 8 reduced component [4, 6, 2, 11]
(5, 99, 54) D8 8 reduced component [4, 12, 4, 13]
(5, 103, 24) C4 ×C2 8 reduced component [4, 13, 2, 6]
(5, 98, 24) D8 8 reduced component [4, 13, 3, 6]
(5, 81, 48) C2 × D8 16 reduced component [4, 13, 7, 12]

Table 3.7: Subgroups of G18 that have associated tori which are stably rational but whose
rationality is unknown.

Theorem 5. All subgroups of G14,G17 and G18 are rational except for possibly the subgroups
in Table 3.5, Table 3.6 and Table 3.7.

There are 4 cases, namely G4,G5,G6 and G11, in which after the reduction we get a rank one
sign permutation lattice (more information is given in Table 3.8). The same also happened
in some subgroups of irreducible lattices (see Table 3.9). It is possible that these groups are
hereditarily rational, but we do not currently have a proof. One possible approach to prove
rationality in these cases may be the following argument.
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Assume L is a lattice in the third family, that is, there exists an exact sequence of lattices
such that

0 −→ M −→ L −→ Z− −→ 0

Moreover assume M is a hereditarily rational. Using a flasque resolution of L we have

0

0 M L Z− 0

P

Q

0

Suppose K/F is a finite Galois extension and G = Gal(K/F). We note that by the No Name
Lemma we obtain K(P)G = K(y1, . . . , yt) and K(M)G = F(x1, . . . , xn−1) is implied by rationality
of M. Now if there exist a permutation lattice Q′ such that P ⊂ M ⊕Q′ (or even if L ⊂ M ⊕Q′)
then K(L)G ⊂ K(M)(Q′)G which implies unirationality of K(L)G over K(M)G. Now Lüroth’s
theorem implies rationality of K(L)G over F.

K(M ⊕ Q′)G = K(M)G(z1, . . . , zs)

K(P)G = K(y1, . . . , yt)

K(L)G = K(M)(Z−)G

K(M)G = F(x1, . . . , xn−1)

F

The following table summarizes the information about reduction of lattices in the third family.
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CARAT ID G #G Description.
(5, 919, 4) C2 × S5 240 reduced component [4, 31, 7, 1]
(5, 801, 3) C2 × (S2

3 o C2) 144 reduced component [4, 29, 9, 2]
(5, 655, 4) D2

8 o C2 128 reduced component [4, 32, 17, 1]
(5, 337, 12) D8 × S3 48 reduced component [4, 20, 20, 4]

Table 3.8: The groups corresponding to maximal stably rational tori of dimension 5 whose
associated lattices are indecomposable and have a rank 1 sign quotient.

For the last family we have considered their maximal subgroups and we could not decide about
the rationality of the groups presented in the following table.

Theorem 6. All groups in Table 3.10 are hereditarily rational. That is, all subgroups of G8,
G9, G10 and G15 except for possibly the subgroups in Table 3.9 are hereditarily rational.

A proof of Theorem 6 is provided in Appendix A.

Carat ID G #G Description
[5, 173, 4] S3 6 reduced comp. [4, 17, 1, 1], rank 1 sign perm. quot.
[5, 391, 4] D12 12 reduced comp. [4, 21, 3, 1] rank 1 sign perm. quot.
[5, 461, 4] C2

2 × S3 24 reduced comp.[3, 6, 7, 1], quot [2, 4, 4, 1]
[5, 580, 4] A4 12 reduced comp.[3, 7, 1, 1], quot [2, 4, 1, 1]
[5, 606, 4] C2 × A4 24 reduced comp. [3, 7, 2, 1], quot [2, 4, 1, 1]
[5, 607, 4] S4 24 reduced comp. [3, 7, 4, 1], quot [2, 4, 2, 1]
[5, 607, 9] S4 24 reduced comp. [3, 7, 4, 1], quot [2, 4, 2, 2]
[5, 608, 4] S4 24 reduced comp.t [3, 7, 3, 1] , quot [2, 4, 2, 1]
[5, 917, 3] C5 o C4 20 reduced comp. [4, 31, 1, 1] rank 1 sign perm. quot.
[5, 917, 4] C5 o C4 20 reduced comp. [4, 31, 1, 1] rank 1 sign perm. quot.
[5, 623, 4] C2 × S4 48 reduced comp. [3, 7, 5, 1], quot [2, 4, 2, 1]
[5, 952, 2] A5 60 absolutely irreducible
[5, 952, 4] A5 60 absolutely irreducible
[5, 946, 2] S5 120 absolutely irreducible
[5, 946, 4] S5 120 absolutely irreducible
[5, 947, 2] S5 120 absolutely irreducible

Table 3.9: Subgroups of G8,G9,G10 and G15 that have associated tori which are stably rational
but whose rationality is unknown.

The following table present the reduced components of the subgroups mentioned in Theorem
6.
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Number CARAT ID G #G Description.
1 [5, 6, 3] C2 2 [ 4, 2, 2, 2 ]
2 [5, 18, 28] C2 ×C2 4 [ 4, 4, 3, 4 ]
3 [5, 19, 14] C2 ×C2 4 [ 4, 5, 1, 10 ]
4 [5, 22, 14] C2 ×C2 ×C2 8 [ 4, 6, 1, 9 ]
5 [5, 57, 8] C4 4 [ 4, 7, 1, 2 ]
6 [5, 81, 54] C2 × D8 16 [ 4, 13, 7, 5 ]
7 [5, 98, 28] D8 8 [ 4, 13, 3, 3 ]
8 [5, 99, 57] D8 8 [ 4, 12, 4, 7 ]
9 [5, 164, 2] C3 3 [ 4, 11, 1, 1 ]
10 [5, 174, 2] S3 6 [ 4, 17, 1, 3 ]
11 [5, 174, 5] S3 6 [ 4, 17, 1, 2 ]
12 [5, 389, 4] D12 12 [ 4, 21, 3, 2 ]
13 [5, 901, 3] D10 10 [ 4, 27, 3, 1 ]
14 [5, 918, 4] C5 o C4 20 [4, 31, 1, 2]

Table 3.10: Hereditarily rational subgroups of G8,G9,G10 and G15.

Remark. The union of the set of groups in Table 3.9 and the set of subgroups of the groups in
Table 3.10, is the set of all subgroups of G8,G9,G10 and G15.

Appendix B presents tables of conjugacy classes of indecomposable subgroups of GL(5,Z)
which correspond to stably rational tori of dimension 5 from Hoshi and Yamasaki’s list. From
this list, those stably rational tori of dimension 5 whose rationality is unknown are listed.



Chapter 4

Algebraic Construction of Quasi-Split
Tori

There are several applications of algebraic tori, for instance in cryptography and coding theory,
see [28, Chapter 8], [19] and [36]. For practical purposes, the applications use split tori, that is
T = Gd

m for some positive d. Split tori are used primarily due to the simplicity of calculations
in this case. To make computations efficient and effective, one needs to be able to define coor-
dinate rings and function fields of algebraic tori in an explicit manner.

As we saw in the second chapter, an algebraic torus is defined without using an ideal of a
polynomial ring. Even the function field (resp. coordinate ring) of a general algebraic torus
is defined as the field of invariants of a field (resp. ring of) under the action of some finite
group. Considering the fact that these invariants are multiplicative, it is not easy to find these
invariants in general. To the best of the author’s knowledge, there are only a few algorithms for
finding the multiplicative invariants (see [20] and [25]). The results presented in this chapter
allow us to find multiplicative invariants in the particular cases where the lattice is permutation
or sign permutation.

Indeed, in this chapter we present results concerning the construction of algebraic function
field and coordinate ring of quasi split tori. The first section is devoted to a brief discussion
of permutation lattices. In the second section, a constructive proof of the No Name Lemma is
presented. This can be used to find an explicit transcendence basis of the rational function field
of a quasi split torus. The final section presents a similar result for finding the function field of
an algebraic torus with sign permutation lattice.

Throughout this chapter, for a given finite group G ≤ GL(n,Z), LG represents the lattice corre-
sponding to G and TG is the algebraic torus corresponding to G in the sense of Definition 46.
TG,F denotes the algebraic torus associated to G, which is defined over a field F and splits over
a Galois extension of F, K where G = Gal(K/F). Hence, G acts on K(LG) � K[x±1

1 , . . . , x
±1
n ]

68
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and K(LG) � K(x1, . . . , xn) as in Definition 46.

4.1 Generalities

In this section, we briefly take a look at our main ingredients to present the results in the later
sections. In order to give a concrete proof of the No Name Lemma, we will use a permutation
basis of a given permutation lattice. Hence in the first subsection the problem of finding a
permutation basis is discussed. A normal element of a given Galois extension is the other thing
we will need. A brief discussion on normal element and normal basis of Galois extensions are
provided.

4.1.1 Characterization of Permutation Lattices

In Chapter 2 we saw that for a given finite subgroup of G ≤ GL(n,Z), the rational function field
and the coordinate ring of TG,F are respectively given by K(x1, . . . , xn)G and K[x±1

1 , . . . , x
±1
n ]G

(see Definition 46).

In general for a given G-lattice, we do not have a method to determine if the lattice is per-
mutation or not. Let us take a closer look at the structure of permutation lattices to get some
ideas.

The following lemma characterizes permutation lattices. Let Sn be the group generated by

σ =

 0 1
In−1 0

 and τ =


0 1
1 0

0

0 In−2

 .
One can see Sn is the group of all permutation matrices.

Lemma 1. Let G ≤ GL(n,Z) be finite. The G-lattice corresponding to G is a permutation
lattice if and only if G is conjugate to one of the subgroups of Sn.

Proof. (⇒) Assume that G = 〈σi : 1 ≤ i ≤ m〉 and that LG has the standard basis {e1, . . . , en}.
If LG is a permutation lattice, then there exists a basis W = {α1, . . . , αn} ⊂ LG such that G acts
as permutation on W i.e. for any σ ∈ G and 1 ≤ i ≤ n

αi · σ = αsi

for some si ∈ {1, . . . , n}. By defining T =
[
α1 · · · αn

]t
, the above equations imply

Tσ = PσT and thus TσT−1 = Pσ

where Pσ is a permutation matrix of size n. Note that since W forms a basis for LG, T is
invertible. The group P generated by {Pσ : σ ∈ {σ1, . . . , σm}} is clearly a subgroup of Sn and
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TGT−1 = P, which means that G and P are conjugate in GL(n,Z).
(⇐) is obvious. �

The proof of the last lemma is simply saying that if a lattice is a permutation lattice then we can
find an invertible matrix (change of basis matrix) such that TGT−1 is a subgroup of GL(n,Z)
generated by permutation matrices.

However, to the best of the author’s knowledge there is no general algorithm to determine
if a given lattice is permutation. We mention here a naive approach, and where it fails.

For a given group G ≤ GL(n,Z) with m generators one can always form a matrix T with
n2 indeterminates x11, . . . , xnn as entries, then form

x11 x12 · · · x1n

x21 x22 · · · x2n
...

... · · ·
...

xn1 xn2 · · · xnn

σ = Pσ


x11 x12 · · · x1n

x21 x22 · · · x2n
...

... · · ·
...

xn1 xn2 · · · xnn

 ,
for σ a generator of G and Pσ the corresponding permutation matrix. This gives n2 equations
in n2 variables. Since we can do the same for any generator of G, one can form a linear system
of m × n2 equations with n2 variables. We can always solve the system over rationals. If the
system has no solution over Q, it has no solutions over Z as well. However, there are two
difficulties in this approach. The first problem is the choice of the permutation matrices Pσ, as
it is not obvious how to choose appropriate candidates. The second problem happens when the
system has a solution set over Q of positive dimension. In this case, we need to find a solution
over the integers in such a way that T has determinant in {±1}. Finding a solution of this type
is a hard problem to which we offer no solution.

Since we are not looking for a solution to solve the mentioned decision problem for lattices,
we assume our groups are subgroups of Sn. This assures us that the lattice we are working
with is a permutation lattice with the standard basis. We also note that since conjugate sub-
groups of GL(n,Z) correspond to isomorphic lattices, with our assumption we are discussing
isomorphism classes of permutation lattices. We also know that isomorphic lattices correspond
to isomorphic algebraic tori.

4.1.2 Normal Basis Theorem

Suppose K/F is a finite Galois extension with G = Gal(K/F). The purpose of this section is
to provide some information about a specific type of basis for K as a F-vector space. We are
interested in a basis on which the action of G permutes the elements, it will play a central role
in the results of this chapter.
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Definition 2. Assume K/F is a finite Galois extension and G = {σ1, . . . , σn} is the Galois
group of K/F. An element α ∈ K is called normal if B = {σ1(α), . . . , σn(α)} is an F-basis for
K, and we call B a normal basis of K over F.

The existence of a normal basis for a finite Galois extension was proven in [30] and [7].

Theorem 3. [22, Theorem 6.13.1] (Normal Basis Theorem) Let K/F be a finite Galois exten-
sion of degree n. Let σ1, . . . , σn be the elements of the Galois group G. Then there exists an
element α ∈ K such that σ1(α), . . . , σn(α) form a basis of K over F.

There are different proofs for the normal basis theorem. The following argument, which is
part of one of the proofs, gives a concrete way to find a normal basis for a given finite Galois
extension.

Assume K/F is a finite Galois extension and G = {σ1, . . . , σn} is the Galois group of K/F.
We are looking for an element x ∈ K such that, if

∑n
i=1 ciσi(x) = 0 (for ci ∈ F), then ci = 0

for each i. Let {β1, . . . , βn} be an F-basis for K. For indeterminates x1, . . . , xn we can write
x = x1β1 + · · · + xnβn.

For σ ∈ {σ1, . . . , σn}, if
∑n

i=1 ciσi(x) = 0, then σ−1(
∑n

i=1 ciσi(x)) =
∑n

i=1 ciσ
−1σi(x) = 0. Thus

we have 
σ−1

1 σ1(x) σ−1
1 σ2(x) · · · σ−1

1 σn(x)
σ−1

2 σ1(x) σ−1
2 σ2(x) · · · σ−1

2 σn(x)
...

... · · ·
...

σ−1
n σ1(x) σ−1

n σ2(x) · · · σ−1
n σn(x)



c1

c2
...

cn

 = 0

So it is enough to show that the above matrix, we call it A(x), is invertible for some x. Replacing
x by x1β1 + · · · + xnβn we get

A(x) = A(x1, . . . , xn) =


σ−1

1 σ1(
∑n

i=1 xiβi) σ−1
1 σ2(

∑n
i=1 xiβi) · · · σ−1

1 σn(
∑n

i=1 xiβi)
σ−1

2 σ1(
∑n

i=1 xiβi) σ−1
2 σ2(

∑n
i=1 xiβi) · · · σ−1

2 σn(
∑n

i=1 xiβi)
...

... · · ·
...

σ−1
n σ1(

∑n
i=1 xiβi) σ−1

n σ2(
∑n

i=1 xiβi) · · · σ−1
n σn(

∑n
i=1 xiβi)


and det(A) ∈ K[x1, . . . , xn]. We just need to find (a1, . . . , an) ∈ Fn so that det(A)(a1, . . . , an) , 0.
It is possible to show the existence of such element in Fn. Indeed this gives a complete proof
of the theorem. Since we just wanted to explain a way to find a normal element, we skip the
proof of existence (see [22, Theorem 6.13.1]).

The above argument gives a randomized method to find a normal element for a given extension
by choosing x1, . . . , xn at random. There are better algorithms for finding a normal element.
For an algorithm in characteristic zero see [12], in positive characteristic, see [41], [34].
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4.2 Construction of Quasi Split Tori

We have already seen the duality between algebraic tori and lattices. For a given G ≤ GL(n,Z)
although we know K(TG,F) � K(x1, . . . , xn)G and K[TG,F] � K[x±1

1 , . . . , x
±1
n ]G , it is given as a

field (or ring) of multiplicative invariants, and we do not have a generating set for them. We
are interested in finding the multiplicative invariants in a concrete way.

There are many algorithms for finding the invariant rings for polynomial invariants. We in-
vite the reader to consult [6] and [40]. However, for multiplicative invariants the algorithmic
side is not explored that much. We invite the reader to consult [20] and [35] for some results.

In this section, we focus on a specific family of algebraic tori, namely quasi split tori. For
this family we present machinery to construct rational function fields and coordinate rings.
The lattice corresponding to a quasi split algebraic torus is a permutation lattice. The ratio-
nality of this kind of algebraic tori has been known for a long time. Since a quasi-split torus
of dimension d is rational over the base field, its function field is generated as a field by d
elements which are algebraically independent over the base field.

When LG is a permutation lattice, by the No Name Lemma, K(TG,F) is a rational extension
of F, i.e. there exist y1, . . . , yn ∈ K[x1, . . . , xn] such that

K(x1, . . . , xn)G = F(y1, . . . , yn)

and y1, . . . , yn are algebraically independent over F.

The existence of yi’s is related to the existence of a permutation basis for LG. Hence hav-
ing such a basis, enables us to construct the transcendence basis we are looking for.

From the discussion of the previous section, we know that for a given permutation G-lattice, it
is not easy to find a basis on which G acts permutations. Hence, we will assume that G is given
as a subgroup of the group Sn generated by 0 1

In 0

 and


0 1
1 0

0

0 In−2


so that the corresponding G-lattice L is a permutation (by Lemma 1). We note that conjugate
subgroups of GL(n,Z) correspond to isomorphic algebraic tori.

Remark. Assume Sn is the symmetric group generated by σ = (1 2 . . . n) and τ = (1 2).
Now the above generators of Sn can be seen as the images of In, under the action of σ and τ on
its rows which gives an isomorphism between Sn and Sn. This shows that the action of δ ∈ Sn

on ei, an element of the standard basis of LSn , is given by δ(ei) = eδ−1(i) and similarly if we are
dealing with K(x1, . . . , xn) � K(LSn), we have δ(xi) = xδ−1(i) by Definition 46.
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We need one more component to construct TG,F . The last component is a finite Galois exten-
sion of a field F. In other words one needs to solve the inverse Galois problem for the pair
(G, F) since it is not the purpose of this thesis, we assume K/F is a finite Galois extension and
the action of G on a basis of K over F is given.

By the No Name Lemma, we know that the rational function field of TG,F is purely transcen-
dental over F, so the final step is to find a transcendence basis of K(TG,F) over F. By the proof
of the No Name Lemma provided in chapter two, one can see that it all comes down to finding
a basis for V , the K-vector space generated by {x1, . . . , xn}, which is also a generating set for
K(LG) being permuted by G.

Let us see the above ideas in the following concrete example.

Example 4. Suppose G = 〈σ =

[
0 1
1 0

]
〉, so n = 2. G is isomorphic to the cyclic group of order

two. We can take F = Q and K = Q(i) as our extension; then σ(i) = −i. Now M = 〈e1, e2〉Z is
a permutation G-lattice, so that K(M) = K(x1, x2). It can be verified that

y1 = x1 + x2 and y2 = ix1 − ix2

are in VG and generate V so

K(M)G = K(x1, x2)G = KG(y1, y2) = Q(y1, y2)

The following theorem solves the problem of finding a transcendence basis in the special case
where G = Sn. Later on we present a general result which works for any subgroup of Sn.

Theorem 5. Suppose G = Sn, LG is its corresponding G-lattice (with the action in Remark
4.2) and Sn = Gal(K/Q) where K is the splitting field of an irreducible polynomial f ∈ Q[x].
Assume R = {r1, . . . , rn} is the set of all roots of f in K such that for s ∈ Sn, s(ri) = rs(i) and A
be the sum of elements of R. The generators of the rational function field of the corresponding
algebraic torus, is given explicitly by

K(LG)G = K(x1, . . . , xn)G = Q(y1, . . . , yn)

where
S =

∑
δ∈G

δ ∈ Z[G]

y1 = x1 + x2 + · · · + xn

yi = S (rixi) , i = 2, . . . , n.

Moreover the coefficient of xk in yi for 1 ≤ i ≤ n − 1 is given by:

ck =

(n − 1)!ri k = i

(n − 2)!(A − ri) k , i
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Proof. Suppose {x1, . . . , xn} is a basis which is being permuted by G. As discussed in Remark
4.2, we can consider LG as a Sn lattice with the action mentioned in Remark 4.2. That is for
δ ∈ Sn, δ(xi) = xδ−1(i). By the proofs of Speiser’s lemma and the No Name Lemma we know
that K(M)G is rational over Q i.e. there exist yis such that K(M)G � Q(y1, . . . , yn). Let V be the
K-vector space generated by xis. We need to find {y1, . . . , yn} ⊂ S V such that {yi} generates V
as a K-vector space.

Define y1 = x1 + x2 + · · · + xn and yi = S (rixi) for i = 2, . . . , n. So for i = 1, . . . , n − 1,

yi =
∑
σ∈Sn

rσ(i)xσ−1(i) =

n∑
k=1

∑
σ−1(i)=k

rσ(i)xk.

So ck =
∑
σ∈Sn,σ−1(i)=k rσ(i). If k = i, σ−1(i) = i implies σ(i) = i and so ci = |StabSn(i)|ri = (n −

1)!ri. If k , i, then σ−1(i) = k implies that σ maps {1, . . . , n} − {k} bijectively to {1, . . . , n} − {i}.
So since i , k, σ(i) can take on any value in {1, . . . , n} − {i}. This shows that for k , i, we have

ck =
∑
j,i

|{σ ∈ Sn, σ(k) = i, σ(i) = j}|r j = (n − 2)!(A − ri).

Also (n−1)!ri−(n−2)!(A−ri) , 0 since otherwise ri = A
n which is rational. Thus by considering

yi − (n − 2)!(A − ri)y1 we get a multiple of xi. This shows that {yi} has the desired property and
we are done.

�

Remark. LG in the previous theorem, is isomorphic to the permutation Sn lattice Z[Sn/Sn−1].
For a geometric description of the corresponding algebraic torus see Examples 18 and 19 in
[44].

Example 6. Let G ≤ GL(3,Z) be generated by

σ =


0 0 1
1 0 0
0 1 0

 and τ =


0 1 0
1 0 0
0 0 1

 .
This is obviously isomorphic to S3.

σ2 =


0 1 0
0 0 1
1 0 0

 and στ =


0 0 1
0 1 0
1 0 0

 and τσ =


1 0 0
0 0 1
0 1 0


Now the splitting field of x3 − 2 is Q(ρ, 3√2), where ρ is a primitive third root of unity. The

roots of x3 − 2 are 3√2, ρ 3√2, ρ2 3√2. The Galois group of the extension is S3 with the action

σ =


3√2 −→ ρ

3√2

ρ −→ ρ
τ =


3√2 −→ 3√2

ρ −→ ρ2
σ2 =


3√2 −→ ρ2 3√2

ρ −→ ρ
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στ =


3√2 −→ ρ

3√2

ρ −→ ρ2
τσ =


3√2 −→ ρ2 3√2

ρ −→ ρ2
.

We can provide the following table for the action of the symmetric group on xis and the roots.

1 σ σ2 τ στ τσ

x1 x1 x3 x2 x2 x3 x1

x2 x2 x1 x3 x1 x2 x3

x3 x3 x2 x1 x3 x1 x2
3√2 3√2 ρ

3√2 ρ2 3√2 3√2 ρ
3√2 ρ2 3√2

ρ
3√2 ρ

3√2 ρ2 3√2 3√2 ρ2 3√2 3√2 ρ
3√2

ρ2 3√2 ρ2 3√2 3√2 ρ
3√2 ρ

3√2 ρ2 3√2 3√2

Let r1 = ρ
3√2, r2 = ρ2 3√2 and r3 =

3√2. One can verify that for g ∈ G, g(ri) = rg(i) and then we
get

S = 1 + σ + σ2 + τ + στ + τσ

y0 = S (x1 + x2 + x3) = 6(x1 + x2 + x3)

y1 = S (ρ
3√
2x1) = 2ρ

3√
2x1 + (

3√
2 + ρ2 3√

2)x2 + (
3√
2 + ρ2 3√

2)x3

y2 = S (ρ2 3√
2x2) = (

3√
2 + ρ

3√
2)x1 + 2ρ2 3√

2x2 + (
3√
2 + ρ

3√
2)x3

Theorem 5 does not say anything about a proper subgroup of Sn. Thus it can just be used to
get explicit information about TSn . In fact using a generic polynomial for Sn, one can construct
K/Q. Now we want to prove a general result which works for any subgroup of Sn. The other
difference of this result we are talking about with Theorem 5 is, the different descriptions of
the field extension. In Theorem 5 we assumed the roots of a polynomial are given, but in the
general case we will assume a normal element of the field extension is given. The following
lemma is a generalization of the idea which is used in [13, Lemma 1.3.3] to prove that the
Moore determinant is nonzero over an extension of a finite field. It is the main tool for a
constructive proof of the No Name Lemma with some assumptions.

Remark. For a matrix M we denote its j-th column by M j; an automorphism acts on a column
by acting on its entries.

Let K/F be a finite Galois extension with finite Galois group G. Let M ∈ Mmn(K), m ≤ n. G
acts on the columns of M, by acting on entries, that is for g ∈ G and MT

j =
[
m1 j m2 j . . . mm j

]
,

g(MT
j ) =

[
g(m1 j) g(m2 j) . . . g(mm j)

]
. When we say that G permutes the columns of M tran-

sitively up to sign, we mean: There exists a homomorphism ρ : G −→ Sn, ρ(g) = ρg such that
g(Mi) = (−1)sg Mρg(i) for some sg ∈ {0, 1} for all i = 1, . . . n and for each 1 ≤ i , j ≤ n, there
exists g ∈ G such that ρg(i) = j. Note that the action of G on the columns of M is not required
to be faithful.
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Lemma 7. Let K/F be a finite Galois extension with finite Galois group G. Let M ∈ Mmn(K),
m ≤ n and assume that G permutes the columns of M transitively up to sign. Assume also that
the entries of M1 are F-linearly independent. Then the rows of M are K-linearly independent
so that the rank of M over K is m.

Proof. The proof is by induction on m. If m = 1, we need only to show that the unique row of
M is non-zero. This is true since if M1 = [v1], v1 is F linearly independent and so non-zero.
Since v1 is the first entry in the only row of M, we are done.

Now assume that m > 1. To show that the rows of M are linearly independent over K, it
is equivalent to show that the null space of MT is trivial. We will show this by contradiction.
Assume that there exists 0 , x ∈ N(MT ) ⊆ Km. So MT x = 0. There exists some xk , 0. Let
y = 1

xk
x ∈ Km. Then yk = 1 and y ∈ N(MT ), so MT y = 0. The ith component is MT

i y = 0,
i = 1, . . . , n. For each g ∈ G, we get g(MT

i y) = g(Mi)T g(y) = ±MT
ρg(i)g(y) = 0 for all i = 1, . . . , n

and so MT
j g(y) = 0 for all j = 1, . . . , n, which shows that g(y) ∈ N(MT ). So g(y) − y ∈ N(MT ).

By assumption, the kth component of g(y) − y is 0, and so g(ŷ) − ŷ ∈ N(M̂T ) where ŷ ∈ Km−1

is the vector y with the kth component removed and M̂ ∈ Mm−1,n(K) is M with row k removed.
Note that M̂ has columns M̂i, i = 1, . . . , n. Since M1 has entries which are F-linearly indepen-
dent, so does M̂1. Since the columns of M are permuted transitively up to sign changes by the
action of G, so the columns of M̂ are similarly permuted transitively up to sign changes. Since
the inductive hypothesis applies to M̂, we see that the rows of M̂ are K-linearly independent,
or equivalently N(M̂T ) is trivial. Since g(ŷ) − ŷ ∈ N(M̂T ) = {0} for all g ∈ G, we see that
ŷ ∈ Fm−1 and so y ∈ Fm. But then MT

1 y = 0 is equivalent to
∑m

k=1 vkyk = 0 which is a non-trivial
F-dependence relation for the entries of the first column of M. By contradiction, the rows of
M must be K-linearly independent and so rank(M) = m. �

Remark. With the assumptions of Lemma 7, if m = n then det M , 0.

Theorem 8. Let G ≤ Sn ≤ GL(n,Z) and LG be the lattice corresponding to G as defined
in Definition 46, which is a permutation lattice with the standard basis. Assume that G acts
transitively on the standard basis of LG. Let K/F be a finite Galois extension with Galois
group G. Let α ∈ K be a normal element for the Galois extension K/F. Then K(x1, . . . , xn)G

is rational over F with transcendence basis y1, . . . , yn where yi = S (αxi) =
∑n

j=1
∑

g∈Gi j
g(α)x j,

i = 1, . . . , n, where S =
∑

g∈G g ∈ Z[G] and Gi j = {g ∈ G : g(xi) = x j}. Here Gi j = gi jStabG(xi),
where gi j is a fixed element of Gi j.

Proof. Let V =
∑n

i=1 Kxi. Then by Speiser’s Lemma 45 there exists a K-basis for V contained
in VG. By the No Name Lemma, this K-basis gives a transcendence basis for K(LG)G.

We show that yi = S (αxi) =
∑

g∈G g(α)g(xi) ∈ VG, for i = 1, . . . , n, is a K-basis for V . Let
Gi j = {g ∈ G : g(xi) = x j}. Since the action of G on LG is transitive, Gi j is non-empty for every
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1 ≤ i, j ≤ n. Then

yi =

n∑
j=1

∑
g∈Gi j

g(α)x j, i = 1, . . . , n.

Fix some gi j ∈ G with x j = gi j(xi). If g ∈ Gi j, then g−1
i j g(xi) = xi shows that g ∈ gi jStabG(xi).

Since gi jStabG(xi) ⊆ Gi j, we see that Gi j = gi jStabG(xi) is a left coset of StabG(xi) in G.

To show that {y1, . . . , yn} is a K-basis of V , we show that the matrix M with ith row the coordi-
nate vector for yi with respect to the K-basis {x1, . . . xn} has rows which are linearly independent
over K. The matrix M has entries mi j =

∑
g∈Gi j

g(α), i, j = 1, . . . , n. We will apply Lemma 7 to
show that M has K linearly independent rows and so the y1, . . . , yn form K-basis of V .

We need to check the hypothesis of the lemma are satisfied . First, let ρ : G −→ Sn, ρ(g) = ρg

be the group homomorphism that corresponds to the action of G on the {x1, . . . , xn}. Note that
this is defined by the following rule: ρg(i) = j if and only if g(xi) = x j for all 1 ≤ i, j ≤ n.
We will show that the columns of M are permuted by the action of G. Let h ∈ G. Note that if
g ∈ Gi j, then hg ∈ Giρh( j). So

h(mi j) =
∑
g∈Gi j

hg(α) =
∑

σ∈Giρh( j)

σ(α) = miρh( j)

shows that hM j = Mρh( j) for all j = 1, . . . , n. So the action of G permutes the columns of M.

Secondly, the first column M1 has entries

{
∑
g∈Gi1

g(α), i = 1, . . . , n}.

Since α is a normal element of the Galois extension K/F with Galois group G, the set {g(α) :
g ∈ G} is F linearly independent. Since G = tn

i=1Gi1 is a disjoint union, the set

{
∑

g∈Gi1

g(α), i = 1, . . . , n}

is F linearly independent.

So the lemma applies and we may conclude that y1, . . . , yn is a K-basis of V and so is an F
transcendence basis of K(LG)G.

�

Corollary 9. With the assumptions of previous theorem except that we now assume that LG is
an arbitrary permutation G-lattice. Then K(x1, . . . , xn)G is rational over F with transcendence
basis y1, . . . , yn where yi = S (αxi) =

∑
x j∈Gxi

∑
g∈Gi j

g(α)x j, i = 1, . . . , n where S =
∑

g∈G g ∈
Z[G] and Gxi = {gxi : g ∈ G} and Gi j = {g ∈ G : g(xi) = x j}. Here Gi j = gi jStabG(xi) where gi j

is a fixed element of Gi j.
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Proof. Let P = LG and e1, . . . , en be a permutation basis of P corresponding to x1, . . . , xn.
Let e jk : k = 1, . . . , r and correspondingly x jk : k = 1, . . . , r be a complete set of G orbit
representatives on the Z-basis for P and the indeterminates x1, . . . , xn respectively. Then Pk =

⊕ei∈Ge jk
Zei is a transitive permutation G lattice for each k = 1, . . . , r and K(Pk) = K(xi : xi ∈

Gx jk). P = ⊕r
k=1Pk is a direct sum of transitive permutation G lattices. Then K(P)G is a

composite of fields K(P)G =
∏r

k=1 K(Pk) and so K(P)G has transcendence basis {yi : xi ∈ Gx jk}

over F where for xi ∈ Gx jk , we have yi =
∑

x j∈Gx jk

∑
g∈Gi j

g(α)x j. Since xi ∈ Gx jk , we see that
x j ∈ Gx jk if and only if x j ∈ Gxi so we may express

yi =
∑

x j∈Gxi

∑
g∈Gi j

g(α)x j

(Note also that in fact, Gi j is non-empty if and only if x j ∈ Gxi, so we could even write

yi =

n∑
j=1

∑
g∈Gi j

g(α)x j

as before). At any rate K(P)G = F(yi : xi ∈ Gx jk , k = 1, . . . , r) = F(y1, . . . , yn) as required.
�

Example 10. Let K be the splitting field of x4−2 over Q. Then Gal(K/Q) � D8, K = Q( 4√2, i)
and {1, θ, θ2, θ3, i, iθ, iθ2, iθ3} where θ =

4√2 is a Q-basis for K. Moreover, let G ≤ GL(4,Z) be
generated by

r =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 and s =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 .
One can verify that G � D8. The action of r and s on the basis of K is given by

r(i) = i r(θ) = iθ
s(i) = −i s(θ) = θ

Now we define
α1 = α = 1 + θ + θ2 + θ3 + i + iθ + iθ2 + iθ3

and claim that α is a normal element in K. In fact,

α2 = r(α) = 1 − θ − θ2 + θ3 + i + iθ − iθ2 − iθ3

α3 = r2(α) = 1 − θ + θ2 − θ3 + i − iθ + iθ2 − iθ3

α4 = r3(α) = 1 + θ − θ2 − θ3 + i − iθ − iθ2 + iθ3

α5 = s(α) = 1 + θ + θ2 + θ3 − i − iθ − iθ2 − iθ3

α6 = rs(α) = 1 + θ − θ2 − θ3 − i + iθ + iθ2 − iθ3
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α7 = r2s(α) = 1 − θ + θ2 − θ3 − i + iθ − iθ2 + iθ3

α8 = r3s(α) = 1 − θ − θ2 + θ3 − i − iθ + iθ2 + iθ3

and

det



1 1 1 1 1 1 1 1

1 −1 −1 1 1 1 −1 −1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 −1 1 1 −1

1 −1 1 −1 −1 1 −1 1

1 −1 −1 1 −1 −1 1 1



= 4096,

which implies α is a normal element of K. Now we can define yi = S (αxi) where

S = 1 + r + r2 + r3 + s + sr + sr2 + sr3 ∈ Z[D8].

Finally,
K(x1, x2, x3, x4) = F(y1, y2, y3, y4).

It is also worth presenting the coordinate matrix of the yi’s, as a concrete example of Lemma
7. In order to do so, we need to know the action of G on the xi’s.

1 r r2 r3 s sr sr2 sr3

x1 x1 x4 x3 x2 x1 x2 x3 x4

x2 x2 x1 x4 x3 x4 x1 x2 x3

x3 x3 x2 x1 x4 x3 x4 x1 x2

x4 x4 x3 x2 x3 x2 x3 x4 x1

From the above table one can easily form the matrix

M =


(1 + s)(α) (r3 + sr)(α) (r2 + sr2)(α) (r + sr3)(α)
(r + sr)(α) (1 + sr2)(α) (r3 + sr3)(α) (r2 + s)(α)

(r2 + sr2)(α) (r + sr3)(α) (1 + s)(α) (r3 + sr)(α)
(r3 + sr3)(α) (r2 + s)(α) (r + sr)(α) (1 + srr)(α)

 .
The action of r and s on the columns is

r s
M1 M4 M1

M2 M1 M4

M3 M2 M2

M4 M3 M3
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As it has been mentioned above, we can apply Lemma 7 in order to compute the coordinate
ring of an algebraic torus. The following theorem and its constructive proof can be turned into
an efficient algorithm to compute the coordinate ring of an algebraic tori.

Theorem 11. With the assumptions of Theorem 9

K[L]G � K[x±1
1 , x

±1
2 , . . . , x

±1
n ]G = F[y1, . . . , yn]x1···xn

where yi is given by
S =

∑
σ∈G

σ ∈ Z[G]

yi = S (αxi) for 1 ≤ i ≤ n.

Proof. It is known that K(L) is isomorphic to a Laurent polynomial ring. Also

K[x±1
1 , x

±1
2 , . . . , x

±1
n ] = K[x1, . . . , xn]x1···xn .

We are interested in K[L]G �
(
K[x±1

1 , x
±1
2 , . . . , x

±1
n ]

)G
=

(
K[x1, . . . , xn]x1···xn

)G . By the proof of
Theorem 9 we can see K[x1, . . . , xn] = K[y1, . . . , yn]. On the other hand since G permutes the
xi’s, x1 · · · xn is invariant under the action of G, we can conclude(

K[x1, . . . , xn]x1···xn

)G
=

(
K[y1, . . . , yn]x1···xn

)G

= KG[y1, . . . , yn]x1···xn = F[y1, . . . , yn]x1···xn .

�

4.3 Algebraic tori with sign permutation character lattice

Permutation lattices are special examples of a larger family of lattices which is called sign
permutation. As we have already seen in the second chapter, a sign permutation lattice is a
G-lattice which has a Z-basis which G permutes it up to sign changes. There is no known effi-
cient algorithm which determines if a given lattice is sign permutation or not. It is also known
that if TG is a corresponding algebraic torus with sign permutation character lattice, then TG is
rational over the base field.

Before presenting the next theorem we recall the action on a sign permutation lattice. Let
G ≤ GL(n,Z) be a finite subgroup. LG, the corresponding lattice to G, is the lattice generated
by {ei : i = 1, . . . , n} where (ei) j = δi j. G acts on LG by multiplication from right. For a finite
Galois extension K/F with G � Gal(K/F), K(L) � K(x1, . . . , xn) for algebraically independent
xi’s over K, is a G field. G acts as Galois group on K and the action of g ∈ G on xi is given by

g(xi) =

x j i f g(ei) = e j

x−1
j i f g(ei) = −e j

.
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Theorem 12. Assume G ≤ GL(n,Z) and the corresponding G-lattice, LG (as in Definition 46),
is sign permutation. Suppose that G acts transitively (up to sign) on LG. Let K/F be a finite
Galois extension with Galois group G. Let α ∈ K be a normal element for the Galois extension
K/F. Then

K(LG)G = K(x1, . . . , xn)G = F(y1, . . . , yn),

where S =
∑

g∈G g ∈ Z[G] and yi = S (α(1 + xi)−1) for i = 1, . . . , n.

Proof. We use the change of basis zi = (1 + xi)−1. Now for g ∈ G,

g(zi) =

z j if g(xi) = x j

1 − z j if g(xi) = x−1
j

,

and K(x1, . . . , xn) = K(z1, . . . , zn).

Define the K-vector space V = K +
∑n

i=1 Kzi. Similar to the permutation case, we need to
find a K-basis for V which is contained in VG. Let S =

∑
g∈G g ∈ Z[G] and yi = S (αzi) for

i = 1, . . . , n. We want to show that {1, y1, . . . , yn} ⊂ VG is a K-basis for V .

For i, j ∈ {1, . . . , n}, Gi j = {g ∈ G : g(zi) = z j or g(zi) = 1 − z j}. Then, by the transitivity
assumption, Gi j is non-empty for every 1 ≤ i, j ≤ n. Moreover let Gz j

i j = {g ∈ G : g(zi) = z j}

and G1−z j

i j = {g ∈ G : g(zi) = 1 − z j} so that Gi j = Gz j

i j tG1−z j

i j .

Let M̂ be the coordinate matrix of {1, y1, . . . , yn} with respect to the K-basis {1, z1, . . . , zn}.
We have to show that det(M̂) , 0.

By definition,
yi = S (αzi) =

∑
j

(
∑

g∈G
z j
i j

g(α)z j +
∑

g∈G
1−z j
i j

g(α)(1 − z j)) =

∑
j

(
∑

g∈G
z j
i j

g(α)z j +
∑

g∈G
1−z j
i j

g(α) −
∑

g∈G
1−z j
i j

g(α)z j) =

∑
j

∑
g∈G

1−z j
i j

g(α) +
∑

j

(
∑

g∈G
z j
i j

g(α)z j −
∑

g∈G
1−z j
i j

g(α)z j) =

∑
j

∑
g∈G

1−z j
i j

g(α) +
∑

j

(
∑

g∈G
z j
i j

g(α) −
∑

g∈G
1−z j
i j

g(α))z j

For i, j ∈ {1, . . . , n}, mi j =
∑

g∈G
z j
i j

g(α) −
∑

g∈G
1−z j
i j

g(α) and ci =
∑

j
∑

g∈G
1−z j
i j

g(α). The matrix M̂

is

M̂ =


1 0 · · · 0
c1 m11 · · · m1n
...

... · · ·
...

cn mn1 · · · mnn

 .
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Define

M =


m11 · · · m1n
... · · ·

...

mn1 · · · mnn

 .
Since det(M̂) = det(M), it is enough to show that the determinant of M is non-zero. In order to
do so, we will apply Lemma 7 to show that M has K-linearly independent rows.

We need to check that the hypotheses of the lemma are satisfied. First, let ρ : G −→ Sn,
ρ(g) = ρg be the group homomorphism that corresponds to the action of G on the {z1, . . . , zn}.
Note that this is defined by the following rule: ρg(i) = j if and only if g(zi) = z j or g(zi) = 1−z j

for all 1 ≤ i, j ≤ n. We will show that the columns of M are permuted (up to a factor ±1) by
the action of G.

Let h ∈ G. Note that if g ∈ Gi j, then hg ∈ Giρh( j). Hence hGi j ⊆ Giρh( j). On the other
hand for any g ∈ Giρh( j), h−1g(zi) = z j or h−1g(zi) = 1 − z j which implies h−1Giρh( j) ⊆ Gi j and
hGi j = Giρh( j).

For h ∈ G and i, j ∈ {1, . . . , n} we have

h(mi j) = h(
∑

g∈G
z j
i j

g(α) −
∑

g∈G
1−z j
i j

g(α)) =
∑

g∈G
z j
i j

hg(α) −
∑

g∈G
1−z j
i j

hg(α)

On the other hand if h(z j) = zρh( j), then

miρh( j) =
∑

g∈G
zρh( j)
iρh( j)

g(α) −
∑

g∈G
1−zρh( j)
iρh( j)

g(α) =
∑

g∈G
z j
i j

hg(α) −
∑

g∈G
1−z j
i j

hg(α).

To get the last equality we used the fact that G
zρh( j)

iρh( j) = hGz j

i j and G
1−zρh( j)

iρh( j) = hG1−z j

i j .

If h(z j) = 1 − zρh( j), then

miρh( j) =
∑

g∈G
zρh( j)
iρh( j)

g(α) −
∑

g∈G
1−zρh( j)
iρh( j)

g(α) =
∑

g∈G
1−z j
i j

hg(α) −
∑

g∈G
z j
i j

hg(α).

Similarly for the last equality we used the fact that G
zρh( j)

iρh( j) = hG1−z j

i j and G
1−zρh( j)

iρh( j) = hGz j

i j .

In other words if h ∈ G
zρh( j)

iρh( j) then h(mi j) = miρh( j) and if h ∈ G
1−zρh( j)

iρh( j) then h(mi j) = −miρh( j),
so h(M j) = ±Mρh( j).

Secondly, the first column M1 has entries

{
∑

g∈Gz1
i1

g(α) −
∑

g∈G1−z1
i1

g(α), i = 1, . . . , n}
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Since α is a normal element of the Galois extension K/F with Galois group G, the set {g(α) :
g ∈ G} is F linearly independent. Since G = tn

i=1Gi1 = tn
i=1(Gz1

i1 tG1−z1
i1 ) is a disjoint union, the

set
{
∑

g∈Gz1
i1

g(α) −
∑

g∈G1−z1
i1

g(α), i = 1, . . . , n}

is F-linearly independent.

So Lemma 7 applies and we may conclude that 1, y1, . . . , yn is a K-basis of V . So similarly
to the proof of the No Name Lemma, y1, . . . , yn is an F-transcendence basis of K(LG)G.

�

Corollary 13. With the assumptions of previous theorem, assume now that LG is an arbitrary
sign permutation G-lattice. Then K(x1, . . . , xn)G is rational over F with transcendence basis
y1, . . . , yn where yi = S (α(1 + xi)−1) where S =

∑
g∈G g ∈ Z[G].

Proof. Let P = LG and e1, . . . , en be a sign permutation basis of P corresponding to x1, . . . , xn.
Let e jk : k = 1, . . . , r and correspondingly x jk : k = 1, . . . , r be a complete set of G orbit repre-
sentatives (up to a factor of ±1) on the Z-basis for P and the indeterminates x1, . . . , xn respec-
tively. Then Pk = ⊕ei∈Ge jk

Zei is a transitive sign permutation G-lattice for each k = 1, . . . , r and
K(Pk) = K(xi : xi ∈ Gx jk).P = ⊕r

k=1Pk is a direct sum of transitive sign permutation G-lattices.
Then K(P)G is a composite of fields K(P)G =

∏r
k=1 K(Pk) and so K(P)G has transcendence

basis {yi : xi ∈ Gx jk} over F. Hence K(P)G = F(yi : xi ∈ Gx jk , k = 1, . . . , r) = F(y1, . . . , yn) as
required.

�

Example 14. Assume G ≤ GL(3,Z) generated by

σ =


0 −1 0
1 0 0
0 0 −1

 ,
so that G � C4. Suppose K = Q(ρ), where ρ is a primitive 5-th root of unity, K/Q is Galois,
with Gal(K/Q) � C4. Let x1, x2, x3 be algebraically independent over K. We want to find
K(x1, x2, x3)G. The action of G on the xis and the 5-th roots of unity are given by

id σ σ2 σ3

x1 x1 x−1
2 x−1

1 x2

x2 x2 x1 x−1
2 x−1

1

x3 x3 x−1
3 x3 x−1

3

ρ ρ ρ2 ρ4 ρ3

ρ2 ρ2 ρ4 ρ3 ρ

ρ3 ρ3 ρ ρ2 ρ4

ρ4 ρ4 ρ3 ρ ρ2
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By defining
zi = (1 + xi)−1 for 1 ≤ i ≤ 3,

the action of G on the zis is given by

id σ σ2 σ3

z1 z1 1 − z2 1 − z1 z2

z2 z2 z1 1 − z2 1 − z1

z3 z3 1 − z3 z3 1 − z3

To form yi we need S = 1 + σ + σ2 + σ3. Then

y1 = S (ρz1) = ρz1 + ρ2(1 − z2) + ρ4(1 − z1) + ρ3z2 = ρ2 + ρ4 + (ρ − ρ4)z1 + (ρ3 − ρ2)z2

y2 = S (ρz2) = ρz2 + ρ2z1 + ρ4(1 − z2) + ρ3(1 − z1) = (ρ3 + ρ4) + (ρ2 − ρ3)z1 + (ρ − ρ4)z2

y3 = S (ρz3) = ρz3 + ρ2(1 − z3) + ρ4z3 + ρ3(1 − z3) = (ρ2 + ρ3) + (ρ − ρ2 − ρ3 + ρ4)z3.

Just to compare with the proof of the Theorem 12, the matrix M̂ is given

M̂ =


1 0 0 0

ρ2 + ρ4 ρ − ρ4 ρ3 − ρ2 0
ρ3 + ρ4 ρ2 − ρ3 ρ − ρ4 0
ρ2 + ρ3 0 0 ρ − ρ2 − ρ3 + ρ4


and

M =


ρ − ρ4 ρ3 − ρ2 0
ρ2 − ρ3 ρ − ρ4 0

0 0 ρ − ρ2 − ρ3 + ρ4

 .
One can verify the action of G on the columns of M is

id σ σ2 σ3

M1 M1 −M2 −M1 M2

M2 M2 M1 −M2 −M1

M3 M3 −M3 M3 −M3
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Appendix A

A Proof of Theorem 6

This chapter is devoted to a concrete proof of Theorem 3.10. We use simillar methods to the
ones we already applied in chapter 3. After reducing the lattices we compare the sublattices
with the rational ones introduced in [21] and [23].

A.1 (5,6,3 )

The group is generated by 

−1 0 0 0 0
0 0 0 0 −1
0 0 0 −1 0
0 0 −1 0 0
0 −1 0 0 0


.

The corresponding lattice is sign permutation. This implies rationality of the corresponding
torus.

A.2 (5,18,28)

The group is generated by

1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0


and



−1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0


The corresponding lattice is a sign permutation lattice. Thus it is hereditarily rational.
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A.3 (5,19,14)

The group is generated by

0 0 1 0 1
0 0 0 1 −1
1 0 0 0 −1
0 1 0 0 1
0 0 0 0 1


and



1 0 0 0 −1
0 0 0 1 0
0 0 1 0 1
0 1 0 0 0
0 0 0 0 −1


The dual group is generated by

0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
1 −1 −1 1 1


and



1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
−1 0 1 0 −1


Algorithm (2) produces the change of basis matrix

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 1 0 0


With the above transformation we can see the new representative is generated by

0 0 1 −1 0
0 −1 0 −2 0
1 0 0 1 0
0 0 0 1 0
0 1 0 1 1





0 0 1 0 0
0 1 0 2 0
1 0 0 0 0
0 0 0 −1 0
0 0 0 −1 1


Now by considering M to be the corresponding lattice to

0 0 1 −1
0 −1 0 −2
1 0 0 1
0 0 0 1

 and


0 0 1 0
0 1 0 2
1 0 0 0
0 0 0 −1


we can produce

0 −→ M −→ L −→ Z −→ 0.
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The corresponding group to M has GAP ID [4,5,1,10] and also can be generated by
1 0 −1 0
0 1 −1 0
0 0 −1 0
0 0 0 −1

 and


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 −1


So M decomposes into a direct sum of a rank one sign permutation lattice (which is hereditarily
rational) and a rank 3 lattice given by a group, H, generated by

1 0 −1
0 1 −1
0 0 −1

 and


0 1 0
1 0 0
0 0 1


Looking at the generators of H tells us we can form

0 −→ Z− −→ LH −→ P −→ 0

where P is given by the group generated by[
1 0
0 1

]
and

[
0 1
1 0

]
.

Since P is a permutation lattice, by Corollary 59 we can conclude that [4,5,1,10] is hereditarily
rational. This implies our desired result which is hereditarily rationality of (5,19,14).

A.4 (5,22,14)

The group is generated by

1 0 0 0 −1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 −1
0 0 0 0 −1


,



1 0 0 0 0
0 0 0 1 −1
0 0 1 0 0
0 1 0 0 1
0 0 0 0 1


and



0 0 1 0 1
0 1 0 0 0
1 0 0 0 −1
0 0 0 1 0
0 0 0 0 1


Now we define P to be the lattice corresponding to, H, generated by

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 and


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 ,
We can see the corresponding lattice to (5,22,14), L, fits into the following exact sequence

0 −→ Z− −→ L −→ P −→ 0.

and since P is permutation, by Corollary 59 we can conclude that L is hereditarily rational.
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A.5 (5,57,8)

The group is generated by 

−1 0 0 0 0
0 0 0 1 0
0 −1 0 0 0
0 0 0 0 1
0 0 −1 0 0


and the corresponding lattice is a sign permutation lattice which is hereditarily rational.

A.6 (5,81,54)

The group is generated by

1 0 1 0 1
0 1 0 0 0
0 0 0 0 −1
0 0 1 1 1
0 0 −1 0 0


,



0 0 1 0 0
−1 0 0 1 0
1 0 0 0 0
0 1 1 0 0
−1 0 −1 0 −1


and



0 0 −1 −1 −1
0 1 0 0 0
0 0 1 0 0
−1 0 −1 0 −1
0 0 0 0 1


The dual group is generated by

1 0 0 0 0
0 1 0 0 0
1 0 0 1 −1
0 0 0 1 0
1 0 −1 1 0


,



0 −1 1 0 −1
0 0 0 1 0
1 0 0 1 −1
0 1 0 0 0
0 0 0 0 −1


and



0 0 0 −1 0
0 1 0 0 0
−1 0 1 −1 0
−1 0 0 0 0
−1 0 0 −1 1


Algorithm (2) produces the change of basis matrix

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 −2 1 −1 −1


With the above transformation we can see the new representative is generated by

1 2 0 2 0
0 −1 0 −2 0
0 2 1 2 0
0 0 0 1 0
0 1 0 1 1


,



0 2 1 0 0
0 −1 0 0 0
1 2 0 0 0
0 0 0 −1 0
0 1 0 0 1


and



1 −2 −2 −2 0
0 2 1 1 0
0 −2 −1 −2 0
0 −1 −1 0 0
0 −1 −1 −1 1
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Now by considering M to be the corresponding lattice to
1 2 0 2
0 −1 0 −2
0 2 1 2
0 0 0 1

 ,


0 2 1 0
0 −1 0 0
1 2 0 0
0 0 0 −1

 and


1 −2 −2 −2
0 2 1 1
0 −2 −1 −2
0 −1 −1 0


we can produce

0 −→ M −→ L −→ Z −→ 0.

The generators of [4,13,7,5] (another representative of the corresponding conjugacy class to
M) are 

0 −1 1 0
0 −1 0 0
1 −1 0 0
0 0 0 −1

 ,


0 1 −1 0
1 0 −1 0
0 0 −1 0
0 0 0 1

 and


0 0 −1 0
1 0 −1 0
0 1 −1 0
0 0 0 1


The generators of rank 3 lattice are

0 −1 1
0 −1 0
1 −1 0

 ,


0 1 −1
1 0 −1
0 0 −1

 and


0 0 −1
1 0 −1
0 1 −1


the CrystCatZClass of the former group is [3,4,6,4] which is rational by [21] and its subgroups
are [ 3, 1, 1, 1 ], [ 3, 2, 1, 2 ], [ 3, 2, 2, 2 ], [ 3, 3, 1, 4 ], [ 3, 3, 2, 4 ], [ 3, 4, 2, 2 ] and [ 3, 4, 6, 4
] where all of them are rational. This implies that (5, 81, 54) is hereditarily rational.

A.7 (5,98,28)

The group is generated by

0 −1 0 0 0
−1 0 0 0 0
−1 0 1 0 −1
0 −1 0 1 1
−1 1 0 0 −1


and



1 0 0 0 0
0 1 0 0 0
0 1 −1 0 0
0 0 1 0 −1
0 1 −1 −1 0


The dual group is generated by

0 −1 −1 0 −1
−1 0 0 −1 1
0 0 1 0 0
0 0 0 1 0
0 0 −1 1 −1


and



1 0 0 0 0
0 1 1 0 1
0 0 −1 1 −1
0 0 0 0 −1
0 0 0 −1 0
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Algorithm (1) produces the change of basis matrix



1 0 −1 0 0
0 1 −1 0 0
0 0 0 1 0
0 0 0 0 1
2 −2 −1 1 −2


With the above transformation we can see the new representative is generated by



−6 −5 0 −2 0
5 4 0 2 0
−3 −3 1 0 0
5 5 0 1 0
3 2 0 1 1


and



5 6 0 0 0
−4 −5 0 0 0
1 2 0 −1 0
−3 −4 −1 0 0
−2 −3 0 0 1


Now by considering M to be the corresponding lattice to


−6 −5 0 −2
5 4 0 2
−3 −3 1 0
5 5 0 1

 and


5 6 0 0
−4 −5 0 0
1 2 0 −1
−3 −4 −1 0


we can produce

0 −→ M −→ L −→ Z −→ 0.

The generators of [4,13,3,3] are


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 −1




0 0 −1 0
1 0 −1 0
0 1 −1 0
0 0 0 −1


The generators of rank 3 lattice are


0 0 1
0 1 0
1 0 0

 and


0 0 −1
1 0 −1
0 1 −1


the GAP ID of the former group is [3,4,6,4] which is hereditarily rational by the argument
given in the previous case. So (5,98,28) is hereditarily rational.
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A.8 (5,99,57)

The group is generated by

1 0 1 0 1
0 1 0 0 0
0 −1 −1 0 0
0 0 1 1 1
0 1 0 0 −1


and



0 1 1 0 0
1 0 0 −1 0
0 0 0 1 0
0 0 1 0 0
0 0 −1 −1 −1


The dual group is generated by

1 0 0 0 0
0 1 −1 0 1
1 0 −1 1 0
0 0 0 1 0
1 0 0 1 −1


and



0 1 0 0 0
1 0 0 0 0
1 0 0 1 −1
0 −1 1 0 −1
0 0 0 0 −1


Algorithm (1) produces the change of basis matrix

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 2 −1 −1 1


With the above transformation we can see the new representative is generated by

1 −2 0 −2 0
−1 0 0 1 0
0 2 1 2 0
1 −1 0 −2 0
0 1 0 1 1


and



−2 −2 −1 0 0
1 1 1 0 0
1 2 0 0 0
−1 −2 −1 −1 0
1 1 0 0 1


Now by considering M to be the corresponding lattice to

1 −2 0 −2
−1 0 0 1
0 2 1 2
1 −1 0 −2

 and


−2 −2 −1 0
1 1 1 0
1 2 0 0
−1 −2 −1 −1


we can produce

0 −→ M −→ L −→ Z −→ 0.
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The generators of [4,12,4,7] are
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 −1




0 0 −1 0
1 0 −1 0
0 1 −1 0
0 0 0 1


The generators of rank 3 lattice are

0 0 1
0 1 0
1 0 0




0 0 −1
1 0 −1
0 1 −1


the GAP ID of the former group is [3,4,6,4] which is hereditarily rational by argument given
in the previous case. So (5,99,57) is hereditarily rational.

A.9 (5,164,2)

The group is generated by 

−1 1 0 0 0
−1 0 0 0 0
0 0 0 −1 0
0 0 0 0 1
0 0 −1 0 0


The corresponding lattice decomposes into a rank 2 lattice which is hereditarily rational and a
rank 3 sign permutation lattice which is also hereditarily rational. Hence (5,164,2) is heredi-
tarily rational.

A.10 (5,174,2)

The group is generated by

0 0 −1 0 −1
0 0 0 1 1
−1 0 0 0 −1
0 1 0 0 −1
0 0 0 0 1


and



0 0 −1 0 −1
−1 0 1 0 0
0 0 −1 1 0
0 0 −1 0 0
0 1 1 0 0


The dual group is generated by

0 0 −1 0 0
0 0 0 1 0
−1 0 0 0 0
0 1 0 0 0
−1 1 −1 −1 1


and



0 −1 0 0 0
0 0 0 0 1
−1 1 −1 −1 1
0 0 1 0 0
−1 0 0 0 0
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Algorithm (1) produces the change of basis matrix

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 −1 0 0 −1


With the above transformation we can see the new representative is generated by

0 −1 1 0 0
−1 0 0 −1 0
0 0 0 −1 0
0 0 −1 0 0
0 0 −1 −1 1


and



−1 0 0 −1 0
0 −1 1 0 0
0 −1 0 0 0
1 0 0 0 0
1 −1 0 0 1


Now by considering M to be the corresponding lattice to

0 −1 1 0
−1 0 0 −1
0 0 0 −1
0 0 −1 0

 and


−1 0 0 −1
0 −1 1 0
0 −1 0 0
1 0 0 0


we can produce

0 −→ M −→ L −→ Z −→ 0.

The generators of [4,17,13] are
−1 −1 0 0
0 1 0 0
0 0 1 1
0 0 0 −1

 and


−1 −1 0 0
1 0 0 0
0 0 −1 −1
0 0 1 0


and the lattice decomposes into rank 2 lattices which we know they are hereditarily rational.
This implies that (5,174,2) is hereditarily rational.

A.11 (5,174,5)

The group is generated by

−1 0 0 0 0
1 1 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0


and



−1 −1 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 −1 0 0
0 0 0 −1 0


and the lattice decomposes into a rank 2 lattice and a rank 3 sign permutation lattice, both of
which are hereditarily rational. This implies that (5,174,5) is hereditarily rational.
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A.12 (5,389,4)

The group is generated by

1 0 0 −1 0
0 1 0 −1 0
0 0 0 −1 −1
0 0 0 −1 0
0 0 −1 1 0


and



1 0 0 −1 0
1 0 0 0 1
1 −1 0 0 0
1 0 −1 0 0
−1 0 0 0 0


The dual group is generated by

1 0 0 0 0
0 1 0 0 0
0 0 0 0 −1
−1 −1 −1 −1 1
0 0 −1 0 0


and



1 1 1 1 −1
0 0 −1 0 0
0 0 0 −1 0
−1 0 0 0 0
0 1 0 0 0


Algorithm (1) produces the change of basis matrix

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 1 0 −1


With the above transformation we can see the new representative is generated by

1 0 −1 0 0
0 0 0 −1 0
0 0 −1 0 0
0 −1 0 0 0
0 0 −1 0 1


and



0 0 0 1 0
−1 0 1 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 −1 0 1


Now by considering M to be the corresponding lattice to

1 0 −1 0
0 0 0 −1
0 0 −1 0
0 −1 0 0

 and


0 0 0 1
−1 0 1 0
0 −1 0 0
0 0 −1 0


we can produce

0 −→ M −→ L −→ Z −→ 0.

the above group is [4,21,3,2] which has the following subgroups [ 4, 1, 1, 1 ], [ 4, 3, 1, 3 ], [ 4,
5, 1, 1 ], [ 4, 11, 1, 1 ], [ 4, 17, 1, 2 ], [ 4, 17, 1, 3 ], [ 4, 21, 1, 1 ] and [ 4, 21, 3, 2 ] where all of
them are rational.
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A.13 (5,901,3)

The group is generated by

0 1 0 0 0
1 0 0 0 0
0 0 0 0 −1
0 0 0 1 0
0 0 −1 0 0


and



0 0 0 0 −1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 −1 0


The dual group is generated by

0 1 0 0 0
1 0 0 0 0
0 0 0 0 −1
0 0 0 1 0
0 0 −1 0 0


and



0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −1
−1 0 0 0 0


Algorithm (1) produces the change of basis matrix

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 1 1 1 −1


With the above transformation we can see the new representative is generated by

−1 0 0 0 0
−1 0 0 −1 0
−1 0 1 0 0
1 −1 0 0 0
1 0 0 0 1


and



−1 0 0 −1 0
−1 0 0 0 0
−1 1 0 0 0
1 0 −1 0 0
1 0 0 0 1


Now by considering M to be the corresponding lattice to

−1 0 0 0
−1 0 0 −1
−1 0 1 0
1 −1 0 0

 and


−1 0 0 −1
−1 0 0 0
−1 1 0 0
1 0 −1 0


we can produce

0 −→ M −→ L −→ Z −→ 0.

The lattice M corresponds to [4,27,3,1] with subgroups [ 4, 1, 1, 1 ], [ 4, 3, 1, 3 ], [ 4, 27, 1, 1
], [ 4, 27, 3, 1 ] where all of them are rational. So (5,901,3) is hereditarily rational.
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A.14 (5,918,4)

The group is generated by

0 −1 0 −1 0

−1 1 0 1 1
−1 0 0 0 0
0 −1 1 0 0
1 0 0 −1 0


and



0 1 0 1 1
0 −1 −1 −1 −1
0 0 −1 0 −1
−1 0 1 1 1
0 1 0 0 1


The dual group is generated by

0 −1 −1 0 1
−1 1 0 −1 0
0 0 0 1 0
−1 1 0 0 −1
0 1 0 0 0


and



0 0 0 −1 0
1 −1 0 0 1
0 −1 −1 1 0
1 −1 0 1 0
1 −1 −1 1 1


Algorithm (1) produces the change of basis matrix

0 1 1 −2 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


With the above transformation we can see the new representative is generated by

1 0 1 1 0
−1 0 −1 0 0
−2 1 −1 0 0
2 0 1 0 0
−1 0 −1 0 1


and



−1 −1 −1 −1 0
1 −1 1 0 0
1 1 2 2 0
−1 0 −2 −1 0
1 0 1 1 1


Now by considering M to be the corresponding lattice to

1 0 1 1
−1 0 −1 0
−2 1 −1 0
2 0 1 0

 and


−1 −1 −1 −1
1 −1 1 0
1 1 2 2
−1 0 −2 −1


we can produce

0 −→ M −→ L −→ Z −→ 0.

The lattice M corresponds to [4,31,1,2] which is a subgroup of [4, 31, 7, 1]. In [23] it is shown
that [4, 31, 7, 1] is hereditarily rational and so is (5,918,4).
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Related Lists to Rationality Results

Carat ID Carat ID Carat ID Carat ID Carat ID Carat ID
( 5, 18, 27 ) ( 5, 19, 14 ) ( 5, 22, 14 ) ( 5, 23, 27 ) ( 5, 28, 8 ) ( 5, 28, 16 )
( 5, 28, 27 ) ( 5, 30, 8 ) ( 5, 30, 16 ) ( 5, 30, 29 ) ( 5, 30, 33 ) ( 5, 31, 41 )
( 5, 31, 49 ) ( 5, 32, 13 ) ( 5, 32, 31 ) ( 5, 32, 40 ) ( 5, 32, 46 ) ( 5, 32, 49 )
( 5, 32, 52 ) ( 5, 32, 55 ) ( 5, 32, 56 ) ( 5, 32, 59 ) ( 5, 37, 5 ) ( 5, 37, 7 )
( 5, 38, 10 ) ( 5, 39, 7 ) ( 5, 74, 9 ) ( 5, 74, 18 ) ( 5, 75, 9 ) ( 5, 75, 18 )
( 5, 75, 28 ) ( 5, 75, 37 ) ( 5, 75, 41 ) ( 5, 78, 37 ) ( 5, 78, 41 ) ( 5, 81, 12 )
( 5, 81, 25 ) ( 5, 81, 38 ) ( 5, 81, 42 ) ( 5, 81, 48 ) ( 5, 81, 49 ) ( 5, 81, 50 )
( 5, 81, 51 ) ( 5, 81, 54 ) ( 5, 82, 12 ) ( 5, 82, 25 ) ( 5, 84, 9 ) ( 5, 84, 18 )
( 5, 92, 9 ) ( 5, 92, 16 ) ( 5, 98, 12 ) ( 5, 98, 16 ) ( 5, 98, 19 ) ( 5, 98, 22 )
( 5, 98, 24 ) ( 5, 98, 25 ) ( 5, 98, 28 ) ( 5, 99, 12 ) ( 5, 99, 22 ) ( 5, 99, 29 )
( 5, 99, 41 ) ( 5, 99, 45 ) ( 5, 99, 51 ) ( 5, 99, 52 ) ( 5, 99, 53 ) ( 5, 99, 54 )
( 5, 99, 57 ) ( 5, 100, 22 ) ( 5, 100, 29 ) ( 5, 101, 9 ) ( 5, 101, 16 ) ( 5, 101, 22 )
( 5, 102, 16 ) ( 5, 102, 22 ) ( 5, 103, 12 ) ( 5, 103, 16 ) ( 5, 103, 19 ) ( 5, 103, 22 )
( 5, 103, 24 ) ( 5, 103, 25 ) ( 5, 103, 28 ) ( 5, 106, 5 ) ( 5, 108, 5 ) ( 5, 108, 11 )
( 5, 108, 15 ) ( 5, 110, 11 ) ( 5, 110, 15 ) ( 5, 114, 4 ) ( 5, 117, 4 ) ( 5, 117, 8 )
( 5, 117, 13 ) ( 5, 117, 18 ) ( 5, 118, 4 ) ( 5, 118, 8 ) ( 5, 120, 18 ) ( 5, 120, 22 )
( 5, 121, 4 ) ( 5, 121, 8 ) ( 5, 121, 12 ) ( 5, 122, 11 ) ( 5, 126, 5 ) ( 5, 131, 15 )
( 5, 131, 19 ) ( 5, 133, 4 ) ( 5, 133, 8 ) ( 5, 133, 13 ) ( 5, 133, 18 ) ( 5, 137, 4 )
( 5, 138, 5 ) ( 5, 138, 11 ) ( 5, 156, 4 ) ( 5, 160, 8 ) ( 5, 161, 4 ) ( 5, 161, 8 )
( 5, 162, 4 ) ( 5, 162, 8 ) ( 5, 222, 9 ) ( 5, 222, 10 ) ( 5, 223, 11 ) ( 5, 223, 12 )
( 5, 224, 10 ) ( 5, 225, 11 ) ( 5, 225, 12 ) ( 5, 226, 11 ) ( 5, 226, 12 ) ( 5, 226, 23 )
( 5, 226, 24 ) ( 5, 227, 12 ) ( 5, 230, 14 ) ( 5, 230, 15 ) ( 5, 231, 11 ) ( 5, 231, 12 )
( 5, 232, 15 ) ( 5, 242, 10 ) ( 5, 243, 9 ) ( 5, 243, 10 ) ( 5, 245, 11 ) ( 5, 245, 12 )
( 5, 267, 4 ) ( 5, 268, 4 ) ( 5, 271, 4 ) ( 5, 272, 4 ) ( 5, 275, 8 ) ( 5, 277, 4 )
( 5, 292, 4 ) ( 5, 293, 4 ) ( 5, 302, 8 ) ( 5, 304, 8 ) ( 5, 306, 8 ) ( 5, 307, 6 )
( 5, 308, 8 ) ( 5, 308, 12 ) ( 5, 337, 12 ) ( 5, 341, 6 ) ( 5, 389, 4 ) ( 5, 390, 4 )
( 5, 391, 4 ) ( 5, 391, 8 ) ( 5, 392, 4 ) ( 5, 404, 4 ) ( 5, 409, 4 ) ( 5, 410, 6 )
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( 5, 413, 5 ) ( 5, 414, 7 ) ( 5, 416, 4 ) ( 5, 424, 6 ) ( 5, 426, 5 ) ( 5, 434, 4 )
( 5, 435, 5 ) ( 5, 436, 4 ) ( 5, 461, 4 ) ( 5, 462, 4 ) ( 5, 465, 6 ) ( 5, 501, 4 )
( 5, 519, 9 ) ( 5, 519, 14 ) ( 5, 520, 5 ) ( 5, 520, 8 ) ( 5, 520, 14 ) ( 5, 521, 5 )
( 5, 521, 8 ) ( 5, 521, 14 ) ( 5, 521, 15 ) ( 5, 522, 9 ) ( 5, 522, 14 ) ( 5, 522, 15 )
( 5, 524, 7 ) ( 5, 529, 7 ) ( 5, 529, 17 ) ( 5, 531, 7 ) ( 5, 531, 13 ) ( 5, 531, 16 )
( 5, 533, 7 ) ( 5, 533, 8 ) ( 5, 537, 7 ) ( 5, 538, 7 ) ( 5, 541, 7 ) ( 5, 580, 4 )
( 5, 606, 4 ) ( 5, 607, 4 ) ( 5, 607, 9 ) ( 5, 608, 4 ) ( 5, 608, 9 ) ( 5, 623, 4 )
( 5, 623, 9 ) ( 5, 640, 2 ) ( 5, 641, 2 ) ( 5, 644, 2 ) ( 5, 645, 2 ) ( 5, 655, 4 )
( 5, 656, 4 ) ( 5, 665, 2 ) ( 5, 666, 2 ) ( 5, 668, 4 ) ( 5, 670, 5 ) ( 5, 671, 5 )
( 5, 672, 4 ) ( 5, 674, 4 ) ( 5, 684, 5 ) ( 5, 687, 5 ) ( 5, 689, 4 ) ( 5, 696, 5 )
( 5, 700, 4 ) ( 5, 703, 4 ) ( 5, 704, 7 ) ( 5, 704, 11 ) ( 5, 705, 4 ) ( 5, 705, 9 )
( 5, 705, 11 ) ( 5, 706, 4 ) ( 5, 706, 14 ) ( 5, 707, 4 ) ( 5, 709, 7 ) ( 5, 710, 4 )
( 5, 711, 4 ) ( 5, 713, 4 ) ( 5, 715, 4 ) ( 5, 726, 4 ) ( 5, 742, 4 ) ( 5, 750, 4 )
( 5, 750, 8 ) ( 5, 753, 4 ) ( 5, 754, 4 ) ( 5, 754, 8 ) ( 5, 756, 4 ) ( 5, 758, 4 )
( 5, 760, 4 ) ( 5, 760, 8 ) ( 5, 762, 4 ) ( 5, 763, 7 ) ( 5, 763, 11 ) ( 5, 773, 2 )
( 5, 774, 2 ) ( 5, 785, 5 ) ( 5, 801, 3 ) ( 5, 822, 2 ) ( 5, 823, 2 ) ( 5, 846, 2 )
( 5, 852, 3 ) ( 5, 853, 3 ) ( 5, 854, 4 ) ( 5, 855, 4 ) ( 5, 856, 2 ) ( 5, 869, 4 )
( 5, 870, 3 ) ( 5, 889, 3 ) ( 5, 890, 3 ) ( 5, 891, 2 ) ( 5, 892, 2 ) ( 5, 900, 2 )
( 5, 901, 3 ) ( 5, 902, 2 ) ( 5, 904, 3 ) ( 5, 909, 2 ) ( 5, 910, 3 ) ( 5, 910, 4 )
( 5, 911, 3 ) ( 5, 911, 4 ) ( 5, 912, 3 ) ( 5, 912, 4 ) ( 5, 917, 3 ) ( 5, 917, 4 )
( 5, 918, 3 ) ( 5, 918, 4 ) ( 5, 919, 3 ) ( 5, 919, 4 ) ( 5, 926, 5 ) ( 5, 926, 6 )
( 5, 931, 3 ) ( 5, 931, 4 ) ( 5, 933, 1 ) ( 5, 934, 1 ) ( 5, 935, 1 ) ( 5, 936, 1 )
( 5, 937, 1 ) ( 5, 938, 1 ) ( 5, 939, 1 ) ( 5, 940, 1 ) ( 5, 941, 1 ) ( 5, 942, 1 )
( 5, 943, 1 ) ( 5, 944, 1 ) ( 5, 945, 1 ) ( 5, 946, 2 ) ( 5, 946, 4 ) ( 5, 947, 2 )
( 5, 947, 4 ) ( 5, 951, 4 ) ( 5, 952, 2 ) ( 5, 952, 4 ) ( 5, 953, 4 )

Table B.1: The 311 indecomposable stably rational 5 dimen-
sional algebraic tori with an indecomposable character lat-
tice.
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Carat ID Carat ID Carat ID Carat ID Carat ID Carat ID
( 5, 31, 41 ) ( 5, 31, 49 ) ( 5, 32, 46 ) ( 5, 32, 49 ) ( 5, 32, 52 ) ( 5, 38, 10 )
( 5, 39, 7 ) ( 5, 78, 37 ) ( 5, 78, 41 ) ( 5, 81, 42 ) ( 5, 81, 48 ) ( 5, 81, 50 )
( 5, 98, 16 ) ( 5, 98, 22 ) ( 5, 98, 24 ) ( 5, 99, 52 ) ( 5, 99, 53 ) ( 5, 99, 54 )
( 5, 100, 22 ) ( 5, 100, 29 ) ( 5, 102, 16 ) ( 5, 102, 22 ) ( 5, 103, 16 ) ( 5, 103, 22 )
( 5, 103, 24 ) ( 5, 110, 11 ) ( 5, 110, 15 ) ( 5, 118, 4 ) ( 5, 118, 8 ) ( 5, 120, 18 )
( 5, 120, 22 ) ( 5, 122, 11 ) ( 5, 131, 15 ) ( 5, 131, 19 ) ( 5, 160, 8 ) ( 5, 162, 4 )
( 5, 162, 8 ) ( 5, 224, 10 ) ( 5, 227, 12 ) ( 5, 232, 15 ) ( 5, 242, 10 ) ( 5, 267, 4 )
( 5, 271, 4 ) ( 5, 275, 8 ) ( 5, 292, 4 ) ( 5, 302, 8 ) ( 5, 304, 8 ) ( 5, 306, 8 )
( 5, 337, 12 ) ( 5, 390, 4 ) ( 5, 391, 4 ) ( 5, 392, 4 ) ( 5, 404, 4 ) ( 5, 410, 6 )
( 5, 414, 7 ) ( 5, 416, 4 ) ( 5, 424, 6 ) ( 5, 426, 5 ) ( 5, 434, 4 ) ( 5, 435, 5 )
( 5, 465, 6 ) ( 5, 521, 15 ) ( 5, 522, 15 ) ( 5, 533, 8 ) ( 5, 607, 4 ) ( 5, 608, 4 )
( 5, 623, 4 ) ( 5, 641, 2 ) ( 5, 645, 2 ) ( 5, 655, 4 ) ( 5, 666, 2 ) ( 5, 670, 5 )
( 5, 671, 5 ) ( 5, 674, 4 ) ( 5, 703, 4 ) ( 5, 704, 7 ) ( 5, 704, 11 ) ( 5, 706, 4 )
( 5, 706, 14 ) ( 5, 709, 7 ) ( 5, 710, 4 ) ( 5, 715, 4 ) ( 5, 753, 4 ) ( 5, 754, 4 )
( 5, 754, 8 ) ( 5, 758, 4 ) ( 5, 763, 7 ) ( 5, 763, 11 ) ( 5, 774, 2 ) ( 5, 801, 3 )
( 5, 822, 2 ) ( 5, 846, 2 ) ( 5, 852, 3 ) ( 5, 854, 4 ) ( 5, 856, 2 ) ( 5, 869, 4 )
( 5, 870, 3 ) ( 5, 889, 3 ) ( 5, 890, 3 ) ( 5, 891, 2 ) ( 5, 910, 4 ) ( 5, 912, 4 )
( 5, 917, 4 ) ( 5, 919, 4 ) ( 5, 926, 6 ) ( 5, 946, 2 ) ( 5, 946, 4 ) ( 5, 947, 2 )
( 5, 952, 2 )

Table B.2: The cases among the 311 groups whose rationality is unknown (109 cases).
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Carat ID Carat ID Carat ID Carat ID Carat ID Carat ID
( 5, 31, 41 ) ( 5, 31, 49 ) ( 5, 32, 46 ) ( 5, 32, 49 ) ( 5, 32, 52 ) ( 5, 38, 10 )
( 5, 39, 7 ) ( 5, 78, 37 ) ( 5, 78, 41 ) ( 5, 81, 42 ) ( 5, 81, 48 ) ( 5, 81, 50 )
( 5, 98, 16 ) ( 5, 98, 22 ) 5, 98, 24 ) ( 5, 99, 52 ) ( 5, 99, 53 ) ( 5, 99, 54 )
( 5, 100, 22 ) ( 5, 100, 29 ) ( 5, 102, 16 ) ( 5, 102, 22 ) ( 5, 103, 16 ) ( 5, 103, 22 )
( 5, 103, 24 ) ( 5, 110, 11 ) ( 5, 110, 15 ) ( 5, 118, 4 ) ( 5, 118, 8 ) ( 5, 120, 18 )
( 5, 120, 22 ) ( 5, 122, 11 ) ( 5, 131, 15 ) ( 5, 131, 19 ) ( 5, 160, 8 ) ( 5, 162, 4 )
( 5, 162, 8 ) ( 5, 224, 10 ) ( 5, 227, 12 ) ( 5, 232, 15 ) ( 5, 242, 10 ) ( 5, 267, 4 )
( 5, 271, 4 ) ( 5, 275, 8 ) ( 5, 292, 4 ) ( 5, 302, 8 ) ( 5, 304, 8 ) ( 5, 306, 8 )
( 5, 337, 12 ) ( 5, 390, 4 ) ( 5, 391, 4 ) ( 5, 392, 4 ) ( 5, 404, 4 ) ( 5, 410, 6 )
( 5, 414, 7 ) ( 5, 416, 4 ) ( 5, 424, 6 ) ( 5, 426, 5 ) ( 5, 434, 4 ) ( 5, 435, 5 )
( 5, 465, 6 ) ( 5, 521, 15 ) ( 5, 522, 15 ) ( 5, 533, 8 ) ( 5, 641, 2 ) ( 5, 645, 2 )
( 5, 655, 4 ) ( 5, 666, 2 ) ( 5, 670, 5 ) ( 5, 671, 5 ) ( 5, 674, 4 ) ( 5, 703, 4 )
( 5, 704, 7 ) ( 5, 704, 11 ) ( 5, 706, 4 ) ( 5, 706, 14 ) ( 5, 709, 7 ) ( 5, 710, 4 )
( 5, 715, 4 ) ( 5, 753, 4 ) ( 5, 754, 4 ) ( 5, 754, 8 ) ( 5, 758, 4 ) ( 5, 763, 7 )
( 5, 763, 11 ) ( 5, 774, 2 ) ( 5, 801, 3 ) ( 5, 822, 2 ) ( 5, 846, 2 ) ( 5, 852, 3 )
( 5, 854, 4 ) ( 5, 856, 2 ) ( 5, 869, 4 ) ( 5, 870, 3 ) ( 5, 889, 3 ) ( 5, 890, 3 )
( 5, 891, 2 ) ( 5, 910, 4 ) ( 5, 912, 4 ) ( 5, 917, 4 ) ( 5, 919, 4 ) ( 5, 926, 6 )

Table B.3: The groups in the previous table on which Algorithm (2) works (102 cases).
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