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Abstract

The rationality problem for algebraic tori is well known. It is known that any algebraic torus
is unirational over its field of definition. The first purpose of this work is to solve rational-
ity problem for 5 dimensional stably rational algebraic tori with an indecomposable character
lattice. In order to do so, we have studied the associated character lattices of the mentioned
algebraic tori. For each character lattice L, either we see the lattice as an associated lattice to
a root system (of which rationality of its corresponding algebraic torus is known) or we find
a reduced component of L so that we can relate rationality of the associated algebraic torus to
lower dimensions. Using these two main methods from [23], we solve rationality problem in
some cases.

The second problem of which we are concerned with here, is to give a constructive proof
for the No Name Lemma. Let G be a finite group, K be a field, L be a permutation G-lattice
with the standard basis and K[L] be the group algebra of L over K. The No Name Lemma
asserts that the invariant field of the quotient field of K[L], K(L)° is a purely transcendental
extension of K¢, In other words, there exist yy, . .., y, which are algebraically independent over
KOS such that K(L)° = K%(yy, ..., y,). For a Galois extension K/F with G = Gal(K/F) we have
introduced YV = {yy,...,v,} € K[L]° with desired properties. Moreover, Y can be used to get
a concrete description of K[L]®. For a sign permutation G-lattice L, a more general argument
is given so that we can concretely find a transcendence basis of K(L)® over K°. Since the
coordinate ring (resp. the rational function field) of an algebraic torus is given as invariant ring
(resp. field), K[L]® (resp. K(L)®) where L is the character lattice of the algebraic torus, the
given proof can be used to construct the group ring or rational function field of a quasi split
algebraic torus.

Keywords: Algebraic tori, multiplicative invariant, No Name Lemma.
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Chapter 1

Introduction

An interesting problem in algebraic geometry is the rationality problem, i.e. for a given alge-
braic variety, determine if it is rational or not. A more general problem is to classify algebraic
varieties up to birational isomorphism classes.

In order to simplify the classification, we try to find coarser classes. Thus we define stable
rationality and unirationality. Although these are geometric notions, in some cases there is a
nice translation of these to algebraic language and this is the key to give a partial solution to
the simplified problem.

But what do we mean by rationality? If X is an algebraic variety, we say X is rational if it
is birationally isomorphic to A" for some n. For a coarser class, we say that X is stably rational
if X x A" is rational (for some n). We call X unirational if there exist a finite degree dominant
rational map from A" (for some n) to X.

Rational varieties

Stably Rational Varieties

Unirational Varieties

To understand classes we need to find some birational invariants (properties which hold for all
elements in a birational class) of algebraic varieties. A birational invariant of algebraic varieties
is dimension. Another one is the function field of varieties which belong to the same class. Our
approach here is to study the function fields.

In this dissertation we study two problems about algebraic tori. The first one is to examine
rationality of 5 dimensional algebraic tori which are known to be stably rational. The other
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problem is finding an explicit algebraic description of quasi split algebraic tori. In what fol-
lows we briefly explain the mentioned problems and known results.

An algebraic F-torus T is an algebraic group defined over a field F, which is a torus over
an algebraic closure F. Since a torus is a finite product of G,, into itself, we say T splits over
F. In general F is not the smallest field such that T splits over it. It is known that an algebraic
F-torus T splits over a finite Galois extension of F. If T splits over K/F and G = Gal(K/F),
then G is called the splitting group of T'.

The rationality problem for an algebraic torus is to determine whether a given algebraic torus
is rational (stably rational or unirational). Algebraic tori are in some sense the simplest alge-
braic groups, so it is reasonable to solve the difficult problem of rationality in these cases. Our
approach to solve the problem is to use the relation between algebraic tori and multiplicative
invariants.

Assume L is a free Z-module of finite rank (i.e. a lattice) and G is a finite group acting by
automorphism on L. This type of action is called a multiplicative action. If R is a commutative
unital ring, we can extend the action on L to an action on R[L] (the group ring of L over R).
Now L becomes a multiplicative group in R[L]. The multiplicative invariants are the invariant
elements in R[L] under the action of G.

Multiplicative invariants occur in different contexts such as centers and prime ideals of group
algebras, representation rings of Lie algebras and rationality problems. Since we are interested
in the rationality problem, we present Noether’s problem here. Assume K/F is a rational field
extension i.e. K = F(xy,...,x,) where x;’s are algebraically independent over F'. Moreover,
assume that a group G acts on K by automorphism and maps F' to itself. Noether’s rationality
problem asks under what conditions the extension K¢/F is also rational. The origin of the
problem goes back to some problems in constructive Galois theory (see [29] and [17]). The
special case of multiplicative G-fields (here, K(L) for some lattice L with a multiplicative ac-
tion of G) for a finite group G has received particular attention. One of the main reasons of this
attention is the connection of multiplicative invariants with algebraic tori.

There is a duality between the category of algebraic tori which split by G and G-lattices (a
lattice equipped with a G action). For a given algebraic torus 7" with splitting group G, its char-
acter module Hom(T', G,,) is a G-lattice. If L is a G-lattice, then Spec(K[L]°) is an algebraic
torus with splitting group G.

On the other hand having a G-lattice L means we have

G — GL(L) = GL(n, Z),



where n is the rank of L. If G is a finite group acting on L then the image of G inside GL(n, Z)
(under the representation map) is a finite subgroup of GL(n, Z). Also if G is a finite subgroup
of GL(n, Z) then it acts naturally by multiplication on the standard basis of Z" which gives a
G-lattice. The dualities explained for a fixed Galois extension K/F with Galois group G, are
summarized as

{isomorphism classes of n dimensional algebraic tori}

7

{isomorphism classes of G-lattices of rank n}

7

{conjugacy classes of finite subgroups of GL(n, Z)}.

By a celebrated theorem by Jordan [18], the number of finite subgroups of GL(n, Z) is finite
(up to conjugacy) for any natural number n. This means that up to isomorphism, we have
finitely many algebraic tori in each dimension. When we say a finite subgroup of GL(n, Z) or
a G-lattice is rational, we mean their corresponding algebraic torus is rational. An algebraic
torus 7 is called hereditarily rational if all subgroups of the group associated to T are rational.

In order to classify birational classes of algebraic tori, one should first find non-conjugate finite
subgroups G in GL(n, Z). The information about finite subgroups of GL(n, Z) for n up to 4 is
contained in the GAP package CrystCat. The GAP package Carat contains all finite subgroups
of GL(n, Z), for n up to 6.

As we mentioned before, one of the problems we are concerned with here, is the rational-
ity problem for 5 dimensional algebraic tori. In order to present the main results in rationality
problem for algebraic tori we need to present some information first.

The GAP ID of finite subgroups of GL(n,Z) for n < 4 is used frequently in classification
of 4 and 5 dimensional algebraic tori. A group with GAP ID (n,m, i, j) is the finite subgroup
of GL(n, Z) of the jth Z-class of the ith (Q-class of the mth crystal system. In [15] the authors
introduced Carat ID. A group with Carat ID (n, i, j) is the finite subgroup of GL(n, Z) of the ith
Z-~class of the jth QQ-class.

It is known that any algebraic tori is unirational over its field of definition. The rationality
problem for one dimensional tori is straight forward. Voskresenskii showed that all two dimen-
sional algebraic tori are rational (see [44]). He used a geometric argument to show this result.

In [21], Kunyavski solved the rationality problem for algebraic tori of dimension 3. He proved
that except for 15 algebraic tori, the rest of them are rational. Moreover he proved that the
exceptional algebraic tori are not stably rational (see Table 1.1).
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GAPID Structure #G | GAPID Structure #G | GAPID Structure #G
(3,3,1,3) Cg 4 | 34,72) DgxC, 16 | (3,7,5,3) S4xC, 48
(3,3,3,3) Cg 8 (3,722 AyxCy 24 |@3,752) S4xC, 48
(3,4,4,2) Dy 8 |(3,7,3,3) S4 24 | (3,4,3,2) Cy4xC, 48
(3,4,6,3) Dyg 8 | (3,7,3,2) Sy 24 | (3,3,3,4) Cg 8

(3,7,1,2) Ay 12 | (3,7,4,2) Sy 24 | (3,7,2,3) Ay xC, 24

Table 1.1: Non-rational groups of rank 3.

Hoshi and Yamasaki classified algebraic tori of dimension 4 and 5 up to stable rationality [15].
Their proof is based on computations using GAP. In dimension 4, there are 487 (up to isomor-
phism) algebraic tori which are stably rational. In [23], Lemire proved that in dimension 4, all
stably rational algebraic tori are rational, except for possibly ten of them. In dimension five,
there are 311 stably rational algebraic tori, found by Hoshi and Yamasaki, with indecompos-
able character lattices. In [15] stable rationality of the 311 was proven by considering maximal
groups among them.

We have studied the rationality of the mentioned groups in Chapter 3. Our approach to solve
the rationality problem is similar to the approach used in [23]. We apply two main methods on
lattices associated to the mentioned 311 groups. The first method is to see them as an isomor-
phic copy of a lattice which corresponds to a known rational torus. The second method is to
find a short exact sequence of lattices with a specific condition on the cokernel. For a G-lattice
L, we are interested in finding a short exact sequence of lattices

0O—-M—>L—P—0

where P is a G-lattice (preferably of rank 1) such that there exist a Z-basis of P which is per-
muted by G. It is known that the existence of such sequence shows that K(L) is rational over
K(M)S and rationality of K(M)® over F implies rationality of K(M)® over F as desired.

There are cases of which none of the above ideas work. In some of those cases, we have
considered subgroups for which the above methods work. We have provided some information
in the cases for which the rationality is unknown yet (see Section 3.3.17).

The rationality results of Chapter 3 are summarized in Table 1.2. The groups presented in
Table 1.2 are hereditarily rational.



CARAT ID Group Structure #G  Description.

[5,942, 1] Imf(5,1,1) 3840 The root lattice of Bs

[5,953,4] Ss 720  The root lattice of As

[5,726,4] C§ XS4 384  reduced component [4,32,21,1 ]
[5,911,4] S5 120 reduced component [4,31,4 ,1 ]
[5,341,6] DgxS3 48 reduced component [4,20,17,2 ]
[5,531,13] Cy x84 48 reduced component [4,25,9 ,2 ]
[5,245,12] C% X S5 24 reduced component [4, 14, 10,2 ]
[5,81,54] C, X Dg 16 reduced component [4,13,7 ,5 ]
[5,389,4] Dy, 12 reduced component [4,21,3 ,2 ]
[5,901,3] Do 10 reduced component [4, 27 3 1]
[5,22,14] CyxC,x(C, 8 reduced component [4, ,9 ]
[5,98, 28] Dy 8 reduced component [4, 13 3 ,3 ]
[5,99,57] Dg 8 reduced component [4,12,4 ,7 ]
[5,174,2] S; 6 reduced component [4,17,1 ,3 ]
[5,174,5] S3 6 reduced component [4,17,1 ,2 ]
[5, 18, 28] Cy, X Cy 4 reduced component [4,4 ,3 ,4 ]
[5,19, 14] Cy, xCy 4 reduced component [4,5 ,1 ,10]
[5,57, 8] Cy 4 reduced component [4,7 ,1 ,2 ]
[5,164,2] C; 3 reduced component [4,11,1 ,1 ]
[5,6,3] C, 2 reduced component [4,2 ,2 ,2 ]

Table 1.2: Hereditarily rational groups among 311 indecomposable stably rational groups
found by Hoshi and Yamasaki.

A G-lattice L, is called permutation (resp. sign permutation) if it has a Z-basis which is per-
muted (resp. up to sign changes) by G. In chapter 4 we will see that a G-lattice of rank n is a
permutation lattice if and only if G is conjugate to a subgroup of S, where

Among algebraic tori there are families with permutation or sign permutation character lat-
tices. An algebraic torus with a permutation character lattice is called quasi split. These two
families are known to be rational. Although computationally we do not have an efficient algo-
rithm to decide whether a given lattice is permutation, the structure of a quasi split torus is well
understood.

The No Name Lemma asserts that if L is a permutation G-lattice and K is a G-field , then
K(L)® is rational over K°. This shows that a quasi split torus is rational. Providing a concrete
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proof for the No Name Lemma is another problem which is solved in this dissertation. The
proof is based on a generalization of the Moore determinant [13, Section 1.3].

For G < GL(n,Z), let L; be the G-lattice of rank n, generated by the standard basis {e;}._,,
where (e;); = 6;;. For a field K, the group algebra K[L] is isomorphic to the ring of Lau-
rent polynomials over K, i.e. K[xlil, ...,x*!1 and G acts both on K and L. For g € G,
ge; = Y, cije; for some c;; € Z. The action of g on x; is given by gx; = [T, x;i" )

Assume G is the Galois group of K/F and T is the algebraic torus associated to Ls. The
coordinate ring of T¢ is K[Lg]® = K[xF',...,x:']° The invariant field of the quotient field
of K[Lg], K(Lg)® = K(x,...,x,)° is the rational function field of T¢;. It is known that T is
rational if and only if K(L)® is rational over Fg.

Theorem 1. Let G < S, < GL(n, Z) and Lg be the lattice corresponding to G as defined above,
which is a permutation lattice with the standard basis. Let K/F be a finite Galois extension
with Galois group G. Let @ € K be a normal element for the Galois extension K/ F.

K[L]G = K[-xlil’x;la .. 'a-xil]G = F[yb' .- ,)’n]x1~-~xn

where y; is given by
S =) oeZlG)
oeG

vi=S(ax;) for 1 <i<n.

Theorem 2. Let G < GL(n,7Z) and Lg be the lattice corresponding to G as defined above.
Assume Lg is a sign permutation lattice with the standard basis. Let K/F be a finite Galois
extension with Galois group G. Let « € K be a normal element for the Galois extension
K/F. Then K(x,...,x,)° is rational over F with transcendence basis y,, . ..,y, where y; =
S(a(1+x)andS = Y, 8 € Z[G].

The constructiveness of the proof can be turned into an algorithm to find the rational function
field and the coordinate ring of a quasi split algebraic tori.



Chapter 2

Preliminaries

This chapter is devoted to covering the necessary background for studying the rationality prob-
lem for algebraic tori and the other results proven in chapter 4.

Definition 1. [37, Examples 3, 4] Any ring R determines the ringed space (Spec(R), ') where
O is the structure sheaf. We call (Spec(R), ©) an affine scheme.

Definition 2. [39, Tag O11J] A scheme is a locally ringed space with the property that every
point has an open neighbourhood which is an affine scheme. A morphism of schemes is a
morphism of locally ringed spaces.

Definition 3. [39, Tag 01RS] Let X, Y be schemes.

I. Let f: U —» Y, g:V — Y be morphisms of schemes defined on dense open subsets U,
V of X. We say that f is equivalent to g if f|y = glw for some W c U NV dense open in
X.

2. A rational map from X to Y is an equivalence class for the equivalence relation defined
in (1).

Definition 4. [39, Tag 020C] Let k be a field. A variety is a scheme X over k such that X is
integral and the structure morphism X — Spec(k) is separated and of finite type.

For simplicity we define rationality notions for varieties.

Definition 5. A rational mapping ¢ : X — Y such that it has a rational inverse, is called a
birational isomorphism.

Now we can define a rational variety.

Definition 6. Let k be a field and X be a k-variety. We say X is k-rational (or simply rational)
if there exists a birational isomorphism X — A",

In general for a given variety it is not easy to say if it is rational or not, so as usual we try some
relaxed notions of rationality to give an approximation of rationality.
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Definition 7. With the assumptions of the previous definition we say X is stably k-rational if
there exists a birational isomorphism

0 XX A" S A"
where n < m.

Definition 8. A morphism ¢ : X — Y between two varieties is said to be dominant if ¢(X) is
dense in Y.

Definition 9. Again with above assumptions X is k-unirational if there exist a dominant rational
map
p: A" > X,

We can see
rationality = stably rationality = unirationality. (2.1)

Now we want to translate these notions to algebraic equivalents so we can deal with them
more easily. In order to do so, we define rationality (stable rationality, unirationality) of a field
extension. After doing that we say a variety is rational (resp. stably rational or unirational) if
the function field of the variety is rational (resp. stably rational or unirational) over the base
field. In the below definitions assume K/k is a finitely generated field extension.

Definition 10. K is said to be rational over k, if K = k(xi,...,x,) for some algebraically
independent xi, ..., x, over k.

Definition 11. K is called stably rational over k, if K(y,...,y,) is rational over k for some
algebraically independent elements yy, ..., Yy, over K.

Here we define another rationality type for which we did not give a geometric equivalent since
Saltman first defined it algebraically.

Definition 12. K is called retract rational if it contains a k-algebra R satisfying the following:
1) K be the quotient field of R.
i1) the identity map id : R — R factors through a localized polynomial ring over k.

Definition 13. K is called unirational over k if
kC K Ck(xiy,...,x,)
for some algebraically independent elements x;, ..., x, over k.

Another useful notion is stable isomorphism. Let G be a group and F and F’ be two G-fields
(i.e. fields equipped with a G action). We say F and F’ are stably isomorphic as G-fields if

F(xi,.o,x) 2 F'(yi, .0, 05)

We note that letting G = {1} we can get the stable isomorphism for fields. Having next propo-
sition in hand, it is easy to see that
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rationality = stable rationality = retract rationality = unirationality.

Proposition 14. /25, Theorem 9.3.3] Let F/K and E /K be field extensions.

(a) If F and E be stably isomorphic over K and F|K be retract rational, then E/K is retract
rational.

(b) If F/K is stably rational then it is also retract rational.

Later on when we provide some more machinery, we can see these inclusions easier for alge-
braic tori.

None of the above implications are reversible in general. In other words we have varieties
(one can see same statement for their function fields) which are unirational but not retract ra-
tional, there are retract rational examples which are not stably rational and there are stably
rational varieties which are not rational.

2.1 G-Lattices

It is known that there is a duality between algebraic tori and G-lattices. In order to be able to
discuss the duality, we briefly introduce G-lattices in this section. For a more detailed discus-
sion see [25, Chapters 1 and 2].

A lattice is a free Z-module of finite rank. As a Z-module, it is isomorphic to Z" for some
n. If we have a group G, we can endow the lattice with an action of G. If G acts on a lattice L
by automorphisms i.e. there exists

G — GL(M) = GL(n, Z),

we say L is a G-lattice. We can equivalently say that G-lattices are free Z-modules of finite
rank which is also Z[G]-modules, for Z[G] the integral group ring over G. A G-equivariant,
Z-linear map between G-lattices is called a homomorphism of G-lattices.

For a given G-lattice L we define
L={leL:gl=1 VgeG).

Example 15. Let G = Dg = (r,s : r* = s> = 1,rs = sr’!) be the dihedral group of order
8 and L = Ze; ® Ze, be a lattice. The following can be checked to be an injective group
homomorphism.

p:G — GLy(Z)

[0 -
d 1 0
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_)—l 0
s
0 1

This gives a G-lattice, L. Since g.x = p(g)(x) the action on the basis {ey, e,} is given by

r-ey = e
r-eé; = —€q
S-€e = —€;
S€ér =6

We can see that L¢ = 0. G-lattices L with LY = 0 are called effective.

Now let R be an arbitrary commutative (unital) ring. For any G-lattice L we can form the group
algebra R[L] and the action of G on L can be extended to an action on R[L]. The subalgebra of
all G-invariant elements in R[L]

R[LI° ={leR[L]:gl=1, VgeG)

is called the multiplicative invariant algebra. Studying this algebra is the subject of multiplica-
tive invariant theory.

The group algebra R[L] of a G-lattice, is isomorphic to the Laurent polynomial algebra
11 and the lattice itself becomes a multiplicative subgroup of all monomi-

+1 +1
R[x{, x5, ..., x,

als.

Going back to the previous example we can write R[L] = R[xF', x'] and the multiplicative
action is given by

Xy = Xxp, r-xzzxfl, s-xlzxfl, S X0 = Xp

If L and L’ are two G-lattices then Homy(L, L"), the set of all Z-linear maps from L to L', is a
G-lattice with the following action

(g.f)(m) = g.(f(g~".m)).

For L’ = 7 (with trivial action of G), we get the G-lattice L* = Homgy(L,Z) which is called
the dual lattice of L.

Suppose L is a G-lattice and H is a subgroup of G. L can be considered as an H-lattice.
The new H-lattice is called restricted and is denoted by L |%.

Assume H is a finite index subgroup of G and L is an H-lattice. The G module Z[H] ®z¢ L is
a G-lattice which is called the induced G-lattice and is denoted by L 1.
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Definition 16. A G-lattice L is called a permutation lattice if there exists a Z -basis X for L
such that, G acts as permutation group on X. We denote L by Z[X].

Example 17. Let H be a finite index subgroup of a group G and G/H = {g|H, g H, ..., g,H}
be a complete representative set of left cosets of H in G. Then Z[G/H] is a G-lattice with the
action g.g;H = (gg:)H. It is easy to see that G acts as a permutation group on the basis so it is
a permutation lattice.

It is known that the permutation G-lattice Z[G/H] is isomorphic to Z T g

Lemma 18. /5, Proposition 10.28] If L is a H-lattice and H is a subgroup of G of finite index,
then

L 192 (L 1%)".
Lemma 19. [25, Section 2.2] A G-lattice L is a permutation lattice if and only if L = @H Z|G/H]
where H is a finite index subgroup of G.

Since the trivial H-lattice Z is self dual, as a corollary of the above lemmas we can conclude
that, any permutation lattice is self dual.
It is important to notice that direct sum (and tensor product) of permutation lattices is still

permutation.

Definition 20. We call a G-lattice L, decomposable if there are nontrivial G-lattices L, and L,
such that L = L, @ L,. L is called indecomposable if it is not decomposable.

If L is decomposable then it is reducible, but the converse is not true for lattices.

Definition 21. A G-lattice L is called reducible if L has a nontrivial G-invariant subspace M
such that L/M is torsion free. L is called irreducible if it is not reducible.

Now let L and L’ are two G-lattices. L and L’ are stably permutation equivalent if and only if
there exist permutation lattices P and P’ such that

LeP=L'aP.

In fact the above notion defines an equivalence relation on G-lattices. We denote the equiva-
lence class of L by [L].

Definition 22. A G-lattice L is called stably permutation if [L] = [0] i.e. there exist permutation
lattices P and P’ such that
LoP=P

We can also define addition on the set of all equivalence classes of stably permutation equiva-
lence relation. For G-lattices L and L’, define

[L]1+[L']=[LeL]
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Note that it is well defined.

Having this addition on the set of equivalence classes turns the set to an additive monoid which
we denote it by SPg. This is obviously a commutative monoid with [0] as the identity.

Definition 23. A G-latticeis called permutation projective or invertible if its corresponding
class in SPg is invertible. i.e. there exists an L’ such that [L] + [L] = [0].

The above definition says, there are P and P’ permutation lattices such that L& L' ® P = P’. So
L is invertible if and only if L is a direct summand of a permutation lattice.

Let G be a finite group. Let us denote the Tate cohomology functor by H(G,.) (for i € Z)
(See [4, Chapter 6]). Here we are just interested in H*'(G,)).

Definition 24. A G-lattice L is H'- trivial if H'(H, L) = 0 forall H < G.
Definition 25. We call a G-lattice L, flasque (coflasque) if it is H'- trivial (A'- trivial).
Lemma 26. /25, Page 36] Let L be a G-lattice then
H(G,L) = A7 (G,L".
Definition 27. An exact sequence of G-lattices
0—L—P—>F—0

is called a flasque resolution of L, if P is a permutation lattice and F is flasque. Similarly, we
can define a coflasque resolution of L as

0—C—P—>L—0

where C is coflasque.

Theorem 28. [25, Lemma 2.6.1] For any given G-lattice L, there exists a coflasque (flasque)
resolution. Furthermore, if

0—C—P—L—0

and

0—C —>P —L—0

are two coflasque resolutions of L, then [C] = [C'] (statement is true for flasque resolutions).
Lemma 29. [25, Lemma 2.5.1] Permutation projective G-lattices are both flasque and coflasque.

We can see that in particular permutation lattices are flasque and coflasque. As an example one
can consider the augmentation map

EG/H : Z[G/H] - Z
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gH — 1

Let Iy = Kereg,n. We can obtain the below exact sequence

EG/H

0 — Ign— ZIG/H] 25 7, — 0.

Considering the dual sequence where Jg/py = I

c/u We get

Note that Z and Z[G/H] are both flasque and coflasque.

In general there is a construction for finding a coflasque resolution of a given lattice L. Let
_ H 2G
P=PrLig.
H

where H ranges through all subgroups of G. It can be shown that P is a permutation G-lattice .
On the other hand we can extend the inclusion

L7 > L

to a G-equivariant epimorphism
¢:P—-L

with ¢(P) = L¥ for all H < G. Now letting C = ker¢ we obtain an exact sequence
0-C—->P—->L—-O.

Still we need to check if C is a coflasque G-lattice. By applying the cohomology functor to the
above sequence we get

o Pl 5% 5 HY(H C)— H'(H,P)—> ---

But we know that H'(H,P) = 0. Since ¢ is a surjection from P to L¥, we conclude that
H'(H,C) = 0.

Definition 30. Let L be a G-lattice. The flasque class of L, which is denoted by [L] is [F] €
SPs where F is the cokernel in any flasque resolution of L.

We write
L~yL & L =L}

Note that [0)/! = [0] and [L®L’}/! = [L)'+[L’]", since the direct sum of two flasque resolutions
for L and L’ is a flasque resoulution for L @ L’.
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Definition 31. A G-lattice L which L ~; 0 is called quasi-projective i.e. L is quasi projective
if and only if there exists a flasque resolution for L

0O—L—>P—5>Q0—0
where Q is a permutation G-lattice.
In order to summarize important facts about lattices we can mention the below diagram

permutation = stably permutation = invertible = flasque and coflasque

U U
(M)'=0 =  [M}'is invertible.

2.2 Root Systems and Their Associated Lattices

In this brief section we define root systems and present the root lattice of A,,. For a more de-
tailed discussion we invite the reader to see [2], [16, Chapter 3].

Assume V is a vector space over R and V* be its dual. Suppose .,.) : V* x V — R denote the
usual evaluation pairing.

Definition 32. A subset @ C V is called a reduced root system in V if it satisfies the following
properties,

i. ®isfinite, 0 ¢ ® and V = (D).

il. Vv € @ there exists ¥ € V* such that (¥, v) = 2 and the reflection s,(#) = u — (¥, u)v maps
D to itself.

iii. Vv e ®, (v, D) C Z.
iv.ved=2ved

A root system @ in V is called irreducible, if it is not possible to write V = V; @ V, (V; # 0)
and ® = ®; U @, and root systems @; in V;. The irreducible reduced root systems are well
understood and classified. We only need the root systems of types A, (n > 1) and B, (n > 2).

Definition 33. The automorphism group of a reduced root system ® in V is denoted by Aut(®)
and is defined as
Aut(®) = {g € GL(V) : g(®) c ®}.
Moreover, the Weyl group of @ is denoted by W(®) and is generated by s, defined in Definition
32[ii] i.e.
W(D) = (s, : v € D).
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Note that W(®) c Aut(®) and Aut(®D) is a finite group.
Definition 34. A subset A of a root system ® C V is called a base for @ if

e Aisabasisof V
o ue® = u=);,cs0 Or u=— 7 Cs0 Where cs are non negative integers.

Definition 35. The root lattice L(®) of a root system @ is defined by
L®)=Z0 = () cv:c, € L),
ved

We are just interested in types A,, and B,. Let V denote the nullspace of the linear map
R™! — R sending the standard basis {¢;}"* of R"*! to one. One can verify that

O={ej—e;j:i#jl<i,j<n+1}

is a root system in V, and it is called the root system of type A,. The set {¢; — e;,1}"_, is a base
of .

The Weyl group of ®, W(A,), is S 41 and it acts on ® by its standard action on ¢;’s, i.e

Vg €S, gle) = ey,

Moreover, the automorphism group of @ is Aut(®) = C, X S ,,;; where C, =< o > is the cyclic
group of order two. o acts on @ by multiplication with —1.

The root lattice ZA,, is given by
{Z cie; 1 ¢; € 7, Zci =0} =(e1 —er.... 00— €nr1)z.
i=1 i

The root lattice of A, can be given as the kernel of the augmentation map. Identify S, as
Stabg, ,(n + 1) of S,;;. It is clear that Z[S,.,;/S,] is isomorphic to the permutation S, -lattice
®;Ze; with g € S, acting by g(e;) = e,;). The kernel of the augmentation map ¢ : &;Ze; — Z,
ele;) — 1,is ZA,,.

For the root system of type B, let V = R" (n > 2). One can verify that ® = {a : (a,a) = 1 or 2}
is aroot system in V and it is called the root system of type B,. The set {e; — e;11 }f:‘]l Uf{e,}isa
basis of ®. The Weyl group of ®, W(B,) is C; x S, (the wreath product) where C; is the cyclic
group of order two and S, is the symmetric group of order n. For more detail see [16, Chapter
3].

Proposition 36. /25, Proposition 1.1] Let ® be an irreducible reduced root system not of type
C, and L = L(®) be its root lattice. the action of Aut(®) on L realizes Aut(®) as a maximal
finite subgroup of GL(L).
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2.3 Algebraic Groups

In this small section the aim is to introduce the main definitions of algebraic groups and alge-
braic tori. For a more detailed discussion see [16, Chapter 2], [1, Chapter 1] and [44, Chapter
1].

Theorem 37. [45, Page 5] Let F be a functor from k-algebras to sets. If the elements in F(R)
correspond to solutions in R of some family of equations, there is a k-algebra A and a natural
correspondence between F(R) and Homy(A, R). The converse also holds.

Such an F is called representable and we say A represents F. An affine group scheme is a
representable functor from category of k-algebras to category of groups (see [45, Chapter 1] or
[44, Chapter 1]). An affine group scheme, G is called algebraic, if its representing algebra is
finitely generated.

Example 38. GL, is the affine algebraic group scheme represented by Spec(Z[x,, . . . , X, D7'])
where D = det(x;;). GL,(K) is the set of all invertible matrices in M,,,(K).

Example 39. Since we can embed S, (symmetric group of order n) into GL,,, it is an algebraic
group. More precisely for o € S, we can send it to the action of o on /,,. Furthermore applying
Cayley’s theorem, we see that any finite group is an algebraic group.

Example 40. We denote GL, by G,, (where m refers to multiplicative). G,, is represented by
Spec(Z[x, x'1). G, is the algebraic group represented by Z[x]. Another way to look at G, is
given by below embedding:

X

0 I)EGLQ

s (
From now on when we say algebraic group we mean an affine algebraic group. We call a map
f : G — G’ a morphism of algebraic groups if it is a morphism of varieties and homomor-
phism of groups. A character of an algebraic group is y : G — G, which is a morphism
of algebraic groups. It is well known that the set of characters of an algebraic group form an
abelian group and it is denoted by y(G).

In the simplest terms, an algebraic torus over a field k, is an algebraic group which over k
it looks like a torus i.e. it will be the product of some copies of G,,. In order to define an
algebraic torus more formally we need the following definition.

Definition 41. Let /K be a field extension and X be a K-scheme. We say a K-scheme Y is an
F/K-form of X if the following holds(as F-schemes)

XQF=YQ®F

if F = K we say Y is a K-form.
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Now an algebraic torus is a an algebraic group, which is a K-form of G¢ for some d.

The Weil restriction is a functor such that for any field extension K/F and any affine group
scheme, G over K, produces an F-group scheme Rk, r(G). If A is a K-algebra, then Rk, r(G)(A) =
G(A ®r K) (see [44, Section 1.3.12]).

The simplest example of an algebraic torus is G,,. Another well understood example is Rg/r(G,,)
where R, 1s the Weil restriction for a Galois extension K/F.

Definition 42. [44, Example 19] An algebraic torus representable as a direct product of groups
of the form Rk, r(G,,) is called a quasi split torus.

We say that an algebraic group G, is diagonalizable if the coordinate ring of G, can be spanned
by its character group. This is equivalent to say G is isomorphic to a subgroup of D, (consisting
of diagonal matrices) for some n > 0.

Later on when we want to see the duality between algebraic tori and G-lattices we will use
it.

Theorem 43. [1, Page 114] The following are equivalent:
a) T is an n dimensional torus.

b) T is a connected diagonalizable group of dimension n.
c) T is a diagonalizable group and x(T) = 7".

Remark. A quasi split torus is characterized by the condition that its character lattice is a
permutation lattice.

2.4 Duality Between Algebraic Tori and G-lattices

As mentioned before there is a duality between category of algebraic tori split by a G-Galois
extension and category of G-lattices. In this section we want to briefly take a look at the duality.
For more discussion see [44, Section 3.4].

Let Y be a k-form of a k-scheme X. A field k C F is called a splitting field of Y if
X F=YQ®F.

It turns out that there exists a separable extension of k, which is a splitting field of Y. Let k; be
the separable closure of k and G be the absolute Galois group of k,/k.
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Let T be an algebraic k-torus which splits over k, and G as above. Also let 7' be the char-
acter group of 7. One can see that there is an action of G by means of automorphisms on 7.
Let the action be given by the representation

h:G — Aut(T).

Note that /4 is continuous, Aut(7") has the discrete topology and G is compact (in the profinite
topology). Hence the image of G is compact in Aut(7"). This obviously implies that A(G) is a
finite subgroup of Aut(7T). This is telling us the kernel of /, which is acting trivially, is of finite
index in G. Let H = ker h and assume F is the fixed field of &k, under the action of H. Hence
H = Gal(k,;/F). Note that the quotient G/H = Gal(F/k) and F/k is a finite Galois extension.

Since everything can be reduced to the finite case, let us take a closer look at it. Let T be
an algebraic torus over K and let L be a finite Galois extension of K such that 7" splits over L.
Assume that the Galois group of L/K is G = Gal(L/K). In the light of Theorem 43 we know
that the character group of 7 is a lattice and we can endow it with the action of Galois group.
In other words for any algebraic torus of dimension n, we have Hom(7, G,,) as a G-lattice.

On the other hand for a given G-lattice M, Spec(L[M]®) is an algebraic torus. In this case
L[M]C is the coordinate ring of the torus.

Lemma 44. Suppose V is a vector space over a field F and W # 0 is a non-empty subset of V.
If any F-linear function ¢ : V — F annihilating W, is zero, then W contains an F-basis of V.

Proof. Assume any linear map from V to F which annihilates W, is zero. If W does not contain
a basis of V then V' \ span,(W) is nonempty. Let ¢ # O be an arbitrary element of V' \ span,(W).
We can extend {t} to B, a F-basis for V. Now we define a linear map ¢ : V — F such that
o) =1and Vv € B\ {t}, ¢(v) =0. Itis clear that W C span,(B\ {t}). Hence ¢ is a linear map
annihilating W which is nonzero and this is a contradiction. O

The main key to this correspondence is the below proposition.

Proposition 45. [38] (Speiser’s Lemma) Let V be an F-vector space and G be a finite group
which acts faithfully on F and acts on V by the property

Vie F,veVand g€ G g.(lv) = (g.))(g.v)
i.e. Vis a G-module with above property. Then V° contains an F-basis for V.

Now let T be an algebraic K-torus which splits over a Galois extension F and G = Gal(F/K).
Considering its character group M we get a G-lattice. We can construct an algebraic torus out
of M by considering Spec(F[M]¢) with coordinate ring F[M]°.
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We note that T is diagonalizable (Theorem 43), so over F, its coordinate ring is F[M]. Apply-
ing the proposition to F[M]° we see that

FIM]° ® F = F[M]
So over F, T and Spec(F[M]°) has the same coordinate ring.

Up to now we know that there is a one to one correspondence between algebraic tori split
by a G-Galois extension and G-lattices or equivalently integral representations of G. In other
words for an algebraic K-torus 7 of dimension n, which splits over finite Galois extension F
with G = Gal(F/K), T is determined by & : G — GL(n, Z). We call h(G) the splitting group
of T, which is a finite subgroup of GL(n, Z). So in order to classify algebraic tori of dimension
n over k, we have to investigate in all conjugacy classes of finite subgroups of GL(n, Z). As we
mentioned earlier Jordan proved that the number of finite subgroups of GL(n, Z) for any n, up
to conjugacy, is finite.

2.5 Basic Results

In this section we present some important results about rationality problem for algebraic tori.
Before presenting the results we need the following definition to avoid repeating the same
assumptions.

Definition 46. If G is a finite subgroup of GL(n, Z), then the corresponding lattice to G which
is denoted by L is the rank n lattice generated by the standard basis, i.e. L = (¢; : i =
1,...,n)z where (e;); = 0;;. The action of G on L is given by multiplication from right on
the e¢;’s. Moreover, if G = Gal(K/F) for some finite Galois extension K/F then K[Lg] =
K [xf] e, x,fl], that is the Laurent polynomial ring, and K(Lg) which is the quotient field of
K[Lg] 1s isomorphic to K(xy, ..., x,) (x;’s are algebraically independent over K) are equipped
with an action of G as

e G acts as Galois group on K

e VgeG, g(x)=[T""x" where a;;’s are given by g(e;) = I

j=17%; j=14%ij€j

Also T is the corresponding algebraic torus to Lg 1.e. T is an algebraic torus defined on F
which splits over K, with character lattice L.

By the duality explained before, K(L)® is the rational function field of Tg. From now on
we work with finite subgroups of GL(n,7Z) (up to conjugacy) and when we consider their
corresponding lattice (or algebraic torus), L (T¢), we mean the lattice (algebraic torus) defined
in Definition 46.
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Theorem 47. [38] (No Name Lemma) Let M be a permutation G-lattice and F be a G-field.
Then F(M)® is rational over F°.

Proof. Let {xy,...,x,} be a Z-basis which is permuted by G and V = } !, Fx; be a F vector
space. Applying Proposition 45 to V, we find y;,...,y, € VY such that V = Y| Fy;. This
implies F(M) = F(xy,...,x,) = F(y1,...,y,). Hence

FIM® = F(yr,....30)% = FOGn, .., y).
O
Note that if G = Gal(F/K), then F¢ = K. For another version of the No Name Lemma see [9].

Theorem 48. [25, Proposition 9.5.1] Assume L is a sign permutation G-lattice and F is a
G-field. Then F(M)° is rational over FO.

The rationality problem for algebraic tori of dimension one was concrete. For dimension two
Voskresenskii used a geometric method to prove the below result.

Theorem 49. [42] Any 2 dimensional algebraic torus over k, is k-rational.

We talked about the duality between category of algebraic tori and category of G-lattice. Hav-
ing the duality in hand one may ask how to interpret the notions from one side to the other side.
One of the important results about translating the facts about the rationality of algebraic tori,
into the language of G-lattices is given below.

Theorem 50. [43] Let M and M’ be two G-lattices and F/K be a finite Galois extension with
Galois Group G. Then [M)'" = [M’V" if and only if F(M)® and F(M")¢ are stably isomorphic.

The next two results give us necessary and sufficient conditions for stable rationality and retract
rationality in terms of G-lattices. Having these two criteria gives us some control over the
birational classification of algebraic tori of small dimension.

Theorem 51. /25, Theorem 9.5.4] Let M be a G-lattice and F|/K be a finite Galois extension
with Galois group G. [M\'" is invertible if and only if F(M)® is retract K-rational.

Theorem 52. [10, Theorem 1.6]Let M be a G-lattice and FJK be a finite Galois extension with
Galois group G. [M}'! = 0 if and only if F(M)® is stably K-rational.

The above two theorems can be used to see any stably rational algebraic torus is retract rational.

The following two theorems classifies algebraic tori of dimension 4 and 5 up to stable ra-
tionality. In [15] the authors gave a complete classification of mentioned tori, however they did
not say anything about rationality of tori of dimension 4 and 5. The main idea of their work
was to investigate the last 3 results above, by means of computer algebra system, GAP.
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Theorem 53. [15, Theorem 1.9] Let F/K be a finite Galois extension with Galois Group G <
GL4, Z). Assume G acts on L = F(xy, X2, X3, X4) as above. (For tables of the below subgroups
see [15, Page 4])

(i) LY is stably K-rational if G is (up to conjugacy) one of a list of 487 subgroups of GL(4, Z).

(ii) LS is not stably but retract K-rational if G is (up to conjugacy) one of a list of 7 subgroups
of GL(4, Z.).

(iii) LY is not retract K-rational if G is (up to conjugacy) one of a list of 216 subgroups of
GL4, 7).

In 2015, Lemire showed that except for possibly ten, all stably rational groups found by Hoshi
and Yamasaki are rational (see [23]).

Theorem 54. [15, Theorem 1.12] Let F/K be a finite Galois extension with Galois Group
G < GL(5,%2). Assume G acts on L = F(xy, X2, X3, X4, X5) as above. (for tables of below
subgroups see [15, Pages 134-144])

(i) LS is stably K-rational if G is (up to conjugacy) one of a list 3051 subgroups of GL(5, Z).
(ii) LC is not stably but retract K-rational if G is (up to conjugacy) one of a list 25 subgroups
of GL(5, Z).

(iii) LC is not retract K-rational if G is (up to conjugacy) one of a list of 3003 subgroups of
GL(5, Z).

There are examples of varieties which are stably rational but not rational. So in general be-
ing stably rational is not the same as being rational. However, there is a conjecture about the
equivalence of stable rationality and rationality for algebraic tori.

Conjecture. [44, Section 2.6.1] Any stably rational algebraic torus is rational.

According to Theorem 54 we know all stably rational algebraic tori of dimension 5. How-
ever, the theorem does not say anything about rationality of those tori. An interesting problem
is to find all rational tori between 3051 mentioned tori in the theorem.

We call G < GL(n, Z) irreducible (resp. indecomposable), if the corresponding lattice to G
be irreducible (resp. indecomposable).

2.6 Families of Rational Algebraic Tori

In the next chapter, we investigate on rationality of stably rational algebraic tori of dimension
5. We will try to reduce their rationality to the rationality of some well understood algebraic
torus. In this small section we present some families of algebraic tori which are rational, so that
we can relate our algebraic tori to one of these families. It is already mentioned that every n
dimensional algebraic torus has a corresponding finite subgroup of GL(n, Z). In order to study
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the rationality of algebraic tori, we study its corresponding group. We would rather to consider
maximal groups and prove rationality for their subgroups, instead of proving it case by case.
The following definitions are borrowed from [23].

Definition 55. Let L be a G-lattice for G < GL(n, Z). If all algebraic tori with character lattice
L |§ and splitting group H are rational, for any subgroup H < G, then we call L hereditarily
rational.

Definition 56. If 7 is an algebraic torus and L is its corresponding lattice, then 7T is called
hereditarily rational if L is hereditarily rational.

By Theorem 47, a quasi-split torus is rational. For a permutation G-lattice L and any subgroup
H < G, since L |$ is a permutation lattice, the corresponding torus to L | is rational. In other
words a quasi split torus is hereditarily rational. Simillarly by Theorem 48 and above argument
for (a sign permutation lattice), we conclude that any algebraic torus with a sign permutation
character lattice is hereditarily rational.

In particular this is true for an algebraic torus with character lattice the root lattice ZB, as
an W(B,)-lattice. It is also known that any rank »n sign permutation lattice, is isomorphic to the
restriction of ZB,, to a subgroup of W(B,).

Proposition 57. [24, Proposition 1.5] Suppose P is a permutation projective G-lattice and G
is the Galois group of a finite Galois extension, K/ F. If

0O—M-—>L—P—0

is an exact sequence of G-lattices, then the fields K(L)° and K(M & P)® are isomorphic over
F.

One can use the above proposition and Theorem 47 to conclude the following theorem.

Theorem 58. [24, Proposition 1.6] Suppose P is a permutation G-lattice and G is the Galois
group of a finite Galois extension, K/F. If

0—M—L—P—>0

is an exact sequence of G-lattices, then K(L)© is rational over K(M)°.

An important corollary of the above theorem will be used frequently in chapter 3, in order to
prove the rationality of algebraic tori.

Corollary 59. Suppose P is a permutation G-lattice and G is the Galois group of a finite Galois
extension, K/ F. If

0O—M-—>L—P—0

is an exact sequence of G-lattices and K(M)® is rational over F, then K(L)® is rational over
F.
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In [44, Section 2.4.8] the author has shown that any algebraic torus with an augmentation ideal
lattice is hereditarily rational. More precisely let 7' be an algebraic torus defined over F' and
splits over K and G = Gal(K/F). Assume the character lattice of T is Iy (the kernel of the
augmentation map), and Z[X] is a G-permuattion lattice, where

0— Iy — Z[X] - Z — 0 (2.2)

is an exact sequence and € : Z[X] — Z, x — 1 is the augmentation map. The exact sequence
(2.2) corresponds to the exact sequence of F algebraic tori

00— G, — RKl/F(Gm) XX RK,/F(Gm) — T —0

where K;/F (fori = 1,...,¢t) are intermediate fields of K/F and K/K; is Galois. Now T =
[1-; Rk, /7(G,,)/G,, and is rational. We note that for any subgroup H of G, Ix Lg is also an
augmentation ideal. Hence an algebraic tori with augmentation ideal character lattice is hered-
itarily rational.

It is worth mentioning that passing to dual lattices in 2.2 we get
0— Z— Z[X] — Jx — 0

where Jx = I} is called Chevalley module. The corresponding algebraic torus to Jx has inter-
esting properties and is called norm one torus. Chevalley was the first one who discovered that
norm one torus is not necessarily rational.

The following lemma was used in [23] to show that a given G-lattice is isomorphic to Jg/g.
Lemma 60. /23, Remark 4.1] Let L be a G-lattice. If there exist x € L such that,

e (G.x); =L

e Stabs(x) = H

d deG gx =0,

then L = JG/H-



Chapter 3

Rationality Problem for Five Dimensional
Algebraic Tori

In 2012 Hoshi and Yamasaki published a paper [15] in which they classified algebraic tori of
dimensions 4 and 5 up to stable rationality. Their classification is based on computing the
flasque classes of algebraic tori in GAP. They showed that in rank 5, there are exactly 311
indecomposable G-lattices which are stably rational. More precisely they showed their stable
rationality by finding the maximal groups and proved stable rationality of their subgroups. The
following table presents the maximal groups they found.

24
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Number CARATID G 4G
1 (5,942,1) Imf(5,1,1) 3840
2 (5,953,4)  Sq 720
3 (5,726,4) CixS, 384
4 (5,919,4)  C, X Ss 240
5 (5,801,3)  Cyx(SIxCy) 144
6 (5,655,4) D xC, 128
7 (5,911,4)  Ss 120
8 (5,946,2)  Ss 120
9 (5,946,4)  Ss 120
10 (5,947,2) Ss, 120
11 (5,337,12) DgxS; 48
12 (5,341,6) DgXS; 48
13 (5,531,13) Cy xS, 48
14 (5,533,8)  Cy xS, 48
15 (5,623,4) Cy xSy 48
16 (5,245,12) C2 xS, 24
17 (5,81,42) Cyx Dy 16
18 (5,81,48) C,x Dy 16

Table 3.1: The maximal 18 groups in the 311 cases found by Hoshi and Yamasaki in [15].

In 2015 Lemire [23], proved that, except for possibly ten of the 4 dimensional stably rational
algebraic tori found by Hoshi and Yamasaki, all of them are rational. The rationality of the
ten exceptional cases is still unknown. The author did not use any computer based arguments
except for finding generating sets of groups and lattices of subgroups in GAP. The rationality
results we are presenting are based on the ideas used in [23]. We present algorithms which
may be applied to character lattices of algebraic tori, in order to investigate their rationality.
These algorithms provide machinery to reduce the rationality problem in a specific dimension
to lower dimensions.

From now on we will call the groups mentioned in Table 3.1 respectively G, to Gg. L repre-
sents the corresponding G-lattice to a finite subgroup of GL(n, Z), G, as defined in Definition
46. When we say a group or a lattice is rational we mean their corresponding algebraic torus is
rational. By a decomposable (matrix) group, we mean its corresponding lattice is decompos-
able. We say G’ is the dual group of G if G’ is the corresponding group to the dual of L.

In this chapter we will investigate the rationality of Gy,...,Gg. In some cases, we prove
that the group is hereditarily rational. There are two main methods that we will use, both of
which were used in [23]. The first method is reducing the rationality of a five dimensional
torus to rationality in lower dimensions. The second one is to see them as lattices of which the
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rationality is known.

3.1 GAP: Carat and CrystCat

GAP [11] stands for Groups, Algorithms, Programming, and is a computer algebra system for
computations in discrete algebra with emphasis on computations in group theory. GAP is an
open source system which is accessible directly or in SAGE [8]. GAP provides various pack-
ages for computations in matrix groups and representation theory. For our purposes we need
Carat and CrystCat packages of GAP.

The GAP package Carat provides functions of the stand-alone programs of CARAT, which
is a package for the computations related to crystallographic groups. Carat contains the catalog
of all conjugacy classes of finite subgroups of GL(n,Z) for n up to six. More precisely the
Carat package gives access to all Q-classes and Z-classes and maximal classes over Z (for the
number of these classes see Table 3.2).

Remark. The Q-classes are conjugacy classes over Q. We note that some Z-classes may
belong to the same conjugacy class over the rationals.

# conjugacy classes | # conjugacy classes | # conjugacy classes
n | of finite subgroups of maximal finite of finite subgroups
of GL(n,Z) subgroups of GL(n, Z) over Q
1 2 1 2
2 13 2 10
3 73 4 32
4 710 9 227
5 6079 17 955
6 85308 39 7103

Table 3.2: Numbers of conjugacy classes which are accessible in Carat.

It is worth mentioning that Carat contains information about crystallographic groups which we
will not use. The CrystCat Package in GAP also provides a catalog of crystallographic groups
up to dimension 4. The catalog mostly covers the data in [3]. CrystCat and Carat are comple-
ment of each other.

The GAP ID, (n,m,l, k) of a finite subgroup G of GL(n,Z) means that G is of rank n and
belongs to k-th Z class of the [-th (Q-class of the m-th crystal system. This works for 2 < n < 4.
Hoshi and Yamasaki wrote a GAP code using the Carat package to have easy access to the j-th
Z~class of the i-th QQ-class group of rank n. They called this Carat ID. The GAP scripts written
by Hoshi and Yamasaki are available from
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http://www.math.h.kyoto-u.ac.jp/ yamasaki/Algorithm/

The algorithms introduced in the next section are implemented in GAP (needs some functions
from the codes written by Hoshi and Yamasaki) and the code is available from

https://github.com/armin-jamshidpey/Algebraic-Tori

Since the actions of matrix groups in GAP are considered from right, throughout this chapter
we work with row vectors instead of columns. One may also use the columns by considering
the dual groups.

3.2 Reduction Algorithms

Assume
0O0->M—->L;—>N-—->0

is a short exact sequence of G-lattices such that N is a permutation projective G-lattice. If K/F
is a finite Galois extension with G = Gal(K/F), then by Theorem (58), K(Lg)C is rational over
K(M)®. Thus, rationality of K(M)© over F implies rationality of K(Ls)C over F.

Suppose L is an indecomposable G-lattice. In this section, we present methods to exam-
ine the possibility of existence of such a short exact sequence for Ls, with N a permutation
G-lattice.

Although sign permutation lattices are not permutation projective, constructing a short exact
sequence of G-lattices

0O0->M—->L;—>N-—-0

where N is a rank one sign permutation G-lattice might help to determine rationality of the as-
sociated algebraic torus to Ls. Note that existence of such a sequence does not directly imply
rationality. However, under some conditions the rationality may be concluded.

The goal of this section is to provide tools to get exact sequences mentioned above for a given
indecomposable G-lattice. The idea behind all of the methods is a simple fact which we explain
briefly here.

A lattice L, is reducible as a G-lattice if and only if QL; = Lg ®z Q has a proper Q[G]-
submodule W of dimension 0 < m < n. Let L; be a G-lattice of rank n and W is an m
dimensional proper Q[G]-submodule of QLs. Then L; N W is a sublattice of Ls of rank m
such that Q(Lg N W) = W. Then

0> LgNW-o>Lsg—> Lg/(LenNnW)—>0
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is a short exact sequence of G-lattices. Note that this implies in particular that L;/(Ls N W) is
torsion free so that a Z-basis of L; N W can be extended to a Z-basis of L.

In the next paragraphs we are specifically looking for an n — 1 dimensional proper Q[G]-
submodule of QL.

If we start with the dual lattice Lj;, and we are able to find a rank 1 permutation sublattice
of Ly, we get
0-Z—->L;,—>M-—DO,

where M = L(,/Z is of rank n — 1. Then by dualizing the sequence we have
O->-M —>L;g—>7Z—0

as desired.

Now, we explain how to find a permutation rank one sublattice of L;;. In order to get a one di-
mensional Q[G]-submodule of QL,, we use the eigenspaces of the transposes of a generating
setof G. Let{o,...,0,} be the transposes of a generating set of G and let G* = (o1, ...,0,).
Suppose E; ., is the left nullspace of o; — I over Q. We define

El = El,O’l N---N El,O'n'

Note that G* acts trivially on E;. If E; # O then we can choose a nonzero vector u € Ej.
Let u = (Z—:,Z—z,...,%) € E; such that ged(a;, b;) = 1. If m = lem(by,...,b,) then mu =
(aj,....ay) € Z". It ged(d), . . .,a;) = dthenv = Zu € Lg N E; and the ged of its entries is 1.

As a consequence, we can extend {v} to a Z-basis of Lj,. A general algorithm to do this exten-
sion is given by Magliveras et al in [27]; GAP also has a function which does the job. In most
of the cases that we will see in the next section, v had a +1 as an entry, which makes the basis
extension so simple: if v; is +1 then {ey,...,e;_1,€j1,...,e,, v} forms a Z-basis for L.

Since it is possible to extend v to a basis for the lattice L;,, there exists a change of basis
matrix T in GL(n, Z) such that
—1 5i *
TO','T =

01

for some 9; € GL(n—1, Z). Since we consider the finite subgroups of GL(n, Z) up to conjugacy,
we can work with G’ = TG*T~". By considering the first n — 1 vectors of the standard basis of
the G'-lattice Lg (which is isomorphic to L), can form the G'-lattice M such that Ls /Z = M
and we get

0—Z—>Lsg —>M—0.

By dualizing the sequence we get

0 — M — L, —7Z—0.
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Note that L, is isomorphic to L.

The explained method above is presented as an algorithm here.

Algorithm 1 Fixed Point Algorithm
Input: A finite subgroup G of GL(n, Z), given by its generators {07y, ..., 0y}

0;
Output: A matrix T € GL(n,Z) such that TO';T_I = l * l where 6; € GL(n — 1,7Z), and

01
sublattices M, N such that 0 — N — L; — M — 0 is an exact sequence of lattices.

LE—| o -I|oy-1] |l -1 |
2: W « LeftNullspace(F)
3: if W is not zero then
choose a nonzerov € W
ifvez"
find c € Zs.tcv e Z" and ged(cev) = 1
Vv
end if
apply the algorithm in [27] to extend v to a basis B = {84, ...,8,-1, v} for Lg
T <—[ 1o Bant V]t
N « Zv
M «— L/N
return M, N, T
end if
else

return fail
end if

Remark. If the algorithm returns a matrix 7" then for o € {0}, ..., 07},

ToT™ ' =o'

,_| O
O'—Ol

for some 6 € GL(n — 1, 7Z). More precisely

where

To=0'T

and the last row of T'o is nothing but vo- = v. This implies that the last row of 0" = [0 ... 0 1].
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Example 1. Let G < GL(4, Z) be generated by

0O -1 0 O 0O 1 0 O

-1 -1 -1 -1 and -1 0 0 O

1 1 1 0 0O -1 0 -1

1 1 0 1 0O -1 -1 O

The transposes are

0 -1 11 0 -1 0 O
o -1 -1 1 1 and T = 1 0 -1 -1
10 -1 10 {0 0 0 -1
0 -1 01 0 0 -1 0

Then the E, , is the left nullspace of

0'—14:

o

|

[—
OO = =
OO = =

One can verify that
{[1 11 0],[1 10 1]}

is a basis for E; . Similarly E ; is the left nullspace of

1 -1 0 0
1 -1 -1 -1

— L =

T7HT1 0 0 -1 -1
0 0 -1 -1

and it is generated by [0 0 -1 l].

Itis not hard tosee [0 0 -1 1| € Ey,. Thus
Ei=E,NE.=({0 0 -1 1]
and[0 0 -1 I]eL Now
({1t 0000100001000 -1 1]

forms a Z-basis for L. The change of basis matrix 7 is

1

0 1
00 1 O
00 1
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Hence
0 -1 2|1
ToT-! = -1 -1 211
10 -1 110
0O 0 0|1
0 -1 01]0
1 0 -2]-1
-1 _
ToT= =1y 0 -1]-1
0O 0 011
Now by dualizing we get
0O -1 010 O 1 010
-1 -1 =110 d -1 0 0|0
2 2 100 ™o 2 <10
1 1 01 0 -1 -1]1

as a generating set for a conjugate of G. By defining M C L generated by ey, e; and e; the
following exact sequence will be obtained

0O—M—>Lg—7Z—0

We call the above process the fixed point algorithm. One can generalize it as follows. Assume
E, ., be the left kernel of o — A over the rationals. Now define E., , to be the set {E; -, E_; +}.
Assume E. ¢ is the Cartesian product of E_, , for all o € G*, 1.e.

EiG=Es1o X - X Esy g,

If there exist A € E. ¢ such that W = () B # 0, then we can find a nonzero v € L, N W. As
BeA

we have seen in the fixed point algorithm, we can extend a multiple of v to a Z-basis for L.
Then we can get a change of basis matrix 7', such that

0; | *
. _1: !
Toil [ 0 1 l

for some ¢; € GL(n — 1,Z). Thus by a similar argument we can use the new representative of
the conjugacy class of G* to form an equivalent lattice and similarly by choosing the first n — 1
elements of the standard basis of Ls we can produce

0—72Z —Lg—M—0.
By dualizing the sequence we get

0O — M — L, —Z —0.
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Again note that L, is isomorphic to L.

This process will be called the sign fixed point algorithm and it is presented as an algorithm
here.

Algorithm 2 Sign Fixed Point Algorithm
Input: A finite subgroup G of GL(n, Z), given by its generators {0y, ..., 0p}.

0;
Output: A matrix 7 € GL(n, Z) such that TO';T‘1 = [ﬂ%} where 0; € GL(n — 1,7Z), and

sublattices M, N such that 0 — N — L;; — M — 0 is an exact sequence of lattices.

1: forgin{of,...,07,} do
E, « the set of left nullspaces of g + I over Q
end do
2: E<_E0’l XEa—fZX"'XE(rfn
3: W20
4: while W =0and E # (0 do
A « arandom element of E
We Na

acA

E—E\A
end do
5: if W is not zero then
choose a nonzerov € W
ifvez”
find c € Zs.tcv e Z" and ged(ev) = 1
vV« cv
end if
apply the algorithm in [27] to extend v to get a basis B = {5, ...,B,-1,v} for L
T <—[ 1 Baot V]t
N « Zv
M «— L/N
return M, N, T
end if
else
return fail
end if
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Example 2. Let G < GL(4, Z) be generated by

1101 0 10

0001 1001

101 1 0 00

0100 110
The transposes are

10 -1 0 0 0

lrooap 1o

10 0 1 0 10 1

1 1 1 0 0 0

Then

2 0 -1 0

_, 1 -1 0 1

T4 0 0 0 o0

1 1 1 -1

00 -1 0

Lot o

TTEZl0 0 2 0

11 1 1

1 0 0 -1

1 -1 0 1

ThEL g 0 o

0 1 0

10 0 -1

P R R R

*“lo1 1 0

00 -1 2

By computing the left nullspaces we get

Ey;=<[0,0,1,0],[1,1,0,1])

33

0
0
-1
1
0 -1
0 1
0 O
-1 1

E—l,o’ = <[[27 07 1’0]’ [1’ _1’0’ 1]]>

El,T = <[_1’_1’_1’ 1]>
E—I,T = <[1’ _1’ la 1]>

So
EI,O' N El,‘r =0
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Ei,NE_ ;=0
E. ,NE .=(11,1,-1])
E ,NE_ ;=0
LetW=E_,NE;.So[l,1,1,—-1] € LN W is extendable to a basis for L by vectors

[1,0,0,01], [0,1,0,0] and [0,0,1,0]

and the corresponding transformation is

1 00 O
010 O
T =
001 O
1 11 -1
01 -1 -1
101 0
’ _ -1 _
T =0 0 1
00 0 -1
00 -1 0
10 1 O
‘=TT =
reaT 11 0 -l
00 0 1
Now by dualizing we get
0O 1 0,0 0 1 110
1 00| O d 0 0 110
1o [ ™11 00
-1 0 1|-1 0 0 —-1]1

as a generating set for a conjugate of G. By defining M C L; generated by e}, e; and e the
following exact sequence will be obtained

O0—M-—>L;—7Z —0.

In general to get a Q[G]-submodule W of QL, where L = L is a G-lattice, one can use the
decomposition of QL (provided that it is decomposable). It is not always easy to find the de-
composition of a Q[G]-module. The most well-known tool for module decomposition is the
meataxe algorithm. The algorithm was first introduced by Parker in [31] in order to check
irreducibility of a finite dimensional module over a finite field and finding explicit submodules
in case of reducibility. Later on Parker extended the idea of the meataxe algorithm to charac-
teristic zero (see [32]). His algorithm can be used to decompose an integral representation of
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a finite group. In [33], the authors provided machinery which enables us to decompose Q[G]-
modules up to dimension 200. So there are algorithms which give the decomposition over Q.
We invite the reader to see [26] and [14] for more details.

Assume G < GL(n,Z) is finite and QL = L ®; Q is the Q-vector corresponding space to
L. If QL is a decomposable Q[G]-module, then there exists a change of basis matrix such that
generators of the Q-class of G can be written as block diagonal matrices

Ta]“lzléi Ol
0| v

where 6; € GL(m, Q) and y; € GL(m', Q) for some m,m’ € Z. Let{ey,...,en, €mils---sCmim}
be the standard basis for QL. The QM and QN generated respectively by {ey,...,e,} and
{€nsls- .., Emeny} are invariant (set wise) under the action of G and QL = QM & QN. Now
T-'(QM) is a G-stable subspace and

M=LnT ' (QM)

is G stable. Then we get
0O—M-—>L—L/M—0

as an exact sequence of lattices.

The above idea can be turned into an algorithm. In order to do so, one need to compute the
decomposition of QL (meataxe or any other algorithm can be applied). If in the previous step
the change of basis, namely 7, to get the decomposition is not computed, it should be done
next. The next step is to choose a component of the decomposition, say QM and a basis of it.
After that, M = T~'(QM) N L is a sublattice of L. The last step is to extend a basis of M to L
(see [27] for an algorithm).

Here is an example which shows the above idea in practice. The Q-class of the group is
presented from the list of Q-classes in rank 4 provided in [15].

Example 3. Consider the group G generated by

00 -1 0 1] -1 0 0 -1 0
10 0 0 1 0 0 -1 0 1
o=l 01 0 0 O|adr=| 0 0 0 0 -1
00 1 -1 -1 1 -1 0 0 -1
00 -1 0 0] -1 0 0 0 O]

The QQ-class of G is accessible in the list of rank 4 groups in [15] by the name cryst4[149]. The
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generators of the (Q-class are

(0 0 1]0 0] (1 -1 1] 0 o0
1 -1 110 0 1 0 0] 0 0
o’={0-10[00|ade=[0 0 -1|] 0 O
0 000 1 0 0 0] 0 1
0 0 0|1 0] 0 0 0]-1 -1

Considering the orders of matrices we can figure out there exist an invertible integral matrix 7
such that

ToT ' =o'
TrT™' =1
Assume 25 indeterminates ty, . . . , t44 and the matrix

[ fo0 for for fo3 fou |
o tint hi2 L3 i

T=|to th tn hy iy

fa0 f31 I3 133 I3

| fa0 fa1 lip l43 T4g |

Then
00 -1 0 1] 0 010 0]
-1 0 0 0 1 1 -1 100
T-{f o1 0 o0 O0|=(0 -1 0O0O0]|-T
00 1 -1 -1 0O 0 0 01
00 -1 0 O 0 001 0]
-1 0 0 -1 O (1 -1 1 0 O]
O 0 -1 0 1 1 0 0 0 O
T o 0 o0 O -1{f(=10 O -1 0 Of-T.
1 -1 0 0 -1 O 0 0 0 1
-1 0 0 0 O |0 0 0 -1 -1 |

The transformation 7 can be found by solving (and replacing parameters) the linear system
obtained from above equations as
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Define QM = (e, e,, €3)q, since

O RI— A= B—A—

we have

Hence T~'(QM) = (|-

11
4 3

O Bl b=

N

O RI— Bl A==

RO 1= R o s [ s e i e

M:LmT‘l(QM):<[1 010 —1],[0 1

O O Bl—bl—ilw
. .

1
) 4°

37

—‘l‘]>@ Now

0 1].J]oo o1 1]y

By extending the above basis of M to a basis of L (by adding [0, 0, 1,0, 0] and [0, 0, 0,0, 1])
and forming the change of basis matrix we get

S =

which gives

[1 01 0 -1 00 -1 O
0100 1 -1 0 0 O
0001 1 01 0 O
0010 O 00 1 -1

|0 000 1]] 00 -1 O
1 010 -1 -1 0 0 -1
0100 1 0O 0 -1 O
0001 1 0O 0 0 O
0010 O 1 -1 0 O

|0 000 1][-1 0 O O

el eolBeolNeol S

0

S O O =

el eoleolel S

S = O O

S O O =

0

S O = O O

o o o = O

S O = O

0

-1 ]

S = O O =

S = O O =

Now we can get the following exact sequence of lattices

;—AO_;—L
L

o o = O O

o O = O O

—_ O = =
\

0O—M-—>L—L/M— 0.

01 0] 0 0]
-10 0/ 0 0
00 -1 0 0
01 0] 0 -1
00 0|-1 0]
0 0 -1]0 0]
-1 0 0|0 ©
0 -1 0[0 0
0 0 0[]0 -1
-1 0 0|1 -1|
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3.3 Rationality Problem for 5 Dimensional Indecomposable
Stably Rational Algebraic Tori

Up to now we have presented some algorithms to reduce a lattice and form exact sequences
of specific type. In this section we apply those algorithms to the 18 indecomposable lattices
which are maximal in the set of indecomposable stably rational rank 5 lattices found in [15].

In some cases instead of applying any algorithm we interpret the lattice as a root lattice of
a root system. The general idea is to identify the given lattice as a lattice in one of the heredi-
tarily rational families of lattices. We also try to reduce some lattices to one of those families.

There are also cases where our reduction does not provide enough information to decide about
the rationality. In these cases we reduce the lattice and provide some information which may
help to decide about their rationality. There are also irreducible lattices among the 18 maximal
ones. A partial lattice of maximal subgroups of the irreducible cases is provided so that our
algorithms work for maximal subgroups.

Throughout this section for a finite subgroup G < GL(n, Z), the corresponding algebraic torus
and the corresponding lattice (see Definition 46) is denoted respectively by T and L;. When
we say a group is rational or a lattice is rational we mean the corresponding algebraic torus is
rational.

3.3.1 Case G,

G, is one of the 7 maximal indecomposable finite subgroups of GL(5,7Z). This is the auto-
morphism group of root system Bs. So we can recognize the lattice as (Z(Bs), Aut(Bs)). This
lattice is hereditarily rational (see [23]).

Alternatively by looking at the generators of G,

(01 00 0] (0100 0]
10000 0010 0
00100 |ad|00O0T1 0
00010 0000 —I
(0000 1] 1000 0|

One can also see that the corresponding lattice is sign permutation which implies rationality of
Lg

1
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3.3.2 Case G,

This is a group isomorphic to S¢. Following [23] we show that the dual lattice 1s isomorphic to
Chevalley module Js,s,. The group G, is generated by

[1 1 0 0 O] [0 1 0 0 -1]
0 -1 0 0 1 0 -1 -1 0 0
0 1 0 Oland |1 1T O O O
0O 1 0 0 O 0O 1 0 0 O
|0 -1 0 -1 O | 0 -1 0 -1 0 |
The dual lattice corresponds to the group generated by
[1 0 0 0 0 | 0 0 1 0 0]
I -1 1 1 -1 1 -1 1 1 -1
A={0 0 1 0 O |and B=| 0O -1 0 0 O
0 0 00 -1 0O 0 00 -1
|0 1 0 0 0 | | -1 0 0 0 O |

The following computations show that e, is a cyclic generator of L, .

0 0 10 0]
1 -1 11 -1
elB:[loOOO]O—IOOO:[00100]
0 0 00 -1
-1 0 00 O |
0 -1 0 0 0
0 0 0 -1 0
elBZ:[IOOOO] -1 1 -1 —11:[0 —1000]
1 0 0 0 0
0 -1 0 0
11 -1 -1 1
00 0 0 1
eB*=|1 0000000 1 0f=[-11-1-11]
001 00
01 0 0 0
-1 1 -1 -1 1][1 0 0O O |
00 0 O 1|1 =111 -1
eBPA=[1 0000|000 1 0ff0 0 100 |=[00010
001 0 o0oflo 0 00 -1
01 0 0 0[]l0 1 00 0

Now we have to make sure that the stabilizer subgroup of e, is isomorphic to Ss.
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gap> GD2:= GroupByGenerators([A,B]);
<matrix group with 2 generators>

gap> S:= Stabilizer(GD2 ,el);
<matrix group with 6 generators>

gap> StructureDescription(S);
IISSII

The last step is to check if ),y e1.¢ =0

gap> n:= [0,0,0,0,0];

0

gap> for g in GD2 do n:= n + (el*g); od;
gap> n;

[ 0, 0, 0, 0, 0 ]

This shows that the lattice is isomorphic to Js, /s, and its dual is isomorphic to the augmentation
ideal Is,/s,. This implies that G, is hereditarily rational.

3.3.3 Case G;

The order of group suggests that there is a relation between the lattice and the rank 4 lattice for
ZBy. The group is generated by

1 01 10 1 1.0 0 0]
0 0 -1 0 O -1 0 0 -1
-10 0 0 -1fand [ O O 1 0O O
0O 1 0 0 O 0O -1 0 0 O

| -1 0 -1 0 O -1 -1 0 -1 0O |

The dual group is generated by

(1 0 -1 0 -1 | 1 -1 0 0 -1
0 0 0 1 O 1 0 0 -1 -1
1 -1 0 0 -1fand |O O 1 O O
1 0 0 0 O 0 0 0 0 -1
0 0 -1 0 O 0 -1 0 0 O

By applying algorithm(1) we get the change of basis matrix

0100 0
0010 0
00071 0
0000 1

1000 -1
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Now changing the basis and dualizing gives us the group

(0 -1 0 0]0] [0 0 0 -1]0
0 0 0 -1/0 01 0 010
1 00 0|[0|and|-10 0 010
00 1 010 0 0 -1 010
0 1 1 01| 1 0 0 01

This yields the following exact sequence of lattices
0—M-—>Lsg,—Z—0

where M corresponds to H generated by

0 -10 0 00 0 -1
00 0 -1 01 0 0
1 oo o™l 1 00 o
00 1 0 0 0 -1 0

GAP ID for the above group is

gap> G3info:= RanklPermQuot(G3);;
gap> G3info.ZClassSublLat;
[ 4, 32, 21, 1]

In [23] the author has proved the corresponding lattice to [ 4, 32, 21, 1 ] is ZB, which is hered-
itarily rational. This proves that T, 1s hereditarily rational.

Alternatively one can see from the above generators of H, that M is a sign permutation lat-
tice which is hereditarily rational.

3.3.4 Case Gy

The group is generated by

1 0 0 0 0] 1 0 0 0 -1
-1 0 1 01 -1 -1 1 0 1
0O 01 00land | O -1 O -1 O
0O 0 0 10 I 1.0 0 O

| 1 1 -1 0 0] 0 0 0 0 -1

The dual group is generated by

[1 -1 0 0 1 [ 1 -1 0 1 0 |
0 0 00 1 0O -1 -1 1 0
0O 1 10 -1fand | O 1T O O O
0 0 01 O 0O 0 -1 0 O

|0 1 00 O -11 0 0 -1 |
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Algorithm (2) produces the change of basis matrix

01 0 0 0]
00 1 0 0
00 0 1 0
00 0 0 1
10 -1 -1 2

With the above transformation we can see the new representative for G4 is generated by

(0 1 0 1]0] “11 0 1]0]
01 000 ~1 0 -1 -1]0
0 0 1 0(0[ad]| 1 0 0 —-1]0
1 -1 000 000 1|0

0 0 0 01| 0 0 0 -1|-1|

Now by considering M, to be the corresponding lattice to

0 1 01 11 0 1
0 1 00 10 -1 -1
00 10| 1 00 -1
1 =100 00 0 1

we can produce
O—)MG4—>LG4—>Z_—>0_

Mg, corresponds to [4,31,7,1]. The generators of [4,31,7,1] are

1 0 0 O 0O 0 1 -1 0 0 0 -1
1 0 -1 0 -1 0 1 O 0O 0 -1 0
1 0 0 -1 0O -1 1 0 -1 0 0 O
1 -1 0 O 0 0 1 O 0 -1 0 O
The generators of the dual group are
I 1 1 1 0O -1 0 O 0 0 -1 0
0 0 0 -1 0 0 -10 0 0 0 -1
0 -1 0 O 1 1 1 1 0O -1 0 O
0 0 -1 0 -1 0 0Oj[-1 0 0 O

e:=[1,0,0,0]

=[1,1,1,1]
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0O -1 0 O
0O 0 -10
e ) ) L1 =10,-1,0,0]
-1 0 0 O
0O 0 -1 0
0O 0 0 -1
e () _1 O O - [0707_170]
-1 0 0 O
gap> H:= GDual (MatGroupZClass(4,31,7,1));;
gap> S:= Stabilizer(H,e);

<matrix group with 15 generators>
gap> StructureDescription(S);

nggn

gap> n:= [0,0,0,0];

[0, 0, 0, 0]

gap> for h in H do n:= n + e*h; od; n;
[0, 0, 0, 0]

which shows M is the Chevalley module Js,s,, thus its dual lattice is hereditarily rational.
However, since Lg, /Mg, 1s sign permutation, we can not conclude rationality of G.

3.3.5 Case G;

The group is generated by

(1 0 0 0 0 | 0 01 -1 0] -1.0 00 0]
01 0 0 O 0 0 0 -1 -1 0 00T1O0
00 o0 o0-1],]1 0 0 1 O fad | 0 O0O0 01
00 0 1 O 0 0 01 O 0 1 00O

|0 0 -1 0 O | 0 -1 0 -1 0 | | 0 01 0 O]

The generators of the group corresponding to the dual lattice are

(1 0 0 0 0 | [0 0 1 0 0 | -1 000 O]
01 0 0 O 0 0 00 -1 0 001O0
00 0 0 -1], 1 0 00 O fand [ O O O O 1
00 0 1 O -1 -1 11 -1 0 1 00O

|0 0 -1 0 O | | 0 -1 0 0 O | | 0 01 0 O]
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Algorithm (2) produces the change of basis matrix

100 0 0]
001 0 0
000 1 0
000 0 1
110 =10

With the above transformation we can see the new generators for G4 are given by

(1 0 0 olo] [o1 0 1]0] (-1 0 -1 0] 0 |
0 0 0 -1/0 10 1 010 00 0 1]0
0 01 0[0|,]00 0 —-1/{0|ad| 0 0 1 0|0
0 -10 010 00 -1 010 01 0 0|0
0 0 0 01 0 0 -1 —11 | 0 0 1 0f-1

Now by considering M, to be the lattice corresponding to the grouop generated by

1 0 0 O 01 0 1 -1 0 -1 0
0 0 0 -1 10 1 0 0 0 0 1
0 0 1 O 00 0 -1 0 0 1 O
0 -1 0 0 00 -1 0 0 1 0 O
we can produce
0—>MG5—>LG5—>Z_—>0.
The corresponding group to Mg, has GAP 1D [4,29,9,2].
3.3.6 Case Gg¢
The group is generated by
[1 0 0 0 0] -1 0 0 0 0] 1 1 00 0]
00010 0 0 -1 00 0 -1 000
0oo0o100|,]1]0 -1 0 0Ofand O O 1 0O
01000 1 0 0 01 0 0 010
|0 0 0 O 1| I 0 0 1 0 0 -1 0 0 1]
The group corresponding to the dual lattice is generated by
[ 1 0 0 0 0] -1 0 0 1 1] [1 0 0 0 0 |
00010 0O 0 -1 00 I -1 0 0 -1
oo1ro0o0(,10 -1 0 00O0Ofand [O O 1 O O
01000 0 0 0 01 0 0 01 O
|0 0 0 0 1] | 0 0 O 1 0] |0 0 0 0 1 |
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Algorithm (2) produces the change of basis matrix

0100 0]
0010 0
0001 0
0000 1
1000 -1

With the above transformation we can see the new generators for G4 are given by

001 0[0][0 -100|0] (-1 0 0 0/0]
0100/0[|-1 0000 0 1000
1000/0|{|0 0 o01/0|ad| 0 0100
000 t1l0[l0 0 100 0 00 1[0
'0000[1]|0 0 0o0[-1 1 00 01

Now by considering M, to be the corresponding lattice to , H, generated by

0010 0 -1 0O -1 0 0 O

0100 -1 0 0O 0O 1 00
and

1 000 0O 0 01 0O 010

00 0 1 0O 0 10 0O 0 0 1

we can produce
0— Mg, — Lg, — Z~ — 0.

Mg, 1s a sign permutation lattice and therefore hereditarily rational. However, since Lg, /Mg,
1s sign permutation, we can not conclude rationality of Ge.

3.3.7 Case G,

The group is generated by

1 0 0 0 0] 1 0 -1 -1 -1
-1 0 1 01 -1 0 0 1 1
0O 0 1 O O} and O 0 O 1 O
0O 0 0 10 o -1 0 -1 -1
| 1 1 -1 0 0| 1 0 0 -1 0
The group corresponding to the dual lattice is generated by
[1 -1 0 0 1 1 -1 0 0 1
0O 0 00 1 0O 0 0 -1 0
0O 1 10 -1}and |-1 O O O O
0O 0 01 O -1 1 1 -1 -1
|0 1 0 0 0 | -11 0 -1 0 |




46 CHAPTER 3. RATIONALITY PROBLEM FOR FIVE DIMENSIONAL ALGEBRAIC TORI

Algorithm (1) produces the change of basis matrix

01 0 0 0]
00 1 0 0
00 0 1 0
00 0 0 1
10 -1 -1 2|

With the above transformation we can see the new representative for G7 is generated by

(0 1 0 1]0] [0 0 1 1]0]
0 1 000 0 -1 0 -1]0
0 0 1 0/0fand|-1 -1 =2 =210
1 -1 000 0 2 1 210

0 0 0 01| 0 -1 -1 -1]1 |

Now by considering M, to be the corresponding lattice to the group generated by

01 01 0o 0 1 1
01 00 0 -1 0 -1
00 10| ™| 1 2 2
1 =100 0 2 1 2

we can produce

0—)MG7—)LG7—)Z—)O,

On the other hand the GAP ID of Mg, is given as

gap> G7info:= RanklPermQuot(G7);;
gap> G7info.ZClassSublat;
[ 4, 31, 4, 1]

The dual of [4,31,4,1], H, is isomorphic to S5 and can be generated by

0 0 1 0 0 0 0 1 0010
0 0 0 1 -l -1 -1 -1 0001
1 0o 0 ol'lo 1 0 o 0100
1 -1 -1 -1 0 0 1 0 1000
Fore, = [1 00 0],
0 0 1 0
0 0 0 1
1001
al 1 o o o [TLOOLO

-1 -1 -1 -1
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0 0 0 1
-1 -1 -1 -1

= 1

el o 1 0 o [0001]
0O 0 1 O

0O 0 0 1 0 0 1 O
-1 -1 -1 -1 0O 0 0 1
0 1 0 O 1 0 0 O
0 0 1 O -1 -1 -1 -1

=[-1-1-1-1]

€1

The stabilizer subgroup of e¢; in H can be calculated as

gap> S:= Stabilizer(H,e);
<matrix group with 7 generators>
gap> StructureDescription(S);
IIS4II

Moreover,

gap> n:= [0,0,0,0];

[0, 0, 0, 0]

gap> for h in H do n:= n + e*h; od; n;
[0, 0, 0, 0]

which shows the corresponding lattice to H is the Chevalley module Js, /s, Alternatively in
[23] the author has proved that [4,31,7,1] is hereditarily rational. Using GAP we can verify
that [4,31,4,1] (up to conjugacy) is a subgroup of [4,31,7,1]. This proves rationality of T, .

3.3.8 Cases Gg, Gg and G

It is well known that a representation p is absolutely irreducible if and only if (x,,x,) = 1
where y,, is the corresponding character to p. Since the groups are of small order, 120, we can
test if {x,, x,) is one or not. We recall

1
U Xp) = — ) (1))

oeG

where G < GL(n, Q) and |G| = n.

gap> n:= 0;
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gap> for
> n:= n+
> od;
gap> n;
1

gap> n:=
0

gap> for
> n:= n+
> od;
gap> n;
1

gap> n:=

gap> for
> n:=n
> od;

gap> n;

+
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g in AsList(G8) do
(1/Size(G8))*Trace(g) "2;

0;

g in AsList(G9) do
(1/Size(G9)) *Trace(g) "2;

0;

g in AsList(G10) do
(1/Size(G10))*Trace(g) "2;

Since all 3 groups are irreducible, we consider their maximal subgroups up to conjugacy and

check if their maximal subgroups are reducible. In case that a maximal subgroup is irreducible

we consider its maximal subgroups again and continue this process.

Figures 3.1, 3.2 and 3.3 respectively present lattices of subgroups of Gg, G9 and G1y. These
are not the complete lattices of the mentioned groups. We just considered the lattices up to the
level where algorithm one returns an output. Appendix (a) is devoted to show that the shaded

groups are hereditarily rational.
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Gs
[5,389,4]
[5,607,4]
[5,98, 28]
[5,174,2]
[5,580,4]
[5,19, 14]
[5,164,2]
[5,917, 3]
[5,57,8]
[5,901, 3]
[5,952,4]
[5,174,5]
[5,580,4]
[5, 19, 14]
[5,164,2]
[5,901, 3]

Figure 3.1: Conjugacy classes of subgroups of Gg. Algorithm (1) works for the gray ones.
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Gy
[5,389,4]
[5,607,9]
[5,98, 28]
[5,174,5]
[5,580,4]
[5, 19, 14]
[5, 164, 2]
[5,917,4]
[5,57,8]
[5,901, 3]
[5,952,2]
[5,174,2]
[5,580,4]
[5, 19, 14]
[5,164,2]
[5,901, 3]

Figure 3.2: Conjugacy classes of subgroups of Go. Algorithm (1) works for the gray ones.
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Gio
[5,391,4]
[5, 18, 28]
[5,173,4]
[5,6,3]
[5, 164, 2]
[5,174,2]
[5,461,4]
[5,6,3]
[5,608, 4] [5,164,2]
[5,99,57]
[5,173,4]
[5,6,3]
[5, 164, 2]
[5,580, 4]

[5,918,4] [5, 19, 14]
[5,952,2] [5,164,2]
[5,174,2]

[5,580,4]

[5, 19, 14]
[5, 164, 2]
[5,901, 3]

Figure 3.3: Conjugacy classes of subgroups of Gy. Algorithm (1) works for the gray ones.
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3.3.9 Case G11
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The group is generated by

-1
0
0
0
0

0
1
0
0

0

0

0
-1
0

0

0

0

-1

The dual group is generated by

-1

0
0
0

| O

0

-1

0

0

0
0
-1
0
0

_1_

0
0
0
0

S O O O~

1
0
1
1
1

0

0

Algorithm (2) produces the change of basis matrix

- o O O =

-1

0
0
0
0

-2 -2 2|

0
1
0
0

0
0
1
0

— O O O

and

and

o = O O O

S O O O

S O = O O

With the above transformation we can see a new representative for Gy; is generated by

(-1 -1 -1 1|0 ][1 1 1 1]0]
0 2 1 210 0 -1 0 00
0 1 2 210 00 -1 00
0 -2 -2 =3[0 00 0 -1/0
0 1 I 1]-1|]]0 0 0 o0]-1

and

0
0
1
0

0

2

2
-3

0

1

2
-2

0

0

1

1

—_o O O

Now by considering Mg, to be the corresponding lattice to the group H generated by
-1
2

2
-3

we can produce

-1
0
0
0

-1

2

1
-2

-1

1
2

-2

0— Mg, — Lg, — Z~ — 0.

1
0
0
0

-1

1

0
0

1

0

-1

0

1

0
-1

-1

S = O O

H GAP ID is [4,20,20,4]. A generating set for [4,20,20,4] is given by

0

1
0
0

1
0
0
0

0

0

0

[ R R

0

S = O

0

S O O =

- O O

0

2

2
-3

S = O O

0

1

2
-2
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As we can see its corresponding lattice decompose into 2 rank two lattices which are heredi-
tarily rational.

3.3.10 Case G;»

The group is isomorphic to Dg X S4 and is generated by

1 01 0 1 01 -1 -1 -1 (1 0 0 1 1
01 -1 0 -1 1o 1 1 1 0 -11 0 O
00 0 0-1f,;j00 1 O O fad |0 O O O -1
00 0 1 O 00 0 1 O 0 01 0 O
00 -1 0 0 | 00 0 0 1 | |0 0 0 -1 O |
Its dual is generated by
1 0 0 0 0] 0 1 00 O] 1 0 0 0 0]
0O 1 0 0 O 1 00O0O 0 -1 0 0 O
1 -1 0 0 -1 -1110O0}ad |0 1 0 1 O
0 0 o0 1 O -1 1010 1 0 0 0 -1
1 -1 -1 0 0]]-11001] 1 0 -1 0 O |
Algorithm(1) provides the matrix
[1 0 0 0 0
0 0 1 0 O
0 0 0 1 O
0 0 0 0 1
|1 -1 -2 -2 2

as our desired change of basis which gives us a new representative for the conjugacy class of
G1,, namely the group generated by

(1 0 0 0/0][1 0 0 0]0] (1 1 1 1]0]
020 1]0]|]|-2-1-2-2]0 02 0 -1/0
021 2]0||-2-2-1-2|0]|ad|0 -1 0 010
0 -3 0 -2/0 2 2 2 310 0 2 -1 0]0
0 1 0 11 ]|-1 -1 -1 =11 0 -1 0 0 [1]

Now we can define Mg,, to be the corresponding lattice to the group generated by

1 0 0 0 1 0 0 0 111 1
02 0 1 2 -1 -2 =2 0 -2 0 -1
0 2 1 2 B e I R B
03022 2 2 3 0 2 -1 0
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we get the following exact sequence for Lg,,
0— Mg, — Lg, —2Z—0
The ZClass of M, is given by GAP as

gap> Gl2info:= RanklPermQuot(G12);;
gap> Gl2info.ZClassSubLat;
[ 4, 20, 17, 2 ]

A generating set of [4,20,17,2] is given by

0100][100 0 0 -1 0 0
10oo00llo10 0 1 0 0 0
oot1o0lloo1 1™ o o -1 -1
0001|]|000 -1 00 1 0

and its corresponding lattice is decomposable to rank 2 lattices which we know their rationality.
Thus, Mg, is hereditarily rational and this implies that 7, is hereditarily rational.

3.3.11 CaseGys

A generating set of G5 is

1 0 0 0 0] 0 1 01 -1

0 0 -1 01 0 -1 10 O

0O -1 0 01]ad |O -1 0 O O

0 0 0 10 1 -1 0 0 1

0 0 0 0 1] 0 -2 00 1 |

The dual group is generated by

1 0 0 0 0] [0 0 0 1 0
0 0 -1 00 I -1 -1 -1 -2
0O -1 0 00jJand | O 1 O O O
0 0 0 10 1 0 0 0 O
0 1 1 01 -1 0 0 1 1

By algorithm (1) we have the following transformation matrix

S O O = O

- o O O O
S O O O
— o = O O
o = O O O
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which provides the new generators of the representative of the conjugacy class of G5 as

(0 -1 0 1]0] -1 1 0 0]/0]
-1 0 0 1]0 -1 0 0 00
0 0 1 0/0|and|-20 -1 210
0 0 010 20 0 1|0
0 0 001 1 0 1 -1]1]

Now by defining M, to be the corresponding lattice to the group generated by

0 -1 0 1 11 0 0
1 0 01 10 0 0
0 0 10| 5012
0 0 01 20 0 1

we can get

0—>MG13—)LG13—>Z—)0.

On the other hand GAP returns the GAP ID of Mg, as

gap> Gl3info:= Rank1PermQuot(G1l3);;
gap> Gl3info.ZClassSubLat;
[ 4, 25, 9, 2]

In [23] the author has proved that [4,25,9,2] is hereditarily rational which means 7, is hered-
itarily rational.

3.3.12 Case G4

A generating set of G4 is

0O -1 1 1 1] [0 -1 1 11

1 -1 011 0 -1 011

0 -1 000]and |-1 0 1 0O

0 0 0 01 0O 0 010

0 0 01 0] 0O 0 O0O01

The dual group is generated by

0O 1 0 0 0] 0 0 -1 0 0]
-1 -1 -1 0 0 -1 -1 0 0O
1 0 O O O] and 1 0 1 00
1 1 0 01 1 0 10
1 1 0 1 0] 0 0 1|
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By algorithm (1) we have the following transformation matrix
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(1 0 0 0 O]
00 I 00O
00 0 10
00 0 01
[ 01 -1 1 1]
which provides the new representative of the conjugacy class of G4 as
0 1 1 1]0] [0 1 1 1]0]
1 0 1 110 -1 1 1 110
-1 0 -1 0|0land | O O O -11]0
-1 0 0 -1/0 0O 0 -1 010
| 1 0 1 1|1 ] | 0 0 1 1 |1 ]
Now by defining Mg, to be the corresponding lattice to the group generated by
0 1 1 1] [0 1 1 1
1 0 1 1 and | = I 1 1 1
-1 0 -1 O 0 0 0 -1
-1 0 0 -1 | 0 0 -1 O

we can get
0— Mg, — Lg,, — Z — 0.

On the other hand GAP returns the GAP ID of Mg, as

gap> Gl4info:= RanklPermQuot(Gl4);;
gap> Gl4info.ZClassSublat;
[ 4, 25, 8, 5 1]

In [23] it is shown that the subgroups of [4,25,8,5] are rational except for possibly 8 subgroups
[4,6,2,11],[4,12,4,13],[4,13,2,0],[4,13,3,6],[4,13,7,12],[4, 24,4, 6], [4,25,4,5],[4, 25,38, 5].

Each of the above groups corresponds to a subgroup of G4 and except for them, the rest are
rational.

3.3.13 CaseGi;s

The group G5 is isomorphic to C, X S, and is generated by

00 -1 0 1 (-1 0 0 -1 0 |
-1 0 0 0 1 0 -1 0 1
01 0 0 0 |and]| 0 0 0 -1
00 1 -1 -1 1 0 0 -1
0 0 -1 0 0| ~1 0 0 0|
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This is the G-lattice discussed in Example 3. So the information is being recalled from that

example.
[1 0 1 0 -1 ]
0100 1
T=({000O01 1
0010 O
000O0 1

(01 00 0] 0 0 -1]0 0]
“10 0|0 0 -1 0 010 0
0 0 -1/0 0 |and]| 0 -1 0]0 0
01 0|0 -1 0 0 0]0 -1
|0 0 0[-1 0 | 1 0 0|1 -1|

Now we can define M = (e, e3,e3)z C Lg,, to get
00— M— Ls, — L/M — 0.

One can see that L/M is a rank 2 lattice which is the corresponding lattice to the group, H

generated by
0 -1 0 -1
[_1 O] and [1 _1].

H is isomorphic to S; and its corresponding lattice is not even sign permutation. We can
consider maximal subgroups of G5 as we did for the irreducible lattices.
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GI15
[5,81,54]
[5,391,4]
[5,18,28]
[5,173,4]
[5,6,3]
[5,164,2]
[5,174,2]
[5,461,4]
[5,6,3]
[5,606,4] [5,164,2]
[5,22,14]
[5,461,4]
[5,6,3]
[5,164,2]
[5,580, 4]
[5,19, 14]
[5,607,4] [5,164,2]
[5,98, 28]
[5,174,2]
[5,580,4]
(5,19, 14]
[5,608,4] [5,164,2]
[5,99,57]
[5,173,4]
[5,6,3]
[5,164,2]
[5,580,4]
[5,19,14]
[5,164,2]

Figure 3.4: Conjugacy classes of subgroups of Gs. Algorithm (1) works for the gray ones.
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3.3.14 Case Gg.

A generating set of G¢ 18

(1 0 -1 -1 1][1 0 -1 -1 0 | -1 0 01 -1
01 -1 -1 1 01 -1 -1 0 0 1 00 O
00 1 0 O 00 0 0 1 and | O 0O 1 0 O
00 -1 0 1 00 -1 -1 -1 0 001 O

| 00 1 1 0]J]1]00 1 O O | 0 00 0 1 |

The dual group is generated by
1 0 0 0 O 1 0 0 0 O -1 0 00 O]
0O 1 0 0 O 0O 1 0 0 O 0 1 00O
-1 -1 1 -1 1 -1 -1 0 -1 1|and | O O 1 O O
-1 -1 0 0 1 -1 -1 0 -1 O 1 0010
1 1 0 1 O 0O 0 1 -10 -1 0 0 0 1|

By algorithm (1) we have the following transformation matrix

o o o = O

S O O O
- o O O O
S O = O O
S = O O O

which provides the new generators of the representative of the conjugacy class of G¢ as

(1 -1 -1 1]o][1 =1 =1 0]0] -1 01 -1]0]
01 0 0lo]]0 0 0 1]0 0 10 010
0 -1 0 1/0]/]{0 -1 -1 —-1{0]|ad| 0 01 0|0
01 1 olo|J]|o 1 0 o]0 0 00 110
0 -1 -1 1|10 -1 =1 0|1 0 00 01 ]

Now by defining M, to be the corresponding lattice to the group generated by

1 =1 -1 1][1 -1 =1 0 101 -1
o1 00|00 0 1 0 10 0
0 -1 0 10 -1 -1 -1]*™ |0 01 0
o1 1 0||lo 1 0 o0 000 1

we can get

0—>MG16—)LG16—>Z—)0.

On the other hand GAP returns the GAP ID of M, as
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gap> Gl6info:= Rank1lPermQuot(G16);;
gap> Gl6info.ZClassSubLat;
[ 4, 14, 10, 2 ]

In [23] it is shown that [4, 31, 7, 1] is hereditarily rational. Using GAP one can verify that
[4,14,10,2] (up to conjugacy) is a subgroup of [4,31,7,1] which means T, is hereditarily ra-

tional.

3.3.15

Case G

A generating set of G7 is

The dual group is generated by

-1

|

[
S O O = O
S O O O

I

—_—
S O O = O
S O O O

o = O O O

S = O O O

—_ o O O O

- O O O O

S = O O O

- o O O O

and

and

S O O = =

By algorithm (1) we have the following transformation matrix

which provides the new generators of the representative of the conjugacy class of G as

el eoleoleol S

el elel =

o O = O O

- O O O

—_— -0 O O

(0 0 -1 0/0][-2 0 0 -1]|0]
01 0 00 1 -1 0 110
-1 0 0 0|0 1 0 -1 10
1 0 1 10 3.0 0 210
10 -10[1]|=30 0 -1]1]

and

o o O O

S o = O O

o = O O O

S = O = O

- o O O O

- O O

SO O O

S|l = O O

Sl— O O O

— o O O O
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Now by defining M, to be the corresponding lattice to the group generated by

0 0-10][-2 0 0 -1 1 1 00
01 0 0 1 -1 0 1 0 -1 00
10 0 0 oo -1 1™ o 1o
10 1 1 30 0 2 0 -3 0 1

we can get
0_>MG17 —)LG17—>Z—)O.

On the other hand GAP returns the GAP ID of M, as

gap> Gl7info:= RanklPermQuot(Gl7);;
gap> Gl7info.ZClassSublat;
[ 4, 13, 7, 12 ]

In [23] it is shown that the subgroups of [4,13,7,12] are rational except for possibly 5 subgroups
[4,6,2,11],[4,12,4,13],[4,13,2,0],[4,13,3,6],[4,13,7,12]

Each of the above groups corresponds to a subgroup of G;;7 and except for them, the rest are
rational.

3.3.16 Case Gig

A generating set of Gig is

(1 00 0 O | o -1 1 1 -1 0O 0 -1 0O
010 0 O -1 0 -1 0 O 0O 1 0 0O
001 0 O 0O 0 -1 -1 1 and [ -1 0 O O O
000 0 -1 o 0 o0 0 -1 0O 0 0 10

|0 0 0 -1 0 | 0O 0 0 -1 0 | 0O 0 0 01

The dual group is generated by

(1 00 O O][]O -1 0 0 O] [0 0 -1 00O
010 0 O -1 0 0 0 O 0O 1 0 0O
001 0 O 1 -1 -1 0 O and [ -1 0 O O O
000 0 -1 1 0 -1 0 -1 0O 0 0 10
0o00-1 0]]-1 0 1 -1 0 | | 0 0 0 O 1

By algorithm (1) we have the following transformation matrix

0 0 0]
1 0 0
0 1 0
0 0 1
-1 1 -1

- O O O
S O O O =
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which provides the new generators of the representative of the conjugacy class of Gz as
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(10 0 0/0][0 -1 0 0]0] (1 0 0 0]0]
01 0 0|0|]|-1 0 0 0]0 0 -10 00
00 0 -1[0 1 -1 =1 0/0|and |0 1 1 0]0
00 -1 0l0|]|-1 1 0 -1/0 0 -101/0
00 0 of1||-1 1 1 —1|1] 0 -1 0 01|

Now by defining Mg, to be the corresponding lattice to the group generated by

0 O 0 -1 0 O 1 0
0 O -1 0 0 O 0 -1
0 -1 1 -1 -1 O 0 1
-1 0 -1 1 0 -1 0 -1

S O O =
oS o = O
S = O O
- o O O

we can get
0— Mg, — Lgy — Z — 0.

On the other hand GAP returns the GAP ID of M, as

gap> Gl8info:= RanklPermQuot(G18);;
gap> G18info.ZClassSubLat;
[ 4, 13, 7, 12 ]

In [23] it is shown that the subgroups of [4,13,7,12] are rational except for possibly 5 subgroups
[4,6,2,11],[4,12,4,13],[4,13,2,6],[4,13,3,6],[4,13,7,12]

Each of the above groups corresponds to a subgroup of Gg and except for them, the rest are
rational.

3.3.17 Conclusion

The 18 maximal indecomposable stably rational lattices found in [15] are divided into 4 fami-
lies. The first family are the ones interpreted as lattices of root systems which are hereditarily
rational. The second family contains all lattices on which Algorithm 1 will not fail. The third
family contains lattices on which Algorithm 2 does not fail while Algorithm 1 fails. The last
family contains all lattices on which either, both Algorithms 1 and 2 fail but still the general
idea of reduction works, or they are irreducible.

All lattices of the first family are hereditarily rational. The second family contains lattices
of which after reduction, rationality of the reduced component is unknown. By arguments in
the previous sections we have proved the following theorem.

Theorem 4. The groups presented in Table 3.3 are hereditarily rational.
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CARAT ID Group Structure #G  Description.

(5,942,1) Imf(5,1,1) 3840 The root lattice of Bs

(5,953,4) S¢ 720  The root lattice of As

(5,726,4) C‘Z1 X Sy 384  reduced component [4,32,21, 1]
(5,911,4)  Ss 120  reduced component [4,31,4, 1]
(5,341,6) Dgx S; 48 reduced component [4, 20, 17, 2]
(5,531,13) Cy xSy 48 reduced component [4, 25,9, 2]
(5,245,12) C% X S3 24 reduced component [4, 14, 10, 2]

Table 3.3: Hereditarily rational groups among the maximal 18 groups found in [15].

The exceptional cases of the second family are presented in Table 3.4. In each case the reduced
component is stably rational as proved in [15]. Their rationality is unknown yet. In [23] the
author has proved that subgroups of [4, 25, 8, 5] are rational except for possibly

[4,6,2,11],[4,12,4,13],[4,13,2,6],[4,13,3,6],[4, 13,7,12],[4,24, 4, 6], [4,25,4,5],[4,25,8,5].

There will be precisely one subgroup of G4 with each of the dimension 4 reduced components
in the above list, so except for possibly those subgroups of G4 the rest are rational. The ex-
ceptional cases are presented in Table 3.5.

From the above list

[4,6,2,11],[4,12,4,13],[4,13,2,6],[4,13,3,6],[4,13,7,12]

are subgroups of [4, 13,7, 12] which means we have the same problem for cases G17 and G 3.
Hence except for possibly the subgroups of G7; and Gg associated to above list their rest of
subgroups are rational. For the exceptional cases see Table 3.6 and Table 3.7.

CARAT ID Group Structure #G  Description.

(5,533,8) Cy X Sy 48 reduced component [4, 25, 8, 5]
(5,81,42) C, X Dg 16 reduced component [4,13,7,12]
(5,81,48) C, X Dg 16  reduced component [4, 13,7, 12]

Table 3.4: Groups among 18 maximals which are reduced but rationality of rank 4 sublattice
is unknown
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CARAT ID Group Structure #G  Description.

(5,32,52) CyxCyxCy 8 reduced component [4, 6, 2, 11]
(5,99,53) Dy 8 reduced component [4, 12, 4, 13]
(5,103,22) Cy4xC, 8 reduced component [4, 13, 2, 6]
(5,98,22) Dy 8 reduced component [4, 13, 3, 6]
(5,81,50) C, X Dy 16 reduced component [4, 13,7, 12]
(5,522,15) S, 24 reduced component [4, 24, 4, 6]
(5,521,15) S, 24 reduced component [4, 25, 4, 5]
(5,533,8) Cr xS, 48 reduced component [4, 25, 8, 5]

Table 3.5: Subgroups of G4 that have associated tori which are stably rational but whose

rationality is unknown.

CARAT ID Group Structure #G  Description.

(5,32,49) CyxCyxCy 8 reduced component [4, 6, 2, 11]
(5,99,52) Dy 8 reduced component [4, 12, 4, 13]
(5,103,16) C4xC, 8 reduced component [4, 13, 2, 6]
(5,98,16) Dg 8 reduced component [4, 13, 3, 6]
(5,81,42) C, X Dy 16 reduced component [4, 13,7, 12]

Table 3.6: Subgroups of G that have associated tori which are stably rational but whose

rationality is unknown.

CARAT ID Group Structure #G  Description.

(5,32,46) Cry X Cyx Cy 8 reduced component [4, 6, 2, 11]
(5,99,54) Dyg 8 reduced component [4, 12, 4, 13]
(5,103,24) Cy4xC, 8 reduced component [4, 13, 2, 6]
(5,98,24) Dg 8 reduced component [4, 13, 3, 6]
(5,81,48) C, X Dg 16  reduced component [4, 13,7, 12]

Table 3.7: Subgroups of G, that have associated tori which are stably rational but whose

rationality is unknown.

Theorem 5. All subgroups of G4, G17 and G g are rational except for possibly the subgroups

in Table 3.5, Table 3.6 and Table 3.7.

There are 4 cases, namely G4, Gs, G¢ and Gy, in which after the reduction we get a rank one
sign permutation lattice (more information is given in Table 3.8). The same also happened

in some subgroups of irreducible lattices (see Table 3.9). It is possible that these groups are
hereditarily rational, but we do not currently have a proof. One possible approach to prove
rationality in these cases may be the following argument.
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Assume L is a lattice in the third family, that is, there exists an exact sequence of lattices
such that

0O—M—>L—7" —0

Moreover assume M is a hereditarily rational. Using a flasque resolution of L we have

Y <

Suppose K/F is a finite Galois extension and G = Gal(K/F). We note that by the No Name
Lemma we obtain K(P)¢ = K(yy,...,y,) and K(M)° = F(xy,..., x,_;) is implied by rationality
of M. Now if there exist a permutation lattice Q’ suchthat Pc M & Q’ (orevenif LC M@ Q')
then K(L)° c K(M)(Q’)° which implies unirationality of K(L)® over K(M)“. Now Liiroth’s
theorem implies rationality of K(L)® over F.

KMe Q)% = KM (z,...,2)

K(P)° = K(yi,-.,y)

K(L)? = K(M)(Z")°

K(M)G = F()C],.. .,.xn_])

F

The following table summarizes the information about reduction of lattices in the third family.
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CARATID G #G  Description.
(5,919,4) C, X Ss 240 reduced component [4,31,7, 1]
(5,801,3) C,x (S% x Cy) 144 reduced component [4,29,9,2]
(5,655,4) Dé X Cy 128 reduced component [4,32,17, 1]
(5,337,12) Dgx S; 48  reduced component [4, 20, 20, 4]

Table 3.8: The groups corresponding to maximal stably rational tori of dimension 5 whose

associated lattices are indecomposable and have a rank 1 sign quotient.

For the last family we have considered their maximal subgroups and we could not decide about

the rationality of the groups presented in the following table.

Theorem 6. All groups in Table 3.10 are hereditarily rational. That is, all subgroups of Gs,
Gy, Go and G5 except for possibly the subgroups in Table 3.9 are hereditarily rational.

A proof of Theorem 6 is provided in Appendix A.

Carat ID G #G Description

[5,173,4] S5 6  reduced comp. [4,17,1, 1], rank 1 sign perm. quot.
[5,391,4] Dy 12 reduced comp. [4,21,3, 1] rank 1 sign perm. quot.
[5,461,4] C% xXS; 24 reduced comp.[3, 6,7, 1], quot [2,4,4, 1]
[5,580,4] Ay 12 reduced comp.[3,7,1, 1], quot [2,4,1, 1]
[5,606,4] C,xAs; 24 reduced comp. [3,7,2, 1], quot [2,4,1, 1]
[5,607,4] S4 24 reduced comp. [3,7,4, 1], quot [2,4,2,1]
[5,607,9] Sa 24 reduced comp. [3,7,4, 1], quot [2,4,2,2]
[5,608, 4] S4 24 reduced comp.t [3,7,3,1], quot [2,4,2, 1]
[5,917,3] Cs xCy 20 reduced comp. [4,31,1, 1] rank 1 sign perm. quot.
[5,917,4] Cs>xCs 20 reduced comp. [4,31,1, 1] rank 1 sign perm. quot.
[5,623,4] C, xS, 48 reduced comp. [3,7,5, 1], quot [2,4,2, 1]
[5,952,2] As 60 absolutely irreducible

[5,952,4] As 60 absolutely irreducible

[5,946,2] Ss 120 absolutely irreducible

[5,946,4] Ss 120 absolutely irreducible

[5,947,2] Ss 120 absolutely irreducible

Table 3.9: Subgroups of Gg, Gy, Gy and G5 that have associated tori which are stably rational

but whose rationality is unknown.

The following table present the reduced components of the subgroups mentioned in Theorem

6.
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Number CARATID G #G  Description.
1 [5,6,3] C, 2 [4,2,2,2]
2 [5,18,28] Cr,xC, 4 [4,4,3,4]
3 [5,19,14] CrxC, 4 [4,5,1,10]
4 [5,22,14] CoxCyxCy, 8 [4,6,1,9]
5 [5,57,8] Cy 4 [4,7,1,2]
6 [5,81,54] C, X Dg 16 [4,13,7,5]
7 [5,98,28] Dg 8 [4,13,3,3]
8 [5,99,57] Dy 8 [4,12,4,7]
9 [5,164,2] C; 3 [4,11,1,1]
10 [5,174,2] S; 6 [4,17,1,3]
11 [5,174,5] S; 6 [4,17,1,2]
12 [5,389,4] D, 12 [4,21,3,2]
13 [5,901,3] Dy 10 [4,27,3,1]
14 [5,918,4] Cs5xCy 20 [4,31,1,2]

Table 3.10: Hereditarily rational subgroups of Gg, Gg, Gp and Gs.

Remark. The union of the set of groups in Table 3.9 and the set of subgroups of the groups in
Table 3.10, is the set of all subgroups of Gg, Gy, Gp and Gs.

Appendix B presents tables of conjugacy classes of indecomposable subgroups of GL(5, Z)
which correspond to stably rational tori of dimension 5 from Hoshi and Yamasaki’s list. From
this list, those stably rational tori of dimension 5 whose rationality is unknown are listed.



Chapter 4

Algebraic Construction of Quasi-Split
Tori

There are several applications of algebraic tori, for instance in cryptography and coding theory,
see [28, Chapter 8], [19] and [36]. For practical purposes, the applications use split tori, that is
T = G for some positive d. Split tori are used primarily due to the simplicity of calculations

in this case. To make computations efficient and effective, one needs to be able to define coor-
dinate rings and function fields of algebraic tori in an explicit manner.

As we saw in the second chapter, an algebraic torus is defined without using an ideal of a
polynomial ring. Even the function field (resp. coordinate ring) of a general algebraic torus
is defined as the field of invariants of a field (resp. ring of) under the action of some finite
group. Considering the fact that these invariants are multiplicative, it is not easy to find these
invariants in general. To the best of the author’s knowledge, there are only a few algorithms for
finding the multiplicative invariants (see [20] and [25]). The results presented in this chapter
allow us to find multiplicative invariants in the particular cases where the lattice is permutation
or sign permutation.

Indeed, in this chapter we present results concerning the construction of algebraic function
field and coordinate ring of quasi split tori. The first section is devoted to a brief discussion
of permutation lattices. In the second section, a constructive proof of the No Name Lemma is
presented. This can be used to find an explicit transcendence basis of the rational function field
of a quasi split torus. The final section presents a similar result for finding the function field of
an algebraic torus with sign permutation lattice.

Throughout this chapter, for a given finite group G < GL(n, Z), L represents the lattice corre-
sponding to G and T is the algebraic torus corresponding to G in the sense of Definition 46.
T r denotes the algebraic torus associated to G, which is defined over a field F and splits over
a Galois extension of F, K where G = Gal(K/F). Hence, G acts on K(Lg) = K[x}',..., x*']

68
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and K(Lg) = K(x1, ..., Xx,) as in Definition 46.

4.1 Generalities

In this section, we briefly take a look at our main ingredients to present the results in the later
sections. In order to give a concrete proof of the No Name Lemma, we will use a permutation
basis of a given permutation lattice. Hence in the first subsection the problem of finding a
permutation basis is discussed. A normal element of a given Galois extension is the other thing
we will need. A brief discussion on normal element and normal basis of Galois extensions are
provided.

4.1.1 Characterization of Permutation Lattices

In Chapter 2 we saw that for a given finite subgroup of G < GL(n, Z), the rational function field
and the coordinate ring of T  are respectively given by K(xy, ..., x,) and K[x}', ..., xx]°
(see Definition 46).

In general for a given G-lattice, we do not have a method to determine if the lattice is per-
mutation or not. Let us take a closer look at the structure of permutation lattices to get some
ideas.

The following lemma characterizes permutation lattices. Let S, be the group generated by

0 1
o= l IO (1) l and T = 1 0 0
n-1 0 In—2

One can see S, is the group of all permutation matrices.

Lemma 1. Let G < GL(n,Z) be finite. The G-lattice corresponding to G is a permutation
lattice if and only if G is conjugate to one of the subgroups of S,.

Proof. (=) Assume that G = (o; : 1 < i < m) and that Ls has the standard basis {e, ..., e,}.
If L is a permutation lattice, then there exists a basis W = {a, ..., a,} C Lg such that G acts
as permutation on Wi.e. foranyoc e Gand 1 <i<n

Q-0 =ay
for some s; € {1,...,n}. By defining T = [ozl an]t , the above equations imply

To = P,T and thus ToT™' = P,

where P, is a permutation matrix of size n. Note that since W forms a basis for Lg, T is
invertible. The group P generated by {P, : o € {07, ...,0,}} is clearly a subgroup of S, and
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TGT™! = P, which means that G and P are conjugate in GL(n, Z).
(&) is obvious. O

The proof of the last lemma is simply saying that if a lattice is a permutation lattice then we can
find an invertible matrix (change of basis matrix) such that TGT ! is a subgroup of GL(n, Z)

generated by permutation matrices.

However, to the best of the author’s knowledge there is no general algorithm to determine
if a given lattice is permutation. We mention here a naive approach, and where it fails.

For a given group G < GL(n,Z) with m generators one can always form a matrix 7 with

n? indeterminates X, . .., X,, as entries, then form
X1 X1z o0 X X111 X120 Ximn
X1 X2 ottt Xop X211 X2 ot Xop
o=P, ,
Xnl X2 Xun Xnl X2 0 Xan

for o a generator of G and P,, the corresponding permutation matrix. This gives n* equations
in n? variables. Since we can do the same for any generator of G, one can form a linear system
of m x n* equations with n? variables. We can always solve the system over rationals. If the
system has no solution over QQ, it has no solutions over Z as well. However, there are two
difficulties in this approach. The first problem is the choice of the permutation matrices P,, as
it is not obvious how to choose appropriate candidates. The second problem happens when the
system has a solution set over Q of positive dimension. In this case, we need to find a solution
over the integers in such a way that 7' has determinant in {+1}. Finding a solution of this type

is a hard problem to which we offer no solution.

Since we are not looking for a solution to solve the mentioned decision problem for lattices,
we assume our groups are subgroups of S,. This assures us that the lattice we are working
with is a permutation lattice with the standard basis. We also note that since conjugate sub-
groups of GL(n, Z) correspond to isomorphic lattices, with our assumption we are discussing
isomorphism classes of permutation lattices. We also know that isomorphic lattices correspond
to isomorphic algebraic tori.

4.1.2 Normal Basis Theorem

Suppose K/F is a finite Galois extension with G = Gal(K/F). The purpose of this section is
to provide some information about a specific type of basis for K as a F-vector space. We are
interested in a basis on which the action of G permutes the elements, it will play a central role
in the results of this chapter.
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Definition 2. Assume K/F is a finite Galois extension and G = {o,...,0,} is the Galois
group of K/F. An element a € K is called normal if B = {o((@),...,0,(@)}is an F-basis for
K, and we call B a normal basis of K over F'.

The existence of a normal basis for a finite Galois extension was proven in [30] and [7].

Theorem 3. [22, Theorem 6.13.1] (Normal Basis Theorem) Let K/ F be a finite Galois exten-
sion of degree n. Let oy, ...,0, be the elements of the Galois group G. Then there exists an
element a € K such that oy(@), .. .,o0,(a) form a basis of K over F.

There are different proofs for the normal basis theorem. The following argument, which is
part of one of the proofs, gives a concrete way to find a normal basis for a given finite Galois
extension.

Assume K/F is a finite Galois extension and G = {oy,...,0,} is the Galois group of K/F.
We are looking for an element x € K such that, if }}", c;o0:(x) = 0 (for ¢; € F), then¢; = 0
for each i. Let {f,...,08,} be an F-basis for K. For indeterminates xi, ..., x, we can write
x=x161+ -+ X,

Foro € {oy,...,0,}, if X, cioi(x) = 0, then o' (YL, cioi(x)) = Y7, cio™loi(x) = 0. Thus
we have

olloi(x) orloax) - o7l |e

0710 o3l - oFl||ea|

0';10'1()6) 0';10'2()() 0';10',1()6) Ch

Soitis enough to show that the above matrix, we call it A(x), is invertible for some x. Replacing
xby xi81 +--- + x,8, we get

olo(BL xiB) o (T xiB) - o oS xiBy)
AG) = At o) = 0'510'1(2:1?=1 xiBi) 0'510'2(2:11-1:1 xXipi) - 0'510'71(2:::;1 xiB3;)
ol (C xiB) ol o(B xiB) e o o (S xiB))

and det(A) € K[xy, ..., x,]. We justneed to find (ay, ..., a,) € F" sothatdet(A)(ay,...,a,) # 0.
It is possible to show the existence of such element in F”. Indeed this gives a complete proof
of the theorem. Since we just wanted to explain a way to find a normal element, we skip the
proof of existence (see [22, Theorem 6.13.1]).

The above argument gives a randomized method to find a normal element for a given extension
by choosing xi,...,x, at random. There are better algorithms for finding a normal element.
For an algorithm in characteristic zero see [12], in positive characteristic, see [41], [34].
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4.2 Construction of Quasi Split Tori

We have already seen the duality between algebraic tori and lattices. For a given G < GL(n, Z)
although we know K(T r) = K(x1,...,x,)% and K[Tgr] = K[x¥',...,x2'% | it is given as a

field (or ring) of multiplicative invariants, and we do not have a generating set for them. We
are interested in finding the multiplicative invariants in a concrete way.

There are many algorithms for finding the invariant rings for polynomial invariants. We in-
vite the reader to consult [6] and [40]. However, for multiplicative invariants the algorithmic
side is not explored that much. We invite the reader to consult [20] and [35] for some results.

In this section, we focus on a specific family of algebraic tori, namely quasi split tori. For
this family we present machinery to construct rational function fields and coordinate rings.
The lattice corresponding to a quasi split algebraic torus is a permutation lattice. The ratio-
nality of this kind of algebraic tori has been known for a long time. Since a quasi-split torus
of dimension d is rational over the base field, its function field is generated as a field by d
elements which are algebraically independent over the base field.

When L is a permutation lattice, by the No Name Lemma, K(7; ) is a rational extension

of F, i.e. there exist yy,...,y, € K[xy,...,Xx,] such that
K(xi,..., %)% = F(yra. oo )
and yy,...,y, are algebraically independent over F.

The existence of y;’s is related to the existence of a permutation basis for L;. Hence hav-
ing such a basis, enables us to construct the transcendence basis we are looking for.

From the discussion of the previous section, we know that for a given permutation G-lattice, it

is not easy to find a basis on which G acts permutations. Hence, we will assume that G is given
as a subgroup of the group S, generated by

01
lln 0] and

so that the corresponding G-lattice L is a permutation (by Lemma 1). We note that conjugate

01
0

1 0

0 In—2

subgroups of GL(n, Z) correspond to isomorphic algebraic tori.

Remark. Assume S, is the symmetric group generated by o = (1 2 ... n) and 7 = (1 2).
Now the above generators of S, can be seen as the images of 7, under the action of o~ and 7 on
its rows which gives an isomorphism between S, and S,. This shows that the action of § € S,
on ¢;, an element of the standard basis of Lg , is given by d(e;) = es-1(; and similarly if we are
dealing with K(xy,...,x,) = K(Lg,), we have 6(x;) = x5-1(;, by Definition 46.
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We need one more component to construct 7 . The last component is a finite Galois exten-
sion of a field F. In other words one needs to solve the inverse Galois problem for the pair
(G, F) since it is not the purpose of this thesis, we assume K/F is a finite Galois extension and
the action of G on a basis of K over F is given.

By the No Name Lemma, we know that the rational function field of 7 ¢ 1s purely transcen-
dental over F, so the final step is to find a transcendence basis of K(7 r) over F. By the proof
of the No Name Lemma provided in chapter two, one can see that it all comes down to finding
a basis for V, the K-vector space generated by {xi,..., x,}, which is also a generating set for
K(L¢) being permuted by G.

Let us see the above ideas in the following concrete example.

01
Example 4. Suppose G = (o = [ ) 0]), son = 2. G is isomorphic to the cyclic group of order

two. We can take F' = Q and K = Q(i) as our extension; then o(i) = —i. Now M = (e, e5)7 is
a permutation G-lattice, so that K(M) = K(xi, x,). It can be verified that

Yi=Xx1+x, and Y2 = IxX] —ixy
are in VY and generate V so

K(M)° = K(x1,%)° = K°O1,32) = Q(y1, y2)

The following theorem solves the problem of finding a transcendence basis in the special case
where G = §,.. Later on we present a general result which works for any subgroup of S,,.

Theorem 5. Suppose G = S,, Lg is its corresponding G-lattice (with the action in Remark
4.2) and S, = Gal(K/Q) where K is the splitting field of an irreducible polynomial f € Q[x].
Assume R = {ry,...,r,} is the set of all roots of f in K such that for s € S, s(r;) = ry; and A
be the sum of elements of R. The generators of the rational function field of the corresponding
algebraic torus, is given explicitly by

K(LG)G = K(X], .. 'axn)G = Q(yl’ .. 9yn)

where

Moreover the coefficient of x; in y; for 1 <i < n—1is given by:

(n—=D!r k=1
n=-2DA-r) k+i
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Proof. Suppose {xi, ..., x,} 1s a basis which is being permuted by G. As discussed in Remark
4.2, we can consider Ls as a S, lattice with the action mentioned in Remark 4.2. That is for
0 € S,, 0(x;) = x51(;. By the proofs of Speiser’s lemma and the No Name Lemma we know
that K(M)C is rational over Q i.e. there exist y;s such that K(M)® = Q(y,, ..., y,). Let V be the
K-vector space generated by x;s. We need to find {y;,...,y,} € SV such that {y;} generates V
as a K-vector space.

Definey; =xi +x, +---+x,and y; = S(r;x;) fori=2,...,n.Sofori=1,...,n—1,
n
Yi = Z Fo@yXo-1G) = Z Z V(i) Xk
o€S, k=1 o=1()=k

So ¢ = Yges, o 1i)=k Ton- I k =1, o~ (i) = i implies o(i) = i and so ¢; = |Stabg, ()|, = (n —
D!r;. If k # i, then o~ ' (i) = k implies that o maps {1, ...,n} — {k} bijectively to {1,...,n} — {i}.
So since i # k, o(i) can take on any value in {1,...,n} — {i}. This shows that for k # i, we have

Ck = Z Ho € S, o(k) =i,00) = jilr;=(n-2)![(A-r).

JEi

Also (n—1)!r;—(n—-2)!(A-r;) # 0 since otherwise r; = % which is rational. Thus by considering
yvi—(n—=2)!(A - r;)y; we get a multiple of x;. This shows that {y;} has the desired property and
we are done.

O

Remark. L in the previous theorem, is isomorphic to the permutation S, lattice Z[S,,/S,_1].
For a geometric description of the corresponding algebraic torus see Examples 18 and 19 in
[44].

Example 6. Let G < GL(3, Z) be generated by

This is obviously isomorphic to Ss.
010 0 01 1 00
0>=|0 0 1| and o7=|0 1 0| and 7o =|0 O 1
1 00 1 00 010

Now the splitting field of x* — 2 is Q(p, V2), where p is a primitive third root of unity. The
roots of x> — 2 are V2, pV2, p*V2. The Galois group of the extension is S; with the action
{vz—wz {%—wz 2 {\3/5—>p2\3/§
o = T= o=

p—p p—p p—p
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V2 — pV2 V2 — p*V2
oT = TO =
p—p p—p

We can provide the following table for the action of the symmetric group on x;s and the roots.

1 o o2 T oT T0r
X1 X1 X3 X2 X2 X3 X1
X2 X2 X1 X3 X1 X2 X3

X3 X3 X2 X1 X3 X1 X2

V2 | V2 pV2 pPN2 N2 o2 pPNR2
pV2 | pV2 V2 2 V2 V2 p\2
PPN2 | pPN2 N2 pN2 pV2 N2 W2

Letr; = p\3/§, ry = p2\3/§ and r; = V2. One can verify that for g € G, g(r;) = r,;) and then we
get
S=1l+c+0+1+0T7+70

Yo =S (x1 +x2+ x3) = 6(x1 + x2 + X3)
v = S(p\S/le) = 2p\3/§x1 + (\3/§+p2\3/§)xz + (\3/§+p2\3/§)X3
Yo = S(pz\s/ixz) = (\3/§+p\3/§)x1 + 2p2\3/§x2 + (\3/§+p\3/§)x3

Theorem 5 does not say anything about a proper subgroup of S,. Thus it can just be used to
get explicit information about T . In fact using a generic polynomial for S,,, one can construct
K/Q. Now we want to prove a general result which works for any subgroup of S,. The other
difference of this result we are talking about with Theorem 5 is, the different descriptions of
the field extension. In Theorem 5 we assumed the roots of a polynomial are given, but in the
general case we will assume a normal element of the field extension is given. The following
lemma is a generalization of the idea which is used in [13, Lemma 1.3.3] to prove that the
Moore determinant is nonzero over an extension of a finite field. It is the main tool for a
constructive proof of the No Name Lemma with some assumptions.

Remark. For a matrix M we denote its j-th column by M ;; an automorphism acts on a column
by acting on its entries.

Let K/F be a finite Galois extension with finite Galois group G. Let M € M,,,,(K), m < n. G
acts on the columns of M, by acting on entries, that is for g € G and MJ.T = [m1 Mmoo my, j],
g(MJT) = [g(mlj) glmyy) ... g(my, J-)]. When we say that G permutes the columns of M tran-
sitively up to sign, we mean: There exists a homomorphism p : G — S,,, p(g) = p, such that
gMy) = (=1)**M,, for some s, € {0, 1} foralli = 1,...n and for each 1 < i # j < n, there
exists g € G such that p,(i) = j. Note that the action of G on the columns of M is not required
to be faithful.
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Lemma 7. Let K/F be a finite Galois extension with finite Galois group G. Let M € M,,,(K),
m < n and assume that G permutes the columns of M transitively up to sign. Assume also that
the entries of M are F-linearly independent. Then the rows of M are K-linearly independent
so that the rank of M over K is m.

Proof. The proof is by induction on m. If m = 1, we need only to show that the unique row of
M 1is non-zero. This is true since if M; = [v,], v, is F linearly independent and so non-zero.
Since v; is the first entry in the only row of M, we are done.

Now assume that m > 1. To show that the rows of M are linearly independent over K, it
is equivalent to show that the null space of M7 is trivial. We will show this by contradiction.
Assume that there exists 0 # x € N(M”) € K™. So M"x = 0. There exists some x; # 0. Let
y = xikx € K". Theny, = 1 andy € N(M"), so M"y = 0. The ith component is My = 0,
i=1,...,n. Foreach g € G, we get g(M"y) = g(M;)" g(y) = J_rMpTg(l.)g(y) =0foralli=1,...,n
and so M7 g(y) = Oforall j = 1,...,n, which shows that g(y) € N(M"). So g(y) ~y € N(M").
By assumption, the kth component of g(y) —y is 0, and so g(§) — § € N(M") where y € K"
is the vector y with the kth component removed and M e M,,_1 ,(K) 1s M with row k removed.
Note that M has columns Mi, i =1,...,n. Since M, has entries which are F-linearly indepen-
dent, so does M. Since the columns of M are permuted transitively up to sign changes by the
action of G, so the columns of M are similarly permuted transitively up to sign changes. Since
the inductive hypothesis applies to M, we see that the rows of M are K-linearly independent,
or equivalently N(MT) is trivial. Since g¥) -y € NMT™) = {0} for all g € G, we see that
§ € F"!'andsoy € F™. But then MTy = 0is equivalent to Y};_, veyx = 0 which is a non-trivial
F-dependence relation for the entries of the first column of M. By contradiction, the rows of
M must be K-linearly independent and so rank(M) = m. O

Remark. With the assumptions of Lemma 7, if m = n then det M # 0.

Theorem 8. Let G < S, < GL(n,Z) and Lg be the lattice corresponding to G as defined
in Definition 46, which is a permutation lattice with the standard basis. Assume that G acts
transitively on the standard basis of Lg. Let K/F be a finite Galois extension with Galois
group G. Let a € K be a normal element for the Galois extension K/F. Then K(xi,...,x,)°
is rational over F with transcendence basis y,, . ..,y, where y; = S(ax;) = Z?:l dec,»,- gla)x;,
i=1,....,n,where S = }, ;8 € Z[Gl and G;; = {g € G : g(x;) = x;}. Here G;; = g;;Stabg(x;),
where g;; is a fixed element of Gj;.

Proof. Let V = }I, Kx;. Then by Speiser’s Lemma 45 there exists a K-basis for V contained
in VY. By the No Name Lemma, this K-basis gives a transcendence basis for K(Lg)C.

We show that y; = S(ax) = X.ecg(a)g(xi) € VY, fori = 1,...,n,is a K-basis for V. Let
Gij = {g € G : g(x;) = x;}. Since the action of G on Lg is transitive, G;; is non-empty for every
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1 <i,j<n. Then

y,-:Zn:Zg(a/)xj, i=1,...,n.

j=1 gEG,'_,'

Fix some g;; € G with x; = g;;(x;). If g € G;j, then gi‘j]g(x,-) = x; shows that g € g;;Stabg(x;).
Since g,-jStabG(xi) - Gij’ we see that Gij = gijStabG(xi) is a left coset of StabG(x,-) in G.

To show that {yy,...,y,} is a K-basis of V, we show that the matrix M with ith row the coordi-
nate vector for y; with respect to the K-basis {x, ... x,} has rows which are linearly independent
over K. The matrix M has entries m;; = Y .cq,, 8(@), i, j = 1,...,n. We will apply Lemma 7 to
show that M has K linearly independent rows and so the yy,...,y, form K-basis of V.

We need to check the hypothesis of the lemma are satisfied . First, letp : G — S,,, p(g) = p,
be the group homomorphism that corresponds to the action of G on the {x,..., x,}. Note that
this is defined by the following rule: p (i) = j if and only if g(x;) = x; forall 1 < i,j < n.

We will show that the columns of M are permuted by the action of G. Let & € G. Note that if
g e Gija then hg S Giph(j)- So

homy) = D hg@) = > o(@) = my,(j)

g€Gij T€Gipy(j)

shows that hM; = M,,; forall j =1,...,n. So the action of G permutes the columns of M.

Secondly, the first column M, has entries

{Z gla),i=1,...,n}.

g€Gi
Since a is a normal element of the Galois extension K/F with Galois group G, the set {g(a) :
g € G} is F linearly independent. Since G = LI G;; is a disjoint union, the set

(> g@,i=1,...n

geGil

is F linearly independent.

So the lemma applies and we may conclude that yy,...,y, is a K-basis of V and so is an F
transcendence basis of K(L;)°.
]

Corollary 9. With the assumptions of previous theorem except that we now assume that Lg is
an arbitrary permutation G-lattice. Then K(xi, ..., x,)° is rational over F with transcendence
basis yi,...,y, where y; = S(@x;) = X\ Gy, Dgec,, 8(@)x), i = 1,...,n where S = } .8 €
Z|Gl and Gx; = {gx; : g € G} and G;; = {g € G : g(x;) = x;}. Here G;j = g;;Stabg(x;) where g;;
is a fixed element of G;;.



78 CHAPTER 4. ALGEBRAIC CONSTRUCTION OF QUASI-SPLIT TORI

Proof. Let P = Lg and ey,...,e, be a permutation basis of P corresponding to xi,..., X,.
Lete; : kK = 1,...,r and correspondingly x; : k = 1,...,r be a complete set of G orbit
representatives on the Z-basis for P and the indeterminates xi, ..., x, respectively. Then P, =
Be,cGe;, Z.e; is a transitive permutation G lattice for each k = 1,...,r and K(P;) = K(x; : x; €
Gx;). P = @ _ Py is a direct sum of transitive permutation G lattices. Then K(P)° is a
composite of fields K(P)° = [T;-; K(P;) and so K(P)“ has transcendence basis {y; : x; € Gx i)
over I where for x; € Gx;,, we have y; = Zx_,-ecx_,k 2geG,; 8(@)x;. Since x; € Gxj,, we see that
x; € Gxj, if and only if x; € Gx; so we may express

vi= ), ) g

x;€Gx; g€Gij

(Note also that in fact, G;; is non-empty if and only if x; € Gx;, so we could even write

yi= Z > sl@)x;

J=1 g€Gij

as before). At any rate K(P)° = F(y; : x; € Gxj,k=1,...,r) = F(yi,...,y,) as required.
O

Example 10. Let K be the splitting field of x* —2 over Q. Then Gal(K/Q) = Dg, K = Q(\ﬁ, i)
and {1,0, 6% 61,6, i6%, i6°) where 6 = V2 is a Q-basis for K. Moreover, let G < GL(4, Z) be
generated by

0001 1000
1000 0001
=lo 10 0] ™57l 01 of
0010 0100

One can verify that G = Dg. The action of r and s on the basis of K is given by
r=1i r@ =id
s@)=—-1i s@) =86

Now we define
a=a=1+0+0+F +i+i0+i +i6

and claim that « is a normal element in K. In fact,
a=r@)=1-0-6+6 +i+i0-i6*—i6°
= (@) =1-0+6 -6 +i—i0+i —it®
a=r@=1+0-0 -0 +i-i0—i6 + it
as=s(@)=1+0+6*+6 —i—i0—it* —i6°

ag=rs(@)=1+0-6"—6 —i+i0+i0>—i¢®
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@ =rs(@)=1-0+6*—6 —i+i0—i0*>+i6®

as=rs@)=1-0-F+6 —i—i0+it + it

and

det = 4096,

I -1 1 -1 -1 1 -1 1

|1 -1 -1 1 -1 -1 1 1 |

which implies « is a normal element of K. Now we can define y; = S (ax;) where
S=1+r+rr+r+s+sr+sr+sr eZ[Dg).

Finally,

K(x1, x2, X3, X4) = F(y1,¥2, Y3, y4)-

It is also worth presenting the coordinate matrix of the y;’s, as a concrete example of Lemma
7. In order to do so, we need to know the action of G on the x;’s.

1 r ¥ P s sr s sr

X1 | X1 X4 X3 X X1 X2 X3 X4
X2 | X2 X1 X4 X3 X4 X1 Xp X3
X3 | X3 X X1 X4 X3 X4 Xq X2

X4 | X4 X3 Xo X3 X2 X3 Xy X1

From the above table one can easily form the matrix
1+ 5@ @ +sr)@) F+sH)@) T+ sr) (@)
| s 1+ st (@) (P +sP) (@) F+ s)(e)
NP+ 5@ r+sr) @) L+ s)@) P+ s
P +sr)@) P +s)a) (r+sr)a) (1+srr)(a)

The action of r and s on the columns is

rooos
M, | My M,
M, | My M,
M; | My, M,
M, | My M,



80 CHAPTER 4. ALGEBRAIC CONSTRUCTION OF QUASI-SPLIT TORI

As it has been mentioned above, we can apply Lemma 7 in order to compute the coordinate
ring of an algebraic torus. The following theorem and its constructive proof can be turned into
an efficient algorithm to compute the coordinate ring of an algebraic tori.

Theorem 11. With the assumptions of Theorem 9

K[L] = K[x] 9-x2 "--’x;l]G = F[)’h---,)’n]xl---xn

where y; is given by

S :Zan[G]

oeG

=S(ax;) for 1 <i<n.
Proof. It is known that K(L) is isomorphic to a Laurent polynomial ring. Also

+1
Klxt o, xE ) = Ky, Xl oo, -

We are interested in K[L]¢ = (K[x S S ) = (K[X1,...,Xy]5..x,)" . By the proof of

Theorem 9 we can see K|[xy,...,x,] = K[y1,...,¥,]. On the other hand since G permutes the
X;’s, x1 - - - x, 18 invariant under the action of G, we can conclude

(K[X], e xn]xl---xn) = (K[y]’ ‘e ’yn X1+ x,,)G

= KG[)’l,--~,yn xl “Xn F[yl’~--’yn]x1--~xn-

4.3 Algebraic tori with sign permutation character lattice

Permutation lattices are special examples of a larger family of lattices which is called sign
permutation. As we have already seen in the second chapter, a sign permutation lattice is a
G-lattice which has a Z-basis which G permutes it up to sign changes. There is no known effi-
cient algorithm which determines if a given lattice is sign permutation or not. It is also known
that if 7 is a corresponding algebraic torus with sign permutation character lattice, then 7 is
rational over the base field.

Before presenting the next theorem we recall the action on a sign permutation lattice. Let
G < GL(n, Z) be a finite subgroup. L, the corresponding lattice to G, is the lattice generated
by {e; : i = 1,...,n} where (¢;); = ¢;;. G acts on L by multiplication from right. For a finite
Galois extension K/F with G = Gal(K/F), K(L) = K(x,..., x,) for algebraically independent
x;’sover K, 1s a G field. G acts as Galois group on K and the action of g € G on x; is given by

xj o if gle) =e;
gl =4"
{le if gle) =—e,
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Theorem 12. Assume G < GL(n, Z) and the corresponding G-lattice, L (as in Definition 46),
is sign permutation. Suppose that G acts transitively (up to sign) on Lg. Let K/F be a finite
Galois extension with Galois group G. Let « € K be a normal element for the Galois extension
K/F. Then

K(Le)? = K(x1,...,x)° = F(y1,...,ya),
where § = Y, & € Z[G] and y; = S (a(1 + x) Dfori=1,...,n

Proof. We use the change of basis z; = (1 + x;)~'. Now for g € G,
Zj if g(x;) = x;
g(zl) - . ]_1
I—z; if g(x) = x;
and K(X], R ,Xn) = K(Z], R ,Zn).

Define the K-vector space V = K + ., Kz;. Similar to the permutation case, we need to
find a K-basis for V which is contained in V°. Let § = 2eec & € Z[G] and y; = S(az;) for
i=1,...,n. We want to show that {1,y,,...,y,} C V¢ is a K-basis for V.

Fori,je{l,...,n}, Gjj = {g € G : g(z;) = zj or g(z;) = 1 —z;}. Then, by the transitivity
assumption, G;; is non-empty for every 1 < i, j < n. Moreover let Glzj’ ={g € G: g =z}

and G, ¥ ={g€ G :g(z) = 1 -z} so that G;; = G/ UG, ”.

Let M be the coordinate matrix of {1,y1,...,y,} with respect to the K-basis {1,zy,...,2,}.
We have to show that det(M) # 0.

By definition,

=S(az) = ) .( D g@z+ ). gle)l-z))

I-z;
J gEGJ §€G;; /

DO @+ ) g - Y gl =

l-z; I-z;
J geG’ G, <G, 7

D Z 2@+ Y (> glay - Y gla) =

J geG T J gGGj geG:j_zj
> Z @)+ (> g@)— > g@);
J geG i J geG’ geG:j_Zj
Fori,je{l,...,n},m; = deG;,_- gla) — deG;;zj gl@)and ¢; = }; dec[l;z‘,. g(@). The matrix M
is
1 0 --- 0

N ¢ myp s My,
M =

Cn Myyp = My,
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Define
mpp -0 My

M =

myy -+ Ny,

Since det(M) = det(M), it is enough to show that the determinant of M is non-zero. In order to
do so, we will apply Lemma 7 to show that M has K-linearly independent rows.

We need to check that the hypotheses of the lemma are satisfied. First, let p : G — S,
p(g) = p, be the group homomorphism that corresponds to the action of G on the {zy,...,z,}.
Note that this is defined by the following rule: p,(i) = jif and only if g(z;) = z; or g(z;) = 1-z;
forall 1 < i, j < n. We will show that the columns of M are permuted (up to a factor 1) by
the action of G.

hand for any g € G, h™'g(z;) = z; or h™'g(z;) = 1 — z; which implies 47'G,,,;, € G;; and
hGij = Gig,(p-

Let h € G. Note that if g € G;;, then hg € G, ;). Hence hG;; € G, (. On the other

Forhe Gandi,je{l,...,n} we have
homy) = h( ) g@) = > g@) = ) hg@— > he(@)
geGi]].- gEG:;Zj gEG;j geGl.lJsz
On the other hand if A(z;) = z,,(j), then

My = ), &@— Y g@= ) hg@)— > hg@.

th(j) l—th(j) eGZj I—Zj
gEGiph(j) gEGiph(/‘) & ij gEGij

. Zop() 2 I=zp,(p _ 1-z;
To get the last equality we used the fact that Gy = hG;; and G = hG;; ™.

If h(Zj) = 1 - th(j)’ then

Mipy(j) = Z gla) - Z @) = Z hg(@) — Z hg(a).

op() 1=2p,() 1=z; Gl
gEGiph(j) geGiph(j) gGGij 8 Gij

. . R =204 _ 7 ~2j
Similarly for the last equality we used the fact that G, ' = hG;; ™ and G, " = hG).

. ; . 1=z (:
In other words if & € G/ then h(m;j) = my,; and it h € G, " then h(mi;) = =iy, (j,
SO h(M]) = iMph(j)-

Secondly, the first column M, has entries

(), g@)= > g@,i=1,...n)

2] l-z
gGG” gEGil !
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Since a is a normal element of the Galois extension K/F with Galois group G, the set {g(a) :
g € G} is F linearly independent. Since G = LI | G;; = U (G% UG} ™) is a disjoint union, the

set
(), @)= > g@,i=1,...n)

1

g€Gy} geGy, !
is F-linearly independent.
So Lemma 7 applies and we may conclude that 1,y,...,y, is a K-basis of V. So similarly
to the proof of the No Name Lemma, y, ..., y, is an F-transcendence basis of K (Ls)C.

O

Corollary 13. With the assumptions of previous theorem, assume now that L¢ is an arbitrary
sign permutation G-lattice. Then K(xy,..., x,)C is rational over F with transcendence basis
Vis-.o, Yo where y; = S(a(1 + x;)™") where S = 206 & € ZIG].

Proof. Let P = Ls and ey, ..., e, be a sign permutation basis of P corresponding to xi, ..., X,.
Lete; : k=1,...,r and correspondingly x; : k = 1,...,r be a complete set of G orbit repre-
sentatives (up to a factor of £1) on the Z-basis for P and the indeterminates x, ..., x, respec-
tively. Then Py = De,cGe, Z.e; is a transitive sign permutation G-lattice foreachk = 1,...,r and
K(Py) = K(x; : x; € Gx;,).P = &;_, Py is a direct sum of transitive sign permutation G-lattices.
Then K(P)C is a composite of fields K(P)° = [];.; K(P:) and so K(P)° has transcendence
basis {y; : x; € Gx;,} over F. Hence K(P)’ = F(y; : x; € Gxj,k=1,...,r) = F(y1,...,y,) as
required.

O

Example 14. Assume G < GL(3, Z) generated by

0 -1 0
o=|1 0 0],
0 0 -1

so that G = C4. Suppose K = Q(p), where p is a primitive 5-th root of unity, K/Q is Galois,
with Gal(K/Q) = C4. Let x1, x,, x3 be algebraically independent over K. We want to find
K(xy, x5, x3)°. The action of G on the x;s and the 5-th roots of unity are given by

d o o o




84 CHAPTER 4. ALGEBRAIC CONSTRUCTION OF QUASI-SPLIT TORI

By defining
zi=(l+x)™" forl <i<3,

the action of G on the z;s is given by

‘id o o o

21 | < 1- 22 1- 1 22
22| 22 1- 22 1- 11
3 | 23 1- 3 23 1- 23

To form y; we need S = 1 + o + 0 + 0. Then
yi=Spz)=pu+p (1 -2)+p' (1 -z2)+p’=p"+p"+ (- p"z + (0 — p")z

Y2 =8(022) = pza + p’z1 + p* (1 = 22) + P’ (L = 21) = (0* + p*) + (V> = )21 + (0 — P22
vi =S(pz3) = pzz +p°(1 —23) +p's +p°(1 = z3) = (0> + ) + (0 — p* = p* + p*)z3.

Just to compare with the proof of the Theorem 12, the matrix M is given

1 0 0 0
po | te p=pt PP 0
=3, 4 2 3 4 0
prpt pP=p p-p
2+p3 0 O p_pl_p3+p4
and
p-p* p-p° 0
M=|p*-p> p-p' 0
0 0 p-p*-p’+p'

One can verify the action of G on the columns of M is

d o o? o’
M, | M, -M, -M, M,
My | M, M, -M, -M,
M; | M5 -M; M; —M;
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Appendix A

A Proof of Theorem 6

This chapter is devoted to a concrete proof of Theorem 3.10. We use simillar methods to the
ones we already applied in chapter 3. After reducing the lattices we compare the sublattices
with the rational ones introduced in [21] and [23].

Al (5,6,3)

The group is generated by

o O
S O O O
(]
I
—_
o

-1 0 0
0 -1 0 0 0 |

The corresponding lattice is sign permutation. This implies rationality of the corresponding
torus.

A2 (5,18,28)

The group is generated by

(1000 0] -1 000 0]
00100 0 000 1
01000 |ad| 0 00710
00001 00100
(00010 | 0 100 0]

The corresponding lattice is a sign permutation lattice. Thus it is hereditarily rational.
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A3 (5,19,14)

The group is generated by

and

S OO O -
S O O = O
I
—

S = O O O
S O = O O
o o o = O
—

S O = O O
S = O O O

S O O O

The dual group is generated by

and

—_ O O O
S O O =
— o O = O
S O O =
o - O O O
_ O = O O

-1 -1

- o = O O
- o O O O

Algorithm (2) produces the change of basis matrix

- o O = O

— o O O O
S O O O
S O = O O
S = O O O

With the above transformation we can see the new representative is generated by

0 0 1 -1/0]J[0 O 1 010]
0O -1 0 -2(0]0 10 210

1 0 0 110 1 00 010
0O 0 0 1{0fJ0 00 -11]0
0O 1 0 1|10 O0O0 —1]|T1 |

Now by considering M to be the corresponding lattice to

0O 0 1 -1 001 O

0 -1 0 -2 010 2

r oo 1| ™ 1000

0 0 O 0 00 -1

we can produce

0—M—>L—7—0.
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The corresponding group to M has GAP ID [4,5,1,10] and also can be generated by

10 -1]0
01 -1] 0
00 -1/ 0 |
00 01

So M decomposes into a direct sum of a rank one sign permutation lattice (which is hereditarily
rational) and a rank 3 lattice given by a group, H, generated by

I 0]-1 0 1]0
O 1|{-1]ad [1 0|0
0 0]-1 0 0|1

Looking at the generators of H tells us we can form
0—%2 —Ly—P—0
where P is given by the group generated by
10 01
[0 1] and [1 0].

Since P is a permutation lattice, by Corollary 59 we can conclude that [4,5,1,10] is hereditarily
rational. This implies our desired result which is hereditarily rationality of (5,19,14).

A4 (522,14)

The group is generated by

[1 0 0 0/-1][1 00 0] 0 | 00101
01001 0 00 1]-1 01000
0010/ 11(],]00T1O0]0 ] ]ad |1 0O0O0 -1
0 00 1]|-1 01001 00O0T1|0

|0 00 0O|-1]]10 00 0] 1 0 00O 1 |

Now we define P to be the lattice corresponding to, H, generated by
1 000 1 000 0 010
0100 0 001 0100
, and ,
0010 0010 1 00O
0 001 0100 0 001

We can see the corresponding lattice to (5,22,14), L, fits into the following exact sequence
0—Z —L—P—0.

and since P is permutation, by Corollary 59 we can conclude that L is hereditarily rational.
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A5 (5,57.8)

The group is generated by

(-1 0 0 0 0]
0 0 0 10
0 -1 0 00
0 0 0 01

0 0 -1 00

and the corresponding lattice is a sign permutation lattice which is hereditarily rational.

A.6 (5,81,54)

The group is generated by

1 0 1 0 1 |[O O 1 O O] [0 0 -1 -1 -1
01 0 0 O -1 0 0 1 O O 1 0 0 O
Oo0 0 0 -1(,] 1 0 0 0 O and O 01 0 0
00 1 1 1 0O 1 1 0 O -1 0 -1 0 -1
| 00 -1 0 0]]-10-10 -1 | 0 0 0 0 1
The dual group is generated by
10 0 0 O0O][O0O =110 -1 [ 0 0 0 -1 0
01 0 0 O 0O 0 01 O 0O 10 0 O
10 O 1 -1¢4,f1T 0 01 -1}and | -1 O 1 -1 O
00 0 1 O 0O 1 00 O -1 00 0 O
10 -1r1 01]]1]0 0 00 -1 | -1 0 0 -1 1
Algorithm (2) produces the change of basis matrix
[0 1 0 0 O |
0O 01 0 O
0O 0 01 O
0O 0 0 0 1
|1 -2 1 -1 -1

With the above transformation we can see the new representative is generated by

1 2 0 2/0][0 2 1 0]0] (1 -2 -2 =2]0
0 -10 -2(0]|]0-10 010 02 1 110
02 1 2(0f,J]1 2 0 0/0]and |0 -2 -1 -2/0
00 0 1]/0[]0 0 0 —-1]0 0 -1 -1 010
0 1 0 1]1]]0 1 0 01| 0 -1 -1 -1]1
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Now by considering M to be the corresponding lattice to

1 2 0 21[0 2 1 0 | -2 -2 -2
0 -10=|lo-10 o 02 1 1
021 2011200021 22
000 1|lo o 0o -1 0 -1 -1 0

we can produce

0—M—L—7—0.

The generators of [4,13,7,5] (another representative of the corresponding conjugacy class to
M) are

0 -1 10 01 -1/0

0 -1 00 1 0 -1]0

1 -1 0,0 |0 0 -1]0

0 0 0]-1 00 01

The generators of rank 3 lattice are

0 -1 1 I -1 0 0 -1
0 -1 01,]1 -1 ] and [ 1 0O -1
1 -1 0 -1 01 -1

the CrystCatZClass of the former group is [3,4,6,4] which is rational by [21] and its subgroups
are[3,1,1,1],[3,2,1,2],[3,2,2,2],[3,3,1,41,[3,3,2,4],[3,4,2,2]and [ 3,4, 6, 4
] where all of them are rational. This implies that (5, 81, 54) is hereditarily rational.

A7 (5,98,28)

The group is generated by

[0 -1 0 0 0 | (1 0 0 0 O |
-1 0 00 O 01 0 0 O
-1 0 1 0 -1|and |[O 1 -1 O O
0O -1 01 1 00 1 0 -1

| -1 1 0 0 -1 | 01 -1 -1 O

The dual group is generated by
[ 0 -1 -1 0 -1] (10 0 0 O |

-1 0 0 -1 1 o1 1 0 1
0O 0o 1 0O O fad |0 O -1 1 -1
0O 0 O 1 O 00 0 0 -1

| 0 0 -1 1 -1]| |00 0 -1 O
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Algorithm (1) produces the change of basis matrix

(1 0 -1 0 0 |
01 -1 0 0
00 0 1 0
00 0 0 1
|2 2 -1 1 -2

With the above transformation we can see the new representative is generated by

(=6 -5 0 —2]0] 5 6 0 0]0]
5 4.0 210 4 -5 0 010
3 31 0|0|and | 1 2 0 -1/0
5 50 10 3 -4 -1 00
3 2 0 1|1 =2 -3 0 0]|1]

Now by considering M to be the corresponding lattice to

6 -5 0 -2 5.6 0 0
5 4 0 2 4 -5 0 0
331 0 | ™My 2 0 o
5 5 0 1 3 -4 -1 0

we can produce

0—M-—>L—7Z—0.

The generators of [4,13,3,3] are

00 1[0 00 -1(0
0100 1 0 -10
1 00O 01 -1(0
0 0 0f-1 00 O0/|-1
The generators of rank 3 lattice are

0 01 0 0 -1

01 Oland [ 1 O -1

1 00 01 -1

the GAP ID of the former group is [3,4,6,4] which is hereditarily rational by the argument
given in the previous case. So (5,98,28) is hereditarily rational.



A8. (5,99,57)

A.8 (5,99,57)

The group is generated by

S O O O =
I
—_

The dual group is generated by

—_—0 = O =

o o o = O

S = O O O

— = = OO

_—0 O =

S O = O

and

and

S O O = O

S O = = O

Algorithm (1) produces the change of basis matrix

With the above transformation we can see the new representative is generated by

- o O O O

N OO O =

oS|I = O O

—o O O O

oS O = O

-1

and

S = O O

-1

S O O O =

S O =

0
0
0
1
1 |

S = O O O

S O = O O

Now by considering M to be the corresponding lattice to

we can produce

S = O O

-2
1
2

-2

and

(2 -2 -1 0]0]
1 1 1 010
1 2 0 010
-1 =2 -1 -1|0
1 1 0 01|
2 =2 -1 0
1 1 1 0
1 2 0 0
-1 =2 -1 -1

0—M—>L—>7—0.
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The generators of [4,12,4,7] are

00 1[0 00 -1/|0
0100 1 0 -1(0
1 000 01 -1/0
0 0 0f-1 00 0|1
The generators of rank 3 lattice are
0 01 0 0 -1
010 1 0 -1

1 00][0 1 -1

the GAP ID of the former group is [3,4,6,4] which is hereditarily rational by argument given
in the previous case. So (5,99,57) is hereditarily rational.

A9 (5,164,2)

The group is generated by

-1 1/0 0 0]
~10/0 0 0
0 0/0 -1 0
0 0/0 0 1
0 0/-1 0 0

The corresponding lattice decomposes into a rank 2 lattice which is hereditarily rational and a
rank 3 sign permutation lattice which is also hereditarily rational. Hence (5,164,2) is heredi-
tarily rational.

A10 (5,174,2)

The group is generated by

[ 0 0 -1 0 -1 0 0 -1 0 -1
0 0 0 1 1 -10 1 0 O
-1 0 0 0 -1|and | O O -1 1 O
0O 1 0 0 -1 0 0 -1 0 O

| 0 0 0 0 1 | 0 1 1 0 O

The dual group is generated by
0 0 -1 0 O] 0O -1 0 0 O
0 0 0 1 0 0O 0 0 0 1
-1 0 0 0 Ofand [-1 1 -1 -1 1
0O 1 0 0 O 0O 0 1 0 O
-11 -1 -1 1] -1 0 0 0 O
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Algorithm (1) produces the change of basis matrix

(1 0 00 0 |
00 10 0
00 01 0
00 00 1
1 -1 00 -1

With the above transformation we can see the new representative is generated by

[ 0 -1 1 0]0] -1 0 0 -1(0]
-1 0 0 -1]0 0O -1 1 010
0O 0 0 -1/0fand | O -1 O 0O
0O 0 -1 010 1 0 0 010
| 0 0 -1 —-1]1 ] I -1 0 0|1 |
Now by considering M to be the corresponding lattice to
0 -1 1 0 | -1 0 0 -1
-1 0 0 -1 and 0 -1 1 0
0 0 0 -1 0 -1 0 O
0O 0 -1 0 | 1 0 0 O
we can produce
0O—M-—>L—7—N0.
The generators of [4,17,13] are
-1 -1/0 O -1 =110 O
0O 10 O and 1 010 O
0 01 1 0O 0 -1 -1
0 01]0 -1 0O o1 O

and the lattice decomposes into rank 2 lattices which we know they are hereditarily rational.
This implies that (5,174,2) is hereditarily rational.

A1l (5,174,5)

The group is generated by

and the lattice decomposes into a rank 2 lattice and a rank 3 sign permutation lattice, both of
which are hereditarily rational. This implies that (5,174,5) is hereditarily rational.

-1 0/0 0 0] (-1 -1/ 0 0 0]
1 1|0 0 0 1 0[0 0 0
0 0[00 1|and| 0 0|0 0 1
0 0/0 1 0 0 0|-1 0 0
0 0|1 0 0] 0 0|0 -1 0]
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A2 (5,389,4)

The group is generated by

1 0 0 -1 0 [ 1 0 0 -1 0]
01 0 -1 0 I 0 0 0 1
00 0 -1 -1] and 1 -1 0 0 O
00 0 -1 0 1 0 -1 0 O
00 -1 1 O -1 0 0 0 O]
The dual group is generated by
1 0 0 0 O] 1 1 1 1 -1
O 1 0 0 O 0O 0 -1 0 O
0O 0 0O O -1] and 0O 0 0 -1 0
-1 -1 -1 -1 1 -1 0 0 0 O
| 0 0 -1 0 O | | 01 0 0 O

Algorithm (1) produces the change of basis matrix

— O O O
S O O =

S O = O O
- o O O

—_— O O =

_1_

With the above transformation we can see the new representative is generated by

(1 0 -1 0 0] [0 0 0 1]0]
00 0 -1]0 -1 0 1 0]0
0 0 -1 0(0|land| O -1 0 00
0 -1 0 0]0 0 0 -10/0
0 0 -1 01 0 0 -1 0]1

Now by considering M to be the corresponding lattice to

1 0 -1 0 0 0 0 1
00 0 -1 10 1 0
00 -1 0™ o -1 0 o0
0 -1 0 0 0 0 -1 0

we can produce
0O0—M-—>L—>7Z—0.

the above group is [4,21,3,2] which has the following subgroups [4, 1,1, 11],[4,3,1,3],[4,
51,11, [(4,11,1,1],[4,17,1,21,[4,17,1,3],[4,21,1,1]and [ 4, 21, 3, 2 | where all of
them are rational.



A.13. (5,901,3)

A13 (5,901,3)

The group is generated by

S O O O
o = O O O

o o o = O
S O O =

The dual group is generated by

S O O = O
S OO O -

S O O O
S = O O O

Algorithm (1) produces the change of basis matrix

With the above transformation we can see the new representative is generated by

[ -1 0

—_ o O O

—_ o O O O

|

—

o
o|Oo = O O

o

— o O O O

and

and

- O = O
— o = O O

and

o o o = O

S O O O

|
—

- O O O

S O = O O

S O O O -

o = O O O

o o o = O

S O O O

S O = O O

S O O O

Now by considering M to be the corresponding lattice to

-1 0 O
-1 0 O
-1 0 1
1 -1 0

we can produce

-1
0

-1 0 0 -1|0]
-1 0 0 010
-1 1 0 010
1 0 -1 010
1 0 0 0]f1]
-1 0 0 -1
-1 0 0 0
-1 1 0 0
1 0 -1 0

0—M-—>L—7Z—0.

99

The lattice M corresponds to [4,27,3,1] with subgroups [4, 1, 1,1],[4,3,1,3],[4,27,1,1

1,[4, 27,3, 1] where all of them are rational. So (5,901,3) is hereditarily rational.
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A.14 (5,918.,4)

The group is generated by

S = O O O

The dual group is generated by

[0
-1
0
-1
| 0

-1

1

0
1
1

S O O O

o

S O O =

[ 0
0
and 0
-1
0
and

Algorithm (1) produces the change of basis matrix

With the above transformation we can see the new representative is generated by

S O = O O

S O O O

S O O = O

- o O O O

S O = O =

S = O O~

and

-2

- O O O

[ -1
1
1

-1
1

el eoleolel S
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-1
0

-1
-1
1
0
0

Now by considering M to be the corresponding lattice to

we can produce

The lattice M corresponds to [4,31,1,2] which is a subgroup of [4,31,7, 1]. In [23] it is shown

S = O O

S O O =

and

-1
1
1

-1

-1
-1
1
0

0
-1
-1

-1
1
2

-2
1

-1
1
2

-2

0—M-—>L—7Z—0.

that [4, 31,7, 1] is hereditarily rational and so is (5,918,4).

-1

0

)—i)—k)—ko

-1
0
2

-1
1

-1
0
2

-1

-1
-1

- o O = O

- o O O O




Appendix B

Related Lists to Rationality Results

Carat ID Carat ID Carat ID Carat ID Carat ID Carat ID
(5,18,27) (5,19,14) (5,22,14) (5,23,27) (5,28,8) (5,28,16)
(5,28,27) (5,30,8) (5,30,16) (5,30,29) (5,30,33) (5,31,41)
(5,31,49) (5,32,13) (5,32,31) (5,32,40) (5,32,46) (5,32,49)
(5,32,52) (5,32,55) (5,32,56) (5,32,59) (5,37,5) (5,37,7)
(5,38,10) (5,39,7) (5,74,9) (5,74,18) (5,75,9) (5,75,18)
(5,75,28) (5,75,37) (5,75,41) (5,78,37) (5,78,41) (5,81,12)
(5,81,25) (5,81,38) (5,81,42) (5,81,48) (5,81,49) (5,81,50)
(5,81,51) (5,81,54) (5,82,12) (5,82,25) (5,84,9) (5,84,18)
(5,92,9) (5,92,16) (5,98,12) (5,98,16) (5,98,19) (5,98,22)
(5,98,24) (5,98,25) (5,98,28) (5,99,12) (5,99,22) (5,99,29)
(5,99,41) (5,99,45) (5,99,51) (5,99,52) (5,99,53) (5,99,54)
(5,99,57) (5,100,22) (5,100,29) (5,101,9) (5,101,16) (5,101,22)
(5,102,16) (5,102,22) (5,103,12) (5,103,16) (5,103,19) (5,103,22)
(5,103,24) (5,103,25) (5,103,28) (5,106,5) (5,108,5) (5,108,11)
(5,108,15) (5,110,11) (5,110,15) (5,114,4) (5,117,4) (5,117,8)
(5,117,13) (5,117,18) (5,118,4) (5,118,8) (5,120,18) (5,120,22)
(5,121,4) (5,121,8) (5,121,12) (5,122,11) (5,126,5) (5,131,15)
(5,131,19) (5,133,4) (5,133,8) (5,133,13) (5,133,18) (5,137,4)
(5,138,5) (5,138, 11) (5,156,4) (5,160,8) (5,161,4) (5,161,8)
(5,162,4) (5,162,8) (5,222,9) (5,222,10) (5,223,11) (5,223,12)
(5,224,10) (5,225,11) (5,225,12) (5,226,11) (5,226,12) (5,226,23)
(5,226,24) (5,227,12) (5,230,14) (5,230,15) (5,231,11) (5,231,12)
(5,232,15) (5,242,10) (5,243,9) (5,243,10) (5,245,11) (5,245,12)
(5,267,4) (5,268,4) (5,271,4) (5,272,4) (5,275,8) (5,277,4)
(5,292,4) (5,293,4) (5,302,8) (5,304,8) (5,306,8) (5,307,6)
(5,308,8) (5,308,12) (5,337,12) (5,341,6) (5,389,4) (5,390,4)
(5,391,4) (5,391,8) (5,392,4) (5,404,4) (5,409,4) (5,410,6)

101



102

CHAPTER B. RELATED LisTS TO RATIONALITY RESULTS

(5,413,5) (5,414,7) (5,416,4) (5,424,6) (5,426,5) (5,434,4)
(5,435,5) (5,436,4) (5,461,4) (5,462,4) (5,465,6) (5,501,4)
(5,519,9) (5,519,14) (5,520,5) (5,520,8) (5,520,14) (5,521,5)
(5,521,8) (5,521,14) (5,521,15) (5,522,9) (5,522,14) (5,522,15)
(5,524,7) (5,529,7) (5,529,17) (5,531,7) (5,531,13) (5,531,16)
(5,533,7) (5,533,8) (5,537,7) (5,538,7) (5,541,7) (5,580,4)
(5,606,4) (5,607,4) (5,607,9) (5,608,4) (5,608,9) (5,623,4)
(5,623,9) (5,640,2) (5,641,2) (5,644,2) (5,645,2) (5,655,4)
(5,656,4) (5,6065,2) (5,6066,2) (5,668,4) (5,670,5) (5,671,5)
(5,672,4) (5,674,4) (5,684,5) (5,687,5) (5,689,4) (5,696,5)
(5,700,4) (5,703,4) (5,704,7) (5,704,11) (5,705,4) (5,705,9)
(5,705,11) (5,706,4) (5,706,14) (5,707,4) (5,709,7) (5,710,4)
(5,711,4) (5,713,4) (5,715,4) (5,726,4) (5,742,4) (5,750,4)
(5,750,8) (5,753,4) (5,754,4) (5,754,8) (5,756,4) (5,758,4)
(5,760,4) (5,760,8) (5,762,4) (5,763,7) (5,763,11) (5,773,2)
(5,774,2) (5,785,5) (5,801,3) (5,822,2) (5,823,2) (5,846,2)
(5,852,3) (5,853,3) (5,854,4) (5,855,4) (5,856,2) (5,869,4)
(5,870,3) (5,889,3) (5,890,3) (5,891,2) (5,892,2) (5,900,2)
(5,901,3) (5,902,2) (5,904,3) (5,909,2) (5,910,3) (5,910,4)
(5,911,3) (5,911,4) (5,912,3) (5,912,4) (5,917,3) (5,917,4)
(5,918,3) (5,918,4) (5,919,3) (5,919,4) (5,926,5) (5,926,6)
(5,931,3) (5,931,4) (5,933,1) (5,934,1) (5,935,1) (5,936,1)
(5,937,1) (5,938,1) (5,939,1) (5,940,1) (5,941,1) (5,942,1)
(5,943,1) (5,944,1) (5,945, 1) (5,946,2) (5,946,4) (5,947,2)
(5,947,4) (5,951,4) (5,952,2) (5,952,4) (5,953,4)

Table B.1: The 311 indecomposable stably rational 5 dimen-
sional algebraic tori with an indecomposable character lat-
tice.
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Carat ID Carat ID Carat ID Carat ID Carat ID Carat ID
(5,31,41) (5,31,49) (5,32,46) (5,32,49) (5,32,52) (5,38,10)
(5,39,7) (5,78,37) (5,78,41) (5,81,42) (5,81,48) (5,81,50)
(5,98,16) (5,98,22) (5,98,24) (5,99,52) (5,99,53) (5,99,54)
(5,100,22) (5,100,29) (5,102,16) (5,102,22) (5,103,16) (5,103,22)
(5,103,24) (5,110,11) (5,110,15) (5,118,4) (5,118,8) (5,120,18)
(5,120,22) (5,122,11) (5,131,15) (5,131,19) (5,160,8) (5,162,4)
(5,162,8) (5,224,10) (5,227,12) (5,232,15) (5,242,10) (5,267,4)
(5,271,4) (5,275,8) (5,292,4) (5,302,8) (5,304,8) (5,306,8)
(5,337,12) (5,390,4) (5,391,4) (5,392,4) (5,404,4) (5,410,6)
(5,414,7) (5,416,4) (5,424,6) (5,426,5) (5,434,4) (5,435,5)
(5,465,6) (5,521,15) (5,522,15) (5,533,8) (5,607,4) (5,608,4)
(5,623,4) (5,641,2) (5,645,2) (5,655,4) (5,6066,2) (5,670,5)
(5,671,5) (5,674,4) (5,703,4) (5,704,7) (5,704,11) (5,706,4)
(5,706,14) (5,709,7) (5,710,4) (5,715,4) (5,753,4) (5,754,4)
(5,754,8) (5,758,4) (5,763,7) (5,763,11) (5,774,2) (5,801,3)
(5,822,2) (5,846,2) (5,852,3) (5,854,4) (5,856,2) (5,869,4)
(5,870,3) (5,889,3) (5,890,3) (5,891,2) (5,910,4) (5,912,4)
(5,917,4) (5,919,4) (5,926,6) (5,946,2) (5,946,4) (5,947,2)
(5,952,2)

Table B.2: The cases among the 311 groups whose rationality is unknown (109 cases).
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Carat ID Carat ID Carat ID Carat ID Carat ID Carat ID
(5,31,41) (5,31,49) (5,32,46) (5,32,49) (5,32,52) (5,38,10)
(5,39,7) (5,78,37) (5,78,41) (5,81,42) (5,81,48) (5,81,50)
(5,98,16) (5,98,22) 5,98,24) (5,99,52) (5,99,53) (5,99,54)
(5,100,22) (5,100,29) (5,102,16) (5,102,22) (5,103,16) (5,103,22)
(5,103,24) (5,110,11) (5,110,15) (5,118,4) (5,118,8) (5,120,18)
(5,120,22) (5,122,11) (5,131,15) (5,131,19) (5,160,8) (5,162,4)
(5,162,8) (5,224,10) (5,227,12) (5,232,15) (5,242,10) (5,267,4)
(5,271,4) (5,275,8) (5,292,4) (5,302,8) (5,304,8) (5,306,8)
(5,337,12) (5,390,4) (5,391,4) (5,392,4) (5,404,4) (5,410,6)
(5,414,7) (5,416,4) (5,424,6) (5,426,5) (5,434,4) (5,435,5)
(5,465,6) (5,521,15) (5,522,15) (5,533,8) (5,641,2) (5,645,2)
(5,655,4) (5,666,2) (5,670,5) (5,671,5) (5,674,4) (5,703,4)
(5,704,7) (5,704,11) (5,706,4) (5,706,14) (5,709,7) (5,710,4)
(5,715,4) (5,753,4) (5,754,4) (5,754,8) (5,758,4) (5,763,7)
(5,763, 11) (5,774,2) (5,801,3) (5,822,2) (5,846,2) (5,852,3)
(5,854,4) (5,856,2) (5,869,4) (5,870,3) (5,889,3) (5,890,3)
(5,891,2) (5,910,4) (5,912,4) (5,917,4) (5,919,4) (5,926,6)

Table B.3: The groups in the previous table on which Algorithm (2) works (102 cases).
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