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Abstract 

Over time, genetic differences can accumulate between populations that are 

geographically separated. This genetic divergence can lead to the evolution of 

reproductive isolating mechanisms that reduce gene flow between the populations and, 

upon secondary contact, result in distinct species. The process of speciation is, thus, what 

accounts for the multitude of species that contribute to the rich biodiversity on Earth. 

Interspecies hybrid sterility is a postzygotic isolating mechanism that affects the 

development of hybrids, rendering them sterile. A notable trend, known as Haldane's 

rule, describes how heterogametic individual hybrids (e.g. males in Drosophila) are more 

susceptible to sterility than homogametic hybrids. My objective was to describe the stage 

at which spermatogenesis fails in hybrids produced from three interspecies crosses in 

Drosophila. Identification of the stage of spermatogenic failure may inform the 

underlying basis of Haldane's rule. I found that chromosomes do not separate after 

meiosis I, leading to non-disjunction, and the formation of needle-eye sperm that is 

immotile but not dead. Secondly, sperm head length is aberrant in aged (6 days) sterile 

hybrid males, suggesting improper nuclear packaging, even with bi-allelic expression of 

sperm protamines. Third, individual sperm nuclei possess two sperm tails, with two 

undifferentiated, but active, mitochondria. Finally, I mapped for genetic factors that 

contribute to the formation of needle-eye sperm and identified possible candidate genes. 

Together, these studies highlight that spermatogenesis fails at a consistent stage in sterile 

hybrid males in Drosophila, leading to the formation of paired sperm that are unable to 

fertilize. My findings suggest that the genetic basis of hybrid sterility may be universal 

within the genus Drosophila.  
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Chapter 1  

1 General introduction 

Over evolutionary time, genetic differences can accumulate between populations that are 

geographically separated and that, as a consequence, do not frequently interbreed. This 

reproductive isolation and lack of gene flow between the potentially interbreeding 

populations can, through selection and drift, lead to genetic divergence and eventual 

speciation. This allopatric process of speciation likely accounts for a majority of 

taxonomic diversity on Earth. 

1.1 Postzygotic isolation 

Reproductive barriers that reduce the fitness of offspring produced from an interspecific 

(between species) mating event are described as "postzygotic barriers". Populations that 

have diverged along separate evolutionary paths can accumulate differences that are 

beneficial or neutral within each population. However, when these accumulated changes 

come together in F1 hybrid genotypes, the novel allelic combinations and resultant 

phenotypes are exposed to natural selection for the first time. Because the hybrid 

genotypes have not evolved under selection per se they may prove to be dysfunctional or 

unfit. Postzygotic barriers are further classified into two broad categories. First, extrinsic 

postzygotic barriers describes hybrids exhibiting intermediate phenotypes that are not 

compatible with either parental niche or mating behaviour. In contrast, intrinsic 

postzygotic isolation describes incompatible genetic interactions that render the hybrid 

unfit (Coyne and Orr, 2004; Calhoun et al., 2016). 

1.1.1 Extrinsic postzygotic isolation 

Divergent selection on populations that inhabit different environments will lead to the 

fixation of advantageous alleles within each population that enhance their fitness within 

their respective environments (Schluter, 2000). As a result, extrinsic postzygotic barriers 

may evolve that cause hybrids exhibiting intermediate phenotypes to have reduced fitness 

within either parental niche (Rice and Hostert, 1993; Rundle and Whitlock, 2001; Coyne 

and Orr, 2004).This reduced fitness results from the interaction between the hybrid 
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phenotype and its environment (Rice and Hostert, 1993; Schluter, 1996a; Schluter, 

1996b). Divergent natural selection on populations towards different fitness optima is a 

key component for sympatric speciation (Schluter 2000) and has been demonstrated in 

nature (e.g., Craig et al., 1997; Via et al., 2000; Naisbit et al., 2001). 

One of the most notable examples of extrinsic postzygotic isolation is that of the hybrids 

formed between limnetic and benthic species of the stickleback fish Gasterosteus 

aculeatus (Hatfield and Schluter, 1999). Each species' morph is morphologically and 

ecologically differentiated and exhibits strong isolation that prevents the formation of 

hybrid offspring (i.e., prezygotic isolation) from the alternate morph (Hatfield and 

Schluter, 1996; Nagel and Schluter, 1998). Hybrids have intermediate phenotypes and 

demonstrate no reduction in fitness within a standard laboratory setting. Upon integration 

into either parental niche, however, hybrid fitness is reduced (Hatfield and Schluter, 

1999). Thus, intrinsic postzygotic barriers from genetic incompatibilities are not the 

cause for hybrid dysfunction in this group, but rather an extrinsic barrier due to hybrids 

being poorly suited to either parental niche.  

In addition to the above stickleback example, there are other well-documented studies of 

extrinsic postzygotic isolation. Sympatric species of pea aphids, Acyrthosiphon pisum, 

have adapted on different food sources, and produce F1 hybrids with lower fitness when 

placed in either parental niche (Via et al., 2000). Gall forming tephritid flies (Eurosta 

solidaginis) that inhabit two different goldenrod hosts (Solidago altissima and S. 

gigantea) also produce hybrids that exhibit lowered survival rates compared to either 

parental species, a situation not due to genetic incompatibilities within hybrids (Craig et 

al., 1997). Divergent sexual selection on adult colour pattern preference in Heliconius 

sympatric species has also contributed to the evolution of extrinsic postzygotic barriers 

(Naisbit et al., 2001). Both species (H. cydno and H. melpomene) overlap in geographical 

region but exhibit strong assortative mating and low hybridization (Naisbit et al., 2001). 

Any F1 hybrids produced possess intermediate phenotypes and are discriminated against 

by both parental species, but not discriminated against by other F1 hybrids (Naisbit et al., 

2001). In this instance, hybrids have lower fitness due to reduced attractiveness instead of 

a phenotype-environment interaction. 
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1.1.2 Intrinsic postzygotic isolation 

Intrinsic postzygotic barriers involve genetic incompatibles that affect hybrid fitness, 

often independent of environment (Coyne and Orr, 2004). Genetic interactions between 

parental genomes within a hybrid result in a developmental defect that renders the hybrid 

sterile (hybrid sterility) or the hybrid dies before sexual maturation (hybrid inviability).  

1.1.2.1 Hybrid inviability 

Interaction of two (or more) divergent loci, derived from two species, may interfere with 

the development of a hybrid before it reaches sexual maturation. Often, the hybrid dies 

during early stages of development and never matures into an adult (Coyne and Orr, 

2004). While there are many examples of hybrid inviability, a historical and highly-

studied example derives from Drosophila melanogaster mated to its sister species, D. 

simulans (Sturtevant, 1920). Female D. melanogaster crossed with male D. simulans 

generates viable daughters and sons that die during pupation. The reciprocal cross 

produces viable sons and daughters that die as embryos (Sturtevant, 1920). The genetic 

basis to this asymmetrical presence of female or male hybrid inviability has been well-

studied, and the individual causal genes have been identified (Watanabe, 1979; Hutter 

and Asburner, 1987; Hutter et al., 1990; Sawamura et al., 1993; Sawamura et al., 1993; 

Sawamura et al., 1997; Presgraves et al., 2003; Tang and Presgraves, 2009). Since hybrid 

inviability was not the focus of my dissertation, I will not provide a thorough review of 

hybrid inviability, rather, I will briefly outline some important points on the genetic and 

cellular basis of hybrid inviability.  

One prediction about the genetic basis of hybrid inviability is that the genes causing 

inviability can do so in both sexes. This was demonstrated in a classical experiment 

involving the use of a unique genetic tool found in Drosophila, wherein females of a 

particular strain possess two attached X chromosomes (Orr, 1993). Here, the physically 

linked X chromosome will be passed along to the next generation as an attached pair. 

Since lethality only affected male hybrids produced from the cross of female D. 

melanogaster with male D. simulans, this particular lethality was predicted to be caused 

by negative genetic interactions of the autosomes with recessive loci on the D. 
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melanogaster X chromosome. If the "attached-X" D. melanogaster females are mated 

with D. simulans males, the hybrid daughters will carry both X chromosomes from their 

mother, meaning that all X-linked loci come from D. melanogaster, just as they do in 

hybrid males. In this instance, hybrid "attached-X" daughters exhibit hybrid inviability 

(Orr, 1993). Furthermore, introgressed genomic regions from one species (that harbour 

genes for hybrid inviability) within the genetic background of another species, causes 

lethality in both hybrid sexes (Wu and Davis, 1993; True et al., 1996). Finally, hybrid 

inviability appears to be involved with maternally expressed genes, thus affecting males 

and females (Hutter, 1997). All of these results provide support for the theory that the 

same locus can induce lethality in both sexes. 

Hybrid inviability can also involve incompatible maternal cytoplasmic transfer into the 

hybrid offspring. This includes instances of cytoplasmic incompatibility that will be 

discussed further below. For example, in cases where interspecific mating events lead to 

the production of only hybrid female offspring in Drosophila (i.e., female hybrid 

inviability), it only occurs in one direction of the cross (Wu and Davis, 1993; Turelli and 

Orr, 2000; Coyne and Orr, 2004), suggesting certain females possess cytoplasm that are 

incompatible with male cytoplasm from a different species. Incompatible mitochondria 

appear to play an important role in hybrid inviability. In copepods, Tigriopus  

californicus, cytochrome c derived from the mitochondria of one population functions 

poorly when interacting with cytochrome c derived from the nuclear genome of another 

population (Burton, 1990; Edmands and Burton, 1999; Rawson and Burton, 2002).   

1.1.2.2 Hybrid sterility 

The production of hybrids from an interspecific mating event may not result in the 

individual dying before sexual maturation, as seen in hybrid inviability. Rather, hybrids 

may possess a developmental defect that negatively affects the reproductive system of the 

hybrid, rendering it sterile. The following section will outline three topics germane to 

hybrid sterility - i) the global trends of hybrid sterility, ii) theoretical models proposed, 

and iii) the genetic and cellular basis of hybrid sterility.  
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1.1.3 Trends for postzygotic isolation 

1.1.3.1 Hybrid sterility evolves before hybrid inviability 

It was originally proposed that hybrid sterility evolved at similar rates as hybrid 

inviability, based on a compilation of Drosophila interspecific hybrid data (Coyne and 

Orr, 1989). However, that hypothesis was refuted using a more sensitive analysis. 

Mathematical modeling predicts that hybrid sterility evolves more rapidly than hybrid 

inviability (Wu, 1992). This model is supported with data sets from Drosophila (Bock, 

1984; Coyne and Orr, 1997) and mammals (Gray, 1954). In Drosophila, Bock (1984) 

noticed 199 cases of hybrid sterility and only 14 cases of hybrid inviability. In Gray's 

(1954) assessment of interspecific hybrids in mammals, 25 cases of hybrid sterility was 

observed, whereas no case of hybrid inviability was found. Furthermore, individual genes 

from one species that have been transgenetically introduced into the genetic background 

of another species yields more instances of male sterility than male inviability (Wu et al., 

1992).  

1.1.3.2 Haldane's rule 

A well-noted phenomenon, known as Haldane’s rule, has been observed in almost all 

interspecific hybrids. Haldane observed a trend that, if only one hybrid sex is inviable or 

sterile, individuals of the heterogametic sex (e.g. XY males or ZW females) are more 

likely to be affected than those of the homogametic sex (e.g. XX females or ZZ males; 

Haldane, 1922).   

1.2 Theoretical basis of hybrid sterility and Haldane's rule 

1.2.1 Dominance theory 

The prevailing model to explain the genetic basis of hybrid sterility and Haldane's rule is 

the Dominance theory (Bateson, 1909; Dobzhansky, 1936; Muller, 1940; Orr and Turelli, 

1995). This model describes the possible genomic differences between species that, when 

brought together in an individual, would be incompatible (Bateson, 1909; Dobzhansky, 

1936; Muller, 1940), and render the hybrid offspring sterile or inviable. The core of this 

model, called the Bateson-Dobzhansky-Müller incompatibility model (aka BDM model), 
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explains how a pair of interacting loci can functionally diverge within two populations. If 

so hybrid sterility or inviability may be a result of genic incompatibility (Bateson, 1909; 

Dobzhansky, 1936; Muller, 1940). Orr and Turelli (1995) elaborated that hybrid 

sterility/inviability is a byproduct of genic incompatibility between one or more recessive 

X-linked factors of one species, that are interacting with a dominant autosomal-linked 

factor of another species. The recessive nature of the X-linked factor underlies Haldane’s 

rule, since the genetic factor would only be expressed in heterogametic individuals. This 

genetic interaction would have a detrimental effect on the development of the hybrid 

offspring, such that the heterogametic individual would be sterile or inviable (Figure 1.1). 

These genic incompatibilities between species continue to accumulate even after 

speciation has occurred (Orr 1995; Matute et al., 2010), making it difficult to discern 

what incompatibilities underlie speciation vs. which arose after speciation. Genetic 

mapping studies have identified multiple genes influencing hybrid sterility. Most of these 

genes, however, do not meet the predictions of the dominance model (Perez et al., 1993; 

Perez and Wu, 1995; Presgraves et al., 2003; Masly et al., 2009; Tang and Presgraves, 

2009). 
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Figure 1.1: A pictorial representation of Haldane’s Rule and the Dominance Theory in 

Drosophila. In a hybrid heterogametic individual (e.g. XY; homologous chromosomes 

are represented by horizontal bars), the hemizygous X chromosome possesses a recessive 

factor (circle) that was inherited from parental species A. This factor is unable to interact 

epistatically with a dominant factor on an autosome (triangle) that was inherited from 

parental species B. This interaction affects a vital developmental process, rendering the 

individual sterile. In contrast, a homogametic individual (e.g. XX) does not experience 

the same effect as X chromosome derived from species A is masked by the X 

chromosome derived from species B. As such, the recessive X factor inherited from 

parental species B is able to effectively interact with the autosomal factor, thus rendering 

the individual fertile. 
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1.2.2 "Faster-" evolution 

Additional theories have been proposed to relate Haldane's Rule to the evolution of 

hybrid male sterility. Below are two theories that describes how hybrid males are more 

susceptible to sterility than hybrid females and how the X chromosome appears to play a 

much larger role in hybrid sterility.  

1.2.2.1 Faster-male 

Since hybrid individuals of the heterogametic sex are more likely to be sterile or inviable 

(Haldane, 1922), it's possible that loci involved in male reproduction are evolving faster 

than genes involved in female reproduction in those species where males are the 

heterogametic sex (Wu and Davis, 1993). The higher rate of evolution for male genes 

compared to female genes may be a by-product of sexual selection, as genes for 

attractiveness are more important in males than females (Wu and Davis, 1993). 

Alternatively, the process of spermatogenesis may be more susceptible to aberration 

within a hybrid, causing hybrid male sterility to occur more often than hybrid female 

steriliy (Wu and Davis, 1993). To test the "faster-male" theory within Drosophila, True et 

al. (1996) introgressed (crossed) pieces of D. mauritiana in the background of D. 

simulans and screened for sterile males and sterile females. Indeed, more sterile males 

were present than sterile females (True et al., 1996), an observation confirmed by 

subsequent studies (Hollocher and Wu, 1996; Tao and Hartl, 2003). Furthermore, male-

specific genes are more likely to be mis-expressed in hybrids than female-specific gene, a 

pattern found in other interspecific pairings within the genus Drosophila (Reiland and 

Noor, 2002; Michalak and Noor, 2003; Ranz et al., 2004). 

Testing of the "faster-male" theory in mosquitoes has provided additional support 

(Presgraves and Orr, 1998). For example, males from the Aedesgenus do not have a 

degenerate Y chromosome, and possess genetically and morphologically 

indistinguishable sex chromosomes (Bhalla and Craig, 1970). Thus, males do not have a 

hemizygous X chromosome. Since males in this group have a transcriptionally-active Y 

chromosome, dominance alone cannot cause hybrid male sterility, but the "faster-male" 

theory can. As predicted by Presgraves and Orr (1998), sterile hybrids produced within 
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the Aedes genus do conform to Haldane's rule (Haldane, 1922), lending strong support to 

the "faster-male" theory.  

Two limitations to the "faster-male" theory are: 1) the specific targeting of species where 

the heterogametic sex is male, and 2) lack of support for this theory for hybrid inviability 

(Coyne and Orr, 2004). Although the "faster-male" theory may be plausible in 

heterogametic XY hybrids (males), the theory does not account for heterogametic hybrid 

females, such as seen in Lepidoptera and birds. Further, it cannot be utilized as a general 

model for hybrid sterility.  

1.2.2.2 Faster-X 

The "faster-X" theory predicts that loci on the sex chromosomes, specifically the X 

chromosome, are evolving more rapidly compared to loci on autosomes (Charlesworth et 

al., 1987). If natural selection acts on favourable X-linked substitutions, these mutations 

will become fixed within a population faster than autosomal substitutions (Charlesworth 

et al., 1987). In Drosophila, it was noted that X-linked substitutions do have a greater 

impact on hybrid sterility than autosomal substitutions (Coyne and Orr, 1989). Additional 

studies have, however, generated mixed support for the theory (Coyne and Orr, 2004). 

Furthermore, the "faster-X" theory does not solely account for Haldane's rule, as both 

sexes should be affected (Coyne and Orr, 2004). As such, modifications to the predictions 

for the "faster-X" theory will link the large X-effect to either the Dominance theory or 

"faster-male" theory. 

1.2.3 Meiotic drive 

Although previously contested due previous lack of empirical evidence (Coyne et al., 

1991; Coyne and Orr, 1993), meiotic drive and its relation to hybrid sterility has slowly 

been gaining empirical support (McDermott and Noor, 2010). Meiotic drive is the 

process wherein an unequal segregation of genetic material during meiosis results in 

deviations from Mendelian ratios in gametes (Hurst and Pomiankowski, 1991; 

Presgraves, 2008). Drive elements are selfishly overrepresented in the population, even at 

the expense of the individual's fertility. As such, suppressor elements evolve alongside 

drivers, creating an arms race between the selfish element and its suppressor (McDermott 
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and Noor, 2010). It is more likely for a suppressor element to evolve on the autosome, 

instead of the small Y chromosome, to suppress the activity of the X-linked driver (Hurst 

and Pomiankowski, 1991; Atlan et al., 2003). How this system links to male hybrid 

sterility will involve an X-linked driver element and (most likely) an autosomal-linked 

suppressor. If a driver element is present on the X chromosomes and, during sperm 

development, reduces the presence or fertility of Y-bearing sperm, the over-

representation of females over generations will lead to species extinction (McDermott 

and Noor, 2010). Between two separate subpopulations, the arms race between driver and 

suppressor is established over time. If, upon reintroduction of both diverging 

subpopulations, hybridization occurs, the established system breaks down. The 

suppressor of one population is unable to suppress the driver of the other population, 

leading to the production of unfit hybrids. Meiotic drive has been noted in a few species 

of Drosophila (Stalker, 1961; James and Jaenike, 1990; Jaenike, 1996), including D. 

simulans (Cazemajor et al., 1997). Cazemajor et al. (1997) further uncovered distorters in 

multiple X-linked loci and suppressor loci on all autosomes. Meiotic drive has also been 

noticed in sterile hybrids between fission yeast species, Schizosaccharomyces pombe and 

S. kambucha (Zanders et al., 2014). Here, three meiotic drive alleles, derived from S. 

kambucha, singly contribute to hybrid sterility via low spore viability (Zanders et al., 

2014). This suggests that genetic conflicts due to meiotic drive may play a role in 

speciation in numerous systems.  

1.3 Genetic basis of hybrid male sterility 

1.3.1 Improper chromosome pairing 

Pairing of the X-Y chromosomes in Drosophila depends on the presence of an rDNA 

intergenic spacer region that is embedded in the X heterochromatin and near the Y 

centromere (McKee et al., 1992). When deleted, this region, which comprises a 240-bp 

repeat, disrupts X-Y pairing and results in X-Y nondisjunction. Interestingly, the 240-bp 

repeat has been shown to differ among closely related species in the D. melanogaster 

subgroup (Lohe and Roberts, 1990). As such, differences in this 240-bp repeat between 

closely related species may provide a possible mechanism wherein interspecies hybrids 

possessing two different variants of the 240-bp repeat may result in mispairing of the X 
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and Y chromosome. This in turn results in improper segregation, thus giving rise to 

hybrid sterility and Haldane’s rule.  

1.3.1.1 Speciation gene case study - meiotic pairing and Prdm9 

In mice, hybrids produced from interspecific mating between Mus musculus musculus 

and M. m. domesticus exhibit spermatogenic failure (Good et al., 2008). Further analysis 

found that improper pairing of homologous chromosomes occurred, causing arrested 

meiosis during prophase (Mihola et al., 2009). Mapping for this sterility resulted in the 

discovery of the Prdm9 gene (Mihola et al., 2009), which encodes a DNA binding protein 

containing a zinc-finger array. This gene has histone methyltransferase activity (Hayashi 

et al., 2005). It targets recombination hot spots and thus targets the location of double 

stranded breaks (DSBs) during recombination (Baudat et al., 2010; Paravano et al., 

2010). Further analysis found that re-programming the PRDM9 protein's binding site (at 

the Zn-finger array) in sterile hybrid males rescues their fertility (Davies et al., 2016). 

Thus, each allele of PRDM9 possesses its own preference for a recombination hotspot, 

which can affect DSBs, affecting the pairing of homologous chromosomes during 

meiosis. Asymmetrical PRDM9 binding will reduce fertility in hybrid males. It was 

postulated that meiotic drive may be the mechanism for differences in PRDM9 binding in 

subpopulations undergoing speciation (Davies et al., 2016). Since meiotic drive would 

favour mutations that permit disruption of PRDM9 binding, those mutations are passed 

along to the next generation and individuals with heterozygous PRDM9 binding affinities 

will have the non-mutant chromosome properly exhibiting DSBs and then repaired via 

copying of the chromosome with the mutation. This can result in the accumulation of 

mutations at the PRDM9 binding site and account for observable differences between 

subpopulations in PRDM9 binding (Davies et al., 2016).  

1.3.1.2 Mismatched ploidy 

Hybrid speciation is perhaps one obvious example of massive karyotypic differences 

leading to species establishment, with many examples in plants and animals (Mallet, 

2007). Within the genus Helianthus, 3 hybrid species (H. anomalus, H. deserticola, H. 

paradoxus), arose from two parental species (H. annuus, H. petiolaris; Rieseberg, 1991), 
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wherein each hybrid exhibits differences in karyotype from their parents (Chandler et al., 

1986). Genotypic mapping of these three hybrid species and their parents have revealed 

hybrid speciation arose due to massive changes in karyotypes (Rieseberg et al., 1995, Lai 

et al., 2005). Further analysis through QTL mapping has identified that these changes are 

responsible for hybrid sterility between hybrids and their parents (Lai et al., 2005).  

 

In plant populations, wherein related diploid and tetraploid plants coexist, reproductive 

barriers such as hybrid sterility can evolve due to the "triploid block" (Thompson and 

Lumaret, 1992). For example, natural sympatric populations of diploid and tetraploid 

species of Dactylis glomerata have lead to the establishment of postzygotic isolation 

barriers due to the formation of sterile hybrid triploid offspring (Lumaret and Barrientos, 

1990; Bretagnolle and Thompson, 1996). In response to the production of sterile 

triploids, some plants have adapted different flowering times, or have increased selfing 

(Levin, 1985; Van Dijk, 1991; Petit et al., 1997).  

1.3.1.3 Chromosomal inversions 

Changes in chromosomal arrangements may lead to a reduction in gene flow between 

populations and result in species formation, a mechanism that may allow for species 

isolation even when there is a lack of a physical barrier between populations (Levin, 

2002). New chromosomal arrangements arising between populations contribute to the 

accumulation of genetic differences that, upon introduction within a hybrid, can lead to 

genetic incompatibilities and hybrid sterility (Rieseberg et al., 1999, Noor et al., 2001, 

Navarro and Barton, 2003).  

 

Chromosomal inversions introduce a possible mechanism for speciation to occur in face 

of gene flow, especially for species whose ecological niches overlap. This mechanism has 

been extensively studied in sterile hybrid males produced between Drosophila persimilis 

and Drosophila pseudoobscura, where hybrid sterility mapped to chromosomal 

inversions (Noor et al., 2001). Further analysis found that high divergence was evident 

within and adjacent to these inversions between both species and allow recombination 

rate occurring at these regions (Stevison et al., 2011; McGaugh and Noor, 2012). Thus, 



 

13 

 

 

within these inverted regions, hybrid incompatibility factors may be harboured and will 

persist in each species' population, even with gene flow occurring in other regions of the 

genome (Noor et al., 2001; Rieseberg, 2001).  

1.3.2 Gene translocation and duplication 

Gene duplication and the degeneration of one paralog can result in hybrid sterility. When 

an ancestral population harbouring two duplicate genes (consider both fully functional, 

thus one is redundant) and is split into subpopulations, each population has the potential 

of losing one of the duplicated genes. The fates of each duplicate gene will likely differ 

between each subpopulation, as each population fixes alternative copies of the gene 

(Lynch and Force, 2000).  If that gene is essential for each respective population's fitness, 

then genome hybridization after sufficient isolation from each other may result in sterility 

within a hybrid individual. This is further exacerbated if the alternative alleles are not 

functional as single copies or if the two alternative gene products interact negatively with 

each other (Werth and Windham, 1991). This proposed model, driven by any possible 

degenerative mutations and the silencing of one of the redundant genes, has been 

documented in plants and animals (Gottlieb and Ford, 1997; Force et al., 1999). 

1.3.2.1 Speciation gene case study - transposition and JYalpha 

Masly et al. (2006) demonstrated that divergence in gene function between species is not 

the only route for the evolution of hybrid sterility, and genes that jump within the genome 

– gene transposition – also have the potential to cause reproductive isolation. JYalpha, a 

gene that has been reported to undergo gene transposition, leads to hybrid sterility 

between D. simulans-D. melanogaster F2-like hybrids (Masly et al., 2006). This gene is 

located on the fourth chromosome of D. melanogaster and on the third chromosome of D. 

simulans. Within a hybrid individual that possesses a homozygous D. simulans 4th 

chromosome and a homozygous D. melanogaster 3rd chromosome, and thus no copy of 

the JYalpha gene, mostly immotile sperm are produced, suggesting that this gene may 

have partial effect on a hybrid’s fitness (Masly et al., 2006). It's important to note that in 

order to study the effects of JYalpha in sterile hybrid males, introgression lines were 

created. Thus JYalpha only affects F2-like hybrids, suggesting possible recessive-
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recessive interactions, as parts of the hybrid's genome will be homozygous for one 

parental species. Although JYalpha does not provide a universal model for the evolution 

of hybrid sterility leading to reproductive isolation, this gene does demonstrate a 

previously overlooked mechanism for hybrid sterility (Masly et al., 2006). 

1.3.2.2 Speciation gene case study - odsH and novel gene functions in 

hybrids 

Perez et al. (1993) fine-mapped the X chromosome of Drosophila mauritiana to a region 

harbouring a gene, Odysseus homeobox (OdsH; also called Ods-site homeobox), that 

contributes to hybrid male sterility between D. simulans and D. mauritiana. Further 

analysis of OdsH revealed the necessity of an additional and nearby gene in order to 

induce full sterility in a hybrid individual (Perez and Wu, 1995). The gene OdsH acts 

recessively in its contribution to hybrid sterility, and was shown to only induce sterility in 

D. simulans-D. mauritiana hybrids in a homozygous background, suggesting a possible 

recessive-recessive interaction is occurring (not recessive-dominant), thus this gene can 

only affect F2 hybrids (not F1 hybrids). Currently, an autosomal interactor with OdsH has 

yet to be identified. 

Odysseus serves as an example of the importance of gene duplication in speciation. It has 

been shown the OdsH arose through a gene duplication event in Drosophila and at a high 

rate within the lineages that lead to the formation of the melanogaster group of species 

(Ting et al., 2004). Interestingly, the presence of OdsH within a hybrid background 

appears to affect production of sperm within males (Sun et al., 2004). When disrupted in 

a pure species background, OdsH has a minimal effect on the acceleration of sperm 

maturation, yet when functional alleles from divergent species are introduced within a 

hybrid, sperm production in males is drastically reduced, presenting a novel 

manifestation of OdsH function, rather than its gain or loss of function (Sun et al., 2004).  

1.3.3 Sterility due to genetic divergence at the same locus 

Sequence divergence between populations can establish reproductive barriers that keep 

species separate. Within the sensu stricto complex, Saccharomyces cerevisiae and its 

closest relative, S. paradoxus, exhibit no prezygotic isolation and are capable of 
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producing viable interspecific offspring. However, these F1 hybrids produce few viable 

spores (Naumov, 1987). Saccharomyces species all have entirely co-linear genomes 

(Fisher et al., 2000) and thus changes in chromosomal arrangements (e.g. translocations, 

inversions, etc.) are not contributors to the production of these sterile hybrids. 

Furthermore, altering 2N hybrids into 4N allo-tetraploids induced higher levels of 

fertility, thus reducing the possibility that genetic incompatibilities are responsible for the 

production sterile hybrids (Greig et al., 2002). 

 

The frequency and success of genetic recombination depends largely on the proper 

formation of the two homologous DNA duplexes. The mismatch repair system plays a 

role in the activity of genetic recombination, such that its inactivity can greatly reduce 

recombination, as seen in organisms with divergent genomes (Rayssiguier et al., 1989). 

As such, it was speculated and then tested whether sterility between these two species 

may be a by-product of sequence divergence, reducing recombination and impacting 

proper segregation during meiosis (Hunter et al., 1996). Hybrids with dysfunctional 

mismatch-repair systems exhibited higher levels of fertility and an increase in 

homologous recombination. Furthermore, introduction of chromosome 3 from S. 

paradoxus into the genetic background of S. cerevisiae resulted in a reduction of meiotic 

recombination, suggesting that sequence divergence can affect recombination via the 

mismatch repair system (Chambers et al., 1996).  

1.3.3.1 Speciation gene case study - genetic divergence and SaM/SaF 

Semi-sterility in hybrid males is seen within interspecific crosses between Asian rice 

subspecies, Oryza sativa indica and O. sativa japonica. Within the Sa locus, two adjacent 

genes, SaM and SaF, are expressed as different alleles for each subspecies. O. sativa 

indica cultivars have SaM+SaF+ haplotype, while O. sativa japonica have SaM-SaF- 

haplotype (Long et al., 2008). Semi-sterility in males is achieved by pollen abortion when 

carrying the SaM- allele. The evolution of these two separate haplotypes may have arisen 

in a two-step introduction of nucleotide variation via genetic drift. The model for semi-

sterility between these two subspecies is through a two-gene/three-component interaction 

(Long et al., 2008; Ouyang et al., 2010). Here, the absence of either SaM+, SaM-, SaF+ 
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results in fertility, as deriving from genetic divergence. Sterility arises via selective 

transport of SaM+SaF+ proteins from their own microspores into the microspores 

carrying the protein from SaM-(Long et al., 2008). 

1.3.4 Centromeric divergence and segregation distortion 

As previously described (see section 1.2.3), the genomic conflict between meiotic drivers 

and suppressors establishes a unique system that is compatible only within the population 

the system has evolved under (McDermott and Noor, 2010). If the driver and its 

suppressor are involved in meiotic drive, and if these elements are present on the sex 

chromosomes, it is to be expected that interspecific hybrids are more susceptible to 

defects that will result in sterility (Frank, 1991a; Hurst and Pomiankowski, 1991; Tao and 

Hartl, 1991).  

A possible alternative explanation for meiotic mis-segregation in hybrids may be due to 

centromeric divergence. Centromeres, which are comprised of heterochromatin, recruit 

the machinery necessary for faithful segregation of meiotically-dividing chromosomes 

(Dernburg et al., 1996). Although this machinery is highly conserved across species, 

evidence has shown that heterochromatic centromeres are rapidly evolving, and proteins 

that associate to the centromere show signatures of strong adaptive pressure (Csink and 

Henikoff, 1998). This suggests a possible co-evolution of these genes alongside their 

associated heterochromatin (Malik and Henikoff, 2001; Brideau et al., 2006). The 

abundance and sequence of the repeats found within centromeres are also highly 

divergent between even closely related species (Lohe and Roberts, 1988), and thus may 

be one of the first regions of the genome to diverge in sequence after new species arise. 

Due to the greater dissimilarity between centromeric DNA of the X and Y chromosome, 

these chromosomes are more likely to be unable to segregate in interspecies hybrids 

(Henikoff et al., 2001). This segregation failure may be due to the inability of the 

associated proteins involved in the segregation machinery to recognize the target 

sequence. This provides another possible mechanism for hybrid sterility and Haldane’s 

rule. The rapid evolution of non-coding DNA may therefore be responsible for the 

establishment of postzygotic reproductive barriers, rather than individual gene product 

incompatibilities between the X chromosome and autosomes. 
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1.3.4.1 Speciation gene case study - Overdrive 

The gene Overdrive (Ovd), was shown to not only cause sterility, but also segregation 

distortion in F1 hybrid males from D. pseudoobscura bogotana females mated to D. 

pseudoobscura pseudoobscura males, suggesting a possible linked genetic basis between 

the two processes (Phadnis and Orr, 2009). Ovd contains a MADF domain, which is 

involved in sequence specific DNA binding and potential serves as a transcription factor 

during Drosophila development (Phadnis and Orr, 2009; England et al., 1992). What is of 

interest in this species pair is that they are young species and have likely not yet 

accumulated a high quantity of genetic incompatibilities – a dilemma that researchers 

face in older species (Matute et al., 2010). It is known that Ovd has undergone rapid 

evolution (Phadnis and Orr, 2009). The genes that interact with Ovd to give rise to both 

hybrid sterility and segregation distortion have, however, yet to be determined. Further 

mapping has been employed to identify regions along the X chromosome and autosomes 

that may interact with Ovd to induce hybrid sterility and segregation distortion in this 

species pair (Phadnis, 2011). 

1.3.5 Transposable elements 

Transposable element (TE) movement, which can be triggered via hybridization, may 

result in genome restructuring, inevitably resulting in sterility (McClintock, 1984). 

Although many examples of TE movement and hybrid sterility can be found in plants, 

some animal species have shown intraspecific hybrid sterility (Michalak, 2009). Factors 

that may control, or repress, TEs are small RNAs found within the maternally inherited 

cytoplasm. Two examples of the effects of maternal cytoplasm in hybrid sterility can be 

found in Drosophila intraspecific sterile hybrids. Within intraspecific hybrids made 

among strains of D. melanogaster, fathers carrying TEs and mothers lacking these TEs 

produce sterile offspring. With the reciprocal cross, mothers carrying TEs and fathers 

without them, hybrids that are produced remain fertile (Yannopoulous and Stamatis, 

1987). Stamatis, 1987). Further evidence of the effects of maternally transferred 

cytoplasm on hybrid fertility can been with the transfer of small RNAs and their role in 

repressing TEs within intraspecific crosses of D. virilis. Here, hybrid male sterility is 

facilitated with the retrotransposon element Penelope, which can induce high levels of 
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transposition of other TEs in the genome in strains that do not normally possess Penelope 

(Evgen'ev et al., 1997). Mothers produce sterile hybrid males if they are unable to 

provide the Penelope-derived siRNA (Blumenstiel and Hartl, 2005).  

Mobile elements, upon mobilization, have been previously demonstrated to affect fertility 

in hybrid individuals (see above; Petrov et al., 1995). A possible mechanism for the 

suppression of these mobile elements within an individual would be methylation of the 

CpG sites found within promoters, arising due to the evolutionary arms race between the 

host and parasite (Bestor and Tycleo, 1996). As such, any given population along their 

evolutionary pathways could establish specific and unique methylation patterns for 

suppression of parasitic mobile elements. If two populations derived from an ancestral 

population are separated and their genomes are reintroduced after the formation of this 

system, hybrids may exhibit a reduction in DNA methylation, allowing for the 

mobilization of these elements. If the activity of these mobile elements affects fitness, 

specifically fertility, the hybrid individuals will experience a reduction in fitness. This 

theory has been examined within interspecific kangaroo hybrids: Macropus eugenii x 

Wallabia bicolor. These two parental species produce sterile hybrid males that do not 

produce sperm. Further analysis found that under-methylation of retroviral elements in 

hybrids lead to their amplification within the heterochromatic centromeres (Waugh et al., 

1998), which may lead to sterility within these hybrids (the extent to heterochromatin and 

sterility remains unknown).  

1.3.6 Nuclear-mitochondrial interactions 

Hybrid breakdown may not be limited to nuclear-nuclear incompatibilities. Potential 

nuclear-mitochondrial interactions may also be sensitive to interspecific hybridization 

(Perrot-Minnot et al., 2004; Zeyl et al., 2005). Since mitochondrial inheritance is 

maternal and mitochondrial DNA (mtDNA) evolves rapidly, it's possible for 

hybridization to result in sterility due to an incompatible interaction between the 

mitochondrial and nuclear genomes of divergent populations. The proteins produced by 

the mitochondrial genome have an intricate interaction with nuclear gene products, 

resulting in the promotion of proper respiration and proper functioning of the electron 

transport chain. Co-adaptation between mito-nuclear genes within allopatric species 
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establishes a system that can be disrupted upon introduction of a haploid genome from 

another population, as seen in marine copepods (Rawson and Burton, 2002). Within each 

population, the nuclear gene, cytochrome c, interacts more efficiently with the respective 

mitochondrial gene, cytochrome c oxidase, of their respective population. Here, 

population differentiation is established from three amino acid substitutions in 

cytochrome c, suggesting a sensitive system that, upon hybridization, can affect the 

electron transport chain and lower hybrid fitness (Rawson and Burton, 2002).  

1.3.6.1 Speciation gene case study - mito-nuclear incompatibility 

between OLI1 and AEP2 

Diploid hybrids produced from an interspecific mating between Saccharomyces 

cerevisiae and S. bayanus are capable of reproducing asexually, however, their spore 

viability is low (<0.5%), indicating the presence of postzygotic isolation. To uncover the 

genetic incompatibilities within an interspecific hybrid, Lee et al. (2008) screened 

chromosome replacement lines for genes that contribute to the sterility of these hybrids. 

They found that the S. bayanus AEP2 gene does not properly translate S. cerevisiae 

mitochondrial OLI1 mRNA (subunit of the ATP synthase complex; Finnegan et al., 

1991), and thus OLI1 is unable to properly function within the mitochondrial background 

of S. cerevisiae resulting in a respiratory defect (Lee et al., 2008). Furthermore, AEP2 

may be interacting with the 5`-UTR region of the OLI1 mRNA during translation (Ellis et 

al., 1999), providing a target region for divergence. Further analysis supported this, 

finding highly divergent sequences at the 5`-UTR of the OLI1 mRNA between S. 

cerevisiae and S. bayanus (Lee et al., 2008; Chou and Leu, 2010). 

1.3.7 Cytoplasmic incompatibility due to endosymbionts 

Endosymbionts and their invasion within a population may serve as mechanism for the 

evolution of reproductive barriers and speciation. One of the most famous endosymbionts 

that has been studied for its role in speciation is Wolbachia (Breeuwer and Werren, 1990; 

O'Neill and Karr, 1990; Giordano et al., 1995; Reed and Warren 1995; Bordenstein et al., 

2001). Populations infected with Wolbachia typically exhibit a unidirectional effect on 

offspring produced from infected individuals mated to uninfected individuals (Yen and 
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Barr, 1971).  Here, uninfected females that are mated to infected males with Wolbachia 

will mostly produce progeny that die as embryos; the reciprocal mating event produces 

viable offspring. As such, cytoplasmic incompatibility derived from infected cytoplasm 

(in eggs) and uninfected cytoplasm (in sperm) creates a developmental defect in the 

offspring produced. Cytoplasmic incompatibility via Wolbachia infection appears to be 

evolutionarily conserved at the functional level, as strains of Wolbachia found in one 

genus are capable of inducing offspring inviability if injected into species of another 

genus (Braig et al., 1994).  

Cytoplasmic incompatibility manifests during early stages of mitosis in embryogenesis, 

wherein the paternal genome improperly decondenses, degenerates, and the haploid 

individual that is left dies (Reed and Werren, 1995; Lassy and Karr, 1996; Callaini et al., 

1997). A common example of how hybrid inviability is a by-product of Wolbachia 

infection is the interspecific crossing among three species of wasp, Nasonia: N. 

vitripennis, N. giraulti, and N. lonicornis (Bordenstein et al., 2001). All three species are 

infected with different strains of Wolbachia and exhibit cytoplasmic incompatibility 

when one species is mated with another species, except one of two outcomes may occur: 

diploid females are converted into haploid males (Reed and Warren 1995) or offspring 

die as embryos (Bordenstein et al., 2001).   

An instance wherein cytoplasmic incompatibility occur bidirectionally involves multiple 

strains of Wolbachia infecting different populations. This has been observed in both 

Nasonia (Breeuwer and Werren, 1990), as well as Drosophila (O'Neill and Karr, 1990). 

In Drosophila, if a female is infected with one strain of Wolbachia, she will not be 

immune to another strain of Wolbachia. Therefore, an infected female mated to a male 

infected with a different strain of Wolbachia will produce offspring that die before the 

individual reaches sexual maturation, regardless of the direction of the cross between the 

two populations (Hoffman and Turelli, 1997). The cellular basis of cytoplasmic 

incompatibility has yet to be determined.  

But how does Wolbachia infestation within a population lead to speciation? One of the 

strongest examples of the impact Wolbachia infection has on speciation is interspecific 
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hybrids produced from infected Drosophila recens mated to uninfected D. subquinaria 

(Shoemaker et al., 1999). Here, D. recens females mated to D. subquinaria males 

produces inviable hybrids, whereas the reciprocal cross produces viable hybrids. 

However, strong prezygotic barriers greatly reduce the likelihood of mating, and thus 

producing hybrids at all, when D. subquinaria females are mated to D. recens males. This 

suggests Wolbachia related cytoplasmic incompatibility may play a role in reinforcing 

the reduction in gene flow between D. recens and D. subquinaria (Shoemaker et al., 

1999).  It is important to note, however, that males produced from either direction of 

interspecies crossing between D. recens and D. subquinaria are sterile (Shoemaker et al., 

1999). As such, cytoplasmic incompatibility may not be the sole mechanism for 

reproductive isolation between D. recens and D. subquinaria. 

Finally, Wolbachia related cytoplasmic incompatibility causes lethality but does not 

appear to cause hybrid sterility (Giordano et al., 1995; Bordenstein et al., 2001). 

Furthermore, there have been no accounts of heterogametic female cytoplasmic 

instability, to date (Coyne and Orr, 1999; Bordenstein, 2003; Keeling et al., 2003).  As 

such, endosymbionts, such as Wolbachia, may not play a singular role in postzygotic 

isolation, but may contribute to postzygotic isolation in combination with other 

mechanisms.   

1.4 Cellular basis of hybrid male sterility 

1.4.1 Spermatogenesis in Drosophila 

As species within the genus Drosophila were under study for this dissertation, and hybrid 

sterility affects the heterogametic sex, my primary focus will be on the stages of male 

spermatogenesis that can be targets for hybrid sterility factors.  

In Drosophila, spermatogenesis can be subdivided into three main stages: pre-meiosis, 

meiosis, and spermiogenesis (Figure 1.2). Previous studies of spermatogenesis defects in 

sterile hybrid males have suggested that most defects occur during spermiogenesis, 

wherein sperm cells do not properly separate into single, mature sperm and remain 

bundled and interconnected (Kulathinal and Singh, 1998; Civetta, 2016). These findings 

suggest that hybrid sterility factors may be affecting the individualization or motility of 
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sperm. Although much of the initial cytological analysis of sterile hybrids suggest errors 

in spermiogenesis (Kulathinal and Singh, 1998), it is important to note that further 

dissection of each individual stage of spermatogenesis was not performed. It is possible 

that errors may have arisen in early stages of spermatogenesis, but bypass stage-specific 

arrest until spermiogenesis. Thus, revisiting morphological and cellular analysis of sterile 

hybrid males, and examining each major stage of spermatogenesis, would be beneficial 

for refining our understanding of the stage at which spermatogenesis failure is initiated.  
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Figure 1.2. Spermatogenesis in Drosophila melanogaster (image taken from 

Kanippayoor et al., 2012). A) Somatic hub cells (black) associate with GSCs (white) and 

CPC (light gray). B) GSCs and CPCs produce a spermatogonium (gray) that is 

surrounded by a cyst cell (dark gray). The primary spermatogonium will undergo mitotic 

divisions to produce 16 primary spermatocyte cells that are interconnected by 

cytoplasmic bridges. These spermatocytes will then undergo meiosis, producing a cyst 

with 64 spermatids. C) The 64 mitochondria produced clump together to form the 

nebenkern (black). The sperm cell and the nebenkern elongate through to the stages of 

spermiogenesis.   
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1.4.1.1 Pre-meiosis 

In Drosophila, the initial stage of spermatogenesis involves the differentiation of cells 

from a stem cell niche, to the eventual maturation of that cell into a primary 

spermatocyte. The apical end of the testes contains the germline proliferation center, 

consisting of the "hub" cells, germline stem cells (GSC), somatic cyst progenitor stem 

cells (CPC), and spermatogonia (Fuller, 1999). Here, the two population of stem cells are 

thought be under the control of the JAK-STAT pathway, permitting both the 

differentiation and maintenance of each stem cell niche (Fuller and Spradling, 2007). One 

possible target for this pathway is ZFH-1 (zinc-finger homeodomain-1), which is 

functionally described as a transcriptional repressor that maintains CPCs, although the 

specific function is poorly understood (Terry et al., 2006). If hybrid sterility factors were 

to affect this stage of spermatogenesis, it would be expected that cells from the germline 

proliferation center would show improper maintenance and differentiation of the two 

stem cell populations.  

It's important to note that although the process of meiosis is conserved across all species 

in the genus Drosophila, the number of pre-meiotic mitotic divisions is species specific. 

For example, species of the D. melanogaster subgroup undergo four mitotic divisions to 

produce 16 primary spermatocytes, whereas species within the D. pseudoobscura group 

undergo five mitotic divisions to produce 32 primary spermatocytes (Pantazidis et al., 

1992; Scharer et al., 2008).  

1.4.1.2 Meiosis 

Meiosis begins with the diploid primary spermatocytes that eventually end as haploid 

cells. In Drosophila, since mitotic divisions differ among species, the number of haploid 

sperm produced after meiosis also differs. For example, species of the D. melanogaster 

subgroup and D. pseudoobscura group produce 64 sperm and 128 sperm, respectively 

(Pantazidis et al., 1992; Scharer et al., 2008). Furthermore, primary spermatocytes 

undergo meiosis with incomplete cytokinesis, such that sperm cells remain 

interconnected by cytoplasmic bridges (Fuller, 1993). Here, transcription is high, as many 

proteins necessary for spermiogenesis after meiosis is complete are transcribed within the 
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primary spermatocyte and are stored translationally repressed until after meiosis 

(reviewed in: White-Cooper, 2010). Some examples of genes transcribed in primary 

spermatocytes with known protein function include genes involved in mitochondrial 

fusion (fzo; Hwa et al., 2002), meiotic spindle and axoneme (cytoskeletal structure of the 

sperm tail) formation (βtub85D; Kemphues et al., 1979), faithful execution of meiosis 

(twine; White-Cooper, 1996), chromatin structure (Dpy-30L2; Vardanyan et al., 2008), 

and transcription/translational regulation (aly, boule, topi; White-Cooper et al., 2000; 

Eberhart et al., 1996; Perezgazga et al., 2004).   

An overall trend of misexpressed of genes has been noted in interspecific hybrids in 

Drosophila (Michalak and Noor, 2003; Haerty and Singh, 2006; Moehring et al., 2007). 

Genes in sterile male hybrids express lower levels of transcripts, with the exception of 

genes on the X chromosome that saw overexpression (Moehring et al., 2007). Of the 

genes described above that are involved in spermatogenic meiosis, aly, topi, and βtub85D 

are all underexpressed in adult sterile males (Moehring et al., 2007). However, it should 

be noted that misexpression of genes in hybrids has recently been contested as an 

underlying mechanism of sterility, as fertile male hybrids also have high levels of 

spermatogenesis-related gene misexpression (Gomes and Civetta, 2014). 

1.4.1.3 Spermiogenesis 

One of the most notable changes during sperm development is the transition from round 

spermatid to an elongated sperm cell during the process of spermiogenesis, which occurs 

after meiosis is complete. Here, the sperm tail forms and elongates, DNA is repackaged 

and further condensed within the sperm head and sperm individualization occurs. Further 

analysis of misexpressed genes in sterile hybrid males have targeted genes involved in 

spermiogenesis (post-meiotic), with some genes misexpressed across different 

interspecies pairs (Michalak and Noor, 2004; Noor, 2005; Moehring et al., 2007; 

Sundararajan and Civetta, 2011; Ferguson et al., 2013).  To date, none of the 

misexpressed genes identified in these studies have been directly tested for their effects 

on sterile hybrid males. However, one gene that is transcribed during spermiogenesis 

(soti) has been noted to directly affect fertility within a species. Homozygous mutants for 

soti, are sterile with no sperm individualization (Barreau et al., 2008).  
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1.4.2 Future directions for the study of male hybrid sterility in 

Drosophila 

Studies attempting to dissect the genetic basis of hybrid sterility and identify a general 

underlying mechanism have had conflicting results, as a lack of evidence exists for both 

the Dominance theory and meiotic drive (McDermott and Noor, 2010; Presgraves, 2010). 

Furthermore, less attention has been given in understanding, at the cellular level, where 

errors may arise in sterile hybrid males in Drosophila (but see Kulathinal and Singh, 

1998; Hardy et al., 2011). Perhaps the key to uncovering incompatible loci for male 

hybrid sterility is to first identify at which stage errors arise during spermatogenesis. 

Secondly, a genus-wide comparison for spermatogenic failures in sterile male hybrids 

among different interspecies hybrids in Drosophila would highlight general patterns. If a 

phenotype is noted across all (or many) interspecies sterile hybrids, genetic mapping for 

this phenotype could be performed to identify the loci involved. 

1.5 Overview of dissertation 

In this dissertation, I explore errors occurring during spermatogenesis and identify 

genomic regions contributing to sterility in interspecific hybrid males in Drosophila. My 

primary research goals in undertaking this project are: 1) identify errors in 

spermatogenesis across multiple interspecies pairs by examining testes and sperm 

morphology of sterile hybrid males to identify whether failure occurs at the same stage of 

spermatogenesis, 2) determine if sperm are dead or alive with low mitochondrial activity 

of sperm-producing sterile hybrid males, 3) assess if protamine allelic expression is the 

same in sterile male hybrids and in males from pure species, 4) locate any genetic factors 

that would give rise to a previously-uncharacterized phenotype ("needle-eye") of sterile 

hybrid male sperm.  

In Chapter 2, I examine testes cellular morphology of sterile hybrid males in Drosophila. 

Here, I examined if spermatogenesis fails at similar stages across multiple interspecies 

sterile hybrid males. Using various microscopy techniques, I examine testes morphology, 

chromosome segregation after meiosis I, number of sperm produced after 

spermatogenesis, ultrastructural analysis of sperm, and the effects of aging on sperm head 
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length in sterile male hybrids from three interspecific crosses in Drosophila: D. 

simulans/D. mauritiana, D. pseudoobscura/D. persimilis, and D. arizonae/D. mojavensis. 

I find that hybrid males have smaller testes than parental pure species males, with sperm 

bundles that are shorter and more disorganized. After meiosis I, chromosomes do not 

separate between daughter cells in hybrids, suggesting non-disjunction has occurred. The 

occurrence of non-disjunction is supported by additional lines of evidence. The number 

of sperm produced after spermatogenesis is roughly half that of parental pure species. 

Each sperm within the bundle in hybrids from interspecific crosses between D. 

simulans/D. mauritiana and D. pseudoobscura/D. persimilis possess two sperm tails and 

two undifferentiated mitochondria. Finally, sperm head length is aberrant in sterile hybrid 

males aged for 6 days, suggesting improper nuclear packaging. This study further refines 

the observations of Kulathinal and Singh (1998), suggesting that errors may be occurring 

during meiosis, causing the downstream affects during spermiogenesis that they 

observed.  

In Chapter 3, I examine sperm viability and sperm mitochondrial activity (a factor 

potentially underlying lack of motility) in sterile hybrid males from the same three 

interspecific crosses examined in Chapter 2. As most hybrids produced from these 

interspecific crosses produce non-motile sperm (with the exception of one direction of 

one cross, where no sperm are produced; Kulathinal and Singh 1998), hybrid sperm may 

be dead or have undergone apoptosis. In addition, sperm from sterile hybrid males have 

undifferentiated mitochondria (see Chapter 2); therefore, the lack of motility in sterile 

hybrid males may be due to non-functioning mitochondria. Using an assay that detects 

intact and functional cell membranes, an indicator of cell viability, all sperm are 

observably viable in sterile hybrids and in parental pure species. Furthermore, using an 

indicator of functional mitochondria, mitochondria along sperm tails were functional in 

both sterile hybrid males and parental pure species. This suggests that sterility is not a by-

product of poor sperm membrane structure nor non-functional mitochondria, warranting 

further examination of the sperm head.  

In Chapter 4, I examine allelic expression of protamines in sterile hybrid males and pure 

species, with a focus on only one interspecies cross: D. simulans mated to D. mauritiana. 
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Within species comparisons (i.e., D. simulans mated to D. simulans and D. mauritiana 

mated to D. mauritiana) of protamine allelic expression uncovered a bi-allelic 

expression. In other words, the alleles from both homologs contribute to the expression of 

protamines used in the packaging of DNA in the sperm head. Sterile hybrid males 

produced from D. simulans and D. mauritiana also exhibit bi-allelic expression, thus any 

abnormalities in sperm head packaging are not due to one allele expression of protamines 

in hybrids. However, it could potentially still be due to a negative interaction between the 

protamines produced by the two species' alleles within a single hybrid individual. 

In Chapter 5, I identify a novel sperm phenotype found in sterile hybrid males of all three 

interspecies crosses studied. This new phenotype was called "needle-eye" sperm. I also 

uncovered the genetic regions responsible for the formation of needle-eye sperm in sterile 

hybrid males produced from D. simulans and D. mauritiana. This was done through 

phenotype-based introgression and recombination backcrossing for 10 generations to 

either D. simulans or D. mauritiana. A bulk segregation analysis was performed by 

pooling males for each backcross into one of two samples: males that produce needle-eye 

sperm, males that do not produce needle-eye sperm. Samples were sequenced using 

Illumina technology and the raw sequences were analyzed using the phenotype-based 

selection and introgression followed by whole-genome resequencing (PSIseq) pipeline. 

Genetic regions that are linked to the formation of needle-eye sperm contain a handful of 

genes in males produced from backcrossing to D. mauritiana, but further refinement of 

introgressions is needed for males produced from backcrossing to D. simulans in order to 

identify candidate genes.  
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Chapter 2  

2 Cellular abnormalities and spermatogenetic errors in sterile 

hybrid males in Drosophila 

The stages of spermatogenesis have been thoroughly examined within multiple species of 

Drosophila. Interspecific matings between two species of Drosophila produce hybrids 

with non-motile sperm. Characterizing the cellular basis of hybrid male sterility across 

multiple Drosophila species can potentially identify mechanisms for the evolution of 

hybrid sterility in this genus. The purpose of this study is to identify the stage at which 

spermatogenesis fails in sterile hybrid males, and do so for three different groups within 

the genus Drosophila. Here, I identified failures occur during meiosis I in all three 

groups, wherein chromosomes appear incapable of proper segregation, leading to half the 

number of sperm produced during spermatogenesis in all three interspecies crosses. 

Specifically, individual sperm cells derived from hybrid males carry two tails and non-

differentiated mitochondria. In addition, sterile hybrid males aged for six days exhibit 

rapid nuclear de-condensation in all three crosses. Lastly, since meiotic failure was noted 

in all three interspecies pairs studied, failure during meiosis (and the downstream effects 

of this failure) may potentially be a general phenomenon in Drosophila.  

2.1 Introduction 

2.1.1 Spermatogenesis and speciation 

Hybrid sterility is an intrinsic postzygotic isolating barrier that reduces gene flow 

between species, keeping them separate and distinct groups. According the Bateson-

Dobzhansky-Muller incompatibility model, herein referred to as the BDM model, genetic 

differences accumulate due to mutation and the evolutionary forces that act on them 

(Bateson, 1909; Dobzhansky, 1934; Muller, 1940; Lynch and Force, 2000). Within each 

population, changes over time to the genetic make-up that negatively interact with other 

loci are selected against. Compatible interacting loci within a population may, however, 

be incompatible with loci of a foreign genome. If two populations that follow along 

separate evolutionary paths are later re-introduced, incompatible loci will have the first 
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opportunity to interact within the F1interspecies hybrid. Genetic incompatibility within a 

hybrid individual may affect their reproductive systems, rendering the hybrid sterile, thus 

reducing the hybrid's fitness (Bateson, 1909; Dobzhansky, 1936; Muller, 1940) and serve 

as a mechanism for reproductive isolation.  

Among many interspecific crosses, a notable trend (herein called Haldane's rule, HR) has 

been observed, wherein if only one sex is sterile, it's almost always the heterogametic 

hybrids that are sterile, as opposed to the homogametic hybrids (Haldane, 1922; Coyne 

and Orr, 1989; Coyne and Orr, 1997; Presgraves and Orr, 1998; Schilthuizen, 2011). The 

widespread observation of HR raises the possibility that there may be a common 

underlying basis of hybrid sterility. Extensive research has been put forth to understand 

how the underlying genetic basis of hybrid sterility relates to Haldane’s rule (Presgraves, 

2010; Maheshwari and Barbash, 2011; Delph and Demuth, 2016).  

2.1.2 Theories on the genetic relationship between hybrid sterility and 

Haldane's rule 

The most widely accepted model for the genetic basis of hybrid sterility is the Dominance 

theory, which suggests that random divergent mutations arising in the lineages of both 

species are incompatible when they come together within a hybrid individual (Bateson, 

1909; Dobzhansky, 1934; Muller, 1940; Orr and Turelli, 1995). In its simplest form, the 

incompatible interaction between a recessive X-linked locus derived from one parental 

species and a dominant autosomal-linked locus derived from another parental species 

affects the reproductive system of the hybrid, rendering them sterile (Orr and Turelli, 

1995). While a single pair of interacting loci can theoretically cause sterility, these 

genetic incompatibilities increase and accumulate over time, which introduces difficulties 

in identifying the initial interacting loci responsible for HR (Orr, 1995; Matute et al., 

2010). Although genetic mapping studies have identified individual genes that contribute 

to interspecies hybrid sterility, particularly within the genus Drosophila (Perez et al., 

1993; Perez and Wu, 1995; Masly et al., 2006; Phadnis and Orr, 2009; Phadnis, 2011), 

few lend support to this model (Presgraves, 2010). 



 

47 

 

 

The second most favoured model, meiotic drive, was initially criticized and discounted as 

a favourable explanation for hybrid sterility and HR (Coyne and Orr, 1993; Charlesworth 

et al., 1993; Coyne and Orr, 2004). However, an increase in empirical data suggests that 

meiotic drive may in fact play an important role in HR and the evolution of hybrid 

sterility (McDermott and Noor, 2010). A selfish driver located on the X chromosome can 

be introduced and amplified within a population, so long as a suppressor for the driver 

arises in time to override the deleterious effect the driver has on an individual, such as 

through reduced fertility (Edward, 1961). Selfish drivers that invade a population, disrupt 

sex ratios, and/or deleteriously affect an individual promotes selection for the evolution 

of a suppressor for the driver (Crow, 1991). However, additional drivers linked to meiotic 

drive may arise within the population that are capable of evading old and established 

suppressors (Hall, 2004; Wilkinson et al., 2014), necessitating the evolution of yet 

another suppressor. As such, a rapid, intergenomic conflict is establish between drivers 

and suppressors within a population, increasing the likelihood of driver-suppressor mis-

match in hybrids formed between divergent populations. Meiotic drive and suppressor 

genes are more likely to evolve on sex chromosomes (Hurst and Pomiankowski, 1991), 

and as such if an X-linked driver responsible for meiotic drive has a Y-linked suppressor, 

disruption in sex ratios and sterility would be observed in interspecific hybrids that 

received a Y chromosome from another species that did not evolve that particular 

suppressor (Frank, 1991; Hurst and Pomiankowski, 1991). 

2.1.3 Stages of spermatogenesis in Drosophila 

Exploring hybrid sterility from a cellular approach, rather than a genetic mapping 

approach, may yield new insights into the underlying basis of interspecies sterility. The 

cellular process of spermatogenesis has been studied in a variety of species (Clouthier, 

1996; L' Hernault, 1997; Fuller, 1998; Birkhead et al., 2008), including within the model 

system of Drosophila. The production of male gametes has been well characterized and 

studied across many Drosophila species (e.g., Fuller, 1998; Scharer et al., 2008; Davis 

and Fuller, 2009). Furthermore, the major stages of cell differentiation and transformation 

that occur during the process of spermatogenesis are easily identifiable. 
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Spermatogenesis is highly conserved across the Drosophila genus and can be subdivided 

into three main stages: pre-meiosis, meiosis, and post-meiosis. During the pre-meiotic 

stage, a central hub located at the apical end of the testes undergoes an asymmetrical 

division, producing one stem cell that will return to the hub and one gonialblast that will 

continue through the process (Davis and Fuller, 2009). A species-specific number of 

mitotic divisions (five to eight) produce spermatogonia that later develop into primary 

spermatocytes (Pantazidis et al., 1992; Scharer et al., 2008). The mitotic events do not 

undergo complete cytokinesis, thus creating a series of interconnected spermatocytes 

within a single syncytium (Davis and Fuller, 2009). Primary spermatocytes then enter 

into meiosis, wherein the diploid genome splits to a haploid genome (Davis and Fuller, 

2009).   

The events that occur during the post-meiotic stage of spermatogenesis in Drosophila 

involve the drastic transformation of a round haploid cell into a species specific haploid 

sperm shape that is fully motile. This transformation process also includes repackaging 

the DNA from histones onto protamines (Kanippayoor et al., 2013), condensing the DNA 

to a level of compaction that properly packages into the small volume of the sperm head, 

a necessary property for a hydrodynamic sperm (Tokuyasu, 1972). Within the sperm 

bundle, mitochondrial fusion results in the formation and intertwining of the minor and 

major mitochondrial derivatives, or the Nebenkern (Tokuyasu, 1974; Hales and Fuller, 

1997). Both mitochondrial derivatives move alongside the growing sperm tail. Due to the 

differences in mitotic divisions between Drosophila species, the number of sperm 

produced from one round of spermatogenesis differs. Specifically, Drosophila arizonae, 

Drosophila mojavensis, and species within the Drosophila simulans complex (e.g. 

Drosophila simulans and Drosophila mauritiana) undergo four mitotic divisions to 

produce 16 primary spermatocytes, giving rise to 64 sperm per sperm bundle (Zouros, 

1991). In contrast, Drosophila pseudoobscura and Drosophila persimilis undergo five 

mitotic divisions to produce 32 primary spermatocytes, leading to 128 sperm per sperm 

bundle (Pantazidis et al., 1992; Scharer et al., 2008).  

Abnormalities and errors arising during spermatogenesis have been noted and 

characterized at the cellular level, especially in Drosophila melanogaster (reviewed in: 
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White-Cooper, 2004). While one study has also examined cytological abnormalities 

within interspecies hybrids of Drosophila (Kulathinal and Singh, 1998), this study 

occurred prior to significant advances in imaging technology. Furthermore, the study 

performed by Kulathinal and Singh (1998) could not determine the exact stage at which 

spermatogenic failure occurred, and all of the species examined were from within a 

closely-related species complex (the simulans complex). 

An examination of hybrid spermatogenic failure across diverse species pairs of 

Drosophila will allow for an assessment of where spermatogenic failure occurs across 

this well-studied genus. If the genetic basis of spermatogenic failure can occur at any 

stage, by any loci, as predicted by BDM (Bateson, 1909; Dobzhansky, 1936; Muller, 

1940), then the stage at which failure occurs should be different among interspecies pairs. 

In other words, if mutation is randomly introduced into a population, and increase in 

allelic frequency of that mutation depends on evolutionary forces such as drift or natural 

selection that should vary between isolated populations, then most newly-arisen fixed 

allelic variants would be expected to be different in these isolated populations. In 

addition, how genetic incompatibilities manifest to affect hybrid fitness should be unique 

among different hybridization events of different species pairs (Bateson, 1909; 

Dobzhansky, 1936; Muller, 1940). If, however, the basis is not due to random genetic 

changes, but rather due to genetic changes in a very specific locus or subset of loci, or 

due to a specific stage of spermatogenesis being highly susceptible to cellular failure, 

then a trend may emerge. Such a trend would propose a potential generalized mechanism 

for postzygotic isolation, an observation not made since the introduction of Haldane's rule 

(Haldane, 1922).  

2.1.4 Overview of study 

This study aims to identify failures occurring during spermatogenesis across multiple 

interspecies pairs in the genus Drosophila. To obtain a broad view, I chose species 

spanning the Drosophila genus (Figure 2.1H). Since species accumulate divergent 

mutations over time (e.g., Orr, 1995;  Matute et al., 2010), it is not surprising that more 

divergent species pairs usually produce hybrids with more severe sterility phenotypes, 

such as heavily atrophied testes and the absence of sperm, such as among D. 
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melanogaster and its sibling species in the simulans complex (Engles and Preston, 1979). 

The first criterion was that all sterile interspecies hybrids I examined still produce sperm, 

allowing for an assessment of the entire spermatogenic pathway. In the D. simulans 

complex, the sibling species D. simulans and D. mauritiana diverged approximately 

260,000 years ago (Kliman et al., 2000) and are well studied in the field of hybrid 

sterility (Presgraves, 2010). The recently diverged (500,000 ya; Hey and Nielsen, 2004) 

species pair of D. pseudoobscura-D. persimilis can additionally be used as a model of 

whether hybrid sterility has a differential impact on sperm morphs as these species 

produce both fertilizing sperm (eusperm) and non-fertilizing sperm (parasperm) morphs 

in their ejaculate (Snook et al., 1994). Lastly, the species pair D. arizonae and D. 

mojavensis were chosen due to their distant phylogenetic relationship to the other two 

species pairs and their recent divergence time from each other (0.6-1.2 my; Ruiz et al., 

1990; Reed et al., 2008). Furthermore, these three chosen interspecies crosses have been 

previously demonstrated to exhibit hybrid male sterility (Coyne and Orr, 1989). In this 

study, I examined and identified the stage at which spermatogenesis fails across three 

interspecies hybrids in Drosophila.   

2.2 Materials and methods 

2.2.1 Drosophila stocks and maintenance 

The Drosophila mauritiana stock was collected by Christopher Austin from Mauritius in 

May, 2012. Transgenic flies that possess protamines fused to a green fluorescent protein 

(see below) were created and acquired from Dr S. Pitnick and Dr J. Belote (Manier et al., 

2010). All other pure species Drosophila stocks were acquired from the Drosophila 

Species Stock Center (San Diego, CA): Drosophila simulans (FC; stock #14021-

0251.165), Drosophila pseudoobscura (#114011-0121.149), Drosophila persimilis 

(#14011-0111.49), Drosophila arizonae (#15081-1271.00), Drosophila mojavensis 

(#1501-1352.22). To setup interspecific mating, 5 female D. simulans were mated to 5 

male D. mauritiana. The reciprocal cross was not performed, as male hybrids produced 

no sperm (Kulathinal and Singh, 1998) and the intent of this study is to examine sperm of 

sterile hybrid males. Both directions of interspecific crosses were performed to produce 
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sterile hybrid males between D. pseudoobscura and D. persimilis. Five of each species 

was used for mating. Only one direction of interspecific mating was performed between 

D. mojavensis and D. arizonae to produce sterile hybrid males. Although interspecies 

hybrids can be made within a laboratory setting, the number of mating events is much 

less than the other interspecies crosses examined when a single male is presented to a 

single female. This may be a by-product of behavioural isolation (Massie, 2006). As 

such, 5 D. arizonae females were mated to 15 D. mojavensis males. The reciprocal cross 

could not be performed as D. mojavensis females rarely mated with D. arizonae males 

and few sterile hybrid males were produced. All flies within the simulans and mojavensis 

complexes were maintained on standard Bloomington recipe cornmeal media 

(Bloomington Drosophila Stock Center); flies from the pseudoobscura group were 

maintained on Bloomington recipe banana media. All flies were housed at 24°C on a 

14:10 light:dark cycle at 75% humidity.  

2.2.2 Cytological assessment of pure species and interspecies hybrids in 

Drosophila 

Testes of Drosophila species and interspecies hybrids that were no more than 2 days old 

were extracted in Testes Buffer (183mMKCl, 47mMNaCl, 10mM Tris-HCl) and were 

lightly squashed under a cover slip. Overall gross testes morphology was observed using 

a light microscope and images were taken with a Nikon camera and analyzed with NIS-

elements. To observe individual stages of spermatogenesis, testes of pure species or 

hybrid males were extracted in 50 µl PBS buffer solution from 1-4 day old flies. Testes 

were then transferred to 20 µl 45% acetic acid for 7 minutes. A cover slip was pressed on 

top of the sample, and excess acetic acid removed. Samples were visualized using phase 

contrast microscopy on a Nikon Eclipse E100 compound microscope. 

2.2.3 Determining number and head size of sperm produced after 

spermatogenesis  

The number of sperm produced after spermatogenesis was determined by counting the 

number of sperm within a single sperm bundle. Sperm bundle counts were determined for 
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D. mauritiana, D. arizonae, and D. pseudoobscura, as well as interspecific hybrids 

produced with D. simulans, D. mojavensis and D. persimilis, respectively. Transgenic D. 

mauritiana (w; P{w8, ProtB-EGFP, w+}8A), D. simulans (w+; pBac{3xP3-EGFP, ProtB-

EGFP}11B), and D. pseudoobscura (w-; pBac{3xP3-GFP, ProtB-GFP}27), which 

expresses a protamine GFP fusion protein, were used in this experiment to count the 

number of mature sperm per sperm bundle. For D. mojavensis, D. arizonae, and their 

interspecific hybrids, sperm per sperm bundle was determined using 0.5µl/ml of DAPI 

(4’,6-diamidino-2-phenylindole), a nuclear stain. Images of fluorescent sperm were taken 

using a Leica DMI6000 B inverted fluorescent microscope and further analyzed using 

MetaMorph Imaging software. A Welch's two-sample t-test was performed using R, as it 

is a more robust statistical analysis that can perform better than Student's t-test when 

sample sizes and variances are unequal. In addition, effect size was calculated using 

Glass' delta equation (Glass et al., 1981), as effect size quantifies the difference in size 

between the two groups.  

To measure the sperm head length in D. mojavensis, D. arizonae, D. pseudoobscura, D. 

persimilis, and their interspecific hybrids, testes were stained with 0.5µl/ml of DAPI. 

Transgenic D. simulans and D. mauritiana flies that were used to determine sperm per 

sperm bundle were also used to determine sperm head length in each species and their 

interspecific hybrids. Images were taken using a Nikon Eclipse Ci-L upright fluorescent 

microscopy, equipped with a DS-Fi2 colour camera. Image acquisition software used was 

Nikon Elements D and sperm head length was measured using ImageJ. A Student's two-

sample t-test or a Welch's two-sample t-test was performed using R and effect size was 

calculated using Glass' delta equation (Glass et al., 1981). As nulcei appeared similar in 

length in pure species and their hybrids (Supplementary Figure 1), only 5-10 males were 

scored for sperm head length.   

2.2.4 Transmission election microscopy (TEM) 

Transmission electron microscopy (TEM) was used to examine testes from parental 

species of D. simulans and D. persimilis and interspecific hybrids of D. simulans and D. 

mauritiana (sim/mau) and D. pseudoobscura and D. persimilis (pse/per). The testes of 
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hybrids between D. arizonae and D. mojavensis were previously imaged with TEM 

(Hardy et al., 2011).Testes were dissected in phosphate buffer, immediately transferred to 

2.5% glutaraldehyde/3.0% paraformaldehyde on a siliconized cover, and incubated in the 

fridge overnight. Testes were postfixed in 2% OsO4 and dehydrated in acetone and 

embedded in Epon resin. Testes in Epon resin were sliced into 60nm slices, mounted on a 

400 mesh nickel grid and stained with 2% uranyl acetate and 2% lead citrate. Samples 

were imaged on a Philips CM10 TEM.   

2.3 Results 

2.3.1 Morphological observations of D. simulans, D. mauritiana, and 

their interspecific hybrids (sim/mau) 

Subtle observable differences in gross testes morphology are seen in interspecific 

hybrids, sim/mau (Figure 2.1). Visually, sim/mau have short and disorganized sperm 

bundles compared to pure species (Figure 2.1A, 2.1B, 2.1C). No obvious spermatogenic 

errors were present in the testes of any hybrid in the stages preceding the production of 

primary spermatocytes (data not shown). In primary spermatocytes undergoing the first 

meiotic division, it was apparent that chromosomes were not equally separating between 

the two dividing cells, resulting in what appears to be non-disjunction, however, which 

chromosomes that were not properly separating could not be determined (Figure 2.1D, 

2.1F). For interspecies crosses between D. simulans and D. mauritiana, 17 out of the 23 

primary spermatocytes observed exhibited a non-disjunction event. Pure species, D. 

simulans (n=8) and D. mauritiana (n=10), did not exhibited a non-disjunction event. 

Fluorescent in-situ hybridization (FISH) was unable to be successfully performed in 

order to determine which chromosomes were lagging, and the creation of a D. simulans 

specific probe for each chromosome was unsuccessful.  

The number of sperm produced after spermatogenesis in sim/mau (n=10) was roughly 

half the number of sperm produced in D. mauritiana (n=10; Figure 2.4). This decrease in 

sperm number difference is significant, with a large effect size (P<0.001, ∆=10.62). 

Examination of sim/mau sperm tail ultrastructure reveals that individual sperm cells 

possess two sperm tails and each nucleus varies in size (Figure 2.1G). In addition, each 
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mitochondrial derivative has not differentiated into the major and minor forms (Figure 

2.1G).  

Aged (6 days old) sim/mau males (n=10) produce sperm with nuclei that are longer in 

length than that of young (1 day old) sim/mau hybrids (n=10; Figure 2.5). This difference 

is significant, with a large effect size (P<0.001, ∆=1.784), suggesting sperm nuclear de-

condensation occurs in hybrids aged for a short period of time. When comparing sperm 

head length of sim/mau (both young and aged) to parental males (both young and old, 

n=5 for both parental species), sim/mau produce sperm that are longer (Figure 2.6). The 

increased difference observed is significant and with a large effect size when comparing 

young D. simulans to young sim/mau (P<0.001, ∆=2.96) and young D. mauritiana to 

young sim/mau (P<0.001, ∆=3.07). The increased difference is also significant and with a 

large effect size when comparing aged D. simulans to aged sim/mau (P<0.001, ∆=3.96) 

and aged D. mauritiana to aged sim/mau (P<0.001, ∆=3.95). 

2.3.2 Morphological observations of D. mojavensis, D. arizonae and 

their interspecific hybrids (ari/moj) 

Observable redundant differences in gross testes morphology are seen in hybrid males, 

ari/moj, which are produced from D. mojavensis mated to D. arizonae (Figure 2.2A, 

2.2B, 2.2C). All stages of spermatogenesis could be seen in ari/moj testes, however, 

sperm bundles visually appeared disorganized and shorter than that of the parental 

species (Figure 2.2C). Upon closer inspection of primary spermatocytes in ari/moj males, 

a similar phenomenon was seen in sim/mau hybrids (Figure 2.1E). In interspecies hybrids 

between D. arizonae and D. mojavensis, all primary spermatocytes observed (n=6) 

exhibited a non-disjunction event and one instance of a chromosomal bridge between two 

separating chromosomes (Figure 2.2E). A non-disjunction event was not observed in any 

primary spermatocytes undergoing meiosis in D. arizonae (n=5).  

The number of sperm produced after spermatogenesis was also quantified for ari/moj 

hybrids (n=10; Figure 2.4). Similar to the observation noted for sim/mau hybrids, the 

number of sperm within a sperm bundle is roughly half the number than that of the 
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parental species, D. arizonae (n=10), and the difference was significant (P<0.001) with a 

large effect size (∆=6.48).  

Aged (6 days old) ari/moj hybrids (n=10) also exhibit longer sperm nuclei length than 

that of young (1 day old) ari/moj hybrids (n=10; Figure 2.5). This difference is 

significant (P<0.001), with a large effect size (∆=2.63), suggesting rapid sperm nuclear 

de-condensation in ari/moj hybrids. Sperm head length of young ari/moj (n=10), have 

shorter nuclei than young parental males, D. arizonae (n=5) and D. mojavensis (n=5; 

Figure 2.6). The difference between young ari/moj and young D. arizonae is significant 

(P<0.05) with a large effect size (∆=4.56). The difference between young ari/moj and 

young D. mojavensis is significant (P<0.05) with a large effect size (∆=4.58). The 

difference between aged ari/moj and aged D. Arizonae is both significant (P<0.05) and 

with a large effect size (∆=1.03), an observation also seen between aged ari/moj and aged 

D. mojavensis (P<0.05, ∆=1.07).  

2.3.3 Morphological observations of D. pseudoobscura, D. persimilis, 

and their interspecific hybrids (pse/per) 

The most striking difference in gross testes morphology compared to the parental species 

could be seen in hybrid males, pse/per, that are produced from D. pseudoobscura and D. 

persimilis (Figure 2.3C). Hybrid testes were visibly smaller in size prior to mounting and 

imaging with a cover slip as qualitatively observed upon imaging when compared to 

parental species (Figure 2.3A, 2.3B, 2.3C). Sperm bundles of pse/per are visibly more 

disorganized than those of the parental species (Figure 2.3A, 2.3B, 2.3C). The various 

stages of spermatogenesis are not clearly seen in pse/per testes, wherein sperm bundles 

appear the most unrecognizable of the three hybrid groups examined. Primary 

spermatocytes of pse/per testes (n=7) that have undergone the first meiotic division also 

exhibit non-disjunction, with one instance of chromosomes appearing joined and unable 

to separate (Figure 2.3F). No non-disjunction events were observed in primary 

spermatocytes undergoing meiosis I in D. pseudoobscura (n=4; Figure 2.3D).  

The number of sperm produced after a single round of spermatogenesis in pse/per 

hybrids (n=10) is roughly half than D. pseudoobscura (n=10; Figure 2.4). This difference 
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was significant (P<0.001) and had a large effect size (∆=9.45). Examination of the 

flagellar ultrastructure in pse/per hybrid males reveals an identical observation of 

sim/mau hybrids. Each sperm cell possesses two sperm tails and no differentiation of the 

mitochondrial derivatives (Figure 2.3G), an observation not seen in D. persimilis sperm 

cells (Figure 2.3E).  

Sperm of young pse/per hybrids (n=10) were of a single nuclei length, similar to that of 

parasperm found in D. pseudoobscura (n=5) and D. persimilis (n=5; Figure 2.8). Sperm 

of aged pse/per hybrids (n=10), however, differentiated into two different sperm nuclei 

lengths, herein referred to as "short" and "long" sperm (Figure 2.5, 2.9). In comparing 

sperm head length of young pse/per hybrids to aged pse/per hybrids, a given pse/per 

individual would produce sperm nuclei that is longer than sperm nuclei of a young 

pse/per hybrid ("long" sperm), a difference that is significant (P<0.05) and with a large 

effect size (∆=1.01; Figure 2.5). A single pse/per individual would also produce sperm 

nuclei that is shorter than sperm nuclei of young pse/per hybrid ("short" sperm), a 

difference that is also significant (P<0.001) and with a large effect size (∆=8.01; Figure 

2.5). The "short" sperm of aged pse/per are shorter than parasperm of D. persimilis and 

D. pseudoobscura, a difference that is significant (p=0.00741 and p=0.0101, respectively) 

and with a large effect size (∆=2.07 and ∆=1.92, respectively; Figure 2.9). The "long" 

sperm of aged pse/per are shorter than eusperm of D. persimilis and D. pseudoobscura, 

(P<0.001) and with a large effect size (∆=2.75 and ∆=6.47, respectively; Figure 2.9). 
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Figure 2.1: D. simulans/D. mauritiana sterile hybrid males exhibit abnormal testes 

morphology, improper chromosomal segregation during meiosis, and possess two-tailed 

sperm cells. Phase contrast images of gross testes morphology of parental species, D. 

simulans (A), D. mauritiana (B), and their interspecific hybrid (C). Images were taken at 

10x objective and scale bar represents 0.25mm. Phase contrast images were taken of 

primary spermatocytes undergoing meiosis I in D. simulans (D), and the interspecific 

hybrids of D. simulans and D. mauritiana (F). Images were taken at 100x objective and 

the scale bar represents 0.025mm. Transmission electron microscopy (TEM) images of 

D. simulans sperm cells (E) and one sperm cell of the interspecific hybrids of D. simulans 

and D. mauritiana (G). Image was taken at 10500x magnification and scale bar that 

represents 500nm (E) or at 46000x magnification and scale bar represents 100nm (G). 

Phylogenetic tree of the Drosophila genus. Red circle highlights the location of this 

interspecies pair along the tree. Modified from http://rana.lbl.gov/drosophila (H). Single 

asterisk represents the major mitochondrial derivatives. Double asterisk represents one 

undifferentiated mitochondrial derivative. White diamond represents one of two sperm 

tails in a single sperm nucleus. Panel A outlines important structures/cells within 

Drosophila testes for this study.  
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Figure 2.2: D. mojavensis/D. arizonae sterile hybrid males exhibit abnormal testes 

morphology and improper chromosomal segregation during meiosis. Phase contrast 

images of gross testes morphology of parental species, D. arizonae (A), D. mojavensis 

(B), and their interspecific hybrid (C). Images were taken at 10x objective and scale bar 

represents 0.25mm. Phase contrast images were taken of primary spermatocytes 

undergoing meiosis I in D. arizonae (D), and the interspecific hybrid of D. arizonae and 

D. mojavensis (E). Images were taken at 100x objective and the scale bar represents 

0.025mm. Phylogenetic tree of the Drosophila genus. Red circle highlights the location 

of this interspecies pair along the tree. Modified from http://rana.lbl.gov/drosophila (F). 
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Figure 2.3: D. pseudoobscura/D. persimilis sterile hybrid males exhibit abnormal testes 

morphology, improper chromosomal segregation during meiosis, and possess two-tailed 

sperm cells. Phase contrast images of gross testes morphology of parental species, D. 

pseudoobscura (A), D. persimilis (B), and their interspecific hybrid (C). Images were 

taken at 10x objective and scale bar represents 0.25mm. Phase contrast images were 

taken of primary spermatocytes undergoing meiosis I in D. pseudoobscura (D), and the 

interspecific hybrid of D. pseudoobscura and D. persimilis (F). Both images were taken 

at 100x objective and the scale bar represents 0.025mm. Transmission electron 

microscopy (TEM) images of D. persimilis sperm cells (E) and one sperm cell of the 

interspecific hybrids of D. pseudoobscura and D. persimilis (G). Image of D. persimilis 

sperm cells were taken at 25000x magnification and scale bar represents 500nm (E), 

image of interspecific hybrid sperm cell was taken at 25000x magnification and scale bar 

represents 500nm (G). Phylogenetic tree of the Drosophila genus. Red circle highlights 

the location of this interspecies pair along the tree. Modified from 

http://rana.lbl.gov/drosophila (H). Asterisk represents sperm mitochondria. White 

diamonds represents two sperm tails within one sperm nuclei.  
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Figure 2.4: Interspecies hybrid males roughly half the number of sperm per sperm bundle 

than parental species males. Significantly fewer sperm (p < 0.0001 for all comparisons) 

were produced after one round of spermatogenesis (represented in the number of sperm 

produced within a sperm bundle) for pure species males of D. mauritiana (mau) 

compared to interspecies hybrids (sim/mau), pure species D. arizonae (ari) compared to 

interspecies hybrids (ari/moj), and pure species D. pseudoobscura (pse) compared to 

interspecies hybrids (pse/per). Error bars represent standard error.  
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Figure 2.5: The sperm nuclei of interspecies hybrid males de-condenses with age, while 

similarly aged parental species males do not.Sperm head length, measured in µm, was 

compared between old and young males produced by intraspecific crosses 

(sim/sim;mau/mau; moj/moj; ari/ari; pse/pse; per/per)and interspecific crosses (sim/mau; 

ari/moj;pse/per). Sperm head length for aged (6 days old) sterile hybrid males were 

significantly longer than young (1 day old) sterile hybrid males (P<0.05). Error bars 

represent standard error. Histographs of the distribution of individual sperm nulei for 

each species and their interspecies crosses can be found in Appendix B. 
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Figure 2.6: The sperm nuclei of interspecies hybrid males are longer than parental species 

males, for both Day 1 and Day 6 old males. Sperm head length, measured in µm, was 

compared between young males (Day 1) produced by intraspecific crosses (sim/sim; 

mau/mau) and interspecific crosses (sim/mau). The same measurement was taken for 

older males (Day 6). Sperm head length of interspecies sterile hybrid males was 

significantly longer than parental males for both old and young males (P<0.05). Error 

bars represent standard error.  
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Figure 2.7: The sperm nuclei of interspecies hybrid males are shorter than parental 

species males, for both Day 1 and Day 6 old males. Sperm head length, measured in µm, 

was compared between young males (Day 1) produced by intraspecific crosses (moj/moj; 

ari/ari) and interspecific crosses (ari/moj). The same measurement was taken for older 

males (Day 6). Sperm head length of interspecies sterile hybrid males was significantly 

shorter than parental males for both old and young males (P<0.05). Error bars represent 

standard error.  
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Figure 2.8: The sperm nuclei of young (Day 1) interspecies hybrid males are shorter than 

eusperm of young parental species males. Sperm head length, measured in µm, was 

compared between young males produced from intraspecific crosses (pse/pse; per/per) 

and interspecific crosses (pse/per) for both sperm morphs (eusperm and parasperm). 

Sperm head length of interspecies sterile hybrid males was significantly shorter than 

parental males that areproducing eusperm (P<0.05). There was no significant difference 

between interspecific hybrid males and parental males that are producing parasperm. 

Error bars represent standard error.  
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Figure 2.9: The sperm nuclei of older (Day 6) interspecies hybrid males produce two 

sperm morphs that are not the same sperm head length as eusperm or parasperm. Sperm 

head length, measured in µm, was compared between older males produced from 

intraspecific crosses (pse/pse; per/per) and interspecific crosses (pse/per) for both sperm 

morphs (eusperm and parasperm). Interspecific sterile hybrid males produced sperm with 

significantly different sperm head lengths than either sperm morph (P<0.05). Error bars 

represent standard error.  
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2.4 Discussion 

It would be expected that if randomly arising mutations cause sterility in hybrid males, 

then unique spermatogenic failures should be seen in different interspecific hybrids 

(Bateson, 1909; Dobzhansky, 1936; Muller, 1940). Here, I see a common trend in testes 

morphology across the three interspecies pairs examined in this study. First, sperm 

bundles within testes of sterile hybrid males are disorganized. Second, mitochondrial 

derivatives are not formed and a single sperm nucleus contains two sperm tails, as seen in 

previous studies (Kulathinal and Singh, 1998; Hardy et al., 2011). Sterile hybrid males 

produced between D. persimilis and D. pseudoobscura exhibits a more severe phenotype 

than all other interspecies crosses studied, wherein the level of disorganization of sperm 

bundles is greater (Figure 2.3). Individual sperm bundles are difficult to identify in sterile 

hybrid males and bundles appear shorter than sperm bundles from parental species. This 

may be a by-product of both species possessing two different sperm morphs (Snook et al., 

1994), whose spermatogenic pathways may differ from each other, or which may arise 

from a more complex process of spermatogenesis.  

It's important to note that the length of each sperm bundle was not determined for any 

interspecies hybrids and should be further studied to determine if sperm cells of hybrid 

sterile males are truncated. For interspecific hybrids that produce sperm, I did not observe 

defects in spermatogenesis prior to meiosis (data not shown), a finding also noted in 

interspecific hybrids within the simulans complex (Kulathinal and Singh, 1998). 

Evidence of meiotic defects, however, are seen when examining chromosome 

composition between dividing primary spermatocytes. The observation of unequal 

division of chromosomes between daughter cells of meiosis I suggest possible errors in 

the segregation machinery during anaphase I. Furthermore, chromosome bridges have 

been noted in some meiotically dividing cells of two interspecies hybrids (Figure 2.2, 

2.3). Chromosome bridges have been noted in interspecific hybrids in plants and been 

speculated to arise and cause disruption due to difference in chromosomal structures 

(McClintock, 1933; Beasley, 1941). Chromosome bridges have been linked to mitotic 

mis-segregation in hybrid inviability between two species of Drosophila (Ferree and 

Barbash, 2009). Here, improper chromatin separation is induced by divergence of a non-
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coding region between D. melanogaster and D. simulans, leading to mitotic errors during 

early embryogenesis. Mitotic defects can be observed during anaphase, wherein the 

lagging chromatin, consisting of a 359-base pair repeat region, creates a chromosome 

bridge between the dividing chromosomes (Ferree and Barbash, 2009). Although the 

findings of Ferree and Barbash (2009) are exclusive to mitosis and hybrid inviability, a 

similar explanation may be used in the findings observed in interspecific sterile hybrid 

males examined in this study.  

One possible scenario for mis-segregation of chromosomes during meiosis I in 

interspecific sterile hybrid males may be due to centromeric divergence. The machinery 

necessary for meiotic segregation is recruited by the centromere (Dernburg et al., 1996), a 

rapidly evolving region that consists of heterochromatin (Csink and Henikoff, 1998). The 

proteins that associate with the centromere also exhibit rapid co-evolution, establishing a 

unique sequence specific system between centromeres and their proteins within a given 

species (Malik and Henikoff, 2001; Brideau et al., 2006). Interspecific sterile hybrid 

males may suffer from meiotic defects as a result from improper assembly of the 

segregation machinery during anaphase due to divergence centromeric sequences. 

Henikoff et al. (2001) proposes that meiotic drive may play a role in centromeric 

evolution, as selfish centromeres drive the rapid divergence of centeromeric sequences. 

This theory, however, has been refuted since centromeric evolution should lead to 

interspecific hybrid female sterility (Coyne and Orr, 2004). As such, further examination 

of the sequences involved in the chromosomal bridge observed in this study, and what 

chromosomes are failing to separate, may provide insight into how chromosomes are 

mis-segregating during meiosis. Attempts to identify the chromosomes involved in mis-

segregation have been performed by labelling sequence using Fluorescent in-situ 

hybridization (FISH), however, attempts were unsuccessful. Finally, it's important to note 

that with a relatively small sample size for each parental species and interspecific hybrid 

(n<8), it is difficult to conclude whether bridging chromosomes are seen in all 

interspecies hybrids in this interspecies pair.  

Overall, it appears meiotic errors may be cause for sterility across all three interspecies 

hybrids examined in this study. A by-product of mis-segregation of chromosomes may 
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also account for the reduction of sperm produced, as approximately half the number of 

sperm are generated after spermatogenesis in all sterile hybrid males examined (Figure 

2.4). If chromosomes are unable to properly segregate, sperm cells may not be capable of 

properly individualizing during the process of spermiogenesis. Sperm cell head 

morphology has been further explored and will be discussed in Chapter 5. Regardless, 

chromosome mis-segregation and reduction to half the number of sperm produced after 

spermatogenesis across multiple species pairs have never been reported previously, yet 

this widespread observation suggests a common mechanism for hybrid sterility and 

Haldane's rule in Drosophila.  

The most obvious cause of this disorganization may lie in the stages that occur after 

meiosis, collectively known as spermiogenesis. Sperm-producing hybrids possess an 

underdeveloped axonemal complex (Kulathinal and Singh, 1998), which is the 

cytoskeletal structure for sperm tails, and may experience postmeiotic defects. Proper 

packaging of the sperm head plays a pivotal role in sperm motility, protecting the DNA, 

establishing sperm head hydrodynamic morphology and ensuring successful fertilization 

(Bianchi et al., 1993; Agarwal and Said, 2003; Aoki et al., 2005). In addition, a fully 

functional tail is required for proper motility of the sperm cell, and thus can affect a 

sperm's ability to fertilize (Tokuyasu, 1972). In this study, two tails were seen within 

each sperm cell for interspecific hybrids within the simulans complex and the D. 

pseudoobscura subgroup. This suggests that the cross-sectional analysis of the each 

single cell may in fact be two sperm cells joined together, a possible by-product of the 

non-disjunction seen during meiosis. Furthermore, hybrids of these interspecific crosses 

do not have distinct mitochondrial derivatives (major and minor). Whether this lack of 

mitochondrial differentiation affects mitochondrial function has yet to be determined, but 

could account for the lack of motility in hybrid sperm (addressed in Chapter 3).  

Interspecific hybrids of D. arizonae and D. mojavensis also have similar disorganization 

of sperm bundles, but may or may not have two-tailed sperm, as the images were not 

conclusive (Hardy et al., 2011). Hybrids produced from female D. mojavensis mated to 

male D. arizonae do not appear to have paired sperm tail. Conversely, hybrid males 

produced from the reciprocal cross appear to exhibit a more disorganized sperm bundle 
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and sperm cells may possess two sperm tails; however, it was difficult to differentiate 

between sperm cells accurately (Hardy et al., 2011). Regardless, some of the findings of 

Hardy et al. (2011) are similar to the observations made in this study. When female D. 

arizonae females are mated to D. mojavensis males, roughly half the number of sperm are 

produced after spermatogenesis in sterile hybrid males, compared to the parental species 

(Hardy et al., 2011; Figure 2.4). Furthermore, mitochondria within each sperm bundle did 

not differentiate into the major or minor mitochondrial derivatives, a finding similar to 

both pse/per and sim/mau hybrids (Hardy et al., 2011; Figure 2.1, 2.3). Although sterile 

hybrids produced by female D. mojavensis mated to male D. arizonae did not exhibit 

two-tailed sperm cells or half the number of sperm produced (Hardy et al., 2011), it has 

been previously shown that maternity plays a role in different sterility phenotypes within 

Drosophila (Kulathinal and Singh, 1998). When female D. mauritiana are mated to D. 

simulans (or D. sechellia), sterile hybrid males do not produce sperm and 

spermatogenesis appears to stop prior to meiosis (Kulathinal and Singh, 1998). Both 

studies suggest that maternal factors (either genetic or cellular) play a role at which stage 

of spermatogenesis is affected in sterile hybrids. Although this not the common trend 

seen in other interspecific crosses in Drosophila (e.g. pse/per hybrids; Figure 2.3 or 

hybrids of D. simulans and D. sechellia; Kulathinal and Singh, 1998), it's important to 

note that Haldane's rule may not specifically target one stage of spermatogenesis and 

slight phenotypic variations may be observed.  

Sperm nuclei of sim/mau hybrids did appear less condensed than that of the parental 

species, suggesting possible abnormalities in DNA packaging and protamine expression, 

the latter of which has been previously shown in D. simulans and D. mauritiana hybrids 

(Moehring et al., 2007). Sperm nuclei from ari/moj hybrids were shorter than that of the 

parental species, even though aged males (day 6) possessed longer nuclei than young 

males, suggesting nuclei of hybrids are more condensed than their parental sperm nuclei. 

A similar phenomenon was seen with young hybrid male (day 1) sperm produced from 

pse/per. Nuclei length was similar to the length of parasperm found in both parental 

species, but upon aging, the nuclei would either de-condense (long sperm) or condense 

further (short sperm). Neither long sperm nor short sperm length were similar to either 

sperm morphs of D. pseudoobscura and D. persimilis. As with the increased 
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abnormalities in gross testes morphology, it is possible that these more extreme results 

seen within hybrids of pse/per could be due the different sperm morphs produced in both 

parental species (Snook et al., 1994). It is also possible that young interspecific hybrid 

males are only producing parasperm, but later produce two sperm morphs that not able to 

properly package into parasperm or eusperm. Further inquiry to this question may 

provide insight as to the abnormalities in DNA packaging in hybrids, although it may be 

possible these downstream effects are a by-product of errors occurring earlier in 

spermatogenesis. 

Overall, several trends are observed in many interspecific sterile hybrid males within 

Drosophila. First, sperm bundles are not properly organized within testes of sterile hybrid 

males. Second, meiotic errors are apparent for most hybrids examined in this study, as 

sperm cells exhibit non-disjunction after meiosis I, roughly half the number of sperm a 

produced after spermatogenesis, and each cell possesses two sperm tails. As previously 

speculated, meiotic drive may be the general cause for meiotic errors observed in sterile 

hybrid males. Within a population, a selfish driver and its suppressor co-evolve, leading 

to an interaction that is compatible within the given population. Hybridization, due to 

interspecific mating, may break-up the interaction, leading to defects within the hybrid. 

How those defects manifest may involve non-coding sequences (leading to mis-

segregation of chromosomes during meiosis) or apoptosis of cells not possessing the 

driver element (leading to half the number of sperm produced). Examination of the 

sequences leading to meiotic errors (perhaps by isolation of chromosome bridges) could 

provide further insight.  

The general trends noted in this study potentially contradict the BDM model, as it 

predicts failures within sterile hybrid males to be inconsistent and random, as the 

mutations that would lead to genetic incompatibility are random (Bateson, 1909; 

Dobzhansky, 1934; Muller, 1940). However, the results of this study consistently point to 

similar failures during spermatogenesis across many interspecies pairs in Drosophila. 

Thus, a common stage at which spermatogenesis is failing within sterile hybrids may 

suggest two possibilities. First, random genetic changes may arise, causing divergence 

between populations and lead to hybrid sterility. How hybrid sterility manifests, however, 
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is similar across different interspecific hybrid males, such that a particular stage of 

spermatogenesis is prone to failure. In other words, common trends when studying hybrid 

sterility in males may exhibit cellular consistency, but the genetic underpinnings of those 

consistencies are random. Second, the genetic basis for hybrid sterility is not random and 

the genetic factors that are involved in a particular stage of spermatogenesis are more 

likely to diverge, leading to errors and hybrid sterility.  

Taken together, the observation of non-disjunction, the presence of chromosomal bridges 

in some cases, and the production of half the number of sperm per sperm bundle suggests 

failures occurring during the first meiotic event, rather than the second, across all three 

species pairs. If this is indeed a common trend, then errors during meiosis I may be the 

key to understanding the nature of hybrid breakdown, the evolution of hybrid sterility, 

and Haldane's rule. 
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Chapter 3 

3 Mitochondrial activity and alive versus dead sperm in sterile 

hybrid males in Drosophila.  

Sterile hybrid males in a variety of interspecies crosses in Drosophila produce immotile 

sperm with mitochondria that do not differentiate into the major and minor derivatives, 

suggesting a lack of function. Separately, it is unknown if sperm from sterile hybrid 

males are dead or alive. In this study, I used three different interspecific Drosophila 

crosses to determine the following in sterile hybrid males: are sperm dead or alive, and is 

a lack mitochondrial activity associated with immotility. I found that the sperm of sterile 

hybrid males are always alive and have entirely active mitochondria.   

3.1 Introduction 

In Drosophila melanogaster, sperm morphological abnormalities within sterile males 

have been extensively studied (Hardy et al., 1981; Kiefer, 1996; Wakimoto et al., 2004). 

A misshapen sperm head, improper packaging of DNA within the sperm head, 

dysfunctional mitochondria that affect sperm motility, and the production of dead sperm 

are associated with reduced male fertility. As such, any one of these factors may 

contribute to interspecies hybrid male sterility.  

In insects, the presence of live or dead sperm has been studied in the context of sperm 

competition (Hunter and Birkhead, 2002; Garcia-Gonzalez and Simmons, 2005), but the 

implications for hybrid sterile males has not been considered. Conceptually, a reduction 

in live sperm will have an effect on the concentration of sperm in the ejaculate that can 

fertilize an egg (Galvani and Johnstone, 1998; Guzick et al., 2001; Pacey, 2009). 

Therefore, in sterile hybrid males, it is plausible that sterility is due to complete loss of 

live sperm.  

Mitochondria produce energy to drive flagellar movement and active mitochondria can 

be used as an indicator of a sperm tail’s ability to move (Ruiz-Pesini et al., 1998). 
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Furthermore, assaying for sperm tail movement, using light microscopy, has been a 

commonly used measurement for mapping hybrid sterility genes in previous studies and 

is assumed to be directly correlated with the underlying genetic basis of hybrid sterility 

(Perez et al., 1993; Perez and Wu, 1995; Masly et al., 2006; Phadnis and Orr, 2009). 

Upon closer inspection of sperm tails at the ultrastructural level, it was noted that the 

mitochondria did not properly differentiate into the major and minor derivatives (Chapter 

2). To date, the function of each derivative is unclear, but it is known that most of the 

contents within the minor mitochondrial derivative are removed during sperm 

individualization (Tokuyasu et al., 1972), suggesting it may not serve a function in sperm 

tail motility. As such, it is possible that sterile hybrid males possibly have inactive 

mitochondria, due to the failure to fully form both mitochondrial derivatives, leading to 

immotile sperm. 

As outlined above, in Chapter 2, sterile hybrid males produce roughly half the number of 

sperm, and mitochondria do not differentiate into the major and minor derivatives. How 

this contributes to hybrid male sterility in Drosophila requires further study. Since hybrid 

males produce half the number of sperm from parental species, sperm cells may be 

undergoing apoptosis, and thus males produce dead sperm. In addition, the presence of 

two non-differentiated mitochondria in sterile hybrid males may lead to dysfunctional 

mitochondrial activity. As such, testing for active mitochondria allows me to assess 

whether undifferentiated mitochondrial derivatives are non-functional, thus leading to 

immotile sperm tails in sterile hybrid males. Thus, the purpose of this study was to 

identify alive versus dead sperm and mitochondrial activity within hybrid sterile males in 

three interspecies crosses within Drosophila. Using a Mitotracker® Red CMXRos stain 

that measures mitochondrial membrane potential, sperm tails of all three interspecies 

crosses did not appear to have reduced mitochondrial membrane potential. Using a 

live/dead sperm assay, hybrid males from all three interspecies crosses were living. This 

suggests that sterility is not a result of inactive mitochondria, nor is it a result of sperm 

inviability. 
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3.2 Materials and methods 

3.2.1 Fly husbandry and interspecies crosses 

All Drosophila stocks were obtained from the Drosophila Species Stock Center (San 

Diego, CA, USA). All flies, with the exception of those from the repleta group were 

maintained on standard recipe cornmeal media (Bloomington Drosophila Stock Center 

recipe). Drosophila arizonae and Drosophila mojavensis were maintained on banana 

media (Markow and O'Grady, 2006). Flies were housed at 24˚C on a 14:10 hour 

light:dark cycle at 75% humidity. Interspecies crosses were set up for three different 

groups within the genus Drosophila. Approximately 5 virgin female Drosophila simulans 

were mated to 5 virgin male Drosophila mauritiana. Similarly, approximately 5 virgin 

female Drosophila persimilis were mated to 5 virgin male Drosophila pseudoobscura. 

Lastly, 5 virgin female D. arizonae were mated to 15 virgin male D. mojavensis.  

3.2.2 Live/dead sperm assay 

To assess sperm viability, I collected males from each species studied, and sterile hybrid 

males produced from each interspecies cross, and aged flies for one day. Testes were 

extracted in approximately 200µlof Testes Buffer (183mM KCl, 47mM NaCl, 10mM 

Tris-HCl) then transferred to 20µl of a mixed Live/Dead solution on a siliconized cover 

slip. This solution contains 44μM of SYBR green and 50μM of propidium iodide (PI; 

Thermo Fisher Scientific). PI penetrates damaged and inactive cell membranes, staining 

nuclear material red, while SYBR green stains DNA green (Garner et al., 1994). This 

combination of nuclear stains can be used to analyze sperm cells that are alive (stains 

with SYBR green) or dead (stains with both SYBR green and PI) and has been previously 

used to detect apoptotic cells (Riccardi and Nicoletti, 2006). Testes were ripped apart in 

the Live/Dead solution to expel contents and were incubated at room temperature in a 

dark chamber for 5mins. The siliconized cover slip kept the Live/Dead mixture in a 

droplet form, preventing the liquid from spreading across the cover slip and drying during 

the incubation period. The Live/Dead solution was carefully removed using a pipette, 

then 20µl of Testes Buffer was added to the testes sample and washed by gently pipetting 
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the solution for 1 min. A second wash step was performed with fresh Testes Buffer to 

ensure the sample was properly washed and all contents of the Live/Dead solution were 

removed. Testes solution was carefully removed, 20µl of fresh Testes Buffer was 

dropped onto the sample, and the cover slip was mounted on a glass slide. Samples were 

then viewed using a fluorescent microscope. The first 30 sperm located using bright field 

microscopy had their sperm nuclei scored as alive versus dead using fluorescence. Five 

males from each parental species and 10 sterile hybrid males from each interspecies cross 

were examined. As a negative control, sperm cells from D. simulans were incubated in 

Triton X-100 for 5 mins to break up the cell membrane. These dead sperm cells were 

then processed and scored for viability as described above. Images were taken using a 

Nikon Eclipse Ci-L upright fluorescent microscopy, equipped with a DS-Fi2 colour 

camera (Nikon Canada). Image acquisition used Nikon Elements D software and further 

image processing was done using ImageJ (Schneider et al., 2012).  

3.2.3 Sperm mitochondrial membrane potential assay: MitoTracker® 

CMXRos 

To assess sperm mitochondrial activity, males from each species studied and sterile 

hybrid males from each interspecies cross were collected upon eclosion and aged for one 

day. Testes were extracted in 200µl of Testes Buffer (183mM KCl, 47mM NaCl, 10mM 

Tris-HCl) and then transferred to 20µlof 100mM of Mitotracker® Red CMXRos 

(ThermoFisher Scientific) on a siliconized cover slip. Mitotracker® Red CMXRos is a 

mitochondrial specific stain that accumulates in signals depending on the membrane 

potential (Pendergrass et al., 2004). Testes were ripped apart in the Mitotracker® Red 

CMXRos solution to expel the contents and then incubated for 10mins at room 

temperature in a dark chamber. The siliconized cover slip kept the Mitotracker® Red 

CMXRos solution in a droplet form, preventing the liquid from spreading across the 

cover slip and drying during the incubation period. The Mitotracker® Red CMXRos 

solution was carefully removed using a pipette and 20µl of Testes Buffer was added to 

the testes sample and washed by gently pipetting the solution for 1 min. A second wash 

step was performed with fresh Testes Buffer to ensure the sample was properly washed 

and all contents of the Mitotracker® Red CMXRos solution was removed. Testes 
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solution was carefully removed and 20µl of fresh Testes Buffer was dropped onto the 

sample; the cover slip was then mounted on a glass slide. The first 50 sperm tails 

identified using bright field microscopy were assessed for membrane potential using 

fluorescent microscopy. Five males from each parental species and 10 sterile hybrid 

males from each interspecies cross were examined. As a negative control, sperm cells 

from D. simulans were incubated in acetic acid for 5mins, washed in Testes buffer 3 

times, then processed and scored for mitochondrial activity as described above. Images 

were taken using a Nikon Eclipse Ci-L upright fluorescent microscopy, equipped with a 

DS-Fi2 colour camera (Nikon Canada). Image acquisition used Nikon Elements D 

software and further image processing was done using ImageJ (Schneider et al., 2012).  

3.3 Results and discussion 

3.3.1 Sperm viability in hybrid males of three interspecific crosses in 

Drosophila 

D. simulans was used as a control to test the efficacy of the Live/Dead assay for sperm 

viability. It was confirmed that the Live/Dead sperm viability assay previously described 

is usable to test for sperm inviability (Figure 3.1 S-U). All sperm examined from males of 

D. simulans did not stain with PI and stained with only SYBR green (Figure 3.1A-C). All 

sperm from D. mauritiana also stained similarly to D. simulans (Figure 3.1D-F). Since no 

sperm exhibited red fluorescence, all sperm cells were alive. Sperm examined from 

hybrid sterile males also did not take up propidium iodide (PI) (Figure 3.2 A-C), 

indicating that sperm cells were not dead and their membrane is intact and undamaged in 

hybrids.  

All sperm examined from males of D. persimilis did not take up PI but stained with 

SYBR green (Figure 3.1 G-I). This was also seen in D. pseudoobscura (Figure 3.1 J-L). 

As such, sperm produced are alive and not dead. Sperm examined from hybrid sterile 

males also did not take up propidium iodide (Figure 3.2 D-F), indicating that sperm cells 

were not dead and had no damaged cell membrane. All sperm examined from males of D. 

arizonae only stained with SYBR green, denoting viable sperm (Figure 3.1 M-O). Sperm 

of D. mojavensis stained similarly to D. arizonae (Figure 3.1 P-R). Sperm examined from 
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hybrid sterile males also did not stain with PI (Figure 3.2 G-I), indicating that sperm cells 

were viable and cell membranes were not damaged. 

Sperm produced from sterile hybrid males in any of the interspecies crosses were viable 

with undamaged membranes. Although the cell membrane may be intact, it is still 

possible for the structure of the cell membrane to be different between sperm from sterile 

hybrids and from the respective pure species. Although no previous study has 

demonstrated the role of cell membrane structure on sperm fertility or motility, changes 

to the cell membrane could impact these traits. 

As sterile hybrid males did not produce dead sperm, either the cells apoptose at an early 

stage of spermatogenesis and fully degrade by the stage I measured, or sperm cell 

apoptosis may not be an explanation for the reduction of sperm produced after 

spermatogenesis. Apoptosis may not be an explanation, as sterile hybrid males did not 

differ from the expected number of sperm tails (Chapter 2). As such, the reduction of 

sperm production in sterile hybrid males is likely due to sperm cells not properly 

separating during individualization. Thus, a single sperm may actually be paired sperm 

heads with two tails. This possibility will be further examined in Chapter 5.  

3.3.2 Mitochondrial activity in hybrid males of three interspecies crosses 

in Drosophila 

D. simulans was used as a control to test the efficacy of the Mitotracker® Red CMXRos 

for mitochondrial function. It was confirmed that the Mitotracker® Red CMXRos assay 

previously described is usable to test for a lack of mitochondrial activity (Figure 3.3 S-

U).All sperm examined from males of D. simulans (Figure 3.3 A-C) and D. mauritiana 

(Figure 3.3 D-F) stained with Mitotracker® Red CMXRos all exhibited brightly 

fluorescent tails, indicating highly active mitochondria. All sperm examined from 

interspecies hybrid males between D. simulans and D. mauritiana also possessed brightly 

stained sperm tails, indicating functional mitochondria. However, I noted that cyst-like 

structures were present along the entire length of the tail (Figure 3.4 A-C).  
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All sperm tails from males of D. persimilis (Figure 3.3 G-I) and D. pseudoobscura 

(Figure 3.3 J-L) stained intensely with Mitotracker® Red CMXRos. Sperm tails 

examined from hybrid sterile males between D. persimilis and D. pseudoobscura also 

stained intensely (Figure 3.4 D-F). Sperm tails for parental species and their sterile 

hybrids possess functional mitochondria. All sperm tails examined from males of D. 

arizonae (Figure 3.3 M-O) stained intensely with Mitotracker® Red CMXRos, similarly 

to D. mojavensis (Figure 3.3 P-R), suggesting highly active mitochondria for both 

parental species. Sperm tails examined from interspecies hybrid males between D. 

arizonae and D. mojavensis also stained intensely, suggesting functional mitochondria 

(Figure 3.4 G-I). This is unexpected, as mitochondrial derivatives to not form in sterile 

hybrid males, rather, two similar mitochondria are present (Chapter 2). It is possible that 

each mitochondria are active and that immotile sperm may be a by-product of other 

sperm abnormalities in sterile hybrid males.  

Cyst-like structures were also visible along the entire length of the sperm tail (Figure 3.4 

G-I). This has not been previously characterized within sterile hybrid males but has been 

seen in Drosophila that are mutant for the gene producing the clathrin heavy chain (Chc) 

protein. Males with this mutation fail to fully individualize and are sterile (Fabrizio et al., 

1998) but their sperm tails exhibit a “blebbing” defect. These blebs are thought to be a 

by-product of cytoplasm left behind during the individualization stage of spermiogenesis 

(Fabrizio et al., 1998). The blebbing phenotype has not been extensively examined but 

has been noted previously as occurring due to errors during individualization 

(Metzendorf and Lind, 2010). 

I have concluded, based on the evidence of this study, that sterile hybrid males in 

Drosophila produce sperm that are alive and with active mitochondria. As such, I focus 

on the DNA organization and sperm head morphology and their association with hybrid 

sterility is the next chapters.  

 

 



 

88 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Sperm of Drosophila parental species contain no dead sperm within their 

ejaculate when stained with SYBR Green (alive sperm, green fluorescence) and 

propidium iodide (dead sperm, red fluorescence). Only alive sperm (green fluorescence) 

are found in D. simulans (A-C), D. mauritiana (D-F), D. persimilis (G-I), D. 

pseudoobscura (J-L), D. arizonae (M-O), and D. mojavensis (P-R). Dead sperm of D. 

simulans males (were used as a control to test the validity of the Live/Dead Sperm Assay 

(S-U). Scale bars represents 10µm.  
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Figure 3.2: Sperm of interspecific male hybrids in Drosophila contain no dead sperm 

within their ejaculate when stained with SYBR Green (alive sperm, green fluorescence) 

and propidium iodide (dead sperm, red fluorescence). Only alive sperm (green 

fluorescence) are found in interspecific male hybrids between D. simulans and D. 

mauritiana (A-C), D. persimilis and D. pseudoobscura (D-F), and between D. arizonae 

and D. mojavensis (G-I). Scale bars represents 10µm. 

 



 

90 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Sperm tails of Drosophila parental species contain active mitochondria when 

stained with MitoTracker® CMXRos. Active mitochondria (red fluorescence) are found 

along the entire length of the sperm tail in D. simulans (B,C), D. mauritiana (E,F), D. 

persimilis (H,I), D. pseudoobscura (K,L), D. arizonae (N,O), and D. mojavensis (Q,R). 

Sperm nuclei were identified by either staining with DAPI (blue fluorescence; G,J,M,P,S) 

or protamines where attached to GFP (green fluorescence; A,D). Non-motile sperm of D. 

simulans males were used as a control to test the validity of the MitoTracker CMXRos® 

Assay (S-U). Scale bars represents 10µm.  
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Figure 3.4: Sperm tails of interspecific male hybrids in Drosophila contain active 

mitochondria when stained with MitoTracker®CMXRos. Interspecific male hybrids 

between D. simulans and D. mauritiana (A-C), D. persimilis and D. pseudoobscura (D-

F), and between D. arizonae and D. mojavensis (G-I). Sperm nuclei were identified by 

either staining with DAPI (blue fluorescence; D,G) or protamines where attached to GFP 

(green fluorescence; A). Scale bars represents 10µm. 

 

 



 

92 

 

 

3.4 Literature cited 

Fabrizio, J. J., Hime, G., Lemmon, S. K. and Bazinet, C. (1998). Genetic dissection of 

sperm individualization in Drosophila melanogaster. Development 125:1833–1843. 

Galvani, R. and Johnstone, R.A. (1998). Sperm allocation in an uncertain world. 

Behavioural Ecology and Sociobiology 44:161-168.  

Garcia-Gonzalez, F. and Simmons, L.W. (2005). Sperm viability matters in sperm 

competition. Current Biology 15:271-275. 

Garner, D.L., Johnson, L.A., Yue, S.T., Roth, B.L. and Haugland, R.P. (1994). Dual 

DNA staining assessment of bovine sperm viability using SYBR-14 and propidium 

iodide. Journal of Andrology 15:620-629. 

Guzick, D.S., Overstreet, J.W., Factor-Litvak, P., Brazil, C.K., Nakajima, 

S.T., Coutifaris, C., Carson, S.A., Cisneros, P., Steinkampf, M.P., Hill, J.A., Xu, 

D., Vogel, D.L. (2001). Sperm morphology, motility, and concentration in fertile and 

infertile men. New England Journal of Medicine 345:1388-1393. 

Hardy, R.W., Tokuyasu, K.T. and Lindsley, D.L. (1981). Analysis of spermatogenesis in 

Drosophila melanogaster bearing deletions for Y-chromosome fertility genes. 

Chromosoma 83:593–617. 

Hunter, F.M. and Birkhead, T.R.(2002). Sperm viability and sperm competition in 

insects. Current Biology 12:121–123. 

Kiefer, B.I. (1966). Ultrastructural abnormalities in developing sperm of X/0 Drosophila 

melanogaster. Genetics 54:1441-1452. 

Markow, T. and O'Grady, P.M. (2006). Drosophila: a guide to species identification and 

use. California, USA: Elsevier.  

Masly, J.P., Jones, C.D., Noor, M.A.F., Locke, J. and Orr, H.A. (2006). Gene 

transposition as a novel cause of hybrid male sterility. Science 313:1448–1450.  



 

93 

 

 

Metzendorf, C. and Lind, M.I. (2010). Drosophila Mitoferrinis essential for male 

fertility: evidence for a role of mitochondrial iron metabolism during spermatogenesis. 

BioMed Central Developmental Biology 10:68-85.  

Pacey, A.A. (2009). Sperm, human fertility and society. In Sperm biology: an 

evolutionary perspective. Burlington, MA: Elsevier. 

Pendergrass, W., Wolf, N. and Poot, M. (2004). Efficacy of MitoTracker Green and 

CMX rosamine to measure changes in mitochondrial membrane potentials in living cells 

and tissues. Cytometry 61A:162–169.  

Perez, D.E. and Wu, C.I. (1995). Further characterization of the Odysseus locus of hybrid 

sterility in Drosophila: one gene is not enough. Genetics 140:201-206. 

Perez, D.E., Wu, C.I, Johnson, N.A. and Wu, M.L. (1993). Genetics of reproductive 

isolation in the Drosophila simulans clade: DNA marker-assisted mapping and 

characterization of a hybrid-male sterility gene, Odysseus (Ods). Genetics134:261-275. 

Phadnis, N. and Orr, H.A. (2009). A single gene causes both male sterility and 

segregation distortion in Drosophila hybrids. Science 323:376-379. 

Riccardi, C. and Nicoletti, I. (2006). Analysis of apoptosis by propidium iodide staining 

and flow cytometry. Nature Protocol 1: 1458-1461.  

Ruiz-Pesini, E., Diez, C., Lapena, A. C., Perez-Martos, A., Montoya, J., Alvarez, E., 

Arenas, J. and  López-Pérez MJ. (1998). Correlation of sperm motility with 

mitochondrial enzymatic activities.  Clinical Chemistry 44:1616-1620. 

Schneider, C.A., Rasband, W.S. and Eliceiri, K.W. (2012). NIH image to ImageJ: 25 

years of image analysis. Nature Methods 9:671-675. 

Tokuyasu, K.T., Peacock, W.J. and Hardy, R.W. (1972). Dynamics of spermiogenesis in 

Drosophila melanogaster. I. Individualization process. Zeitschrift für Zellforschung und 

Mikroskopische Anatomie 124:479-506. 



 

94 

 

 

Wakimoto, B.T., Lindsley, D.L. and Herrera, C. (2004). Toward a comprehensive genetic 

analysis of male fertility in Drosophila melanogaster. Genetics 167:207–216.  



 

95 

 

 

Chapter 4 

4  Allelic expression of Drosophila protamines during 

spermatogenesis  

This chapter was published in a similar form in International Journal of Evolutionary 

Biology (Kanippayoor and Moehring, 2012).  

In typical somatic cells, DNA is tightly organized by histones that are necessary for its 

proper packaging into the nucleus. In sexually-reproducing animals, the haploid product 

of male meiosis must be further condensed to fit within sperm heads, thus requiring an 

even greater degree of packaging. This is accomplished in most organisms by replacing 

histones with protamines, which allows DNA to be compacted into the reduced space. In 

mammals, protamines are produced after meiosis is complete, and are transcribed by the 

single allele present in the haploid genome that is to be packaged into the sperm head.  

Here, I present my findings that protamine expression occurs from both alleles in diploid 

cells, rather than haploid cells, in two species of Drosophila.  Diploid expression of 

protamines is also seen in sterile hybrid males produced from interspecific mating 

between those species.  

4.1 Introduction 

4.1.1 Spermiogenesis, chromatin remodeling, and protamines 

Spermatogenesis is a highly orchestrated process that results in functional and motile 

sperm. The maturation of spermatids into fully functional spermatozoa occurs in the final 

stages of spermatogenesis, known as spermiogenesis. Here, chromatin reorganization and 

an increased level of compaction are essential for proper packaging of nuclear material 

into the sperm heads (Tokuyasu, 1972; De Kretser et al., 1998). This packaging is 

necessary for proper sperm head morphology, sperm motility, protection against DNA 

damage, and the ability to penetrate an ovum (Bianchi et al., 1993; Agarwal and Said, 

2003; Aoki et al., 2005). 
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Unlike somatic cells, where histones serve to condense DNA, most organisms use 

protamines to organize DNA into a more highly condensed state within the sperm head 

(Ward and Coffey, 1991). Protamines increase the ability of DNA to be packed more 

tightly by organizing the DNA in linear, side-by-side arrays, rather than by induced 

supercoiling, with further stability achieved through protamine cysteine-cysteine residue 

interactions (Balhorn, 1982; Ward and Coffey, 1991). In mammals, transcription of 

protamines occur in the haploid genome, after meiosis is complete (Steger, 1999). 

Histones are first replaced by transition proteins TP1 and TP2, followed by protamines 

(Meistrich, 2003). To date, it is unclear if the haploid expression of protamines occur 

only in mammals, or if this allelic expression is consistent across all sexually-reproducing 

animals.    

Extensive studies on the genes that encode for protamines have mostly been performed in 

vertebrates, particularly in mammalian models (reviewed in: Balhorn, 2007). With 

respect to invertebrates, two genes have been identified and characterized in the fruitfly, 

Drosophila melanogaster: Mst35Ba and Mst35Bb. These genes encode for Drosophila 

protamine A (protA) and protamine B (protB), respectively (Jayaramaiah-Raja and 

Renkawitz-Pohl, 2005). Interestingly, in situ hybridization in D. melanogaster uncovered 

the presence of these protamine transcripts in primary spermatocytes (diploid cells), 

which have yet to undergo meiosis (Jayaramaiah-Raja and Renkawitz-Pohl, 2005). This 

raises the interesting possibility that insects may differ in temporal expression of 

protamine genes from mammals. Furthermore, this has implications for the parental 

influence of protamines and their evolution: in haploid cells, only one parent contributes 

the genes coding for the protamines used to package the sperm head, while in diploid 

cells, both parental genomes may be used when transcribing protamines. 

Temporal expression of protamines between two different species may also play a role in 

the unfit production of hybrid males. Interspecific crossing of two species often produces 

heterogametic (XY or ZW) hybrids that are sterile (Haldane, 1922). In hybrid males, this 

sterility may be due to dysfunctional protamine expression during spermatogenesis. If 

both species express protamine within the same spermatogenic stage, then sterile male 

hybrids should produce protamines in an identical temporal manner, and thus protamine 
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expression is unlikely to be the factor causing sterility. Alternatively, sperm of sterile 

hybrid males could be immotile due to differential temporal protamine expression. This 

could arise from differences in parental expression (i.e. parental species express 

protamines at different stages of spermatogenesis that do not synergize in hybrids) or 

from sterile male hybrids expressing protamines at a different stage of spermatogenesis 

than the parental species. Since protamines are incorporated during the final stages of 

spermatogenesis, this would suggest that post-meiotic errors are contributing to sterility 

in hybrid males. 

Here, I present my findings on protamine production in two related species of 

Drosophila: D. simulans and D. mauritiana. To determine the parental contribution 

towards protamines, and thus whether they are contributed by one parent’s genome (one 

allele) or both parent’s genomes (two alleles), I use transgenic flies that produce a red 

fluorescent protein (RFP) or green fluorescent protein (GFP) attached to protB (Manier et 

al., 2010). The sperm heads of these transgenic flies emit a red or green fluorescent signal 

due to the tagged protamines. By crossing a male possessing the transgene of one 

fluorophore (e.g. RFP) with a female carrying the transgene of the other fluorophore (e.g. 

GFP) and examining the sperm fluorescence of the male offspring, henceforth referred to 

as a transgenic hybrid, we can elucidate when protamine gene expression occurs. During 

Drosophila male meiosis, the synaptonemal complex (protein structure involved in 

chromosome pairing) is absent and chromosomes do not undergo recombination 

(Morgan, 1914; Rasmussen, 1973), and thus the male offspring produced from these 

crosses cannot recombine the two separate transgenes onto a single chromosome in their 

sperm. Therefore, the sperm that is produced will only exhibit fluorescence due to either 

a GFP- or RFP-tagged protamine, but not both. If transcription occurs from a single 

allele, then we should observe a single fluorescent signal of either red or green. In 

contrast, dual expression of RFP or GFP within one sperm head provides evidence of 

diploid gene expression from both alleles.  
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4.2 Materials and methods 

4.2.1 Fly lines and maintenance  

All flies and crosses were maintained on standard Bloomington recipe media 

(Bloomington Drosophila Stock Center, Bloomington, IN, USA) and flies were housed at 

22°C on a 14h:10h light:dark cycle. Transgenic D. simulans and D. mauritiana flies with 

GFP- and RFP-tagged protamines were kindly provided by Dr. John Belote. Transgenic 

D. simulans lines possessed either a GFP-tagged protB (genotype: w+; pBac{3xP3-

EGFP, ProtB-EGFP}11B) or a RFP-tagged protB transgene (genotype: w ; P{w8, ProtB-

DsRed-monomer, w+}3A). Likewise, D. mauritiana transgenic lines also possessed either 

a GFP-tagged protB transgene (genotype: w; P{w8, ProtB-EGFP, w+}8A) or a RFP-

tagged protB transgene (genotype: w ; P{w8, ProtB-DsRed-monomer, w+}13A). 

Interspecies crosses were created by crossing virgin female transgenic D. simulans 

(carrying the RFP-tagged protB transgene) with virgin male transgenic D. mauritiana 

(carrying the GFP-tagged protB transgene). 

4.2.2 Crosses and imaging 

Five day old virgin D. simulans males carrying the protB-GFP transgene were mated 

with five day old virgin D. simulans females carrying the protB-RFP transgene. The 

reciprocal cross was also made. The same set of crosses was performed with equivalent 

D. mauritiana GFP and RFP transgenic flies. Testes of newly eclosed transgenic hybrid 

males (1-2 days old) were dissected in Testes Buffer (183mM KCl, 47mM NaCl, 10mM 

Tris-HCl) and squashed using a coverslip. Images of fluorescent sperm were captured 

using fluorescent imaging on a Leica DMI6000 B inverted microscope and were analyzed 

using MetaMorph. Some samples were captured using Z-stacking and deconvolved with 

AutoQuant deconvolution software.  

I did note that transgenic flies possessing RFP-tagged protamines exhibited a lower 

fluorescent intensity than those expressing GFP-tagged protamines. Therefore, contrast 

and brightness levels were adjusted for some images to allow for clear visualization of the 

presence or absence of fluorescence. Images of sperm with only GFP- or RFP-tagged 
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protamines were not adjusted; however, contrast and brightness levels of sperm from 

transgenic hybrids required minor changes to offer better simultaneous visualization of 

both fluorescent protamines. 

4.3 Results and discussion 

My results provide concrete evidence that the protamines present in sperm heads are 

transcribed during the diploid phase of sperm development from both alleles in the 

genome. This increases the likelihood that the allelic, and thus possibly overall timing, of 

protamine expression may vary widely across different species. Although the diploid 

expression of protamines could cause temporal discordance of protamine expression in 

hybrids, leading to the dominance of one species' protamine over the other, I find that 

hybrid males maintain diploid expression of protamines. The expression of protamines 

from two different species within a hybrid individual could allow for negative 

interactions and may lead to dysfunctional sperm. 

Previous work on mammals found that protamines, used for packaging DNA into sperm 

heads, are expressed from the haploid genome after meiosis. Although it has been shown 

that protamines are also expressed in the insect D. melanogaster, and are expressed in 

diploid cells prior to meiosis (Jayaramaiah-Raja and Renkawitz-Pohl, 2005), it has not 

been shown whether this expression occurs from a single allele or if both alleles are 

expressed. Additionally, diploid expression has yet to be confirmed in other species of 

Drosophila. Here, I demonstrate that bi-allelic expression is seen in D. simulans, D. 

mauritiana, and their interspecies hybrids.  

To ensure the dual fluorescence from RFP and GFP in the transgenic hybrids is not a 

product of autofluorescence, male flies with only one transgene were dissected and sperm 

were scored for both red and green fluorescence (Figure 4.1A-L). Transgenic flies 

possessing either RFP- or GFP-tagged protamines in D. simulans (Figure 4.1A-F), as 

well as D. mauritiana (Figure 4.1G-L), exhibited only one signal (Figure 4.1C, F, I, L). 

Male transgenic hybrids possessing both the GFP and RFP transgenes had sperm that 

exhibited both green and red fluorescence in D. simulans (Figure 4.2A-F) and D. 

mauritiana (Figure 4.2G-L). It was not possible to determine at which cellular stage 
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protamines are expressed, since transcription of the fluorophore-labelled protein may 

occur at an earlier stage than translation. I can definitively say that two fluorophores are 

present in each sperm head, and thus expression must occur within a diploid cell. My 

results strongly suggest that protamine expression occurs at the diploid phase from both 

alleles, rather than in the haploid phase from a single allele, as observed in mammals 

(Oliva, 1988; Lee et al., 1987; Domenjoud et al., 1991). Separately, sterile hybrid males 

produced from an interspecies cross between D. simulans and D. mauritiana also 

exhibited bi-allelic protamine expression (Figure 4.3). Sperm of sterile hybrid males 

exhibited both red (Figure 4.3A) and green (Figure 4.3B) fluorescence, and clearly 

overlapped in their signal location (Figure 4.3C). Protamine expression within sterile 

hybrids occurs during the diploid stage of spermatogenesis, similar to temporal 

expression in the parental species. This excludes the possibility that hybrid male sterility 

is a by-product of incorrect temporal expression of protamines. However, this does not 

rule out the possibility that there is a dysregulation of the amount of protamine expression 

occurring within these hybrids, nor does it preclude the possibility that the protamines are 

improperly utilized during DNA packaging into the sperm head. It has been previously 

demonstrated that sterile hybrid males whose parental species are D. simulans and D. 

mauritiana exhibit down regulated protamine expression (Moehring et al., 2007). A 

possible mechanism for sterile hybrid males may be that the protamine genes are down 

regulated, affecting proper packaging of DNA within the sperm heads and overall 

fertility. 

The reorganization of chromatin into a highly compact form requires the recruitment of 

mRNAs that were translationally repressed until spermiogenesis (reviewed in: 

Renkawitz-Pohl et al., 2005), such as protamines and Tpl94D. In Drosophila, chromatin 

reorganization occurs during the canoe stage (Rathke et al., 2007), wherein three major 

events occur. First, histones are replaced by the transition protein, Tpl94D, as indicated by 

the accumulation of Tpl94D transcripts prior to the presence of protamines (Rathke et al., 

2007). Second, histone modification and degradation occurs, followed by DNA breaks 

that facilitate its unwinding (Rathke et al., 2007). Finally, protamines replace Tpl94D 

bound to DNA, permitting the high compaction (Rathke et al., 2007). Here, arginine 
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residues of both protamine proteins bind to chromatin, while cysteine residues link 

neighbouring protamine together (reviewed in: Kanippayoor et al., 2013).   

Since protamines in sterile hybrid males exhibit bi-allelic expression as the parental 

species, D. simulans and D. mauritiana (Figure 4.3), possible incompatible interactions 

may occur to disrupt proper packaging of sperm nuclei. Protamines derived from two 

different parental species within a hybrid may not interact, and as a by-product, 

protamines may not bind to DNA or link to neighbouring protamines. This possibility, 

however, seems unlikely, as a large-scale analysis identified homologs for both ProtA 

and ProtB in a variety of species in Drosophila, including two species within the 

simulans complex, D. simulans and Drosophila sechellia (Alvi et al., 2013). Here, 

regions involved in DNA-binding were found to be highly conserved and the amino acid 

composition (specifically for cysteine and arginine) for both protamines was identical 

between D. simulans and D. sechellia (Alvi et al., 2013). Given that D. mauritiana is 

found within the same complex and the high conserved nature of protamine within 

Drosophila, it's unlikely that D. mauritiana harbours highly diverged protamines that 

would result in improper interaction with D. simulans protamines.  

Another possible explanation for mis-packaging of sperm nuclei in sterile hybrid males, 

that the transition protein, Tpl94D, may also play a factor in improper packaging of sperm 

nuclei. How conserved Tpl94D is among different species within (or outside) the genus 

Drosophila has yet to be determined. If Tpl94D does not degrade prior to presence of 

protamines, a successful transition from Tpl94D bound DNA to protamine bound DNA 

could occur, reducing the level of compaction of sperm nuclei. This could explain the 

uneven distribution of protamines visually observed and the decondensed sperm nuclei of 

sterile hybrid males (Figure 4.3). This observation, however, may also be a by-product of 

the mis-expression of protamines in sterile hybrid males of D. simulans and D. 

mauritiana (Moehring et al., 2007), as discussed in Chapter 2.  

The results from this study, in addition to previous studies (Jayaramaiah-Raja and 

Renkawitz-Pohl, 2005; Oliva, 1988; Lee et al., 1987; Domenjoud et al., 1991), raise some 

interesting questions: Are there benefits between haploid vs. diploid expression of 
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protamines? Why is there a temporal difference in protamine expression between 

Drosophila and other organisms? Perhaps the answer lies in the sharing of haploid-

expressed transcripts between connected sperm heads. In mammals, protamine transcripts 

are shared through cytoplasmic bridges connecting the non-individualized sperm after 

meiosis is complete (Caldwell and Handel, 1991). Even though each protamine is only 

transcribed from the haploid genome, the individual sperm has access to the transcripts 

from the diploid genome due to these cytoplasmic bridges. It is possible that non-

individualized sperm heads are not equally sharing postmeiotic transcripts, so it is unclear 

what the degree of access to both protamines truly is within each sperm head (Lee et al., 

1995). If sharing is unequal, subtle differences in sperm head packaging may exist 

between individualized sperm heads due to differences in the protamine allele that is 

present in each sperm’s haploid genome. This could have a profound effect on the 

sperm’s fertilization success and the individual’s overall fitness (Immler, 2008), resulting 

in strong purifying selection on protamine alleles. In contrast, organisms with protamine 

expression prior to meiosis from the diploid genome will ensure equal protamine 

transcripts across all sperm heads, and thus individual protamine alleles may have a lesser 

impact on sperm function. This would prove to be especially important for species that 

are polygamous and undergo sperm competition within the reproductive tract (Parker, 

1970; Snook, 2005).  

The expression of protamines during either the haploid or diploid phase in different 

species may indicate that there are benefits or costs to expression during one phase 

compared to the other. There may be ramifications of haploid gene expression that are 

alleviated by diploid expression. For example, protamine expression during the haploid 

phase may cause sperm from a single male to be more phenotypically different from each 

other, as well as from the diploid male (Immler, 2008). As such, sperm derived from one 

male may potentially compete with each other, setting up a conflict of interest between 

the sperm and the male, as each sperm competes to successfully fertilize the egg, 

potentially affecting the male’s ability to maximize his own fitness (Parker, 1993; Parker 

and Begon, 1993). Further studies may identify an advantage of protamine expression in 

the haploid vs. diploid phase, and how species benefit uniquely to one expression pattern 

over the other. 
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Although many stages within spermiogenesis are conserved between Drosophila and 

mammals, there are major differences, including the findings from this paper, on the 

timing and genomic contribution towards protamine expression. Mice and humans have 

two protamines that likely arose due to a gene duplication event (Domenjoud et al., 1990; 

Hecht et al., 1986).These genes require two fully functional copies in order to prevent 

male sterility (Cho et al., 2001). Drosophila also possesses two protamine genes but each 

copy is not haploinsufficient (Rathke et al., 2010). In determining the functional 

significance of the protA and protB genes, it was surprising to discover that male flies 

with homozygous deletions for both protamine genes at the same time did not have a 

reduction in sperm motility or fertility, although approximately 20% had abnormally-

shaped nuclei, suggesting some level of protamine functional redundancy (Rathke et al., 

2010). Although fertility was not greatly impacted in these mutant flies, sperm that 

lacked both protA and protB were more sensitive to X-ray mutagenesis, indicating that 

the protamines may serve to protect DNA from damage in Drosophila (Rathke et al., 

2010). 

Aside from the implications that sperm packaging has for male fertility, understanding 

DNA condensation and proper sperm head packaging also has applications from an 

evolutionary perspective, since there will be different selective pressures on a gene that is 

expressed only in a haploid state from those that are expressed in a diploid state (Jenkins, 

1993; Joseph and Kirkpatrick, 2004). To understand the extent of differential protein 

expression in sperm heads, additional work in characterizing protamines across different 

taxa will need to be completed to further understand the evolutionary implications of 

diploid vs. haploid gene expression. For example, we can use an anti-GFP nanobody to 

target and knock out protamines that fused to GFP (Caussinus et al., 2011) and reduce the 

levels of expression of protamines bound to GFP in our Drosophila lines. In this instance, 

we can study the effects of haploid protamine expression in a biological system that 

normally exhibits diploid protamine expression.  
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Figure 4.1: D. simulans and D. mauritiana exhibit bi-allelic protamine expression. D. 

simulans (A-F) and D. mauritiana (G-L) sperm heads possessing GFP-tagged (A-C, G-I) 

or RFP-tagged (D-F, J-L) protamine. Sperm containing the protB-GFP transgene only 

fluoresce green (A, C, G, I) and do not reveal any red light autofluorescence (B, C, H, I). 

Similarly, sperm containing only the protB-RFP transgene only fluoresce red (E, F, K, L), 

with no green auto-fluorescence (D, F, J, L). Images A-C and G-L were taken at 40x 

magnification, while images D-F were taken at 63x magnification. Bars represent 10µm. 
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Figure 4.2: D. simulans and D. mauritiana exhibit bi-allelic protamine expression. 

Transgenic hybrids in D. simulans (A-F) and D. mauritiana (G-L). D. simulans females 

with the transgene possessing the GFP-tagged protamine mated to D. simulans males 

with RFP-tagged protamine transgene (A-C) and the reciprocal cross (D-F) fluoresce 

both red and green (C, F). Similarly, D. mauritiana females with the transgene possessing 

the GFP-tagged protamine mated to D. mauritiana males with RFP-tagged protamine 

transgene (G-I) and the reciprocal cross (J-L) also fluoresce both red and green (I, L), 

thus suggesting that protamine expression occurs during the sperm cell’s diploid phase. 

Images A-C were taken at 63x magnification, while images D-L were taken at 40x 

magnification. Bars represent 10µm. 
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Figure 4.3: Sterile hybrid males produced from D. simulans mated to D. mauritiana 

exhibit bi-allelic protamine expression. Sterile hybrids from interspecific cross between 

D. simulans and D. mauritiana. Female D. simulans with the RFP-tagged protamine 

transgene were mated to male D. mauritiana with the GFP-tagged protamine transgene. 

Sterile hybrid males produce sperm exhibiting both red (A) and green (B) fluorescence. 

Fluorescent signals from both RFP and GFP transgenes overlap in location (C), 

suggesting similar temporal protamine expression as the parental species. Images A-C 

were taken at 63x magnification. Bar represents 10µm. 
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Chapter 5 

5 Identification of a novel sperm phenotype in sterile male 

hybrids in Drosophila  

The genetic architecture of hybrid sterility has been extensively studied, especially in 

Drosophila. The two prevailing theories on the evolution of F1 hybrid sterility and its link 

to Haldane's rule (HR) remain controversial. Genetic mapping has uncovered genetic 

regions implicated in hybrid sterility, but neither individual candidate genes nor a 

common genetic mechanism have been identified. Here, I identified a novel phenotype 

that I call needle-eye sperm, and demonstrate that it is present in sterile hybrid males of at 

least three separate species pairs of Drosophila. This phenotype was then genetically 

mapped by a series of backcrosses (BC) to either D. simulans or D. mauritiana for 10 

generations. Using next-generation sequencing (NGS) and phenotype-based selection and 

introgression followed by whole-genome resequencing (PSIseq), no significant regions 

have been linked to the formation of needle-eye sperm. However, small regions that 

contained introgressed D. simulans or D. mauritiana were found to be unique in sterile 

hybrid males for each backcross. Due to this potentially common phenotype among 

sterile male hybrids suggested by sperm morphology, further exploration of the genes 

uncovered here may identify a universal mechanism for the evolution of hybrid sterility.  

5.1 Introduction 

5.1.1 Hybrid sterility and Haldane's rule 

The Bateson-Dobzhansky-Muller incompatibility model, herein referred to as the BDM 

model, has been the predominant model used to explain the evolution of postzygotic 

reproductive isolating barriers (Bateson, 1909; Dobzhansky, 1936; Muller, 1940). 

Allopatric populations that evolve independently of each other, acquire different 

mutations (Dobzhansky, 1936; Muller, 1940). Genetic differences between each 

population can become fixed, as mutations are subjected to natural selection and genetic 

drift (Lynch and Force, 2000). For a given population, the genetic differences may appear 

as karyotypic, coding, or non-coding changes (Maheshwari and Barbash, 2011), 

ultimately altering each population's genetic makeup. While these genomic changes are 



 

114 

 

 

compatible within each population, they may be incompatible in the genetic background 

of the other population, which has evolved on an independent trajectory (Bateson, 1909; 

Dobzhansky, 1936; Muller, 1940). Therefore, if hybrid offspring are produced from a 

mating event between genetically incompatible populations, those hybrids can have 

reduced fitness due to these genetic incompatibilities (e.g. Coyne and Orr, 1989; Fishman 

and Willis, 2000; Mihola et al., 2009). If these reproductively isolating barriers have 

evolved between the two populations, gene flow will be reduced or eliminated, and over 

time these populations will continue to evolve and become distinct species (Presgraves 

2010).   

 

An individual produced from the hybridization of two divergent, and genetically 

incompatible, populations may exhibit developmental defects that render the individual 

sterile. Hybrid sterility, an intrinsic postzygotic reproductive barrier, has been noted in 

many interspecific crosses (e.g., Coyne and Orr, 1989; Presgraves and Orr, 1998; 

Fishman and Willis, 2000; Coyne and Orr, 2004; Mihola et al., 2009; Presgraves 2010). 

A notable trend observed across multiple interspecies pairs, is the asymmetrical 

prevalence of sterility between the hybrid sexes. If only one sex is affected by 

postzygotic isolation, heterogametic (e.g., XY or ZW) individuals are more likely to be 

sterile than homogametic (XX or ZZ) individuals. This trend is referred to as Haldane's 

rule (HR; Haldane, 1922). Since HR is seen among almost all interspecies hybrids, a 

common genetic basis for the evolution of hybrid sterility may exist across multiple taxa.   

5.1.2 The genetic basis of hybrid sterility and Haldane's rule: the 

Dominance theory 

There are a number of theories that have been developed to explain the presence of 

Haldane's rule and hybrid sterility, wherein the most recognized theories are: Dominance 

theory, Faster male, Faster X, and meiotic drive (Coyne and Orr 2004). Researchers have 

provided some empirical support for each theory (Perez et al., 1993; Wu et al., 1996; 

Presgraves and Orr, 1998; Henikoff et al., 2001; Coyne and Orr, 2004; Sun et al., 2004; 

Phadnis and Orr, 2009; Phadnis, 2011), with no single theory emerging as a universal 

explanation for Haldane's rule and sterility. However, among these theories, the 

Dominance theory is most common (Presgraves, 2010). The Dominance theory describes 
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that physically separate populations acquire different mutations that are compatible 

within their respective genetic backgrounds (Maheshwari and Barbash, 2011). Upon 

hybridization, an incompatible interaction between a recessive sex-linked locus of one 

species, with a dominant autosomal-linked locus of another species results in 

developmental defects of a hybrid, rendering the hybrid sterile (Orr and Turelli, 1996). 

As the sex-linked locus is recessive, then heterogametic hybrids are disproportionately 

affected over homogametic hybrids, due to the presence of a single copy of each sex 

chromosome in heterogametic hybrids (Orr and Turelli, 1996).  

 

Identifying the loci responsible for HR is difficult in older species, as genetic 

incompatibilities continue to accumulate over the course of speciation (Matute et al., 

2010). However, much research has gone into uncovering the loci (or genes) that give 

rise to HR. In Drosophila, the most extensively used genus in studies of species isolation, 

genes for hybrid inviability provide strong support for the Dominance model as a 

common mechanism underlying hybrid dysfunction (Bateson, 1909; Dobzhansky, 1936; 

Muller, 1940; Orr and Turelli, 1995). In contrast, none of the genes identified for hybrid 

sterility in Drosophila fully satisfy the Dominance theory, as a recessive-dominant two-

locus incompatibility (Perez et al., 1993; Perez and Wu, 1995; Masly et al., 2006), with 

the potential exception of the gene Overdrive (Phadnis and Orr, 2009; Phadnis, 2011).  

5.1.3 Overview of study 

If the Dominance theory is correct, random genetic changes that accumulate within a 

population would lead to sterility when introduced into the genetic background of a 

different population. In Drosophila, we would expect males to be more susceptible to 

hybrid sterility than females if these random genetic incompatibilities were more 

commonly found on the X chromosome (Mallet et al., 2011; Civetta, 2016), or if 

spermatogenesis is more sensitive to genetic disruptions than other processes involved in 

development (Wu et al., 1996). In both of these scenarios, however, genetic mutations 

that lead to hybrid sterility in different species pairs are unlikely to affect the same point 

in spermatogenesis as in the sterile hybrid produced by each pair.  
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My previous work refining the phenotypic characteristics of sterile hybrid males in 

Drosophila found a trend among three interspecies crosses (see Chapters 2 and 3). 

Specifically, these studies identify that errors during spermatogenesis arise during 

meiosis, yet the overall process of spermatogenesis continues within these hybrid males 

(Kulathinal and Singh, 1998), resulting in half the number of sperm produced (Chapter 

2), yet these sperm appear alive with functional mitochondria (Chapter 3). Further 

inspection of individual sperm at the ultrastructural level suggests that a single sperm 

may be harbouring two sperm tails (Chapter 2), or sperm are paired and unable to 

separate. 

  

Here, I identify a novel sperm phenotype in sterile hybrid males within three interspecies 

crosses in Drosophila, suggesting a potential universal phenotype. The nuclei of sperm 

produced by a sterile hybrid male appear paired, thus I have coined this previously 

unidentified phenotype as "needle-eye sperm". To identify the genomic regions that are 

responsible for the formation of needle-eye sperm, phenotype based selection was 

performed on sterile hybrid males produced from backcrossing (BC) for 10 generations to 

either Drosophila simulans (BCS10) or Drosophila mauritiana (BCM10). Males from 

each backcross type were pooled into one of two phenotypes: produce needle-eye sperm, 

does not produce needle-eye sperm. All four pooled samples were then sequenced using 

Illumina technology and raw sequences were analyzed using phenotype-based selection 

and introgression followed by whole-genome resequencing (PSIseq) to identify 

introgression breakpoints (Earley and Jones, 2011). By locating the introgression 

boundaries using PSIseq, I can determine the presence of D. simulans within the genetic 

background of D. mauritiana and vice versa. Three autosomal regions on the 3rd and 2nd 

chromosomes were identified as being associated with the formation of needle-eye 

sperm, with one region (2L) found in both backcrosses of D. simulans and D. mauritiana.  

5.2 Materials and methods 

5.2.1 Drosophila lines/husbandry and interspecies crosses 

All Drosophila lines and interspecies crosses were maintained on standard Bloomington 

media (Bloomington Drosophila Stock Center, Bloomington, IN, USA) and were housed 
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at 22⁰C on a 14h:10h light:dark cycle at 75% humidity. Drosophila mojavensis (#1501-

1352.22), Drosophila arizonae (#15081-1271.00), Drosophila pseudoobscura (#114011-

0121.149), and Drosophila persimilis (#14011-0111.49) were obtained from the 

Drosophila Species Stock Center (San Diego, CA, USA). Transgenic D. simulans and D. 

mauritiana flies, both with GFP-tagged protamine B (genotype: w+; pBac{3xP3-EGFP, 

ProtB-EGFP}11B) were obtained from Dr. John Belote. Henceforth, transgenic D. 

simulans and D. mauritiana with GFP-tagged protamine B will be denoted as simGFP 

and mauGFP, respectively.  

Interspecific crosses were only performed between species whose hybrids produced 

sperm. Female D. mojavensis were mated with male D. arizonae, and female D. 

pseudoobscura were mated to male D. persimilis, as well as the reciprocal crosses of 

those species pairs. Female simGFP and male mauGFP were mated; the reciprocal cross 

was not performed as it produces hybrid males that do not produce sperm (Kulathinal and 

Singh, 1998).  

5.2.2 Sperm nuclei staining and fluorescent microscopy 

Sterile hybrid males produced from the interspecific cross between D. arizonae and D. 

mojavensis (offspring denoted as ari/moj) and D. pseudoobscura/D. persimilis (offspring 

denoted as pse/per) were collected upon eclosion and aged for one day. Testes were 

removed in approximately 200 µL of Testes Buffer (183mM KCl, 47mM NaCl, 10mM 

Tris-HCl) and immediately transferred to 20µL of 0.5µl/ml of 4’,6-diamidino-2-

phenylindole (DAPI), ripped open to allow contents to expel, and incubated for 5 mins on 

a siliconized cover slip. Testes contents were washed using Testes Buffer three times, 

then mounted on a glass slide. Testes of sterile hybrid males produced from the 

interspecific cross between D. simulans GFP and D. mauritiana GFP (offspring denoted 

as sim/mau) were extracted using Testes Buffer and mounted on a glass slide.  

Images were taken using a Leica DMI6000 B inverted microscope and were analyzed 

using MetaMorph software (Molecular Devices, Sunnyvale, CA). Some samples were 

captured using Z-stacking with images de-convolved with AutoQuant software 

(AutoQuant Imaging, Inc). 
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5.2.3 Phenotype-based selection and introgression by backcrossing 

Young (2 days old) virgin female simGFP were mated to same-age mauGFP males, and 

hybrid daughters were collected and aged 2 days. F1 hybrid females were singly mated 

back (i.e., first generation backcrossed; BC1) to either one simGFP male (BCS1) or one 

mauGFP male (BCM1; Figure 5.1). Virgin daughters and sons that were produced were 

separated. Males were aged for 1 day and then scored for "needle-eye sperm" or "fertile 

sperm". Fertile sperm are sperm that are motile and containing a single nucleus. If a 

single mating pair produced some or all sons with needle-eye sperm, their daughters were 

used for the next generation of backcrossing (i.e. BC2). This phenotype-based selection 

(needle-eye sperm and fertile sperm) and introgression mapping was performed for 10 

generations of backcrossing (i.e. to BC10).  
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Figure 5.1: Crossing scheme for the generation of hybrid sons producing either needle-

eye sperm (sterile) or motile, non-needle-eye sperm (fertile). In this figure, a single 

daughter, produced from a cross between D. simulans (female) with D. mauritiana (male; 

X chromosome is paired with a shorter chromosome, Y), was then backcrossed to a 

single male D. simulans. Sons were scored for the presence of needle-eye sperm and their 

sisters were used to singly mate with a male D. simulans. This process was repeated for 

10 generations of backcrossing. This crossing scheme was repeated for the reciprocal 

cross (not shown), wherein an F1 daughter produced from the mating between female D. 

simulans with male D. mauritiana was backcrossed to D. mauritiana for 10 generations.  
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5.2.4 Bulked segregation analysis and next-generation sequencing 

Males produced after 10 generations of backcrossing to simGFP (BCS10) or mauGFP 

(BCM10) were scored for either needle-eye sperm or fertile sperm. Thirty BCS10 males 

from a single surviving lineage with needle-eye sperm (BCS10NE) were pooled together, 

and 30 BCS10 males from the same single lineage with fertile sperm (BCS10F) were 

pooled together for DNA extraction. The same procedure was done with BCM10 males 

(from five lineages) for both needle-eye sperm and fertile sperm (BCM10NE and 

BCM10F, respectively), totaling four different phenotypes with pooled individuals for 

each phenotype. Only 30 males were pooled for each phenotype, as more individuals 

would reduce the efficacy of the DNA extraction process and overall yield.  

DNA extraction for each phenotype was performed as a modified protocol of the 

QIAGEN Gel Extraction Kit (Qiagen, Toronto, ON, Canada). Each sample was held at 

95⁰C for 5 mins in a buffer solution (1M Tris-HCl, 0.5M EDTA, and 5M NaCl) 

containing 200µg/mL Proteinase K. Isopropanol was then added to each sample and 

incubated overnight at -20 ⁰C. DNA purification was performed as directed by the 

QIAGEN Gel Extraction Kit. Purified DNA samples were then sequenced using the 

Illumina HiSeq 2000 PE 100 at Génome Québec Innovation Center (Montréal, QC, 

Canada).  

5.2.5 Assembly of genomic DNA for D. simulans GFP and D. 

mauritiana GFP 

Assembly of the FASTQ files generated by Illumina sequencing technology was 

performed using a Linux-based de novo assembler, SOAP denovo. Scaffold assemblies 

were performed by Dr Tom Hsiang. Scaffolds were not further assembled into 

chromosomes.  

5.2.6 Sequence analysis using PSIseq pipeline 

FASTQ sequences of all four phenotypes (BCS10NE, BCS10F, BCM10NE, and 

BCM10F) were analyzed using the PSIseq pipeline to identify loci contributing to needle-

eye sperm (Earley et al., 2011). PSIseq generates vertical alignment files to identify SNPs 

that are unique to either parental population. In this step, the genomes of simGFP and 
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mauGFP are aligned using BWA to create a Parent1-Parent2 SNP database. Using the 

raw sequence reads for the four studied phenotypes, an identical alignment via BWA was 

used to identify hybrid-parent mismatches. For example, the reads derived from 

BCS10NE were aligned to the sequences of simGFP to create the hybrid-parent 

mismatches. Upon identifying the positions of Parent1-Parent2 SNPs, a "window" 

approach, using 1000 SNPs/window, was used to identify the prevalence of those hybrid-

parent mismatches within a given sequence length (Huang et al., 2009). Within each 

window, the number of hybrid-parent mismatches was determined. The likelihood that a 

given stretch of sequences belongs to Parent 1 versus Parent 2 is determined by a 

binominal distribution (Earley and Jones, 2011). This approached uses multiple 

independent significance tests and as such, was corrected using a false discovery rate 

(Earley and Jones, 2011). This method efficiently identifies introgression regions of the 

parent's genome that have not been lost due to the recombination backcrossing method.  

A follow-up study was performed to identify the top 10 regions that contained D. 

simulans SNPs within a genetic background of D. mauritiana that was uniquely found in 

males with needle-eye sperm (sterile) versus no needle-eye sperm (fertile). A reciprocal 

study was performed wherein regions containing D. mauritiana SNPs were identified 

within the genetic background of D. simulans in males with needle-eye versus no needle-

eye sperm. Using PSIseq, I extracted the file that described whether a given SNP in a 

scaffold was heterozygous for D. simulans and D. mauritiana (hybrid SNP) or 

homozygous for either backcross parent (e.g. D. simulans in BCS10). Regions with 

hybrid SNPs that were found to occur only in needle-eye males, but not fertile males, 

were kept and ranked based on the number of hybrids SNPs found in each scaffold. The 

10 scaffolds with the most SNPs were further analyzed to identify chromosomal location 

and the presence of any genes.  

5.3 Results 

5.3.1 Sperm head morphology and "needle-eye" sperm 

Sperm head morphology was examined in young (<2 days old) males for six different 

species of Drosophila and their respective interspecies hybrids (Figure 5.2). As expected, 
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all sperm heads of each pure species (N=10) possessed properly separated nuclei (Figure 

5.2A, 5.2B, 5.2D, 5.2E, 5.2G, 5.2H). Ten sterile hybrid males produced between D. 

simulans and D. mauritiana possess sperm with heads that appear attached at oppose 

ends of the nuclei, with a void between both heads (Figure 5.2C). As this is the first 

documentation of this sperm morphology in interspecific sterile hybrid males, I have 

denoted this phenotype as "needle-eye" sperm, as it resembles the eye of a sewing needle. 

The production of needle-eye sperm is also apparent for all other interspecific crosses 

between D. pseudoobscura and D. persimilis (Figure 5.2F), as well as hybrids produced 

from D. arizonae and D. mojavensis (Figure 5.2I). Interestingly, sperm from hybrids of 

the pse/per cross did not exhibit two different sperm lengths (i.e. parasperm and 

eusperm); rather, sperm appeared similar, contrary to what is observed in pure species. 

Sperm from sterile male hybrids were taken at 63x magnification instead of 40x 

magnification to ensure proper visualization of two-headed sperm. Sperm from pure 

species males were, however, also observed at 63x magnification to ensure the absence of 

needle-eye sperm (data not shown).  
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Figure 5.2: Novel sperm phenotype in sterile hybrid males in all interspecies crosses in 

Drosophila. Fluorescent microscopy of sperm cells in 6 species of Drosophila and their 

interspecific sterile hybrid males: D. simulans (A), D. mauritiana (B), sim/mau (C), D. 

pseudoobscura  eusperm (D), D. persimilis eusperm (E), pse/per (F), D. arizonae (G), D. 

mojavensis (H), ari/moj (I). Sperm nuclei of males from each parental species are 

separate within a sperm bundle or ejaculate, whereas sperm nuclei of sterile hybrid males 

appear paired at polar ends of the nuclei, denoted as needle-eye sperm. Panels C, F, I 

were taken at 63x magnification, while all other panels were taken at 40x magnification. 

Scale bars for C, F, and I represent 0.05mm, while all other scale bars represent 0.01mm. 
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5.3.2 Prevalence of needle-eye sperm in BCS10 and BCM10 males 

After 10 generations of backcrossing to either D. simulans or D. mauritiana, the number 

of sons producing needle-eye sperm for each mother was scored (Table 5.1). The four 

females that were singly mated to a male D. simulans that produced some sterile sons 

produced roughly 50% BCS10 sons with needle-eye sperm and 50% with wild-type 

sperm (Table 5.1). All other females produced sons with only fertile sperm (data not 

shown). Similarly, the 15 females that were singly mated to a male D. mauritiana and 

produced some sterile sons produced roughly 50% BCM10 sons with needle-eye sperm 

and 50% with wild-type sperm (Table 5.1). The difference in the number of females 

mated between BCM and BCS is due to the total pool of females available for crossing. 

All other females produced sons with only fertile sperm (data not shown). Thus, after 10 

generations of backcrossing, there was a Mendelian pattern of inheritance, indicating that 

a single region may be responsible for the formation of needle-eye sperm in either BCM 

or BCS sterile males.  
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Table 5.1. Prevalence of needle-eye sperm in BCS10 and BCM10 males. Females with brothers who produced needle-eye sperm were 

singly mated to either a male D. simulans or a male D. mauritiana, creating BCS10 or BCM10 sons, respectively. If a female 

produced BCS10 sons with needle-eye sperm, roughly half of her progeny exhibited needle-eye sperm. A similar effect was observed 

in females who produced BCM10 sons. 

Backcross Female 

Number of sons 

scored 

Number of sons with needle-eye 

sperm 

Percentage of sons produced with needle-eye 

sperm 

BCS10 1 9 4 44 

 

2 30 15 50 

 

3 9 5 56 

 

4 20 10 50 

BCM10 1 10 5 50 

 

2 7 4 57 

 

3 8 4 50 

 

4 6 3 50 

 

5 10 5 50 

 

6 10 5 50 

 

7 10 5 50 

 

8 10 4 40 

 

9 10 4 40 

 

10 10 4 40 

 

11 10 5 50 

 

12 10 4 40 

 

13 10 5 50 

 

14 10 5 50 

 

15 6 5 83 
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5.3.3 PSIseq and introgression regions found in BCS and BCM 

No identifiable scaffolds were significantly enriched with D. mauritiana or D. simulans 

SNPs. As such, no regions along the D. simulans genome significantly contained 

introgressed regions of D. mauritiana and vice versa.  

Using PSIseq, I did identify scaffolds that contained SNPs differentiating the two species. 

The ten scaffolds that contained the largest number of D. mauritiana SNPs in BCS males 

with needle-eye sperm was isolated. Each scaffold sequence was then analyzed using 

BLAST homology searches to identify the chromosomal location of the scaffold and any 

candidate genes it may harbour (Table 5.2). Similarly, I used PSIseq to determine ten 

scaffolds that contained the largest number of D. simulans SNPs only in needle-eye males 

of BCM. These ten scaffolds were also analyzed using BLAST to identify any possible 

genes and chromosomal location (Table 5.2).  

The top ten scaffolds of sterile hybrid males produced after ten generations of 

backcrossing to D. simulans possess regions of D. mauritiana SNPs within the second 

and third chromosomes. Candidate genes on the second chromosome include GD25754, 

GD23830, GD10073, GD10104, GD10071. Candidate genes found within the third 

chromosome are GD13646, GD18265, GD20661, GD29090, GD20533. Four genes are 

of unknown function; the remaining six candidate genes have diverse functions, and no 

functional trends are apparent. 

Sterile hybrid males produced from ten generations of backcrossing to D. mauritiana 

possess regions of D. simulans SNPs within the X, second and third chromosomes. One 

region was identified on X chromosome based on sequence similarity to D. melanogaster 

and contained the gene Notch. Five candidate genes found within the second 

chromosome were Heterochromatin protein 6 (HP6), Thioester-containing protein 2 

(TEP2), monkey king protein (mkg-p), GD25593, and Amyrel. The third chromosome 

also contains four candidate genes that were identified based on sequence similarity to D. 

melanogaster: Integrator 11 (IntS11), alphabet (alph), TATA-box binding protein 

associated factor 1 (TAF1), and Sensory neuron membrane protein 2 (snmp2).  
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Table 5.2.Genes within the regions of introgression for 10 generations of backcrossing to either D. mauritiana (BCM10) or D. simulans 

(BCS10).   

Backcross  Scaffold1 

Scaffold 

size (bp) Chromo. Candidate Gene2 Molecular function3 Biological Process3 

Drosophila 

simulans 

scaffold1 591 2L Umbrea (HP6) chromatin binding female meiotic division, telomeric 

capping 

 scaffold2 1713 2L Thioester-containing 

protein 2 

endopeptidase inhibitor 

activity 

phagocytosis 

 scaffold3 805 2L monkeyking protein nucleotidyltransferase 

activity 

unknown 

 scaffold4 215 3R TATA-box binding 

protein associated 

factor 1 

histone acetyltransferase 

activity 

histone acetylation (H3-K14 and H4) 

 scaffold5 559 3R Integrator 11 neurogenesis mRNA processing (cleavage, 

polyadenylation) 

 scaffold6 516 3R alphabet phosphatase activity Mg ion binding 

 scaffold7 818 2R GD25593 (Gpo-1) Calcium ion binding, G3P 

dehydrogenase activity 

G3P metabolic process 

 scaffold8 217 2R Amyrel  catalytic activity, cation 

binding 

carbohydrate metabolic process 

 scaffold9 508 3L Sensory neuron 

membrane protein 2 

unknown sensory perception of pain 

  scaffold10 761 X Notch chromatin binding receptor activity 

Drosophila 

mauritiana 

scaffold1 648 2R GD25754(Vmat) drug transmembrane 

transporter activity 

drug transport 

 scaffold2 569 3L GD13646(mRpL46) hydrolase activity unknown 

 scaffold3 526 2L GD23830(CG31862) unknown unknown 

 scaffold4 431 2R GD10073(ced-6) unknown unknown 
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 scaffold5 684 3R GD18265(RabX4) GTP binding small GTPase mediated signal 

transduction 

 scaffold6 618 2R GD10104(Pmm45A) transferase activity, 

phosphotransferases 

carbohydrate metabolic process 

 scaffold7 493 3R GD20661 transporter activity transport 

 scaffold8 228 3R GD20533(grsm) aminopeptidase activity, Mn 

ion binding 

proteolysis 

 scaffold9 234 3R GD29090 unknown unknown 

  scaffold10 334 2R GD10071(CG1888) unknown unknown 

1 Scaffolds are numbered from those having the more introgressed heterospecific SNPs (1) to those having fewer SNPs (10). 

2 Candidate gene names are listed with the D. melanogaster homolog in parentheses; if no parentheses are listed then the gene name is 

identical to the name in D. melanogaster. 

3 Molecular functions and biological processes are for the D. melanogaster homolog; this information is not known for D. simulans 

and D. mauritiana. 
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5.4 Discussion 

Decades of research have been invested in uncovering the genetic basis of hybrid 

sterility, specifically in the genus Drosophila, yet few genes have been uncovered and 

none support a universal mechanism (Presgraves, 2010). Here, I have uncovered a 

previously uncharacterized sperm phenotype for sterile hybrid males across multiple 

interspecies pairs in Drosophila. The widespread occurrence of needle-eye sperm in 

sterile hybrid males, paired with the potentially consistent point of spermatogenic failure 

(see Chapter 2), suggests that there may be an underlying, and potentially widespread 

mechanism for hybrid sterility, at least in the genus Drosophila. The genetic 

underpinnings for this phenotype could be studied across all other interspecies pairs in 

Drosophila. 

In this study, no regions were identified as significantly enriched with D. simulans SNPs 

in males backcrossed to D. mauritiana possessing needle-eye sperm using PSIseq. I did, 

however, identify 10 regions that uniquely contained D. simulans SNPs and identified the 

genes associated with those regions (Table 5.2). A similar result was found for males 

backcrossed to D. simulans possessing needle-eye sperm.  

5.4.1 An alternative theory to the genetic basis of hybrid sterility and 

Haldane's rule: meiotic drive 

The unequal segregation of chromosomes during meiosis can result in an unequal 

representation of genes, their regulator elements or both, within a given population or 

species (Werren, 2011). Meiotic drivers are prevented from running rampant within a 

given population by the co-evolution of suppressors, especially since drivers can reduce 

the overall fitness of the individual (McDermott and Noor, 2010). For example, selfish 

elements on the X chromosome during sperm development may drive for an over-

representation of X chromosomes versus Y chromosomes. The co-evolution of 

suppressor elements, usually arising on the autosomes (Hurst and Pomiankowski, 1991) 

in response to selfish elements establishes a genetic conflict between the selfish element 

and its suppressor. A hybrid individual derived from the mating of two separated 
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populations could possess a mismatch between the selfish element and the suppressors, 

resulting in dysfunction (Frank, 1991a). Although it was initially disregarded due to lack 

of empirical evidence, recent studies have suggested meiotic drive is a potential 

mechanism for the evolution of hybrid sterility (Phadnis and Orr, 2009; McDermott and 

Noor, 2010). 

5.4.2 Could needle-eye sperm be linked to Dominance theory or meiotic 

drive? 

5.4.2.1 Transporter proteins and hybrid sterility 

As outlined in Table 5.1, only half the genes that were identified as potentially linked to 

needle-eye sperm in BCM have been characterized. Two of the genes, GD25754 and 

GD20661, have putative functions as transporter proteins. Previous studies, 

predominantly in mammalian sperm, have shown how transporters of ions and large 

molecules play a crucial role on sperm motility and overall fertility (Angulo et al., 1998; 

Touré et al., 2007; Maruyama et al., 2016). Although the importance of transporters in 

sperm motility has yet to be demonstrated in Drosophila, the gene JYalpha, linked to 

hybrid sterility between D. melanogaster and D. simulans, may function as a transporter 

protein (Masly et al., 2006; Flybase.org). JYalpha has a unique mechanism for the 

evolution of hybrid sterility whereby reproductive isolation is a by-product of a gene 

transposition event that causes some later generation hybrids to have two copies of the 

gene and others to have no copies of the gene (Masly et al., 2006). The potential role for 

transporters in sperm motility, and thus hybrid sterility, may be the supply and production 

of ATP to drive sperm tail movement (Mukai et al., 2004). Various sugar transporters are 

needed to drive glycolysis in sperm to produce ATP for flagellar movement (Mukai et al., 

2004). The lack of a functional copy of JYalpha in some later-generation interspecies 

hybrids may thus cause the production of immotile sperm, underlying sterility.   

The role of transporters in the formation of needle-eye sperm and how it relates to HR 

and hybrid sterility is not as obvious. These genes, if they are implicated in hybrid 

sterility, would require separate examination in their role with sperm tail function, instead 

of improper sperm head formation. Separately, the remaining five genes that are 
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uncharacterized may be associated with spermatogenesis but additional inquiry into their 

molecular function is needed.  

5.4.2.2 Notch signalling, spermatogenesis, and hybrid sterility 

Based on the analysis of this study, no regions of the X chromosome were linked to the 

production of needle-eye sperm in BCM. In BCS, however, a small region on the X 

chromosome was identified to be enriched with D. simulans SNPs, which contained the 

signalling molecule, Notch (Duncan et al., 2016). Notch signalling has been implicated in 

Drosophila germ cell development (Assa-Kunik et al., 2007; Song et al., 2007; Kitadate 

et al., 2010). Cleavage of the cytosolic domain of Notch protein leads to the transcription 

of various Notch-targeted genes that have been implicated in cell differentiation 

(Borggrefe and Oswald, 2009).  

In mammals, molecular components of the Notch signaling pathway have been found to 

be expressed at various stages of spermatogenesis, and aberrations of this pathway have 

been linked to male sterility (Hayashi et al., 2001; Hayashi et al., 2004; Garcia et al., 

2013; Murta et al., 2013). Specifically in mice, Notch1, Notch2, and DII4 are expressed 

in cells that are undergoing the early stages of meiosis. Furthermore, only Notch1, 

Notch2, and DII4 are expressed in spermatids during the second meiotic division (Murta 

et al., 2013). The Notch pathway is highly conserved (Artavanis-Tsakonas et al., 1995) 

but may functionally operate at a species-specific level. As such, the introduction of a D. 

simulans Notch within the genetic background of D. mauritiana may provide a scenario 

wherein a foreign Notch may cause aberrations within the Notch signalling pathway, 

leading to aberrations in spermatogenesis. This hypothesis, however, would suggest that 

species specific Notch has the ability to disrupt an otherwise evolutionary conserved 

signalling pathway.  

5.4.2.3 Umbrea, spermatogenesis, and hybrid sterility 

In D. melanogaster, HP1-interacting protein (Hip) and heterochromatin protein 1 (HP1) 

are involved in the formation of heterochromatin and epigenetic gene regulation 

(Eissenberg et al., 1990; Schwendemann et al., 2008). Hip and HP1 form a protein 

complex with a newly evolved gene in Drosophila, Umbrea, and localize to pericentric 
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heterochromatin (Joppich et al., 2009; Ross et al., 2013). Umbrea, a by-product of a 

duplication event of Heterochromatin Protein 1B (HP1B; Levine et al., 2012; Ross et al., 

2013), also localizes to the centromeres of developing spermatocytes (Ross et al., 2013). 

Mitotic errors, including delayed chromosomal alignment and lagging anaphase 

chromosomes, are seen in flies with knockdown Umbrea (Ross et al., 2013). This 

suggests that Umbrea plays an essential role in chromosome segregation. Interestingly, a 

severe reduction of Umbrea transcripts does not affect the location of Cid, a centromeric 

histone protein involved in the formation of the kinetochore during chromosome division 

in mitosis and meiosis (Blower and Karpen, 2001).  

Centromeric proteins are under rapid evolution, alongside the associated heterochromatic 

repeats (Lohe and Roberts, 1988; Csink and Henikoff, 1998; Brideau et al., 2006; Malik 

and Henikoff, 2009), leading to the divergence of centromeric proteins across taxa 

(Cheeseman and Desai, 2008). It is likely that Umbrea, a centromeric protein, is under 

strong selective pressures alongside rapidly evolving centromeric DNA. If Umbrea 

undergoes rapid evolution within the genetic background of one population, it will only 

be compatible with the centromeric proteins that co-evolved under the same genetic 

background. The faithful execution of chromosomal segregation will, thus, rely on the 

appropriate and compatible interaction of the proteins involved. This is analogous to the 

meiotic drive hypothesis of hybrid sterility (McDermott and Noor, 2010). 

If Umbrea is introduced into a foreign genetic background (e.g. from a separated and 

divergent population), then the sensitive system of chromosomal segregation becomes 

compromised. Umbrea in this example may be incompatible with other proteins involved 

in chromosomal segregation (e.g. the formation of the kinetochore), resulting in improper 

segregation. In the context of spermatogenesis, spermatocytes undergoing meiosis may 

not properly segregate (either at meiosis I, II, or both). This failure of chromosome 

segregation could account for the consistent pattern of the formation of needle-eye sperm 

seen across the multiple Drosophila interspecies hybrids examined in this study.  
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5.4.2.4 TAF1, spermatogenesis, and hybrid sterility  

The transcription factor TFIID is a multiprotein complex composed of TATA-box 

binding proteins (TBPs) and TBP-associated factors (TAFs; Dynlacht et al., 1991; 

Walker et al., 2001; Matangkasombut et al., 2004). In Drosophila, the TAF1 isoform, 

TAF1-2, is abundantly localized to the testes, specifically within transcriptionally active 

pre-meiotic cells (Katzenberger et al., 2006; Metcalf and Wassarman, 2007). Further 

analysis found that TAF-1 co-localized to only paired X and Y chromosomes within 

spermatocytes (Metcalf and Wassarman, 2007). The pattern of TAF-1 localization has 

lead to the conclusion that TAF-1 assembles with other proteins to form a testis-specific 

TFIID complex that regulates transcription during spermatogenesis (Chen et al., 2005; 

Metcalf and Wassarman, 2007), yet its role in the pairing of X and Y chromosomes has 

not been further explored.   

Intergenic rDNA regions that are found within the X heterochromatin and Y centromere 

are involved in X-Y pairing in Drosophila (Mckee et al., 1992). These regions, which 

consist of a 240bp repeat, differ among closely related species of the D. melanogaster 

subgroup (Lohe and Roberts 1990). Disruptions in X-Y pairing are observed when this 

repeat region is deleted, resulting in X-Y nondisjunction during meiosis (Mckee et al., 

1992). X-Y misparing leading to sterility has also been previously observed in 

mammalian interspecies hybrids, often leading to degeneration of spermatocytes 

(Matsuda et al., 1991; Ishishita et al., 2015). Since TAF-1 is associates with the paired X 

and Y chromosomes, it is possible that it is specifically associated with the rDNA repeat 

regions of the X and Y chromosome and plays a role in X-Y pairing. If so, TAF-1 may be 

under the same selective pressures to rapidly evolve alongside the associated rDNA, 

making it only functionally compatible within the genetic background it has evolved 

under. If introduced into a foreign genetic background, as similar scenario (as described 

with Umbrea) would result in genetic incompatibility.  

5.4.3 The potential role of X chromosome in hybrid sterility 

Numerous lines of evidence suggest that the X chromosome plays a large role in 

interspecies hybrid sterility (Coyne and Orr, 1989; Guenet et al., 1990; Storchova et al., 
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2004; reviewed in: Coyne and Orr, 2004). In Drosophila, X-linked substitutions have a 

greater impact on hybrid sterility than autosomal substitutions (Coyne and Orr, 1989). 

Furthermore, the genes that have so far been identified as linked to hybrid sterility in 

interspecies Drosophila hybrids have been found on the X chromosome (Sun et al., 2004; 

Phadnis and Orr, 2009).  

This brings into question why only one region in BCS was linked to the X-chromosome 

and there was no X effect in BCM (Table 5.1). First, it is possible that PSIseq failed to 

identify any significant regions for the same reason that it failed to identify X-linked 

regions. Second, the large X-effect seen in previous studies may reflect the assays used to 

characterize fertile hybrids from sterile hybrid in Drosophila. Normally, hybrid sterility is 

characterized by the lack of sperm motility (e.g. Perez et al., 1993; Phadnis and Orr, 

2009; Masly et al., 2006; Dickman and Moehring, 2013). Although this is a useful assay 

to uncover genes for hybrid sterility, it may too broad. Numerous stages of 

spermatogenesis can lead to non-motile sperm, thus using motility as an assay for hybrid 

sterility may lead to a wide capture of different genetic regions. The use of needle-eye 

sperm as the phenotype for hybrid sterility in Drosophila may narrow the possible 

genetic regions. Finally, the needle-eye phenotype may only be a by-product of 

autosomal gene incompatibility, with no actual link to the X-chromosome. This may be 

the most plausible scenario for why the X-chromosome was not implicated in the 

formation of needle-eye sperm.  

5.4.4 Why PSIseq was not able to identify introgressed regions of D. 

simulans or D. mauritiana in backcrossed males with needle-eye 

sperm 

As described in the Materials and Methods section, males were pooled into a single 

sample based on their backcross lineage (i.e. BCS or BCM) and whether the male 

produced needle-eye sperm or fertile sperm. The purpose of pooling individuals into one 

of the four above groups was based on financial constraints of the project and, more 

importantly, the strong 50:50 phenotypic segregation noted each generation, even after 10 

generations of backcrossing to either D. simulans or D. mauritiana. Males produced from 
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the same mother were either fertile males (single and motile sperm) or sterile males 

(needle-eye sperm). Here, a consistent ratio or 50:50 fertile versus sterile males were 

noted in all BCS10 or BCM10 males produced from a single mother. This strongly 

suggests that a single Mendelian region is responsible for needle-eye sperm. As such, 

pooling individuals was predicted to not affect the identification of the region that 

contributes to needle-eye sperm; rather it was expected that pooling would help eliminate 

any potential regions that, by chance, happen to also be present after 10 generations of 

backcrossing, but did not contribute to needle-eye sperm and would be only present in 

some of the backcross lineages. It is possible, however, that pooling individuals may have 

disguised multiple regions that would contribute to needle-eye sperm. If many genes 

individually contribute to needle-eye sperm, then pooling individuals within a single 

sample could mask individual genes and thus PSIseq would not be capable of detecting 

regions of D. simulans or D. mauritiana introgression.  

Although I was unable to use PSIseq to identify statistically significant regions of either 

D. simulans or D. mauritiana in BCM or BCS, respectively, I was able to identify regions 

that did have D. simulans or D. mauritiana SNPs that were exclusive to males producing 

needle-eye sperm. There may be detectable regions that contribute to needle-eye sperm, 

but perhaps the use of PSIseq is not appropriate for the experiment conducted in this 

study. However, it may also be possible to revisit this study without pooling individuals 

into a single sample and re-analyzing using PSIseq. Traditional mapping techniques, such 

as microsatellite mapping, may also be useful in uncovering regions responsible for 

needle-eye sperm. Regardless, the segregation of 50% sterile versus 50% fertile in BCS 

and BCM males does suggests needle-eye sperm is produced by a single locus of strong 

phenotypic effect, and can thus potentially be genetically mapped to a single region.  

Needle-eye sperm appears to be a universal phenomenon within interspecies hybrids in 

Drosophila. As such, uncovering the genetic factors that give rise to needle-eye sperm 

could provide a universal mechanism for hybrid sterility in Drosophila. The strong 

bimodal segregation of sterile versus fertile males after backcrossing to either D. 

simulans or D. mauritiana for 10 generations suggests that this phenotype can likely be 

induced by a single sufficient genetic region, making it feasible to identify its genetic 
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underpinnings. Thus, future analyses to refine the experimental design of this study 

would be worthwhile.  
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Chapter 6 

6 General Discussion 

6.1 Thesis summary 

There is little empirical evidence on what is the genetic basis of hybrid sterility. One of 

the most common observations seen across many interspecies hybrids is the high 

susceptibility to sterility in the heterogametic sex (e.g. males in Drosophila) over the 

homogametic sex (Haldane, 1922). This phenomenon, termed Haldane's rule, indicates 

that there may be similar genetic underpinnings that would promote the formation of 

sterile hybrids in diverging populations. As such, identifying at what stage 

spermatogenesis fails across multiple interspecies pairs in Drosophila will provide insight 

into the possible genetic mechanisms that lead to sterility.  

Here, I identify for the first time the specific stage at which spermatogenesis fails in 

sterile male hybrids in a genus wide study in Drosophila. The studies presented in this 

dissertation identify common cellular trends among three interspecific sterile male 

hybrids. Most importantly, a previously uncharacterized sperm phenotype was identified 

across all hybrid males studied, which I call "needle-eye" sperm.  

Overall, abnormal testes morphology with visibly disorganized sperm bundles is seen 

across all interspecies pairs examined (Chapter 2). At meiosis I, non-disjunction is 

apparent in all sterile hybrids studied, leading to half the number of sperm produced after 

spermatogenesis (Chapter 2). In addition, sperm have two tails per nuclei for two 

interspecies studied (Chapter 2). Nuclei length in aged (6 days old) sterile male hybrids 

exhibit rapid decondensation compared to young (1 day old) sterile male hybrids 

(Chapter 2). Furthermore, sperm nuclei of young sterile males differed in length 

compared to young males from the parental species, exhibiting either decondensed nuclei 

or more condensed nuclei (Chapter 2). This mis-packaging of sperm nuclei is not a by-

product of a loss of bi-allelic protamine expression, as both parental protamine alleles are 

expressed in sterile male hybrid in one interspecific cross of Drosophila (Chapter 4). 

Although hybrid males possess meiotic and sperm morphology defects, sperm produced 
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are alive and have active mitochondria (Chapter 3). This finding is unexpected because 

mitochondria do not differentiate into major and minor derivatives in sterile males 

(Chapter 2), yet they appear to maintain their functionality. Finally, all interspecific 

hybrid males studied possess a previously uncharacterized sperm phenotype, wherein two 

nuclei appear joined. This novel sperm phenotype was called "needle-eye" sperm and its 

genetic basis was identified in one interspecies cross as being linked to centromeres and 

telomeres (Chapter 5). Together, the evidence presented in this dissertation suggests that 

failures during meiosis I of spermatogenesis, likely due to divergence at sequences near 

the centromeres or telomeres, results in the formation of needle-eye sperm, and thus the 

sterility observed in hybrid males in Drosophila. Furthermore, common cellular trends 

observed in a wide variety of interspecies pairs in Drosophila suggests a similar genetic 

basis, which would run counter to the proposed random genetic mutation mechanism of 

the Bateson-Dobzhansky-Muller incompatibility model (BDM model; Bateson, 1909; 

Dobzhansky, 1934; Muller, 1940). 

6.2 Meiotic errors as the cause for hybrid sterility in Drosophila 

The earliest stage at which spermatogenesis fails was identified during meiosis I in all 

interspecies crosses studied (Figure 2.1, 2.2, 2.3). After anaphase I, it was evident that a 

non-disjunction event occurred, resulting in the two daughter cells possessing unequal 

chromosomes, with two interspecific crosses exhibiting chromosomal bridges (Figure 

2.2, 2.3). Previous cellular analyses of sterile hybrid male testes in Drosophila did not 

focus on the presence or absence of mis-segregated chromosomes (Kulathinal and Singh, 

1998; Hardy et al., 2011); however, chromosomal bridges and chromosomal mis-

segregation has been observed in interspecific sterile hybrids in plants and in inviable 

hybrids in Drosophila (McClintock, 1933; Beasley, 1941; Ferree and Barbash, 2009). 

The effects of chromosomal mis-segregation during meiosis I could result in the improper 

individualization of sperm cells during spermiogenesis. As such, mis-segregation during 

meiosis I may result in a cascade of defects in later stages of spermatogenesis, thus 

accounting for the reduction to roughly half the number of sperm produced after 

spermatogenesis in sterile hybrid males (Figure 2.4). Errors during meiosis, leading to 

additional downstream defects in spermatogenesis has previously demonstrated in 
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Drosophila melanogaster (Casal et al., 1990). Thus mis-segregation of chromosomes 

may affect proper sperm individualization, which could explain the presence of the 

needle-eye sperm head phenotype (Chapter 5). Another possible mechanism for the 

reduction of sperm produced is that errors in meiosis may trigger apoptosis of sperm 

cells, as genes involved in apoptosis in Drosophila also play a role during spermiogenesis 

(Huh et al., 2004). This possibility, however, is unlikely since cross-sectional analyses 

using Transmission Electron Microscopy (TEM) of hybrid male testes reveal that sperm 

nuclei possess two tails (Figure 2.1, 2.3; Hardy et al., 2011). As such, defects in meiosis I 

are more likely to affect sperm individualization during spermiogenesis than triggering 

sperm apoptosis.  

A novel sperm phenotype seen across all interspecies crosses studied in this dissertation 

is the conjoined sperm heads, denoted as "needle-eye" sperm (Figure 5.1). Mis-

segregation of chromosomes during meiosis, as seen in Chapter 2, has been speculated to 

affect individualization of sperm cells and in addition, may lead to the formation of this 

needle-eye sperm. To my knowledge, this sperm phenotype for sterile hybrid males in 

Drosophila has not been previously reported in any interspecies hybrids. As such, 

uncovering the genomic regions that give rise to needle-eye sperm in sterile hybrid males 

could identify the genetic basis of hybrid sterility in Drosophila.  

Although no significant regions were implicated in the formation of needle-eye sperm in 

sterile hybrid males of Drosophila simulans mated to Drosophila mauritiana, non-

significant regions that were uniquely enriched with either D. simulans or D. mauritiana 

SNPs were identified (Chapter 5). Two genes were identified as candidate D. mauritiana 

male sterility genes when present within a D. simulans genetic background (Table 5.1, 

Chapter 5): GD25754 and GD20661. These genes have been given a putative role as 

transporters, suggesting that they may affect sperm tail function (see discussion in 

Chapter 5). Interestingly, two candidate D. simulans sterility genes within a D. 

mauritiana background play a role in chromosome interactions during division (see 

discussion in Chapter 5). These genes lend further support to the theory of Meiotic Drive 

in the formation of sterile hybrid males in Drosophila and thus should be investigated 

further.  
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Lastly, it is possible that there may be no individual gene or genes that are involved in the 

formation of sterile hybrid males, but rather non-genic regions (e.g. centromeres) play the 

most prominent role. This will be discussed further below.  

6.3 Mitochondrial function and hybrid sterility 

Mitochondrial function and activity plays a direct role in sperm motility (Ruiz-Pesini et 

al., 1998). Although the derivation of mitochondria into the sperm tail is not the initial 

stage at which spermatogenesis breaks down among interspecies hybrids examined in this 

dissertation (Chapter 2), a breakdown in mitochondrial function could represent a 

downstream cascade defect. During spermiogenesis, specifically when Nebenkern form, 

mitochondria fuse and differentiate into two derivatives, the major and minor derivatives 

(Tokuyasu 1974; Hales and Fuller 1997). In addition, genes involved in mitochondrial 

formation along the elongating sperm tail have been implicated in male sterility (Hales 

and Fuller 1997; Greene et al., 2003; McQuibban et al., 2006; Riparbelli and Callaini, 

2007), although these genes have not been examined from the context of interspecific 

hybrid male sterility. In Chapter 2, the interspecific sterile hybrid males studied all 

exhibited mitochondria that did not properly differentiate into the major and minor 

derivatives (Figure 2.1G, 2.3G; Hardy et al., 2011). As such, I speculated that 

interspecific sterile hybrid males may exhibit dysfunctional mitochondrial activity. 

Surprisingly, mitochondrial membrane potential, an appropriate assessor of mitochondrial 

activity (Pendergrass et al., 2004), was not reduced in interspecific hybrids compared to 

parental males (Chapter 3). This suggests that the lack of differentiation and development 

of the major and minor mitochondrial derivatives does not affect mitochondrial function, 

at least in terms of membrane potential. To date, the function of each derivative remains 

unclear, but some theories have been postulated, including a species specific influence on 

the wave-like movement of the sperm tail (Tokuyasu, 1974). If this is true, it is possible 

that interspecific hybrid males in Drosophila possess immotile sperm due to the failure to 

establish both derivatives. As such, the genes involved in the differentiation process of 

mitochondria could provide some insight into this postulation. 
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6.4 Protamines and hybrid sterility 

Sperm nuclei measured in each interspecies hybrid males studied in this dissertation 

appear improperly packaged (Figure 2.5). Sperm nuclei of hybrid males appeared shorter 

(more condensed) or longer (decondensed) compared to males of parental species (Figure 

2.5, 2.6, 2.7, 2.8, 2.9). These results suggest improper DNA packaging, as well as 

protamine mis-expression, which has been previously observed in D. simulans and D. 

mauritiana hybrids (Moehring et al., 2007). In Drosophila, it has been shown that due to 

the temporal expression of protamines, both parental alleles are expressed within the 

offspring produced (Jayaramaiah-Raja and Renkawitz-Pohl, 2005; Kanippayoor and 

Moehring, 2012). As such, I proposed that interspecific sterile hybrid males may suffer 

from incorrect allelic expression of protamines, leading to improper packaging of nuclear 

material in sperm heads. Sterile hybrid males formed from the interspecies cross between 

D. simulans and D. mauritiana also exhibited bi-allelic protamine expression, similar to 

the parental species (Figure 4.3), thus ruling out a lack of bi-allelic expression of 

protamines as a cause of sterility in hybrid males in Drosophila.  

The improper nuclei packaging observed in all interspecies sterile hybrid males examined 

in this dissertation may have resulted from several possible mechanisms. First, 

protamines are expressed from both alleles, but are expressed at incorrect levels in sterile 

hybrid males, an observation previously noted in hybrids produced from D. simulans and 

D. mauritiana (Moehring et al., 2007). Interestingly, protamine mis-expression was not 

observed in hybrids produced between Drosophila pseudoobscura pseudoobscura and 

Drosophila pseudoobscura bogotana, which may relate to the phenomenon that aged 

hybrid males regain partial fertility (Phadnis and Orr, 2009; Gomes and Civetta, 2015). 

Further analysis of the age related effects on sperm nuclei length observed in Chapter 2 in 

relation to protamine expression could provide insight to why nuclei in sterile hybrids 

were either more condensed or decondensed compared to the parental species.  

Another possible, although less likely, explanation for the variation in sperm nuclei 

length in sterile male hybrids is the incompatible interactions between each parental 

protamine. As a by-product of hybrids expressing protamines from two different species, 
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protamines may not properly bind to DNA or properly link to neighbouring protamines 

through the appropriate amino acid residues involved in these interactions (reviewed in: 

Kanippayoor et al., 2013). The only caveat to this theory is that protamines have been 

shown to be highly conserved across many species within the Drosophila genus (Alvie et 

al., 2013), and thus are not likely divergent between closely-related species, such as those 

examined within this dissertation.  

Finally, the pathway that results from the transition of histone-base to protamine-base 

nuclear organization may be compromised within interspecific sterile hybrid males. The 

disassociation and degradation of the transition protein, Tpl94D, allowing for protamines 

to properly bind to chromatin (Rathke et al., 2010) may be effected in sterile hybrid 

males, resulting in improper packaging of hybrid sperm nuclei. As the pathway involved 

in the movement from histone to protamine remains unclear in Drosophila, it's possible 

that the genes involved are not conserved like protamines and require a species-specific 

network in order to properly function. Therefore, understanding all key players involved 

in packing of sperm nuclei and their evolution across species would provide insight into 

the mis-packaging of nuclear material in sperm of sterile hybrid males.  

6.5 Genetic basis of hybrid sterility in Drosophila 

The findings observed in the studies of this dissertation identified notable trends across 

all interspecies crosses studied. In Chapter 2, meiotic failures occur during meiosis I, 

leading to mis-segregation of chromosomes and roughly half the number or sperm 

produced after spermatogenesis. Furthermore, each sperm nucleus appears to have two 

tails with no differentiation of mitochondrial derivatives (Chapter 2). Finally, a novel 

sperm phenotype has been identified in all interspecies hybrids studied in this 

dissertation, denoted as "needle-eye" sperm, as sperm heads appear paired (Chapter 5). 

These general trends, in addition to all other trends observed in this dissertation, do not 

provide support for the most acknowledged model for the genetic basis of hybrid sterility 

and Haldane's rule, the Bateson-Dobzhansky-Muller Incompatibility model (BDM 

model; Bateson, 1909; Dobzhansky, 1934; Muller, 1940). The BDM model describes 

sterility as a product of random, genetic incompatibilities in a hybrid male (Bateson, 
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1909; Dobzhansky, 1934; Muller, 1940). As such, it would be expected that sterility 

phenotypes would differ across multiple interspecies crosses, with few instances of 

similar phenotypes in hybrid breakdown. This, however, is not seen in sterile hybrid 

males produced in the genus Drosophila. Stages of spermatogenic breakdown are similar 

across all three interspecies pairs observed, with some maternally related exceptions 

(Kulathinal and Singh, 1998; Hardy et al., 2011). As such, two possible conclusions 

could be drawn. First, the BDM model does not apply to hybrid sterility in Drosophila, 

and a common genetic basis can be identified in all interspecies hybrids in this genus, 

leading to similar sterility phenotypes observed in this dissertation. Second, the BDM 

model does apply to hybrid sterility in Drosophila, and random genetic changes lead to 

similar incompatibilities within interspecific hybrids due to certain stages of 

spermatogenesis being more susceptible and sensitive to genomic changes. In this latter 

scenario, the cellular basis of hybrid sterility in Drosophila reveals trends among hybrids, 

but the underlying genetic basis would be random.  

Alternatively, if there is indeed a common genetic basis, the results presented in this 

dissertation provide some evidence for meiotic drive, a theory that was previously refuted 

(Coyne and Orr, 2004), but has regained some interest, in light of recent findings 

(reviewed in: McDermott and Noor, 2010). Meiotic drive suggests that selfish genetic 

elements are co-evolving alongside suppressors within a population, presenting a 

contained system that, upon disruption due to a hybridization event, uncovers the selfish 

element (McDermott and Noor, 2010). Specifically, X-linked selfish drivers, which have 

a higher occurrence (Hurst and Pomiankowski, 1991), that affect fertility, or disrupt sex 

ratios, promote the evolution of suppressors to contain their deleterious effect on the 

population (Edward, 1961; Crow, 1991). As such, the break-up of the selfish driver from 

its suppressor(s) due to a hybridization event, may unleash the deleterious effects of the 

driver, affecting fertility of the individual. In Drosophila, it has been previously 

demonstrated that a gene, Overdrive, gives rises to both hybrid male sterility and 

segregation distortion between two subspecies of Drosophila pseudoobscura: Drosophila 

pseudoobscura pseudoobscura and Drosophila pseudoobscura bogotana (Phadnis and 

Orr, 2009). This finding is especially important, as D. p. pseudoobscura and D. p. 
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bogotana represent young species that have not accumulated as many genetic differences 

as older species (Matute et al., 2010). In addition, the genetic basis of hybrid sterility 

between D. p. pseudoobscura and D. p. bogotana reveals that meiotic drive may be an 

evolutionary force for species isolation (Phadnis and Orr, 2009). Furthermore, although 

this is highly speculative, two possible genes were identified as possible candidates in the 

formation of needle-eye sperm in sterile hybrid males backcrossed to D. mauritiana 

(Chapter 5). Both Umbrea and Taf1 have been linked to chromosome segregation and 

pairing, respectively, during meiosis (Metcalf and Wassarman, 2007; Ross et al., 2013). 

It is possible that genes may not give rise to the formation of sterile hybrid males in 

Drosophila; instead, non-genic regions, such as centromeres, may play a larger role. 

Heterochromatic centromeres recruit the segregation machinery during meiotic division 

(Dernburg et al., 1996). Centromeres are rapidly evolving alongside the proteins that are 

associated to them (Csink and Henikoff, 1998) due to strong adaptive pressures, 

potentially caused by the selfish drive of centromeres to be incorporated into the 

pronucleus of the egg (Henikoff et al., 2001). The rapid evolution of centromeres has lead 

to high sequence divergence between closely related species (Lohe and Roberts, 1998). 

Thus, identifying the sequences involved in the mis-segregation of chromosomes during 

meiosis I in all interspecies crosses studied in this dissertation could also provide insight 

into the mechanism of how this stage of spermatogenesis fails. 

6.6 Concluding remarks 

In conclusion, general phenotypic trends of sterile hybrid males in Drosophila suggest a 

common genetic basis. Most importantly, meiosis I has been identified as the earliest 

stage of spermatogenesis to fail across all interspecies hybrids studied in this dissertation, 

a finding that has never been previously observed. In addition, I have identified a new 

sperm phenotype in all interspecies hybrid males studied, wherein two sperm heads are 

fused together. The findings presented in this dissertation and the conclusions drawn here 

require further exploration to elucidate how, genetically, Haldane's rule relates to the 

evolution of hybrid sterility in Drosophila. The sequences involved in the mis-

segregation of chromosomes during meiosis I must be identified to describe, specifically, 



 

151 

 

how meiosis I fails in sterile hybrid males. Further fine-mapping of the regions 

implicated in the formation of needle-eye sperm, identified in Chapter 5, will identify 

possible candidate genes or genomic structures that can be tested. Additional questions 

that require investigation involve understanding the downstream cascade defects that 

arise during spermatogenesis. For example, how protamines are misregulated in sterile 

hybrid males, resulting in the deviation from normal sperm nucleus length. Also, 

additional exploration of how parasperm and eusperm are differentially affected in terms 

of hybrid sterility between D. p.pseudoobscura and Drosophila persimilis (Chapter 2) 

would provide some insight into whether parasperm and eusperm operate on different 

molecular pathways and are, thus, under different evolutionary pressures. Finally, 

although this was not addressed in this dissertation, certain interspecific crosses exhibit 

maternally related sterility phenotypes that did not fit into the general trends observed in 

this dissertation (Kulathinal and Singh, 1998; Hardy et al., 2011). In the case of a female 

D. mauritiana mating with either a male D. simulans or Drosophila sechellia, hybrid sons 

do not produce sperm and spermatogenesis appears to arrest prior to meiosis (Kulathinal 

and Singh, 1998). As such, these hybrids present an interesting and unique scenario, 

wherein the maternal genome, or just the X chromosome, appears to play a role in how 

sterility manifests, a potentially important evolutionary force shaping postzygotic 

barriers. Overall, our understanding of how Haldane's rule and hybrid sterility arises 

between diverging populations remains limited. However, the results observed here 

provide new evidence for how hybrid sterility arises in Drosophila, which I hope prompts 

a new direction for further research in this field. 
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Supplementary Figure 1: Histographs for individual sperm nuclei length of parental 

species and their interspecies hybrids.  
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