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Abstract
This thesis explores live entertainment analytics and revenue management allocation strategies
for live entertainment.

In Chapter two, we look at empirical factors that effect the success of Broadway shows.
How well-known actors (stars) effect film revenues has been a recurring question of entertain-
ment producers and academics. Because a film cannot be disentangled from a star involved,
researchers have long struggled to rule out “reverse-causality” - that stars have access to higher
quality movies. Using a novel data set that includes Broadway show revenues and actor usage,
we provide a fixed-effects regression and case studies. We find across multiple specifications
that increases in star power in a show improve revenue.

Motivated by social grouping and the associated operational challenges, in Chapter three
we formulate and study extensions to the Dynamic Stochastic Knapsack Problem (DSKP).
We compartmentalize the knapsack according to predefined reward-to-weight ratios, and in-
corporate a stochastic interaction between the offered set of open compartments and the item
placement. Using a specific interaction function inspired by customer choice in the entertain-
ment industry, we provide an algorithm to determine the optimal solution and obtain insights
into structural properties. Given the computational complexity of the dynamic program we
also propose and analyze via simulation a heuristic algorithm.

In Chapter four, in a large sequence of simulations, we propose and study practical heuristic
algorithms on which seats should be offered to requests. We propose an algorithm that offers
revenue improvements from a “naive” policy on the order of 5-10%.

Throughout, we aim for managerial relevance, providing implications to current techniques
both in strategy as well as operations.

Keywords: Entertainment, Revenue Management, Markov Decision Process, Simulation,
Seating, Operations
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2 Chapter 1. Introduction

The entertainment business is fascinating, containing many unique strands that differentiate
it from other industries. In this thesis, we explore these different facets analytically and discuss
how managers can face them. In general, we explore two different ideas: the uncertainty of
success, and operational allocation of seats.

In virtually all entertainment fields (e.g, films, live theatre, books...etc), there exists a
winner-take-all element. Successful entertainment products do tremendously well and cap-
ture a large share of revenues, while the majority of products make meager revenues. The
problem managers face is that the process of becoming a winner is highly uncertain, and path-
dependent (Salganik et al., 2006). William Goldman, a Hollywood screenwriter, once said that
“nobody knows anything” about what makes a movie successful (Goldman, 1983).

The entertainment industry is interesting from an operational point of view as well. The in-
dustry generally satisfies the criteria of Revenue Management (RM) methodologies; There is a
fixed-supply of seats that become perishable after an event, and selling an extra seat incurs low
marginal costs. However, live entertainment is different from traditional RM application areas
such as airlines. As mentioned above, social factors are more important, and the experience is
more uncertain prior to purchase.

The key interlinking idea between these two topics is exploring how businesses should
make decisions in an environment where social factors are important and groups of consumers
make and engage in purchasing decisions. This creates research questions on an operational
level (How to offer seats to incoming groups?) as well as at a strategic level (Should films and
live entertainment products focus on “stars”?).

The predominant focus within the RM literature on live entertainment has been regarding
pricing (or value) and its effect on demand/sales. For instance, Leslie (2004) examine Broad-
way data and show that seat price discrimination improved profit by 5% relative to uniform
pricing; Hume et al. (2006) examine factors influencing service quality in performing arts;
Toma and Meads (2007) empirically explore macro-level determinants of symphony atten-
dance; Veeraraghavan and Vaidyanathan (2012) developed and empirically analyzed location
based “seat value” and customer utility of events (specifically baseball); and Dixon and Verma
(2013) show how sequence effects play a significant role in influencing season subscription
renewals.

A main focus of RM in general is on differential pricing. This comes in the form of dy-
namic pricing and variable pricing. In the live entertainment sphere, dynamic pricing refers
to changes in prices over time based on changes in realized demand vs predicted demand. For
management simplicity, dynamic pricing often uses capacity levels as triggers to alter pricing.
For example, to raise prices when 10% of capacity remains.

Variable pricing refers to different prices for different products, where a product is a spe-
cific seat to a specific event. Variable pricing is common in live entertainment. For example, a
Friday night show may be priced differently than a mid week matinee. The event itself some-
times differs materially too. Sports teams sometimes change prices depending upon who is
being played.

The most common type of variable pricing is for seating within a venue however. As far
back as Shakespearean days, venues have charged different prices for different seating loca-
tions. At that time, the cheapest tickets were for the ground floor where standing was the norm.
More expensive upper level seats were available as well however for the upper class. The pro-
cess of demarcating different zones of different prices on the seating map is known as “scaling
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Figure 1.1: Weekly potential gross for selected shows in 2016.

the house”.
Dynamic pricing in live entertainment has only begun to be introduced recently but has

spread to multiple outlets. Major League Baseball’s (MLB) San Francisco Giants introduced
dynamic pricing to the sports industry in 2009 (Kemper and Breuer, 2016). In 2012 , 17 MLB
organizations were beginning to dynamically price their events in some fashion Dunne (2012).

On Broadway, sophisticated RM pricing methods are often associated with Disney produc-
tions, sometimes cited as the “masters” of the process (Healy, 2014). In some of its shows,
management sets limits on how high prices can be set, ostensibly to keep prices affordable
for families. Other shows on Broadway are generally independently organized and financed,
making sophisticated RM processes more unlikely.

To test the extent of these RM techniques on Broadway, we use publicly available data
about shows’ weekly potential gross. Potential gross measures how much a production could
possibly make in a given week. The calculation is the summation of each seat, at each perfor-
mance, at the posted price for that week. I.e. coupons and other discounts are ignored, and so a
show can be fully attended without reaching 100% of its potential gross. We hypothesize that
an active RM pricing regime would result in changes in prices week to week and thus differing
potential gross numbers.

In Figure 1.1 we plot potential grosses for four selected shows on Broadway in 2016. Note
the two Disney productions (Aladdin and The Lion King) exhibit changes week to week and
throughout the entire year. In fact, it is rare to see two weeks where potential gross does not
change. This is consistent with an active variable pricing process. In contrast, we look to
Wicked and Book of Mormon, two other successful shows on Broadway. These two shows
exhibit very long periods of unchanged prices, even during strong seasonal trends, e.g. the
summer tourist season. However, even these shows exhibit temporary bumps during holiday
periods - note that all shows have relatively higher potential grosses at the start of January 2016
- the week including the previous New Year’s Eve.

In Chapter two of this thesis, we look at empirical factors that effect the success of Broad-
way shows. How well-known actors (stars) effect film revenues has been a recurring question
of entertainment producers and academics. It is critical to the “blockbuster strategy”, the idea
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that stars/budgets/marketing are a successful strategy in entertainment. However, because a
film cannot be disentangled from a star involved, researchers have long struggled to rule out
“reverse-causality” - that stars have access to higher quality movies. We argue that the com-
mercial live-theatre environment provides a way of controlling for a show’s fixed effects. Using
a novel data set that includes Broadway show revenues and actor usage, we provide a fixed-
effects regression and case studies. We find across multiple specifications that increases in star
power in a show improves revenue. We also find that competitive star power has a negative,
but not statistically significant effect on revenues. We discuss managerial implications as well
as directions for future research based on the Broadway context.

Motivated by social grouping and the associated operational challenges, in Chapter two
we formulate and study extensions to the Dynamic Stochastic Knapsack Problem (DSKP).
We compartmentalize the knapsack according to predefined reward-to-weight ratios, and in-
corporate a stochastic interaction between the offered set of open compartments and the item
placement. Using a specific interaction function inspired by customer choice in the entertain-
ment industry, we provide an algorithm to determine the optimal solution and obtain insights
into structural properties. Given the computational complexity of the dynamic program we
also propose and analyze via simulation a heuristic algorithm.

In Chapter three, for tractability, we assume that groups are seated strictly from left to
right, arguing that this can be operationalized by managers. In Chapter four, we relax this
assumption and allow incoming requests to sit anywhere within a row. In a large sequence
of simulations, we propose and study practical heuristic algorithms on which seats should be
offered to requests. We find that a “naive” offer-all method is inefficient across a wide variety of
conditions. We propose an algorithm that offers revenue improvements on the order of 5-10%,
and show how it compares to common industry methods.

Throughout this paper, our aim is to make contributions to both the strategic side of enter-
tainment management as well as the operational. We hope to spur other researchers to look
into this field and examine more closely the idiosyncrasies of the industry.
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2.1 Introduction

Entertainment industries (e.g films, live theatre, books, etc.) face a winner-take-all environ-
ment. The “winners” grab the vast majority of the revenue while losers make relatively little
(Vany and Walls, 1999). Cultural products like films and theatrical productions face high up-
front costs with highly uncertain lifetime revenues. The Blair Witch Project, with a budget of
$60,0001 eventually made over $200MM at the box office. At the same time, the 2016 summer
film Ben-Hur cost $100MM to produce, and only made $94MM in domestic revenue.

A constant managerial question is what actions can be taken to increase the probability of
success, or mitigate the probability of failure. The screenwriter William Goldman once said
that in the movie industry “Nobody knows anything”. Similarly, Jeffrey Sellers, the producer
behind the mega-hit Broadway musical Hamilton suggested that “there is no moneymaking
formula on Broadway” (Sokolove, 2016).

One formula suggested has been the “blockbuster” strategy. A “blockbuster” strategy en-
tails using high production values, copious amounts of marketing, and well known actors (stars)
to try to create extreme winners (Elberse, 2013). In the movie business, this can imply using
known intellectual property (sequels), stars, and high marketing budgets to produce “tent-pole”
summer productions. However, academic evidence for this strategy is mixed and popular reac-
tion to it has varied. The media has suggested that the strategy has died off. A 2016 summer
NY Times article was titled “ Hollywoods Summer of Extremes: Megahits, Superflops and
Little Else”. A Vox article was titled “Hollywoods go-to formulas [have] stopped working”.

One aspect of the blockbuster strategy is using stars to create a hit. Using stars can spur
an information cascade, causing herd behavior in consumers (Bikhchandani et al., 1992). Stars
also have a high cost though, both financially and logistically. Determining how and whether
stars affect financial success is the first step to answering whether these costs are worthwhile.
The literature to date on this question has been mixed, and definitive answers are unclear.
Some papers find that stars increase film revenue. Others find that no effect or only an indirect
effect. Much of this uncertainty in the literature stems from the inability to clearly identify
causality. In a film, a star may be correlated with other movie characteristics, such as quality
stories, scripts, budgets, and other creative elements. This has been referred to as the “reverse-
causality” problem (Liu et al., 2014).

To address this issue, we propose looking at the live theatre environment, where different
actors perform in the same show over time. We obtain a novel data set of which actors were
present in Broadway productions in a given week, and weekly grosses of those shows. Using
a continuous measure of star power, we study how a show’s star power drives weekly revenue.
We find that increases in star power improve revenues on average, as do major awards, except
for Tony awards. Our work builds on a recent effort to correct for endogenous actor selection
(Liu et al., 2014) and finds that stars directly, rather than indirectly effect revenues. We also
explore competitive effects, finding a negative but not statistically significant effect of other
Broadway shows hiring stars. We discuss managerial implications as well as future research
directions.

1All dollar figures in USD.
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2.2 Background and Literature Review

2.2.1 Literature Review
A variety of mechanisms and conceptual models have been proposed for how stars might alter
the success of entertainment products. Most literature here is centered in the film industry con-
text. Albert (1998) proposed that stars serve as a “marker” of a successful film type. Similarly,
Thomson (2006) and Luo et al. (2010) suggested that stars are a type of human brand. A star
might signal the type or quality of a cultural product that a consumer might purchase. For
example, a consumer may update their private beliefs about the genre/quality of the movie if
the consumer realizes a certain star is involved. In that way, a star would reduce the quality
risk for consumers. Cultural products, being experiential goods, have quality that is difficult
to predict a priori. It would hold then, that if consumers have a better idea of the type of film,
demand may increase.

A rich literature has been developed to empirically test this theory in business environments,
with almost all of the literature being based in the film industry. Unfortunately, empirically the
literature is mixed. Some find a positive effect from using stars. Using an online prediction
market as an event study, Elberse (2007) finds that stars have a statistically significant posi-
tive relationship with revenues, and is able to determine the value of specific actors. Nelson
and Glotfelty (2012) use IMDB rankings to operationalize star power, and apply a per-country
regression, finding a statistically significant positive effect of stardom. Other papers find no
statistically significant effect.Prag and Casavant (1994) find no significant effect, after account-
ing for marketing expenditures, from a star’s presence in a movie. But the authors note that
the presence of a star also effects marketing expenditures. Ravid (1999) comes to a similar
conclusion, noting that when including budgets, stars do not seem to significantly effect rev-
enues. Vany and Walls (1999) use a distributional approach and conclude that stars do not make
successful films, the movie itself does. In a fascinating new work, Liu et al. (2014) create an
endogenous switching model to control for endogenous matching processes. They find that any
effect stars have on revenues is largely indirect, from different movie characteristics as well as
increased theatre allocation (i.e. stars cause their movies to be in more screens nationwide).

Other work has researched other factors that stars may effect. Joshi (2015) focused on
week-to-week grosses, rather than total grosses, and found that they had less volatility when
a film had a star. If the movie business values consistent cash flow, week-to-week riskiness
should also be important to them. Liu et al. (2013) finds that stars impact stakeholders in the
early project stages (e.g. financing and pre-production) but that the impact on audience may
again only be indirect.

When positive results are found, most of the literature has only claimed that their result is
an association, rather than causation. This is due to endogeneity in the process of matching
star actors with films.

2.2.2 Endogeneity in Actor Selection
In the ideal experiment to test this research question, actors with varying “star power” would
be assigned to movies randomly, and the resulting revenues tested for difference in means. This
can not occur in reality. Actors are not assigned randomly, but rather are attached to projects
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through a complex sequence of bargaining and access (Ravid, 1999). This implies that actor
selection is endogenous and potentially related to movie characteristics (Liu et al., 2014).

Endogeneity between star power and movie characteristics is bi-directional. Star actors, if
they have bargaining power, may be able to influence or seek out specific film characteristics
of projects that they are involved in. Given private information about characteristics that go
into the quality of a product, star talent may choose projects that are projected to have higher
quality. Alternatively, from the producer side, producers may choose to attach stars to specific
movies (Eliashberg et al., 2006). They may do so to ensure project financing. Furthermore,
they may attach stars only to specific genres.

If these forms of endogeneity exists, it presents a problem for empirically assessing the
inclusion of a star in a cultural product. Stars may be associated with higher revenues, but only
through their association with other movie characteristics. As Vany and Walls (1999) points
out, the movie would make the star, instead of the reverse. “Reverse - causality” would remain
a potential explanation.

Endogeneity could be dealt with partially through more data. Some movie characteristics
are possible to control for by obtaining more data. For example, much of the literature includes
budget as an independent variable in the analysis. However, others would be very difficult, if
not impossible to quantify and operationalize (e.g the quality of script/story)

Numerous papers have identified this issue as well. Eliashberg et al. (2006) states the need
for continuing research into what effect stars have on films. Elberse (2007) points out the
reverse-causality issue and attempts to solve it via the event study approach on a public pre-
diction market. Given full information, a prediction market would identify the effect a change
in actor has on estimated revenues. Thus, an event study would solve this issue. However, as
Ravid (1999) points out, and Elberse (2007) acknowledges, there is assymetric information in
the market for films and full information is not available to the prediction market. Script qual-
ity, budget, and other movie characteristics may be unknown to the prediction market. With
assymetric information, the presence of a star can serve as a signal of these other movie char-
acteristics. Thus, even under the null hypothesis of no effect, the prediction might change as a
result of the announcement in stars. Therefore, if the prediction market operates on public in-
formation, which the online website does, an event study using prediction markets still suffers
from the same issue of a reverse-causality explanation.

Liu et al. (2014) formalizes the notion of endogeneity in the film market and star selection.
They attempt to solve the issue via explicitly modelling actor selection and movie characteris-
tics. However, the study only seeks to measure opening week differences. Our study is cleaner
in the sense that star power variation occurs naturally over time on Broadway. Furthermore,
we notably find different results. Liu et al. (2014) find that stars increase the number of screens
a film is on. On Broadway, capacity changes are not possible since a theatre’s number of seats
is fixed. Thus, we find a different mechanism than them.

To solve the potential reverse-causality problem, we propose looking outside the film in-
dustry. For the reasons mentioned above, the film industry is unlikely to be a fruitful place of
research for relatively clean data analysis. Instead, we must find a context where it is possible
for star actors to be introduced into and out of the underlying cultural product. Only one indus-
try satisfies this requirement to our knowledge: live theatre. Unlike other entertainment where
almost all of the production is done up front, live theatre’s main component is “produced” live
nightly. While the script, direction, choreography and other story and design elements are fixed
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prior to the show starting2, the actual performance occurs nightly before a live audience.

2.2.3 Broadway Background

Broadway theatres refers to 41 professional theatres in downtown New York City. A Broad-
way theatre is classified as any downtown theatre with more than 500 seats. Capacity varies
widely though; the smallest theatre has 597 seats, while the largest has 1,935 seats. Shows on
Broadway are generally categorized as either plays or musicals.3 Plays are scripted produc-
tions, while musicals incorporate songs with singing and choreography, in an often extravagant
manner.

Shows can be categorized as being open ended runs or limited runs. A “run” refers to the
amount of time that a show will be playing for. Open ended productions have no specified
end date and will run for as long as the show is profitable. A limited run is a show that opens
and has a specified end date. Limited runs are common with plays that open with star actors,
because of their busy schedule (Reaney, 2014). However, even limited runs can extend their
run given heavy demand, depending on the schedule of their cast and on the availability of their
theatre. The standard running week of a Broadway show is 8 performances every 7 days, with
one “dark” day where no performances are held.

A Broadway project generally progresses according to the following sequence. The show
undergoes rehearsal for 2-4 weeks where the cast and creative team rehearse and practice the
show. During the final week, a “tech” rehearsal occurs where the lighting and sound elements
are brought together with the cast and cues synced. Once public performances begin, a show
goes through several weeks of previews. During previews, the general public buys tickets to
the show understanding that design elements may change or be a work in progress. Musicals
for instance may remove songs, edit dialogue, and alter staging during the preview period. On
opening night, the show is locked and no further creative elements are changed 4. In addition,
professional reviewers (e.g. The New York Times, The Washington Post) publish their official
review of the show on opening night.

Commercial theatrical productions on Broadway can be long running affairs: The Lion
King on Broadway has been running for over 18 years with over 7500 performances. In long
running shows, while the creative elements are fixed, the actors themselves change throughout
the run of the show. Like in the film industry, actors are chosen based on a negotiated match-
making process. This would involve both their acting ability as well as their potential star
power to draw in an audience. Star actors sometimes headline the show during the beginning
of a run in hopes to generate interest. This occured in 2011 when the revival of How to Succeed
in Business Without Really Trying opened. Daniel Radcliffe, from Harry Potter fame, was
cast as the lead character and played the role for a little less than a year (Feb 26, 2011 - Jan
01, 2012). Stars however can also be replacements during the middle of the run, sometimes
negatively referred to as“stunt-casting”, because of the perceived lack of talent of these actors.5

2Minor changes to scripts can occur during previews, or sometimes during extended runs however.
3Exceptions exist: The magic show Penn & Teller is not obviously described by these labels.
4Some small topical references that become outdated can be edited, e.g. after the presidential election in 2008,

the musical Avenue Q altered a lyric referencing George W Bush.
5More specifically, the term is generally reserved for stars without a live-theatre background.



10Chapter 2. Mega-Stars and theBlockbuster Strategy: An EmpiricalAnalysis ofBroadwayRevenue

In the musical In the Heights, High School Musical star Corbon Bleu stepped into the lead role
partway through its run (Jan 25, 2010 - Aug 17, 2010).

The years in our dataset were years of change on Broadway. Revenue management (RM)
techniques like variable pricing became more common, spearheaded by Disney and its produc-
tions (e.g. The Lion King) (Healy, 2014). From 2009 to 2015 the average price for sold tickets
increased from $83.02 to $104.26, a 25% increase that far outpaced inflation. Prices changes
like this could be a result of more pervasive RM techniques, or as a result of shifting consumer
preferences toward live entertainment.

While the industry has changed, in this chapter we focus solely on the effect of starpower,
not necessarily the prediction of grosses in general. Changes in pricing behavior with respect
to RM behavior should not create bias in our estimated effects of starpower.

Our research thus also intersects with a literature on the success of live theatre. This litera-
ture generally centers around what effects the success of a show, as well as how awards or re-
views can effect a shows revenue. Reddy et al. (1998) examine multiple factors that impact the
success of a Broadway show including critic reviews and advertising expenditures. They find
that critics both predict and influence success. The authors also investigate the effect of actor
choices, using as proxies the total number of shows on Broadway the lead cast/director/author
had done, as well as the number of awards these individuals received. Boyle and Chiou (2009)
examine the value of winning a Tony Award using a discrete choice model as well as a hazard
model. They suggest that nominations bring general positive increases to all shows, but that
attention shifts to just the winners after the awards are given. They also propose that awards
information follows as an information cascade where the main effect is not felt immediately.
Simonoff and Ma (2000), using a survival model found mixed results for major paper reviews,
but a positive effect from winning awards. Maddison (2004) also performed a survival analy-
sis on Broaday shows, finding that original shows tended to outlast revivals. The author also
finds that as shows last longer, the more likely they are to last for a longer time, unlike in the
movie industry. Maddison (2005) looked into revivals on Broadway, finding that revivals are
becoming more prevalent and that they are less risky, though do less well on average.

Notably, Reddy et al. (1998) investigates how actors affect lifetime revenue on Broadway,
however only do so based on the actors who were there on opening night. This is an interesting
question but suffers from the same direction of effect questions as the film industry. This
analysis was only done for the opening night cast and did not test what happened when these
lead actors left the show and thus, similar to the movie industry, this approach is not able to
cleanly identify star power effects.

2.3 Model Framework
In Figure 2.1 and Figure 2.2, we provide the conceptual diagrams which guide our research.
Broadway productions have two differences from the film industry. Firstly, actors (and there-
fore the effects of star power) change throughout the run of the show. In film, a movie’s cast
is unchanged once production is finished. The other change occurs with capacity. In film, ca-
pacity can quickly expand and is an important aspect of capturing information cascades/social
herding effects (Vany and Walls, 1996). If a film captures the public’s interest, it can quickly be
distributed to thousands of screens nationwide. In contrast, on Broadway capacity is fixed and
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Figure 2.1: Conceptual Model for Films
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Figure 2.2: Conceptual Model for Broadway
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very inflexible. Although it is possible for a show to switch theatres during its run, the switch
is very expensive, lengthy, and ultimately rare. Capacity is therefore non-dynamic throughout
a show’s run.

Quality levels can differ on Broadway throughout a show’s run, in contrast to film. By qual-
ity, we mean the general artistic ability to provide intended emotions to an audience. Changes
in actors may effect the quality of a show through changes in innate acting ability or ability to
perform in a live show. For example, it was reported that Bruce Willis in 2015 had to be fed
lines through an earpiece on stage 6.

We do not explicitly include changes in quality in our model, largely because data is not
available. However, we argue this effect is small. Producers have a vested interest in keeping
the quality of their own show at some minimum level. In addition, if quality had high temporal
variability we would expect to see new reviews of shows on cast changes. This is rare, indicat-
ing that quality, although theoretically effected by cast, is for practical purposes steady. Thus,
although in theory quality may be variable over time, in our model quality is captured by the
time invariant unobserved effects of a show.

In our model, we index shows by i = 1, . . . ,N; where N is the number of shows in our
sample. We index time (weeks) by t = 1, . . . ,T , where t = 1 is the first week in our sample (the
week ending May 31st 2009) and t = T is the last week in our sample (the week ending August
1st 2015).Our dependent variable is the log transformed weekly per-performance revenue, yit

for show i in week t. xit is a column vector of K explanatory variables for show i in week t.
More details are provided about the specific independent variables in xit in Section 2.3.3.

Details about the dependent variable yit are given in Section 2.3.2. Variables are summarized
in Table 2.2. Our econometric model is given by

yit = βx′it + αi + εit

for i = 1 . . .N,

for t = T i
s . . . T

i
e,

6http://nypost.com/2015/11/05/pacinos-not-alone-willis-needs-an-earpiece-to-remember-his-lines-too/
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where T i
s is the starting week for show i and T i

e is the ending week. β is the column vector
of parameters/coefficients. αi is the unobserved individual effect of show i, that is intended
to capture time-invariant heterogeneity. εit is the idiosyncratic error term which is assumed to
be independently distributed across shows but with a potential dependence across time (We
assume that εi ∼ i.d. (0,Ωi)). That is, we explicitly allow for within show i serial correlation in
errors and heteroskedasticity.

We assume that αi is a fixed effect, rather than a random effect. A random effects would
require the assumption that αi is uncorrelated with the entries of xit. In our context, this as-
sumption would imply that star power is uncorrelated with script/budget/genre. This is a strong
assumption and one we do not wish to make. Therefore in our analysis we assume that αi are
fixed effects7. Each αi is treated as an unknown parameter to be estimated (Greene, 2007, p.
359).

The theoretical downside to modeling αi as a fixed effect is that time-invariant covariates
would not be able to estimated, since they would be captured by αi. For our purposes, this is
acceptable since we are not interested in time-invariant factors (e.g. genre, budget) and explic-
itly do not include them in our model. We are specifically focused on variation in starpower
over time. However, this does mean that shows who had no replacement in actors are not able
to contribute to our estimation of starpower effect.

β and αi can be estimated using Ordinary Least Squares (OLS). However, since OLS as-
sumes εit are i.i.d., the associated standard errors on β and αi are generally biased downward
(Cameron and Miller, 2015, pg. 3). We instead use robust standard errors following Cameron
et al. (2011) to account for any potential serial correlation or heteroskedasticity. This two-step
procedure (OLS and robust standard errors) is mentioned by Cameron and Miller (2015) as a
more recent method in the literature.

2.3.1 Broadway Data
We collected data from the Internet Broadway Database IBDB.com, a website ran by the trade
association for the industry, for all shows that were running during the period May 31st 2009-
August 1st 2015. This resulted in 290 shows across 327 weeks . The 2009 starting date was
chosen due to a change in reporting standards in grosses prior to that date. This data included
the “gross gross”8 of each broadway show, in each week that it was playing. Revenue data
is publically available and generally released every Monday, giving grosses for the previous
week.

From the same site, we obtained information on which actors played which characters for
all shows within the sample period. We refer to character/actor combination as “Roles”. Role
information included the actors names, the character(s) they played in the show, and the dates
they joined and left the show. Figure 2.3 shows an example of the data on the site itself.Since
a role is both a character and actor combination, some actors are included in the dataset in
multiple roles over different time periods. We index roles by r = 1, . . . ,R.

We made significant efforts to ensure the data was cleansed and precise. Role information
were removed due to a lack of either a start date, ending date, or imprecise start/ending dates.

7A model assuming random effects is presented in the Appendix however for robustness. All qualitative results
presented here hold.

8Gross Gross takes the total revenue in a given week and does not subtract out transaction fees.
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Figure 2.3: Screenshot of example raw role information from IBDB.com

9 Generally speaking, roles that were removed were either less important characters (so-called
“ensemble” members) or non-notable actors. We also ensured that no roles conflicted with
each other, e.g. data that specified two actors playing the same character in the same week. For
those weeks that showed two actors overlapping the same part, we assumed that the actor with
the shorter overall time period was actually in the show. This tended to occur for short vacation
periods of the main actor.

After this data cleansing process, we had 928 unique roles in our data set. This consisted
of 633 unique actors across 80 shows. The number of shows with role information is less than
our entire show sample. This is primarily due to short show runs for which no actors changed
and therefore for which IBDB did not provide starting/ending dates. The mean length of a
show for which we have actor information was 133 weeks compared to 51 weeks across the
entire show sample. In a fixed effects analysis, a show with unchanging actors does not provide
information about the effect of those actors. Therefore not having information on these shows
did not effect our analysis. On average, an actor in our dataset was in a show for 31.9 weeks
before leaving the show.

2.3.2 Dependent Variable: Weekly Gross Revenue
The dependent variable yit is a log transformed per-performance revenue for each show for each
week in our sample10. Weekly grosses were inflation adjusted to 2015 values using monthly
CPI data in the United States11, and subsequently adjusted to a “Per-Performance” measure
by dividing by the number of performances done in a specific week. This change was done to
control for any non-standard number of performances held. In a typical week, a Broadway pro-
duction runs 8 shows per week. However this can vary in previews (prior to a show opening),
or because of special holidays throughout the year. For example, during the holiday season
in December, it is not uncommon for some shows to have 10 performances on a given week.
We refer to this variable as Gross. In Figure 2.4, we provide box plots of Gross for a sample
of shows from our data set. We see that mean Gross can vary considerably across shows. We

9For example, some data points only indicated a general month of when an actor started with a show.
10Monetary variables are particularly suited to being specified in logarithmic form (Wooldridge, 2012, pg. 193).
11https://www.bls.gov/cpi/
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Figure 2.4: Boxplots of selected shows’ weekly grosses for 2009-2015. The mean weekly
gross for the entire sample is $102,301.
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consider this indicative of different fixed effects. This could be capacity, i.e different theatre
sizes or different show quality levels. We also see significant variation within each show. We
postulate that at least some of this variation is due to changes in actors and starpower.

Our final data set of revenues is an unbalanced panel structure. The panel is unbalanced
because of the opening and closing process of the shows, and so some shows do not have data
for certain weeks.

2.3.3 Independent Variables: Operationalization of Star Power

To determine how within-show variation in star power explains changes in revenues, we must
operationalize the concept of star power. One common approach in the literature is to assign a
dummy variable indicating whether an actor was a star. We opted against this approach because
we feel it misses the granularity that still exists between actors (Nelson and Glotfelty, 2012).
Two stars that might both be classified as a star, might still have different levels of star power.
That is, star power is best represented by a continuous variable, rather than a binary one. This
is recognized in the media as well, who popularly refer to certain actors as “A-List” stars or
“D-List” stars. Dummy variables also have practical operationalization issues. A researcher
must still find some underlying variable to operationalize awareness and choose an arbitrary
cutoff point. Otherwise, they subjectively assign the dummy variables values such as in Prag
and Casavant (1994).

The other common approach is to include two independent variables that combine to form
a proxy for star power. Usually this approach uses the number of awards an actor has won, and
the quantity/revenue of previous shows the actor was in. For example, in the film industry, a
common operationalization is the total revenue of the last five movies an actor was in. This has
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Figure 2.5: Screenshot of the STARmeter graph from IMDB.com

an advantage that such information is publically available and generally easily obtainable.
We feel this is inappropriate for Broadway. Particularly recently, Broadway star actors

have come from many industries. They may be successful movie actors (Daniel Radcliffe,
Neil Patrick Harris), well known singers (Billie Joe Armstrong, Nick Jonas), television series
actors (Matthew Morrison, Sean Hayes), or even well-known actors from Broadway (Kristen
Chenoweth, Sutton Foster). Using film box office revenue does not allow us to measure star
power across entertainment industries.

Instead we use the recommendation of Nelson and Glotfelty (2012) and use the IMDB
STARmeter metric to quantify the popularity and star power of actors.12 This proprietary
ranking system uses search results on the IMDB platform to determine an up-to-date index of
which actors are being viewed by the general public. On the website, STARmeter is a rank,
such that the top actor has a ranking of 1, and increases in the ranking imply decreases in
star power. Figure 2.5 gives an example of how STARmeter appears on the website, and how
changes are graphed over time.

For each role, we collected the STARmeter rank of the actor on the date they joined the
show13. A linear interpolation was performed for start dates that were between STARmeter
dates available.

To aid in interpretation, we made two adjustments to the raw data. We assumed that the
difference in starpower between low-ranked actors was negligible and truncated it to 20,000.
That is, for each STARmeter found, we took the minimum of it and 20,000. 20,000 was chosen
because actors beyond this point are not recognizable to us.

After truncating values, we transformed the raw STARmeter ranking into a metric be-
tween zero and one, with increases in value implying more star power. We call this variable

12Conceptually, it may be important to recognize that the ranking does not measure sentiment. A frequently
searched actor may not be generally liked. We do not seek to measure this difference in our study.

13In approximately 11% of the roles, we were unable to find a corresponding IMDB profile. We assumed these
actors were highly unknown.
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Figure 2.6: Histogram of non-zero STARmeter values in our dataset on 6/30/2015. Each bin
width is 0.05.
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ad jS T ARMeter. We did this by applying the following formula, for role r,

ad jS T ARmeterr = 1 −
min(S T ARmeterr, 20000) − 1

19999
. (2.1)

Thus, for the highest ranked star in a given week, ad jS T ARmeterr returns one. adjSTARmeter
returns 0 if STARmeter is 20,000 with linear interpolation otherwise and with increases in
value implying higher star power.

To provide context and better understand the range of values, Table 2.1 provides ranges of
adjSTARmeter and example actors from our data set who fit into the ranges. We also provide
a histogram of non-zero adjSTARmeter values for all actors in our dataset on a given date in
Figure 2.6. As can be seen, the distribution of positive values is non-normal with a a large
proportion above 0.5.

Table 2.1: Example Actors for adjSTARmeter values

adjSTARmeter Range 0.01-0.50 0.50-0.90 0.90-1.00

Sutton Foster Catherine Zeta-Jones Daniel Radcliffe
Corbin Bleu Megan Mullally Sofia Vergara

Jason Alexander Neil Patrick Harris Emma Stone

Operationalizing star power with STARmeter is attractive because IMDB maintains a his-
tory of the ranking with weekly updates. This history allows us to calculate the popularity of
a given star at any given moment in the past. This was crucial to rule out an alternative form
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of reverse causality actors becoming famous because of the success of their show. For exam-
ple, prior to the television show Glee, Lea Michele was on Broadway in the musical Spring
Awakening.

The STARmeter is not completely ideal though. An issue with the STARmeter is that it is
derived from the actions of users of IMDB. If these users skew differently from the population
of Broadway theatregoers, we might expect there to be a bias in the variable. This is a reason-
able conjecture. While the IMDB user demographic is not readily available, the average age of
a Broadway theatregoer is 44 years compared to a United States median age of 39 (Broadway
League, 2015; CIA, 2016). We would further conjecture that being an online platform would
skew IMDB demographics even younger than the national median. Thus our measure of star
power is likely a measure of how a slightly different demographic views these actors, rather
than the demographic we are actually interested in.

Note though that this problem would attenuate the coefficients found in our results. At the
theoretical extreme, if demographics are completely different, and if those consumer segments
have completely different interests in celebrities, the STARmeter variable would have no cor-
relation with the theoretical quantity we are interested in. In this case, we would expect to
find no statistically significant effect from it. Thus, even though this bias is likely present, it is
likely to lead to not being able to reject the null hypothesis.

Another issue is that the data we have is an indirect measurement (e.g. web/mobile searches
for a given actor), rather than the measurement itself. We only have the ranking of the under-
lying measurement. This means that linear changes in the rank do not imply linear changes in
the underlying data. In fact, this is likely the case. Thus, hidden in the ranking system may
be non-linear changes in the underlying data. Unfortunately, that primary data is not directly
available.

Finally, for each role, we collected data on the total awards the actor had won for all major
awards (Tony, Grammy, Oscar, Emmy), prior to joining the show. To do so, we used informa-
tion from imdb.com, ibdb.com, as well as grammy.com. We included all individual awards
(e.g, Actors starring in a “Best Comedy” were not considered to have won an award).

From the data we collected, we create the following explanatory variables. A reference
description of all variables used in our study and the source of data is presented in Table 2.2.
Our main research question concerns how star power effects the revenue of a show. We create
the variable Starpower to test this. This variable returns the max adjSTARmeter from all actors
who were in the show on that given week. Formally, let S it return the set of roles for show i in
week t.

Then we can define

S tarpowerit = maxr∈S itad jS T ARmeterr. (2.2)

We hypothesize that the β coefficient for Starpower should be positive if increased star power
results in higher revenue. The variable returns the max under the hypothesis that a single star
actor is what drives revenue. In this case, all that matters would be the star power of the most
known actor.

However, Elberse (2007) and Nelson and Glotfelty (2012) point out that there may be
ensemble effects in films. Ensemble effects imply that multiple stars have a different effect
than a singular top star. It would seem natural that these effects may also exist in live theatre.
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On Broadway such casting tactics are common. For example, in 2010 for the revival of the
musical Promises, Promises, both Sean Hayes (adjSTARmeter= 0.90) and Kristen Chenoweth
(adjSTARmeter= 0.96) were hired as the leads of the show. The Starpower variable would
only consider Kristen Chenoweth and ignore the combined star power of the two actors. To
incorporate ensemble effects, we create the variable Starpower3 which returns the sum of the
three highest adjSTARmeter for a given show in a given week.

TonyAwards and OtherAwards act similarly for the underlying Tony Award/Other Award
data and return the highest number of Tony Awards / Other Awards won by any of the cast
who were in the show in the previous week. Note that these need not be from the same actor.
For example, Starpower could return the adjSTARmeter of a well known actor who was in the
show that week, but TonyAward could return the number of tony awards for a separate actor in
the same show that week.

A customer’s response to casting choices is not made in a vacuum. A customer makes
choices amongst several alternatives. In the film industry, this means customers at a movie
theatre make choices among several movies that may be playing. Each film may have different
perceived quality by an individual consumer. On Broadway, a similar phenomenon occurs.
Since almost all theatres are in the same Manhattan district, search costs are minimal and
information on all shows is easy to retrieve.

Consequently, the models above do not take into account competitor actions. If a show
adds star power and has a resulting increase in revenue, it is unknown whether Adding a star
to a given show could shift purchases from one Broadway show to another. In this case, from
an industry perspective, expenses on stars would be inefficient. The alternative is that adding a
star entices customers who would otherwise not.

To test for this effect, we create the variable CompetitionStarpower, which returns the sum
of all other shows Starpower. CompetitionStarpower thus represents how much star power
other shows in the same week have. We would hypothesize a negative coefficient on the vari-
able.

We also include control variables for various time components. To account for seasonal-
ity of revenues, we include dummy variables for the month as well as various Holidays. A
list of the specific holidays we considered is presented in the appendix. Finally, the variable
DaysOpen returns how many days the show has been open to control for potential life cy-
cle effects. A final correlation matrix and summary statistics of all non-control variables are
presented in Table 2.3 and Table 2.4.

2.4 Results

2.4.1 Graphical Analysis

Our main research question concerns how star power effects revenues on Broadway. We first
begin with a graphical analysis. In Figure 2.7 we show scatterplots of Gross against Starpower
and Starpower3. In the top row, we provide a best linear fit. For both independent variables,
the linear fit suggests a positive correlation between higher Starpower and Gross. This result
could be confounded due to differences in the unobserved individual effects and correlation
between those individual effects and star power. For example, a lessor grossing show deciding
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Table 2.2: Variable Descriptions

Variable Description Data Source
Gross The inflation adjusted, per per-

formance revenue for a given
show in a given week.

ibdb.com

Starpower The max adjSTARmeter for the
set of actors who were in a given
show during a given week.

imdb.com

Starpower3 The sum of the three top adjS-
TARmeter for the set of actors
who were in a given show dur-
ing a given week.

imdb.com

CompetitionStarpower The sum of all other shows’
S tarpower that were running
during the same week.

imdb.com

TonyAwards The maximum number of Tony
Awards won for the set of actors
in show i during week t.

ibdb.com

OtherAwards The maximum number of other
major awards for the set of ac-
tors in show i during week t.

imdb.com/grammy.com

DaysOpen Variable indicating how many
days the show had been open by
the end of week t.

N/A

Month Dummy variables indicating
whether the last day of the week
was in a given month.

N/A

Holiday Dummy variables indicating
whether a given holiday occured
during the week.

N/A

Table 2.3: Correlation Matrix

Gross Starpower Starpower3 CompetitionStarpower TonyAwards

Gross
Starpower 0.14
Starpower3 0.12 0.91
CompetitionStarpower -0.03 -0.02 -0.02
TonyAwards 0.07 0.38 0.49 -0.02
OtherAwards 0.07 0.42 0.5 -0.02 0.28
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Table 2.4: Summary Statistics of Variables

Statistic N Mean St. Dev. Min Max

Gross 9,420 102,301.100 56,578.950 10,079.130 360,051.900
Starpower 9,420 0.199 0.333 0.000 1.000
Starpower3 9,420 0.289 0.571 0.000 2.831
CompetitionStarpower 9,420 5.682 1.898 0.160 10.786
TonyAward 9,420 0.154 0.526 0 5
OtherAwards 9,420 0.200 0.843 0 18

on less star power.
To partially deal with this issue, in the second row of Figure 2.7 we provide selected show’s

box plots conditional on if a star was present or not that week. We define a “star week” as
any show-week combination where S tarpower ≥ C where C is some prespecified constant
indicating at what level an actor is considered a star. Here, we assumed that C = 0.90. In this
way we start to control for unobservable individual time-invariant effects.

We see that for the most part there is a difference in behavior between star weeks and no
star weeks, with all selected shows reporting higher median gross under a star week than a no
star week. Indeed, the effect is visibly apparent.

We can also examine the overall distribution of Gross conditional on the presence of a star.
We then examine the distribution of Gross during star-weeks as compared to non star-weeks.
14

Our analysis is sensitive to the choice of C, and thus we provide multiple values to test.
We try the following values for C: 0.50, 0.70, 0.90, 0.95. In Figure 2.8, we provide these
conditional distributions. Along the x-axis is the specific gross, and along the y-axis is a
smoothed estimate of the probability density of a star (green) vs non-star (red) of being at
that value. The smoothing was done via a kernel density estimate with a Gaussian smoothing
kernel. Bandwidth was selected using Silverman’s rule of thumb. In Table 2.5, we provide the
associated mean values of star vs non-star weeks at each definition.

Table 2.5: Mean Values for Star Weeks compared to Non Star Weeks

C Mean / Standard Deviation of Gross during
Star Weeks

Mean / Standard Deviation of Gross during
Non-Star Weeks

0.5 $114,570 (52,394.7) (N=1,993) $99,008.9 (57,207.4) (N=7,427)
0.7 $114,684 (54,913.5) (N=1,498) $99,959.7 (56,588) (N=7,922)
0.9 $99,254.7 (40,467.1) (N=677) $102,537 (57,634) (N=8,743)
0.95 $112,293 (39,590.8) (N=317) $101,953 (57,049.6) (N=9,103)

A few points of interest arise. At all star definitions, the distribution of star grosses appears
to be have less variance than the distribution of non-star grosses. This graphical intuition

14In this analysis, we use Starpower however an analysis with Starpower3 results in qualitatively similar results.
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Figure 2.7: Scatterplots of independent variables Starpower and Starpower3 against dependent
variable Gross. In all plots, color signifies a specific show. In the first row we provide in black
the best fit linear line. In the second row, we provide selected samples. A “star week” is defined
as one where Starpower ≥ 0.90.
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Figure 2.8: Distribution of Gross conditional on star presence. Densities estimated via a kernal
density estimate, with a Gaussian smoothing kernel. Bandwidth was selected using Silverman’s
rule of thumb.
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is confirmed by checking the standard deviation of the distributions in Table 2.5. At all C
definitions, the standard deviation of star weeks are less than non-star weeks. In addition, in
all but one definition, the mean of star weeks is higher than non-star weeks. Finally, under all
definitions, the no-star distribution appears to have a higher probability of achieiving relatively
low gross amounts. This would seem to bolster the claim that stars help producers reduce risk.

We can also qualitatively examine stochastic dominance of one distribution over the other.
In this setting, stochastic dominance exists if, at every potential gross dollar amount, a dis-
tribution has at least the probability as the other of achieving a higher gross. Managerially,
stochastic dominance would that there is no “downside” to hiring a star as they would have less
down-side risk and higher upside risk. At the C = 0.50 and C = 0.70 definition, there seems to
exist stochastic dominance of stars over no-stars. At other definitions however, there is a clear
violation in the upper tail. For example, at C = 0.90 and C = 0.95 the non-star distribution has
a higher probability of achieving higher grosses This would imply a tradeoff - stars may reduce
downside risk but limit upside risk.

2.4.2 Regression Results
The prior sections provide some insights into how stars play a role in a show’s revenue. How-
ever, we did not control for show-specific and time-specific effects. Here we provide formal re-
sults from multiple fixed-effects regressions and discuss managerial intepretations. Our model
aims to predict the log of Gross as a function of star power, award covariates, and various
controls. We use show-specific dummy variables to account for any unobserved time-invariant
show-specific effects that may exist. These effects might include the script quality, song quality,
and budgets.

In Models 1 and 2, we use the Starpower variable as our measure of star power. In Model
3 and 4 we instead use the ensemble measurement Starpower3. In Models 2 and 4, we add
CompetitionStarpower to test the effects of competition, but leave it out in Models 1 and 3. We
attempted squared terms on the Starpower and Starpower3 variable but only found significance
with Starpower3. We thus only report this variable, but present all attempted models in the
appendix.

2.4.3 Model Results
In Table 2.6, we present coefficient estimates (and accompanying standard errors), and R2

values from these models.
First, we examine our main research question and variable of interest. Starpower is positive

and statistically significant at traditional levels (5%) across all specifications. The coefficient of
Starpower3 is positive and significant on the squared term but insignificant on the main term.
This is consistent with the hypothesis that adding star power improves revenues. The positive
and significant squared term would indicate increasing returns to ensembles of stars. Note that
the two models using the Starpower3 variable as a measure of star power have a higher adjusted
R2 value, indicating a better fit.

OtherAwards is positive and significant for specifications with Starpower but only marginally
significant (at the 10% level) for specifications with Starpower3. This is partial evidence that,
independent of star power, some awards appear to have an association with higher revenues.
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Table 2.6: Regression Results

(1) (2) (3) (4)

Starpower 0.095∗∗ 0.096∗∗

(0.038) (0.037)
Starpower3 −0.055 −0.054

(0.054) (0.053)
Starpower32 0.118∗∗∗ 0.117∗∗∗

(0.028) (0.028)
CompetitionStarpower −0.004 −0.004

(0.006) (0.006)
TonyAwards 0.052 0.014 0.051 0.014

(0.033) (0.035) (0.032) (0.034)
OtherAwards 0.040∗∗ 0.021∗ 0.039∗∗ 0.020∗

(0.017) (0.012) (0.017) (0.012)
DaysOpen −0.411∗∗∗ −0.417∗∗∗ −0.403∗∗∗ −0.409∗∗∗

(0.103) (0.098) (0.102) (0.097)
DaysOpen2 0.031∗∗∗ 0.032∗∗∗ 0.031∗∗∗ 0.031∗∗∗

(0.010) (0.010) (0.010) (0.010)
Constant 12.801∗∗∗ 12.796∗∗∗ 12.775∗∗∗ 12.770∗∗∗

(0.425) (0.416) (0.420) (0.411)

Mean Squared Error 0.03952 0.0381 0.03948 0.03806
Observations 9,420 9,420 9,420 9,420
R2 0.888 0.892 0.888 0.892
Adjusted R2 0.884 0.888 0.884 0.889
Residual Std. Error 0.202 (df = 9131) 0.198 (df = 9130) 0.202 (df = 9130) 0.198 (df = 9129)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Dependent variable of LOG(Gross). Control Variables Excluded. Cluster Robust Standard Errors shown in parentheses.

TonyAwards is positive but not statistically different from zero across all specifications. This
is a surprising finding because other major awards do appear to have an effect. To the extent
the broadway customer base values success on broadway specifically, we would expect that
signals of that success to matter. Awards on Broadway, as a signal of quality, would signal to
insiders (and maybe outsiders) that a show is good.

Competitor casting choices, and their effects can also be evaluated with our model. Com-
petitionStarpower is negative as predicted, but non-significant across both models. That is,
we cannot reject the null hypothesis that competitor casting choices have no effect on a given
show. If this hypothesis were true, it would be consistent with the idea that star power attracts
consumers who otherwise would not have gone to a Broadway show at all. We discuss the
managerial and industry implications of this later in the paper.

Finally, we can estimate the revenue gain from increasing the star power associated with a
show. This would be the most managerially relevant outcome from our model, since it would
inform whether a blockbuster strategy is likely to pay off. Because of the log transformed
dependent variable, to find the average change of Gross from a change in Starpower, we can
evaluate the following expression

∆Gross
∆Starpower

= Gross
(
eβ∆Starpower − 1

)
where β is the estimated coefficient(s) for Starpower.
In our first comparison we examine how our models suggest an average show’s Gross would

improve if the show hired a star actor (adjSTARmeter= 0.98) when it previously had no actors
with star power(adjSTARmeter= 0). This action would imply an increase in Starpower and
Starpower3 of 0.98. We summarize these effects in Table 2.7. Estimates of dollar change



2.4. Results 25

Table 2.7: Estimated effects from hiring single actor with adjSTARMeter=0.98

Specification Average Percent Change Mean Estimate
Model 1 9.8 % $9,983 ($79,868 per week.)
Model 2 6.1 % $6,223 ($49,786 per week.)
Model 3 9.8 % $10,058 ($80,465 per week.)
Model 4 6.2 % $6,300 ($50,403 per week.)

Table 2.8: Estimated effects from hiring two actors with adjSTARMeter=0.7 each

Specification Average Percent Change Mean Estimate
Model 1 6.9 % $7,036 ($56,285 per week.)
Model 2 17 % $16,975 ($135,801 per week.)
Model 3 6.9 % $7,087 ($56,700 per week.)
Model 4 17 % $17,073 ($136,585 per week.)

range from $6,223 in Model 2 to $10,058 under Model 3. Generally, the models built on the
ensemble variable predict lower increases for a single star hiring.

We can also explore ensemble star hiring. Instead of hiring a single actor, we consider the
estimate effects if a show hired two star actors each with an adjSTARmeter of 0.7. Here, the
increase in Starpower is only 0.7, however the increase in Starpower3 is 1.4. We summarize
each model’s predicted effects in Table 2.8. Perhaps intuitively, our measure built specifically
for ensemble effects predicts a much larger effect than the measure that only measures the top
actor. Model 2 predicts a $16,975 average increase in Gross as compared to a $7,036 from
Model 1.

2.4.4 Model Diagnostics

We must test that our model assumptions are valid. One key model assumption we made is to
treat unobserved individual effects as fixed effects. The theoretical reason is that we did not
want to assume that the vector of covariates was independent from the unobserved individual
effect. However, we also checked for this assumption via a Hausman Test which confirmed a
fixed effects specification (p < 2.2e−16) 15.

In Figure 2.9, we provide histograms as well as Q-Q plots of the residuals of each of our
models. Residuals appear to be normally distributed and centered around zero for all models.

Recall that in our estimation procedure we adjust the standard errors using “cluster robust
standard errors”. The Cameron et al. (2011) method is robust to serial correlation and het-
eroskedasticity (Wooldridge, 2002, p.275). Our data shows signs of both issues. A Breusch-
Godfrey test for serial correlation in panel models finds statistically significant (p < 2.2e−16)

15A replication of our analysis assuming random effects is presented in the Appendix however.
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evidence of serial correlation in the residuals. A Breusch-Pagan test for heteroskedasticity also
finds significant evidence (p < 2.2e−16) against homoskedasticity 16.

2.4.5 Case Studies
In the following sections we provide case studies of specific star entries and exits into Broad-
way shows. These examples are intended to provide understanding of the business environ-
ment. They are also intended to show how practitioners can estimate the effect of a specific
star entry. This may be of interest for managers interested in determining post-hoc whether a
cast change was worthwhile.

American Idiot

American Idiot was a Broadway musical based on the Green Day album of the same name.
The show opened in April 2010. On September 27, 2010, the show’s producers announced that
Green Day lead singer Billie Joe Armstrong would star as the “St. Jimmy” character for only
one week, starting only a few days later. After his initial run week run he later played the same
characters multiple weeks throughout January and February. On March 10th, 2011 the show
announced that it was closing on April 24th and announced even more weeks with the star.

The process of choosing Armstrong for this specific musical was obviously endogenous to
the show. The producers chose him due to his connection with the source material. However,
the actual weeks chosen was closer to an exogenous process. Unlike most actor contracts
on Broadway, the star was in the show in non-contiguous weeks, sometimes with significant
breaks. This occured due to the star’s previously scheduled tour and logistical availability.
Thus, the choice of which specific weeks the star would be in was constrained.

Table 2.9: Summary Statistics of American Idiot Grosses. Star Weeks are defined as those
which included Billie Joe Armstrong.

Star Weeks Non-Star Weeks

Min 83, 190 51, 930
1st Quartile 118, 300 60, 460

Median 129, 300 65, 940
Mean 132, 100 66, 310

3rd Quartile 149, 300 70, 100
Max 179, 700 83, 090

We first separate weeks with and without the star. We label these star weeks and non-star
weeks respectively. Summary statistics of these weeks are presented in Table 2.9. There is a
difference in means of $65,829 , a statistically significant difference.

This difference could be explained via three mechanisms. The most obvious mechanism is
that the star increased awareness or quality of the show in the eyes of consumers. This would

16In the tests, the null hypothesis is no serial correlation and homoskedasticity, respectively.
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Figure 2.9: Residual diagnostics for four models. Left column is a Q-Q plot which compares
theoretical quantiles to sample quantiles in the residual data under a given model. Right column
is a histogram of residuals. Histogram bin sizes are chosen using Sturges formula.
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Figure 2.10: American Idiot performance relative to control group. Red shading indicates
when the star was in the show. Green shading indicates when the public knew there were
future performances with the star.
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be consistent with the blockbuster strategy and suggest that the star was successful in bringing
in additional revenues.

Alternatively, the difference could be due to seasonal time effects. That is, the star being
in seasonally “better” weeks, and being associated with an increase without being the cause.
In this case study, the likelihood of this mechanism is mitigated because of the constrained
process by which weeks were selected. If concert sales and theatre sales are correlated we
would expect the star to be in worse weeks, because the “better” dates were taken up by the
tour.

Finally, the difference in means could be explained by a temporal altering of purchase
by consumers, rather than new consumers. That is, a customer already interested in seeing
American Idiot might change the date they see the show to see the star. If so, we would still
find a week to week change and association between the star and revenue, but total revenue
would be unaltered.

We seek to test whether the second and third explanations are valid in this case study. To do
so, we provide a graphical analysis of American Idiot performance relative to a control group.
The control group consists of all other shows who ran during the entire time period of our
analysis. We define performance as the percent change in Gross relative to a reference date
(i.e. on the reference date both the show and the control group are 100%). The reference date
we use is for the week ending September 26th 2010, when it was announced that the star would
be appearing in next weeks shows. We use this date because it is the last week under which
the star’s arrival was not public information. Therefore, it should be unbiased relative to the
control group.
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We then plot the relative performance of American Idiot compared to the control group17.
Figure 2.10 shows the results of this analysis. The discrete points in the data have been joined
by lines for clarity. We shade dates in red to signify when the star was in the show, and green
for when it was public knowledge that the star would be in the show in the future.

For the initial week in October with no public notice, the show clearly outperformed the
control group. In January, the star enters again and again shows clear outperformance. The
same is true for selected weeks in February. Note that the week in February where no-star
is present also significantly outperformed the synthetic control. During this week, the singer
Melissa Ethridge performed in the show in place of Billie Joe Armstrong. She has won multiple
grammies and could be considered a star as well. Finally, there was also a clear outperformance
during April while the star was present. This is less useful in establishing star outperformance
since customers knew the show was closing soon. Part of the outperformance could be due to
closing effects.

We can also use this case study to test the third mechanism, temporal changes in purchasing.
To do so, we shift attention to the green shaded sections. Notice that during these times the
show appears to have performed similarly to the control group. That is, even when it was
public knowledge that the star would be in the show again, revenues do not appear to have
underperformed the control group. If temporal changes in purchasing behaviour explained
outperformance, we would expect a similar magnitude of underperformance in the immediate
weeks before and after the star. We do not see this, and thus this mechanism cannot fully
explain the significant difference in revenues we see.

This case study was a unique situation on Broadway in that weeks were largely non-
contiguous. In reality, the major variable in our study, Starpower, is sluggish in the sense
that actors stay for many months/years. In the next section, we look at a case study of this.

How to Succeed in Business Without Really Trying

How to Succeed in Business Without Really Trying (abbreviated How To Succeed for the rest
of this section) was a Broadway musical that started previews February 26, 2011, opened on
March 27th 2011, and closed May 20, 2012. When the show opened, the main character was
played by Daniel Radcliffe, the well-known star of Harry Potter.

Daniel Radcliffe left the show on Janury 1, 2012 and for three weeks the character was
played by Darren Criss (a TV actor/songwriter). Afterwards, Nick Jonas (from the band The
Jonas Brothers), joined the show for the rest of its run.

We conduct a similar analysis to American Idiot. In Figure 2.11, we graph performance of
How to Succeed relative to the control group of all other shows running during this period. The
reference date was chosen as March 6th 2011. Here, the reference date was chosen as a date
early in the run. Interpreting this reference date is difficult however as Daniel Radcliffe was
in the show from the start. Rather than interpreting performance relative to without the star,
performance here can be roughly interpreted as relative to Daniel Radcliffe.

Note that the switch to Darren Criss (red shaded) did not appear to harm revenues. The
same relative outperformance appeared to occur during his weeks as Daniel Radcliffe, if not
more. Darren Criss had an average outperformance of 51%. In contrast, Daniel Radcliffe had

17That is, a 100% value indicates American Idiot doubled what it was expected to make if it had performed like
the control group.
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Figure 2.11: How to Succeed performance relative to control group.
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an average outperformance of 19%. A potential explanation is that consumers who were solely
interested in seeing him were forced into a smaller number of weeks. The final cast change to
Nick Jonas did seem to negatively effect revenues. For the first time, How to Succeed began to
underperform the control group in a sustained fashion, before finally deciding to close.

It is not immediatly clear how Daniel Radcliffe and Darren Criss differ from Nick Jonas.
The qualitative differences between these actors (particularly Criss and Jonas) may appear
slight. However, when we look at the corresponding adjSTARmeter of each actor during their
run, it is clear that Nick Jonas is the least out of the three. Daniel Radcliffe and Darren Criss
had adjSTARmeter values of 0.98 and 0.96 respectively. However Nick Jonas had a adjS-
TARmeter of only 0.83. In this case, relatively small values of adjSTARmeter were associated
with relatively large changes in Gross.

2.5 Discussion and Conclusion

Star actors and their effects in entertainment businesses have been, and will continue to be,
an important question for entertainment managers and academics studying the industry. The
blockbuster strategy is intuitive and popular with practitioners. Previous attempts in the film
industry that try to answer these questions have generally failed to identify causality due to po-
tential endogeneity in actor selection. In this paper, we explore a novel dataset in live theatre to
answer the research question and use within-show variation in star power to test what changes
star power has on revenues. Our paper is unique in that this sort of dataset is unparalleled in
the film industry.

Our main finding is that increases in star power are positively associated with increased
revenue, even after controlling for show-specific fixed effects. This is consistent with the idea
that the actors themselves are causing these revenue increases through increased awareness or
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increased quality estimates of the show. Note that in the Broadway context, supply is incapable
of shifting and thus any effect we find cannot be explained by changes in capacity/supply. Liu
et al. (2014) finds that stars in films may increase revenue, but primarily through increases in
screen count. Thus, our result suggests a different pathway than what Liu et al. (2014) finds.

Recall from our case study that a potential explanation of our findings is that a temporal
shift in purchases occured, rather than an overall increase in revenue. In the case study, we
found evidence that this was not occuring, since weeks where the star was not present, and
where the audience knew he would be later playing, did not significantly underperform. Note
that this is an extreme example, since the star in American Idiot had a chaotic schedule where
it would have been very easy for consumers to delay purchases. Contrast this with the general
setting, where an average actor was in a show for 31.9 weeks. Consumer behaviour would
likely only be able to change at the margin, and the vast majority of weeks would not be
effected. Thus, we believe this effect cannot explain our results.

Our results on face value appear to support a blockbuster strategy. Our model suggests that
actors with more star power increase revenues. More research is needed though. Deciding
whether to use a star depends not just on the revenue they bring in, but on their cost. An in-
demand star may fully capture the value they create by demanding higher pay. Unfortunately,
without information about salaries on Broadway, it is not yet possible to answer whether this
is occurring. Anecdotally, some publications suggest that top stars can make anywhere from
$100,000 to $150,000 per week (Simonson, 2010). In this range, our models would suggest
that stars fully capture the value they provide, and that hiring them does not increase profits.
What this does suggest is contractual parameters for stars should be negotiated with this in
mind. Given the high uncertainty, a profit sharing contract might be more feasible than a fixed-
payment contract (for a discussion on this see Chisholm (1997)).

Our results also suggest potential industry responses. Broadway is a relatively small local
industry, with a small number of theatre owners. This gives the potential for non-competitive
strategies to arise. For example, if hiring stars were a zero-sum game, theatre owners could
engage in a tit-for-tat type strategy for those who hire them. Our research suggests that stars are
not zero sum though. We find that competition that increases star power has a non-significant
effect. This is consistent with the conclusion that stars grow the market for Broadway and
attract new customers, rather than shift customers.

A natural question that arises is how generalizable our findings are to other cultural prod-
ucts (e.g, the film industry). While our revenue estimates are obviously unique to Broadway,
we feel our theoretical results would generalize to most cultural products. The underlying pro-
cess with which stars are associated with increased revenues is likely to be similar to those in
other cultural industries. Live theatre is unique in many respects for cultural products, but the
underlying process by which shows become a success is similar - a complex dynamic system
of social influences and awareness. If stars contribute to success on Broadway, it is likely that
they do in the film industry.

Another potential industry with star effects is sports, where star players have the potential
to draw attendance and viewers. In the sports industry, live “performances” are again created
in front of a live audience and with potentially different stars. Players can change because of
injuries, trades, or strategic rest. In March 2017, NBA commissioner Adam Silver warned that
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teams could face fines for resting star players without sufficient notice.18 Future work can work
on replicating our results in the sports industry, where demand seemingly is most influenced
by the probability of win.

Our paper also has limitations, primarily due to the dataset. While we conclude that re-
verse causality cannot explain revenue increases that are a result of stars, we also cannot claim
full direct causality. The process of choosing stars is still a process endogenous to the show
and time. While we have controlled for time factors, as well as show-specific characteristics,
we cannot control for other managerial actions. It is plausible that managers change efforts in
response to a casting change. Most importantly, they may alter marketing budget in response
to changes in star power. In the film context, this explanation has been advanced by (Prag
and Casavant, 1994) who found no effect from star presence after accounting for marketing
expenditures. On Broadway, marketing costs are private and data is scarce, so our study can-
not account for them. This explanation, if true, would suggest that managers constantly under
invest in marketing. Given the number of shows running on Broadway at once, and the amount
of experience managers have in this industry, we would be surprised if managers were sys-
tematically under investing. A single manager who over invests would find it profitable and
outperform their peers.

An aspect uncaptured in our paper is the performing history of certain actors, and how
that performing history “fits” with a given show. In our case study, it is abundantly clear that
Billie Joe Armstrong had a very strong fit with the musical, since he was the original writer of
the source material. Yet quantifying chemistry between an actor and a project is difficult and
operationalizing the concept is unclear. However, future research should consider these effects.
If a star well known for drama does a comedic film, is the effect as large as if an actor already
known for comedy was chosen? There could be a positive surprise factor from the move, but
also a negative impact from an unknown quality effect. In either case, this would help further
dimensionalize our actors.

The literature on stars to date has revolved around the film industry. The theme of stars
and star power pervades all cultural industries however, and managers across them face similar
dilemmas. We hope that this paper has shown the value of considering theoretical questions in
different contexts, and that future research continues to do so.

18https://www.usatoday.com/story/sports/nba/2017/03/20/adam-silver-sends-memo-nba-owners-warns-teams-
not-rest-star-players/99436202/
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3.1 Introduction
The Knapsack problem is a classic combinatorial Operations Research (OR) problem. Stated
informally, it asks how to select a set of items with varying associated weights and rewards
into a knapsack with finite weight capacity. Given the combinatorial complexity, and despite
“good” approximations and algorithms, even deterministic versions of the Knapsack problem
pose great computational challenges; the decision and optimization versions are NP-complete
and NP-hard, respectively. Extensions to incorporate stochastic weights and rewards, and dy-
namic arrival of items adds further complexity, but in a sense also a “simpler” structure to the
original problem. In this paper we consider an extension to the Dynamic Stochastic Knap-
sack Problem (DSKP) by incorporating an adaptive interaction with the items regarding their
placement in the knapsack. We assume the knapsack decision maker can only make certain
compartments within the knapsack available but ultimately the items themselves select their
placement. This autonomy includes a balk option not to enter the knapsack. Our motivation to
consider such extensions stems from Revenue Management (RM) applications of group seat-
ings in live entertainment venues.

Live entertainment venues such as theatres, concert halls, and sport arenas represent a
multi-billion dollar industry in the United States. To illustrate, the combined National Football
League teams have been estimated to be worth upwards of 62 billion dollars (Ozanian, 2015);
Broadway commercial theatre productions make more than one billion dollars in revenue per
year (in a 6 square block radius of downtown New York city!); and Taylor Swift’s “1989” tour,
grossed over 250MM dollars (Lewis, 2015). Furthermore, live entertainment possess some
of the key RM characteristics: a fixed supply of perishable inventory (i.e. expired tickets are
worthless); a predominantly fixed cost structure; and highly uncertain demand both in the short
and long term. In the short term, an entertainment venue must be able to predict booking curves
and demand levels for performances at different times of day, for different days of the week,
in different times of the year. In the longer term, live entertainment is a notoriously tricky
business to predict. In cultural products, success in the long term is a complex mix of social
dynamics and quality that is highly path dependent (Salganik et al., 2006). However, despite
all the suitable traits and large economic value, live entertainment represents a relatively new
context for RM approaches to pricing and inventory management.

The “first generation” of live entertainment RM consisted of moving away from general
admission type of pricing to variable pricing based on seat or zone location; colloquially re-
ferred to as scaling the house (Courty, 2000; Phumchusri and Swann, 2014). In addition, many
professional sports teams and commercial theaters have recently extended variable pricing to
account for desirability of specific games/shows, opposing teams/cast members, day of the
week, seasonal effects etc., and introduced dynamic pricing by adjusting prices based on time
and demand (Xu et al., 2016). Oddly though, little attention has been given to the inventory
management or capacity control aspects of RM.

One reason why RM has been lagging in the live entertainment industry is that models tra-
ditionally developed in the airline context do not include some of the fundamental consumer
dynamics reflected in live entertainment; the most important being the experiential attribute
of the service consumption. Purchasing a flight is fundamentally done as a means to another
ultimate goal, e.g. personal travelers fly to visit a vacation destination or family, while busi-
ness travelers fly to attend meetings. The act of flying commercial airlines is rarely done as
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Figure 3.1: Screenshot of the Broadway Musical Aladdin’s seating chart. Source: Ticketmas-
ter.com

an enjoyable activity for its own sake. Contrast this with live entertainment where the experi-
ence is the goal. This is known as experiential consumption (Gilovich et al., 2015; Holbrook
and Hirschman, 1982). The experience is composed not just of the production or sports game
but also of the people you attend with. Gilovich et al. (2015) noted that “We . . . go to restau-
rants, concerts, and sporting events with fellow foodies, music lovers, and sports enthusiasts.”
This perhaps obvious observation changes an underlying assumption in many RM models. In
particular, that customers are not separable. A group of n customers cannot be modeled or
approximated as n individual customers. Experience at the box office suggests that if n con-
tiguous seats are not available customers may balk. This also suggests that n individual seats
are not worth the same amount as n contiguous seats.

There is real-world evidence that suggests this may be hurting revenue. Figure 3.1 shows
the seating map for the Broadway show Aladdin from ticketmaster.com for a Tuesday
evening performance in June 2016. This seating map is from a couple of days prior to the
performance and shows in dark which seats are still available for purchase. Across the whole
theatre there are many single seats still available, but sparsely situated across the venue. With
two days until show time, these are arguably more difficult to sell as individual customers are
rare. On the other hand, had customers been offered and purchased seats differently these
remaining seats could have been less sparse and easier to sell.

The purpose of this paper is to propose a dynamic method for the optimal capacity control.
Specifically, our objective is to analyze how venues should dynamically update the set of seats
made available based on time, remaining capacity and customer group size - which we refer to
as stacking the house.

To study this problem in the context of RM, we model live entertainment sales as a Dynamic
Stochastic Knapsack Problem: future demand is uncertain, arrivals have stochastic varying
weights and rewards, and irrevocable decisions are made for each item. In order to reflect
important attributes of live entertainment we include two extensions. First, we assume that
the finite capacity of the knapsack is compartmentalized according to a predefined reward-to-
weight ratio scheme (e.g. a theatre with rows priced differently). Second, to reflect the fact
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that customers choose seats, we extend the traditional DSKP, where item placement into the
knapsack is deterministic, with a post-decision stochastic item placement. In other words,
we model items as having autonomy in selecting their compartment placement. In particular,
since customers may choose not to purchase any seats we permit items to “reject” entering the
knapsack altogether. We label these extensions as “DSKP with adaptive interaction.”

3.1.1 Literature Review
The Knapsack problem dates back to some of the original and classic OR papers, such as
Dantzig (1957), and has been applied in a wide and rich context, including transportation and
manufacturing, e.g. Cheng et al. (1996); Cherbaka and Meller (2008); Sharma and Dubey
(2010). In the original formulation the problem is to select a subset of items, with varying but
known weights and rewards, such that the total reward is maximized subject to staying under
a total weight capacity (of the knapsack). This formulation is also known as a 0-1 knapsack
problem since each item can only be selected and placed once. Over time several extensions
have been formulated, including: unbounded - where items can be selected as many times as
desired, i.e. sampling with replacement (Andonov et al., 2000); multiple choice - where items
are of different types and there exists a constraint that at least one item from each type must
be placed (Kellerer et al., 2004); and multiple knapsack - where there are several knapsacks,
each with different capacity, and each item can be assigned to only one knapsack (Martello and
Toth, 1980). Although our problem formulation resembles a dynamic and stochastic version
of the multiple knapsack problem, there is a key difference. We assume a single knapsack is
compartmentalized according to predefined reward differences, e.g. rows or zones at a venue
that are priced differently. In the multiple knapsack problem it is assumed an item’s reward is
independent of the knapsack it is assigned to. However, in the special case of a venue with all
rows (or zones) priced equally our model formulation can be regarded as a dynamic stochastic
version of the multiple knapsack problem.

The knapsack problem is related to another classic OR problem. Namely, the bin-packing
problem, e.g. Johnson (1974). In the bin-packing problem, a set of items must be placed
into exogenously sized bins, so as to minimize the number of bins used. In this sense, the
(multiple) Knapsack and Bin-packing problems have reversed objectives and constraints. In
the bin-packing problem, it is assumed that all items must be placed, and the objective is to
minimize the amount of bins (knapsacks) used. In the knapsack problem, the amount/capacity
of knapsacks (bins) is fixed, and the objective is to choose which items to maximize the re-
ward. For our purposes of live entertainment sales where capacity (seats) is fixed the knapsack
problem is more suitable.

Traditionally, the original knapsack problem as well as variants have been static in time or
the number of items. That is, even when weights and rewards are allowed to (stochastically)
vary, the total number of items is known at the start of the problem. In contrast, Papastavrou
et al. (1996) defined a Dynamic Stochastic Knapsack Problem (with deadlines). By dynamic,
the authors extended the original formulation to include that the entire set of items is unknown
and irrevocable accept/reject decisions are made for sequentially arriving items. By stochastic,
the authors mean that the weights and rewards of arriving items are drawn from a distribution.
Papastavrou et al. (1996) show that a threshold policy in the reward is optimal for the discrete
time version of the problem. That is, that at each state there is a critical reward threshold, such
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that items with rewards above the threshold are accepted. The authors also examined extensions
to some special cases (equal weights, equal rewards, proportional weight to reward). Kleywegt
and Papastavrou (1998) examine and define the DSKP for fixed weights but in continuous time.
They introduce a per-time waiting cost and give an option to “stop” the arrival of items, showing
that for finite horizons a threshold type policy is still optimal. van Slyke and Young (2000) and
Kleywegt and Papastavrou (2001) both extend the continuous time DSKP to stochastic item
weights. Notably, van Slyke and Young (2000) extended the model into higher dimensional
capacity settings and noted that this could apply to group seating dynamics.

Another related paper is Dizdar et al. (2011), who also study a dynamic knapsack problem
with incoming agents of uncertain weight and reward. Similar to our problem, the reward is
defined by an underlying willingness-to-pay (wtp). Their decision is the payment (price) and
allocation of the (single) knapsack’s capacity. Framed in the economics literature, their work is
primarily focused on discussing concavity properties of the objective function. In contrast, our
research focus is to analyze properties regarding optimal policies, and in particular to establish
conditions on managerially relevant threshold type policies.

In the RM literature, although little has been analyzed with regard to group seating, a
related paper in the restaurant context is Bertsimas and Shioda (2003). They explore group
seatings when reservations can be made and waiting-lines develop. The authors develop an
Integer Program as an approximation to the Dynamic Program (DP) and show via simulation
how it improves on traditional first-come-first-serve heuristics. Our paper shares some of their
DP model formulation but overall is fundamentally different.

Group booking is a common theme in the hotel and airline RM literature (e.g. Vinod, 2013;
?). Group booking means a large group (for example, a conference) requesting large amounts
of rooms for a specific product (e.g. night stay or airline leg). Group booking in live entertain-
ment is similar - large number of seats (> 10) for a specific night, but who do not necessarily
have to be seated together. Elements of this problem are similar to ours. The non-linear ben-
efits that accrue only when the entire request can be accepted for example. However, where
our problem differs is that the capacity requested must be contiguous and in some sense linked.
For traditional group booking, although it is an all or nothing proposition, there is no allocation
requirement like this. In this and the following chapter we focus on the process of allocating
and optimally offering individual requests (e.g. 1-6 seats).

An alternative approach that initially might seem appealing for our purpose, and that is
common within customer choice based RM, is to analyze the problem in the context of Network
RM, e.g. Zhang and Adelman (2009). The underlying premise in a Network RM model is that
there are a set of products (or services) that make use of a set of shared and finite capacity-based
resources. To model the network of which products use which resources, an incidence matrix
is constructed. However, for live entertainment seating under the assumptions we provide the
incidence matrix would simply be the identity matrix. Therefore, the main benefits of Network
RM seem unlikely to translate or lead to any improved managerial insights over the proposed
knapsack-based approach.

3.1.2 Technical and Managerial Contributions
Our paper contributes to the current literature by extending the DSKP to a setting where the
knapsack is compartmentalized and includes an adaptive interaction with the items. The classic
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DSKP becomes a special case of our general formulation. Allowing for stochastic placement
post-decision is relevant for RM models for customer choice, as well as classic knapsack im-
plementations in manufacturing and transportation.

Choosing to focus on the entertainment context here, we provide an optimal algorithm to
control the allocation of seat offers to incoming customers and provide structural properties
of the optimal decisions. We show conditions under which managerially friendly threshold
policies can be shown to work, and the implications of these conditions. Importantly, we show
that under reasonable conditions, there exists a threshold in time, such that managers will close
a row early in a sales process, opening it closer to the event date.

We also detail how model parameters could efficiently be estimated from transactional box-
office data or managerial judgment - or ideally from a combination of both. Finally, due to the
computational complexity of the DP we also propose and analyze a heuristic based approach.
Through simulation, we show that significant revenue gains are possible, and that the gains are
driven by an unequal distribution of incoming groups.

Note that while we formulate the problem in discrete time, most of our formulation holds
when generalized to a continuous time model. For ease of flow, unless specified otherwise,
terms are used in a non-strict sense (e.g. decreasing instead of strictly decreasing). All proofs
are provided in the Appendix.

3.2 Knapsack Model Formulation
We formulate a DSKP with adaptive interaction. The problem is dynamic in the sense that
items arrive individually, without prior knowledge about the entire set of items, and that irre-
vocable decisions are made for each arrival. The problem is stochastic in that both the weights
and rewards are random. The items’ weight is realized and known upon arrival, but the reward
is only realized after the decision. Finally, we introduce the notion of adaptive interaction. By
interaction, we mean that there is a stochastic item placement that occurs post-decision. By
adaptive, we mean that this stochastic process depends upon which compartments are opened.
This problem’s most important contribution to the literature is allowing for a process of random
compartment placement that depends on the decisions of which compartment to “open”. In pre-
vious DSKP literature the decision has been to accept or reject a given item with consequences
being deterministic. Here, we consider a knapsack with multiple compartments, of different
capacity, where the specific compartment placement and potential balk being stochastic.

We assume a stationary arrival process of items over T time periods, with sufficiently small
intervals such that at most one item will arrive during each period. We index time backwards
so that t = T is the first time period and at t = 0 the event happens. Consider a knapsack with K
finite compartments and where compartment k ∈ K ≡ {1, 2, . . .K} has finite, discrete capacity
κk. Let the remaining capacity in compartment k be ck and the remaining capacity for all com-
partments in period t be the column vector Ct = [c1, c2, . . . , cK]. Thus, CT = [κ1, κ2, . . . , κK].
We denote a knapsack with no capacity remaining in any compartments as CO = [0, 0, . . . , 0].
Further consider an arriving item being of type i ∈ I ≡ {0, 1, 2, . . . ,N}; with N < ∞. We define
i = 0 to indicate no arrival. All items of type i ≥ 1 have the same fixed, discrete and finite
weight wi ∈ N, while w0 = 0. The probability of item type i arriving in period t is stationary and
denoted by αi ∈ [0, 1], and defined such that

∑N
i=0 α

i = 1. Extensions to consider, for instance,
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the common RM assumption of Poisson arrivals is straight forward. To simplify notation, we
reserve the symbols i, k, t for item types, compartments, and time, respectively. Furthermore,
throughout we use superscript for item types, and subscripts for time and compartments.

Upon a request being made and the knapsack decision maker observing item type i, they
must decide which compartments to open. Denote the decision to open the kth compartment
for item type i by di

k. For i = 1, . . . ,N, k ∈ K,

di
k =

1 if the kth compartment is opened to item type i,
0 otherwise,

(3.1)

while for i = 0, k ∈ K, di
k = 0. Note again that the decision is which compartments to open

up, as compared to an accept/reject decision. Specifically, it is possible for the knapsack deci-
sion maker to open multiple compartments. Let Di

t denote the column vector of compartment
decisions for item i in time period t, for i ∈ I, t = 1, 2 . . . ,T ,

Di
t = [di

1, d
i
2, . . . , d

i
K]. (3.2)

The set of feasible decisions D(C, i) is defined as the set of all decisions Di
t where the

resource constraint holds. Note that the set of feasible decisions does not depend on t, i.e. for
all C, i,

D(C, i) ≡
{
[di

1, . . . , d
i
K] : di

kw
i ≤ ck,∀k

}
. (3.3)

Opening up multiple compartments implies there must be some underlying process by
which an item is placed into one of the open compartments. Let γk(Di

t) ∈ [0, 1] denote the
probability of item i “choosing” compartment k given a decision vector Di

t. For instance, this
is the probability that a customer will choose row k, given offer set Di

t. We restrict γ(·) to func-
tions that meet the following criteria: If di

k = 0 then γk(Di
t) = 0, ∀i, k, t, and

∑K
k=1 γk(Di

t) ≤ 1,
∀i, t. The first criteria states that if a specific compartment is not open, there is zero probability
that an item will be placed there. The second states that the total probability of being placed in
any compartment must be less than or equal to one. If the total probability is less than one, it
implies there exists a chance the item will not choose any compartment. That is, unique to our
problem, there exists a chance that items balk.

Let rk(i) denote the real-valued reward if item type i enters the kth compartment, rk(i) :
K × I → R+, i = 1, 2, . . . ,N, and rk(0) = 0, ∀k. We restrict attention specifically to positive
and time-stationary rewards. If a reward were negative then (of course) the knapsack decision
maker would never open that compartment. The restriction to time-stationary rewards is mainly
for mathematical tractability (and ease of notation). If an item balks then neither reward nor
cost is incurred. Note that if the reward function rk(i) is independent of the compartment k
then the model formulation can be considered as a dynamic, stochastic version of the multiple
knapsack problem.

3.2.1 Optimality Equations
Given the above model formulation we formulate the DSKP with adaptive interaction as a
stochastic dynamic program. The value-to-go for a given state (C, i) and period t = 1, 2, . . .T ,
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is given by,

Vt(C, i) = max
Di

t∈D(C,i)

{ K∑
k=1

γk(Di
t)
(
rk(i) +

N∑
j=0

α jVt−1(C[k], j)
)

+

(
1 −

K∑
k=1

γk(Di
t)
) N∑

j=0

α jVt−1(C, j)
}
,

(3.4)

with boundary conditions V0(C, i) = Vt(CO, i) = 0, ∀t, i, and where C[k] ≡ C − wiλk, with λk a
column vector with an entry of 1 in the kth row and zeroes elsewhere; i.e. C[k] represents the
new capacity vector after subtracting wi from compartment k. We denote the optimal decision
vector for time period t as Di∗

t , and the optimal decision for compartment k as di∗
k .

Note that Vt(C, i) is the expected value over two sources of uncertainty: compartment choice
(γ) and arrival type (α). In the first summation, we are adding the reward if a given compart-
ment is chosen plus the expected value-to-go from the next time period, given the new capacity.
Recall that the reward itself is realized post-decision, and that the decision only influences the
probability of a given reward. The second term is the probability of the item choosing no com-
partment and moving into the next time period with the same capacity configuration (and no
reward incurred).

To simplify the value-to-go, it is convenient to let Wt(C) be the expected value-to-go over
all item types, for t = 1, . . . ,T ,

Wt(C) =

N∑
i=0

αiVt(C, i) (3.5)

This allows us to more succinctly rewrite the value-to-go as, for (C, i) and t = 1, 2, . . .T ,

Vt(C, i) = max
Di

t∈D(C,i)

{ K∑
k=1

γk(Di
t)
(
rk(i) + Wt−1(C[k])

)
+

(
1 −

K∑
k=1

γk(Di
t)
)
Wt−1(C)

}
, (3.6)

with boundary conditions V0(C, i) = Vt(CO, i) = 0, ∀t, i. Using this formulation allows us
to characterize some properties of the value function we are dealing with. For asymptotic
properties, similar to van Slyke and Young (2000), it is helpful to refer to the (optimal) value
function of the unbounded (static) knapsack problem with an abundance of all item types. Let
S ∗(C) refer to this (optimal) value for a given capacity C. We first summarize some of the basic
properties of the value-to-go function.

Proposition 3.2.1 The value-to-go function (3.6) has the following properties:

1. Vt(C, i) is a positive finite function.

2. Vt(C, i) is increasing in t.

3. Vt(C, i) is increasing in ck, for k = 1, 2, . . . ,K, t = 1, . . . ,T.

4. limT→∞ VT (C, i) = S ∗(C) .
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Open

+$1 C =

[1, 2]

+$10
Item type i = 1 arrives (1%),placed in Compartment 2.

+$20Item type i = 2 arrives (99%),

placed in Compartment 2.

Compartment k = 1

+$10
C = [2, 1]

+$10
Item type i = 1 arrives (1%),placed in Compartment 2.

+$2Item type i = 2 arrives (99%),

must be placed in Compartment 1.

Compartment k = 2

Figure 3.2: Decision Tree of Numerical Example

For the most part, these claims are straightforward and analogues to previous literature; e.g.
van Slyke and Young (2000). To see the first three, you must only recognize that adding time
or capacity only expands the feasible decisions. The last property comes about from the fact
that the upper limit is if all capacity was utilized, and that as t approaches infinity, we would
expect for all capacity to eventually be used. All of these properties trivially extend to Wt(C).

Let us now note how this problem presents counter-examples to “common-sense” state-
ments. For instance, we might initially think that it would be optimal to open the compartment
with the highest reward. This is not always the case due to the combinatorial nature of the
problem and the dynamic arrival of random item weights. If placing an item leaves a remain-
ing capacity that is difficult to sell, it may make sense not to offer the compartment with the
highest reward, or in some cases even reject the item entirely (by closing all compartments).
Recall the issues illustrated by the seating chart in Figure 3.1.

To further elaborate on the trade-off and complexities involved we present a stylized exam-
ple. Consider a two compartment knapsack, K = {1, 2}, where an item will take the highest
compartment offered. Suppose also that we only have two item types to consider, I = {1, 2},
with w1 = 1,w2 = 2, and α1 = 1%, α2 = 99%. Thus item type two arrives almost all the
time. Suppose that r1(i) = wi, r2(i) = 10wi, i = 1, 2. Let both rows have only two open units
remaining, c1 = c2 = 2. For our current decision, imagine that we are in the second to last
time period, t = 2, and that an item type i = 1 has arrived. The decision can be analyzed via a
decision tree; see Figure 3.2.

Here working backwards, in the last time period t = 1 the trivial decision is always to open
the available row with the highest reward available. If compartment 1 is opened in period t = 2,
any incoming item in period t = 1 can be placed into compartment 2. On the other hand, if
compartment 2 is opened in period t = 2, then there is insufficient capacity in compartment 2
should an item of type 2 arrive in period t = 1. Based on the decision tree, it is clear, for t = 2,
i = 1, to only open row 1, d1?

1 = 1, d1?
2 = 0; 1 + .99 ∗ 20 + .01 ∗ 10 > 10 + .99 ∗ 2 + .01 ∗ 10.

Placing the group in the highest valued row would have a high opportunity cost, since the
only way to sell the other seat would be if a single person arrives. That leftover seat worth
$10 would go unsold 99% of the time. Instead, it is optimal to place the incoming customer
in the lessor priced row, and save the two seats in the higher priced row for the next period.
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This stylized example is meant only to illustrate the trade-off of higher immediate reward and
worse capacity configurations. The problem gets more complex when stochastic placement is
considered.

To capture these trade-offs between higher immediate reward and future state values, let Bk

be the marginal benefit of an item i in period t being placed in compartment k, compared to not
being placed at all. Although the Bk value implicitly depends on the current capacity remaining
Ct and request type i, we drop this for notational convenience. Specifically, for a given t, k, i,

Bk ≡ rk(i) − (Wt−1(C) −Wt−1(C[k])). (3.7)

This is similar to how van Slyke and Young (2000) structure their problem. The main
difference is that their decision space is {accept, re ject}. Thus their benefit function calculates
the difference between accepting and rejecting an item. In our model, the marginal benefit is
the difference between deterministically placing an item in a particular compartment k and
rejecting the item completely. This is an important difference, since in our problem items
retain autonomy over their placement after they have been “accepted”. Since Bk is the marginal
benefit of a compartment receiving an item, it can only be calculated over compartments for
which there is sufficient capacity to place. Therefore, in any compartment k where ck < wi, we
define Bk ≡ 0. Using this definition, and rearranging (3.6), allows the following result.

Proposition 3.2.2 The value-to-go for a given (C,i) and period t = 1, 2, . . .T, is given by,

Vt(C, i) = max
Di

t∈D(C,i)

{ K∑
k=1

γk(Di
t)Bk + Wt−1(C)

}
, (3.8)

with boundary conditions V0(C, i) = Vt(CO, i) = 0, ∀t, i.

Rewriting the value-to-go in this manner is helpful because the latter term is constant with
respect to the decision and Bk is unaffected by the decision. If items had no autonomy post-
decision, they would be placed in the compartment with the highest Bk. Instead though, the
problem can be conceptualized as maximizing the weighted average of a series of values. No-
tice that the decisions of which compartments to open only influences γ(·).

Solving the value-to-go for the optimal decisions can be done through standard backward
induction. Starting from the last period, the optimal decisions and corresponding values can
be found for all state spaces. Saving these values and moving back a time period allows us to
determine optimal decisions for previous time periods. Note that in the process of backward
induction all Bk values will also be calculated. A downside of the proposed DP is that it exhibits
the usual “curse of dimensionality” since the state space grows exponentially as compartments,
item types, and periods are added.

3.2.2 Monotonicity Properties
It is often of interest to provide properties of the dynamic program with respect to underlying
ordering and monotonicity. In order to do so we first define ∆Wt(C) to be the average marginal
benefit of an extra period of arrivals to capacity configuration C at time t, i.e. ∆Wt(C) ≡
Wt(C) − Wt−1(C). Second, we define ∆Wt(C) to have a “time-invariant ordering” if between
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states the order is unaffected by the time remaining, i.e. for all t and any two different capacity
configurations C and C′, either: (i) ∆Wt(C′) = ∆Wt(C), (ii) ∆Wt(C′) ≥ ∆Wt(C) (and at least
one strict inequality), or (iii) ∆Wt(C′) ≤ ∆Wt(C) (and at least one strict inequality). In other
words, if at an “early” stage the gain over one period is larger for capacity configuration C′

versus capacity configuration C, then this order will also hold at a “later” time period. Given
this setup we can derive the following property.

Lemma 3.2.3 If ∆Wt(C) has time-invariant ordering then Bk is decreasing in t, ∀k, i,C.

A time-invariant ordering of ∆Wt(C) implies that if extending the sales horizon in one
capacity configuration is preferred to another capacity configuration in period t, then the same
holds true for any other time period. However, this is not necessarily true and in particular not
in live entertainment. Consider cases where, asymptotically speaking, the value function of a
capacity configuration is greater than another, but with few time periods remaining, may be
less valued. For example, we might consider a capacity configuration that is very difficult to
fill with one period to go, but that - given enough time - would have a higher expected reward.
For instance, if a given row k had a very small γk(·) but a very high rk(i).

Nevertheless, this property has appealing implications as seen in Proposition 3.2.3. Specifi-
cally, it implies Bk to be decreasing in t. This is reasonable in that we might expect the marginal
benefit to generally be decreasing in time periods remaining. With few periods to go, the bene-
fit of placing an item compared to rejecting it should be relatively large, since there exists few
remaining potential arrivals.

In addition to monotonicity regarding the value-to-go function, it is also of interest to pro-
vide structural properties regarding the optimal policy, i.e threshold-based rules on either time,
item, reward, or capacity. Providing a structure on one of these variables enables more efficient
computation and is easier to communicate to managers. In this case, providing a structure to
the optimal policy is not obvious as the problem is still relatively undefined. Without a func-
tional form on γ(·), it is not obvious how to maximize even the expected current reward, except
by numerically searching all possible combinations.

For example, opening only the row with the highest Bk is not necessarily optimal, if there
is a high chance the item balks. Similarly, opening all compartments with positive benefits
is not optimal if it reduces the chance of a high Bk being chosen. Even more oddly, opening
a compartment with Bk < 0 might be advantageous if it increases the probability of going
into some other compartment with a very high marginal benefit. Finally, for certain functional
forms of γ(·), it could be the case that even in the last period, it would not be optimal to
open all available compartments. This would occur if an item becomes less likely to choose a
higher reward compartment when a compartment with a lower reward is chosen, e.g. customers
buying down.

Note too that Bk has not been defined as the marginal value from an optimal decision, and
hence limT→∞ Bk is not necessarily zero. If an item i placement in compartment k is not part
of an optimal static solution, then limT→∞ Bk < 0. However, if the item placement is in the
optimal static solution then limT→∞ Bk = 0; similar to the corollary in van Slyke and Young
(2000). Additional factors that influence the asymptotic limit of Bk is the structure of rk(i). If,
for a given k, rk(i) is structured such that rewards are proportional to the weights of all item
types i, then Bk would converge to zero for any capacity C and item type i, e.g. rewards based
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on price multiplied by quantity purchased. However, it is not clear if this convergence occurs
from above or below.

3.3 Entertainment Knapsack Problem

We now place the DSKP extension specifically into an entertainment RM context and illustrate
how the problem could be implemented and solved. We consider the sales process of single
ticket sales for a specific performance at a venue. That is, we assume that season ticket or
large group sales (e.g. 10+) have previously been sold, and the available capacity adjusted
accordingly. The compartments correspond to the venue’s rows (or zones) and are numbered
such that increases in the row imply rows closer to the stage, i.e. k = K is the front row. We
assume each row has an exogenously fixed price per seat pk, and are such that p1 ≤ p2 ≤ · · · ≤

pK . Requests for random group sizes arrive and are represented by the item type i, i ∈ I. The
weight of each group type wi corresponds to the size of the group, i.e. w0 = 0,w1 = 1, . . . ,wN =

N. The reward of request type i being placed into the kth row is therefore given by rk(i) = pkwi.
Note that in this context there is a fixed ratio of reward-to-weight that differs per row.

Recall that our challenge in providing structural results for this problem largely hinge on
how general we have left γ(·). In the following sections, we discuss how numerical estimations
of γ(·) could be performed using historical transactional data, as well as providing a model-
theoretical basis for a specific function.

3.3.1 Transactional Data-Driven Estimation of Row Selection

Implementing our model means attaching specific values to the arrival probability α and row
selection probability γ(·). First, let us focus on how to estimate α. Traditionally, sales at
entertainment venues are made via multiple channels, e.g. online, phone, and in person at
a box office. Each of these channels would certainly possess data on transaction times and
the seats sold. However, recall that αi is the arrival probability of a request and therefore
using only sales data would underestimate the arrival probability since we would not record
customers who arrive and do not purchase (either because of lack of capacity, or because they
did not like the offered rows). The sales data thus censor demand.

However, censoring is only an issue via the physical channels. Using online sales trans-
action data to estimate αi is relatively straightforward. Users going through the process of
requesting seats are logged in the IT system and with IP addresses can be uniquely identified
as having looked into purchasing, whether or not they eventually purchased. Incoming phone
calls, if they are logged, could be done the same way. In person requests are more difficult as it
is unlikely that data currently is recorded for no-purchase requests. To the extent that it is rea-
sonable to assume different customers types use the different channels equally, box office and
phone sales data could be scaled up by the same factor as seen in the online based transactions.
Even if this assumption is not completely reasonable (online sales might be skewed toward the
young), it provides an approximation.

Using online transaction data (that contain both successful sales and unsuccessful no-buy
transactions), row selection probabilities across item types could be estimated by multinomial
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logistic regression,

γk(Dt) =


eβk Dt

1+
∑K−1

m=1 eβmDt
for k = 0, 1, . . . ,K − 1,

1
1+

∑K−1
m=1 eβmDt

for k = K,
(3.9)

where k = 0 denotes the “no-buy” option. The β-coefficients are estimated through maximum
likelihood. Here we assumed row selection do not depend on the request type i but only on
which rows were offered, i.e. row preferences are identical across request types and no need for
super-script i on Dt and dk. However, extensions to estimate row selection probabilities across
item types is straight forward. Note too, that additional covariates can easily be incorporated,
e.g. customer demographics, holidays, etc.

In some situations, it may still be infeasible to produce data that includes no-buy transac-
tions. In these cases equation (3.9) would represent the conditional probability of choosing
row k given a purchase was made, e.g. Pr{select row k|purchase} = (eβkDt)/(1 +

∑K−1
m=1 eβmDt).

In order to complement the analysis and produce unconditional row selection probabilities
γk(·), purchase/no-purchase probabilities must somehow be elicited or estimated. One solution
would be for the manager to manually estimate Pr{purchase|Dt}; with Pr{no purchase|Dt} =

1 − Pr{purchase|Dt}. Given the large permutations of possible Dt’s, a tractable and reasonable
approach is to assume that Pr{purchase|Dt} only depends on the lowest (cheapest) row offered.
If so, only K values would have to be estimated. The resulting row selection probabilities
would then be given by, for k ∈ K,

γk(Dt) = Pr{select row k|purchase} × Pr{purchase|Dt}. (3.10)

3.3.2 Customer Choice Model Based Row Selection
If transactional data is completely lacking, row selection probabilities could be derived using
management judgment. Recall that γ(·) must return a value for all possible decision vectors
Di

t, ∀i, t. This results on the order of
∑K

x=1

(
K
x

)
values to estimate; an infeasible task for any

reasonable value of K. We propose an alternative: asking managers for different customer
segments’ preference orderings and taking a weighted average.

Suppose that all requests belong to a customer segment y ∈ {1, 2, . . . ,Y}, that is distinct
from the N groups defined above; e.g seniors, students, tourists, etc. Let Pr{Customer is y}
be the probability that a request is from customer segment y;

∑Y
y=1 Pr{Customer is y} = 1.

Suppose also that each customer type has a strict preference ordering over the rows and “no-
buy” option. This works since prices are exogenously defined. For example, “students” might
have the following preference ordering for a two row theatre: Row 2 ≺ No Buy ≺ Row 1. Row
2 (the row closest to the stage) may be priced sufficiently high such that a student will never
purchase in Row 2. Let Iy

k(Di
t) be an indicator function that returns 1 if a customer type y would

purchase row k given the offered rows Di
t, i.e. if row k is preferred to any other opened rows as

well as the no-buy option. Given Di
t and k,

γk(Di
t) =

Y∑
y=1

Pr{Customer is y}Iy
k(Di

t). (3.11)
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Given a specific customer segment, we would know with certainty which row they would
choose given an offered set. However, in many cases it might not be possible to know which
customer segment is making a request. So, we take the weighted average over all the customer
segments.

The advantage of this approach is the relative ease at which a manager could estimate ag-
gregate preferences for specific customer segments and then disaggregate the individual row
selection probabilities. Splitting customers into different segments should be natural and al-
ready completed for marketing purposes. Estimating or using data to ascertain the relative
sizes of these segments should also be straightforward. The last step involves asking for man-
agerial judgment as to the preference ordering of the rows, for each customer segment. We
believe it would be reasonable for a manager to be able to give preference orderings for each
customer segment. In the case of managers being uncertain, finding preference orderings can
be done in a less-direct fashion using pointed questions, e.g. “Would a student prefer to buy in
the orchestra or mezzanine?”

Finally, we present a theoretical alternative that is based on a customer choice model. Con-
sider that each request arrives with a stochastic willingness-to-pay (wtp) per seat X. Let the
cumulative distribution function F(x) = Pr{X ≤ x}, be defined on [p1, P]; with P > pK . The
lower support p1 is set such that all arrivals are willing to purchase a seat, while the upper
support is such that there exists at least some proportion of customers willing to purchase front
row seats. Given X and Di

t, a group chooses the “best” row that is priced below their wtp, i.e.
we assume all requests prefer rows closer to the event. Formally, an arriving item type i with
realized wtp x chooses row,

k̂ = maxk{k|pk ≤ x, di
k = 1}. (3.12)

If no row k satisfies these conditions then the group balks and makes no purchase. Note that
this process is not necessarily the same as maximizing consumer surplus, since we have not
modeled consumers’ wtp for different rows. Furthermore, we are assuming myopic customers
that make a single “buy” or “leave” decision. The extension to consider strategic customer
behavior requires further model assumption and left for future studies.

There exists asymmetric information as to the value of X and so row preferences are un-
certain from the decision maker’s point of view. Let uk represent the probability a customer is
willing to purchase row k (given the opportunity), then uk = F(pk−1) − F(pk), 1 ≤ k < K, and
uK = 1 − F(pK). Figure 3.3 illustrates how uk can be represented on a graph of the cumulative
distribution function. We can then define the probability of purchase in row k given decision
vector Di

t as,

γk(Di
t) = di

k

(
uk +

K∑
x=k+1

ux

x∏
j=k+1

(1 − di
j)
)
. (3.13)

Defining γ(·) in this way produces a function with some nice and reasonable properties.
First, the overall probability of a purchase in any row is affected only by the lowest priced row
offered. In particular, if di

1 = 1, then
∑K

k=1 γk(Di
t) = 1, i.e. no balking. This assumption seems

like a reasonable approximation to reality. In our experience, the vast majority of importance
is assigned not to specific seat locations, but to the event itself. On the other hand, it is easily
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p1 p2 p3

F(p2)

F(p3)

1
cd f

Prefer row 2

Prefer row 3

Prefer row 1
F(p1) = 0

Figure 3.3: CDF of wtp and resulting row preferences.

conceivable that that same group, even if they were willing to pay for front row seats, would
purchase back-section seats if front row tickets were not available. In other words, most of the
utility value of attending an entertainment event is in the event itself, with a relatively small
amount dependent on the specific seat.

Another nice property is that the probability of purchase in a specific row k is altered only
by the decisions of rows above it, i.e. γk(Di

t) does not depend on [di
1, d

i
2, . . . , d

i
k−1]. This is due

to our assumption that customers choose the best row less than their wtp. If a row is already
open, and a row beneath is opened, there is no fraction of customers who opt to buy down.

Before proceeding to optimal row allocation it is informative to reflect on why traditional
RM approaches (that assume groups can be split up) are not suitable and results in trivial
solutions. This is because if arriving groups were (deterministic) groups of size one, then the
obvious solution would be to open all possible rows since customers would self-select into the
row closest to their wtp - and no combinatorial effects would occur. The non-trivial part of the
problem is in considering the combinatorial and stochastic effects of future arrivals’ weights
and rewards.

In general, it is still difficult to derive threshold policies on any single attribute of an in-
coming item or of the state space, i.e. on i, t, k, or C. However, the marginal benefit Bk can
be utilized in deciding which rows to open. Specifically, for each period t and row k there is a
threshold B̃ such that if Bk ≥ B̃ then it is optimal to open up the row (and else close it). The
advantage in doing so is that Bk incorporate state space information, as well as the incoming
item information. This forms the basis for the proposed algorithm which we label as DSKPai.

Algorithm DSKPai Row Allocation for t = 1, 2, . . . ,T

Set B̃ = 0.
Set di

k = 0,∀k.
for k ∈ K do

if Bk ≥ B̃ and ck ≥ wi then,
set di

k = 1,
set B̃ = Bk.

end if
end for

DSKPai starts by evaluating the lowest price row and moves “forward” to the most expen-
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sive row by continuously updating the threshold value B̃. Although the marginal benefit Bk

only considers the value of (deterministically) placing an arriving request into row k versus not
placing it at all, the proposed algorithm produces an optimal row allocation. In other words,
and counter-intuitively, there is no need to consider the combinatorial effect of marginal values
between rows. We formally summarize this result.

Theorem 3.3.1 A solution Di?
t found using DSKPai is a globally optimal solution.

To see why DSKPai works, it helps to note that the probability of any purchase depends
only on the lowest row opened up. Let kmin denote this lowest row. Given that kmin has been
chosen and is the sole row opened, the expected benefit is (1 − F(pkmin))Bkmin . Opening up a
row k > kmin is beneficial only if Bk > Bkmin . This logic holds as we move up by each row.
Opening up the next row does not change the overall probability of purchase, but means that
some requests which would choose row kmin now choose row k. However, the firm only wants
this if the benefit of the kth row exceeds the benefit from the kmin row. This procedure can be
conceptualized as taking steps that increase the weighted average. Note that the solution from
DSKPai is not necessarily the unique optimal solution. For instance, if two rows have the same
benefit, the knapsack decision maker is indifferent between opening and closing the higher row.

An immediate consequence of Thereom 3.3.1 is the following result.

Corollary 3.3.2 In the final period it is optimal to open all rows, Di?
1 = [1, 1, . . . , 1], ∀i.

The intuition behind this result is that there is no longer any opportunity cost of selling a
“bad” seating arrangement. In the last period, a firm should sell the highest priced seat that
a customer is willing and self-selects to purchase. Note this was not the case for the general
formulation in Section 3.2.

This idea can be extended somewhat into providing conditions on when a “naive” policy
like this could be optimal for all time periods. The time-invariant ordering condition that we
set out and defined before, provides this sufficient condition.

Proposition 3.3.3 If ∆Wt(C) have a time-invariant ordering then it is optimal to always open
all rows, Di?

t = [1, 1, . . . , 1], ∀t, i.

The condition for ∆Wt(C) to have a time-invariant ordering turns out to be relatively strict.
First, it requires conditions on all capacity configurations and in essence “smooths” out the
combinatorial complexity - the crux of all knapsack problems. Second, it ensures the Bk to
be positive, decreasing in time (Proposition 3.2.3), and increasing in k. While these attributes
provides sufficient conditions for a naive policy to be optimal, it is unlikely they would hold
across different arrival processes or willingness-to-pay distributions. On the other hand, it tells
us that for any non-trivial policy, there must be time-invariance across at least some capacity
configurations in Wt(C).

Threshold Based Policies

An ancillary benefit of DSKPai is that it enables us to investigate conditions regarding threshold-
based policies in time, row, and row-capacity. However, despite the particular underlying row
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selection process which provides structure for γ(·), the problem is still quite general. Therefore,
in order to ensure monotone optimal policies further conditions are necessary.
Time-Period Threshold - We first establish conditions on when a threshold in time exists. It
is helpful to explore the behaviour of differences in the weighted average value of capacity
configurations. For t,wi, and rows l, k (0 ≤ l < k), we define δW

t (l, k) as the marginal value of
weight wi placed in row l over row k, δW

t (l, k) = Wt(C[l]) − Wt(C[k]); with δW
t (0, k) ≡ Wt(C) −

Wt(C[k]). Note that while δW
t (0, k) ≥ 0, ∀t, by Proposition 3.2.1 (iii), the same is not necessarily

true for δW
t (l, k), l > 0, due to the combinatorial complexity of the knapsack problem. The

problem of establishing time-based thresholds is to ensure how, over time δW
t (l, k) behave with

respect to wi(pk − pl); where for l = 0, pl ≡ 0. Sufficient conditions are summarized in the
following result.

Proposition 3.3.4 If for any C, i, and 0 ≤ l < k, either
(A1) δW

t (l, k) is monotone in t;
(A2) δW

t (l, k) has a single local minimum on [1,T ];
(A3) δW

t (l, k) has a single local maximum on [1,T ], and δW
T (l, k) > wi(pk − pl);

then there exists t̃ ∈ {1, 2, . . . ,T }, such that for i and ck,

di∗
k =

1 if t ≤ t̃,
0 if t > t̃.

(3.14)

Proposition 3.3.4 presents an appealing result. Firstly, it is intuitive. With many time
periods to go, a decision maker can afford to be picky about which rows are opened, because
there are likely to be many more arrivals in the future. With relatively few time periods though,
a decision maker chooses to open the row to maximize their immediate reward. In particular,
from Corollary 3.3.2, in the final period we will always open the row and hence at an extreme
case t̃ = 1. Second, although there is no closed-form solution for t̃, the result is helpful because
it enables more efficient computation. If a threshold in time is known to occur, or assumed
to occur, calculating all time periods becomes unnecessary. If, in the process of backward
induction, it is realized a row is closed, then the result can be applied for all time periods prior
(without explicitly calculating the value functions).

The technical intuition of the result is that conditions A1, A2, and A3 are sufficient to
guarantee there is at most one time-period t for which δW

t (l, k) ≤ wi(pk − pl), and δW
t+1(l, k) >

wi(pk − pl) (i.e. possibly there is none and δW
t (l, k) ≤ wi(pk − pl), ∀t). Note that conditions A2

and A3 are less restrictive than concavity or convexity. In fact, concavity (covexity) is generally
not sufficient for a time threshold, since it does not guarantee δW

t (l, k) has the “single-crossing”
property with respect to wi(pk − pl). Observe too that condition A1 does not specify the mono-
tonicity direction. A specific example of the required property is when, for l = 0, 1, . . . , k − 1,
and for any t ≤ T , δW

t (l, k) ≤ wi(pk − pl), in which case row k should always be opened. In this
example, it is not sufficient that δW

t (l, k) ≤ wi(pk − pl), for a given l < k, since there may be a
row l′ for which δW

t (l, k) > wi(pk − pl) (and hence row k should be closed).
Another important point is that the three conditions are stated for a fixed and finite T . Since

limT→∞ δ
W
T (l, k) = wi(pk − pl), we would not expect all three conditions to hold asymptotically,

e.g. δW
t (l, k) cannot be monotonically decreasing in t as the sales horizon is extended. In our

numerical analyses, we generally observe δW
t (l, k) to be monotonically increasing in t. On the



50Chapter 3. Dynamic StochasticKnapsack Problem withAdaptive Interaction:Live EntertainmentCapacityBasedRevenueManagement

other hand, in the cases when t̃ , 1 or T , δW
t (l, k) generally behaves according to A3, with

differences reaching some global maximum point and decreasing towards the limit wi(pk − pl)
as T increases. See discussion below and Figures 3.4 (b), and (d).

Finally, note that we only need to assume these conditions on a limited subset of capacity
configurations, and not for any given C and C′. This is important because in general, we
can imagine situations where a general C and C′ have multiple local extrema - when different
rows have vastly different underlying selection probabilities and different prices. Here, we are
considering only capacity configurations that differ at most in two rows.
Row-Index Threshold - The insight from DSKPai also enables statements on when certain
row-index threshold policies are optimal. Clearly these will require further conditions on the
price-difference between rows. First though, let a row-index k̃ be defined by, for i,C, t,

k̃ =

min{k|Bk ≥ 0} if ∃Bk ≥ 0
K + 1 if @Bk ≥ 0.

(3.15)

We then have the following result.

Proposition 3.3.5 For a given i, C, t, if (pk − pk−1)wi ≥ Wt−1(C[k−1]) −Wt−1(C[k]), ∀k, then

di∗
k =

1 if k ≥ k̃,
0 if k < k̃,

(3.16)

where k̃ is the given by (3.15).

Proposition 3.3.5 provides the condition under which a row-based threshold type policy is
optimal. The condition implies that above the lowest row with a non-negative Bk, the remaining
Bk are increasing. Notably, with this property, if B1 ≥ 0, then it is optimal to open all rows.
Otherwise, there is a strict threshold with which it is optimal to open all available rows above
the threshold.
Row-Capacity Threshold - It should be clear that closing a row only occurs when the oppor-
tunity cost of accepting a customer is relatively high. This can occur in two ways: if placing
the customer means not being able to place larger groups of customers in the same row later,
or if a decision-maker would prefer the group to go to some lower row. Therefore, in cases
where a row would be filled entirely by an incoming group there is little opportunity cost. In
other words, with groups self-selecting the highest-priced row and if all available capacity in
the row would be filled, the optimal and managerially intuitive policy is to open the row, i.e. if
wi = ck, then d?k = 1, ∀i, t.

It may therefore be tempting to consider a row-capacity based threshold c̃k policy of the
form, for i and t,

di?
k =

1 i f ck ≥ c̃k,

0 i f ck < c̃k.

This type of threshold would state that a row should be open if it has sufficiently large capacity
remaining. However, this form of capacity threshold is unlikely to hold in general. For instance,
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i 0 1 2 3 4 5
αi 6/40 1/40 15/40 6/40 8/40 4/40

Table 3.1: Table of Numerical Illustration parameters.

from above we reasoned that a row should be opened when wi = ck, which implies that c̃k = wi,
i.e. all rows with sufficient capacity should be opened. Intuitively, this is unlikely to hold as
illustrated by the counter example in Figure 3.2. On the other hand, it would seem reasonable
to expect that any optimal policy would always contain an “upper row-capacity threshold” c̃k

such that, for i, if ck ≥ c̃k, then di?
k = 1; but for ck < c̃k, the optimal decision is not necessarily

monotone.

3.3.3 Numerical Illustration

Next we illustrate how the algorithm works and provide further insight into why the problem
can be difficult. We consider a two row venue, K = 2, along with a maximum group size N = 5,
and T = 26 time-periods. To mirror the entertainment reality we set the arrival probabilities
such that requests for single seats occur infrequently relative to most other request types; see
Table 3.1. We normalize prices such that the second row is twice as expensive, p1 = 1, p2 = 2,
and assume u1 = u2 = 1/2, which corresponds to a uniform wtp, X ∼ U[1, 3]. Figure 3.4
illustrates some of the results. Note that the problem is discrete in time but that curves have
been joined for presentation purposes.

First, in Figure 3.4 (a) we show how Wt(C) changes with respect to t. This figure helps to
illustrate the structural properties in Proposition 3.2.1. Note how the value-to-go is increasing
in t and in overall capacity. Also see how at some point all of the curves flatten. This is
when they approach the optimal static knapsack value S ∗(C) = p1c1 + p2c2. The last feature of
interest is that with relatively few time periods remaining, the difference between high capacity
value functions is minimal. Intuitively, if there are few periods remaining, differences between
high capacity states should be negligible since incoming requests could fill neither; i.e. past a
certain point there are decreasing benefits to increased capacity.

In Figure 3.4 (b) we illustrate some properties and complexities of the problem by graphing
the benefit of placing an arrival item type i = 3 into either of the rows of a venue with C = [4, 4].
Recall how DSKPaiworks: A row should be opened if it’s benefit is greater than the best option
below it. Here,when t ≤ 5, d3?

1 = 1 and d3?
2 = 1, since the benefits are strictly ordered. This

is also an example of when Proposition 3.3.5 is valid and when a time-based threshold policy
exists over the rows. When t ≥ 6, it is no longer optimal to open row 1 since its benefit is now
negative. However, B2 is still positive for t = 6, 7, and so the optimal decision is to (solely)
open the second row then, while for t ≥ 8, B2 < 0 and so both rows exhibit negative benefits
and both should be closed. Intuitively, this can be explained as the cost of leaving one seat
open. Since we assumed the available capacity is 4 for both rows, accepting an item i = 3
means leaving only one seat available that may be difficult to sell. Later in the sales process,
it becomes preferable to take the reward rather than rejecting the request. However, earlier in
the sales process, it is preferable to wait for a request that will either fill up the row, or that
will leave a more desirable number of seats remaining. Interestingly, the higher priced row is
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(a) Wt(C) for various capacity configurations and periods-to-go. (b) The benefit of placing item type i = 3 in either row with C =

[4, 4] with different periods-to-go.

(c) The optimal decisions graphed as a function of periods-to-go. (d) The benefit of placing different group sizes in row k = 2 with
C = [0, 4] at different periods-to-go.

Figure 3.4: results from Numerical Illustration.
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opened prior to the lessor priced row. The corresponding optimal decisions for i = 3 are shown
in Figure 3.4 (c).

Finally in Figure 3.4 (d) we examine the benefits of placing different item types in a specific
row over time. We assume a capacity configuration of C = [0, 4] so that we can focus on only
one row. The various lines correspond to the benefit of placing different group sizes. Since
there is only one row remaining, the decision maker must only verify if Bk ≥ 0, to decide
whether to open the row to a given item type. As can be seen, for the most part the functions
remain above zero, and so the row should be opened. Again, the complexity in attempting to
use this information is that even for simple examples, the benefits do not retain order over time.
Instead, it depends on the time remaining. This information allows us to answer which group
sizes would be preferred at a given t. In the last period it is obvious that you would like to sell
as much as possible and the graph shows this, with the sizes being strictly ordered. However,
in earlier periods this is not necessarily the case. Specifically we see that the benefits for group
sizes of 2 and 3 are not always ordered.

3.4 Single-Row DSKP Heuristic
As mentioned earlier, similar to most Dynamic Programs the proposed model formulation suf-
fers from the “curse of dimensionality”. Even when values are stored, the initial calculation
involves calculating large amount of future states. The explosion in state space is primarily
driven through the number of rows in the problem, because each row adds capacity configura-
tions to evaluate. Thus, to solve the problem efficiently, a heuristic or approximation is likely
necessary for decision makers.

3.4.1 Single-DSKP Heuristic Algorithm
To make the problem tractable for realistically sized problems, we propose that on a row-by-
row basis (assuming sufficient capacity), the single-row DSKP without adaptive interaction is
solved. That is, the DSKP with a single compartment and no option for an item to balk; this is
similar to Papastavrou et al. (1996). In the single-row DSKP, we solve the DP with the same wi,
t, and row-capacity ck. Price is a simple scaling factor and so we can set it to 1 without loss of
generality; c.f. Papastavrou et al. (1996). Once the single-row DSKP is solved and an optimal
decision for the row has been determined, we use this decision as a heuristic for the row in a
multi-compartment DSKP with adaptive interaction. The reasoning behind the heuristic is as
follows. If it is not optimal to open a row when no other rows exist, it is unlikely it would be
optimal to open it in a multi-row setting. In a multi-row setting, the opportunity cost of closing
a row is diminished somewhat, because there is a chance the customer could choose a different
row. We name this heuristic algorithm Single-DSKP.

Numerically, Single-DSKP is more efficient because each single-row problem only scales
with the individual ck, and not the number of rows K. In reality, even for large venues, the
capacity of a single row is bounded and relatively small. While a large sports arena might have
thousands of seats, each individual row is likely less than 30 seats wide, for example. The
single compartment problem thus remains the same size, even with increases in K. In addition,
once solved, finding the decision at a smaller ck becomes simple, since smaller versions would
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(a) Study 1 percent improvement over naive policy for a 2
Row theatre with different time periods remaining. Grey line
indicates optimal policy. Dashed line indicates heuristic. Mean
from 2000 simulations.

(b) Study 2 percent improvement over naive policy for a 40
Row theatre with different time periods remaining. Mean from
2000 simulations.

Figure 3.5: Summary of Simulation Study.

have been solved during the backwards induction process. So, once solved to completion, the
optimal decisions can be found via a lookup table.

3.4.2 Simulation Study

We provide two simulation studies to test how well the Single-DSKP heuristic performs com-
pared to the optimal DSKPai algorithm. We compare three row allocation policies: a “naive”
policy of opening all feasible rows, the Single-DSKP heuristic, and the optimal policy based
on DSKPai. In each study we vary the amount of time periods as a proxy for different demand
levels, and run 2000 trials based on common arrival probabilities (given by Table 3.1) and wtp
uniformly distributed between 1 and 3.

While we use a simulation to evaluate heuristic performance, an alternative would be to
generate upper-bounds on the optimal result and compare heuristic performance to these upper
bounds. One potential upper bound on the objective function is to decompose groups into
single arrivals. In this case, the upper bound on the value function would be the minimum of
expected total future arrivals and capacity.

In Study 1, we consider a K = 2 configuration with 15 seats per row, prices p1 = 1, p2 = 2,
and time periods t = 15, 20, 25, 30, 35. In Study 2, we consider a K = 40 configuration
with 15 seats per row, prices p1 = · · · = p20 = 1, and p21 = · · · = p40 = 2 (i.e. cus-
tomers are equally likely to prefer the first and last 20 rows), and time periods remaining of
t = 200, 250, 300, 350, 400. Note that although there are only two price-points, Study 2 is fun-
damentally different (and more complex) than a problem with two rows of 300 seats. Within
the same price-point, the decisions in each row are still unique and can be different depending
on the remaining row-capacity. For Study 2 the curse of dimensionality meant that we were
unable to provide exact optimal results. Figure 3.5 summarizes the results by showing the net
gain of DSKPai and Single-DSKP over the naive policy. In each graph, the x-axis represents
the periods-to-go, and the y-axis the percentage net gain over the naive policy. The grey lines
indicate DSKPai and the dashed line indicates Single-DSKP.

There are a couple of prominent and interesting results that stand out. First, in both studies
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we observe a small but non-trivial revenue gain of about 1%. Second, for Study 1 (in panel a),
we see that the heuristic policy appears to get close to the actual optimal results. This gives us
hope that the same is true for larger capacity configurations. Third, as one might expect, at low
demand levels (low t) there is little gain from any of our alternative policies. With low demand,
there is excess capacity such that almost all requests can be accepted, and hence the “naive”
policy works quite well. It would perhaps be natural to assume that at high demand levels (high
t) there would be excess demand to fill any gaps, such that the “naive” policy would perform
well. However, this is clearly not the case. Across both studies, the highest demand setting
results in highest levels of improvement for the optimal/heuristic policies. The reason being,
at high demand levels existing gaps may be difficult to sell because of how rare certain group
sizes are. Offering the rows in an optimal fashion, however, makes it more likely that gaps are
filled, i.e. that the venue does not end up in situations like Figure 3.1.

The core of the Knapsack problem (both static and dynamic), is of course the combinatorial
effect of the items’ weights. Consequently, the main reason for the observed revenue gains
might stem from the assumption that single seat requests were rare. To test this hypothesis, we
reproduced the two studies but assumed equal arrival probabilities, i.e. we set αi = 1/6, ∀i ∈ I.
The results were indeed that there now was essentially no gain from DSKPai and Single-DSKP
over a naive policy. This is because there are very few “bad” state spaces. Unlike the original
α settings (Table 3.1), single seats are now “easy” to sell since requests for them are relatively
common.

3.5 Conclusion
In this paper we have extended the DSKP to bridge the problem with a burgeoning literature
of customer choice models in RM. The novel extensions allow incoming items to select their
own knapsack compartment, and to have rewards vary based on their choice. Furthermore, the
choice probabilities were assumed to depend on the decision maker’s offered set of compart-
ments. We provided the model formulation and discussed the complexities inherent in solving
it in full generality and why control policies are unlikely to exist. Motivated by live entertain-
ment and customer choice we then discussed how the proposed model could be implemented
and applied for RM purposes. We provided an optimal row-allocation algorithm and condi-
tions under which various threshold-type policies would apply. Due to the inherent “curse of
dimensionality” we also provided a heuristic that achieves close to optimal results.

Live entertainment is a multi-billion dollar industry and possess many of the key RM at-
tributes. Despite this there has been limited model development designed specifically for the
entertainment industry - both research and industry application. One reason is the mathemat-
ical complexity of dealing with (small) group requests. Traditional RM models, motivated
by air transport, hotel and car rental, tend to rely on disaggregating the small group request
into multiple individual requests. Furthermore, in traditional RM industries, management can
usually control or adjust the allocation of customers to specific inventory (capacity) after the
purchase, e.g. move a customer from one seat in the plane to another or offering a different
category of car. In live entertainment, such as theater, this is rarely the case, and hence ensuring
optimal dynamic allocation policies as requests arrive are of bigger importance. Finally, there
is a simple legacy in live entertainment of dichotomizing bookings between (large) group-sales
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and individual ticket sales.
From our analysis we showed how, with some reasonable assumptions, a time-threshold ex-

ists in deciding when to open or close rows. Specifically, we established sufficient conditions
such that closer to the event, the manager becomes less restrictive and offers more choices. Us-
ing this knowledge, management can closer to the event, and without “much” loss of revenue,
implement the simple open-all policy. This can be advantageous in certain situations, such as
on the day of the event, if the box-office is busy and implementing dynamic allocation policies
is difficult. Prior to the event day however, management may be more strategic in their choice
of which rows to open.

Focusing on the individual ticket sales part of the business, we show that small group size
requests should not be assumed away or ignored. Contrariwise, our analysis indicates signif-
icant revenue enhancements are possible when incorporating the dynamics of group requests.
A key driver of the potential gain is the distribution of the arriving group sizes. The more un-
equal the distribution of incoming sizes, the higher revenue enhancement that can be achieved
and consequently the more attention that should be paid. Note that high-demand events are
not exempt from this problem. Revenue enhancements are possible even when high-demand is
present because spaces in the capacity configuration persist until exact group sizes arrive. This
last feature perfectly embodies the crux of the knapsack problem.

Although we have kept prices exogenous, the proposed model can be used to derive insight
regarding operational pricing issues, e.g. through shadow prices. A motivating example is
online ticketing where entirely closing a row may not be possible. Instead, it may make sense
to implement dynamic pricing to make the venue indifferent between which rows a customer
chooses. This would entail setting prices such that the marginal benefit are equal between
different rows. Another possible application would be to offer a post-purchase discount or
buy-up offer for customer to move from one row to another. While there may initially be
some behavioural scepticism or even backlash to these proposed applications, they have been
accepted and are now well-established in traditional RM industries like air transportation, hotel,
casino and car rental.
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4.1 Introduction
In the entertainment industry, it is rare to consume a service individually. Individuals attend
theatrical performances, sporting events, and concerts in groups. These types of businesses,
which we will we refer to as entertainment venues, serve as experiential goods. Experiential
goods are a type of good in which the utility gained is through the experience of consuming
the good. The experience itself is heightened through through experiencing it socially.

The operational problem this creates is that discrete groups of customers purchase tickets
assuming they will be seated contiguously. Without being seated in groups, the experience
itself is seen as significantly less valuable, and the consumer is less likely to buy. This is
corroborated by how ticket buying occurs in reality. On the major entertainment ticket buying
websites (e.g. Ticketmaster, Telecharge, Stubhub), the number of tickets the customer chooses
to buy will automatically be arranged next to each other.

Assuming discrete groups sit together is atypical from typical Revenue Management (RM)
settings. In a commerical airline environment, consumers do not require that they are seated
together and tickets are often purchased prior to knowing seat locations. Indeed, seat locations
are relatively fluid in airlines because many airlines do not assign seats until check-in, leaving
them flexibility with how seats are assigned. In contrast, specific seats are reserved upon buying
for entertainment events.

This presents a problem. When groups must be seated together, demand cannot necessarily
be seated up until capacity. Depending on where groups are currently seated, there may be
small pockets of available seats that can only be sold to small groups. Without demand from
groups of that size or smaller, the empty pockets will go unsold, regardless of how many seats
are deanded overall.

The problem is made more complicated by the fact that customers still make the final
decision of where to sit. Venue managers can limit their options however by not allowing
certain seat assignments. To the best of our knowledge, most entertainment venues do not use
sophisticated analytical techniques in deciding which seats to offer. The venue simply offers
every available seat to a prospective customer.

In this paper, we seek to investigate the effect that group seating has on the effective capacity
of a venue, and under what conditions. Because an exact approach is not tractable, we propose
three heuristics. We explore revenue enhancements under different assumptions on customer
behavior, group distribution, and demand settings.

4.2 Literature Review
One reason that group requests have received little attention is that they present challenging
combinatorial complexities and often “ruin” the structural properties of existing RM models
(e.g. concavity and monotonicity). An early paper that noted this issue is Lee and Hersh
(1993). They showed that the expected marginal value of a seat no longer has to be monotone
when group requests are considered. Talluri and van Ryzin (2004) noted similar issues - that
the structure of optimal allocation policies is “profoundly” impacted by group requests. Few
studies have explicitly modeled the dynamics of group bookings.

One example, although motivated by restaurants, is Bertsimas and Shioda (2003). Like



4.3. Venue Seat-Selection Process 59

entertainment venues, restaurants must consider discrete groups of stochastically arriving con-
sumers, who also must be seated together. Bertsimas and Shioda (2003) develop multiple
classes of models to assist restaurant managers in deciding when/where to place restaurant
groups. The authors find that significant revenue gains were possible over the simple First-
Come First-Serve approach.

The restaurant context is similar to our problem in that if small groups are placed in larger
tables, they take up space for the larger groups that should produce higher revenue. Therefore
group size and placement matters. However, unlike in the restaurant problem, an entertain-
ment venue manager cannot create a queue and must decide dynamically where to offer seats.
Another important difference is that entertainment venues exhibit customer choice. The most
important difference however is the nature of the inventory. In a restaurant, tables are (rela-
tively) fixed and can sit a certain number of people, and thus can accept any group less than
that amount. Once it is taken, the unused seats are unavailable. In an entertainment venue with
rows of seats, there are an enormous amount of possible configuration of groups seated. It is
not trivial to view the seats as discrete inventory like in restaurants.

It is worth highlighting two classic operations research problems that our problem may
appear similar to: The bin-packing problem, and the knapsack problem (Dantzig, 1957). The
bin-packing problem is described as the following. Given bins of a certain size, and items of
different sizes, how can we place items into bins such that we use the least number of bins?
The bin-packing problem differs from our problem in that we need not fit all groups like the
bin packing problem assumes. In fact, the implicit decision is whether it is worth “rejecting”
groups sometimes. In addition, the bin packing problem assumes contiguous placement and no
item autonomy.

The knapsack problem suffers from the same assumptions. It assumes contiguous place-
ment of items, and it assumes deterministic placement. In Chapter three we relax the determin-
istic placement, by giving items autonomy, which we called “adaptive interaction”. However,
we still assumed contiguous placement. In this paper, we relax both of those assumptions. Due
to the complexity of the problem, we take a simulation based approach to evaluate computa-
tionally efficient heursitics.

4.3 Venue Seat-Selection Process
We consider an entertainment venue with a rectangular seating map. We denote S as the seating
map matrix with dimensions R by C with individual elements denoted by sr,c. We define sr,c to
be one if the seat at row r, column c is filled or otherwise unavailable1. For completeness, we
also define sr,c to be one if the row/column index are outside of the seating map. Let S r,c(i) refer
to the i seats starting at row r, column c and extending to row r, column c+i−1. S r,c(i) is defined
as zero if the entire set of seats is available, and one otherwise. Formally, for r = 1, . . . ,R and
c = 1, . . . ,C − i + 1

S r,c(i) =

1, if
∑c+i−1

n=c sr,n ≥ 1,
0, otherwise.

(4.1)

1For instance, if the venue is not completely rectangular, these variables could be set accordingly to accomo-
date that situation.
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For r = 1, . . . ,R and c = C − i + 1, . . . ,C, S r,c(i) ≡ 1 as it extends “off the map”. We
let p > 0 be the price per seat, and assume it is homogenous across seats and customer type.
That is, we assume no discounts exist for large groups. Our model focuses on maximizing
the quantity of customers able to be seated, rather than engaging in pricing decisions. Thus,
this model may be considered as a model of a particular section of a venue. For example, we
could separately model the Orchestra section from the Mezzanine section of seats at a theatre,
where prices within each section are very similar, even though between them they are different.
Without loss of generality, we can let p = 1.

The sales horizon is discretized into T periods, with each period sufficiently short such
that at most one customer arrives. We then number the periods in reverse order, with t = 1
representing the last period before the event starts. Customers of group size i = 1, . . . , I; I ≤ C
arrive and request i consecutive seats in the venue. The (stationary) probability of group size i
arriving is denoted by αi;

∑I
i=0 αi = 1. α0 is reserved for the probability of no arrival.

At each time period, the venue must decide which seats to offer the incoming request.
Let xr,c(i) be the decision to offer the i consecutive seats to the right of (and including) seat
[r,c]. xr,c(i) = 1 if the seat-set (from [r,c] to [r,c+i-1]) is opened, and zero otherwise.For
a given request size of i, the entire decision vector is denoted by Xi and given by Xi =

[x1,1(i), x1,2(i), . . . , xR,C(i)]. A resource constraint exists on the decision. A seat-set can only
be opened if all seats within it are available, i.e. if S r,c(i) = 0.

If no seat-sets for group size i are offered (i.e. if X(i) = [0, . . . , 0]), the customer does not
purchase. If at least one seat-set is offered, we assume that customers choose probabilistically
according to the following process. Let ur,c be the utility of seat [r,c]. We assume that the front
center point [R,C/2] has a utility value of one and that there is an exponential decay function
based on the euclidean distance from this point.2 The utility of a specific seat is then given by

ur,c ≡ e
−β

(
√

((r−1)2+(c−C/2)2)

)
. (4.2)

β > 0 is an exogenous parameter that determines how utilities scale across the venue. As
β increases, utility differences between seats increase and front-center seat-sets become more
likely to be chosen. We provide an example heatmap of individual seat utilities when β = 1 in
Figure 4.1. The front of the stage is toward the bottom of the figure. As can be seen, the utility
values nicely form a decreasing ring around the front center point.

Note that in the special case of β = 0, all seats have a common utility of 1. This would
represent an assumption that customers choose from seat-set offers randomly with uniform
probability. Although an aggressive assumption, this provides a worst-case scenario from the
point of view of the venue. With customer’s choosing completely randomly, many small pock-
ets are likely to arise.

Let Ur,c(i) be the utility value of seat-set S r,c(i). We assume that utilities of seat-sets are
given by the sum of the individual seat utilities. Then, Ur,c(i) =

∑c+i−1
n=c ur,n. We then assume

that customers choose from offered seat-sets probabilistically according to proportion of utility
made up in the offer sets. The probability that a customer of group size i chooses a specific seat

2Note that in the case of an even valued C, the front-center point would not correspond to a specific seat. This
does not pose a problem for our analysis.
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Figure 4.1: A 20 row, 30 column venue with heat map of ur,c values when β = 1. Front of the
stage is the bottom of the figure. s1,15 is the best seat in the venue.

set is given by, for Xi , [0, . . . , 0],

Pr{S r,c(i) chosen | X} =
xr,c(i)Ur,c(i)∑R

m=1
∑C

n=1 xm,n(i)Um,n(i)
. (4.3)

This expression is a well defined probability distribution. The probability of a given S r,c(i)
being chosen is less than or equal to one, because the denominator includes the numerator. In
addition, the sum of all probabilities over the entire outcome space is equal to one.

To explore how β influences customer selection, we simulate 100 arrivals of groups of size
i = 1. Using an “offer-all” policy, we plot how the map looks after a single run of 100 arrivals.
These plots are shown in figure 4.2. A black spot indicates the seat is taken, while a grey spot
means the seat is available. For β = 0 and β = 1, the seating map looks roughly uniform.
However, there is a distinct grouping of requests for β = 5 towards the front/center. This would
seem to replicate an assumption that customers prefer those areas and select seats accordingly.

We choose to model seat choice probabilistically to capture heterogenuous customer pref-
erences. The Mirvish organization, a Toronto theatre producer, notes on their FAQ that

[M]any people insist on sitting in the first two or three rows - wouldn’t dream
of sitting anywhere else - while others find the first rows too close for comfort (or
for a full view of the action); some people love the box seats for their roominess
and their aura of exclusivity, while others say they don’t like the box seats’ angled
view of the stage” 3.

This problem can be formulated as a Markov Decision Process (MDP) and solved exactly
via backwards induction. This approach however suffers from the so-called “curse of dimen-
sionality”. A dynamic program would have to explicitly consider the probability of a consumer
choosing to sit in a specific spot, for all future stages. For commercial organizations with hun-
dreds or thousands of seats, this is not tractable, particularly in the times needed to make online
set decisions.

Similarly, a Deterministic Linear Program could be developed. Taking expected future
demand for each group type, the optimization problem would allocate seat-sets to expected

3Retrieved from https://www.mirvish.com/ticket-info/faq
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β = 0

β = 5

β = 1

β = 10

Figure 4.2: A 20 row, 30 column venue after 100 arrivals of group type i = 1, with differing β
parameter. Dark indicates the seat is filled, and grey indicates the seat is available.

demands across the seating map. In the Appendix we provide a full formulation of this op-
timization. Nevertheless, even for a modest sized theatre, the optimization problem is quite
extensives. For a 600 seat theatre, one constraint matrix has 18,000,000 elements.

Since both of these alternatives potentially are not able to run in an online fashion, we
explore alternative algorithms based on heuristics. All algorithms we develop are compared
to an“offer-all” method, which we call the NAIVE method. The NAIVE method is, for r =

1, . . . ,R and c = 1, . . . ,C − i + 1,

xr,c(i) =

1, if S r,c(i) = 0
0, otherwise.

(4.4)

4.4 Seat Offering Heuristics

No-Single-Seat Heuristic

The heuristic currently implemented in the Ticketmaster platform restricts choices to seat-sets
that, if chosen, would not leave a single seat open. For example, in an empty-segment of four
seats, an i = 2 request would not be able to choose the middle two. The customer could select
two seats at either end of the empty-segment.
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Figure 4.3: Sequence of Events

We test two variants of the algorithm. In the SINGLEa heuristic, seat-sets that would leave
a single seat open are strictly not offered. SINGLEa is defined as the following; for r = 1, . . . ,R
and c = 1, . . . ,C − i + 1,

xr,c(i) =

1, if S r,c(i) = 0 ∧
(
S r,c−2(2) = 0 ∨ sr,c−1 = 1

)
∧

(
S r,c+1(2) = 0 ∨ sr,c+1 = 1

)
0, otherwise.

(4.5)

In the SINGLEb heuristic, seat-sets that would leave a single seat open are not permitted,
unless it would force the customer to be rejected. The same definition as SINGLEa is used, but
if Xi = [0, . . . , 0], then the NAIVE heuristic is used. In other words, SINGLEb will permit a
single seat remaining if it is the only option. It is not clear a priori which variant is preferred
and so we include both in our analysis. SINGLEa may be too selective and reject customer
unnecessarily while SINGLEb may open seat-sets unnecessarily.

Greedy Heuristic
The third heurstic we are going to test is a GREEDY heuristic. At a high level, the heuristic
works as follows. At each time period, the seating map is “optimally” allocated for expected
future demands of each group size. A group request for i′ seats can then be offered the seats
already allocated for its group size. We provide details of the allocation process below.

Let Yi be the expected number of arrivals of group size i from future periods. In period t,
Yi, for i = 1, . . . , I is given by

Yi =

(t − 1) × αi + 1, if i′ = i
(t − 1) × αi, otherwise.

(4.6)

Note that Yi depends on t but we suppress this notation for convenience.
Let E be the set of empty-segments. An empty-segment is defined as a seat-set where all

seats are empty, and in which both sides are bordered by filled seats (or the end of the row).
Therefore E is given by

E =
{
S r,c(i) | S r,c(i) = 0 ∧ sr,c−1 = 1 ∧ sr,c+1 = 1

}
. (4.7)

We index the set E by e. Let er and ec refer to the row and column index, respectively, of given
empty-segment e. Let k(e) be the length of empty-segment e, e.g. the number of seats. Finally,
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for the allocation, we let dr,c(i) = 1 represent the allocation of i seats to group size i staring
from row r, column c, and zero otherwise.

The initial allocation algorithm works as follows. The largest group size j that still has
unfulfilled expected future demand (e.g. Y j > 0) and which fits (e.g. j ≤ k(e)) is “placed” to
the furthest left and Y j decreased by one. The current empty-segment length is then updated
and this process is repeated until either the empty set is fully allocated (i.e. k(e) = 0) or there is
no group j which satisfies the requirements. This process repeats for all empty-segments. This
process is given in Algorithm 2 and is repeated in each period that a request arrives.

Algorithm 2 Initial Allocation
Set dr,c(i) = 0,∀r = 1, 2, . . . ,R ∀c = 1, 2, . . . ,C ∀i = 1, 2, . . . , I
for e ∈ E do

Set m = k(e)
while m > 0 do

if ∃ j|Y j ≥ 1 ∧ j ≤ m then
Set j = max j|Y j > 0 ∧ j ≤ m
Set der ,ec+k(e)−m( j) = 1
Set m = m − j
Set Y j = Y j − 1

else
Set m = 0

end if
end while

end for

For each period t, Algorithm 2 takes expected future demands Yi and allocates them seats
on the seating map. The Algorithm returns the allocation D. This procedure is not necessarily
optimal. In an empty segment of 5 seats for example, the heuristic would allocate a group of 4
and 1, rather than allocating groups of 2 and 3 which may be better.

Note that a request of size i′ has at most Yi′ allocations using Algorithm 2. This implies
that relatively rare request sizes would have few selections. We provide two additional algo-
rithms that modify the initial allocation, and in the process expand the offer set. We label these
modifications the reverse procedure and switching procedure respectively. We define D to be
the vector of all allocations; D = [d1,1(1), . . . , dr,c(I)].

The two additional algorithm find equivalent allocations D′ and D′′, given an initial alloca-
tion D. In both algorithms, we consider only the current request i′. It is unnecessary to consider
all i because this heuristic is performed in each time period and we only wish to expand the
offer set for the current request i′.

The motivation for the reverse procedure is that the ordering of groups within an empty seg-
ment is irrelevant. Therefore, for each empty-segment, the ordering of groups can be reversed.
This algorithm is presented in Algorithm 3. A simple example is used to illustrate. Suppose an
empty-segment S 1,1(4) exists and the initial allocation is d1,1(1) = 1, and d1,2(3) = 1. Reversing
this segment for a request i′ = 1 would imply setting d′1,4(1) = 1.
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Algorithm 3 Reverse Allocation
Set d′r,c(i) = 0,∀r = 1, 2, . . . ,R ∀c = 1, 2, . . . ,C ∀i = 1, 2, . . . , I
for e ∈ E do

for l = 0, 1, . . . k(e) − 1 do
if der ,ec+l(i′) = 1 then Then

Set d′er ,ec+k(e)−l−i′(i
′) = 1

end if
end for

end for

Algorithm 3 takes the initial allocation d and provides the reversed allocation for request
size i′.

The motivation for the switching procedure is that the order of filling empty-segments is
arbitrary. Thus, we can switch allocations between equally sized empty-segments. Thus, the
second procedure we propose to find equivalent allocations is outlined in Algorithm 4. Again,
we illustrate. Suppose there exist two empty segments: S 1,1(2) and S 2,1(2). Suppose that we
are considering request size i′ = 1 and that d1,1(1) = 1, d1,2(1) = 1, and d2,1(2) = 1. Switching
allocations between segments for request size i′ = 1 solution would imply setting d′′2,1(1) = 1,
d′′2,2(1) = 1.

Algorithm 4 Switching Allocation
Set d′′r,c(i

′) = 0,∀r = 1, 2, . . . ,R ∀c = 1, 2, . . . ,C ∀i = 1, 2, . . . , I
for e ∈ E do

for e′ ∈ E do
if k(e′) = k(e) then

for l = 0, 1, . . . k(e) − 1 do
if der ,ec+l(i′) = 1 ∨ d′er ,ec+l(i

′) = 1 then
Set d′′e′r ,e′c+l(i

′) = 1
end if

end for
end if

end for
end for

Algorithm 4 takes allocations D and D′ and returns new allocation D′′. Note that al-
though we present the expansion in this order, e.g. reverse and then switch, the order is
not consequential. The final decision of what to offer a request size i′ is to set xr,c(i′) =

max
(
dr,c(i′), d′r,c(i

′), d′′r,c(i
′)
)
. Thus, as long as a seat-set S r,c(i) is opened in any allocation, it

is offered. Because this heuristic is ran for every time period, it is unnecessary to track which
specific allocation the offer is derived from.

To summarize, the objective of the GREEDY heuristic is to determine what seat sets to
offer to a request for i′ seats in period t. It works by using three nested algorithms. An initial
allocation is done via Algorithm 2. Nested Algorithm 3 expands the offer set via a reverse
procedure, and Nested Algorithm 4 expands the offer set further via a switching procedure.
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A Numerical Illustration of Offered Set
We start our analysis by comparing the offer sets the algorithms make under the same capacity
configuration. We randomly fill a 20 row, 30 column venue to three capacity levels (0 seats, 100
seats, 300 seats) and assume that an i = 3 request has arrived. In Figure 4.4 we present a figure
to show the offered seat-set various algorithms make under the three capacity configuration.
The lightest color indicates the seat-set has been offered. The second lightest indicates the
seat-set was not offered. Black indicates the seat was filled and thus unavailable. Blue indicates
the set is open but not offered, and grey indicates the seat has been taken. We do not consider
SINGLEb as the offer set would be identical to SINGLEa in this example.

In general we see that the GREEDY heuristic is more selective of which seat sets it offers.
Even when the venue is completely empty, the GREEDY heuristic offers less choice to con-
sumers. However, a pattern emerges when the venue is empty: GREEDY offers a pattern such
that seats chosen will leave spots that will be more easily filled by predicted groups. Similarly,
SINGLEa removes the second to last seat-set in the row, in order to not leave a single spot
blank, but leaves the very end of the row.

4.5 Simulation Study

4.5.1 Simulation Parameters
We run a computational experiment to test the relative performance of the proposed algorithms
vs a NAIVE method. We simulate a 20 Row by 30 column theatre, resulting in 600 seats. This
theatre size replicates a small Broadway theatre, such as the Helen Hayes theatre, which has
597 seats. It could also represent the orchestra level of a larger venue. We assume a max group
size of I = 5. Each period a random request arrives. Using the heuristics above, seat-sets are
offered and customers choose randomly based on the probabilistic model in Section 4.3. Ar-
rivals are held constant across the heuristics, however the filled seat maps evolve independently.
At the end of the T periods, we find how many seats were filled in total for each heuristic and
compare against the NAIVE method.

We assume two sets of α values that are given in 4.1 and that are based on the author’s best
estimate. The important differences between the two are the α1 probabilities and therefore we
also use this to denote the two sets (e.g. α1 = 5% and α1 = 10%). The second case has double
the frequency of α1. We would hypothesize that as single seats become more common (e.g.
as α1 increases), alternative seating algorithms become less effective, because smaller pockets
become easier to fill naturally.

We also test differences in demand levels. Given a total number of periods T , and α values,
we can calculate the expected number of seats demanded. This is given by T ×

∑I
i=1 αii. We

vary T to allow for different demand levels. We try 80%, 100% and 120% demand levels,
where percentages are of total capacity.

The combination of parameter values results in 18 unique configurations of parameters, e.g.
α, T and β. 500 trials are ran for each configuration.

4.5.2 Simulation Results
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Figure 4.4: A comparison of offered sets for three heuristics at a 20 row, 30 column venue with
an i = 3 group arriving.

Table 4.1: Group Distribution Configurations

Variable α1 = 5% α1 = 10%
α0 20% 20%
α1 5% 10%
α2 35% 33.75%
α3 10% 8.75%
α4 25% 23.75%
α5 5% 3.75%
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Figure 4.5: Box plots of percent difference between given algorithm and NAIVE in a given
trial under the α1 = 5% condition
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trial under the α1 = 10% condition
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In Figure 4.5 and 4.6 we present boxplots for results for all configurations with α1 = 5% and
α1 = 10% respectively. The boxplot displays the percent difference in seats filled between the
heuristic and the NAIVE method. Positive percentages indicate the heuristic performed better
than NAIVE. Accompanying parentheses indicate the standard deviation of results.

Our results suggest that the choice of SINGLEa or SINGLEb is unclear. Across almost
all configurations the two heuristics have statistically indisguishable results from each other.
This finding points to the fact that the differences in procedure occur infrequently and that
differences are minor. In addition, even when they make different offer sets, it is not clear
when it is beneficial or not. Because of this, we focus our attention solely on SINGLEa and
GREEDY below.

Our results suggest that possible revenue enhancement is most sensitive to demand. All
values given are the average performance across 500 trials (with standard deviation given in
parentheses). At the low demand level configuration (Tlow), SINGLEa does not produce out-
performance. GREEDY however outperforms at the β = 0 and β = 1 configurations. The
magnitude of outperformance is relatively small though. GREEDY outperforms by 2.4%(2.43)
and 2.7%(2.55) respectively on average.

In contrast, at higher demand levels (Tmid, Thigh), SINGLEa also exhibits outperformance,
but is still bested by GREEDY. In the base case, the mean outperformance of SINGLEa is
1.1%(2.28), as compared to 10.8%(2.24) for GREEDY. At Thigh, the mean outperformance of
SINGLEa is 5.2%(2.97), as compared to 8.6%(1.56) for GREEDY.

It was unexpected for gains to hold at higher demand levels. We theorize that these gains
may be holding because, at demand levels higher than 100%, the GREEDY method relatively
easily reaches capacity. However, because single seats are the only inventory remaining, the
NAIVE method can still only increase its total through more single seat groups. Increases in
other group sizes do not help increase the average as they are unable to be filled anyways.
Thus, even with more overall demand, the method cannot capture many of those gains.

As predicted, customer choices parameter β had an effect on performance. While similar
at the β = 0 and β = 1 condition, at the β = 5 level, we see a drop off in performance of
GREEDY. In the base case, GREEDY had a mean outperformance of 10.8%(2.24) compared
to 8.8%(1.99) at β = 5. We theorize that this occurs because higher β encourages customers to
select seats close to each other, limiting the problematic phenomenon.

We also test the effect of changes in group size distribution. Recall that we predicted that
α1 = 10% would have smaller benefits. We see that our hypothesis is not true and effects
persist even across group distributions. In the α1 = 5% condition, GREEDY had a mean
outperformance of 10.8%(2.24) compared to 11.1%(2.27) in the α1 = 10% condition. Clearly
substantial benefits remain even when the relative magnitude of single-seat requests is doubled.

4.6 Discussion and Conclusion
In this paper we explore group seating effects and how managers can use relatively simple
allocation methods to produce revenue enhancement. Overall, we find evidence that the pre-
dominant method used to offer seats is sub-optimal. Significant revenue enhancements, on the
order of 2-10%, are possible by using other methods. As well, these gains are relatively robust
to a wide variety of parameters, including group distribution, customer choice parameters, and
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overall demand levels. We find that revenue enhancement is possible even at high demand
levels.

Our model explicitly assumes homogenous prices across the venue. This is helpful in
cleanly demonstrating the effect, but does not hold in reality. Entertainment venues are well-
known for pricing seats differently depending on perceived customer valuation of different lo-
cations. Future research should incorporate variable pricing and consumer “buy-up” behavior.
Another fruitful extension could consider a scenario based optimization, rather than the mean-
value approach we consider here. In a mean-value problem, we do not consider the tradeoff

involved in uncertainties. An optimization model incorporating this tradeoff may advance our
GREEDY heuristic and provide insights into how to improve it.

The problem and model described above lay a framework for further research and raise a
series of further questions. The insight that current seating methods may forego revenue leads
into obvious questions about pricing and marketing. Instead of looking into the operational
problem of allocating seats, should managers adjust prices on different seats because of these
effects? For example, rather than not allow a group to sit in a specific seat, perhaps the price
should be raised on them using a bid-price model. Our research also makes clear the need
for more experimental research into what impacts consumer seating choices. Modeling a con-
sumer’s seating choice is, and will be, a difficult exercise without foundational research driving
it. Research into the factors impacting seating choice would improve this line of research,
but would also be of practical importance to managers increasingly looking for more granular
pricing.
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In this thesis, we explore how entertainment managers can use analytics to make strategic
and operational decisions. We dive into unique aspects of the live entertainment business and
show that investigating these problems can produce fruitful research opportunities. Throughout
the previous chapters, we have noted specific avenues for future research. We would encourage
further research to explore in these areas.

Research topics in the entertainment revenue management space are plentiful though. Sec-
ondary markets exist for live entertainment tickets, e.g. Stubhub and SeatGeek. These online
markets offer the ability to sell unwanted tickets for whatever price the market will bear. This
includes the ability to sell tickets for above face-value, i.e. above the original market price.

These markets thus allow for speculation on the market price of future tickets. Speculators
may purchase tickets with the intention of selling them later at a higher price. Market prices
may change over time because of a host of reasons. Consumer uncertainty around scheduling
reduces as events draw nearer. To the extent that uncertainty would reduce expected utility, we
would expect this effect to lead to increases in price. In addition, underlying event demand can
change as performers/teams become more or less sought after. This price change is unclear.
Changes in the event itself are possible as well, e.g. forecasts for bad weather. All of these
produce potential changes in the value of a ticket.

The fact that this marketplace dynamic exists at all is interesting - if tickets persistently sell
above face-value, why do firms not raise prices? This phenomenon also exists in restaurants,
where long lines or waiting lists exist, yet prices stay (relatively) low. A number of explanations
have been raised for this peculiar fact. Some suggest that producers are risk-averse (Swofford,
1999) or that demand is positively correlated with demand from other consumers (Becker,
1991).

Ticket speculation and selling tickets above face-value has produced public outrage. New
York State signed a law in 2016 banning the use of “bots” (online robots) to buy tickets online,
responding to concerns that individual consumers were being pushed out of online markets.
1 In February 2017, the province of Ontario in Canada announced that it too was developing
legislation to ensure that people had a “fair shot” at receiving tickets.2 Research into these
markets thus is of high interest to policy makers and entertainment firms.

Theoretical work on consumer fads, social herding, and network effects is also of high rel-
evance to live entertainment managers. The business is one where winner-take-all effects dom-
inate. Foundational work on modelling these issues is relevant to understanding how to take
advantage of them. For example, a seminal paper on fads/herding behavior suggested that con-
sumers may rationally ignore their private beliefs if sufficient public signals exist (Bikhchan-
dani et al., 1992). Pricing that takes into account the social learning nature of the industry
would be an interesting research avenue.

We also hold a broader goal for this thesis. We hope that we have shown the value in
exploring new RM application areas deeply. We encourage this process to continue and echo
the call from Currie (2015) for specific models for new RM industries. Other literature has
started this process. Cruise ships used to be viewed as “floating hotels” (Talluri and van Ryzin,
2004). Today, a new line of research has specifically modeled lifeboat capacity constraints,

1https://www.governor.ny.gov/news/governor-cuomo-signs-legislation-combating-unfair-ticket-purchasing-
and-reselling-practices

2https://news.ontario.ca/mag/en/2017/02/putting-fans-first-in-ontario.html
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among other unique cruise ship dynamics (Biehn, 2006; Maddah et al., 2010). We hope that
this continues, and that fundamental research is not viewed as merely applications, but as
fundamental to expanding RM’s use in the real world.

In this thesis, we have continued down this path. Group effects have been considered
before, but not specifically within live entertainment. They could be modeled using a Network
RM model. However, this is unlikely to lead to insights for the specific problem. Instead,
we choose to explicitly model group distribution and customer choice, and study the resulting
problem. This was done intentionally to lead to specific insights to the specific group problem.

Of course, applying RM to new industries requires domain level knowledge. Researchers
should be humble in modeling new industries, recognizing that hotels and airlines may not
accurately approximate them. In fact, we should work under the assumption that hotels/airlines
do not approximate them. Practitioners are thus critical to the process. Work in new RM
applications should include practitioners as much as is practical.
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Appendix A

Other Data and Models

Table A.1: List of Holidays Controlled for in Chapter Two

Holiday Name
Easter
Independence Day
Memorial Day
Labor Day
Federal Election
Thanksgiving
New Years Eve
Christmas
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Table A.2: Regression Results from all models in Chapter Two

(1) (2) (3) (4) (5) (6)

Starpower 0.095∗∗ 0.086 0.096∗∗ 0.086
(0.038) (0.173) (0.037) (0.171)

Starpower2 0.011 0.013
(0.212) (0.210)

Starpower3 −0.055 −0.054
(0.054) (0.053)

Starpower32 0.118∗∗∗ 0.117∗∗∗

(0.028) (0.028)
CompetitionStarpower −0.004 −0.004 −0.004

(0.006) (0.006) (0.006)
TonyAwards 0.052 0.052 0.014 0.051 0.051 0.014

(0.033) (0.033) (0.035) (0.032) (0.032) (0.034)
OtherAwards 0.040∗∗ 0.039∗∗ 0.021∗ 0.039∗∗ 0.039∗∗ 0.020∗

(0.017) (0.017) (0.012) (0.017) (0.017) (0.012)
DaysOpen −0.411∗∗∗ −0.411∗∗∗ −0.417∗∗∗ −0.403∗∗∗ −0.403∗∗∗ −0.409∗∗∗

(0.103) (0.104) (0.098) (0.102) (0.104) (0.097)
DaysOpen2 0.031∗∗∗ 0.031∗∗∗ 0.032∗∗∗ 0.031∗∗∗ 0.031∗∗∗ 0.031∗∗∗

(0.010) (0.011) (0.010) (0.010) (0.010) (0.010)
Constant 12.801∗∗∗ 12.800∗∗∗ 12.796∗∗∗ 12.775∗∗∗ 12.774∗∗∗ 12.770∗∗∗

(0.425) (0.423) (0.416) (0.420) (0.418) (0.411)

Observations 9,420 9,420 9,420 9,420 9,420 9,420
R2 0.888 0.888 0.892 0.888 0.888 0.892
Adjusted R2 0.884 0.884 0.888 0.884 0.884 0.889
Residual Std. Error 0.202 (df = 9131) 0.202 (df = 9130) 0.198 (df = 9130) 0.202 (df = 9130) 0.202 (df = 9129) 0.198 (df = 9129)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Dependent variable of LOG(Gross). Control Variables Excluded. Clustered Standard Errors shown in parentheses.

A random effects treatment and assumptions can be found in (Wooldridge, 2002, pg. 257).

Table A.3: Regression Results from Chapter Two assuming random effects on unobserved
individual characteristics.

(1) (2) (3) (4)

Starpower 0.101∗∗∗ 0.101∗∗∗

(0.037) (0.036)
Starpower3 −0.048 −0.047

(0.052) (0.051)
Starpower32 0.114∗∗∗ 0.114∗∗∗

(0.028) (0.028)
CompetitionStarpower −0.005 −0.005

(0.006) (0.006)
TonyAwards 0.054∗ 0.016 0.053∗ 0.015

(0.032) (0.034) (0.032) (0.034)
OtherAwards 0.040∗∗ 0.021∗ 0.039∗∗ 0.021∗

(0.017) (0.012) (0.017) (0.012)
DaysOpen −0.391∗∗∗ −0.398∗∗∗ −0.382∗∗∗ −0.389∗∗∗

(0.099) (0.095) (0.099) (0.094)
DaysOpen2 0.030∗∗∗ 0.031∗∗∗ 0.029∗∗∗ 0.030∗∗∗

(0.010) (0.010) (0.010) (0.010)
Constant 11.346∗∗∗ 11.342∗∗∗ 11.359∗∗∗ 11.356∗∗∗

(0.111) (0.107) (0.113) (0.109)

Observations 9,420 9,420 9,420 9,420
R2 0.803 0.806 0.804 0.807
Adjusted R2 0.801 0.804 0.801 0.804

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Dependent variable of LOG(Gross). Control Variables Excluded. Clustered Standard Errors shown in parentheses.
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Formulation of a Deterministic Linear Program in Chapter Four
A Deterministic Linear Program (DLP) takes expected future demands deterministically and
makes operational decisions accordingly (Talluri and van Ryzin, 2004). The DLP takes the
expected group demands, and allocates them locations into the venue.

maximize
X

I∑
i=1

R∑
r=1

C∑
c=1

(i)xr,c(i)

subject to
R∑

r=1

C∑
c=1

Xr,c(i) ≤ Yi, i = 1, . . . , I.

c∑
max(1,c−i+1)

I∑
i=1

xr,c,i + sr,c ≤ 1, r = 1, . . . ,R, c = 1, . . . ,C.

xr,c(i) ≤ 0, r = 1, . . . ,R, i = 2, . . . , I, c = C − i + 1, . . . ,C.
xr,c(i) ∈ {0, 1}, r = 1, . . . ,R, i = 1, . . . , I, c = 1, . . . ,C.

The objective function seeks to maximize the expected number of filled seats by reserving
groups of seats in the seating layout for specific group sizes.

Constraint (1) ensures that the amount of group type i placed do not exceed the expected
demand. Constraint (2) ensures that for every seat in the venue, a unique group is partitioned
for that seat. Without this constraint, a single seat could be reserved for separate groups, or
equivalently, groups could overlap. Constraint (3) ensures that we do not allocate demand
to seating spots which do not exist. Finally constraint (4) is to ensure decision variables are
binary.



Appendix B

Proofs of Theorems

Proof for Proposition 3.2.1: (i) To see that the function is positive, note that a feasible solution
includes to always close all compartments, resulting in zero reward. There is finite capacity in
finite compartments, thus the value is clearly bounded.
(ii) Proof by induction in time. In period t = 1, Vt(C, i) ≥ Vt−1(C, i) = 0, by the boundry condi-
tion and because the value-to-go function is non negative by (i). Assume Vt(C, i) is increasing
in t, for t = 1, 2, . . . ,m− 1. Let t = m, and the state be given by (C, i), then Vt(C, i) ≥ Vt−1(C, i),

⇐⇒ max
Di′

t ∈D(C,i)

{ K∑
k=1

γk(Di′
t )rk(i) +

K∑
k=1

γk(Di′
t )Wt−1(C[k]) + (1 −

K∑
k=1

γk(Di′
t ))Wt−1(C)

}
≥

max
Di

t−1∈D(C,i)

{ K∑
k=1

γk(Di
t−1)rk(i) +

K∑
k=1

γk(Di
t−1)Wt−2(C[k]) + (1 −

K∑
k=1

γk(Di
t−1))Wt−2(C)

}

Let D∗ denote the arg-max of the LHS and D◦ denote the arg-max of the RHS, Vt(C, i) ≥
Vt−1(C, i),

⇐⇒

K∑
k=1

γk(D∗)rk(i) +

K∑
k=1

γk(D∗)Wt−1(C[k]) + (1 −
K∑

k=1

γk(D∗))Wt−1(C) ≥

K∑
k=1

γk(D◦)rk(i) +

K∑
k=1

γk(D◦)Wt−2(C[k]) + (1 −
K∑

k=1

γk(D◦))Wt−2(C)

We subtract
∑K

k=1 γk(D◦)rk(i) +
∑K

k=1 γk(D◦)Wt−1(C[k]) + (1−
∑K

k=1 γk(D◦))Wt−1(C) from both

82
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sides.

⇐⇒

K∑
k=1

γk(D∗)rk(i) +

K∑
k=1

γk(D∗)Wt−1(C[k]) + (1 −
K∑

k=1

γk(D∗))Wt−1(C)

−

K∑
k=1

γk(D◦)rk(i) −
K∑

k=1

γk(D◦)Wt−1(C[k]) − (1 −
K∑

k=1

γk(D◦))Wt−1(C) ≥

K∑
k=1

γk(D◦)rk(i) +

K∑
k=1

γk(D◦)Wt−2(C[k]) + (1 −
K∑

k=1

γk(D◦))Wt−2(C)

−

K∑
k=1

γk(D◦)rk(i) −
K∑

k=1

γk(D◦)Wt−1(C[k]) − (1 −
K∑

k=1

γk(D◦))Wt−1(C)

⇐⇒

K∑
k=1

γk(D∗)rk(i) +

K∑
k=1

γk(D∗)Wt−1(C[k]) + (1 −
K∑

k=1

γk(D∗))Wt−1(C)

−

K∑
k=1

γk(D◦)rk(i) −
K∑

k=1

γk(D◦)Wt−1(C[k]) − (1 −
K∑

k=1

γk(D◦))Wt−1(C) ≥

K∑
k=1

γk(D◦)
{

Wt−2(C[k]) −Wt−1(C[k])
}

+ (1 −
K∑

k=1

γk(D◦))
{

Wt−2(C) −Wt−1(C)
}

Note however that the LHS of the inequality is non-negative since D◦ is a feasible but not
necessarily optimal decision in period t. Note also that the RHS of the inequality is non-
positive.

To see this, recall that γk(·) are probabilities and so
∑K

k=1 γk(D◦) and (1 −
∑K

k=1 γk(D◦)) are
both positive, while both inner terms are non-positive by the induction assumption: Wt−2(C[k])−
Wt−1(C[k]) =

∑N
j=0 α

i(Vt−2(C[k], j) − Vt−1(C[k], j)
)
≤ 0,

and Wt−2(C)−Wt−1(C) =
∑N

j=0 α
i(Vt−2(C, j)−Vt−1(C, j)

)
≤ 0. Therefore the inequality holds

and Vt(C, i) is increasing in t.
(iii) We seek to show, for t = 1, 2, . . . ,T , i ∈ I, capacity configuration C, and C′ = C + c+λk′ ,
for a compartment k′ ∈ K, and scalar c+, that Vt(C′, i) ≥ Vt(C, i). Proof by induction in t. At
time period t = 1, Vt(C′, i) ≥ Vt(C, i),

⇐⇒ max
Di

t∈D(C′,i)

{ K∑
k=1

γk(Di
t)rk(i) +

K∑
k=1

γk(Di
t)Wt−1(C′[k]) + (1 −

K∑
k=1

γk(Di
t))Wt−1(C′)

}
≥ max

Di
t∈D(C,i)

{ K∑
k=1

γk(Di
t)rk(i) +

K∑
k=1

γk(Di
t)Wt−1(C[k]) + (1 −

K∑
k=1

γk(Di
t))Wt−1(C)

}
⇐⇒ max

Di
t∈D(C′,i)

K∑
k=1

γk(Di
t)rk(i) ≥ max

Di
t∈D(C,i)

K∑
k=1

γk(Di
t)rk(i)

Since the feasible set on the RHS is a subset of the one on the LHS, D(C′, i) ⊇ D(C, i), and
γk(·) do not change with C, the above inequality holds trivially. Assume the result holds for
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t = 1, 2, . . . ,m − 1. Let t = m, then we show that for C and C′, Vt(C′, i) ≥ Vt(C, i). Let D∗

and D◦ be the optimal decisions for the capacity configuration C′ and C, respectively, then
Vt(C′, i) ≥ Vt(C, i)

⇐⇒

K∑
k=1

γk(D∗)rk(i) +

K∑
k=1

γk(D∗)Wt−1(C′[k]) + (1 −
K∑

k=1

γk(D∗))Wt−1(C′)

≥

K∑
k=1

γk(D◦)rk(i) +

K∑
k=1

γk(D◦)Wt−1(C[k]) + (1 −
K∑

k=1

γk(D◦))Wt−1(C)

We can subtract
∑K

k=1 γk(D◦)rk(i) +
∑K

k=1 γk(D◦)Wt−1(C′[k]) + (1−
∑K

k=1 γk(D◦))Wt−1(C′) from
both sides.

⇐⇒

K∑
k=1

γk(D∗)rk(i) +

K∑
k=1

γk(D∗)Wt−1(C′[k]) + (1 −
K∑

k=1

γk(D∗))Wt−1(C′)

−

K∑
k=1

γk(D◦)rk(i) −
K∑

k=1

γk(D◦)Wt−1(C′[k]) − (1 −
K∑

k=1

γk(D◦))Wt−1(C′)

≥

K∑
k=1

γk(D◦)rk(i) +

K∑
k=1

γk(D◦)Wt−1(C[k]) + (1 −
K∑

k=1

γk(D◦))Wt−1(C)

−

K∑
k=1

γk(D◦)rk(i) −
K∑

k=1

γk(D◦)Wt−1(C′[k]) − (1 −
K∑

k=1

γk(D◦))Wt−1(C′)

⇐⇒

K∑
k=1

γk(D∗)rk(i) +

K∑
k=1

γk(D∗)Wt−1(C′[k]) + (1 −
K∑

k=1

γk(D∗))Wt−1(C′)

−

K∑
k=1

γk(D◦)rk(i) −
K∑

k=1

γk(D◦)Wt−1(C′[k]) − (1 −
K∑

k=1

γk(D◦))Wt−1(C′)

≥

K∑
k=1

γk(D◦)
{

Wt−1(C[k]) −Wt−1(C′[k])
}

+ (1 −
K∑

k=1

γk(D◦))
{

Wt−1(C) −Wt−1(C′)
}

Note that the LHS is non-negative, since D◦ is not necessarily the optimal decision at capac-
ity C′, and that the RHS is non-positive. To see the latter, recall that γk(·) are probabilities and
so

∑K
k=1 γk(D) and (1 −

∑K
k=1 γk(D)) are both positive, while both inner terms are non-positive

by the induction assumption: Wt−1(C[k])−Wt−1(C′[k]) =
∑N

j=0 α
i(Vt−1(C[k], j)− Vt−1(C′[k], j)

)
≤ 0,

and Wt−1(C) −Wt−1(C′) =
∑N

j=0 α
i(Vt−1(C, j) − Vt−1(C′, j)

)
≤ 0. Therefore the inequality holds

and Vt(C, i) is increasing in ck.
(iv) For any i ∈ I and positive integer n, the probability of n arrivals of item i approaches 1 as
the remaining time approaches infinity. Thus, items become unconstrained and the problem is
equivalent to the unbounded problem, with the same value function. �
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Proof for Proposition 3.2.2: From definition (3.7), we can replace rk(i) + Wt−1(C[k]) −Wt−1(C)
with Bk,

Vt(C, i) = max
Di

t∈D(C,i)

{ K∑
k=1

γk(Di
t)
(
rk(i) + Wt−1(C[k]) −Wt−1(C)

)
+ Wt−1(C)

}

= max
Di

t∈D(C,i)

{ K∑
k=1

γk(Di
t)Bk + Wt−1(C)

}
�

Proof for Lemma 3.2.3: We seek to show that if ∆Wt(C) has time-invariant ordering then Bk

are decreasing in time for any k, t, i, and C. Recall that Bk = rk(i) −
(
Wt−1(C) − Wt−1(C[k])

)
.

Decreasing in time implies

rk(i) − (Wt(C) −Wt(C[k])) ≥ rk(i) − (Wt+1(C) −Wt+1(C[k]))
⇐⇒ Wt+1(C) −Wt(C) ≥ Wt+1(C[k]) −Wt(C[k]))
⇐⇒ ∆Wt+1(C) ≥ ∆Wt+1(C[k])

From Proposition 3.2.1 (iii) it follows that Wt(C) ≥ Wt(C[k]), ∀t, and noting that Wt(C) =∑t
t′=1 ∆Wt′(C) holds for all t, and assuming a time-invariant ordering on ∆Wt(C), the inequality

and result holds. �

Proof for Theorem 1: The algorithm starts with all compartments k ∈ K closed. As a part of the
if statement, compartments are only opened if ck ≥ wi. Therefore, the algorithm must produce
a feasible result. Note that,

Vt(C, i) =

K∑
k=1

γk(Di∗)Bk + Wt−1(C)

=

K∑
k=1

di∗
k

(
uk +

K∑
x=k+1

ux

x∏
l=k+1

(1 − di∗
l )

)
Bk + Wt−1(C)

=

K∑
k=1

di∗
k ukBk +

K∑
k=1

K∑
x=k+1

di∗
k uxBk

( x∏
l=k+1

(1 − di∗
l )

)
+ Wt−1(C)

=

K∑
k=1

di∗
k ukBk +

K∑
k=2

k−1∑
x=1

di∗
x ukBx

( k∏
l=x+1

(1 − di∗
l )

)
+ Wt−1(C)

=

K∑
k=1

di∗
k ukBk +

K∑
k=2

uk

( k−1∑
x=1

di∗
x Bx

k∏
l=x+1

(1 − di∗
l )

)
+ Wt−1(C)

= u1di∗
1 B1 +

K∑
k=2

uk

(
di∗

k Bk +

k−1∑
x=1

di∗
x Bx

k∏
l=x+1

(1 − di∗
l )

)
+ Wt−1(C)

Notice that di∗
1 B1 = 0, if di∗

1 = 0, and di∗
1 B1 = B1, if di∗

1 = 1. Similarly, for a given
k = 2, 3, . . . ,K, di∗

k Bk +
∑k−1

x=1 di∗
x Bx(

∏k
l=x+1(1 − di∗

l )) evaluates to 0, if dx = 0 ∀x = 1, 2 . . . , k.



86 Chapter B. Proofs of Theorems

Otherwise, if at least one row is opened, the equation returns the benefit Bx of the highest row
x opened at or below k.

Let L(k,D) return the row-index of the highest row opened at or below compartment k given
a decision vector D: L(k,D) = max{k′ : di

k′ = 1 and k′ ≤ k}. Therefore, for k ≥ 2,

BL(k,D) = di
kBk +

k−1∑
x=1

di
xBx(

k∏
l=x+1

(1 − di
l))

and BL(1,D) = d1B1; for convenience, we define B0 = 0. Using this definition,

Vt(C, i) =

K∑
k=1

ukBL(k,D∗) + Wt−1(C).

Note that an upper-bound to Vt(C, i) is
∑K

k=1 uk maxk′≤k{Bk′} + Wt−1(C). That is, the value-to-go
is less than if you chould arbitrarily choose from any Bk below it, rather than only opened rows.
This is an upper-bound since we have removed a constraint.
Let D be a solution achieved by performing DSKPai. We show via contradiction that it must
be the case that the algorithm produces the upper-bound value. It is sufficient to show that
BL(k,D) = maxk′≤k{Bk′}, ∀k ∈ K. Suppose ∃k ∈ K, such that L(k,D) , arg maxk′≤k{Bk′} ≡ k̃.
If k̃ > L(k,D), then this contradicts the algorithm, since if Bk̃ > BL(k,D), then row k̃ would be
opened by the algorithm and L(k,D) = k̃. If k̃ < L(k,D), then this also contradicts the algo-
rithm, since if Bk̃ > BL(k,D), the algorithm would not have opened row L(k,D). Hence, we know
that BL(k,D) = maxk′≤k{Bk′}, ∀k ∈ K. Since the algorithm solution results in an upper bound on
the value-to-go, D = D∗. �

Proof for Corollary 3.3.2:
We must show that in t = 1 for any C and i, that Di?

1 = [1, 1, . . . , 1]. From Thereom 1, this
is equivalent to showing that BK ≥ BK−1 ≥, . . . ,≥ B1 ≥ 0. Bk = wi pk − (Wt−1(C) −Wt−1(C[k]))
and by the boundary condition, Wt−1(C) = 0 and Wt−1(C[k]) = 0. Thus in t = 1, Bk = wi pk.
Thus, this condition reduces to

pKwi ≥ pK−1wi ≥, . . . ,≥ p1wi ≥ 0
⇒ pK ≥ pK−1 ≥, . . . ,≥ p1 ≥ 0

which is true since we have assumed ordered pk. �

Proof of Proposition 3.3.3: We must show that given a time-invariant property on ∆Wt(C), for
all t, C and i, that Di?

1 = [1, 1, . . . , 1]. From Thereom 1, this is equivalent to showing that
BK ≥ BK−1 ≥, . . . ,≥ B1 ≥ 0. First observe from the definition of the time-invariant property,
for two rows l, k (l < k) and an arrival item with weight wi, either:
(1) Wt(C[l]) = Wt(C[k]), ∀t
(2) Wt(C[l]) ≥ Wt(C[k]), ∀t (with at least one strict), and Wt(C[l]) −Wt(C[k]) is increasing in t.
(3) Wt(C[l]) ≤ Wt(C[k]), ∀t (with at least one strict), and Wt(C[k]) −Wt(C[l]) is increasing in t.

To see the above cases, note that Wt(C[l]) =
∑t

j=1 ∆W j(C[l]), and Wt(C[k]) =
∑t

j=1 ∆W j(C[k]),
and that from time-invarance definition we may have, for all t: (1)

∑t
j=1 ∆W j(C[l]) =

∑t
j=1 ∆W j(C[k]);
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(2)
∑t

j=1 ∆W j(C[l]) ≤
∑t

j=1 ∆W j(C[k]); or (3)
∑t

j=1 ∆W j(C[l]) ≥
∑t

j=1 ∆W j(C[k]). Where for
the two inequality cases there is at least one strict inequality. In addition, for the two in-
equality cases, we also can observe: ∆Wt(C[l]) ≥ (≤)∆Wt(C[k]) ⇒ Wt(C[l]) − Wt−1(C[l]) ≥ (≤
)Wt(C[k]) −Wt−1(C[k])⇒ Wt(C[l]) −Wt(C[k]) ≥ (≤)Wt−1(C[l]) −Wt−1(C[k]).

Next, we show that Bk ≥ 0,∀k, t. At t = 1, Bk ≥ 0

⇐⇒ wi pk −

(
Wt−1(C) −Wt−1(C[k])

)
≥ 0

⇐⇒ wi pk ≥ 0

and since wi and pk are positive, the statement is true at t = 1. Asymptotically in the time-
horizon T , we have

lim
T→∞

WT (C) =

K∑
m=1

cm pm

lim
t→∞

WT (C[k]) =

k−1∑
m=1

cm pm + (ck − wi)pk +

K∑
m=k+1

cm pm

and hence asymptotically in the time-horizon T , Bk approaches zero,

lim
T→∞

Bk = lim
T→∞

(wi pk − (WT (C) −WT (C[k]))) = wi pk − wi pk = 0.

Finally, recall that from Proposition 3.2.3, we established that Bk is decreasing in time and
so Bk ≥ 0,∀t. Next we show that for l < k, ∀t: Bl ≤ Bk

⇐⇒ wi pl −

(
Wt−1(C) −Wt−1(C[l])

)
≤ wi pk −

(
Wt−1(C) −Wt−1(C[k])

)
⇐⇒ wi(pl − pk) ≤

(
Wt−1(C[k]) −Wt−1(C[l])

)
Clearly the left hand side is non-positive since pl ≤ pk. If the above cases (1) or (3) holds, then
Wt−1(C[k]) −Wt−1(C[l]) ≥ 0 and the result holds.

If the above case (2) holds, then Wt−1(C[k]) −Wt−1(C[l]) is non-positive and decreasing in t.
Thus Wt−1(C[k]) −Wt−1(C[l]) ≥ limT→∞WT (C[k]) −WT (C[l]). Since,

lim
T→∞

WT (C[k]) =

k−1∑
m=1

cm pm +

K∑
m=k+1

cm pm + (ck − wi)pk

lim
T→∞

WT (C[l]) =

l−1∑
m=1

cm pm +

K∑
m=l+1

cm pm + (cl − wi)pl

it follows that wi(pl − pk) ≤ Wt−1(C[k]) −Wt−1(C[l]) and the result holds. �

Proof for Proposition 3.3.4: From Lemma 3.3.2 we have, for t = 1, di∗
k = 1, for all i, k. Let t̂ be

the largest time-period t ∈ [1,T ), such that, for t = t̂, di∗
k = 1, and for t = t̂+1, di∗

k = 0; if di∗
k = 1,

for all t, then t̂ ≡ T , and the result holds and we are done. Observe that t̂ is well-defined. For the
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remaining proof we assume t̂ < T . Thus, for t ≤ t̂, BK ≥ max{0, B1, . . . , Bk−1}, and for t = t̂ + 1,
BK < max{0, B1, . . . , Bk−1}. For t = t̂ + 1, define lt̂+1 to be the row with the largest marginal
value, i.e. lt̂+1 = arg max{0, B1, . . . , Bk−1}, where lt̂+1 = 0 indicates Bk < 0. In order for the
result to hold it is sufficient to show that for all t > t̂, Bk < Blt̂+1 , which is equivalent to, for t > t̂,
δW

t (lt̂+1, k) > wi(pk − plt̂+1). Recall we are assuming three properties for δW
t (lt̂+1, k). For case

(A1), δW
t (lt̂+1, k) is increasing in t and hence the result holds. For case (A2), if the sequence has

a single local minimum, it implies that δW
t (lt̂+1, k) decreases in time until some time-period and

then increases. Since δW
0 (lt̂+1, k) ≤ wi(pk − plt̂+1), and δW

t̂+1(lt̂+1, k) > wi(pk − plt̂+1), we know that
the sequence must be increasing for all t > t̂, and hence the result holds. For case (A3), if the se-
quence has a single local maximum and δW

T (lt̂+1, k) > wi(pk−plt̂+1), then it implies that δW
t (lt̂+1, k)

increases in time until some period t′ and then decreases. Since δW
t′ (lt̂+1, k) ≥ δW

T (lt̂+1, k), and
δW

t′ (lt̂+1, k) ≥ δW
t̂+1(lt̂+1, k), and there is at most a single local maximum we know, for all t > t̂,

δW
t (lt̂+1, k) > wi(pk − plt̂+1) and the result holds. Hence t̃ = t̂. �

Proof of Proposition 3.3.5:
From DSKPai the result holds if BK ≥ BK−1 ≥ · · · ≥ Bk̃ ≥ 0 > Bk̃−1 ≥ · · · ≥ B1. By the first
case of the definition for k̃ we have Bk̃ ≥ 0, and di∗

k̃
= 1, and di∗

k = 0, ∀k < k̃. Need to show that
Bk is increasing in k: Bk ≥ Bk−1

⇐⇒ wi(pk) −
(
Wt−1(C) −Wt−1(C[k])

)
≥ wi pk−1 −

(
Wt−1(C) −Wt−1(C[k−1])

)
⇐⇒ wi(pk − pk−1) ≥ Wt−1(C[k−1]) −Wt−1(C[k])

which is by assumption and hence the result holds; if the second case of the definition for k̃
applies then the result holds trivially. �
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