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Abstract 

Post-hemorrhagic ventricular dilatation (PHVD) is highly predictive of mortality and 

morbidity among very low birth weight preterm infants. Impaired cerebral blood flow (CBF) 

due to elevated intracranial pressure (ICP) is believed to be a contributing factor. In this 

study, a hyperspectral near-infrared spectroscopy (NIRS) method of measuring CBF and the 

cerebral metabolic rate of oxygen (CMRO2) was used to investigate perfusion and 

metabolism changes in patients receiving a ventricular tap (VT) based on clinical signs of 

elevated ICP. To improve measurement accuracy, the spectral analysis was modified to 

account for compression of the cortical mantle caused by PHVD and the possible presence of 

blood breakdown products. From 9 patients (27 VTs), a significant increase in CBF was 

measured (15.6%) following VT (14.6 ± 4.2 to 16.9 ± 6.6 ml/100g/min), but no 

corresponding change in CMRO2 (1.02 ± .41 ml O2/100g/min) was observed. Post-VT CBF 

was in good agreement with a control group of 13 patients with patent ductus arteriosus and 

no major cerebral pathology (16.5 ± 7.7 ml/100g/min), while StO2 was significantly lower in 

these patients (58.9 ± 12.1 versus 70.5 ± 9.1% for controls). This study demonstrates that 

PHVD impedes CBF; however, no change in CMRO2 was observed.   
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Chapter 1  

1 Introduction 

1.1 Clinical Relevance 

1.1.1 Intraventricular Hemorrhage 

Intraventricular hemorrhage (IVH), which is a hemorrhage or bleeding from the germinal 

matrix into the ventricles, or the adjacent brain, is a common condition among very low 

birth weight preterm neonates and can lead to life-long neurological impairment such as 

cerebral palsy, neurological deficits or seizures. IVH is the most common form of 

neonatal intracranial hemorrhage and occurs mainly in preterm infants of less than 32 

weeks of gestation.1,2 The incidence of IVH ranges across different centers but is thought 

to be at least 25% of very low birth weight (<1500 g) premature infants with at least 

12,000 cases per year in the USA.3–5 In Canada, Radic et al. reported that severe IVH was 

associated with an increased risk of mortality and neurological disability among very 

preterm patients (≤ 30 weeks gestational age).6  Similarly, Synnes et al. reported a 29.4% 

overall incidence of IVH, among neonates born at less than 33 weeks gestational age, 

across Canadian neonatal intensive care units.7 In other countries the incidence rate of 

IVH has been reported to be even higher (42% in Korea and 64% in Iran) and was 

negatively correlating with gestational age and birth weight.8,9 Despite advances in 

neonatal care, IVH remains a problem as its incidence is correlated with the degree of 

prematurity and the survival rate for the smallest premature infants continues to increase.  

The pathogenesis of IVH is thought to be multi-factorial including contributions from an 

impaired autoregulation and the presence of a fragile germinal matrix in the premature 

brain. Autoregulation is the ability to maintain stable blood flow due to fluctuations in 

blood pressure. The germinal matrix is a highly vascularized region that produces 

neurons and glial cells in the developing brain, primarily between 8 and 28 weeks of 

gestation. The periventricular germinal matrix region decreases in thickness after 24 

weeks of gestation, disappearing by approximately 35 weeks.10  IVH begins in the 

periventricular germinal matrix as this region has a fragile vascular bed that is highly 
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susceptible to hemorrhage.11,12 The fragility of the germinal matrix vascular bed is 

thought to be due to weaknesses in the blood-brain barrier (BBB).13 Inflammation may 

also contribute to the pathogenesis of IVH. Preterm IVH has been associated with 

elevated levels of umbilical cord blood interleukins (IL-1β, IL-6, and IL-8),14–17 

inflammatory signals have been shown to cross the BBB in preclinical studies,18 and 

inflammation-related protein growth factors have been proposed as biomarkers of 

IVH.19,20 

Gene variants relating to inflammation, infection, coagulation, and vascular pathways 

have been proposed as potentially relating to IVH susceptibility. These include 

polymorphisms for genes that encode IL-1β, IL-6, and IL-4, tumor necrosis factor (TNF), 

coagulation factor V Leiden mutation, coagulation factor II polymorphism and 

prothrombin polymorphism.21,22 Recently, Ment et al. have suggested gene-environment 

interactions as possible contributors to the development of IVH.23  

Patients typically present with IVH within the first three days after birth. Most cases are 

asymptomatic and will resolve without intervention. However, in roughly a quarter of 

cases, IVH will progress either slowly or rapidly. When symptoms progress slowly, they 

present as a gradual deterioration of neurological status that may include a reduced level 

of consciousness, movement, tone, respiration and eye movement. When IVH progresses 

rapidly, patients can experience a catastrophic progression of symptoms including, 

bulging fontanelles, a change in the level of consciousness, decerebrate posture, and rapid 

decreases in blood pressure and hematocrit. 

In preterm infants, routine bedside cranial ultrasound (US) can be used to diagnose and 

monitor IVH progression. The severity of IVH is highly predictive of the severity of 

symptoms, co-morbidities and mortality.1 IVH can be divided into four grades based on 

the Papile classification24 depending on the extent of bleeding and ventricle dilatation. 

Grade I, the mildest form, is defined by bleeding within the periventricular 

(subependymal) germinal matrix with no blood in the ventricles. Grade II is characterized 

by bleeding confined to the ventricular space (based on sagittal US). Grade III is reached 

when the bleeding leads to a distention of the ventricles; usually with bleeding into >50% 
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of the ventricular volume. Grade IV is defined by the additional presence of 

periventricular infarction, bleeding into the brain parenchyma, in addition to distension of 

the ventricles due to bleeding. Grades III and IV are considered the most severe forms 

and have the highest association with life-long neurological impairments and risk of 

further complications;25–27 however, even Grades I and II IVH are  associated with poorer 

neurodevelopmental outcomes.28–30  

1.1.2 Post-Hemorrhagic Ventricular Dilatation 

Following a diagnosis of IVH, cranial ultrasound is used to monitor the progression of 

bleeding and potential occurrence of post-hemorrhagic ventricular dilatation (PHVD), 

which refers to the accumulation of cerebrospinal fluid (CSF) in the ventricles of the 

brain. Accumulation of CSF is thought to develop due to reduced reabsorption and 

impaired CSF communication following IVH. As CSF is continually produced by the 

choroid plexus of the ventricles, this leads to their progressive enlargement, elevated ICP 

and compression of the surrounding brain tissue. Figure 1.1 illustrates progressive 

ventricular dilatation via US images.

 

Figure 1.1: Progressive ventricular dilatation as measured by cranial US for patient in 

their third (left), fourth (middle), and fifth (right) weeks of life.  

While mild ventriculomegaly typically resolves without intervention, up to 80% of 

infants with Grade IV IVH and half of those with Grade III IVH will develop PHVD, 

which significantly increases the risk of permanent neurodevelopmental disability (Figure 

1.2).31–33 According to the National Institute of Neurological Disorders and Stroke, 
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PHVD is one of the most common sources of developmental disability in 

children.26,27,34,35 

 

Figure 1.2: The progression and resolution of IVH and PHVD with approximate 

proportions of populations. 

A number of potential causes have been proposed to explain PHVD. First is the blocking 

of cerebral aqueducts or interventricular foramina by blood clots.36 Alternately, fibrosis 

of the ependymal lining caused by inflammation following IVH may contribute to PHVD 

as normal cilial function of the ependymal cells is required for CSF circulation.37,38  High 

concentrations of pro-inflammatory cytokines have been found in the CSF of patients 

with PHVD. A recent study reported a causal relationship between inflammation and 

impaired ependymal ciliogenesis with the development of hydrocephalus. A further 

consideration is that elevated protein concentrations in the CSF may promote increased 

CSF production, to achieve osmotic balance.39  

PHVD is currently diagnosed based on clinical assessment and US evaluation. Clinical 

signs of PHVD include rapidly increasing head circumference, a tense anterior fontanelle, 

separation of cranial sutures, and symptoms of elevated intracranial pressure (ICP; apnea, 

vomiting, bradycardia, abnormal posture).40 Ultrasound can confirm suspected 

hydrocephalus by measuring the ventricle dimensions. The ventricular index (VI) is a 

composite measure of the size of the lateral and third ventricles at the level of the 
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foramen of Monro.41 An abnormal score that suggests PHVD is based on an anterior horn 

width greater than 4 mm, a third ventricle width greater than 3 mm, and a thalamo-

occipital dimension greater than 26 mm. PHVD can be defined by a VI exceeding 4 mm 

above the 97th percentile for gestational age.   

The definitive treatment of persistent PHVD is the placement of a ventriculo-peritoneal 

shunt to divert CSF from the brain to the peritoneal cavity.3 However, a shunt can 

become blocked by protein deposits and consequently its placement is often delayed by 

several weeks to allow blood clots to resolve and CSF protein levels to decrease. During 

this delay, intermediate interventions, such as repeated lumbar punctures, if CSF 

communication is preserved or ventricular decompression are often undertaken to 

alleviate elevated ICP. Ventricular decompression is the surgical removal of CSF by 

needle aspiration and is also known as a ventricular tap when performed at a single time 

point or as a ventricular drain when the needle and drainage apparatus is left in for a 

longer time period. 

Frequent surveillance of the ventricular size and HC is recommended as dilatation may 

arrest spontaneously. Ventricular decompression carries a risk of infection and 

consequently the number and frequency of taps must be weighed carefully against the 

risk.42,43 Given current uncertainties regarding the optimal time to perform a tapping 

procedure, there is a need for new methods of assessing the cerebral effects of PHVD. 

There is growing evidence of cerebral hemodynamic and metabolic disarrangement prior 

to the manifestation of clinical signs of elevated ICP. Olischar et al. reported abnormal 

background electrical patterns as determined by amplitude-integrated 

electroencephalography (aEEG) before signs of clinical deterioration, or ventricular 

dilatation became apparent in PHVD patients. Further, reversals in these changes were 

seen after CSF drainage.44 Using transcutaneous Doppler ultrasound, Hill and Volpe 

measured increased cerebral blood flow velocities in infants receiving treatment for 

hydrocephalus.45 Likewise, Norooz et al. found increased regional cerebral oxygen 

saturation as measured by near-infrared spectroscopy (NIRS) and improved aEEG 

patterns in patients with PHVD after ventricular decompression.46 The NIRS results were 

also confirmed by a subsequent study by Soul et al.47 These studies suggest that a means 
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of assessing cerebral oxygen delivery and/or energy metabolism could help guide 

treatment decisions in PHVD patients. NIRS is an obvious choice given measurements 

can be collected at the bedside, the technology is extremely safe, and it has the 

capabilities to measure both cerebral blood flow (CBF) and the cerebral metabolic rate of 

oxygen (CMRO2).
48–51 

1.2 Near Infrared Spectroscopy  

Near-infrared spectroscopy (NIRS) refers to a set of non-invasive, light-based methods 

that illuminate tissue with non-ionizing light to measure the concentrations of 

chromophores, which are light absorbing molecules. NIRS takes advantage of low light 

absorption by tissue in the near-infrared range (650 - 1000 nm), which enables light to 

penetrate beyond superficial layers and probe tissues up to a couple of centimeters deep. 

Importantly, there are only a few endogenous chromophores that exhibit distinct 

absorption features within the NIR window. These characteristic spectral features enable 

the concentrations of the chromophores to be differentiated. In particular, by determining 

the concentrations of oxy and deoxy-hemoglobin, tissue oxygen saturation can be 

calculated. 

1.2.1  History of NIRS 

The development of quantitative optical methods began in the 1940 when Glenn Millikan 

invented the muscle oximeter.52  Expanding on the ex-vivo work by Chance and Weber,53 

Jobsis performed the first in-vivo cerebral NIRS measurements in 1977. Jobsis 

demonstrated that the translucency of the scalp and skull allowed changes in cortical 

oxygenation caused by hyperventilation to be measured in adults.54 In 1985, NIRS 

monitoring of cerebral oxygenation was performed in neonates by Brazy et al.55 and in 

adults by Ferrari et al.56 Delpy and colleagues reported quantitative measurements of 

various parameters in newborns including changes in oxy- and deoxyhemoglobin 

concentrations, total hemoglobin concentration, blood volume and blood flow in 1986.57 

In 1988, Cope et al. demonstrated that absolute changes in chromophore concentrations 

could be measured if the optical pathlength through tissue was assumed.58 Soon after, 
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Delpy et al. made measurements of the mean optical pathlength, opening the door for 

absolute chromophore quantification.59  

The three primary endogenous chromophores in brain tissue within the NIR range are 

water, oxy-hemoglobin, and deoxyhemoglobin and their absorption spectra are shown in 

Figure 1.3. Their absorption properties are responsible for forming the local minimum in 

light absorption within the NIR range known as the ‘optical window.’ The upper limit is 

formed by the rapid increase in absorption by water above 920 nm. The lower limit of 

around 650 nm is due to the strong absorption by hemoglobin below this point. Within 

these limits, there is minimum light absorption, which enables light and hence NIRS 

methods to probe deeper tissues. By measuring absorption at multiple wavelengths, the 

absorption contribution from these and other chromophores (cytochrome oxidase and 

lipids) can be determined. Although water is a relatively weak absorber in the NIR range, 

it is found in such high concentrations in tissue (about 85% in the neonatal brain) that its 

effects on absorption in tissue are measureable. In addition, its distinct absorption 

features at 740 and 840 nm make it possible to separate it from oxy and deoxy-

hemoglobin.  
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Figure 1.3: Molar extinction coefficients for the three most important endogenous NIR 

chromophores: deoxyhemoglobin (HHb) and oxyhemoglobin (HbO2) Water has been 

multiplied by 106 to be visible. 

The most important endogenous chromophore is hemoglobin because of its strong 

absorption, which changes with oxidation state. This fundamental property enables NIRS 

to discriminate between deoxy-hemoglobin (HHb) and oxy-hemoglobin (HbO2) if light 

absorption is measured at a minimum of two wavelengths. The most commonly used 

NIRS oxygenation measure is regional tissue oxygen saturation (StO2), which is 

determined from [HbO2] and [Hb] by the following:  

 𝑆𝑡𝑂2  =
[𝐻𝑏𝑂2]

[𝐻𝑏]+[𝐻𝑏𝑂2]
 (1.1) 

 

1.2.2 Physical Principles of NIRS 

Light is attenuated when travelling through tissue by two primary interactions: absorption 

and scattering. The total light absorption depends on the wavelength-dependent 

properties of the chromophores present in tissue. Since absorption is proportional to 

chromophore concentration, it is the property most relevant to biomedical NIRS 
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applications. However, the primary interaction of light with tissue is by scattering, which 

varies with wavelength and depends on the size of particles within the tissue. 

Characterization of the attenuation of light within tissue requires understanding both of 

these effects. The basics of NIRS absorption and scattering are discussed in this section. 

As light propagates through a medium, light energy is transferred to particles in the 

medium, which can excite the particles to a higher energy state. When this results in a 

transfer of energy without the reemission of another photon, absorption has occurred. The 

mechanism of light absorption depends on wavelength. Low-energy NIR photons interact 

with matter non-destructively and energy is typically transferred by exciting molecular 

bonds, primarily by altering the dipole moment of a bond. Therefore chromophores must 

have one or more bonds that are able to change in dipole moment due to the vibrational 

energy excitation of a photon interaction.60  

Qualitatively, absorption is the reduction in light intensity while travelling through a non-

scattering medium. Bouguer first described in 1729 the loss of intensity as light travels 

through a medium. Lambert extended this idea to state that this absorbance was directly 

proportional to the thickness of the medium (i.e. the path length of the light). The fraction 

of light absorbed 𝑑𝐼/𝐼 is then proportional to the thickness of an infinitesimal layer, 𝑑𝑙, 

by a constant of proportionality referred to as the absorption coefficient, 𝜇𝑎.  

 
𝑑𝐼

𝐼
= 𝜇𝑎𝑑𝑙 (1.2)  

By integrating, we can derive the Lambert-Bouguer law. 

 𝐼 = 𝐼0𝑒−𝜇𝑎𝑙 (1.3) 

In 1852, Beer extended this law by relating 𝜇𝑎 to the concentration of a light absorber, 𝑐, 

in the medium, (Figure 1.4) which is known as the Beer-Lambert law: 

 𝐴 =  −𝑙𝑜𝑔 ( 
𝐼

𝐼0
 ) = 𝜇𝑎𝑙 =  𝜀 ∙ 𝑐 ∙ 𝑙  (1.4) 

where, 𝐴 is the absorbance and 𝜀 is the molar extinction coefficient of the chromophore.  
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Figure 1.4: The absorption of light through a non-scattering medium is a function of the 

chromophore concentration, the molar extinction coefficient and the path length.  

In the presence of multiple light absorbers the Beer-Lambert law can be extended linearly 

to include the contributions of each chromophore, as follow: 

 𝐴 =  𝜀1 ∙ 𝑐1 ∙ 𝑙 +  𝜀2 ∙ 𝑐2 ∙ 𝑙 +  … =  ∑  𝜀𝑖 ∙  𝑐𝑖 ∙𝑖 𝑙 . (1.5) 

Light scattering refers to the dispersion and redirection of light from its straight 

trajectory.  It is the most common interaction and the major source of attenuation within 

tissue. As light travels through tissue it encounters tissue boundaries, cell membranes, 

and large particles such as organelles, and will be reflected, refracted or redirected at each 

of these interfaces. Light scattering can be characterized in terms of scattering by 

particles that are small relative to the wavelength of light (Rayleigh scatter), larger 

structures (Mie scattering) such as nuclei and mitochondria of sizes on the order of the 

wavelength of light, about 1000 nm, and at interfaces between media with differing 

indices of refraction (Fresnel reflection). The most common mechanisms of scattering in 

the NIR range are Mie scattering and Fresnel reflection. Rayleigh scattering becomes 

more significant as the wavelength decreases and has only a minor contribution in the 

NIR range. Fresnel reflection refers to scattering that occurs at cell membranes which are 

much larger than the wavelength of NIR light and can therefore be considered boundaries 

between different media.61 Due to the vast number of such interfaces encountered by light 

in tissue, scattering is best described statistically. Mathematically, the attenuation of light 

due to scattering can be described by exponential decay: 
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 𝐼 = 𝐼0𝑒−𝜇𝑠𝑙 (1.6) 

where, 𝜇𝑠  is the scattering coefficient which represents the probability that a photon will 

experience a scattering event per unit length. The intensity, 𝐼, is a measure of non-

scattered light and is a function of direction, area, and position. Within tissue, scattering 

events far outnumber absorption events as different modes of scattering events may take 

place in succession and light becomes rapidly diffused. Scattering makes it difficult to 

model light propagation in tissue and complicates quantitative spectroscopy. The 

wavelength dependency of scattering can be approximated heuristically by a power law:62 

 µ𝑠′ = 𝐴 (
𝜆

500 (nm)
)

−𝛼

 (1.7) 

where 𝐴 and 𝛼 are constants determined experimentally or predicted by a combination of 

Mie and Rayleigh scattering.63 A thorough understanding of light scatter is essential for 

biomedical optical techniques, particularly in the use of Monte Carlo modelling to be 

discussed later.  

To accurately describe the behavior of light in tissue, we need to consider the 

directionality of scattering. The scattering angle can be described by the Henyey-

Greenstein phase function, which was originally developed to describe light scattering by 

small particles in interstellar dust clouds.64 This probability density function gives the 

likelihood of scattering events as a function of angle, 𝜃, given a factor, 𝑔, describing 

scattering anisotropy in the medium: 

 𝑝(𝜃) =
1

4𝜋
 

1−𝑔2

(1+𝑔2−2𝑔 cos 𝜃)
3

2⁄
 (1.8) 

The anisotropy factor, 𝑔, of a tissue is the statistical mean cosine of the scattering angle 

and can vary between 0 and 1. Most tissues have a high 𝑔 value, around 0.9, meaning 

high anisotropy, or primarily forwarded directed scattering events. However, within a 

diffusive medium light will undergo multiple scattering events, and rapidly lose 

directionality. At this point light transport is best described by diffusion and the light is 

said to be in the ‘diffusion regime.’ In this case it is useful to assume isotropic, non-

directional, scattering occurring with a probability of the scattering coefficient reduced by 

a factor of 1 − 𝑔. This probability, 𝜇𝑠ꞌ, known as the transport scattering coefficient, or 
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the reduced scattering coefficient, is a lumped parameter that describes the diffusion of 

photons through a r walk process of step-size 1/ 𝜇𝑠ꞌ. 

 𝜇𝑠′ = 𝜇𝑠(1 − 𝑔) (1.9) 

To perform quantitative in-vivo spectroscopy, several consequences of scattering must be 

considered. First, light in tissue will rapidly diverge and so at any detector position the 

detected light will be of a small fraction of the intensity of transmitted light. Second, due 

to multiple scattering events the mean path length travelled by photons will be much 

greater than the geometrical distance between the light source and detector. The mean 

path length will depend on the optical properties of the medium as well as the distance 

between emitter and detector. Additionally, scattering is wavelength dependent and so 

attenuation will be increased at shorter wavelengths where scattering is greater. To 

overcome these obstacles, the Beer-Lambert law can be replaced by the modified Beer-

Lambert law for scattering media: 

 𝐴(𝜆) = 𝐷𝑃(𝜆) ∑ 𝜀𝑖𝐶𝑖𝑖 + 𝐺(𝜆). (1.10) 

where 𝐴 is attenuation, 𝐷𝑃 is the differential path length (the mean path length taken by 

light in a scattering medium), 𝜀𝑖 is the molar absorption coefficient of the 𝑖th absorber, 

and 𝐶𝑖 is the concentration of the 𝑖th absorber, and 𝐺 is a term representing the proportion 

of light not detected due to scattering. A number of techniques have been developed to 

account for the effects of scattering and are discussed in Section 1.3. 

1.3 Modelling Light Propagation in Tissue 

1.3.1 The Diffusion Approximation  

The behaviour of NIR light, like any form of electromagnetic radiation, is governed by 

Maxwell’s equations. However, in a complex, heterogeneous, highly scattering medium, 

analytical solutions to Maxwell’s equations are impractical to obtain. Closed form 

solutions are further complicated by non-static scattering particles in tissues that are in a 

constant state of Brownian motion. To overcome these problems, it more useful to 

describe light as discrete photons that are elastically scattered and absorbed and governed 
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by the radiative transfer equation (RTE), also known as the Boltzmann transport 

equation:  

 [
1

𝜈

𝜕

𝜕𝑡
+ 𝑠̂ ∙ ∇ + 𝜇𝑎 + 𝜇𝑠] 𝐿(𝒓, 𝑡, 𝑠̂) = 𝜇𝑠 ∫ 𝐿

4𝜋
(𝒓, 𝑡, 𝑠̂)𝑃(𝑠̂, 𝑠̂ꞌ)𝑑Ωꞌ + 𝑆(𝒓, 𝑡, 𝑠̂) (1.11) 

where 𝐿(𝒓, 𝑡, 𝑠̂) is the radiance in the medium (units of W/m2sr) as a function of position 𝒓 

in the direction defined by unit vector 𝑠̂. The RTE is a balance equation describing the 

conservation of energy within a medium. Other parameters include the velocity of light in 

the medium, 𝜈, the scattering phase function, 𝑃(𝑠̂, 𝑠̂ ꞌ), the source term, 𝑆(𝒓, 𝑠̂, 𝑡) 

representing power injected into a unit volume, and the solid angle around 𝑠̂. 

Unfortunately because of the complexity of the RTE, it has no general analytical solution 

and must be solved by numerical methods. 

The RTE can be greatly simplified for diffusive media, such as tissue, in which scattering 

is much stronger than absorption (ie. 𝜇𝑠ꞌ ≫ 𝜇𝑎) and the radiance is nearly isotropic. 

Under these assumptions, the radiance is equal to the sum of an isotropic fluence, 𝜙, in 

units of energy or photons per unit volume, plus a small directional flux 𝐽: 

 
1

𝜈

𝜕𝜙(𝒓,𝑡)

𝜕𝑡
+ 𝛻 ⋅ 𝐽(𝑟, 𝑡) + 𝜇𝑎𝜙(𝑟, 𝑡) = 𝑆(𝑟, 𝑡) (1.12) 

Since 𝐽(𝐫, 𝑡) = −𝐷∇ 𝜙(𝒓, 𝑡), the diffusion approximation (DA) can be rewritten in terms 

of 𝜙only: 

 (
1

𝜈

𝜕

𝜕𝑡
− 𝐷∇2 +  𝜇𝑎)  𝜙(𝒓, 𝑡) = 𝑆(𝒓, 𝑡), (1.13) 

where 𝐷 is known as the diffusion constant:  

 𝐷 ≡
1

3[(1−𝑔)𝜇𝑠+𝜇𝑎]
≡  

1

3[𝜇𝑠ꞌ+𝜇𝑎]
. (1.14) 

Analytical solutions for particular boundary conditions can be obtained for the DA. For 

these solutions, the source is assumed to be an isotropic point and the scattering isotropic 

within the medium, simplifying the phase function to a constant factor. Assuming the 

source can be represented by an infinitesimal short pulse of light, the time-dependent 

solution to the DA for an infinite medium is given by: 

 𝜙(𝐫, 𝑡) = 𝜈(4𝜋𝐷𝑡)−3
2⁄  𝑒𝑥𝑝(𝜇𝑎𝜈𝑡) 𝑒𝑥𝑝 (

−𝑟2

4𝜋𝐷𝑡
) (1.15) 
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1.3.2 Monte Carlo Modelling 

The DA provides accurate results for larger source-detector distances (SDDs), in which 

the detected photons can be considered to be in the diffusion regime (i.e. to propagate 

isotropically) for relatively simple geometries, such as a semi-infinite medium. An 

alternative approach that does not rely on either of these conditions is Monte Carlo 

modeling. This is a statistical approach that can model light propagation outside of the 

DA, such as at small SDDs and for arbitrary propagation geometries.65,66 

Using probability functions to describe the likelihood of interactions between light and 

the medium, the behavior of vast numbers of independent photons can be simulated 

computationally. The simulated medium can be heterogeneous in terms of optical 

properties and of arbitrary geometry. Figure 1.5 outlines a simplified block diagram of 

the parallel Monte Carlo simulation of photon migration. In a heterogeneous simulation 

volume the optical properties of the medium are a function of position and boundary 

effects between media must also be considered. 
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Figure 1.5: Simplified flowchart for Monte Carlo simulation of light propagation in 

tissue.  

Monte Carlo modelling launches virtual photons into a volume at a user-defined position 

and direction. The distance until the first scattering event, or step size, is calculated based 

on the probability of a scattering event, defined by 𝜇𝑠. The probability of a photon having 

a particular step size is given by the following non-uniform probability density function: 

 𝑝(𝑠) = 𝜇𝑠𝑒−𝜇𝑠𝑠 (1.16) 

To sample this probability density function, a pseudorandom number, ξ, on the interval of 

0 to 1 is generated and will satisfy the following relationship: 

 ∫ 𝑝(𝑥)𝑑𝑥
𝑥

0
= 𝜉 (1.17) 
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Substituting equation 1.16 into equation 1.17, integrating and replacing ξ with (1- ξ) due 

to symmetry about 0.5, yields the following non-uniform random variable:  

 𝑠 = −
ln (𝜉)

𝜇𝑠
 (1.18) 

Next, the random scattering direction can be calculated. The scattering direction is 

defined by sampling the azimuthal angle ψ ∈ [0,2π] and the elevation angle θ ∈ [0, π]. 

The azimuthal angle is sampled uniformly over [0,2π], and the elevation angle is 

determined by sampling the Henyey-Greenstein function giving following random 

variable θ:  

 θ = {
cos−1 {

1

2𝑔
(1 + 𝑔2 − [

1−𝑔2

1−𝑔+2𝑔𝜉
]

2

)} 𝑓𝑜𝑟 𝑔 ≠ 0

cos−1(2𝜉 − 1) 𝑓𝑜𝑟 𝑔 = 0
 (1.19) 

Photons are assumed to be continuously attenuated by absorption during this process. At 

each successive scattering event the photon weight, or energy of the photon packet, can 

be calculated as a fraction of the packet’s initial weight. The reduction in weight, ∆𝑊, is 

calculated as  

 ∆𝑊 =
𝜇𝑎

𝜇𝑎+𝜇𝑠
𝑊. (1.20) 

By numerically sampling these three functions, Monte Carlo simulations allow the 

accurate modeling of light propagation within an arbitrary volume. The geometry and 

optical properties of the simulation volume can be specified by the user, and based on 

models of the head. When this process is repeated for millions of photons, the fluence 

within the simulation volume can be described spatially and temporally, and analyzed 

identically to actual NIRS data. Simulations of large numbers of independent photons is 

highly parallelizable and therefore the entire process can be accelerated by 

simultaneously computing the behavior of many photons using modern graphics 

processing units (GPUs).67  

1.4 Methods of In-vivo Spectroscopy 

There are a number of NIRS techniques that can be explained in terms of the type of light 

source and detection methods used. This section provides an overview of some of the 



17 

 

most commonly methods. All approaches presented attempt to provide quantitative 

measurements of chromophore concentrations by separating the effects of light 

absorption and scattering.  

 

Figure 1.6: A pictorial comparison of common NIRS methods: spatially resolved 

spectroscopy (top), time-resolved NIRS (middle) and frequency-domain NIRS (bottom). 

𝐼0 and 𝐼1 denote input and detected intensities, while 𝜙0 denotes phase difference. All 

methods analyze the transport of light through tissue in order to extract information about 

the optical properties of the medium. In spatially resolved spectroscopy light intensities at 

various source detector distances are compared. In time-resolved spectroscopy the 

temporal distribution of detected photons is analyzed. Frequency-domain NIRS relies on 

measuring phase and amplitude changes in the reflected light. 

1.4.1 Spatially Resolved Spectroscopy 

Spatially resolved spectroscopy (SRS) is a technique first demonstrated by Matcher et al 

in 199568 and it is the basis of many commercial systems (Figure 1.6). This technique 

requires relatively simple equipment including continuous discrete light sources and 
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inexpensive photodiodes for detection. Quantification is achieved by measuring light 

attenuation at multiple source-detector pairs.  

If we consider a semi-infinite, refractive index-matched geometry with a collimated light 

source incident at the surface (𝑧 = 0) at 𝑟 = 0 and a detector at 𝑟 = 𝑟𝑠𝑑, then the diffuse 

reflectance (light intensity in units of energy or photons) as a function of 𝑟𝑠𝑑, 𝑅𝑑(r𝑠𝑑) is 

given by69 

 𝑅𝑑(r𝑠𝑑) =
𝑧0

2𝜋
 
𝑒𝑥𝑝[−𝜇𝑒𝑓𝑓(𝑧0

2+𝑟𝑠𝑑
2 )

1
2⁄

]

𝑧0
2+𝑟𝑠𝑑

2 [𝜇𝑒𝑓𝑓 +
1

(𝑧0
2+𝑟𝑠𝑑

2 )
1

2⁄
], (1.21) 

where 𝑧0 (≈  1/𝜇𝑠) is the depth at which the source can be considered to be isotropic and 

has entered the diffusion regime. The effective attenuation coefficient, 𝜇𝑒𝑓𝑓, is defined as  

 𝜇𝑒𝑓𝑓 ≡  √3𝜇𝑎(𝜇𝑎 + 𝜇𝑠
ꞌ )  ≈  √3𝜇𝑎 𝜇𝑠

ꞌ , (1.22) 

since 𝜇𝑠
ꞌ  ≫ 𝜇𝑎. When 𝑟𝑠𝑑 is large, (𝑟𝑠𝑑  ≫ z0), which is true for commercial NIRS devices 

where 𝑟𝑠𝑑 is typically around 3 to 4 cm, equation 1.21 can be simplified to 

 𝑅𝑑( 𝑟𝑠𝑑) = 𝑧0
𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑟𝑠𝑑)

2𝜋 𝑟𝑠𝑑
2 [𝜇𝑒𝑓𝑓 +

1

𝑟𝑠𝑑
]. (1.23) 

Multiplying this expression by 𝑟𝑠𝑑
2  and taking the natural logarithm, yields 

 ln[𝑟𝑠𝑑
2  𝑅𝑑( 𝑟𝑠𝑑)] = −𝜇𝑒𝑓𝑓 𝑟𝑠𝑑 + ln (𝜇𝑒𝑓𝑓 +

1

𝑟𝑠𝑑
) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. (1.24) 

When 𝑟𝑠𝑑 ≫ 𝜇𝑒𝑓𝑓 the second term becomes a constant and a linear relationship is 

obtained between ln[𝑟𝑠𝑑
2  𝑅𝑑( 𝑟𝑠𝑑)] and  𝑟𝑠𝑑 with a slope of – 𝜇𝑒𝑓𝑓 as follows: 

 ln[𝑟𝑠𝑑
2  𝑅𝑑( 𝑟𝑠𝑑)] = −𝜇𝑒𝑓𝑓 𝑟𝑠𝑑 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡. (1.25) 

Thus by plotting ln[𝑟𝑠𝑑
2  𝑅𝑑( 𝑟𝑠𝑑)] versus 𝑟𝑠𝑑, for at least two source detector separations 

(𝑟𝑠𝑑) a direct estimate of 𝜇𝑒𝑓𝑓 can be obtained from the slope. As 𝜇𝑒𝑓𝑓 is a function of 𝜇𝑎 

and 𝜇𝑠
ꞌ , to measure each independently, additional information is required. Patterson et al. 

proposed measuring the total diffuse reflectance, 𝑅𝑑( 𝑟𝑠𝑑), over the entire surface in order 

to give the transport albedo and is which is equal to 𝜇𝑠
ꞌ /(𝜇𝑠

ꞌ + 𝜇𝑎).70 Other means of 
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estimating 𝜇𝑠
ꞌ  are available; for example, 𝜇𝑠

ꞌ  can be estimated from 𝑅𝑑( 𝑟𝑠𝑑) at small 𝑟𝑠𝑑. 

Liu et al. have proposed a method for using calibrated values of 𝑅𝑑( 𝑟𝑠𝑑) in order to solve 

for the intercept in equation 1.25 which can be manipulated to yield 𝜇𝑠
ꞌ .71 More typically, 

𝜇𝑠
ꞌ  of the brain is set to an experimentally measured value.62   

1.4.2 Time-Resolved NIRS 

Time-resolved near-infrared spectroscopy (TR-NIRS) was first introduced in 1988 by 

Chance et al.72 and Delpy et al.59 The technique relies on transmitting ultra-short pulses 

(frequently in the picosecond range) of light into the medium and measuring the temporal 

point spread function (TPSF) of transmitted light intensity with a detector with 

picosecond resolution (Figure 1.7). Because they require the use of ultrafast detectors and 

emitters, TR systems are more expensive and technically more complicated than CW 

systems. However, TR NIRS is quantitative as the mean optical path length can be 

directly measured from the mean time of flight (MTF) of photons. Furthermore, 𝜇𝑎 and 

𝜇𝑠
ꞌ  can be determined by modelling the TPSF by the diffusion approximately. For 

example, the time-dependent solution to the diffusion approximation for a semi-infinite 

geometry is given by the following: 

 𝑅𝑑(𝑟𝑠𝑑, 𝑡) = (4𝜋𝐷)−3
2⁄  𝑧0𝑡−5

2⁄  𝑒𝑥𝑝(−𝜇𝑎𝜈𝑡) 𝑒𝑥𝑝 (
−𝑟𝑠𝑑

2+𝑧0
2

4𝐷𝑡
) (1.26) 
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Figure 1.7: In time-resolved NIRS picosecond laser light pulses are transmitted into the 

medium and the TPSF of photons reaching the detector is recorded. Early arriving 

photons have a shorter optical path length and are more sensitive to the extra-cerebral 

tissue layers. Late arriving photons travel further and so have more sensitivity to deep 

tissues like the brain.   

1.4.3 Frequency Domain NIRS 

Frequency domain (FD) NIRS was first introduced by Chance et al. in 199073 and further 

developed by Duncan et al.74 and Fantini et al.75 FD-NIRS uses intensity-modulated light 

sources in the radio frequencies range, typically around 100 MHz. The light sources used 

are commonly inexpensive laser diodes or light emitting diodes (LEDs). The detectors 

measure light intensity (DC component) as well as the phase of the modulation light (AC 

component). When intensity-modulated light is transmitted through tissue, the phase of 

the intensity at the detector is related to the mean optical path length (Figure 1.6). In this 

sense FD NIRS is the frequency analogue of TR NIRS.76 As a result, changes in the 

amplitude and phase of detected light provide a method of measuring of absorption 

coefficient 75,77 from which absolute chromophore concentrations can be calculated. Due 
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to the need to modulate the light source and the requirement for fast detectors capable of 

capturing phase changes, FD NIRS systems are more complex than CW systems, but are 

less expensive than TR instrumentation. The main drawback of FD systems is phase 

noise.77  

1.4.4 Second Derivative Spectroscopy 

Second derivative spectroscopy, which was developed by Matcher and colleagues in the 

1990’s, measures light attenuation over the entire NIR range.78 This approach requires a 

broadband white light source to illuminate tissue and a spectrometer to detect reflected 

light intensity as a function of wavelength. This method takes advantage of the fact that 

the differential path length, 𝐷𝑃, and the scattering term, 𝐺, in the modified Beer-Lambert 

law, equation 1.10, are only weakly dependent on wavelength. If scattering is assumed to 

have an approximately linear dependence on wavelength, then its contribution to the 

second derivative of the measured attenuation spectrum is negligible. Consequently 

derivatives of 𝐷𝑃 and 𝐺 vanish from the second derivative of equation 1.10, leaving the 

following relationship between the second derivative of the attenuation spectrum (𝐴) and 

chromophore concentrations:  

 
𝜕2𝐴(𝜆)

𝜕𝜆2 = 𝐷𝑃(𝜆) ∑
𝜕2𝜀𝑖(𝜆)

𝜕𝜆2𝑖 𝐶𝑖 (1.27) 

With this approach, the mean differential path length (DP), can be determined by 

assuming a known tissue concentration of water. In brain the water concentration is 

approximately 85%48 which is known to be quite stable.79 With DP measured, the HHb 

concentration can be determined by its unique absorption feature around 760 nm (Figure 

1.8). Another advantage of derivative spectroscopy is it eliminates the effects of any DC 

effects such as caused by imperfect coupling between optical fibres and the tissue.  
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Figure 1.8: Endogenous NIR chromophore absorption spectra (top row) and their 

corresponding 1st and 2nd derivative spectra for HbO2, HHb and water. 

A disadvantage of this approach is the HbO2 concentration cannot be determined reliably, 

as it has no discernable second derivative features. However, this approach can be 

modified to overcome this issue by applying the diffusion approximation to both the first 

and second derivative spectra, which will be described in in section 2.4. 

1.4.5 NIRS Monitoring of Cerebral Hemodynamics and Metabolism 

The brain typically exhibits a high rate of oxygen metabolism80 and as such it is 

dependent on a consistent and regulated supply of oxygen. Therefore monitoring the 

supply of oxygen to the brain can be essential to assessing the impact of disease, 

particularly with cerebrovascular disorders.  
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As discussed earlier, the most commonly used NIRS index is StO2, primarily because it 

only requires relative HHb and HbO2 measurements (equation 1.1). Consequently, 

multiple inexpensive commercial CW NIRS systems are available that provide 

continuous StO2 monitoring.81 It is important to note, however, that StO2 is a composite 

indicator that depends on CBF, arterial oxygenation and the cerebral metabolic rate of 

oxygen (CMRO2). Because it cannot be directly related to either blood flow or oxygen 

utilization, some investigators have questioned if it represents the best marker of brain 

health.82 To overcome this, NIRS methods have been developed to directly measure CBF. 

The first approach used was a version of the Kety-Schmidt method83 wherein small 

changes in arterial oxygen saturation are induced as a blood flow tracer.84  

Alternatively indocyanine green (ICG), which is an FDA-approved optical dye, can be 

used as an intravascular contrast agent.85,86 The advantage of this approach is the 

considerable improvement in contrast to noise ratio due to the strong and distinctive 

absorption properties of ICG (Figure 1.9). Upon bolus injection, ICG rapidly binds to 

plasma proteins,87 which restricts it to the blood pool, until removed from the circulation 

by the liver with a biological half-life on the order of a few minutes. The details of this 

dynamic contrast-enhanced (DCE) NIRS method will be provided in more detail in 

section 2.4. 

 

Figure 1.9: The specific absorption spectrum of ICG. 
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A limitation of these bolus tracking approaches are that they only provide a single time-

point measurements of CBF. An alternative approach for measuring blood flow 

continuously that does not require a flow tracer is diffuse correlation spectroscopy 

(DCS),88–90 which is sensitive to blood flow due to the temporal signal fluctuations, 

known as speckle, caused by the movement of red blood cells. DCS measures blood flow 

changes by quantifying temporal fluctuations of NIR light reflected from a tissue. Light 

that passes through the scalp and skull enters the brain, where it is scattered by moving 

red blood cells within blood vessels. A portion of this light is reflected back to the tissue 

surface where it reaches the detector. Dynamic scattering from moving red blood cells 

causes the detected light intensity to fluctuate in time. The temporal intensity fluctuations 

can be used to generate an autocorrelation function, which in turn can be characterized by 

a version of the DA that includes a term to account for blood flow. The shape of the 

autocorrelation function has been shown to be correlated with tissue blood flow; 

however, the derived blood flow index is only a relative measure of CBF. One approach 

to get around this issue has been to combine continuous DCS data with a single 

measurement of CBF determined using ICG as a blood flow tracer.91 

The CMRO2 can be determined by combining NIRS measurements of StO2 and CBF. 

This approach is based the Fick principle, which defines CMRO2 from a mass balance 

equation. Namely, the rate that oxygen is consumed in brain tissue is equal to the 

difference between the amount delivered, which is proportional to CBF multiplied by the 

arterial saturation, and amount leaving, which is proportional to CBF multiplied by the 

cerebral venous saturation. Further details are given in Chapter 2. 

Clinical NIRS studies have reported relatively low CBF (~ 15 ml/100g/min) and CMRO2 

(~ 1 ml O2/100g/min) in the preterm brain compared to adults, reflecting the 

developmental state of the brain at this early age.50,51,92,93 

1.5 Research Objectives 

PHVD patients present a challenge to NIRS as ventricular dilatation and increased ICP 

leads to considerable reductions in the thickness of surrounding brain tissue (i.e., cerebral 

mantle). NIRS analysis techniques typically rely on the assumption that the reflected light 
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predominately interrogates brain tissue.  For patients with severe PHVD, the cerebral 

mantle can be reduced to roughly a centimeter, enabling light to penetrate ventricle space. 

An additional complication is the presence of blood breakdown products (BBP) in the 

ventricle following IVH. In the case of grade IV IVH, BBP could also be present in the 

surrounding tissue. Many BBP, including bilirubin, biliverdin, and methemoglobin, are 

strong NIR absorbers; however, NIRS analysis typically equates measured absorption to 

only oxy-hemoglobin, deoxy-hemoglobin and water.  

To address these challenges, the first goal of this study was to modify a previously 

developed hyperspectral (broadband) NIRS technique to account for variations in 

cerebral mantle thickness and possible BBP contamination.48 With this approach, 

measured spectra were analyzed using a solution to the diffusion approximation based on 

a slab geometry of finite-thickness to account for cortical mantle compression.94 Cortical 

thickness measurements were obtained from concurrent 2D US images. The 

chromophore quantification fitting routine was also modified to incorporate an 

experimentally derived BBP absorption spectrum.  

The second goal of this study was to predict how cortical mantle compression and the 

presence of BBP within the ventricular CSF could affect StO2 estimates derived with 

SRS using the standard semi-infinite solution to the diffusion approximation. Error 

analysis was conducted by Monte Carlo simulations for absorption measurements at two 

wavelengths and two SDD to reflect SRS approaches commonly used by commercial 

NIRS systems. 

The final objective of this work was to use broadband NIRS to investigate possible 

changes in CBF, StO2, and CMRO2 in PHVD patients selected to undergo a ventricle tap 

based on clinical assessment. Given the association of clinical signs such as apnea and 

bradycardia with elevated ICP, it was hypothesized that the tapping procedure would lead 

to an increase in CBF. The effects on CMRO2 were less certain considering that lower 

CBF can be compensated for by an increase in the oxygen extraction fraction (OEF).95 

The acquired spectra and hemodynamic measurements were also compared to data from a 

control group consisting of premature neonates diagnosed with patent ductus arteriosus 
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(PDA). This group was from a previous study and was chosen as none of the patients had 

major cerebral pathologies including moderate or severe IVH.48 
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Chapter 2  

2 Methods 

2.1 Patient Population 

As part of a prospective study, patients admitted into the neonatal intensive care unit and 

diagnosed with IVH on routine cranial ultrasound were enrolled following informed 

parental consent. IVH was graded based on the severity scale by Papile et al.24 Between 

April 2011 and February 2015, 57 patients were enrolled in the study, and of those, 10 

neonates developed PHVD that required interventional therapy. Ventricle taps (VTs) 

were used as the initial intervention based on clinical signs of increased ICP (spells of 

apnea and bradycardia, full and tense fontanelles), and qualitative evidence of increased 

ventricle size measured by ultrasound. Decisions on when to intervene were based on 

current clinical practice and the care team was blinded to the NIRS measurements during 

the study period. The study protocol was approved by the Research Ethics Board of 

Western University (London, Ontario). 

NIRS data from a previous study involving 13 preterm neonates (<30 weeks gestational 

age) diagnosed with PDA was used as the control group.48 These patients were selected 

to represent a normal population as none of the patients had a diagnosis of moderate or 

severe IVH (grade II-IV, Papile classification) or any major congenital malformation of 

the brain. The group mean StO2 (70.5 ± 2.4%) was within the expected range for stable 

preterm infants. Data acquisition was performed with the same broadband NIRS system 

used to acquire the spectra from the PHVD patients.  

2.2 Study Design 

After the decision to perform a VT was made by the neurosurgery team, two NIRS data 

sets were acquired: one 5 - 10 min prior to and the other 10 - 60 min after the VT. The 

range was greater for the post-tap acquisitions as it was delayed in neonates that required 

resuscitation. NIRS data were acquired from the fronto-parietal cortex by probes placed 

on the scalp and held in place by a custom-built holder strapped to the infant’s head. 
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Probes were repositioned to the same approximate head position for post VT 

measurements. The DCE NIRS protocol consisted of collecting a spectrum every 200 ms 

for a total duration of 80 s with ICG (0.1 mg/kg at a concentration of 0.5 mg/ml sterile 

water, BCD Pharma, Mississauga, Ontario, Canada) injected via a pre-existing venous 

catheter at the 10-s mark. The time-varying arterial ICG concentration was recorded 

simultaneously by a dye densitometer (DDG-2001 A/K, Nihon Kohden, Tokyo, Japan) 

attached to a foot.  

Mean arterial blood pressure (MABP), arterial oxygen saturation (SaO2), heart rate (HR), 

transcutaneous partial pressure of carbon dioxide (TcPCO2), and head circumference 

(HC) were recorded before and after VT. Other recorded clinical measures included the 

mode of ventilation and the total hemoglobin concentration, which was used to calibrate 

the arterial ICG concentration curve. The cerebral mantle thickness (CMT) was measured 

from a coronal ultrasound image taken within 24 hours of the VT through the anterior 

fontanelle at the level of the foramen of Monro. The CMT was calculated as the average 

distance measured from the ventricular border to the skull, lateral and superior to the 

ventricles on the head side of the NIRS probes (Figure 2.1).  
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Figure 2.1: An ultrasound image used to generate a CMT estimate of 11 mm (left and 

right sides). The CMT Is calculated as the mean of distances measured from the 

ventricular border to the skull, lateral and superior to the ventricle. 

2.2.1 CSF Analysis 

Spectral analysis was conducted on 2-ml samples of CSF collected during the VT. The 

absorption spectrum for each sample was determined with a spectrophotometer 

(Beckman DU-640, Beckman Coulter, USA) with respect to distilled water as a 

reference. As CSF is 99% water in healthy patients this additional absorption was 

attributed to BBPs. The mean absorption spectrum of all samples was incorporated into 

the chromophore quantification fitting procedure (see section 2.4 Data Processing).  

For the purpose of error analysis simulations, the CSF samples were divided into two 

groups based on the principle colours observed (yellow and red). Average absorption 

values for each group were included in Monte Carlo simulations performed to assess the 

influence of ventricular CSF on SRS StO2 measurements (see section 2.5 Error Analysis).  
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The scattering properties of CSF samples were assessed by measuring the TPSF of 

transmitted light (760 nm) using a previously developed TR NIRS system.91,96,97 The TR 

system consisted of a picosecond pulsed diode laser (LDF-P-C-810, PicoQuant, 

Germany) emitting at 802 nm coupled by a microscope objective lens (NA = 0.25, 

magnification = 10X) to a 1.5m long multimode fiber (NA = 0.22, 400 μm core; 

Fiberoptics Technology, Pomfret, CT). The laser output was 1.4 mW and the pulse 

repetition rate was 80 MHz.  Two variable neutral density filters (NDC-50-4M, Thorlabs, 

Newton, NJ) placed between the laser and optical fiber were used to adjust the power 

delivered to the samples. Transmitted light was collected with a 2 m fiber optic bundle 

(NA = 0.55, 3.6 mm active area; Fiberoptics Technology) and delivered to a Peltier-

cooled photomultiplier tube (PMC-100, Becker & Hickl, Germany). Photon detection 

generated an electrical pulse that was transmitted to a time-correlated single photon 

counting (TCSPC) module (SPC-134, Becker & Hickl, Germany). Because the TCSPC 

module had a dead time of 100 ns, the count rate was adjusted to a typical rate of 800 

kHz (1% of the laser pulse repetition rate) to minimize dead-time and pile-up effects.98  

The TPSFs of two CSF samples (one yellow, one red) and a reference water sample were 

measured in a transmittance mode with a source-detector separation of 2 cm by placing 

each sample in a custom 3D-printed polymer cuvette. The average of three hundred 

TPSFs were collected per sample and characterized by calculating the mean transit time 

and the full width at half maximum (FWHM). Since light scattering in pure water is 

relatively small,99,100 these parameters were used to assess potential increases in 

scattering in the CSF samples. 

2.3 Instrumentation 

NIRS measurements were acquired with an in-house developed, continuous-wave 

broadband NIRS system (Figure 2.2).48 The main components of the system are a 20-W 

halogen light bulb (Ocean Optics HL-2000-HP), with a band-pass filter to remove light 

outside the NIR range, and a spectrometer consisting of a holographic diffraction grating 

housed in a light-tight box (Sciencetech Inc., London, ON Canada) coupled to a Peltier-

cooled CCD camera (Wright Instruments Ltd, UK). The CCD chip was 1024 x 124 pixels 

in dimension and was operated as an array detector by binning the 124-pixel axis of the 
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CCD. The spectrometer has a spectral range of 680 to 980 nm and a resolution of 0.38 

nm per pixel. The light was delivered to the head by a 2-m long fiber optic bundle (3.5 

mm diameter, 0.55 numerical aperture). The detection fiber bundle had the same 

properties and collected reflected light at an interoptode distance of 3 cm.  

 

Figure 2.2: In-house developed, continuous-wave broadband NIRS system mounted on a 

cart for bedside use, consisting of a diffraction grating spectrometer (Sciencetech Inc., 

ON, Canada), coupled to a charge coupled device (CCD) camera (Wright Instruments, 

UK). 

2.4 Data Processing 

2.4.1 Quantifying Chromophore Concentrations 

Photon flux through the head can be modelled using solutions to the diffusion 

approximation for specific geometries. The most commonly used solution is for a semi-
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infinite medium, which is typically considered acceptable for infants as signal 

contamination from extra-cerebral tissues is small at source-detector separations of 

around 3 cm and greater.101 The adaptation of this approach to spectral analysis has been 

described previously.102,103 With this approach, the wavelength dependency of µ𝑠
′  is 

modelled by:62 

 µ𝑠
′ (𝜆) = 𝐴 (

𝜆

800
)

−𝛼

 (2.1) 

where 𝐴 is the value of µ𝑠
′  at 800 nm. The absorption coefficient is defined in terms of the 

three main endogenous chromophores in brain tissue (HHb, HbO2, water): 

 µ𝑎(𝜆) = [𝐻𝑏𝑂2] ∙ 𝜀𝐻𝑏𝑂2
(𝜆) + [𝐻𝐻𝑏] ∙ 𝜀𝐻𝑏(𝜆) + 𝑊𝐹 ∙ 𝜀𝐻2𝑂(𝜆) (2.2) 

where εi(λ) represents the molar extinction coefficient of the 𝑖th chromophore and WF is 

the water fraction in tissue. For DCE NIRS, equation 2.2 was expanded to include the 

molar extinction coefficient of ICG. 

Two modifications were made to the model to accommodate the analysis of spectra from 

PHVD patients. First, the solution to the diffusion approximation for a semi-infinite 

medium was replaced by the solution for a slab geometry, of known finite thickness, 

representing the thinned cortical mantle (see Figure 2.1). This solution is composed of an 

infinite series of terms representing photon flux from virtual sources of increasing 

distances, both positive and negative, from the true source location.94 Only the first five 

terms were included in the solution as this was found to be sufficient to provide 

convergence. The CMT was measured from US imaging as outlined in the section 2.2.  

The second modification was to add an additional chromophore to the definition of µa to 

account for possible light absorption from BBPs: 

 µ𝑎(𝜆) = [𝐻𝑏𝑂2] ∙ 𝜀𝐻𝑏𝑂2
(𝜆) + [𝐻𝐻𝑏] ∙ 𝜀𝐻𝑏(𝜆) + 𝑊𝐹 ∙ 𝜀𝐻2𝑂(𝜆) + 𝑘 ∙ 𝜇𝑎,𝐵𝐵𝑃(𝜆) (2.3) 

where 𝜇𝑎,𝐵𝐵𝑃 is the mean absorption spectrum across all CSF samples (in units of inverse 

length), and 𝜆 is the wavelength. The average absorption spectrum of all samples was 

used as differentiating between the red and yellow group averages did not have a 
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significant impact on the chromophore fitting. The scaling factor, 𝑘, is included as the 

exact concentration of breakdown products in the samples were not measured.  

Spectral analysis began by applying a wavelet de-noising algorithm that consisted of 

transforming Poisson noise to Gaussian noise, removing the latter by wavelet de-noising, 

and applying an inverse transformation to obtain noise-reduced spectra.104 Smoothing 

was performed using a 5-point moving average filter before generating a derivative 

spectrum to minimize noise contributions.  

Chromophore concentrations were determined by fitting the solution to the diffusion 

approximation to the first and second derivatives of measured reflectance data, 𝑅(𝜆) 

using five fitting parameters: [HbO2], [HHb], 𝑊𝐹, 𝐴 and 𝛼. First, 𝑊𝐹 was determined by 

fitting the second derivative spectrum of 𝑅(𝜆) to the water feature between 815 and 840 

nm, a range devoid of any hemoglobin features (see Figure 1.8). Using this 𝑊𝐹 estimate, 

[HHb] was determined by fitting the second derivative spectrum of 𝑅(𝜆) to the distinct 

760 nm HHb feature over the range from 680 to 775 nm. Finally, [HbO2], 𝑘, and the 

scattering parameters A and α were determined by fitting the first derivative spectrum of 

𝑅(𝜆) from 680 to 840 nm with WF and [HHb] fixed to the values obtained previously. 

Fitting was performed using a constrained optimization routine based on the MATLAB 

script fminsearchbnd with upper and lower boundaries set to span published values.102 

[HbO2] and [HHb] were determined from the mean spectrum acquired before ICG was 

injected and used to calculate StO2 according to equation 1.1. 

Cerebral blood flow was determined from the DCE NIRS approach mentioned in section 

1.4.5. With this approach, the passage of the dye through the brain microvasculature is 

modelled as a linear, time-invariant system. With this approach, the time-varying ICG 

concentration in brain, Ct(t), is related to CBF and the corresponding arterial 

concentration curve, Ca(t) by: 

  𝐶𝑡(𝑡) = 𝐶𝑎(𝑡) ∗ 𝐶𝐵𝐹 ∙ 𝑅(𝑡) (2.4) 

where ∗ indicates the convolution operator, and 𝑅(𝑡) is referred to as the impulse residue 

function. It represents the amount of ICG in brain following an ideal bolus injection of 

unit concentration.105 The flow-scaled impulse residue function, 𝐶𝐵𝐹 ∙ 𝑅(𝑡), is extracted 
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from 𝐶𝑡(𝑡) and 𝐶𝑎(𝑡) by deconvolution.91 The initial height of this function is equal to 

CBF since by definition 𝑅(𝑡) has an initial value of one, ie. 𝑅(𝑡 = 0) is zero. 

The CMRO2 was calculated based on the Fick principle: 

  𝐶𝑀𝑅𝑂2 =
𝐶𝐵𝐹∙𝐾

𝑓𝑣
∙ [𝑡𝐻𝑏] ∙ (𝑆𝑎𝑂2 − 𝑆𝑡𝑂2) (2.5) 

where 𝐾 represents the oxygen carrying capacity of hemoglobin (1.39 ml of O2 per g of 

Hb) and 𝑓𝑣 is the venous fraction of cerebral blood volume and is assumed equal to 

0.75.91  

2.5 Error Analysis 

To test for potential errors caused by a decreased CMT and the presence of BBP 

chromophores within the ventricular CSF, simulated StO2 data were generated by Monte 

Carlo modelling. Data were generated for a two-layer planar model designed to represent 

the two dominant tissues (brain and ventricles) in the PHVD head. Simulations were 

conducted for two wavelengths (730 and 810 nm) and two source-detector pairs (3 and 4 

cm), as these parameters are commonly used by commercial CW-NIRS systems.81 

Simulated light propagation was performed using the CUDAMCML106,107 software 

package. Photon reflectance data were generated for a range of the thicknesses for the top 

layer (10 to 30 mm) to reflect the range of the CMT observed clinically. The simulated 

data were analyzed by SRS, which again is commonly used by most commercial NIRS 

systems. Source-detector distances of 3 and 4 cm were chosen as they have been shown 

to be relatively insensitive to signal contamination from extra-cerebral tissues. At each 

CMT and each wavelength, one billion photons were launched into the simulation 

volume and the reflected light intensity recorded at the specified detector positions. 
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Figure 2.4: The simulation volume comprised of two layers (brain, ventricular CSF). 

Diagram also shows the two source-detector pairs. 

The absorption coefficient of the brain was set using equation 2.2 with a total hemoglobin 

concentration (tHb) of 15 g/dL, [HHb] and [HbO2] values corresponding to StO2 = 70%, 

a water fraction of 85%48 and 𝜇𝑠
′  of 1 mm-1.108 For the ventricle layer, 𝜇𝑠

′  = 0.01 mm-1 109 

and 𝜇𝑎 was varied over three conditions representing red, yellow and clear CSF (0.066, 

0.0096, 0.0021 mm-1, respectively, at 730 nm and 0.059, 0.0075, 0.0022 mm-1, 

respectively, at 810 nm). The 𝜇𝑎 values for red and yellow CSF were set to the values 

measured by spectrophotometry and 𝜇𝑎 for clear CSF was set to literature values for 

water.100 

StO2 was calculated using the SRS approach outlined in section 1.4.1.110 Briefly, taking 

the log of the reflected light intensity, 𝑅(𝑟), scaled by the square of the source-detector 

separation, 𝑟, results in the following: 

 ln[𝑅(𝑟) ∙ 𝑟2] = 𝑟 ∙ 𝑆𝑙𝑜𝑝𝑒 + 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 (2.6) 

where, 𝑆𝑙𝑜𝑝𝑒 is the slope of the reflectance loss between two r values and is given by:  

 𝑆𝑙𝑜𝑝𝑒 =  
𝜇𝑎

3(𝜇𝑎 + 𝜇𝑠
′)

 ≅  
𝜇𝑎

3 𝜇𝑠
′ (2.7) 
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If 𝜇𝑠
′  is assumed, typically 1 mm-1,101,109 then 𝜇𝑎 can be computed based on equation 2.7 

from the measured slope. [HHb] and [HbO2] can be determined from the 𝜇𝑎 values 

measured at 730 and 810 nm according to following relationship:81  

 [
[𝐻𝐻𝑏]
[𝐻𝑏𝑂2]

] = 𝐴−1 [
𝜇𝑎(𝜆1)
𝜇𝑎(𝜆2)

] , 𝐴 =  [
𝑎𝐻𝐻𝑏,𝜆1

𝑎𝐻𝑏𝑂2,𝜆1

𝑎𝐻𝐻𝑏,𝜆2
𝑎𝐻𝑏𝑂2,𝜆2

]. (2.8) 

where 𝑎𝑖,𝑗 are the absorption coefficients of HHb and HbO2 at wavelengths 𝑗. Then StO2 

can be calculated from equation 2.4. 

2.6 Statistical Analysis 

Non-parametric tests were used to assess the statistical significance of results. Mann-

Whitney U tests were performed to assess the difference before and after VT for CBF, 

StO2, CMRO2 as well as SaO2, HR, MABP, and TcPCO2. Wilcoxon Signed-Rank tests 

were used to determine significance between pre-VT PHVD data and the control group. 

Statistical significance of all tests was based on a 𝑃 value of < 0.05. Data are presented as 

mean ± standard error (SE) unless stated otherwise. 
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Chapter 3  

3 Results 

3.1 CSF Samples 

When collected serially, sample colour was initially dark red and transitioned to paler and 

paler yellow over time. The CSF samples collected during VT were found to fall into one 

of two categories based on colour (dark red or yellow) which are shown in Figure 3.1. 

This categorization was not unexpected given that common hemoglobin breakdown 

products may include ferritin and methemoglobin (dark brown/red) and bilirubin (straw 

coloured).111,112 The mean absorption spectrum for each group is illustrated in Figure 3.2. 

Spectra for individual CSF samples were normalized to their value at 650 nm to account 

for absorption variations due to concentration differences. The mean spectrum across all 

samples, which was used in the fitting procedure, is also shown. Although the samples 

could be separated based on colour by visual inspection, the NIR spectra all displayed the 

same general shape, of decreasing absorption observed with increasing wavelength. 

Given that the absorption spectrum of both oxy-hemoglobin and methemoglobin increase 

from 700 to 1000 nm,113 the measured spectra suggest that the CSF samples contained a 

significant concentration of bilirubin, which has been reported to exhibit a similar 

wavelength dependency to that seen in the samples.61 

 

Figure 1: Representative red and yellow CSF samples 
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Figure 3.2: Mean absorption spectra for the red and yellow CSF sample groups (4 and 9 

samples respectively) along with the mean of all samples (black). 

The FWHM of the measured TPSFs for the yellow and red CSF samples (560 and 585 ps, 

respectively) were very similar to that of water (559 ps) shown in Figure 3.3. Likewise 

the mean transit times of the yellow (466 ps) and red (470 ps) of the CSF samples were 

only 2% and 9% greater than that of water (462 ps). The close agreement between the 

mean transit times and FWHM of these three samples indicates that they have negligible 

scattering effects in the NIR range.  
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Figure 3.3: TPSFs of photons through CSF and water samples in transmittance mode. 

3.2 Patients Studied 

NIRS data were acquired from ten patients who required multiple VTs. In total, 27 taps 

were monitored. Data from three patients (7 taps) were excluded due to sizable artifacts 

in the arterial ICG curves caused by excessive foot motion. One additional set was 

removed due to the poor quality of the NIRS spectra, which was attributed to ambient 

light contamination. The remaining 20 taps from 9 patients were analyzed and the clinical 

measures of those patients are summarized in Table 3.1. Also, included in Table 3.1 are 

the relevant clinical data from the control group (N = 13).48 The Apgar score is a 

cumulative value received by a newborn on a scale of 0 to 2 over five criteria: 

Appearance (skin colour), Pulse (heart rate), Grimace (reflexes), Activity (muscle tone), 

Respiration (breathing rate and effort). The maximum Apgar score is 10. 
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 PHVD patients Controls 

Gestational Age at birth  

(weeks ± SD, [range]) 

26.9 ± 1.8 [24 6/7 - 29] 27 [24 3/7-35 5/7] 

Birth Weight  

(g ± SD, [range]) 

1011 ± 206 [750-1280] 1035 [630-2135] 

Sex  M=6, F=3 M=8, F=5 

Apgar 1 min (mean, [range]) 2.9 [1-8] 4 [2-8] 

   

Number of VT required  

(mean, [range]) 

2.4 [1-5] 0 

Age at first VT  

(days ± SD [range])  

17.7 ± 8.7 [7-35] n.a. 

EVD (N)  2 n.a. 

VP Shunt (N) 7 n.a. 

Neonatal death (N) 1 0 

   

Cortical Mantle Thickness (cm) 1.23 ± 0.3 [0.96-1.74] n.a. 

IVH (N)   

   Bilateral III 4  0 

   Grade IV(R)/III(L) 3  0 

   Grade IV(L)/III(R) 1  0 

   Bilateral IV 1  0 

Table 3.1: Clinical parameters of the 9 neonates with PHVD who required interventional 

ventricle tap. SD = standard deviation, EVD = extraventricular drain, VP = 

Ventriculoperitoneal shunt. 

3.3 Absorption Spectra 

Figure 3.4A presents the measured pre-tap spectrum from one PHVD patient with a CMT 

of 11 mm and diagnosed with bilateral Grade III IVH. For comparison, the figure 

includes the mean absorption spectrum from the control group. Figure 3.4B presents 

theoretical absorption spectra generated from the diffusion approximation for a semi-

infinite medium and an 11-mm thick slab. Spectra were generated with identical tissue 

properties (StO2 = 0.7, 𝜇𝑠
′  = 1 mm-1, water fraction = 0.85, and tHb = 150 g/L) to 
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illustrate the effects of a finite turbid layer thickness on the predicted reflectance 

spectrum. 

 

Figure 3.4: A) Measured head spectra from the control group (red) and a PHVD patient 

with CMT = 11 mm B) Simulated absorption spectra based on the principle 

chromophores (water and hemoglobin) in the brain using a semi-infinite (red) and 11-mm 

slab model (blue). 

Average first and second derivative spectra, pre and post-VT, are shown in Figure 3.5. 

Each patient’s spectrum was averaged over 50 repetitions acquired in the 10-s period 

prior to ICG injection. For reference, each graph includes the corresponding mean 

derivative spectrum for the control group. In general, the pre and and post-tap second 

derivative spectra were very similar to the control spectrum, specifically at the 760 nm 

Hb feature and water feature between 815 and 840 nm. In contrast, there was a noticeable 

downward shift in the first derivative spectra from the PHVD patients compared to 

control group; however, the differences between pre- and post-tap spectra were 

considerably smaller.  
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Figure 3.5: Average first and second derivative spectra prior to (blue) and after (red) tap. 

Each graph also includes the corresponding spectrum from the control group (black) 
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3.4 ICG Concentration Curves 

Figure 3.6 illustrates tissue ICG concentration curves measured by DCE NIRS acquired 

pre and post VT from one infant. In this example, CBF increased by 14.7% from 13.4 to 

15.4 mL/100g/min.  

 

Figure 3.6: Example ICG concentration curves measured by DCE NIRS pre (blue) and 

post (red) VT from a patient with bilateral grade III IVH. ICG is injected at around the 10 

second mark. The cerebral blood flow is related to the rate of increase of ICG 

concentration in the brain. 

3.5 Pre and Post Ventricle Tap 

Table 3.2 provides the average values of the fitting parameters from the spectral analysis, 

as well as CBF and CMRO2 before and after VT. Values were averaged over 20 data sets. 

A statistically significant (p-value < 0.01) average increase in CBF of 15.6% was 

observed following the tapping procedure, along with a significant increase in [HbO2] by 

14.2%. Corresponding differences in [HHb], StO2, OEF, and CMRO2 were small and did 

not reach significance. Likewise, there were no significant changes in the two scattering 

parameters, although the difference in  pre and post VT was close to significant. Also 

included in the table are the clinical parameters measured pre and post VT. Among the 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 20 40 60 80

IC
G

 C
o

n
ce

n
tr

at
io

n
 (

µ
M

)

Time (s)



44 

 

clinical data, only head circumference (HC) showed a significant change after the 

procedure with a reduction of about 1 cm.  

 

Parameter Pre Post Change (%) 
Significance 

(P value) 

CBF (ml/100g/min) 14.6 ± 1.0 16.9 ± 1.5 15.6 0.006 

[HHb] (µM) 15.2 ± 1.0 16.4 ± 1.4 10.2 0.50 

[HbO2] (µM) 26.3 ± 4.6 30.0 ± 4.4 11.9 0.035 

tHb (µM) 41.5 ± 4.8 46.4 ± 4.8 12.0 0.075 

SaO2 (%) 92.7 ± 0.8 91.8 ± 0.8 -1.0 0.13 

StO2 (%) 58.9 ± 2.7 61.0 ± 2.8 3.1 0.35 

CMRO2 (ml O2/100g/min) 1.00 ± 0.08 1.04 ± 0.10 4.9 0.33 

OEF 0.36 ± 0.03 0.34 ± 0.03 -7.1 0.078 

A (mm-1) 0.37 ± 0.04 0.34 ± 0.03 -7.3 0.22 

α 3.9 ± 0.32 4.4 ± 0.30 16 0.055 

     

HC (cm) 28.4 ± 0.1 27.5 ± 0.1 -3.1 < 0.001 

HR (bpm) 157 ± 0.4 159 ± 0.5 1.5 0.19 

MABP 51.8 ± 0.6 48.9 ± 0.5 -5.7 0.21 

TcPCO2 54.4 ± 0.8 56.5 ± 0.7 3.9 0.37 

Table 3.2: Group-averaged parameters before and after ventricle tap (mean ± standard 

error, N = 20).  

3.6 Comparison between PHVD Patients and Controls 

Average values of the spectral fitting parameters, CBF, OEF and CMRO2 from the 

PHVD group (pre-VT) and controls are given in Table 3.3. Significant decreases in StO2 

and [HbO2] along with a corresponding increase in OEF were observed when comparing 

PHVD patients to controls. However, no significant differences in CBF and CMRO2 

between the two groups were observed. Interestingly, α, which describes the wavelength 

dependency of scattering, was significantly higher in the PHVD group. 
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Parameter Controls PHVD Difference (%) 
Significance 

(P value) 

CBF (ml/100g/min) 16.5 ± 2.1 14.6 ± 1.0 -11.8 0.32 

[HHb] (µM) 12.9 ± 0.9 15.2 ± 1.0 17.9 0.051 

[HbO2] (µM) 32.0 ± 4.2 26.3 ± 4.6 -17.9 0.043 

tHb (µM) 44.9 ± 4.0 41.5 ± 4.8 -7.7 0.20 

     

StO2 (%) 70.5 ± 2.4 58.9 ± 2.7 -16.4 0.004 

CMRO2 (ml O2/100g/min) 0.90 ± 0.14 1.00 ± 0.08 10.5 0.084 

OEF 0.25 ± 0.02 0.36 ± 0.03 43.3 0.007 

     

A (mm-1) 0.35 ± 0.03 0.37 ± 0.04 9.6 0.51 

α 2.7 ± 0.1 3.9 ± 0.32 45.5 0.025 

Table 1.3: Average parameters (mean ± standard error) of PHVD patients (N = 20) 

compared to controls (N = 13). 

3.7 Error Analysis 

The StO2 measurements derived from the simulated data for the 2-layer model of the 

neonatal brain showed that StO2 was increasingly underestimated as the CMT was 

reduced to less than 15 mm (Figure 3.7). This underestimation, based on a non-scattering 

CSF layer, did not change when the 𝜇𝑎 values for red or yellow CSF samples were used 

instead of the values for water. 
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Figure 3.7: StO2 versus cerebral mantle thickness generated from Monte Carle modelling 

for CSF with 𝝁𝒂 values that reflect water (normal clear CSF), red and yellow CSF 

samples. Simulations show an underestimation of measured StO2 as the CMT is 

decreased below 15 mm while the model oxygen saturation remains constant at 70%. 
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Chapter 4  

4 Discussion 

NIRS has been proposed as a method of monitoring biomarkers in the brain to guide the 

management of PHVD patients.114 However, these patients have anatomical features that 

present challenges to NIRS. For this study the NIRS analysis method was modified to 

account for the thinning cerebral mantle caused by PHVD and the presence of BBPs in 

the ventricle space. This method was then applied to patients who were selected for VT 

based on clinical symptoms in order to investigate possible improvements in CBF and 

CMRO2 due to ventricular decompression. Additionally, baseline NIRS measurements 

were compared to a control group without any major cerebral pathology. Finally, error 

analysis by Monte Carlo simulations was performed to predict errors when applying 

conventional NIRS analysis techniques to this unique patient population. 

There is clear evidence from cranial US that the thickness of the brain is considerably 

reduced in PHVD patients. The mean CMT from the 9 patients enrolled in this study was 

1.2 ± 0.1 cm with a range from 1 to 1.7 cm, whereas, the CMT in a normal preterm brain 

would typically be greater than 2 cm. To investigate how compressing the mantle could 

impact the accuracy of NIRS, Monte Carlo simulations were performed using a two-layer 

model to represent the cerebral mantle and the ventricular space. Reflectance data were 

generated for SDD of 3 and 4 cm, which are recommended to minimize signal 

contamination from superficial tissue, and used to estimate StO2 by SRS. The simulations 

indicated that StO2 was increasingly underestimated as the CMT approach 1 cm due to 

the loss of light into the ventricles, which is not accounted for when the brain is modelled 

as a semi-infinite medium (Figure 3.7). These simulations indicate that analysis methods 

used by common commercial NIRS systems should be interpreted with caution when 

applied to this patient population. 

In this study, compression of the cortical mantle was accounted for by analyzing the 

measured spectra with a slab solution to the diffusion approximation, which is likely a 

more realistic description of light propagation through the head given the brain thickness 
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is not sufficient to be considered a semi-infinite volume.  This approach takes advantage 

of the fact that the CMT can be estimated by readily available US images. Interestingly, 

the changes in the reflectance spectrum predicted by the slab model were similar to those 

observed experimentally (Figure 3.4).  

A second consideration was the possibility of additional light absorption due to the 

presence of BBPs. To address this, absorption spectra from CSF samples were measured 

and incorporated into the fitting routine. Although, there are differences between the 

spectra for red and yellow CSF samples, their overall shapes were similar (Figure 3.2) 

and, therefore, the mean spectrum of all samples was used in the fitting procedure. Using 

a mean spectrum could result in errors due to time-dependent variations in the relative 

contributions of BBPs. However, it was found that characterizing the measured spectra 

was generally not improved by including 𝜇𝑎,𝐵𝐵𝑃(λ) as the best-fit estimate of the scaling 

factor 𝑘 was close to zero. In only two cases did including 𝑘 influence the fitting: pre-VT 

StO2 dropped from 74 to 49% in one case and from 65 to 60% in the other when 𝜇𝑎,𝐵𝐵𝑃 

was excluded. In these cases, which were both classified as Grade IV IVH, bleeding into 

the brain may have affected light absorption. The negligible contribution of 𝜇𝑎,𝐵𝐵𝑃(λ) for 

all other patients can be explained by the low scattering properties of CSF, as indicated 

by the TR-NIRS results showing minimal light dispersion compared to water. In this 

case, the ventricles would act as a light ‘sink’ since the amount of back-scattered light in 

the ventricles would be insignificant. These findings are in agreement with the Monte 

Carlo results that showed similar StO2 values across the range of CMTs regardless of 

whether 𝜇𝑎(λ) of the CSF layer was set to values of water or those determined from CSF 

samples.  

Regarding the clinical aim of this study, significant increases in CBF and [HbO2] were 

found following VT, likely due to reduced ICP as suggested by the corresponding 

reduction in head circumference. This finding is in agreement with Doppler flow and 

NIRS oxygenation studies that reported increases in their respective measurements 

following similar interventions.46,47,115 However, unlike previous studies that only 

provided indirect measures of CBF, such as the oxygenation difference signal (HbO2 - 

Hb), the use of DCE NIRS enabled CBF to be measured directly. The benefits were not 
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only to confirm that CSF removal does improve CBF, but also to show that the perfusion 

change was fairly modest with a mean increase of 15%. To put this in context, the same 

DCE NIRS approach was used previously to show that CBF decreased by 20 to 30% in 

preterm infants administered the vasoconstrictor indomethacin as treatment for patent 

ductus arteriosus.48,95 In that study, the reduction in CBF did not affect CMRO2 due to a 

compensatory increase in OEF. In light of these previous findings, it is not surprising that 

no significant decompression-related change in CMRO2 was found. Elevated OEF prior 

to VT would be expected to compensate for lower CBF. A trend towards a reduction in 

OEF after VT was observed, but it did not reach statistical significance. It is conceivable 

that extending the monitoring period may have detected subsequent changes in StO2 and 

OEF. It is also possible that the slab solution to the diffusion approximation did not fully 

model light propagation through the head. This solution assumes planar geometry and 

factors such as the curvature of the head and variations in CMT could lead to errors. 

Monte Carlo simulations incorporating segmented head models could be used to address 

these issues but are beyond the scope of this study.101 

The lack of an effect on cerebral energy metabolism is in line with Soul et al. who 

reported no change in cerebral cytochrome oxidase.47 Unlike Norooz et al.46, no 

significant change in StO2 was observed with treatment, which could be related to 

differences in the type of treatment and timing of the measurements. The Norooz study 

used external ventricular drainage for decompression and StO2 was measured 24 h after 

the procedure. Another discrepancy was that the mean pre-intervention StO2 (43%) was 

considerably lower than the value found in the current study (59%). This could be 

explained by patient selection differences between the studies, or StO2 may still be 

underestimated in the PHVD group due to uncertainty in US measurements of the CMT, 

although these measurement were made as close as possible to the NIRS probes to 

minimize errors. 

Compared to the control group, PVHD patients had significantly lower StO2 and higher 

OEF. These changes suggest reduced oxygen delivery, although it is not clear why 

treatment-related improvements were not detected considering the agreement between 

post-VT CBF and mean CBF from controls (16.9 versus 16.5 ml/100g/min, respectively). 
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A limitation is that StO2 and OEF were only measured at single times, and it is 

conceivable that extending the monitoring could have detected further oxygenation 

changes. Alternately, StO2 may still be underestimated in the PHVD group due to 

uncertainty in US measurements of the CMT, although these were made as close as 

possible to the NIRS probes to minimize errors. It is also possible that the slab solution to 

the diffusion approximation did not fully model light propagation through the head. This 

solution assumes planar geometry and factors such as the curvature of the head and 

variations in CMT could lead to errors. Monte Carlo simulations incorporating segmented 

head models could be used to address these issues but are beyond the scope of this 

study.101 Interestingly, it was also found that the fitting parameter α was greater in PHVD 

patients compared to controls, suggesting that the compression of the cortical mantle can 

alter the scattering properties of the tissue. 
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Chapter 5  

5 Summary 

5.1 Limitations and Future Work 

As mentioned in Chapter 4, a limitation with this study is that the DCE NIRS method 

only enabled CBF to be measured at single time points before and after the VT. 

Continuous CBF monitoring is possible using DCS and, in combination with DCE NIRS, 

the blood flow index can be converted into units of absolute CBF. The ability to monitor 

CBF and StO2 over extended periods of time could be used to monitor disease 

progression in order to detect sudden hemodynamic and/or metabolic changes that 

indicate the need for clinical decompression. These functional measures could also be 

combined with ventricular volume measurements from 3D US to determine if there is a 

relationship between ventricular dilatation and cerebral perfusion and metabolism.116 

Likewise, continuous monitoring after a VT could help understand its long-term effects 

since it is conceivable that the benefits treatment with regards to cerebral function 

manifests a few hours afterwards.  

Another potential limitation with this study was the difference between the location of the 

NIRS probes, which was on the scalp above the lateral-frontal region of the brain, and the 

location of the CMT measurements. These were of the fronto-parietal region from US 

images taken through the anterior fontanelle. Better imaging of the specific region 

interrogated by the NIRS probes could be performed by acquiring US images through the 

posterior fontanelle.  However this location was not practical with these patients who 

often did not respond well to being moved, which would be required for imaging through 

the posterior fontanelle.  

Finally the broadband NIRS data were collected at a single source-detector distance of 3 

cm, which was chosen to limit contamination from extra-cerebral tissues. At this 

distance, the depth penetration of light is of the order of 1.7 cm (the square root of the 

separation). Potentially, reducing the SDD could limit ventricular contamination however 

this would increase extra-cerebral contamination. Monte Carlo simulations including an 
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extra-cerebral layer could be performed to determine the optimal SDD to minimize both 

sources of signal contamination. Alternatively, multi-distance measurements could be 

obtained to characterize signal contributions from each extra-cerebral, brain and 

ventricular regions. 

5.2 Conclusions 

In summary, this work presents a NIRS method for monitoring CBF and CMRO2 in 

PHVD patients. The use of broadband NIRS, rather than a conventional system limited to 

measurements at a few wavelengths, enabled potential sources of error associated with 

this unique patient population to be investigated.  

The spectral results, along with Monte Carlo simulations, demonstrated that the most 

significant source of error was the compression of the cortical mantle. The spectral 

analysis routine was modified to account for this effect by incorporating US 

measurements of the cerebral mantle as well as potential signal contamination from 

BBPs.  

Using this patient-specific approach, it was found that VT was associated with a 

statistically significant increase in CBF and [HbO2], but had no significant effect on 

CMRO2, likely reflecting a compensatory increase in the OEF. Compared to controls, 

PHVD was associated with significantly lower StO2, lower [HbO2] and elevated OEF, 

which are indications of possible restricted oxygen delivery. These results suggest that 

NIRS could play a useful role is determining the impact of PHVD on patient health. 

Continuous monitoring achievable by incorporating diffuse correlation 

spectroscopy,48,98,117 would be beneficial to investigate longer-term perfusion and 

metabolic changes leading up to and following clinical interventions such as VTs.  
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