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Abstract 

The direct long-fiber reinforced thermoplastic (D-LFT) process is a streamlined material 

processing technique which includes various types of equipment. It is imperative to understand 

how the process and its operating conditions affect degradation and thermal properties of the 

processed material for industry applications. This study investigates effects of process stages, 

extruder temperature, and screw speed on molecular weight and thermal properties of glass 

fiber reinforced polyamide 6 (PA6) composites throughout the D-LFT process. Viscosity 

number (VN) measurements, thermogravimetric analyses (TGA) and differential scanning 

calorimetry (DSC) analyses were performed on collected samples. In conclusion, it was found 

that thermo-oxidative degradation is the main degradation mechanism of the glass fiber 

reinforced PA6 composites during the D-LFT process. Therefore, minimizing temperature and 

residence time of the extruders as well as exposure time of plastificate to atmospheric 

conditions along the conveyer is an effective way to minimize degradation of PA6. 
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Chapter 1  

1 Introduction 

Fiber reinforced polymer is a light material which has good mechanical properties and 

is one of the most versatile materials available to engineers today [1]. Since their 

introduction to industry markets in the 1960s, fiber reinforced polymers have been utilized 

in various industries, such as transportation, sporting goods, construction, and more [2]. 

The wide adoption of this material is a result of its ability to be tailored to meet specific 

requirements, which can be achieved through selections of materials and process 

techniques. For many years, the transportation industry, such as the aerospace and 

automotive industries, has been replacing high-density materials with fiber reinforced 

polymers.  

There are two types of polymers: thermoplastics and thermosets. The resin type 

determines what process techniques can be utilized. A thermoset is created when liquid 

resin is converted into a hard rigid solid by cross-linking, which leads to formation of a 

tightly bound three-dimensional network [3]. The cross-linking process is irreversible and 

is performed typically after fibers are incorporated into liquid resin. The most commonly 

used thermosets are epoxy, unsaturated polyester and vinyl ester. A thermoplastic, unlike 

a thermoset, is not cross-linked but rather derives its strength from long molecules which 

provide molecular entanglements [3]. The melt-solidification process of a thermoplastic is 

reversible through heating, which causes disentanglement and a change from a rigid solid 

to a viscous liquid [3]. The most commonly used thermoplastics are polyethylene and 
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polypropylene. The automotive industry has been utilizing both fiber reinforced thermosets 

and thermoplastics in various applications. Fiber-reinforced thermoplastics are typically 

chosen for parts requiring a high level of production and short cycle times while fiber-

reinforced thermosets are commonly employed for those requiring high mechanical 

properties or higher service temperatures. It has been more common for the automotive 

industry to use fiber reinforced thermosets [4]. However, a long-fiber reinforced 

thermoplastic (LFT), which has high mechanical property, is increasingly used due to 

advancement of their processing techniques. 

1.1 Processing techniques for long-fiber reinforced 
thermoplastics 

Typically, a composite which has an average fiber length greater than 2 mm is 

considered to be a long-fiber reinforced thermoplastic (LFT) [5]. Process techniques of 

long-fiber reinforced thermoplastics can be divided into two categories: indirect process 

and direct process. 

1.1.1 Indirect process 

Indirect process utilizes semi-finished products, which are made by mixing all the 

ingredients in a step that is separate from the molding operation. 

A glass mat thermoplastic (GMT) is a semi-finished sheet that was developed at the 

end of the 1960s [5]. GMT can be either a continuous woven mat or long fibers (>12.5 – 

100 mm) imbedded in a thermoplastic matrix [5]. One of the processes to manufacture 

GMT is the molding impregnation in double band presses, in which a thermoplastic is first 

melted via an extruder and ejected between two continuous rolls of fiber mats and 
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consolidated in a double belt press. GMT is cut to a required size, which is predetermined 

by the final shape of the part, and is then heated and compressed in a mold by a press. 

Advantage of this process is that a final product has a homogeneous fiber distribution. 

However, since GMT is a semi-finished product, molding operation must be done in a 

separate stage, which increases matrix degradation as well as process time and cost [6]. 

Also, GMT has restricted in-mold flow capabilities due to the fact that the tightly woven 

fiber mat prevents the fibers from flowing during compression, thus requiring the GMT 

size to be close to the final size of the part [5]. 

The long-fiber reinforced thermoplastic granulate (LFT-G) is another type of a semi-

finished product. The semi-finished product in this technique is long-fiber reinforced 

thermoplastic pellets, which can then be processed in injection molding, injection 

compression molding, or extrusion compression molding [6]. Long-fiber reinforced 

thermoplastic pellets are prepared by wirecoating, crosshead extrusion, or several 

pultrusion techniques [5]. This process allows us to manufacture a final product with 

complex geometry. The major drawback of this process technique is fiber breakage during 

molding operation. The fiber length is originally constrained by the length of the pellets 

and further decreased by a screw in a plastification unit of a molding machine [5]. 

1.1.2 Direct process 

The direct long-fiber reinforced thermoplastic (D-LFT) process incorporates multiple 

process stages into a single production line, removing the need for semi-finished products. 

The D-LFT process, depicted in Figure 1.1, is a one-stop manufacturing process starting 

from raw materials to a final product, and includes various types of equipment.  
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Figure 1.1 Schematic of D-LFT process with identified equipment. 

The process is summarized as follows: dried polymer pellets, along with any required 

additives (such as heat stabilizers, flame retardants, colorants, etc.), are gravimetrically fed 

into the first twin-screw extruder to be blended. A film die, which is attached to the end of 

the first extruder, transfers the blended, molten plastic into the second extruder. The plastic 

is briefly introduced to atmospheric conditions at a molten state as it flows from the film 

die into the second extruder. The molten plastic is then combined with continuous fibers in 

the second extruder, which are pulled directly into the extruder from continuous bobbins. 

The glass fiber strands are wrapped around the screws within the second extruder and are 

broken down into appropriate fiber lengths, typically 5-50mm [6]. The plastificate, which 

is the molten LFT charge that is formed in the second extruder, is ejected onto the conveyor 

where it is cut into an appropriate shot size using a shear cutter. Finally, the plastificate is 

transferred to a compression molding machine to shape and solidify the plastificate into 

the final part.  

Since the initial development of the D-LFT process, the optimal operating conditions 

have been an area of study [5] and LFTs have continued to be introduced to new 
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applications, such as in the automotive industry [7]. Although the D-LFT process removes 

the separate processing of semi-finished products, the energy intensive processes that are 

used in the direct process of LFTs can influence material properties of the product. It is, 

therefore, advantageous to select polymer matrix that is not highly susceptible to energy 

intensive process, as doing so allows for a larger process window. Polypropylene (PP) has 

been widely used as a polymer matrix in the D-LFT process because of its good 

processability, its ability to be tailored for specific applications, and its retention of 

mechanical properties after recycling [8] as well as its low melting temperature. PP is a 

highly crystalline polymer that leads to greater stiffness, tensile strength, modulus and 

hardness [9]. However, PP does not have as good mechanical and thermal properties as 

engineering plastics. Polyamide 6 (PA6) is a good candidate as a polymer matrix in the D-

LFT process because it has high toughness over a large range of temperature, good impact 

and abrasion resistance, lubricity, and resistance to organic solvents [10]. PA6 has a range 

of possible applications, including those requiring thermal stability, fire resistance, and 

good mechanical properties [10]. Despite its mechanical performance, PA6 can be limited 

by its susceptibility to degradation [10][11][12][13][14][15]. 

1.2 Background 

1.2.1 Effects of Process Conditions of Extruder on Properties of 
Fiber Reinforced Thermoplastics 

As mentioned above, the D-LFT process includes tandem twin-screw extruders (i.e., the 

first and second extruders), which are the main components of the D-LFT process. There 

has been extensive study into the effect of extruder process conditions on the produced 

materials [16][17]. Stade [18] was the first to discuss the basic concepts and approaches 
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for the production of a glass fiber reinforced thermoplastics. It was stated that one of the 

most basic requirements for the compounding of fiber reinforced thermoplastics is the 

limitation and control of the thermal degradation of the base polymer, which is a resultant 

of the energy imposed on the polymer. This study was an important establishment in 

research and provided insight into how the properties of fiber reinforced thermoplastics are 

dependent on process techniques used.  Stade showed that the energy imposed on the 

polymer from the process is dependent on the polymer’s melt viscosity and can be 

influenced by the temperature within the extruder. From this study, further research into 

the effect of temperature and other process conditions on properties of fiber reinforced 

thermoplastics has continued. 

Important process parameters for the optimization of an extrusion process are the screw 

speed and barrel temperature of the extruder [17][19]. These two parameters have an 

influence on material properties of the product as shown below. 

1.2.1.1 Screw Speed 

Capone et al. [20] studied thermal and mechanical degradation of polystyrene (PS) and 

Poly(methyl methacrylate) (PMMA) during extrusion. The results showed that the increase 

of screw speed reduced loss in molecular weight of the polymers, which was considered to 

possibly be a result of the shortened residence time in the extruder and the reduction in 

shear stress on the polymer due to the wall slip phenomena. Yilmazer and Cansever [21] 

presented a study on the influence of process conditions on fiber length in the extrusion 

and subsequent injection molding process using glass fiber reinforced PA6. It was shown 
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that when the shear rate (i.e., screw speed and/or feed rate) inside the twin-screw extruder 

was increased, the average fiber length was decreased. 

1.2.1.2 Extruder Temperature  

Popescu et al. [22] used mathematical and experimental techniques to predict the 

mechanical properties of glass fiber reinforced polyamide 6.6 when processed under 

different extruder temperatures (a polyamide resin similar to PA6). This study shows that 

the extruder temperature can have an influence on the physical properties of the final 

product. Salleh et al. [23] investigated the effect of extruder temperature on the rheological, 

dynamic mechanical and tensile properties of kenaf fiber reinforced high density 

polyethylene (HDPE). It was found that high extruder temperature resulted in increased 

complex viscosity, storage and loss modulus and improved tensile modulus of extruded 

composites. Kelly et al. [24] showed that, for a single screw extruder, the screw geometry 

can have a significant effect on the melt temperature profile of the polymer in the extruder. 

Also, Vera-Sorroche et al. [25] discussed the importance of melt homogeneity on polymer 

quality and studied how it is influenced by screw geometry, screw rotation speed and set 

temperature. It was found that each of these screw conditions has a significant effect on the 

thermal homogeneity of polymer melt within the extruder, which affects the quality of the 

polymer produced.  

1.2.2 Properties of Polyamide 6 

The effects of variation in processing conditions on fiber length and fiber distribution in 

the PA matrix have been one of the main research interests because fiber length and fiber 

distribution affect the mechanical properties of fiber reinforced PA6 composites [21]. 
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However, it is also important to study the effects of process condition on properties of the 

PA6 matrix such as molecular weight, thermal decomposition, and crystallization; the next 

section reviews these properties. 

1.2.2.1 Molecular Weight of Polyamide 6 

Polymer degradation can occur through heat, shear, oxidation, or a combination of the 

three mechanisms. These degradation mechanisms influence the molecular structure of a 

polymer primarily though breaking of bonds in the main polymer chain [26]. Chain scission 

and cross-linking occur in polyamides during a composite process and affect their 

molecular weight [10][27][28][29]. The competition between chain scission and cross-

linking dictates decrease [29], increase [30], and their combination [31][32] of molecular 

weight of polyamides. 

Lozano-González et al. [30] injection-molded PA6 repeatedly over a range of 10 

cycles. Results from gel permeation chromatography (GPC) showed that molecular weight 

of the PA6 was increased with each reprocess cycle and postulated that the recombination 

of broken chains was the dominant reaction. However, Su et al. [32] injection-molded PA6 

repetitively over a range of 16 cycles. GPC results showed that a reduction in the molecular 

weight and an increase in the molecular weight distribution, and they suggested that chain 

scission was the predominant reaction. Crespo et al. [33] and Lee et al. [34] also reported 

that melt viscosity of PA6 decreased with increasing process cycles in the repeated 

injection molding and repeated extrusion, respectively. 
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1.2.2.2 Thermal Decomposition of Polyamide 6 

Beyler and Hirschler [26] raised the importance of a distinction between thermal 

degradation and thermal decomposition and used the definition of the American Society 

for Testing Materials (ASTM). Thermal decomposition is the “process whereby the action 

of heat or elevated temperature on an item causes change to the chemical composition” 

[35]. Thermal degradation is the “process whereby the action of heat or elevated 

temperature on a material or assembly causes an adverse change in one or more properties” 

[35]. The difference between these two phenomena is important to this current study 

because one of its objectives is to quantify the degradation of a material sample through 

analysis of the decomposition profile.  

In almost all cases, heat must be supplied to a material for it to reach a temperature 

where adverse changes to the material’s properties occur, such as a loss of physical, 

mechanical, or electrical properties, otherwise known as a point where thermal degradation 

ensues [35]. A material’s ability to resist these changes despite elevated temperatures is a 

measure of its thermal stability. Also, due to heating or elevated temperatures, it is possible 

for chemical species changes to begin to occur, otherwise known as thermal decomposition 

[35]. The decomposition process may either generate (exothermic) or utilize (endothermic) 

additional heat [26]. The magnitude of this energy generation or energy requirement, which 

is subject to change as decomposition continues, can be measured by differential thermal 

analyses (DTA) [26]. The amount of energy either absorbed or given off is dependent on 

the chemical composition of the material and the decomposition mechanisms [26]. 

Activation energy is a measurement of the material’s energy production or usage of energy 

during decomposition. 
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Decomposition of solid material is a complex process in which the relationship between 

mass loss and time is established as the result of varying degrees, and is affected by both 

sample properties and measurement conditions [36]. The use of thermogravimetric analysis 

(TGA) to determine thermal stability and decomposition behavior has attracted much 

attention [37][38][39]. However, the kinetics parameters, such as activation energy, are 

highly dependent on the experimental conditions and mathematical treatment used for 

evaluation [40]. As a result, there has been much comparison of, and discussion about the 

accuracy of, and mathematical models for decomposition kinetics [40][41][42][43]. 

Despite differences that arise between experimental conditions and mathematical 

treatment, activation energy has still been widely used in experimental studies to describe 

decomposition kinetics. Scully and Bissessur [44] used activation energy to determine the 

graphite filler content in PA6 that produced the greatest enhancement to thermal stability. 

In a similar study, Pashaei et al. [45] used activation energy to determine changes in the 

thermal stability of PA6 after inclusion of glass fibers compared with nanocomposites. Not 

only has activation energy been used to assess the effect of additives on decomposition 

kinetics, but also the effect of process and post-process conditions. Zou et al. [46] used two 

mathematical models (Kissinger and Ozawa) comparatively to determine the effect of 

thermo-oxidative degradation on activation energy in long glass-fiber reinforced PA6. 

Their study found that the Ozawa method was more suitable for supplying reliable 

information with their experimental conditions and found that the thermo-oxidative 

degradation modified the flammability and decomposition behavior of the reinforced 

composites.  
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Another method for the determination of activation energy is the Ozawa/Flynn and 

Wall method, which is described in ASTM E1641-15 [47] and is the method used in this 

study. The purpose of this experiment is to follow the procedures used in previous research 

to analyze how the thermal stability of PA6 changes throughout the process. It was 

expected that the thermal stability would decrease during the process as the material more 

easily decomposed due to the increased degradation of the molecular structure.  

1.2.2.3 Crystallization of Polyamide 6 

As a semi-crystalline polymer, PA6 has a structural network that is highly dependent on 

process conditions and thermal treatment [48]. The crystalline and amorphous regions of 

the PA6 structure have a complete and mostly-complete satisfaction of hydrogen bonds, 

respectively [49]. The configuration of the crystalline region can adopt one of two phases: 

the α-phase and the γ-phase. The α-phase has polymer chains fully extended and oriented 

in an anti-parallel fashion. The alternative phase, the γ-phase, has polymer chains twisted 

at an angle of approximately 60° in order to maintain complete satisfaction of hydrogen 

bonds. Kyotani and Mitsuhashi [50] showed that the formation of these phases is dependent 

on the crystallization temperature and time as well as annealing prior to analysis. At low 

crystallization temperatures, e.g. below 130°C, the γ-phase was the dominating phase, 

between 66% and 78%, but continuously decreased as the crystallization temperature 

increased and was lowered to 20% at 150°C. The shift between the two phases caused by 

change in the crystallization temperature is referred to as the Brill Transition and was first 

observed in polyamide 6,6 [51]. This occurrence was explained by the rate of formation of 

the γ-phase being greater than that of the α-phase at a crystallization temperature below 
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130°C, and vice versa for temperatures above 150°C. The rate of formation of the two 

phases was determined to be approximately equal within the range of 130°C to 150°C. 

Processing affects crystal morphology and crystallization kinetics of PA6. Fornes and 

Paul [52] showed that γ-phase formation dominates in situations of rapid cooling, polymer 

chain mobility restriction, and/or high strain during crystallization. They concluded that 

only the γ-phase crystal structure was present in the skin of their injection molded parts, 

given conditions being favorable for its formation. In contrast, both the α-phase and the γ-

phase were found in the core region of their injection-molded nanocomposite. The molding 

conditions that formulated these regions are similar to the conditions seen in compression 

molding. 

Understanding crystalline phases is important because, ultimately, they affect the 

experimental crystallinity of the material. One impact of the two phases can often be 

captured during a non-isothermal DSC scan in the form of a small shoulder during the 

endothermic peak of melting. This shoulder has been observed in the past [53] and is a 

result of the difference in melting temperature between the two phases [54]. 

Fornes and Paul [52] also showed that extruded material showed faster crystallization 

than virgin material regardless of initial molecular weight. Several reasons for this finding 

were discussed; namely, impurities incorporated during extrusion created nucleation sites, 

and/or memory effects imposed upon the polymer during extrusion remained during 

thermal analysis. It has also been shown that process parameters, such as the melting 

temperature and time at a molten state, also influence crystallization of PA6 in a number 

of ways [55]. 
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1.3 Objectives 

The main objective of this study is to characterize properties of the PA6 matrix of glass 

fiber reinforced PA6 through the D-LFT process. Specific work includes: 

(1) Characterizing molecular weight and thermal properties of the PA6 matrix of glass 

fiber reinforced PA6 at consecutive process stages within the D-LFT process. 

(2) Investigating effect of process conditions within the D-LFT process on molecular 

weight and thermal properties of glass fiber reinforced PA6. 

1.4 Significance 

The D-LFT process is an emerging technology and offers a streamlined material processing 

technique and decreases the degradation of the material. To ensure product consistency and 

process optimization, it is imperative to understand how the process sequence and process 

conditions affect degradation and thermal properties of PA6, which is more susceptible to 

degradation than PP, during the D-LFT process. To the best of our knowledge, this is the 

first study to report how properties of polymer matrix changes at consecutive process stages 

and under different process conditions. The research outcome will assist equipment 

manufacturers in designing the D-LFT process for glass fiber reinforced PA6 composite 

products, as well as plastic manufacturers in developing PA6 tailored to the D-LFT process. 

1.5 Thesis Outline 

This thesis is prepared in an Integrated-Article format as specified by the School of 

Graduate and Postdoctoral Studies at Western University, London, Ontario, Canada. This 

thesis consists of four chapters: 
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Chapter 1 presents an introduction to processing of polymer composites and the D-LFT 

process and discusses use of PA6 as a polymer matrix. Chapter 1 also presents literature 

review on the influence of process conditions on polymers and properties of PA6 that are 

characterized in this study. 

In Chapter 2, the D-LFT process is reviewed in more detail and variation in molecular 

weight and thermal properties of the glass fiber reinforced PA6 composites is investigated 

throughout the D-LFT process. Viscosity number (VN) measurements, thermogravimetric 

analyses (TGA), and differential scanning calorimetry (DSC) analyses were performed on 

samples taken from different locations along the D-LFT process. 

In Chapter 3, variation in molecular weight and thermal properties of the glass fiber 

reinforced PA6 composites is investigated throughout the D-LFT process when extruder 

temperature and screw speed of the tandem twin-screw extruders, which are the main 

components of the D-LFT process, are changed. VN measurements, TGA and DSC 

analyses are performed on samples taken from different locations along the D-LFT process. 

Chapter 4 summarizes and concludes the thesis and provides some recommendations for 

future work. 

References 

[1] Häuptli A. Direct processing of long fibre reinforced thermoplastics: Selecting a 

feeding system. Plast Addit Compd 2003;5:36–9. doi:10.1016/S1464-

391X(03)00536-1. 

[2] Astrom T. Manufacturing of Polymer Composites. London, UK: Chapman & Hall; 



15 

 

 

 

1997. 

[3] Hull D, Clyne TW. An Introduction to Composite Materials. 2nd ed. New York: 

Cambridge University Press; 1996. 

[4] Mazumdar S. Composites Manufacturing: Materials, Product, and Process 

Engineering. New York: CRC Press, Inc.; 2002. 

[5] Schemme M. LFT – development status and perspectives. Reinf Plast 2008;52:32–

9. doi:10.1016/S0034-3617(08)70036-5. 

[6] Henning F, Ernst H, Brüssel R, Co G, Geiger O, Krause W, et al. LFTs for 

automotive applications. Reinf Plast 2005;49:24–33. doi:10.1016/S0034-

3617(05)00546-1. 

[7] Markarian J. Long fibre reinforced thermoplastics continue growth in automotive. 

Plast Addit Compd 2007;9:20–3. doi:10.1016/S1464-391X(07)70025-9. 

[8] Balow MJ. Growth of Polypropylene Usage as a Cost-Effective Replacement of 

Engineering Polymers. In: Karian HG, editor. Handb. Polypropyl. Polypropyl. 

Compos., Basel, New York: Marcel Dekker, Inc.; 1999, p. 1–15. 

[9] Chanda M, Roy SK. Industrial Polymers, Specialty Polymers, and Their 

Applications. Boca Raton, U.S.: Taylor & Francis Group; 2008. 

[10] Levchik SV, Weil ED, Lewin M. Thermal decomposition of aliphatic nylons. 

Polym Int 1999;48:532–57. doi:10.1002/(sici)1097-0126(199907)48:7<532::aid-

pi214>3.0.co;2-r. 



16 

 

 

 

[11] Pedroso AG, Mei LHI, Agnelli JAM, Rosa DS. The influence of the drying 

process time on the final properties of recycled glass fiber reinforced polyamide 6. 

Polym Test 2002;21:229–32. doi:10.1016/S0142-9418(01)00074-5. 

[12] Davis RD, Gilman JW, VanderHart DL. Processing degradation of polyamide 

6/montmorillonite clay nanocomposites and clay organic modifier. Polym Degrad 

Stab 2003;79:111–21. doi:10.1016/S0141-3910(02)00263-X. 

[13] Kohan MI. Nylon Plastics Handbook. New York: Hanser Publishers; 1995. 

[14] Pielichowski K, Njuguna J. Thermal Degradation of Polymeric Materials. Rapra 

Technology Limited; 2005. 

[15] Lehrle RS, Parsons IW, Rollinson M. Thermal degradation mechanisms of Nylon 

6 deduced from kinetic studies by pyrolysis-g.c. Polym Degrad Stab 2000;67:21–

33. doi:10.1016/S0141-3910(99)00112-3. 

[16] Chung C. Fundementals of Polymers. Extrus. Polym. Theory Pract. 2nd ed., 

Cincinnati, Ohio: Hanser Publications; 2011, p. 55–175. 

[17] Covas JA, Gaspar-Cunha A. Chapter 5 - Polymer Extrusion - Setting the Operating 

Conditions and Defining the Screw Geometry. 2011. 

[18] Stade K. Techniques for Compounding Glass Fiber-Reinforced Thermoplastics. 

Poloymer Eng Sci 1977;17:50–7. 

[19] Agassant JF, Avenas P, Sergent JP, Carreau PJ. Polymer Processing Principles and 

Modeling. New York, N.Y.: Hanser Publishers; 1991. 



17 

 

 

 

[20] Capone C, Di Landro L, Inzoli F, Penco M, Sartore L. Thermal and Mechanical 

Degradation During Polymer Extrusion Process. Polym Eng Sci 2007;47:1813–9. 

doi:10.1002/pen. 

[21] Yilmazer U, Cansever M. Effects of processing conditions on the fiber length 

distribution and mechanical properties of glass fiber reinforced nylon-6. Polym 

Compos 2002;23:61–71. doi:10.1002/pc.10412. 

[22] Popescu A, Hancu L, Bere P. Research Concerning the Optimum Extrusion 

Temperature for Reinforced Polyamide. Appl Mech Mater 2013;371:394–8. 

doi:10.4028/www.scientific.net/AMM.371.394. 

[23] Salleh FM, Hassan A, Yahya R, Azzahari AD. Effects of extrusion temperature on 

the rheological, dynamic mechanical and tensile properties of kenaf fiber/HDPE 

composites. Compos Part B Eng 2014;58:259–66. 

doi:10.1016/j.compositesb.2013.10.068. 

[24] Kelly AL, Brown EC, Coates PD. The Effect of Screw Geometry on Melt 

Temperature Profile in Single Screw Extrusion. Polym Eng Sci 2006:1706–14. 

doi:10.1002/pen.20657. 

[25] Vera-Sorroche J, Kelly A, Brown E, Coates P, Karnachi N, Harkin-Jones E, et al. 

Thermal optimisation of polymer extrusion using in-process monitoring 

techniques. Appl Therm Eng 2013;53:405–13. 

doi:10.1016/j.applthermaleng.2012.04.013. 

[26] Beyler CL, Hirschler MM. Thermal Decomposition of Polymers. SFPE Handb. 



18 

 

 

 

Fire Prot. Eng. 4th ed., Quincy, U.S.: National Fire Protection Association; 2008, 

p. 110–31. 

[27] Walter KD, Johnson JF, Tanaka J. Chapter 5 Polymer Degradation and Its 

Measurement. Eng. Dielectr. Vol. IIB Electr. Prop. Solid Insul. Mater. Meas. 

Tech., ASTM International (ASTM); 1987, p. 313–439. 

[28] Crosslinking T. Thermo-oxidative Crosslinking 1988;26:3409–13. 

[29] Goitisolo I, Eguiazábal JI, Nazábal J. Effects of reprocessing on the structure and 

properties of polyamide 6 nanocomposites. Polym Degrad Stab 2008;93:1747–52. 

doi:10.1016/j.polymdegradstab.2008.07.030. 

[30] Lozano-González MJ, Rodriguez-Hernandez MT, Gonzalez-De Los Santos EA, 

Villalpando-Olmos J. Physical–mechanical properties and morphological study on 

nylon-6 recycling by injection molding. J Appl Polym Sci 2000;76:851–8. 

doi:10.1002/(SICI)1097-4628(20000509)76:6<851::AID-APP11>3.0.CO;2-D. 

[31] Russo GM, Nicolais V, Di Maio L, Montesano S, Incarnato L. Rheological and 

mechanical properties of nylon 6 nanocomposites submitted to reprocessing with 

single and twin screw extruders. Polym Degrad Stab 2007;92:1925–33. 

doi:10.1016/j.polymdegradstab.2007.06.010. 

[32] Su K-H, Lin J-H, Lin C-C. Influence of reprocessing on the mechanical properties 

and structure of polyamide 6. J Mater Process Technol 2007;192–193:532–8. 

doi:10.1016/j.jmatprotec.2007.04.056. 



19 

 

 

 

[33] Sengupta R, Chakraborty S, Bandyopadhyay S, Dasgupta S, Mukhopadhyay R, 

Auddy K, et al. Study of Rheological, Thermal, and Mechanical Behavior of 

Reprocessed Polyamide 6. Engineering 2007;47:21–5. doi:10.1002/pen. 

[34] Lee KH, Lim SJ, Kim WN. Rheological and thermal properties of polyamide 6 and 

polyamide 6/glass fiber composite with repeated extrusion. Macromol Res 

2014;22:624–31. doi:10.1007/s13233-014-2086-x. 

[35] Materials B, Fires D, Smoke V, Properties FS, Assemblies MUF, Release VS, et 

al. Fire Standards 1 2013:1–26. doi:10.1520/E0176-12.2. 

[36] Zakrzewski R. Pytolysis Kinetics of wood Comparison of Iso- and Polythermal 

Thermogravimetric Methods. Electron J Polish Agric Univ 2003;6. 

[37] Cai Z, Mei S, Lu Y, He Y, Pi P, Cheng J, et al. Thermal properties and crystallite 

morphology of nylon 66 modified with a novel biphenyl aromatic liquid crystalline 

epoxy resin. Int J Mol Sci 2013;14:20682–91. doi:10.3390/ijms141020682. 

[38] Sengupta R, Sabharwal S, Bhowmick AK, Chaki TK. Thermogravimetric studies 

on Polyamide-6,6 modified by electron beam irradiation and by nanofillers. Polym 

Degrad Stab 2006;91:1311–8. doi:10.1016/j.polymdegradstab.2005.08.012. 

[39] Li J, Tong L, Fang Z, Gu A, Xu Z. Thermal degradation behavior of multi-walled 

carbon nanotubes/polyamide 6 composites. Polym Degrad Stab 2006;91:2046–52. 

doi:10.1016/j.polymdegradstab.2006.02.001. 

[40] Chang TC, Shen WS, Chiu YS, Ho SY. Thermo-oxidative degradation of 



20 

 

 

 

phosphorus-containing polyurethane. Polym Degrad Stab 1995;49:353–60. 

doi:10.1016/0141-3910(95)00116-4. 

[41] Vyazovkin SV, Lesnikovich AI. Error in determining activation energy caused by 

the wrong choice of process model. Thermochim Acta 1990;165:11–5. 

doi:10.1016/0040-6031(90)80201-9. 

[42] Budrugeac P, Homentcovschi D, Segal E. Critical considerations on the 

isoconversional methods III. On the evaluation of the activation energy from non-

isothermal data. J Therm Anal Calorim 2001;66:557–65. 

doi:10.1023/A:1013129304353. 

[43] Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic 

analysis of isothermal and nonisothermal data. Thermochim Acta 1999;340–

341:53–68. doi:10.1016/S0040-6031(99)00253-1. 

[44] Scully K, Bissessur R. Decomposition kinetics of nylon-6/graphite and nylon-

6/graphite oxide composites. Thermochim Acta 2009;490:32–6. 

doi:10.1016/j.tca.2009.01.029. 

[45] Pashaei S, Siddaramaiah S, Avval M, Syed A. Thermal degradation kinetics of 

nylon6/GF/crysnano nanoclay nanocomposites by TGA. Chem Ind Chem Eng Q 

2011;17:141–51. doi:10.2298/CICEQ101007064P. 

[46] Zuo X, Shao H, Zhang D, Hao Z, Guo J. Effects of thermal-oxidative aging on the 

flammability and thermal-oxidative degradation kinetics of tris(tribromophenyl) 

cyanurate flame retardant PA6/LGF composites. Polym Degrad Stab 



21 

 

 

 

2013;98:2774–83. doi:10.1016/j.polymdegradstab.2013.10.014. 

[47] ASTM E1641-15. West Conshohocken, U.S.: ASTM International; 2015. 

doi:10.1520/E1641. 

[48] Aharoni SM. n-Nylons: their Synthesis, Structure and Properties. Chichester : John 

Wiley & Sons,; 1997. 

[49] Aharoni SM. Crystallinity and Poymorphism in the n-Nylon Family. n-Nylons 

Their Synth. Struct. Prop., Chichester, UK: John Wiley & Sons Ltd; 1997, p. 34–

70. 

[50] Kyotani M, Mitsuhashi S. Studies on Crystalline Forms of Nylon 6. II 

Crystallization from the Melt. J Polym Sci 1972;10:1497–508. 

[51] Liu X, Wu Q. Phase transition in nylon 6/clay nanocomposites on annealing. 

Polymer (Guildf) 2002;43:1933–6. doi:10.1016/S0032-3861(01)00759-5. 

[52] Fornes TD, Paul DR. Crystallization behavior of nylon 6 nanocomposites. Polymer 

(Guildf) 2003;44:3945–61. doi:10.1016/S0032-3861(03)00344-6. 

[53] Campoy I, Gomez MA, Marco C. Structure and thermal properties of blends of 

nylon 6 and a liquid crystal copolyester. Polymer (Guildf) 1998;39:6279–88. 

doi:10.1016/S0032-3861(98)00181-5. 

[54] Hiramatsu N, Hirakawa S. Melting and Transformation Behavior of gamma form 

nylon6 under high pressure. Polymer (Guildf) 1982;14:165–71. 



22 

 

 

 

[55] Avramova N. Study of the healing process of polymers with different chemical 

structure and chain mobility. Polymer (Guildf) 1993;34:1904–7. 

doi:10.1016/0032-3861(93)90433-B. 

 



23 

 

 

 

Chapter 2  

2 Thermal Properties of Glass Fiber Reinforced 
Polyamide 6 Composites Throughout the Direct Long-
Fiber Reinforced Thermoplastic Process 

2.1 Introduction 

Recently, the direct long-fiber reinforced thermoplastic (D-LFT) process, in which 

continuous fiber rovings are fed directly into a polymer melt, has been gaining acceptance 

from the automotive industry [1]. The D-LFT process, depicted in Figure 2.1, creates a 

more streamlined process sequence than typical injection molding or compression molding 

processes. The removal of semi-finished products reduces process cost as well as 

eliminates additional heating and plastification to make finished products, thus decreasing 

the degradation of the material and the amount of process stabilizers required. This process 

also allows manufacturers to work with raw materials and make modifications for part 

optimization in the final products while maintaining long fiber lengths, which leads to 

better mechanical properties [1]. Polypropylene (PP) has been widely used as a polymer 

matrix in the D-LFT process because of its good processability, its ability to be tailored for 

specific applications, and its retention of mechanical properties after recycling [2]. 

However, it has relatively lower mechanical properties and service temperatures, which 

may limit its usage in several applications. 
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Figure 2.1 Schematic of D-LFT process with indicated locations for sample 

collection. 

 Polyamides are also candidates as polymer matrices used in the D-LFT process. 

Material characteristics of polyamides include high toughness over a large range of 

temperatures, good impact and abrasion resistance, lubricity, and resistance to organic 

solvents [3]. Polyamides as an engineering polymer have a range of possible applications, 

including those requiring thermal stability, fire resistance, and good mechanical properties 

[3] and, consequently, have been an area of great study [4][5]. Despite their attractive 

properties, polyamides’ potential performance can be limited by their susceptibility to 

degradation during processing [3][6][7][8][9][10]. It was reported that properties of 

polyamide 6 (PA6) and/or glass fiber reinforced PA6 composites decreased after multiple 

injection molding process cycles [11][12][13][14] and multiple extrusion process cycles 

[15]. The results of these studies are significant to this current research because two 

extruders are used in the D-LFT process. 

During the D-LFT process, which includes an oven to dry a material, two extruders, 

a conveyer and a press, there are three types of degradation mechanisms PA6 has the 
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potential to undergo: thermal [3][16], mechanical [14], and thermo-oxidative [3,17]. 

Awareness of these mechanisms and the effect they have on material properties are of high 

importance during polymer processing to ensure product consistency and process 

optimization. This study investigates viscosity number (VN), apparent activation energy 

for decomposition, and crystallization behavior of PA6 matrix in glass fiber reinforced PA6 

as a function of location in the D-LFT process, and provides insight into how these 

properties of PA6 change during the D-LFT process. 

2.2 D-LFT Process 

Polymer and fibers go through various types of equipment in the D-LFT process. The 

following section reviews the D-LFT process stages and discusses their potential influences 

on polymer degradation. 

2.2.1 Pre-Drying 

PA6 and other polyamides are well known for their water absorption tendency [6][18]. 

Absorbed water can have negative effects, through hydrolysis, on polyamides’ molecular 

structure and physical properties (such as tensile, flexural, and impact strength) and, 

therefore, must be removed prior to processing at elevated temperatures [6][18]. An 

improper pre-drying cycle can also affect the appearance of the finished product, through 

the appearance of silver streaks on the surface. 

2.2.2 Compounding Twin Screw Extruder 

The compounding co-rotating twin screw extruder, the first extruder used in the 

process, is dosed with dry polymer pellets via gravimetric feeding. The pellets are melted 

and thoroughly mixed as they are moved along this extruder. Within the extruder, high 
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temperatures and elevated mechanical shear stress can cause further degradation of the 

polyamides by decreasing the molecular weight of the polymer chains [15]. 

2.2.3 Waterfall Film Die 

At the end of the compounding extruder, a film die transfers the molten plastic into the 

mixing extruder, the second extruder used in the process. The plastic is briefly introduced 

to atmospheric conditions at a molten state as it flows into the mixing extruder. This 

exposure can potentially cause thermo-oxidative degradation of polyamides [3]. 

2.2.4 Mixing Twin Screw Extruder 

The mixing twin screw extruder receives molten plastic from the film die as well as 

continuous fiber rovings from bobbins and combines them. This extruder uses co-rotating 

twin screws to shear the continuous fibers and integrate them with the polymer melt, 

producing a mixture called the plastificate. This extrusion process exposes the composite 

melt to elevated temperatures and higher mechanical shear conditions which can cause 

additional degradation. Once fibers have been wetted by the polymer melt as well as 

dispersed and distributed in the polymer melt, the resulting plastificate is ejected from the 

mixing extruder’s rectangular die onto the conveyor.  

2.2.5 Conveyor 

The conveyor serves two purposes in the D-LFT process: (i) to cut the extruded 

materials into appropriate shot sizes using a cutting shear, and (ii) to transfer the 

plasticifacte to the compression press. Heaters surrounding the conveyor maintain the 

temperature of the plastificate during the transit. The plastificate is exposed to atmospheric 

conditions along the conveyor. This atmospheric exposure, combined with the elevated 



27 

 

 

 

temperature of the conveyor, has the potential to cause further thermo-oxidative 

degradation. 

2.2.6 Compression Molding 

The final stage in the process is compression molding, wherein a press uses high 

pressure to shape the plastificate into the final part as well as a relatively cold mold to 

solidify the thermoplastic matrix. Flow of plastificate in the mold under the high pressure 

and rapid decrease in temperature have the potential to degrade the polymer matrix. In this 

study, plastificates were transferred to the press as soon as they were cut on the conveyer 

(Figure 2.1) to minimize the thermo-oxidative degradation on the conveyer. 

2.3 Experimental 

2.3.1 Materials Fabrication of Composites 

Ultramid® 8202 HS, supplied by BASF, was used as PA6 matrix, and StarRov® 886 

RXN (in the form of rovings), provided by Johns Manville, was used as glass fiber 

reinforcement. The PA6 was dried in a dryer (LUXOR S 120, Motan Colotronic) at a set 

temperature of 80°C for 16 hours prior to being processed. The PA6 was combined with 

30 wt% of the glass fibers using an industry-scale Dieffenbacher D-LFT line at the 

Fraunhofer Project Centre for Composites Research in University of Western Ontario. The 

D-LFT line includes a dryer, two extruders, a conveyer, and a 2,500-ton hydraulic press 

(DCP-U 2500/2200, Dieffenbacher). The two extruders are a compounding twin screw 

extruder (ZSE-60HP-28D, Leistritz), named the first extruder, and a mixing twin screw 

extruder (ZSG-75 P-17D, Leistritz), named the second extruder, the screws of which have 

a diameter of 60 mm and 75 mm, respectively, and a length to diameter ratio of 28 and 17, 
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respectively. The technical specifications of the extruder configurations of the first extruder 

and second extruder can be found in the appendix of this thesis. Temperatures of both 

extruders were set to 280°C, and the screw speeds of the first extruder and second extruder 

were set to 80 rpm and 50 rpm, respectively. Conveyer belt temperature was set to 260°C. 

For the hydraulic press, mold temperature was set to 120°C, and force applied to 

plastificates was set to 5,000 kN for 30 s. 

Material samples were collected from seven locations along the D-LFT line 

representing various stages of processing. Specifically, material was taken (a) before 

processing (i.e., virgin PA6), (b) after the drying process when still in pellet form, (c) after 

the PA6 had melted in the first extruder (taken directly from the waterfall film die), (d) 

after the second extruder (once the fibers had been introduced), (e) when it was in the form 

of a compressed plaque, (f) when it was half-way along the conveyor and, finally, (g) at 

the end of the conveyor. A schematic indicating the points of sample collection along the 

process can be seen in Figure 2.1. It is noted that plastificates which were cut on the 

conveyer were either transferred to the hydraulic press (Figure 2.1e) or continued on the 

conveyer (Figure 2.1f and g). 

2.3.2 Viscosity Number Measurement 

As previously discussed, polymer degradation through heat, shear, oxidation, or a 

combination of the three mechanisms has an effect on the molecular structure of the 

polymer primarily through a decrease in the molecular weight. VN measurements were 

performed to analyze trends in molecular weight of PA6, because although not strictly 

correlated, the viscosity number of a PA6 solution is dependent on the molecular weight 
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of the polymer. Measurements were performed according to ISO 307:2007, using 96% 

sulfuric acid (H2SO4) as a solvent. VN (in mL/g) was calculated by 

 𝑉𝑁 = (
𝜂

𝜂0
− 1) ×

1

𝑐
 (1)  

where  𝜂 is the viscosity (in Pa·s) of the PA6-sulfuric acid solution, 𝜂0 is the viscosity (in 

Pa·s) of the sulfuric acid, and 𝑐 is the concentration of the PA6 in the solution (0.005 g/mL). 

2.3.3 Thermogravimetric Analysis 

Thermal decomposition behaviors of the materials were examined using 

thermogravimetric analyzer (TGA) (SDT Q600, TA Instruments). To avoid any external 

reactions with oxygen, nitrogen was used as a purge gas (with a flow rate of 100mL/min 

into the cell). Samples of 8.5 mg (±0.5 mg) were heated at a rate of 20°C/min from room 

temperature to 250°C and were held at 250°C for 5 minutes, to ensure an isothermal 

temperature in the cell prior to decomposition. After these 5 minutes, the temperature was 

further increased to 500°C using one of the following heating rates: 1, 2, 5, or 10°C/min. 

2.3.4 Differential Scanning Calorimetry 

Non-isothermal and isothermal crystallization behaviours of the materials were 

characterized using DSC (Q200, TA Instruments). Sapphire and indium calibration 

samples were used for temperature and heat-of-fusion calibration, respectively. Mass of 

samples used for the DSC measurements was 8.5 mg (±0.5 mg). Nitrogen atmosphere was 

used in both analyses (isothermal and non-isothermal) with a flow rate of 50 mL/min. For 

non-isothermal crystallization, a sample was first heated to 270ºC at 10ºC/min and held at 

that temperature for 5 min to erase the thermal history. Then, the sample was cooled to 
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20ºC at 10ºC/min and held at that temperature for 5 min. Lastly, the sample was reheated 

to 270ºC at 10 ºC/min.  

 For isothermal crystallization, a sample was first heated to 270ºC at 10ºC/min and 

held at that temperature for 5 min to erase the thermal history. Then, the sample was cooled 

to the isothermal temperature of 200ºC at 50ºC/min and held at that temperature for 30 min 

to ensure complete crystallization. 

2.4 Results and Discussion 

2.4.1 Discoloration 

Figure 2.2  shows color change of samples taken at the different stages along the D-

LFT process. A slight color change is evident after drying. This color change was possibly 

due to air exposure in the convection oven causing the first signs of thermo-oxidative 

degradation while the moisture was removed from the PA6. The sample became yellow 

after the first extruder and then brown after the second extruder possibly due to the high 

temperature and mechanical shear stress. The sample got slightly darker after the press, 

whereas the color change was more significant after the conveyer possibly due to thermo-

oxidative degradation. 
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Figure 2.2 Material discoloration throughout D-LFT process. 

2.4.2 Viscosity Number 

Figure 2.3 shows the VNs corresponding to the different stages along the D-LFT 

process. Overall, VN decreased with process progression. The decrease in VN suggests 

that the molecular weight of the PA6 decreased during the manufacturing process, which 

is a result of the processing of the material imposed degradation on the PA6. However, it 

is interesting to note that VN (or molecular weight) decreased only slightly through the 

second extruder despite continuous glass fibers being fed into the second extruder. 
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Figure 2.3 Viscosity number of materials collected along D-LFT process. 

2.4.3 Thermal Decomposition 

Figure 2.4 shows representative thermogravimetric curves for the heating rate of 

2°C/min between 300°C and 500°C. These curves show a single-stage decomposition of 

the PA6. To quantify the matrix degradation level during the D-LFT process, kinetic 

changes in the decomposition profile were analyzed using the Ozawa/Flynn/Wall (O/F/W) 

method [19]. The experimentation and decomposition profile analysis done using this 

method follows ASTM E1641-15 [20]. 
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Figure 2.4 Typical TGA curves of materials collected from the D-LFT process at 

heating rate of 2 °C/min. 

The degree of conversion, α, of the sample is calculated by 

 𝛼 = (
𝑀𝑜 − 𝑀𝑡

𝑀𝑜 − 𝑀𝑓
) × 100 (2)  

where 𝑀𝑜, 𝑀𝑡, 𝑀𝑓 are, respectively, the mass at the beginning of the decomposition profile, 

the corresponding mass at the decomposition level being calculated (e.g. mass when 20% 

decomposed), and the final mass after decomposition. In this study, α values of 5, 10, 15, 

20, 40, and 60% were selected to investigate effects of α on activation energy for 

decomposition. The kinetic analysis of this decomposition profile assumes that the rate of 

conversion is linearly related to the temperature-dependent rate constant, k(T), and 

temperature independent function to the conversion, i.e. 
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d𝛼

d𝑡
= 𝑘(𝑇)𝑓(𝛼) (3)  

where f(α) is dependent on the reaction degradation mechanism. 

The Arrhenius equation is used to describe the function k(T): 

 𝑘(𝑇) = 𝐴 𝑒−
𝐸

R𝑇 (4)  

where T is temperature (K), A is the pre-exponential factor, E is the activation energy, and 

R is the gas constant (8.31 J mol−1K−1). 

Decomposition occurs under a constant heating rate, so β= dT/dt can be substituted 

into Eq. 3 thus: 

 𝛽
d𝛼

d𝑇
= 𝐴𝑓(𝛼)𝑒−

𝐸
𝑅𝑇 (5)  

Integrating over the variables α and T [21] gives 

 𝐹(𝛼) = ∫
d𝛼

𝑓(α)

𝛼

0

= 𝐴𝛽−1 ∫ 𝑒−
𝐸

𝑅𝑇

𝑇

𝑇0

𝑑𝑇 (6)  

If the initial temperature, 𝑇0, is well below the temperatures of measurable reaction 

rates, the lower limit of the temperature integral can be ignored. Next, we define x= -E/RT 

and obtain the following equation: 

𝐹(𝛼) = (
𝐴𝐸

𝛽𝑅
) {−

𝑒𝑥

𝑥
+ ∫ (

𝑒𝑥

𝑥
) 𝑑𝑥

𝑥

−∞

} = (
𝐴𝐸

𝛽𝑅
) 𝑝(𝑥) (7)  
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Activation energy is calculated based on the assumption that decomposition obeys 

first-order kinetics, that is, p(x) is a linear function and can be solved using the Doyle 

approximation. In the following equation, 𝐸𝑎 represents the apparent activation energy 

derived from the Doyle approximation. 

 𝐸𝑎 = − (
𝑅

𝑏
) ∆ log[𝛽] /∆ (

1

𝑇
) (8)  

In this equation, 𝑏 is the logarithm of the approximation derivative. 

Figure 2.5 shows Ozawa plots, i.e., how the logarithm of heating rate relates to the 

inverse of temperature for all α values. The figure indicates that the slopes of trend lines 

for all the α values were almost linear, and the slope decreased with the increase of α value 

at each given process location (from (a) the virgin samples to (g) the end conveyor 

samples). When slopes at different process locations are compared for a given α value, the 

slope increased with process progression. The slopes of trend lines were used to calculate 

𝐸𝑎 values. 
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Figure 2.5 Ozawa plots of materials collected from the D-LFT process at 

different conversions: (a) virgin samples, (b) dry samples, (c) first extruder samples, 

(d) second extruder samples, (e) compressed plaque samples, (f) half conveyor 

samples, and (g) end conveyor samples. 

Figure 2.6 shows 𝐸𝑎 as a function of α at all seven process locations (Figure 2.6a 

for the virgin, dry, and first extruder samples and Figure 2.6b for the second extruder, 

compressed plaque, half conveyor, and end conveyor samples). It can be seen that 𝐸𝑎 
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decreases with increasing α (i.e., increasing decomposition). Coversely, 𝐸𝑎 values were 

greater in samples collected farther along the process: the virgin and dried samples < the 

first extruder and second extruder samples as well as compressed plaque samples < the half 

conveyor samples < the end conveyor samples. A possible explanation for this observation 

is that the content of char generated in the materials increases through the D-LFT process. 

It was previously postulated that  the presence of char can influence activation energy 

[17][22]. Further research into the causing mechanisms of this increase is required. 
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(a)                                                                   (b) 

Figure 2.6 Activation energy throughout decomposition of materials collected 

from the D-LFT process: (a) PA6 and (b) PA6 composites. 
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2.4.4 Crystallization 

2.4.4.1 Non-Isothermal Crystallization 

Figure 2.7 shows non-isothermal DSC cooling curves (Figure 2.7a) and subsequent 

heating curves (Figure 2.7b) of materials throughout the D-LFT process. The thermal 

properties obtained from the DSC cooling and heating curves are summarized in Table 

2.1, which includes crystallization peak temperature (Tc), enthalpy of crystallization 

(∆Hc), melting peak temperatures (Tm1, Tm2), enthalpy of fusion (∆Hm) and degree of 

crystallinity (Xc). The degree of crystallinity 𝑿𝒄 of the sample was calculated from the 

DSC heating curve and the following equation: 

 𝑋𝑐 =
𝛥𝐻𝑚

𝛥𝐻𝑓(1 − 𝑊𝑓)
 ×  100% (9)  

where 𝛥𝐻𝑚 is enthalpy of fusion; 𝛥𝐻𝑓 is enthalpy of fusion of fully crystalline PA6, which 

is taken to be 230 J/g [23]; and 𝑊𝑓 is the weight fraction of fiber. 
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(a)       (b) 

Figure 2.7  Non-isothermal DSC curves of materials collected from the D-LFT 

process: (a) cooling curves and (b) heating curves. 

DSC cooling curves (Figure 2.7a) illustrate that the virgin and dried samples had 

the lowest crystallization temperatures around 180oC. The first extruder samples had 

186oC, and the samples collected later in the process had crystallization temperatures 

closer to 190oC. The two melting peaks (Tm1 and Tm2, where Tm1 < Tm2) on the DSC 

heating curves (Figure 2.7b) are associated with a difference in melting temperatures 

between the two phases present in the morphology (α and γ) [4,24,25]. The α-phase has 

polymer chains fully extended and oriented in an anti-parallel fashion while the γ-phase 

has polymer chains twisted at an angle of approximately 60° in order to maintain 

complete satisfaction of hydrogen bonds. With process progression, the first melting peak 

gradually became more pronounced which could be a result of the amount of γ-phase 

increasing, which has a different melting behavior from the α-phase [26]. Table 2.1 
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shows that Tm1 was slightly increased by fiber addition, but Tm2 remained constant. Table 

2.1 also shows the calculated degree of crystallinity 𝑿𝒄 for each of the process locations. 

Degree of crystallinity values were similar among the different process locations. 

Table 2.1  Non-isothermal crystallization data of materials collected from the D-

LFT process. The numbers in the parenthesis are the standard deviations (n=3). 

Process 

Location 

Tc 

(ºC) 

∆Hc 

(J/g) 

Tm1 

(ºC) 

Tm2 

(ºC) 

∆Hm 

(J/g) 

Xc 

(%) 

Virgin 
180.3 

(0.2) 

62.5  

(0.6) 

211.1 

(0.6) 

221.9 

(0.2) 

65.7 

(2.1) 

28.6  

(0.9) 

Dried 
180.3 

(0.1) 

61.1  

(1.0) 

210.6 

(0.6) 

221.9 

(0.5) 

66.9 

(1.7) 

29.1 

(0.7) 

First Extruder 
186.4 

(0.2) 

60.7  

(1.2) 

212.4 

(0.6) 

221.0 

(0.1) 

68.3  

(1.4) 

29.7 

(0.6) 

Second 

Extruder 

190.5 

(0.1) 

41.3  

(0.7) 

215.2 

(0.6) 

220.7 

(0.2) 

48.1  

(1.6) 

29.5 

(1.0) 

Compressed 

Plaque 

190.2 

(0.2) 

41.2  

(0.9) 

215.3 

(0.2) 

220.6 

(0.2) 

48.7  

(3.8) 

30.5 

(2.4) 

Half Conveyor 
189.6 

(0.4) 

40.8  

(1.4) 

216.0 

(0.4) 

221.4 

(0.5) 

45.4  

(3.9) 

27.9 

(2.4) 

End Conveyor 
188.7 

(0.6) 

41.0  

(0.6) 

215.1 

(0.6) 

220.5 

(0.4) 

47.1  

(1.5) 

29.3 

(0.9) 

 

2.4.4.2 Isothermal Crystallization 

Figure 2.8 shows isothermal DSC curves of materials throughout the D-LFT 

process. The figure suggests that crystallization speed was increased after the first extruder, 

and further increased after the second extruder. Using the isothermal DSC curves, relative 

degree of crystallinity Xrel was calculated as follows: 
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 𝑋𝑟𝑒𝑙 =
∫

𝑑𝐻(𝑡)
𝑑𝑡

𝑑𝑡
𝑡

0

∫
𝑑𝐻(𝑡)

𝑑𝑡
𝑑𝑡

∞

0

 (10)  

where the isothermal DSC curve is integrated between t = 0 and t, and divided by the 

overall crystallization area. 
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Figure 2.8 Isothermal DSC crystallization curves of materials collected from the 

D-LFT process. 

The crystallization kinetics were analyzed using the Avrami equation. According 

to the Avrami model [27,28], the relative degree of crystallinity Xrel is described as follows: 

 𝑋𝑟𝑒𝑙(𝑡) = 1 − exp (−𝑘𝑡𝑛) (11)  

where 𝑛 is the Avrami exponent that depends on the nucleation mechanism and growth 

geometry of crystals, 𝑘 is the crystallization rate constant that involves both nucleation and 

growth rate parameters, and t is time. 
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Eq. 11 can be transformed into the double-logarithmic form, 

 log[−ln(1 − 𝑋𝑟𝑒𝑙(𝑡))] = log 𝑘 + 𝑛 log 𝑡 (12)  

The parameters n (slope) and k (intercept) were determined by plotting 

log[−ln(1 − 𝑋𝑟𝑒𝑙(𝑡))] against log 𝑡. The crystallization half time t1/2, which is defined as 

the time from crystallization onset until 50% completion, was calculated as follows: 

 𝑡1/2 = (
ln 2

𝑘
)

1
𝑛

 (13)  
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Figure 2.9 Avrami plots of materials collected from the D-LFT process. 

Figure 2.9 shows Avrami plots, that is, plots of log[− ln(1 − 𝑋(𝑇))] versus log 𝑡, 

of sample locations, where almost linear results were obtained from all the samples. Three 

distinct groups were observed: (1) the virgin and dried samples, (2) the first extruder 

samples, and (3) the second extruder, compressed plaque, half conveyer, and end conveyer 
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samples. In addition, a left shift of the lines occurred with progression in the process. 

Kinetic parameters determined by the Avrami equation are summarized in Table 2.2. 

Table 2.2 Avrami parameters of materials collected from the D-LFT process.  

The numbers in the parenthesis are the standard deviations (n=3). 

Sample n k (min-n) 

Virgin 2.69 (0.03) 5.24x10-3 (2.27x10-4) 

Dried 2.74 (0.04) 4.02x10-3 (3.08x10-4) 

First Extruder 2.63 (0.15) 2.87x10-2 (6.25x10-3) 

Second Extruder 1.88 (0.08) 1.95x10-1 (3.07x10-3) 

Compressed Plaque 2.19 (0.12) 1.23x10-1 (4.94x10-2) 

Half Conveyor 1.99 (0.12) 1.74x10-1 (1.90x10-2) 

End Conveyor 2.19 (0.29) 1.04x10-1 (3.15x10-2) 

The Avrami constant 𝑛 decreased with glass fiber addition, which suggests that 

glass fiber addition had an influence on crystal nucleation mechanisms in PA6. 

Figure 2.10 shows crystallization half-time from samples collected at each process 

location. The two most substantial decreases in crystallization half-time occurred in the 

material collected after the first and second extruders. The first decrease, which occurred 

after the first extruder, was possibly due to the decrease occurring in the molecular weight 

[15]. Polymer materials with lower molecular weight have a greater possible chain mobility 

and allow for crystallization to occur more rapidly [14]. Fornes and Paul [29] reported that 

extruded material showed faster crystallization than virgin material, and discussed reasons 

for this finding; namely, (1) decreased molecular weight, (2) impurities incorporated during 

extrusion creating nucleation sites, and/or (3) memory effects imposed upon the polymer 
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during extrusion and remaining during thermal analysis. The latter two factors may also 

have contributed to the decreases in crystallization half-time observed in this study. 
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Figure 2.10 Crystallization half-time of materials collected from the D-LFT 

process. 

The second decrease, which occurred after the second extruder, was possibly a 

result of the slight decrease occurring in the molecular weight and/or the incorporation of 

glass fibers at this stage of the process. Fibers when introduced to a polymer can act as 

heterogeneous nucleating agents (NA) during crystallization [24,30,31]. If the fibers do act 

in such a way, they may have provided nucleation sites for crystal growth and decreased 

the time required for crystallization. Further research is required to determine the precise 

mechanisms responsible for the decreased crystallization half-time. 
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2.5 Conclusions 

Effects of the D-LFT process on the molecular weight and thermal properties of 

glass fiber reinforced PA6 were studied at seven locations. Results from the VN 

measurement showed that VN and, by extension, molecular weight decreased as the D-

LFT process continued. TGA results showed that apparent activation energy of all samples 

decreased with increasing conversion values, whereas apparent activation energy increased 

with each process stage. Non-isothermal DSC crystallization analysis revealed no 

substantial changes to the material’s degree of crystallinity during the process; however, 

isothermal DSC crystallization analysis showed a decrease in crystallization half-time 

occurring primarily after the first extruder and again after fiber incorporation (i.e., after the 

second extruder). 
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Chapter 3  

3 Effects of Processing Parameters on Thermal 
Properties of Glass Fiber Reinforced Polyamide 6 
Composites Throughout the Direct Long-Fiber 
Reinforced Thermoplastic Process 

3.1 Introduction 

The recent drive behind light weighting in the automotive industry is a result of the 

ever-increasing fuel efficiency regulations which have caused part suppliers to rethink 

processing techniques in order to leverage their capabilities for greater weight savings. One 

material processing technique that has received much attention, due to the potential for 

manufacturing high strength-to-weight ratio products quickly and efficiently, is the direct 

long-fiber reinforced thermoplastic (D-LFT) process [1]. The D-LFT process offers (i) 

removal of semi-finished products, which gives efficient and flexible manufacturing and 

(ii) final products with a high strength-to-weight ratio by maintaining long fiber lengths 

during processing [2]. 

The D-LFT process, depicted in Figure 3.1, is a one-stop manufacturing process 

starting from raw materials to a final product, and includes various types of equipment. 

The process is summarized as follows: dried polymer pellets are fed into the first twin-

screw extruder to melt them. A film die, which is attached to the end of the first extruder, 

transfers the molten plastic into the second extruder. The plastic is briefly introduced to 

atmospheric conditions at a molten state as it flows from the film die into the second 

extruder. The molten plastic is then combined with continuous fibers in the second extruder 

to form what is called the plastificate. The plastificate is ejected from the second extruder 
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onto a conveyor where it is cut into an appropriate shot size using a shear cutter. Finally, 

the plastificate is transferred to a compression molding machine to shape and solidify the 

plastificate into the final part. 

 

Figure 3.1 Schematic of D-LFT process with indicated locations for sample 

collection. 

Polyamide 6 (PA6) is a good candidate as polymer matrix in the D-LFT process 

because it has high toughness over a large range of temperatures, good impact and abrasion 

resistance, lubricity, and resistance to organic solvents [3]. Despite its wide range of 

excellent properties, PA6 is susceptible to degradation [3][4][5][6][7][8]. When PA6 is 

used in the D-LFT process, PA6 has the potential to undergo thermal [3][9], mechanical 

[10], and thermo-oxidative [3], [11] degradation, and the molecular weight of PA6 is 

decreased [12]. As mentioned above, the D-LFT process includes tandem twin-screw 

extruders (i.e., the first and second extruders), which are the main components of the D-

LFT process. The control of these extruders dictates productivity and properties of 

products. Therefore, it is important to understand how process parameters of the tandem 

twin-screw extruders in the D-LFT process influence material properties of PA6-based 
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composite materials. In this study, glass fiber reinforced PA6 composites were produced 

through the D-LFT process by changing barrel temperatures and screw speeds of the first 

and second twin-screw extruders. Viscosity number, apparent activation energy for 

decomposition, and crystallization behavior of the materials were characterized as a 

function of locations in the D-LFT process line. 

 

3.2 Experimental 

3.2.1 Materials and fabrication of composites 

PA6 (Ultramid® 8202 HS, supplied in the form of pellets, BASF) was used as the 

matrix. The glass fiber (StarRov® 886 RXN, provided in the form of rovings, Johns 

Manville) was used as the reinforcement. The PA6 was first dried in a dryer (LUXOR S 

120, Motan Colotronic) at a set temperature of 80°C for 16 hours. The PA6 was combined 

with 30 wt % of the glass fibers using an industry-scale Dieffenbacher D-LFT line at the 

Fraunhofer Project Centre for Composites Research at the University of Western Ontario. 

The D-LFT line includes a dryer, two extruders, a conveyer, and a 2,500-ton hydraulic 

press (DCP-U 2500/2200, Dieffenbacher). The two extruders are a compounding twin 

screw extruder (ZSE-60HP-28D, Leistritz), named the first extruder, and a mixing twin 

screw extruder (ZSG-75 P-17D, Leistritz), named the second extruder, the screws of which 

have a diameter of 60 mm and 75 mm, respectively, and a length to diameter ratio of 28 

and 17, respectively. The length of the conveyor to the point where the plastificate was cut 

was approximately 50 cm, and conveyer belt temperature was set to 260°C. The cut 

plastificate was transferred to the press, and the transit time was about 5 s. For the hydraulic 
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press, mold temperature was set to 120°C, and force applied to the plastificate was set to 

5,000 kN for 30 s. 

Table 3.1  Process conditions of the first and second extruders used in the D-

LFT process 

Process Condition Barrel 

Temperature 

(°C) 

Screw Speed of 

1st Extruder 

(rpm) 

Screw Speed of 

2nd Extruder 

(rpm) 

Flow Rate 

from 2nd 

Extruder 

(kg/h) 

Conveyor 

Speed 

(cm/s) 

Standard Condition 280 80 50 102 1.2 

Low Temperature 270 80 50 102 1.2 

High Temperature 260 80 50 102 1.2 

Low Screw Speed 280 40 25 51 0.6 

High Screw Speed 280 161 100 205 2.3 

 

The barrel temperature and screw speed of the two extruders were varied in this 

study, as summarized in Table 3.1. In the standard condition experiment, the temperature 

of both extruders was 280°C, and the screw speeds of the first and second extruders were 

80 rpm and 50 rpm, respectively. To study effects of barrel temperature, the barrel 

temperatures of both extruders was changed to 270°C or 290°C. To examine effects of 

screw speed, the screw speeds of the first and second extruders were decreased, 

respectively, to 40 rpm and 25 rpm, or the screw speeds were increased, respectively, to 

161 rpm and 100 rpm. Since the volume of material filled in the extruders was kept 

constant, the change of the screw speeds accompanied the change in flow rate of material 

from the second extruder: 102 kg/h for the standard condition, 51 kg/h for the low screw 
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speed setting and 205 kg/h for the high screw speed setting. Therefore, the conveyor speeds 

were changed as follows: 1.2 cm/s for the standard condition, 0.6 cm/s for the low screw 

speed setting, and 2.3 cm/s for the high screw speed setting. Table 3.2 shows approximate 

residence time of the D-LFT process for each process condition. The total process times 

with the low and high screw speeds are, respectively, around 1.8 times and 0.6 times as 

long as those with the standard, low temperature and high temperature conditions. 

Table 3.2  Approximate residence time of the D-LFT process. 

Process Condition 1st Extruder 

(s) 

2nd Extruder 

(s) 

Conveyor 

(s) 

Transit 

(s) 

Press 

(s) 

Total 

Residence 

Time (s) 

Standard Condition 66 43 42 5 30 186 

Low Temperature 66 43 42 5 30 186 

High Temperature 66 43 42 5 30 186 

Low Screw Speed 131 86 83 5 30 335 

High Screw Speed 33 21 22 5 30 111 

 

Samples were collected from three locations along the D-LFT process line: (a) as 

received (i.e., virgin PA6), (b) directly after the first extruder (taken from the waterfall film 

die), and (c) a compressed plaque. A schematic indicating the points of sample collection 

along the process can be seen in Figure 3.1. 

3.2.2 Viscosity number measurement 

Viscosity number of a PA6 solution is dependent on the molecular weight of the 

PA6 though it is not strictly correlated. Viscosity number measurements were conducted 
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to give insight into changes in molecular weight during the process and under each process 

condition. Measurements were performed according to ISO 307:2007, using 96% sulfuric 

acid (H2SO4) as a solvent. Viscosity number VN (in mL/g) was calculated by 

 𝑉𝑁 = (
𝜂

𝜂0
− 1) ×

1

𝑐
 (14)  

where 𝜂 is the viscosity (in Pa·s) of the PA6-sulfuric acid solution, 𝜂0 is the 

viscosity (in Pa·s) of the sulfuric acid, and 𝑐 is the concentration of the PA6 in the solution 

(0.005 g/mL). 

3.2.3 Thermogravimetric analysis 

Decomposition kinetics of both the polymer and composite samples were 

investigated using a thermogravimetric analyzer (TGA) (SDT Q600, TA Instruments). 

Mass of samples was 8.5 mg (±0.5 mg). The temperature profile of the TGA analysis 

conducted was as follows: (1) heating ramp of 20°C/min from room temperature to 250°C, 

(2) isothermal for 5 min to ensure homogeneous temperature distribution in the cell, and 

(3) temperature ramp from 250°C to 500°C using one of the following heating rates: 1, 2, 

5, or 10°C/min. Nitrogen was used as a purge gas at a flow rate of 100 mL/min. 

The decomposition kinetics of the PA matrix were analyzed using the 

Ozawa/Flynn/Wall (O/F/W) method [13]. The experimentation and calculation follow 

ASTM E1641-15 [14]. The degree of conversion, α, of the sample was calculated by 

 𝛼 = (
𝑀𝑜 − 𝑀𝑡

𝑀𝑜 − 𝑀𝑓
) × 100 (15)  
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where 𝑀𝑜, 𝑀𝑡, 𝑀𝑓 are, respectively, the mass at the beginning of the decomposition 

profile, the corresponding mass at the decomposition level being calculated (e.g. mass 

when 20% decomposed), and the final mass after decomposition. In this study, α values of 

5, 10, 15, 20, 40, and 60% were selected to investigate effects of α on apparent activation 

energy for decomposition. Apparent activation energy 𝐸𝑎 was calculated by 

 𝐸𝑎 = − (
𝑅

𝑏
) ∆ log[𝛽] /∆ (

1

𝑇
) (16)  

where R is the gas constant (8.31 J mol−1K−1), 𝑏 is the logarithm of the 

approximation derivative, β is the heating rate (K/min), and T is temperature (K). 

3.2.4 Differential scanning calorimetry 

Non-isothermal and isothermal crystallization behaviours of the materials were 

studied using a differential scanning calorimeter (DSC) (Q200, TA Instruments). 

Temperature and heat-of-fusion were calibrated using sapphire and indium, respectively. 

A nitrogen purge gas with a flow rate of 50 mL/min was used. Mass of samples was 8.5 

mg (±0.5 mg) in both non-isothermal and isothermal measurements. In non-isothermal 

crystallization measurements, a sample was first heated to 270ºC at 10ºC/min and held at 

that temperature for 5 min to erase the thermal history in the collected sample. The sample 

was then cooled to 20ºC at 10ºC/min and held at that temperature for 5 min. Lastly, the 

sample was reheated to 270ºC at 10ºC/min. The degree of crystallinity 𝑋𝑐 of the sample 

was calculated from the second DSC heating curve and the following equation: 

 𝑋𝑐 =
𝛥𝐻𝑚

𝛥𝐻𝑓(1 − 𝑊𝑓)
 ×  100% (17)  
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where 𝛥𝐻𝑚 is enthalpy of fusion; 𝛥𝐻𝑓 is enthalpy of fusion of fully crystalline PA6, 

which is taken to be 230 J/g [15]; and 𝑊𝑓 is the weight fraction of fiber. 

 In the isothermal crystallization measurements, a sample was first heated to 

270ºC at 10ºC/min and held at that temperature for 5 min to erase the thermal history of 

the collected sample. Then, the sample was cooled to the isothermal temperature of 200ºC 

at 50ºC/min and held at that temperature for 30 min to allow the sample to fully crystallize. 

Using the isothermal DSC curve, the relative degree of crystallinity Xrel was calculated as 

follows: 

 𝑋𝑟𝑒𝑙 =
∫

𝑑𝐻(𝑡)
𝑑𝑡

𝑑𝑡
𝑡

0

∫
𝑑𝐻(𝑡)

𝑑𝑡
𝑑𝑡

∞

0

 (18)  

where the isothermal DSC curve is integrated between t = 0 and t, and divided by 

the overall crystallization area. 

The crystallization kinetics were analyzed using the Avrami equation. According 

to the Avrami model [16], [17], the relative degree of crystallinity Xrel is described as 

follows: 

 𝑋𝑟𝑒𝑙(𝑡) = 1 − exp (−𝑘𝑡𝑛) (19)  

where 𝑛 is the Avrami exponent that depends on the nucleation mechanism and 

growth geometry of crystals, 𝑘 is the crystallization rate constant that involves both 

nucleation and growth rate parameters, and t is time. 

Eq. 19 can be transformed into the double-logarithmic form, 
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 log[−ln(1 − 𝑋𝑟𝑒𝑙(𝑡))] = log 𝑘 + 𝑛 log 𝑡 (20)  

 The parameters n (slope) and k (intercept) were determined by plotting 

log[−ln(1 − 𝑋𝑟𝑒𝑙(𝑡))] against log 𝑡. The crystallization half time t1/2, which is defined as 

the time from crystallization onset until 50% completion, was calculated as follows: 

 𝑡1/2 = (
ln 2

𝑘
)

1
𝑛

 (21)  

 

3.3 Results and discussion 

3.3.1 Discoloration 

Figure 3.2 shows color changes in the material throughout the D-LFT process under 

the different process conditions. Color of the virgin material changed yellow after the first 

extruder and then brown after the press in each process condition. The progressive 

discoloration of the material is possibly caused by accumulation of thermal, mechanical, 

and thermo-oxidative degradations. The compressed plaque samples processed with the 

low screw speed had the highest degree of discoloration, which could be a result of the 

longest process time, as shown in Table 3.2. 
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Figure 3.2  Material discoloration throughout D-LFT process with different 

process conditions. 

3.3.2 Viscosity number 

Figure 3.3 shows viscosity numbers of samples processed under different extruder 

temperatures (Figure 3.3a) and different screw speeds (Figure 3.3b). In each process 

condition, the viscosity number (or molecular weight) decreased with process progression 

from the first extruder to the compressed plaque, which is a result of thermal, mechanical, 

and thermo-oxidative degradations of the PA6 matrix. 
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 (a)                                    (b) 

Figure 3.3  Viscosity number of first extruder and compressed plaque samples 

processed under different (a) extruder temperatures and (b) screw speeds. 

 When samples processed at different extruder temperatures are compared 

(Figure 3.3a), the viscosity number (or molecular weight) decreased with increasing 

extruder temperature. The increase of extruder temperature may have promoted thermal 

and/or thermo-oxidative degradation of the PA6 matrix. When samples processed at 

different screw speeds are compared (Figure 3.3b), the viscosity number (or molecular 

weight) decreased with decreasing screw speed. Although the decrease of screw speed may 

have reduced mechanical degradation, the longer total process time could have promoted 

thermo-oxidative degradation which may have been the more predominant degradation 

mechanism that influences the viscosity number (or molecular weight). 

3.3.3 Thermal decomposition 

Figure 3.4 shows typical thermogravimetric profiles of first extruder samples 

(Figure 3.4a) and compressed plaque samples (Figure 3.4b) at a heating rate of 10°C/min 
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between 300°C and 500°C. The profiles were obtained from samples produced under 

different process conditions, and all the samples showed a single-stage decomposition of 

PA6. Figure 3.5 shows Ozawa plots, i.e., how the logarithm of heating rate relates to the 

inverse of temperature for all α values, of compressed plaque samples processed under 

different process conditions: Figure 3.5(a) for the standard condition, Figure 3.5(b) for the 

low extruder temperature, Figure 3.5(c) for the high extruder temperature, Figure 3.5(d) 

for the low screw speed, and Figure 3.5(e) for the high screw speed. All the figures indicate 

that the slopes of trend lines for all the α values were almost linear, and the slope decreased 

with the increase of α value. The slopes of these trend lines were used to calculate 𝐸𝑎 

values. 
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(a)      (b) 

Figure 3.4  Typical TGA curves of (a) first extruder samples and (b) compressed 

plaque samples processed under different process conditions at a heating rate of 10 

°C/min. 
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(d)                                                                          (e) 

Figure 3.5  Ozawa plots of compressed plaque samples process at different 

conversions under (a) standard condition, (b) low extruder temperature, (c) high 

extruder temperature, (d) low screw speed, and (e) high screw speed. 

Figure 3.6 shows apparent activation energy of first extruder samples (Figure 3.6a) 

and compressed plaque samples (Figure 3.6b) processed under different extruder 

temperatures (i.e., a standard temperature of 280°C, a lower temperature of 270°C, and a 

higher temperature of 290°C). It can be seen from Figure 3.6 (a) and (b) that typically 

apparent activation energy decreased with increasing α (i.e. the percent of total 

decomposed material), whereas apparent activation energy increased farther along the 

process, that is, the virgin samples < the first extruder samples < the compressed plaque 

samples. As shown in Figure 3.2, the degree of discoloration increased with process 

progression. A possible explanation for the increase of apparent activation energy is that 

the content of char generated in the materials increased along the D-LFT process as a result 

of the increased degradation of the material. It was reported that the presence of char can 
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influence apparent activation energy [11], [18]. Further research into the causing 

mechanisms of this increase in apparent activation energy is required. 
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(a)      (b) 

Figure 3.6  Apparent activation energy throughout decomposition of (a) first 

extruder samples and (b) compressed plaque samples processed under different 

extruder temperatures. 

When samples processed at different extruder temperatures are compared, the 

results at the end of the first extruder (Figure 3.6a) showed that the standard (medium 

extruder temperature) samples and the samples with the low extruder temperature had 

higher activation energy than the samples with the high extruder temperature for most of 

the conversion values. Conversely, the results after the press (Figure 3.6b) showed the 

samples with high extruder temperatures had slightly higher activation energy than the 

standard samples and the samples with the low extruder temperature for most of the 

conversion values. It is speculated that the increase of extruder temperature may have 

degraded the material with a formation of limited amounts of char at the early stage of the 
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D-LFT process (i.e., at the end of the first extruder) and then accelerated char formation in 

the material at the later stage of the D-LFT process. Further research into the causing 

mechanisms is required. 

Figure 3.7 shows apparent activation energy of first extruder samples (Figure 3.7a) 

and compressed plaque samples (Figure 3.7b) processed under different screw speeds (i.e., 

standard screw speeds of 80 rpm for the first extruder and 50 rpm for the second extruder, 

lower screw speeds of 40 rpm and 25 rpm, and higher screw speeds of 161 rpm and 100 

rpm). The figures suggest that the samples with the low screw speed had the highest 

activation energy in the range of low conversion (up to 20 %) at the end of the first extruder 

(Figure 3.7a) as well as for all the conversion values after the press (Figure 3.7b). The 

higher activation energy of the samples with the low screw speed may be due to the longer 

residence time at each process stage (i.e., the first extruder, second extruders, and 

conveyor) as shown in Table 3.2, which could have increased the amount of chars. 
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(a)      (b) 

Figure 3.7 Apparent activation energy throughout decomposition of (a) first 

extruder samples and (b) compressed plaque samples processed under different 

screw speeds. 

3.3.4 Crystallization 

3.3.4.1 Non-isothermal crystallization 

Figure 3.8 shows non-isothermal DSC cooling curves of first extruder samples 

(Figure 3.8a) and compressed plaque samples (Figure 3.8b) processed under different 

processing conditions. Figure 3.9 shows subsequent heating curves of first extruder 

samples (Figure 3.9) and compressed plaque samples (Figure 3.9b) processed under 

different processing conditions. The thermal properties obtained from the DSC cooling and 

heating curves are summarized in Table 3.3, which includes crystallization peak 

temperature (Tc), enthalpy of crystallization (∆Hc), melting peak temperatures (Tm1, Tm2), 

enthalpy of fusion (∆Hm) and degree of crystallinity (Xc). The DSC cooling curves (Figure 

3.8) illustrate that the crystallization peak temperature increased along the process, that is, 

the virgin samples < the first extruder samples < the compressed plaque samples for each 
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process condition. Table 3.3 suggests that the increase of extruder temperature decreased 

the crystallization peak temperature of the first extruder samples but had little effect on the 

crystallization peak temperature of the compressed plaque samples. On the other hand, the 

sample with the low screw speed had the lowest crystallization peak temperature after both 

the first extruder and press. 
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Figure 3.8  Non-isothermal DSC cooling curves of (a) first extruder samples and 

(b) compressed plaque samples processed under different process conditions. 
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Figure 3.9  Non-isothermal DSC heating curves of (a) first extruder samples and 

(b) compressed plaque samples processed under different process conditions. 

 Two melting peaks (Tm1 and Tm2, where Tm1 < Tm2) were observed on the DSC 

heating curves (Figure 3.9), which are associated with a difference in melting temperatures 

between the two phases present in the morphology (α and γ) of PA6 [19][20][21]. Table 

3.3 suggests that the change of extruder temperature or screw speed had little effect on the 

two melting peaks and degree of crystallinity. 
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Table 3.3  Non-isothermal crystallization data of materials collected from the 

three locations within the D-LFT process. The numbers in the parenthesis are the 

standard deviations (n=3). 

Process 

Location 

Process Condition Tc 

(ºC) 

∆Hc 

(J/g) 

Tm1 

(ºC) 

Tm2 

(ºC) 

∆Hm 

(J/g) 

Xc 

(%) 

Virgin  
180.3 

(0.2) 

61.5

(0.6) 

211.1 

(0.6) 

221.9 

(0.2) 

65.7 

(2.0) 

28.6 

(0.9) 

First 

Extruder 

Standard Condition 
186.4 

(0.2) 

60.7 

(1.2) 

212.4 

(0.6) 

221.0 

(0.1) 

68.3 

(1.4) 

29.7 

(0.6) 

Low Extruder Temperature 
188.0 

(0.1) 

65.6 

(1.4) 

214.5 

(0.9) 

221.0 

(0.3) 

70.5 

(2.2) 

30.6 

(0.9) 

High Extruder Temperature 
185.7 

(0.1) 

65.3 

(0.9) 

213.5 

(0.3) 

221.1 

(0.2) 

69.4 

(2.0) 

30.1 

(0.9) 

Low Screw Speed 
184.5 

(0.3) 

63.1 

(1.1) 

213.0 

(0.2) 

221.0 

(0.2) 

67.6 

(4.3) 

29.4 

(1.9) 

High Screw Speed 
186.7 

(0.5) 

63.6 

(0.9) 

213.8 

(0.3) 

220.9 

(0.1) 

69.1 

(4.0) 

30.0 

(1.7) 

Compressed 

Plaque 

Standard Condition 
190.2 

(0.2) 

41.2 

(0.9) 

215.3 

(0.2) 

220.6 

(0.2) 

48.7 

(3.8) 

30.5 

(2.4) 

Low Extruder Temperature 
190.4 

(0.4) 

44.7 

(1.1) 

216.0 

(0.6) 

220.4 

(0.2) 

49.0 

(2.8) 

29.9 

(1.7) 

High Extruder Temperature 
190.1 

(0.9) 

42.6 

(2.9) 

215.4 

(0.1) 

221.0 

(1.0) 

46.0 

(2.5) 

28.1 

(1.5) 

Low Screw Speed 
188.0 

(0.4) 

43.8 

(1.8) 

215.1 

(0.9) 

221.7 

(0.9) 

46.7 

(2.6) 

28.4 

(1.6) 

High Screw Speed 
190.9 

(0.2) 

43.8 

(0.5) 

216.3 

(0.1) 

220.4 

(0.1) 

48.7 

(1.2) 

30.3 

(0.8) 
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3.3.4.2 Isothermal crystallization 

Figure 3.10 shows isothermal DSC curves of first extruder samples (Figure 3.10a) and 

compressed plaque samples (Figure 3.10b) processed under different process conditions. 

The figures suggest that crystallization speed increased after the first extruder, and further 

increased after the press. Figure 3.11 shows Avrami plots, i.e., plots of log[− ln(1 −

𝑋(𝑇))] versus log 𝑡, of first extruder samples (Figure 3.11a) and compressed plaque 

samples (Figure 3.11b) processed under different process conditions, where almost linear 

results were obtained from all the samples. Kinetic parameters determined by the Avrami 

equation are summarized in Table 3.4. The Avrami constant 𝑛 decreased with glass fiber 

addition, which suggests that glass fiber addition had an influence on crystal nucleation 

mechanisms in PA6. 
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(a)      (b) 

Figure 3.10  Isothermal DSC crystallization curves of (a) first extruder samples 

and (b) compressed plaque samples processed under different process conditions. 
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(a)      (b) 

Figure 3.11 Avrami plots of (a) first extruder samples and (b) compressed plaque 

samples processed under different process conditions. 

Table 3.4  Avrami parameters of materials collected from the D-LFT process. 

The numbers in the parenthesis are the standard deviations (n=3). 

Process Location Process Condition n k (min-n) 

Virgin  2.69 (0.03) 5.24x10-3 (2.27x10-4) 

First Extruder 

Standard Condition 2.63 (0.15) 2.87x10-2 (6.25x10-3) 

Low Extruder Temperature 2.52 (0.11) 4.36x10-2 (8.48x10-3) 

High Extruder Temperature 2.85 (0.08) 1.85x10-2 (3.18x10-3) 

Low Screw Speed 2.55 (0.02) 2.51x10-2 (3.73x10-3) 

High Screw Speed 2.52 (0.01) 4.17x10-2 (1.46x10-3) 

Compressed 

Plaque 

Standard Condition 2.19 (0.12) 1.23x10-1 (4.94x10-2) 

Low Extruder Temperature 1.97 (0.07) 1.63x10-1 (1.14x10-2) 

High Extruder Temperature 2.12 (0.07) 1.49x10-1 (1.27x10-2) 

Low Screw Speed 2.32 (0.11) 8.75x10-2 (7.42x10-3) 

High Screw Speed 2.00 (0.07) 2.13x10-1 (3.58x10-3) 
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(a)      (b) 

Figure 3.12 Crystallization half-time of first extruder and compressed plaque 

samples processed under different (a) extruder temperatures and (b) screw speeds. 

Figure 3.12 shows crystallization half-time from samples processed under different 

extruder temperatures (Figure 3.12a) and different screw speeds (Figure 3.12b). It can be 

seen that crystallization half-time decreases farther along the process, that is, the virgin 

samples > the first extruder samples > the compressed plaque samples for each process 

condition. Fornes and Paul [22] reported that extruded material showed faster 

crystallization than virgin material, and discussed reasons for this finding, namely, (i) 

decreased molecular weight, (ii) impurities incorporated during extrusion creating 

nucleation sites, and/or (iii) memory effects imposed upon the polymer during extrusion 

and remaining during thermal analysis. These three factors may have caused the decrease 

of crystallization half-time in the first extruder samples observed in this study. The further 

decrease of crystallization half-time in the compressed plaque samples was possibly a 

result of the three factors that Fornes and Paul suggested and/or the incorporation of glass 

fibers in the second extruder. Fibers, when introduced to a polymer, can act as 
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heterogeneous nucleating agents (NA) during crystallization [20], [23], [24]. If the fibers 

did act in such a way, they may have provided nucleation sites for crystal growth and 

decreased the time required for crystallization. 

When samples processed at different extruder temperatures are compared (Figure 

3.12a), crystallization half-time increased with increasing extruder temperature at the end 

of the first extruder. It is known that chain scission, branching, and cross-linking can occur 

in PA6 during thermal or thermo-oxidative decomposition [3]. Since the viscosity number 

(or molecular weight) decreased only slightly with increasing extruder temperature (Figure 

3.3a), one may speculate that branching/crosslinking (i.e., interference with chain folding) 

had a more influence on the crystallization half-time than chain scission (i.e., chain 

mobility), thus increasing crystallization half-time. On the other hand, after the press, the 

change of extruder temperature had little effect on the crystallization half-time. The fiber 

incorporation may have had a more influence on the crystallization half-time than any 

changes of molecular structure and length of PA6. Further research into the underlying 

mechanisms for the extruder temperature effect is required. 

When samples processed at different screw speeds are compared (Figure 3.12b), 

crystallization half-time increased with decreasing screw speed at the end of the first 

extruder. A similar explanation provided for the extruder temperature effect could be used 

for this phenomenon. Since the viscosity number (or molecular weight) decreased slightly 

with decreasing screw speed (Figure 3.3b), one may speculate that branching/crosslinking 

had a more influence on the crystallization half-time than chain scission, thus increasing 

crystallization half-time. After the press, the trend was maintained even though fibers were 
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added to PA6. The decrease of screw speed may have caused poor dispersion of fibers in 

the PA matrix (i.e., less crystal nucleation sites). Further research into the underlying 

mechanisms for the screw speed effect is required. 

 

3.4 Conclusions 

Effects of the extruder temperature and screw speed on the molecular weight and 

thermal properties of glass fiber reinforced PA6 were studied at three locations within the 

D-LFT process. Results from the viscosity number measurement showed that viscosity 

number and, by extension, molecular weight decreased with increasing extruder 

temperature and decreasing screw speed, which could be caused by the thermo-oxidative 

degradation increased under the higher extruder temperature and under the longer residence 

time, respectively. TGA results showed that the compressed plaque samples processed with 

the high extruder temperature had the highest apparent activation energy among the 

samples with different extruder temperatures. In addition, the compressed plaque samples 

processed with the low screw speed exhibited the highest apparent activation energy among 

the samples with different screw speeds. Non-isothermal DSC crystallization analysis 

revealed no substantial changes to the material’s degree of crystallinity with the changes 

of extruder temperature or screw speed. Isothermal DSC crystallization analysis showed 

that the compressed plaque samples had almost constant crystallization half-time 

regardless of variations in the extruder temperature, but the compressed plaque samples 

processed with the low screw speed exhibited the longest crystallization half-time among 

the samples subject to different screw speeds. 
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Chapter 4 

4 Conclusions and Recommendations for Future Study 

4.1 Conclusions 

The D-LFT process offers a streamlined material processing technique and decreases the 

degradation of the material. To ensure product consistency and process optimization, it is 

imperative to understand how the process sequence affects degradation and thermal 

properties of the PA6 matrix, which is susceptible to degradation, during the D-LFT 

process. Consequently, the main objective of this study was to investigate variation in 

molecular weight and thermal properties of glass fiber reinforced PA6 composites at 

consecutive stages in the D-LFT process and under different process conditions of the 

tandem twin-screw extruders, which are the main components of the D-LFT process. 

First, variation in molecular weight and thermal properties of the glass fiber reinforced PA6 

composites throughout the D-LFT process were investigated. VN measurements, TGA, 

and DSC analyses were performed on samples taken from different locations along the D-

LFT process. It was found that VN, which is a measure of molecular weight of the PA6 

base resin, decreased throughout the processes. In contrast, TGA results suggested that 

apparent activation energy for decomposition increased during consecutive process stages. 

Non-isothermal DSC results showed that there were no significant changes to the degree 

of crystallization; however, isothermal DSC results indicated that later stages of the process 

showed a decrease in crystallization half-time, and the largest changes were observed in 

areas after the two extrusion portions of the process. 
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Second, the effects of the extruder temperature and screw speed on the molecular weight 

and thermal properties of glass fiber reinforced PA6 were investigated. VN measurements, 

TGA and DSC analyses were performed on samples taken from different locations along 

the D-LFT process. It was found that VN decreased with increasing extruder temperature 

and residence time. TGA results showed that the high temperature or low screw speed of 

the extruders increased apparent activation energy of the final product. Non-isothermal 

DSC crystallization analysis revealed no substantial changes to the material’s degree of 

crystallinity with the variations in extruder temperature and screw speed. Isothermal DSC 

crystallization analysis showed that the extruder temperature had little effects on 

crystallization half-time of the final material, but the low screw speed of the extruders 

increased crystallization half-time. 

In conclusion, thermo-oxidative degradation is the main degradation mechanism of the 

glass fiber reinforced PA6 composites during the D-LFT process. Therefore, minimizing 

temperature and residence time of the extruders as well as exposure time of plastificate to 

atmospheric conditions along the conveyer (e.g., shorten the conveyer length) is an 

effective way to minimize degradation of PA6. Also, the methodology developed in this 

study can be used to characterize variation in molecular weight and thermal properties of 

other composite materials at consecutive process stages within the D-LFT process. 

4.2 Recommendations for Future Study 

The recommended future studies are described as follows: 

(1) This study showed that the trends of degree of discoloration were consistent with 

those of apparent activation energy of decomposition, that is, both the degree of 
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discoloration and apparent activation energy of decomposition increased (i) along 

the D-LFT process, (ii) with increasing temperature of the extruders, and (iii) with 

decreasing screw speed of the extruders. It is postulated that formation of char may 

have caused the increased degree of discoloration and apparent activation energy. 

It will be beneficial to study relationships among amount of char generated in the 

materials, degree of discoloration, and apparent activation energy, which will 

provide plastic manufacturers with useful information in developing PA6 tailored 

to the D-LFT process. 

 

(2) This study also showed a decrease in crystallization half-time along the D-LFT 

process. It is speculated that the decrease was caused by the decrease in molecular 

weight of PA6 and/or by incorporation of fibers, which can act as heterogeneous 

nucleating agents. Ideification of the precise mechanisms responsible for the 

decreased crystallization half-time is useful for not only academia but also plastic 

and glass fiber manufacturers. 

 

(3) A screw configuration of the extruders is another process parameter which could 

affect properties of glass fiber reinforced PA6 composites. A screw configuration 

can change shear stress acting on a composite melt in the extruder, thus affecting 

characteristics of fibers (e.g., length, dispersion, and orientation) and PA6 matrix 

(e.g., molecular weight, thermal decomposition, and crystallization). The study will 
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give useful information to select screw configurations suitable for glass fiber 

reinforced PA6 composites in the D-LFT process. 

 

(4) This study characterized variation of molecular weight and thermal properties of 

glass fiber reinforced PA6 composites through the D-LFT process. It will be 

interesting to study how molecular weight and thermal properties of other 

composite materials change through the D-LFT process. For examples, 

polypropylene (less susceptible to degradation than PA6) and carbon fibers (lighter 

than glass fibers) can be used as the matrix and reinforcement, respectively. The 

study on various composite materials will give better understanding of the D-LFT 

process and provide equipment manufacturers with useful information to design the 

D-LFT process. 
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Appendix: Screw Configurations of Tandem Twin-Screw 

Extruders 

The tandem twin-screw extruders used in this study consist of the first and second 

extruders. Both the first and the second extruders are intermeshed, co-rotating, twin-screw 

extruders. Each extruder has two identical, interlocking screws, which comprise a 

combination of four types of screw elements (i.e., a conveying element, kneading element, 

mixing element, and spacer element). A labeling method of a screw element is shown in 

Table A1. For example, the GFA-2-36-60 means a conveying element with 2 flights, a 

pitch of 36 mm, and a length of 60 mm. The screw configurations of the first and second 

extruders are shown in Table A2 and Table A3, respectively. 

Table A1 Labeling Method of Screw Element 

Type of Element # # # 

Conveying Element (GFA)  

Number of 

flights 

Pitch 

(mm) 

Total Length 

(mm) 

Kneading Element (KB) 

Mixing Element (GFM) 

Spacer Element (ZD) 

 

Table A2 Screw Configuration of the First Extruder 

Polymer 

Intake 
Polymer Melting/Mixing/Conveying 
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K
B

-6
-2

-6
0

 

K
B

-6
-2

-6
0

 

K
B

-6
-2

-6
0

 

K
B

-6
-2

-6
0

 

G
F

A
-2

-6
0
-1

8
0

 

G
F

A
-2

-6
0
-1

2
0

 

G
F

A
-2

-6
0
-6

0
 

G
F

A
-2

-4
0
-6

0
 

G
F

A
-2

-4
0
-3

0
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Table A3 Screw Configuration of the Second Extruder 

Fiber Intake 

Cutting 

Plate 
Composite Mixing/Conveying 

Conveying Conveying with Spacers between Elements 
Conveying / 

Mixing 

G
F

A
-2

-3
6
-6

0
 

G
F

A
-2

-7
2
-2

4
0

 

G
F

A
-2

-7
2
-2

4
0

 

G
F

A
-2

-7
2
-6

0
 

G
F

A
-2

-7
2
-3

0
 

G
F

A
-2

-4
8
-1

2
0

 

Z
D

-0
-4

9
.6

-7
.5

 

G
F

A
-2

-3
6
-1

5
 

Z
D

-0
-4

9
.6

-7
.5

 

G
F

A
-2

-3
6
-1

5
 

Z
D

-0
-4

9
.6

-7
.5

 

G
F

A
-2

-3
6
-1

5
 

Z
D

-0
-4

9
.6

-7
.5

 

G
F

A
-2

-3
6
-1

5
 

Z
D

-0
-4

9
.6

-7
.5

 

G
F

A
-2

-3
6
-1

5
 

Z
D

-0
-4

9
.6

-7
.5

 

G
F

A
-2

-4
8
-1

2
0

 

G
F

M
-2

-3
6
-6

0
 

G
F

A
-2

-4
8
-6

0
 

G
F

A
-2

-4
8
-6

0
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