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Abstract 

With great lightweight potential, high performance-to-cost ratio and mass productivity, 

direct-compounded long fiber thermoplastics (D-LFT) have drawn great attention from 

the automotive industry. With better mechanical properties and higher service 

temperature, polyamide 6 (PA6) was used to replace polypropylene (PP) which is almost 

the exclusively used matrix for the D-LFT process currently. The investigation was 

performed on this new material with a focus on the effect of fiber content, processing 

parameters, temperature and tailored reinforcement on mechanical behavior. The results 

show that the mechanical properties of this new material are sensitive to the variation of 

fiber content and service temperature but insensitive to the varied processing parameters. 

Tailored reinforcement technique is a feasible and predictable approach to adjust the 

mechanical properties of this new material. 
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Chapter 1  

1 Introduction 

Direct-compounded long fiber reinforced thermoplastics (D-LFT) are gaining an 

increasing market share in the automotive industry due to mass productivity and high 

performance-to-cost ratio. With better mechanical properties and higher service 

temperature, polyamide (PA6) was selected as the matrix material to replace the most 

commonly used thermoplastic matrix, polypropylene (PP). As the material system of 

glass fiber/PA6 used in the D-LFT process has never be reported before, a fundamental 

investigation was performed on this new material. The aims of this work were to:  

i. build the material card and determine the proper elastic model of this material for 

the subsequent finite element (FE) simulation, 

ii. evaluate the effect of fiber content, processing parameters and temperature on the 

mechanical properties of this material, 

iii. determine the proper approach to apply a tailored reinforcement to this material. 

 Motivation 

The main motivation for this work comes from the great lightweight potential of fiber 

reinforced polymers (FRPs). Increasing environmental awareness and stricter emission 

standards around the world give a huge drive to the development of environmentally 

friendly techniques, among which electric vehicles (EVs) can be the most attractive. One 

of the main issues that drag the wheels of an EV is the heavy battery, which limits the 

mileage to 300 km per charge. Replacing the traditional metallic semi-structural 

components with FRP based ones is considered as a good way to reduce the weight.  

The second motivation is the mass productivity and relatively high performance-to-cost 

ratio of the D-LFT process. Of great importance to the automotive industry, the mass 

productivity of D-LFT is derived from the short cycle time of the thermoplastic matrix. 

Due to the long curing procedure, the cycle time for thermoset based FRPs is typically 

more than 10 minutes which is much longer than around 30 second for thermoplastic 

based FRPs. The relatively high performance-to-cost ratio is due to the elimination of 
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semi-finished products. The continuous fibers are directly incorporated with the melt to 

produce the final products in the D-LFT process, which significantly reduce the cost as 

compared with glass mat thermoplastics (GMT) and long fiber thermoplastic granulates 

(LFT-G). 

The third motivation is to improve the mechanical properties and service temperature by 

using PA6 as the matrix material. PPs have been the most commonly used matrix 

material in the D-LFT process due to their compatibility with many processing 

techniques, chemical resistance, and moisture & oxygen barrier. However, the relatively 

low mechanical properties of PP make suppliers eager to replace them with PA6 which is 

type of engineering polymer. The relatively high elevated-temperature mechanical 

properties of PA6 may also be able to increase the service temperature of the composite 

material. However, the concerns about using PA6 as the matrix are its high viscosity, 

hydrophilicity, and oxidation-sensitivity. 

 Task description 

As glass fiber/PA6 is a new material system for the D-LFT process, this work will 

investigate the mechanical behavior of this new material with focus on the effect of some 

fundamental factors. As an industry scaled composite processing line located at 

Fraunhofer Project Center for Composite Research in Western University 

(FPC@Western), the Dieffenbacher direct long fiber thermoplastic in-line compounding 

(D-LFT-ILC) line will be employed to prepare the materials involved in this work.  

As one of the most important factors for the FRPs, fiber content determines the 

mechanical properties. The first task is to evaluate the effect of fiber content on both 

mechanical properties and microstructure of this new material. The ladder of fiber 

content is set to be 20, 30, 40, 50, 55 and 60 wt.%. Tensile, flexural, shear, impact tests 

will be performed to quantify the effect of fiber content on the mechanical properties. 

Observations of the fracture surface with a scanning electron microscope (SEM) will be 

employed to evaluate the effect of fiber content on the microstructure. With the measured 

fiber length distribution (FLD) and fiber orientation distribution (FOD), the elastic 
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properties of this new materials will be predicted based on existing models and compared 

with the experimental result.  

As glass fiber/PA6 is a new material system which has never been used in this 

Dieffenbacher D-LFT-ILC line and the mechanical properties of FRPs are expected to be 

very sensitive to the processing-dependent microstructure, the second task is to evaluate 

the effect of the processing parameters on this new material. The focus of this work will 

be placed on the compounding process parameters, which include screw speed, melt 

temperature, filling level and fiber preheating.  

Since the material will be used in an automotive structural application, it is of great 

importance for the original equipment manufacturers (OEMs) to have an idea how this 

material behaves at different temperature. The third task is to characterize the mechanical 

behavior of this new materials at different service temperatures. Both tensile and flexural 

tests will be performed in an environmental chamber to characterize the mechanical 

properties. SEM will be used to observe the fracture surface to analyze the failure mode. 

For some parts of the component that have higher mechanical requirements, the capacity 

of locally adjusting the mechanical properties of this new material need to be achieved. 

With this task, the unidirectional (UD) tapes, in which all the fibers are continuous and 

aligned in the same direction, will be used to reinforce this new material. Different 

stacking sequences will be used to reinforce the D-LFTs in different ways, which are 

expected to broaden the range of mechanical properties of this material. The elastic 

properties of the new hybrid materials will be predicted and compared with the 

experimental result. 
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Chapter 2    

2 Literature review 

 Fiber reinforced plastics 

Owing to the great lightweight potential as semi-structural materials, fiber reinforced 

polymers (FRPs) are gaining more and more attention from industry, especially from 

automotive companies. FRPs consist of a polymer matrix and reinforcing fibers. The 

mechanical performance of FRPs was proven to strongly depend on the properties of 

matrix and fiber components as well as the interface quality [1, 2]. 

2.1.1 Matrix materials 

The role of the matrix in FRPs is to transmit the external force to the fibers through the 

interface shear stress, keeping the part in shape, bond the fibers together, compensate the 

overloads and protect the fibers from environmental damage. The matrix-related 

properties such as thermal, physical and chemical properties strongly depend on the 

choice of matrix. Based on the matrix used, FRPs can be separated into thermosets based 

FRPs and thermoplastic based FRPs. The properties of some commonly used matrix 

polymers are listed in Table 2-1. 

With the cross-linked 3-dimensional (3D) structure formed during the curing process, 

thermoset based FRPs have many advantages including good mechanical properties, high 

thermal resistance to creep, low pressure and temperature required for the molding, good 

fiber impregnating quality and low cost. These make thermosets more competitive than 

thermoplastics to be used as the matrix material of FRPs until now. But the further 

growth of thermoset based FRPs is limited by long cycle time and limited shelf life [3].  

Unlike thermosets, thermoplastics are not cross-linked, which can be categorized based 

on the degree of crystallinity into two groups: amorphous thermoplastics and semi-

crystalline thermoplastics as shown in Figure 2-1. The mechanical properties of 

thermoplastics are derived from the long molecular chains, the large degree of 
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Table 2-1 Properties of some commonly used resins. [1] 

 Young’s 

modulus 

(GPa) 

Tensile 

strength 

（MPa） 

Max. 

strain 

(%) 

Max. operation 

temperature 

(°C) 

Unsaturated polyester 3.5-4.7 50-70 2-5 100 

Epoxy 2.8-3.7 70-90 2-10 200 

Phenol 3.7-5.9 15-20 1-2 250 

Polypropylene (PP) 1.0-2.0 25-40 100-600 80 

Polyamide (PA) 3.0-3.2 80-90 70-300 100 

Polyethylenimine 

(PEI) 

3.0-3.3 80-100 60-80 200 

Polyether ether ketone 

(PEEK)  

3.6-3.8 100-120 80-100 250 

entanglements between them and the high degree of molecular alignment. The reported 

maximum degree of crystallinity of thermoplastics can go up to 85% [1].   

Attributes including high impact resistance, short cycle time, unlimited shelf life and 

recyclability have enabled thermoplastics to gain remarkable growth in recent years, 

especially in the automotive industry. However, the issues related to fiber impregnation 

due to high viscosity, the mechanical property degradation at elevated temperature and 

the creep behavior are the main drawbacks of thermoplastics, which need to be overcome 

in the future [4]. 

Polypropylenes (PPs), with the repeating units shown in Figure 2-2, are the most widely 

used thermoplastic matrix, due to the compatibility with many processing techniques, the 

relatively low cost, the chemical resistance and the moisture & oxygen barrier [5]. As a  
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Figure 2-1 Schematic molecular structure of a) semi-crystalline thermoplastics 

(highlighted in red) and b) amorphous thermoplastics 

semi-crystalline thermoplastic, PP can achieve a degree of crystallinity of 30-60%. 

However, the low mechanical properties and the low service temperature of PPs limit the 

growth of their application. The Young’s modulus and tensile strength of PPs are just half 

of the typical engineering thermoplastics. With glass transition temperature (Tg) of 

around 10°C, the mechanical properties of PP drop significantly when temperature rises 

above 50°C. 

Polyamides (PAs) are polymers which contain repeating amide groups (-CO-NH-). 

Proteins are an example of polyamides in nature. Artificial polyamides can be divided 

into two groups: aromatic polyamides and aliphatic polyamides. Benefiting from the 

aromatic structure and the hydrogen bonds, the aromatic polyamides have such high 

mechanical properties and good thermal properties that they were always used for 

reinforcement, such as Kevlar©[6]. The aliphatic polyamides are very important semi-

crystalline engineering polymers. The high degree of crystallinity gives polyamide 

excellent mechanical properties. Also attractive is their good resistance to many solvents. 

However, the polar amide groups make PAs vulnerable in a humid environment because 

the absorbed water can act as a plasticizer to degrade the mechanical properties of PAs. 

Moreover, the high viscosity of PA melt can create difficulties for fiber impregnation.  

http://www.essentialchemicalindustry.org/materials-and-applications/composites.html#aramid
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Figure 2-2 Repeating unit of polypropylene. 

The nomenclature of polyamides is based on the number of carbon atoms in the repeating 

unit. Some examples are shown in Table 2-2. Among these, PA6 and PA6.6 are the most 

widely used. With different molecular structures, PA6.6 has better mechanical properties 

and lower water absorption than PA6. But the differences are very limited [7]. 

Table 2-2 Repeating units of different polyamides. 

Type of polyamide Repeating unit 

Polyamide 6 

 

Polyamide 6.6 

 

Polyamide 6.10 

 

Polyamide 11 

 

Polyamide 12 
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2.1.2 Fiber products 

The vast majority of fibers used in FRPs are glass and carbon. Glass fibers are the most 

widely used reinforcement in industry. As shown in Figure 2-3, the primary constituent 

of glass fibers is silica (SiO2). Silicon, aluminum, boron and oxygen atoms form the 3D 

cross-linked network with some modifiers of sodium and potassium. As the structure of 

glass fiber is amorphous, the properties are isotropic. Glass fibers have many advantages, 

such as high mechanical properties, good adhesion to the matrix, high service 

temperature, low thermal expansion, low electrical conductivity and low price.  

Carbon fibers consist of small crystallites of turbostratic graphite, as shown in Figure 

2-4. Basically, carbon fibers have a two-dimensional (2D) layered structure, in which 

each layer is a covalently bonded graphite single atomic layer. The different layers are 

connected by van der Waals forces. Carbon fibers are therefore highly anisotropic. With 

outstanding specific mechanical properties, carbon fibers are usually employed in high-

performance applications. The main drawback of carbon fibers is the high price. 

Based on the length of fiber products used, FRPs can also be classified into short fiber 

reinforced polymers, long fiber reinforced polymers and continuous fiber reinforced 

polymers. In the first two, the fibers are always discontinuous, but may have a random or 

preferred orientation, whereas, in the latter case, the fibers typically extend the length of 

the part and are aligned in the same direction. 

Generally, the fiber length (aspect ratio) is of great importance to determine the 

mechanical properties of FRPs. The shear lag model is applied here to clarify the 

relationship between fiber length and mechanical properties [9]. When a composite is 

subjected to an external force, the fiber and the matrix are subjected to different 

elongations due to their different moduli. The external force is transmitted from the 

matrix to the fiber through the interfacial shear stress. This concept is embodied by the 

shear lag model as shown in Figure 2-5. 
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Figure 2-3 The molecular structure of glass fiber. 

 

 

Figure 2-4 The layered structure of carbon fiber. [8] 
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Figure 2-5 Shear lag model showing: a) unstressed system, b) axial displacements u 

introduced on applying tension parallel to the fiber and c) variation with radial location of 

the shear stress 𝝉 and strain in the matrix. [1] 

Under an external force that is parallel to the fiber length, the fiber tensile stress and the 

interface shear stress along the fiber length can be expressed as follows:  

𝜎𝑓 = 𝐸𝑓𝜀𝑔 [1 − cosh (
𝑛𝑥

𝑟
) sech(𝑛𝑠)]                                     (2-1) 

𝜏𝑖 =
𝑛𝜀𝑔𝐸𝑓

2
sinh (

𝑛𝑥

𝑟
) sech(𝑛𝑠)                                        (2-2) 

𝑊𝑖𝑡ℎ 𝑛 = [
2𝑬𝒎

𝑬𝒇(1+𝑣𝑚) ln(
1

𝑉𝑓
)

]                                               (2-3) 

Where 𝜎𝑓 is the fiber tensile stress,  𝜏𝑖 is the interface shear stress, 𝑥 is the distance from 

the fiber mid-point, 𝑟 is the fiber diameter, 𝑠 is the fiber aspect ratio, 𝐸𝑓 is the Young’s 

modulus of fiber, 𝐸𝑚 is the Young’s modulus of matrix, 𝑉𝑓 is the fiber volume fraction, 

𝑣𝑚 is the Poisson’s ratio of matrix and 𝜀𝑔 is the global strain. Figure 2-6 shows the 

predicted distribution of tensile stress and interface shear stress by Equation 2-1 and 

Equation 2-2 along the length of a glass fiber embedded in a polyester matrix. The 

tensile stress increases from 0 at the fiber end to a maximum at the midpoint while the 

interfacial shear stress decreases from a maximum at the fiber end to 0 at the midpoint. 
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The longer fiber with an aspect ratio of 50 enables the tensile stress to build up until the 

fiber and matrix have the same strain at the midpoint. For the short fiber with an aspect 

ratio of 5, the fiber is too short for the tensile stress to build up to the ultimate strength. 

That means the longer fibers enable the matrix to transfer more stress to the fibers. 

Therefore, the mechanical properties of FRPs can benefit a lot from the longer fibers. To 

fully utilize the potential of the fiber strength, the critical fiber length (𝑙𝑐) is required, 

which is expressed as below: 

𝑙𝑐 =
𝜎𝑢𝑓𝑑

2𝜏𝑢𝑖
                                                             (2-4) 

Where 𝜎𝑢𝑓 is the ultimate fiber tensile strength (MPa), d is the fiber diameter (mm) and 

𝜏𝑢𝑖 is the ultimate interfacial shear strength (MPa). Thomason [10] found that the effects 

of fiber length and fiber diameter on impact properties are different. The fiber length is a 

dominating factor in notched impact tests which is generally used to determine both the 

impact energy and notch sensitivity while the fiber diameter has a more obvious effect in 

unnotched impact tests which is usually used to evaluate the complete impact resistance. 

Derived by Thomason et al. [11], the relationship between the fiber length and the 

mechanical properties of FRPs is shown in Figure 2-7. Obviously, the fiber length needs 

to reach certain critical values to fully realize the mechanical potential of FRPs.  

In addition, sizing is also very essential for the resulting strength since the sizing can 

modify the adhesion between fiber and matrix, which normally contains a film-forming 

polymer, a lubricant and a coupling agent that the fibers are coated with. The functions of 

sizing are [1]: to protect the surface of the fibers from damage, to lubricate the fibers so 

that they can withstand abrasion during subsequent processing operations; to bind the 

fibers together for ease of processing; to impart anti-static properties and to provide a 

chemical link between the fiber surface and the matrix to increase the interfacial bond 

strength. As the exact composition of the sizing is often a commercial secret for different 

fiber manufactures, the fully understanding of the sizing structure is not clear. The 

chemical composition of sizing is also dependent on the types of fiber and matrix 

materials. 
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Figure 2-6 Distribution of a) tensile stress in the fiber and b) interfacial shear stress along 

the interface for different fiber length. [1] 

 

Figure 2-7 Relationship between fiber length and different mechanical properties 

(stiffness, strength and toughness) of PP based composites. [11] 
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 Long fiber reinforced thermoplastics 

Long fiber reinforced thermoplastics (LFT) have gained a rapid growth in the past 30 

years. The main spur for that is the mass productivity of LFT due to the short cycle time 

of thermoplastic matrix. The contributions also come from the high performance/cost 

ratio, unlimited shelf life, and recyclability [4, 12-14].  

2.2.1 Processing techniques for long fiber reinforced 
thermoplastics 

The processing techniques of LFT can be classified into three categories: glass mat 

reinforced thermoplastics (GMT), long fiber reinforced thermoplastic granulates (LFT-G) 

and direct long fiber thermoplastics (D-LFT). 

2.2.1.1 GMT 

Dating back to 1980s, developed by PPG industries, with the schematic of the processing 

shown in Figure 2-8, GMTs were the best option to provide high mechanical properties 

with moderate cost, a recyclable matrix, large volume capability and thin cross-section. 

Initially, the continuous and randomly oriented fiber mats were heated and consolidated 

with the thermoplastic sheets to produce the final products. Due to the poor mobility of 

the composite melt, the products with inhomogeneous fiber distribution tended to fail at 

the resin-rich areas. To fix this issue, semi-finished glass mats with continuous fibers 

were replaced by glass mats made of discontinuous chopped fibers with a length of 50-

100 mm. To meet the requirement of high-performance applications, the sacrificed 

mechanical properties could be compensated for by co-molding additional unidirectional 

continuous fiber products. Even though GMTs own the highest mechanical properties, 

the high cost weakens their competitiveness against other LFT products [15]. 

2.2.1.2 LFT-G 

In the LFT-G processing shown in Figure 2-9, the polymers are heated up with additives 

to form a molten phase and pumped to a die-head. The continuous fiber rovings are 

pulled through a dispersion die and consolidated with the molten polymer to form a rod.  
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Figure 2-8 Schematic of the GMT processing technique. 

 

Figure 2-9 Schematic of the LFT-G processing technique. 

After cooling down, the rod is chopped into many pellets with a length of 12-25mm 

which can be used for classic injection molding (IM), injection compression molding 

(ICM) or extrusion compression molding (ECM) to produce the final products. With the 

fiber length in glass-resin pellets increasing up to 13 mm, LFT-Gs started to compete 

with the traditional GMTs in structural applications [16]. With the attributes such as high 
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processing speed, good surface finish, and high geometrical complexity, IM is the most 

widely used molding process. The sacrificed mechanical properties can be improved by 

increasing the fiber length and fiber fraction. However, the fiber length of the pellets 

cannot extend 13mm because the longer fibers tend to break or clog the injection nozzle. 

2.2.1.3 D-LFT 

Both GMTs and LFT-Gs are making tradeoffs between the mechanical properties and the 

processability by using the chopped fiber mats and maximizing the fiber length of pellets, 

respectively. In the late 1990s, in line compounding technique (ILC), developed by 

molding machinery OEMs, enabled an innovative direct long fiber reinforced 

thermoplastics (D-LFT) process. In D-LFT processing, the continuous fiber rovings are 

directly incorporated and impregnated with the molten polymers during the composites 

compounding process and directly transferred into the mold to form the final parts [16-

22]. 

The most important characteristic of D-LFTs is removing the requirement of the semi-

finish products, like the chopped fiber mats for GMTs and the composite pellets for LFT-

Gs, which significantly reduce the cost. Additionally, as the polymers undergo just one 

single thermal history from the raw materials to the final parts, the thermal stress and the 

degradation of mechanical properties can be minimized. Without the limitation of the 

processing efficiency of the semi-finished products, the formulations of the matrix blend 

including the polymers, the stabilizers, the antioxidants and the colorants can be adjusted 

on the site based on different applications. The type and concentration of the fiber can 

also be tailored through the controlled gravimetric feeder, the screw speed and the 

amount of fiber rovings fed into the extruder. Those benefits give the designers a high 

degree of freedom to control the range of performance of the final product.  

2.2.1.4 Compression molding and injection molding 

The biggest advantage of compression molding over injection molding is the short cycle 

time. Additionally, the shear stress during the compression molding is moderate, which 

leads to less degradation of the fiber length. The longer fibers can improve the 
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mechanical properties and reduce the warpage. The freedom of charge placement in the 

mold enables the optimization of the flow for products with different geometry, which 

aids in minimizing the component thickness [13]. 

2.2.2 Influence of fiber content on the mechanical properties of 
LFT composites 

Generally, raising the fiber content is the simplest way to improve the mechanical 

properties of LFTs. Fiber volume fraction (FVF) is also a very important parameter for 

the prediction of the mechanical properties of LFTs. Though difficult to be measured 

experimentally, FVF can be calculated by the fiber weight fraction (FWF) based on the 

density of the matrix and the fiber as follows:  

𝑉𝑓 =
𝑊𝑓𝜌𝑓

𝑊𝑓𝜌𝑓+𝑊𝑚𝜌𝑚
                                                     (2-5) 

Where V, W and 𝜌 are the volume fraction, weight fraction and density, respectively. The 

subscript 𝑓 and 𝑚 represent the fiber and the matrix, respectively. The mechanical 

properties can be improved by increasing the fiber volume fraction because there are 

more fibers bearing the load. However, when the fiber volume fraction is too low (<10 

wt.%), the fibers may serve as stress concentration points and do harm to the mechanical 

properties. The effective fiber volume fraction is often limited to a certain range of values 

based on different processing techniques and material systems. 

According to the previous works on the effect of fiber content on mechanical properties 

of LFTs [23-37], it was observed that increasing the fiber content improves the 

mechanical properties at low fiber content range, whereas the efficiency of the 

improvement drops significantly at high fiber content range. The effect of fiber content 

also varies for different mechanical properties, which will depend on the fiber length. 

Thomason et al. [29, 30] conducted an experiment to investigate the mechanical 

performance of injection molded long glass fiber reinforced PP over a fiber content range 

of 0-73 wt.%. It was found that the Young’s modulus increases linearly over the whole 

range while the strength and the impact properties show maximum values at the fiber 
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content of around 40 wt.% and approach to the properties of unreinforced PP at 73 wt.%. 

The elongation of the composite sample decreases with the increasing fiber content. The 

higher fiber content is found to degrade the average fiber length, reduce the preference of 

fiber alignment and reduce the interfacial shear strength at the same time, which might 

serve as the interpretation of the variation of the strength and impact properties. 

Lee et al. [23] studied the effect of fiber content on the mechanical properties of glass 

fiber mat/polypropylene composites. As the fiber content increases, both tensile and 

flexural modulus show a linear increase. But the reinforcing effect at high fiber content is 

reduced by the higher void content. Both the impact properties and the strength go down 

when the fiber content is increased beyond 20 wt.%. This is explained by the degraded 

interface bonding and the severe stress concentration around the fiber ends. 

Bowland [32] evaluated the effect of coupling agent, fiber content and resin properties on 

the mechanical properties of long glass fiber reinforced PP. Within the whole fiber 

content range of 30-50 wt.%, the tensile and flexural properties were found to increase as 

fiber content went up. 

According to Han et al.’s work [34] on injection molded long fiber reinforced PA6. The 

tensile and flexural properties were improved by increasing fiber content up to 50 wt.%. 

The notched impact strength hit the peak at the fiber content of 40 wt.%. The reason for 

that is referred to the degradation of fiber length caused by more fiber-fiber frictions 

during the injection molding. 

However, most researches focusing on effect of fiber content on mechanical properties of 

LFTs were performed on LFT-Gs which have much short fiber than D-LFT. The findings 

in LFT-Gs may not be directly applicable to D-LFT since the effect of fiber content on 

mechanical properties is dependent on the length of fiber products used. The maximum 

effective glass fiber content of short fiber reinforced thermoplastics (typically 30 wt.%) is 

also smaller than that of long fiber reinforced thermoplastic (typically 50-60 wt.%).  
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2.2.3 Influence of processing parameters on the mechanical 
properties of LFT composites 

Generally, the mechanical properties of LFTs are very sensitive to the microstructure, 

which is controlled through the compounding and molding process. Normally, the 

compounding process has more influence on the quality of impregnation and the 

distribution of fiber length [38-49] while the molding process dominates the distribution 

and orientation of fibers [50-58].  

In the molding process, the melt flow is the key to be controlled. As affected by many 

parameters including geometry of the mold, material viscosity, fiber length, mold 

temperature, mold pressure, location of injection point (injection molding) and charge 

position (compression molding), the melt flow during the molding process is very 

complex even for a simple specimen, which make it very difficult to model the whole 

process and predict the resulting fiber alignment. 

The compounding process is also of crucial importance due to its significant effect on 

resulting fiber length though the shear flow. Since most of the compounding equipment is 

based on the single or twin screw extruder system, the parameters including screw 

configuration, melt temperature, screw speed, filling level and dimension of the extruder 

need to be examined. A contradiction exists in adjusting the parameters of the second 

extruder to achieve good mixing quality and high fiber length. The high shear effect 

which improves the mixing quality is not preferred if large average fiber length is needed. 

Therefore, adjustment of the compounding processing parameters requires making a 

tradeoff.  

Much efforts were made to optimize the screw design. As shown in Figure 2-10, many 

geometric parameters of the screw including the barrel diameter Db, the centerline 

distance A, the clearance screw-barrel Cb, the clearance screw- screw Cs, the flight pitch 

p, the number of flights j, the inner screw diameter Di, the outer screw diameter D0 and 

the free volume B can be adjusted to modify the shear effect [44, 47]. 
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Huembert [44] experimented with the effect of screw design on the fiber length and the 

mechanical properties of glass fiber reinforced PA6 D-LFT composites, which is based 

on the same processing line with this work. As shown in Figure 2-11, four types of 

screws with different shear effect were used to produce the plaques with 30 wt.% fiber. 

The standard screw design is the one used in this work. It is found that the average fiber 

length decreases linearly as the shear effect of the screw increases. But the variation of 

the mechanical properties is very limited. 

Shimizu et al. [41] analyzed the fracture process of glass fibers contained in a glass fiber 

reinforced PP composites, which occurs in the kneading zone of a twin-screw extruder. It 

was found that the fiber length distribution depends upon the shear stress and the total 

number of rotations. 

Stade’s work [59] on two stage production-scale continuous kneaders help defining the 

major processing factors on the fiber length of the finished products. Stade derived the 

relationship between different processing parameters and fiber length empirically as 

𝑘 =
(𝐿2)(𝜌)(𝑓)(𝑁)(𝐴𝑓)

𝐹
                                   (2-6) 

where k is the key factor for the average glass fiber length in composites, L2 is the length 

of the mixing section of extruders, ρ is the average density of the melt, f is the filling 

ratio, N is the screw speed, Af is the free cross section of the extruder, and F is the feeding 

rate of the composites. The relationship indicates that melt with higher density, higher 

filling level, and higher screw speed can reduce the degradation of fiber length during the 

compounding. 

Fisa [39] performed an experiment to study the effect of viscosity, total work, 

concentration on the fiber length and dispersion of glass fiber reinforced PP. The 

degradation of fiber length was reported to be derived from both fiber-fiber and fiber-

melt interaction. The matrix viscosity has a more significant effect on the average fiber 

length than does the incorporation process of the fiber.  
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Figure 2-10 Parameters involved in screw design: barrel diameter Db, centerline distance 

A, clearance screw-barrel Cb, clearance screw- screw Cs and flight pitch P.  

 

Figure 2-11 Four types of twin-screw designs with different placements of high mixing 

elements resulting in different shear flow. [44] 
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Czarnecki and White [40] proposed a mechanism for fiber breakage based on the 

buckling during rotation in the shear flow. They also found the viscosity increasing is 

only due to the enhanced viscous dissipation. 

Yilmazer and Cansever [45] prepared glass fiber reinforced PA6 through injection 

molding with different screw speed and feed rate. It is found that the increasing shear rate 

through the alteration of screw speed and feed rate significantly reduce the fiber length. 

Accordingly, the impact strength, the tensile modulus, and the tensile strength increase 

while the global elongation decreases with the increasing shear rate. 

Priebe and Schledjewski [46] studied the effect of processing parameters in a twin-screw 

extruder on the fiber length of the materials extruded. It is found that utilizing the PP 

products with higher viscosity led to higher fiber length but lower mechanical properties 

which might be caused by some other effect of processing parameters on the material. 

The high screw speed significantly degrades the fiber length as expected. But the effect 

of screw configuration and fiber content were limited.  

Ozkoc et al. [35] reported that the increasing screw speed reduced the fiber length and 

had some negative effect on the mechanical properties. An increased extrusion 

temperature had a positive effect on the fiber length and, therefore, improved the 

mechanical properties. 

These findings illustrate that the key factor to be controlled in the compounding process 

in a twin-screw extruder is the shear flow of the melt. The adjustment of many 

parameters can result in the variation of mechanical properties. However, the rule derived 

from each work was based on a specific processing line and a specific material system, 

which might not be directly applicable to other work that is based on a different 

processing line and material system.  
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2.2.4 Environmental effect on the mechanical properties of LFT 
composites 

In service, the LFT components will be exposed to different environments, such as varied 

temperature, water, sunshine and acid rain. If the LFT parts are exposed to these 

environments for a long time or cyclically, the mechanical properties are likely to be 

degraded. It is very important to quantify the extent of the degradation to ensure safety. A 

great deal of research has been conducted to investigate the effect of these environmental 

factors on both the microstructure and properties of LFTs. 

Moisture can affect LFTs through attacking fiber, matrix, and interface (Figure 2-12). 

The absorbed water can promote creep and stress relaxation, generate residual stress and 

osmotic pressure, and cause hydrolysis and chemical reaction. Fatigue degradation can be 

accelerated by moisture as well, which can provide new paths for the moisture ingress.  

Moisture damage starts near the surface with the growth of some local cracks [60]. The 

degradation of LFTs is also related to the absorption of moisture through capillary action 

and diffusion, which can be accelerated by voids and delaminations [61-63].  

Hydrothermal aging has a significant effect on LFTs. Both strength and toughness were 

shown to decrease as the immersion time increases [64]. Dry-wet cycling increased the 

rate but hardly affected the maximum content of the water absorption [65]. Aggressive 

temperature variation will also promote moisture absorption [64, 66]. It has been 

observed that glass fiber degrades more than carbon fiber under the same condition [67]. 

Matrices are the main victim of moisture attack, resulting in plasticization, swelling, 

hydrolysis and fiber-matrix debonding [68]. Plasticization can decrease the glass 

transition temperature (Tg), soften the polymer and increase creep deformation, although 

these effects are reversible on drying [60, 51, 67]. However, hydrolysis is irreversible, 

which can degrade both stiffness and strength [64, 67]. Swelling can deteriorate the 

bonding between fiber and matrix, which tends to form a continuous crack after cycling 

[60, 64, 67]. 
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At the fiber level, glass fiber is the most vulnerable to moisture attack. Moisture can 

degrade glass fiber chemically, resulting in reduction of strength, fiber pitting and stress-

corrosion cracking [62-71]. 

Beg and Pickering [72] studied the hydrothermal aging behavior of virgin and 

reprocessed wood fiber reinforced PP. After immersion in distilled water at 50°C over 9 

months, the tensile strength, the Young’s modulus, and the hardness of samples 

 

Figure 2-12 Local cracks caused by moisture absorbed in composites. [60] 

decreased while the impact strength and the failure strain increased. The water uptake 

was shown to decrease after reprocessing.  

Valentin [73] investigated the hydrothermal behavior of glass fiber reinforced PA6.6 

composites. When the temperature is lower than the Tg, Fick’s law can be employed to 

model the water absorption process. When the temperature is higher than Tg, thermal 

aging, oxidation, and leaching may disturb the behavior. The water uptake also leads to 
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the shift of Tg. The same water uptake tends to have a greater effect on the mechanical 

properties of short fiber composites than long fiber counterparts.  

Compared with fibers, polymers are more susceptible to thermal effects. Lower 

temperatures make the polymer more brittle to easily crack whereas the higher 

temperature softens the polymer resulting in lower stiffness, chalking, and flaking of the 

polymers [27, 74-91]. The softened matrix becomes deformable and less able to transfer 

the stress to the fibers [63]. 

Thermal effects on the interface between fiber and matrix are the primary cause of the 

mechanical degradation. Due to the distinct thermal expansion coefficients of fiber and 

matrix, the shrinkage after cooling can generate a large stress concentration and residual 

compressive stress. The former may serve as the crack initiating spot while the latter can 

contribute to the interfacial shear strength [92-97]. The variation of temperature alters the 

distribution of stress along the interface, which can have a complex effect on the 

mechanical properties.  

Thomason [27] researched the temperature dependence of the interfacial properties of 

glass fiber reinforced PP composites at the temperature range of -40-100°C. The result 

indicated that around 70% of the interfacial shear strength is derived from the residual 

radial compressive stress which can be released by increasing temperature [78]. He also 

reported that the heat deflection temperature (HDT) depends on both fiber length and 

fiber concentration. Both longer fiber and higher fiber content can raise the HDT close to 

the melting point of PP. That means the thermal effect on the mechanical properties of 

LFT is correlated to the fiber length and the fiber concentration.  

2.2.5 UD tape reinforcement on D-LFT composite 

For a real part with complex geometry, the requirement of mechanical properties for 

certain area, like one with stress concentration, might be higher than the rest. To 

efficiently make use of the material, some local reinforcements may be required. With 

respect to the design of geometry, some strengthening ribs can be added to the part. 
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However, this method may cause filling issues, especially for thermoplastic based 

composites.  

Another approach is to tailor the material properties locally. As mentioned above, once 

the fiber content is determined for D-LFTs, the mechanical properties just depend on the 

fiber orientation distribution within the whole product. Since the flow effect is difficult to 

adjust, the mechanical properties of LFT product are also hard to locally improve.  

As shown in Figure 2-13, the continuous fiber products with higher fiber fraction and 

more consistent fiber alignment have better performance but less freedom of design than  

 

Figure 2-13 Comparison between the FRPs based on different fiber products. [100] 

LFT, while LFTs have more freedom of design but lower performance. Borrowed from 

GMT processing, tailored D-LFT is an innovative technique using the continuous fiber 

tapes, in which all the fibers were continuous and aligned in the same direction, to locally 

co-mold with D-LFT to take the benefits of both [98-108]. Additionally, the 

configuration of the tapes including the type of materials, the fiber fraction, the stacking 

sequence and the thickness can offer more freedom of design to the engineer. 



26 

 

 

 

Thattaiparthasarthy [107] compared the damage tolerance of LFT reinforced with ribs 

and unidirectional tapes, respectively. Without changes in the processing, the co-molded 

UD tapes enhance the flexural properties for equivalent rigidity compared to rib 

reinforcement. The failure of LFTs got more ductile with tape reinforcement. The tape 

reinforcement improves both flexural strength and failure displacement.  

Grauel et al. [100, 101] co-molded a D-LFT automotive underbody shield with UD tapes 

to improve the mechanical performance. The result clarified that tailored D-LFT 

technique has a great potential to reduce both cost and mass with improved mechanical 

properties. The co-molded tapes yield the parts with improved impact strength.  

In Fang’s work [104], the effect of thickness of co-molded UD tapes on the mechanical 

properties of the whole hybrid composite was studied. It was discovered that the UD 

tapes could improve toughness significantly with little effect on modulus and strength.  

Ruegg et al. [98] used different studies of structural components, implicit and explicit 

finite element calculation with validation in a sled-test-front-crash with luggage retention 

to derive the advantages of the combination of UD tapes and LFT over other current 

solutions. 

 Prediction of mechanical properties of long fiber 
thermoplastic 

To predict the mechanical behavior of LFTs, many factors such as constituent material 

properties, fiber volume fraction, fiber length distribution and fiber orientation 

distribution need to be measured. It is crucial to understand the correlation between the 

mechanical properties and these factors. 

The elastic properties of UD composites are the best option to start with, in which 

materials properties and fiber volume fraction are the only two variables. With an 

assumption that the mechanical properties of UD are transversely isotropic, the 

compliance matrix of UD [𝑆] can be determined by 5 independent constants: axial 

Young’s modulus (E11), transverse Young’s modulus (E22), axial shear modulus (G12), 



27 

 

 

 

transverse shear modulus (G23) and major Poisson’s ratio (ν12). The compliance is 

expressed as below: 

[𝑆] =

[
 
 
 
 
 

1/𝐸11 −𝜈12/𝐸11 −𝜈12/𝐸11

−𝜈12/𝐸11 1/𝐸22 −𝜈23/𝐸22

−𝜈12/𝐸11 −𝜈23/𝐸22 1/𝐸22

0         0          0
0         0          0
0         0          0

0               0                0
0               0                0
0               0                0

1/𝐺23 0 0
0 1/𝐺12 0
0 0 1/𝐺12]

 
 
 
 
 

            (2-7) 

The rule of mixture (ROM) is the most basic approach being used to calculate these 5 

constants. It is based on two types of slab model as shown in Figure 2-14: iso-strain 

model (Voigt model) and iso-stress model (Reuss model) [109, 110]. 

Two types of slabs represent the fiber and matrix with an assumption of perfect bonding. 

In the iso-strain model, fiber and matrix have the same strain in the load direction. Then 

the axial Young’s modulus and major Poisson’s ratio can be derived as follows: 

𝐸11 = 𝑉𝑓 ∙ 𝐸𝑓 + 𝑉𝑚 ∙ 𝐸𝑚                                             (2-8) 

𝜈12 = 𝑉𝑓 ∙ 𝜈𝑓 + 𝑉𝑚 ∙ 𝜈𝑚                                               (2-9) 

Where, 1 is the axial direction, 2 is the transverse direction, 𝑉 is the volume fraction, 𝐸 is 

the Young’s modulus, 𝜈 is Poisson’s ratio, subscript 𝑓 represents the fiber and 

subscript 𝑚 represents the matrix. In the iso-stress model, fiber and matrix bear the same 

stress in the load direction, from which the shear modulus and transverse Young’s 

modulus can be derived as follows: 

𝐸22 =
𝐸𝑓∙𝐸𝑚

𝐸𝑚∙𝑉𝑓+𝐸𝑓∙𝑉𝑚
                                                   (2-10) 

𝐺12 =
𝐺𝑓∙𝐺𝑚

𝐺𝑚∙𝑉𝑓+𝐺𝑓∙𝑉𝑚
                                                 (2-11) 

The prediction for 𝐸11 and 𝜈12 using ROM matches well with experimental result while 

that for 𝐸22 and 𝐺12 is often lower than the experimental results. That is caused by the 

inhomogeneous stress distribution within the matrix. To fix this problem, several models 

were developed to predict E22 and G12 with different assumptions, such as Modified Rule 

of Mixture, Halpin-Tsai model [111], Chamis model [112], composite cylinder 
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assemblage method (CCS) [113], Mori-Tanaka model [114], Bridging model [115, 116] 

and Eshelby method. Among these, as taking account of the enhanced fiber load bearing, 

the Halpin-Tsai model is the most successful and widely employed. The empirical 

expression is shown as follows: 

𝐸𝑢𝑑𝑖 = 𝐸𝑚 ∙ (
1+𝜁𝑖𝜂𝑖𝑉𝑓

1−𝜂𝑖𝑉𝑓
)                                               (2-12) 

with 𝜂𝑖 = (

𝐸𝑓

𝐸𝑚
−1

𝐸𝑓

𝐸𝑚
+𝜁

)                                                   (2-13) 

Where 1=2L/d and2=2, 𝐸𝑚 is the Young’s modulus of matrix, 𝑉𝑓 is the fiber volume 

fraction. L is the fiber length and d is the fiber diameter. 

 

Figure 2-14 Voigt (iso-strain) model and Reuss (iso-stress) model for composite material 

elasticity. 

Since the fibers in LFTs are discontinuous and partially aligned in the flow direction, the 

prediction of the mechanical properties needs to take both fiber length distribution (FLD) 

and fiber orientation distribution (FOD) into account. Currently, three approaches are 

often employed to predict Young’s modulus. The first one is based on the shear lag 
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model developed by Cox [117] and improved by Krenchel [118]. The expressions are 

shown as follows: 

𝐸11 = 𝑘1𝑘2𝐸𝑓𝑉𝑓 + 𝐸𝑚(1 − 𝑉𝑓)                                      (2-14) 

with 𝑘1 = [1 −
tanh(

𝛽𝐿

2
)

𝛽𝐿

2

]                                             (2-15) 

𝛽 =
2

𝑑
[

2𝐺𝑚

𝐸𝑓 ln√
𝜋

𝑋𝑖𝑉𝑓

]                                                 (2-16) 

𝑘2 = ∑ 𝑎𝑖𝑖 cos4 𝜃𝑖                                                   (2-17) 

Where 𝐸𝑓 and 𝐸𝑚 are the Young’s moduli of fibers and matrix, respectively. The effect 

of FLD and FOD were involved by inducing fiber length factor 𝑘1 and fiber orientation 

factor 𝑘2. 𝐿 and 𝑑 are the length and diameter of fibers, respectively. 𝑋𝑖 depends on the 

geometrical packing arrangement of fibers and can be set as 4 [24].  𝑉𝑓 is fiber volume 

fraction. 𝑎𝑖 represents the fiber proportion making an angle 𝜃𝑖 with the load direction.  

The second method is based on the Halpin-Tsai model [29]. As mentioned before, 

Halpin-Tsai has already involved the effect of fiber length. Young’s modulus in 

longitudinal 𝐸𝑈𝐷1 and Young’s modulus in transverse directions 𝐸𝑈𝐷2 of unidirectional 

discontinuous fiber can be predicted based on equations (2-11) and (2-12). With the fiber 

orientation factor 𝑘2 calculated by equation (2-16), the Young’s modulus of partly 

aligned discontinuous fiber composites can be predicted as: 

𝐸c = 𝑘2𝐸𝑈𝐷1 + 𝐸𝑈𝐷2(1 − 𝑘2)                                           (2-18) 

The third approach is based on laminate analogy approach (LAA) with an assumption 

that the specimen is shell-like to enable the condition of a planar FOD. Developed by Fu 

and Lauke [119] with an inspiration from paper physical approach (PPA), the expression 

of longitudinal and transverse Young’s moduli is shown as follows: 
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𝐸11 =
𝑄11𝑔∙𝑄22𝑔−𝑄12𝑔

2

𝑄22𝑔
                                               (2-19) 

𝐸22 =
𝑄11𝑔∙𝑄22𝑔−𝑄12𝑔

2

𝑄11𝑔
                                                (2-20) 

With 𝑄𝑖𝑗𝑔 = ∫ ∫ 𝑄𝑖𝑗  𝑓(𝐿)𝑔(𝜃)𝑑𝐿𝑑𝜃
𝜃𝑚𝑎𝑥

𝜃𝑚𝑖𝑛

𝐿𝑚𝑎𝑥

𝐿𝑚𝑖𝑛
                             (2-21) 

Where 𝑄𝑖𝑗𝑔’s are overall stiffness terms obtained by integrating the transferred stiffness 

matrix of aligned composite 𝑄𝑖𝑗 along with fiber length 𝑓(𝐿) and orientation 𝑔(𝜃) 

density functions. 

Fu and Lauke [120] also developed an approach to predict the tensile strength of LFT by 

accounting for the dependence of the ultimate fiber strength and the critical fiber length 

on the inclination angle θ, which is based on modified rule of mixture. The expression is 

shown as follow: 

σ = 𝑘2𝑉𝑓𝜎𝑢𝑓 (∫ 𝑓(𝐿)
𝐿𝑐

0
[

𝐿

2𝐿𝑐𝑟
] 𝑑𝐿 + ∫ 𝑓(𝐿)

∞

𝐿𝑐𝑟
[1 −

𝐿𝑐

2𝐿
] 𝑑𝐿) + 𝜎𝑢𝑚(1 − 𝑉𝑓)       (2-22) 

Where 𝜎𝑢𝑓 is the ultimate fiber tensile strength, 𝐿𝑐 is the critical fiber length which can 

be calculated based on Equation 2-4 and 𝜎𝑢𝑚 is the tensile strength of the matrix. 

 Summary 

Fiber content, processing parameter and temperature can all affect the mechanical 

properties of LFT. But the previous findings about the correlation between these factors 

and the mechanical properties of LFT are based on different processing lines and 

different material systems. For the material investigated in this work, the new 

combination of PA6 with glass fiber for D-LFT and the much long fibers might lead to 

different rules. Therefore, it is worth to evaluate the effect of fiber content, processing 

parameter, temperature on the mechanical properties and determine a proper way to apply 

a tailored reinforcement for the PA6/Glass fiber D-LFT composite material.  
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Chapter 3  

3 Experimental 

 Materials 

PA6 (Ultramid 8202HS) provided by BASF and glass fiber (JM 886) provided by John 

Manville (JM) were used in this work. The Ultramid 8202 HS is a heat stabilized, low 

viscosity, general purpose PA6 which possesses the combination of strength and 

toughness and has excellent chemical and abrasion resistance. The JM 886 glass fiber is 

characterized by a pioneering reactive sizing designed for structural thermoplastic 

composites with polyamide engineering polymers. Physical and mechanical properties of 

these two products are listed in Table 3-1.  

 Preparation 

3.2.1 Dieffenbacher D-LFT-ILC line 

Preparation of all the specimens involved in this work was performed at the 

FPC@Western. The key equipment was a Dieffenbacher direct long fiber reinforced 

thermoplastics in-line compounding (D-LFT-ILC) line, of which the schematic is shown 

in Figure 3-1. During processing, polymer granules and additives were dried and fed into 

the first extruder to undergo a thorough compounding. Then the molten matrix blend was 

extruded out through a film die into the second extruder. Simultaneously, continuous 

fibers were integrated from the top of the melt film and continuously pulled into the 

second extruder by the screw rotation. In the second extruder, the continuous fibers were 

chopped by a specially designed cutting element of the twin-screw and smoothly 

dispersed by shear effect of the melt. Mixed compounds were continuously coming out 

through a servo die and cut into charges by a shear blade. The charges were kept warm on 

an insulated conveyor and transferred manually into a tool to undergo compression 

molding. Compared with other competing directly compounded long fiber reinforced 

thermoplastic (D-LFT) lines, separation of polymer plasticizing and fiber integration is 

the most attractive characteristic of this D-LFT-ILC line. High screw speed and screws 

with high shear configuration can be used in the first extruder to guarantee a thorough  
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Table 3-1 Properties of PA6 (Ultramid 8802HS) and glass fiber (JM 886) used in this 

work. 

 PA6 Glass fiber 

Supplier BASF Johns Manville 

Product Ultramid 8802HS JM 886 

ρ (g/cm
3
) 1.13 2.63 

E
11

 (GPa) 2.7 70 

E
22

 (GPa) 2.7 70 

G
12

(GPa) 0.93 30 

τ (MPa) 45 866 

σ
t 
(MPa) 78 1500 

ν
12

 0.45 0.17 

 

 

Figure 3-1 Schematic of Dieffenbacher D-LFT-ILC line. 
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compounding, while moderate screw speed and screws with moderate shear configuration 

can be used in the second extruder to attain long fibers. Additionally, the separation of 

two extruders can also reduce the wear of screws in the first extruder due to the absence 

of fiber during melting process. 

3.2.2 D-LFTs with different fiber contents 

Glass fiber/PA6 D-LFT plaques with fiber contents of 20, 30, 40, 50, 55, 60 wt.% were 

prepared. As shown in Figure 3-2, PA6 pellets were pumped into the dryer and 

maintained at 80°C for around 12 hours. Then the dried PA6 pellets were pumped in to a 

gravimetric dosing system which control the feeding rate during processing. The solid 

PA6 pellets were automatically fed into the first extruder, as shown in Figure 3-3, which 

is called ZSE. ZSE is a co-rotating, closely intermeshing and self-cleaning Leistritz ZSE 

60/GL unit with an L/D ratio of 32. The temperature of ZSE was set to be 260°C which 

was above the melting point of the PA6. Degassing took place with vacuum assist. The 

compound melt exited the first extruder through a film die at the end. Simultaneously, the 

continuous glass fiber rovings were separately fed through a plastic tube system, as 

shown in Figure 3-4, and introduced from the top of the melt film into the second 

extruder. The separation apparatus above the second extruder and the film die of the first 

extruder were both used to increase the contact area of fiber and melt to improve the 

impregnation. Optionally, the fibers can be preheated by going around several hot iron 

bars to further improve the impregnation.  

In the second extruder, as shown in Figure 3-5, continuous fibers were chopped into 

discontinuous fibers with a length range of 20-40 mm by a specially designed cutting 

element. Complex shear effect generated by the co-rotation of screws dispersed and 

impregnated the fibers. However, the aggressive shear effect might also result in some 

damage to the fibers. The screw design of the seconded extruder used in this work has a 

high shear design, which is shown in Figure 2-11 and labelled as standard. 

To give an idea of how fiber content was adjusted, the schematic of second extruder is 

shown in Figure 3-6. The fiber content of composites is consistent with that of each 
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revolution. As the filling level, which means the volume of the filled space in each 

revolution, was stable during the process, the output rate of compound was determined by 

the filling level and the screw speed. The input of matrix melt and the number of fiber 

rovings were used to adjust both filling level and fiber content. Therefore, if the filling 

level is fixed, increasing the fiber content can be achieved only by increasing the number 

of fiber rovings and reducing the screw speed of ZSE at the same time. 

As shown in Figure 3-7, the composite compound was coming out through a servo die 

and automatically cut into charges by a shear blade. The mass for each plaque varies from 

800 to 1200 g. Then the charges were kept warm on a heated conveyor which was 240°C 

and covered with an insulated tunnel. 

At last, the charge was transferred manually into the Dieffenbacher DCP-U 2500/2200 

hydraulic press which has a parallel motion control system and a closing force of 5000 

kN. The mold was heated up to around 100°C by the oil. The press and the mold used in 

this work are shown in Figure 3-8. 

The products used in this work were flat plaques with a size of 457×457×3 mm3. As 

shown in Figure 3-9, the charges were put on one side prior to each compression 

molding to increase the flow distance during compression molding.  This was done 

because subsequent molding of real automotive parts is expected to require long flow 

lengths. All the other parameters of the line including conveyor temperature, oil 

temperature, mold temperature, pressure, speed profile of the press and cooling time were 

set to be consistent. 
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Figure 3-2 a) Polymer dryer and b) gravimetric dosing unit of Dieffenbacher D-LFT-ILC 

line. 

 

Figure 3-3 The first extruder (ZSE) of Dieffenbacher D-LFT-ILC line. 
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Figure 3-4 Fiber feeding system of Dieffenbacher D-LFT-ILC line with a) continuous 

glass fiber tows b) plastic tube system c) iron bars for fiber preheating d) roving 

separation apparatus above the second extruder. 
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Figure 3-5 The second extruder (ZSG) of Dieffenbacher D-LFT-ILC line. 

 

 

 

Figure 3-6 Schematic of the second extruder (ZSG) of Dieffenbacher D-LFT-ILC line. 
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Figure 3-7 Conveyor (PAZ) of Dieffenbacher D-LFT-ILC line with a) composites charge 

and b) the conveyor. 

 

 

Figure 3-8 Dieffenbacher DCP-U 2500/2200 hydraulic press and b) the compression 

mold used in this work. 
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Figure 3-9 Size and charge position of the plaques prepared in this work. 

3.2.3 D-LFTs with different processing parameters 

With the goal to investigate the effect of parameters related to the compounding process 

(screw speed, filling level, melt temperature and fiber preheating) on the mechanical 

properties of this new material, glass fiber/PA6 D-LFT plaques with 30 wt.% were 

prepared under 8 different conditions (T1, T2, T3, T4, T5, T6, T7, and T8) which are 

shown in Table 3-2. Among these, T1 was the reference condition; T2 and T3 had 

different screw speeds; T4 and T5 had different filling levels; T6 and T7 had different 

melt temperatures and T8 had the fibers preheated prior to their incorporation. The room 

temperature (R.T.) was 23°C. 

Based on Figure 3-6 about the adjustment of fiber content, the adjustment of melt 

temperature and fiber preheating did not have any effect on the other parameters. When 

the screw speed of the second extruder increases, that of the first extruder should also 

increase to keep the fiber content unchanged. The filling level adjustment requires both 

numbers of rovings and screw speed of the first extruder to change accordingly. 
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Table 3-2 List of the processing parameters in 8 conditions, room temperature (R.T.) is 

23°C. 

3.2.4 Reinforcing D-LFT with UD tapes 

The tailored D-LFT technique was employed to use continuous fiber tapes to reinforce 

the glass fiber/PA6 D-LFT plaques with a focus on the stacking sequence of the UD 

tapes. As shown in Figure 3-10, the tapes used in this work were provided by BASF, in 

which the fiber content is 60 wt.% and all the fibers are in the same direction.  

Firstly, a Fiberforge Relay@ 1000, as shown in Figure 3-11, was employed to fabricate 

the 3D laminates through trimming, placing and welding the tapes automatically. Then 

the laminates were heated up to 270°C for 6 min in a HK Präzisionstechnik GmbH hot 

circulation oven and compressed in the cold mold to achieve consolidation. The products 

before and after consolidation are shown in Figure 3-12. The consolidation can improve 

the bonding between different laminae and squeeze out the air. 

Before co-molding process, the consolidated laminates were preheated again while the 

PA6 with 30 wt.% glass fiber D-LFT charge was produced through Dieffenbacher D-

LFT-ILC line. Finally, the D-LFT charge was put between two pieces of preheated 

laminates to apply the cold stage press. 

 Melt Temp. 

(ºC) 

Screw Speed 

(rpm) 

Filling level 

(cm3/rev) 

Preheating temp. 

(ºC) 

T1 280 50 30 R.T. 

T2 280 100 30 R.T. 

T3 280 25 30 R.T. 

T4 280 50 65 R.T. 

T5 280 50 10 R.T. 

T6 270 50 30 R.T. 

T7 290 50 30 R.T. 

T8 270 50 30 120 



41 

 

 

 

 

Figure 3-10 Unidirectional continuous fiber tape with 60 wt.% fiber provided by BASF. 

The final co-molded material is named as comoulding which has a sandwich structure 

with two consolidated laminates outside and one D-LFT layer in between. Each laminate 

has 4 layers of UD lamina in which all the fibers are continuous and aligned in the same 

direction. With an assumption that the flow direction of the charge is 0-direction, the 

UD laminae can be represented by 4 angles (0, 90, +45, -45) between the fibers 

alignment and 0-direction. [0]8, [(0/90)2]s and [0/90/+45/-45]s were chosen as the 

stacking sequences of two outside laminates with unidirectional (UD), orthotropic and 

quasi-isotropic reinforcing potentials. As a reference, the materials which have the same 

structure with 3 comouldings but no D-LFT layer were also co-molded and named as 

layups. Therefore, both the comoudlings and the layups are symmetrical, which can avoid 

significant warpage. For convenience, the pure D-LFT with 30 wt.% fiber is labeled as 

LFT30. The layups with stacking sequences of UD [0]8, orthotropic [(0/90)2]s and quasi-

isotropic [0/90/+45/-45]s are labeled as #1L, #2L and 3#L, respectively. The relevant 3 

comouldings are labeled as #1C, #2C and #3C, respectively. The detailed structure of 

layups (#1L, #2L and #3L) and comouldings (#1C, #2C, and #3C) are summarized in 

Figure 3-13. 
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Figure 3-11 Fiberforge Relay@ 1000 at FPC@Western. 

 

Figure 3-12 Layups with stacking sequence of [0/90]s a) before consolidation and b)after 

consolidation. 
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Figure 3-13 Detailed structure of the layups and co-molded products with three types of 

stacking sequence. 

 Methodology 

3.3.1 Mechanical testing 

All the final products were labeled and stored in the lab in an ambient environment. CNC 

milling machine was employed to cut the test samples in both flow and cross-flow 

directions from the plaque based on different layouts. Since the moisture can degrade the 

mechanical properties of PA6, all the samples were dried in a vacuum assisted oven at 

100°C for 48 hours prior to the tests.  

3.3.1.1 Tensile test 

Quasi-static tensile tests were performed on an Instron 8804 load frame with a 250 kN 

load cell. The procedure was based on ASTM D638 [121]. The crosshead speed was 2 

mm/min. As shown in Figure 3-14, an extensometer with a gauge length of 50mm was 

attached to the specimen to measure the strain. The modulus, strength and strain at failure 

were determined based on the standard.  
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Poisson’s ratio was measured using a VIC-3D™ digital image correlation (DIC) system, 

as shown in Figure 3-15, to track the strains both in vertical and horizontal directions at 

the same time. The VIC-3D™ System is a powerful digital image correlation (DIC) 

system which can measure arbitrary multiaxial displacements and strains from 50 

microstrain to 2000% strain and above, for 3D specimen size ranging from 1mm to 10m. 

The principle of DIC system is measuring the strain through tracking the changes in grey 

value pattern in small neighborhoods called subsets during deformation. The two cameras 

equipped give it the capacity to track strains in 3 directions.  

Prior to a test, spray paint was used to prepare the region of interest on the specimen with 

a speckle pattern, which requires to be high-contrast, random and relatively uniform. The 

accuracy of this system strongly relies on the quality of the speckle pattern. The quality 

of the pattern can suffer from a rough surface of specimens. The system also needs to be 

calibrated using a proper grid to determine the necessary variables of the cameras. 

3.3.1.2 Bending test 

Flexural tests were performed on an Instron 8804 load frame with a 5kN load cell 

equipped with a 3-point bending apparatus as shown in Figure 3-16. The procedure was 

based on ASTM D790 [122]. It is recommended to use a large span-to-depth ratio of 32:1 

for high strength material to ensure the failure is caused by the bending moment. The rate 

of crosshead, the flexural stress and the flexural stain were calculated by the following 

equations [122], respectively: 

𝑅 = 0.01𝐿2/6𝑑                                                (3-1) 

𝜎𝑓 = (
3𝑃𝐿

2𝑏𝑑2) [1 + 6 (
𝐷

𝐿
)
2

− 4(
𝑑

𝐿
) (

𝐷

𝐿
)]                                (3-2) 

𝜀𝑓 = 6𝐷𝑑/𝐿2                                                  (3-3) 

Where 𝑅 (mm/min) is the rate of crosshead motion, 𝜎𝑓 is the flexural stress, 𝜀𝑓 is the 

flexural strain, 𝑃(kN) is the load, 𝐿 (mm) is the span, 𝑏 (mm) is the width of the 
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specimens, 𝑑 (mm) is thickness of the specimens and 𝐷 (mm) is the deflection of the 

centerline at the middle of the span. 

3.3.1.3 Shear test 

Shear tests were performed on an Instron 8804 load frame equipped with an Iosipescu 

shear fixture and a 5kN load cell. The procedure was based on ASTM D5379 [123]. The 

rate of crosshead motion was 2 mm/min. The DIC system was also employed to track the 

shear strain within the area between the two notches. Figure 3-17 shows the Iosipescu 

shear fixture and the speckled shear specimens. The region between two notches will go 

through the post-processing of DIC software to calculate the shear strain. 

3.3.1.4 Impact test 

Puncture impact tests, based on ISO 6603-2 [124], were performed on Dynatup Instron 

9250 HV shock tower with a 22.24kN load cell as shown in Figure 3-18. The puncture 

head with a diameter of 20 mm was lubricated by Finish Line synthetic lubricant prior to 

each puncture test. The drop height was set to be 1 m, which corresponds to a puncture 

velocity of 4.4 m/s. The specimens (60×60 mm2) were clamped onto a flat steel fixture 

with a 40 mm-diameter hole in the center. 



46 

 

 

 

 

Figure 3-14 Setup of the tensile test with a 50mm extensometer. 

 

Figure 3-15 Instron 8804 load frame equipped with a VIC-3D™ System. 
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Figure 3-16 3-point bending test apparatus. 

 

Figure 3-17 A speckled shear specimens fixed in a Iosipescu shear fixture. 
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Figure 3-18 Dynatup Instron 9250 HV drop tower. 

3.3.1.5 Mechanical test at different temperatures 

Tensile and flexural tests at -40°C (with liquid nitrogen), R.T., 85°C and 120°C were 

performed on an MTS load frame equipped with an environmental chamber as shown in 

Figure 3-19. The temperature range of the chamber is -129°C to 540°C. A video 

extensometer out of the chamber was set up to track the tensile strain between two grip 

marks on the specimens through the window. A thermal meter was also used to check the 

real temperature of the specimens. 

3.3.2 Characterization of microstructure 

The failure mode analysis of the broken specimens was performed on a Hitachi S-4500 

field emission SEM with a Quartz PCI XOne SSD X-ray analyzer. It has the capacity of 

2nm spatial resolution at higher electron beam voltages of 15kv and over 100k × 

magnification.  The specimens were mounted in epoxy. The cross sections of interest 
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were ground and polished to be observed with a Nikon Eclipse L150 optical microscope. 

The analysis on the cross sections can be related to the fiber concentration, fiber 

orientation and voids. 

3.3.3 Measurement of fiber volume fraction 

The specimens were weighed (𝑚𝑜) and then placed on a piece of iron film. They were 

inserted into a tube furnace to be heated up to 600°C. The specimens were ignited and the 

fire went down after around 1 min. The specimens were kept in the furnace for additional 

5 min to make sure all the matrix disappeared. Then the specimens were taken out of the 

furnace and weighed (𝑚𝑟) after cooling using a balance at 0.001gram accuracy. The 

weight fraction 𝑤𝑓 was calculated using the equation below: 

𝑤𝑓 =
𝑚𝑟

𝑚𝑜
× 100%                                                        (3-1) 

3.3.4 Measurement of fiber length distribution 

The measurement of fiber length distribution was performed by Sebastian Goris at the 

University of Wisconsin-Madison. Firstly, square samples with a size of 100mm×100mm 

were cut from different plaques and burned off to eliminate the matrix. More than 2000 

fibers of residual samples were dispersed in water and placed on a flat surface. They were 

scanned and analyzed by a software with a special algorithm to identify the individual 

fibers and measure the length. From this data, the fiber length distribution can be 

calculated. 

3.3.5 Measurement of fiber orientation distribution 

Fiber orientation distribution measurement used in this work included two steps. At first, 

the scan of GE eXplore SP "MS" Micro-CT, as shown in Figure 3-21, with 6-micrometer 

resolution was performed on the specimens to get 3D images. The parameters used are X-

ray voltage potential of 90 kV and X-ray current of 70 uA. The 3D images were viewed 

slice by slice through the thickness and transmitted as 2D images of the cross section. In 

the second step, all the 2D images were analyzed quantitatively by a software called 

Orientation J to get the fiber orientation distributions through the thickness. 
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Figure 3-19 MTS load frame equipped with an environmental chamber and a video 

extensometer. 

 

 

Figure 3-20 a) Hitachi S-4500 field emission SEM and b) Nikon Eclipse L150 

microscope. 
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Figure 3-21 GE eXplore SP "MS" micro-CT. 
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Chapter 4  

4 Result and discussion 

 Mechanical behavior of D-LFTs with different fiber 
contents 

With the help of FPC@Western, glass fiber/PA6 directly compounded long fiber 

reinforced thermoplastic (D-LFT) plaques with fiber content of 20, 30, 40, 50, 55 and 60 

wt.% were successfully produced. Tensile, flexural, shear and impact tests were all 

performed on samples cut from those plaques. Firstly, the spatial variation within 

individual plaque is evaluated to make sure the samples were cut from a relatively 

homogenous region. Then, the results of mechanical tests are presented and analyzed. 

With measured fiber length distribution (FLD) and fiber orientation distribution (FOD), 

the Young’s modulus of specimens with 30wt.% fiber is predicted through two existing 

models and compared with the experimental result. Finally, the verified model is 

employed to analyze the effect of fiber content on FLD and FOD. 

4.1.1 Spatial variations of thickness and fiber content within 
individual plaque 

With the same mold used in this work, all the products were in shape of a flat square 

plaque with just a little variation of thickness. In this work, samples cut from the same 

plaque are assumed to have similar properties. Therefore, it was very important to ensure 

that the samples were cut from a relatively homogeneous region of each plaque. Due to 

the complex melt flow during compression molding, the fiber distribution within the final 

D-LFT plaque is expected to be inherently inhomogeneous. Therefore, the spatial 

variations of thickness and fiber content within individual plaque were evaluated. 

Thickness measurements were performed on 81 (9×9) locations within a D-LFT plaque 

with 30 wt.% fiber. The result is shown in Figure 4-1. The thickness is found to decrease 

both from the charge side to the front side and from right sides to the left side. The 

difference between the maximum and minimum values is 0.25 mm. With measured 

cavity size of the mold, the difference of thickness between left and right sides of the  
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Figure 4-1 Fiber thickness distribution within a D-LFT plaque with 30 wt.% fiber. 

plaque can be related to the unbalanced mold size. The cavity of the mold is slightly 

thinner at charge side than the front side, which might be caused by the inadequate flow 

during compression molding resulted by the high viscosity of the melt.  

Burn-off tests were performed on 25 (5×5) samples cut from the same D-LFT plaque 

with 30 wt.% fiber. The result of fiber content measurement is shown in Figure 4-2. 

Within the whole plaque, the fiber content is lower around the charge position but higher 

along the right and left sides. The difference between the maximum and the minimum is 

5 wt.%. As even a small variation of fiber content can result in a significant change of 

mechanical properties, the samples for mechanical tests should be cut away from the 

charge position and two edges.  
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Figure 4-2 Fiber content distribution within a D-LFT plaque with 30 wt.% fiber. 

4.1.2 Mechanical testing results 

The relationship between moduli and fiber content is summarized in Figure 4-3. Both 

tensile and flexural moduli in 0-direction and 90-direction increase as fiber content 

increases. The increasing rate in 0-direction is higher than that in 90-direction. Every 

10 wt.% increase of fiber content can raise tensile modulus in 0-direction by 4-5 GPa 

and tensile modulus in 90-direction by 1 GPa. Both tensile and flexural moduli in 0-

direction over the whole range of fiber content are much higher than those in 90-

direction, which indicates the anisotropy of mechanical properties due to the preferred 

fiber alignment in flow direction. The flexural modulus is found to be lower than the 

tensile modulus at the same fiber content, which might be related to the inhomogeneous 

fiber distribution through the thickness. 

Tensile and flexural strengths measured on D-LFT specimens with different fiber content 

are summarized in Figure 4-4. Tensile strength in 0-direction increases from 150 MPa 

to 250 MPa when fiber content increases from 20 to 50 wt.% and then drops to around 
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Figure 4-3 Tensile and flexural modulus in both flow and cross-flow directions of glass 

fiber/PA6 D-LFTs with different fiber contents. 

 

Figure 4-4 Tensile and flexural strength in both flow and cross-flow directions of glass 

fiber/PA6 D-LFTs with different fiber contents. 

210 MPa when fiber content increases further from 50 to 60 wt.%. Tensile strength in 

90-direction increases slightly as fiber content increases from 20 to 30 wt.% and goes 

down when fiber fraction increase further. However, flexural strength in 0-direction 

increases monotonically from 200 MPa to 370 MPa as fiber fraction increases from 20 to 

60 wt.% while flexural strength in 90-direction does not vary a lot over the whole range. 

Contrary to the finding in moduli, the flexural strength is higher than the tensile strength 

at the same fiber content. 
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It is noted that tensile strength decreases with the increase of fiber content when fiber 

content exceeds 50 wt.%. To derive the cause for that, the tensile failure modes of D-LFT 

samples with different fiber content were analyzed. As shown in Figure 4-5, the fracture 

surfaces of two tensile D-LFT samples tested in 90-direction are flat and perpendicular 

to the load direction which indicates that the preferred fiber alignment in the flow 

direction makes the crack propagate easily in flow direction. The comparison between 

two samples tested in 0-direction with 30 and 50 wt.% fiber shows that the fracture 

surface of the one with 50 wt.% fiber is more ridged than the one with lower fiber 

content, which indicates that more delamination occur at higher fiber content.  

SEM images taken on the fracture surfaces of tensile D-LFT specimens with 20 and 50 

wt.% fiber tested in 0-direction are shown in Figure 4-6. Large amounts of holes in the 

matrix indicate that the fiber pull out is the major failure mode. The 50 wt.% fiber 

specimen has much more fiber bundles (wet-out issue) than the 20 wt.% fiber specimen, 

which might be the cause for the reduction of strength. When the fiber content is very 

high, there will be more fiber rovings and less matrix in the extruder, making the shear 

flow hard to disperse all the fibers thoroughly. The fibers that are still twisted together 

make the inner fibers hard to be impregnated where the voids tend to form and can serve 

as the crack initiating sites. Lack of fiber impregnation severely degrades the interface 

and the load transfer between matrix and fiber. The insufficient melt flow caused by high 

fiber content also tends to reduce the homogeneity of the plaques.  

The fracture surface of a tensile D-LFT specimen tested in 90-direction is shown in 

Figure 4-7. The alignments of most fibers have a large angle with the load direction. 

Only a few holes appear on the surface, indicating the fiber pull out is not the main 

failure mode for tensile specimen tested in 90-direction. Most fiber bundles appear in the 

core portion of the specimens, which might lead to the different variation trends of tensile 

strength and flexural strength with increasing fiber content. As being more sensitive to 

the microstructure of the shell portion, flexure strength can benefit more than tensile 

strength from the increase of fiber content at high fiber content.  
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Figure 4-5 Fracture surfaces of tensile specimens tested in 0 and 90-directions of D-

LFT with a) 30 wt.% fiber and b) 50 wt.% fiber. 

 

Figure 4-6 SEM images of the fracture surfaces of tensile D-LFT sample with a) 20 wt.% 

fiber tested in 0-direction and b) tensile D-LFT sample with 50 wt.% fiber tested in 0-

direction. 

The effect of fiber content on strain at failure is summarized in Figure 4-8. Tensile 

strains at failure are around 1-2% while flexural strains at failure range from 2% to 6%. It 

can be seen the increase of fiber content has negative effect on the flexural strain at 

failure. In some other related works on LFT [29, 33], the increase of fiber content was 

also reported to have negative effect on tensile strain at failure. That was related to the 

increasing amount of fiber ends which can act as the crack initiating sites. But the  
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Figure 4-7 SEM image of the fracture surface of a tensile D-LFT specimen with 50 wt.% 

fiber tested in 90-direction. 

variation trend of tensile strain at failure with increasing fiber content is not obvious due 

to the big error bar. 

The results of shear testing are summarized in Figure 4-9. The increase of fiber content 

improves shear modulus in both 0-direction and 90-direction. The shear modulus tested 

in 0-direction and 90-direction are quite close over the whole range of fiber content. 

The shear strengths tested in both 0-direction and 90-direction build up at the very 

beginning as fiber fraction increases from 20 to 40 wt.% and then form a plateau as fiber 

fraction increases further. Poisson’s ratios of the D-LFT specimens with different fiber 

contents were also measured and summarized in Figure 4-10. As fiber content increases, 

the major Poisson’s ratio 12 just slightly decreases while 21 is unchanged over the 

whole range. Based on the rule of mixture (ROM), the major Poisson’s ratio of LFT 

should decrease with the increase of fiber content since the Poisson’s ratio of glass fiber 

(0.17) is smaller than the Poisson’s ratio of PA6 (0.45).  

As shown in Figure 4-11, the impact properties including the peak force, energy to the 

peak force and total energy increase as the fiber content goes up. But the standard 

deviation is found to increase for those with higher fiber fraction like 55 wt.% and 60 

wt.%.  
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Figure 4-8 Tensile and flexural strain at failure in both flow and cross-flow directions of 

D-LFTs with different fiber contents. 

 

Figure 4-9 Shear modulus and strength in both flow and cross-flow directions of glass 

fiber/PA6 D-LFTs with different fiber contents. 

 

Figure 4-10 Poisson’s ratio in both flow and cross-flow directions of glass fiber/PA6 D-

LFTs with different fiber contents. 



60 

 

 

 

 

Figure 4-11 Thickness specific impact peak force, impact energy and energy to peak 

force of D-LFTs with different fiber contents. 

The failed impact specimens with different fiber contents are shown in Figure 4-12. The 

size of impact hole of most specimens with 20 wt.% fiber is close to the diameter of the 

fixture ring instead of the puncture head. Based on ISO 6603 standard, this type of failure 

usually indicates that the specimens did not yield before the failure. This kind of failure 

was also observed in failed specimens with 30 and 40 wt.% fiber but not in specimens 

with 50 wt.% or higher fiber fraction. The impact tests on those with lower fiber fraction 

tend to break the specimen without yielding followed by an unstable crack growth, while 

the impact tests on those with higher fiber fraction tend to break the specimen with 

yielding followed by stable crack growth. 
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Figure 4-12 Failed impact D-LFT specimens with fiber contents of a) 30-60 wt.% and b) 

20 wt.%. 

4.1.3 Prediction of Young’s modulus of D-LFT 

Both the modified rule of mixture (MROM) model and Halpin-Tsai model were 

employed to predict the Young’s modulus in 0 and 90-directions of D-LFT with 30 

wt.% fiber.  As mentioned in Section 2.3, the prediction of Young’s modulus with two 

models relies on the measurement of fiber length factor 𝑘1 and fiber orientation factor 𝑘2. 

The fiber length factors are assumed to be the same for both 0 and 90-directions, while 

the fiber orientation factors for two directions should be different.  

To measure the fiber orientation factors, a small sample of size 9×3×1 mm3 was cut from 

the plaque as show in Figure 4-13. The sample was scanned by a micro-CT with a 

resolution of 6 micrometers. 2D images taken on 9 cross sections of the sample 

throughout the thickness were extracted from the global 3D image. Images scanned on 9 

different layers are shown in Figure 4-14, in which white and black regions represent the 

fibers and the matrix, respectively. Nine images were labeled as #1-#9, respectively, in 

which #1-3 represent the top shell portion, #4-6 represent the core portion while #7-9 

represent the bottom shell portion.  
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Figure 4-13 a) Position and b) size of the sample cut for micro-CT scan. 

 

Figure 4-14 Images of cross sections through the thickness of a D-LFT sample by micro-

CT scan with resolution of 6 micrometers. 
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With these 2D images, a software called Orientation J was used to calculate the relevant 

FOD for each image as shown in Figure 4-15. The difference of fiber alignment between 

shell portion and core portion is not significant. The global FOD function is 𝑎𝑖 =

0.05𝑒−0.05𝜃𝑖, where 𝑎𝑖 is the portion of fibers aligned in 𝜃𝑖 degree. Based on the equation 

below 

𝑘2 = ∑ 𝑎𝑖𝑖 cos4 𝜃𝑖                                                       (4-1) 

The global fiber orientation factor k2 was calculated to be 0.754 in 0-direction and 0.076 

in 90-direction.  

The FLD measurement is performed on a 10×10 mm2 square sample cut from the same 

plaque with 30 wt.% fiber. The result is shown in Figure 4-16. Based on the expressions 

shown below 

𝐿𝑛 =
∑𝑛𝑙

∑𝑛
                                                        (4-2) 

𝐿𝑙 =
∑𝑛𝑙2

∑𝑛𝑙
                                                        (4-3) 

where n represents the number of fibers with a length of 𝑙. The numeric average fiber 

length (𝐿𝑛) and length weighted average fiber length (𝐿𝑙) were calculated to be 3.93 mm 

and 8.77 mm, respectively. Both are much lower than the reported typical value (20-40 

mm) for this process with a large amount of short fibers (<300 micrometers) existing. 

That can be related to the operation of fiber dispersion during the measurement of FLD 

which is based on the previous work on injection molded LFTs that have shorter fibers 

than D-LFTs. The serious fiber entanglement existing in D-LFT samples after burn-off 

tests make it difficult to disperse the fibers without damage. Based on the following 

equations and 𝐿𝑙 of 8.77 mm, the fiber length factor k1 was calculated to be 0.99. 

𝑘1 = [1 −
tanh(

𝛽𝐿

2
)

𝛽𝐿

2

]                                                     (4-4) 
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𝛽 =
2

𝑑
[

2𝐺𝑚

𝐸𝑓 ln√
𝜋

𝑋𝑖𝑉𝑓

]1/2                                                    (4-5) 

With the measured 𝑘1 of 0.99 and 𝑘1 of 0.754 in 0-direction and 0.075 in 90-direction, 

the Young’s modulus in 0°-direction and 90°-direction were predicted by two models and 

compared with experimental result which are based on at least 5 tests for each. The 

results are shown in Figure 4-17. The predicted E11 of 11.04 GPa and 11.43 GPa by two 

models were only 5% and 9% higher than the experimental E11 of 10.50 GPa, 

respectively. The predicted E22 of 3.13 GPa and 4.86 GPa by two models are 46% and 

21% lower than the experimental E22 of 5.8 GPa, respectively. That means the two 

models work very well for the prediction of E11 whereas underestimate E22. The modified 

rule of mixture (MROM) is based on the iso-strain model in which the strains of fiber and 

matrix are assumed to identical. But that is not the case for D-LFT samples tested in 90-

direction with most fibers aligned perpendicular to the load direction. Considering the 

enhanced fiber load bearing, the empirical Halpin-Tsai model performs better than 

MROM model in prediction of E22. 

 

Figure 4-15 Fiber orientation distribution (FOD) measured on 9 layers of a D-LFT 

sample as shown in Figure 4-14. 
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Figure 4-16 Measured fiber length distribution (FLD) of D-LFT with 30 wt.% fiber. 

 

Figure 4-17 Young’s moduli in 0 and 90-directions of D-LFT with 30 wt.% fiber 

predicted by MROM and Halpin-Tsai models and determined by tensile tests. 
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4.1.4 Effect of fiber content on fiber length distribution and fiber 
orientation distribution 

Since the MROM model works well for the prediction of E11 of D-LFT, it was employed 

to analyze the effect of fiber content on FLD and FOD. With the tested E11 of D-LFTs 

over the whole range of fiber content and the properties of fiber and matrix materials 

shown in Table 3-1. The value of k1k2 for each fiber content is calculated and shown in 

Figure 4-18. The value is found to decrease as fiber content increases, which indicates 

the increase of fiber content might have negative effect on fiber length and fiber 

alignment.  

The effect of fiber length on Young’s modulus was examined at first. The relationship 

between the fiber length factor k1 of glass fiber/PA6 D-LFT and fiber length is shown in 

Figure 4-19. The increase of fiber length can improve Young’s modulus with the 

improvement more efficient when the fibers are shorter than 1mm. When fiber length is 

higher than 1mm, the increase of fiber length contributes less to the Young’s modulus. 

With the measured average fiber length of 8.77 mm, the fiber length factor k1 was 

calculated to be 0.99.  Considering the potential damage caused by fiber dispersion 

during the measurement of fiber length and the typical fiber length of at least 10 mm of 

D-LFTs produced in this line, the real average fiber length can be expected to be much 

higher than 8.77 mm.  Therefore, as shown in Figure 4-19, the variation of fiber length in 

this range will not have significant effect on fiber length factor. The variation of k1k2 is 

more likely due to the decrease of k2, which indicates there are few fibers aligned in the 

flow direction as fiber content increases. The reason might be that more fiber-fiber 

interactions or higher viscosity of the melt at higher fiber content restrict the fibers to be 

aligned along the melt flow. 
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Figure 4-18 Relationship between value of k1k2 and different fiber content which is 

measured with tested E11, known material properties and fiber volume fraction through 

MROM model. 

 

Figure 4-19 Fiber length factor k1 calculated with different fiber length based on shear 

lag model. 
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 Effect of the processing parameters on the mechanical 
properties of glass fiber/PA6 D-LFTs 

In this section, glass fiber/PA6 D-LFT plaques with 30 wt.% fiber were prepared with 8 

different conditions to evaluate the effect of melt temperature (T2 & T3), screw speed 

(T4 & T5), filling level (T6 & T7) and fiber preheating (T8) on the resulting mechanical 

properties. Around 15 plaques were produced for each condition, in which the first 5 

plaques were excluded to avoid the fluctuation right after the adjustment of parameters. 

Tensile, flexural and impact properties of the plaques were compared and analyzed. Fiber 

length and fiber content of the plaques were also measured to build the relationship 

between the variation of mechanical properties and different processing parameters. 

4.2.1 Tested mechanical properties 

Tensile modulus and strength of D-LFTs prepared with different processing parameters 

are shown in Figure 4-20. Filling level (T4 and T5) is found to influence the Young’s 

modulus both in 0-direction and 90-direction. Young’s modulus in 0-direction (E11) is 

around 10 GPa for T4 with the highest filling level of 65 cm3/rev, 11 GPa for T1 with 

standard filling level of 30 cm3/rev and 12 GPa for T5 with the lowest filling level of 10 

cm3/rev. Even the mean value of E11 of T7 with the highest melting temperature of 290C 

is higher than that of T6 with the lowest melting temperature of 270C, the large error 

bars make it difficult to derive a strong correlation between Young’s modulus and 

melting temperature. It is also noticed that fiber preheating has a negative effect on both 

Young’s modulus and tensile strength of the final products. All the other factors have 

very limited influences on the tensile strength. 

The tested flexural modulus and strength are shown in Figure 4-21.The variation trend of 

flexural modulus is similar with that of tensile modulus. Filling level and fiber preheating 

are the only two factors that have notable effects on the mechanical properties. Increasing 

filling level from 10 cm3/rev to 60 cm3/rev leads to a 1.5 GPa reduction of flexural 

modulus while the fiber preheating also reduces the flexural modulus by around 0.5 GPa.  
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Figure 4-20 Tensile modulus and strength in both 0-direction and 90-direction of glass 

fiber/PA6 D-LFTs specimens prepared in different processing parameters (T1: standard 

condition; T2&T3: lower and higher screw speed; T4&T5: higher and lower filling level; 

T6&T7: lower and higher melt temperature; T8: fiber preheating). 

The effects of all processing factors on flexure strength are very limited, which is similar 

as the case of tensile strength. 

The tested result of impact strength is summarized in Figure 4-22. The mean values of 

impact strength of T3 and T8 are slightly higher than the rest in 0-direction and slightly 

lower than the rest in 90-direction. That might be because the anisotropy of T3 and T8 

are higher than the rest. The variation of screw speed and fiber preheating might 

influence the final fiber orientation distribution. Due to the big standard deviation and 

overlap, it is hard to derive strong correlations between the impact properties and any of 

the examined processing parameters. 

 Initially, all these processing factors were expected to influence the mechanical 

properties to some extent, since the compounding process dominated by these factors is 

the key to determining the fiber length and mixing quality. Based on tested result shown 

above, Young’s modulus and flexural modulus were found to be affected by filling level 

and fiber preheating, while the tensile strength, flexural strength, and impact properties 

were not sensitive to the variation of examined parameters. 
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Figure 4-21 Flexural modulus and strength in both 0-direction and 90-direction of 

glass fiber/PA6 D-LFTs specimens prepared with different processing parameters (T1: 

standard condition; T2&T3: lower and higher screw speed; T4&T5: higher and lower 

filling level; T6&T7: lower and higher melt temperature; T8: fiber preheating). 

4.2.2 Variation of fiber length 

To investigate the correlation between Young’s modulus and fiber content, the FLD of 

T4 and T5 were measured. Both the numerical average fiber length (Ln) and length 

weighted average fiber length (Ll) are summarized in Figure 4-23. Ln and Ll are 2.5 mm 

and 8.4 mm for T4 while are 1.5 mm and 5.8 mm for T5, respectively. The noticeable 

difference of Ln compared to Ll might be attributed to that a large amount of short fibers 

(shorter than 0.5 mm) exist in the samples, which may be caused by the fiber dispersing 

process during the FLD measurement. The large amount of fiber entanglements existing 

in the residual samples after burn-off made it difficult to disperse the fibers without 

damage. Ll is more widely used than Ln to perform the quantitative analysis. 

The result of FLD shows that T4 with higher filling level has longer fibers than T5 with 

lower filling level. That is because the higher filling level often result in lower shear 

effect in the extruder. However, T4 with longer fibers is expected to have higher Young’s 

modulus, which is contrary to the experimental result. Based on the equations (4-2) and 

(4-3), the fiber length factors k2 for average fiber length of 8.4mm and 5.8 mm are 

calculated to be 0.99 and 0.98, respectively, which indicates the fibers for both high 
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Figure 4-22 Unnotched impact properties in both 0-direction and 90-direction of D-

LFTs prepared in different processing parameters (T1: standard condition; T2&T3: lower 

and higher screw speed; T4&T5: higher and lower filling level; T6&T7: lower and higher 

melt temperature; T8: fiber preheating). 

 

Figure 4-23 Length weighted and numerical average fiber length measured on T4 (the 

highest filling level) and T5 (the lowest filling level) plaques. 
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filling level and low filling level are long enough for maximum E11. As shown in Figure 

4-24, the variation of fiber length at this high level will not affect E11 much and cannot be 

used as a sufficient reason to explain the change of Young’s modulus. 

4.2.3 Variation of fiber content 

The result of fiber content measurement on D-LFT plaques manufactured with different 

processing parameters is shown in Figure 4-25. T4, T5, and T8 have the fiber content of 

29, 37 and 29 wt.% respectively, which are different from the rest of around 32 wt.%. 

The variation trend of the fiber content is similar with that of Young’s modulus. Since the 

plaque tested is the second plaque out of 10 produced in the same condition, it might be 

possible for the early produced ones to have some fluctuation right after the adjustment of 

the parameters. To eliminate this possible effect, a double check of fiber fraction was 

performed on the 9th one out of 10 plaques in T1, T4, and T5. The result is shown in 

Figure 4-26.  No difference is found between two tests for T1 which are both close to 32 

wt.%. The fiber content of T4 and T5 drops by around 1% and 2%, respectively. But T5 

still has higher fiber content than T4. 

Based on the analysis, the variation of Young’s modulus with different filling level and 

fiber preheating can be caused by the unexpected variation of fiber content. The fiber 

content was set to be 30 wt.% for all 8 conditions. The variation may be related to the 

improper adjustment of filling level during which both feeding rate of matrix and number 

of fiber rovings need to be accurately adjusted to keep the fiber content stable.  

The varied filling level was found to affect the fiber length, which, however, has very 

limited effect on the mechanical properties. The reason for that may be the fibers in D-

LFT are long enough (>10mm) to fully take the mechanical potential of fibers. The 

mechanical properties of D-LFT are not sensitive to the fiber length variation at this high 

level. Therefore, once the consistent fiber content is maintained, the mechanical 

properties of D-LFT plaques are unaffected by the examined processing parameters 

including melt temperature, screw speed, filling level and fiber preheating. 
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Figure 4-24 Fiber length factor k1 calculated with different average fiber length based on 

shear lag model. 

 

Figure 4-25 Fiber contents measured on D-LFTs prepared in different conditions (T1: 

standard condition; T2&T3: lower and higher screw speed; T4&T5: higher and lower 

filling level; T6&T7: lower and higher melt temperature; T8: fiber preheating). 
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Figure 4-26 Fiber content measured on both the 2nd and the 9th out of 10 D-LFT plaques 

for T1, T4 and T5. 

 Mechanical behavior of glass fiber/PA6 D-LFT at 
different temperatures 

Since the components made with this new material are expected to experience a range of 

temperature during their service lifetime, the aim of the work described in this section is 

to characterize the influence of temperature on the mechanical properties of this new 

material. In this section, tensile and flexural tests at -40°C, R.T., 85°C and 120°C were 

performed on glass fiber/PA6 D-LFT plaques with 20, 30 and 40 wt.% fibers. The 

mechanical properties were summarized and analyzed. The failure mode of all the testing 

samples is also investigated through SEM observation. 

4.3.1 Tested mechanical properties 

The tensile and flexural stress-strain curves for glass fiber/PA6 D-LFTs with different 

fiber contents at 4 different temperatures are shown in Figure 4-27. At lower 

temperatures (-40C and R.T.), both tensile and flexural samples undergo only elastic 

deformation and have brittle failures. But at higher temperatures (85C and 120C), the 
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tensile stress starts to flatten after elastic deformation and then fails in a brittle way while 

flexural specimens undergo a large plastic deformation after the peak load. That indicates 

the tensile failure changes from a brittle type at low temperature to a mixture of brittle 

and ductile at high temperature while the flexural failure changes from a brittle type at 

low temperature to a ductile type at high temperature. This tendency is similar for the 

specimens with different fiber content. 

The tensile and flexural moduli are summarized in Figure 4-28. Both tensile and flexural 

modulus decrease as temperature increases. If compared with the properties at R.T., 

tensile and flexure modulus increase by 14-25% and 8-12% at -40C, decrease by 30-

40% and 31-34% at 85C, and decrease by 31-45% and 39-42% at 120C, respectively.  

The tensile and flexural strengths are summarized in Figure 4-29. Both tensile and 

flexural strength decrease as temperature increases. If compared with the properties at 

R.T., tensile and flexure strength increase by 8-22% and 5-13% at -40C, decrease by 33-

40% and 33-38% at 85C, and decrease by 42-51% and 43-47% at 120C, respectively. 

The tensile and flexural strains at failure are summarized in Figure 4-30. Both tensile and 

flexural strain at failure are just found to increase slightly when temperature increases 

from R.T. to 85C. No strong correlation can be derived between the strain at failure and 

temperature. 

 

Figure 4-27 Tensile and flexural stress-strain curves at -40C, R.T., 85C and 120C for 

the D-LFTs with fiber contents of 20, 30 and 40 wt.%. 
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Figure 4-28 Tensile and flexural moduli tested at -40C, R.T., 85C and 120C of D-

LFTs with fiber contents of 20, 30 and 40 wt.%.  

 

Figure 4-29 Tensile and flexural strengths tested at -40C, R.T., 85C and 120C of D-

LFTs with fiber contents of 20, 30 and 40 wt.%. 

 

Figure 4-30 Tensile and flexural strain at failure tested at -40C, R.T., 85C and 120C 

of D-LFTs with fiber contents of 20, 30 and 40 wt.%. 
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4.3.2 Analysis of failure mode 

Figure 4-31 shows the failed tensile specimens with fracture surface on the top. 

Comparing those with 40 wt.% fiber tested at different temperature, many secondary 

cracks off the main fracture surface appear on the one tested at -40°C but disappear on 

the one tested at 120°C. The amount of these secondary cracks decreases with increasing 

temperature. This means that when temperature increases from -40°C to 120°C the failure 

mode transitions gradually from a mixture of one main crack propagation with many 

secondary cracks off the main fracture surface, to a single main crack propagation. And if 

comparing those with different fiber fraction, it is found that the amount of secondary 

crack at the same temperature decreases with decreasing fiber fraction. The reason might 

be the higher fiber fraction improves the longitudinal strength but has little effect on 

interface strength, which leads to more secondary crack propagation. 

The fracture surfaces of the failed tensile samples were observed by a SEM to analyze the 

failure mode. The fracture surface of tensile samples with 20 wt.% fiber tested at -40°C 

are shown in Figure 4-32. The matrix holes indicate that the dominating tensile failure 

mode at -40C is fiber pull out. The fibers aligned parallel to the load direction broke in a 

tensile manner while those aligned off the load direction fractured by bending. The 

smooth matrix surface indicates that the failure is very brittle at -40C, which is 

consistent with the stress-stain curves. There are also many fiber bundles in the core 

portion.  

The fracture surface of tensile samples with 20 wt.% fiber tested at R.T. are shown in 

Figure 4-33. Fiber pull out is also found to be the main failure mode at this temperature. 

Compared with the case at -40C, the matrix surface gets rougher at R.T., indicating that 

the matrix undergoes more plastic deformation. 

The fracture surface of tensile samples with 20 wt.% fiber tested at 85C are shown in 

Figure 4-34. The fracture surface consists of a major smooth region and a small dimple-

type region. The smooth region is similar to the observations at lower temperatures with 

fiber pull out and matrix rupture evident on the surface. In the core portion with many 
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Figure 4-31 Failed tensile specimens tested at -40C, R.T., 85C and 120C of D-LFTs 

with fiber contents of 20, 30 and 40 wt.%. 

fiber bundle, some small pieces of matrix debris demonstrate the brittle failure. The 

matrix surface is somewhat rougher than those tested at R.T. For the dimple-type part, the 

matrix stretches out entirely with significant plastic deformation, indicating ductile 

failure. The fibers are completely detached from the matrix. The transition region 

between two parts is very hard to distinguish. The mixed fracture surface shows that the 

failure starts with a ductile matrix plastic deformation and abruptly transform to a brittle 

rupture. And this phenomenon is consistent with the tested stress-strain curves.  

The fracture surface of tensile samples with 20 wt.% fiber tested at 120C are shown in 

Figure 4-35. As was the case at 85°C, the fracture surface consists of a brittle part and a 

ductile part. The matrix surface in brittle part becomes much rougher than the previous 

ones while the matrix in ductile part undergoes more plastic deformation. Both 

observations indicate that the matrix gets softer at higher temperature. 

Figure 4-36 shows the details of interface region between fiber and matrix at different 

temperatures. At -40°C, the fiber is completely covered by a layer of polymer. The sharp 

wrinkles of the matrix surface show that the matrix is brittle at -40°C. When it goes up to 
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Figure 4-32 SEM images of fracture surfaces of tensile D-LFT specimens with 20 wt.% 

fiber tested at -40C. 

 

Figure 4-33 SEM images of fracture surfaces of tensile D-LFT specimens with 20 wt.% 

fiber tested at R.T. 

 

Figure 4-34 SEM images of fracture surface of tensile D-LFT specimens with 20 wt.% 

fiber tested at 85°C. 
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RT, the dark ring around the fiber still indicates the debonding between fiber and matrix 

exists. The more polymer linking mark and more gentle wrinkles on the matrix surface 

indicates that the polymer became more ductile. When the temperature goes up to 85°C 

or 120°C, no dark ring can be found. The fibers are entirely covered by matrix which 

undergoes a large deformation. The wrinkles on the matrix surface become blurrier. The 

phenomenon suggests that the increasing temperature softens the matrix and reduce the 

capacity of the matrix to transfer load to the fibers. For specimens with 30 wt.% and 40 

wt.% fiber as shown in Figure 4-37, the tendency is the same. The only difference found 

is for those with 40 wt.% fiber tested at R.T. and -40°C, there are many secondary cracks 

propagating perpendicular to the main fracture surface, around which there are always 

some fiber concentration. This matches well with our previous macrographs of the failed 

specimens. 

 Characterization of the mechanical behavior of UD tape 
reinforced D-LFT with different stacking sequence 

Glass fiber/PA6 UD tapes with 60 wt.% fiber were employed to co-mold with glass 

fiber/PA6 D-LFT material with 30 wt.% fiber. The three types of stacking sequence are 

UD [0]8, orthotropic [(0/90)2]s and quasi-isotropic [0/90/+45/-45]s. Three types of 

symmetric co-molded plaques (comouldings) and relevant consolidated UD laminates 

without D-LFT material (layups) were successfully prepared. Tensile, flexural, shear and 

impact tests were performed on three types of comouldings, three types of layups and 

pure D-LFT plaque with 30 wt.% fiber which is the core materials for all the 

comouldings. The mechanical properties and failure modes of different samples were 

summarized. The reinforcement efficiency of different stacking sequence was analyzed. 

The theoretical and experimental in-plane elastic properties of comouldings and layups 

were compared and correlated with the microstructure. 
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Figure 4-35 SEM images of fracture surface of tensile D-LFT specimens with 20 wt.% 

fiber tested at 120°C. 

 

Figure 4-36 SEM images of fracture surfaces of tensile D-LFT specimens with 20 wt.% 

fiber tested a: -40°C, b: R.T., c: 85°C and d: 120°C. 
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Figure 4-37 SEM images of fracture surface of tensile D-LFT specimens with 40 wt.% 

fiber tested at R.T. 

4.4.1 Tested mechanical properties 

4.4.1.1 Impact properties 

Thickness specific impact energy and peak load of the comouldings, the layups and pure 

D-LFT are shown in Figure 4-38. The layups and comoldings have much higher impact 

properties than the pure D-LFT. As comouldings have large amount of highly aligned 

continuous fibers and higher fiber content than pure D-LFT, the UD tape reinforcement 

can significantly improve the impact properties of D-LFT material. Among the three 

types of layups, #1L has the lowest properties while the other two are close. That might 

be due to the highly anisotropy of UD laminates which tend to split apart during the 

impact tests. However, among three types of comouldings, #1C has almost the highest 

impact properties while #2C is slightly lower than #3C.  

The different failed puncture specimens are shown in Figure 4-39. The D-LFT 

specimens failed in a brittle manner. For three types of layups, the tup split #1L, 

penetrated #2L in a biaxial way and penetrated #3L in an irregular shape, which is related 

to the different anisotropy. With the highest anisotropy, #1L is quite weak in 90-

direction such that the sample was just split apart without any fiber breakage, which 

result in the quite low impact properties. However, the failed #1C samples with more 

plastic deformation and more fiber breakage looks more isotropic. That might be caused 
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Figure 4-38 Thickness specific impact energy and thickness specific peak load tested on 

pure D-LFT with 30 wt.% fiber, layups and comouldings with 3 types of stacking 

sequence ([0]s, [0/90]s and [0/90/+45/-45]s). 

by the incorporation of D-LFT layer and two additional laminae in 90-direction which 

bond the fibers together and improve the impact properties. It is also found that the 

failures of #3L and #3C are more isotropic than those of #2L and #2C.  

Generally, the pure D-LFT material has much lower impact properties than the layups. 

But if they were co-molded together, the resulting comoulding material will possess 

almost the same impact properties with the relevant layup, which indicates the more 

isotropic D-LFT layer which bonds the UD laminates together also contribute to the 

impact properties of the comouldings. 

4.4.1.2 Tensile properties 

The tensile stress-strain curves for different samples are shown in Figure 4-40.  Most of 

the specimens show brittle failures after peak load without any yielding, while only #1L 

show a step-by-step failure. The smooth stress-strain curves indicate that the bonding 

between different layers is strong enough to make all the layers deform together until the 

failure under the tensile load condition.  

The derived tensile properties are summarized in Figure 4-41.  For the layups, Young’s 

modulus of #1L is higher than 30 GPa in 0-direction but lower than 5 GPa in 90- 
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Figure 4-39 Failed puncture specimens: a) D-LFT, b) #1L, c) #2L, d) #3L, e) #1C, f) 

#2C and g) #3C. 

direction, while those of #2L and #3L are 17 GPa and 14GPa, respectively. Compared 

with the relevant layups, the anisotropy of comouldings is reduced for first type but 

increased for the other two types. Compared with the properties of pure D-LFT, #1C is 

reinforced in 0°-direction only while the other two are reinforced in multiple directions. 

The anisotropies of #2C and #3C are derived from D-LFT layer which has more fibers 

aligned in 0°-direction. The variation trend of the strength is similar to that of the 

Young’s modulus.  

The failed tensile specimens are shown in Figure 4-42. From the failed #1L sample, it is 

observed that the failure is a mixture of fiber breakage and shear failure. That is due to 

the high anisotropy of #1L which makes the shear strength so low that the fiber breakage 

is followed by shear failure. Different from the failure of #1L, most fibers of #1C are 

broken. The significant difference of maximum elongation between #1L and D-LFT layer 

in 0-direction leads to the delamination observed in failed tensile #1 specimen tested in 

0°-direction, while no delamination was found in failed tensile #1 specimen tested in 90°-

direction. 
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Figure 4-40 Tensile stress-strain curves in 0 and 90-directions for a) D-LFT and layups 

with 3 stacking sequences and b) comoldings with 3 stacking sequences. 

 

Figure 4-41 Tensile moduli and strengths in 0 and 90-directions for a) D-LFT and 

layups with 3 stacking sequences and b) comoldings with 3 stacking sequences. 

4.4.1.3 Flexural properties 

The flexural stress-strain curves for different samples are shown in Figure 4-43.  The 

flexural failures of D-LFT samples are one-step and brittle while those of most layups 

and comoulding are progressive. The progressive failure of co-molded samples might be 

caused by the difference of elongation and strength between different layers. As flexural 

properties are more sensitive to the properties of outer layers, the flexural properties in 

0°-direction and 90°-direction are not identical for the stacking sequence of [(0/90)2]s and 

[0/90/+45/-45]s.    
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Figure 4-42 Failed tensile samples with stacking sequence of UD [0]8: a) #1L tested in 

0°-direction, b) #1L tested in 90°-direction, c) #1C tested in 0°-direction and d) #1C 

tested in 90°-direction. 

The flexural properties are summarized in Figure 4-44. Due to the continuous fiber, 

higher fiber content and consistent fiber alignment, all layups show much higher flexural 

modulus and strength than D-LFT. Due to the constructed sandwich structure with 

stronger and stiffer UD laminates outside, all comouldings also have much higher 

flexural properties than pure D-LFT. Both layups and comouldings with stacking 

sequence of [(0/90)2]s have higher flexural properties than those with stacking sequence 

of [0/90/+45/-45]s.  

The failed flexural specimens tested in 90°-direction are shown in Figure 4-45. Among 

the layups with different stacking sequence, the failure of #1L tested in 90°-direction 

occurs through the whole thickness while that of #2L tested in 90-direction go through  
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Figure 4-43 Flexural stress-strain curves in both 0 and 90-directions for a) D-LFT and 

layups with 3 types of stacking sequence and b) comoldings with 3 types of stacking 

sequence. 

 

Figure 4-44 Flexural modulus and strength in 0-direction and 90-direction for pure D-

LFT with 30 wt.% fiber, layups with 3 types of stacking sequence and comoldings with 3 

types of stacking sequence. 

half the thickness on the tensile side and that of #3L tested in 90-direction occurs on the 

compressive side. For the flexural comoulding specimens, the crack of those tested in 0-

direction propagates through half the thickness and stops with delamination at the middle 

portion of D-LFT layer while the crack of those tested in 90-direction completely 

penetrate the whole specimen. This might be caused by the anisotropy of D-LFT layer 

which is much weaker in 90°-direction than in 0°-direction. 
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Figure 4-45 Failed flexural specimens tested in 0°-direction of layups and comouldings 

with three types of stacking sequence: a) #1L tested in 90°-direction viewed from bottom 

and side, b) #2L tested in 90°-direction viewed from bottom and side, c) #3L tested in 

90°-direction viewed from bottom and side, d) #1C tested in 0° and 90°-direction, e) #2C 

tested in 0° and 90°-direction and f) #3C tested in 0° and 90°-direction. 

4.4.1.4 Shear properties 

The shear moduli of different specimens are summarized in Figure 4-46. Compared with 

pure D-LFT with 30 wt.% fiber, the shear modulus was only found to be significantly 

improved by co-molding the layups with stacking sequence of [0/90/+45/-45]s. This can 

be attributed to the unique ±45 layers, which reinforce the shear properties greatly. Since 

the stress was still increasing when the notched region of specimen already touched the 

fixture, the shear strength was not achievable by Iosipescu fixture used by this test. 

4.4.2 Prediction of in-plane elastic properties 

To verify the applicability of this technique, the in-plane elastic properties of layups and 

comouldings were predicted and compared with the experimental result. Generally, since 

layups consist of UD laminae which can be treated as transversely isotropic materials, the  
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Figure 4-46 Shear modulus in both 0 and 90-directions for pure D-LFT with 30 wt.% 

fiber, layups with 3 types of stacking sequence and comoldings with 3 types of stacking 

sequence. 

path for predicting the elastic properties of UD laminates is widely accepted, in which 

ROM and Halphin-Tsai are employed to predict the elastic properties of one UD lamina 

and then Classic Laminate Theory (CLT) is used to combine the laminae in different 

directions together to derive the global elastic properties.  

In this work, ROM and Halpin-Tsai were used to predict the elastic properties of a single 

UD lamina. The elastic properties of D-LFT layer was based on the previous testing 

results. Finally, the CLT approach was employed based on the layer thickness (0.3 mm 

for a single UD lamina and 3 mm for one D-LFT layer). 

With expression shown below, ROM was employed to predict 𝐸11 and  12. 

𝐸11 = 𝑉𝑓 ∙ 𝐸𝑓 + 𝑉𝑚 ∙ 𝐸𝑚                                              (4-6) 

𝜈12 = 𝑉𝑓 ∙ 𝜈𝑓 + 𝑉𝑚 ∙ 𝜈𝑚                                               (4-7) 

Where, E11 is longitudinal young’s modulus, 𝑉 is volume fraction,  is Poisson’s ratio, 𝑓 

and 𝑚 represent fiber and matrix, respectively. Halpin-Tsai model was employed to 

predict 𝐸22 and 𝐺12 with expression as follows 

𝐸22 = 𝐸𝑚 (
1+𝜁𝜂𝑉𝑓

1−𝜂𝑉𝑓
)                                             (4-8) 
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 𝐺12 = 𝐺𝑚 (
1+𝜁𝜂𝑉𝑓

1−𝜂𝑉𝑓
)                                             (4-9) 

With 𝜂 = (

𝑀𝑓

𝑀𝑚
−1

𝑀𝑓

𝑀𝑚
+𝜁

)                                              (4-10) 

in which 𝐸22 is transversal young’s modulus, 𝐺12 is longitudinal shear modulus, 𝜁 is 1 or 

2 and M=E or G for 𝐸22 and 𝐺12, respectively. Based on the mechanical testing result, the 

elastic properties of the 30 wt.% glass fiber/PA6 D-LFT layer are 10.5 GPa of 𝐸11, 5.8 

GPa of 𝐸22, 0.4 of 12 and 4.1 GPa of 𝐺12, respectively. 

The reduced stiffness matrix of UD lamina can be determined by 

𝑄𝑖𝑗 = (
𝑄11 𝑄12 0
𝑄12 𝑄22 0
0 0 𝑄66

)                                           (4-11) 

Where 

𝑄11 =
𝐸11

2

𝐸11−𝜈12∙𝐸22
                                                     (4-12) 

𝑄12 =
𝜈12𝐸11𝐸22

𝐸11−𝜈12
2 ∙𝐸22

                                                     (4-13) 

𝑄22 =
𝐸11𝐸22

𝐸11−𝜈12
2 ∙𝐸22

                                                  (4-14) 

𝑄66 = 𝐺12                                                       (4-15) 

With the angles 𝜃 and stiffness matrix 𝑄𝑖𝑗, the transformed reduced stiffness matrix 𝑄𝑖𝑗 

for laminae in 0°, 45°, -45° and 90°-directions were calculated based on the expressions 

as follows 

𝑄11 = 𝑄11 cos(𝜃)4 + 2(𝑄12 + 2𝑄66) cos(𝜃)2 ∙ sin(𝜃)2 + 𝑄22 sin(𝜃)4       (4-16) 

𝑄12 = 𝑄21 = 𝑄12(cos(𝜃)4 + sin(𝜃)4) + (𝑄11 + 𝑄22 − 4𝑄66 )cos(𝜃)2 ∙ sin(𝜃)2   (4-17) 
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𝑄16 = 𝑄61 = (𝑄11 − 𝑄12 − 2𝑄66 )cos(𝜃)3 ∙ sin 𝜃 − (𝑄22 − 𝑄12 − 2𝑄66) cos 𝜃 ∙ sin(𝜃)3    

(4-18) 

𝑄22 = 𝑄11 sin(𝜃)4 + 2(𝑄12 + 2𝑄66) cos(𝜃)2 ∙ sin(𝜃)2 + 𝑄22 cos(𝜃)4         (4-19) 

𝑄26 = 𝑄62 = (𝑄11 − 𝑄12 − 2𝑄66 )sin(𝜃)3 ∙ cos 𝜃 − (𝑄22 − 𝑄12 − 2𝑄66) sin 𝜃 ∙ cos(𝜃)3 

(4-20) 

𝑄66 = (𝑄11 + 𝑄22 − 2𝑄12 − 2𝑄66) cos(𝜃)2 ∙ sin(𝜃)2 + 𝑄66(cos(𝜃)4 + sin(𝜃)4)   (4-21) 

With expressions below, Classical Laminate Theory (CLT) was used to combine different 

layer together to generate the global stiffness matrix and the elastic properties. 

  𝑄𝑖𝑗𝑔 =
∑ (𝑄𝑖𝑗𝑘𝑡𝑘)𝑛

𝑘=1

∑ (𝑡𝑘)𝑛
𝑘=1

                                                        (4-22)  

in which 𝑄𝑖𝑗𝑔 is the global stiffness matrix, 𝑄𝑖𝑗𝑘 is the stiffness matrix for the k layer, t is 

the thickness of the k layer,  

As shown in Figure 4-47, even though the tested E11 and E22 are slightly lower than 

prediction, they still have a good agreement. The difference in G12 and 12 is larger, 

which might be caused by the non-ideal speckling pattern when using DIC system and 

insufficient capability of Iosipescu fixture. Even so, the relevant trend still matches well.  

4.4.3 Microstructure 

From the SEM micrographs taken on the polished cross section of #3C shown in Figure 

4-48, different UD laminae and D-LFT layer can be easily identified. The structure of the 

layers is identical to the initial configuration, which indicates both UD laminae and D-

LFT material stay at the initial position during the molding without any significant shift. 

No defects are found along the interface between layups and D-LFT layer which 

demonstrates the interfacial bonding between two materials is strong enough. However, 

some differences were noticeable between the top and bottom portions of the specimens, 

which are based on their relative positions in the mold. In the top portion, some voids and  
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Figure 4-47 Comparison between predicted and experimental elastic properties of layups 

and relevant comoldings with different stacking sequence. 

 

Figure 4-48 Micrographs of a) top portion and b) bottom portion of the cross section of a 

comoulding product with stacking sequence of [0/90/+45/-45]s. 
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winding laminae are found whereas, in the bottom portion, some parts of the -45 lamina 

extend to the D-LFT layer which results in the jagged interface. The difference might be 

caused by the operation of the charge loading, in which the preheated bottom layup was 

put in the tool at first, followed by the loading of D-LFT charge and then the preheated 

top layup. As exposed in the air at room temperature longer than the bottom layup, the 

top one tends to cool down faster so that some air between different layers might not be 

able to get out during the molding process. The relatively higher temperature might make 

the inner layer of bottom layups affected by the flow of D-LFT charge during the 

molding process. Finally, these defects in the microstructure might have negative effects 

on the mechanical properties of the co-molded plaques and interpret the difference 

between the tested and predicted results.  
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Chapter 5  

5 Conclusion 

Mechanical tests and observations of the microstructure performed on this new material 

have furthered our knowledge of the relationship between the mechanical properties and 

some fundamental factors including fiber content, processing parameters, service 

temperature and tailored reinforcement. The scope of mechanical test data is sufficient to 

establish finite element simulation capacity.  

 Summary 

Glass fiber/PA6 composite plaques with 20-60 wt.% fiber were successfully produced on 

the Dieffenbacher direct long fiber thermoplastic in-line compounding (D-LFT-ILC) line. 

Tensile, flexural, shear and impact tests were performed on samples cut from relatively 

homogeneous regions of the D-LFT plaques. The result of mechanical tests shows that 

the tensile, flexural and shear moduli increase with the increase of fiber content over the 

whole range. The strengths are improved by the increase of fiber content from 20 wt.% to 

around 40 wt.%. With further increase of fiber content above 40 wt.%, tensile strength 

drops and shear strength forms a plateau while only flexural strength continues to go up. 

The different responses are related to the possible wet-out issue and inhomogeneous fiber 

distribution. With fiber length distribution (FLD) and fiber orientation distribution (FOD) 

measured on D-LFT specimen with 30 wt.% fiber, Young’s modulus in both 0°-direction 

and 90°-direction were predicted by Halpin-Tsai (H-T) and modified rule of mixture 

(MROM) models of which both were found to work well on E11 with a less than 10% 

overestimation, but underestimate E22 by more than 20%.  

Under different processing parameters including melt temperature, screw speed, filling 

level and fiber preheating, 8 types of D-LFT plaques with 30% fiber content were 

successfully produced. Tensile and flexural testing results indicate that these processing 

parameters have limited effect on the mechanical properties of D-LFT plaques. Filling 

level is the only factor that was shown to affect the stiffness of the D-LFT specimens. 

Even though higher filling level is found to retain longer fiber in the final D-LFT plaques, 
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the variation of Young’s modulus with different filling level is mainly caused by the 

unexpected variation of fiber content.  

Tensile and flexural tests at -40-120C were performed on D-LFT specimens with 20-40 

wt.% fiber. The result shows that the increase of temperature degrades both moduli and 

strength significantly. That is attributed to the softened matrix and weakened interface 

bonding. The failure becomes more ductile at elevated temperature. The dominated 

failure mode changes from fiber breaking/fiber pull out at lower temperatures to fiber 

pull out/matrix plasticity at higher temperatures. 

Unidirectional (UD) tapes with stacking sequence of UD [0]8, orthotropic [(0/90)2]s and 

quasi-isotropic [0/90/+45/-45]s are found to successfully reinforce D-LFT in different 

ways. The microstructure of co-molded plaques with different fiber alignments matches 

well with initial configuration. The global in-plane elastic properties predicted using 

Classical Laminate Theory (CLT) match well with the experimental results. Tailored 

reinforcement with UD tapes is shown to be a feasible and predictable method to locally 

adjust the mechanical properties of a D-LFT material. 

 Future work 

More measurement of fiber length distribution and fiber orientation distribution will be 

performed to evaluate the effect of fiber content on the fiber length and fiber orientation 

of D-LFT material. 

To gain a knowledge of how the fibers are aligned during the compression molding, the 

effect of processing parameters, which are related to the compression molding process 

such as mold temperature, speed profile of the crosshead, compressive pressure and 

charge placement, on the mechanical properties of D-LFT material need to be evaluated. 

Since PA6 is more hydrophilic than many other polymers, the effect of moisture content 

on the mechanical properties of glass fiber/PA6 D-LFT need to be investigated. More 

effort can be made to the powder coating which might be a good way to reduce the 

moisture absorption of the materials. 
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