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Abstract 

Gravel-bed braided rivers, defined by their multi-thread planform and dynamic 

morphology, are commonly found in proglacial mountainous areas. With little cohesive 

sediment and a lack of stabilizing vegetation, the dynamic morphology of these rivers is 

the result of bedload transport processes. Yet, our understanding of the fundamental 

relationships between channel form and bedload processes in these rivers remains 

incomplete. For example, the area of the bed actively transporting bedload, known as the 

active width, is strongly linked to bedload transport rates but these relationships have not 

been investigated systematically in braided rivers. This research builds on previous 

research to investigate the relationships between morphology, bedload transport rates, and 

bed-material mobility using physical models of braided rivers over a range of constant 

channel-forming discharges and event hydrographs. Morphology changes were estimated 

using the morphological method, which infers information from changes in channel 

topography over time, from an extensive dataset of digital elevation models (DEMs) 

generated using digital photogrammetry and ‘Structure-from-Motion’ principles. Results 

suggest that the active width is highly variable even at constant discharge but increases 

with stream power and is positively related to bedload transport rates, bulk change (i.e., 

total volume of erosion and deposition), and active braiding intensity. Morphologically-

derived sediment budgets provided reasonable estimates of bedload transport rates that 

were similar to independent measurements of bedload transport rates from sediment 

baskets. In addition, grain size distributions and bed mobility evolved from a state of partial 

mobility towards equal mobility with increasing discharge. This is rare in most gravel-bed 

rivers, but in braided rivers the high levels of sediment supply and lack of armouring allow 

for greater mobility of the channel bed and subsurface. Finally, the lower detection 

threshold for the morphological active width, bedload transport, and transition to selective 

mobility all coincided with a dimensionless stream power of ~0.08. Overall, these results 

suggest that while braided rivers are dynamic, they may be restricted in ways like their 

single-threaded counterparts so that measures of morphology (i.e., the active width) can be 

used as general predictors of bedload transport rates and the morphological stability of the 

river. This knowledge contributes to our overall understanding of braided river 
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morphodynamics while also building on theory for use in applied geomorphology and 

engineering practices for the management, conservation, and restoration of complex 

braided rivers systems.  

Keywords 

braided, gravel-bed rivers, morphological method, active width, digital photogrammetry, 

bed mobility 
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Chapter 1 

1 Introduction 

1.1 Thesis Format and Research Objectives 

1.1.1 Thesis Rationale 

High-energy, multi-thread, or braided, rivers in Canada and around the world have been 

subject to human interference through flow regulation, gravel-extraction, channelization, 

and changing flow regimes following land-use changes. These changes can result in 

flooding, damage to infrastructure, and reduction in ecological functioning. Given these 

major changes there has been increasing regulatory pressure to better manage and restore 

morphological and ecological functioning to braided rivers. For these management 

initiatives to be successful, they will require an understanding of gravel-bed river dynamics 

for improved channel design and prediction of future morphologies under altered flow and 

sediment regimes. Specifically, the reliable prediction of sediment transport as bedload will 

be central to any application of fluvial geomorphology to river hazard assessment, long-

term management, conservation, and restoration. However, methods for predicting bedload 

transport based on conventional hydraulic sediment transport theory may perform poorly 

or are difficult to apply in braided rivers because of their complex, unstable, and multi-

channeled morphology. Furthermore, traditional methods don’t account for important 

spatial and temporal interactions between channel morphodynamics and bedload transport. 

Therefore, our current understanding of the relationships between braided river form and 

processes remains incomplete.  

1.1.2 Purpose and Methodological Background 

As an alternative to traditional hydraulics-based formula and sampling techniques, the 

morphological, or inverse, method infers information about bedload transport rates from 

changes in channel topography over time (Ashmore & Church, 1998). By focusing on 

changes in river topography and morphology, the morphological method allows for greater 

insight into the spatial and temporal patterns of bedload transport and channel change. The 

morphological method has become increasingly popular in the past decade due to 
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improvements in technologies used for collecting topographic data, such as digital 

photogrammetry, GPS, and terrestrial laser scanning, which allow data to be collected at 

high spatial and temporal resolutions (Brasington et al., 2003; Rumsby et al., 2008). In 

addition, software to process high-resolution topographic data has become increasingly 

user-friendly, inexpensive, and efficient (Brasington & Smart, 2003). As a result, it is now 

possible to investigate ideas and theories about the morphodynamics of braided river 

systems in more detail than ever before in both the field and the laboratory.  

This research uses measurements of morphological change and bedload in gravel-bed 

braided rivers to investigate important relationships between channel form and process. 

For example, previous research has suggested that the morphological active width, defined 

by the overall river area actively transporting bedload, is related to hydraulic and 

morphological parameters, including dimensionless stream power and active braiding 

intensity. Yet, these relationships have not been investigated systematically or over a range 

of river morphology (Bertoldi et al., 2009a; Ashmore et al., 2011). In addition, while the 

morphological method has been used to create morphological sediment budgets, few 

studies have characterized the spatial and temporal variability of those budgets over a range 

of stream power. Finally, few studies have looked at the linkages between channel 

morphology, bedload transport, and the evolution of grain size distributions in braided 

rivers.  

Therefore, the general objective of this research was to further our knowledge of gravel-

bed braided river morphodynamics by characterizing the relationships between the 

morphological active width, bedload transport rates, and bedload grain size distributions 

over a range of discharge and stream power. The research used physical models of gravel-

bed braided rivers to control formative conditions (discharge, slope, and grain size), allow 

for high-resolution measurement of channel topography and bedload transport rate, and 

extend results from previous physical model experiments on gravel-bed braided river 

morphodynamics (Ashmore, 1991b; Paola et al., 2009; Bennett et al., 2015).  

1.1.3 Thesis Format and Research Objectives 

This thesis is written in a monograph format so that the core chapters address discrete 

research objectives but all are focused on the general theme of linking bedload transport 
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processes and morphological change in gravel-bed braided rivers. As such, there is a global 

literature review (Chapter 2) and methods chapter (Chapter 3) followed by three results 

chapters, each addressing specific research objectives and questions, outlined below 

(Chapters 4-6). The conclusion (Chapter 7) provides a summary and integration of the main 

findings as well as a discussion about additional research prospects.  

Specific research questions and hypotheses are given in each of the main results chapters 

but the overall aims of this research can be summarized by the following objectives: 

1. Quantify the morphological active width in a physical model over a range of gravel-

bed river morphologies and characterize its relationship with wetted width, braiding 

indices, and dimensionless stream power for a range of flow conditions (Chapter 

4). 

2. Characterize the relationship between the active width and bedload transport flux 

under channel forming conditions and variable discharge conditions (Chapter 4). 

3. Calculate the morphological sediment budget for gravel-bed braided rivers over a 

range of stream power conditions with a known sediment output and under 

minimum budget conditions (Chapter 5). 

4. Investigate the spatial and temporal dynamics of bedload transport in experimental 

gravel-bed braided rivers using morphological methods (Chapter 5). 

5. Characterize the evolution of bedload grain size distributions across three 

experimental hydrographs, including fractional transport rates (Chapter 6). 

6. Characterize the range of bed mobility conditions in terms of partial, selective, or 

equal mobility over three experimental hydrographs in a gravel-bed braided river 

(Chapter 6). 
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Chapter 2 

2 Background 

2.1 Conditions for Braiding in Gravel-Bed Rivers 

Braided rivers are characterized by multiple channels separated by mid-channel bars, often 

called braid bars (Ashmore, 2013) (Figure 2.1). The braided river planform and bed 

topography is dynamic and modifications to channel pattern geometry, bar form, and the 

number of individual channels, or anabranches, can occur within only a few hours under 

high flow conditions (Wheaton et al., 2013). Braiding occurs in a variety of environmental 

conditions, but it is often found in proglacial mountainous areas, alluvial fans, and lower 

gradient coastal and continental plains that are abundant in non-cohesive sand and gravel 

(Ashmore, 2013). While braided rivers often include a wide range of bed material sizes 

from sand (< 2 mm) to boulder (> 64 mm), they are often classified as sand-bed or gravel-

bed, where the finer-grained sand-bed rivers are defined as having less than 25% gravel on 

the bed (Bristow & Best, 1993). In general, braided rivers are more common in gravel than 

sand, possibly due to differences in bedload transport rates and vegetation coverage, and 

therefore will be the focus of this thesis (Kleinhans & van den Berg, 2011).  

 

Figure 2.1 – Sunwapta River in Alberta, Canada, a proglacial, gravel-bed braided 

river. Arrow indicates flow direction. 
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In general, the conditions necessary for braiding include a high sediment supply of coarse 

bedload, non-cohesive erodible banks, and high total stream power (Ω) relative to particle 

size: 

Ω = 𝜌𝑔𝑄𝑆 (2.1) 

where ρ is the mass density of water, 𝑔 is the acceleration due to gravity, Q is discharge, 

and S is water surface slope (Robert, 2003; Charlton, 2008; Hicks et al., 2008; Ashmore, 

2013). The high bedload transport and erodible banks help maintain the braided river 

morphology by providing the high level of dynamism (i.e., sediment transport) that 

prevents the establishment of stabilizing vegetation, both in-channel and in the riparian 

zones (Gurnell et al., 2012; Wheaton et al., 2013). Erodible banks and lack of vegetation 

promote lateral migration and channel widening generating the relatively high width-depth 

ratios important for the development of mid-channel bars (Kleinhans, 2010; Ashmore, 

2013; Wheaton et al., 2013). Although some early researchers believed that variable 

discharge was necessary for braiding, experimental laboratory studies in river flumes have 

shown that a braided planform can evolve under constant channel-forming discharge 

conditions (Ashmore, 1982). Discharge variation is, however, still important in 

determining the character and morphology of a braided river because it can influence the 

number of anabranch channels present (Egozi & Ashmore, 2009). Furthermore, large 

floods can completely modify morphology in a relatively short amount of time and can 

prevent the establishment of vegetation, which further promotes a braided morphology 

(Ashmore, 2013; Gurnell et al., 2012) (Figure 2.2).  
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Figure 2.2 – Planform changes over a two-week period in the Sunwapta River 

between a) July 8, 2012 and b) July 24, 2012. Images taken for similar discharges and 

the arrow indicates flow direction.

2.2 Morphological Characteristics of Braided Channels 

The form, or morphology, of braided rivers is the result of the interactions between flow, 

bed topography, and bedload transport. The flow hydraulics (i.e., velocity, bed shear stress, 

and stream power) are responsible for the initiation and maintenance of bedload transport, 

which is the movement of coarse grains via sliding, rolling, or saltating (i.e., hopping) along 

the channel bed (Haschenburger, 2013). Bed topography, including microscale and 

macroscale bedforms, influences flow conditions by determining the nature of local 

resistance and bed shear stress. Finally, bedload transport contributes to morphology 

through the creation, migration, and destruction of bedforms and banks (Ashmore, 2013). 

In multi-thread braided rivers, the interactions between flow and the uneven bed 

topography result in bed shear stresses that are spatially and temporally variable (Ashworth 

& Ferguson, 1986; Lane, 1995). Combined with variable sediment supply (either from the 

bed or upstream), braided channel morphology and bedload transport can be highly 

dynamic both spatially and temporally, even at constant discharge (Ashworth & Ferguson, 

1986; Hoey & Sutherland, 1991; Ashmore, 2007).  

Yet, even with their inherent complexity, braided river morphology can still be defined by 

several characteristic units and processes. These include the individual anabranch channels, 

bar unit and complex braid bars, confluences and bifurcations, and braiding intensity which 

a) b) 
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all contribute to the distinctive three-dimensional morphology of braided rivers (Ashmore, 

2013; Wheaton et al., 2013) (Figure 2.3). 

 

Figure 2.3 – Main morphological characteristics of gravel-bed braided rivers. 

2.2.1 Bar Unit  

Bars are found in all types of alluvial channels and represent sites of sediment deposition 

and storage. There are many ways to classify bars, including by sediment composition 

(sand or gravel), formative processes, location in the channel, and ability to migrate. For 

example, unit bars are depositional features that have been unmodified by erosion while 

complex bars are the result of multiple erosional and depositional events (Ashmore, 1988; 

2013). Forced bars are those that are fixed into position due to channel configuration and 

flow conditions (e.g., point bars in meander bends), while free bars can migrate and form 

spontaneously in response to flow and sediment interactions (Zolezzi et al., 2012). The 

mid-channel bar, sometimes called a braid bar, is a free complex bar (Figure 2.3) and a 

distinguishing feature in braided rivers.  

The bar unit contributes to the dynamic planform appearance of braided rivers due to their 

changing role with flow stage. At low flow, bars are exposed and flow is restricted to the 

multiple anabranches of a braided river. At high flow, however, bars can become 

submerged, changing the overall planform appearance of the river (Figure 2.4). It is also 

during this high flow stage that bars are actively formed, aggraded, and mobilized by the 



8 

 

 

 

flow. In reality, most braided rivers have exposed bars at high and low discharges (Bristow 

& Best, 1993).  

  

Figure 2.4 – Diurnal changes in planform appearance due to bars at a) low discharge 

becoming submerged at b) high discharge. Both photos were taken on August 14, 2013 

at the Sunwapta River, Alberta, Canada. Arrow indicates flow direction. 

While bars are themselves morphological units within alluvial rivers, they can also be 

considered part of a pool-bar unit. At the upstream end of the pool-bar unit is a deep pool 

that widens in the downstream direction. Downstream of the pool there is a lobe front that 

aggrades vertically and downstream so that the downstream edge of the lobe is an exposed 

bar (Bunte and Abt, 2001) (Figure 2.5). While the exposed bars and pools generally switch 

from one bank to the other in straight and meandering channels, they can exist in two or 

more parallel rows in braided channels (Ferguson, 1993). Therefore, each mid-channel bar 

is contributing to three separate pool-bar units, where the bar head is the end of an upstream 

bar unit and each side of the bar belong to lateral bar units (Ferguson, 1993) (Figure 2.5). 

Pools are connected by thalwegs, zones of deepest flow, and in braided channels multiple 

thalwegs converge and diverge downstream. Thus, individual anabranches can have bends 

like a meandering channel (Ferguson, 1993; Robert, 2003).  

a) 
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Figure 2.5 – Pool-bar unit in straight and braided alluvial channels. White arrows 

indicate flow direction and thick black lines represent the thalweg, or zone of deepest 

water flow. Water depth is represented by the shading so that dark areas indicate 

deep water and light areas represent bars exposed during low flow. Figure adapted 

from Bunte and Abt (2001). 

Conceptual models of braided river development have described several processes, both 

depositional and erosional, that are responsible for generating and maintaining mid-

channel bars. Originally defined by Ashmore (1991b), the four principle mechanisms of 

braided channel dynamism are central bar deposition, transverse bar conversion, chute cut-

off, and lobe dissection (Ashmore, 1991b; Ferguson, 1993; Wheaton et al., 2013). The 

central bar deposition and transverse bar conversion are both depositional processes 

associated with the movement and deposition of a bedload sheets, which are mobile 

microscale bedforms 1-2 grains thick, and the subsequent growth into mid-channel bars 

(Ashmore, 1991b; Ferguson, 1993). Chute-cut off and multiple bar dissection are erosional 

processes related to the development of narrow chute channels over already developed unit 

and complex bars. Once braiding is initiated there is a positive feedback loop that promotes 
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the repetition of these main braiding processes (Ashmore, 2013). For example, initial 

formation of a mid-channel bar results in flow diversion towards outer banks, promoting 

bank erosion, and increasing the width-depth ratio and the local sediment supply, all of 

which encourage additional propagation of braid bars downstream (Bristow & Best, 1993) 

(Figure 2.5). All of the current models for the development of mid-channel bars and 

braiding morphology involve multiple processes, both erosional and depositional 

(Wheaton et al., 2013). Overall, the development, erosion, and flow diversion caused by 

bars all contribute to the complex sediment transport and morphological dynamics in 

braided rivers (Ferguson, 1993). 

2.2.2 Confluences and Bifurcations 

Another fundamental feature of a braided channel is the presence of multiple anabranching 

channels that meet at confluences and separate at diffluences, more commonly called 

bifurcations (Ashmore, 1991b; Tubino & Bertoldi, 2007) (Figure 2.3). The main 

characteristics of a braided confluence are 1) the presence of at least two anabranching 

channels, which can differ in geometry; 2) a scour hole, whose depth and shape are a 

function of the angles and discharges of the incoming anabranches and; 3) a mid-channel 

downstream bar (Ashmore, 1993) (Figure 2.6). While these features are common in 

confluences, not all confluences will have all of these characteristics, and the exact form 

of each will depend on local flow and sediment conditions (Ashmore & Gardner, 2008).  
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Figure 2.6 – General structure of a confluence-bifurcation unit. Flow (black arrows) 

from two individual anabranch channels meet at a confluence and create a scour hole. 

Downstream, the flow is split at a bifurcation diverting water towards the outer bank 

causing local bank erosion. Image modified from Ashmore (1993).

Research on confluences and bifurcations suggest that these features have a characteristic 

length that is linearly related to channel width so that the length from the confluence to the 

head of the downstream bifurcation is approximately four to five times greater than channel 

width (Hundey & Ashmore, 2009). In addition, studies on sediment transport in 

confluences suggest that they are areas of increased bedload transport. The maximum 

transport rate occurs at the downstream end of the erosional scour hole, which is followed 

by a downstream decrease in shear stress resulting in deposition on the bar (Ashmore, 1993; 

Ashmore & Gardner, 2008). Therefore, scour holes are a result of the locally high rates of 

sediment transport that result from confluences (Wheaton et al., 2013). Bifurcations may 

also contribute to avulsion, or channel switching, when the flow becomes concentrated to 

one side, choking the other anabranch into abandonment (Ashmore, 1993; Ferguson, 1993) 

Therefore, the formation,  migration, and abandonment of confluences contributes to the 

spatial and temporal variability in bedload transport and morphology in braided rivers.  

2.2.3 Braiding Intensity  

Braiding intensity is a measure of the complexity of the braided anabranch network and is 

considered a fundamental measure of the braided channel pattern morphology (Egozi & 

Ashmore, 2008). While there are several different braiding indices, one of the most 

common is the channel count index, which reflects the average number of channels 
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conveying water based on a series of river transects (Egozi & Ashmore, 2008; Ashmore, 

2009).  

Egozi & Ashmore (2008) define a total braiding intensity (BI) as the average number of 

channels with observable water discharge (i.e., “wetted”) and the active braiding intensity 

(ABI) as the number of channels actively transporting bedload. The active braiding 

intensity is considered important because this subset of the total braiding intensity is 

responsible for conveying bedload and therefore is strongly related to channel 

morphodynamics (Egozi & Ashmore, 2008). Experimental results suggest that total 

braiding intensity reaches a stable average for a given stream power or discharge, although 

the instantaneous braiding intensity can fluctuate (Ashmore, 2009; Egozi & Ashmore, 

2009). In the field, Mosley (1982) found that while depth, velocity, and water surface area 

all increased with increasing discharge in the Ohau River, a braided river in New Zealand, 

that new channels emerging at higher discharge helped maintain a relatively stable braiding 

intensity regardless of discharge. This general rule can be complicated by changes in 

channel morphology. For example, Ashmore et al. (2011) found that while active braiding 

intensity generally increased with discharge over an event hydrograph, different channel 

configurations of the same river resulted in variable active braiding intensity at the same 

discharge. Therefore, natural variation in braiding intensity results in a measurement 

precision of ~20% of the mean value in a braided river reach (Egozi & Ashmore, 2008). 

Flume experiments suggest that the active braiding intensity correlates positively with 

dimensionless stream power (ω*) (Ashmore, 2009; Bertoldi et al., 2009b): 

𝜔∗ =
𝑄𝑆

𝑏√𝑔∆𝐷50
3

 
(2.2) 

where Q is discharge, S is slope, D50 is mean grain size, ∆ is relative submerged density, b 

is the average wetted width and 𝑔 is the acceleration due to gravity. By using a 

dimensionless variable that considers grain size, this measure of stream power allows for 

comparison between rivers of difference sizes, including physical models (Bertoldi et al., 

2009a). Comparing the two braiding intensities, Egozi and Ashmore (2008) found that 

active braiding intensity responded quickly to changing discharge while total braiding 
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intensity responded more slowly. The ratio of active channels to total channels (ABI/BI) 

varies from 0.3 to 0.8 with an average of ~0.5, depending on the dimensionless stream 

power (Ashmore, 2009; Bertoldi et al., 2009b; Egozi & Ashmore, 2009). The exact reason 

for the active braiding intensity stabilizing around half of the total braiding intensity is not 

fully known but may be related to asymmetrical bifurcations. Specifically, bifurcations in 

gravel-bed braided rivers are often asymmetrical such that while both anabranches convey 

water, only one remains competent enough to convey bedload (Ashmore, 2009).  

These results suggest that the complexity of braided channels is controlled and limited by 

some measure of slope and discharge (i.e., dimensionless stream power and/or 

dimensionless discharge), so that total braiding intensity, active braiding intensity, and 

even the ratio of the two, represent regime properties of braided channels.  

2.2.4 Channel Geometry 

Hydraulic geometry aims to predict how a river will change its form in response to 

changing discharge based on the following continuity equation: 

𝑄 = 𝑤𝑑𝑣 (2.3) 

where Q is discharge, w is mean width, d is mean depth, and v is mean velocity (Ferguson, 

1986). Leopold and Maddock (1953) applied this idea to single-thread channels and 

established “at-a-station” and “downstream” (longitudinal) hydraulic geometry relations. 

At-a-station hydraulic geometry refers to changes in flow width, depth, and velocity at a 

specific river cross-section as discharge changes over time. The downstream hydraulic 

geometry considers how channel geometry varies with a given discharge, usually bankfull 

or an equivalent channel-forming discharge, longitudinally and between rivers (Ferguson, 

1986; Dingman, 2009).  

Unlike their single-threaded counterparts, multi-thread rivers have a complex and unstable 

cross-sectional geometry that varies laterally, longitudinally, and temporally (Hoey & 

Sutherland, 1991; Redolfi et al., 2016). As discussed, some of this dynamism is the result 

of locally high stream power causing active erosion and deposition of bars and banks 

(Ferguson, 1993). Furthermore, the presence of confluences and bifurcations causes large, 

local changes in sediment transport capacity as well as large changes in the cross-sectional 
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geometry longitudinally. Finally, Hoey & Sutherland (1991) suggest that braided river 

instability is partially due to the fact that even at the same overall discharge, flow is 

constantly re-distributed among the individual anabranch channels.  

Braided rivers are often characterized by a high width/depth ratio (i.e., greater width than 

depth), especially compared to their single-threaded counterparts. Recent research by 

Redolfi et al. (2016) found that unlike single-thread rivers, most changes in discharge in 

braided rivers are accommodated by changes in channel width, with only slight changes in 

channel depth. This is supported by Ashmore and Sauks (2006) who found that in general, 

at-a-station changes in braided river discharge were accommodated by changes in channel 

width and braiding intensity and that channel depth and velocity remained relatively 

unchanged. One of the implications of these results is that small reductions in water depth 

can result in a significant reduction in flow competence and bedload deposition. 

Downstream hydraulic geometry data for braided rivers show that despite the complex 

morphology, mean river width and depth as well as the width and depth of individual 

anabranches vary in a way similar to that of stable, single-threaded channels (Ashmore, 

2009). For instance, research in the field and in the laboratory suggest that at the reach 

scale the statistical properties of braided rivers are controlled by bankfull discharge, slope, 

and sediment size in a similar way to single-thread channels (Chew & Ashmore, 2001; 

Ashmore, 2009, 2013; Redolfi et al., 2016). Therefore, for a given slope and grain size, 

increasing channel-forming discharges will result in greater mean widths and depths as 

well as an increase in braiding intensity as the river occupies more of the braidplain 

(Bertoldi et al., 2009b).  

The importance of braided river geometry, and how it changes over time, is that it is 

strongly related to bedload transport processes, both at-a-station and longitudinally. For 

example, as discharge increases, channel width increases, and therefore a larger area of 

submerged bed is exposed to shear stresses required for bedload transport (Bristow & Best, 

1993; Wheaton et al., 2013; Mueller & Pitlick, 2014). As a result, research suggests that 

changes in sediment transport may be restricted to specific zones of the channel which are 

likely a function of the wetted width (Gomez, 1991; Hoey, 1992; Bertoldi et al., 2009a; 

Mueller & Pitlick, 2014).  
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2.3 Bedload Transport Processes 

Bedload refers to the portion of the total sediment load being transported by a river that 

moves close to or on the channel bed by sliding, rolling and saltating (Gomez, 1991; 

Haschenburger, 2013). The initiation of bedload transport is fundamentally the result of 

the hydraulic force (i.e., shear stress) at the bed (Yager & Schott, 2013). 

2.3.1 Active Layers and Phase Flow 

The channel bed can be classified into three vertical layers: the exposed surface , the active 

subsurface, and the inactive subsurface (Haschenburger, 2013; Church & Haschenburger, 

2017). Grains can be actively transported from the exposed surface and from the active 

subsurface as those grains become exposed to the flow. In general, the depth of this active 

layer (i.e., surface and active subsurface) will increase with discharge (Haschenburger, 

2013). Therefore, it is possible to classify bedload transport rates in gravel-bed rivers in 

terms of two phases. During Phase I, bedload transport rate is low and consists mostly of 

fine grains moving over a stable bed surface (Ryan et al., 2002). Phase II involves the 

mobilization of coarser grains from the surface causing grains from the active subsurface 

to be exposed and entrained. Consequently, Phase II has a significantly greater sediment 

transport rate and grain size range than Phase I flow (Ryan et al., 2002). As a result, the 

amount of bedload transported and the size of grains transported will increase with flow 

but in a non-linear fashion due to local variation in bed shear stress and sediment supply 

from the active layer (Ashworth & Ferguson, 1986; Haschenburger, 2013).  

2.3.2 Bedload Pulses  

The changes in bedload transport rate across a particular cross-section over a short period 

of time is referred to as a bedload pulse (Hoey & Sutherland, 1991; Hoey, 1992). 

Instantaneous bedload pulses may appear as migrating bedload sheets, and are a result of 

the stochastic variability in sediment entrainment due to local differences in shear stress 

(Hoey, 1992). These bedload sheets are often associated with pulses of bedload material 

migrating downstream and play a very important role in the morphology, surface texture, 

and sediment sorting pattern in gravel-bed rivers, all of which influence local sediment 

transport processes (Gomez, 1991; Robert, 2003). As a bedload pulse moves through a 
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system, it will either be transported (translated), deposited (attenuated) or removed 

(dissipated), and all of these outcomes can be caused by different conditions (Hoey, 1992). 

Therefore, some of the streamwise variations in bedload transport rate are in response to 

temporal variations at-a-point. 

The temporal differences in bedload transport at the micro-scale are often associated with 

the movement of bedload sheets and at a larger scale, related to patterns of scour and fill 

during rising and falling discharge (Gomez, 1991). In addition, the continuous formation 

and destruction of bars under flood conditions in braided rivers can also result in bedload 

pulses in these systems (Hoey, 1992). The presence of bedload pulses due to a variety of 

braiding processes and morphological dynamism could be one of the reasons that bedload 

transport in braided rivers is temporally variable even at a constant discharge (Ashmore, 

1988; Goff & Ashmore, 1994; Shvidchenko & Kopaliani, 1998). Figure 2.7 highlights that 

bedload is highly variable at a constant discharge, but that on average it increases with 

increasing discharge and total stream power (Doeschl et al., 2006). Hoey and Sutherland 

(1991) found that there was an inverse relationship between channel pattern complexity 

(total channel length in a reach) and the measured sediment output rate in a model of a 

gravel-bed braided river. This result could indicate that, even though channel complexity 

(braiding intensity) increases, bedload transport rate is still restricted to a relatively small 

area of the bed. This concentrated area of active transport that expands and contracts is also 

called the active width. 
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Figure 2.7 – Temporal variability in bedload transport rate (Qb) from three 

experimental gravel-bed braided rivers run at constant discharge (Q). Data from 

Ashmore (1988). 

The collective movement of individual bed particles creates and interacts with the channel 

morphology, particularly at the scale of the local pool-bar unit (Pyrce & Ashmore, 2003a). 

The total streamwise distance travelled by a grain from initial erosion to final deposition is 

called the path length (Pyrce & Ashmore, 2003a). While the path length is often comprised 

of multiple steps as a function of flow conditions and the bed surface, research by Kasprak 

et al. (2015) found that the path length in braided rivers is strongly controlled by local 

morphology. Specifically, the majority (81%) of tracers seeded in a river-modelling flume 

were deposited on local downstream bar heads and bar margins regardless of the initial 

seed site. Ferguson et al. (1992) found that in a gravel-bed braided river coarse sediment 

moving from a chute would be deposited onto the downstream bar because of its high 

forward momentum rather than follow the flow of the water into the anabranches. In a 

positive feedback loop, the deposition of coarse material on the bar head traps additional 

coarse material resulting in the upstream growth of the bar and overall imbrication and 

armouring of the bar head with coarse grains (Ferguson et al., 1992; Bristow & Best, 1993; 

Lane, 1995). 
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2.3.3 Bed Mobility  

The transport of the available particle sizes in the active layers defines the bed mobility. In 

gravel-bed rivers the three main mobility conditions, shown in Figure 2.8, are defined 

(Parker, 2008; Venditti et al., 2017) as: 

- Partial mobility – The grain size distribution of the bedload and bed surface are 

different so that the bedload is less coarse than the surface.  

- Selective mobility – The grain size distribution of the bedload and bed surface are 

different so that all the grain sizes are represented in both, but the bedload is finer 

than the bed surface. 

- Equal mobility – The grain size distribution of the bedload and bed surface are 

equal.  

Venditti et al. (2015) defined a fourth condition, which they described as a special case of 

selective mobility, in which the particle size distribution of the bedload and the subsurface 

sediment are equal, but both are finer than the surface grain size distribution. In all cases, 

except equal mobility, the bedload grain size distribution is finer than that of the surface, 

which is fundamentally a function of microtopography and sediment supply conditions 

(Ashworth et al., 1992; Lane, 1995; Parker & Toro-Escobar, 2002). For example, it is 

characteristic in gravel-bed channels to have surface coarsening, called armour (Bunte & 

Abt, 2001; Yager & Schott, 2013). Large protruding grains can provide shelter for finer 

grains that would otherwise become entrained at a lower shear stress. As a result, fine 

grains on a mixed-bed may require a greater shear stress to become entrained than would 

be estimated based on the grain size or weight alone (Ashworth et al., 1992; Parker & Toro-

Escobar, 2002). The effect of armouring has been found to change with sediment supply. 

In channels with high sediment supply the bed surface armouring is diminished which 

results in relative surface fining and bedload coarsening, and an overall shift towards equal 

mobility along with increase in bedload transport rates (Mueller & Pitlick, 2013; Venditti 

et al., 2017). In channels with a low sediment supply, coarse patches on the bed expand 

(i.e., more armouring) reducing bedload transport rates as the surface grain size becomes 

coarser and requires greater shear stresses to breach the armour and mobilize the smaller 

particles hidden in the subsurface (Mueller & Pitlick, 2013; Venditti et al., 2017).  



19 

 

 

 

 

Figure 2.8 – Conceptual diagram of bed mobility functions in terms of bedload grain 

size distribution and bed surface grain size distribution where a) represents partial 

mobility, b) selective mobility, and c) equal mobility. This image is adapted from 

Venditti et al. (2015). 

Previous research suggests that most gravel-bed rivers exist in a condition of partial 

mobility but can reach selective mobility under higher bankfull discharges (Venditti et al., 

2017). For true equal mobility, surface armouring would need to be diminished so that all 

grain sizes in the active layer would be equally available for transport, which is expected 

to be rare in gravel-bed rivers. Interestingly, when Mueller and Pitlick (2013) looked at a 

range of channel morphology, the conditions under which the bedload and subsurface grain 

size ratio approached unity were predominately found in braided rivers. Their results also 

confirmed that braided channels have, on average, higher concentrations (ratio of bedload 

discharge to water discharge) of bedload compared to their single-thread counterparts. One 

of the important implications of that research was that changes in bed structure and channel 

morphology may reflect changes in bed load sediment concentration and sediment 

transport processes and vice versa (Mueller & Pitlick, 2013). Ashworth et al. (1992) also 
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found that gravel-bed braided rivers with high sediment supplies and frequent high flows 

lacked well-structured beds (i.e., armouring). Thus, the importance of armouring and 

hiding in determining sediment availability and bedload transport rates may be reduced in 

gravel-bed braided rivers, but this has not been investigated in detail.  

The area of the bed that is mobile at any given time will shift spatially and temporally in 

response to changes in discharge (i.e., shear stress) and sediment supply (e.g., armouring). 

For example, Haschenburger & Wilcock (2003) found that an area of the bed classified as 

partially mobile would expand during a flood into areas that were previously immobile. In 

addition, the area of the bed that was partially mobile at low discharge could become fully 

mobilized (i.e., selective mobility) at higher discharges. This implies that with increasing 

discharge not only is a greater area of the bed mobilized, but a wider range of grain sizes 

is being mobilized as well.  

2.4 The Morphological Active Width 

The active zone of bedload transport in a river, that expands and contracts based on 

discharge and sediment supply conditions, is known as the active width. The active width 

can be defined in two ways. The instantaneous active width refers to areas where particle 

movement was directly observed, either visually or with direct sediment sampling. 

Quantifying the instantaneous active width is challenging because it can be difficult to 

directly observe and measure particle movement in a channel. Portable samplers, intensive 

surveying, and tracers could be used, but these methods are time-consuming and may not 

be reliable in capturing the spatial and temporal variability of bedload transport (Ashmore 

et al., 2011). On the other hand, the morphological active width (herein called the active 

width) relies on identifying and characterizing the active zones of transport based on 

measuring areas of significant bed-material displacement over time. This approach can be 

applied using repeat surveys of the river providing a time-integrated active width (Ashmore 

et al., 2011). It is expected that this application of the morphological method might 

underestimate active width for two reasons: 1) only areas of significant elevation change 

are considered and; 2) areas that have an overall zero net change (i.e., bed elevation change 

from erosion and deposition both occur but are equal in the measurement time interval) 

may not be detected (Lindsay & Ashmore, 2002; Ashmore et al., 2011). To manage these 
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problems, it is important to use an appropriate detection level and time interval between 

surveys. This requires balance because the interval must be long enough to allow for a 

detectable amount of morphological change but short enough that major changes in 

morphology are not compensated.  

Although research on the active width is limited, Bertoldi et al. (2009a) found that increases 

in mean bedload transport rates in braided rivers were largely driven by changes in the 

active (and therefore, wetted) width, rather than bed shear stress (i.e., water depth) as 

previously assumed. This means that in braided rivers, quantifying the variability in the 

active width should be more meaningful for estimating bedload transport rates than 

methods relying on bed shear stress, such as standard bedload formulas used for single 

channels. Furthermore, because the morphological active width is related to bedload 

transport rate, it can provide additional insights into the spatial and temporal patterns of 

bedload transport rates, although these relationships in gravel-bed braided rivers are not 

completely understood (Ashmore et al., 2011).  

Ashmore et al. (2011) investigated the active width using field data, a physical model, and 

simple computations from bedload formulas. The authors found that the active width 

generally increased with discharge once the threshold discharge for bedload transport was 

exceeded, but there was considerable scatter in the active width on a given day and even 

between days with similar discharges in the field. In a scaled physical model of the 

Sunwapta River, Ashmore et al. (2011) found that the active width could vary up to a factor 

of 6, even at constant discharge. The authors attribute this variability to changes in the 

number of active channels, the convergence and divergence of flow, and the local patterns 

of erosion and deposition caused by bar formation, avulsion, and bifurcation in braided 

rivers. The active width seems to be especially variable and unpredictable close to the 

threshold discharge for gravel entrainment. Above this threshold there is a steep increase 

in the active width with increasing discharge which also reflects an increase in bedload 

transport rate as more areas of the bed exceed the critical bed shear stress required for 

entrainment (Ashmore et al., 2011). Although spatially variable the active width can 

occupy as much as 50% of the wetted width at formative discharge, but in general occupies 

10-40% of the channel (Ashmore et al., 2011).  
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Ashmore et al. (2011) also investigated the relationship between the active width and 

simple hydraulic parameters and found that dimensionless active width (non-

dimensionalized using the wetted width) has an approximately linear relationship with 

dimensionless stream power. This could suggest that the morphological active width 

represents a fundamental property of braided rivers that responds to variations in discharge 

and stream power both between rivers and within a given river (Ashmore et al., 2011). 

Research has already found that the active width is correlated with the active braiding 

intensity, and therefore the total braiding intensity as well as wetted width. Consequently, 

it may be possible to estimate the active width with relatively little data on channel 

morphology such as channel dimensions and discharge. In addition, the inherent 

relationship between active width and bed-material transport suggests that it could serve as 

a general predictor of reach-averaged bedload transport (Ashmore et al., 2011).  

To date these results are based on relatively few observations and rely on predictions from 

simplified hydraulics. Better understanding of the relationship between the active width, 

flow, and bedload transport flux requires an extensive set of experiments in which the 

bedload flux, hydraulic parameters, and morphology are all being monitored and 

(ultimately) complemented by field observations (Ashmore et al., 2011). This kind of 

dataset would make it possible to see if the variability in the active width matches local 

changes in erosion and deposition, therefore confirming and enhancing understanding of 

the connection between active width, as a measure of channel morphodynamics, and 

bedload flux. Finally, Ashmore et al. (2011) suggest that additional research is required to 

understand the role of the active depth (i.e., depth of active layer), in relation to bedload 

transport. In combination, knowledge about the active width and active depth allows for 

the estimation of a morphological bedload transport flux, which would contribute to our 

ability to manage, monitor, conserve and restore gravel-bed braided rivers (Ashmore et al., 

2011; Ashmore, 2013).  

2.5 Morphological Methods for Estimating Bedload 

Transport Rates 

The need to determine bedload transport rates in gravel-bed rivers originally surfaced to 

determine bedload, discharge, and river channel evolution for engineering projects (i.e., to 
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train rivers and design navigable channels) (Gomez, 1991). There were two main 

approaches: 1) development and application of bedload transport formulae and 2) sampling 

bedload transport directly or indirectly to generate empirical relations for a given field site 

(McLean & Church, 1999). These methods are challenging to implement in channels like 

braided rivers where sediment transport dynamics are complicated and difficult to measure 

(Ashmore & Church, 1998). More recently, another approach referred to as the 

morphological method has been adopted into bedload transport research as an alternative 

to hydraulic methods, which generally perform poorly in braided rivers (Ashmore & 

Church, 1998). Due to the spatial and temporal variation in bedload flux which is often 

considered the result of the evolution (formation, migration, and dispersion) of bedload 

sheets, surface armour, and bedforms, there is still no universally accepted method for 

determining bedload transport rates under all conditions (Gomez, 1991; Diplas et al., 

2008).  

The morphological method came out of the growing recognition that detailed information 

about channel form and topography could provide new insights into channel processes 

(Martin & Church, 1995; McLean & Church, 1999; Brasington et al., 2003). Even at 

extremely small spatial and temporal scales, bedload transport in alluvial channels results 

in local changes in bed elevation, channel location, and channel form (Hoey & Sutherland, 

1991; Lane & Richards, 1997; Church, 2006; Parker, 2008; Buffington, 2012). Therefore, 

morphological change (e.g., changes to elevation and form due to erosion and deposition) 

can provide information on both sedimentary processes and estimate sediment transport 

rates, specifically bedload transport (Hoey & Sutherland, 1991; Goff & Ashmore, 1994; 

Ashmore & Church, 1998).  

The development of the fundamental principles of the morphological method are often 

credited to Popov (1962), who suggested that an estimate of sediment transport could be 

derived from changes in the sediment budget of a reach (Ashmore & Church, 1998). This 

method was further developed by Neill (1971, 1987) who looked at bank erosion rates in 

single-thread meandering rivers (Hoey & Sutherland, 1991; Martin & Church, 1995; 

Ashmore & Church, 1998). More recently there has been a resurgence in using the 

morphological method, which is largely related to improvements in data resolution and 
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automated post-processing techniques (Brasington & Smart, 2003; Surian & Cisotto, 2007; 

Westoby et al., 2012).  

There are several variations of the morphological method that can be used to estimate 

bedload transport rates in channels including the commonly used reach-budget method 

(Hoey & Sutherland, 1991; Martin & Church, 1995; Ashmore & Church, 1998; Surian & 

Cisotto, 2007). The reach-budget method is based on the continuity principle for sediment 

in each reach so that: 

𝑆𝑜 = 𝑆𝑖 − 𝛿𝑆 (2.4) 

where So is the sediment output, Si is the sediment input and δS is the change in storage for 

a given reach (Hoey & Sutherland, 1991; Martin & Church, 1995; Surian & Cisotto, 2007) 

(Figure 2.9). The change in storage is the net difference between erosion of bars, banks and 

the channel bed and the deposition of sediments on bars, in scour holes, and on the 

floodplain (Hoey & Sutherland, 1991; McLean & Church, 1999). Based on this equation, 

if two of the terms are known then it is possible to estimate the third within the margin of 

error of the known terms (Martin & Church, 1995).  

 

Figure 2.9 – Conceptual diagram of the morphological reach-budget method for 

estimating bedload transport rates, where Si is sediment input, net change (δS) is the 

difference between volumes of deposition and volumes of erosion within the reach, 

and So is sediment output. Image adapted from Brewer & Passmore (2002). 
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The reach-budget equation can also be expressed as a mean transport rate integrated over 

time to become: 

𝑄𝑜 = 𝑄𝑖 − 𝜌𝛿𝑆/𝛿𝑡 (2.5) 

where Qo is the mass transport output from the reach, Qi is the mass transport into the reach, 

ρ is the sediment bulk density, δS is the volumetric change in sediment storage (i.e., volume 

of deposition – volume of erosion) and δt is the time interval (Hoey & Sutherland, 1991; 

Martin & Church, 1995; Brasington & Smart, 2003; Brasington et al., 2003; Surian & 

Cisotto, 2007).  

The reach-budget approach was first used in a braided river by Griffiths in 1979 on the 

Waimakariri River in New Zealand (Ashmore & Church, 1998). He estimated volumes of 

erosion and deposition between surveyed cross-sections by averaging the end areas of the 

enclosing prism. As a result, Griffiths was able to estimate changes in erosion and 

deposition over time as well as estimate mean gravel transport rates (Ashmore & Church, 

1998).  

Applying the reach-budget method requires 3 to 4 steps depending on data availability 

(Ashmore & Church, 1998; Surian & Cisotto, 2007): 

1) Estimate the net change in area for each cross-section in each reach; 

2) Estimate the net change in volume of sediment for a given reach; 

3) Estimate of grain size and porosity; 

4) Identification of a cross-section where sediment transport is known. 

Estimating the net change in area and volume can be difficult but is commonly done using 

repeat surveys of channel cross-sections or using more advanced techniques such as remote 

sensing, digital photogrammetry, and/or LiDAR to create continuous digital elevation 

models (DEM) of the surface (Surian & Cisotto, 2007; Williams et al., 2011; Bakker & 

Lane, 2016). Early methods relied solely on cross-sectional data, which required 

interpolation between the cross-sections and resulted in limited insight into the spatial 

distribution of change (Goff & Ashmore, 1994; Brewer & Passmore, 2002; Brasington et 

al., 2003). Newer techniques often provide spatially continuous measures of topography 

change making it possible to investigate the spatial pattern in bedload transport for the time 
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interval between surveys. While providing higher spatial and temporal resolution, newer 

data acquisition methods like LiDAR and DEM Differencing are subject to potentially high 

levels of uncertainty and error propagation (Wheaton et al., 2009; Williams, 2012).   

Since the reach-budget method requires knowledge of sediment transport rate across one 

cross-section (boundary condition), this method is ideal in locations where bedload 

transport rate can be measured or be assumed to be zero at some boundary, such as at deltas 

or gravel-sand transitions (McLean & Church, 1999; Surian & Cisotto, 2007). In situations 

where the bedload transport rate cannot be known, it is common to use the assumptions of 

a minimum budget, in which the sediment input is either assumed to be zero or is adjusted 

so that the resulting downstream budget remains positive (Surian & Cisotto, 2007). Once 

the bedload transport is known or estimated at one cross-section, the sediment budget 

calculations can be extended upstream and downstream as Qi from one reach is Qo from 

the upstream reach (Martin & Church, 1995; Ashmore & Church, 1998; McLean & 

Church, 1999).  

Under some circumstances where the bedload transport rate (Qb) cannot be known or 

assumed to be zero, it can alternatively be estimated from an equation for the mass rate of 

bedload transport:  

𝑄𝑏 = 𝑉𝑒(𝐿𝑡/𝐿𝑟)/𝑡 (2.6) 

where Ve is the volume of mobilized bedload (i.e., volume of eroded sediment), Lt is path 

length, Lr is the reach length, and t is the interval between surveys (Ashmore & Church, 

1998). This method has been used in small rivers where Ve, Lr and t are relatively easy to 

determine and Lt can be estimated from tracers (Haschenburger & Church, 1998). In larger 

rivers and braided rivers, however, it might be challenging to determine Lt. One possible 

solution is to rearrange equation 2.6 so that if Qb is known, estimates of Lt can be used in 

subsequent calculations:  

𝑄𝑏 = 𝑉𝑒𝐿𝑡/𝛼 (2.7) 

𝐿𝑡 = 𝑄𝑏𝛼/𝑉𝑒 (2.8) 

where α= Lr*t, so that for a given reach and time interval, α is constant. Based on equation 

2.8, path length could be estimated as the ratio of bedload transport to the volume of 
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mobilized sediment. Pyrce & Ashmore (2003a) looked at the distributions of path lengths 

in meandering rivers and found that tracers were preferentially deposited on downstream 

bars (50-75%). This research agrees with Kasprak et al. (2014) who found that tracers in 

braided rivers were preferentially deposited on bars (81%) regardless of where tracer 

particles are seeded within the flow. Consequently, since confluences and bifurcations have 

a characteristic length scale, path length may be nearly constant for a given morphology 

based on a characteristic length scale (Hundey & Ashmore, 2009). If path length is nearly 

constant for a given morphology, then based on equation 2.8, changes in bedload transport 

rate could be explained by changes in the volume of mobilized sediment alone, although 

these relationships have not been investigated systematically or over a range of river 

morphologies.  

2.5.1.1  Advantages of the Morphological Method 

The main advantage to the morphological method is that unlike the variables and 

parameters used in the forward method (e.g., near-bed velocity and bed shear stress), 

morphology is relatively easy to measure (Ashmore & Church, 1998). This makes it 

possible to monitor spatially extensive sites and complex morphologies over long temporal 

scales, none of which are possible with hydraulically-based formulas or field sampling, 

which may be limited due to practical or financial constraints (Goff & Ashmore, 1994; 

McLean & Church, 1999; Brewer & Passmore, 2002). Consequently, McLean & Church 

(1999) concluded that morphological methods may be the most generally applicable 

method for estimating bedload transport rates. Furthermore, continued improvements in 

technology have made the morphological method an attractive alternative to at-a-point 

sampling and bedload formulas (Brasington & Smart, 2003; Brasington et al., 2003; 

Haschenburger, 2013).  

By considering the direct link between sediment transport processes and morphology, with 

less emphasis on hydraulic parameters, it may be possible to gain new knowledge about 

sedimentary and fluvial processes (Martin & Church, 1995; McLean & Church, 1999). For 

example, the reach-budget method is able to provide a time-integrated bedload transport 

rate (e.g., transport during a single flood event) but can also provide insight into the spatial 
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and temporal patterns of transport that traditional sampling and formulae cannot (Ashmore 

& Church, 1998; McLean & Church, 1999; Williams et al., 2011).  

In addition to the advantages of using the morphological method, it has already been 

successfully used in many different geomorphological applications. This includes 

estimating short-term event-based sediment transport rates as well as long-term sediment 

budgets at a variety of spatial and temporal scales and river types (Ashmore & Church, 

1998; Brewer & Passmore, 2002; Brasington & Smart, 2003; Surian & Cisotto, 2007; 

Williams et al., 2011). Knowledge of bed material displacement and changes in sediment 

storage along a reach provides a direct assessment of channel stability, which is also of 

interest to river engineers (Martin & Church, 1995; Ashmore & Church, 1998; McLean & 

Church, 1999; Brewer & Passmore, 2002). 

According to Ashmore and Church (1998), the morphological method is ideal for use on 

braided rivers since their complex and dynamic nature make all other methods for 

estimating bedload transport largely inappropriate and impractical. Furthermore, braided 

river morphology is dominated by bedload transport and frequent topography changes, 

making it possible to detect changes in morphology over relatively short time intervals.  

2.5.1.2  Uncertainty in the Morphological Method 

Data Collection and Quality  

The reliable application of the morphological method is fundamentally a function of the 

density, frequency, and quality of the topography data collected (Ashmore & Church, 1998; 

Brasington et al., 2003). The ability to collect high-resolution data at a high enough density 

and frequency will depend heavily on the resources available, the sampling method used, 

and the dynamism of the river (Ashmore & Church, 1998; McLean & Church, 1999). For 

example, estimates of net storage changes coming from the construction of DEMs of 

Difference (DoD) will be limited by DEM quality, which in turn is a function of the 

sampling method, the quality of the point data, the topographic complexity, and surface 

composition as well as the interpolation methods applied (Wheaton et al., 2009).  
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In addition, the frequency of repeat surveys poses another challenge. It is expected that 

rivers are likely to experience compensating erosion and deposition (scour and fill) 

between surveys leading to a negative bias on net change estimates (Ashmore & Church, 

1998; McLean & Church, 1999; Lindsay & Ashmore, 2002). While little data is available 

on the specific impacts of survey frequency, it is expected that larger temporal spacing will 

result in larger negative biases on volumetric change estimates (Ashmore & Church, 1998). 

While a greater temporal frequency is desirable, it is also limited on the lower end by the 

precision of the change detection. Therefore, the choice of time interval will be a trade-off 

between choosing an interval short enough to minimize compensating scour and fill while 

remaining long enough to allow for detectable morphological change (Ashmore & Church, 

1998).  

Uncertainty in Volumetric-Based Analyses 

One of the main challenges with applying the morphological reach-budget method in the 

field is that it may not be possible to know the boundary conditions (sediment input or 

output) required for sediment budgeting (McLean & Church, 1999; Brasington et al., 

2003). Without a direct bedload flux measurement, this method will have to rely on bedload 

estimates from formulae which may not be practical for use in braided rivers (Ashmore & 

Church, 1998). Due to the challenges of determining an accurate bedload transport rate in 

the field, it is possible that the morphological method cannot be properly tested in the field 

where local bedload transport rates are difficult to measure for both constraining the budget 

and comparing morphological transport estimated with ‘known’ average bedload flux 

(Warburton in Ashmore and Church, 1998).  

In addition, morphological sediment budgets can only account for the gross or net change 

in sediment and does not consider any sediment that was transferred through the system 

without exchange with the bed morphology (McLean & Church, 1999; Brewer & 

Passmore, 2002). As a result, these methods will generally underestimate sediment 

transport rates (Martin & Church, 1995; Brewer & Passmore, 2002; Surian & Cisotto, 

2007). Martin and Church (1995) suggest that this challenge can be addressed by ensuring 

that the study reach is longer than the path lengths of the sediment. Ashmore et al. (2011) 

suggest that some of these challenges can be addressed by using a fixed-integration time 
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or integrating the morphological change over an entire event hydrograph. For example, in 

gravel-bed rivers with moderate rates of bed material transport, the use of a short time 

interval could address this issue (Martin & Church, 1995). Similarly, the reach-budget 

method only provides estimates of the bed-material load, and cannot account for any 

throughput or wash load that passes through the reach without interacting with the bed or 

morphology (McLean & Church, 1999).  

The use of the morphological method for a volumetric sediment budget is also subject to 

error and uncertainty propagation. This method is limited by the quality of not just one 

DEM, but two, therefore errors and uncertainties in each DEM will be carried forward into 

the volume estimates (Ashmore & Church, 1998; Brasington et al., 2003; James et al., 

2012). In the case of the reach-budget method, sediment transport calculations can be 

carried upstream and downstream if the bed-material transport rate is known at one location 

in the reach. Therefore, the error increases as the calculations are propagated farther from 

a cross-section of known transport (Martin & Church, 1995; McLean & Church, 1999). As 

a result, it is expected that DoD methods will be most effective and reliable in areas where 

geomorphic change is much higher than the levels of uncertainty (Williams et al., 2011; 

James et al., 2012).  

Overall it is expected that the morphological method will provide an estimate of the lower-

limits of sediment transfers with information being lost due to the data quality, sediment 

throughout, and compensating scour and fill (Martin & Church, 1995; Ashmore & Church, 

1998). Some of these challenges, however, can be addressed in an experimental setting 

where there is control over the governing conditions as well as measurement precision and 

frequency.  

2.6 Measuring Morphological Change 

Monitoring of geomorphic change was historically done using repeat surveys of planform, 

cross-sections, and/or longitudinal profiles (Wheaton et al., 2009). Additional research has 

successfully used aerial photographs and detailed contour maps to measure morphological 

sediment budgets (Brewer and Passmore, 2002). While these methods provide a coarse 

measure of volume change, cross-sectional data provides sparse information on the spatial 
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distribution of channel change (Brasington et al., 2003). Also, while maps and photos can 

provide information on the long-term changes in sediment sources and transfers, they lack 

detailed information on changing bed morphology and may have limited temporal 

resolution. Fortunately, advancements in technology have made it possible to capture, 

monitor, and model channel morphology and morphological change at spatial and temporal 

resolutions never before possible (Rumsby et al., 2008; Wheaton et al., 2009; Redolfi et 

al., 2016). Specifically, morphological analysis is no longer restricted to one- and two- 

dimensions, but techniques such as remote sensing, LiDAR, and digital photogrammetry 

have opened the way for high-resolution 3D images and DEMs of channel morphology 

(Rumsby et al., 2008; Redolfi et al., 2016). These methods have much higher spatial 

sampling resolution than the cross-sectional datasets of the past (Brasington et al., 2003). 

With repeat topographical surveys it is possible to create DEMs of the river and DEMs of 

Difference (DoDs) through the comparison of two DEMs taken at different times 

(Brasington et al., 2003; Wheaton et al., 2009; James et al., 2012). Not only can this provide 

a basis for sediment budgeting through quantification of changes in sediment storage, but 

DoDs allow us to visualize and quantify spatial and temporal patterns of channel 

morphology change (Brasington et al., 2003; Wheaton et al., 2009; Williams et al., 2011; 

James et al., 2012; Williams, 2012). This ‘4D’ (x, y, z and time) approach has already been 

applied to several different types of geomorphological practices including the assessment 

of bank erosion and drainage basin evolution, both in the field and in the laboratory 

(Brasington et al., 2003; James et al., 2012).  

2.6.1 Digital Photogrammetry 

Photogrammetry is the science of using photographs, usually aerial or remotely sensed 

imagery, to make quantitative measurements (James et al., 2012). Over recent years, digital 

photogrammetry has become more popular for creating digital elevation models (DEMs) 

from a set of overlapping digital photographs (Chandler, 1999; Gardner & Ashmore, 2011; 

Westoby et al., 2012). Recently, the emergence of ‘Structure-from-Motion’ (SfM) 

photogrammetric techniques represents a technological revolution in geomatics and 

geomorphological terrain analysis (Westoby et al., 2012; Bakker & Lane, 2017). SfM 

follows the same basic principles of traditional digital photogrammetry by reconstructing 
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3D structures from overlapping, offset images. The main difference is that SfM is heavily 

automated, allowing for camera positions and the geometry of the scene to be solved 

automatically and simultaneously, whereas traditional methods required a priori 

knowledge of camera positions, fixed and calibrated geometry (usually vertical stereo 

photos), and/or the real-world 3D locations of a network of ground control points (GCP) 

(Westoby et al., 2012; Fonstad et al., 2013). With SfM image-processing algorithms being 

automated, data that would have been impossible to process using older manual 

photogrammetric methods can now be processed at high-resolution (Chandler, 1999; 

Brasington & Smart, 2003). In addition, the availability of inexpensive high-resolution 

digital cameras and photogrammetric software to produce DEMs means that the resolution 

and quality of the DEMs is now only limited by the resolution and quality of the input 

imagery (Chandler, 1999; Brasington & Smart, 2003; Rumsby et al., 2008). The 

advancements in software also mean that it is possible to capture high-resolution DEMs 

for analysis without advanced photogrammetric training, which has also made this 

approach desirable and increasingly available for researchers and engineers alike 

(Chandler, 1999; Brasington & Smart, 2003; Fonstad et al., 2013; Smith et al., 2016).  

Geomorphologists are taking advantage of these new technologies and have used digital 

photogrammetry to monitor and model landscapes from flumes to large, dynamic braided 

rivers in the field (Brasington & Smart, 2003; Morgan et al., 2016; Bakker & Lane, 2017). 

One area that has particularly evolved in the advent of improved photogrammetric 

techniques is the morphological method. With easy-to-acquire high-resolution DEMs, it is 

now possible to monitor geomorphological change and sediment transport through DEM 

comparison or differencing (Brasington & Smart, 2003; Wheaton et al., 2009; James et al., 

2012; Williams, 2012; Bakker & Lane, 2017). While originally developed for remote 

sensing and vertical aerial photogrammetry, automated digital photogrammetry software 

can be used effectively at close-range micro-scales, which is advantageous for laboratory 

research (Chandler, 1999; Morgan et al., 2016). At these micro-scales there is an added 

advantage that cost-effective digital cameras can be used to capture digital images of a 

sufficient resolution for DEM generation (Chandler, 1999). 
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Some of the challenges with using digital photogrammetry in fluvial geomorphology 

includes capturing elevation data from wetted areas, where ground surveys are required 

(Ashmore & Church, 1998). According to Brasington and Smart (2003), this combined 

approach can lead to variable data coverage and therefore variable reliability. As a solution 

to this problem, some researchers have used physical models in which the flow can be 

turned off, the model surface allowed to drain, and the wetted areas revealed before turning 

the flow back on (Brasington & Smart, 2003). This modelling approach not only provides 

full data coverage of the model surface, but at a consistent data coverage and resolution 

(Gardner & Ashmore, 2011; Kasprak et al., 2015; Leduc et al., 2015). 

SfM allows for the creation of a dense point cloud without a priori knowledge of camera 

or target locations, but reference to ‘real-world’ position still requires independent ground 

control points for georeferencing (Fonstad et al., 2013). In addition, the automation of the 

photogrammetry may still necessitate long data-processing times (Westoby et al., 2012). 

The extraction of and matching of keypoints between images and the construction of both 

sparse and dense point clouds is computationally demanding (see Chapter 2). Therefore, 

while SfM may be faster than traditional methods, the final choice of survey method should 

consider the time-cost for covering large topographic areas at high-resolution.  

Overall, digital photogrammetry is now able to reproduce DEMs with sufficient resolution 

to generate morphological sediment budgets with high temporal frequency (Rumsby et al., 

2008; Morgan et al., 2016). The advantages of faster data acquisition and semi-automation 

have made this method a preferred method in geomorphology (Fonstad et al., 2013). In 

addition, given the relatively low cost to implement and growing availability of general 

photogrammetric software, these techniques have been used at close-range in the flume as 

well as in the field (Brasington et al., 2003; Gardner & Ashmore, 2011; Kasprak et al., 

2015; Leduc et al., 2015; Morgan et al., 2016; Bakker & Lane, 2017). Therefore, SfM 

digital photogrammetry was used to acquire high-resolution DEMs for this research in an 

experimental laboratory setting.  
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2.7 Experimental Geomorphology 

While field observations are still the basis for much of geomorphology, there are several 

limitations which have driven fluvial geomorphology to find complementary methods. One 

of the most commonly cited issues in field observation and measurement is that many of 

the phenomena that interest fluvial geomorphologists occur at large spatial and temporal 

scales that make field research impractical or incomplete (Kleinhans, 2010). Also, given 

the complexity of natural systems it may be impossible to observe certain features or 

phenomena directly or even indirectly. This can be due to inaccessibility, unsuitable 

equipment, or because some measurement techniques alter or disturb the phenomena being 

measured (Kleinhans, 2010). Furthermore, Lane & Richards, (1997) point out that 

contextual interactions between form and process at particular field sites may also raise 

questions about the general applicability of a given set of observations. Given the 

challenges to studying fluvial processes and morphology in the field, many researchers 

have turned to experimental geomorphology, including the use of physical, or hardware, 

models, to better understand river processes (Paola et al., 2009).  

2.7.1 Physical Modelling  

Peakall et al. (1996) defines four general types of physical models used in fluvial 

geomorphology: 1) 1:1 models, which maintain the same spatial and temporal scale as the 

prototype model; 2) Froude-scale models, which attempt to accurately scale Froude 

numbers between model and prototype (Church, 1984); 3) distorted scale models, which 

exaggerate one or many aspects of the prototype (e.g., vertical or horizontal distances); and 

finally 4) analogue models, which are used for those phenomena which occur at such large 

spatial and temporal scales that a they cannot be studied directly (Peakall et al., 1996).  

Froude-scale models, which are often used in fluvial geomorphology to model river 

processes, are founded on the principles of similarity theory (Yalin, 1971). A scaled model 

has geometric, kinematic and dynamic similarity with its prototype (Peakall et al., 1996). 

Geometric similarity holds a constant ratio of geometric (length) dimensions. Kinematic 

similarity attempts to hold constant ratios for both length and time. Finally, dynamic 

similarity holds constant ratios across length, time, and mass (Young and Warburton, 
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1996). As a result, models with dynamic similarity produce similar force ratios in the model 

and prototype and are therefore required when modelling fluvial processes (Peakall et al., 

1996; Warburton, 1996; Young & Warburton, 1996; Ashmore, 2007). Practically, it is 

generally not possible to achieve perfect similarity because some properties of the fluvial 

system cannot be scaled, for example, the density (ρ) and viscosity (µ) of water and the 

acceleration due to gravity (𝑔) (Peakall et al., 1996; Young and Warburton, 1996).  

Froude-scale models are so named because the Froude number (Fr), which describes the 

conditions of flow in a dimensionless number, is equal between the model and its prototype 

(Ritter et al., 2011) (Details in Appendix A). By maintaining the Froude number, the 

Reynolds number (Re), another dimensionless number characterizing flow turbulence (i.e., 

the ratio of inertial to viscous forces), must be relaxed (Ritter et al., 2011). For a prototype 

river with ‘rough-turbulent flow’ hydraulic theory shows that if the grain Reynolds number  

(Re*, the state of turbulence at the bed) and the Reynolds number in the model are high 

enough to also allow for rough-turbulent flow (Re* > 70; Re > 2000), the critical 

dimensionless bed shear stress is fairly constant above these values, and therefore, the exact 

Re value will not substantially influence dynamics of the flow and sediment transport 

(Paola et al., 2009; Young and Warburton, 1996). As a result, these models have 

approximate dynamic similarity (Young & Warburton, 1996). Froude-scale modelling is 

well suited for modelling gravel-bed rivers because it is easier to maintain the relatively 

high hydraulic roughness required to generate the rough turbulence flow and dimensionless 

bed shear stresses needed for model and prototype similarity (McKenna Neuman et al., 

2013).  

When modelling gravel-bed braided rivers specifically, Warburton (1996a) describes 

general characteristics required for the physical model. As already mentioned, there must 

be dynamic similarity between the model and a braided river system. This can be achieved 

when the length dimensions are scaled in a linear way and the principles of Froude-scale 

modelling are applied. It is common in geomorphology to allow river channels in models 

to self-form, so the bed and banks of the channel must be deformable. Third, the bed-

material must reflect the bed-material of the prototype. The bed and bank materials should 

be kept granular and non-cohesive, where the grain size is determined by the length scale 
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(Warburton, 1996a; Young and Warburton, 1996). Using mainly fine-grained sediment (< 

0.6 mm) could result in the formation of ripples and other bedforms, as well as cohesion 

effects that change the resistance of the bed and alter local sedimentary processes. As a 

result, it is common practice in hydraulic modelling to truncate the smaller grain sizes when 

scaling the sediment material to avoid cohesive behaviour or to use non-cohesive materials 

such as silica flour and beads (McKenna Neuman et al., 2013). Warburton (1996a) suggests 

that the slope of the bed be kept steep while others suggest that the slope be equal between 

the model and prototype to satisfy the requirements of a true Froude-scaled model 

(Ashmore, 1982; Young and Warburton, 1996). Following these general guidelines will 

provide a model with approximate dynamic similarity and similar sedimentary features to 

a real braided river (Warburton, 1996a). Finally, verification of physical models across a 

range of scales helps to ensure that the model is providing relevant data (Peakall et al., 

1996). Qualitative visual verification is common when comparing model form with 

prototype form but the challenges associated with characterizing and defining a braided 

channel can make this difficult (Young and Warburton., 1996). Other methods attempt to 

quantify and compare channel geometry (dimensions) and channel complexity (sinuosity) 

between the model and prototype (Young & Warburton, 1996; Doeschl et al., 2006).  

Advantages of Physical Models 

While all models are simplifications and abstractions of reality, physical models have three 

major benefits over field research: control, comprehensive data collection, and replication 

(Mosley & Zimpfer, 1978; Wainwright & Mulligan, 2013; Bennett et al., 2015). Physical 

models provide control over the governing conditions of rivers (i.e., slope, discharge, and 

sediment calibre and supply) making it possible to investigate a range of river conditions 

and morphologies, something that cannot be done systematically in the field (Mosley & 

Zimpfer, 1978). This control also makes it possible to run experiments under constant 

geomorphic forcing conditions. For example, it is relatively common to use constant 

channel-forming discharge in flumes to speed up initial channel evolution and the rate at 

which geomorphic events cause morphological change to occur (McKenna Neuman et al., 

2013). As a result, physical models can allow for the measurement of rare and 

unpredictable geomorphic events, which may be hard to capture with relatively infrequent 

field surveys (McKenna Neuman et al., 2013). Therefore, control allows researchers to 
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isolate, manipulate, observe, and measure geomorphic events and processes in an 

experimental way that contributes to our understanding of geomorphic systems (Mosley & 

Zimpfer, 1978; Young & Warburton, 1996; McKenna Neuman et al., 2013; Bennett et al., 

2015; Yager et al., 2015).  

Secondly, physical models simplify complex natural systems so that underlying 

mechanisms and processes can be observed and measured in a controlled experimental 

setting (Mosley & Zimpfer, 1978; McKenna Neuman et al., 2013; Bennett et al., 2015). 

This means that physical models allow for measurements not possible in the field because 

the site of interest is inaccessible, difficult to measure, or hazardous. At the same time 

models allow for the geomorphic evolution of rivers to be observed at a reduced spatial 

and temporal scale (Ashmore, 1982; Young and Warburton, 1996). In a Froude-scaled 

model specifically, it is possible relate the length (λl) scale to the time (λt), mass (λm) and 

discharge (λQ) scales using the following relations: 

           𝜆𝑡 = √𝜆𝑙 (2.9) 

          𝜆𝑚 = 𝜆𝑙
3 (2.10) 

           𝜆𝑄 = 𝜆𝑙
2.5 (2.11) 

The time scale applies to all motion in the model (i.e., fluid and grain motion), and the 

mass scale only holds true when the density of the fluid and sediment are in unity in the 

model and prototype (Young and Warburton, 1996). These reduced scales allow for 

multiple processes to be measured and monitored simultaneously and precisely (Young 

and Warburton, 1996). In combination, the ability to gather information not accessible from 

the field over reduced space and time has allowed physical models to accumulate large 

comprehensive datasets on geomorphic processes. In some cases, physical models have 

been the only option for investigating complex geomorphic processes (Mosley & Zimpfer, 

1978; Shvidchenko & Kopaliani, 1998). For example, Ashmore (1982, 1988, 1991b) was 

able to describe the fundamental processes leading to the initiation and maintenance of 

braiding, which would have been impossible in the field. Finally, models allow for 
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replication of experimental runs and simulations. This not only provides confidence in the 

results but promotes the development of new hypotheses and theories.  

Overall, one of the most important benefits of using scale models is that even simple 

models are relatively successful at recreating complex geomorphic landscapes 

(Shvidchenko & Kopaliani, 1998; Paola et al., 2009; Bennett et al., 2015). Research has 

shown that small-scale physical models are able to reproduce channel morphology and 

braided river behaviour at a variety of scales (Ashmore, 1991b, 2007; Paola et al., 2009; 

Redolfi et al., 2016). This suggests that even with only approximate dynamic similarity, 

physical models are still able to reproduce the basic processes and forces found in real 

rivers (Paola et al., 2009; Kleinhans, 2010). As a result, and given the highly dynamic 

nature of these channels in nature, flumes are a fundamental source of knowledge and 

understanding on braided river processes (Ashmore, 1991b; Warburton, 1996; 

Shvidchenko & Kopaliani, 1998; Paola et al., 2009).  

Limitations of Physical Models 

The main limitation to using a physical model is the scaling difficulties caused by the 

simplifications and abstractions from reality. For example, certain processes and variables 

cannot be scaled down, including particle settling velocities and the physical properties of 

water (e.g., viscosity and density) (Peakall et al., 1996; Young and Warburton, 1996). Also, 

while it is generally accepted in Froude-scale modelling to use a lower Reynolds (Re) 

number if the Froude (Fr) number is maintained, the lower limit of Re is poorly defined 

and the effect of averaging Re is not fully understood (Young and Warburton, 1996). The 

result may be imperfect dynamic similarity between the model and prototype (Peakall et 

al., 1996; Young and Warburton, 1996; Paola et al., 2009).  

In addition, natural landscapes are highly variable in climate, bedrock material, vegetation, 

anthropogenic interference, water quality and quantity etc. but this variability is too 

complex to model. Therefore, even generic models may be too simplified to allow for 

generalizable statements (Mosley & Zimpfer, 1978; Church, 2011; Bennett et al., 2015). 

This is especially a problem because certain features, such as vegetation, precipitation, and 

habitat, are likely to influence bank stability but are rarely modelled in flumes (Young and 

Warburton, 1996).  
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A practical problem is managing boundary conditions. Unlike nature, which is an open 

system, models are closed with finite amounts of water, sediment, and space. Therefore, 

there can be complications with how to manage sediment, edge effects as well as inlet and 

outlet effects in the model (Bennett et al., 2015).  

Use of Physical Models in Braided River Research   

Flume experiments and physical models have been vital to the progression of fluvial 

geomorphology and braided river research. Physical models are also ideal for investigating 

the morphological method in braided rivers where it is possible to obtain high-resolution 

topography, determine bedload transport rates directly, and control the governing 

conditions of river systems (Ashmore and Church, 1998). 

Gravel-bed braided rivers are particularly good candidates for research in physical models 

because they are relatively easy to reproduce in a flume, leading some researchers to 

suggest that braiding is the default morphology of non-cohesive channels without lateral 

constraints (Murray & Paola, 2003; Ashmore, 2009; Paola et al., 2009). As a result, the use 

of physical models to investigate braided rivers and bedload transport became more 

popular in the eighties with research lead by Schumm, Ashmore, and Warburton (Metivier 

& Meunier, 2003).  

Physical models have been paramount in understanding the processes leading to the 

development of braided rivers. Given that the necessary variables are impractical to alter 

in the field, the ability to alter discharge and slope in the flume allows for the development 

of a braided channel from an originally straight channel. Using a model, researchers are 

able to compress the evolution of a braided channel both spatially and temporally so it can 

be examined in great detail. For instance, Leopold and Wolman (1957) and later Ashmore 

(1991) were able to describe the mechanisms of braided channel development over time. 

In addition to braided river development, most of the knowledge on bedload transport rates 

in braided rivers comes from physical models (Ashmore, 1988; Young & Davies, 1990; 

Yager et al., 2015). 

Physical modelling experiments have also helped confirm some of the behaviours and 

processes occurring in braided rivers. For example, models have confirmed the dynamic 
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steady-state of braiding as well as the tendency of channels to widen and multiply with 

increasing discharge (Paola et al., 2009; Bertoldi et al, 2009b; Egozi and Ashmore, 2008). 

More recently, flume experiments have shown that bedload transport, and therefore 

morphological change, in braided rivers does not span the entire channel width but is 

limited to what is now known as the active width (Ashmore et al, 2011; Welber et al., 

2012). This means that morphological changes could be limited to a small number of main 

branches even at bankfull discharge (Egozi and Ashmore, 2009; Paola et al., 2009; Welber 

et al., 2012). In another study, Tal and Paola (2010) were able to cause a braided channel 

form to evolve into a much more meandering form through the introduction of alfalfa 

sprouts in the flume. More studies like this could provide additional insights into the role 

of vegetation and habitat on river functioning, something that has not adequately been done 

in the flume or field.  

2.8 Research Rationale 

Braided rivers continue to be of interest to geomorphologists, geologists, and engineers. 

For fluvial geomorphologists braided rivers are interesting because of their morphological 

complexity, dynamic erosion and bedload transport, and because of their relative 

abundance, especially in proglacial mountainous environments (Bristow & Best, 1993; 

Ashmore, 2013). Geologists study braided rivers to investigate sedimentary deposits and 

the local geology to determine their use as aquifer systems, as hydrocarbon reservoirs, and 

for the mining of sand and gravel (Bristow & Best, 1993). Finally, the lateral instability, 

high rates of sediment transport, and possible channel switching means that engineering 

and management is often important for the protection of populated areas, infrastructure 

(such as bridge piers and roads), and natural resources (Bristow & Best, 1993; Lane, 2000; 

Church, 2006; Piegay et al., 2006) (Figure 2.10).  

Anthropogenic interference including lateral confinement, changes in flow and sediment 

regimes, gravel mining, and dredging have all been linked to the destruction of braiding 

morphology in many places around the world (Piegay et al., 2006; Surian & Cisotto, 2007; 

Ashmore, 2013). Yet, in other areas of the world, increased sediment production as a result 

of human activities have caused other river planforms to evolve into a braided planform 

(Piegay et al., 2006). Additionally, some braided rivers such as the Fraser River in British 
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Columbia, have important ecological functions including providing fish, bird, and 

invertebrate habitats (Piegay et al., 2006). As a result, there has been pressure to better 

understand the mechanics of braided rivers, and in particular bedload transport in braided 

rivers, for improved mining, restoration, and management of these systems (Bristow & 

Best, 1993; Piegay et al., 2006).  

 

Figure 2.10 – Braided river instability creates challenges for maintaining 

infrastructure. The arrow indicates flow direction and the red circle highlights a 

location where the river is dangerously close to flooding the road. As a major tourist 

road, it is likely that the banks will be stabilized and the primary river channel moved 

away from the road.

However, estimating and predicting bedload transport fluctuations in gravel-bed braided 

rivers continues to be a challenge due to their complex and dynamic morphology (Bertoldi 

et al., 2009a). Yet, the dynamic morphology of braided rivers and their spatially and 

temporally variable bedload transport regimes are fundamentally linked. This relationship 

opens the possibility of using a morphological method for estimating bedload fluxes, where 

other traditional methods of formulae and sampling are insufficient (Ashmore & Church, 

1998; McLean & Church, 1999). Specifically, consideration of the morphological active 
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width could help improve our predictions and understanding of bedload transport processes 

in gravel-bed and braided rivers. As morphologically-driven systems where bedload 

transport is spatially and temporally variable, the morphological method may be a more 

appropriate way to estimate transport than traditional formulae (McLean & Church, 1999). 

Given the challenges to collecting both bedload transport and active width data in the field, 

the use of a physical model provides an ideal location to investigate the relationships 

between morphology, bedload transport, and sedimentary processes over a range of 

channel-forming conditions (i.e., slope and discharge). To do this, close-range digital 

photogrammetry was used to capture high-resolution DEMs at a high temporal frequency 

in a physical model (Kasprak et al., 2015; Leduc et al., 2015; Morgan et al., 2016). Also, 

with the opportunity to directly measure the bedload transport rate in a physical model, this 

research investigates the evolution of grain size distributions and bed mobility with 

changes in discharge and stream power, something that has not previously been done 

adequately for braided rivers.  

Uses of the morphological method already have shown that there is a clear link between 

hydraulic processes and channel geomorphology (Ashmore & Church, 1998; McLean & 

Church, 1999). Although there are clear advantages to morphological methods, including 

the direct applicability to engineering works and assessments of channel stability, there are 

still challenges. For example, the need to know sediment transport rate at one location in 

the reach continues to be a problem in the field and until a systematic monitoring system 

is put in place, these methods will continue to rely on estimates from formulae or estimates 

of sediment path length (Ashmore & Church, 1998; McLean & Church, 1999). A better 

understanding of active width and its relationship to bedload transport may not only 

improve the ability to correctly estimate bedload transport rates but may help bridge the 

conceptual knowledge gap between single-thread and multiple-thread channel dynamics 

(Bertoldi et al., 2009a; Paola et al., 2009; Egozi and Ashmore, 2009). Finally, the ability 

to link hydraulic parameters, bedload transport, bed mobility, and channel morphology 

quantitatively is expected to improve numerical model predictions of bedload transport 

rates and braided river evolution, something that has not been adequately done in the past.  
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The results of this research have been broken up into three chapters (Chapters 4-6), each 

related to understanding the linkages between channel morphology and bedload transport 

processes in gravel-bed braided rivers. Although individual research objectives and 

questions are presented in the introduction of each chapter, the main research questions can 

be summarized as the following: 

1. The Variability in the Morphological Active Width (Chapter 4) 

 What is the variability in the morphological active width over a range of 

stream power and how does this variability relate to bedload transport rates 

as well as other morphological and hydraulic parameters? 

2. Morphometric Estimates of Bedload Transport Rate (Chapter 5) 

 What are the spatial and temporal differences in braided river morphology 

and bedload transport rate and how do these differences impact estimates of 

bedload transport rates using of the morphological reach-budget method for 

a known sediment output and under the assumptions of the minimum 

budget? 

3. Grain Size Evolution and Bed Mobility in Gravel-Bed Braided Rivers (Chapter 6) 

 How does grain size distribution and bed mobility change over event 

hydrographs in a braided river and are these changes related to channel 

morphology? 
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Chapter 3 

3 Experimental Methods 

3.1 Chapter Structure 

The following chapter presents all the experimental methods used for this thesis research. 

Section 3.2 begins by introducing the experimental model used in the primary data 

collection. Section 3.3 outlines the details of operating the physical model. The next 

section, section 3.4, outlines the specific experimental conditions used in this research in 

terms of slope, discharge, and initial channel evolution. Section 3.5 outlines the main data 

collection procedures for capturing photographs of the model surface. Section 3.6 describes 

the main steps in data processing, specifically the generation of digital elevation models 

(DEMs) and the creation of DEMs of Difference (DoDs). Section 3.7 describes the 

procedures used to measure and characterize channel morphology and bedload transport 

flux. The last section briefly summarizes the data set and assessment of the methods. 

3.2  Experimental Setting 

3.2.1 Physical model 

This research was based on data gathered from small-scale physical models of gravel-bed 

rivers in a river modelling flume located at the Boundary Layer Wind Tunnel Laboratory 

at The University of Western Ontario (UWO) (Figure 3.1). Affectionately known as “Flo”, 

the flume was 18.3 m long and 3 m wide with an upstream head tank, a downstream tail 

tank, and a moveable bridge that spanned the width of the flume (Figure 3.2). The flume 

had adjustable slope and discharge that could reach a maximum of 2.5 % and ~2.7 l s-1, 

respectively. In addition, five metal sediment baskets with a mesh size of 0.1 mm spanned 

the length of the tail tank to collect all sediment output from the flume (Figure 3.2). 
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Figure 3.1 – Image of the physical gravel-bed river flume in the Boundary Layer 

Wind Tunnel Laboratory at the University of Western Ontario. Arrow indicates flow 

direction.  
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Figure 3.2 – Schematic of the river modelling flume . Plan view (top) and side view (bottom) showing the locations of the 

upstream head tank, sediment sorter, downstream tail tank, sump pump, screw jacks, and cameras. 
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The grain size distribution in the flume ranged from 0.18 mm to 16 mm, with a D10 of 0.32 

mm, D50 of 1.18 mm and D90 of 3.52 mm (Figure 3.3). The grain size distribution of the 

flume corresponds to a distribution scaled by 1:35 from the Sunwapta River in Alberta, 

Canada (Figure 3.3). The Sunwapta River is a proglacial braided river located in Jasper 

National Park in Alberta, Canada that has a median grain size of 41 mm and an approximate 

slope of 1.5 % (Figure 3.4). Grain size distributions for the Sunwapta River were collected 

in 1999 and 2003 by a research team organized by Dr. Peter Ashmore. To reduce cohesion 

and bedforms (e.g., ripples), the lower limit of the grain size distribution was truncated so 

that grains smaller than 0.18 mm were excluded from the flume grain size distribution. For 

more details on the principles of Froude-scaled physical models, refer to Section 2.7.1 and 

Appendix A.  

 

Figure 3.3 – Grain size distribution of the UWO flume and the Sunwapta River. The 

Sunwapta River grain sizes represent the surface grain size distribution while the 

flume results shown are based on subsurface (below the surface) samples.  
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Figure 3.4 – Image of the Sunwapta River, a proglacial gravel-bed braided river in 

Alberta, Canada that was used to scale the grain size distribution of the UWO flume. 

Arrow indicates flow direction. 

3.2.2 Visual Verification 

While all the experiments performed were not modelled after the Sunwapta River 

specifically, the scaled-down grain size distribution makes it the most appropriate 

prototype for visual verification. Cameras placed on the adjacent hillslopes at the Sunwapta 

River from June-October between 2012 and 2016 provided time-lapse planform photos of 

river morphology every 30 minutes. These time-lapse photos served as a visual verification 

of similarity in channel morphology between a field prototype and the models (Figure 3.5). 

Specifically, photos from the field and flume were compared for similarity in channel form, 

number of anabranch channels (i.e., braiding intensity), and general structure of bars and 

confluences.  
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a) 

 

b) 

 

Figure 3.5 – Visual comparison of the a) prototype gravel-bed river and b) the river 

modelling flume. Arrows indicate flow direction.  
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3.3 Experimental Set-up 

3.3.1 Slope 

The slope of the model could be adjusted between 0 - 2.5 % using four screw jacks situated 

under the upstream end of the flume (Figure 3.2). All experiments for this research were 

completed at 1.5 % with the exception of one experiment, which was completed at 2 %. 

The slope of 1.5 % reflects the average slope of the upper reach of the prototype river, the 

Sunwapta River. Increasing the slope to 2 % extended the range of total stream powers 

modelled, and therefore the channel morphologies that could be investigated. The slope of 

the flume was determined using a Leica TCA 1800 total station using the same general 

procedure used for the target survey (details below). The complete slope survey of the 

model was completed each time the slope was changed and any additional measurements 

of slope were extracted from the digital elevation models (DEMs) generated from the flume 

surface.  

3.3.2 Discharge 

Discharge was estimated from the height of the water overflowing the upstream calibrated 

trapezoidal weir (Figure 3.6). The height of the water was adjusted using a valve situated 

at the sump pump and during experiments was measured from a measuring tape located in 

the head tank to 1 mm precision (Figure 3.2). Calibration of the weir determined the relative 

error on the linear interpolation of the discharge as a function of the water height (H) in the 

head tank and was approximately 4.5 % (additional details in Appendix B). 
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Figure 3.6 – View of the upstream calibrated weir below the head tank of the flume. 

Flow is towards camera. 

3.3.3 Sediment Recirculation 

The flume had an automated sediment recirculation system which brings water and 

sediment from the downstream tail tank and delivers it to an upstream sediment sorter 

positioned over the weir (Figure 3.2 and Figure 3.7). Any sediment deposited in the tail 

tank was used as the sediment input for the next experimental run, maintaining an overall 

sediment balance within the model.  

The sediment sorter separated most of the water from the sediment using an internal mesh, 

so that water was returned to the head tank and sediment ran off the end of the sorter and 

onto the weir (Figure 3.7). To prevent the sediment from resting or building up on the slide, 

a vibrator attached to the sorter shook the unit to encourage the continual movement of 

sediment into the flume. Although water and sediment were mostly separated by the sorter, 

some water flowed onto the sediment slide as well. While this assisted moving sediment 

down the slide, it is also an additional source of water that was not accounted for in the 

weir discharge calibrations. Several tests were done to determine the contribution of water 

from the sediment sorter, which had an average of 0.12 l s-1 (see Appendix C for details). 



52 

 

 

Since this value was well below the error for the discharge measurement, no additional 

adjustments were made to the overall discharge estimates.  

 

Figure 3.7 – Image of the upstream sediment sorter. A water and sediment mixture 

from the sediment pump is propelled through the sediment pipe into the sorter. The 

sorter returned water to the head tank as sediment rolled down a slide onto the weir.

3.4 Experimental Runs 

In total, six experiments were used in the data analysis of this research project (Table 3.1). 

Most of the experiments were divided into four stages: initial evolution, experimental 

round 1, a second evolution phase, and experimental round 2. At the beginning of each 

experiment, the bed of the flume was flattened using a large metal blade that spanned the 

width of the flume. A relatively small, straight, initial channel was carved into the flat bed 

to concentrate the flow over the bed and speed up initial evolution (Figure 3.8). The 

dimensions of the initial channel width increased with discharge from 25 cm (0.7 l s-1) to 
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65 cm at the highest discharge (2.5 l s-1) while initial channel depth varied between 2 and 

3 cm (Table 3.1).  

 

Figure 3.8 – Flattening of the flume bed with a metal blade attached to the movable 

bridge. A small wooden board attached to the blade was used to carve the initial 

straight channel.  

During the evolution stage, the initially straight channel was left to self-form towards a 

dynamically stable morphology, defined by a steady average wetted width and braiding 

intensity. The length of time to reach the final dynamically stable morphology was different 

for each experiment and generally decreased with increasing stream power (Table 3.1). 

The exception was experiment 1, which did not braid, and represented a channel on the 

low end of the morphodynamic spectrum. After 16 hours of little channel change and a 

stable wetted width, the experimental runs for experiment 1 were started. 
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Table 3.1 - Summary of the experimental conditions. The experiment number represents the order in which the 

experiments were completed, the slope refers to the % slope of the flume, the discharge (Q) is the estimated model 

discharge (±4.5 %, l s-1), total stream power (Ω) is the estimated model total stream power (Ω=ρgQS) and the initial width 

and depth refer to the dimensions of the initial straight channel. The evolution time and experimental run time are the 

total hours for the difference stages of the experiment resulting in a final total run time (in hours) for each experiment. 

Experiment Initial  Channel Conditions 
 

Evolution Time 
Experimental 

Run Time 

Total 

Time 

 Slope  Q Ω Width  Depth   Initial  2nd round  Total  

 % l s-1 W m-1 cm cm  h h h h 

1 1.5 0.70 0.10 25 2.0  16 8 17.17 41.17 

4 1.5 1.65 0.24 36 2.5  42 9 17 68 

9 1.5 2.10 0.31 50 2.5  28.25 8 18.25 54.5 

12 1.5 2.50 0.37 65 3.0  20 2 16.5 38.5 

13 2 2.10 0.41 50 2.5  12 0.75 16.5 29.25 

11 1.5 0.7 - 2.1 0.10 - 0.31 50 2.5  24 - 30.25 54.25 

Total         111.75 285.67 
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Following initial evolution to a steady wetted width, 8 hours of experimental runs were 

completed during experimental round 1, divided into 15 or 30 minute intervals. At the end 

of each 15 or 30 minute experimental run, the flow of water to the flume was turned off 

and photos of the dry bed surface were taken for digital photogrammetric processing. In 

addition to photo surveys, the downstream sediment baskets were individually weighed at 

the end of each experimental run. Initially, intervals of 15 minutes were chosen based on 

the estimated rate of morphological change and the capacity of the downstream sediment 

baskets. It is important that the time interval between surveys be long enough to allow for 

detectable morphological change, so the time interval was extended to 30 minutes for 

experiment 1 after several 15 minute runs had barely detectable morphological change or 

bedload transport (Ashmore & Church, 1998; James et al., 2012).  

The third stage of the experiment was a second shorter stage where the channel was left to 

evolve for several hours. This second evolution stage was to allow the channel to rework 

its morphology and to support research being done by Dr. Pauline Leduc on grain size 

mapping for which longer intervals of morphological change (rather than 15 minutes) were 

desirable. The final stage of the constant-discharge experiments was a second 8 hour round 

of experimental runs divided into 15 or 30 minute intervals. In total, each experiment 

included at least 16 hours of experimental runs and a variable number of evolution hours 

(Table 3.1). At the end of each experiment, the flume was ‘reset’ via flattening the bed and 

carving a new initial channel.  

Except for experiment 11 (described in detail below), all other experiments were run at a 

constant channel-forming discharge for all four stages of the experiment (initial evolution, 

round 1, second evolution, round 2) (Table 3.1). Experiments 2, 3, 5, 7, and 10 were 

abandoned during the initial evolution stage because of excessive flooding on the flume 

bed. Flooding was avoided because it could lengthen the time for channel evolution and 

may result in channels forming along the edge of the flume, introducing unnecessary edge 

effects. Experiments 6 and 8, which were completed in full, were not included in the final 

analysis due to poor DEM quality. Therefore, the constant discharge experiments 

completed in full and included in the final analysis were experiments 1, 4, 9, 12, and 13 

(Table 3.1). 
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The experimental conditions for the constant discharge experiments were originally chosen 

to cover a range of estimated total stream powers (𝛺 =  𝜌𝑔𝐷𝑆) (Figure 3.9 and Table 3.1). 

Experiment 9 and 13 were completed for the same discharge, but the increase in slope from 

1.5 to 2 % for experiment 13 increased the stream power to 0.41 W m-1 from the 0.31 W 

m-1 of experiment 9 (Figure 3.9). Experiment 8 was completed at 1.14 l s-1 (0.17 W m-1) 

but was abandoned resulting in the gap between experiments 1 and 4.  

  

Figure 3.9 – Estimated total stream power (Ω) for the constant discharge experiments 

as a function of the model discharge (Q).  

These constant channel-forming discharge models are considered generic models (i.e., they 

are not modelling a specific river prototype). Therefore, while the Froude numbers need 

not be exactly the same between the model and a particular field prototype, the Froude and 

grain Reynolds number help to characterize the flow characteristics of the different 

experiments (Table 3.2). The Froude (Fr) numbers and grain Reynolds (Re*) numbers were 

calculated using the following equations: 

𝐹𝑟 = 𝑈/√𝑔𝑑 3.1 

𝑅𝑒 ∗= 𝑈∗𝐷90/𝜐 3.2 
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where U is the average velocity, 𝑔 is the acceleration due to gravity, d is the average cross-

sectional depth, U* is the shear velocity (𝑈∗ = √𝜏 𝜌⁄ ), D90 is the 90th percentile for grain 

size, and υ is the kinematic viscosity (1.00 x 10-6 m2s-1 at 20°C). The average velocity was 

estimated from Manning’s equation (𝑈 =
1

𝑛
𝑅ℎ2/3𝑆1/2) using an n= 0.03.  

The estimated range of Froude numbers was between 0.52-0.68, which corresponds to 

subcritical flow, and are within the range commonly found in braided Froude-scaled 

models with similar conditions (Ashmore, 1988, 1991a, 1991b; Young & Davies, 1990; 

Peakall et al., 1996). The estimated average grain Reynolds numbers, which are a measure 

of the bed roughness with respect to the thickness of the viscous sublayer, ranged from 

96.45 -167.06 so were much greater than 70 required for rough turbulent flow (Yalin, 1971; 

Peakall et al., 1996; Young & Warburton, 1996) (Table 3.2).  

Table 3.2 - Summary of model hydraulic parameters for the constant-discharge (Q) 

experiments. Average depths (d) were estimated from river cross-sections and 

average velocity (U) was estimated from Manning’s equation using an n=0.03. Fr is 

the Froude number and Re* is the particle Reynolds number.

 Experiment Q d U Fr Re* 

 l s-1 m m s-1   

1 0.7 0.005 0.12 0.52 96.5 

4 1.65 0.006 - 0.008 0.13 - 0.16 0.54 - 0.56 105 - 122 

9 2.1 0.007 - 0.012 0.15 - 0.21 0.56 - 0.60 114 - 149 

12 2.5 0.008 - 0.015 0.16 - 0.24 0.57 - 0.62 122 - 167 

13 2.1 0.008 - 0.010 0.18 - 0.21 0.66 - 0.68 122 - 136 

 

Although the constant-forming discharges are generic models, experiment 11 had varying 

discharge designed to reflect the rising and falling limb of a hypothetical hydrograph. The 

hydrographs modelled were similar to experiments completed by Egozi & Ashmore (2008) 

based on the diurnal hydrograph of the Sunwapta River.  The grain size in the model has 

been scaled down 1:35 with the Sunwapta River therefore, the corresponding discharges in 

the prototype can be estimated using the length scale based on equation 2.11. The result is 
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that discharges used in the model (0.7- 2.1 l s-1) cover a range of discharges from 5.07-

15.22 m3 s-1 in the prototype (Table 3.3). 

Table 3.3 – Discharge (Q) scaling between physical model and field prototype. The 

prototype is the Sunwapta River, Alberta, Canada and the scaling is based on the 1:35 

ratio between the grain size distributions. 

Model Q Prototype Q 

l s-1 m3 s-1 m3 s-1 

0.70 0.0007 5.07 

0.83 0.0008 6.02 

0.93 0.0009 6.74 

1.14 0.0011 8.26 

1.35 0.0014 9.78 

1.65 0.0017 11.96 

1.86 0.0018 13.48 

2.10 0.0021 15.22 

Experiment 11 was started from a flat surface and the same initial conditions as experiment 

9 (1.5 % slope, initial channel dimensions of 50 x 2.5 cm, 2.1 l s-1 discharge) (Table 3.1). 

Experiment 11 then evolved to a stable morphology at constant discharge (2.1 l s-1) 

followed by three successive experimental hydrographs, herein referred to as hydrographs 

A, B, and C (Figure 3.10 and Table 3.4). The slope was held constant for the length of the 

experiment, therefore differences in total stream power are due to changes in discharge 

alone. In total, 117 experimental runs were completed across all three hydrographs. The 

peak discharge of 2.1 l s-1 used for all three hydrographs was chosen as the approximate 

average peak discharge in the Sunwapta River based on the 1:35 scaling of the grain size. 

Therefore, while these hydrographs were not designed to replicate a specific event 

hydrograph in the Sunwapta, they do cover the average range of discharges found in the 

prototype river.  
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Figure 3.10 – Experimental design of the hydrograph experiment (experiment 11) 

after initial evolution, where Q is discharge and each hydrograph is represented by 

the letter A, B, or C.  

Table 3.4 - Summary of the experimental conditions of the three hydrographs (A, B, 

and C) completed for experiment 11. Number of runs refers to the total number of 

experimental runs completed for each hydrograph, time is the total length of time to 

complete each hydrograph, minimum Q and maximum Q refer to the minimum and 

maximum discharges, and different Q refers to the total number of different 

discharges used in each hydrograph.

 Hydrograph 
Number of 

Runs 
Time 

Minimum 

Q 

Maximum 

Q 

Different 

Q 

  (h) l s-1 l s-1  

A 29 7.25 0.70 2.10 4 

B 44 12 0.70 2.10 6 

C 44 11 0.83 2.10 6 

The discharges chosen for hydrograph A are the same as the ones used in the constant 

discharge experiments described above (Table 3.5). Each step of the hydrograph was run 

for 1 hour, divided into 15 minute intervals.  
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During the rising limb of hydrograph B, the runs for 0.7 l s-1 were completed over 30 

minutes (Figure 3.10). This change, like that done for experiment 1, was an adjustment 

made to allow for greater morphological change between intervals. New discharges (0.93 

and 1.86 l s-1) were added to this hydrograph to better define the trends in morphology and 

bedload transport rates as a function of changing discharge (Table 3.5).  

New discharges (0.83 and 1.35 l s-1) were also used in hydrograph C to fill some of the 

discharge gaps from the previous 2 hydrographs. To save on time, 0.7 l s-1 was not used 

for this hydrograph so the lowest discharge used was 0.83 l s-1 (Table 3.4). Overall, the 

number of runs completed for each discharge was variable, with only three discharges 

being used in every hydrograph (Table 3.5). 

Table 3.5 - Summary of the discharges used during the three hydrograph 

experiments. The discharge (Q) refers to the model discharge used, the number of 

runs refers to the total number of experimental runs completed at each discharge, 

while the hydrograph states in which hydrographs each discharge was used.  

Model Number of Runs Hydrograph 

Q (l  s-1)   

0.70 16 A, B 

0.83 8 C 

0.93 4 B 

1.14 24 A, B, C 

1.35 8 C 

1.65 21 A, B, C 

1.86 20 B, C 

2.10 16 A, B, C 

Total 117  

Figure 3.11 shows how the model discharges and total stream powers used for the 

hydrographs compared to those of the constant discharge experiments. The hydrograph 

experiments covered a range of total stream power from 0.10 – 0.30 W m-1, corresponding 

with the stream power of experiments 1, 4, and 9 (Figure 3.11).  
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Figure 3.11 – Total stream power (Ω) for all experiments as a function of discharge 

(Q). 

3.5 Data Collection 

During each 15 or 30-minute experimental run, photos from two stationary cameras were 

taken of the model surface at regular intervals as an ongoing record of morphological 

change. At the end of each experimental time interval, the flow was turned off, the 

downstream sediment baskets were weighed and emptied, and the surface of the model was 

drained. Once drained, high-resolution images of the dry bed surface were taken using two 

additional cameras for later DEM generation. Once the dry bed photo surveys were 

completed, the flow was turned back on for the next experimental run. Details of targets 

locations as well as camera locations and settings are outlined below. 

3.5.1 Coded Targets 

The high-resolution topography of the flume surface required for this research was 

collected using digital photogrammetry. Coded survey ground control targets were 

required for image stitching as well as to generate a coordinate system and scale during 

DEM generation (Agisoft, 2016). The coded targets used were printed from Agisoft 

PhotoScan (version 1.0.0.1, herein called Agisoft), which was also used for DEM 
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generation. Each ~ 7 x 7 cm printed target was attached to one of the inside walls of the 

flume via industrial Velcro (Figure 3.12). A total of 18 targets were used (9 on each side 

of the flume) so that there were multiple targets in every image taken (Figure 3.13).  

 

Figure 3.12 – Example of a coded target  in the flume used for digital photogrammetry 

georeferencing. 

Targets locations for georeferencing were determined using a total station and the angle 

intersection method, which is used to determine a point location from two or more stations 

with known locations (Chandler, 1999). The general survey method was adopted from 

previous experiments (see Gardner, 2009), where two station locations (Survey Station 1 

and Survey Station 2 in Figure 3.13) were used for each survey. The locations of three 

external control points on the laboratory walls (1B, 3L and 3LB in Figure 3.13) determined 

at the beginning and end of each survey were used to ensure precision (<0.002”) of 

coordinates and survey orientation. Once each coded target was surveyed twice from each 

of the two survey station locations, the average horizontal and vertical angles were 

converted into a 3D (xyz) position using trigonometry and exported as a text file for use in 

Agisoft’s automatic target detection process (see Appendix D for additional details on 

surveying methods).  
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Figure 3.13 – Locations of the coded targets, control points, and survey stations from 

a plan view of the flume.
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3.5.2 Camera Settings and Locations 

During each run, two Olympus C5060 cameras located in fixed positions 3 m above the 

flume were used to provide a continuous record of braidplain evolution (Figure 3.2). These 

images were used in the measurement of braiding intensity and wetted width. Each 

Olympus camera had a wide-angled lens that covered the full width of the flume and a 

length of 5.4 m, allowing for a total coverage of 10 m with ~ 0.5 m overlap between the 

two images (Figure 3.14). These cameras captured photos simultaneously every 2.5 

minutes (150 s) during experimental runs using the software program Camera Controller. 

The settings for the Olympus cameras were slightly different but these differences were 

corrected in post-processing using Adobe Photoshop by converting the images to 

greyscale. Adobe Photoshop was used for lens correction, cropping, and final image 

stitching (Figure 3.14).  

 

Figure 3.14 – Olympus image lens and colour correction for the upstream (top left) 

and downstream (top right) cameras. The purple section outlined in the bottom image 

shows the 0.5 m overlap between the two images. Arrow indicates flow direction.

At the end of each experimental run, high-resolution images of the flume surface were 

taken with two Canon T5i cameras with a standard 20 mm lens. The Canon cameras were 

stationed on a movable trolley situated 2.9 m above the flume bed (Figure 3.2 and Figure 
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3.15). The cameras were positioned in a convergent geometry on either side of the trolley 

so that there was ~80 % overlap between photos over the center area of the model where 

morphological change was expected to be greatest. The convergent positions of the 

cameras were determined through extensive testing of possible arrangements. It was found 

that slightly oblique photos from multiple angles provided better precision for the 

Structure-from-Motion (SfM) photogrammetry methods used than vertical images from a 

single camera. In addition, strictly vertical images can cause a doming effect during 

processing due to incorrect determination of the camera parameters (Smith et al., 2016). 

Therefore, convergent imagery was preferred. During each photo survey, a photo was taken 

from each camera every 30-50 cm. In total, it took an average of 100 photos (50 photos 

from each camera) to cover the entire length of the flume. Both Canon cameras were 

connected to a single computer on the floor and the software program DigiCamControl was 

used to trigger both cameras simultaneously. A 24 mm lens was used during experiment 9 

while repairs were being made to the 20 mm lenses. While there was no difference in the 

average DEM quality between the two lenses, the 20 mm offered greater image overlap 

and therefore was used for the remaining experiments (i.e., experiments 11, 12 and 13). 

Additional camera details are in Appendix E.  
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Figure 3.15 – Camera locations on the moveable trolley approximately 3 m above the 

flume surface. The trolley had two additional camera attachment heads as well as 

adjustable spotlights at each corner.  

For the dry bed photos taken at the end of each run, the flume was left to drain until there 

was no obvious standing water in the deepest scour holes (Figure 3.16). This was done 

because water distorts the surface and therefore does not provide an accurate topography 

of the channel bed during DEM processing (Smith et al., 2016). The time it took to drain 

the flume was highly variable (~20-90 minutes) and was strongly dependent on the depth 

of scour holes. Two dry bed photo surveys were taken of each dry surface before moving 

on to the next experimental run. 
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Figure 3.16 – Example of a dry flume surface  from experiment 11. Image taken from 

the downstream end facing upstream. 

In addition to the dry bed photo survey, a shortened photo survey was taken of the 

downstream half of the flume surface during the last minute of each experimental run (i.e., 

the wet bed photo survey) (Figure 3.17). Photos were only taken in the last minute to ensure 

minimal morphological change between the wet bed photo survey and the subsequent dry 

bed photo survey. These photos were used in the quantification of the wetted width and 

braiding intensity. Photos were only taken for the downstream half of the flume because 

that is approximately how much area could be covered quickly in 1 minute using the 

available camera setup.  
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Figure 3.17 – Demonstration of a wet photo survey being completed at the end of an 

experimental run. Arrow indicates flow direction.  

During all photo surveys, only the spotlights attached to the camera trolley are turned on 

to minimize shadows and create an evenly lit surface where the photos were being taken 

(Figure 3.15 and Figure 3.17). In addition, turning off the ceiling lights during the wet bed 

photo survey helped to minimize reflection off the flowing water surface. 

3.5.3 Sediment Baskets  

The five sediment baskets located at the downstream end of the flume were weighed at the 

end of each experimental run using a load cell, which provided a digital readout of mass in 

kilograms (Figure 3.18). Testing the load cell with calibration weights established that 

there was a minor 0.5 % underestimation error.  
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The wet sediment weight determined from the downstream baskets was converted to an 

equivalent dry weight. To determine the conversion, a pre-measured mass of dry sediment 

was placed into a downstream sediment basket hooked up to the load cell, wetted, and then 

the mass was recorded every minute for 10 minutes. In addition to providing a sediment 

conversion factor, this test quantified the effect of changing sediment moisture content over 

time. Results showed that the moisture content of the wet sediment was greatest during the 

first minute after being wetted and then remained constant so that the wet sediment weight 

averaged 1.22 times the dry sediment weight. It is assumed that since the baskets were 

generally weighed within the first 10 minutes after the completion of a run but after the 

baskets had drained, the differences in mass due to moisture content would be minimal. 

For additional details on moisture content tests and sediment mass conversions, see 

Appendix F.  

 

Figure 3.18 – Image of the five sediment baskets located in the downstream tail tank. 
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3.6 Data Processing and DEM Generation 

3.6.1 Image Processing 

The software package Agisoft PhotoScan 1.0.0.1 was used for photogrammetric processing 

to convert both the dry and wet bed photo surveys into high-resolution digital elevation 

models (DEMs). This method of DEM generation was chosen because it produced similar 

high-resolution results to previous photogrammetry applications (±1 mm) but Agisoft’s 

built-in target detection made it faster and more flexible to use (Gardner and Ashmore, 

2011; Kasprak et al., 2014).  

There are four stages used by Agisoft to create a DEM and orthophoto from each photo 

survey: 1) camera alignment 2) dense point cloud creation 3) mesh creation and finally 4) 

orthophoto generation and adding texture to the mesh (Figure 3.19). During camera 

alignment, the program searches for common points on the photos (e.g., detects coded 

targets) and matches them while simultaneously estimating camera positons. The result is 

a sparse point cloud, but more importantly, it automatically refines the camera self-

calibration parameters. With the matched photos and camera positions, Agisoft creates a 

dense point cloud next which is used in stage 3 to create a 3D polygonal mesh of the model 

surface (Figure 3.19).  
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Figure 3.19 – Agisoft PhotoScan processing screen shot. Individual images from the 

photo survey appear at the bottom of the screen, the blue area above the 3D model 

surface represents the automatically detected camera locations, and the small flags 

on the middle image are the locations of coded targets that were automatically 

detected. 

Each photo survey of the full flume took approximately 5 hours of processing time to 

generate a high-resolution DEM in Agisoft. Therefore, several weeks of continuous 

processing was needed for each experiment just to produce the raw DEMs of the 

experimental runs. To ensure that the data were processed continually, Dr. Pauline Leduc 

wrote a simple Python script that allowed for batch processing of the photo surveys. The 

input for the script was the images from the photo surveys, code target locations, and initial 

camera calibration parameters. While this process was time consuming, the automation 

made it possible to continuously process photos and generate >1000 high-resolution DEMs 

across all experiments. The output of the batch processing script was an orthophoto and a 

DEM of the flume surface with 1.5 mm pixels, which is similar to the D50 of the model at 

1.18 mm. The script additionally exported a report on the Agisoft project, indicating the 

number of photos used, the image overlap, and the estimated error on target detection. Once 

exported, the orthophoto provided a record of braiding evolution as well as an opportunity 
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to visually inspect photo processing. The DEMs, which were used to quantify the areas and 

volumes of morphological change, underwent additional processing as outlined below.

3.6.2 DEM Correction  

To correct systematic errors in the DEMs, the following steps were completed: 

1. Removal of high frequency noise 

2. Initial vertical correction using the downstream metal bar as a datum 

3. Decision between DEM1 and DEM2 based on mean error 

4. Fine vertical adjustments 

5. Fine lateral adjustments (required for experiments 1, 4 and 9 only) 

6. Slope detrending 

With the exception of the manually defined final mask in step 3, each step of this process 

was automated using a script developed by Dr. Pauline Leduc in the open-source general 

analysis and software visualization program Scilab. Details of each step are described 

below.  

The initial raw DEMs generated in Agisoft had the dimensions 13332 x 2346 cells with a 

cell size of 1.5 mm (19.99 x 3.52 m). High frequency noise was removed using a running 

averaged filter on height (z) with a step of 10 cells and the following equation: 

𝑧
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑(𝑥)= 

𝑧𝑥+𝑧𝑥−1+⋯+𝑧𝑥−(𝑠−1)

𝑠

 
(3.1) 

All values above 2 m and below -100 m were removed as obvious error points. There is a 

metal bar at the downstream end of the flume where the water flows into the metal sediment 

baskets. This bar was used as a preliminary vertical correction so that all DEMs were 

adjusted to have the same height at that metal bar. Unfortunately, some DEMs (especially 

the wet surface DEMs) are missing this bar, so the correction is not consistent and an 

additional convolution smoothing matrix was applied later. Brasington et al. (2003) used a 

similar smoothing matrix to normalize local variability based on a filter created through 

trial and error.  
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Following these initial corrections, a decision was made about which of the two DEMs, 

one from each of the dry photo surveys of each experimental run, to use in subsequent 

analysis. The quality of the DEMs was inconsistent, and the choice was made based on the 

distribution of error in a DEM of difference (DoD) created with the two DEMs (DEM1 or 

DEM2) of the same surface: 

𝐷𝑜𝐷(𝑡) = 𝐷𝐸𝑀2(𝑡) − 𝐷𝐸𝑀1(𝑡) (3.2) 

Since the DEMs were taken of the same surface, only minutes apart, any differences in 

elevation values are expected to be small. When the mean error of the DoD is less than 0.5 

mm, the DEMs were deemed very similar and DEM1 was used for further analysis. If the 

error is greater than 0.5 mm, additional DoDs were created to determine which of the 

DEMs, DEM1 or DEM2, was more appropriate for use. Under these circumstances two 

additional DoDs were created using a DEM from the closest experimental run where the 

DEM decision had already been made (called DEMD ) so that: 

𝐷𝑜𝑑1 = 𝐷𝐸𝑀𝐷 − 𝐷𝐸𝑀1 (3.3) 

𝐷𝑜𝑑2 = 𝐷𝐸𝑀𝐷 − 𝐷𝐸𝑀2 (3.4) 

Again, the mean error value was evaluated and the DEM with the lowest error value was 

picked for further analysis. This decision-making process reduced the number of DEMs 

used in the final analysis to one DEM for each run, rather than two (Table 3.6). Only DEMs 

created during experiment runs (i.e., not the evolution stages) are included in Table 3.6.  

Table 3.6 - Final DEM count for each experiment. Numbers are based on 

experimental runs only.  

Experiment Number of DEMs 

1 39 

4 69 

9 72 

12 67 

13 67 

11 118 

Total 430 
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After the initial decision making process, many of the DEMs required additional 

adjustment and correction including vertical or lateral shifting. These issues could be due 

to the cameras shifting during the photo surveys, blurry images, or insufficient target 

detection. Each experiment had unique challenges and therefore each experiment was 

corrected as a batch.  

To make fine vertical adjustments in the individual DEMs a final binary mask (Mf) was 

made for each experiment. To create the mask, the final DEM for each experiment was 

used so that areas defined as non-moving (e.g., areas near the edges of the flume) were 

manually classified as 1 while all other areas of the flume where morphological change 

occurred were classified as 0 (Figure 3.20). Then, an individual mask (Mind) was created 

for each DEM automatically using the same classification system as the final mask (1= 

non-moving areas; 0= changing areas). Finally, a reference mask (Mref) was created when 

the final mask was applied to the very first DEM (t=0) within each experiment.  

 

Figure 3.20 – Example binary mask used to define non-moving areas with a 1, and 

moving areas with a 0. The result is the lower image where all of the active areas are 

removed. H refers to elevation. 

The mean values of the final mask, Mf, were intersected (∩) with each DEM within a given 

experiment and the resulting value was compared to the values of the reference mask (Mref). 



75 

 

 

As seen in Figure 3.21, an adjustment coefficient (α) was applied to reduce any difference 

between the values so that: 

∝ (𝑡) = 𝐷𝐸𝑀(𝑡) ∩ 𝑀𝑓 − 𝑀𝑟𝑒𝑓 (3.5) 

𝐷𝐸𝑀(𝑡)𝑐𝑜𝑟𝑟𝑒𝑐𝑒𝑑 = 𝐷𝐸𝑀(𝑡)−∝ (𝑡) (3.6) 

Experiment 1, 4, and 9 had a lateral shift that required additional adjustments, which 

follow the same general procedure just described for the vertical correction.  

 

Figure 3.21 – Example of the vertical DEM correction using the reference mask. 

Finally, to remove the slope of the flume from the DEMs, a correction matrix was created 

using the flume slope (S in %, where S = σ1.5 % except for experiment 13 where S = 2 

%) and the cell size (0.0015 m) for every row (i) of the DEM (Figure 3.22). 

𝐷(𝑖) =  
𝑆𝑑(𝑛 − 𝑖)

100
 (3.7) 
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Figure 3.22 – DEM detrending using a correction matrix based on the model slope 

where the top image is a DEM before the flume slope is removed and the bottom is 

the detrended DEM. 

3.6.3 DEM Error and Level of Detection 

The uncertainty in each individual DEM can be represented by δz so that the uncertainty 

in the surface representation of a DEM can be described as: 

𝑍𝐴𝑐𝑡𝑢𝑎𝑙 = 𝑍𝐷𝐸𝑀 ± 𝛿𝑧 (3.8) 

Where Zactual is the true elevation value, and the ZDEM is the elevation value given in the 

DEM (Wheaton et al., 2009). This equation assumes that error in the horizontal 

components is negligible and independent of the vertical error (Wheaton et al., 2009).  

For this research, the final mask created from the last DEM in an experiment was used to 

determine the standard deviation of the non-moving areas across all corrected-detrended 

DEMs (Table 3.7). This method assumes that any differences and therefore uncertainty 

found in non-moving flat areas will be similar to the uncertainty found in areas of change. 

The standard deviations of error (SDE) for each experiment were then used to define the 

threshold level of detection when creating DoDs and serve as an estimate of the vertical 

accuracy within the different experiments (James et al., 2012). The values in Table 3.7 are 

similar in magnitude to those found in other studies. Using similar digital photogrammetric 
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techniques for DEM extraction in a physical model of a drainage basin, Brasington & Smart 

(2003) reported standard deviation of errors of 1.2 mm.  

Table 3.7 - Vertical error estimates for each experiment based on 1 standard deviation 

(σ) in the distribution of  the elevations for the non-moving areas. 

Experiment σ (mm) 

1 2.4 

4 1.3 

9 1.66 

12 0.96 

13 0.79 

11 1.15 

The standard deviations of error decreased with each sequential experiment (Table 3.7). In 

general, this is due to improved experimental procedures and photo quality over time. For 

example, out of focus photos were the main cause of the poor-quality DEMs in experiment 

6 and 8, which resulted in those two experiments being excluded from data analysis. With 

the somewhat uniform appearance of the flume surface, this blurriness was not obvious 

while taking the photo surveys. In later experiments, small line drawings were added to flat 

areas of the flume surface at the upstream end as a check for focus. In addition, it was found 

that Agisoft performs better with a greater number of targets detected. In later experiments, 

targets that were being systematically omitted from detection were repositioned and 

resurveyed to increase overall target detection. Experiment 9 used 24 mm lenses rather 

than the 20 mm lenses used in all other experiments. This change and the reduction in 

surface overlap between photos might account for the relatively high error value Table 3.7 

associated with that experiment. 

3.6.4 DEMs of Difference 

Once DEMs of each run were corrected, the aim was to quantify topographic change 

through DEM differencing, where successive DEMs are subtracted to reveal changes in 
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elevation (Figure 3.23). Two different methods were used to create DEMs of Difference 

(DoDs) and both methods were done using Scilab scripts written by Dr. Pauline Leduc. 

 

Figure 3.23 – Generation of a DEM of Difference using two consecutive DEMs. In this 

example, DEM2 (time=1200 min) was subtracted from DEM1 (time = 1400 min) to 

create a DEM of Difference where areas of erosion are red and areas of deposition 

are blue.  

The first approach was the simple subtraction of two successive DEMs (DEMt1 and 

DEMt2), where all values less than the absolute threshold value (<|Th|) were removed: 

𝐷𝑜𝐷 = 𝐷𝐸𝑀𝑡2 − 𝐷𝐸𝑀𝑡1 (3.9) 

For this simple threshold method the absolute threshold value was based on the one 

standard deviation (σ) of the vertical error for each experiment (Table 3.8) (Rumsby et al., 

2008). Further analysis found that these levels of detection still produced ‘noisy’ results in 

terms of areas and volumes of erosion and deposition. While geomorphic change detection 
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analysis will always have error associated with it, the quality of the final analysis will 

depend on the ratio between the signal (i.e., the changes in elevation) and the noise (i.e., 

the error) (James et al., 2012). To reduce the noise and increase the confidence in the 

elevation signals, thresholds of 2σ and 3σ of the error estimate were also applied to the 

DoDs (Table 3.8 and Figure 3.24). These additional thresholds serve to provide more 

confident, although conservative, estimate of areas and volumes of change. For these 

results, it is assumed that the error fits a normal distribution. These thresholds were applied 

directly to the DoDs so that any absolute z values below the threshold were removed from 

analysis. This method is referred to as the “simple method”. 

Table 3.8 - Absolute threshold values for 1, 2 and 3 standard deviations (σ) of the 

vertical error estimates used in the simple threshold method. 

Experiment 1σ 2σ 3σ 

 mm mm mm 

1 2.4 4.8 7.2 

4 1.3 2.6 3.9 

9 1.66 3.32 4.98 

12 0.96 1.92 2.88 

13 0.79 1.58 2.37 

11 1.15 2.3 3.45 

For the second threshold approach, a dilation filter was used which considers the status 

(e.g., change or no-change) of surrounding cells. This method was used to help reduce 

noise and increase continuity between areas of change. First, a DoD was created from two 

successive DEMs but no thresholds were applied. From this DoD, a binary mask was made 

using the absolute 3σ threshold so that ‘1’ represented all values above the threshold and 

‘0’ were all values below the threshold. On this mask, a dilation filter was applied so that 

any ‘0’ cells neighbouring ‘1s’ within the filter were converted to ‘1s.’ While different 

sizes and shapes of filters were created, the final filter was a circle with a 15-cell radius 

corresponding to a radius of ~3.3 cm, which is the size of a small channel in the flume. The 

result was a second mask, where the ‘1’ areas had been extended into neighbouring cells. 

This secondary mask was applied to the original raw DoD (i.e., the DoD without a 
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threshold), and a lower detection threshold of 1 mm was applied only to remaining areas 

(i.e., cells with a value of 1) to get the final DoD. This method will be referred to as the 

“dilation method” (Figure 3.24). 
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Figure 3.24 – Comparison of threshold methods used for change detection. The top image shows the entire flume with an 

overlay of a DEM of difference from experiment 13. The bottom images show the different threshold methods as applied 

to the area in the black box of the full flume image. σ refers to standard deviation where the first three threshold images 

represent the simple threshold method at 1, 2, and 3 standard deviations of the vertical error estimate. The final threshold 

image is based on the dilation method. 

σ σ σ 
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3.6.5 Sensitivity and Error Analysis 

Figure 3.25 shows the active areas (i.e., areas of topographic change) for each of the 

threshold methods. As expected, the active area decreased with every increase in the simple 

threshold value. The dilation method lays between the thresholds of 1 and 2 standard 

deviations (Figure 3.25). Also, the thresholds for 2σ, 3σ, and the dilation method seem to 

follow a very similar pattern, but the lowest threshold (1σ) had a much more exaggerated 

and variable result (Figure 3.25). This sensitivity analysis, which was completed for each 

experiment, supports the use of two thresholds for further analysis. The simple 2σ threshold 

was chosen because it substantially reduced the amount of noise found at 1σ but was less 

conservative than 3σ, which had the potential to exclude significant areas of change. The 

dilation method was also used in the final analysis as a comparison between the two 

threshold methods (i.e., simple and dilation). Using only two thresholds rather than all four 

has the advantage of decreasing the amount of data analysis and script processing time. 

Therefore, analysis in subsequent chapters uses results from the simple method using the 

simple 2σ threshold and the dilation method.  

 

Figure 3.25 – Sensitivity analysis of the total active areas measured from a DoD based 

on the four different threshold methods. Results shown are from experiment 13. 
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Once the error for the individual DEMs has been determined, the error propagated into the 

DoD can be described as: 

𝛿𝑈𝐷𝑜𝐷 = √(𝛿𝑍𝑛𝑒𝑤)2 + (𝛿𝑍𝑜𝑙𝑑)2 (3.10) 

Where δU is the propagated error in the DoD, and δZnew and δZold represent the individual 

errors in the new DEM and old DEM respectively (Wheaton et al., 2009). Based on this 

equation, each experiment would have a propagated DoD error based on the standard DEM 

error (Table 3.9). The uncertainty values for the DoDs are of the same order of magnitude 

as the D50 of the bed sediment in the model (1.18 mm).  

Table 3.9 - Estimated DoD error (δUDoD) based on the propagation of the standard 

deviation (σ) of the error in the experimental DEMs. 

Experiment DEM σ δUDoD 

 mm mm 

1 2.4 3.39 

4 1.3 1.84 

9 1.66 2.35 

12 0.96 1.36 

13 0.79 1.12 

11 1.15 1.63 

 

3.6.6 Visual Inspection 

In addition to the methods of analysis already described, each of the DEMs and DoDs were 

visually inspected. With knowledge of the expected terrain, as well as photos from the 

Olympus cameras, it was possible to note inconsistencies and distortions between the 

photos and the surface representation (Rumsby et al., 2008). As a result, several DoDs were 

deemed to be of poor quality and removed from the final analysis. For example, one DoD 

from experiment 1 was found to have very large areas of erosion and deposition on the 

sides of the flume in areas that are known to be flat. For this reason, this DoD was removed 

from all additional analyses. A similar visual inspection resulted in 13 DoDs being 

removed from the final analysis (Table 3.10).  
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Table 3.10 - Final number of DEMs of Difference  (DoD) used for each experiment. 

Experiment Removed Final DoD Count 

1 1 37 

4 3 65 

9 3 68 

12 2 64 

13 0 66 

11 4 113 

Total 13 413 

3.7 Measurements 

3.7.1 Active Areas and Volumes of Erosion and Deposition 

The final DoDs were cropped to 14 m from the downstream end of the flume to reduce 

inlet effects from the upstream weir (Figure 3.26). The study area was also cropped to 

exclude the sides of the flume so that the flume edges and targets would not be included in 

the final calculations of active areas and volumes of change.  

a) 

 

b) 

Figure 3.26 – The 14m downstream study area where image a) shows an overlay of 

the flume surface with a DEM of Difference from experiment 13, and b) shows the 

same DoD cropped to the 14 m downstream study area. 
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After the simple and dilation thresholds had been applied and the data had been cropped to 

the appropriate study area, an automated Scilab script was used to extract the active area. 

The total active area, defined as all areas of the flume that had topographic (i.e., 

morphological) change were quantified in the DoDs as the sum of all erosion and 

deposition cells multiplied by the cell size (0.0015 x 0.0015 m). The reach-averaged 

morphological active width (AW) was estimated for each experimental run by dividing the 

total active area (m2) by the reach (i.e., 14 m) length (m): 

𝐴𝑐𝑡𝑖𝑣𝑒 𝑤𝑖𝑑𝑡ℎ =
𝐴𝑐𝑡𝑖𝑣𝑒 𝑎𝑟𝑒𝑎 

𝑅𝑒𝑎𝑐ℎ 𝑙𝑒𝑛𝑔𝑡ℎ 
 (3.11) 

By multiplying the elevations (sum of z values) in the active areas of deposition and active 

areas of erosion by the cell size (0.0015 x 0.0015 m) it was possible to calculate a volume 

of deposition (Vd) and erosion (Ve). The summed volumes of erosion represent all of the 

sediment moving from storage (i.e., eroding banks or bars) while the summed volumes of 

deposition represent additions to sediment storage (i.e., aggradation of bars) (Wheaton et 

al., 2013). The total volume (m3) of morphological change, also known as the bulk change, 

was then calculated for each experimental run (Wheaton et al., 2013): 

𝐵𝑢𝑙𝑘 𝐶ℎ𝑎𝑛𝑔𝑒 = ∑ 𝑉𝑑 + ∑ 𝑉𝑒 (3.12) 

The active depth, a reach-averaged measure of the depth of change, was estimated by 

dividing the total bulk change by the total active area for each experimental run: 

𝐴𝑐𝑡𝑖𝑣𝑒 𝑑𝑒𝑝𝑡ℎ =
𝐵𝑢𝑙𝑘 𝑐ℎ𝑎𝑛𝑔𝑒 

𝑇𝑜𝑡𝑎𝑙 𝑎𝑐𝑡𝑖𝑣𝑒 𝑎𝑟𝑒𝑎
 (3.13) 

Since the thresholds removed all values below the absolute threshold, any change in 

elevation (z) greater than 0 represented depositional areas and values less than 0 

represented erosional areas. In this way, the active areas and bulk change, as well as the 

active width and depth, could be calculated in terms of their separate erosional and 

depositional components for additional analysis. 
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3.7.2 Sediment Budgeting  

The volumetric net change in storage (𝛿𝑆) was determined from each DoD by summing all 

of the volumes of erosion and subtracting them from the summed volumes of deposition 

(Rumsby et al., 2008; Wheaton et al., 2013): 

𝛿𝑆 = ∑ 𝑉𝑑 − ∑ 𝑉𝑒 (3.14) 

Integrating the net change in storage over a given time (∆t) expresses a sediment budget 

based on the conservation of mass: 

𝑄𝑜 = 𝑄𝑖 − 𝛾𝑠𝛿𝑆/𝛥𝑡 (3.15) 

where Qo is the mass transport output from the reach, Qi is the mass transport into the reach, 

γs is the sediment bulk density, δS is the volumetric net change in sediment storage and Δt 

is the time interval (Hoey & Sutherland, 1991; Martin & Church, 1995; Brasington & 

Smart, 2003; Brasington et al., 2003; Surian & Cisotto, 2007). In many cases it is 

impossible to know both the input and output into the reach which introduces uncertainties 

into the analysis (Lindsay & Ashmore, 2002; Brasington & Smart, 2003). In this research, 

the sediment output was known and measured from the downstream sediment baskets. 

With volumes of erosion and deposition, the time interval, and a known Qo from the 

downstream baskets, it was possible to create sediment budgets for each experimental run 

using equation 3.15 to investigate spatial and temporal patterns of sediment transport 

(Brasington & Smart, 2003). 

3.7.3 Wetted Width  

The minimum, maximum, and average wetted width for each experiment was determined 

using a combination of wet bed orthophotos and the Olympus photos taken during the 

experimental runs. Like the dry bed photo surveys, the wet bed photo surveys were 

processed in Agisoft which resulted in a DEM and an orthophoto of the surface covering 

between 6-10 m of the flume surface (Figure 3.27).  
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Figure 3.27 – Example of a wet bed orthophoto created from a wet bed photo survey. 

This orthophoto was taken from experiment 11 and the arrow indicates flow 

direction.  

Following the procedure described in Egozi and Ashmore (2008, 2009), the total wetted 

area and exposed bars were manually outlined in each orthophoto using ArcGIS (Figure 

3.28). From here, the total wetted width was calculated by dividing the total wetted area 

(i.e., channel area and inundated area) by the reach length. In Figure 3.28, channel areas 

were defined by locations where water appeared to be flowing (i.e., ripples on the surface 

of the water), while inundated areas were areas darkened by water without obvious flowing 

water. This additional digitizing and classification was helpful for determining the braiding 

intensity from the orthophotos.  

Given the large number of experimental runs, only a small subset of orthophotos were 

digitized for each experiment. For experiment 1, only 4 orthophotos were digitized. For 

experiments 4, 9, 12, and 13 one orthophoto was digitized every two hours of experimental 

time, evenly spaced out through the experiment. Therefore, a total of 8 orthophotos were 

digitized for those experiments for a total of 36 digitized images across all the constant 

discharge experiments. For experiment 11, one orthophoto was digitized at the end of each 

discharge step for all three hydrographs for a total of 28 digitized images. 
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Figure 3.28 – Example of digitized orthophoto for measuring wetted width and 

braiding intensity. The black vertical lines represent the 1 m cross-section used for 

channel counts. Arrow indicates flow direction. 

3.7.4  Braiding Intensity 

The definitions of braiding intensity follow those provided by Egozi and Ashmore (2009) 

so that the total braiding intensity (BI) was the average number of wetted channels and the 

active braiding intensity (ABI) was the number of channels actively conveying sediment. 

Like the estimates of wetted width, measures of braiding intensity were based on the wet 

flume orthophotos complemented with images from the overhead Olympus cameras. 

Estimates of braiding intensity were completed using the channel count method at 1m 

cross-sections in ArcMap 10.4 and then averaged for the reach (Figure 3.28). 

Average active braiding intensity (ABI) was determined using the DoDs from the 

experimental runs. In many cases a single channel may have multiple active areas, therefore 

a simple overlay of the dilation DoDs on the digitized orthophotos was used to distinguish 

channel boundaries (Figure 3.29). The active channel count was completed at the same 

cross-sections as braiding intensity and then averaged for the reach.  
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Figure 3.29 – Overlay of a DoD and digitized orthophoto for the estimation of active 

braiding intensity. Black vertical lines delineate the 1m cross-sections used for the 

channel count method. Arrow indicates flow direction.

3.7.5 Particle Size 

Sediment samples from the sediment baskets were collected at irregular intervals for 

experiments 1- 9. For experiment 11, samples were collected for each experimental run 

while sampling from the baskets was done for every 4th experimental run during 

experiments 12 and 13 (Table 3.11). 

Table 3.11 - Total number of sediment samples collected from the downstream 

sediment baskets. 

Experiment Samples 

1 3 

4 4 

9 6 

12 15 

13 16 

11 117 

Total 161 

Deposition 

Erosion 
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The procedure used for determining the particle size distribution was a combination of 

simple dry sieving and composite sieving. Simple dry sieving is appropriate with clean 

samples that have negligible amounts of silt and clay particles (Head, 2006). Composite 

sieving is a means of reducing the size of a sample so that the resulting sample is more 

manageable when sieving (Head, 2006). Samples were sieved at intervals of 0.5 phi from 

-2.5 to 2 phi (5.6- 0.25 mm) corresponding with a coarse mesh 5.6 mm to a fine mesh of 

0.25 mm (Additional details on sieving in Appendix G). Sediment samples were analyzed 

using the open-source grain-size distribution software program GRADISTAT (Blott, 

2000). 

3.7.6 Bulk Density 

Estimates of the volumetric transport rate, which can be obtained from the volumes of 

erosion and deposition integrated over time, were converted into a mass transport rate by 

multiplying by an estimated bulk density (Goff & Ashmore, 1994). This is necessary for 

the direct comparison of the morphological method for estimating sediment transport and 

the observed sediment transport determined from the downstream sediment baskets. The 

results of 30 samples provided an average dry bulk density of 1.79 g ml-1. Additional details 

of bulk density measurements can be found in Appendix H. 

3.8 Summary  

In total, six flume experiments at constant and varying discharge were completed between 

April 6, 2015 and January 4, 2016. Prior to this, the weir was calibrated and 

photogrammetric methods were refined and tested, resulting in one year of experimental 

work. The UWO flume provided the ideal location for the investigation of the research 

objectives by allowing for several experimental conditions, with unique discharge and 

slope combinations, to be tested. The use of digital photogrammetry and the software 

program Agisoft provided high-resolution (±1 mm) orthophotos and DEMs of the dry and 

wet flume surface. The orthophotos were used extensively for digitization to determine 

wetted width, braiding intensity and active braiding intensity. The DEMs were used to 

generate DEMs of Difference (DoDs) which allowed for the quantification of active areas 

and volumes of change. From here it was possible to investigate the role of the active width 
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and depth in gravel-bed braided rivers as well as produce morphological reach-averaged 

sediment budgets. The downstream sediment baskets allowed for the calculation of bedload 

transport rate, which served to develop sediment transport budgets and to investigate the 

relationships between changes in morphology, bedload transport, and bed mobility 

simultaneously. Overall, these methods helped collect one of the largest flume datasets on 

gravel-bed braided rivers to date with over a 1000 DEMs, 20 000 Olympus photos, 200 

sieved sediment samples and ~500 direct measurements of bedload transport rate spanning 

a range of discharge, total stream power, and braiding morphologies. 
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Chapter 4 

4 The Variability in the Morphological Active Width 

4.1 Introduction 

4.1.1 Chapter Introduction and Objectives 

Braided rivers exhibit a complex multi-thread morphology with spatially and temporally 

variable bedload transport rates. Consequently, it has been difficult to measure and predict 

mean bedload fluxes in braided rivers due to challenges in collecting field data and 

producing reliable numerical models. Currently, our knowledge of braided river 

morphodynamics is incomplete, particularly with respect to the fundamental relationships 

between variable bedload transport and the dynamic morphological changes in these 

systems.  

The focus of this chapter is to investigate the relationships between channel morphology 

and bedload transport in gravel-bed braided rivers by building on research related to the 

morphological active width. For example, while the active width is highly variable, both 

spatially and temporally, it is expected to increase with stream power, wetted width, and 

braiding intensity. Bertoldi et al. (2009a) and Ashmore, Bertoldi, & Gardner (2011) found 

that there may be a strong linear relationship between active width as a proportion of the 

wetted width and dimensionless stream power (ω*): 

𝜔∗ =
𝑄𝑆

𝑏√𝑔∆𝐷50
3

 
(4.1) 

where Q is discharge, S is slope, D50 is mean grain size, ∆ is relative submerged density, b 

is the average wetted width and 𝑔 is the acceleration due to gravity. This relationship could 

have meaningful practical implications as dimensionless stream power can be calculated 

with relatively little information on the channel geometry, unlike most bedload transport 

functions based on channel hydraulic calculations (Ashmore et al., 2011). In combination 

with simple relationships with the wetted width and braiding intensity, which are relatively 

easy to measure from aerial photos, it may be possible to characterize general relationships 
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between channel morphology, bedload transport and reach-averaged hydraulic parameters 

with minimal data. 

The current knowledge of the active width and its role in driving bedload transport and 

braiding morphodynamics is based on limited field data and simplified numerical models. 

Similarly, while research has already found that braided rivers generally accommodate 

changes in discharge by adjusting their width, with smaller changes in depth, the 

importance of the active depth in braided rivers morphodynamics is unknown (Ashmore et 

al., 2011). To investigate these relationships further, reliable measurements of bedload 

transport flux and channel morphology are required over a range of discharge and stream 

power (Bertoldi et al., 2009a). Specifically, the predicted relationships between active 

width, wetted width, active braiding intensity, and stream power need to be investigated in 

a systematic way across a range of channel morphology, discharge, and stream power. By 

completing experiments at a constant channel-forming discharge as well as over a series of 

hydrographs, this research makes it possible to investigate the differences in these 

relationships in terms of ‘downstream’ and ‘at-a-station’ channel geometry. Therefore, one 

of the goals of this research, and the focus of this chapter, is to characterize these 

relationships to improve our understanding of the morphodynamics of braided rivers by 

addressing the following research objectives: 

1. Quantify the morphological active width in a physical model over a range of gravel-

bed river morphology. 

2. Characterize the relationship between the active width and wetted width, braiding 

indices, and dimensionless stream power over a range of flow conditions.  

3. Characterize the relationship between the active width and bedload transport flux 

under channel forming conditions and variable discharge conditions.  

 From these objectives it is possible to address the following specific questions about the 

nature of the active width and morphodynamics of braided river systems: 

1. How does the morphological active width vary over a range of constant channel-

forming discharges and over a series of event hydrographs? 
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2. Does the morphological active width increase linearly with dimensionless stream 

power and active braiding intensity under constant and variable discharge 

conditions? 

3. Does the morphological active width have relationship with bedload transport rate? 

4. Does the active depth have a relationship with channel morphology and bedload 

transport? 

This research will build on work done by previous researchers outlining the possible 

importance of the morphological active width. In addition, reliable estimates of bedload 

flux in a braided rivers will have benefits for applied engineering, geomorphology and 

ecology. Furthermore, a greater understanding of the relationships between bedload 

transport and channel morphology in these complex river systems will inform future 

numerical models (Bertoldi et al., 2009a).  

4.1.2 Chapter Structure 

The results presented here are split into two main sections. The first section presents the 

results for experiments completed at a constant channel-forming discharge (Section 4.2), 

while the second section is based on the results from the hydrograph experiment (Section 

4.3). In both cases, the section begins with a summary of the experimental conditions in 

terms of the braiding evolution, the wetted width, braiding indices and the general 

outcomes of the DEM and DoD processing (Sections 4.2.1 and 4.3.1). For details on the 

methods used for each result, refer to Chapter 3.  

Next, each main section presents the average and range of experimental results in terms of 

bedload transport rates and measurements of morphological change including active width, 

active depth as well as volumes of erosion and deposition (Sections 4.2.2 and 4.3.2). Both 

sections end with an analysis of correlations and trends found across all the experimental 

runs. (Sections 4.2.3 and 4.3.3) Section 4 highlights the linkages between channel 

morphology, bedload transport and channel hydraulics by directly addressing the research 

questions in terms of the other research previously presented. The chapter concludes with 

an overall summary of the findings as well as the expected research significance and 

contributions (Section 4.4). 
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4.2 Constant Discharge Experiments 

4.2.1 Experimental Conditions 

4.2.1.1  Braiding Evolution 

Each experiment started from an initially straight channel and was left to self-form at the 

imposed channel forming discharge until a stable morphology (i.e., consistent average 

wetted width) was achieved (Figure 4.1). Apart from experiment 9, which had an increase 

in wetted width during the second round of experimental runs, the rest of the experiments 

had a consistent average wetted width throughout the experiment (Figure 4.1).  

 

Figure 4.1 – Measured wetted widths for each constant discharge experiment as a 

function of time. Differences in time are a result of differences in initial evolution time.  

During the evolution stage of all experiments, the initially straight channel eroded its banks 

and generated a series of regularly spaced alternate bars (Figure 4.2). While the final 

morphologies for each experiment were different, they all followed a similar evolutionary 

path from the initially straight channel to fixed alternating bars at regular intervals and then 

finally towards the development of channel bifurcations, confluences, and medial bars. The 

only exception to this evolutionary path was experiment 1 which maintained a single 

threaded channel throughout the length of the experiment.  
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Figure 4.2 – Spontaneous evolution of a braided morphology in the physical model 

over time. The orthophotos were generated during the 42 hour initial evolution stage 

of experiment 4.  

Figure 4.3 presents the final morphologies at the end of each evolution stage, before the 

experimental runs were started. After 16 hours of evolution, experiment 1 maintained a 

single threaded morphology with submerged alternate bars so that the wetted width was 

approximately the same as the channel width (Figure 4.3a). Experiment 4 evolved over 42 

hours, which showed remnants of multiple channel switches and flooding (Figure 4.3b). 

Experiment 9 had a much greater wetted width than both experiment 1 and 4 and was the 
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first experiment to laterally develop to the flume edge (Figure 4.3c). Experiments 12 and 

13 represented braided river morphologies at the higher end of the morphodynamic 

spectrum reworking most of the braidplain during the evolution stage of the experiment 

(Figure 4.3d and e).  

After the extended period of initial evolution, each of the experimental channels continued 

to self-form into a variety of final morphologies after two rounds of experimental runs 

(Figure 4.4). Even after all 41 hours of run time, the morphology of experiment 1 

maintained a stable single-threaded pattern, dominated by submerged alternating bars and 

little morphological change (Figure 4.4a). Experiment 4 was characterized by one primary 

channel and multiple smaller secondary channels divided by the classic braided river 

medial bars (Figure 4.4b). Experiment 9 was also dominated by a single primary channel 

which unfortunately ran along the flume edge for most of the study area (Figure 4.4c). Like 

experiment 4, experiment 9 had several smaller secondary channels that had acted as 

primary channels during earlier experimental runs. By the end of experiment 12, most of 

the flume surface had been reworked, especially in the downstream study area. It had 

multiple active primary channels and experiment 12 was the first experiment to laterally 

develop to both walls of the flume (Figure 4.4d). Finally, experiment 13, with the highest 

stream power, reworked all the flume surface with the exception of small areas near the 

upstream weir and minor areas on the sides of the flume (Figure 4.4e). In this experiment, 

there was extensive braiding and large changes in channel morphology with each 15-

minute experimental run.  
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

Figure 4.3 – Orthophotos of each experimental surface at the end evolution. Time 

refers to the total hours of initial evolution, Q is the imposed channel-forming 

discharge, and Ω is the total stream power for each experiment. Flow is from the left. 
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

Figure 4.4 – Orthophotos of final channel morphology. Time refers to the total 

experimental time, Q is the discharge and Ω is the total stream power for each 

experiment. Flow is from the left.
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4.2.1.2  Wetted Width and Braiding Intensity 

Figure 4.5 shows the range in the wetted width across all 5 constant discharge experiments. 

As expected, experiment 1 has both the lowest and least variable wetted width since the 

channel was restricted to a single straight channel. Above this lower threshold of change, 

the wetted width increases positively with discharge. Interestingly, while experiment 13 

had a greater stream power than experiment 12 (0.412 and 0.368 W m-1, respectively), it 

had a lower mean wetted width. Therefore, it seems that wetted width may be more 

responsive to differences in discharge than in total stream power.  

 

Figure 4.5 – Wetted width measurements for the constant discharge experiments, 

where Q is discharge. The upper and lower bounds of each box plot represent the 1st 

and 3rd quartile while the horizontal line dissecting the plot represents the median. 

The ‘whiskers’ extend 1.5 times the interquartile (IQ) range (e.g., 1.5(IQ3-IQ1)) from 

the first and third quartile. The values above the box plots refer to the experiment 

number and the dotted vertical line divides the 1.5 % from the 2 % slope experiments.  

The temporal changes in wetted width are shown in Figure 4.1, which help explain the 

large variability in the wetted width of experiment 9. Unlike the other experiments which 

had consistent wetted width values across the entire length of the experiment, experiment 

9 had a large increase in the wetted width during the second round of experimental runs. 
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This drastic change was the result of the downstream end of the flume becoming heavily 

inundated during the second round of experimental runs (Figure 4.6) 

a) 

  

b) 

 

 
 

Figure 4.6 – Digitized orthophotos of experiment 9 illustrating the expansion of the 

wetted width between a) experimental round 1 taken 28.5 hours into the experiment 

and b) experimental round 2 taken 46.75 hours into the experiment. 

Plotting the temporal changes in braiding intensity (BI) indicates that all the experiments 

except for experiment 9 had a stable BI over time (Figure 4.7). This reflects that, in general, 

as wetted width increases so does BI and therefore these trends mimic those in Figure 4.1 

and those found in previous studies (Egozi & Ashmore, 2009).  
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Figure 4.7 – Braiding intensity as a function of time for all constant discharge 

experiments. Different time spans for each experiment reflect differences in initial 

evolution time.  

A comparison of means suggests that braiding intensity (BI) and active braiding intensity 

(ABI) tended to increase with discharge and total stream power (Figure 4.8).  
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a) 

 

b) 

 

Figure 4.8 – a) Braiding intensity and b) active braiding intensity for constant 

discharge experiments as a function of total stream power (Ω). Values above the box 

plots refer to the experiment number.
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Plotting ABI as a function of BI, there is an overall positive trend amongst the multi-thread 

braided rivers (Figure 4.9). As discharge and stream power increase, a greater proportion 

of the wetted channels are becoming active. Unlike the other experiments, experiment 1 

had a single threaded morphology, resulting in a BI of 1 and a slightly variable ABI, 

ranging from 0.1- 0.8 (Figure 4.9).  

 

Figure 4.9 – Active braiding intensity as a function of braiding intensity. Results from 

the single thread experiment (i.e., experiment 1) are outlined by a box, while results 

from the multi-thread braided experiments (i.e., experiments 4, 9, 12 and 13) are 

outlined by an oval.  

Figure 4.10 shows a plot of BI and ABI against wetted width for the multi-thread braided 

experiments. While both BI and ABI have a positive relationship with wetted width, a least-

squares trendline of BI has a much higher R2 value of 0.601 compared to the ABI with an 

R2 of 0.286 (Figure 4.10). In some cases, the ABI is below 1 due to the nature of the 

measurement. The ABI represents the average number of times an active area was present 

at an observation cross-section in each DEM of difference. The active areas themselves are 

patchy, especially at low discharge, so the average for a given reach could be less than one 

due to discontinuous active areas along the reach and between cross-sections.   
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Figure 4.10 – Braiding intensity and active braiding intensity as a function of wetted 

width for the multi-thread constant discharge experiments (4, 9, 12 and 13). Dashed 

lines represent the best fit trendlines.

The ratio of ABI to BI varies between 0.14 and 1.05 and increases with increasing stream 

power (Figure 4.11). Experiment 13 with the highest stream power always has ABI/BI 

ratios above 0.6, compared to experiment 4 and 9 which range between 0.2 and 0.6 (Figure 

4.11).  
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Figure 4.11 – Ratio of active braiding intensity (ABI) and braiding intensity (BI) as a 

function of total stream power (Ω) for the multi-thread constant discharge 

experiments. The dashed line represents the best fit trendline and the solid gray lines 

represent the 95 % prediction interval.  

4.2.1.3  DEM and DoD Generation  

Digital elevation models (DEMs) created from each dry surface of the flume were used to 

create DEMs of Difference (DoDs) from which the active areas, and therefore the active 

width and depth, could be derived.  

Examples of DEMs for the final channel morphology of each experiment can be seen in 

Figure 4.12. Compared to the orthophotos in Figure 4.4, the DEMs make it much easier to 

see the final morphology of experiment 4 in the DEM because flooding on the sides evident 

in the Olympus photos is eliminated when taking DEMs of the dry flume surface. Based 

on a preliminary visual inspection the DEMs highlight that experiment 13 left very little 

flume surface untouched, apart from minor areas near the upstream weir and several small 

areas by the flume edges (Figure 4.12). Therefore, while it was possible to increase the 

total stream power in the flume via changes in slope, this would have likely resulted in 

more extreme, and undesirable, edge effects. The experiments used in this research 
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represent the practical extremes between low stream power (experiment 1, 0.10 Wm-1) and 

high stream power (experiment 13, 0.41 W m-1) available in the physical model used.  

Exp. 1 

Q: 0.7 l s-1 

Ω: 0.10 W m-1 

 

Exp. 4 

Q:1.65 l s-1 

Ω: 0.24 W m-1 

Exp. 9 

Q: 2.1 l s-1 

Ω: 0.31 W m-1 

Exp. 12 

Q: 2.5 l s-1 

Ω: 0.37 W m-1 

Exp. 13 

Q: 2.1 l s-1 

Ω: 0.41 W m-1 

 

Figure 4.12 – DEMs of the final channel morphology for each of the constant 

discharge experiments. Q is the model discharge and Ω is the approximate total 

stream power.  

Examples of DoDs from the end of each experiment are presented in Figure 4.13. The 

active area, defined as the number of coloured (i.e., red or blue) cells increases with 

increasing discharge and stream power.  
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Based on a preliminary visual inspection, experiment 1 had very little topographic change, 

even over 30 minutes of experimental run time (Figure 4.13). In experiment 1, erosion and 

deposition are restricted to a single main channel, with erosion on the outer banks of the 

channel and deposition on regularly spaced alternate bars. There also seem to be strong 

linkages between areas of erosion and areas of downstream deposition. Specifically, areas 

of erosion are followed closely (i.e., the next bar head) by areas of deposition. Experiment 

4 and 9 show increased complexity compared to experiment 1, with some areas clearly 

showing at least two main active channels (Figure 4.13). In both DoDs, there are areas with 

erosion and deposition occurring side-by-side. Finally, experiments 12 and 13 show high 

levels of channel complexity, even after only l5 minutes of flow. In these DoDs, there are 

multiple active channels, adjacent areas of erosion and deposition, and overall greater 

depths of erosion and deposition compared to previous experiments (Figure 4.13). This 

selection of DoDs seems to support the trends found with ABI. Experiment 1 remains an 

outlier of sorts, with its unique single-thread morphology. Experiments 4 and 9, while they 

differ in active area, have similar ABI mainly restricted to one channel, with some cross-

sections having a greater ABI of 2. Experiment 12 and 13, the most complex channels, 

have large active area and a greater number of active anabranches than the other constant-

discharge experiments (Figure 4.13). Experiment 13, in particular, activates large areas of 

the flume, spanning almost the entire width of the model in some locations.  

Looking at all the DoDs collectively it is possible to see how, as discharge and stream 

power increase, the areas of morphological change expand and become more continuous, 

both laterally and downstream. At low discharges, the areas of change are patchy and areas 

of erosion are separate from areas of deposition. At high discharges, it is possible to outline 

the entire form of the primary channels as well as multiple smaller channels solely based 

on the active areas represented in the DoDs. The areas of erosion and deposition, while still 

discrete, occur side-by-side within the channel and have a complex longitudinal pattern 

(Figure 4.13).  
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 Exp. 1 

Q: 0.7 l s-1 

Ω: 0.10 W m-1 

 

Exp. 4 

Q:1.65 l s-1 

Ω: 0.24 W m-1 

Exp. 9 

Q: 2.1 l s-1 

Ω: 0.31 W m-1 

 Exp. 12 

Q: 2.5 l s-1 

Ω: 0.37 W m-1 

Exp. 13 

Q: 2.1 l s-1 

Ω: 0.41 W m-1 

 

Figure 4.13 – Example DEMs of difference from each constant discharge experiment, 

where Q is the model discharge and Ω is the total stream power. Results shown are 

derived from the dilation threshold method.  

4.2.2 Experimental Results  

The next section presents the main results of the constant discharge experiments with 

respect to the bedload transport rates, active areas, and the volumes of erosion and 

deposition. Additional analysis follows in section 4.2.3.  
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4.2.2.1  Bedload Transport 

Temporal variation in the bedload transport rate for each experiment is shown in Figure 

4.14. While there is an increase in transport rate with stream power, there is also a lot of 

overlap in the ranges of bedload rates, particularly between experiments 12 and 13, despite 

their differences in total stream power (0.37 and 0.41 W m-1, respectively).  

A visual inspection indicated a greater variability in transport rate in the first round of 

experimental runs than the second in experiment 1. A two-sample t-test (α= 0.05) between 

the bedload transport rates of round 1 ( 𝑥̅ = 0.79 g s-1, σ = 0.31 g s-1) revealed that it was 

significantly different from the bedload transport rates in round 2 (𝑥̅ = 0.59 g s-1, σ = 0.13 

g s-1); t (35) = 2.44, p = 0.02. This could be due to the natural variability in sediment 

transport rate and the development of alternate bars. At this low discharge, once the 

alternate bars were developed, which began during evolution but continued through the 

experimental runs, the amount of unimpeded sediment transfer may have decreased.  

Based on the results of experiment 1, an exploratory two-tailed Student’s t-test was 

conducted on the bedload transport rates of the remaining experiments, comparing round 

1 and round 2 of the experimental runs. Experiment 4 round 1 (𝑥 ̅= 3.45 g s-1, σ = 1.94 g s-

1) and round 2 (𝑥 ̅= 2.31 g s-1, σ = 1.23 g s-1) were also found to be significantly different 

from each other; t (64) 2.87, p = 0.006. In addition to experiment 1 and 4, experiment 9 

was also found to have a significant difference between the bedload transport rates in round 

1 (𝑥 ̅= 5.85 g s-1, σ = 3.86 g s-1) and round 2 (𝑥̅ = 3.06 g s-1, σ = 1.71 g s-1); t (71) = 4.12, p 

= 0.0001. In both experiment 4 and 9, the average bedload transport rates were much 

greater in the first round of runs then in the second. This highlights how the extended 

secondary evolution stage produced different channel morphologies, even at a constant 

discharge and relatively stable braiding intensities. Therefore, two rounds of experiment 

runs was helpful for capturing a large range of possible bedload transport rates for the 

constant discharge experiments. Based on a two-tailed Student’s t-test, experiments 12 and 

13 did not have significant differences in the bedload transport rates between rounds 1 and 

2.  
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Figure 4.14 – Time series of bedload transport rate (Qb) during the two rounds of 

experimental runs for the constant discharge experiments. Differences in total 

experiment time reflect differences in the duration of the second round of evolution.  

Figure 4.15 shows the mean and ranges of values for the measured bedload transport rates 

across all the constant discharge experiments. Experiment 1 has both the lowest mean (n = 

37, 𝑥̅ = 0.71 g s-1, σ = 0.26 g s-1) and the lowest range of values. From there, increasing 

stream power results in an increase in the mean bedload transport rate as well as the relative 

variability. The average bedload transport rate for experiment 4 was 2.87 g s-1 (n = 66, σ = 

1.70 g s-1), while experiment 9 had an average of 4.32 g s-1 (n = 72, σ = 3.21 g s-1). 

Experiments 12 and 13 had the highest averages with bedload transport rates of 10.28 g s-

1 (n = 64, σ = 5.06 g s-1) and 13.30 g s-1 (n = 66, σ = 5.09 g s-1) respectively (Figure 4.15).  
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 Figure 4.15 – Bedload transport rates (Qb) as a function of total stream power (Ω) 

for each of the constant discharge experiments.  

4.2.2.2  Active Width and Active Depth 

The reach-averaged morphological active width, which could be divided into separate 

erosional and depositional components, was derived from DoDs. This is accomplished by 

first determining the active area (total, erosional, or depositional) and dividing by the reach 

(study area) length of 14 m (Figure 4.16).  
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Figure 4.16 – DEM of Difference highlighting the total active area erosional area, and 

depositional area within the flume study area as an overlay on an orthophoto of the 

river model.  

Given the complex nature of braided rivers with the tendency for variable bedload transport 

and dynamic morphology, it was expected that the active width would be variable, even at 

a constant discharge. The results revealed that while the average active width had an overall 

positive relationship with stream power it was highly variable at any given discharge 

(Figure 4.17a and b). Figure 4.17b highlights the differences between the two threshold 

methods in terms of change detection. Under all experimental conditions, except 

experiment 1, the dilation method produces a significantly greater active width than the 

simple 2σ threshold based on a two-tailed Student’s t-test (α= 0.05) (See full results in 

Appendix I, Table I.1). This is expected because dilation incorporates a greater area of 

change than the more conservative simple threshold (See Section 3.6.5 for more details on 

threshold methods).  
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a) 

 

b) 

 

Figure 4.17 – Active width for the constant discharge experiments as a function of a) 

time (represented by experimental run) and b) total stream power (Ω) for all constant 

discharge experiments. 4.17a shows the average active width for each experimental 

run using the simple threshold method. In 4.17b each experiment has two box plots, 

the left plot represents the results of the simple 2σ threshold method and the right 

plot represents the results of the dilation method.  
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Focusing on the mean active width for each stream power, there is a strong positive power 

relationship based on least-squares regression using both the simple and dilation threshold 

methods (Figure 4.18). The methods were not significantly different based on a two-tailed 

Student’s t-test on active width (t (8) =-0.432, p= 0.677).  

  

Figure 4.18 – Mean active width as a function of total stream power (Ω) for the 

constant discharge experiments based on both threshold methods. The dashed lines 

represent the best fit trendlines and the outer solid lines represent the 95 % prediction 

interval for the observations. 

Splitting the active width into its erosional and depositional components, a two-tailed 

Student’s t-test showed no significant difference between the width measurements in 

experiments 1, 4, and 9 (α = 0.05) (Figure 4.19). In experiment 12, the depositional active 

widths (𝑥̅ = 0.24 m, σ = 0.04 m) were significantly different from the erosional active 

widths (𝑥̅ = 0.20 m, σ =0.03 m) using the simple 2σ threshold; t (126) = -6.0, p = <0.0001. 

Experiment 13 also had a significant difference between the depositional active widths (𝑥̅ = 

0.32 m, σ = 0.04 m) and the erosional active widths (𝑥̅ = 0.28 m, σ = 0.03 m) using the 

simple 2σ threshold (t (130) =-7.31, p = < 0.0001).  
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Figure 4.19 – Erosional and depositional active widths as a function of total stream 

power (Ω) for the simple 2σ threshold.  

From the DoDs it is possible to extract not only the active areas, but also the volumes of 

erosion and deposition. These volumes will be discussed in the next chapter in more detail, 

but by dividing volumes by their corresponding active area (e.g., total volume of 

change/total active area) it is possible to calculate reach-averaged active depths, 

representing the average change in bed elevation in the reach. The graph of temporal 

changes in the average active depth indicates that the reach-averaged active depth is not 

very sensitive to changes in stream power because there is a lot of overlap in the range of 

active depths between the multi-threaded experiments (e.g., experiment 4, 9, 12, and 13) 

(Figure 4.20a). Looking at the box plots of active depth in Figure 4.20b, the mean active 

depths tend to increase under the first three experimental conditions (experiment 1, 4, and 

9) before declining under the higher stream power conditions of experiment 12 and 13. 

This could be the result of more complex morphologies at high stream power, resulting in 

smaller primary channels and more extensive bar networks. Within each experiment, the 

active depth was always smaller under the dilation method than the simple threshold 

method although the differences were not statistically significant for any of the experiments 

based on a two-tailed Student’s t-test (See full results in Appendix I, Table I.2). The slightly 

smaller active depths using the dilation method reflects the fact that the total volumes of 
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change, which are similar under both thresholds, were divided by greater areas of change 

under the dilation method.  

a) 

 

b) 

 

Figure 4.20 – Reach-averaged active depths for the constant discharge experiments 

as a function of a) time (represented by experimental run) and b) total stream power 

(Ω). 4.20a shows the results for the simple threshold method while 4.20b shows the 

results of the simple (left) and dilation (right) thresholds for each experiment.  
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When split into its erosional and depositional components there is much more overlap 

between the reach averaged active depths among experiments than there was for the active 

widths (Figure 4.21). Across all experiments, the active depths are greater for erosion than 

for deposition, which is the opposite of the trend found for the active widths (Figure 4.19 

and Figure 4.21). This may reflect the relatively small elevation changes associated with 

accretion on bars compared to relatively large elevation changes associated with bed scour 

and bank erosion.  

 

Figure 4.21 – Erosional and depositional active depths as a function of total stream 

power (Ω) for constant discharge experiments. Results shown were derived using the 

simple 2σ threshold method.  

Bedload transport rates and the morphological active width were both found to be sensitive 

to changes in stream power (Figure 4.15 and Figure 4.18) The active depth, on the other 

hand, was not sensitive to changes in stream power as indicated by Figure 4.20 and Figure 

4.21. These results indicate that bedload transport rate will likely be more strongly 

correlated with active width than active depth. This relationship is investigated in more 

detail below in section 4.2.3.  
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4.2.2.3  Volumes of Erosion and Deposition 

From the DoDs it was possible to extract bulk change (total volumes of change) by 

multiplying the elevation (z) value of each cell by the cell size (0.0015 x 0.0015 m). Figure 

4.22 demonstrates that the bulk change tends to increase with stream power, and as 

expected there is a temporal variability like that found with bedload transport rates.  

 

Figure 4.22 – Temporal variability in bulk change for all of the constant discharge 

experiments. Results shown were derived using the simple 2σ threshold method and 

time is represented as experimental runs.  

The volumes of erosion and deposition both increase with stream power so that experiment 

1 has the lowest volumes and experiment 13 has the highest (Figure 4.23). Although the 

differences were not significant based on a two-tailed Student’s t-test (α = 0.05), erosion 

volumes were greater than depositional volumes in all experiments, except experiment 1 

where the average volumes of erosion and deposition are the same (0.0003 m3) (See full 

results in Appendix I, Table I.3). Given that these results reflect the trends of the active 

depth, but not the active width, it seems that erosional areas are defined by greater active 

depths than depositional areas, while depositional areas are defined by greater active 

widths. Similar results were reported by Brasington et al. (2003) and Rumsby et al. (2008) 

who found that areas of erosion were generally localized but deeper than the more dispersed 
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and shallow areas of deposition. The trends found in Figure 4.22 and Figure 4.23 are 

presented for the simple 2σ threshold, which mimic the results of the dilation method.  

 

Figure 4.23 – Volumes of erosion and deposition as a function of total stream power 

(Ω). Results shown were derived using the simple 2σ threshold method. 

4.2.3 Analysis of Constant Discharge Experiments 

Following the work of Bertoldi et al. (2009a), the dimensionless bedload flux (qb*) was 

plotted against dimensionless stream power (w*) for the 32 multi-threaded experimental 

runs for which wetted width was measured (Figure 4.24) (See methods in Section 3.7.3). 

Dimensionless stream power was calculated using equation 4.1, and the dimensionless 

bedload flux is calculated using the following equation: 

𝑞𝑏∗ =
𝑄𝑠

𝛾𝑏√𝑔∆𝐷50
3

 
(4.2) 

where Qs is bedload flux in kgs-1, γ is the water specific weight, b is the average wetted 

width, 𝑔 is the acceleration due to gravity, ∆ is relative submerged density, and D50 is mean 

grain size. By making the variables dimensionless, it is possible to compare results across 
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a range of datasets. The variability in bedload flux, even at a constant discharge, resulted 

in a relatively low linear R2 value of 0.351 (α= 0.05, p-value = 0.000) (Figure 4.24). 

 

Figure 4.24 – Dimensionless bedload flux (qb*) plotted against dimensionless stream 

power (w*) for the multi-threaded experiments (i.e., experiments 4, 9, 12, and 13). 

The dashed lines represent the 95 % confidence interval around the mean of the 

regression line, and the outer solid lines represent the 95 % prediction interval for 

the observations.  

Plotting the ratio of active width and wetted width against dimensionless stream power 

follows additional analysis by Bertoldi et al. (2009a) (Figure 4.25). Experiment 1, a single-

thread channel, behaves very differently from the rest of the experiments, which all had a 

braided multi-thread morphology. For this reason, experiment 1 was removed from the 

analysis and a linear regression was completed (Figure 4.26). This linear regression model 

for the multi-threaded experiments produced an R2 of 0.507 (n = 32, α= 0.05, p-value = 

<0.0001) (Figure 4.26). 
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Figure 4.25 – Ratio of active width and wetted width plotted against dimensionless 

stream power (w*). Experiment 1, which had a single-thread morphology, is outlined 

by a dashed box and the multi-threaded experiments are outlined by the solid box.  

 

Figure 4.26 – Ratio of active width and wetted width as a function of dimensionless 

stream power for the braided experiments (i.e., experiments 4, 9, 12, and 13). Results 

are for the simple 2σ threshold  where the dashed lines represent the 95% confidence 

interval around the mean of the regression line, and the outer solid lines represent the 

95% prediction interval for the observations. 
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Plotting the ratio of the active width and wetted width against the active braiding intensity 

(ABI) for all the experiments there is a statistically significant positive relationship with a 

linear R2 value of 0.745 (n= 32, α= 0.05, p-value = <0.0001)  (Figure 4.27).  

 

Figure 4.27 – Ratio of active width and wetted width as a function of active braiding 

intensity (ABI). Results are for the simple 2σ threshold and multi-threaded 

experiments (i.e., experiments 4, 9, 12, and 13). The dashed lines represent the 95% 

confidence interval around the mean of the regression line, and the outer solid lines 

represent the 95% prediction interval for the observations. 

Looking at the linear regression of all the observations for the multi-thread experiments 

only, the active width and bulk change had an R2 of 0.964 (n= 262, α = 0.05, p-value = 

<0.0001) (Figure 4.28a). This strong relationship suggests that even though there is a large 

amount of scatter in the active width for a given discharge, the active width could have 

predictive value in terms of the total volumes of erosion and deposition. Looking at the 

same relationship in terms of the active depth, there is no correlation with bulk change 

(R2=0.001) (Figure 4.28b).  
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a) 

 

b) 

 

Figure 4.28 – Bulk change as a function of a) active width and b) active depth. Results 

are for the simple 2σ threshold and multi-threaded experiments (i.e., experiments 4, 

9, 12, and 13). The dashed lines represent the 95% confidence interval around the 

mean of the regression line, and the outer solid lines represent the 95% prediction 

interval for the observations. 
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provide stronger positive relationships, although still much weaker than those found for 

the active width (Figure 4.29).  

 
Figure 4.29 – Bulk change as a function of active depth for individual constant 

discharge experiments. Results are shown for the simple 2σ threshold method.  

Active width and bedload transport rate had an overall positive relationship with an R2 

value of 0.515 (n= 259, α= 0.05, p-value = <0.0001) (Figure 4.30a). While there is an 

overall positive relationship between active width and bedload transport rate, there is 

considerable scatter for each stream power, highlighting the overall variability of gravel-

bed river morphodynamics. Plotting the dimensionless versions of active width and 

bedload transport rate results in a slightly weaker R2 of 0.420 (n= 32, α= 0.05, p-value = 

0.0001) (Figure 4.30b). This weaker relationship is likely the result of less data 

observations since the wetted width was only calculated for a subset of experimental runs 

(See Section 3.7.3 for details).  
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a) 

 

b) 

 

Figure 4.30 – Bedload transport rate (Qb) as a function of active width where a) 

bedload transport rate as measured from the downstream sediment baskets is plotted 

as a function of active width and b) dimensionless bedload transport rate (qb*) is 

plotted as a function of the ratio of active width to wetted width. Results are shown 

for the simple 2σ threshold and the multi-thread experiments (experiments 4, 9, 12, 

and 13). The dashed lines represent the 95% confidence interval around the mean of 

the regression line, and the outer solid lines represent the 95% prediction interval for 

the observations. 
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4.3 Hydrograph Experiment  

4.3.1 Experimental Conditions 

4.3.1.1  Braiding Evolution 

The braided channel used in the hydrograph experiment, experiment 11, evolved from a 

straight channel at 2.1 l s-1. Once the stable equilibrium morphology was reached, 

hydrographs A, B, and C were run sequentially without any intervening constant-flow. The 

hydrograph experiments were completed to see how the bedload transport rate, active 

width, active depth, and bulk change would respond to the varying discharge and stream 

power of the model event hydrographs of a braided channel. Since slope was held constant 

at 1.5 %, differences in stream power are due to differences in discharge alone. Each 

hydrograph began with a low discharge, either 0.7 or 0.83 l s-1 and then discharge was 

progressively increased to a maximum of 2.1 l s-1. As expected, when discharge was 

increased, the total area of the wetted channel increased (Figure 4.31).  
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Figure 4.31 – Orthophotos from the rising limb of hydrograph A showing changes in 

wetted width with increasing discharge.  
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4.3.1.2  Wetted Width and Braiding Intensity 

The wetted width in experiment 11 increased with increasing discharge, although there was 

variability for a given discharge (Figure 4.32). Note that each discharge has a different 

number of observations based on the number of times that discharge was used in the 

hydrographs.  

a) 

 

b) 

 

Figure 4.32 – Measured wetted width for the hydrograph experiment as a function of 

a) time and b) discharge (Q).  
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Plots of braiding intensity and active braiding intensity show that both indices increase 

with discharge (Figure 4.33). This is especially true for active braiding intensity, which not 

only increases with increasing discharge, but is reduced to zero under some low discharge 

conditions (Figure 4.34). This highlights the fact that at low discharges, detectable 

elevation change is reduced to zero or near zero.  

 

Figure 4.33 – Temporal variability in braiding and active braiding intensities (BI and 

ABI, respectively) across the three experimental hydrographs, where Q is discharge.  

The braiding intensity was found to be highly variable for a given discharge in the 

hydrograph experiments (Figure 4.34). In general, the BI was greatest at high discharges 

and lowest at the low discharges, although there were differences between the three 

hydrographs. The trend of increasing BI with stream power (or in this case, discharge) is 

much less clear than it was for the constant discharges experiments. The ABI, however, 

does have a positive relationship with discharge (Figure 4.34). The exception is the 

experiment at 0.93 l s-1, but as mentioned, this could be due to the relatively limited amount 

of data available at that discharge. 
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a) 

 

b) 

 

Figure 4.34 – a) Braiding intensity and b) active braiding intensity for the hydrograph 

experiment as a function of discharge (Q). Black crosses represent the mean for each 

discharge. 

A plot of the active braiding intensity (ABI) as a function of the total braiding intensity 

(BI) is in Figure 4.35. There is an increase in ABI with discharge but there is substantial 

scatter in the BI for any given discharge. For example, there is a cluster of observations for 

1.65 l s-1 with a BI of ~1.7 and another cluster with a BI > 3.5. This would reflect changes 

in morphology and channel switching as the hydrographs progressed. Only discharges 
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greater than 1.35 l s-1 achieved an ABI greater than one and all observations for discharges 

greater than 1.65 l s-1 have ABI’s between 1-1.8 (Figure 4.35).  

 

Figure 4.35 – Active braiding intensity plotted against braiding intensity for the 

different discharges used in the hydrograph experiment.  

Plotting the braiding indexes against the wetted width there is a positive relationship 

(Figure 4.36). Both BI and ABI have a similar R2 value with 0.540 and 0.566, respectively.  
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Figure 4.36 – Braiding intensity (BI) and active braiding intensity (ABI) as a function 

of wetted width. The dashed lines represent the best fit trendlines.  

The ratio of ABI and BI has a mean of 0.35 (σ = 0.22) but a range from 0 to 0.78 (Figure 

4.37). In general, the ratio of ABI to BI does increase with discharge, reflecting that a larger 

proportion of wetted channels are active at high discharge.  
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a) 

 

b) 

 

Figure 4.37 – Ratio of active braiding intensity (ABI) to total braiding intensity (BI) 

as a function of a) time and b) discharge (Q). The dashed line in b) represents the best 

fit trendlines and the outer solid lines represent the 95 % prediction interval for the 

observations. 
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4.3.1.3  DEMs and DoDs 

Figure 4.38 shows an example DEM from the rising limb of hydrograph A as well as the 

final DEM at the end of hydrograph C. There are multiple primary and secondary 

anabranch channels and braid bars that had developed over the course of the experiment. 

Also, while most of the channel boundaries remained unchanged, there was one laterally 

migrating channel that reached the flume sides by the end of the experiment visually 

indicating that there was still a lot of change over the three hydrographs (Figure 4.38). 

 

Figure 4.38 – Example DEMs from Experiment 11. The top DEM is from the 

beginning of the experiment runs and the bottom DEM is from the last experimental 

run of the hydrographs. The red arrow in the bottom DEM shows a location of strong 

lateral migration. Flow is from left to right.  

Figure 4.39 shows DoDs from each step of the rising limb of hydrograph A. Based on a 

preliminary visual analysis, these DoDs show that as discharge increases the areas of 

erosion and deposition increase as well. Furthermore, the areas of change become more 

continuous and the depth of change becomes greater with increasing discharge, consistent 

with the results of the constant discharge experiments (Figure 4.39).  
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Q = 0.7 l s-1 

Ω = 0.10 W m-1 

 

Q = 1.14 l s-1 

Ω = 0.17 W m-1 

Q = 1.65 l s-1 

Ω = 0.24 W m-1 

Q = 2.1 l s-1 

Ω = 0.31 W m-1 

 

Figure 4.39 – DoDs from the rising limb of hydrograph A showing increasing area 

and depth of elevation changes with increasing discharge. Flow is from left to right, 

where Q is discharge and Ω is total stream power. Results shown were derived using 

the dilation method. 

4.3.2 Experimental Results  

4.3.2.1  Bedload transport 

To investigate the linkages between bedload transport and the active width over the 

experimental hydrographs, all the sediment collected at the downstream end was weighed 

at the end of each run. Temporally, bedload transport is highly variable, both across the 

hydrographs and at the same discharges between hydrographs (Figure 4.40). Looking at 

the variability at each discharge in a box plot, the mean bedload transport rate and range 

increased above a lower threshold of 1.14 l s-1 and then continued to increase positively 
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with discharge and stream power (Figure 4.40). Below 1.14 l s-1, measured bedload 

transport rates were negligible (Figure 4.40). 

a) 

 

b) 

 

Figure 4.40 – Bedload transport (Qb) as a function of a) time and b) discharge (Q), 

over the range of discharges from the hydrograph experiment, experiment 11. 

4.3.2.2  Active Width and Active Depth 
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plot graphs it appears that below discharges of ~ 1.14 l s-1 there is very little detectable 

morphological change (average < 0.03 m). Above 1.14 l s-1, the mean active width 

increases with increasing discharge, although there is also greater range in active width at 

greater discharges. In addition, the active width seems to increase faster with the rising 

limb of the hydrograph than on the falling limb, which is most noticeable in hydrograph B. 

Like the constant channel-forming discharge experiments, the dilation method produces 

greater values of active width, reflecting the slight increase in active area created using this 

method (See Section 3.6.5 for more information on threshold methods). The differences in 

the simple 2σ threshold and the dilation were not significant for any of the discharges below 

1.65 l s-1 based on a standard two-tailed Student’s t-test (See full results in Appendix I, 

Table I.4). The values of active width for 1.65 l s-1 measured with the simple threshold (𝑥̅ 

= 0.16 m, σ = 0.04 m) were statistically different from the dilation threshold results (𝑥̅ = 

0.21 m, σ = 0.05 m) (t (48) = -4.64, p = <0.0001). Similarly, the results were significantly 

different for both the 1.86 l s-1 (t (28) =-2.70; p = 0.01) and 2.1 l s-1 (t (28) = -2.47, p = 

0.020) (Appendix I, Table I.4).  
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a) 

 

b) 

 

Figure 4.41 – Active width as a function of a) time and b) discharge (Q) across the 

hydrograph experiments. The top graph shows the temporal results using the simple 

2σ threshold. The box plot shows results from both the simple (left) and dilation 

(right) threshold methods in each discharge box.  
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When plotting the average values for active width using both thresholds and stream power, 

there is a strong positive power relationship (Figure 4.42). Based on a simple two-tailed 

Student’s t-test, there was no significant difference between the two threshold methods (t 

(14) =-0.533, α= 0.05, p= 0.603). 

 

Figure 4.42 – Active width as a function of total stream power (Ω). The dashed lines 

represent the best fit trendlines and the outer solid lines represent the 95% prediction 

interval for the observations. 

Like the constant discharge experiments, the active erosional and depositional widths both 

increased with increasing discharge and therefore stream power, although there is 

considerable variation at high discharges (Figure 4.43). Similarly, the hydrograph results 

support the trend found in the constant discharge experiments, where the widths of 

deposition are consistently larger than the erosional widths under all discharges, apart from 

experiments done at a discharge of 0.83 l s-1. Like the total active width, values of active 

width for erosion and deposition are generally very low below 1.14 l s-1 (average < 0.015 

m) and increase steadily above this lower threshold.  
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Figure 4.43 – Erosion and deposition active widths for the hydrograph experiments 

using the simple 2σ threshold, where Q is discharge. 

The relationship between active depth and discharge appeared much stronger for the 

hydrograph experiments than it was for the constant discharge experiments (Figure 4.20 

and Figure 4.44). Here, there was a positive trend with stream power, especially at 

discharges greater than 1.14 l s-1. As expected, the values of average active depth are larger 

using the simple 2σ threshold than the dilation threshold and the differences were found to 

be statistically significant for all discharges apart from those at 1.35 l s-1 (See full results 

in Appendix I, Table I.5). 
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a) 

 

b) 

 

Figure 4.44 – Active depths as a function of a) time and b) discharge (Q) for the 3 

hydrographs. Results are shown for both the simple 2σ threshold (left in box plot) and 

the dilation threshold (right in box plot) for each discharge.  

Figure 4.45 shows the active depth divided into its erosional and depositional components. 

Like the active width, depths of erosion and deposition increase with discharge and stream 

power above the threshold of 1.14 l s-1 or 0.17 W m-1, below which the values are largely 

undetectable. At low discharges (0.7 - 0.93 l s-1) depths of erosion are greater than depths 
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of deposition, while at higher discharges the depth of deposition is generally greater. The 

exception to this trend is 1.65 l s-1 which has a slightly higher erosional depth of 0.081 m 

compared to its depositional depth of 0.078 m (Figure 4.45). Based on a simple two-tailed 

Student’s t-test, the differences between depths of erosion and deposition were not 

significant (See full results in Appendix I, I.5). This outcome is much different than those 

found for the constant discharge experiments which showed a much less clear correlation 

with stream power and had greater erosional depths than depositional depths under all 

experimental conditions (Figure 4.21).  

 

Figure 4.45 – Variability in erosional and depositional depths of all hydrograph 

discharges. Results shown are for the simple 2σ threshold and where Q is discharge. 

4.3.2.3  Volumes of Erosion and Deposition  

Plotting the erosional and depositional volumes of change temporally along with the bulk 

change, it is clear how all three correspond with discharge over all three hydrographs 

(Figure 4.46). Yet, although all three hydrographs had the same peak discharge of 2.1 l s-

1, the mean bulk change for each peak was different. Hydrograph C had the greatest values 

for both volumes of erosion and deposition, followed by hydrograph A, and finally 

hydrograph B. The exact reason for this is unknown but hydrograph B had 8 consecutive 

runs at 2.1 l s-1 while A and C each only had 4. The interesting thing is that the first 4 runs 

at 2.1 l s-1 for hydrograph B have very similar volumes of change as hydrograph A and C. 
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In the second 4 runs, however, the volumes of change are almost half of the first four runs. 

This variability within a given hydrograph and between hydrographs may highlight the 

importance of antecedent conditions and morphology in determining volumes of change, 

and ultimately bedload transport rates.  

 

Figure 4.46 – Temporal variability in the volumes of erosion and deposition overlying 

bulk change. 

Looking at the box plots for the erosion and deposition volumes, all discharges below 1.14 

l s-1 show very small volumes of change (average < 0.001 m3) (Figure 4.47). Above this 

lower threshold of change, the volumes increase with increasing stream power towards the 

maximum volumes of change at the peak discharge of 2.1 l s-1. Comparing the volumes of 

erosion and deposition, volumes of erosion are consistently greater than those of deposition 

and the difference of means seems to increase with greater discharge. In other words, at 

greater discharges a greater proportion of the total volume change was attributed to 

erosional features. This could be an artifact of the measurement techniques, which may 

also explain why this trend is different than for the erosional and depositional components 

of the active width and active depth. The volumes are calculated as a product of the z values 

(i.e., the estimated change in elevation) and the number of active cells, while both the active 

width and depth are average estimates for the 14 m study reach. The results in Figure 4.47 

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.25 4 8.25 12.5 16.25 20 23.75 27.5

V
o

lu
m

e 
(m

3 )

Time (h)

Bulk Change Erosion Deposition



145 

 

 

suggest that even though the average active widths and depths are greater for depositional 

areas, locally, erosion accounts for a greater proportion of the measured bulk change.  

 

Figure 4.47 – Box plots of the volumes of erosion and deposition for the simple 

threshold method, where Q is discharge. 

4.3.3 Analysis and Comparison with Constant Discharge 

Experiments 

To fulfill the main research objective of this chapter, it important to look at how the active 

width corresponds with hydraulic and morphological parameters. In addition, the data 

allows for the comparison of the constant channel-forming discharge experiments and the 

hydrograph experiments, which is essentially a comparison of downstream verses at-a-

station responses. While the hydrograph experiments did not achieve the stream powers of 

experiment 12 and 13, all the other constant discharge experiments were represented in 

multiple steps of the hydrograph experiments.  

First, dimensionless bedload transport rate (qb*) and dimensionless stream power (w*) 

have a much stronger positive relationship in the hydrograph experiments than the constant 

discharge experiments, which had a poor linear relationship defined by an R2 of 0.351 

(Figure 4.24). Here, the results are best represented by a power relationship with an R2 

value of 0.730 (Figure 4.48). There were 5 observations that plotted away from the best fit 
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trendline and each of these observations had a relatively high bedload transport rate 

compared to other measurements for the same discharge. Therefore, these observations 

reflect some of the variability in bedload transport rate for a given discharge.  

 

Figure 4.48 – Dimensionless bedload transport rate (qb*) as a function of 

dimensionless stream power (w*) for the hydrograph experiments. The dashed lines 

represent the best fit trendlines and the outer solid lines represent the 95% prediction 

interval for the observations. 

The non-dimensional active width plotted against dimensionless stream power for 27 data 

points from the hydrograph experiments demonstrated a positive linear relationship with 

an R2 of 0.679 (Figure 4.49). This appears to be a stronger relationship than what was found 

with the constant discharge experiments, which had an R2 of 0.507 (Figure 4.26). Similarly, 

by plotting the ratio of the active width and wetted width against ABI, there is a strong 

positive linear relationship with an R2 of 0.709.  

y = 431x5.31 

R2 = 0.730 

SE = 0.003 
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a) 

 

b) 

 

Figure 4.49 – Ratio of the active to wetted width as a function of a) dimensionless 

stream power (w*) and b) active braiding intensity (ABI) for the hydrograph 

experiments. The dashed lines represent the 95 % confidence interval around the 

mean of the regression line, and the outer solid lines represent the 95 % prediction 

interval for the observations.  

The bulk change in the hydrograph experiments exhibited a strong positive, linear, 
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the active depth and bulk change relationships found with the constant discharge 

experiments.  

a) 

 

b) 

 

Figure 4.50 – Bulk change as a function of the a) active width and b) active depth for 

the hydrograph experiments. The dashed lines represent the 95 % confidence interval 

around the mean of the regression line, and the outer solid lines represent the 95 % 

prediction interval for the observations. Results are for the simple 2σ threshold.
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Plotted together with the results from the constant discharge experiment, the hydrograph 

experiment covered a similar range of active widths and depths found in the constant 

discharge experiments 1, 4, and 9 (Figure 4.51). In terms of the active depth, while the 

hydrograph experiment covered most of the range of the constant discharge experiments, 

the values are generally higher than those found in experiments 4 and 9. This result is 

interesting because while the morphologies were different given their self-forming 

evolution, both the hydrograph experiment and experiment 9 evolved from the same initial 

discharge of 2.1 l s-1.  
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a) 

 

b) 

 

Figure 4.51 – Bulk change as a function of the a) active width and b) active depth for 

the constant discharge and hydrograph experiments (i.e., experiment 11).  

Reach-averaged active depth and reach-averaged active width for the hydrograph 

experiments have a strong positive relationship (Figure 4.52). This suggests that for a given 

river, or given discharge in a river, an average measure of active width could provide an 

estimate of average active depth for a prediction of bedload flux. 
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Figure 4.52 – Active depth as a function of active width for the hydrograph 

experiments. The dashed lines represent the 95 % confidence interval around the 

mean of the regression line, and the outer solid lines represent the 95 % prediction 

interval for the observations. Results shown were derived using the simple 2σ 

threshold. 

Plotting the bedload transport rate as measured from the downstream sediment baskets with 

the active width for the hydrograph experiments produced a positive relationship. Like the 

constant discharge experiments, this relationship can be well described with a power 

relationship (Figure 4.53). In Figure 4.53a, the results for both the simple and dilation 

methods are presented. As expected, the dilation method provides slightly greater active 

width values than the simple threshold method. Given the nature of the procedure, and the 

fact that only elevation changes greater than the 3σ are dilated, the result also provided a 

higher R2 value of 0.797 (Figure 4.53) (Additional details on the dilation method can be 

found in Section 3.6.3). Plotting this relationship with the constant discharge experiments 

for the simple threshold method, the hydrograph experiment again had similar values to 

the constant discharge experiments 1, 4, and 9 with experiments 12 and 13 extending 

beyond the range of the hydrograph experiments (Figure 4.53b). 
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a) 

 

b) 

 

Figure 4.53 – Bedload transport rate (Qb) determined from sediment baskets as a 

function of the morphologically-derived active width where a) shows all observations 

from the hydrograph experiment for both the simple and dilation thresholds and b) 

shows the results of the simple 2σ threshold for both the hydrograph and constant 

discharge experiments.  
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4.4 Discussion  

The results of this research can now be compared to previous literature in order to expand 

on knowledge of braided river morphodynamics. For instance, the wetted width increased 

with discharge for both the constant discharge and hydrograph experiments. This increase 

in wetted width with discharge was expected and is supported by other field and flume 

observations (Ashmore & Sauks, 2006; Bertoldi et al., 2009a).  

In a similar way, braiding intensity increased with discharge and stream power for both the 

constant discharge and hydrograph experiments. For the constant discharge experiments, 

the results followed previous studies that found that BI increased with changes in channel-

forming discharge to a stable equilibrium for a given discharge (Egozi & Ashmore, 2009). 

In terms of the hydrograph, the ABI was more sensitive to changes in discharge than BI, 

which followed results by Egozi & Ashmore, (2009), who found that ABI responded to 

changes in discharge faster than BI. The difference in response rates could explain the 

apparent convergence of BI and ABI for the hydrograph experiments (Figure 4.36), where 

the ABI responded to changes in wetted width (i.e., discharge) faster than the BI.  

The ratio of ABI to BI for the constant discharge experiments showed that the ratio 

generally increases with stream power, but was still highly variable within a given 

experiment. As with previous results, ABI was always less than the BI so that average 

ABI/BI ratio was 0.559 for the constant discharge experiments (excluding experiment 1, 

which had a single-thread morphology), and 0.350 for the hydrograph experiments. The 

differences in the mean ratios are likely due to the differences in stream power between the 

two experiment types. Based on the results of the hydrograph experiments, morphological 

change and bedload transport rates were minor below the lower threshold discharge of 1.14 

l s-1, or a dimensionless stream power of ~0.08. All the braided constant discharge 

experiments exceeded this lower threshold, with experiment 4 having the lowest discharge 

(1.65 l s-1) and dimensionless stream power (𝑥̅= 0.128). The hydrograph experiments, 

however, had several runs with an ABI value of 0, which were associated with 

dimensionless stream power close to or below the lower dimensionless stream power 

threshold of 0.08. The result was a lower overall mean ratio of ABI to BI for the hydrograph 

experiments. In addition, the range of values of ABI/BI for both the constant discharge 
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experiments (0.1-1) and the hydrographs (0-0.7) were larger than in previous studies by 

Egozi and Ashmore (2009) and Bertoldi et al. (2009b), who found that ABI/BI typically 

stabilized between 0.3 and 0.8. The differences in the lower bounds are related to 

differences in measurement techniques. In this research, the ABI was measured from cross-

sections of DoDs, so any topographical change, which was used as a surrogate for direct 

observations of bedload transport, below the level of change detection would have resulted 

in an underestimation of ABI.  

Bedload transport rates in the constant discharge experiments followed trends from 

previous studies that suggest bedload transport rates increase with discharge and stream 

power, but can be highly variable temporally (Ashmore, 1982, 1988; Bertoldi et al., 2009a). 

This variability is often associated with the increased bedload activity (e.g., movement of 

bedload sheets, bar migration and erosion, bank erosion etc.) that occurs under greater 

stream powers and therefore shear stress. The rates of bedload transport can be compared 

to those results found during flume experiments reported in Bertoldi et al. (2009a). Plotting 

the data together, the range of total stream power is similar between all of the experiments, 

except for one run that completed with a discharge of 4.5 l s-1 and slope of 1.5 % (Figure 

4.54). Plotting a least-squares trendline indicates a positive relationship and produces an 

R2 of 0.682 across all of the experimental observations.  
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Figure 4.54 – Bedload transport rate (Qb) as a function of total stream power (Ω) for 

4 experimental conditions.  The constant Q and hydrograph results represent the 

constant discharge and hydrograph experiments, respectively. The Trento and 

Alberta results were published in Bertoldi et al. (2009a).

Using the dimensionless values for bedload flux (qb*) and stream power (w*), the data 

from the current braided UWO experiments (e.g., excluding experiment 1) and Bertoldi et 

al. (2009a) results in an overall power relationship with a R2 value of 0.575 (Figure 4.55). 

This is different than the power relationship Bertoldi et al. (2009a) originally defined, 

which had an R2 of 0.916 (Figure 4.55). The results of the constant discharge and 

hydrograph experiments cover the low end of the dimensionless stream powers found in 

the Bertoldi et al. (2009a) experiments, but have a greater range of qb* values. Differences 

between the two datasets could be the result of differences in data collection methods. For 

example, while the UWO experiments and Alberta experiments had empirical 

measurements of wetted width, the wetted widths for the Trento experiments were 

estimated using a 1D numerical model. In addition, the Trento experiments were completed 

on a bed of uniform sand with a D50 of 0.63 mm. Although it was not included in the 

calculation of the power trendline, it is interesting to note the location of experiment 1 in 

Figure 4.55. Experiment 1 had a single-threaded morphology with a relatively high 
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dimensionless stream power, but a relatively low dimensionless bedload transport rate 

(Figure 4.55). This difference between braided and single-thread rivers requires more 

investigation to see if there is in fact a distinct threshold between the different channel 

morphologies.  

 
Figure 4.55 – Dimensionless bedload flux (qb*) as a function of dimensionless stream 

power (w*) for 4 different flume experiments. The black dashed line represents the 

updated best fit trendline for all of the multi-thread observations while the orange 

dashed lines represents the original power function defined by Bertoldi et al. (2009a). 

Experiment 1 was not included in the determination of the trendlines.  

In the current research, the active width increased positively with stream power, but was 

largely undetectable below a threshold discharge (e.g., 1.14 l s-1) and dimensionless stream 

power (~0.08) in the hydrograph experiments. In both the constant and hydrograph 

experiments, the depositional active width was slightly greater than the erosional active 

width, which suggests that on average, areas of deposition are greater in spatial extent than 

areas of erosion. Furthermore, the active depth was not particularly sensitive to changes in 

stream power across the constant discharge experiments, but remained in a relatively 

narrow range from of values from 0.003-0.007 m for the four multi-threaded experiments 

(i.e., experiments 4, 9, 12, and 13). This suggests that changes in stream power between 

experiments was accommodated by increases in the active area (i.e., active width) and 
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braiding intensity, with relatively little change in active depth. Similar results have been 

found by Ashmore & Sauks (2006) and Redolfi et al. (2016) in the field and flume, 

respectively. During the hydrograph experiments, there was a stronger relationship 

between active depth and stream power (i.e., discharge). Unlike the constant discharge 

experiments, this suggests that changes in stream power resulted in an increased active area 

as well as an increased depth of the active layer. In the hydrograph experiments, active 

width and active depth were strongly and positively correlated. Consequently, a measure 

of active width could be used as a general predictor of active depth under similar 

circumstances. Splitting the active depth into its erosional and depositional components, it 

was found that erosional depths were generally greater than depositional depths for the 

constant discharge experiments. This, in combination with the results from the active 

width, suggests that areas of erosion may be more localized but deep, and areas of 

deposition are shallow and dispersed. Linking these findings to channel morphology 

indicates that erosion of banks, bars, and scour holes results in greater changes in elevation 

than scour fill and deposition on bars (Brasington et al., 2003; Rumsby et al., 2008; Kasprak 

et al., 2015).  

Bertoldi et al. (2009a) and Ashmore et al. (2011) found a linear relationship when plotting 

the active width as a proportion of the wetted width against dimensionless stream power. 

Focusing on just the results that were measured, and not those that were computed in a 

numerical model, the findings from this research plot between the results previously found 

(Figure 4.56a) (Ashmore et al., 2011). The exception is experiment 1, which plots away 

from the rest of the braided rivers, with a very high dimensionless stream power (~0.25), 

but a low ratio of active width to wetted width (~0.05) (Figure 4.56a). Differences between 

the results in this research and those from previous UWO experiments are likely related to 

differences in methods for measurements of the wetted width. The results from the current 

experiment are consistent with estimates from the Sunwapta River, especially in terms of 

the hydrograph experiments (Figure 4.56a).  

The same observations were used to plot the active width as a proportion of the wetted 

width against ABI (Figure 4.56b). The results are relatively similar to results found by 

Ashmore et al. (2011), particularly with regard to results from the Sunwapta River (Figure 
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4.56b). This not only indicates that the active braiding intensity could be used to predict a 

measure of the active width, but supports the use of physical models, as this model 

corresponds well with its field prototype.  

a) 

 

b) 

 

Figure 4.56 – Active width as a proportion of wetted width plotted as a function of a) 

dimensionless stream power (w*) and b) active braiding intensity (ABI) combined 

results with Ashmore et al. (2011). 
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In addition to the results that can be compared to previous literature, this research expands 

on current knowledge about braided river morphodynamics. For instance, it was found that 

bulk change had a very strong positive and linear relationship with active width, and a 

weaker but still positive relationship with active depth in the constant discharge 

experiments. The relationship between active depth and bulk change was stronger when 

viewing experiments individually (rather than across all experiments). This suggests that 

active depth as a measure of morphological change may more meaningful for a given river 

morphology or stream power than as a global predictor. This idea is supported by the results 

from the hydrograph experiment, which showed a stronger relationship between active 

depth and bulk change than the constant discharge experiments.  

The results also indicated that bedload transport rates measured from the downstream 

sediment baskets were positively correlated to morphological measures of the active width. 

No previous study has reported measured values for the morphological active width and 

bedload transport simultaneously or over such a large dataset. Finally, morphological 

measures of channel change (i.e., active width, active depth, and bulk change) as well as 

bedload transport rates, were largely undetectable below the same lower threshold of 1.14 

l s-1 or a dimensionless stream power of 0.08. These results have not been characterized 

before but suggest that there is a strong relationship between form and process in gravel-

bed braided rivers. 

4.5 Summary and Conclusions 

This part of the thesis investigated linkages between morphology, bedload transport, and 

stream power across a range of channel morphologies both at temporally constant 

discharge as well as varying discharge. Overall, the findings support and extend previous 

work in terms of the wetted width, braiding intensity, active braiding intensity, and active 

width all increasing with increasing discharge and stream power. Each of these parameters 

is highly variable both temporally and over a constant discharge because of the intrinsic 

variability in braided river morphodynamics. 

Focusing on the morphological active width, it was found to have a strong power 

relationship with total stream power, under both constant channel-forming and varying 
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discharge conditions. During the constant discharge experiments, active depth showed no 

clear trend with stream power and was generally restricted to a small range of values but 

showed a stronger positive relationship during the hydrograph experiments. This suggests 

that active depth may be strongly dependent on channel morphology rather than just 

channel hydraulics. The active width had extremely strong positive relationships with bulk 

change within and between the experiments, suggesting that it could be used as a general 

predictor of bulk change with high confidence and precision. In addition, the reach-

averaged active depth had a strong positive relationship with active width in the hydrograph 

experiments, suggesting that the active width could be used as a general predictor of bulk 

change and active depth for a given gravel-bed braided river.  

Comparing the results of this research with those of previous research, there was a less 

obvious positive linear relationship between the active widths as a proportion of the wetted 

widths against dimensionless stream power (w*) than was found by Bertoldi et al. (2009a) 

and subsequently by Ashmore et al (2011). These differences could be related to 

differences in data collection, sample size, and the conditions modelled. For example, the 

Trento experiments were completed on uniform sand and wetted widths were generally 

estimated using a 1D computational model.  

In addition to the trends found, it was notable that in the hydrograph experiments that ABI, 

bedload transport, active width, active depth, and bulk change were largely undetectable 

below a dimensionless stream power of 0.08 (i.e., discharge of 1.14 l s-1). This suggests 

that while all the parameters are variable, even for the same discharges, they are clearly 

connected. Therefore, since there was no measured bed material movement without 

detectable morphological change and vice versa, this dimensionless stream power acts as 

a lower threshold for morphological and bedload activity.  

From this research the following main conclusions can be made: 

1. The morphological active width is variable spatially and temporally, even at a 

constant discharge, but increases with discharge across both constant channel-

forming discharge and event hydrograph experiments. 
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2. The active width has a very strong positive and linear relationship with bulk change 

under constant discharge and varying discharge conditions as well as over a range 

of braiding river morphology.  

3. The morphological active width has a positive linear relationship with both total 

stream power and active braiding intensity under constant and varying discharge 

conditions.  

4. While variable, the morphological active width has a positive relationship with 

bedload transport rate under constant discharge and varying discharge conditions.  

5. The active depth seems less sensitive to changes in total stream power and 

discharge than the active width, suggesting that the active width may be more 

important in terms of channel geometry, and the correlation of morphology with 

bedload. 

6. Morphological change and bedload transport rate both experience the same lower 

threshold of detection around a dimensionless stream power of 0.08.  
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Chapter 5 

5 Morphometric Estimates of Bedload Transport Rate  

5.1 Introduction  

5.1.1 Chapter Introduction and Objectives 

The morphological method, also known as the inverse method, infers information on 

bedload transport rates from changes in channel topography over time (Ashmore & Church, 

1998). This method evolved out of the growing recognition that channel form and 

topography are fundamentally linked to bedload transport in gravel-bed rivers, both 

spatially and temporally.  

There are several reasons why the morphological method is useful in gravel-bed braided 

rivers. First, calculating bedload transport rates from traditional formulae and field 

samplers has proved inefficient and in some cases, impossible (McLean & Church, 1999; 

Metivier & Meunier, 2003). Secondly, the high dynamism of braided river morphology 

makes it possible to detect topography changes over relatively short spatial and temporal 

scales. In addition, recent improvements in data collection and processing techniques, such 

as digital photogrammetry and automated stereo-matching of images, are able to provide 

detailed topographic data at spatial and temporal resolutions never before possible. These 

technologies have made the morphological method a reasonable alternative to bedload 

formulae and direct sampling in gravel-bed braided rivers (Brasington & Smart, 2003). 

Finally, given the complex morphology of braided rivers it is clear that these systems are 

not strictly driven by hydraulic principles, but also morphodynamics. For example, Wickert 

et al. (2013) found that all bedload material transported in an experimental braided river 

was incorporated into downstream bars. In addition, tracer studies in gravel-bed rivers and 

braided rivers also suggest that much of the transported bedload in these systems is 

deposited on downstream bars (Pyrce & Ashmore, 2003a; Kasprak et al., 2015). Therefore, 

any reliable measure of bedload transport rates in these rivers must consider changes in 

morphology. Therefore, by placing less emphasis on hydraulic parameters alone, the 

morphological method allows for insights into the relationships between channel form and 
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process including the spatial and temporal patterns of channel morphodynamics and 

bedload transport rates (Ashmore & Church, 1998; McLean & Church, 1999).  

One common application of the morphological method is the estimation of bedload 

transport rates from changes in topography using the reach-budget method. The reach-

budget equation can be expressed as a time-integrated transport rate by converting the 

volumes to a mass as a product of bulk density, and integrating it over the time interval to 

give:  

𝑄𝑜 = 𝑄𝑖 − γs𝛿𝑆/𝛿𝑡 (5.1) 

where Qo is the mass transport output from the reach, Qi is the mass transport into the reach, 

γs is the sediment bulk density, δS is the volumetric net change in sediment storage (i.e., 

volume of deposition – volume of erosion) and δt is the time interval (Hoey & Sutherland, 

1991; Martin & Church, 1995; Ashmore & Church, 1998; Brasington & Smart, 2003; 

Brasington et al., 2003; Surian & Cisotto, 2007). In braided rivers, the volumes of erosion 

will be determined by the amount of lateral migration, bar erosion, and evolution of bed 

scour holes. Volumes of deposition will be the product of bar and floodplain aggradation 

as well as channel fill (Hoey & Sutherland, 1991; McLean & Church, 1999). Measures of 

net change were traditionally based on interpolation of repeat surveys of cross-sections but 

more recently it is common to use aerial photography, differential GPS, digital 

photogrammetry, or terrestrial scanners to create a series of continuous topographical 

surveys, or DEMs, of the area of interest (Brasington et al., 2003; Surian & Cisotto, 2007).  

While propagation of the reach-budget method necessitates knowing the bedload transport 

rate at a specific channel cross-section, due to the challenges in measuring bedload 

transport fluxes in braided rivers, few field studies have a known flux boundary condition 

(i.e., a known input or output). Therefore, they must rely on the ‘minimum’ budget in which 

the sediment input is either assumed to be zero or adjusted so that the resulting downstream 

budget remains positive (McLean & Church, 1999; Surian & Cisotto, 2007). Although this 

approach introduces a strong negative bias, it can provide minimum estimates of bedload 

transport rates, which are useful for engineering applications. In situations where it is 



164 

 

 

possible to estimate the negative bias, it may be possible to adjust the minimum budget ad 

hoc.  

Another approach to estimate the bedload transport rate with limited data is based on an 

estimated path length, which is the distance travelled by a grain of sediment from initial 

entrainment to final deposition (Haschenburger & Church, 1998; Church, 2006): 

𝑄𝑏 = 𝑉𝑒(𝐿𝑡/𝐿𝑟)/𝑡 (5.2) 

where Ve is the volume of mobilized bedload (i.e., volume of eroded sediment), Lt is the 

transfer distance, Lr is the reach length, and t is the interval between surveys (Ashmore & 

Church, 1998). This equation is built on the idea that there must be a strong relationship 

between path length and channel morphology because the movement of individual grains 

fundamentally controls channel morphology (Pyrce & Ashmore, 2003a; Kasprak et al., 

2015). Therefore, it is expected that the distance of particle displacement must reflect some 

morphological length scale, such as pool-bar spacing or the distance between confluences 

and bifurcations (Pyrce & Ashmore, 2005). As a result, by rearranging the equation it 

should be possible to estimate an average reach path length: 

𝐿𝑡 = 𝑄𝑏𝛼/𝑉𝑒 (5.3) 

where α= Lr*t, so that for a given reach and time interval, α is constant. If reasonable 

estimates of path length are possible using equation 5.3, in terms of the scale of 

morphological features, it further confirms the fundamental linkages between sediment 

transport rates and river morphodynamics (Church, 2006) and provides a method for 

estimating path length without the use of tracer particles.  

This chapter will focus on the application of the morphological method to estimate 

sediment budget and path lengths in gravel bed braided rivers. Specifically, this chapter 

will look at the spatial and temporal variability in estimates of bedload transport and 

morphology over a range of constant channel-forming discharges, for the entire study reach 

as well as smaller subreaches. This research will improve our understanding of the 

fundamental relationships between channel morphology and bedload transport by 

addressing the following objectives: 
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1. Quantify the spatial variability in the areas and volumes of erosion and deposition 

as well as net change and bulk change for a range of river morphologies.  

2. Calculate the morphological sediment budget for models of multi-thread gravel-

bed rivers over a range of discharge and stream power conditions based on a known 

bedload output. 

3. Calculate the morphological sediment budget for models of multi-thread gravel bed 

rivers over the same range of channel conditions, with the assumptions of a 

minimum budget. 

4. Estimate the path length from measures of topographic change and bedload 

transport flux.  

5. Examine the spatial and temporal dynamics of sediment transport in experimental 

gravel-bed braided rivers.  

By completing these objectives, it will be possible to answer the following questions about 

braided river morphodynamics and the relationships between channel change and the 

variability in bedload transport rates: 

- What are the frequency distributions of bedload transport rates as measured from 

different cross-sections using the morphological reach-budget method and how do 

they compare to the measured flux from the downstream sediment baskets? 

- What are the differences between the bedload transport rates estimated from a 

known boundary condition (i.e., the downstream bedload flux) and those estimated 

from the minimum budget method?  

- Does an estimate of path length based on morphological change relate to the length 

scale of channel topography? 

- Is there a strong spatial correlation between sections within a reach in terms of 

morphological change or bedload transport rate? 

5.1.2 Chapter Structure 

This chapter will focus on the results from the constant discharge experiments with a multi-

braided morphology (Experiments 4, 9, 12, and 13). Section 5.2 presents the results for the 

variability in bedload transport rates for those experiments, this time having converted the 

sediment masses into dry sediment masses for use the reach-budget method. Section 5.3 
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quantifies differences in channel morphology between the four experiments in terms of net 

change, and percentage of the total change due to erosion and deposition for the entire 14 

m study reach. Section 5.4 presents and compares the results from the 2 morphologically-

derived sediment budgets, the bedload budget, with a known sediment output, and the 

minimum budget. Section 5.5 looks at the spatial differences in the 1m subsections of the 

study area. Section 5.6 places the results of this research with previous research and 

analysis, while discussing the implications of the findings. The chapter concludes with a 

summary of the main findings (Section 5.7). 

5.2 Bedload Transport Rates 

For the purposes of this chapter, the bedload transport rates were converted to a dry mass 

using the conversion coefficient of 1.22 (Figure 5.1) (See Methods and Appendix F for 

details). As mentioned before, while bedload transport rates measured at the downstream 

baskets tend to increase with stream power, there is substantial overlap in the range of 

transport rates, particularly between experiments 12 and 13.  

 

Figure 5.1 – Temporal variation in dry sediment mass at the downstream baskets for 

the constant multi-thread discharge experiments. 
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5.3 Rates of Morphological Change 

5.3.1 Volumes of Erosion and Deposition  

Volumes of erosion tended to be slightly larger than volumes of deposition, and both 

volumes increased with discharge and stream power across the multi-threaded experiments 

(i.e., experiments 4, 9, 12, and 13) (Figure 5.2).  

 

Figure 5.2 – Deposition volume against erosion volume for the multi-threaded 

experiments. The dashed lines represent the 95% confidence interval around the 

mean of the regression line, and the outer solid lines represent the 95% prediction 

interval for the observations. Results shown were derived using the simple 2σ 

threshold. 

By dividing the volumes of erosion and deposition for each experimental run by the total 

bulk change for that run, it was possible to calculate a percent erosion and percent 

deposition for each run.  On average, erosion accounted for 51.6 % of the bulk change in 

experiment 4, 53 % in experiment 9, 50.9 % in experiment 12 and finally 51.4 % in 

experiment 13 (Figure 5.3). While the mean values for percent erosion were similar for all 

of the experiments, the range of values decreased with stream power so that the percent 

erosion varied from 38-71 % in experiment 4, 43-56 % in experiment 12 and 47-59 % in 

experiment 13 (Figure 5.3).  
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Figure 5.3 – Distributions of erosion and deposition volumes as a percentage of the total bulk change for all of the experimental 

runs in the multi-thread braided experiments. 

0

5

10

15

20

25

30

35

40

45

50

Fr
eq

u
en

cy

Exp 4 Exp 9

0

5

10

15

20

25

30

35

40

45

50

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

Fr
eq

u
en

cy

% Of Bulk Change

Exp 12

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

% of Bulk Change

Exp 13

Erosion Deposition



169 

 

 

5.3.2 Net Change 

Net change refers to the difference in the total volume of deposition and total volume of 

erosion. For each experiment, the net change calculated for the entire 14 m study area was 

temporally variable (Figure 5.4). Experiment 4 had more erosional runs (i.e., net change < 

0 m3), and in general the results of the simple and dilation threshold methods closely 

coincide. In experiment 9, most runs had a net erosional change, with less than 20 % of the 

runs having a net positive value. It is also clear from the experiment 9 graph in Figure 5.4 

that the simple and dilation methods strongly agree with the direction of change but that 

the simple method has slightly higher values of net change overall. Experiment 12 has one 

of the most sporadic results, both in terms of the switching between net erosional and net 

depositional, and in terms of the differences between the two threshold methods (Figure 

5.4). There are several runs where the simple threshold method found a net erosional 

change and the dilation method found a net positive change. This occurs when the net 

change via the simple threshold method is close to zero, so likely reflects the differences 

between the methods in classifying elevation change near the threshold of detection. 

Experiment 13 had the greatest magnitude of net change and had strong agreement between 

the two threshold methods in terms of the direction and magnitude of change (Figure 5.4). 

This supports the idea that the differences between the two methods are least noticeable 

when the changes in morphology are much greater than the minimum level of detection. 

Across all experiments, the number of runs that had a net erosional change is always greater 

than net depositional.  
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Figure 5.4 – Temporal variability of net change for all experimental runs in the multi-threaded constant discharge experiments. 

Results are shown for both the simple 2σ threshold and dilation methods. Dashed lines represent the mean net change for each 

experiment.
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The average net change was generally low (-0.0001 - -0.0013 m3) and was slightly negative 

across all experiments (Figure 5.5). Figure 5.5 indicates the general agreement between the 

simple and dilation threshold methods in terms of the net change, which were not 

significantly different based on a two-tailed Student’s t-test (t (6) =-0.188, p=0.857). The 

variability in the net change increases with stream power, so that experiment 12 and 13 

have a much greater range of net change values than experiments 1, 4, and 9 (Figure 5.5). 

This emphasizes that experiments 12 and 13 had much greater amplitudes of topographic 

change than the lower stream power experiments of 4 and 9.  

  

Figure 5.5 – Variability in net change for the multi-thread constant discharge 

experiments (i.e., experiments 4, 9, 12, and 13) in terms of total stream power (Ω). 

The results for each experiment represent the simple (left) and dilation (right) 

threshold methods.  

Measurements presented in Figure 5.5 coincide with measures of bedload transport rates 

from the downstream baskets, where experiments 12 and 13 had the greatest mass of 

sediment in the downstream baskets, but also the greatest variability (Figure 5.1). Figure 
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(i.e., negative net change), more sediment is being mobilized and transported to the 

downstream baskets. Figure 5.6 also suggests that the greatest bedload transport rates and 

volumes of net change occur at higher stream power (e.g., experiment 12 and 13). 

 
Figure 5.6 – Bedload transport rate (Qb) from the downstream baskets as a function 

of net change (simple 2σ threshold) for the multi-thread constant discharge 

experiments. 

5.3.3 Path Length 
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Figure 5.7 – Temporal variability in erosion volumes and bedload sediment mass as a function of time for the multi-threaded 

constant discharge experiments. Erosion volumes are shown for both the simple 2σ threshold and dilation method. Note 

differences in axes.
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Visually, there seems to be a strong agreement between volumes of erosion and bedload 

mass temporally for all experiments except for experiment 9, which has some large 

deviations in the second round of experimental runs (Figure 5.7). Plotting the linear 

regression of the above graphs, there is a positive trend between the volume of erosion as 

measured from the DoDs and the mass of sediment collected at the downstream end of the 

flume (Figure 5.8). The linear function in Figure 5.8 would generally underestimate the 

volumes of erosion for experiment 13. This is because as stream power increases there is 

an increase in the varaibility of bedload transport flux for a relatively small range of erosion 

volumes, possibly reflecting the increased rates of lateral migration, passage of bedload 

sheets, and bar erosion at higher stream power.  

 

Figure 5.8 – Erosion volumes as a function of bedload sediment mass measured at the 

downstream baskets. These results are for the simple 2σ threshold method and multi-

thread experiments (experiments 4, 9, 12, and 13). The dashed lines represent the best 

fit trendlines and the outer solid lines represent the 95 % prediction interval for the 

observations. 

Path length estimates are shown in Figure 5.9. The mean values range from 3.1- 3.7 m 

across all 4 experiments and decrease with increasing stream power. In addition, variability 

in the estimated path length decreased with increasing stream power (Figure 5.9). Given 
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the outliers are strongly influencing the mean values for each experiment, it is more 

meaningful to consider the median values. The median path lengths using the simple 

threshold for each experiment are 2.72 m, 3.08 m, 3.31 m and 3.20 m for experiments 4, 9, 

12, and 13 respectively. Given that experiment 12 had a greater median path length than 

experiment 13, the results suggest that the path length might be more sensitive to discharge 

than stream power (Figure 5.9). As expected, the dilation values provided slightly lower 

estimates of path length because the dilation yields slightly higher volumes of erosion for 

the same sediment output, but the means are not significantly different (t (6) = -0.037, p = 

0.972).  

  

Figure 5.9 – Estimated morphological path lengths as a function of total stream power 

(Ω). Results are shown for the simple 2σ threshold (right box plot) and dilation 

threshold method (left box plot) for each experiment.  
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short distances. In terms of kurtosis, a positive value indicates a distribution with more 

outliers (Leptokurtic) than the standard normal distribution. Experiments 4 and 9 had a 

positive kurtosis value (i.e., the tails are more extreme than would be found in the normal 

distribution), while experiments 12 and 13, had negative kurtosis values (Table 5.1).  

  

  

Figure 5.10 – Frequency distributions of estimated path lengths for the multi-thread 

constant discharge experiments. 

Table 5.1 - Summary statistics for path length, where n is the number of 

observations, the mean is the average path length, and σ is the standard deviation. 

Experiment n Mean (m) σ (m) Skewness Kurtosis 

4 74 3.75 2.61 1.40 1.53 

9 75 3.64 2.80 1.83 4.30 

12 67 3.59 1.68 0.44 -0.68 

13 67 3.32 1.17 0.48 -0.27 
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5.4 Morphological Sediment Budgets 

To investigate spatial variation in bedload the study reach was divided into 14, 1 m slices, 

for which a Scilab script was used to extract the active areas (erosion and deposition) as 

well as volumes of erosion and deposition for the simple 2σ threshold and the dilation 

method (Figure 5.11). The 14 subsections were labelled 1 to 14, with 1 being the 

downstream-most slice because the budget was propagated from the known basket output 

at the end of slice 1 (Figure 5.11).  

 

Figure 5.11 – The flume study area divided into 14 x 1 m slices for sediment budgeting. 

From this dataset, two complete sediment budgets were calculated for each 1 m slice of 

each DoD: 1) the budget estimated from the bedload output in the sediment baskets, herein 

called the ‘bedload budget’ and 2) the minimum budget, which will be discussed in more 

detail in Section 5.4.1. In the bedload budget, the bedload transport rate output (Qo) from 

section 1 was known from the downstream baskets and the changes in storage (i.e., net 

change) were calculated from the volumes of erosion and deposition in each 1 m slice. 

Following the procedure in Martin and Church (1995) and Brasington and Smart (2003) it 

was possible to calculate the Qi for the section 1 using equation 5.1. The Qi for section 1 

then served as Qo for section 2. In this way, the sediment budget was propagated upstream 

to include all 14 slices of the study area. For each experiment, these calculations yielded at 

least 64 measurements of bedload flux for each 1 m slice, making it possible to capture the 

overall variation in bedload transport along the entire reach, spatially and temporally. An 

example of a sediment budget completed for a single run from experiment 13 is shown 

below (Figure 5.12). In this example, the upstream sections were net depositional (positive 

values of net change), while the downstream sections were net erosional. The reach-

averaged net change was slightly negative at -0.15 g s-1. 
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a) 

 

b) 

 

c) 

 

Figure 5.12 – Example sediment budget from experiment 13 where a) shows the DoD, 

b) shows the corresponding spatial changes in bedload transport rate (Qb) from 

upstream to downstream and b) shows the spatial changes in terms of net change. 
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The variability in the morphological sediment transport rate (Qo) from each section is 

plotted for each experiment in Figure 5.13. As expected, there was a lot of variability in 

the sediment transport rate for each experiment but also a general positive trend with 

increasing stream power. The mean rate of transport increases from ~2 g s-1 for experiment 

4 to 3 g s-1 for experiment 9, 7.2 g s-1 for experiment 12 and finally 9 g s-1 for experiment 

13. Similarly, the standard deviations for these estimates also increase with stream power 

from 1.3 g s-1 for experiment 4 to 2.8 g s-1 in experiment 13 (Figure 5.13 and Table 5.2). 

 

Figure 5.13 – Variation in morphological bedload transport flux (Qb) as a function of 

total stream power (Ω). Results are shown for the simple 2σ threshold (right box plot) 

and dilation threshold method (left box plot) for each experiment.  

The differences between the estimates of the simple and dilation threshold are relatively 

small, and not statistically different (t (6) = 0.037, p = 0.972), in terms of the estimated 

bedload transport rates (Table 5.2). In addition, the differences between the two methods 

decreases with quantity of morphological change and stream power. This supports the idea 

that greater values of morphological change provide more precise and less biased results, 

whereas change close to the lower threshold of detection may impact the final 

morphological estimates.  
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Table 5.2 - Summary statistics for estimated morphological transport rates for both 

the simple 2σ threshold and dilation method, where the mean is the average value 

and σ is the standard deviation.  

 Threshold Method Mean σ 

  g s-1 g s-1 

4 
Simple 1.88 1.39 

Dilation 2.34 1.38 

9 
Simple 2.79 2.18 

Dilation 2.52 2.32 

12 
Simple 7.24 3.05 

Dilation 7.27 3.07 

13 
Simple 8.90 3.21 

Dilation 9.04 3.22 

To expand on the box plots in Figure 5.13, which show the variation in Qo across all 

sections, the frequency distributions of Qo for each 1 m section are presented in Figure 

5.14. This includes the known bedload transport rate from the downstream sediment 

baskets represented by section 1.  

Experiment 4 had the smallest range of transport rates, with a minimum of -1.8 g s-1 and a 

maximum of 7.55 g s-1 (Figure 5.14 and Figure 5.15). The negative minimum value 

corresponds with a section where the morphological net change in the section was 

depositional (i.e., positive) and greater than the estimated input into the section. In general, 

the distributions of each section are symmetrical with peaks very close to the average 

transport rate of 1.88 g s-1. There is an increase in transport rate in the downstream 

direction, indicated by the shifting of distributions in Figure 5.14, so that section 14 had a 

mean of 1.71 g s-1 and section 1 had a mean of 2.34 g s-1 (Figure 5.15). 

Experiment 9 had a greater range of transport rates than experiment 4 spanning from -3.9 

to 12 g s-1 (Figure 5.14). Experiment 9 had the greatest number of negative transport values 

indicating that the estimated sediment input was often insufficient to compensate for the 

erosion that occurred in a particular section. This could indicate an error in the estimate of 

the net change or be a function of propagating the budget with only a single boundary 

condition (i.e., only the Qo is known, not the Qi). Unlike experiment 4, the transport rates 
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in experiment 9 seem to decrease in the downstream direction, resulting in a slightly 

bimodal pattern overall. As a result, the upstream sections have a slightly negative skew 

and the downstream sections have a slightly positive skew. Experiment 12 had a greater 

range of transport rates than both experiment 4 and 9, this time with a minimum of -.0.15 

and a maximum of 18 g s-1 (Figure 5.15). Like experiment 4, the individual sections in 

experiment 12 tend towards the same distribution. The only exception is section 1, the most 

downstream section, which showed a bimodal distribution (Figure 5.14). In addition, 

experiment 12 is positively skewed given the several extremely high transport rates being 

estimated throughout the reach. Finally, experiment 13 had the greatest range in sediment 

transport rates, spanning from 1.84 to 21.3 g s-1 making it the only experiment to not have 

a negative sediment output (Figure 5.15). This means that all the estimated sediment inputs 

for each section satisfy any net change that occurred in the section. The distributions for 

sections in experiment 13 covered a larger range of transport rates than the other 

experiments, showing a positive skew in the upstream sections and a bimodal pattern in 

the downstream sections (Figure 5.14). Experiment 13 also showed increasing transport 

rates moving longitudinally downstream (Figure 5.15).  

To see if the differences in the bedload transport rates between the 14 sections was 

significant, an Analysis of Variance (ANOVA) followed by the multiple comparisons 

Tukey Honest significant difference (HSD) was completed for each experiment. Tukey 

HSD is one of the most common procedures in pairwise multiple comparisons and it 

provides a p-value for each pair of sections to determine if they are significantly different 

from each other. Experiment 4 had no significant differences between any of the 14 

subsections (F (13,924) = 1.775, p = 0.043). In experiment 9 the downstream sections 1-6 

were found to be significantly different than the upstream sections 12-14 (F (13,966) = 

7.937, p = <0.0001). Experiment 12 only had two significant differences, with subsection 

1 being significantly different than upstream sections 10 and 14 (F (13,896) = 2.934, p 

=0.000). Finally, experiment 13, like experiment 9 has several significant differences 

between downstream sections 1-5 being significantly different than subsections 11-14 (F 

(13,910) = 11.445, p = <0.0001) (Full results of Tukey HSD presented in Appendix J).  
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Figure 5.14 – Distributions of morphological bedload transport rate (Qb) estimates 

for each 1 m section for each multi-thread constant discharge experiment. Results 

shown were derived using the simple 2σ threshold method. Section 1 (dashed line) 

represents the measured output from the downstream sediment baskets.
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Figure 5.15 – Distribution of morphological bedload transport rates (Qb) for each 1 m section of the multi-thread constant 

discharge experiments. Results are for the simple 2σ threshold method.  
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The bimodal trends found in some sections of experiments 9, 12, and 13 could be related 

to edge effects in the flume. All three experiments had a primary channel interact with the 

edge of the flume sometime during the length of the experiment. When this happens, the 

channel begins to act like a chute, transporting material quickly downstream without any 

interference from bars. For example, in experiment 9, while one anabranch met the side of 

the flume early in the experiment, it didn’t become well developed until the second round 

of experimental runs. Looking at Figure 5.16, the increase in sediment in the basket 

downstream of the edge interaction is clear during the second round of experimental runs. 

Similar trends can be found in the baskets of experiment 12 and 13 downstream of edge 

chutes.  

 

Figure 5.16 – Sediment mass in basket by the flume edge during experiment 9. 

With a Qo value for each section of each run for each experiment, there was sufficient data 

to determine the distributions of bedload transport rates in multi-thread gravel- bed rivers. 

Using XLSTAT, each dataset was paired with the distribution curve providing the best 

statistical description of the frequency plots according to the Kolmogorov-Smirnov test for 

comparing distributions (Figure 5.17) (XLSTAT, 2017). Experiment 4, 9, and 12 were each 

paired with the logistic distribution, while experiment 13 was defined by a Beta4 

distribution. The fit of experiment 4 was not statistically significant (p-value = 0.005, α = 
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logistic distribution using 980 observations. Experiment 12 had statistically significant but 

poor fit with the logistic distribution (p-value = 0.262). Finally, experiment 13 was very 

well defined by the Beta4 distribution, with a p-value of 0.94 over 924 observations.  

Table 5.3 shows the values for skewness and the kurtosis for each of the distributions. In 

this case, all the experiments have a positive skewness, with experiments 4, 12, and 13 

having a strong positive skewness (Figure 5.17 and Table 5.3). This represents a 

distribution skewed to the right, reflecting a greater number of low transport rates. In terms 

of kurtosis, all the distributions have more extreme values (i.e., outliers) than would be 

expected with a normal distribution, but the values for experiment 12 and 13 are much 

lower than 4 and 9 (Figure 5.17 and Table 5.3).  

Table 5.3 - Skewness and kurtosis of bedload transport rate distributions, where n is 

the total number of calculations for all 14 cross-sections within each experiment. 

Experiment 4 9 12 13 

n 938 980 910 924 

Skewness 0.62 0.23 0.72 0.60 

Kurtosis 1.31 1.32 0.67 0.38 
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Figure 5.17 – Distribution of morphological bedload transport rate (Qb) estimates for all 14 sections of the flume across all 

experimental runs. Results are for estimates from the simple threshold method. Note the differences in axis values. 
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5.4.1 Minimum Budget 

Many morphological reach-budgets do not have a known boundary condition like the 

downstream sediment baskets used in this study. Therefore, many studies rely on 

assumptions about the boundary conditions, for example that the upstream input is zero. 

For this research, the minimum budget was completed so that the downstream boundary 

condition was unknown and the upstream boundary condition was initially set to zero. 

From here, the upstream sediment input was adjusted to satisfy the downstream sections 

so that there was no negative flux (i.e., negative Qi or Qo) in any section. Figure 5.18 shows 

the same sediment budget from Figure 5.12 but this time plotted with the minimum budget 

as well. In this case, the minimum input into section 14 was adjusted from 0 g s-1 to 4.11 g 

s-1 so that the output from section 11 would not be negative.  

   

Figure 5.18 – Comparison of the bedload and minimum budget for a run during 

experiment 13. Results are shown for the simple 2σ threshold. 

Across all experiments, the minimum budget significantly underestimated the known 

bedload transport rates (Figure 5.19 and Table 5.4) Comparing the mean estimates of 

transport rates, the minimum budget underestimates by a factor of 1.2 - 2.7, with the 

greatest propagated discrepancies occurring for experiment 13 (Table 5.4).  
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Figure 5.19 – Morphological bedload transport rate (Qb) as a function of total stream 

power (Ω) for the known bedload boundary condition (left) and minimum budget 

(right). Results are for estimates from the simple 2σ threshold method. 

Table 5.4 - Statistical comparison of the bedload and minimum budgets, where n is 

the number of observations, mean is the average value, σ represents the standard 

deviation, and the t-value and p-value represent the output from a two-tailed 

Student’s t-test.  

 Budget Method n Mean σ t-value p-value 

   g s-1 g s-1   

4 
Bedload 938 1.88 1.39 

9.067 <0.0001 
Minimum 938 1.35 1.17 

9 
Bedload 980 2.79 2.18 

5.631 <0.0001 
Minimum 980 2.28 1.77 

12 
Bedload 910 7.24 3.05 

32.827 <0.0001 
Minimum 910 3.05 2.35 

13 
Bedload 924 8.90 3.21 

41.518 <0.0001 
Minimum 924 3.27 2.58 
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5.5 Spatial and Temporal Correlations 

To investigate the spatial and temporal relationships between morphology and bedload 

transport rates further, the morphological changes and bedload transport rates in each 

section (1-14) were examined individually as they changed through time. For example, the 

temporal variation in section 1 for all of experiment 13 in terms of net change, bulk change, 

and masses of erosion and deposition are shown in Figure 5.20.  
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Figure 5.20 – Temporal variability in the masses of net change, bulk change, and 

erosion and deposition  for section 1 of experiment 13. 
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possible to see how each experiment evolved, spatially and temporally. Most sections in 

experiment 4 were net erosional (i.e., negative net change) but sections 6, 11, and 12 had, 

on average, a net depositional regime. Interestingly, experiment 12 followed a very similar 

trend as experiment 4, with only section 11 having a net depositional regime while the rest 

of the sections were net erosional. Unlike experiment 4 and 12, experiment 9 is net 

erosional at the upstream end and transitions to a net depositional regime in section 4 and 

5 before becoming erosional again the downstream 2 m of the flume. Experiment 13 had 

the greatest range of net changes with an average depositional regime for the upstream 3 

m (sections 12-14), before plummeting towards net erosion for the rest of the study reach 

(Figure 5.21). Overall, the average net change does not seem to be sensitive to stream 

power, nor do there seem to be strong spatial trends beyond the fact that most sections were 

net erosional.  

Looking at the average bulk change for each section, the trends within and between 

experiments follow more clear patterns. First, the bulk change is much more sensitive than 

net change to stream power, increasing from experiment 4 to experiment 13 at all cross-

sections. Secondly, the spatial trends are similar for all experiments. Starting from a low 

bulk change in section 14, there was a general increase in bulk change longitudinally 

through each downstream section although experiments 9, 12, and 13 all experienced a 

final decrease in the average bulk change in section 1. It is possible that the lower values 

of bulk change at the upstream and downstream most sections reflect inlet and outlet 

effects. While the flume was cropped to 14 m to minimize these effects, the maximum 

extent of braiding generally occurred between ~2 and 12 m from the downstream end 

(sections 2-12). Outlet effects could not be avoided because it was necessary to know the 

downstream sediment output for the estimation of the known sediment budgets.  
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a) 

 

b) 

 

Figure 5.21 – Temporally averaged a) net change and b) bulk change plotted for each 

1 m section, where section 1 is the downstream-most section of the flume. 

The above graphs suggest that while there may be local changes in sediment storage (i.e., 

net change), the total amount of sediment being transferred within the system (i.e., bulk 

change) may be much more consistent on average for a given stream power. The average 

estimates for bedload transport rate for each section from Figure 5.15 were plotted together 

for all four experiments in Figure 5.22. A positive slope indicates an increase in sediment 
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mobilization with distance downstream, while a negative slope would be indicative of 

sediment deposition. The positive slope found for all experiments supports the overall 

erosional trends found in Figure 5.21 with respect to the net change. In addition, while all 

four experiments had a similar positive slope, there was an increase in bedload transport 

rate with increasing total stream power. These results also reflect the trends in Figure 5.21. 

The net changes were greatest for experiments 12 and 13, especially with large negative 

net changes in the downstream reaches where the channel were most active. Therefore, in 

these areas of high braiding complexity there was likely the greatest amount erosion in 

terms of lateral migration and bank erosion.  

 

Figure 5.22 – Average morphological estimates of bedload transport rate (Qb) plotted 

for each 1 m section of the flume, where section 1 is the downstream-most section. 

Results shown were derived using the simple 2σ for the multi-threaded constant 

discharge experiments (i.e., experiments 4, 9, 12, and 13).  

An important consideration when propagating a morphological sediment budget is the 

propagation of error associated with the volume estimates from the DoDs. While not the 

focus on the current research, following the procedure in Brasington et al. (2003), an 

example of the propagated errors for morphological bedload transport rates for experiment 
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transport rates for each of the experiments, which is fundamentally based on the error in 

the active areas of each section, is plotted in Figure 5.24. As expected, the estimated error 

increases with the increased volume of change at higher stream powers and with distance 

from the known boundary condition at section 1.  

 

Figure 5.23 – Estimated error on the morphological mean estimates of bedload 

transport rate (Qb) across all 14 sections for experiment 13where the dashed gray 

lines represent 95% confidence intervals.
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Figure 5.24 – Estimated error on the average morphological bedload transport rate 

in each section for each of the multi-threaded constant discharge experiments. Results 

shown are based on the simple 2σ threshold. 

While both bulk change and bedload transport rate were sensitive to increasing stream 

power, given the large possible uncertainty on the transport rates due to error propagation, 

additional spatial analysis focused on the bulk change only. Figure 5.25 shows Pearson 

correlation maps of bulk change between each of the 14 sections. The Pearson correlation 

test measures the degree of linear correlation between two variables, where the coefficient 

values range from -1 to 1 so that -1 represents a perfect negative linear relationship and 1 

represents a perfect positive linear relationship. A value of 0 indicates no linear relationship 

between the variables. Here, each section in the study reach was correlated with every other 

section within each experiment (Figure 5.25). In terms of the bulk change, there seems to 

be an adjacency effect such that each section has a significant positive relationship with its 

upstream and downstream neighbors and that in general, this correlational relationship 

decreases with distance from the section. Secondly, as stream power increased from 

experiment 4 through experiment 13, the number of sections with a significant correlation 

decreases (Figure 5.25 and Appendix K). Furthermore, as stream power increases and 

distance between sections increase, there is a greater likelihood of a slightly negative 

correlation between sections (Figure 5.25).  
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Figure 5.25 – Pearson correlation maps for bulk change (kg) between each 1 m section 

in the study area for each of the multi-thread constant discharge experiments.  

5.6 Discussion 

It was clear from Chapter 5 that bedload transport rates measured from downstream 

sediment baskets are highly variable temporally, even at constant discharge. These results 

are supported by many other authors who have found similar variability (Ashmore, 1991a; 

Hoey & Sutherland, 1991; Hoey, 1992; Bertoldi et al., 2009a). Breaking down this 

variability into its erosional and depositional components, it was found that erosion 

generally accounts for greater than 50 % of the total bulk change, regardless of stream 

power. As stream power increased, however, the range of percent erosion decreased, 

indicating that erosion consistently accounted for ~50 % of the bulk change in every run. 
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Exp. 12 Exp. 13 



197 

 

 

This trend could indicate that under high stream power conditions, more of the bed is being 

reworked so there are less extreme local examples of erosion and deposition. Therefore, 

these results reflect the ‘patchiness’ of the DEMs of Difference (DoDs) at low discharges, 

and the continuity of morphological change as stream power is increased. Another possible 

explanation is that as stream power increases the amount of time each run represents in the 

prototype also increases. It is likely that over longer periods of time more of the bed is 

reworked and therefore the amount of erosion and deposition would even out as a result of 

compensating scour and fill. Additional research should investigate the role of different 

time intervals on the rates of erosion and deposition (McLean & Church, 1999). As 

mentioned, the volumes of erosion were generally higher than volumes of deposition under 

all the experimental conditions tested. There are several possible reasons for this, related 

to both morphodynamics and experimental methods. In their research, Rumsby et al., 

(2008) found that in the Feshie River areas of erosion were generally local but deep in 

terms of elevation change, whereas areas of deposition were more likely to be diffuse and 

shallow. Similar results were found by McLean & Church (1999) on the Fraser River, 

where although the areal extent of erosional and depositional zones was similar, the 

volumes of erosion were greater than the volumes of deposition. If this is true, it is more 

likely that volumes of deposition will be underestimated because they fall below the 

minimum level of detection for morphological change, or the change detected is 

reduced/removed when applying a detection threshold to DoDs. Wheaton et al. (2010) 

compared volumes of erosion and deposition from raw DoD (i.e., no threshold applied) 

with three different threshold methods and found that on average, volumes of deposition 

are more greatly affected by thresholding than volumes of erosion. For example, when 

applying a simple 10 cm threshold to the DoDs, the volumes of erosion were reduced an 

average of 25 % from the raw DoD, while the volumes of deposition were reduced by 29 %. 

In addition, while the flume itself is assumed to be a closed system with a neutral sediment 

balance, the study area considered only the downstream 14 m of the model. In general, 

over the course of an experiment, the upstream end of the flume near the weir would 

aggrade and the downstream end would degrade. Therefore, the choice of study area could 

be another reason that most experimental runs resulted in a net erosional sediment balance.  
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While there was temporal variability in the net change during each experiment, the average 

net change for all four braided constant-discharge experiments was between -0.001 and 0 

m3. This suggests that over time volumes of erosion and deposition are relatively equal, 

although erosion was often slightly greater. This is especially interesting because the 

average net change was not sensitive to stream power even though the range of net changes 

did increase with stream power. This suggests that spatially and over time, changes in 

erosion and deposition are balanced regardless of stream power so that rivers are in 

equilibrium with respect to mass balance. Plotting the net change with the bedload transport 

rates from the downstream baskets, large negative values of net change were associated 

with the greatest bedload transport rates. This indicates that runs with the largest negative 

net change (i.e., strongly erosional) were associated with the greatest bedload transport 

rates. Extending this analysis found that volumes of erosion were positively, and linearly, 

correlated with measurements of bedload transport rates. Similar results were found by 

Hoey and Sutherland (1991) and Pryor et al. (2011) who stated that measurements of 

sediment output from their flume experiments would peak in response to channel erosion 

and troughed in response to channel aggradation or channel splitting. In the field, McLean 

& Church (1999) found that bedload transport rates were highly variable due to changes in 

channel stability. Specifically, lateral erosion and channel shifting were associated with 

high bedload transport rates. In addition, Hoey and Sutherland (1991) suggest that there 

could be a feedback loop between channel degradation and sediment output. As a channel 

erodes it will be able to capture more discharge and therefore continue to maintain a 

relatively high stream power and bedload transport rate. 

Estimates of path length, as calculated from volumes of erosion, averaged between 3.1 - 

3.7 m, with median values between 2.7-3.3 m across all four braided constant-discharge 

experiments. These results directly correspond with more detailed tracer measurements of 

path length completed by Kasprak et al. (2015) in the same river modelling flume. For five 

experimental runs completed at 2.1 l s-1 and 1.5 % slope, Kasprak et al. (2015) found an 

average path length of 2.5 m on a braided morphology, although some tracers were 

recovered as far as 10 m from the seed site. Kasprak et al. (2015) found that the majority 

(81 %) of recovered tracers were deposited on bar heads and bar margins. While the path 

lengths estimated in the current research were longer than those averaged from tracers there 
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are several possible reasons for this difference. The study by Kasprak et al. (2015) used 

coarse grains as tracers (D50= 2.4 mm compared to the flume D50 = 1.2 mm) so that the 

grains would be large enough to recover at the end of the run. As a result, the estimated 

path lengths from the tracers are likely to underestimate the average path length of the 

bedload as they represent the larger size fractions which in general would have shorter path 

lengths (Pyrce & Ashmore, 2003b). In addition, a variety of seed sites were used during 

the experiment, and while this had little impact on the location of tracer deposition, it could 

account for differences in where a particle would be naturally entrained and where the 

tracers were seeded. Finally, Kasprak et al. (2015) only investigated path lengths for one 

experimental condition (2.1 l s-1, 1.5 %) and found that path length could vary between 0.5-

10 m over just five experimental runs, even at constant discharge. The current research 

estimates path lengths for over 250 experimental runs, under different experimental 

conditions, and the average values fall within a similar range found by Kasprak et al. 

(2015). In fact, excluding outliers, the range of path lengths estimated from volumes of 

erosion, across all experimental conditions, was between 0.5-8 m.  

The distributions of path lengths found here coincide with general findings by Pyrce & 

Ashmore (2003b). They found that by looking at the distributions from field and flume 

tracer studies in straight and meandering gravel-bed rivers that path lengths fall into three 

categories: 1) positively skewed, 2) bimodal, or 3) symmetrical. The authors postulate that 

as particle mobility increases (i.e., more grains are being transported) the distributions will 

shift from 1 towards 3. A positively skewed distribution, like found in experiment 4 and 9, 

represents low particle mobility, where most grains are transported relatively short 

distances with few grains moving longer distances. This idea is supported again by the 

generally ‘patchiness’ of the DoDs for the lower discharge experiments. A bimodal 

distribution was common in tracer studies and was associated with some tracers not moving 

from the seed site, and others moving a characteristic length. Bimodal distributions were 

not found in this research because the path lengths were strictly based on particles that did 

move. Finally, the symmetrical distribution was linked to high particle mobility where most 

grains are being transported some characteristic distance downstream. Although their 

findings did not address braided rivers specifically, Pyrce & Ashmore (2003a) found that 

this characteristic length was associated with the average pool-bar spacing. Combined with 
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the tracer work on braided rivers by Kasprak et al. (2015) both research groups found that 

the majority of tracers (55-75 %, and 81 % respectively) were deposited on local 

downstream bars, indicating that path length is likely, at least in part, morphologically 

based. In addition, a higher proportion of tracers deposited on bars in the braided case 

(81 %) may suggest that morphology more strongly influences path length in those 

systems. Experiment 13 was defined by a more symmetrical distribution than the other 

experiments, which can be easily linked to greater sediment mobility given the higher 

bedload transport rates in that experiment. It is also interesting that the variability in the 

path length was lowest in experiment 13, possibly suggesting that path lengths in that 

system were strongly influenced by morphology (i.e., restricted) to local downstream bars. 

These results all indicate that path lengths are strongly related to channel morphology and 

as such, measures of channel morphology (i.e., volumes of erosion) could provide 

reasonable estimates of path length without the use of tracers. Although more research 

would be required, especially on braided rivers, this would be especially useful in the field 

where the use of tracers may be impractical. 

For this chapter, two different morphologically based sediment budgets were created, the 

bedload budget and the minimum budget. Overall the results show that the morphological 

reach-budget method provided reasonable estimates of bedload transport rates at multiple 

channel cross-sections when propagated upstream from a known boundary condition. The 

distribution of these outputs, ~900 measures for each experiment, showed that the 

distribution of bedload transport rates was highly variable. This confirms what has been 

found many times in the past, that bedload transport rate is variable and that this is likely 

due to the passage of bedload sheets, scouring, and local erosion of bars and banks. This 

study, however, defined the distributions, which has rarely been done in the past. Following 

the work of Warburton and Davis (1994), the distributions of bedload transport rates in 

both studies resulted in either symmetrical or slightly positively skewed distributions.  

Spatially there was little difference between the 14 subsections in terms of time-averaged 

bedload transport rates in experiments 4 and 12. Experiments 9 and 13, on the other hand, 

had significant differences between upstream and downstream reaches. The exact reason 

for this is not known but could reflect the changes in morphology over time in the 
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downstream reaches of both of those experiments. Experiments 9, 12, and 13 also had 

sections with a bimodal transport rates. There are two possible explanations: 1) the 

presence of the flume edge acted like a chute, locally increasing transport rates in the 

downstream reaches; 2) the morphology of the sections with the bimodal distribution 

drastically changed over time. For example, while it was shown that experiment 9 did have 

an edge chute, from Chapter 3 it was also shown that the wetted width in experiment 9 was 

vastly different from the first round of experiments to the second. It is possible that this 

change in morphology could also result in drastically different bedload transport signals 

over time and the significant differences in the upstream and downstream sections. Across 

all four constant discharge experiments, most of the morphologically-derived distributions 

for bedload transport rates (i.e., section 2-14) were not significantly different from the 

distribution or magnitude of the known bedload output (i.e., section 1). This suggests that 

the temporally variability in the known bedload transport rate is morphologically-driven. 

Following the bedload budget, the same values of net change were used to calculate a 

minimum budget, where the output was assumed to be unknown and the input was adjusted 

to allow only positive bedload transport rates. While it was expected that the minimum 

budget would have a negative bias, the bias was significantly large and the discrepancies 

between the two budgets increased with stream power. These significant underestimates 

suggest that there may be a lot of sediment exchange at increased stream power. This 

explanation comes from images of DoDs that show active areas become larger and much 

more continuous with stream power. The minimum budget also does not account for any 

sediment throughput or chute-like channels where sediment is being transported but not 

causing morphological change. While still negatively biased, the minimum budget is useful 

for providing a lower boundary of sediment transport. Also, if the sediment input or output 

could be estimated, it would be possible to adjust the minimum budget to more realistic 

values. For example, using the same general method for estimating a morphological 

sediment budget Surian and Cisotto (2007) applied the minimum budget to the Brenta 

River in Italy. After finding that a bedload transport rate input of zero resulted in negative 

estimates of bedload transport rate at some cross-sections, the authors estimated possible 

bedload inputs from a nearby gauging station. As result, they could estimate feasible 
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bedload transport rates using the morphological method on a series of aerial photographs 

by mapping bank erosion. 

As expected, it was found that within a single section the net change, bulk change and 

volumes of erosion and deposition were highly variable over time. This reflects the high 

dynamism of these systems and is linked to the highly variable bedload transport rates 

found in gravel-bed rivers. The average net change for each 1 m section reflects the trends 

for the entire reach so most 1 m sections were erosional, and overall net change was not 

sensitive to stream power. The bulk change, on the other hand, was sensitive to stream 

power and spatially variable. Finally, taking just the average bedload transport rate for each 

section there is a clear positive trend from upstream to downstream. This supports all the 

findings so far suggesting that the downstream reaches are more erosional and therefore 

transporting more material than upstream sections. Comparing these trends with those 

found in other studies, Ham and Church (2000) created morphological sediment budgets 

for the Chilliwack River, a gravel-bed river characterized by braided and meandering 

morphology. In their study, they found that the Chilliwack River became more active with 

distance downstream (i.e., greater volumes of change) and that there was significant 

variability in volumes of change over four study periods investigated. In their study, the 

largest increases in volumes of change were associated with flood events and subsequent 

bank erosion.  

Lastly, this chapter looked at the correlations between different morphological signals at 

the different subsections. Bulk change seems to have some spatial persistence, which 

decreases with increasing stream power and channel complexity (i.e., braiding intensity). 

The exact reason for this is not known but it could be related to the morphological 

signatures of the experiments. Based on fluvial hydraulics, it would be expected that in the 

absence of morphological signatures (i.e., two-phase flow through a pipe) that the bedload 

transport rate at any cross-section would be equal to all others under steady flow conditions. 

As morphology is introduced, however, there are local changes in the spatial and temporal 

movements of sediment due to the passage of bedload sheets, breakdown of armour, 

erosion of the banks and bars etc. Therefore, it is possible that we are moving along a 

morphodynamic spectrum where under low stream power conditions, and therefore lower 
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braiding complexity, the movement of sediment is still strongly driven by a combination 

of morphology and hydraulics. From Chapter 4 we know that as stream power is increased, 

braiding intensity and active braiding intensity are also increasing. In addition, active areas 

are more continuous and the active width is greater as stream power is increased. Therefore, 

morphology will have a greater impact on the movement of sediment, possibly resulting in 

sections acting more independently of each other, like is seen in experiment 13 (Figure 

5.25). In addition, the spatial decay in correlations is similar to the estimated path lengths 

in Figure 5.9 and those found by Kasprak et al. (2015). This further suggests that the spatial 

correlations between sections is likely linked to morphology at the scale of channel bar 

spacing.  

5.7 Chapter Summary and Conclusions 

This chapter highlighted the spatial and temporally variability in bedload transport rates 

and morphological change for the entire 14 m study reach as well as smaller 1 m 

subsections. Overall, it was found that erosion and deposition volumes were strongly 

positively related but that in general, erosion volumes were greater than deposition 

volumes. This was reflected in the slightly negative net changes found for all experiments. 

As expected, the volumes of erosion were positively correlated to sediment collected in the 

downstream baskets, which both increased with stream power. 

Path length, as estimated from morphological change, provided reasonable estimates that 

correspond well with previous tracer studies and estimates of characteristic morphological 

lengths. Interestingly, estimates of path length decreased with stream power which may 

reflect stronger morphological influences with increasing morphological complexity.  

Morphological estimates of bedload transport rates were similar in distribution and 

magnitude to independent measures of bedload transport at the downstream baskets. This 

suggests that much of the temporal variability in bedload transport rates reflects differences 

in morphology. Morphological budgets created with a known sediment output and the 

minimum budget assumptions provided significantly different estimates of bedload 

transport rates at a series of channel cross-sections. While the exact reason for the large 

differences is not known, it is likely partially related to sediment throughput and high levels 
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of sediment exchange. Since both are expected to be underestimates of the actual rates due 

to the limitations of volumetric analysis, they should be used with caution in practical 

applications but both can still be used to inform us about spatial and temporal differences 

in morphological change.  

Finally, this chapter found that net change, bulk change, and estimates of sediment 

transport rates are spatially and temporally variable, but that bulk change and bedload 

transport rates were sensitive to changes in stream power. In addition, bulk change seems 

to have a spatial signal that decays after several metres, which corresponds with 

morphological signatures and estimates of path length and bar scale topography.  

From this chapter the following conclusions are made: 

- In general, rates of bedload transport, bulk change, and volumes of erosion and 

deposition all increase with increasing stream power.  

- Net change is relatively insensitive to stream power, suggesting that even as 

volumes of erosion increase the volumes of deposition increase at a similar rate.  

- Net change is generally slightly negative, indicating that all the experiments were 

net erosional. This could reflect the character of erosional and depositional features 

or be an artifact of methods (i.e., DoD thresholding and use of a physical model) 

- Path lengths estimated from volumes of erosion provide reasonable estimates that 

are similar for the small range of stream power and discharge tested here. 

- Morphological estimates of bedload transport rates provide similar distributions as 

measured flux rates, suggesting temporally variability in bedload transport rates is 

morphologically-driven. 

- The minimum budget is negatively biased and significantly different from the 

bedload budget but provides important insights into volumes of sediment exchange 

and/or sediment throughput.  

- Bulk change, and therefore the active width, has a spatial signal at the scale of the 

path length.  
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Chapter 6 

6 Grain Size Evolution and Bed Mobility in Gravel-Bed 

Braided Rivers 

6.1 Introduction 

6.1.1 Chapter Introduction and Objectives 

The grain size distribution of sediment being transported as bedload at any given time in a 

gravel-bed river will be a function of the grain sizes available, the mobility of the individual 

size fractions, and the bed configuration (Wilcock & Southard, 1989). The flow is only 

able to transport material in the exposed surface and the active subsurface when those 

grains become exposed during flow (Haschenburger, 2013). In general, the amount of 

bedload transported in gravel-bed rivers and the size of the grains mobilized will increase 

with flow as a result of selective sorting in which grains are differentially transported as a 

function of size (Wilcock & Southard, 1989; Rice & Church, 1998; Powell et al., 2001; 

Haschenburger, 2013). Finally, the bed configuration can modify local flow characteristics. 

As a result, the grain size distribution of the bedload is often finer than that of the bed 

surface, except under high discharge conditions when the largest grain size fractions can 

be mobilized (Powell et al., 2001).  

The variability in transport rate in gravel-bed rivers, as well as the variability in the size of 

the grains being transported, has previously been described in terms of phases. During 

Phase I, transport rate is low and consists mostly of remobilized fine grains moving over a 

stable bed surface (Ryan et al., 2002). Phase II involves the mobilization of coarser grains 

from the surface. This mobilization of coarse grains causes finer grains from the subsurface 

to be exposed and entrained. The result is that Phase II has a significantly greater bedload 

transport rate and grain size range than Phase I transport (Ryan et al., 2002). Phase I and II 

are thought to be separated by a threshold flow, likely close to bankfull discharge, known 

as the breakpoint (Ryan et al., 2002). Defining the breakpoint is considered important in 

gravel-bed rivers because it quantifies the flow magnitudes needed to transport both large 

amounts of material as well as large grains. The nature of the Phase I to Phase II transition 
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can be poorly defined and complicated by factors such as the presence of bedforms, 

armouring, and grain shape. Unfortunately, data sets that can characterize the transition 

from Phase I to Phase II are lacking because of the challenges in collecting direct sediment 

measures in the field, particularly at high flow. This is especially true for larger rivers, and 

braided rives with complex and dynamic channel patterns.  

Ryan et al. (2002) attempted to define the character of the breakpoint discharge in stable 

single-thread gravel-bed channels, with D50 ranging from 38 to 146 mm. In their study, 

they found that the surface was as much as 11 times coarser than the subsurface, indicating 

strong armouring, and that the breakpoint discharge was approximately 80 % of the 

bankfull discharge. Above these breakpoint flows, there was a substantial increase in grain 

size and transport rate. The authors suggest that there may be a second breakpoint at 

discharges higher than bankfull, where the local shear stress is reduced as the flow 

inundates the floodplain. Unfortunately, the flows required to confirm this hypothesis did 

not occur during the study. Ryan et al. (2002) suggest that their finding of the breakpoint 

discharge represents a fundamental link between channel form and process. With an annual 

return period, the bed roughness and morphology might represent the channel’s adjustment 

to the imposed breakpoint discharge.  

The variable bedload transport rate is also a function of sediment supply and bed structure. 

Previous research by Eaton and Church (2009) found that changes in the structure of the 

channel bed, specifically the degree of armouring (i.e., coursing of the bed surface), could 

created a fourfold range in sediment supply. Their results highlighted that under conditions 

of high sediment supply, the grain size distribution of the surface and subsurface would 

begin to converge as armouring was removed, resulting in a fining of the surface and a 

coarsening of the bedload (Pryor et al., 2011; Mueller & Pitlick, 2013; Venditti et al., 

2017). The role of sediment supply in braided rivers may be less important because these 

systems are generally not supply limited. In fact, a large sediment supply is considered one 

of the defining features of these kinds of river systems. Yet, the relationship between 

sediment supply and the capacity of the river to transport sediment could be an indicator 

of both bed mobility and the size of the active width. Areas of the bed that are armoured 
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will generally be less available for transport, and therefore will not contribute to the active 

width or bedload transport rate of the river (Venditti et al., 2017).  

It is also possible to investigate the role of fractional transport in channel mobility and 

channel morphology. Fractional transport, defined by the proportion of each grain size 

fraction in the total transport, can be classified into partial and full transport. For example, 

fine grains are mobilized under low flow conditions and therefore can be considered fully 

mobilized. Coarse grains, on the other hand, may never be mobilized (i.e., immobile) or 

only in a state of partial transport where some grains are moving but not in proportion to 

the availability of that size fraction on the bed (Haschenburger & Wilcock, 2003). 

Therefore, while the transport rate of all size fractions increases with discharge and stream 

power, the total bedload may be disproportionately composed of finer particles from the 

bed. Understanding these conditions is important for understanding channel dynamics and 

predicting bedload transport rates.  

With knowledge of the bedload transport rate, grain size distributions, and the structure of 

the bed surface it is possible to classify the general bed mobility condition of a river. For 

example, Parker (2008) and later Venditti et al. (2015), provided four general bed mobility 

conditions that can exist in gravel-bed rivers including partial mobility, selective mobility, 

and equal mobility. Partial mobility occurs when the grain size distribution of the bedload 

is finer than the underlying surface, due to armouring or competency. Selective mobility 

occurs when the all the grain sizes in the surface are found in the bedload, but the 

distributions are different so that the bedload is still finer than the surface. Equal mobility 

occurs when the grain size distributions of the bedload and the surface are the same (i.e., 

all fractions are full mobilized). The final class was called a special case of selective 

mobility in which the bedload and subsurface were equal, although both still finer than the 

surface. 

Venditti et al. (2015) defined the bounds of these classifications based on a ratio of bedload 

(pi) and surface (fi) against grain size, so that a pi/fi of one for all grain sizes represents 

equal mobility. Venditti et al., (2015) suggested that most gravel-bed rivers are dominated 

by a condition of partial mobility, but could reach selective mobility under high discharge 

conditions. These classifications have not been directly investigated in terms of gravel-bed 
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braided rivers, although a recent paper by Mueller and Pitlick (2013), found that braided 

rivers in the field were most likely to have similar bedload and subsurface grain size 

distributions compared to their less complex single-threaded counterparts. This is 

consistent with limited armouring in braided rivers due to their high rates of morphological 

change and depth of scour-fill (i.e., active layer depth) at high discharges. As a result, 

bedload transport in braided rivers is likely closer to equal mobility and therefore distinctly 

different from stable single-thread gravel-bed rivers with lower sediment supply.  

Aside from contributing to the overall understanding of the morphodynamics of these 

complex river systems, there are several practical applications for understanding grain size 

and bed mobility evolution in gravel-bed rivers. For example, how the grain size 

distribution responds to increases in stream power has implications for the bedload 

sediment yield, which in turn is useful information for channel and reservoir design (Powell 

et al., 2001; Ryan et al., 2002). Venditti et al. (2015) characterized the existence of bed 

features, including bedload sheets and gravel dunes, in terms of mobility, which could have 

implications of channel design or river classifications. In addition, in locations where 

sediment size plays an important role in maintaining ecological functions, knowledge of 

fractional transport rates and bed mobility can help determine the disturbance regimes for 

fine grains which have implications for benthic organisms (Haschenburger & Wilcock, 

2003). Similarly, information on changes to the bedload transport rates and grain sizes 

could have implications for infrastructure, such as bridges and roads (Powell et al., 2001). 

Overall, this information provides insights into the overall stability of the bed material and 

surface under a range of flow conditions. Finally, and perhaps most importantly in the 

braided case, understanding the relationship between grain size evolution and bed mobility 

can help classify channels as transporting at ‘full capacity’ or ‘subcapacity.’ This ability to 

predict river channel behaviour across a range of discharges will be especially useful in 

locations where no transport data is available (Powell et al., 2001).  

Therefore, this third and final chapter of results will investigate grain size evolution and 

the role of bed mobility in a gravel-bed braided river. Specifically, this chapter will look at 

how grain size and bed mobility are related to channel morphology and bedload transport 

rates in gravel-bed braided rivers by addressing the following research objectives: 
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1. Quantify the grain size distribution of sediment collected from a gravel-bed braided 

river over a range of stream power conditions at constant, channel-forming 

discharge.  

2. Characterize the evolution of grain size distributions across three experimental 

hydrographs, including fractional transport rates.  

3. Characterize the range of bed mobility conditions in terms of partial, selective or 

equal mobility for a range of stream power conditions.  

4. Describe the relationship between grain size evolution and bed-material mobility 

to the variability in the morphological active width, active depth, and bedload 

transport rate in gravel-bed braided rivers. 

The aim of these objectives is to answer some new questions on bed mobility in complex 

rivers. Therefore, this chapter aims to answer the following research questions: 

- How does the grain size distribution of the bedload change over a range of stream 

power and discharge conditions? 

- Are braided rivers restricted to partial mobility like other gravel-bed rivers or do 

they also show selective or equal mobility? 

- How does the variability in grain size distribution and bed mobility relate to channel 

morphology (i.e., the active width and active depth)? 

6.1.2 Chapter Structure 

This chapter will focus on results based primarily on sediment collected in the downstream 

sediment baskets. The chapter begins with details on the grain size distribution of the 

constant discharge experiments with focus on experiments 12 and 13 (Section 6.3). Section 

6.4 outlines the grain size distributions of the hydrograph experiments, as they change 

temporally, as a function of discharge, and as a proportion of the total transport rate. The 

chapter finishes with a discussion (Section 6.5) and summary of the findings as well as the 

main conclusions (Section 6.6).  
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6.2 Constant Discharge Experiments 

6.2.1 Grain Size Distribution 

Sediment from the downstream baskets was collected after initial weighing of the wet 

sediment and was later sieved for several of the runs during the constant discharge 

experiments. Sieving allowed for the determination of grain size distribution curves. While 

few samples were taken for experiments 1, 4, and 9 in both experiment 12 and 13 sediment 

was collected approximately every fourth experimental run (Table 6.1). Given the high 

stream power of experiment 12 and 13 (0.37 and 0.41 W m-1, respectively) it is expected 

that they are the most likely of the constant discharge experiments to transition to selective 

or equal mobility.  

Table 6.1 - Summary of sediment sample counts collected from the constant 

discharge experiments, where Ω is total stream power. 

Experiment Ω (W m-1) Samples collected 

1 0.10 1 

4 0.24 1 

9 0.31 2 

12 0.37 15 

13 0.41 16 

Total  35 

This section will focus on the results from experiment 12 and 13 because the other 

experiments have too few samples to draw conclusions from. By plotting all the grain size 

distribution curves it is possible to see that there is a lot of overlap between the distributions 

of experiment 12 and 13 (Figure 6.1). Comparing the observations to the average grain size 

from the flume, most samples are finer than the flume subsurface. This could be an 

indication of armouring as the model subsurface was coarser than the bedload. Looking 

closely at Figure 6.1 it is possible to see that while experiment 13 had several runs that 

mimic the overall distribution of the model subsurface, experiment 12 was generally finer. 

These results were supported when looking at the average values of the D10, D50 and D90 

of each experiment (Table 6.2). Experiment 12 had finer D50 and D90 than both experiment 
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13 and the model but the differences were not significantly different based on a Student’s 

t-test (t (29) = -0.712, p-value = 0.482, α = 0.05). 

 

 

Figure 6.1 – Grain size distribution curves for experiment 12 and 13 and the 

subsurface of the model   

Table 6.2 – Average D10, D50 and D90 for experiment 12 and 13 as well as the bulk 

flume samples. 

 n D10 D50 D90 

Experiment 12 15 0.42 0.99 2.65 

Experiment 13 16 0.44 1.10 2.99 

Bulk Samples 7 0.32 1.18 3.52 

Looking at the temporal changes in the grain size distribution is it clear to that that it is 

highly variable, even over constant discharge (Figure 6.2). This is especially true for 

coarser grain sizes, like the D50 and especially D90. Overall, the D10 is essentially constant 

temporally and for two different stream powers (Figure 6.2).  
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Figure 6.2 – Temporal variation in D10, D50, and D90 for experiment 12 and 13. 

Figure 6.3 demonstrates that there is no clear trend when all D10, D50 and D90 observations 

from experiment 12 and 13 are plotted with the bedload transport rate as measured from 

the downstream sediment baskets. As was also indicated in Figure 6.2, the overall range of 

grain sizes transported is much greater for the coarser size fractions (i.e., D90) (Figure 6.3). 

 
Figure 6.3 – D10, D50, and D90 as a function of bedload transport rate (Qb) for 

experiments 12 and 13.
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6.3 Hydrograph Experiment 

6.3.1 Grain Size Distribution 

117 particle size samples were collected during experiment 11. Across all discharges D10 

ranged from 0.07- 0.57 mm, D50 ranged from 0.48-1.41 mm and D90 ranged from 1.15 - 

3.57 mm (Figure 6.4 and Figure 6.5). Overall, D10 was relatively constant across all 

discharges and hydrographs except for 0.7 l s-1, which had a mean D10 lower than all the 

other discharges (Figure 6.4 and Figure 6.5). D50 seems to increase slightly with discharge 

but generally plateaus above 1.35 l s-1 (Figure 6.5). Temporally, D50 is generally constant 

but seems to follow the general shape of the hydrograph, particularly at low discharges and 

during hydrograph A (Figure 6.4). Unlike the other two metrics, D90 clearly increases with 

increasing discharge (Figure 6.5). This positive trend is also obvious when looking at how 

D90 changes over the hydrographs, especially in hydrographs A and C (Figure 6.4).  

 

Figure 6.4 – Temporal variability in D10, D50, and D90 for the hydrograph experiments, 

where Q is discharge. 
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Figure 6.5 – Box plots of D10, D50, and D90 plotted against discharge (Q) over the 3 

hydrograph experiments. The dashed lines represent the flume bulk samples.  
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Plotting the grain size distribution curve for each hydrograph clearly shows the progression 

of the bedload from a finer grain size distribution to a coarser one with increasing discharge 

(Figure 6.6). This trend is especially clear in hydrograph A, where the grain size 

distribution of the bedload begins to approach the grain size distribution of the model 

subsurface, but only at high discharge. Experiment B had more individual discharge steps 

so the trend seems slightly less clear because of the overlaps in the middle discharges. 

Hydrograph B also had the lowest average D90 of the experiments with a value of 2.76 mm 

compared to the 3.04 mm and 3.05 mm for hydrograph A and C, respectively. This may be 

the result of running 8 experimental runs at the peak discharge for hydrograph B rather 

than just 4 as in the other two experiments. While the first 4 runs at peak discharge in 

hydrograph had an average D90 of 3.10 mm, the second 4 runs had an average D90 of only 

2.41 mm. Overall, the trend for hydrograph B mimics that of hydrograph A so that with 

increasing discharge the grain size distribution begins to reach unity with the grain size 

distribution of the model subsurface (Figure 6.6). Finally, unlike the other two 

hydrographs, the trend of the grain size distribution becoming coarser with discharge is 

less clear for hydrograph C. In a similar way to hydrograph B, this complexity could be the 

result of using more discharges throughout the course of hydrograph C, therefore this graph 

might reflect the general variability found at each discharge rather than showing the more 

discrete transitions found in hydrograph A which only used half the number of discharge 

steps. The differences in the three hydrographs highlights the importance of sampling 

multiple hydrographs, even over a similar morphology, to capture the variability in grain 

size distributions.  
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Figure 6.6 – Grain size distribution curves for hydrograph A, B, and C. The dashed 

lines indicate D50 and D90.
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Plotting all 117 samples together with the model distribution it is even clearer that there is 

a steady progression from a D50 around 0.5 mm to 1.4 mm as discharge is increased from 

0.7 l s-1 to 2.1 l s-1 (Figure 6.7). Some discrepancy between the high discharge curves and 

the model curve could be due to the fact that the model curve was based on a bulk sample 

rather than a surface sample. This graph highlights that the distribution of the model 

subsurface is rarely reached and the only discharges that come close are the channel-

forming discharges of 2.1 l s-1.  

 

 

Figure 6.7 – Grain size distribution for all 117 hydrograph samples. Red dashed lines 

indicate the locations of the D10, D50, and D90 with respect to the bulk samples from 

the model. The black dashed arrows show the progression of D50 and D90 from low 

discharge (light blue) to high discharge (dark blue). 

 

0

10

20

30

40

50

60

70

80

90

100

4.002.802.001.401.000.710.500.350.25Base

%
 P

as
si

n
g

Sieve Size (mm)

D50D10
D90 



218 

 

 

6.3.2 Fractional Transport Rate 

Grain size distribution of bedload can also be analyzed in terms of bedload transport rate 

(Figure 6.8). Unlike the constant discharge experiments, which had no obvious trends, both 

D50 and D90 have a strong relationship with the bedload transport rate, approaching the bulk 

sediment D50 and D90 at the highest transport rates. As expected, the D10 has a very low R2 

value of 0.150 because it was essentially transported constant under all discharge 

conditions and therefore bedload transport conditions.  

 

Figure 6.8 – D10, D50, and D90 as a function of bedload transport rate (Qb). The 

horizontal dashed lines represent D10, D50, and D90 of the bulk samples from the 

model.  

In addition, the total bedload transport rate can be analyzed for each particle size range to 

yield a fractional transport rate. Following the procedure of Ryan et al. (2002) the fractional 

transport rate for each 0.5 phi size was calculated as a proportion of the total transport rate. 

Across all discharges, the grain size fractions of 0.5-0.71 mm and 1-1.4 mm account for 

the greatest proportion of the total transport rate (Figure 6.9). Conversely, the smallest 

fraction (<0.25 mm) and the largest (>4 mm) always account for the smallest proportion of 

the total transport rate. In addition, the largest fraction only becomes detectable in 

discharges greater than 1.14 l s-1, suggesting a possible breakpoint discharge between Phase 

I and Phase II flow.  
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a) 

 

b) 

 

Figure 6.9 – Fractional transport rate (Qb) plotted against a) time and b) discharge 

(Q). The dashed vertical line separates Phase I flow from Phase II flow. Colours in 

legend apply to both graphs. 

It is possible to look at how the different size fractions change as a function of the total 
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surprisingly, the largest grains (>4 mm) only appear above a lower transport rate threshold 

of ~1 g s-1.  

 
Figure 6.10 – Fractional transport rate as a function of the total transport rate (Qb) 

for all of the runs in experiment 11. 

6.3.3 Analysis of Bed-Material Mobility 

Bed-material mobility can be defined based on the grain size distribution of the bedload 

compared to the grain size distribution of the channel surface or subsurface. The closer the 

two distributions are to each other, the closer the bedload transport rate is to equal mobility. 
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It is expected, however, that the surface and subsurface are essentially the same in this case 

because of the absence of armouring (Mueller & Pitlick, 2013; Leduc et al., 2015). As a 

result, the channel may be reaching a condition of true equal mobility as the discharge 

approaches channel-forming values.  

To investigate this trend further, a modified version of pi/fi ratio was used. Based on the 

classification system outlined in Venditti et al. (2015), the pi/fi curve is expected to be at 

zero for large grains under partial mobility conditions. Under selective mobility conditions 

the pi/fi curve will decrease with grain size but remain above zero even at larger grain sizes. 

For ‘true’ equal mobility, each size fraction must exist in the same proportion in the bed 

and the total bedload so that pi= fi or pi/fi =1, where fi is the frequency of size i in the bed 

surface by weight and pi is the frequency of size i in the total bedload (Ashworth et al., 

1992). Therefore, true equal mobility is achieved when the pi/fi curve is constant at 1. In 

the modified version, the fi values reflect the grain size fractions of the physical model 

subsurface, rather than the surface, which is normally used for armoured beds. The results 

of this analysis, including all 117 samples from the hydrograph experiment, can be seen in 

Figure 6.11. Figure 6.11 shows that as discharge increases, the system moves from a state 

of marginal partial mobility, through a state of selective mobility at higher discharges, to a 

state that is close to equal mobility (pi/fi =1 for all grain sizes).  
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Figure 6.11 – Modified pi/fi ratio relationship with grain size for all the samples in the 

hydrograph experiment. Where pi represents the bedload and fi the model 

subsurface. Red dashed lines represent the D50 and D90 of the model subsurface.  

A simple index for equal mobility is the D90 ratio between the subsurface and bedload. 

Figure 6.12a shows that this ratio decreases with increasing stream power. This supports 

the idea that at higher discharges the subsurface and bedload particle size distributions 

converge (i.e., pi/fi ratio closer to 1). Similarly, the ratio of D90 in the subsurface and 

bedload has a very strong power relationship with bedload transport rate with a mean value 

of about 1.2 at the highest stream power and transport rates (Figure 6.12b).  
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Figure 6.12 – D90 subsurface to bedload ratio as a function of a) total stream power 

(Ω) and b) bedload transport rate (Qb). The dashed lines represent the best fit 

trendlines and the outer solid lines represent the 95 % prediction interval for the 

observations.

The D90 subsurface to bedload ratio also correlated with morphological parameters 

including active width, active depth, bulk change, and the areas of erosion and deposition 

(Figure 6.13). In response to these increases in morphological change, more of the surface 

and subsurface (i.e., the active layer) are being activated, allowing the bedload and bed-

material grain size distributions to become more similar (i.e., D90s/D90l ~1). 
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Figure 6.13 –D90 subsurface to bedload ratio plotted against morphological parameters including the total active area, the bulk 

change, the morphological active width, and the active depth. The dashed lines represent the best fit trendlines and the outer 

solid lines represent the 95% prediction interval for the observations. 
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In addition to Figure 6.13, it is possible to relate D10, D50 and D90 to morphological 

parameters. As expected, the D10 is equally mobile across all measures of active width, 

active depths, and bulk change (Figure 6.14). D50 and D90 both increase with all three 

morphological parameters, showing that as morphological change increases, so does the 

mobility of grains larger than D50 and D90.  
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Figure 6.14 – D10, D50, and D90 as a function of the active width, active depth, and bulk 

change in the hydrograph experiments.
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6.4 Discussion 

Results from the constant discharge experiments suggest that grain size distributions can 

be variable, even under constant channel-forming discharges. This is likely the result of 

local changes in bed shear stress and the active width. In general, experiment 12 had finer 

grain size distributions than experiment 13 and the model subsurface. This highlights the 

dependence of bedload transport and grain size on total stream power, rather than strictly 

discharge. In addition, while both experiments had full mobilized fine grains (i.e., D10), D50 

and D90 rarely reached unity with the model subsurface, suggesting that coarse grains were 

immobile or only partially mobilized during specific experimental runs. As a result, while 

experiment 13 had several runs approaching equal mobility, it seems that both constant 

discharge experiments were selectively mobile (i.e., all available grains sizes were being 

transported, but not in proportion to availability). Venditti et al. (2015) suggested that most 

gravel-bed rivers are partial mobile, expect under high bankfull discharges when selective 

mobility can be achieved. The constant discharge experiments were run at channel-forming 

discharge which could explain why selective mobility was more common than might be 

expected in a natural gravel-bed river, where most flows are below channel-forming or 

bankfull discharges. An alternative explanation is that armouring may be less important 

under high stream power conditions (e.g., experiment 13), allowing for a greater area of 

the bed and active layer to be activated and for more grain sizes to be mobilized (Ashworth 

et al., 1992; Mueller & Pitlick, 2013).  

Some of these trends were clearer during the hydrograph experiment, where D50 and D90 

noticeably increased with increasing discharge and stream power. In a similar study done 

on a straight gravel-bed river in an ephemeral stream Powell et al. (2001) found that the 

grain size distribution of the bedload became coarser with increasing shear stress above the 

threshold for entrainment. In their study, however, which looked at D16, D50 and D84, they 

found that the grain size of all fractions increased with increasing shear stress before 

leveling off under high shear stress conditions, which was not found in the current study. 

The results from both the constant discharge and hydrograph experiments suggest that D10 

is essentially constant (i.e., fully mobile at all discharges) while D50 and D90 both increase 

with discharge. In the hydrograph experiments, the increase in D50 with discharge levels 
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off at high discharges, but still shows a positive trend while approaching D50 of the model. 

This levelling off could indicate full mobilization of those fractions at high discharge (i.e., 

all grains in those size fractions are moving). D90 increased with discharge and did not level 

off, even at the channel-forming discharge of 2.1 l s-1, although it approaches the model 

D90 in a few cases. This likely means that at low discharges the coarsest grains were 

immobile, and then became partially mobilized with increasing discharge but did not reach 

full mobility. It is possible that with discharges greater than 2.1 l s-1 that the coarse grains 

would become full mobilized, but those conditions were not addressed in this study. 

Looking at the differences in the evolution of grain size distributions across the three 

hydrographs, it seems that a transition of bed mobility from partial mobility towards equal 

mobility was most clear in hydrograph A, but less clear in both hydrograph B and 

hydrograph C. This could reflect the increased number of discharge steps in hydrograph B 

and C, which allowed for more intermediate discharges and therefore more overlap in the 

already variable grain size distributions. Also, with more discharge steps and longer 

experimental run time, the morphology on the rising and falling limb of hydrograph B and 

C may have been substantially different enough to capture some of the variability in grain 

size distributions for the same discharge. Similarly, it was found that hydrograph B had the 

lowest average D90 of the three hydrographs, but that this could have been related to 

running 8 experimental runs at peak discharge rather than just the four of the other 

hydrographs. While there are currently not enough data to confirm this, it is possible that 

these results from hydrograph B reflect changes in morphology and antecedent conditions 

of the river. For example, as discharge was increased the sediment sizes available for 

transport also increased. Once the large surface grains were made mobile, however, there 

may have been less coarse grains immediately available for transport in the active areas of 

the bed. Therefore, these results could reflect temporal and/or spatial changes in sediment 

supply (Lane & Richards, 1997). By the time hydrograph C reached peak discharge hours 

later, the active areas of the channel had changed location. Alternatively, the surface texture 

and therefore the sediment supply would have been changed by the falling limb of 

hydrograph B and the subsequent rising limb of hydrograph C. The differences in the three 

hydrographs highlights the importance of sampling multiple hydrographs, even over a 
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similar morphology, to capture the variability in grain size distributions and antecedent 

conditions of flow and channel morphology.  

To look more closely at the transition from partial through equal mobility, the total bedload 

transport rate was separated into the fractional transport rates for the different grain sizes. 

The largest grain sizes only became noticeable above the lower threshold of 1.14 l s-1. This 

lower discharge threshold was also found in terms of detectable morphological change in 

Chapter 4. Therefore, it could represent the breakpoint discharge for this system, and 

indicate the shift from Phase I (full mobility of fine grains only) towards Phase II (coarse 

grains mobilized and bedload transport rates increase). Unlike Ryan et al. (2002) who 

found that breakpoint discharge could happen at discharges as high as 80 % of the bankfull 

discharge, 1.14 l s-1 corresponds with ~54 % of the channel-forming discharge of 2.1 l s-1. 

These results suggest that the modelled braided river existed in Phase II for the majority of 

the hydrograph discharges tested, and that the transition to Phase II corresponds with the 

lower threshold found for detectable morphological change. This type of investigation has 

not been clearly done for gravel-bed braided rivers, but highlights that they may behave 

differently than their single-thread counterparts in terms of fractional transport rates and 

bed mobility.  

Investigating the mobility of the bed in terms of a pi/fi ratio, the results showed again that 

increasing discharge and stream power causes a transition from a general state of partial 

mobility (pi/fi=0), towards equal mobility (pi/fi = 1), although most of the experimental 

runs existed somewhere in-between in a state of selective mobility. Comparing the pi/fi 

graph to others from gravel-bed rivers, the overall trends are similar. Powell et al. (2001) 

found that the differences between the bedload grain size and that of the bed material 

decreased with increases in shear stress, but that the D84 did not change much beyond 4X 

critical shear stress. They suggest that this result confirms size selective transport under 

low shear stress conditions and a shift towards equal mobility at high shear stresses.  

While the relationships between bed mobility and morphological change have not been 

well researched in the past, there are a couple of notable exceptions. For example, 

Haschenburger & Wilcock (2003) tie changes in fractional transport rates, which are 

strongly linked to overall bed mobility, with what is essentially the expansion and 
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contraction of the active width. In a relatively straight gravel-bed channel, they found that 

fine grains were fully mobile, but that coarse grains were generally immobile or only partial 

mobile (i.e., some grains moving but not in proportion to their availability on the bed). In 

terms of channel morphology and bed mobility, Haschenburger & Wilcock (2003) found 

that areas associated with the thalweg would often be fully mobilized, while the 

surrounding area would be partially mobilized. In addition, in areas near the channel 

margins coarse grains were most likely to be immobile. As flow increased, the fully 

mobilized zone would expand from the thalweg into the partially mobile zones, while the 

partial mobile zone would expand to the channel margins. When flow reached bankfull 

discharges, Haschenburger & Wilcock, (2003) found that zones of partial transport were 

almost completely replaced with zones of full mobilization. In other terms, Haschenburger 

& Wilcock (2003) seem to be describing the expansion of the active width and deepening 

of the active depth with increasing discharge and stream power and the transition from 

partial to selective mobility of the bed. In their study, Haschenburger & Wilcock (2003) 

found that areas covered by immobile grains or areas with only partial transport could 

persist over time and for multiple years, indicating that true equal mobility would be rare. 

This is likely where the braided case is very different from straight and meandering 

channels. While Haschenburger & Wilcock (2003) suggest that this persistence of 

immobile grains has implications for the development of armouring, this research has 

already suggested that armouring may be less important in braided rivers and under high 

stream power conditions. Furthermore, research by Leduc et al. (2015) on the same flume 

used in this research found that the surface layer was similar to bulk distributions, 

supporting the idea that braided rivers lack strong armouring. In addition, examination of 

the DoDs from previous chapters shows that not only does the active area become more 

continuous with increasing stream power, but that braided morphology is constantly 

changing and therefore it is unlikely that large portions of the wetted area would remain 

immobile for long periods of time. Linking this back to bedload transport rates, 

Haschenburger & Wilcock (2003) found that bedload transport rates can be large, even 

under conditions of partial transport but that transport rates would still increase during full 

surface mobilization. Similar results were found in this research, where increasing 

discharge caused more grains and larger grains are being activated into the bedload. 
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In another study, Lisle (1995) looked at 13 gravel-bed rivers in the field covering a range 

of channel morphologies including a braided river. Plotting the ratio of D50 in the 

subsurface with the D50 of the bedload (D*) against dimensionless stream power (here w* 

is used) Lisle (1995) found a negative relationship, so that at higher stream power the bed 

was closer to equal mobility. The results of the current study show a similar trend defined 

by a strong negative power relationship (Figure 6.15). These results highlight that while 

equal mobility is not perfectly achieved in the hydrograph experiments (where D* = 1), at 

higher discharges and therefore dimensionless stream powers, the system does approach 

equal mobility (~1.1) (Figure 6.15). Lisle (1995) suggested that in many cases, true equal 

mobility may not be achieved until several times the bankfull discharge has been achieved, 

which was not tested in this research. Lisle (1995) also suggested that the rivers closest to 

achieving equal mobility were laterally migrating braided rivers. Therefore, it may not be 

surprising that the braided rivers tested here were close to equal mobility, even at 

discharges below several times bankfull discharge.  

 

Figure 6.15 – The ratio of D50 in the subsurface to the D50 of the bedload (D*) as a 

function of dimensionless stream power (w*). 

Lisle (1995) links his findings with the depth of scour and fill by suggesting that as stream 

power increases, the depth of scour (i.e., erosion) increases. Therefore, the active layer 

thickness, defined as the depth of bed incorporated into the bedload transport, increases 

with stream power so that bedload is entrained from greater and greater depths with 
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increasing dimensionless stream power. Figure 6.16 shows how different depths of change 

(e.g., depths of scour and fill) accounted for increasingly large areas with increasing 

discharge and therefore stream power for the hydrograph experiments. Under high 

discharges (>1.14 l s-1), the depth of the active layer is well beyond the D90 of 3.5 mm so 

that all size fractions were available for transport (Figure 6.16 and Figure 6.17). Based on 

Lisle (1995) who suggested that equal mobility would require the active layer to be 8-10x 

the D90, it is possible that equal mobility can be achieved at, or close to, channel forming-

discharges in gravel-bed braided rivers. While few runs achieved active depths greater than 

28mm (8x D90), depths greater than 24mm (7x D90) were common above discharges of 

1.65 l s-1, again suggesting that this system was close to equal mobility at high discharges 

(Figure 6.17).  

 

Figure 6.16 – The total active area covered by a range of elevation changes across the 

discharges (Q) used in the hydrograph experiments. Results shown were derived from 

the 2σ threshold.  
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Figure 6.17 - Distribution of scour depths (erosion) as a function of total stream power 

(Ω). Results shown were derived using the 2σ threshold.  

6.5 Summary and Conclusions 

This chapter expands on the last two chapters by investigating the role of grain size 

distributions and their evolution with channel morphology and stream power. Overall, there 

are strong linkages between the thresholds for detectable morphological change, bedload 

transport rates, and coarse grain mobilization. The expansion and contraction of the active 

width, which is likely due to a lack of persistent armouring, is strongly related to the 

transition from a partially mobile bed towards equal mobility. Until now, there have been 

no studies, in the field or flume, that have been able to link channel morphology with grain 

size distributions in gravel-bed braided rivers in this way. 

From these results the following conclusions are made: 

- Fine grains were fully mobilized for all stream powers over three event hydrographs 

- D50 and D90 can be highly variable, even under constant discharge conditions, but both 

tend to increase with stream power.  

- Antecedent conditions may be important for determining the availability of grain sizes 

in the local sediment supply. 
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- While equal mobility is rarely achieved, these model braided rivers were generally 

selectively mobile and approached equal mobility at high discharges. 

- The transition from Phase I to Phase II corresponds to the lower threshold of 

morphological change with a discharge of 1.14 l s-1 or dimensionless stream power of 

0.08. 

- The expansion of the active width and depth with increasing stream power is directly 

related to the mobilization of coarse grains as the active layer thickens, indicating that 

bedload size distributions are at least partially a function of channel morphodynamics.  

- Braided rivers are likely different in bed mobility from their single-thread counterparts 

due to the lack of armouring and the lateral migration, allowing for active layers 

thickness up to 10x the size of D90, rather than entrainment being limited to the surface 

and immediate subsurface.  

- The results suggest that in a physical model of a braided river, armouring may be 

limited or non-existent, especially at high discharge and stream power.  
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Chapter 7 

7 Summary and Conclusion  

7.1 Overview 

The purpose of this research was to contribute to current knowledge and understanding of 

the morphodynamics of gravel-bed braided rivers. Specifically, while there are clearly 

strong linkages between bedload transport and morphology in these spatially and 

temporally dynamic rivers, understanding of these linkages and the relation to other factors 

(e.g., channel hydraulics and bed-material mobility) in these river systems was incomplete. 

This was largely because bedload transport in braided rivers has been notoriously difficult 

to measure, either by direct sampling, or using hydraulically-based bedload formulae. As 

a result, and due to recent improvements in technology, the morphological method has 

provided an attractive alternative to traditional sampling and formulaic techniques for 

estimating bedload transport rates. In addition to inferring information about bedload 

transport from changes in topography and morphology, the morphological method allows 

for the investigation of spatial and temporal patterns of change not possible with other 

methods. In addition, given the ability to collect bedload from a physical model, this 

research further investigated the role of grain size fractional transport and bed mobility in 

braided rivers, which has not been done before.  

This final chapter starts by summarizing the main results in terms of the original research 

objectives (Section 7.2). Next, there is a discussion about the possible contributions this 

research will have with respect to fundamental understanding as well as applied 

geomorphology and engineering (Section 7.3). Following this, Section 7.4 outlines some 

of the known research limitations of this research project along with ideas for future 

research prospects. The chapter (and thesis) ends with a few concluding statements. 
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7.2 Summary of Results 

The goal of Chapter 4 was to address two main research objectives: 

1. Quantify the morphological active width in a physical model over a range of gravel-

bed river morphologies and characterize its relationship with wetted width, braiding 

indices, and dimensionless stream power over a range of flow conditions. 

2. Characterize the relationship between the active width and bedload transport flux 

under channel forming conditions and variable discharge conditions 

This chapter was based on results and analysis from 5 constant channel-forming discharge 

experiments as well as three event hydrograph experiments. The findings of this research 

confirm and extend previous work that found wetted width, braiding intensity, active 

braiding intensity, and the morphological active width all increase with increasing 

discharge and stream power (Ashmore & Sauks, 2006; Bertoldi et al., 2009a; Egozi & 

Ashmore, 2009). Measurements of bedload transport rate can be highly variable but in 

general increased with total stream power and dimensionless stream power (Ashmore, 

1988; Bertoldi et al., 2009a). While there was substantial scatter, results from this research 

follow the general trends described by Bertoldi et al. (2009a) where active width as a 

proportion of the wetted width was positively correlated with dimensionless stream power 

and ABI. Novel contributions from this research include the characterization of the positive 

relationship between the morphological active width and measured bedload transport rates 

for both the constant discharge and hydrograph experiments.  

In addition to these main results, it was found that the spatial distribution of the active area 

became more continuous and complex in terms of areas of erosion and deposition with 

increasing discharge and stream power. Furthermore, while the active depth was restricted 

to a relatively narrow range for the constant discharge experiments, it had a positive 

relationship with stream power in the hydrograph experiments. This could highlight 

differences between ‘downstream’ (i.e., constant channel-forming discharge experiments) 

and ‘at-a-station’ (i.e., event hydrograph) processes. Finally, based on the results of the 

hydrograph experiments, both morphological change and bedload transport rate share the 

same lower threshold for detection at a dimensionless stream power around 0.08 (1.14 l s-
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1). This research is the first of its kind to illustrate the direct linkages between active width, 

bedload transport, and stream power both spatially and temporally for gravel-bed braided 

rivers.  

Chapter 5 addressed the following objectives: 

3. Calculate the morphological sediment budget for multi-thread gravel-bed rivers 

over a range of discharge and stream power conditions with a known sediment 

output and under the minimum budget conditions  

4. Investigate the spatial and temporal dynamics of sediment transport in experimental 

gravel-bed braided rivers using morphological methods 

As predicted, bedload transport rate was highly variable, both spatially and temporally. 

Likewise, volumes of erosion and deposition were spatially and temporally variable, but in 

general, similar in magnitude. Consequently, the total net change across all of the constant 

discharge experiments was low (-0.001- 0 m3). The tendency for net change to be slightly 

negative could be related to a combination of morphodynamic processes and measurement 

techniques. For instance, areas of erosion may experience greater magnitudes of change 

than areas of deposition, and therefore are more likely to be detected during DoD 

differencing and subsequent thresholding (Rumsby et al., 2008; Wheaton et al., 2009). 

Also, morphological estimates of path lengths were reasonable with respect to previous 

findings from tracers, and similar across all the braided constant discharge experiments. 

This supports the general idea that morphology is determined by the movement of 

individual grains which are themselves influenced by the local morphology (Pyrce & 

Ashmore, 2003b; Kasprak et al., 2015).  

Two morphological budgets were calculated, one based on the known bedload transport 

rate at the downstream end of the flume, and the other based on the assumptions of the 

minimum budget. Overall, the morphological budget provided reasonable estimates of 

bedload transport rates once propagated across 14 subsections of the study reach. The 

results suggest that while variable, rates of bedload transport are similar at all 14 cross-

sections including the measured flux at the downstream baskets. These strong similarities 

in the spatial and temporal variability in bedload transport flux indicates a 

morphologically-dominated system. While it was expected that the minimum budget 
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would underestimate bedload transport rates, this research was able to compare it to 

measured values and found that it significantly underestimated the budget for all 

experiments analyzed, which could have implications for applied geomorphology and 

engineering that often rely on such estimates.  

Finally, it was found that the bulk change was strongly correlated between adjacent 

sections but that the strength of the relationships decayed with distance. This spatial 

persistence was less noticeable at higher stream powers, and while the exact cause for this 

is not known it could be due to the increased morphological complexity found at high 

stream power.  

The results Chapter 6, investigated the following objectives: 

5. Characterize the evolution of grain size distributions across three experimental 

hydrographs, including fractional transport rates. 

6. Characterize the range of bed mobility conditions in terms of partial, selective or 

equal mobility for a range of stream power conditions. 

Unlike any other study before it, this chapter linked channel morphology, hydraulics, grain 

size distributions, and bed mobility in gravel-bed braided rivers. It was found that D10 was 

relatively constant under all experimental conditions, suggesting that fine grains were 

always fully mobilized in the braided systems. D50 and D90 were strongly influenced by 

stream power in the hydrograph experiments, but no clear trends were found in the constant 

discharge experiments. Plotting the grain size distributions of the hydrograph experiment 

with the subsurface of the flume, it was found that increasing discharge and stream power 

caused a shift from partial mobility towards equal mobility as the bedload began to mimic 

the distribution of the bed subsurface. This special case of selective mobility is expected to 

be rare in gravel-bed rivers but seems to be common in the event hydrographs modelled 

here (Venditti et al., 2017). In addition, the differences in the mobility of different size 

fractions can be directly linked to the expansion and contraction of the morphological 

active width and the expansion of the active layer into greater depths of the bed (Lisle, 

1995; Haschenburger & Wilcock, 2003). Both types of expansions are likely to be more 

common in braided rivers due to the apparent lack of armouring in these systems. Based 

on previous research the lack of armouring could the related to the relatively high stream 
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powers and the high rates of sediment supply commonly found in braided rivers, that 

prevent the establishment of a coarse armour layer (Lisle, 1995). The sediment supply and 

availability of a variety of grain sizes is constantly being replenished from lateral migration 

and the erosion of bars. The lower threshold for the fractional transport of coarse sediment 

was around 1.14 l s-1 or a dimensionless stream power of 0.08 which coincides with the 

threshold for significant bedload transport occurring and for measurable morphological 

active width and depth (Chapter 4). This threshold also separates Phase I from Phase II 

transport, suggesting a strong link between channel morphology, bedload transport rate, 

and bed mobility.  

7.3 Contributions 

This research contributes to the larger goal of understanding the processes driving channel 

morphology, hydraulics, and bedload transport in gravel-bed braided rivers. For instance, 

the active width was already shown to have a strong relationship with hydraulic and 

morphologic parameters, but these relationships had not been adequately investigated. This 

research extended previous research that suggested active width could be predicted from 

simple hydraulic parameters (e.g., discharge, slope, grain size, and active braiding 

intensity) based on an extensive dataset across a range of stream power (Bertoldi et al., 

2009a; Ashmore et al., 2011). Additionally, this research confirmed that the active width 

is related to bedload transport rates, which had not been characterized in previous research, 

and that both are highly variable spatially and temporally. A better understanding of the 

active width can now be used in river assessment as a general predictor of bulk change, 

active depth, and bedload transport rates in a given river. In addition, due to the relatively 

strong relationship with active braiding intensity (ABI), it might be possible to estimate the 

reach averaged-active width from field photos, where ABI can be estimated as a function 

of wetted width and braiding intensity. Therefore, the active width serves as a direct link 

between morphological change, bedload transport, and channel hydraulics. In response to 

increased stream power, the active width expands and becomes more continuous within 

active channels. As a result, bedload transport rates increase (i.e., Phase II flow) and in 

braided rivers, which seem to lack extensive armouring, this also results in a transition 

towards equal mobility as all the grains in the active layer are mobilized. Finally, given the 
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strong relationship between bedload transport and morphology, most of the particles that 

are mobilized will be transported and deposited on the next downstream bar (Pyrce & 

Ashmore, 2003b; Kasprak et al., 2015). Therefore, the active width serves as an indicator 

of bed stability, bedload transport rates, and rates of morphological change. Furthermore, 

the active width itself could be at least estimated from simple hydraulic and morphological 

parameters such as the active braiding intensity, wetted width, and total stream power 

(Ashmore et al., 2011).  

One of the unexpected discoveries in this research was that the lower threshold for 

morphological change corresponded with the transition from Phase I (i.e., partial mobility) 

to Phase II flow (i.e., selective mobility). The importance of this discovery is that it 

confirms the fundamental linkages between morphological change and bedload transport. 

Below this threshold, there was no detectable morphological change and bedload transport 

was essentially negligible and restricted to fine particles only. Above this threshold, 

morphological change, bedload transport, and the fractional transport of coarse grains all 

increased with stream power. If such a threshold could be found in real rivers, it would 

have meaningful implications for classifying the stability of river systems, as well as the 

ecological functioning. While ecological considerations were not part of the current study, 

Haschenburger & Wilcock (2003) highlighted the importance of knowing the fractional 

transport rates of different grain sizes for the maintenance of benthic invertebrate habitats 

in gravel-bed rivers.  

In addition to the main results, this research highlights the importance of experimental 

geomorphology and physical modelling for exploratory and confirmatory research. The 

data collected, with respect to the active width, bedload transport, and grain-size 

distributions would have been impossible in the field due to the challenges in collecting 

spatially continuous DEMs of braided gravel-bed river topography, and the notorious 

challenges with at-a-point sampling of bedload transport in the field. This research also 

confirmed that the use of close-range digital photogrammetry is effective for capturing 

channel topography at small spatial and temporal resolutions and that DEM differencing is 

an effective way to apply the morphological method to complex river systems. 

Furthermore, the control over the channel-forming discharge and stream power allowed for 
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a wide range of conditions to be investigated at a high spatial and temporal resolution. 

Additionally, given the ability to investigate the role of constant and variable discharge, 

this research has effectively characterized the differences in active width and depth for 

downstream and at-a-station conditions.  

Beyond academic contributions, the knowledge gained from this research is expected to 

have many practical applications that will directly benefit geomorphologists, engineers, 

river managers and conservation authorities, and ecologists. Specifically, measurements of 

the wetted width and braiding intensity could be used to estimate active braiding intensity 

and the active width, both of which are positively related to bedload transport rates. While 

these would only provide estimates of bedload transport rates, the morphological method 

is in general less expensive, time-consuming and labour intensive than hydraulics-based 

methods or direct sampling in the field (McLean & Church, 1999). The focus on remote 

sensing or photogrammetric techniques could limit the time spent in the field, the number 

of personnel required, and the dangers of wading in rivers (McLean & Church, 1999). This 

method will be especially useful in larger rivers, including braided rivers, and remote areas 

where traditional field methods are impractical and numerical models still need 

improvement (Ashmore & Church, 1998). The morphological method also has the 

advantage of not needing hydraulic measurements that are difficult to measure such as local 

shear stress and near-bed velocity. Finally, remote sensing techniques make it possible to 

monitor large areas remotely and over time, providing insight into patterns of spatial 

variation and long-term processes. 

The management of braided rivers can be generally classified into two main categories 1) 

reduce braiding for the protection of infrastructure or resources; 2) promote braiding for 

the restoration of hydrological ecological functioning (Piegay et al., 2006). Traditionally, 

to reduce braiding and flooding, gravel was extracted from the river to promote narrowing 

and incising of the channel. Unfortunately, excessive gravel extraction can have 

detrimental impacts on local infrastructure and ecological functioning. On the other hand, 

to promote or restore braiding, sediment is injected into the system. Both of these 

management strategies would benefit from knowledge on river evolution over time as well 

as estimates of bedload transport yields (Piegay et al., 2006). This is a good example of 
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how the morphological method can use historical maps and aerial photos to help inform 

best management practices.  

Additionally, while many rivers in the world do not have gauging stations or active 

monitoring programs, there are large datasets of aerial photographs that are being under-

utilized (McLean & Church, 1999) With clearer understandings of the linkages between 

morphology, hydraulics, and bedload transport it will possible to apply morphological 

methods to historical photographs, which can be used to quantify changing river 

morphology (Bakker & Lane, 2017). For example, it may be possible to describe how the 

active width or the prevailing sediment budget has changed over time. The advantage is 

that the historical images can provide information in areas where no other data is available 

while also providing a long-term dataset of river morphology change (McLean & Church, 

1999). This could shed light on the impacts of land-use change, direct human interventions 

and in some areas, the success of restoration efforts.  

Finally, this data will have direct contributions to improving the numerical modelling of 

gravel-bed braided rivers. One of the fundamental outcomes of this research is the >500 

DEMs of braided river evolution that could be used in numerical modelling. In addition, a 

clearer understanding of morphologically driven transport is expected to improve 

numerical model predictions of bedload transport rates, especially over long-term channel 

evolution. Furthermore, information on fractional transport rates could prove invaluable to 

validate and refine numerical models (Brasington & Smart, 2003; Williams et al., 2016). 

With improved numerical models, it will be possible to investigate many questions that 

cannot be easily tackled in the field or flume, including scale invariance, self-organization, 

and long-term evolution (Brasington & Smart, 2003) 

7.4 Limitations and Future Research Questions 

This research is one of the most extensive of its kind, opening up the possibilities for many 

other research projects and questions to be answered. In some cases, this will involve 

improving on methods and techniques used in this research, or to expand on the data 

collected here for a more complete dataset. For example, two complete experiments were 

abandoned during early processing due to poor image quality and subsequent poor DEM 
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quality. The morphological method is very sensitive to data quality; therefore, more 

research should be done to investigate ways to improve SfM digital photogrammetry data 

collection. Some of the improvements made over the course of this research included 

extensive quality control (i.e., visually inspect photo quality at the end of each run), 

redundant coded targets and target checking as well as introducing two photo surveys of 

each surface. Additionally, it would be helpful to recreate the conditions of experiment 8 

which was run at a constant channel-forming discharge of 1.14 l s-1. As mentioned, this 

discharge was important for morphological change and bedload transport rates in the 

physical model based on the hydrograph experiments and therefore a recreation of this 

experiment would allow for a deeper investigation into that possible threshold of braiding 

morphodynamics.  

Three experiments, experiments 9, 12, and 13, interacted with the flume edges. While this 

is largely unavoidable due to the self-forming nature of the channel morphologies, this 

effect is undesirable because of the possible implication on bedload transport rates and the 

evolution of channel morphology. Ideally, similar experiments could be done on a larger 

flume, where edge effects can be avoided.  

The current research was done using a single grain size distribution scaled down from the 

Sunwapta River in Alberta, Canada. It would be interesting to see if the findings of this 

research were consistent for other grain size distributions. For example, it is expected that 

a bed of coarser grains and low sediment supply might promote armouring more than the 

current model, but these differences have not yet been investigated. Furthermore, the 

current research did not consider the surface grain size distribution specifically, but relied 

on the subsurface as a surrogate. Future research should look at the surface for a more 

detailed look at the linkages between surface armouring and the expansion of the active 

width and active depth spatially and temporally.  

Estimates of path length in this study were based on morphological estimates of volumes 

of erosion and known bedload transport rates. While the values found were reasonable 

based on previous research, path length in braided rivers should be investigated used more 

extensive tracer studies, across a range of stream powers. This would extend the work of 

Kasprak et al., (2015) and help confirm that the variability in path length for a given 



244 

 

 

morphology is relatively limited and strongly linked to morphology (Ashmore & Church, 

1998). Furthermore, tracer research could be extended to look at fractional transport rates 

to help provide additional insights into the morphological differences in Phase I and Phase 

II flow. Finally, some of the spatial correlations found in this research should be 

investigated in more detail. For example, the exact reason for the spatial decay in the 

correlation of bulk change between sections is not known, but seems to be related to 

morphology.  

This dataset directly compared two different DoD thresholding methods, the classic simple 

threshold based on the standard deviation of the vertical error, and the dilation method 

which tried to account for neighbouring cells to create a more continuous active area. The 

simple thresholding method is commonly used in the literature, where some measure of 

DoD uncertainty (here, the 2σ of the vertical error) is used to create a minimum level of 

detection (LOD) (Wheaton et al., 2009). The literature has also shown that estimates of 

morphological change are highly sensitive to the chosen threshold, and therefore care must 

be taken in choosing a threshold that preserves the maximum amount of ‘real’ data while 

eliminating data noise. Wheaton et al. (2010) proposed that while the simple threshold is 

easy to apply it does not account for that fact that vertical error is not spatially uniform. As 

a result, more ‘real’ data can be preserved if the LOD is spatially varied to accommodate 

differences in elevation uncertainty. In their research, Wheaton et al. (2010) found that 

areas on the Feshie River with steep banks and high surface roughness were associated 

with higher elevation uncertainty than areas that were relatively flat and smooth. While 

Wheaton et al. (2010) used the principles of fuzzy modelling to manage their DoDs, here 

a dilation method was used which resulted in more continuous active areas in the DoDs. 

The purpose of including both thresholds was not to promote the use of one over the other, 

but simply to compare the differences between the methods throughout the data analysis 

stage. Overall, the dilation method resulted in significantly greater estimates of active 

width in both the constant and hydrograph experiments compared to the simple 

thresholding method. In terms of the active depth, the dilation method provided lower 

estimates than the simple thresholding method, but the differences were only significant 

for the hydrograph experiments. Moving into net change and subsequent morphological 

sediment budgeting, the two methods were not significantly different for the constant 
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discharge experiments. There also seemed to be greater agreement between the methods 

with increases in volumes of change, supporting the idea that the morphological method is 

ideally used in areas where change is greater than the uncertainty in the measurements. 

Based on these results, it is not clear if one method is better than another, but it seems both 

could appropriately be used for morphological budgeting. Additional research should 

investigate the implications of data lost between the two methods.  

Building on the current research, additional work should be done on the changes in bed 

mobility for constant discharge experiments. The research here was limited by few samples 

taken at lower discharges, but it would be helpful to confirm the overall trends found in the 

hydrographs over a range of discharges. Similarly, additional hydrograph experiments 

should be done to further investigate the impacts of antecedent conditions, the number of 

discharge steps, and finally the changes in bed mobility with discharges above bankfull. 

Ryan et al. (2002) suggested that there may be a second breakpoint discharge when 

mobility changes, but since this likely occurs well above bankfull discharge, that second 

breakpoint was not investigated in this research.  

Finally, while Froude-scale modelling has been used successfully in the past to measure 

and monitor gravel-bed braided river processes, it is important to validate model findings 

with field data. There are many ways model and prototype similarity can be verified but in 

general methods can be categorized into comparisons of form or comparisons of process.  

Comparisons of form include visual comparison of channel planform and braiding 

intensity, cross-section geometry, and long profile characteristics (Young & Warburton, 

1996; Paola et al., 2009). Similarity of process usually relies on the comparison of non-

dimensional parameters related to channel hydraulics and sediment transport (i.e., Froude-

scale modelling). Additional process comparisons are relatively challenging because in 

many cases equivalent prototype data is unavailable (e.g., bedload transport rates) (Young 

& Warburton, 1996). While previous research has found that Froude-scaled models of 

braided rivers are qualitatively and quantitatively similar to their field prototypes, 

additional verification of this dataset is needed if the findings of this research are to be used 

for geomorphological and engineering applications (Paola et al., 2009). One possible 

approach would be to compare the rates and magnitudes of morphological change (i.e., 
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active areas and active depths) in an experimental river to the rates and magnitudes of 

change the prototype (Sapozhnikov & Foufoula-Georgiou, 1997; Paola et al., 2009). While 

this comparison would have been challenging in the past, new techniques for capturing 

river topography are making it increasingly possible to collect high-resolutions DEMs at 

greater temporally frequencies in the field (Brasington et al., 2003; Picco et al., 2013; 

Wheaton et al., 2013). The main challenge to collecting a spatially continuous DEM in the 

field is achieving detailed elevation information in wetted areas. Therefore, while not the 

focus on the current analyses, future analyses should compare measurements of planform 

change (i.e., rate and magnitude) between the model and the prototype river.  

7.5 Concluding Statements 

The research presented in this thesis has confirmed and extended previous research while 

also making several novel contributions to the study of gravel-bed braided river 

morphodynamics. In terms of the dataset, the data collected for this research represents one 

of the largest and most comprehensive of its kind. Few studies have ever reported so many 

digital elevation models and DEMs of difference being created over such short time-

intervals or over a range of channel morphologies. In addition to the extensive dataset on 

the model’s surface topography, bedload transport measurements were made for each 

experimental run covering the same temporal interval as the DoDs. This dataset alone will 

be valuable to other researchers, including numerical modellers, for investigating 

additional questions on channel morphodynamics and bedload transport processes.  

Overall, the results highlight some of the fundamental linkages between channel 

morphology, bedload transport processes, and evolution in bed mobility. All of the results 

support the idea that even chaotic looking braided rivers have systematic behaviour like 

their single-threaded counterparts but that they have unique attributes as a function of their 

intrinsically complex morphodynamics.   
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Appendices 

Appendix A Principles of Similarity in Froude-Scaled Models 

Similarity theory is based on the use of dimensionless parameters that characterize a system 

and can be kept equal between a model and prototype. The fundamental dimensionless 

parameters used in Froude scaling modelling can be determined using dimensional analysis 

and the Buckingham П (pi) theorem (Peakall et al., 1996; Dingman, 2009). This method is 

used to reduce all relevant variables into their fundamental units and determine all the 

possible non-dimensional combinations of the variables. When considering a movable-bed 

model where the flow is two-phase flow (fluid and sediment particles) the fundamental 

variables can be defined by: 

- The fluid properties: dynamic viscosity (µ) and density of the fluid (ρ) 

- The sediment properties: sediment density (ρs) and grain diameter (D)   

- The flow properties: slope (S); flow depth (d) or hydraulic radius (R); and the 

acceleration due to gravity (𝑔) 

In this example, shear velocity (U*= (𝑔RS)0.5) is often used in place of slope and the 

immersed specific weight of the grains (𝛾𝑠 = 𝑔(𝜌𝑠 − 𝜌)) is often used in place of 𝑔. This 

leaves us with µ, ρ, ρs, R, D, U* and γs (Peakall et al., 1996; Young and Warburton, 1996).  

Based on the Buckingham П theorem, there are seven variables and three dimensions 

(mass, length and time) resulting in four dimensionless terms, called П terms: 

Π1 =
𝑅

𝐷
 

Π2 =
𝜌𝑠

𝜌
 

Π3 =
𝜌𝑈∗𝐷

𝜇
=  𝑅𝑒∗ 

Π4 =
𝜌𝑈∗

2

𝛾𝑠𝐷
=  𝐹𝑟∗ 
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П1 and П2 are relative roughness and relative density, respectively. П3 is the grain Reynolds 

number (𝑅𝑒∗), which represents a ratio between inertial forces and viscous forces. П4 is 

the grain-size Froude number (𝐹𝑟∗), representing the ratio between inertial and gravitational 

forces (Young and Warburton, 1996).  

In a perfectly scaled model, the values of these dimensionless variables would be the same 

in the model and prototype. Unfortunately, it is generally not possible and in fluvial 

geomorphology the result is the Froude-scaled model (FSM), in which the Froude number 

is held constant between the model and prototype and the grain Reynolds number is relaxed 

but kept above the critical value (𝑅𝑒∗ > 70) for rough turbulent flow (Peakall et al., 1996; 

Young and Warburton, 1996). In addition, geometric similarity requires that all lengths are 

scaled by the same scale ratio. Therefore, the grain size distribution for graded sediment is 

scaled down by the same scale ratio for all grain sizes. Finally, the river slope is the same 

in the model and prototype (Young and Warburton, 1996). As a result, the Shields 

parameter (ϑ), which defines the shear stress required for entrainment, will be the same in 

the model and prototype: 

𝜗 =
𝜏

(𝜌𝑠 − 𝜌)𝑔𝐷
 

where τ is the bed shear stress (𝜏 = 𝜌𝑔𝑑𝑆, d is water depth and S is slope), ρs and ρ are the 

density of sediment and water respectively, 𝑔 is the gravitational constant and D is grain 

size.  
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Appendix B Weir Calibration 

Prior to the experiments a new weir was built and calibrated in January 2015. Calibration 

of the weir was done using a custom-built pool attached to the edges of the weir via a plastic 

sheet (Figure B.1). The sides of the pool had vertical scales that allowed the height of the 

water in the pool to be read at both the upstream and downstream ends. Using four people, 

the amount of time it took to fill the pool was measured 3 times across a series of slope and 

discharge settings. It was possible to find a linear relationship between the height of the 

water in the head tank and the discharge coming over the weir. There are several sources 

of error with this method, including the inherent subjectivity of starting the timer and 

reading the pool scales simultaneously, especially as water levels were often unsteady. This 

error was minimized by having the same person at each station for the duration of 

calibration and completing triplicates for all tests. The result of the calibration was 

estimated discharge based on the following equation: 

𝑄 = 0.5𝐻 − 0.4 

where H is the water depth above the weir. The estimated relative error is shown in Table 

B.1, indicating that the discharge values have an estimated error of ~5 %. 
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Figure B.1 – Weir calibration using a custom-built pool. 

Table B.1 - Relative error in discharge (Q) measurements as a function of head tank 

water depth. 

Relative Error Q 

 l s-1 

Mean 0.045 

Minimum 0.001 

Maximum 0.15 

Std. dev. 0.44 
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Appendix C Sediment Sorter Calibration 

To determine that amount of water coming off the upstream sediment slide, the discharge 

contributions from the slide were measured at the end of the experiments. After starving 

the sediment recirculation system of sediment, an empty bucket positioned at the end of 

the sediment slide was filled with the output from the sediment sorter (i.e., water) for 30 

seconds. The mass of water collected over 30 seconds was averaged for 10 samples to 

estimate the average contributing discharge from the sediment sorter (Table C.1).For the 

second round of testing, sediment was recirculated so that the water and sediment mixture 

going down the sediment slide mimicked the experimental conditions. Like the first round 

of tests, 10 samples were collected for 30 seconds each. The sediment was separated from 

the water using a small box with a fine mesh bottom attached to the top of the water 

collection bucket. Once separated the water and the sediment were weighed separately so 

that the discharge represents contributions from the water only (Table C.1).  

Table C.1 - Summary statistics sediment sorter discharge (Q) contributions of water 

and sediment, where samples is the number of samples, mean Q is the average 

discharge, and σ is the standard deviation. 

 Samples Mean Q σ 

  l s-1 l s-1 

Water Only 10 0.118 0.003 

Water and Sediment 10 0.117 0.006 
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Appendix D Target Survey  

The procedure used to complete the target surveys for each experimental condition was 

based on the following steps: 

1) Set-up tripod and theodolite over Survey Station 1 marked by a target on the floor. 

2) Measure and input instrument height into the theodolite (~1.965 m) 

3) Set the horizontal angle (Hz) to zero on control point 1B. 

4) Collect Hz and vertical (Z) coordinates for control points 1B, 3L, 3LB and Survey 

Station 2. 

5) Collet Hz and Z coordinates for each survey target beginning with 253 in the bottom 

left of the flume and continuing with the targets along the left-hand side to target 

295.  

6) Collect Hz and Z coordinates for each survey target along the right-hand side of the 

flume, beginning with upstream target 283 and continuing to target 285.  

7) Re-collect the Hz and Z coordinates for the control points 1B, 3L, 3LB and station 

2. If values differ by greater than 0.002”, restart the survey, otherwise continue to 

step 8. 

8) Complete a second survey of each target so that there are two Hz and Z coordinates 

for each target from Survey Station 1. If values of control points differ by greater 

than 2 seconds, restart the survey. 

9) If satisfied with coordinates from Survey Station 1, move tripod and theodolite over 

to Survey Station 2 as marked by the target on the floor.  

10) Follow steps 4 – 8, this time taking coordinates for Survey Station 1. 

One survey was used for each experiment, although sometimes multiple surveys would 

need to be completed to achieve the desired precision of < 0.002”. Once a survey is 

completed, the resulting coordinates were used in Agisoft to determine the number of 

targets that could be detected. Targets that were consistently missing during automatic 

target detection component in Agisoft were adjusted and resurveyed. This was only done 

during the evolution stages of the experiments to ensure high quality surveys were used for 

the processing of experimental DEMs.
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Appendix E Camera Settings 

The camera setting used for the two Canon and two Olympus cameras are in Table E.1. 

Table E.1 - Summary of camera settings.  

 Canon EOS Rebel T5i Olympus C-5060 

Camera body Digital SLR Digital 

Lens Focal Length 20 mm or 24 mm wide angle 27-110 mm 

Number of cameras 2 2 

External Control Yes Yes 

Location Trolley Ceiling 

Camera Settings 

Mode Manual P; M 

ISO 100 Auto; 80 

Shutter Speed 1/8 1/30; 1/1000 

Aperture F 3.5 F 2.8 

White Balance Tungsten Auto 
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Appendix F Sediment baskets 

In total, 7 baskets were made and labelled A-G and weighed both dry and wet throughout 

the experiments as well as at the end of all the experiments (Table F.1). To determine the 

total mass of wet sediment at the end of each run, the value 16.35 kg (5*3.27) was 

subtracted from the combined total mass of the wet basket and wet sediment, leaving the 

mass of the wet sediment.  

Table F.1 - Average dry and wet masses of the sediment baskets. 

Basket Average Dry Mass Average Wet Mass 

 Kg Kg 

A 3.22 3.26 

B 3.23 3.27 

C 3.23 3.27 

D 3.22 3.27 

E 3.23 3.27 

F 3.22 3.26 

G 3.23 3.26 

Total Average 3.22 3.27 

Total σ 0.005 0.004 

 

To determine the effect of the moisture content of the sediment in the baskets as well as 

the conversion from a wet sediment mass to a dry sediment mass, a series of tests were 

completed at the end of the experiments. To begin, dry sediment of a known mass (e.g., 1, 

2, 4, and 8 kg) was added to a basket hanging from the load cell (Figure F.1). The sediment 

was wet to mimic experimental conditions of flow going into the basket. A timer was 

started once the water had finished being poured and the wet weight of the sediment and 

basket was recorded every 60 seconds for 12 minutes. The result was that the wet mass of 

sediment stabilized after approximately 1 minute, and remained stable for the remaining 

11 minutes of testing.  
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Figure F.1 – Image of a sediment basket hanging from the load cell. 

The test also provided the conversion between wet and dry sediment. Since the sediment 

started from a known dry mass, once the sediment was wet and the mass stabilized, we 

were left with a conversion factor of 1.22kg (Figure F.2).  

 

Figure F.2 – Wet and dry sediment coefficient for different dry sediment masses.
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Appendix G Sediment Sieving 

The standard dry sieving procedure is as follows (Head, 2006): 

1. Oven dry the sample and weigh the cooled sample for an initial dry weight. 

2. Select sieves (Table G.1) 

3. Sieve the sample by passing it through the set of sieves by using a mechanical 

shaker for a period of 10 minutes. In some cases, this included riffling (i.e., 

splitting) the sample before sieving.  

4. Weigh the samples using a balance (with an accuracy of 0.1 % or better) of the total 

initial mass 

a. As a check, calculate the sum of masses and if the total differs by more than 

1 %, repeat steps 4 and 5 

5. Clean sieves and repeat for other samples. 

Before sieving began, all sieves were cleaned out to remove any residual grains stuck in 

the mesh from previous uses. Between samples, the sieves were cleaned out impeccably to 

1mm, and all sieves below 1mm were cleaned using a wire brush designed for cleaning 

sieves.  

Table G.1 - Sieve sizes used to sieve sediment samples from the downstream baskets. 

Sieve 

Size 

mm 5.6 4 2.8 2 1.4 1 0.71 0.5 0.35 0.25 

phi -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 
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Appendix H Bulk Density 

The bulk density of the bed sediment was determined using a water replacement method. 

To start, a small hole with a diameter of approximately 7 cm and depth of 3 cm was dug 

into the dry flume bed. The sediment removed was collected and weighed. A small piece 

of clear plastic wrap was placed carefully into the hole and gently pushed into the edges of 

the hole. Next, the hole was filled with water of a known volume (Figure H.1). Bulk density 

was calculated as the mass of sediment removed from the hole divided by the volume of 

water used to fill the hole (Figure H.2). 37 samples were taken using the water replacement 

method between 4.8 and 7 m from the upstream end of the flume covering a range of 

morphological features including in-channel, bar heads, and flat areas (Figure H.3). The 

water was dyed purple using marker ink so that it was easier to distinguish when the hole 

was filled.  

 

Figure H.1 – Water replacement method for the estimating bulk density. Sediment 

removed from the hole was collected and the hole was lined with plastic and filled 

with water.  
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Figure H.2 – Bulk density calculation. The mass of sediment removed from the flume 

as a function of the volume of water used to fill the hole. 

 

Figure H.3 – Bulk density sample locations. The bulk density samples were taken at 

the end of experiment 13, covering a range of morphological features including bars 

and in-channel locations. The water was dyed purple to improve the visibility of the 

water against the sand. 
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To account for any possible differences in moisture content, the bulk density samples were 

weighed immediately after collection and then again after being dried with a hair dryer for 

2 minutes using a low-cool setting (Table H.1). On average there was a 0.46 % loss in 

sediment mass after drying. For this research the value of 1.79 g ml-1 was used for the 

conversion between dry volumes and dry masses of sediment.  

Table H.1 - Summary statistics of bulk density measurements before and after 

drying.  

 Before Drying After Drying 

 g ml-1 g ml-1 

Minimum 1.67 1.66 

Maximum 1.91 1.90 

Average 1.80 1.79 

σ 0.07 0.07 
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Appendix I Summary of T-tests 

Table I.1 - Summary of statistics for the active width for the constant discharge 

experiments using the simple 2σ threshold and the dilation method, where n is the 

number of observations, mean is the average result, σ is the standard deviation, and 

the p-values are based on a Student's t-test using alpha = 0.05. 

Experiment Threshold Method n Mean σ p-value 

   m m  

1 
Simple 37 0.011 0.008 

0.063 
Dilation 37 0.015 0.011 

4 
Simple 65 0.143 0.059 

0.007 
Dilation 65 0.173 0.068 

9 
Simple 67 0.166 0.054 

0.001 
Dilation 67 0.201 0.062 

12 
Simple 64 0.436 0.063 

<0.0001 
Dilation 64 0.565 0.070 

13 
Simple 66 0.607 0.061 

<0.0001 
Dilation 66 0.797 0.088 
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Table I.2 - Summary of statistics for the active depth for the constant-discharge 

experiments using the simple 2σ threshold and the dilation method, where n is the 

number of observations, mean is the average result, σ is the standard deviation, and 

the p-values are based on a Student's t-test using alpha= 0.05. 

Experiment Threshold Method n Mean σ p-value 

   m m  

1 
Simple 37 0.003 0.000 

1 
Dilation 37 0.003 0.000 

4 
Simple 65 0.005 0.001 

1 
Dilation 65 0.004 0.001 

9 
Simple 67 0.006 0.001 

1 
Dilation 67 0.005 0.001 

12 
Simple 64 0.005 0.001 

1 
Dilation 64 0.004 0.001 

13 
Simple 66 0.005 0.000 

1 
Dilation 66 0.004 0.000 
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Table I.3 - Summary of statistics for the volumes of erosion and deposition for the 

constant discharge experiments based on the 2σ threshold where n is the number of 

observations, mean is the average result, σ is the standard deviation, and the p-values 

are based on a Student's t-test using alpha= 0.05. 

Experiment Threshold Method n Mean σ p-value 

   m3 m3  

1 
Erosion 37 0.000 0.000 

0.829 
Deposition 37 0.000 0.000 

4 
Erosion 65 0.005 0.003 

0.793 
Deposition 65 0.005 0.003 

9 
Erosion 67 0.008 0.003 

0.953 
Deposition 67 0.007 0.003 

12 
Erosion 64 0.017 0.004 

0.820 
Deposition 64 0.016 0.004 

13 
Erosion 66 0.023 0.003 

0.992 
Deposition 66 0.022 0.003 
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Table I.4 - Summary of statistics for the hydrograph active widths using the simple 

2σ threshold and dilation threshold, where n is the number of observations, mean is 

the average result, σ is the standard deviation, and the p-values are based on a 

Student's t-test using alpha= 0.05. 

Discharge Threshold n Mean σ p-value 

l s-1   m m  

0.7 
Simple 15 0.012 0.009 

0.186 
Dilation 15 0.017 0.012 

0.83 
Simple 8 0.012 0.009 

0.290 
Dilation 8 0.017 0.012 

0.93 
Simple 3 0.014 0.004 

0.149 
Dilation 3 0.021 0.006 

1.14 
Simple 24 0.040 0.027 

0.092 
Dilation 24 0.056 0.036 

1.35 
Simple 8 0.126 0.071 

0.353 
Dilation 8 0.164 0.088 

1.65 
Simple 25 0.158 0.035 

<0.0001 
Dilation 25 0.213 0.047 

1.86 
Simple 15 0.244 0.059 

0.012 
Dilation 15 0.308 0.070 

2.1 
Simple 15 0.296 0.083 

0.020 
Dilation 15 0.377 0.096 
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Table I.5 - Summary of statistics for the hydrograph active depths using the simple 

2σ threshold and dilation threshold, where n is the number of observations, mean is 

the average result, σ is the standard deviation, and the p-values are based on a 

Student's t-test using alpha= 0.05. 

Discharge Threshold n Mean σ p-value 

l s-1   m m  

0.7 
Simple 15 0.003 0.000 

<0.0001 
Dilation 15 0.002 0.000 

0.83 
Simple 8 0.003 0.000 

0.000 
Dilation 8 0.002 0.000 

0.93 
Simple 3 0.003 0.000 

0.001 
Dilation 3 0.002 0.000 

1.14 
Simple 24 0.003 0.000 

<0.0001 
Dilation 24 0.003 0.000 

1.35 
Simple 8 0.005 0.001 

0.065 
Dilation 8 0.004 0.001 

1.65 
Simple 25 0.005 0.001 

<0.0001 
Dilation 25 0.004 0.000 

1.86 
Simple 15 0.006 0.001 

0.000 
Dilation 15 0.005 0.001 

2.1 Simple 15 0.006 0.001 0.000 
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Table I.6 - Summary of statistics for the erosional and depositional active depths, 

 where n is the number of observations, mean is the average result, σ is the standard 

deviation, and the p-values are based on a Student's t-test using alpha= 0.05.  

Discharge n Mean  σ  p-value 

l s-1  m m  

  Erosion Deposition Erosion Deposition  

0.7 15 0.006 0.006 0.005 0.005 0.842 

0.83 8 0.013 0.009 0.011 0.004 0.356 

0.93 3 0.008 0.005 0.004 0.001 0.295 

1.14 24 0.020 0.020 0.013 0.014 0.829 

1.35 8 0.062 0.064 0.034 0.038 0.914 

1.65 25 0.081 0.078 0.014 0.024 0.596 

1.86 17 0.112 0.125 0.028 0.037 0.275 

2.1 17 0.141 0.157 0.035 0.047 0.289 
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Appendix J Tukey HSD Multiple Pairwise Comparisons 

The following results are for the Tukey Honestly Significantly Different (HSD) Test, which 

was completed ad hoc to ANOVA tests for the bedload transport rates from the 14 reach 

subsections. The results shown are for the experiments which had significant differences 

between subsections (i.e., experiments 9, 12, and 13) and the results only show the values 

for those sections that had significant differences. The first table for each experiment 

displays the output for the Tukey HSD, followed by a summary table that groups 

subsections into ‘similar’ (i.e., not statistically significantly different) groups. Each Tukey 

test was completed with a confidence interval of 95% 

Table J.1 - Significant results of the Tukey HSD test for experiment 9  for estimated 

bedload transport rates at 14 subsections where Tukey’s d critical value = 4.756. 

Contrast Difference Standardized difference Critical value Pr > Diff 

1 vs 14 2.138 6.057 3.362 < 0.0001 

1 vs 13 1.924 5.451 3.362 < 0.0001 

1 vs 12 1.676 4.749 3.362 0.000 

1 vs 11 1.238 3.507 3.362 0.031 

2 vs 14 2.029 5.748 3.362 < 0.0001 

2 vs 13 1.816 5.143 3.362 < 0.0001 

2 vs 12 1.568 4.440 3.362 0.001 

6 vs 14 1.883 5.334 3.362 < 0.0001 

6 vs 13 1.669 4.728 3.362 0.000 

6 vs 12 1.421 4.026 3.362 0.005 

5 vs 14 1.859 5.266 3.362 < 0.0001 

5 vs 13 1.645 4.661 3.362 0.000 

5 vs 12 1.397 3.958 3.362 0.006 

3 vs 14 1.839 5.208 3.362 < 0.0001 

3 vs 13 1.625 4.603 3.362 0.000 

3 vs 12 1.377 3.901 3.362 0.008 

7 vs 14 1.814 5.138 3.362 < 0.0001 

7 vs 13 1.600 4.532 3.362 0.001 

7 vs 12 1.352 3.830 3.362 0.010 

4 vs 14 1.739 4.927 3.362 < 0.0001 

4 vs 13 1.526 4.322 3.362 0.001 

4 vs 12 1.278 3.619 3.362 0.021 

8 vs 14 1.562 4.424 3.362 0.001 

8 vs 13 1.348 3.819 3.362 0.011 

9 vs 14 1.330 3.769 3.362 0.013 
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Table J.2 - Summary of all-pairwise comparisons for experiment 9 from the Tukey 

HSD comparison of bedload transport rates. 

Subsection Groups 

1 A     

2 A B    

6 A B    

5 A B    

3 A B    

7 A B    

4 A B    

8 A B C   

9 A B C D  

10 A B C D E 

11  B C D E 

12   C D E 

13    D E 

14     E 
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Table J.3 - Results of the Tukey HSD test for experiment 12 with respect to 

estimated bedload transport rates at 14 subsections where Tukey’s d critical value = 

4.756. 

Contrast Difference Standardized difference Critical value Pr > Diff 

1 vs 14 1.902 3.600 3.363 0.023 

1 vs 10 1.778 3.365 3.363 0.050 

Table J.4 - Summary of all-pairwise comparisons for experiment 12 from the Tukey 

HSD comparison of bedload transport rates. 

Subsection Groups 

1 A  

2 A B 

3 A B 

4 A B 

5 A B 

6 A B 

7 A B 

8 A B 

12 A B 

9 A B 

11 A B 

13 A B 

10  B 

14  B 
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Table J.5 - Results of the Tukey HSD test for experiment 13 with respect to 

estimated bedload transport rates at 14 subsections where Tukey’s d critical value = 

4.756. 

Contrast Difference Standardized difference Critical value Pr > Diff 

1 vs 12 3.433 6.572 3.363 < 0.0001 

1 vs 13 3.384 6.479 3.363 < 0.0001 

1 vs 11 3.280 6.280 3.363 < 0.0001 

1 vs 14 3.227 6.179 3.363 < 0.0001 

1 vs 10 3.061 5.861 3.363 < 0.0001 

1 vs 9 2.726 5.218 3.363 < 0.0001 

1 vs 8 2.312 4.427 3.363 0.001 

1 vs 7 1.991 3.812 3.363 0.011 

2 vs 12 3.261 6.242 3.363 < 0.0001 

2 vs 13 3.212 6.149 3.363 < 0.0001 

2 vs 11 3.108 5.950 3.363 < 0.0001 

2 vs 14 3.055 5.849 3.363 < 0.0001 

2 vs 10 2.889 5.531 3.363 < 0.0001 

2 vs 9 2.553 4.888 3.363 0.000 

2 vs 8 2.140 4.097 3.363 0.004 

2 vs 7 1.819 3.482 3.363 0.034 

3 vs 12 2.964 5.675 3.363 < 0.0001 

3 vs 13 2.915 5.581 3.363 < 0.0001 

3 vs 11 2.811 5.382 3.363 < 0.0001 

3 vs 14 2.759 5.281 3.363 < 0.0001 

3 vs 10 2.592 4.963 3.363 < 0.0001 

3 vs 9 2.257 4.321 3.363 0.001 

3 vs 8 1.843 3.529 3.363 0.029 

4 vs 12 2.551 4.884 3.363 0.000 

4 vs 13 2.502 4.791 3.363 0.000 

4 vs 11 2.398 4.592 3.363 0.000 

4 vs 14 2.346 4.491 3.363 0.001 

4 vs 10 2.180 4.173 3.363 0.003 

4 vs 9 1.844 3.530 3.363 0.029 

5 vs 12 2.068 3.959 3.363 0.006 

5 vs 13 2.019 3.865 3.363 0.009 

5 vs 11 1.915 3.666 3.363 0.018 

5 vs 14 1.862 3.565 3.363 0.026 
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Table J.6 - Summary of all-pairwise comparisons for experiment 13 from the Tukey 

HSD comparison of bedload transport rates. 

Subsection Groups 

1 A     

2 A     

3 A B    

4 A B C   

5 A B C D  

6 A B C D E 

7  B C D E 

8   C D E 

9    D E 

10    D E 

14     E 

11     E 

13     E 

12     E 
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Appendix K Correlation Matrices  

The following p-value tables, which are outputs from XLSTAT, correspond with the correlation matrices in Figure 5.25, which looked 

at the spatial correlation between all 14 subsections of the study are in terms of bulk change (i.e. total volume of change in kg).  

Table K.1 - Results of experiment 4 bulk change Pearson Correlation Matrix at all 14 subsections. Values in bold are different 

from 0 with a significant level of alpha= 0.05. 

Section 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 0              

2 < 0.0001 0             

3 < 0.0001 < 0.0001 0            

4 0.005 0.015 < 0.0001 0           

5 0.741 0.808 0.199 < 0.0001 0          

6 0.164 0.356 0.435 0.113 < 0.0001 0         

7 0.220 0.258 0.172 0.800 0.001 < 0.0001 0        

8 0.262 0.229 0.438 0.223 0.000 < 0.0001 < 0.0001 0       

9 0.454 0.590 0.719 0.015 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0      

10 0.335 0.202 0.097 0.012 0.011 0.024 0.019 0.006 < 0.0001 0     

11 0.215 0.162 0.071 0.053 0.042 0.007 0.004 0.003 < 0.0001 < 0.0001 0    

12 0.006 < 0.0001 < 0.0001 0.009 0.284 0.128 0.122 0.217 0.001 < 0.0001 < 0.0001 0   

13 0.375 0.285 0.142 0.922 0.071 0.427 0.407 0.846 0.188 0.805 0.001 < 0.0001 0  

14 0.666 0.782 0.292 0.500 0.830 0.269 0.248 0.385 0.428 0.877 0.088 0.124 < 0.0001 0 
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Table K.2 - Results of experiment 9 bulk change Pearson Correlation Matrix at all 14 subsections. Values in bold are different 

from 0 with a significant level of alpha= 0.05. 

Section 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 0              

2 < 0.0001 0             

3 0.008 < 0.0001 0            

4 0.042 < 0.0001 < 0.0001 0           

5 0.704 0.498 0.019 < 0.0001 0          

6 0.438 0.091 0.127 0.004 < 0.0001 0         

7 0.926 0.100 0.268 0.035 0.011 < 0.0001 0        

8 0.456 0.747 0.854 0.255 0.080 0.034 < 0.0001 0       

9 0.616 0.588 0.916 0.558 0.087 0.103 0.070 < 0.0001 0      

10 0.456 0.747 0.854 0.255 0.080 0.034 < 0.0001 < 0.0001 < 0.0001 0     

11 0.081 0.545 0.545 0.741 0.584 0.919 0.577 0.460 0.001 0.460 0    

12 0.991 0.722 0.513 0.436 0.777 0.859 0.383 0.210 0.317 0.210 0.017 0   

13 0.047 0.259 0.446 0.714 0.222 0.407 0.859 0.949 0.593 0.949 0.090 < 0.0001 0  

14 0.389 0.716 0.629 0.052 0.010 0.360 0.386 0.174 0.319 0.174 0.219 < 0.0001 < 0.0001 0 
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Table K.3 - Results of experiment 12 bulk change Pearson Correlation Matrix at all 14 subsections. Values in bold are 

different from 0 with a significant level of alpha= 0.05. 

Section 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 0              

2 < 0.0001 0             

3 0.042 < 0.0001 0            

4 0.028 0.001 < 0.0001 0           

5 0.179 0.004 0.000 < 0.0001 0          

6 0.560 0.049 0.150 0.283 0.003 0         

7 0.622 0.029 0.056 0.124 0.013 < 0.0001 0        

8 0.262 0.166 0.016 0.067 0.735 0.948 0.002 0       

9 0.180 0.088 0.010 0.012 0.601 0.401 0.294 < 0.0001 0      

10 0.954 0.509 0.371 0.939 0.222 0.643 0.802 0.009 < 0.0001 0     

11 0.786 0.215 0.887 0.374 0.828 0.776 0.462 0.808 0.109 < 0.0001 0    

12 0.002 0.071 0.533 0.279 0.390 0.988 0.198 0.849 0.194 0.005 0.016 0   

13 0.020 0.010 0.995 0.901 0.482 0.719 0.005 0.314 0.269 0.781 0.294 < 0.0001 0  

14 0.155 0.013 0.441 0.832 0.898 0.788 0.068 0.941 0.857 0.850 0.263 0.000 < 0.0001 0 
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Table K.4 - Results of experiment 13 bulk change Pearson Correlation Matrix at all 14 subsections. Values in bold are 

different from 0 with a significant level of alpha= 0.05. 

Section 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 0              

2 < 0.0001 0             

3 0.039 0.000 0            

4 0.126 0.158 0.001 0           

5 0.065 0.099 0.682 0.010 0          

6 0.652 0.885 0.482 0.669 0.303 0         

7 0.870 0.556 0.874 0.868 0.739 0.107 0        

8 0.159 0.534 0.847 0.628 0.496 0.621 0.207 0       

9 0.187 0.384 0.704 0.208 0.002 0.272 0.851 0.005 0      

10 0.052 0.188 0.308 0.207 0.783 0.282 0.591 0.275 0.013 0     

11 0.815 0.904 0.886 0.783 0.548 0.214 0.396 0.304 0.266 0.001 0    

12 0.164 0.032 0.379 0.262 0.298 0.409 0.169 0.706 0.984 0.019 0.001 0   

13 0.888 0.822 0.368 0.292 0.037 0.751 0.107 0.801 0.549 0.331 0.005 < 0.0001 0  

14 0.017 0.136 0.085 0.045 0.733 0.083 0.963 0.248 0.601 0.077 0.069 0.179 < 0.0001 0 
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