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Abstract

This thesis consists of three policy-motivated chapters in the area of applied

microeconomics.

In chapter 1, I estimate the impact of English-language courses on the

wages of new immigrants. I develop a model of immigrants’ investment in

language skills which may affect wages directly, as well as change the propor-

tion of pre-immigration skills transferred into the host-country economy. Using

unique panel data, LSIC, I find that attending language courses for six months

leads to a 0.3 standard deviations gain in language skills, corresponding to an

average wage increase of 11.7 percent. The increase in the total return to lan-

guage skill accounts for 46 percent of this wage growth, while the remaining

53 percent is driven by the transfer of pre-immigration skills.

Chapter 2 examines the determinants of school choice and its effect on stu-

dent outcomes. For any school choice policy to be successful, parents must

select schools based on attributes that improve students’ academic achieve-

ment. Using ECLS-K data, I find that students who move schools for aca-

demic reasons suffer a decline in their math performance. I estimate a random

utility model of parental school choice and a test score production function to

provide an explanation for this finding. Parents seem to select schools based

on their socio-economic attributes while ignoring attributes important for test

score production. Potentially, this results in worsened academic performance

ii



of their children.

The Becker (1968) model of crime establishes the importance of the prob-

ability of apprehension as a key factor in a rational individual’s decision to

commit a crime. Most empirical studies based on US data have relied on vari-

ation in the number of police officers to estimate the impact of the probability

of apprehension or capture. In chapter 3, the probability of apprehension is

measured by clearance rates and their effects on crime rates are studied using

a panel of Canadian provinces from 1986 to 2005. OLS, GMM, GLS, and IV

estimates yield statistically significant elasticities of clearance rates, ranging

from -0.2 to -0.4 for violent crimes and from -0.5 to -0.6 for property crimes.

These findings reflect the importance of police force crime-solving productivity.

Keywords: immigrants, language, skills, task-based approach, human cap-

ital, school choice, value-added, violent crime, property crime, probability of

apprehension, clearance rates, Canada
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1

Introduction

My doctoral dissertation consists of three chapters each of which can be

considered a separate essay. All three essays are motivated by policy-relevance

and contribute to different areas of applied microeconomics. The first chapter,

“The Impact of Language Training on the Transfer of Pre-Immigration Skills

and the Wages of Immigrants”, contributes to the field of labour economics with

the focus on investment in and returns to human capital. The second chapter,

“Understanding Traditional School Choice and Student Achievement: Evidence

from the United States”, contributes to the field of education economics focusing

on school choice. The third chapter, “Crime, Apprehension and Clearance Rates:

Panel Data Evidence from Canadian Provinces”, written in co-authorship with

Philip A. Curry and Anindya Sen, contributes to the field of the economics of

crime examining the connection between clearance rates and crime rates.1

The first chapter estimates the impact of English-language courses on the

wages of new immigrants. These estimates are the first of the kind in the

literature. I develop a model of immigrants’ investment in language skills.
1Curry et al. (2016) has been published in the Canadian Journal of Economics, 49(2).
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Two mechanisms through which language may affect immigrants’ wages are

modeled explicitly. First. there is a “direct” channel: a higher total return to

language skills. Second, there is an “indirect” channel (higher language pro-

ficiency allows the immigrant to use a higher percentage of pre-immigration

skills in the labour market). There are no market frictions and the immigrant

allocates time between working and participating in language courses. The

model serves two purposes. First, it clearly demonstrates the endogenity is-

sues which have to be addressed when estimating the parameters of the model.

Specifically, time spent in language courses depends on the immigrant’s work

and language learning abilities which are unobservable to the econometrician.

The model further indicates that course participation cost-shifters (distance

to the nearest course provider and refugee status) can serve as instrumen-

tal variables (IV). Second, the model provides the structure for the return to

time spent in language courses. I use a unique panel data set, the Longitudi-

nal Survey of Immigrants to Canada (LSIC), to estimate the four equations of

the model: language skill evolution, log-wage, and cognitive and manual skill

transfer equations. LSIC uses self-reported measures of English proficiency,

and the data patterns indicate that these variables may be subject to measure-

ment error (as in Dustmann and Van Soest (2002)). I use IV to estimate the

language evolution equation and a combination of IV and fixed effects to consis-

tently estimate the log-wage and skill transfer equations. I find that attending

language courses for six full-time equivalent months leads to a 0.3 standard
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deviations gain in language skills, corresponding to an average wage increase

of 11.7 percent. The increase in the total return to language skill accounts

for 5.5 percent of wage growth. The remaining average gain of 6.2 percent is

driven by the transfer of pre-immigration cognitive skills into the host-country

economy. The standard deviation of the return from the transfer of cognitive

skills is 2.5 percent. Given the declining labour market performance of suc-

cessive cohorts of immigrants to Canada, the immigration policy which selects

individuals with high cognitive skills, and the recent cuts to language program

budgets, the findings have significant policy relevance.

The second chapter aims to understand what school characteristics drive

parental school choice and whether the school moves lead to an improvement

in the students’ cognitive achievement. The essay focuses on traditional school

choice: residential moves that are motivated by desire to enroll a child at a

specific school.2 As noted in Caetano and Macartney (2014), while understand-

ing this type of school choice is important for the effective implementation of

school choice policy, research on the matter is very limited. I study students in

public elementary schools in the United States using the data from the Kinder-

garten Cohort of the Early Childhood Longitudinal Study (ECLS-K). The data

contain responses to surveys conducted with students, their parents, teachers,

and school administrators. Using the parental answers I am able to identify

which of them exercised traditional school choice. I find that over thirty per-

cent of residential moves are motivated by exercising school choice. I further
2Following Hoxby (2003).
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find that students who move schools underperform in math and reading after

the move. To pinpoint which school inputs have a significant effect on cognitive

achievement, I estimate test score production functions for mathematics and

reading. I find that teacher experience, qualifications, and effort (measured as

the amount of homework assigned and average time the teacher spends on the

subject in-class), as well as peer quality at the school (measured as the school

average in the subject) all play a significant role. I then estimate a random

utility model in which school inputs that affect test scores and school ameni-

ties that have no impact on test scores both enter the parents’ utility function.

I find that schools’ socio-economic characteristics, such as the proportion of col-

lege educated households and the proportion of white students, play a much

bigger role in choosing a school than the school inputs into academics. Rec-

onciling these findings with previous the literature, I conjecture that parents

may not be well-informed about which school characteristics signal the school’s

ability to improve the cognitive achievement of their children.

The third chapter is motivated by Becker’s (1968) theory that establishes

the importance of the probability of apprehension in a rational individual’s de-

cisions to commit crime. The majority of research on the effect of police on

crime focuses on the number of police officers. In this paper, we use panel data

for Canadian provinces (1986 to 2005) to complement the existing literature by

examining the effects of clearance rates on crime while controlling the number

of police officers. A police-reported incident of crime is said to be “cleared” if
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an individual associated with the specific criminal act is apprehended. A clear-

ance rate within a jurisdiction is then defined as the number of cleared crimes

divided by the number of reported incidents. The deterrence effects associated

with an increased probability of apprehension may be more precisely captured

through clearance rates than the per capita number of police officers or arrests.

Our empirical strategy is motivated by an extension of the theoretical model

developed by Polinsky and Shavell (2000), which allows us to link spending

on police services to corresponding changes in clearance rates and crime. We

then use per capita provincial expenditures on police among the instrumen-

tal variables used to address the bias in the coefficient of interest. Additional

instruments which are used in the reduced form estimation include political

party variables meant to reflect the variation in the policy focus with respect

to crime within provinces. We find statistically significant elasticities of crime

rates with respect to clearance rates, ranging from 0.2 to 0.4 for violent crimes

and from 0.5 to 0.6 for property crimes. This highlights the importance of the

effectiveness of police force, not just its size, for crime reduction.
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Chapter 1

The Impact of Language Training
on the Transfer of
Pre-Immigration Skills and the
Wages of Immigrants

1.1 Introduction

While there is a vast literature documenting the returns to immigrants’

proficiency in host-country languages, the literature on the returns to host-

country language training has been limited by data availability.1 Immigrants

constitute approximately a fifth of the Canadian labour force and Canada wel-

comes approximately 250,000 new immigrants every year.2 Considering these
1Commonly, “host-country” refers to the immigrant’s target country of immigration, while

“source-country” – to the point of origin.
2According to the Labour Force Survey (LFS) in 2011 immigrants accounted for ap-

proximately 21.1 percent of the Canadian labour force as indicated on the Citizenship and

Immigration Canada website http://www.cic.gc.ca/english/resources/research/
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numbers, the declining labour market performance of successive cohorts of new

immigrants reported in the literature [e.g., Aydemir and Skuterud (2005)], and

the significant budget cuts to language programs offered to new immigrants

in Canada in the recent years3, the evaluation of the impact of ESL training

on immigrants’ economic outcomes is important for Canada’s policies aimed at

assisting with new immigrants’ settlement.

In this paper I use the unique data set, Longitudinal Survey of Immigrants

to Canada (LSIC), to estimate the effect of time spent in ESL courses on wages.

I find that attending ESL courses full-time for six months (with a full-time

monthly attendance of 126 hours) causes an 11.7 percent increase in an immi-

grant’s wages. The increase in the total return to language skill accounts for

5.5 percent of wage growth, while the remaining 6.2 percent of the wage in-

crease is driven by the change in the proportion of cognitive skills transferred

into the Canadian economy. These are the first estimates of the kind in the

literature.

Language skills can be thought of as a part of a person’s human capital

portfolio. Studying the return to and investment in these skills for native-born

workers is problematic, as they possess “baseline” proficiency in the language.

Immigrants, however, may not have “baseline” proficiency in the host-country

2012-migrant/sec02.asp. The approximate annual number of new immigrants is based

on the annual immigration numbers from 1990 to 2014 found at http://www.cic.gc.ca/

english/resources/statistics/facts2014/permanent/01.asp
3For example, a 22 million dollar cut to the funding of colleges offering free English as a

Second Language (ESL) courses to immigrants in British Columbia in 2014 (Shen, 2014).
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official language, providing an environment to study the returns to and in-

vestment in language skills. Moreover, the level of investment in host-country

language skills can be clearly measured as it comes in the form of time spent in

language classes. As noted by Chiswick and Miller (2014), immigrants’ invest-

ment in host-country language skills has been given a very limited treatment

in the literature due to data limitations. Specifically, very few data sets con-

tain a record of immigrants’ participation in host-country language courses.

Among the data sets containing such information, several are cross-sectional

which makes it more problematic to study changes in language skills due to

investment. Furthermore, of all data on immigrants, to my knowledge, only

LSIC contains a detailed record of host-country language course participation

including the start and end dates and weekly in-class hours.

I construct a two-period model of investment in host-country language skills

in which the immigrant decides on the optimal time spent on ESL training.

Both the language evolution and the wage determination are modeled explic-

itly. Furthermore, I explicitly model the mechanism through which pre-immigration

skills are transferred into the host-country economy. Together, the language

skill return to the time spent in ESL courses, wage returns to the language skill

and cognitive skills, and the pre-immigration skill transfer equation describe

the returns to language course participation. The solution to the model pro-

vides two insights regarding the optimal ESL course participation. First, the
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time spent on ESL training depends on the immigrant’s language learning abil-

ity and her work-related ability. Both of these abilities are unobserved; hence,

the coefficients of the language evolution equation cannot be consistently es-

timated by OLS due to endogeneity. Second, variables that shift the cost of

participation in the ESL courses, such as distances to ESL course providers

and refugee status, affect the optimal time spent on ESL training while not

being correlated with the language learning ability. This allows me to to use

such cost-shifters as instrumental variables when estimating the effect of time

spent in ESL courses on language skill gains.

A further complication in estimating the key equations of the model arises

from the presence of measurement error in the language skill variable. While

this does not impact the estimation of the coefficients in the language evolu-

tion equation, it prevents obtaining consistent estimates of the wage equation

and skill transfer equation coefficients on language skill by using OLS. This

issue is addressed by using instrumental variables combined with a fixed ef-

fects estimation. While fixed effects address the time-invariant component of

the measurement error, the instrumental variables mitigate the correlation be-

tween the language skill and the idiosyncratic component of the measurement

error. Moreover, in the case of the wage equation, using fixed effects estimation

addresses the potential correlation between occupational skills and the unob-

served work ability which would also serve as a threat to identification.

Unlike the majority of previous studies which use speaking ability-based
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binary variables to measure being “proficient” and “not proficient” in the host-

country language, I use a continuous measure of language skill.4 This mea-

sure is constructed by performing principal component analysis (PCA) on self-

reported measures of speaking, reading, and writing ability and the responses

to five additional questions regarding the immigrant’s speaking and compre-

hension capabilities recorded in LSIC. To enable the estimation of the model, I

augment LSIC with data from the Career Handbook, the Canadian 2001 Cen-

sus of Population, and hand-collected data on the 2001-2003 ESL providers

in English-speaking Canadian provinces. The hand-collected data on ESL

providers contains six-character postal codes for providers’ class locations which,

paired with the immigrants’ residential postal codes, allows me to calculate the

distance between each immigrant and the nearest ESL provider. The Career

Handbook data on the level of nine aptitudes and complexity of three tasks

corresponding to four-digit National Occupational Classification (NOC) codes

together with occupational weights corresponding to the 2001 Canadian labour

market calculated using the 2001 Census are used to obtain two occupational

skills using PCA. An advantage of using the Career Handbook data for the

Canadian labour market versus the Dictionary of Occupational Titles (DOT)

or Occupational Information Network (O*NET) data is that it obviates the as-

sumption that the occupations within the US use the same skills as those in
4To be more precise, the measure is discrete but is defined on a fine grid.
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Canada.5

I find that attending ESL courses for six months increases the English lan-

guage skill by 0.291 standard deviations. The number of months spent in

Canada between the interviews and the number of household members who

speak English also serve as significant predictors of the language skill acquisi-

tion. I find that a one standard deviation increase in language skill results in

a 18.99 percent increase in wages, which is consistent with previous literature

finding significant returns for immigrants to becoming proficient in the host-

country language. I also find significant returns to cognitive and manual skills,

as well as work experience acquired in Canada. In line with previous studies,

I find returns to cognitive skills, which encompass analytical and communi-

cation skills, to be larger than returns to manual skills which, in this paper,

correspond to dexterity-related and hand-eye coordination tasks performed on

the job. Finally, estimates from the skill transfer equations for cognitive and

manual skills indicate that host-country language skills play an important role

in transferring pre-immigration cognitive skills into the host-country economy.

On the other hand, I find no evidence that language skills affect the transfer of

pre-immigration manual skills.

The remainder of the paper is organized as follows. Section 1.2 provides

a review of relevant literature. Section 1.3 presents the theoretical model of
5Imai, Stacey and Warman (2016) note the necessity of this assumption as one of the

caveats in employing O*NET data in their analysis using LSIC.
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investment in language skills. Section 1.4 describes the data sources and pro-

vides descriptive statistics for the estimation sample. Section 1.5 discusses the

identification and estimation of the language skill evolution, wage determina-

tion, and skill transfer equations. Section 1.6 discusses the estimates from

these equations and calculates the effect of ESL course attendance on wages.

Section 1.7 concludes.

1.2 Review of Relevant Literature

My paper draws on and contributes to three main strands of literature: re-

search on immigrants’ post-arrival investment in human capital, papers on

the return to immigrants’ human capital, especially the host-country language

skills, and the work on the transferability of the source-country human cap-

ital into the host-country economy. I will focus my review of the prior work

on post-immigration human capital investment on papers which examine the

host-country language acquisition.

The literature on the effect of host-country language courses on immigrants’

outcomes is very limited, largely due to lack of data on the subject, as noted

in the literature review by Chiswick and Miller (2014).6 Gonzalez (2000) and
6Other examinations of language acquisition do not use data on language courses in their

models. For example, Chiswick, Lee and Miller (2004) use the Longitudinal Survey of Immi-

grants to Australia (LSIA) to estimate a model of language acquisition focusing on the role

of factors such as age at migration, visa status, and birthplace. To see whether unobserv-

able characteristics play a role in language proficiency, Chiswick and Miller estimate bivariate
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Hayfron (2001) investigate this topic using cross-sectional data. Gonzalez (2000)

uses the 1992 National Adult Literacy Survey (NALS) to investigate the fac-

tors linked to immigrants’ proficiency in speaking, understanding, reading, and

writing in English as well as the impact of these proficiencies on earnings.

Hayfron (2001) uses Norwegian data on immigrants from Morocco, Pakistan,

and Chile to estimate the contribution of Norwegian language courses on lan-

guage proficiency. He also estimates the effect of Norwegian proficiency on

wages, but does not find a statistically significant effect even after instrument-

ing for the potential measurement error in the recorded proficiency.7 Gonzalez

(2000) and Hayfron (2001) use instrumental variables to address the endo-

genity of language course participation. Gonzalez utilizes the use of another

language at work or while shopping as proxies for residing in an ethnic enclave

(which should reduce incentives to participate in language courses). Hayfron

uses dummies for receiving unemployment and other social benefits. Both

studies use cross-sectional data with only the measure of present language

abilities which are coded into binary proficiency indicators.

The lack of a pre-language-training measure of proficiency makes interpret-

ing the probit estimates of the effect of language courses on present proficiency

probit models with English proficiency at different interviews as the dependent variable argu-

ing that the positive correlation between the disturbance terms would indicate that the same

unobservables are relevant for proficiency in the two time periods.
7A potential caveat is that the ethnicity of wife variable that Hayfron (2001) uses as one

of the instruments for language proficiency does not have a statistically significant effect as a

determinant of language proficiency.
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problematic. Furthermore, both data sets include immigrants with a long res-

idency in the host-country (e.g., NALS includes immigrants who have been in

the US for over 40 years) and the language course questions identify only the

participation and completion of the course at some point since arriving in the

country.

Beenstock (1996) uses the Immigration Absorption Survey (IAS) data from

Israel to examine how new immigrants acquire Hebrew. He finds a positive

effect of attending a language school, but the study does not correct for po-

tential self-selection into language courses. Beiser and Hou (2000) use panel

data on Southeast Asian refugees who arrived in Vancouver (British Columbia,

Canada) in 1981. The refugees were interviewed at arrival, and again two and

then ten years after arrival in Canada. The study does not find a statistically

significant effect of ESL courses on language acquisition in the first two years

in Canada using an ordered logistic regression.8 However, the authors do not

test or correct for self-selection into ESL courses. Akresh (2007) uses the New

Immigrant Survey-Pilot (NIS-P) panel data covering the immigrants’ first year

after receiving the US permanent resident status. Regression of log earnings

on covariates including an ESL course participation dummy with fixed effects

introduced to address selection into ESL courses does not yield a statistically or

economically significant effect of language courses on earnings. Finally, Kaida
8Beiser and Hou (2000) find an effect limited only to female refugees after ten years in

Canada, though there is no statistically significant effect when the interaction is not present

in the model.
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(2013) uses the Longitudinal Survey of Immigrants to Canada (LSIC) to exam-

ine the role of language course completion, rather than participation, and the

host-country education in immigrants’ exit from poverty. She estimates a bi-

variate probit of an indicator for language course completion and an indicator

for poverty exit which has the former as an independent variable. She finds a

statistically significant effect of ESL courses on poverty exit.

There are several areas in which the present paper expands the knowledge

on the effects of ESL courses. First, none of the preceding papers estimate the

effect of intensive margin of ESL courses. It is very likely that immigrants

can benefit from attending ESL courses even if they do not officially complete

the prescribed program. From the policy standpoint, knowing the returns to a

fixed unit of ESL course participation time (e.g., full-time equivalent months)

is useful for budget planning. Second, obtaining the returns to time spent in

ESL courses in terms of wages allows cost-benefit assessment of existing and

planned language programs for immigrants.

The seminal work by Chiswick (1978) that proposed that English language

proficiency can play an important role in the economic assimilation of immi-

grants prompted the development of a vast literature concerning the returns

to immigrants’ language proficiency. The majority of literature covers immi-

grants in the US, Canada, UK, Australia, Germany, and Israel. A vast ma-

jority of these studies find that immigrants enjoy significant returns to becom-

ing proficient in the host-country language [for examples, see Chiswick (1991),
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Dustmann (1994), Dustmann and Fabbri (2003), Berman et al. (2003), Bleak-

ley and Chin (2004), Gonzalez (2005), Skuterud (2011)]. Chiswick and Miller

(2014) provide a detailed overview of the literature for all of these countries.

The majority of studies of returns to immigrants’ host-country language

proficiency use self-reported proficiency. Immigrants may under- or over-report

their level of fluency which may bias the estimates of returns to host-country

language proficiency. Dustmann and Van Soest (2001, 2002) address the prob-

lem of misclassification of host-country language proficiency within the Ger-

man Socio-Economic Panel (GSOEP). Dustmann and Van Soest (2001) use a

model of language acquisition to correct for the probabilities of misreporting

the speaking proficiency level. The authors simultaneously estimate the monthly

earnings equation for full-time workers and a model of language acquisition

which includes variables that are constant over time (country-of-origin dum-

mies, year of entry, age at entry, father’s education) and vary as time passes

(years of education, family composition and marital status, years since migra-

tion). The estimates of the latent speaking fluency are used as a measure of

language skill in the earnings equation. Dustmann and Van Soest (2002) treat

the misclassification as an additive measurement error and use an instrumen-

tal variable approach to deal with the issue. They use parental education to

deal with both idiosyncratic and time-independent measurement errors in lan-

guage. Both studies find that misclassification results in underestimation of re-

turns to German speaking proficiency (driven by immigrants overstating their
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speaking ability). In the current paper, I perform an IV estimation which in-

cludes fixed effects to address the potential sources of bias in the coefficients;

however, my set of instruments differs from Dustmann and Van Soest (2002).

Some of the more recent studies have utilized data sets with objective mea-

sures of literacy (e.g., document literacy). Ferrer, Green, and Riddell (2006)

estimate the returns to immigrant literacy skills using the Ontario Immigrant

Literacy Survey (OILS) and the International Adult Literacy Survey (IALS).

They find that there is a significant return to literacy as well as lack of dif-

ference in returns between immigrant and native-born workers. Clarke and

Skuterud (2014) come to similar conclusions using data from the Adult Liter-

acy and Life Skills Survey (ALLS) on US, Canada, and Australia.

Work on the economic assimilation of immigrants suggests a U-shaped pat-

tern of occupational mobility: an initial downgrade from the pre-immigration

job followed by a recovery, which may be attained through human capital in-

vestment. For example, Duleep and Regets (1999) develop a two-period model

of immigrants’ investment in human capital with an exogenously determined

incomplete transfer of immigrants’ source-country skills into the host-country

economy. The paper offers evidence to support the predictions of the model such

as higher levels of human capital investment by immigrants who are subject

to lower skill transferability. Duleep (2014) provides an excellent discussion of

work on occupational mobility and skill transferability of immigrants. While,

until recently, the literature on the transferability of pre-immigration skills has
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not explicitly considered the role of host-country language proficiency in the

skill transfer mechanism, the idea that returns to host-country language skills

may be occupation-specific was discussed in Kossoudji (1988). Chiswick and

Miller (2003) use Canadian 1991 Census data, providing evidence that higher

host-country language proficiency enhances the gains from schooling and pre-

immigration work experience. Imai et al. (2016) develop a theoretical model of

occupational choice where the proportion of pre-immigration skills useable in

the host-country depends on the level of the language skill. O*NET data is used

in conjunction with LSIC and the Canadian Census of Population to obtain

occupational skill vectors. The paper presents descriptive statistics support-

ing the mismatch between source-country and host-country occupations, with

lower levels of mismatch associated with higher language proficiency levels.

The authors further show that speaking proficiency (measured on a discrete

three-level scale) leads to a reduction in skill gaps between pre-immigration

and post-immigration occupational skills, measured as the difference in the or-

dinal rank of the pre- and post-immigration occupation based on the particular

skill.
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1.3 The Model of Immigrant’s Investment in Lan-

guage Skills

This section presents a model of investment in language skills for an indi-

vidual i. There are two time periods; let t denote time. In each period t the im-

migrant is endowed with one unit of time. At t = 1, the immigrant can allocate

one unit of time between work wki1 ∈ [0, 1] and an ESL course esli1 ∈ [0, 1].

At t = 2, she can only work, that is, esli2 = 0 and wki2 = 1.9 In what follows

I denote scalars with lower case letters (e.g., lit) and 1-by-k vectors with upper

case letters (e.g., Xj
it, where k is j-specific) with associated coefficients being

considered k-by-1 vectors. Consistently with previous research, working earns

a wage described by a Mincer-style function

wit = exp{litβl + xpitβxp + sitβs + αWi }, (1.1)

where lit denotes the host-country language proficiency, xpit is the work expe-

rience, sit refers to a measure of human capital, the skill individual i uses at

work, and αWi is the individual’s work ability.10 Equation (1.1) lends itself to

the linear-in-parameters log-wage form commonly used in the literature:

lnwit = litβl + xpitβxp + sitβs + αWi . (1.2)
9This is not a restriction, as the optimal time allocation in a two-period problem has esli2 =

0
10In the present section the measure of skills is kept as a scalar for the ease of exposition.

When estimating the model, I distinguish between cognitive and manual skills.
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Let si0 denote the individual’s pre-immigration skill. The skill is transferred

to the host-country economy using the technology

sit = si0 exp{−τl(l̄ − lit)}, (1.3)

where l̄ denotes the near-native language skill level (the highest language skill

level for immigrants). Previous work suggests that immigrants’ host-country

language proficiency affects the amount of pre-immigration skills which are

useable in the host-country; τl measures the skill transfer “penalty” imposed

for not having a near-native proficiency level.11

New immigrants live in an English-language environment; hence, it is un-

likely that their language skills would depreciate over time. Even if some

immigrants reside in ethnic enclaves, this is more likely to deter acquisition

of further language skills rather than cause the deterioration of existing lan-

guage skills, at least in the relatively short two-year period considered in this

paper. Therefore, I assume that language skills do not depreciate over time

and host-country language skill evolution can be described by

li2 = li1 + esli1ϕesl +XL
i1ϕx + αLi . (1.4)

The coefficient on li1 is assumed to be one, reflecting zero depreciation of the

language skill over time, XL
i1 represents other variables affecting language

11While I do not make si0 explicitly depend on αW
i , it does not change any insights obtained

from the solution for optimal ESL participation. Furthermore, I address the endogeneity of sit

caused by si0 being dependent on the unobservable αW
i when discussing the identification of

the wage equation in Section 1.5.
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learning (the number of other household members who are proficient in En-

glish and the individual’s age), and αLi is the individual’s language learning

ability. Without loss of generality, assume that xpi1 = 0 and xpi2 = wki1. Partic-

ipating in an ESL course involves a cost XC
i1γx. XC

i1 consists of the distance to

the ESL provider, which accounts for travel costs in attending the course, and

refugee status, which may account for some monetary costs being alleviated for

refugees who attend ESL courses paired with the impact of case workers direct-

ing refugees to attend courses. The immigrant has preferences represented by

the utility function

uit = wkit · lnwit − eslit ·XC
it γx, t ∈ {1, 2} . (1.5)

This means that the individual extracts utility from total per-period income (all

of the income gets consumed within the period), while experiencing disutility

from paying costs connected to attending ESL courses. I assume that there is

no psychic cost of attending ESL courses. Let ρ be the discount factor. The
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immigrant’s problem is then

max
esli1, wki1

{
ui1 + ρui2

}
= max

esli1, wki1

{
wki1 · lnwi1 − esli1 ·XC

i1γx + ρ · wki2 · lnwi2
}

subject to

esli1 + wki1 = 1

esli1 ≥ 0, wki1 ≥ 0

esli2 = 0, wki2 = 1

li2 = li1 + esli1ϕesl +XL
i1ϕx + αLi

xpi2 = wki1 + xpi1

li1, xpi1, si0, X
L
i1, X

C
i1, α

W
i , α

L
i given.

Solving this problem for optimal investment in language skills, esl?i1, I obtain a

result that is a function of both language learning ability αLi and the vector of

cost-of-investment variables XC
i1 in addition to other variables.

esl?i1 =
1

τlϕesl

(
τl(l̄−li1−XL

i1ϕx−αLi )+ln
(
li1βl+si1βs+α

W
i +XC

i1γx+ρβxp
)
−ln

(
ρτlsi0ϕesl

))
(1.6)

There are two insights relevant for the estimation of the equations of the model

from the above solution. First, esl?i1 is not independent from the language learn-

ing ability αLi and the work ability αWi which are unobserved in the data. Since

the language skill evolution equation contains esli1, OLS estimation will yield

biased results. Taking a derivative of (1.6) with respect to αLi we obtain

∂ esl?1
∂ αLi

= − 1

ϕesl
, (1.7)
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meaning that higher language learning ability will be associated with less time

spent in ESL courses. This is not surprising, since those immigrants who are

better at picking up language skills through day-to-day interactions will choose

to spend less time in ESL courses. Second, the cost variable vector XC
i1 enters

esl?i1, but does not enter the wage or the language skill evolution equations.

Differentiating (1.6) with respect to XC
i1 we obtain

∂ esl?1
∂ XC

i1

=

(
1

τlϕesl

)(
γx

li1βl + si1βs + αWi +XC
i1γx + ρβxp

)
. (1.8)

That is, an increase in costs associated with attending ESL courses reduces

the optimal time spent in ESL courses. For example, living further away

from the nearest ESL provider would decrease the optimal time spent in ESL

courses. On the other hand, as being a refugee may involve reductions of these

costs (e.g., subsidized public transit tickets), refugees are likely to attend ESL

courses for longer periods of time. At the same time, neither of these vari-

ables would have a direct effect on language acquisition. Hence, variables in

XC
i1 can serve as instruments for ESLi1 in order to address the aforementioned

endogeneity issue.

1.4 Data

To estimate the parameters of the model, I use data from three sources:

the Longitudinal Survey of Immigrants to Canada (LSIC), the Career Hand-

book paired with the 2001 Canadian Census of Population, and a personally
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collected data set containing the locations of LINC/EAL/ELSA providers from

2001 to 2003 paired with the Postal Code Conversion File (PCCF).

1.4.1 Longitudinal Survey of Immigrants to Canada (LSIC)

LSIC is a panel data set collected and created jointly by Statistics Canada

and Citizenship and Immigration Canada under the Policy Research Initiative.

The data include immigrants who arrived in Canada between October 1, 2000

and September 30, 2001. Surveys were administered to the same individuals in

three waves: approximately six months (Wave 1), two years (Wave 2), and four

years (Wave 3) after arrival in Canada. The target population of the survey

were immigrants who were 15 years or older at the time of landing, applied for

immigrant status from abroad (and were not asylum refugee claimants). This

included economic immigrants (both primary applicants and their spouses and

dependents), sponsored family members, and convention refugees. A sample of

20,300 immigrants representative of 165,000 immigrants arriving in this time

period was chosen. 12,040 immigrants responded to Wave 1 survey. LSIC con-

tinued following only those immigrants that responded to the previous waves

(monotonic design), and Wave 3 file contain data on approximately 7,500 im-

migrants. The target population of Wave 3 are immigrants who have resided

in Canada for four years.12

12Due to the attrition in the sample, I caution that results are applicable to the new immi-

grants who have remained in Canada for at least four years. It is possible that immigrants who

have participated in ESL courses, but are no longer followed in LSIC at later waves, could have
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LSIC is a restricted-access data set and is available only through the Statis-

tics Canada Research Data Centers. LSIC is an extremely rich data set and is

uniquely suited for this study. I use data from LSIC to obtain measures of li1

and li2, esli1, wi1 and wi2, xpi1 and xpi2, XL
i0 and XL

i1, and two of the variables in

XC
i1.

LSIC contains extremely rich data on immigrants’ language ability. Self-

reported English-language speaking, reading, and writing ability are further

complemented by responses to five questions on speaking and comprehension

competence (e.g., “How easy is it for you to understand a message in English

over the telephone?”). The answers to these eight questions permit me to con-

struct a continuous measure of language proficiency using principal component

analysis (PCA).13 The continuous factor for Waves 1 and 2 of LSIC obtained by

performing PCA is used as li1 and li2 respectively.14

Responses on the methods of improving English language proficiency con-

tain participation in English as a Second Language (ESL) courses. Further, to

my knowledge, LSIC is the only panel data set that contains the history of par-

ticipation in ESL courses which includes weekly hours and the start and end

experienced higher gains in language and wages. I thank Michael Haan and Mikal Skuterud

for their comments on the matter.
13The majority of previous studies use self-reported speaking proficiency to derive binary

(“proficient/not proficient”) or three-level categorical (“low/medium/high proficiency”) measures

of proficiency which are not suitable for examining the gradual increase in host-country lan-

guage skills over time.
14Details can be found in Appendix A.2.1.
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dates of the course attendance. One important limitation of LSIC is that no

detailed records exist for ESL courses that were started between Wave 1 and

Wave 2 interviews. Further, the record of courses from Wave 2 to Wave 3 inter-

views makes it impossible to separate hours of ESL and hours of French as a

Second Language (FSL) training if the immigrant participated in both activi-

ties. In this paper I focus on the investment in language skills which occurred

between six months and two years in Canada. I, therefore, use the available

records of immigrants participating in ESL courses between Wave 1 and Wave

2 interviews as my measure of esli1.

I use data on immigrants’ age and the number of household members who

are proficient in English as the two measures in XL
i1. I assume that the num-

ber of individuals in the household who speak English reported in an interview

served as one of the inputs in the language evolution equation for the language

proficiency reported in that interview (e.g., XL
i1 that determines li2 includes the

number of English-proficient household members reported in the Wave 2 inter-

view). XL
i1 also includes the lag of age at Wave 2 (i.e., age at Wave 1 interview).

I use the visa status of the immigrant to identify refugees and sponsored fam-

ily members. The two visa status indicators are used as components of XC
i1. I

use the six-character postal codes of immigrants’ residences in calculation of

distances to ESL providers in Section 1.4.3.

LSIC contains a detailed employment history for each immigrant for the
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first four years in Canada from which I obtain the information on wages, Cana-

dian work experience, and occupations worked in after the arrival in Canada.

I divide the provided weekly wages by weekly hours and the provincial CPI at

the start date of the job to obtain real hourly wages. The hourly wages earned

between Wave 1 and Wave 2 interviews are used as a measure of wi1 and wages

earned between Wave 2 and Wave 3 interviews - as wi2.15 Days worked be-

tween arrival in Canada and the Wave 1 interview are used to measure xpi1,

days worked between arrival and the Wave 2 interview - to measure xpi2. I

convert the number of days worked into six month-equivalent intervals.16 The

occupational information is used to match the skills, obtained from the Career

Handbook in the next section, with immigrants in LSIC. Further, I use the pre-

immigration occupation reported in the Wave 1 interview to obtain measures

of pre-immigration skills. Data on the pre-immigration occupation is one of the

unique features of LSIC not found in other data sets.

Figure 1.1 shows the timing of the data; variables under the braces were

obtained from the employment and language course histories corresponding to

the time between the interviews. No retrospective questions regarding the lan-

guage proficiency at arrival in Canada were asked in LSIC, so the measure of

li0 is not available. Based on the timing, I assume that wages between Waves
15I use wages for the job which Statistics Canada identifies as the “main job.”
16This choice is one of convenience: both the time spent in ESL courses and work experience

are measured in the same units, as it makes interpreting and comparing the coefficients in

Section 1.6 easier.
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Figure 1.1: Data Timeline

1 and 2 (wi1) and Waves 2 and 3 (wi2) are a function of language proficiency

recorded at the Wave 1 (li1) and Wave 2 (li2) interviews respectively. This leaves

me with two time periods worth of data for the estimation of wage equation. I

use the data for waves 1 and 2 (li1, li2, esli1, XL
i1, XC

i1) to estimate the language

skill evolution equation.

1.4.2 Career Handbook

In Section 1.3, an individual’s pre- and post-immigration skills are repre-

sented by scalars for the ease of exposition. For the empirical portion of the

paper, I use two separate variables to measure cognitive and manual skills.

Let Sit denote a two-by-one vector {scit, smit }. To obtain Si1 and Si2 represented

by measures of cognitive and manual skills used on the job and the vector of

pre-immigration skills Si0, I use the Career Handbook paired with the 2001

Canadian Census of the Population. The Career Handbook is the counseling
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component of the National Occupational Classification (NOC) system. It con-

tains information on 923 occupations with corresponding attributes, task com-

plexity, and physical and environmental requirements. The attributes have five

levels, with “1” corresponding to the ability within the lowest 10 percent of the

population, “2” corresponding to the lowest third of the population excluding

the lowest 10 percent, “3” corresponding to the middle third, “4” corresponding

to the top third excluding the top ten percent of the population, and “5” corre-

sponding to the the top ten percent of the population. Tasks in working with

data, people, and machinery (things) are ranked based on their complexity on

an eight-level scale. I have combined some of the levels due to the similarity

of tasks performed to create four-level measures of task complexity (where “0”

corresponds to the task not playing a significant role for the occupation and the

rest of the levels correspond to “low”, “medium”, and “high” levels of complex-

ity).

Many of these attributes and task measures are highly correlated. To re-

duce the dimensionality of data and improve its interpretation, I obtain two

skill measures underlying these variables using principal component analysis

(PCA). Two approaches to reducing the dimensionality of attribute and task

vectors which come from the Dictionary of Occupational Titles (DOT) and Oc-

cupational Information Network (O*NET) have been discussed in the recent

literature. The first approach, used by Ingram and Neumann (2006) and Pole-

taev and Robinson (2008), does not assume an a priori knowledge of the skills
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underlying the multitude of task and attribute measures and relies on using a

set of factors which are orthogonal to each other to represent skills. The second

approach, used in Yamaguchi (2012), assumes that a subset of attributes and

tasks measures one skill. There is no clear advantage of using one methodology

over the other. However, the interpretation of skills obtained using the second

approach may be easier as the resulting factors are constructed from a group

of conceptually similar or related variables. In the case of the first approach,

the several seemingly unrelated variables may have high factor loadings on

the same factor (such as numerical ability and finger dexterity) making clear

interpretation of this factor more problematic.

I follow the second approach in performing my analysis of the skills in the

Career Handbook. I assume that there are two skills, cognitive and manual,

underlying the nine attributes and data, people, and things tasks. I use general

learning ability, numerical ability, verbal ability, clerical perception, and the

aforementioned task complexity in working with data and people to construct

a composite measure of occupational cognitive skills. I use motor coordination,

manual dexterity, finger dexterity, form perception, spatial perception and the

task complexity in working with machines and tools (“things”) to construct the

measure of occupational manual skills reflecting hand-eye coordination.

Each occupation appears within the Career Handbook only once. When

performing PCA, this will result in all occupations being assigned the same
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weight. However, in the labour market, occupations are not uniformly dis-

tributed (e.g., there are more retail salespersons than computer programmers).

Following the literature, I use the native-born workers of the 2001 Canadian

Census of Population for appropriate weighting when obtaining factors. There-

fore, zero corresponds to the mean of cognitive and manual skills for the Cana-

dian native-born workers. The resulting skill vectors are then matched with

the immigrants in LSIC using the NOC and SOC 1991 codes. Details on the

factor loadings for both skills can be found in Appendix A.2.2.

1.4.3 LINC/EAL/ELSA Data

To complete the data used in the estimation of the language skill evolution

and wage determination equations, I obtain the distance between the immi-

grant’s residence and the nearest ESL course provider. This variable is the

third component of XC
i1. In the period of interest, the Canadian Federal Gov-

ernment directly financed the Language Instruction for Newcomers (LINC)

program in Ontario, Nova Scotia, Prince Edward Island, New Brunswick, New-

foundland, Alberta, and Saskatchewan. Both Manitoba and British Columbia

received transfers from the government but managed their respective pro-

grams, English as an Additional Language (EAL) and English Language Ser-

vices for Adults (ELSA), on the provincial level.17 All these programs were
17As the focus of the paper is on English language proficiency, I do not include residents of

Quebec in the analysis.
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provided free of charge to individuals who were over 18 years of age and had

permanent resident (economic or family) or refugee (convention or government

claimant) status. As there was no readily available data set including the ad-

dresses of ESL providers to match the LSIC, I hand-collected the data (details

are provided in Appendix A.1). The resulting data set contains the names and

postal codes of 368 ESL providers. I have also made note of programs which

provided ESL training exclusively to women. Combining this data with the

Postal Code Conversion File (PCCF) and information on the immigrants’ postal

codes of residence from LSIC, I calculated the distances from each immigrant’s

residence to the nearest ESL provider.18

1.4.4 Estimation Sample and Descriptive Statistics

The data set resulting from combining all of the above sources contains a

sample representative of immigrants who have lived in Canada for approxi-

mately four years. I impose a set of restrictions on these data to obtain my

estimation sample. I use the age reported at the first interview to measure the

age at immigration and restrict the sample to contain immigrants who were

between 25 and 55 years old at arrival. This ensures that the sample includes

individuals who have completed the major part of their human capital invest-

ment, excluding the investment in the host-country language skills, in their
18These are geodetic “straight-line” distances. While individuals generally do not travel in

straight lines, these distances are nonetheless indicative of the travel costs potentially incurred

by immigrants.
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source-countries. I further trim the top and bottom 1 percent of observations

based on their hourly real wages to remove any outliers. I do not restrict the

sample to males, in contrast to previous studies. This is backed by the argu-

ment that, at least in Canada, female immigrant workers follow an economic

assimilation pattern similar to that of men, presented in Adserà and Ferrer

(2014). I exclude immigrants who lived in Canada for six or more months at

any point prior to immigration, as their economic integration pattern is likely

to be very different from the majority of immigrants who have not resided in

Canada for any significant amount of time prior to their arrival. Because I

focus on acquisition of and returns to English language skills I exclude immi-

grants with native ability in English, those residing in Quebec and those who

cross the linguistic border between Quebec and the rest of Canada.

Table 1.1 provides the descriptive statistics for Waves 1 and 2 of the data.

These statistics were obtained using the weights provided for LSIC by Statis-

tics Canada. The “Number of Observations” column shows the total weight for

the individuals in the relevant subsample.

There is an increase in the average immigrants’ language skill from 0.095

in Wave 1 to 0.234 in Wave 2 along with a decrease in the standard deviation,

as more immigrants become proficient in the language. 71.3 percent of immi-

grants in the sample have a record of ESL hours (including zero hours for no

participation). Out of these individuals, 23.8 percent of immigrants report par-

ticipating in an ESL course between the first and the second interview. The
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ESL hours have been converted to full-time equivalent six months with the as-

sumption of 126 hours of ESL per month. Immigrants who participated in ESL

courses between the interviews on average attended them for approximately

6.8 full-time equivalent months.

When estimating the language skill gains equation in Section 1.6, I use the

distance to the nearest ESL course provider as one of the instrumental vari-

ables for the time spent in ESL courses.19 There are multiple factors that are

likely to affect the immigrant’s choice of residence, including availability of

housing, rent levels, and access to amenities such a stores and public transit.

Therefore, I treat the residential location as chosen independently from the

existing locations of ESL course providers, which would make it a credible in-

strument.20 On average immigrants lived approximately 3.8 kilometers away

from the nearest ESL course provider. Furthermore, the standard deviation is

23.9 kilometers, implying a high amount of variation in the data, further sup-

porting the use of the distance to the nearest ESL provider as an instrument

for ESL course participation time. I also use the visa status as an instrument

for time spent in ESL courses as it may affect the costs of participating in ESL

courses. While government-funded ESL courses are provided free of charge to

all eligible immigrants, participants are still responsible for daily travel costs
19I am grateful to Mikal Skuterud for our informal discussion of the use of distance to LINC

centers as a potential instrument for course participation.
20If lower language learning ability immigrants were to choose to intentionally settle near

ESL providers it would make the estimate of the effect of ESL courses on language gain be

biased toward zero.
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incurred to reach ESL providers. Refugees are eligible for subsidized public

transit tickets which reduces these travel costs for them. Around 5.1 percent of

immigrants are refugees and 17 percent arrived in Canada as sponsored family

members.

Since zero corresponds to the average occupational skill for the native-born

workers, an average immigrant in the sample is employed in an occupation

which uses cognitive skills 0.1775 standard deviations below and manual skills

0.1779 standard deviations above the native-born average in Wave 1. There-

fore, on average, immigrants are employed in occupations with greater use

of manual skills. However, in Wave 2 these numbers change to 0.0256 and

0.2209 standard deviations above the native-born average, respectively, which

may indicate the continuing economic assimilation of immigrants including

the transfer of their pre-immigration skills. Looking at the gaps between pre-

immigration skills and current occupational skills used on the job we can see

that the mean gap decreases from 1.1221 to 0.9113 standard deviations for

cognitive skills. For manual skills the gap changes from 0.084 to 0.042 stan-

dard deviations on average from Wave 1 to Wave 2. This reduction in the skill

gaps over time together with the increase in host-country language skill and

work experience may indicate that more of the pre-immigration skills trans-

fer over time, which is consistent with the U-shaped occupational mobility of

immigrants proposed in the earlier literature. On average, the immigrants’

real wage is 13.82 dollars per hour in Wave 1 rising to 16.32 dollars per hour
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in Wave 2. This real wage growth of 18.1 percent is driven by the increase

in language skills, Canadian work experience (which increased from 4.1 to 21

months on average), and cognitive and manual skills used on the job, as be-

comes evident from the results in Section 1.6.

Table 1.1: Descriptive Statistics for the Estimation Sample

Wave 1 Wave 2
Variable Mean Std. Mean Std. Number

Name Dev. Dev. of Obs.

Language Skill 0.0947 0.8761 0.2340 0.7833 78545

Record of Hours in an ESL Course 0.7131 – – – 78545

Participation in an ESL Course 0.2380 – – – 56017

Time in an ESL Course 1.1361 0.9744 – – 13331

English-proficient HH Members 2.3324 1.1819 3.0645 1.3647 78545

Months Between Interviews – – 19.8279 1.2112 78545

Age 35.75 7.15 37.41 7.15 78545

Refugee Status 0.0507 – 0.0507 – 78545

Family Visa Status 0.1700 – 0.1700 – 78545

Distance to the Nearest 3.8403 23.9195 – – 78545
ESL Provider

Real Hourly Wage 13.8163 6.6021 16.3234 7.4713 34577

Cognitive Skill −0.1775 1.0784 0.0256 1.0833 34577

Manual Skill 0.1779 0.9660 0.2209 0.9994 34577

Cognitive Skill Gap 1.1221 1.1838 0.9113 1.1258 32430

Manual Skill Gap 0.0840 1.1756 0.0424 1.2153 32430

Canadian Work Experience 0.6944 0.3203 3.5005 0.9405 34577

Male 0.6167 – 0.6167 – 34577

Interview Conducted in English 0.5927 – 0.6649 – 78545

Note 1: All variables are weighted using the weights provided with LSIC by Statistics Canada.

Note 2: The number of observations is the total weight reported for the relevant statistic.
Unweighted descriptive statistics cannot be disclosed under the Statistics Canada RDC regulations for LSIC.
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1.5 Model Identification and Estimation

The goal of this paper is to estimate the return to investment in language

skills, which is driven by the language skill increase due to ESL participation,

ϕesl from equation (1.4), the wage return to language skills, βl, and occupational

skills, βs, from equation (1.1), and the language skill-driven transfer of pre-

immigration skills, τl, from equation (1.3). This section discusses the empirical

model and its identification.

First, using the assumption that language does not depreciate, I rewrite (1.4)

as a language skill gains equation:

∆lit = eslit−1ϕesl +XL
it−1ϕx + αLi (1.9)

Since language skill lit is constructed based on self-reported language profi-

ciency it may be subject to measurement error. Table 1.2 shows that a sizable

portion of the sample reports a decline in language proficiency across multiple

measures. A decline of English language proficiency while living in an English

speaking country is not likely as noted earlier, in Section 1.3.

As discussed by Dustmann and Van Soest (2002) this pattern of reported

Table 1.2: Changes in Reported English Proficiency (Wave 1 to Wave 2)

Reported Change Speaking Reading Writing
“Declined” 16.6% 18.9% 20.0%
“Unchanged” 49.8% 55.7% 53.2%
“Improved” 33.6% 25.4% 26.8%
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language change indicates the presence of the measurement error. The mea-

sure of language skill I use in this chapter is a weighted average of eight dif-

ferent proficiencies. Following Dustmann and Van Soest (2002), each of the un-

derlying variables, lk,repit , contains an individual time-invariant error ηk,Li which

reflects that some individuals may always understate their language ability,

while others - always overstate it, and idiosyncratic error υk,Lit , which reflects

interview-specific measurement error. The measure of the overall language

skill, lrepit , can then be modeled as

lrepit =
8∑

k=1

ωk(l
k
it + ηk,Li + υk,Lit ) = lit + ηLi + υLit (1.10)

where ωk is a weight attached to the underlying language proficiency k. Sub-

stituting (1.10) into (1.9) we obtain

∆lrepit = eslit−1ϕesl +XL
it−1ϕx + αLi + εLit (1.11)

where I rewrite υLit − υLit−1 as εLit. I assume that εLit is independent from eslit−1

and XL
it−1. That is, the measurement error does not affect the estimation of

the language evolution equation. However, as evident from solution for the

optimal time spent in ESL courses, eslit−1 is not independent from αLi which is

unobserved by the econometrician. To address the endogeneity of eslit−1, I use

the distance to the nearest ESL provider and refugee and family visa status

as instrumental variables.21 These variables can be thought of as XC
it in the

21Distance to one’s ESL provider affects travel costs in terms of time and money. Refugees

may receive additional benefits such as public transit tickets to cover travel expenses. Further,

they may experience pressure to attend ESL classes from their case-workers.
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solution for the optimal ESL attendance. Variables in XC
it affect the optimal

ESL attendance but are not correlated with the unobserved language learning

ability αLi . Without the use of instrumental variables, we expect the coefficient

for eslit−1 to be biased towards zero, since having higher αLi corresponds to a

lower eslit−1.22

Second, suppose that hourly wages are measured with error, that is wrepit =

wit exp{υWit }.23 The log-wage equation which can be obtained from equation (1.2)

by introducing measurement error and substituting the scalar sit for the vector

of cognitive and manual skills Sit is then:

lnwrepit = litβl + Sitβs + xpitβxp + αWi − υWit (1.12)

where υWit is measurement error independent from lit, Sit, and xpit. Further,

substituting (1.10) into (1.12) we obtain

lnwrepit = lrepit βl + Sitβs + xpitβxp + αWi − ηLi βl + εWit (1.13)

where εWit = −υWit − υLitβl. As lit is not independent from ηLi and υLit and, hence,

the unobservable −ηLi βl + εWit of (1.13), using OLS will not yield consistent esti-

mates. Sit may be correlated with αWi as it depends on both lit (αWi and αLi may

be correlated) and Si0, which in turn likely depends on αWi . I use individual

fixed effects to address the αWi − ηLi βl portion of the unobservables and instru-

mental variables to address the time-varying portion of the measurement error
22Here ˆϕesl = ϕesl + Cov(eslit−1, α

L
i )/Var(eslit−1) and Cov(eslit−1, α

L
i ) < 0 according to the

model.
23Since the record of weekly wages and weekly hours is based on the self-reported values

this assumption is rather reasonable.
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in language, −υLitβl.24 Specifically, I use an indicator for whether the interview

was conducted in English and the number of the household members that are

proficient in English as instruments. While the latter is only one of the vari-

ables in XL
it−1, it is the only variable which is not correlated with other explana-

tory variables in (1.13). The direction of bias on βl is difficult to sign ex ante:

unobserved ability can cause an overestimation of the the effect, if αWi and αLi

are positively correlated, while the measurement error in the language skill -

an underestimation. Dustmann and Van Soest (2002) find that the returns to

language a subject to a significant downward bias.

The final two equations which I need to estimate in order to obtain the re-

turns to time spent in ESL courses are the skill transfer equations for cognitive

and manual skills. Taking a log of equation (1.3) and rearranging terms, we

obtain

ln sji0 − ln sjit = τ jl (l̄ − lit) , (1.14)

where j indexes cognitive and manual skills (i.e., j ∈ {c, m}). Since language

is measured with error described in equation (1.10), the equation which will be

estimated is

ln sji0 − ln sjit = τ jl (l̄ − lrepit ) + τ jl η
L
i + τ jl υ

L
it (1.15)

Since lrepit is correlated with the error term τ jl η
L
i + τ jl υ

L
it, estimation of this equa-

tion using OLS will yield biased estimates of τ jl for j ∈ {c, m}. As with the
24In this case, IV do not have to address whether the immigrant always under- or over-

states their language ability (i.e., ηLi ), but only the idiosyncratic shock, υLit, which is treated as

classical measurement error.
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wage equation, to address this problem, I use the combination of fixed effects

and instrumental variables (using an indicator for whether the interview was

conducted in English and the number of the household members that are pro-

ficient in English as IV).

1.6 Estimation Results

1.6.1 Language Skill Evolution, Wage, and Skill Transfer

Equations

In this section I present and discuss the estimates of parameters in equa-

tions (1.11), (1.13), and (1.15).

First, I estimate the language gains equation. In the full specification, XL
it−1

is represented by three variables: months between the interviews, the num-

ber of other household members who can speak English, and the immigrant’s

age at t − 1. Months between the interviews relates to the “passive” learning

outside of the ESL classroom due to exposure to English through media and

day-to-day interactions. I expect the sign on this variable to be positive. The

number of household members able to speak English is another measure of

exposure to English. There are two ways in which household members’ En-

glish ability can affect language acquisition. On one hand, having access to a

household member who is proficient in English and is able to assist one with

learning should have a positive effect on language acquisition. On the other
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hand, English-proficient individuals could act as translators for other mem-

bers of the household reducing the exposure to the host-country language and

the effort they may put into learning from daily activities. Therefore, no state-

ment can be made regarding the sign of the coefficient prior to obtaining the

estimates. Immigrant’s age accounts for the fact that over the years people lose

brain plasticity and, hence, language acquisition becomes a slower process. We

would expect the sign on the lag of age to be negative.

Table 1.3 presents the estimated coefficients for the language evolution

equation (1.11). For the ease of interpretation the ESL participation time has

been standardized to six month intervals. The results in columns (1) through

(4) present the estimates for the OLS models, while columns (5) through (8)

cover the estimates obtained by using the generalized method of moments

(GMM) procedure where the distance to the nearest ESL provider and the

refugee and sponsored family visa status were used as instrumental variables.25

For all specifications the signs of the coefficients are as expected: positive for

ESL participation, the number of family members who can speak English,

months between the interviews, and negative for the lag of age. The coeffi-

cients on the time spent in an ESL course estimated by OLS are lower than

those estimated with the use of instrumental variables, indicating bias towards
25I use GMM as there are three variables instrumenting for the time in ESL courses, so the

model is over-identified. Furthermore, GMM estimators are a better choice if the model might

have heteroscedastic errors. Baum, Schaffer and Stillman (2003) contains a discussion on the

subject. First stage estimates can be found in Appendix A.3.1.
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zero predicted in the previous section. I focus the discussion on the results for

the specification (8), which is the preferred specification for this paper. The

coefficient on the ESL course time is 0.291, meaning that increasing ESL par-

ticipation time by six months yields a language skill gain of a 0.291 of a lan-

guage skill standard deviation. An additional month’s stay in Canada results

in a 0.0158 standard deviations gain in the language skill. We can conclude

that attending ESL courses is a more effective way of acquiring language skills

than learning from day-to-day activities. Family members who can speak En-

glish prove to be beneficial for language skill acquisition. While acquisition

slows down with age based on the sign of the coefficient, the effect is small and

statistically not different from zero.

Now that I have obtained an unbiased estimate of ϕesl, I need to obtain an

estimate of wage returns to language skills, βl. In what follows, I discuss the es-

timates for the equation (1.13) which is estimated using fixed effects and fixed

effects with instrumental variables. I use measures of cognitive and manual

skills discussed in Section 1.4.

The first column of Table 1.4 shows a pooled OLS model provided for com-

parison. The next two columns show the model estimated with fixed effects

without correcting for the measurement error in language skill and with the

use of instrumental variables to account for the measurement error. All coeffi-

cients change noticeably when moving from the OLS to fixed effects estimation,

reflecting the endogeneity of occupational skills, which are likely correlated
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with unobserved ability. As anticipated, the coefficient on the language skill

is statistically and economically insignificant in the fixed effects specification.

This result is driven by the idiosyncratic portion of the measurement error. I

use the number of members of the household who speak English which has

been shown to be a significant determinant of language skill and an indicator

set to one if the interview was conducted in English as instruments. The latter

indicates that the individual was sufficiently comfortable with the interview to

be conducted in language other than his or her native one.26 Comparing the FE

and FE-IV specifications we can see that the coefficient changes from −0.001 to

0.1899 and becomes statistically significant when instrumenting for language

skill.27 An 18.99 percent increase in wages for a standard deviation increase

in language skill is consistent with the previous literature finding significant

wage gains from becoming proficient in the host-country language. Returns

to cognitive and manual skills are positive and significant, indicating a 12.79

and 2.1 percent gain in real wages for a standard deviation increase in the cor-

responding skill. Consistently with earlier work, cognitive skill returns are

larger than the manual skill returns. Canadian work experience also has a

positive effect on wages.

26One of the advantages of LSIC is that the interviews were conducted in a language chosen

by the interviewee.
27First stage estimates can be found in Appendix A.3.1
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Table 1.3: Estimates for the Language Skill Evolution Equation

Language Skill Gains OLS IV-GMM

(1) (2) (3) (4) (5) (6) (7) (8)

Time in an ESL Course 0.1761∗∗∗ 0.1734∗∗∗ 0.1719∗∗∗ 0.1721∗∗∗ 0.2976∗∗∗ 0.2953∗∗∗ 0.2911∗∗∗ 0.2910∗∗∗

(0.0171) (0.0170) (0.0169) (.0169) (0.0401) (0.0403) (0.0403) (0.0403)

Months Between – 0.0209∗∗ 0.0212∗∗ 0.0212∗∗ – 0.0151∗ 0.0157∗ 0.0158∗

Interviews – (0.0089) (0.0089) (0.0089) – (0.0091) (0.0092) (0.0092)

English-proficient HH – – 0.0213∗∗∗ 0.0224∗∗∗ – – 0.0187∗∗ 0.0206∗∗

Members – – (0.0083) (0.0084) – – (0.0083) (0.0085)

Lag of Age – – – −0.0009 – – – −0.0014
– – – (0.0017) – – – (0.0017)

N – – – – – – – –

R2 0.0568 0.0586 0.0613 0.0614 0.0298 0.0316 0.0355 0.0357

Note 1: “Time in an ESL Course” is measured in full-time six month equivalents.

Note 2: IV-GMM specifications use the distance to the nearest ESL provider, refugee status, and sponsored family visa status as
instruments for the “Time in an ESL Course” variable.

Note 3: Robust standard errors in parenthesis; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note 4: All models are unweighted, N is not displayed at present due to Statistics Canada RDC disclosure process.
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Table 1.4: Estimates for the Log Wage Equation

Log of Hourly Real Wage OLS FE IV-FE

Language Skill 0.0762∗∗∗ −0.0010 0.1899∗∗

(0.0065) (0.0140) (0.0970)

Cognitive Skill 0.2104∗∗∗ 0.1299∗∗∗ 0.1279∗∗∗

(0.0061) (0.0122) (0.0122)

Manual Skill 0.0574∗∗∗ 0.0228∗∗ 0.0210∗

(0.0065) (0.0113) (0.0115)

Canadian Job Experience 0.0413∗∗∗ 0.0417∗∗∗ 0.0361∗∗∗

(0.0038) (0.0026) (0.0038)

Individual Effects No Yes Yes

Instruments for Language No No Yes

N – – –
R2 0.4324 0.4025 0.3646

Note 1: The IV-FE specification uses the number of household members who speak English

and the indicator for whether the interview was conducted in English as instrumental variables.

Note 2: Clustered robust standard errors in parenthesis; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note 3: All models are unweighted, N is not displayed at present due to Statistics Canada RDC

disclosure process.

Finally, I estimate the effect that immigrants’ English-language skills and

Canadian work experience have on the transfer of their pre-immigration skills.

Table 1.5 shows the skill transfer equation estimation results for cognitive and

manual skills. The first column for each skill shows the results using only

the fixed effects estimator, while the second column shows the estimates using

both fixed effects and instrumental variables estimation. There is a significant

change in the coefficient reflecting the penalty for non-native proficiency for
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cognitive skills (the coefficient changes from 0.0774 to 0.6526 and its statisti-

cal significance increases). The coefficient implies that an individual who is

3 standard deviations below the near-native proficiency in English, for exam-

ple, can use only 14.12 percent of their pre-immigration cognitive skills in the

host-country job, and so on. For manual skills I do not find any evidence of lan-

guage skills assisting in the skill transfer.28 This is not a surprising finding if

one considers the use of each of the skills on the job. The use of cognitive skills

may include, for example, understanding and preparing documents, an activity

which necessitates the knowledge of the host-country language. An immigrant

who knows how to work with the same types of documents in his native lan-

guage but has poor command of English will be unable to perform the task at

hand. The use of manual skills, conversely, involves physical tasks, the suc-

cessful completion of which does not require host-country language proficiency.

1.6.2 Returns to Attending ESL Courses

Now that all the key equations have been estimated and I have unbiased

estimates of ϕesl, βl, and τ cl , it is possible to calculate the impact of time spent

in ESL courses on immigrant wages. As I find no evidence of language skills

affecting the transfer of manual skills, I calculate the returns to ESL train-

ing accounting only for the increase in total return to language skills and the
28First stage estimates for both cognitive and manual skills can be found in Appendix A.3.3.
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Table 1.5: Estimates for the Skill Transfer Equations

Gap in Log-Skills Cognitive Skills Manual Skills

FE IV-FE FE IV-FE

Language Gap 0.0774∗∗∗ 0.6526∗∗∗ 0.0361 −0.1211
(0.0291) (0.1774) (0.0434) (0.2082)

Individual Effects Yes Yes Yes Yes

Instruments for Language No Yes No Yes

N – – – –
R2 0.0335 0.0335 0.0002 0.0002

Note 1: The skill levels have been shifted to be positive in order to take logs, with the standard
deviation preserved.

Note 2: The IV-FE specification uses the number of household members who speak English and
the indicator for whether the interview was conducted in English as instrumental variables.

Note 3: Robust standard errors in parenthesis; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note 4: All models are unweighted, N is not displayed at present due to Statistics Canada RDC
disclosure process.

increase in the total return to cognitive skills. Consider the following

∂ lnwit
∂ eslit−1

=
∂∆ lnwit
∂ eslit−1

=
∂∆ lnwit
∂∆lit

· ∂∆lit
∂ eslit−1

= (βl + τ cl β
c
s s

c
i0 exp{−τ cl (l̄ − lit)}) · ϕesl

(1.16)

That is, βl ·ϕesl is the effect of time spent in an ESL course on wage growth gen-

erated by the increase in the total return to the English-language skill. The

whole expression in (1.16) describes the total effect which includes the return

to skills transferred into the host-country economy due to the increase in the

host-country language skill.

Given the estimates in Tables 1.3, 1.4, and 1.5, I calculate that attending

an ESL course for six full-time equivalent months results in an 11.65 percent
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wage increase on average, with the standard deviation of 2.51 percent. The

total return to language skills accounts for a 5.53 percent wage increase, while

6.12 percent of the increase in wages is the result of a larger proportion of

the immigrants’ cognitive skills being transferred into the host-country econ-

omy. This effect is heterogeneous in pre-immigration skills and the current

language skill. To my knowledge, this is the first estimate of the impact of

ESL attendance on immigrants’ wage in the literature. By comparison, gain-

ing an additional six months of host-country work experience increases the

individuals wages by 3.61 percent. In line with the Chiswick and Miller (2003)

finding regarding English proficiency acting as a substitute to Canadian work

experience, I argue that ESL course attendance can act as a substitute for

acquiring Canadian work experience for new immigrants. It is further worth

noting that even immigrants with less cognitive skills greatly benefit from ESL

courses through the direct channel that presents higher wage gains for equiv-

alent amount of time spent on acquiring Canadian work experience.

The findings have high policy relevance, since the Canadian immigration

policy selects individuals based on high cognitive skills but the outcomes of

recent cohorts of immigrants have been declining. This decline has been at-

tributed, in part, to the compositional shifts in language ability. As the present

paper shows, a decline in language ability could have a two-fold negative ef-

fect on the labour market outcomes of immigrants: directly and through a re-

duction in the proportion of skills transferred to the Canadian economy. ESL
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courses are a potential channel through which new immigrants’ outcomes can

be improved; however, language programs across Canada have recently been

subject to significant budget cuts. Immigrants are a group which is likely to be

financially constrained and, therefore, have limited participation to privately

provided language courses despite the wage gains. This makes government

funding of ESL courses particularly important.

1.7 Conclusion

In this paper I postulate a two-period model of immigrants’ investment in

language skills. Motivated by the recent literature on the transferability of

immigrants’ pre-immigration skills, I allow the language skill to affect the pro-

portion of pre-immigration skills which enters the wage equation. I estimate

the key equations of the model, language skill evolution, wage determination,

and skill transfer, using the insights gained from the optimal solution to the

theoretical model. I use instrumental variables to overcome the endogeneity

inherent to the language evolution equation and fixed effects estimation with

instrumental variables to address the endogeneity in the wage and skill trans-

fer equations.

I find that time spent in ESL courses has an economically and statistically

significant impact on the growth of immigrants’ wages. There are three fur-

ther contributions of the paper. First, I find that immigrants’ host-country
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language skills play and important role in the transfer of pre-immigration cog-

nitive skills into the economy; this is, however, not true for manual skills.

Second, I use principal component analysis (PCA) to construct a continuous

measure of English language skill from eight self-reported English-language

proficiency measures. Previous studies have relied on dichotomous measures

of language proficiency based on self-reported speaking proficiency. Such di-

chotomous variables would not be suitable for use in my study as I focus on

the gradual increase in language skills. The third contribution is the use of

Career Handbook data paired with the Canadian 2001 Census of Population

in constructing occupational skills using PCA. Previous studies focusing on

the returns to occupational skills note the use of US data, such as DOT and

O*NET, as a potential caveat for examining the Canadian labour market out-

comes if the skills within occupations with the same or similar names (hence,

SOC 1991 to NOC code correspondences) differ between Canada and the US

(Imai et al., 2016).

Immigrants with higher pre-immigration cognitive skills experience higher

wage gains from six months spent in full-time ESL courses due to the transfer

of these skills into the Canadian labour market. However, even immigrants

with lower pre-immigration cognitive skills receive a 5.53 percent wage in-

crease through the direct effect of higher language skills on wages. This gain is

much larger than 3.61 percent wage gain received from six additional months

of Canadian work experience.
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One of the limitations of the present study is the assumption that the re-

turn to a unit of time spent in an ESL course in terms of language skill gains is

the same for all individuals. It is possible that ESL instructors may distribute

their in-class help according to students’ ability, dedicating more resources to

students who lag behind. However, it is also likely that students with higher

language learning ability αLi progress through the course material faster, reap-

ing higher returns per unit of time spent in the course. Unfortunately, esti-

mation of the model in which the time spent in ESL courses is augmented by

the unobserved language learning ability is precluded by data availability, as

more than three periods of observations on language and ESL courses will be

needed for identification. It may, admittedly, be possible to estimate marginal

treatment effects (MTE) in a model with dichotomous ESL participation with

essential heterogeneity in language skill returns. However, estimates from

such framework would be unable to distinguish between ability and training

intensity gains. I intend to explore this in future work.
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Chapter 2

Understanding Traditional
School Choice and Student
Achievement: Evidence from the
United States

2.1 Introduction

The past decade has seen an increased interest in policies aimed to improve

the academic performance of schoolchildren. One such policy is offering parents

greater school choice. This policy instrument can take on different forms. How-

ever, for any school choice policy to be successful, parents have to select schools

based on characteristics that have a positive effect on the students’ academic

achievement. Therefore, understanding how parents select schools for their

children in the absence of reforms is essential for implementing school choice

policy changes. Residential moves that are motivated by desire to enroll a child
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at a specific school are referred to as the traditional school choice.1

Caetano and Macartney (2014) note that surprisingly little is known about

the traditional school choice and factors which drive it. Moreover, unexpectedly,

the economics literature on the effects of school and residential moves on aca-

demic performance is rather limited. My paper contributes to the understand-

ing of the determinants of traditional school choice and its impact on students’

academic achievement. I focus on students in public elementary schools in the

United States using data from the Kindergarten Cohort of the Early Child-

hood Longitudinal Study (ECLS-K). Most of research on school choice has been

focused on high school students. However, a growing literature on the devel-

opment of cognitive and noncognitive skills points to the importance of early

investments in human capital.2

The use of ECLS-K data has several advantages. First and foremost, I use

responses to the parent questionnaire to identify the residential moves which

occurred in order to place the student at a specific school (Caetano and Macart-

ney (2014) rely on a quasi-experimental design to determine which families

exercise the traditional school choice). Moreover, ECLS-K data contains infor-

mation on the reasons for residential moves aside from changing schools. Sec-

ond, the data is extremely rich, containing information from parent, teacher,

and school administrator questionnaires; furthermore, the data is longitudi-

nal. Hence, I can use the same data set to estimate the production function for
1Following Hoxby (2003)
2For example, see Cunha and Heckman (2010)
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cognitive achievement and the parental utility function which will allow me

to examine how school moves affect academic outcomes. As the standardized

tests for reading and mathematics were administered as a part of the ECLS-K

data collection, the results are comparable across the states and schools. The

teacher and administrator questionnaires provide information on a wide vari-

ety of school characteristics which can act as determinants of parental school

choice overcoming data limitations faced by earlier studies. The majority of

previous studies which examined school choice looked at only a few potential

school choice determinants such as distance to school and school test score av-

erages.

Approximately thirty-four percent of students in the ECLS-K change schools

at least once after kindergarten and up to grade five. Over thirty percent of

residential moves are driven by parents exercising traditional school choice.

On average, following a residential move, students experience lower gains and

larger losses to their performance on standardized tests in reading and math-

ematics when compared to those students who do not change schools. Surpris-

ingly, students whose move was due to parents exercising traditional school

choice do not outperform those students who remained at their old schools

and suffer a decline in scholastic achievement in mathematics. This decline

is substantial, equalling 9 percent of standard deviation in the standardized

gain score. In the current paper I argue that this decline in academic perfor-

mance is a result of parents choosing schools based on characteristics that do
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not affect scholastic achievement while paying little attention to school inputs

which can improve the students’ performance. I obtain parameter estimates for

the schools’ value-added test score production function and the parental utility

as a function of school characteristics. For the former, I employ a panel data

regression with measures of parental and teacher effort along with student-

specific fixed effects to account for unobserved heterogeneity. For the latter,

I estimate a random utility model of school choice using the conditional logit

framework proposed by McFadden (1973). I treat each school as a collection of

attributes some of which serve as inputs into the test score production function.

The remaining attributes describe the school’s socio-economic composition and

amenities. I find that socio-economic composition rather than the school inputs

determined to be important for the cognitive achievement production process

are the main contributors to the probability of a school being chosen by parents.

Considering that these results extend to households who base their residential

moves on access to a specific school, I conclude that this poor decision-making

is a result of limited information about schools and the education process.

The paper is organized as follows: section 2.2 discusses the relevant litera-

ture, section 2.3 describes the data and stylized facts, section 2.4 presents the

theoretical framework, section 2.5 provides empirical findings and discussion,

section 2.6 concludes.
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2.2 Review of Relevant Literature

My paper draws on three strands of literature: research on school choice,

studies of the effect of residential moves and school choice on student achieve-

ment, and the literature on the production of cognitive skills and cognitive

achievement.

Caetano and Macartney (2014) are among the first to study the role of tradi-

tional school choice in residential decisions. They note that despite the impor-

tance of understanding traditional school choice for policy purposes, we know

surprisingly little about the matter. Caetano and Macartney use the age cutoff

for entry into kindergarten to identify residential moves occurring for school-

ing reasons. Employing data from North Carolina coupled with a dynamic

framework for residential move decisions, they find that 20 percent of families

exercise traditional school choice. Whites exercise greater amount of school-

related residential moves across districts at earlier ages, while blacks tend to

move within districts at later ages.

There is a small set of papers that are concerned with estimating parental

preferences for school characteristics. Lankford and Wyckoff (1992) develop

and estimate a model of school choice between public and private alternatives.

Using a binomial logit they find that parents choose schools based on the aca-

demic performance of students at that school as well as the socio-economic

characteristics such as income of other students. Hastings, Kane and Staiger

(2006) use data from the implementation of a district-wide public school choice
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plan in Mecklenburg County, North Carolina to estimate a mixed-logit discrete

choice model of parental preferences for schools characteristics. Their estima-

tion focuses on six characteristics: distance to school, mean standardized test

score at the school, the racial composition at the school, previous attendance by

the student, an indicator for being the neighbourhood school, and an indicator

for the guaranteed transportation to the school. They find that parents greatly

value proximity to school. Preferences for the school test score average show

a significant degree of heterogeneity and are increasing in student’s academic

ability and family income. Rothstein (2006) uses the National Education Lon-

gitudinal Study (NELS) data combined with SAT data and examines the role

of peer quality in high school choice. He finds that school quality measured in

this fashion is not highly valued by parents.

In this paper I focus on traditional school choice discussed in Caetano and

Macartney (2014) with the advantage of residential moves committed for school-

ing reasons being identified by parents themselves. When compared to the

previous studies by Hastings et al. (2006) and Rothstein (2006), I use a wider

variety of school characteristics when estimating preferences.

Understanding how information about schools affects parental school choice

decisions can also be revealing about parental preferences. Bast and Walberg

(2004) survey the literature regarding parental school choice to argue that

parents are better at choosing schools for their children than government ex-

perts. They cite evidence of parents being well-informed and placing academic
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achievement among their top priorities when choosing a school. Briggs et al.

(2008) discuss the reasons why the Moving-to-Opportunity (MTO) experiment

did not succeed at placing the children of participants in better schools. The

authors argue that one of the main reasons for this failure is that the program

did not account for the limited resources and and the logic used by the par-

ticipants to choose schools. The evidence provided indicates that a lot of fam-

ilies participating in MTO faced limitations with respect to the information

available to them. Hastings and Weinstein (2008) use a natural experiment

and a field experiment to examine the effect of information availability and ac-

cessibility on the parental school choice.3 Information provided to parents as

mandated by the No Child Left Behind act induced a significant fraction of par-

ents to choose schools with better academic performance as an alternative for

their current school. Moreover, Hastings and Weinstein find that for disadvan-

taged families simplified information on school academic achievement made

this effect stronger. Azmat and Garcia-Montalvo (2012) employ the Learning

and Education Achievement in Punjab Schools (LEAPS) data to study informa-

tion gathering and school choice by parents. The main finding of the paper is

that parents who are aware of and have visited schools in their neighbourhoods

form assessments of school rankings based on test scores. Parents beliefs about
3Starting from 2002 the Charlotte-Mecklenburg Public School District (CMS) provided par-

ents with the option to submit their three top choices based on the information provided in the

school choice guide and school-by-school internet search on school performance on the CMS

website, but starting from 2004 CMS provided the parents at the No Child Left Behind (NCLB)

sanctioned schools with an alphabetically sorted school list with test score results.
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school quality have an important effect on school choice. Friesen et al. (2012)

estimate the effect of information about school performance on school choice

decisions. They develop a model in which parents learn about school quality

based on the reported average standardized test scores for the school. The data

come from a natural experiment in which the Ministry of Education in British

Columbia (BC) in Canada started the provision of information about the test

performance in BC schools to the public beginning from the fall of 2000. Using

a difference-in-difference approach they find that parents respond to the new

information about schools by moving their children to schools with relatively

higher perceived quality.

Residential and school decisions can have a significant effect on the aca-

demic performance of students. Pribesh and Downey (1999) are among he first

to study the the impact of moving on high school student performance. They

look at residential moves, school moves occurring without the change in res-

idence, and combined residential and school moves using NELS data which

contains data on high school students in 1988 and 1992. They find that com-

bined residential and school moves negatively impact students’ mathematics

test scores. They argue that two components are responsible for this decline.

First, within the sample, there are significant pre-existing differences in fam-

ily characteristics between the movers and non-movers. Second, residential
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and school moves cause the destruction of social capital which negatively im-

pacts students’ achievement.4 An interesting finding is that school-only moves

are not linked to worse performance in math. Cullen, Jacob and Levitt (2006)

exploit randomized lotteries which determine high school admissions under

open enrollment within the Chicago Public School system. While students who

win the lotteries attend high schools which have better characteristics, no sys-

tematic gains in terms of regular measures of academic achievement such as

test scores and graduation rates are observed. The previously discussed study

by Rothstein (2006) also finds no positive effect of parental school choice on

academic achievement for high school students. His study, however, focuses on

district-level choice without identifying the reasons for changes in the districts.

Lavy (2010) looks at behavioural and academic outcomes for students affected

by the programme that granted them free public school choice in Tel-Aviv, Is-

rael. He finds evidence of sizeable positive effects on cognitive achievement

and reduced drop-out rates.

All of the above studies focus on the effects of school choice and residen-

tial moves on high school students. However, the growing literature on cogni-

tive and noncognitive skill development summarized in Cunha and Heckman

(2010) emphasizes the importance of early investment in these skills. School

choice exercised at elementary school level may, therefore, have a significant

effect on the child’s human capital and I focus my study on children in grades
4Pribesh and Downey (1999) do not offer an explanation of the mechanism through which

this occurs.
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one through five.

When estimating the production function for cognitive achievement, I rely

on the vast literature which studies the value added approach to measuring

the impact of school inputs on student test scores. Todd and Wolpin (2003)

discuss the methodology for modelling and estimating production functions for

cognitive achievement. Dewey et al. (2000) survey the literature on school in-

puts and caution against the use of parental income as one of the inputs into

the test score production function. They run a variety of misspecification tests

finding commonly used school inputs to have positive statistically significant

marginal effects. Coates (2003) and Clotfelter, Ladd and Vigdor (2007) assess

the effectiveness of schooling inputs such as instructional time and measures of

teacher quality. Additionally, both of these papers discuss the use of panel data

for estimating test score production functions using fixed effects models. Har-

ris and Sass (2011) study the effectiveness of teachers using the “value-added”

approach measuring teacher output as their students’ standardized test scores.

They find that for elementary school teachers there are gains to productivity

in their early years of teaching, though there are still marginal positive effects

at 10 years of experience. I use these papers for guidance when selecting the

school inputs which enter the test score production function.
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2.3 Data and Descriptive Statistics

2.3.1 Data

The data come from the Early Childhood Longitudinal Study, Kindergarten

Class of 1998-1999 (ECLS-K) which was conducted by the US Department of

Education. The survey included children from both public and private schools,

attending either full-day or part-day kindergarten. The collected information

from a nationally representative sample of children, their parents, teachers,

and schools within the US. On average, 23 randomly selected children were

sampled from each ECLS-K school. In smaller schools, the number sampled

may have been lower. The ECLS-K is a longitudinal study that followed the

same children from kindergarten through the 8th grade. Information collec-

tion was conducted in the fall and the spring of kindergarten (1998-99), the fall

and spring of 1st grade (1999-2000), the spring of 3rd grade (2002), the spring

of 5th grade (2004), and the spring of 8th grade (2007). Trained evaluators

assessed children in their schools and administered surveys to parents over

the telephone. Teachers and school administrators were contacted directly at

their schools with request to complete questionnaires. The ECLS-K adminis-

tered tests in mathematics and reading, rather than using school grade reports,

which allows comparison of cognitive achievement across students independent

of their location in the US.

I focus on children in elementary schools which corresponds to survey waves
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four (2000, the first-grade year), five (2002, the third-grade year), and six (2004

the fifth-grade year). Furthermore, I limit the sample to public schools. This

sample restriction alleviates the issue of tuition being a part of the cost of mov-

ing to a private school as well as the potential differences in the test score

production technology between public and private schools (for example, see Al-

tonji, Elder and Taber (2005)).

The longitudinal nature of data permits me to observe school moves through-

out the elementary school in order to assess the importance of diverse school

characteristics and inputs on the school choice decision. Moreover, longitudi-

nal data permits me to estimate the test score production function using fixed

effects to account for inherent student ability.

The parental questionnaire contains the question

PIQ.006 Did you {or {CHILD}’s parents} choose where to live so that {CHILD}

could attend {his/her} current school?

The answers to this question permit me to identify which parents exercise tra-

ditional school choice.5

The public-use data available to researchers outside of the United States

does not contain information on the location of schools beyond the census re-

gion. In section 2.5, I discuss the algorithm used to identify the students’ school
5An important caveat is that a move can be initiated by a reason different than TSC, such as

a divorce, but the parent would still put effort into placing their child in the best school which

is available to him/her (this school can be worse than the original school the child attended). I

thank Todd Stinebrickner and Elizabeth Caucutt for pointing this out.
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choice sets using observed moves. Students crossing regional borders consid-

erably affect the size of the school choice sets which poses issues for the model

estimation. For the purposes of computational feasibility I exclude these stu-

dents from the sample. As they comprise only 0.2 percent of the sample, this

restriction should not affect my results in a significant way.

2.3.2 Descriptive Statistics

There are three groups of students who are of particular interest to the cur-

rent study: students who move schools due to parents exercising traditional

school choice, students who move schools due to a residential move undertaken

by the family, and those students who remain at the schools from which the

above moves have occurred. In what follows I will refer to these students as

school movers, residential movers, and non-movers respectively. School movers

are identified as those students whose parents reported choosing the residence

so that the child could attend their current school or those parents who re-

ported that they moved to get their child to a better school. In this section

I discuss and compare the academic performance and family background of

these students as well as their respective schools. Approximately 34 percent of

parents move at least once while their children are in elementary school. Out

of these movers, over thirty percent report choosing their residence to place

their child at a specific school. I do not observe any significant difference in the

proportions of movers based on their performance on first year standardized
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test scores when compared to the sample median.6

Test Scores

Standardized tests in reading and mathematics were administered as a

part of the ECLS-K data collection. I use these tests to calculate test gain

scores which serve as a measure of change in academic performance from sur-

vey wave t−1 to survey wave t and have become commonplace in the literature.

These scores are available for students in grades three (gain from grade 1 to

grade 3) and five (gain from grade 3 to grade 5). In addition, for students who

moved between grades one and three I can examine the gain scores at the new

school (labeled as “Gr. 5” for both types of movers) . The gain scores reported

in tables 2.1, 2.2, and 2.3 have been calculated as Yi,t − Yi,t−1 and standardized

to have mean zero and standard deviation of one to make them comparable

across grades and simplify the interpretation of differences between groups. I

use gain scores since I want to examine the impact of moving on academic per-

formance, which is better reflected by improvement or decline in the test scores

compared to earlier performance.

For both reading and mathematics gain scores I perform mean comparisons

between the students who moved and students who remained in the schools

from which the movers originated. In the time period following the move read-

ing gain scores do not exhibit any statistically discernible differences across
6I use this as an informal comparison of ability between groups.
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the groups. However, residential movers suffer a decline in their reading per-

formance from grade three to grade five following the move prior to the third

grade. This difference constitutes 9 percent of the standard deviation (with

associated p-value of 0.0133) when compared to non-movers from the same

schools. When comparing residential and school movers, there is no statisti-

cally significant difference between the respective next period gain scores of

−0.082 and −0.044.

Mathematics gain scores follow a different pattern. Surprisingly, school

movers suffer a decline of 9.4 percent of a standard deviation with results hold-

ing at 1 percent significance, while residential movers experience a gain which,

however, is statistically indistinguishable from zero. When the comparison is

conducted just between the movers there is a significant difference of 12 per-

cent of the standard deviation in favour of residential movers. In both cases

the next period’s gain scores are similar across the groups. These results are

rather unexpected since one would intuitively assume that the school moves

associated with parents exercising school choice should result in the improve-

ment of academic performance. Instead, we observe that non-movers fare best

of all, followed by the residential movers. I investigate the causes of these

outcomes further in section 2.5.
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Table 2.1: Test Gainscores: Did Not Move

Variable Mean Std. Dev. Min Max Obs.
Gain score (Read) Gr. 3 0.012 0.999 -3.443 6.333 6961
Gain score (Read) Gr. 5 0.008 0.995 -4.141 4.247 4315
Gain score (Math) Gr. 3 0.013 0.982 -4.12 7.071 7142
Gain score (Math) Gr. 5 -0.002 0.997 -4.145 5.364 4344

Table 2.2: Test Gainscores: Moved for Residence

Variable Mean Std. Dev. Min Max Obs.
Gain score (Read) Gr. 3 & 5 0.000 1.035 -3.277 4.432 1641
Gain score (Read) Gr. 5 -0.082 1.023 -4.741 3.416 728
Gain score (Math) Gr. 3 & 5 0.033 1.074 -3.294 7.453 1703
Gain score (Math) Gr. 5 -0.011 1.03 -3.439 2.898 738

Table 2.3: Test Gainscores: Moved for School

Variable Mean Std. Dev. Min Max Obs.
Gain score (Read) Gr. 3 & 5 -0.011 0.942 -3.002 2.979 710
Gain score (Read) Gr. 5 -0.044 1.013 -3.821 2.605 342
Gain score (Math) Gr. 3 & 5 -0.091 0.972 -3.515 2.986 732
Gain score (Math) Gr. 5 -0.015 1.014 -2.617 2.887 343
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Family Background

Tables 2.4, 2.5, and 2.6 present the descriptive statistics for family charac-

teristics. To understand if there are significant underlying differences in the

backgrounds of the groups I perform a set of mean and proportion compari-

son tests. The comparison is conducted across a set of socio-economic charac-

teristics such as being a single parent, having a below median income, being

non-hispanic white or black, family education background and occupational

prestige of parents.7

Residential movers are 6.62 percent less likely to have at least one college

educated parent, but do not differ in occupational prestige or income from non-

movers. They differ significantly by racial composition, being 7.35 percent more

likely to be black. Residential movers also have a higher, by 2.3 percent, pro-

portion of single parent households. School movers are 6.48 percent more likely

to come from single parent households and 5.18 percent more likely to be lower

income. However, they do not significantly differ in racial composition, educa-

tion levels or parental occupational prestige from the non-movers.

When comparing the two types of movers, the difference in the proportion of

below median income households is still noticeable (school movers are approx-

imately 3.5 percent more likely to be lower income). Moreover, school movers
7I use the national income median of $30,000 for the 2001-2004 time period.
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are more likely to be in the single parent households. There is a sizeable dif-

ference of 8.5 percent in the chance of being a higher educated household con-

ditional on being a school mover. School movers are 7.5 percent more likely to

be white than their residential move counterparts.

There are noticeable differences in the socio-economic and demographic

Table 2.4: Household Characteristics: Did Not Move

Variable Mean Std. Dev. Min Max Obs.
Single Parent 0.199 0.399 0 1 7315
Siblings 1.618 1.194 0 11 6447
Parental Education 0.274 0.446 0 1 6513
Mom Occup. Prest. 32.491 20.411 0 77.5 6283
Dad Occup. Prest. 39.61 13.981 0 77.5 5076
Low Income HH 0.326 0.469 0 1 6735
White 0.485 0.5 0 1 7315
Black 0.138 0.345 0 1 7315

Table 2.5: Household Characteristics: Moved for Residence

Variable Mean Std. Dev. Min Max Obs.
Single Parent 0.225 0.418 0 1 1800
Siblings 1.641 1.262 0 10 1345
Parental Education 0.2 0.4 0 1 1437
Mom Occup. Prest. 32.181 19.609 0 77.5 1311
Dad Occup. Prest. 39.183 13.338 0 77.5 953
Low Income HH 0.341 0.474 0 1 1696
White 0.404 0.491 0 1 1800
Black 0.217 0.412 0 1 1800

characteristics between the groups. It is, therefore, worthwhile to consider

them when estimating the preferences for school attributes.
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Table 2.6: Household Characteristics: Moved for School

Variable Mean Std. Dev. Min Max Obs.
Single Parent 0.263 0.441 0 1 786
Siblings 1.625 1.151 0 6 786
Parental Education 0.286 0.452 0 1 777
Mom Occup. Prest. 32.51 19.85 0 77.5 770
Dad Occup. Prest. 40.651 14.23 0 77.5 583
Low Income HH 0.376 0.485 0 1 739
White 0.477 0.5 0 1 786
Black 0.141 0.348 0 1 786

School Characteristics

Finally, I examine the differences between the characteristics of schools

which residential and school movers choose and those schools from which they

leave. These characteristics are present on either school report cards available

to parents through the state-level Department of Education websites8 or could

be observed by visiting the school. I use the questionnaire filled out by school

administrators along with the student demographic and test score data to con-

struct these variables. The statistics are school-weighted, rather than student

weighted, as I am interested in the characteristics of schools irrespective of the

number of people who move to them and their overall enrollment. The statis-

tics are presented in tables 2.7 and 2.8 for residential movers and tables 2.9

and 2.10 for school movers.

The index for school facilities is the average of the reported quality of the

cafeteria, gym, computer room, playground, library, classrooms, and the school
8Such as the Michigan Department of Education http://www.michigan.gov/mde
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auditorium. The reported qualities range from “1” corresponding to “Never

Adequate” facilities to “4” corresponds to “Always Adequate” facilities. Zeroes

indicate that the facilities are not present at the school. There is a statistically

significant but economically small increase in the quality of the facilities associ-

ated with moving to another school for both groups of movers. I use the answers

to the questions which describe the state of the neighbourhood: the presence of

graffiti, litter, boarded up buildings, and congregations of people. Higher value

of the index is associated with a better quality of the neighbourhood. Schools

to which students move are located in marginally better neighbourhoods, but

the difference is economically not significant.

Both residential and school movers’ new schools are larger with respectively

24 and 35 more students on average. Residential movers move to schools with

lower proportions of white students but approximately the same proportion of

black students. In the case of school movers both proportions decrease. There

is a sizeable difference between school and residential moves when it comes to

the proportion of college educated households at the new schools. There is a

0.04 increase for the residential movers, but for school movers this number is

three times larger. I use the proportion of students who receive a free school

lunch as a measure of poor households at the school, which is common in the

literature. I do not observe any statistically significant differences in these pro-

portions. It is also worth having a look at whether the school receives Title I

funding since schools which do have to have a certain proportion of students
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from low income households to qualify. The proportion of schools which receive

additional funds under Title I is lower by 0.07-0.08 for the schools movers go

depending on the group.

Finally, I discuss the differences in the measures of output. There are four

such measures: percentage of students performing above the nationally set

standards, test score averages within grades, test score averages within school

(across elementary school students), and the school gain scores describing the

recent performance of the schools students. With the exception of the per-

centage above national standards, the other variables have been standardized

across schools to make the comparison easier. There is not much difference in

the measures of being above the national standards in mathematics or reading

for both groups: in both cases the economic difference is close to one percent.

School level reading test score averages do not differ statistically between old

and new schools. However, there is a small difference in the mathematics av-

erages which are higher at the new schools. Similarly, I observe no statisti-

cal difference between grade test score averages. Though, the new schools of

school movers have slightly (economically insignificant) higher averages. The

most interesting observation is that the school-level gain scores for mathemat-

ics are negative at new schools and there is a statistically significant difference

between old and new schools for the residential group. The gain scores are

negative for the new schools of school movers, but the magnitude is smaller in
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absolute value. This is curious given that on average residential movers do bet-

ter than school movers in mathematics, yet, this is not what one would expect

looking at the school gain scores.

Table 2.7: Residential Move: Old Schools

Variable Mean Std. Dev. Min Max Obs.
Facilities 2.609 0.687 0 4 818
School Enrollment 518.856 226.543 4 900 951
Title 1 Funding 0.774 0.418 0 1 819
Prop. White 0.422 0.392 0 1 954
Prop. College HH 0.124 0.181 0 1 954
Neighbourhood 3.721 0.463 1 4 848
Prop. Free Lunch 0.408 0.295 0 0.950 954
School Avg. in Read. -0.136 0.8 -4.153 2.177 943
School Avg. in Math. -0.121 0.774 -3.956 2.343 946
Above National Read 58.926 23.325 1 100 473
Above National Math 59.634 22.807 1 100 465
School gain score (Math) 0.036 0.675 -3.322 2.833 229
School gain score (Read) 0.009 0.759 -2.324 3.215 229
Grade Avg. in Read -0.198 0.853 -4.378 2.413 941
Grade Avg. in Math -0.186 0.812 -4.175 2.347 944
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Table 2.8: Residential Move: New Schools

Variable Mean Std. Dev. Min Max Obs.
Facilities 2.724 0.778 0 4 871
School Enrollment 543.759 202.997 2 1000 1136
Title 1 Funding 0.706 0.456 0 1 871
Prop. White 0.38 0.438 0 1 1147
Prop. College HH 0.166 0.313 0 1 1147
Neighbourhood 3.783 0.396 1.25 4 1002
Prop. Free Lunch 0.416 0.284 0 0.950 1143
School Avg. in Read. -0.169 0.937 -3.498 3.014 1116
School Avg. in Math. -0.104 0.952 -3.205 2.923 1121
Above National Read 60.716 22.562 2 100 539
Above National Math 60.922 23.054 2 100 536
School gain score (Math) -0.107 1.397 -6.314 6.691 283
School gain score (Read) -0.126 1.417 -6.928 6.548 279
Grade Avg. in Read -0.242 1.004 -3.742 2.689 1102
Grade Avg. in Math -0.19 1.026 -3.398 2.578 1112

Table 2.9: School Move: Old Schools

Variable Mean Std. Dev. Min Max Obs.
Facilities 2.637 0.716 0 4 469
School Enrollment 518.899 223.496 3 900 526
Title 1 Funding 0.767 0.423 0 1 467
Prop. White 0.449 0.388 0 1 528
Prop. College HH 0.14 0.199 0 1 528
Neighbourhood 3.733 0.439 1.667 4 469
Prop. Free Lunch 0.397 0.292 0 0.950 527
School Avg. in Read. -0.084 0.737 -3.94 2.621 521
School Avg. in Math. -0.038 0.749 -3.7 2.542 521
Above National Read 61.298 21.969 5 100 295
Above National Math 61.329 22.461 4 100 292
School gain score (Math) 0.067 0.715 -1.422 3.68 139
School gain score (Read) 0.004 0.738 -2.324 4.391 138
Grade Avg. in Read -0.149 0.786 -4.158 2.635 519
Grade Avg. in Math -0.097 0.797 -3.91 2.554 519
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Table 2.10: School Move: New Schools

Variable Mean Std. Dev. Min Max Obs.
Facilities 2.771 0.776 0 4 441
School Enrollment 554.128 201.374 3 1000 564
Title 1 Funding 0.686 0.465 0 1 442
Prop. White 0.41 0.447 0 1 569
Prop. College HH 0.264 0.382 0 1 569
Neighbourhood 3.795 0.408 1.625 4 495
Prop. Free Lunch 0.37 0.272 0 0.950 568
School Avg. in Read. -0.025 0.973 -3.884 2.526 547
School Avg. in Math. 0.007 0.946 -3.668 2.746 549
Above National Read 61.376 23.609 3 100 282
Above National Math 61.947 23.536 3 100 282
School gain score (Math) -0.077 1.48 -5.679 6.691 132
School gain score (Read) -0.1 1.441 -6.928 3.988 130
Grade Avg. in Read -0.09 1.027 -3.744 2.537 540
Grade Avg. in Math -0.065 1.046 -3.877 2.707 543

2.4 Theoretical Framework

In this section I briefly discuss the theoretical framework for the empirical

section.

2.4.1 School Choice

A household i can choose any school s in the household’s choice set Si. At

any time t a school which student i attends possesses a vector of attributes

which serve as inputs into cognitive achievement Iis,t and attributes which do

not enter test score production, Xis,t. Households can, therefore, infer how

much value-added to cognitive achievement the school will provide based on
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Iis,t. I assume that utility is linear in school attributes but may have random

elements to reflect that all households do not have the same tastes. Household

i’s utility from attending school s at time t can then be written as:

Uis,t = Xis,tθX + Iis,tθI − cis,t + εis,t . (2.1)

Here θX and θI are vectors of parameters, cis,t is the cost of moving to school s

for household i, and εis,t is the taste shock. Xis,t can include such attributes as

racial and income composition of the school, and the quality of school facilities.

θI captures parental preferences for academic achievement, as Iis,t includes

measures of teacher and peer quality, which serve as inputs in student i’s test

score production. The household chooses school j if and only if

Uij,t ≥ Uis,t ∀ j 6= s such that j, s ∈ Si (2.2)

I estimate this discrete choice model using the conditional logistic model in

section 2.5.

2.4.2 Test Score Production

Since I am interested in explaining the decline in academic performance fol-

lowing a school move, I need to understand the role different school attributes

play in the cognitive achievement production function. In this paper I use stan-

dardized test scores to measure cognitive achievement. I use the value-added

model common in the literature. Andrabi, Das, Khwaja and Zajonc (2011) find
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coefficients of about 0.2 to 0.5 for lagged tests scores in the production func-

tions for cognitive achievement (i.e., imperfect persistence). The use of a more

restricted gain score specification (with the perfect persistence assumption, un-

der which β below is fixed to be one) leads to biased estimates of the effect of

other inputs into test score production. I follow Andrabi et al. (2011) and use

the lagged test score specification of the value added model in the present pa-

per. Moreover, I introduce student-level time-invariant effect, αi to account for

unobserved heterogeneity and family characteristics. The production function

is then written as

Y k
is,t = Y k

is,t−1β + P k
i,tδ + Ikis,tγ + αi + ηki,t , (2.3)

where Y k
is,t and Y k

is,t−1 are the current and lagged test scores, P k
i,t represents

parental inputs, Ikis,t represents a vector of those school attributes which par-

ticipate in the test score production for subject k, αi is the household-specific

effect, and ηki,t is a random shock to the student’s performance.

I describe and motivate the inputs in Pi,t and Is,t and estimate this produc-

tion function in section 2.5. Obtained γ coefficients combined with θX and θI

coefficients from the discrete choice estimation enable me to offer an explana-

tion for the declining performance of students who move schools.
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2.5 Estimation and Results

In this section I construct school choice sets, use them to estimate the ran-

dom utility parental school choice model, and estimate the test score production

function. I then provide a discussion of the results.

2.5.1 Estimating Test Score Production Function

I use panel data for grades 1, 3, and 5 to estimate value added test score

production functions for reading and mathematics. To make the test scores

comparable across time and grades and simplify the interpretation of the re-

gression results, I normalize the test scores to have mean zero and standard

deviation of one within each time period in the estimation sample. I estimate

each function using balanced panel data. In what follows I define the parental

and school inputs relevant for the estimation.

Houtenville and Conway (2008) find evidence that the parental effort has

a positive effect on student achievement. For my estimation I measure the

parental effort as the number of times per week the parent helps the child

with homework in the subject. For reading, on average parents help their chil-

dren 2.6 days out of possible 5. For mathematics this number is similar at 2.45

days out of 5. These results are similar for all mover and non-mover groups.

Let

Pi,t = {Parental HW Helpi,t, }
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The schooling input set includes school-level averages. Let

Iis,t = {Expected Hours of HWi,st, Class Timeis,t, Prop. of Teachers with MA or PhDis,t,

Prop. of Teachers with Regular Certificationis,t, Teacher Experienceis,t, Class Sizeis,t,

Weekly Administered Testsis,t Average Test Scores (Peer Quality)is,t}

Both expected hours of homework and hours of instruction (class time) in the

subject per week act as proxies for the teachers’ effort. Coates (2003) finds

instruction time to have a significant positive impact on test scores for both

reading and mathematics using data on schools in Illinois. Years of teaching

experience, possession of advanced degrees, and possession of regular (as op-

posed to provisional and temporary) certification are measures of teacher qual-

ity commonly included in the test score production functions in the literature.

Clotfelter et al. (2007) evaluate these measures using administrative data from

North Carolina and find both years of experience and certification to be signif-

icant determinants of student achievement. The information on proportions of

certified and MA holding teachers, as well as average years of teaching expe-

rience within the school can be found on most “school report cards”. Parents

may treat these proportions as the probability of their child being matched

with a certified teacher and/or teacher holding an advanced degree. The ef-

fect of class size on student achievement has been the topic of many research

papers. Meghir and Rivkin (2011) survey the literature and provide a con-

ceptual model for the effect of class size. They summarize findings from six

papers ranging from no effect to positive effect of smaller class sizes on student
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achievement. I also add the number of weekly administered tests (local/state

standardized tests and teacher-made tests), as writing standardized tests of-

ten can make the students more comfortable with the format and approach to

answering questions.

As school test score averages for reading and mathematics are easily observ-

able by parents via the “school report cards”, I use them as a measure of peer

quality at the school. As I am not able to match the school data to the Common

Core of Data, I calculate the averages using the information for grades 1, 3,

and 5.

Tables 2.11 and 2.12 present the summary statistics for old and new schools

of residential movers. Tables 2.13 and 2.14 present these statistics for school

movers. There are no significant differences in the average years of teacher’s

experience or proportions of certified teachers between these groups of schools.

However, the proportion of teachers with advanced degrees is 0.12 lower in the

new schools for school movers and 0.15 lower for residential movers. For both

subjects assigned homework hours go up with the move, but the increases are

not large. Class times for reading are approximately half an hour lower at the

schools which residential and school movers choose. For mathematics the dif-

ference is statistically equal to zero for school movers and residential movers

experience a small 0.1 hour increase. There is a statistically significant differ-

ence between the number of tests administered per week at the new and old

schools; however, economically this difference is negligible. Average class size
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goes up by one student for both groups of movers.

The test score production function for each subject is written as:

Table 2.11: Residential Move: Inputs at Old Schools

Variable Mean Std. Dev. Min Max Obs.
Avg. Teacher Exp. 14.14 7.273 1 35 776
Prop. Teachers with MA+ 0.457 0.377 0 1 916
Prop. Cert. Teachers 0.891 0.22 0 1 773
Avg. HW Hours 1.465 0.455 0 2.5 779
Avg. Class Size 20.56 3.575 12 35 777
Tests Weekly 0.943 0.819 0 6 954
Avg. Read HW 1.663 0.481 0 2.5 778
Avg. Math HW 1.265 0.528 0 2.5 778
Read. Class Time 6.560 1.024 0.125 7.5 765
Math Class Time 4.497 1.108 0.125 7.5 762

Table 2.12: Residential Move: Inputs at New Schools

Variable Mean Std. Dev. Min Max Obs.
Avg. Teacher Exp. 14.101 8.9 1 35 777
Prop. Teachers with MA+ 0.303 0.4 0 1 1072
Prop. Cert. Teachers 0.903 0.255 0 1 773
Avg. HW Hours 1.752 0.513 0 2.5 770
Avg. Class Size 21.724 4.583 10 36 765
Tests Weekly 0.812 0.853 0 4.5 1147
Avg. Read HW 1.853 0.542 0 2.5 767
Avg. Math HW 1.621 0.6 0 2.5 719
Read. Class Time 5.993 1.438 0.375 7.5 764
Math Class Time 4.606 1.389 0.125 7.5 730
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Table 2.13: School Move: Inputs at Old Schools

Variable Mean Std. Dev. Min Max Obs.
Avg. Teacher Exp. 13.915 7.001 1 35 433
Prop. Teachers with MA+ 0.465 0.372 0 1 509
Prop. Cert. Teachers 0.907 0.193 0 1 433
Avg. HW Hours 1.49 0.452 0 2.5 434
Avg. Class Size 20.689 3.376 11 31.6 433
Tests Weekly 0.945 0.745 0 3.375 528
Avg. Read HW 1.681 0.465 0 2.5 434
Avg. Math HW 1.295 0.517 0 2.5 432
Read. Class Time 6.523 1.024 0.375 7.5 431
Math Class Time 4.520 1.132 0.125 7.5 431

Table 2.14: School Move: Inputs at New Schools

Variable Mean Std. Dev. Min Max Obs.
Avg. Teacher Exp. 13.873 8.141 1 35 397
Prop. Teachers with MA+ 0.344 0.403 0 1 517
Prop. Cert. Teachers 0.914 0.236 0 1 394
Avg. HW Hours 1.747 0.502 0.415 2.5 393
Avg. Class Size 21.939 4.401 10 36 389
Tests Weekly 0.830 0.868 0 6 569
Avg. Read HW 1.855 0.513 0.415 2.5 390
Avg. Math HW 1.597 0.602 0 2.5 363
Read. Class Time 5.907 1.407 0.875 7.5 386
Math Class Time 4.565 1.317 0.125 7.5 375
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Test Scorei,t = β Test Scorei,t−1

+ δ Parental HW Helpi,t

+ γ1 Expected Hours of HWis,t + γ2 Class Timeis,t

+ γ3 Prop. of Teachers with MA or PhDis,t

+ γ4 Prop. of Teachers with Regular Certificationis,t

+ γ5 Teacher Experienceis,t + γ6 Class Sizeis,t

+ γ7 Weekly Administered Testsis,t

+ γ8 Average Test Scoresis,t + αi + ηi,t (2.4)

where ηi,t is assumed to be identically and independently distributed with

mean zero and variance σ2
η and represents random shocks to the student’s per-

formance. αi captures time-invariant characteristics specific to the student and

provides a control for unobserved heterogeneity. The parameters of particular

interest for the present paper are the estimates of γ’s, as they reflect the im-

portance of the school-level inputs for grade production.

Since lagged test scores and parental inputs are likely not independent from

unobserved student ability, αi, it would be impossible to consistently estimate

the parameters of equation (2.3) using OLS. To address this, I take first differ-

ences to eliminate αi from the equation, obtaining

∆Y k
is,t = ∆Y k

is,t−1β + ∆P k
i,tδ + ∆Iks,tγ + ∆ηki,t . (2.5)
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However, using first differences (FD) estimation is still insufficient to obtain

consistent estimates as ∆Y k
is,t−1 = Y k

is,t−1 − Y k
is,t−2 is, by construction, not inde-

pendent from ∆ηki,t = ηki,t−ηki,t−1 (Y k
is,t−1 depends on ηki,t−1). I use the second lag of

the test score, Y k
is,t−2, as an instrumental variable for ∆Y k

is,t−1 when estimating

equation (2.5).9

Table 2.15 contains the results for both the FD and IV estimation. For

both reading and mathematics going from first differences estimated by OLS

to the first differences with the use of an instrumental variables corrects the

bias in the coefficient for the lagged score. The F -statistic for the first stage for

both reading and mathematics is large, indicating that Yi,t−2 acts as a strong

instrument for ∆Yi,t−1. In line with Andrabi et al. (2011), I find that lagged

test scores do not have a unit coefficient associated with them and only approx-

imately a fifth of the previous test score gets “carried over”. This can reflect

that material covered in preceding grades is only partially built upon or that

there is a significant depreciation of previously accumulated knowledge.

I find that the coefficient on the parental homework help is significant only

for reading. One additional time the parent helps his/her child with reading

homework per week yields slightly over one percent increase in the standard-

ized test score.10 The effect for mathematics is statistically indistinguishable
9This approach is a form of an Arellano-Bond estimator, as discussed in Arellano and Bond

(1991). Here, I have only one second lag of the dependent variable to use as an instrument,

due to the data set length.
10ECLS-K did not provide measures of the amount of time spent on parental help, beyond

the number of times help was provided per week.
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Table 2.15: Estimates of the Test Score Production Functions

Test Score Reading Math
FD IV FD IV

Lagged Test Score −0.2106∗∗∗ 0.2002∗∗∗ −0.2240∗∗∗ 0.1887∗∗∗
(0.0113) (0.0379) (0.0116) (0.0436)

Parental HW Help 0.0056∗ 0.0116∗∗∗ 0.0034 0.0052
(0.033) (0.0038) (0.0032) (0.0035)

Avg. Teacher Exp. 0.0020∗∗∗ 0.0017∗ −0.0008 −0.0008
(0.0009) (0.0011) (0.0008) (0.0009)

Prop. Teachers with MA+ −0.0260 −0.0527∗∗∗ 0.0384∗∗ 0.0336
(0.0194) (0.0217) (0.0188) (0.0214)

Prop. Cert. Teachers 0.0433 0.0578 0.0496 0.0152
(0.0318) (0.0363) (0.0318) (0.0354)

Avg. Assigned HW 0.0357∗∗∗ 0.0276∗ −0.0041 −0.0168
(0.0135) (0.0156) (0.0107) (0.0121)

Avg. Class Time 0.0063 0.0126∗∗∗ 0.0212∗∗∗ 0.0252∗∗∗
(0.0044) (0.0050) (0.0048) (0.0055)

Avg. Class Size −0.0006 0.0003 −0.0036∗∗∗ −0.0047∗∗∗
(0.0014) (0.0016) (0.0014) (0.0016)

Tests Weekly 0.0048 −0.0112 0.0003 −0.0115
(0.0095) (0.0109) (0.0095) (0.0109)

School Avg. in Subject 0.2183∗∗∗ 0.1680∗∗∗ 0.2189∗∗∗ 0.1867∗∗∗
(0.0237) (0.0267) (0.0284) (0.0318)

Observations 5,906 5,906 5,473 5,473
First Stage F -stat - 53.46 - 42.90
Robust standard errors in parenthesis; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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from zero.

For reading an additional year of experience yields a small economically in-

significant increase in the test score (it is close to 0.2 percent). The coefficient

on average teacher experience for mathematics is not estimated precisely. I

find the coefficients on the proportion of teachers with Master’s or Doctoral

degrees or regular certification to be statistically indistinguishable from zero,

which is similar to the findings of the earlier literature.

Teacher effort has a statistically significant effect on the test scores. For

reading this manifests in the hours of homework with an additional hour in-

creasing the score by approximately 0.03 standard deviations. Additional hour

spent on reading per week increases test scores by 1.3 percent of a standard

deviation. For mathematics the coefficient on in-class instruction is significant

and is 0.0252 standard deviations of the mathematics test score. The amount of

assigned homework does not affect cognitive achievement in mathematics. The

frequency of standardized tests seems not to have no effect on the test scores.

For mathematics average class size carries a negative impact of 0.0047 stan-

dard deviations for an additional class member but for reading the effect is

not precisely estimated. For both reading and mathematics the coefficients

on proxy variables for peer quality at the school are positive and statistically

significant. It is 0.1680 standard deviations for reading and 0.1867 standard de-

viations for mathematics. In general these estimates are consistent with those

found in the literature. I conclude that school peer quality, average class size,
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and teacher effort measured as class time spent and assigned homework act as

important inputs into the test score production process.11

2.5.2 School Choice Sets

The public-use version of ECLS-K does not include any locational identifi-

cation beyond the four census regions in the US.12 To obtain the choice sets for

individuals in my sample I use the observed moves from and into each school.

I apply the following algorithm to construct the choice sets13:

1. For each school observe students who moved out of the school and record

the school identifier of new schools.

2. For each school observe students who moved into the school and record

the school identifier of their previous schools.

3. Choice sets that have shared elements are merged together into one larger

choice set.
11The present paper focuses on finding out which school inputs matter for test score pro-

duction. I, therefore, pool students from all public school independently of whether they move

schools or stay. However, in future research I would like to estimate the impact of the school

moves motivated by different reasons on cognitive achievement of students. Estimating such

effects would require controlling for selection in the “mover” groups.
12The restricted-use data is available exclusively to researchers within the United States
13The process is similar to building the adjacency matrix for a connected graph with the

exception of setting all non-zero elements of the matrix to one
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4. Parents are then assigned a choice set for the school their child is enrolled

at prior to the move.

For example, suppose I observe two students move out of school 1 and go to

schools 2 and 4. I also observe a student move from school 5 to school 4. So,

on first iteration, the choice sets are Si1 = {1, 2, 4} and Si4 = {1, 4, 5} for any

household i at these schools. After the implementation of step (3) in the algo-

rithm the choice sets become Si1 = {1, 2, 4, 5} and Si4 = {1, 2, 4, 5}. Note that the

school choice sets are time invariant.

I compute the choices for each school within the sample and then assign

these choice sets to each individual at the school. As the estimation of condi-

tional logit requires that the individual has more than one alternative, I am

forced to exclude all student-school combinations with singleton choice sets. If

schools with singleton choice sets are located in a way which makes moving in

and out of them too costly, removing these schools will not impact the estimated

parameters. However, if these schools are high quality schools which causes me

to observe no moves out of the school paired with no nearby schools observed in

the ECLS-K which would cause me to observe no moves into the school. There

are indeed differences between these singleton choice set schools and the rest

of schools which may signal that they are of higher quality. This may bias my

estimates of parental preferences.14 Using all schools within a census region
14The direction of the bias in preferences would be difficult to predict without knowing more

about these singleton schools.
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as alternatives for each individual may potentially address this, but it is highly

computationally costly. Obtaining access to the restricted version of ECLS-K

and combining it with the Common Core of Data using geographic information

may be the only feasible solution to the problem.

When using my algorithm the maximum choice set sizes are 21 schools for

the US Midwest, 51 for the Northeast, 51 for the Southern US, and 38 for the

Western US. The resulting number of schools within the sample is 2635.

2.5.3 The Determinants of Parental School Choice

Following equation 2.2 the condition for choosing school j can be written as

Xij,tθX + Iij,tθI − cij,t + εij,t ≥ Xis,tθX + Iis,tθI − cis,t + εis,t . (2.6)

We can rewrite this as

(Xij,t −Xis,t)θX + (Iij,t − Iis,t)θI ≥ (εis,t − cis,t)− (εij,t − cij,t) . (2.7)

Assuming that (εis,t−cis,t)∀ i, s, t are identically and independently distributed

with an extreme value distribution, we can obtain a conditional logit functional

form for the probability of household i choosing school s at time t

Prij,t =
exp{Xij,tθX + Iij,tθI}∑
s∈Si

exp{Xis,tθX + Iis,tθI}
=

1∑
s∈Si

exp{(Zij,t − Zis,t)θ}
. (2.8)

This is the conditional logit model proposed by McFadden (1973), sometimes

referred to as McFadden’s choice model. Long (2004) uses the conditional logit

approach to examine college choice behaviour. She argues that the conditional
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logit is more suitable to analyze school choice behaviour as it focuses on the

attributes of alternatives available to the individual rather than individual-

specific characteristics. Moreover, unlike the multivariate logit used in prior

analysis, conditional logit does not require the restrictive aggregation of the

characteristics of alternatives.15 Hoffman and Duncan (1988) provide a com-

parison of the multinomial logit and conditional logit and discuss their use in

social science research. They point out that the set up for conditional logit has

the advantage of easily adjusting the choice sets available to each individual

within the data.

The data are organized as triplet-wise combinations of household i with

school s and time t. Under the assumption that (εis,t − cis,t)∀ s ∈ Si are in-

dependent across t, I treat combinations of i, t as separate individuals within

the data. I use alternative-wise deletion of observations in cases when they are

missing relevant information. As I do not observe school closures and openings,

this permits me to remove schools with information missing at time t without

dropping the individual from the data.

I include a set of variables which reflect the socio-economic conditions at

the school and the facilities quality and the variables which participate in the

test score production. The first set of variables includes the index for facilities,

the neighbourhood quality, the proportion of white students and students with

college-educated parents, and a variable describing the income distribution at
15Such as Manski, Charles and David A. Wise (1983). College Choice in America. Harvard

University Press, Cambridge
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the school. The second set of variables represents the school-level inputs into

the test score production function from section 2.5.1 which were found to play

a role in the production process.

For the estimation I focus on the school choices that were made after grade

one. This follows from the assumption that parents know the test score produc-

tion technology for elementary schools, learning about it while their children

are enrolled in grade one. I first estimate the model for all movers, then sepa-

rately for school movers and, finally, residential movers. While I am unable to

observe moving costs, I add an indicator for changing schools to account for a

fixed cost of moving. The results are presented in Table 2.16.

When looking at the set of all movers it is evident that the socio-economic

characteristics of the school play an important role in the school choice process.

Households are more likely to move to schools that have a higher proportion

of college-educated parents and less likely to move to schools with higher pro-

portions of lower income households. People also display preference for larger

schools, though this effect is not economically large. In addition to the prefer-

ence for schools with higher-educated parents, school movers have a preference

for schools with larger proportions of white students. These results are consis-

tent with the findings of Lankford and Wyckoff (1992) for private-public school

choice.

A rather surprising outcome is that the inputs into test score function are

not estimated precisely for school movers. From what we can see based on the
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sample of all movers, both reading and mathematics class times have small

negative coefficients significant at five percent. This could indicate that par-

ents do not take class times into consideration. As residential movers do not

necessarily take schools into account, it is not surprising that I do not obtain

precise estimates for school attributes with the exception of the neighbourhood

index. The negative coefficient attached to this variable is unexpected, though

it is possible that the index does reflect the quality of the neighbourhoods they

actually move to.

The coefficients for peer quality measures, the school test score averages

in mathematics and reading, are estimated precisely only for the sample of

all movers. The coefficient is positive for the reading average but negative for

the mathematics score, indicating that all else equal, parents are less likely to

choose schools with better math performance. For school movers the signs on

the statistically insignificant coefficients follow the pattern similar to that of

the overall mover sample.

In the next section I discuss the implication of these findings for the effect

of school choice on academic achievement.
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Table 2.16: Estimates of the Parental Utility Function

Selected School School Movers Residential Movers All Movers

Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.
Facilities −0.0841 (0.1052) −0.0767 (0.0677) −0.0297 (0.0493)
Enrollment 0.0017∗∗∗ (0.0004) 0.0002 (0.0002) 0.0009∗∗∗ (0.0002)
Prop. White 0.3811∗ (0.2129) −0.0742 (0.1516) 0.1539 (0.1013)
Prop. College HH 0.5111∗∗ (0.2418) 0.0903 (0.1801) 0.5978∗∗∗ (0.1146)
Neighbourhood −0.3112 (0.1984) −0.3272∗∗ (0.1459) −0.3779∗∗∗ (0.1016)
Prop. Low Income HH −0.2553 (0.2275) −0.2214 (0.1543) −0.3455∗∗∗ (0.1092)
Avg. Teacher Exp. −0.0124 (0.0081) −0.0007 (0.0052) −0.0075∗∗ (0.0036)
Prop. Teachers with MA+ 0.0042 (0.1997) 0.1177 (0.1291) 0.1376 (0.0863)
Read. Class Time −0.0586 (0.0559) −0.0788∗∗ (0.0381) −0.0417∗ (0.0236)
Math Class Time 0.0523 (0.0615) 0.0258 (0.0411) −0.0630∗∗ (0.0278)
Avg. Read HW 0.0236 (0.1704) 0.2021∗ (0.1081) 0.0560 (0.0681)
Avg. Math HW −0.1130 (0.1493) −0.0420 (0.0952) −0.0140 (0.0622)
School Avg. in Read. 0.1198 (0.1422) 0.0398 (0.0899) 0.1397∗∗ (0.0650)
School Avg. in Math. −0.0823 (0.1443) −0.1363 (0.0921) −0.2134∗∗∗ (0.0654)
Cost 18.0247∗∗∗ (0.1006) 18.5724∗∗∗ (0.0634) 19.1757∗∗∗ (0.0467)
Observations 2,837 7,386 14,493
N of i, t pairs 457 984 2109
Log-likelihood −600 −1499 −3010
Robust standard errors in parenthesis; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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2.5.4 Discussion

In section 2.5.1 I have established that peer quality, class time spent on

mathematics and reading, and the amount of homework for reading act as im-

portant components of the test score production process. Class size is found

to have a negative impact on mathematics performance. At the same time

parental school choice seems to be primarily driven by the values of school

characteristics that do not participate in the test score production. The low

gain scores observed in section 2.3.2 may be a consequence of this. While on

average we observe improvements in school attributes that serve as inputs into

the test score production as seen in section 2.5.1 these increases are small. It

is likely that these increases are insufficient to overcome the negative impacts

of moving noted in Pribesh and Downey (1999).

There are several explanations that can be offered concerning lack of evi-

dence that parental school choice is driven by the school characteristics which

are important academically. First, it can be suggested that parents do not

place a significant weight on the achievement of their children. This, however,

contradicts the surveys cited in Bast and Walberg (2004). Another explana-

tion comes from the availability of information standpoint. It can be difficult

for parents to observe the homework requirements and instruction time for

the school prior to moving. As Briggs et al. (2008) point out, parents are of-

ten faced with limited information regarding the schools they end up choosing.

However, the larger concern arises from the observation that school averages
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in mathematics and reading that signal peer quality at the school do not serve

as important determinants of parental school choice when it comes to school

movers. Even in the sample of all movers, I observe that parents are less likely

to choose a school with a higher mathematics average.

The explanation which can address the above findings is that parents are

faced with limited information not only regarding the characteristics of schools

they choose to move to but also lack information about the relative importance

of these characteristics in the educational process. This results in the parental

school choice that does not lead to improvement in academic performance and

even has detrimental effect on performance in mathematics. While this ex-

plains the poor performance of school movers compared to non-movers, the

causes of discrepancy between residential movers and school movers are less

clear and will warrant further investigation. It is possible that “purely resi-

dential moves” actually lead to children being placed in better neighbourhoods

with schools which are better on a dimension unobserved in my data.

2.6 Conclusion

According to Caetano and Macartney (2014) very little is known about resi-

dential moves driven by desire to enroll one’s child at a specific school (referred

to as traditional school choice). Using data on public elementary school stu-

dents from the ECLS-K, I analyze the academic performance of children who
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move due to their parents exercising school choice and those whose moves are

purely residential. Descriptive statistics reveal a surprising observation that

school movers suffer a decline in their mathematics performance while resi-

dential movers and non-movers do not.

To examine the potential reasons for this disparity in academic performance,

I obtain the estimates of parental preferences for school attributes as well as

the test score production function to analyze the relative importance of these

attributes for academic achievement. I find that parents who move for school

reasons place most value on school characteristics which do not enter test

score production. While one can argue that parents value the socio-economic

properties of the school and neighbourhood more than the academic success of

their children, it is very likely that parents have limited information regarding

school attributes and further, may have limited information on what attributes

add value to the academic outcomes. Paired with the cost that the move has for

the child, such school choice may result in worsened academic performance.

The results of the present paper should be treated with caution. The way in

which the school choice sets are constructed may potentially bias the results.

Obtaining more detailed data which includes geographic information for the

attended schools would allow me to test the sensitivity of results to the method

which is used to define school choice sets. In future work, I also intend to

further examine the reasons for the discrepancy in mathematics performance

between residential and school movers.
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Chapter 3

Crime, Apprehension and
Clearance Rates: Panel Data
Evidence from Canadian
Provinces

3.1 Introduction

Becker’s (1968) seminal theory of crime hypothesizes that criminals ratio-

nally evaluate the benefits of crime against the probability of being caught

(apprehension) and the severity of punishment. Early empirical studies of-

ten used police-reported clearance rates as a measure of the probability of ap-

prehension.1 As noted by Chalfin and McCrary (2013), however, most recent

econometric studies have focused on the effects of the number of police officers
1See, for example, Carr-Hill and Stern (1973), Ehrlich (1973), Thaler (1977), and Wolpin

(1978).
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on crime. From a policy standpoint, using the number of police officers is ap-

pealing because policy-makers cannot choose the probabilities of apprehension

directly, but they can choose the size of the police force. Given that labour is

an input into the apprehension production function, understanding the effect

of police on crime, even in a reduced form, is valuable.

From a researcher’s standpoint, the number of police officers is easy to ob-

serve. Further, if changes to the size of a jurisdiction’s police force are exoge-

nous and not an artefact of trends in crime rates or unobserved shocks, then

OLS estimates will yield unbiased and consistent impacts that can be used in

policy evaluation. A statistically significant correlation between more police

officers and less crime also yields some very clear options for policy-making.

However, even in such ideal circumstances for empirical research, a corre-

lation between more police officers and less crime does not offer insight into

how deterrence is achieved. Presumably, the probability of apprehension is the

“output” produced by the police force and the number of police officers is the

labour input for this production function. However, an increase in the number

of police officers may result in reduced crime simply because of higher visi-

bility rather than an increased probability of apprehension. Furthermore, as

discussed in the data section below, the relationship between the number of

police officers and clearance rates is murky at best. As such, the exact channel

through which the number of police officers affects crime rates is not obvious.
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We attempt to complement the existing studies on police and crime by fo-

cusing on the effects of clearance rates on crime using panel data for Canadian

provinces (1986 to 2005) while including the number of police officers. In the

majority of cases, a police-reported incident of crime is said to be “cleared” if an

individual associated with the specific criminal act is apprehended by the po-

lice. There is a reasonable chance that the deterrence effects associated with an

enhanced probability of apprehension will be more precisely captured through

clearance rates than the per capita number of police officers or arrests. Further,

the importance of clearance rates has been acknowledged by criminologists for

some time.

The primary objective of our research is to empirically evaluate the relation-

ship between changes in the probability of apprehension – as captured through

clearance rates – and corresponding trends in violent and property crime rates

while controlling for the number of police officers. Our empirical strategy is

motivated by an extension of the theoretical model developed by Polinsky and

Shavell (2000), which allows us to link spending on police services to corre-

sponding changes in clearance rates and crime and serves as a foundation for

constructing plausible instruments. The model also offers some insight on the

relative benefits of focusing on clearance rates as opposed to the number of per

capita police officers.

There are very few studies based on panel data that have investigated the



111

effects of apprehension on crime rates in Canada.2 From a general perspective,

a study of Canadian trends should be of interest to policy-makers in the US,

given similarities in movements in crime rates over time. Specifically, Canada

experienced the same dramatic decline in crime during the 1990s that also oc-

curred in the US and that has continued to baffle academics and policymakers.3

Figure 3.1a shows that per capita violent crime rates are higher in Canada and

that violent crime fell in both countries from the early 1990s onward. Figure

3.1b suggests a closer correspondence in property crime rates between the two

countries, with a similar persistent drop from the early 1990s. Using Canadian

data also allows a rather clean identification of the effects of the probability of

apprehension through clearance rates because legislative penalties for violent

crime (and most property crimes) are at the federal level and thus can be ac-

counted for through the use of year-specific dummies. On the other hand, there

are rather significant and complex state-specific differences in penalties in the

US. The presence of unobserved state-varying and time-specific determinants

of crime, such as the well-documented crack cocaine epidemic from the mid-

1980s to the early 1990s, makes it difficult to ensure unbiased coefficient esti-

mates of clearance rates based on US data. In the absence of proper controls,

empirical estimates based on US data may then be confounded if variation in
2Early empirical work on apprehension and Canadian crime is based primarily on time-

series data. Examples are Avio (1973), Avio and Clark (1976), Avio and Clark (1978) and Avio

(1979).
3See Levitt (2004) for further details.
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clearance rates coincides with amendments to penalties implemented by state

legislatures or unobserved factors such as the crack cocaine epidemic.4

OLS estimates yield statistically significant elasticities of clearance rates,

ranging from −0.2 to −0.4 for violent crimes and from −0.5 to −0.6 for prop-

erty crimes. These estimates are robust to the use of a wide array of controls,

province and year fixed effects and province-specific linear trends. Compara-

ble results are obtained from generalized least squares (GLS), first difference,

generalized method of moments (GMM) and instrumental variables (IV) re-

gressions. In contrast, coefficient estimates of the per capita number of po-

lice officers are not always significant or possess the wrong sign. We think

that these findings reflect the importance of police force productivity in terms

of solving crimes and apprehending criminals linked to specific crimes. How-

ever, we note that our instruments are weakly correlated with clearance rates.

Therefore, appropriate caution should be used in interpreting the results of

this study.

The remainder of the paper is organized as follows. Section 3.2 contains a

review of the relevant literature. Section 3.3 describes the data and trends in

key variables. The theoretical model is presented in section 3.4. Our empirical

model is outlined in section 3.5. Empirical estimates are detailed in section

3.6. Section 3.7 concludes with a summary of our main findings and associated
4Cheung and Erickson (1997) suggest that crack cocaine use in Canada was quite insignif-

icant relative to corresponding trends in the US. Fryer et al. (2005) provide a detailed account

of the crack cocaine epidemic in the US along with associated costs.
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(a) Violent Crime (b) Property Crime

Figure 3.1: A Comparison of Crime in Canada and the US
Source: Canadian data are from CANSIM tables 252-0013 and
252-0051. US data are from the Federal Bureau of Investigation
website (www2.fbi.gov/ucr/05cius/data/table_01.html).

policy implications.

3.2 Previous Literature

As noted, most empirical research has focused on the effects of the number

of police officers on crime.5 Chalfin and McCrary (2013) offer a detailed review
5Recent studies employ varying strategies to address the simultaneity bias of coefficient

estimates of police on crime, which occurs when the size of the police force increases as a

response to a corresponding upward trend in local crime rates. Evans and Owens (2007) study

increases in the number of police officers generated by grants from the Community Oriented

Police Service (COPS) program. Di Tella and Schargrodsky (2004), Klick and Tabarrok (2005)

and Draca et al. (2011) identify the impacts of police on crime based on sudden exogenous

terror events that require enhanced police presence. Levitt (1997) analyzes data on 59 large US
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of recent studies.We focus on papers that study the effects of arrest or clearance

rates. In this respect, the empirical literature on the effects of apprehension

is much thinner, and very few of these studies have accounted for potential

simultaneity bias in coefficient estimates of arrest rates with respect to crime

through the use of instrumental variables or structural models. Key results

and measurement of arrest rates from previous studies are detailed in table

3.1. For the sake of brevity and direct relevance, we restrict our discussion

to studies based on US data and that have relied on panel data across juris-

dictions and over time in order to evaluate the impacts of arrest or clearance

cities with directly elected mayors, 1970 to 1992. His instrumental variables are constructed

from mayoral and gubernatorial elections. Levitt’s estimates suggest that an increase in the

size of the police force reduces violent crime but does not significantly impact property crime.

However, McCrary (2002) finds that Levitt’s IV estimates are much less precise once some

specific programming errors are corrected. In a rejoinder, Levitt (2002) uses a different dataset

and obtains results that are comparable to his original 1997 AER paper. Chalfin and McCrary

(2013) note that simultaneity between crime rates and police numbers is much weaker than

assumed in previous literature, at least at the municipal level (due to institutional constraints).

They correct measurement error by using data from both Uniform Crime Reports (UCR) and

Annual Survey of Government (ASG) for 242 US cities with populations over 50,000 during

the period from 1960 to 2010. The authors use the ASG measure of police as an IV for UCR

data and models using UCR data as IV for ASG measures. Like Levitt (1997), their results

suggest an array of elasticities across different categories, with violent crime rates being more

responsive than property crime rates to changes in police force size.
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rates.6,7

Early empirical work on crime and deterrence focused on the effects of clear-

ance rates as a measure of the probability of apprehension. Thaler (1977) uses

1972 census-tract-level data from Rochester, New York, to estimate the effect

of deterrence on neighbourhood crime. He emphasizes the importance of mea-

suring the probability of apprehension through an “arrest clearance rate.” On

page 41, he specifically states “[f]or this measure a crime is only considered
6There are, of course, studies that have not relied on panel data. Lochner (2007) uses the

National Longitudinal Survey of Youth 1997 Cohort and the National Youth Survey to examine

which factors affect an individual’s perceived probability of arrest. His results suggest that a

10% increase in the perceived probability of arrest for auto theft reduces auto theft by 7% and

major theft by close to 4%. In terms of panel-based Canadian studies, Sen (2007) employs

clearance rates as a control, but the emphasis of the study is on the effects of abortion and

fertility on crime. Similarly, the focus of Joyce (2009) is on the effects of abortion on US crime.

He replicates the results from Donohue and Levitt (2008) and finds that higher arrest rates

have a significant and negative impact on some types of violent crime.
7A number of panel-based studies focus on the effects of the existence of a death penalty

on murder rates. Zimmerman (2004, replicated in 2009) uses state-level panel data from 1978

to 1997. Dezhbakhsh et al. (2003) employ a panel of county-level data covering the years from

1977 to 1996. The same data are used by Shepherd (2005). Shepherd (2004) relies on panel

data at the state level and with monthly observations. Durlauf et al. (2010) and Durlauf et al.

(2012) employ similar data to these studies but rely on structural econometric models. Another

strand of literature focuses on imprisonment rates. Spelman (2005) uses Texas county-level

data to examine the effect of prison population on crime rates. Similar to Corman and Mo-

can (2005), Spelman finds evidence that public order arrests reduce property crime (counties

with zero-tolerance and community-policing policies substantially decreased their crime rates).

Ehrlich (1973), Levitt (1996) and Marvel and Moody (1994, 1996, 1998) are other important

references on crime and imprisonment.
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cleared if the criminal was arrested specifically for that crime.” Carr-Hill and

Stern (1973) also rely on clearance rates in their study of crime in police dis-

tricts in England and Wales in 1961 and 1966, and they are quite clear on the

emphasis that should be placed on clearance rates relative to the number of

per capita police officers. In particular, they state (pp. 289–290):

Deterrence theories indicate that this offence rate should depend on the

proportion of crimes ‘cleared-up’ (or clear-up rate), if this reflects perceived

probabilities of apprehension. Such theories might also focus on the num-

ber of policemen per capita and a measure of the equipment available to

each officer.

Craig (1987) uses 1972 data from Baltimore and obtains a −0.57 elasticity of

crime with respect to actual clearance rates (generated from 3 SLS). Wolpin

(1978) obtains comparable results (with respect to clearance rates) based on

time-series data from 1955 to 1971 for England, Japan and California.

However, studies from the 1990s focus on the relationship between police

reported crimes and per capita arrests (relative to either the number of re-

ported crimes or population). Cornwell and Trumbull (1994) exploit varia-

tion across counties in North Carolina and obtain OLS elasticities of arrest

rates (arrests/crimes) with respect to FBI Index crimes ranging from −0.35 and

−0.68. On the other hand, 2SLS estimates with fixed effects are statistically

insignificant. Lott and Mustard (1997) employ county-level data between 1977

and 1992 and focus on the effects of legislation pertaining to the right to carry
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concealed handguns. Their reduced form estimates suggest that a higher prob-

ability of arrest is linked with lower crime rates. 2SLS estimates of arrest

rates (measured by arrests divided by crimes) instrumented by lagged crime

rates also result in negative and significant coefficient estimates. However, in

their analysis of the Mustard-Lott dataset, Black and Nagin (1998) are unable

to replicate the 2SLS findings and question their credibility. Dezhbakhsh and

Rubin (1998) note that Mustard and Lott emphasize OLS findings, which do

not correct for the endogeneity of the arrest rate. In contrast, their research

suggests coefficient estimates of arrest rates that are less statistically precise

and smaller in magnitude than those suggested by Lott and Mustard.8

Levitt (1998) exploits data across 59 cities from 1970 to 1992 and studies

the effects of arrest rates on the following crimes: murder and non-negligent

manslaughter, forcible rape, robbery, aggravated assault, burglary, larceny and

motor vehicle theft. His results suggest elasticities between −0.03 and −0.319.9

However, he cautions on his inability to control for potential endogeneity bias

and concludes that, especially for property crime, deterrence is the most likely

factor behind the observed negative relationship between crime and arrest

rates, as opposed to incapacitation and measurement error.

Shepherd (2002) uses panel data based on all 58 California counties from
8In a much-cited paper, Duggan (2001) uses county- and state-level data over time and

finds that the recent decline in gun ownership explains about one-third of the decline in gun

homicides (relative to non-gun homicides). His results suggest that a 10% increase in gun

ownership translates into a 1.42% increase in the homicide rate the following year.
9Calculated as arrests divided by the number of crimes.
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1983 to 1996 to explore the deterrent effects of that state’s two- and three

strike legislation. Her 2SLS estimates reveal that arrest rates (number of ar-

rests/crimes) have a consistently negative impact on all categories of violent

and property crime. Gould et al. (2002) focus on the effects of labour market

conditions on crime rates, employing aggregated data at the county level be-

tween 1979 and 1997, but do include arrest rates in some specifications. In

most cases, an increase in the arrest rate is significantly correlated with reduc-

tions in different types of crime. Like Levitt (1998), they also specifically ac-

knowledge the difficulty of finding instruments for arrest rates. Mustard (2003)

employs county-level data from New York, Oklahoma, Oregon and Washington

from 1977 to 1992 and finds that sentence length has little effect on crime.

However, conviction rates have a statistically significant negative effect on

crime rates, with coefficients on arrest rates ranging from −0.0016 to −0.012,

implying a 0.16% to 1.2% drop in crime rates in response to a 1% increase in

the corresponding arrest rates.

Corman and Mocan (2005) analyze the effect of economic conditions and

deterrence measures on crime as well and verify the validity of the “broken

windows” hypothesis, which suggests that reduced tolerance towards minor

misdemeanours leads to an overall reduction in crime. They employ monthly

time-series data on crime levels (for murder, assault, robbery, burglary, motor

vehicle theft, grand larceny and rape) in New York City from 1974 to 1999.

Besides obtaining evidence in support of the “broken-windows” hypothesis, the
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authors find that the size of the police force has an effect only on auto theft

and grand larceny, while the number of arrests has a statistically significant

impact across all types of crime. The authors note that the use of monthly data

reduces the possibility of simultaneity bias of coefficient estimates of the num-

ber of police officers, as it usually takes six months to hire more police officers.

In summary, we attempt to complement the existing literature in the follow-

ing ways. First, despite early studies that clearly emphasized the importance

of clearance rates as a measure of the probability of apprehension, we have

not been able to locate any recent papers that econometrically investigate the

effects of clearance rates on crime based on data across jurisdictions and over

time.10 We think that using clearance rates is important for reasons that are

more fully discussed in the next section. Second, employing Canadian data is

interesting given the similarities to trends in US violent and property crime

observed over the sample period. Third, we assess the sensitivity of our es-

timates with instrumental variables. As discussed, this is a challenge that

has been noted by previous studies, and very few have actually attempted to

instrument arrest or clearance rates.11

10Mastrobuoni (2013) uses detailed micro-level data on robberies and deployment of two

police forces in the city of Milan, but focuses on the effects of local police presence on the

likelihood of clearing cases.
11Numerous studies (Ehrlich 1973; Thaler 1977; Mathur 1978; Craig 1987) from the 1970s

and 1980s did use either 2SLS or 3SLS in order to correct for simultaneity bias. However,

it is difficult to assess the success of their efforts given the absence of F-test statistics and

first-stage regression results.
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Table 3.1: Crime Elasticities with Respect to Arrests

All Property Crimes Violent Crimes Measurement
All Burglary Auto Larceny All Robbery Murder Rape Assault

Theft

Thaler (1977)a −0.0017 Police proportion
(2.24) of solved crimes;
−0.00064 arrests over
(0.165) number of crimes

Mahur (1978)b 0.055 −0.541 0.626 −3.07 −1.09 −3.21 −0.909 Admissions to
(0.310) (−2.72) (1.73) (−2.03) (−1.07) (−1.34) (−1.56) prison for the
−0.256 −0.505 0.486 −1.58 −0.094 −1.10 −0.91 offence divided by
(−2.36) (−3.06) (2.18) (−2.54) (−0.217) (−1.28) (−1.83) reported crimes

Craig (1987)c −0.57 Clearances as a
proportion of crime

Cornwell and -0.455 Arrests to
Trumbull (1994)d (0.618) offences ratio

Gould et al. -0.002 -0.01 -0.01 -0.01 -0.01 -0.004 -0.006 -0.002 -0.004 -0.003 Arrests to
(2002)f (0.002) (0.002) (0.003) (0.001) (0.001) (0.0003) (0.0005) (0.0002) (0.001) (0.0003) offences ratio

Levitt (1998)e -0.272 -0.087 -0.204 -0.339 -0.071 -0.119 -0.201 Arrests divided
(0.036) (0.028) (0.030) (0.053) (0.072) (0.030) (0.047) by crimes

Mustard (2003)g -0.0123 -0.0052 -0.0072 -0.0016 -0.0035 -0.0026 -0.0019 Arrests divided
(0.00267) (0.00108) (0.00178) (0.00036) (0.00025) (0.00091) (0.00049) by offences

Mustard (2003)h -0.0102 0.0003 -0.0046 -0.0035 0.0000 -0.0031 -0.0038 Lagged arrests over
(0.00304) (0.0008) (0.00166) (0.00076) (0.00034) (0.00075) (0.00049) lagged offences

Corman and Mocan -0.32 -0.51 -0.14 -0.57 -0.40 -0.32 -0.20 Number of arrests
(2005)i -0.27 -0.50 -0.10 -0.59 -0.39 -0.30 -0.24

Spelman (2005)j -0.1206 -0.2376 Arrests per 1000
(0.0504) (0.1057) people (UCR dta)

Agan (2011) -0.066 Arrests divided
(0.024) by incidents

Garett and -0.009 -0.002 -0.175 -0.070 -0.557 -0.037 -0.006 Number of arrests
Ott (2011)k (UCR data)

Notes: at-statistics are in parentheses. First row reports the result for the police clearance rate. Third row reports the coefficient for the arrests over the number of crimes.
bt-statistics in parentheses. The first row of elasticities is for 1960, the second is for 1970. cUrban type 1 crimes are the focus of the study. dFrom a log-linear specification.
eFirst difference estimates with lag of arrest rates included. fMarginal effects reported instead of elasticities. gSemi-elasticities from the regression of the natural log
of crime rates on arrest rates. hSemi-elasticities from the regression of the natural log of crime rates on lagged arrest rates. iSecond row estimates use the average
year-to-year growth of arrests in NYC (reported in C&M (2005) Table 3). jThese elasticities are with respect to prison populations by metropolitan area. kPooled city
elasticities are reported. Only robbery is significant at 5%.
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3.3 Trends in Crime Rates

Most of our data were downloaded from CANSIM, Statistics Canada’s database

of socio-economic variables that are publicly available. Table 3.2 details the ta-

ble numbers, sources and summary statistics for each variable employed in

this study. The key variables are the number of police-reported incidents of

different types of crimes and the number of incidents cleared for each of these

categories. An incident is cleared when a suspect linked to the crime has been

identified by the police. Accordingly, the empirical measure of the probability of

apprehension that we employ is the number of incidents cleared divided by the

number of police-reported incidents.12 We view the total proportion of incidents

cleared as the relevant measure of apprehension because a suspect needs to be

identified, irrespective of whether an incident is cleared by charge or otherwise.

12An incident can be cleared by charge or otherwise. A suspect needs to be arrested in order

for an incident to be cleared by charge. There are many reasons why an incident may be cleared

otherwise. Examples include the death of a suspect or the dropping of a charge to a less serious

offence. We are indebted to Peter Carrington for some very insightful discussions. Please, see

Carrington and Schulenberg (2008) for further discussion on clearance rates.
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Table 3.2: Data Sources and Summary Statistics

Variable CANSIM Table Mean Standard Deviation Min. Max.
Median income of welfare recipients 2020404 44,111 4,918.2 37,000 58,300
Minimum wage (See Note) 5.51 1.02 3.65 8.00
Average transfers to poorest quintile 2020301 7,738.5 994.59 5,300.0 10,300
Per capita number of new immigrants 510011 428.69 354.54 60.45 1385.7
Incarceration rate per 100,000 adults 2510005 94.77 33.72 48.00 183.00
Proportion of males aged 1524 510001 0.08 0.01 0.07 0.10
Police officers per 100,000 of population 2540002 174.94 17.995 136.80 209.20
Provincial population 510001 0.29248E+07 0.34000E+07 0.12841E+06 0.12565E+08
Property crimes per 100,000 of population 2520013 4749.7 1,642.0 2,342.4 9,007.8
Clearance rate for property crimes 2520013 0.26 0.06 0.13 0.42
Employment rates 15 years and over 510001 89.89 3.75 79.94 96.07
Violent crimes per 100,000 of population 2520013 1,040.7 316.19 478.33 2,059.4
Clearance rate for violent crimes 2520013 0.71 0.062 0.52 0.89
Homicides per 100,000 of population 2520013 1.9967 0.97674 0 4.33
Clearance rate for homicides 2520013 0.85 0.29 0 2.53
Attempted murders per 100,000 of population 2520013 83.69 102.52 0 408.00
Clearance rate for attempted murder 2520013 0.82 0.26 0 2.00
Sexual assaults per 100,000 of population 2520013 107.78 40.07 28.39 227.40
Clearance rate for sexual assaults 2520013 0.66 0.15 0.41 1.34
Physical assaults per 100,000 of population 2520013 908.66 274.83 374.53 1753.2
Clearance rate for physical assaults 2520013 0.75 0.07 0.53 0.89
Robberies per 100,000 of population 2520013 78.46 53.18 4.87 196.59
Clearance rate for robberies 2520013 0.41 0.15 0.24 1.41
Motor vehicle thefts per 100,000 of population 2520013 427.21 266.93 82.860 1,359.5
Clearance rate for motor vehicle thefts 2520013 0.22 0.099 0.047 0.52
Breaking & entering per 100,000 of population 2520013 1,157.4 421.98 515.39 2,097.0
Clearance rate for breaking & entering 2520013 0.19740 0.062216 0.077497 0.54948
Real police expenditures per capita of population 2540002 155.03 34.643 80.826 235.67
Real police expenditures per 100,000 of police 2540002 87,931 13,776 57,981 126370

Note: Minimum wage data were extracted from the Government of Canada minimum wage database, available at
srv116.services.gc.ca/dimt-wid/sm-mw/menu.aspx?lang=eng.
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An alternative strategy is to use the arrest rate, which is the number of

arrests per 100,000 of population. As discussed above, at some point, most

empirical studies began to use such arrest rates – or the number of arrests

divided by the number of crimes – as measures of the probability of appre-

hension. However, per capita arrest rates do not clearly yield a probability of

apprehension because states or provinces with more crime are mechanically

more likely to have higher arrests per 100,000 of population. Further, unlike

clearance data, the number of arrests per capita of population is not linked to

specific police-reported crime, and therefore, in our opinion, is a weaker empir-

ical measure of the probability of apprehension than the clearance rate.13,14

Statistics Canada collects data on police-reported incidents and the number

of crimes cleared through the Uniform Crime Reporting (UCR) Survey, which

was established in 1962. The scope of these data is comprehensive; they in-

clude all Criminal Code offences and other federal statutes that have been

reported to all federal, provincial and municipal police services in Canada and

that have been substantiated through investigation by these services. As noted

on the Statistics Canada website, “[c]overage of the UCR aggregate data re-

flects virtually 100% of the total caseload for all police services in Canada.” It

is important to note that the number of incidents is based upon severity, and
13However, an arrest rate defined as the number of arrests divided by number of crimes

obviously does have a direct connection to crime trends.
14A relevant concern is the calculation of clearance rates when crimes committed during a

specific year are cleared during subsequent years. Our understanding from discussions with

criminologists is that roughly 95% of all crimes are solved within the calendar year.



124

therefore, the most serious offence.15 Applying this concept to clearance rates

means that, for example, the clearance of a homicide, robbery or breaking and

entering receives a higher weight than the clearance of less serious offences

such as minor theft, mischief and disturbing the peace.16

It is useful to note some differences between US and Canadian crime trends.

As discussed, figure 3.1a demonstrates that per capita violent crime rates are

much higher in Canada than in the United States. However, it is important to

note that violent crime is not defined similarly across both countries. For ex-

ample, sexual assault in the US requires forcible intercourse by a male against

a female. In comparison, the same offence in Canada does not require sex-

ual penetration and is not gender-specific. That is one reason why Canadian

crime rates seem higher in figure 3.1a.17 Further, there are considerable dif-

ferences in the distribution of crimes by offence. As shown in figures 3.2 and

3.3, murder rates in the US were roughly three times higher than in Canada

during the 2000s and robbery rates were one and a half times higher in the

US during the same period. On the other hand, although not directly compa-

rable, forcible rape rates in the US (figure 3.4) were much lower than sexual

assault rates in Canada. As discussed, this is because of the relatively broad
15“Police-reported crime statistics in Canada, 2011,” by Shannon Brennan, available at

statcan.gc.ca/pub/85-002-x/2012001/article/11692-eng.htm.
16See table 9-11, Police personnel in municipal police services – Yukon, 2011, in “Police

resources in Canada” (Statistic Canada catalogue no. 85-225-X), available at statcan.gc.

ca/pub/85-225-x/2011000/t031-eng.htm.
17For further details please see Gannon (2001).
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definition of sexual assault in Canada. Finally, figures 3.5a and 3.5b offer scat-

terplots of violent and property crime rates against corresponding clearance

rates. The graphs depict a visible negative relationship between crime and

clearance rates, with a steeper slope for property crime.

Figure 3.2: A Comparison of Murder Rates in Canada and the US
Source: Canadian data are from CANSIM tables 252-0013 and
252-0051. US data are from the Federal Bureau of Investigation
website (www2.fbi.gov/ucr/05cius/data/table_01.html).
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Figure 3.3: A Comparison of Robbery Rates in Canada and the US
Source: Canadian data are from CANSIM tables 252-0013 and
252-0051. US data are from the Federal Bureau of Investigation
website (www2.fbi.gov/ucr/05cius/data/table_01.html).

Figure 3.4: A Comparison of Sexual Assault Rates in Canada and the US
Source: Canadian data are from CANSIM tables 252-0013 and
252-0051. US data are from the Federal Bureau of Investigation
website (www2.fbi.gov/ucr/05cius/data/table_01.html).
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(a) Violent Crime (b) Property Crime

Figure 3.5: A Scatterplot of Crime Rates and Clearance Rates for Canada

Source: Canadian data are from CANSIM tables 252-0013.

Are correlations between clearance rates and crime rates different from cor-

relations between clearance rates and the number of per capita police officers?

Table 3.3 contains relevant Pearson correlation coefficients as well as the cor-

relation coefficient between clearance rates and the number of per capita police

officers, with all variables in natural logarithms. The correlation coefficients

are consistent with the above graphs, revealing a −0.122 correlation coefficient

between violent crime rates and corresponding clearance rates and a stronger

correlation (−0.43) with respect to property crimes and clearance rates for such

crimes. On the other hand, Pearson correlation coefficients between the num-

ber of per capita police officers and crime rates are positive (from 0.2 to 0.5).

Further, correlation coefficients between the number of per capita police offi-

cers and clearance rates for violent and property crimes are quite different,

with a value of 0.19 for violent crime clearance rates and −0.34 for property

crime clearance rates. At the very least, these simple statistics suggest that the
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variation in clearance rates across provinces and over time is different from cor-

responding movements in the number of per capita police officers. Therefore,

assessing whether clearance rates have different deterrence rates in compari-

son to the number of police officers becomes a worthwhile exercise.

Table 3.3: Pearson Correlation Coefficients

Violent crime rate 1.00000
Property crime rate 0.55690 1.00000
Clearance rate (violent crime) −0.12262 0.06996 1.00000
Clearance rate (property crime) −0.29707 −0.43087 0.51906 1.00000
Per capita police officers 0.29754 0.50426 0.19985 −0.33855 1.00000
Note: All variables are in natural logarithms.

3.4 Theoretical Model

In the Polinsky and Shavell (2000) model of crime, potential criminals make

their decision to commit crime based on expected benefits and costs. The ex-

pected costs are determined by policy variables p and s, where p is the probabil-

ity of being apprehended and convicted and s is the sanction that comes with

conviction. Individuals will then commit crime if their assessment of the bene-

fits, b, outweighs the expected costs (i.e., if b > ps for risk-neutral individuals).

If we suppose that, for any given criminal opportunity, the benefits associ-

ated with crime are determined by a draw from a distribution f(b), then the
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probability of a crime occurring is 1−F (ps), where F (·) is the associated cumu-

lative density function. The number of crimes committed in a given time pe-

riod, therefore, would be a function of this probability and the number of crim-

inal opportunities per time period, N . In addition, the distribution of benefits

or the number of criminal opportunities may depend on various demographic

and economic variables, such as the proportion of young males, population size,

economic conditions and welfare transfers, among others. If we denote the vec-

tor describing these variables by X, then the expected number of crimes in a

given period is N(X)[1− F (ps|X)], which we call the supply of crime, S(ps,X).

We build on this model by assuming the probability of apprehension to be a

function of labour, l, and capital, k, so that we have p(l, k). This allows for the

following comparative statics. First, the effect of an increase in labour on the

expected number of crimes is given by −Nf(ps)∂p/∂ls < 0, while the effect of

an increase in the probability of apprehension is −Nf(ps)s < 0. The model of-

fers some insight into differences between examining the effect of an increase

in labour versus the effect of an increase in the probability of apprehension.

Specifically, it is worth noting that the difference between the two is just one

additional step. When looking at the effects of more labour, there is an addi-

tional term in the comparative static −∂p/∂l. Intuitively, an increase in labour

should result in a corresponding rise in the probability of apprehension.

A key question is: How do we measure l ? Policing is a skilled profession,

and police officers vary in the amount of human capital that they have. As a



130

result, the number of police officers is a noisy measure of what l is trying to

capture in the model. An alternative is to use spending on wages and salaries

paid to police personnel. If the labour market for police officers operated effi-

ciently, then there would be reason to believe that an individual’s salary would

reflect their human capital, and expenditures would be a good measure. How-

ever, police officers are generally unionized, and salaries generally reflect se-

niority rather than productivity, so expenditures are also a noisy measure of

l. Thus, while there may be measurement issues associated with looking at

clearance rates as a proxy for the probability of apprehension, p, in the model,

such measurement issues also exist when considering the effect of an increase

in labour, l (measured through police officers). In addition, there are reasons

to believe that incomplete data imply that changes in l are not holding all else

fixed, meaning that any empirical analysis will not capture the desired partial

derivative. However, this would not be the case when looking at the probability

of apprehension.

Consider the following example of how changes in l may occur with changes

in other variables that are unobserved in the data. Police budgets are set on an

annual basis, with expenditures made on both labour and capital. Therefore,

once the budget has been set, an increase in expenditures on labour necessar-

ily implies a decrease in expenditures on capital.18 As a result, changes in
18This is in fact how the budgetary process works in Ontario. Future budgets for police

services are set by the municipal police services (after consultation with the chief of police

services) and must then be approved by the municipality.
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expenditures on police officers in the data do not necessarily capture the par-

tial derivative expressed above.

There is supportive evidence that this is the case. Recent media cover-

age has documented the significant number of Toronto police officers who earn

more than a $100,000 in annual income, primarily because of overtime pay.19

Therefore, it is unsurprising that roughly 90% of the police services budget for

the City of Toronto is consumed by salaries and benefits.20 It is also impor-

tant to note these trends may not be exclusive to Toronto. Figures 3.6 and 3.7

plot, respectively, the number of police officers per 100,000 of population and

police expenditures (in real dollars) on salaries and wages, benefits, accommo-

dation costs, fuel and maintenance across provinces and over time.21 While

there are differences across provinces, time-series movements are comparable.

The number of police officers declined with the observed drop in crime rates

through most of the 1990s, but then started to increase during the following

decade. On the other hand, per capita police expenditures (in real dollars) on
19See “Sunshine List: More than a third of Toronto’s police officers earned

$100,000 in 2013,” by Jennifer Pagliaro, published by the Toronto Star on Fri-

day, March 7, 2014, and available at thestar.com/news/gta/2014/03/07/

sunshinelistmorethanathirdoftorontospoliceofficersearned100000in2013.

html.
20See “Rising police budget draws few questions from councillors,” by Betsy Powell,

published by the Toronto Star on January 30, 2014, and available at thestar.com/news/

cityhall/2014/01/30/risingpolicebudgetdrawsfewquestionfromcouncillors.

html.
21The data do not allow us to specifically isolate wages and expenditures.
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salaries and wages have steadily increased over time for all provinces. These

trends suggest that the crowding out of capital expenditures by an increase in

wages and salaries is a distinct possibility.

The model suggests other benefits from focusing on clearance rates as op-

posed to the number of police officers. Specifically, the data on the number of

officers must be aggregated across all crimes, while clearance rates are crime

specific. Suppose that there are J different crimes, or classes of crimes, in the

data. Further suppose that the probability of solving crimes of type j is a func-

tion of the resources devoted specifically to them, lj and kj, so that there exists

a crime-specific probability of apprehension function, pj(lj, kj). Finally, sup-

pose that the distribution of benefits also varies across crimes, so that there

are J distributions, fj(b). The effect of an increase in expenditures devoted to

solving crime j, would therefore be −Nfj(pj(lj, kj)s)∂pj/∂lj, while the effect of

an increase in the probability of apprehension for crime j is −Nfj(pj(lj, kj)s).

Since data are not available for the amount of resources devoted to each type

of crime, it is not possible to cleanly disaggregate crime rates into groups of

crimes or individual crimes for regression analysis. However, this can be done

with the probability of apprehension because we do have data for pj. Simply

put, employing clearance rates is informative because data are available for

different categories of crime, which may (with appropriate caveats) capture de-

terrence effects associated with resources devoted to reducing different types
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of crimes as opposed to estimating the effects of the same number of police of-

ficers with respect to different types of crimes.

Finally, there may be an argument that police expenditures directly impact

crime rates. Indeed, some papers have used reduced form regressions to es-

timate the impact of police expenditures on crime rates.22 However,we think

that relying on estimates of expenditures on crime is not very informative and

inconsistent with the classic Becker (1968) and subsequent models of crime,

which clearly specify that individually rational criminals respond to incentives

generated by changes in the probability of apprehension and severity of penal-

ties. Changes in police expenditures should have an indirect effect on crime

rates, conditional on how such spending is allocated and the marginal deter-

rence impacts of such policies.

Figure 3.6: Numbers of Police Officers by Province, by
Year

Source: Canadian data are from CANSIM tables 252-0002.

22Pogue (1975) is an early example. Ajilore and Smith (2011) is a more recent study. Shoe-

smith and Klein (2012) offer a nice summary of these papers.
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Figure 3.7: Per Capita Police Expenditures by Province,
by Year in Real Dollars

Source: Canadian data are from CANSIM tables 252-0002.

3.5 Econometric Model

We test the effects of clearance rates on different types of crime through a

parsimonious reduced form specification comparable to recent US studies:

lnYit = β0 + β1 lnXit + β2 lnψit + β3 ln θit + αi + γt + εit , (3.1)

where lnYit is the log of the annual crime rate per 100,000 of population of

province i at time t, Xit is the measure of the probability of apprehension, ψit

a vector of government policies that might plausibly impact trends in crime

rates, θit is a vector of other time-varying demographic and province-specific

factors, αi are province fixed effects and γt is a vector of year dummy variables.

The error term, εit, is assumed to be independently and identically distributed.

Data from all 10 provinces from 1986 to 2005 is used for estimation.

The focus of our study is estimating β1, which is the coefficient estimate of

lnXit. Hence, β1 is the elasticity of crime with respect to apprehension and Xit
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is measured by the number of incidents cleared by the police divided by the

number of police reported incidents. We evaluate the sensitivity of coefficient

estimates by including the number of police officers per 100,000 of population.

Deterrence may also be captured by incarceration rates, and we measure these

through the number of prisoners per 100,000 of population. In such regres-

sions, observations for British Columbia are dropped because data on impris-

onment rates are unavailable for that province.

Province-specific policies denoted by ψit are the hourly minimum wage (in

real dollars) and average annual government transfers (in real dollars) to the

poorest quintile of population. The intuition is that an increase in the min-

imum wage or average government transfers acts as an income effect, which

reduces the incentive to engage in illegitimate activities. The use of Cana-

dian data offers some pronounced cross-province and time-series variation in

order to identify the impacts of social assistance transfers on crime.23 There

also exists significant time-series and cross-province variation in the Canadian

minimum wage laws relative to US legislation.24

23Sen and Ariizumi (2013) report that some Canadian provinces implemented significant

reductions to social assistance transfers during the 1990s. In its February 1994 budget, the

Conservative Government of Alberta specifically outlined a 19.3% cut in social services. The

Ontario Progressive Conservative government followed Alberta’s lead, slashing welfare bene-

fits by roughly 22% in 1996. Perhaps more importantly, the amendments implemented through

the Ontario Works Act (enacted in 1996) not only reduced the generosity of welfare income but

also increased the costs to welfare participation.
24As documented by Sen et al. (2011), 1992 to 2005 witnessed several significant legislative

changes, with 11 amendments to the minimum wage enacted by Quebec, nine by Nova Scotia,
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θit consists of covariates for the employment rate for prime-aged adults aged

15 and over, the province population, males aged 15 to 24 years as a proportion

of the total population, the median income of social assistance recipients and

the total number of new immigrants per 100,000 of population. Among these

controls, the employment rate and the proportion of young adults have been

identified as important determinants of crime rates. Controlling for all else, a

more prosperous economy with a higher probability of employment reduces the

incentive to commit crimes in order to earn income. Most crimes are committed

by young males. Therefore, a province with a higher proportion of young males

may experience an increase in crime levels. We think that the use of these co-

variates results in empirical specifications that are comparable to models used

by Levitt (1997, 1998).25

In summary, we are identifying the effects of clearance rates, welfare trans-

fers and the minimum wage by relying on within-province time-series variation

while controlling for province-specific differences that are constant through

time and year-specific shocks that are common across jurisdictions. We also

seven by British Columbia and Manitoba, six by New Brunswick, five by Saskatchewan and

Alberta and four by Ontario. As discussed, over the sample period of our study, the minimum

wage set by the federal government supersedes the wage set by state government for many

states (in the US), resulting in mostly time-series variation.
25At the Municipal Statistical Area (MSA) level, Levitt (1997, 1998) uses percent of black

households, percent of female-headed households and percent of population aged 15 to 24.

At the state level, he employs state unemployment rates and real per capita state and local

spending on education and public welfare.
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evaluate the sensitivity of our results by running first differences regressions

where all variables are transformed by subtracting lagged values from corre-

sponding current values, resulting in growth rates. The estimable framework

then becomes:

lnYit − lnYi,t−1 = β0 + β1(lnXit − lnXi,t−1) + β2(lnψit − lnψi,t−1)

+β3(ln θit − ln θi,t−1) + γ̃t + ε̃it (3.2)

As noted by Chalfin and McCrary (2013), estimating these first-differences

specifications is typical in the literature in order to remove noise and unob-

served jurisdiction-specific characteristics, which are time-invariant. Differ-

encing the data removes the between-jurisdiction variation but does not elim-

inate the potential confounding effects of unobserved national specific shocks,

which are soaked up through year dummies. Our benchmark estimates of

equations (3.1) and (3.2) are based on OLS regressions. Following Chalfin and

McCrary (2013), we also use GMM to estimate equation (3.2). The benefit of

relying on GMM is that we are able to assess the sensitivity of our findings

because GMM does not restrict the empirical model to a single specific para-

metric specification. The kernel and the bandwidth are chosen using the meth-

ods proposed by Newey et al. (1987). Finally, given the long time period of the

data, we also GLS in order to account for serial correlation. The GLS estimates

are based on the cross-sectionally heteroskedastic and time-wise autoregres-

sive model for pooled cross-sections of time series initially developed by Parks

(1967). None of these methods accounts for endogeneity bias or measurement
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error. Our IV strategy to tackle the corresponding bias in OLS estimates is

discussed in the next section.

3.6 Results

3.6.1 Baseline Estimates

Table 3.4 contains empirical estimates of the effects of violent crime (columns

(1) to (3)) and property crime (columns (4) to (6)) clearance rates on corre-

sponding crime rates, controlling for other factors. Columns (1) and (3) con-

tain results conditioned on the use of covariates and province and year fixed

effects; columns (2) and (5) evaluate the effects of adding the number of per

capita police officers; and columns (3) and (6) include the number of per capita

police officers and province-specific trends. Panel A reports estimates based

on 10 provinces from 1986 to 2005, panel B consists of results from the same

provinces but from 1988 to 2005 in order to accommodate one- and two-year

lagged clearance rates and panel C contains estimates from nine provinces

between 1986 and 2005, which are conditioned on the use of per capita incar-

ceration rates. Given the long time-series of the data, we focus on issues that

are a consequence of autocorrelation and heteroskedasticity. Therefore, stan-

dard errors of coefficient estimates are White and Newey-West corrected for
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second-order autocorrelation and unknown heteroskedasticity.26 For the sake

of brevity, we report only coefficient estimates of clearance rates, the number

of per capita police officers (when employed) and incarceration rates.

First, coefficient estimates of clearance rates are negative and statistically

significant at the 1% or 5%levels across almost all columns. With respect to

violent crime, estimates of clearance rates are significant in column (1) across

all panels. The addition of the number of police officers in column (2) removes

the statistical significance of clearance rates in panels A and B. However, the

inclusion of province-specific trends in column (3) results in statistically signif-

icant (at the 1% level) estimates of clearance rates across all panels with an

elasticity of roughly −0.3. Coefficient estimates of per capita police remain pos-

itive and are significant in all panels. Lagged values of clearance rates are, in

most cases, statistically insignificant.27 Finally, while the coefficient estimate

of incarceration rates is negative and statistically significant (at the 10% level)

in column (1), it becomes insignificant with the inclusion of police officers and

trends in column (3).

26Another option would be to cluster the standard errors by province. However, the number

of provinces (10) – and therefore clusters – would be quite small. Conversations with Jeff

Wooldridge suggest that, in such cases, using a Newey-West correction for autocorrelation

may be a better strategy (econometrics course offered by the Canadian Economics Association

Meetings, Ryerson University, May 26 to May 28, 2009).
27The inclusion of one- and two-year lagged values of clearance rates is intended to evaluate

the possibility that information on actual clearance rates, and therefore the likelihood of ap-

prehension, may take some time to reach criminals before they take them into account in their

cost-benefit decisions.
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Table 3.4: OLS Estimates with Respect to Violent and Property Crime Rates: ProvinceYear Data

Violent Crime Property Crime
Base (1) Police (2) Police and Base (1) Police (2) Police and

Province-Specific Province-Specific
Trends (3) Trends (3)

A. 10 provinces, 1986–2005
Clearance rate (per incident) −0.245∗∗ (0.116) −0.075 (0.072) −0.334∗∗∗ (0.101) −0.592∗∗∗ (0.086) −0.563∗∗∗ (0.073) −0.516∗∗∗ (0.048)
Per capita police officers 1.505 (0.199)a 0.843 (0.544) 0.542∗∗ (0.214) −0.345∗ (0.196)
per 100,000 of population

Adjusted R-squared 0.9298 0.9497 0.9695 0.9639 0.9657 0.9807
B. 10 provinces, 1988−-2005
Clearance rate (per incident) −0.300∗∗ (0.119) −0.134 (0.109) −0.306∗∗∗ (0.08) −0.498∗∗∗ (0.06) −0.486∗∗∗ (0.056) −0.431∗∗∗ (0.043)
One−year lagged clearance 0.0157 (0.116) 0.0484 (0.112) −0.0297 (0.075) −0.074 (0.052) −0.054 (0.050) −0.097∗∗ (0.044)
rate (per incident)
Two−year lagged clearance −0.067 (0.136) 0.0184 (0.126) −0.209∗∗ (0.094) −0.0002 (0.073) 0.003 (0.067) −0.065∗ (0.049)
rate (per incident)
Per capita police officers 1.437∗∗∗ (0.247) 0.870∗∗∗ (0.209) 0.432∗∗ (0.223) −0.304 (0.182)
per 100,000 of population

Adjusted R-squared 0.9275 0.9446 0.9723 0.9686 0.9696 0.9847
C. 9 provinces, 1986−-2005
Clearance rate (per incident) −0.371∗∗∗ (0.119) −0.232∗∗ (0.095) −0.362∗∗∗ (0.097) −0.543∗∗∗ (0.075) −0.536∗∗∗ (0.067) −0.510∗∗∗ (0.053)
Per capita police officers 1.552∗∗∗ (0.183) 0.923∗∗∗ (0.279) 0.469∗∗∗ (0.219) −0.189 (0.206)
per 100,000 of population
Incarceration rates −0.125∗ (0.069) −0.002 (0.057) −0.0575 (0.077) −0.148∗∗ (0.063) −0.109 (0.066) −0.083 (0.056)
per 100,000 of population

Adjusted R-squared 0.9302 0.9516 0.9660 0.9583 0.9590 0.9598
Province fixed effects Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes
Province linear trends No No Yes No No Yes
Note: Estimates in columns (1) to (3) are with respect to violent crime, and results in columns (4) to (6) are with respect to property crime. Standard errors are
White and NeweyWest corrected for second-order autocorrelation. Other covariates that are not reported but are included in all regressions are the minimum wage,
average government transfers, employment rates, population, the proportion of young males aged 15 to 24, the number of new immigrants per 100,000 of population
and average income of welfare recipients.With the exception of fixed effects, all variables are in natural logarithms. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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In summary, the important result is the relative stability of coefficient esti-

mates of clearance rates. Clearance rates are negatively correlated with violent

and property crime rates across all columns and also statistically significant

(in most cases). When included in tandem with clearance rates, per capita po-

lice rates either do not have the correct sign or are statistically insignificant.

However, coefficient estimates of clearance rates remain statistically signifi-

cant and possess negative signs. These findings suggest that previous studies,

which focus exclusively on the number of per capita police officers to capture

the impacts of the probability of apprehension, may understate the overall de-

terrence effects of enforcement by police.

Table 3.5 explores the deterrent effects of different measures of apprehen-

sion in some more detail. Specifically, column (1) contains the results of focus-

ing on the effects of the per capita number of police officers on property crime in

isolation from other deterrence measures. Columns (2) and (3) contain results

on the impacts of arrest rates per 100,000 of population and police expendi-

tures per capita of population, respectively.28 Column (4) assesses the effects
28Data on provincial expenditures on police services are available from the Police Ad-

ministration Survey conducted by Statistics Canada. For further details of this survey,

see www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&SDDS=3301. The Po-

lice Administration Survey collects data on police personnel and expenditures from each mu-

nicipal, provincial and federal (RCMP) police service in Canada. As detailed by Hutchins

(2014), police expenditures are actual operating expenditures on salaries and wages, benefits,

accommodation costs, fuel, maintenance and so forth. Unfortunately, capital expenditures are

not included.
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of including all these measures. Columns (5) to (8) are similarly organized and

contain estimates of apprehension measures with respect to violent crime.

Broadly speaking, the results in table 3.5 are similar to corresponding esti-

mates in table 3.4. The coefficient estimate of the number of police officers with

respect to property crime is negative and statistically significant (at the 10%

level) in column (1) but becomes insignificant in column (4) with the inclusion

of other measures of apprehension. The arrest rate covariate is statistically

significant (at the 1% level) in columns (2) and (4) but positive. Per capita

police expenditures are negatively associated with property crime but statis-

tically insignificant. On the other hand, the coefficient estimate of clearance

rates (in column (4)) possesses a negative sign and is statistically significant

at the 1% level. The coefficient estimate of −0.49 is comparable to results in

table 3.4. Higher clearance rates are also correlated with a reduction in vio-

lent crime rates (at the 1% level). Coefficient estimates of arrest rates and the

number of police officers are statistically significant but possess counterintu-

itive signs. The per capita police expenditure covariate is significant in column

(7), but becomes statistically insignificant with the inclusion of other measures

of apprehension.
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Table 3.5: OLS Estimates of Different Measures of Apprehension: Province-Year Data

Property Crime Violent Crime

(1) (2) (3) (4) (5) (6) (7) (8)
Clearance rate −0.493∗∗∗ −0.441∗∗∗

(per incident) (0.062) (0.080)
Per capita police officers −0.390∗ −0.255 0.925 (0.267)∗∗ 0.449∗∗∗

per 100,000 of population (0.239) (0.174) (0.267) (0.131)
Arrest rate per 0.409∗∗∗ 0.379∗∗∗ 0.474∗∗∗ 0.486∗∗∗

100,000 of population (0.070) (0.057) (0.038) (0.029)
Police expenditures per −0.170 −0.070 0.368∗∗∗ 0.0278
capita of population (0.164) (0.110) (0.143) (0.098)

Other exogenous covariates Yes Yes Yes Yes Yes Yes Yes Yes
Province/year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Province linear trends Yes Yes Yes Yes Yes Yes Yes Yes

Adjusted R-squared 0.9703 0.9766 0.9701 0.9863 0.9667 0.9821 0.9648 0.9884
Note: Estimates in columns (1) to (4) are with respect to property crime, and results in columns (5) to (8) are with respect to violent crime.

Standard errors (in parenthesis) are White and Newey-West corrected for second-order autocorrelation. Other covariates that are not reported

but are included in all regressions are the minimum wage, average government transfers, employment rates, population, the proportion of young

males aged 15 to 24, the number of new immigrants per 100,000 of population and average income of welfare recipients. With the exception

of fixed effects, all variables are in natural logarithms. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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A relevant question is whether these estimates are comparable with the

US based estimates. Our results with respect to the effect of arrest rates and

clearance rates on violent crime cannot be compared because many US studies

obtain coefficient estimates with negative signs while our regressions reveal

arrest rates with positive coefficients. However, our coefficient estimates of the

number of police officers with respect to property crime are consistent with the

−0.5 elasticity obtained by Levitt (2002) and a bit larger than the preferred

estimate of −0.17 reported by Chalfin and McCrary (2013). Further, our esti-

mates of the effects of an increase in clearance rates are comparable to those

obtained by Craig (1987) with respect to all crimes. As discussed, there is very

little empirical research on the effects of clearance rates.

In summary, coefficient estimates of clearance rates remain robust and sta-

tistically significant even after the inclusion of other plausible measures of ap-

prehension. Given the presence of either weak statistical significance or coun-

terintuitive signs, we do not use per capita arrest rates, the number of police

officers or per capita police spending as covariates in further regressions. This

strategy allows us to focus on obtaining robust estimates of the impacts of clear-

ance rates. However, we acknowledge that omitting these plausible measures

of apprehension might induce some bias in coefficient estimates of clearance

rates, the magnitude of which is a function of the correlation between these

measures and clearance rates. Therefore, coefficient estimates of clearance

rates should not be interpreted as causal relationships and should be treated
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with appropriate caveats. Further, we do not employ province-specific linear

trends in the remaining regressions because coefficient estimates of clearance

rates remain relatively stable after their inclusion (with other covariates and

province and year fixed effects). This allows the other covariates to be identi-

fied by time-series variation within provinces.

Table 3.6 evaluates the sensitivity of coefficient estimates of clearance rates

through alternative estimation strategies. Columns (1) to (3) contain estimates

with respect to violent crime. Column (1) contains OLS first differences esti-

mates based on equation (2); column (2) reports the results of GMM estimation

based on equation (2); and column (3) contains results from a GLS regression

based on equation (1). Columns (4), (5) and (6) are organized similarly, but

with respect to property crime rates. Broadly speaking, the estimates are quite

comparable to results in the previous table. The coefficient estimate of the

clearance rate with respect to violent crime from the first differences model

is −0.126 and statistically significant at the 10% level. Corresponding GMM

and GLS estimates are −0.241 and −0.244, respectively, and statistically signif-

icant at the 5% and 1% levels, respectively. Coefficient estimates of the effects

of clearance on property crime rates are also significant (at the 1% level) and

range from −0.3 to −0.6. In terms of other covariates, levels and GLS estimates

of the minimum wage with respect to violent crime are negative and statisti-

cally significant at the 1% and 5% levels. While GMM and GLS estimates of

the minimum wage with respect to property rates are significant, they possess
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counterintuitive positive signs. First differences and GMM estimates of em-

ployment rates are negative and significant with respect to property crime but

possess implausibly large coefficient estimates.
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Table 3.6: First Differences, GMM, and GLS Estimates With Respect to Violent and Property Crime Rates:
Province-Year Data 1986-2005

Violent Crime Property Crime
FD GMM GLS FD GMM GLS
(1) (2) (3) (4) (5) (6)

Clearance rate −0.126∗ −0.241∗∗ −0.244∗∗∗ −0.339∗∗∗ −0.611∗∗∗ −0.583∗∗∗
(0.074) (0.115) (0.084) (0.049) (0.08) (0.058)

Minimum wage −0.086 −0.269 −0.276∗∗ −0.076 0.390∗∗∗ 0.325∗∗∗
(0.117) (0.169) (0.117) (0.101) (0.130) (0.103)

Average government transfers 0.092∗ −0.130 −0.138 −0.013 0.026 −0.029
(0.058) (0.116) (0.108) (0.059) (0.077) (0.091)

Employment rate 1.100∗∗ 0.227 0.530 −1.01∗∗∗ −2.176∗∗∗ −0.533
(0.447) (1.024) (0.550) (0.540) (0.959) (0.469)

Province fixed effects Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes
Adjusted R-squared/Log likelihood 0.4402 247.325 0.5775 280.825
Note: Results are based on data for 10 provinces from 19862005 (200 obs.). Estimates in columns (1) to (3) are with respect to

violent crime, and results in columns (4) to (6) are with respect to property crime. Standard errors of coefficient estimates of

first difference regressions are White and Newey-West corrected for second-order autocorrelation. For GMM regressions, the kernel

and the bandwidth are chosen using the methods proposed by Newey and West (1987). The GLS estimates are based on the cross-

sectionally heteroskedastic and time-wise autoregressive model for pooled cross-sections of time series initially developed by

Parks (1967). Other covariates that are not reported, but included in all regressions, are population, the proportion of young

males aged 15 to 24, the number of new immigrants per 100,000 of population and average income of welfare recipients. With the

exception of fixed effects, all variables are in natural logarithms. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01



148

3.6.2 Endogeneity Bias and Instrumental Variables

Reduced form estimates are premised on the assumption that changes in

clearance rates exogenously impact crime trends. However, as discussed above,

OLS estimates are likely to be biased because of reverse causality. It might

very well be the case that increases in crime result in public pressure for rapid

arrests of perpetrators. In that case, OLS estimates of clearance rates will be

biased and confounded. There are other possible sources of bias in estimates

of the true impacts of clearance rates. First, the number of police-reported in-

cidents enters the left- and right-hand side of the econometric model. This is

similar to the classic measurement error noted by Borjas (1980) with respect

to estimating the effects of average weekly (or annual) wages on weekly (or an-

nual) hours of work. The problem is that hours of work enter both the right-

and left-hand side of the equation, resulting in a downward bias in coefficient

estimates of the effects of changes to average wages. Second, another type of

measurement error arises from the fact that some crimes are not reported to

the police, which means that clearance rates overstate the true probability of

apprehension. Therefore, estimates of the effects of the clearance rate on crime

will be upward biased with regards to the true crime rate, but accurate for the

recorded crime rate. Third, as explained by Cook (1979), coefficient estimates

of clearance rates may also be biased if rational criminals respond to an in-

crease in clearance rates by committing crimes that are more difficult to solve.

In order to evaluate the magnitude of bias in OLS estimates, we construct
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political party dummy variables as well as instruments based on the proportion

of seats held by different parties, which can arguably identify trends in clear-

ance rates and not be correlated with the right-hand side error term of equation

(3.1). The intuition is that changes in the governing party at the province level

might impact the allocation of resources to law enforcement agencies. This ap-

proach is consistent with Besley and Case (2000), who suggest that variation

in political variables can exogenously identify trends in policy variables and

not have any impact on the outcome of interest. The use of political variables

as instruments is also comparable to the strategy used by Levitt (1997), who

relied on variation in mayoral and gubernatorial electoral cycles to instrument

police rates.

The presence of similar parties allows us to create the same political party

fixed effects across provinces. The major political parties in most Canadian

provinces are similar: the Liberal Party, the Conservative Party and the New

Democratic Party. In addition, British Columbia has the Social Credit Party,

and the Parti Quebecois is a major political force in Quebec.29 Therefore, we

construct three dummy variables that take a value of 1 if one of the major po-

litical parties (Liberals, Conservatives or NDP) is in power. Hence, the omitted

category is the presence of a ruling political party that does not have a na-

tional presence. As mentioned, we also construct instruments based on the
29In terms of ideology, the Conservatives are considered by most to be on the right end of

the political spectrum, the Liberals are positioned at the centre left, and the NDP is on the far

left.
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proportion of seats held by each party.30 These variables are intended to re-

flect the ease with which governing parties can implement policy reforms and

corresponding changes in government spending. A greater proportion of legis-

lature seats might imply that a political party with a “tough on crime” agenda

will have greater flexibility in increasing government spending on specific anti-

crime policies at the expense of reduced expenditures on other items. We also

use three- and four-year lagged clearance rates that may impact trends in clear-

ance rates but do not share a statistically significant relationship with current

crime rates.We interact these lagged clearance rates with each of the politi-

cal party dummy variables as a crude proxy for variation in clearance rates

generated by changes to political regimes that might result in shifts in provin-

cial funding. Finally, consistent with our theoretical model, we employ police

expenditures as another instrument that should impact trends in clearance

rates.31 Given the ambiguities of empirically defining per capita police expen-

ditures, we define per capita expenditures in terms of population and the num-

ber of police officers.32

30Information on the governing political party and the number of seats held by each party

was obtained from the websites of the legislative assemblies of each province, the Social Credit

Party and the Parti Quebecois.
31We are grateful to an anonymous referee for recommending this.
32Employing police expenditures as an alternate instrument is also a useful sensitivity

check, given the possibility that changes in the governing political party or the seats held

by it could indirectly affect crime rates because a different party might result in significant

shifts in areas that affect crime, such as employment, public housing and education policies.

We thank an anonymous referee for pointing this out.
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Table 3.7 contains first- and second-stage estimates from a variety of in-

strumental variables regressions. Columns (1) to (5) document estimates with

respect to violent crime while columns (6) to (10) report corresponding results

for property crime. Panel A (B) contains first-stage (second-stage) results.

Columns (1) and (6) in table 6 contain estimates of the effects of clearance

rates using political party dummies as instruments. Results in columns (2)

and (7) are from an estimable model in first differences with second stage IV

estimates based on political party dummies and political party dummies inter-

acted with three- and four-year lagged clearance rates. Columns (3) and (8)

report results from a regular log-log model with second-stage results identified

by political party dummies and police expenditures per capita of population

as instruments. Columns (4) and (9) contain results obtained from adding the

proportion of seats held by political parties as instruments (in addition to polit-

ical party dummies and police expenditures per capita of population). Finally,

estimates from employing political party dummies and police expenditures per

100,000 of police officers as instruments are detailed in columns (5) and (10).

The availability of multiple instruments allows us to conduct tests of overi-

dentifying restrictions and evaluate the sensitivity of findings to the use of

different instrumental variables. Results from standard Sargan and Hansen

tests of over-identifying restrictions yield test statistics that do not reject the

null hypothesis of over-identification.33 With the exception of property crime

clearance rates instrumented by political party dummies (column (6)), we can
33These are available on request.
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Table 3.7: Instrumental Variables Estimates With Respect to Violent and Prop-
erty Crime Rates: Province-Year Data

Violent Crimes

Violent Crime Violent Crime Violent Crime Violent Crime Violent Crime
and First Police exp. per Police exp. per Police exp. per

Differences capita of pop. capita of pop. capita of police
(1) (2) (3) (4) (5)

A. First Stage (See Instruments Below)

Per capita police −0.421∗∗∗ −0.382∗∗∗ −0.405∗∗∗

expenditures (0.142) (0.147) (0.173)

F -stat, p-value 5.215, 0.0019 3.036, 0.0027 7.272, 0.0000 5.355, 0.0000 4.508, 0.0001

Adj. R2 0.5694 0.6094 0.6140 0.6205 0.6099

B. Second Stage

Clearance −0.519∗∗ −0.540∗ −0.689∗∗∗ −0.726∗∗∗ −0.496∗∗∗

rate (0.245) (0.320) (0.202) (0.194) (0.191)

Adj. R2 0.9262 0.3036 0.9203 0.9186 0.9268

Property Crimes

Property Crime Property Crime Property Crime Property Crime Property Crime
and First Police exp. per Police exp. per Police exp. per

Differences capita of pop. capita of pop. capita of police
(6) (7) (8) (9) (10)

A. First Stage (See Instruments Below)

Per capita police −0.561∗∗∗ −0.568∗∗∗ −0.658∗∗∗

expenditures (0.150) (0.150) (0.150)

F -stat, p-value 0.621, 0.6030 4.929, 0.0000 5.386, 0.0000 3.648, 0.0010 4.047, 0.0004

Adj. R2 0.6137 0.8966 0.8980 0.8980 0.8959

B. Second Stage

Clearance −0.268 −0.599∗∗∗ −0.831∗∗∗ −0.725∗∗∗ −0.544∗∗∗

rate (0.667) (0.202) (0.200) (0.180) (0.188)

Adj. R2 0.9585 0.4977 0.9610 0.9630 0.9638

Instruments Political party Political party Political party Political parties, Political party
dummies dummies and dummies and per share of seats and dummies and per

dummies interacted capita police per capita police capita police
with 3- and 4-year exp. (police exp. (police exp. (police
lagged clearance exp = per capita exp = per capita exp = per 100,000

rates of pop.) of pop.) officers)

Note: Results are based on data for ten provinces from 1986-2005 (200 obs.) for all columns, except (2) and (7), the
first-differences, using the same provinces from 1990-2005 (160 obs.). Other covariates that are not reported but are
included in all regressions are the minimum wage, average government transfers, employment rates, population, the
proportion of young males aged 15 to 24, the number of new immigrants per 100,000 of population, average income of
welfare recipients and province and year fixed effects. With the exception of fixed effects, all variables are in
natural logarithms. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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reject the null hypothesis (at the 1% level) that the coefficient estimates of in-

struments are equal to zero. However, in all cases, the F statistic from the joint

test of statistical significance of all instruments is less than 10 in value.

Instrumental variables estimates are quite similar to the above reduced

form estimates. Second-stage coefficient estimates of clearance rates on vio-

lent crime (in panel B) range from −0.5 to −0.7 and are statistically significant

at the 1% or 10% levels. With the exception of column (6), second-stage coef-

ficient estimates of clearance rates with respect to property crime are roughly

from −0.3 to −0.7 and are significant at the 1% level. Another key point is

the statistical significance and the negative sign of coefficient estimates of per

capita police expenditures across all columns and irrespective of whether police

expenditures are measured per capita of population or per 100,000 of police offi-

cers. Coefficient estimates of per capita police expenditures range from roughly

−0.4 to −0.6 and imply that an increase in such expenditures is associated with

lower clearance rates for violent and property crimes.

While a negative relationship may seem odd, we suspect that it is driven by

either an inability to measure capital expenditures or by the fact that expendi-

tures may be a poor measure of quality units of labour, as discussed earlier.34

For example, if a higher proportion of a police force’s budget is being devoted
34In particular, the latter may cause this negative relationship because our sample period

covers the tail end of a 30-year increase in crime levels and most of the current 20-year decline

in crime. We thus have, in our sample, police forces that have gone through extensive hiring

booms and generally cannot let officers go due to strong unions. The result is ageing police

forces that get more expensive without necessarily getting more productive.
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to salaries and wages, this implies less spending on capital expenditures. At

some point, it is possible that diminishing returns set in, and any incremen-

tal increase in the marginal deterrence gained from more spending on wages

and salaries is outweighed by the decline in deterrence associated with the

corresponding decrease in relative spending on capital expenditures. From an

empirical perspective, the result is negative signs of coefficient estimates of the

effects of spending on wages and salaries and variable cost items (such as fuel

expenses).

There may be concerns that the use of police expenditures as an instrument

is invalid because of potential simultaneity between crime or clearance rates

and police expenditures. An increase (decrease) in crime (clearance) rates may

result in public demand for higher government expenditures on police services.

To assess this possibility, we ran three-stage least squares regressions assum-

ing the following: in the third stage, crime rates are functions of clearance

rates; in the second stage, clearance rates are identified by police expenditures

per capita; and in the first stage, police expenditures are identified by the polit-

ical party dummies and the share of seats held by political parties. Relative to

our earlier instrumental variables approach, we now evaluate whether changes

in government and/or in the distribution of seats among political parties impact

spending on police services.

Our results remain largely unchanged.35 In the first stage, the coefficient
35Each of the three regressions have the minimum wage, average government transfers,

employment rates, population, the proportion of young males aged 15 to 24, the number of new
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estimates of the political variables with respect to per capita police expendi-

tures are statistically significant, with an F statistic and p-value (from a joint

test of significance) equal to 2.72 and 0.015, respectively. The impact of police

expenditures on clearance rates has already been discussed. The third-stage

coefficient estimates of clearance rates with respect to violent and property

crime are −0.633 and −0.308, respectively, and statistically significant at the

1% and 10% levels, respectively.36

In summary, we do not claim that the IV estimates are successfully purged

Table 3.8: OLS Estimates with Respect to Violent and Property Crime Rates:
Province-Year Data

Violent Crime Property Crime Violent Crime Property Crime
Diff.-in-Diff. Diff.-in-Diff. 1990–2001 1990–2001

(1) (2) (3) (4)
Clearance rate −0.215 −0.557∗∗∗ −0.398∗∗∗ −0.446∗∗∗

(per incident) (0.133) (0.097) (0.148) (0.060)

Clearance rate −0.112 −0.066
(per incident) (0.181) (0.051)
interacted with a year
dummy for 1990-2001

Province fixed effects Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes
Adjusted R-squared 0.9296 0.9641 0.9383 0.9756
Results in columns (1) and (2) are based on data for 10 provinces from 19862005 (200 obs.).
Estimates in columns (3) and (4) are based on data for the same provinces from 19902001 (110 obs.).
Standard errors (in parenthesis) are White and Newey-West corrected for second-order autocorrelation.
Other covariates that are not reported but are included in all regressions are the minimum wage,
average government transfers, employment rates, population, the proportion of young males aged 15
to 24, the number of new immigrants per 100,000 of population and average income of welfare recipients.
With the exception of fixed effects, all variables are in natural logarithms.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

immigrants per 100,000 of population, average income of welfare recipients and province and

year fixed effects as right-hand side variables.
36All these estimates are available on request.
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of reverse causality or measurement error. However, as discussed above, this

is an extremely difficult accomplishment, and very few papers in the litera-

ture have actually attempted some type of correction. The relative similarity

between OLS and IV estimates suggests that potential bias in OLS estimates

of clearance rates may not be significant. However, it is also important to ac-

knowledge that IV estimates are biased towards OLS estimates when multiple

instruments are weak.37 As a consequence, it is prudent to treat our findings

with appropriate caution.

Finally, table 3.8 offers some further sensitivity analyses through models

designed to evaluate whether changes in clearance rates during the 1990s pos-

sessed different marginal impacts relative to other years in our sample. The

motivation of this exercise is to investigate whether clearance rates might be

one of the contributing factors behind the significant decline in crime rates ob-

served during the 1990s.38 Columns (1) (violent crime) and (2) (property crime)

contain difference-in-differences regressions based on the entire sample (1986

to 2005), with an additional clearance rate covariate interacted with a dummy

that takes a value of 1 for all observations from 1991 to 2000 and is 0 otherwise.

The coefficient estimate of this dummy variable reflects the marginal effect of
37We are very grateful to an anonymous referee for pointing this out. An excellent exposition

of this point is available from “Weak Instruments - EC533: Labour Economics for Research

Students” by Jörn-Steffen Pischke, available at econ.lse.ac.uk/staff/spischke/ec533/

WeakIV.pdf.
38Levitt (2004) cites increased police hiring as one of the factors but does not mention clear-

ance rates.
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clearance rates during this time period relative to other years. Columns (3) (vi-

olent crime) and (4) (property crime) are based on an alternative approach in

which regressions are based on a reduced sample (1991 to 2000) during which

significant reductions in crime were observed.

Consistent results emerge across columns. The coefficient estimate of the

clearance rate interacted with the year dummy with respect to violent crime

(column (1)) is statistically insignificant, while the coefficient estimate of the vi-

olent crime clearance rate in column (3) is statistically significant but not that

different in magnitude from estimates in table 3.4. The interacted term with

respect to property crime (in column (2)) is negative but statistically insignif-

icant. The coefficient estimate of the property crime clearance rate in column

(4) is negative and statistically significant and quite comparable to previous

results. In summary, while these results offer further evidence on the impor-

tance of clearance rates, we cannot conclude with certainty that they were a

significant determinant of the observed decline in crime during the 1990s.

3.7 Conclusion

Relative to the vast literature on crime and the effects of more police offi-

cers, the number of studies that have focused on the effects of clearance rates

on crime is quite limited. This is unfortunate, as we think that the clearance
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rate is a reasonable approximation of Becker’s probability of apprehension. In-

deed, early empirical studies on crime and deterrence focused on the effects of

clearance rates rather than changes to the size of a jurisdiction’s police force.

We evaluate the importance of clearance rates with respect to crime by using

data across Canadian provinces from 1986 to 2005. The use of Canadian data

is informative from a general perspective, given the correlation between US

and Canadian crime rates over time. Exploiting Canadian data is also use-

ful given that penalties for Criminal Code offences are set at the federal level,

yielding some reassurance that estimates of the impacts of clearance rates are

not biased by variation in local penalties, which reflect changes to the severity

of penalty rather than the probability of apprehension. Finally, we note that

Canada did not experience the adverse consequences associated with the crack

cocaine epidemic that occurred over the sample period.

In terms of other contributions, we develop a simple model that links labour

and capital to the probability of apprehension and the incentive to commit

crime. The model allows us to construct instruments, such as per capita police

expenditures that proxy effective labour units of policing and enable us to as-

sess the sensitivity of OLS estimates. OLS, GMM, GLS and IV estimates yield

very comparable results. All else being equal, an increase in the clearance rate

is correlated with a reduction in crime; marginal effects are higher with respect

to property crime rates. These results are robust to the use of police force size

and a wide array of other covariates, fixed effects and province-specific linear
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trends. However, the similarity between the IV and OLS estimates might be

an artifact of the relative statistical weakness of multiple instruments. Hence,

our estimates should be treated with suitable caveats.

Further, our IV estimation has been conducted only with respect to clear-

ance rates and ignores potential endogeneity bias in coefficient estimates for

other covariates, such as the number of police officers (one measure of labour).

Therefore, we cannot say that higher arrest rates or hiring more police offi-

cers does not result in lower crime rates. It is possible that these other mea-

sures of apprehension are significantly associated with lower crime rates and

that we have been unsuccessful in purging coefficient estimates of endogeneity

bias. Given these caveats, we interpret the consistent statistical significance

of clearance rates as cautious evidence of the importance of the probability of

apprehension, but with the possibility of bias, taking into account the results

with respect to other measures of apprehension. In future research we hope to

better understand the reasons for the positive correlation between crime and

per capita police rates, possibly through the use of more structural methods of

estimation.
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Appendix A

Chapter 2 Appendices

A.1 The LINC/EAL/ELSA Data Set

As there was no readily available data set including the addresses of LINC
(Language Instruction for Newcomers), EAL (English as an Additional Lan-
guage), and ELSA (English Language Services for Adults) providers for the
time period from 2001 to 2003, I hand-collected the data. To collect the informa-
tion on LINC programs I used the 2001-2002, 2002-2003, and 2003-2004 Pub-
lic Accounts of Canada, Transfer Payments documents (under Citizenship and
Immigration Canada: Language Instruction for Newcomers) for the names of
organizations. Using the names of organizations I have recovered their postal
codes from their websites where available or by using internet searches (if no
website could be located). To obtain the information on ELSA programs, I used
multiple 2002 and 2003 imprints of the www.elsanet.org using the Internet
Archive: Wayback Machine (https://archive.org/web/) which contained
the lists of all ELSA providers in British Columbia including their addresses.
Finally, the data on EAL programs was provided at my request by Labour and
Immigration Manitoba. The postal codes of EAL providers were obtained us-
ing Google Maps when necessary. The result was a data set that included 368
locations of ESL course providers with multiple locations corresponding to the
same provider in some cases (e.g., a school board offering ESL courses at sev-
eral school campuses). The ESL providers’ postal code data was then used in
conjunction with the Postal Code Conversion File (PCCF) to match the postal
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codes with the latitude and longitude.

A.2 Principle Component Analysis

A.2.1 Constructing the Measure of the Language Skill

As binary (or even three-level) speaking-proficiency-based measures of host-
country language proficiency employed in previous studies are not suitable for
examining the gradual acquisition of language skills, I construct a continuous
measure of language skill by conducting principle component analysis (PCA) on
the self-reported measures of English-language speaking, reading, and writing
proficiencies and the responses to five additional questions related to speak-
ing and comprehension abilities. I use the weights provided in LSIC to make
the resulting factor representative of the new immigrant population in Canada
in 2001. Therefore, the responses to questions related to language ability in
Wave 1 are used to conduct the PCA and obtain factor loadings. These loadings
are then used to construct the factor (language skill measure) for both Wave
1 and Wave 2. There is an underlying assumption that the factor loadings do
not change over time. Given that approximately only a year and a half passes
between the interviews the assumption is not unreasonable.

Speaking, reading, and writing proficiencies were reported on a five-point
scale. The question in the LSIC survey asked: “How well can you speak/read/write
(in) English?”. The potential answers were: “cannot speak/read/write (in) this
language,” “poorly,” “fairly well,” “well,” and “very well.” I code the responses
as ranging from “0” to “4” respectively. Further five questions expanded on the
comprehension and speaking ability:

1. How easy is it for you to tell someone in English what your address is?

2. How easy is it for you to tell someone in English what you did before
immigrating to Canada?

3. How easy is it for you to understand a message in English over the tele-
phone?

4. How easy is it for you to tell a doctor who speaks only English what the
problem is?
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5. How easy is it for you to ask someone who speaks only English to re-
arrange a meeting with you?

Respondents had a choice between: “cannot do this,” “can do this with a lot of
help,” “can do this with some help,” and “can do this easily.” I have assigned
these responses values from 0 to 3 respectively.

Individuals identified as native speakers of English (those reporting En-
glish as their mother tongue and the language most spoken at home) were ex-
cluded from the sample. I first calculate a matrix of polychoric correlations (as
the eight underlying variables are ordinal categorical variables). This matrix
is then used to perform the principal component analysis. Table A.1a presents
the Eigenvalues and the proportion of variance of the variables accounted for
by the underlying factor. As evident the first factor is sufficient to serve as a
measure of English-language skill. Table A.1b shows the factor loadings for
the factor used as the language skill.

Table A.1: PCA of English-Language Proficiencies

(a)

Factor Eigenvalue Proportion
of Variance

Factor 1 6.9927 0.9699

Factor 2 0.2656 0.0368

Factor 3 0.0826 0.0115

Factor 4 −0.0047 −0.0006

Factor 5 −0.0130 −0.0018

Factor 6 −0.0293 −0.0041

Factor 7 −0.0401 −0.0056

(b)

Variable Factor
Loading

Speaking 0.9432

Reading 0.9192

Writing 0.9047

Ability Question 1 0.9391

Ability Question 2 0.9500

Ability Question 3 0.9466

Ability Question 4 0.9257

Ability Question 5 0.9499
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A.2.2 Constructing the Measures of Cognitive and Man-

ual Skills

I follow Yamaguchi (2012) by a priori assuming which attributes and tasks
in the Career Handbook measure the level of the cognitive skill and which -
of the manual skill. General learning ability, numerical ability, verbal abil-
ity, clerical perception, “data” and “people” task complexities correspond to the
cognitive skill. Motor coordination, finger dexterity, manual dexterity, form
perception, spatial perception, and the “things’ task complexity correspond to
the manual skill. All abilities are measured on a five-point scale. “1” corre-
sponds to the ability of the lowest ten percent of the population, “2” - to the
lowest third of the population excluding the lowest ten percent, “3” - to the
middle third, “4” - to the top third excluding the top ten percent of the popula-
tion, and “5” - to the the top ten percent of the population. Data, people, and
things tasks were rescaled to a four-point scale, with “0” designating no sig-
nificant use of the task and “1” through “3” designating increasing complexity
of performed tasks. Weighted counts of occupations within the 2001 Canadian
Census of Population are used to make the generated factors representative of
the Canadian native-born workers. Table A.2a shows the eigenvalues and the
proportion of variance accounted for by each of the first five factors in the cogni-
tive skill group. Table A.2b does the same for the manual skill group. The first
factor for each group is retained to serve as the measure of the cognitive and
manual skill respectively. This choice is consistent with the amount of variance
in the variables accounted for by the first factor in each group. Table A.3 shows
the factor loadings for the variables in the cognitive and manual groups.

Table A.2: PCA of Career Handbook Abilities and Tasks

(a) Cognitive Group

Factor Eigenvalue Proportion
of Variance

Factor 1 4.0790 0.9770

Factor 2 0.2639 0.0632

Factor 3 0.0929 0.0223

Factor 4 −0.0241 −0.0058

Factor 5 −0.0985 −0.0236

(b) Manual Group

Factor Eigenvalue Proportion
of Variance

Factor 1 3.0251 0.9101

Factor 2 0.5779 0.1739

Factor 3 0.1415 0.0426

Factor 4 −0.0593 −0.0178

Factor 5 −0.1373 −0.0413
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Table A.3: Factor Loadings for the Cognitive and Manual Skills

(a) Cognitive Group

Variable Factor
Loading

General Learning Ability 0.8996

Numerical Ability 0.8520

Verbal Ability 0.9224

Clerical Perception 0.6496

“Data” Tasks 0.8420

“People” Tasks 0.7497

(b) Manual Group

Variable Factor
Loading

Motor Coordination 0.7808

Finger Dexterity 0.6656

Manual Dexterity 0.7076

Spacial Perception 0.6408

Form Perception 0.7100

“Things” Tasks 0.7464
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A.3 First Stage Regressions

A.3.1 Language Evolution Equation

Table A.4 presents the estimates from the first stage regressions for the lan-
guage evolution equation shown in Table 1.3. The corresponding specifications
are shown above each column. The coefficients on the instrumental variables
(distance to the nearest ESL provider, refugee status, and sponsored family
visa status) are highly significant and have expected signs.

Table A.4: Estimates for for First Stage of the Language Skill Evolution Equa-
tion

Time in an ESL Course (5) (6) (7) (8)

Distance to the Nearest −0.0010∗∗∗ −0.0010∗∗∗ −0.0010∗∗∗ −0.0010∗∗∗

ESL Provider (0.0002) (0.0002) (0.0002) (0.0002)

Refugee Status 1.0362∗∗∗ 1.0293∗∗∗ 1.0285∗∗∗ 1.0273∗∗∗

(0.0595) (0.0593) (0.0593) (0.0592)

Sponsored Family Status −0.0375 −0.0365 −0.0346 −0.0386
(0.0311) (0.0310) (0.0314) (0.0321)

Months Between Interviews – 0.0454∗∗∗ 0.0455∗∗∗ 0.0455∗∗∗

– (0.0113) (0.0113) (0.0113)

English-proficient HH Members – – 0.0046 0.0012
– – (0.0097) (0.0100)

Lag of Age – – – 0.0027
– – – (0.0018)

N – – – –

R2 0.2016 0.2062 0.2063 0.2069

Robust standard errors in parenthesis; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: All models are unweighted, N is not displayed at present due to Statistics
Canada RDC disclosure process.
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A.3.2 Wage Equation

Table A.5 presents the estimates from the first stage regression for the fixed
effects instrumental variables log wage equation shown in Table 1.4. The co-
efficients on both instruments, the indicator for whether the interview was
conducted in English and the number of household members who can speak
English, are economically and statistically significant.

Table A.5: Estimates for First Stage of the Log-Wage Equation

Language Skill Coefficient Standard Error

Interview Conducted in English 0.1587∗∗∗ (0.0517)

English-proficient HH Members 0.0447∗∗ (0.0178)

Cognitive Skill 0.0054 (0.0186)

Manual Skill 0.0095 (0.0199)

Canadian Job Experience 0.0170∗∗ (0.0070)

Individual Effects Yes

N –
R2 0.2398

Robust standard errors in parenthesis; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: All models are unweighted, N is not displayed at present due to
Statistics Canada RDC disclosure process.
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A.3.3 Skill Transfer Equations

Table A.6 presents the estimates from the first stage regression for the fixed
effects instrumental variables skill transfer equation shown in Table 1.5. The
coefficients on both instruments, the indicator for whether the interview was
conducted in English and the number of household members who can speak
English, are economically and statistically significant. Note that the regression
for cognitive and manual skill transfer share the first stage, as the language
gap is the only explanatory variable.

Table A.6: Estimates for First Stage of the Skill Transfer Equations

Language Skill Coefficient Standard Error

Interview Conducted in English −0.1543∗∗∗ (0.0504)

English-proficient HH Members −0.0583∗∗∗ (0.0159)

Individual Effects Yes

N –

R2 0.2009

Robust standard errors in parenthesis; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: All models are unweighted, N is not displayed at present due to
Statistics Canada RDC disclosure process.
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