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Abstract 

Diffusion-weighted magnetic resonance imaging (MRI) provides unparalleled information and 

measurements of lung structure and function without the burden of ionizing radiation.  In 

particular, diffusion-weighted MRI provides estimates of airspace enlargement, which is a 

hallmark characteristic of emphysema.  MRI provides a way to measure in vivo mean-linear-

intercept (Lm) and this is a promising measurement for clinical evaluation of disease 

progression in patients with Alpha-1 Antitrypsin Deficiency (AATD) in which airspace 

enlargement begins early in life.  As such, our objective was to evaluate MRI measurements 

of airspace enlargement in AATD patients and compare these measurements to ex-smokers 

with chronic obstructive pulmonary disease (COPD) and healthy never-smokers.  We 

compared these measurements with standard clinical measurements provided by spirometry, 

plethysmography and computed tomography; we also demonstrated that MRI detected 

differences in disease severity in patients with clinically similar measurements.    

(135/150 words) 
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1 INTRODUCTION 

“Can one hear the shape of a drum?” - Mark Kac.1  This simple question builds the 

foundation for this research.  Can you listen to an MRI signal from the lung parenchyma 

and from that determine its shape and form? This introduction provides the required 

information as a prelude to the remaining chapters which explore this question across a 

range of lung disease. 

 Motivation and Rationale 

Chronic obstructive pulmonary disease (COPD) is a leading cause of death and 

hospitalizations worldwide.2  It affects millions of people and has an incredible economic 

burden on the healthcare system in Canada.3  The hallmark features of COPD include 

thickening of the bronchial walls, excessive mucus production and partial or complete 

destruction of the alveolar ducts and sacs.4  This combination of factors leads to a decrease 

in pulmonary function and overall quality of life.  Individuals with a diagnosis of Alpha-1 

Antitrypsin Deficiency (AATD) lack a protein required for regulation of neutrophil elastase 

and as a result can rapidly develop a phenotype of COPD called emphysema.5  

Unfortunately, there is no cure for AATD and current treatment is expensive,6 and has 

controversial efficacy with no improvements in exercise capacity or quality of life for the 

patient.7  Emphysema is characterized by parenchymal destruction which results in overall 

airspace enlargement.  This enlargement can be characterized by lung morphometry, the 

study of lung form.  This can be used to quantify disease severity and progression 

regionally throughout the lung.  The American Thoracic Society (ATS) and European 

Respiratory Society (ERS) joint task force consider quantification of lung structure to be 

the gold standard in evaluating clinical interventions, severity of disease and response to 

treatment.8   

In the clinic, measurements of lung structure and function are made using a wide range of 

tools, from simple airflow measurements to complex three dimensional computed 

tomography (CT).  Many of these tools will be outlined in further detail later in this chapter.  

Airflow measurements (spirometry) taken at the mouth can be used to quantify lung 
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function and airflow obstruction. Spirometry is the gold standard for diagnosis of chronic 

obstructive pulmonary disease.  It is also possible to measure lung volumes which can give 

the volume of gas remaining in the lungs after full exhalation.  The volume remaining at 

the end of exhalation (RV) as a ratio of total lung capacity (TLC) is a measurement of gas 

trapping.  Diffusion tests can give an estimate of the ability for O2 to diffuse across the 

alveolar-capillary membrane which is a quantity that is reduced in diseases such as 

emphysema.  Measurements of lung structure and form can be performed using imaging 

techniques such as planar x-rays or by extending this to 3D x-ray CT.  These techniques 

allow measurements of lung volumes and tissue density to be made but to truly measure 

the structure and form of the lung and the lung parenchyma, novel morphometry techniques 

must be employed to obtain measurements such as the surface-to-volume ratio and mean 

cord length. 

Lung morphometry is not a new field.  However, until recently, it relied on histology to 

provide 2D cross sections with which the overall 3D structure of the lungs are estimated.9,10  

In this method, an excised lung or section of the lung is sliced into 2D cross sections and 

through point counting, intersection counting and transect counting an estimation of lung 

volume, surface area or mean cord length can be made.9  Unfortunately, this method relies 

on excised lung tissue thus limiting it to ex-vivo analysis. 

Unfortunately, there are limited methods that provide accurate measurements of airspace 

size in vivo.  Hyperpolarized noble-gas magnetic resonance imaging (MRI) provides an 

ionizing radiation free method of quantifying lung structure function in vivo.  To 

accomplish this, diffusion-weighted MRI is employed, which measures the self-diffusion 

of the noble-gas molecules within the confinement of the lung parenchyma.  Since the 

noble-gases used are biologically inert, this diffusion is related to the confining geometry, 

in this case that of the lung parenchyma.  There has been much work done in measuring 

this confinement in the form of an apparent diffusion coefficient (ADC).  Previous work in 

AATD measuring ADC,11-14 relied on the single diffusion-weighted approach and did not 

extend to multiple diffusion-weights which can provide a more sensitive measurement of 

geometry.  Recent work however, looked at a population of AATD subjects using different 

multiple diffusion-weighted modelling approaches but did so only for a single centre 
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coronal slice and without comparison to standard clinical measurements or regional 

evaluation.15  

This thesis focuses on evaluation of alveolar destruction in COPD and AATD using 

multiple diffusion-weights, comparing these measurements to those used clinically such as 

spirometry and computed tomography as well as evaluating measurements of airspace 

enlargement regionally throughout the lung. 

This thesis chapter will provide prerequisite knowledge to understand the original research 

presented in Chapter 2.   

 Lung Structure and Function 

The primary function of the lungs is gas exchange.  The lungs consist of branching 

generations (Figure 1-1) of bronchioles which ultimately end in the alveoli, where the 

majority of gas exchange occurs.  The lungs can be divided into two sections, the 

conducting zone and the respiratory zone. 

1.2.1 Conducting Zone 

Beginning at the nose, the conducting zone is the first portion of the respiratory tract.  This 

portion of the airways consists of those with the largest diameter with the main purpose of 

filtration, warming and transportation of incoming air.  The conducting zone concludes at 

the terminal bronchioles.  In the respiratory tract, the conducting zone consists of 

generations 1 to 16.   

1.2.2 Respiratory Zone 

The respiratory zone, generations 17 until the alveoli is the site of gas exchange in the 

lungs.  This is the portion of the respiratory tract with the largest surface area which makes 

up the bulk of the lung parenchyma.  This region of the lung consists primarily of the 

alveolar ducts, sacs and the alveoli.  The alveoli are responsible for 90% of the gas 

exchange whereas the preceding respiratory bronchioles and alveolar ducts account for 

only 10%. 
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Figure 1-1: Conducting and Respiratory Zones 

Respiratory tract generations (Z) with both conducting and respiratory zones beginning at 

the trachea (Z = 0) and ending at the alveoli (Z = 23). Adapted from West, JB, Respiratory 

Physiology: The Essentials, Ninth Edition.16 

 

1.2.3 The Alveoli 

The alveoli comprise the bulk of the lung parenchyma as they line the walls of the airways 

in the respiratory zone.  Each alveolus is approximately 330 um in diameter16 and the 

average adult has 480 million alveoli.17  As a result of their small diameter and the vast 

number of alveoli, they have a surface area of roughly 70 m2.18  This is the hallmark feature 

of the efficient lung, as the total surface area influences its ability to receive deoxygenated 

blood and inversely supply the heart with oxygen during respiration.  Any disease which 

results in destruction to the alveoli will ultimately reduce the surface area available for gas 

exchange and in turn result in a reduction of pulmonary function and quality of life for the 

individual. 
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 Chronic Obstructive Pulmonary Disease 

Having classically been defined as consisting of two distinct, but intertwined, phenotypes 

COPD is a progressive disease leading to airflow limitations and reduced quality of life.  A 

patient with chronic bronchitis, often referred to as a “blue bloater”, can be visualized as a 

person with a larger stocky build and a history of a chronic cough.4  A patient with 

emphysema, often referred to as a “pink puffer”, will be someone with recent weight loss 

and abnormal physical weakness.4  The current diagnostic criteria for COPD are outlined 

by the Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria.19  The 

GOLD severity grades are provided in Table 1-1 where FEV1 is an airflow measurement 

taken using a spirometer explained in more detail in Section 1.5.1. 

Table 1-1: GOLD Severity Grades 

Patient with FEV1/FVC < 70% 

GOLD I  Mild FEV1 ≥ 80%pred 

GOLD II Moderate 50% ≤ FEV1 < 80%pred 

GOLD III Severe 30% ≤ FEV1 < 50%pred 

GOLD IV  Very Severe FEV1 < 30%pred 

FEV1 = forced expiratory volume in 1 second; FVC = forced vital capacity 

1.3.1 Chronic Bronchitis 

Chronic bronchitis is inflammation of the bronchial tubes, primarily in the mucus glands.4  

This inflammation results in an over-production of mucus by the goblet cells which are 

located on the epithelial lining of the respiratory tracts.20  The combination of mucus lining 

the bronchial tubes and the inflammation results in airflow limitations.  The primary cause 

of chronic bronchitis is cigarette smoking, but that is not the only cause.4,21 
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1.3.2 Emphysema 

Emphysema affects the airspace distal to the terminal bronchioles.  It is characterized by 

the destruction of the walls of the alveolar ducts, sacs, or both.4  It is a result of an imbalance 

of proteases due to either an increased production of proteases or reduced production of 

antiproteases.22  There are two main types of recognized emphysema (Figure 1-2): 

Centriacinar emphysema, where destruction is limited to the central lobule leaving the 

alveolar ducts and sacs unharmed and panacinar emphysema where destruction occurs 

across the entire lobule. 

 

Figure 1-2: Centriacinar and Panacinar Emphysema 

Normal respiratory bronchioles, respiratory bronchioles affected by centriacinar 

emphysema where the emphysema is confined the terminal and respiratory bronchioles 

(TB and RB).  This destruction is extended to the alveoli (A) in panacinar emphysema. 

Adapted from West, JB, Pulmonary Pathophysiology: The Essentials, 4th Edition.4 

The destruction of the lung parenchyma can be seen in Figure 1-3 showing micro-CT 

images of a healthy young subject, healthy elderly subject and an ex-smoker.  All three 

images have the same field of view (FOV) = 40mm. 
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Figure 1-3: Micro-CT Lung Images 

Micro-CT images showing a healthy young lung with tightly packed alveoli, a healthy old 

lung23 showing gradual enlargement of the lung parenchyma and an ex-smoker lung23 

showing emphysematous destruction of the lung parenchyma. (Healthy young lung 

courtesy of Dr. Vasilescu and Dr. Hogg (UBC)). Healthy Old Lung and Ex-Smoker Lung 

reproduced with permission (Appendix A). 

Emphysema is most frequently encountered in the proximal respiratory bronchioles in the 

upper lobes.24,25  This is referred to as centrilobular emphysema and is primarily associated 

with smoking related emphysema.  Emphysema can also be located distal to the respiratory 

bronchioles localized in the basal portion of the lung. This pattern of emphysema is referred 

to as panlobular emphysema and is characteristic of, but not limited to, AATD related 

emphysema.26 

 Alpha-1 Antitrypsin Deficiency 

1.4.1 Biology 

AATD was first described in 1963 by Laurell and Eriksson.27  AATD is an underdiagnosed 

genetic condition affecting up to 1 in 1500 people of European descent.6,28  It causes 

mutations in the SERPINA1 gene which contains instructions for producing a protein 

called alpha-1 antitrypsin.  This protein protects the body from neutrophil elastase, which 

is released from white blood cells in response to infection but will attack healthy tissue if 

not regulated.29,30   The normal allele of the SERPINA1 gene, M, results in normal levels 

of alpha-1 antitrypsin.  Two other variants the S and Z variants produce decreasing amounts 

of alpha-1 antitrypsin.31  There are over 100 different alleles worldwide.32 
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1.4.2 Liver Disease 

Approximately 15% of all alpha-1 antitrypsin deficiency sufferers will develop liver 

disease.33  As the alpha-1 antitrypsin is not secreted properly34 (as a result of protein mis-

folding) it accumulates in the liver and can cause liver cirrhosis, an accumulation of liver 

scar tissue.35 

1.4.3 Lung Disease 

AATD primarily manifests in the form of panlobular emphysema.  The imbalance of 

neutrophil elastase will result in destruction of connective tissue within the lungs and a 

breakdown of the alveoli leading to reduced surface area and in turn diminishing the lungs’ 

capacity for gas exchange.  Emphysema as a result of AATD predominately affects the 

basal portion (~64% of patients)36 of the lung due to the gravitational dependence of 

pulmonary blood flow.  This is not always the case and upper lobular emphysema can also 

occur as can other respiratory disorders such as bronchiectasis.37 

1.4.4 Augmentation Therapy 

At this time there is no cure for AATD and current treatment is geared solely towards 

symptomatic relief.32  Intravenous supplementation of exogenous alpha-1 antitrypsin has 

been shown to both slow the decline of the forced expiratory volume in 1 second (FEV1) 

in patients with AATD38,39  and slow the decline in lung tissue density as measured by x-

ray computed tomography.7  Augmentation therapy is a costly procedure and there are 

some debates on who would benefit the most from treatment.40  In addition, recent clinical 

trials have not shown significant changes in exercise capacity, patient perceived quality of 

life, exacerbations or hospitalizations as a result of treatment.7  To overcome this, there is 

preliminary work examining novel treatments for AATD emphysema including gene 

therapy41-44 and pluripotent stem cells.45,46  In order to accurately gauge the efficacy of 

these novel treatments, pulmonary imaging must be employed as it has previously played 

an important role in demonstrating treatment efficacy with respect to lung density changes.  

However, to truly measure airspace enlargement in vivo lung morphometry techniques, 

which can give measures of airspace enlargement and surface-to-volume ratios, are 

required.  These measurements must be sufficiently sensitive to detect small changes in 
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early and mild disease as well as severe end stage emphysema.  If a sensitive measurement 

of disease and airspace enlargement were developed and applied to clinical efficacy 

evaluation of novel treatments it would be possible to perform smaller single-centre 

studies.  This would result in a drastic reduction in costs and ultimately aid in the 

development of novel treatments of AATD emphysema. 

 Clinical Measurements of Lung Disease 

1.5.1 Spirometry 

Worldwide, spirometry provides the gold standard measurement for the diagnosis and 

clinical evaluation of COPD.19  Spirometry tests by patients who are coached by a trained 

pulmonary technologist for which there are accepted guidelines on reproducibility and 

evaluation.47   Spirometry measurements are inexpensive and reproducible while requiring 

little specialized equipment or training; however, they rely solely on airflow measurements 

taken at the mouth and therefore provide a single global measurement representing lung 

function.47  This unfortunately fails to unmask the many faces of COPD and hides its 

underlying heterogeneity.48,49  The primary measurement of airflow limitation is the FEV1 

which is a measurement of the maximum amount of air exhaled during the first 1 second 

of a forced expiration.  Figure 1-4 shows a sample flow volume curve for a normal healthy 

individual (Figure 1-4A) and a flow volume curve for someone with an obstructive lung 

disease (Figure 1-4B).  The total volume of air exhaled during this breathing maneuver is 

the forced vital capacity (FVC). 
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Figure 1-4: Flow Volume Curve 

Sample flow volume curves for a healthy (A) patient and someone with obstructive lung 

disease (B). In obstructive lung disease, flow rates are slower resulting in a lower FEV1. 

1.5.2 Lung Volumes and Capacities 

In addition to FEV1 and FVC it is possible to measure patient lung volumes using a 

plethysmograph.  Briefly, a plethysmograph is a closed system in which the patient sits that 

is used to measure lung volumes, specifically the functional residual capacity (FRC), total 

lung capacity (TLC) and the residual volume (RV).  FRC is the volume of air in the lungs 

remaining at the end of a passive expiration during a normal breathing cycle and RV is the 

volume of air in the lungs remaining at the end of a full expiration.  To accomplish this 

Boyles law is implemented and using measured pressure differences one can derive the 

aforementioned lung volumes.50 
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Figure 1-5: Lung Volumes 

A volume time curve showing clinically relevant lung volumes.  Relevant lung volumes 

for this work are: Residual Volume (RV), the volume remaining after full expiration; 

Functional Residual Capacity (FRC), the volume remaining after passive expiration and 

Total Lung Capacity (TLC); the total lung volume after a full inspiration. 

The measurement of TLC and RV/TLC is important as it represents hyperinflation of the 

lungs which is a hallmark sign of COPD due to either the loss of the elastic property of the 

lung parenchyma or an obstruction in the passage of air. 

1.5.3 Diffusing Capacity of the Lung for Carbon Monoxide 

The diffusing capacity of the lung for carbon monoxide (DLCO) test measures the amount 

of oxygen passing from the alveolar sacs into the blood.  During the test the patient breathes 

in a test gas containing a small amount of tracer gas (CO) and holds their breath.51  CO is 

used due to its affinity to bind to hemoglobin, making the uptake of CO diffusion limited 

as opposed to perfusion limited.  This means that the amount of gas taken up is solely 

dependent on diffusion and not the amount of available blood flow.4  Upon a breath-hold 

of 10 seconds the patient exhales and the exhaled gas is tested to determine the amount of 

tracer gas that was absorbed during the duration of the breath hold.51  This test is especially 

important in patients with emphysema as the destruction of the alveolar sacs leads to a 

decreased capacity for gas exchange between the air sacs and blood.  A measurement of 

DLCO normalized to the alveolar volume (DLCO/VA) has been proposed as a more specific 
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measurement.52,53  Although simple and quick, this tests lacks reproducibility over time54 

and therefore may be unattractive in cases where longitudinal monitoring may be required.  

A low DLCO combined with an increase in TLC, RV/TLC is a classic sign of emphysema 

as observed by pulmonary function testing.55 

1.5.4 Six-Minute Walk Test 

Patient exercise capacity can be measured by performing the six-minute walk test (6MWT).  

In the 6MWT the patient walks at a self-set pace, resting as necessary, on a flat surface for 

six minutes.  The six minute walk test does not provide specific information of the limiting 

exercise factor but is reflective of the activities performed during day to day life.  Before 

and after performing the six minute walk test the patient answers two questions on 

perceived levels of exhaustion56 and has measurements of arterial oxygenation (SPO2) and 

heart rate taken.  All six minute walk tests performed for this thesis are to American 

Thoracic Society guidelines.57,58 

1.5.5 St. George’s Respiratory Questionnaire 

The St. George’s Respiratory Questionnaire (SGRQ)59 is designed to measure the overall 

impact that respiratory disease has on the quality of life as perceived by the patient.  There 

are two sections a symptoms section and an activities section which relate to the symptoms 

experienced and the burden of the disease.  The questionnaire is scored from 0 to 100 with 

higher scores indicating worse perceived quality of life and symptoms. 

 X-Ray Computed Tomography 

1.6.1 Theory 

At its most basic level, x-ray computed tomography (CT) is an extension of planar x-ray 

imaging to three dimensions using a rotating x-ray tube and detector combined with a 

motorized patient bed.60  The contrast in the image is related to the radiodensity of the 

scanned material where each value represents a Hounsfield unit (HU) corresponding to: 

 𝐻𝑈 = 1000 ∗
𝜇 − 𝜇𝑤𝑎𝑡𝑒𝑟

𝜇𝑤𝑎𝑡𝑒𝑟 − 𝜇𝑎𝑖𝑟
 (1-1) 
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With 𝜇 being the linear attenuation coefficient and 0 HU being defined as the radiodensity 

of distilled water at standard pressure and temperature. 

1.6.2 Pulmonary X-Ray Computed Tomography 

CT imaging of the lung can be used to visualize regions of low attenuation and quantify 

both gas trapping and emphysema.  Typical lung parenchyma attenuation values are 

between -910 and -500 HU.61  A CT scan performed at full expiration can be used to 

quantify regions of gas trapping which are regions where gas is not cleared through 

exhalation.  To do so the regions of the lung <-856 HU are examined.62  A full inspiration 

CT can be used to quantify regions of emphysema.  Using the attenuation <-950 HU as an 

emphysema threshold.63  This can be quantified using the relative area of the CT density 

histogram with values <-950 HU (RA950).  RA950 measurements correlate well with 

radiologist scores,64 histology65  and pulmonary function testing.66  Regions of the CT lung 

density histogram representing airspace enlargement are shown in Figure 1-6 for a healthy 

never-smoker and representative AATD subject.  Combining inspiration and expiration CT 

scans together, a regional map of gas trapping and emphysema can be made.67  This 

method, called parametric response mapping, co-registers the inspiratory and expiratory 

CT scans and generates a lung map showing regions of gas trapping and emphysema.  

These methods can provide regional information of emphysema and gas trapping 

throughout the lung.  In addition to quantifying regions of emphysema and gas trapping 

CT provides a measurement of lung density (g/L).68,69  Unfortunately, current spatial 

resolutions available with CT are not fine enough to visualize the smaller airways.  There 

are other quantification methods such as examining low attenuating clusters (LAC)70 where 

the cumulative size distribution of these low attenuating clusters (<-950 HU) are described 

by a power law relationship with the number of low attenuating clusters.  This in principle 

relates the size of these emphysematous lesions and the number of lesions using CT.  This 

can be graphically illustrated as low attenuating spheres where the size of the sphere is 

proportional to the cumulative lesion size. 
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Figure 1-6: CT Radiodensity and Histogram 

CT images with yellow masks corresponding to voxels <-950 HU and the corresponding 

whole lung CT radiodensity histogram for a healthy never-smoker and subject with 

AATD 

Since the development of micro-CT spatial resolutions approaching 4 µm may be 

obtained.71  Micro-CT as a method of visualizing and quantifying lung morphometry has 

been thoroughly demonstrated in mice,72 pigs73 and cadaveric human lung specimens,23,71 

including AATD donor lungs;74  however, the scan speed and radiation exposure required 

to execute a scan leaves the feasibility of micro-CT geared solely to ex-vivo imaging.75,76 

 Magnetic Resonance Imaging 

1.7.1 Theory 

Conventional 1H MRI of the body is possible due to the high concentration of 1H molecules 

comprising various biological tissues.  The gyromagnetic ratio (γ) of a nucleus will in part 

determine the MR signal.  The high γ of 1H (γ1H = 42.6 MHz T-1) combined with the natural 

abundance of 1H located inside biological tissue provides ample signal for imaging most 
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of the body.  Unfortunately, the lungs have incredibly low density (133g/L - 200g/L)77 and 

have millions of air tissue interfaces which result in magnetic field inhomogeneities within 

the lung parenchyma.  This makes clinically available 1H MRI unsuitable for quantitative 

evaluation of the lung or the diseases which affect it. 

1.7.2 Pulmonary Magnetic Resonance Imaging 

Conventional 1H MRI of the lungs is difficult due to the high concentration of air contained 

within the lungs, and consequently the low tissue density.77  This is made further 

complicated by the large number of air-tissue interfaces which affect magnetic field 

homogeneity within the lungs.  For these reasons, the lungs appear as dark voids (Figure 

1-7) providing little to no information on lung structure-function. 

 

Figure 1-7: 1H Thorax image for representative NS, COPD and AATD Subjects 

This limitation can be circumvented by using multinuclear MRI and as opposed to 

measuring 1H density, one measures the relative density of an inhaled hyperpolarized 

noble-gas.  Through spin-exchange optical pumping, noble-gases can be hyperpolarized 

and used for imaging of the lungs after inhalation.78  This is important because the MRI 

signal is proportional, to the following factors:79 

 
𝑆 ∝

1

2
𝑁|𝛾|ℏ𝜔0𝑃𝑁 

(1-2) 

Where S is the MRI signal, N is the number of spins, γ is the gyromagnetic ratio, ℏ is the 

reduced Plank constant, 𝜔0 is the Larmor frequency and PN is the nuclear polarization.  In 



 

16 

 

the case of 1H MRI the high N provides adequate signal for imaging purposes; however,  

in the case of hyperpolarized noble-gas imaging thermally polarized noble-gas to provides 

inadequate signal due to the small N and PN.  However, this can be overcome by raising 

the PN through external polarization of the noble-gas.  This technique allows visualization 

of gas dispersion within the lungs. 

1.7.2.1 1H Methods 

There are however methods utilizing traditional 1H imaging which provide information 

suitable for quantitative image analysis.  These methods are currently under investigation 

in research settings but may serve to provide translatable lung imaging.  Two methods are 

Fourier decomposition (FD) MRI80 and Ultrashort Echo Time (UTE) MRI.81  

1.7.2.1.1 Fourier Decomposition 

During a period of free breathing, multiple images are taken of a single slice through the 

lungs.  The images are then deformably registered82 to each other to account for cardiac 

motion and the varying lung volumes throughout the respiratory cycle.  The discrete 

Fourier transform is taken at each lung voxel and ventilation and perfusion maps can be 

obtained by observing the corresponding peak at either the respiratory rate (ventilation) or 

cardiac rate (perfusion).  Ventilation maps obtained from FD MRI have been shown to 

correlate with ventilation maps obtained from 3He.83   

1.7.2.1.2 Ultrashort Echo Time 

To overcome the difficulties in lung imaging a method using echo times (TE) of ~50us and 

3D radial k-space trajectories has been developed.  MRI is performed at four lung volumes: 

full expiration, FRC, FRC+1L and full inhalation.  Absolute signal intensity is normalized 

to the liver and dynamic proton maps (registered to FRC+1L) can be computed using the 

lung volumes.  The UTE signal has been shown to be related to lung volume suggesting a 

relationship to tissue density.84  It is also related to gas-trapping in asthmatics.85  
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1.7.2.2 Hyperpolarized Methods 

1.7.2.2.1 Spin Physics and Polarization 

By using spin-exchange optical pumping (SEOP) high levels of 3He or 129Xe polarization 

can be achieved.79  The SEOP system uses circularly polarized resonance light which is 

absorbed by rubidium housed within a glass cell.  Contained within the same glass cell is 

the noble-gas used in the spin-exchange, 3He in this case.  Angular momentum is 

transferred through binary collisions from the polarized rubidium to the 3He.  Over time as 

collisions increase, this causes an increase of the 3He nuclear polarization to several orders 

of magnitude larger than the thermal polarization obtained using magnetic fields.  A full 

theoretical description of SEOP of noble-gas nuclei can be found in a review by Walker 

and Happer 1997.86 

1.7.2.2.2 Static Ventilation MRI 

By imaging the spin density of the polarized noble-gas during a breath-hold, visualization 

of gas distribution throughout the lungs can be achieved.  These images are coined static 

ventilation (SV) images and as the name indicates they give a single static image of gas 

distribution.  This is shown in Figure 1-8, these are the same subjects and slices as Figure 

7.  This image, can be qualitatively analyzed by identifying regions of hypo-intense signal 

(signal voids) as well as regions of hyper-intense signal.  These regions can also be 

quantified using semi-automated segmentation methods,87 where the 1H and 3He images 

are co-registered using an affine transformation, to determine the ventilation defect percent 

(VDP) which is the volume of ventilation defects (signal voids) normalized to the thoracic 

cavity volume. 

 
𝑉𝐷𝑃 [%] =  

𝑉𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑓𝑒𝑐𝑡 𝑣𝑜𝑙𝑢𝑚𝑒

𝑇ℎ𝑜𝑟𝑎𝑐𝑖𝑐 𝑐𝑎𝑣𝑖𝑡𝑦 𝑣𝑜𝑙𝑢𝑚𝑒
 𝑥 100% 

(1-3) 
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Figure 1-8: Static ventilation images for representative NS, COPD and AATD 

subjects 

3He static ventilation (cyan) overlaid on 1H thorax image for a representative subjects 

VDP has been shown to correlate with aging,88 ventilation homogeneity,89 and 

spirometry.90 VDP shows response to bronchodilation in asthmatics,91 as well as response 

to bronchoconstriction (methacholine).92  

1.7.2.2.3 Diffusion-weighted MRI 

Using a similar method to what is used to acquire SV images, and employing a diffusion-

weighted pulse sequence93 (Figure 1-9) diffusion-weighted images can be acquired. Due 

to the loss of the MR signal at high b-values, the highest b-values are acquired first to 

maximize the signal at those values.  The diffusion gradient is shown in blue for interleaves 

2-5.  These images allow visualization and quantification of the extent to which the noble-

gas molecules are able to diffuse within the confining space of the alveolus.94   
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Figure 1-9: Diffusion-weighted Pulse Sequence 

A multiple b-value fast gradient recalled echo (FGRE) pulse sequence.  Interleave 1 

acquires a non-diffusion-weighted static ventilation image and interleaves 2-5 acquire 

diffusion weighted images due to the diffusion gradient (in blue).  The size and strength of 

the diffusion gradient are varied to acquire multiple b-values. 

1.7.2.2.4 Apparent Diffusion Coefficient 

In a confined medium, such as an airway or alveolus, the root mean square displacement 

(<r2>) of a noble-gas molecule and its diffusion time (t) can be related to an apparent 

diffusion coefficient (ADC) giving a relative measure of confinement: 

 
𝐴𝐷𝐶 =  

< 𝑟2 >

2𝑡
 

(1-4) 

Diffusion-weighted MRI can extract this ADC through diffusion-weighted pulse sequences 

(Figure 1-9).  First, a non-diffusion-weighted (static ventilation) image is acquired as 

described in Section 1.7.2.2.2, and for the same slice a second, diffusion-weighted, image 

is acquired.  For this image, the so-called b-value [
𝑠

𝑐𝑚2] indicates the size and strength of 

this diffusion gradient (Figure 1-10).   
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Figure 1-10: Diffusion sensitizing pulse gradient waveform 

A bipolar trapezoidal diffusion sensitizing gradient. Gm = maximum gradient amplitude, 𝜏 

= gradient ramp up/down time, 𝛿 = lobe duration, ∆ = diffusion time. 

 

 
𝑏 = (𝛾𝐺𝑚)2[𝛿2 (∆ −

𝛿

3
) + 𝜏 (𝛿2 − 2∆𝛿 + ∆𝜏 −

7

6
𝛿𝜏 +

8

15
𝜏2)] 

(1-5) 

With 𝛾 = gyromagnetic ratio, Gm = maximum gradient, 𝜏 = gradient ramp up/down time, 

𝛿 = lobe duration and ∆ = diffusion time.  The b-value is chosen based on the confining 

medium and the free diffusion of the noble-gas used.  A good rule of thumb for b-value 

selection is (𝑏 ∙ 𝐴𝐷𝐶) ≅ 1 .95  This bipolar diffusion gradient works by dephasing the 

nuclear spins,93  this effectively encodes the initial position of the nuclei.  The negative 

portion of the gradient will rephrase the spins but it will not completely rephrase them as 

diffusion has occurred.  Thus, by relating the relative signal intensities in both the 

diffusion-weighted and non-diffusion-weighted images the ADC can be measured as 

shown in equation 1-7: 

 𝑆(𝑏)

𝑆0
= exp (−𝑏 ∙ 𝐴𝐷𝐶) (1-6) 

 

𝐴𝐷𝐶(𝑏) =  
ln (

𝑆0

𝑆(𝑏)
)

𝑏
 

(1-7) 

Where commonly used b-values for lung imaging range between 1.6 and 6.4 s/cm2 for 3He 

and 12 and 30 s/cm2 for 129Xe.  Figure 1-11 shows diffusion and non-diffusion-weighted 

3He ventilation images for the same slice in a subject with AATD.   
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Figure 1-11: Non-Diffusion and Diffusion-weighted 3He Ventilation Image 

When Equation 1-7 is applied to each voxel, a map of ADC can be generated. Figure 1-

12, shows the ADC map generated from the images in Figure 1-11. 

 
Figure 1-12: Static ventilation and ADC for AATD subject 

Static ventilation and slice matched ADC image for a representative AATD subject. 

Female, 58 years old. FEV1 = 32%pred, FEV1/FVC = 31%, RV/TLC = 62%, DLCO = 53 

%pred, ADC = 0.43 cm2/s. 

 

3He ADC has been shown to correlate well with patient measurements of disease,94 

histological measurements of Lm
96 and CT measurements of emphysema.97 It is elevated 

in asthmatics post methacholine challenge, representing gas trapping.92 ADC is also related 

to lung inflation levels98 as well as patient age.99,100 There has been a large body of work 
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performed using 3He, there have been preliminary reports of 129Xe ADC in healthy 

volunteers and subjects with COPD101-103 with 129Xe ADC measurements correlating with 

histological measurements.104  

1.7.2.2.5 Multiple b-value ADC Magnetic Resonance Imaging 

By varying the b-values used, a set of multiple b-value images can be acquired for the same 

slice.  During an acquisition a molecule will either experience free unrestricted diffusion, 

or it will experience restricted diffusion due to the presence of airspace walls.  At different 

b-values varying number of molecules will experience restriction due to the presence of 

the airspace walls.  This technique can be used to probe varying length scales. Using the 

signal decay as a function of b-value measures a voxel-wise mean of airspace sizes.  This 

technique provides a more sensitive measurement, as compared to two b-value ADC 

measurements, of alveolar size 

1.7.2.3 Measurements of Alveolar Geometry using Multiple-b ADC 

Measurements of alveolar geometry can be made using assumptions of the noble gas 

displacement within the alveolus.  The assumption made in this thesis, based on previous 

work, is that the diffusion within the airways is anisotropic.  A cylindrical geometry of the 

alveoli and alveoli ducts is assumed. 

1.7.2.3.1 Weibel Model of Alveolar Geometry 

The primary geometrical representation of the acinar airways is the Weibel 

representation.18 In this representation (Figure 1-13), the airway is approximated as an 
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infinite cylinder (Figure 1-14) with inner and outer radii (r and R, respectively) and 8 

alveoli surrounding the cylinder with height h=R-r. 

 

Figure 1-13: Weibel representation of the acinar duct 

An acinar duct covered in a sleeve of alveoli. R = external airway radius, r = internal airway 

radius, L = alveoli length, h = alveoli sheath, DL = MRI longitudinal diffusion coefficient, 

DT = MRI transverse diffusion coefficient 

 

Figure 1-14: Infinite cylinder geometry 

The Weibel representation is considered as a cylindrical tube surrounded by a sleeve of 

alveoli.  R= external airway radius, r = internal airway radius. 

The outer cylinder represents a sleeve of alveoli surrounding the alveolar duct.  The 

diffusion of the noble gas within the acinar airways is assumed to be anisotropic, consisting 
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of both longitudinal (DL) and transverse (DT) diffusion coefficients.  The total MR signal 

acquired from a single voxel is:105 

 
𝑆(𝑏)=𝑆0𝑒𝑥𝑝 (−𝑏𝐷𝑇) (

𝜋

4𝑏(𝐷𝐿−𝐷𝑇)
)

1

2
𝛷 [(𝑏(𝐷𝐿 − 𝐷𝑇)

1

2] 
(1-8) 

Where 𝛷 is the error function (𝛷(𝑥) =
1

√𝜋
∫ 𝑒−𝑡2

𝑑𝑡
𝑥

−𝑥
).  Using this MR signal as well as 

Monte-Carlo derived equations105 for the transverse and longitudinal diffusion are used to 

find geometrical expressions for the inner (r) and outer radii (R).  These geometrical values 

can then be used to find the alveolar length, surface-to-volume ratio and mean linear 

intercept as follows: 

 𝐿 = 2𝑅𝑠𝑖𝑛(
𝜋

8
) (1-9) 

 𝑆

𝑉
=

2𝜋𝑅𝐿 + 2𝜋(𝑅2 − 𝑟2) + 16(𝑅 − 𝑟)𝐿

𝜋𝑅2𝐿
 

(1-10) 

 
𝐿𝑚 = 4

𝑉

𝑆
 

(1-11) 

Measurements of airspace size (Lm) measured using this geometrical model have been 

shown to correlate with histology,106 show differences between elderly smokers and never-

smokers107,108 as well as correlate with disease severity. 

 Thesis Objectives 

In this thesis, my objective was to evaluate multiple b-value MRI in subjects with AATD 

and examine regional MRI biomarkers of emphysema.  This is important because in AATD 

disease manifests at a young age and longitudinal evaluation is important both clinically 

and in the process of development of novel treatments.  I hypothesized that subjects with a 

clinical diagnosis of AATD would show significantly elevated morphometry values as 

compared to ex-smokers with COPD and age-matched healthy elderly never-smokers.  I 

would expect to observe these differences since in AATD disease begins from birth and as 

such, would differ from smoking-related disease and that observed in senile emphysema. 
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To test this hypothesis, I performed a proof-of-concept demonstration in a small group of 

subjects with AATD, subjects with smoking related emphysema and a group of healthy 

age-matched never-smokers.  I compared whole lung diffusion weighted measurements of 

airspace enlargement across all three groups and examined these measurements regionally 

throughout the lung.  These measurements were also compared to standard clinical 

measurements such as spirometry and CT. 
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2 Chapter 2: Pulmonary 3He Magnetic Resonance Imaging 

Biomarkers of Emphysema in Alpha-1 Antitrypsin Deficiency 

The contents of this chapter have been accepted to Academic Radiology as an original 

research article authored by Eric Lessard, Heather M Young, Anurag Bhalla, Damien 

Pike, Khadija Sheikh, David G McCormack, Alexei Ouriadov and Grace Parraga titled 

Pulmonary 3He Magnetic Resonance Imaging Biomarkers of Regional Airspace 

Enlargement in Alpha-1 Antitrypsin Deficiency.  To better understand AATD related 

emphysema as measured by diffusion-weighted MRI we evaluated a small group of subjects 

with AATD using diffusion-weighted MRI, CT, spirometry, plethysmography and DLCO.  

We compared these measurements to those obtained in ex-smokers with smoking related 

emphysema and healthy age-matched never-smokers. 

 Introduction 

Alpha-1 Antitrypsin Deficiency (AATD), first described by Laurell and Eriksson in 1963,1 

is an autosomal co-dominant hereditary disorder caused by a mutation in the SERPINA1 

gene, which leads to dysregulation of neutrophil elastase.2  This commonly manifests as 

early-onset panlobular emphysema and affects approximately 1/5000 North Americans.2,3  

Respiratory failure accounts for 45-72% of deaths in patients with AATD.  Importantly, an 

increased risk of mortality may be predicted using CT biomarkers of emphysema2 and 

overall, outcomes are worse when patients cannot access augmentation therapy.4 

As is the case for smoking-related emphysema, there is no cure for AATD, although current 

AATD treatments aimed at slowing disease progression include exogenous alpha-1 

antitrypsin augmentation therapy.  X-ray computed tomography (CT) lung density 

measurements showed that augmentation therapy may slow the rate of emphysema 

progression in AATD patients4 - an important finding that may help guide treatment 

decisions given the high cost of intravenous augmentation treatment.2 However, while the 

CT measurement of emphysema progression was significantly lower in the treatment arm 

of the RAPID study, this did not correlate with similar changes in patient-related quality-

of-life measurements.4  This important limitation is also motivating the development of 

novel biomarkers and intermediate endpoints of AATD emphysema for novel treatments 

including gene therapy5 and pluripotent stem cells.6,7  
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The decline over time of the forced expiratory volume in 1 second (FEV1)
8-10 and the 

diffusing capacity of carbon monoxide (DLCO) are both considered as biomarkers of AATD 

lung disease. While highly variable,11 DLCO measurements correlate with pathology 

measurements12 and CT emphysema findings13 such as the relative area of the CT density 

histogram ≤ -950 Hounsfield units (RA950).
14  More recently, pulmonary imaging 

biomarkers that exploit the diffusive motion of inhaled polarized gases such as 3He15 and 

129Xe16 have been measured in patients with emphysema17 using diffusion-weighted MRI 

pulse sequences.   

In particular, the 3He MRI apparent diffusion coefficient (ADC) was shown to reflect 

emphysema.15,18  Multiple b-value diffusion-weighted lung MRI17 also provides estimates 

of airway space geometry,17,19 based on the heterogeneous gas displacement in the terminal 

airways that are assumed to be cylindrical in shape.20  Such non-invasive MRI 

morphometry estimates17 provide a way to bypass or obviate the necessity for pathological 

analyses21-24 and may offer crucial information about lung disease progression, as well as 

treatment response.  Previous MRI studies in AATD patients25-28 showed there was no 

statistical difference in ADC values after two-years of follow-up26 but unfortunately, no 

morphometry data were acquired.  MRI morphometry modelling approaches were recently 

evaluated in COPD and AATD patients,29 but this work did not evaluate clinical and other 

regional biomarkers.  This is important because for AATD patients, emphysematous tissue 

destruction ensues early in life and panlobular emphysema is often severe by middle-age.   

Therefore, the aim of this study was to evaluate AATD patients using multiple b-value 

diffusion-weighted MRI as well as pulmonary function and CT measurements of 

emphysema.  We hypothesized that MRI measurements would be highly sensitive to 

airspace enlargement which would be significantly worse in AATD patients as compared 

to clinically similar ex-smokers with COPD. 
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 Materials and Methods 

2.2.1 Study Volunteers and Design 

All participants provided written informed consent to a study protocol approved by a local 

research ethics board and Health Canada.  Patients aged 40-90 years of age with a diagnosis 

of AATD and ex-smokers with COPD,  >10 pack-years smoking history and CT evidence 

of emphysema were recruited from a tertiary care centre and evaluated using spirometry, 

plethysmography, thoracic imaging, the St. George’s Respiratory Questionnaire (SGRQ) 

and 6-minute walk test (6MWT) during a single  two- hour visit.  CT evidence of 

emphysema was defined as an RA950 ≥ 6.8% as previously described.30  Older never-

smokers were also enrolled aged 60-80 years, <0.5 pack-years and no history of chronic 

lung disease or uncontrolled cardiovascular disease and completed all study measurements 

except for the SGRQ and 6MWT. 

2.2.2 Spirometry, Plethysmography, SGRQ and 6MWT 

Spirometry measurements were acquired according to the American Thoracic Society 

(ATS) guidelines31 using a whole body system (MedGraphics Corporation, St Paul, 

Minnesota, USA).  Body plethysmography was also performed for the measurement of 

lung volumes and DLCO was measured using the attached gas analyzer.  The SGRQ32 was 

used to establish overall quality of life and the 6MWT33 was used to measure exercise 

capacity. 

2.2.3 Image Acquisition 

MRI was performed on a whole body 3T system (MR750 Discovery, GEHC, Milwaukee, 

WI) with broadband imaging capability.34  3He MRI employed a whole body gradient set 

with maximum gradient amplitude of 50mT/m and a single-channel, rigid elliptical 

transmit/receive chest coil (RAPID Biomedical GmbH, Wuerzburg, Germany).  The basis 

frequency of the coil was 97.3 MHz and excitation power was 3 kW using an AMT 3T90 

RF power amplifier (GEHC).  Subjects were positioned supine in the scanner for both 1H 

and 3He MRI and instructed by a pulmonary function technologist to inhale a 1L gas 

mixture of 3He/N2 (20% 3He by volume) from functional residual capacity (FRC), ensuring 
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a self-consistent lung volume of FRC+1L, with image acquisition performed under breath-

hold conditions as previously described.34  3He gas was polarized to 30-40% polarization 

using a spin-exchange optical polarizer (Polarean Inc, Durham, NC).  Diffusion-weighted 

3He MRI data were acquired using a multi-slice interleaved 2D gradient echo diffusion-

weighted sequence with a matrix size of 128x80, for seven 30mm coronal slices (900μs 

selective RF pulse, flip angle θ = 4°, TE = 3.9ms, TR=5.6ms, bandwidth=62.5kHz, in-

plane resolution = 3.125x3.125 mm2, b=0, 1.6, 3.2, 4.8, 6.4 s/cm2); the diffusion-

sensitization gradient pulse ramp up/down time was 500μs with a diffusion time of 1460μs.  

The potential for image artifacts associated with RF pulse “history”35 was addressed by 

using an optimal constant flip angle (4 degrees).36  A diffusion-sensitizing, gradient-step, 

k-space acquisition scheme starting at the maximum b-value was used to ensure that 

maximum MR signal was acquired for diffusion-weighted images at greater b-values.  All 

five b-value images were acquired during a single 15s breath-hold.   

Thoracic CT was acquired on a 64-slice Lightspeed VCT scanner (General Electric Health 

Care, Milwaukee, Wisconsin) (64 × 0.625 mm, 120 kVp, 100 effective mA, tube rotation 

time=500 msec, and a pitch=1.0).  A single spiral acquisition was performed with subjects 

in the supine position and at inspiration breath-hold after inhalation of a 1.0L N2 bag from 

FRC (NS, AATD1, 6-8) or at full inspiration (COPD, AATD2-5).  CT Images were 

reconstructed using a slice thickness of 1.25 mm with a standard convolution kernel.  The 

total effective dose for an average participant was 1.8 mSv according to manufacturer 

settings and Imaging Performance Assessment of CT (ImPACT) CT patient dosimetry 

calculator based on software from the Health Protection Agency of the United Kingdom 

(NRPB-SR250).   

2.2.4 Image Analysis 

To measure MRI ventilation defect percent (VDP), we used semi-automated segmentation 

software (MATLAB R2014b; MathWorks, Natick, Mass) as previously described,37 

utilizing an independently acquired image without diffusion weighting.  3He MRI ADC 

maps were generated as described previously38,39 and the Weibel acinar duct model20 was 

used to generate morphometry estimates as previously described.17,23,40  Multiple-b-value 
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measurements39 of the 3He diffusion-attenuated MR signal were used to derive 

morphological parameters of the acinar airway, including external radius (R), internal 

radius (r), alveolar length (L), depth of alveolar sleeve (h), surface area-to-volume ratio 

(S/V) and mean linear intercept (Lm).  To model the severe emphysema that accompanies 

AATD lung disease, we did not constrain R or r, nor their ratio, unlike previous work in 

elderly never-smokers and COPD patients.39  The cylindrical model was used based on 

previous work17,41,42 and based on the fact that in AATD patients, normal lung development 

and alveolarization is expected.43  Regional ADC and morphometry measurements were 

computed using custom-built software generated using MATLAB software whereby the 

carina was identified in the b = 0 image and used to segment the lung into apical and basal 

regions. 

CT airway count, RA950, and low attenuating clusters (LAC) with CT density values ≤ -

950 HU44 were determined using Pulmonary Workstation 2.0 (VIDA Diagnostics Inc., 

Coralville, IA).  LAC was calculated using the log-log relationship44 between the 

cumulative frequency distribution of emphysematous lesions (# of lesions) and cluster size 

(size of lesions) according to the power law relationship Y = XLAC  (Y = cumulative 

frequency distribution, X = size of lesions).  Lower LAC values (more negative) are 

indicative of smaller, and fewer, clusters of emphysematous lesions whereas greater LAC 

values suggest fewer and larger lesions.  Graphically, this is illustrated as spheres 

representing the relative size of emphysematous lesions, with larger spheres indicating 

larger and connected low attenuating areas.  Regional RA950 was generated using the carina 

to segment the lung into apical and basal lung regions. 

2.2.5 Statistical Analysis 

All statistical analyses were performed using IBM SPSS Statistics, Version 24 (IBM, 

Armonk, NY, USA).  Comparisons between groups were performed using a multivariate 

analysis of variance (MANOVA) with post-hoc Tukey honest significant difference test.  

Results were considered significant when the probability of making a Type 1 error was < 

5% (p < .05). 
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 Results 

Table 1 provides demographic information for the AATD patient subgroup (n=8, 57±7 

years), ex-smokers with COPD (n=8, 77±6 years) and never-smokers (n=5, 64±2 years).  

There was significantly different FEV1 (p = .007), FEV1/FVC (p < .0001), RV (p = .03) 

and DLCO (p < .0001)  for AATD patients as compared to never-smokers but there were no 

significant differences between AATD and COPD patients except for age (p < .0001) and 

SGRQ (p=.01).  COPD patients were significantly older and had a significantly better 

SGRQ score indicating better quality of life.  

 

Table 2-1: Demographic and pulmonary function measurements 

Parameters 
(±SD) 

Never-
Smoker 

n=5 

COPD 
Ex-Smoker 

n=8 

AATD 
n=8 

NS-COPD NS-AATD 
AATD-
COPD 

Female n 5 1 3 - - - 
Age yr 64 (2) 77 (6) 57 (7) .001 .2 <.0001 
BMI kg/m2  24 (2) 26 (3) 27 (5) .8 .6 .9 
FEV1 %pred 101 (9) 72 (34) 47 (20) .1 .007 .2 
FVC %pred 96 (9) 94 (26) 78 (21) .9 .4 .4 
FEV1/FVC % 80 (1) 52 (11) 47 (12) <.0001 <.0001 .8 
RV %pred 84 (24) 147 (50) 170 (65)* .1 .03 .7 
TLC %pred 97 (13) 110 (15) 129 (37)* .2 .2 .9 
RV/TLC % 35 (6) 50 (11) 51 (13)* .05 .06 .9 
DLCO %pred 95 (14) 55 (16) 44 (19)* .002 <.0001 .4 
6MWD m ND 380 (88) 385 (80) ND ND .9†† 
SGRQ ND 30 (18) 55 (17) ND ND .01†† 

FEV1=forced expiratory volume in 1 second; %pred=percent predicted; FVC=forced vital 

capacity; RV=residual volume; TLC=total lung capacity; DLCO=diffusing capacity of the 

lungs for carbon monoxide; 6MWD=six-minute walk distance; SGRQ=St. George’s 

Respiratory Questionnaire total score. MANOVA between groups with post-hoc Tukey 

HSD for multiple comparisons. ††Unpaired t-test between COPD and AATD; *n=7.  

Figure 1 shows CT airway trees and coronal centre slice low attenuating cluster maps as 

well as coronal centre slice MRI ventilation and ADC maps for representative participants 

in each subgroup.   For the two representative never-smokers, there was little or no 

evidence of CT low attenuating regions or clusters while MRI ADC maps were 

homogeneous with normal ADC values and ventilation maps reflected relatively few, small 
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ventilation defects.  In the two representative COPD patients, there were numerous CT low 

attenuating regions and low attenuating clusters with large ventilation defects and abnormal 

ADC values, mainly in the apical lung.  In the two representative AATD patients, CT low 

attenuating regions and clusters dominated in the lower lobes and this was concomitant 

with highly abnormal MRI ADC values (shown in yellow), mainly in the basal lung.  

 

Figure 2-1: Thoracic CT and MRI for Never-smokers, COPD and AATD 

Participants 

Left panels: CT RA950 maps (yellow pixels corresponding to voxels <-950 Hounsfield 

Units) and CT LAC maps; Right panels: 3He static ventilation (Cyan) co-registered with 
1H MRI; 3He MRI apparent diffusion coefficient (ADC) maps. NS-1 is female age 63 years 
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with FEV1=109 %pred, DLCO=103 %pred, RA950=0.19 %, ADC=0.25 cm2/s; NS-4 is female 

age 64 years with FEV1=108 %pred, DLCO=99 %pred, RA950=0.13 %, ADC=0.29 cm2/s; 

COPD-4 is male age 75 years with FEV1=30 %pred, DLCO=31 %pred, RA950=26 %, ADC 

=0.50 cm2/s; COPD-6 is male age 84 years with FEV1=52 %pred, DLCO=47 %pred, RA950=24 

%, ADC= 0.50 cm2/s; AATD-1 is male age 67 with FEV1=58 %pred, DLCO=50 %pred, 

RA950=19 %, ADC=0.57 cm2/s; AATD-5 is male age 50 with FEV1=25 %pred, DLCO=32 

%pred, RA950=27 %, ADC=0.47 cm2/s. 

 

Figure 2 shows the qualitative differences in RA950, ADC and Lm maps for representative 

never-smokers, AATD and COPD patients.  For example, for NS-2 and NS-5, there was 

no evidence, based on RA950 or MRI ADC, of airspace enlargement or emphysema.  

However, there was a difference in mean Lm for these two never-smokers with lower, 

darker voxels for NS-5, a female aged 63 years as compared to NS-2 a female never-smoker 

also aged 63 years and the reasons for these differences were not evident.  For COPD and 

AATD patients, there was CT evidence of emphysema in the upper (COPD) and basal lung 

(AATD).  ADC and Lm maps also show brighter colours that reflect enlarged airspaces that 

in COPD patients predominated in the upper lobes. In AATD-3, there was highly abnormal 

Lm, homogeneously distributed throughout the ventilated portions of the lung.  For patient 

AATD-2, there was very poor basal lung ventilation and therefore no ADC or 

morphometry values could be reported from these regions, although CT showed moderate 

basal lung emphysema.     
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Figure 2-2: Morphometry Maps for Representative Never-smokers, COPD ex-

smokers and AATD Patients 

Left panels:MRI static ventilation (Cyan) co-registered with 1H MRI; CT RA950 maps 

(yellow pixels corresponding to voxels <-950 Hounsfield Units). Right panels: 3He MRI 

apparent diffusion coefficient (ADC) and mean linear intercept (Lm) maps. NS-5 is female 

age 63 years with FEV1=106 %pred, DLCO=80 %pred, RA950=0.19 %, ADC=0.27 cm2/s, 

Lm=180 µm; NS-2 is female age 63 years with FEV1=94 %pred, DLCO=113 %pred, 

RA950=0.44 %, ADC= 0.28 cm2/s, Lm=240 µm; COPD-5 is female age 72 years with 

FEV1=56 %pred, DLCO=59 %pred, RA950= 8 %, ADC = 0.33 cm2/s, Lm=310 µm; COPD-2 is 

male age 79 years with FEV1=126 %pred, DLCO= 62 %pred, RA950= 11%, ADC= 0.41 cm2/s, 

Lm=540 µm; AATD-2 is male age 57 with FEV1= 37 %pred, DLCO= ND, RA950= 23 %, 

ADC= .46 cm2/s, Lm=680 µm; AATD-3 is female age 62 with FEV1=61 %pred, DLCO=21 

%pred, RA950= 31%, ADC= 0.67 cm2/s, Lm=1200 µm. 
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Table 2 and Figure 3 provide a summary of quantitative imaging measurements for each 

subgroup and Table 3 provides all imaging data by participant. As shown in Table 2, AATD 

subjects had significantly elevated whole lung ADC (p= .03), basal lung ADC (p=.045) Lm 

(p=.001) and diminished S/V (p=.01) as compared to COPD ex-smokers.  RA950 was 

significantly elevated in the basal portion of the lungs as compared to the apical portion in 

AATD subjects only (p = .03).  Figure 3 provides box and whisker plots for whole lung 

(top panel), apical (middle panel) and basal (bottom panel) RA950, Lm and ADC by 

subgroup.  In COPD and AATD patients, there was significantly different whole lung, 

apical and basal Lm and ADC, but there was no significant difference in whole lung, apical 

or basal RA950.  Receiver operating curve (ROC) analysis was also performed between the 

AATD and COPD subgroups for Lm, (AUC = .95, p = .002), ADC (AUC = .85, p = .02) 

and RA950 (AUC = .71, p = .16). 

Table 2-2: Pulmonary MRI and CT measurements 

    Significance of Difference (p) 

Parameters (±SD) 
Never- 
Smoker 

n=5 

COPD 
Ex-Smoker 

n=8 

AATD 
n=8 

NS-
COPD 

NS-
AATD 

AATD-
COPD 

WL ADC cm2/s .27 (.02) .41 (.07) .51 (.08) .005 <.0001 .03 
Apical ADC cm2/s .26 (.02) .42 (.07) .48 (.07) .002 <.0001 .3 
Basal ADC cm2/s .27 (.02) .41 (.07) .53 (.11) .03 <.001 .045 
VDP % 2 (1) 23 (13) 28 (16) .03 .01 .8 
WL Lm µm 220 (80) 480 (250) 890 (330) .04 <.0001 .001 
Apical Lm µm 210 (80) 500 (250) 840 (310) .02 <.0001 .001 
Basal Lm µm 220 (80) 480 (230) 950 (310) .09 <.0001 .001 
S/V cm-1  200 (50) 110 (50) 50 (20) <.0001 <.0001 .01 
WL CT RA950 % 0.2 (0.2) 13 (8) 20 (9) .01 .001 .3 
Apical CT RA950 % 0.2 (0.1) 11 (7) 13 (8) .02 .007 .8 
Basal CT RA950 % .2 (.2) 14 (8) 21 (10) .02 .001 .2 
CT LAC  -2.1 (.4) -1.7 (.1) -1.6 (.2) .1 .01 .4 
Airway count 151 (26) 112 (25) 120 (17) .02 .1 .5 

WL=whole lung; VDP=ventilation defect percent; ADC=apparent diffusion coefficient; 

R=external airway radius; r=internal airway radius; h=alveolar sheath; Lm=mean linear 

intercept; RA950=relative area of the CT density histogram of attenuation values <-950 

Hounsfield Units; LAC=low attenuating clusters. MANOVA between groups with post-

hoc Tukey HSD for multiple comparisons. 
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Figure 2-3: Regional Imaging Biomarkers 

Box and Whisker Plots show mean and standard deviation. NS=never-smoker, 

COPD=COPD ex-smoker, AATD=alpha-1 antitrypsin deficiency. RA950=relative area of 

the CT lung density histogram with attenuation values <-950 HU, Lm=mean linear 

intercept, ADC=apparent diffusion coefficient. Group comparisons performed with an 

MANOVA and multiple comparisons corrected with a post-hoc Tukey HSD test. 
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Table 2-3: MRI and CT Measurements by Participant 

Parameter 
(±SD) 

ADCWL 
cm2/s 

ADCAp 
cm2/s 

ADCBa 
cm2/s 

VDP  
% 

Lm(wl)  
µm 

Lm(Ap)  
µm 

Lm(Ba) 

µm 
RA950  

% 
LAC 

NS-1 .25 (.04) .25 (.03) .25 (.04) 2 190 (80) 200 (90) 180 (70) 0.2 -1.6 
NS-2 .28 (.04) .26 (.03) .29 (.04) 2 240 (80) 230 (70) 250 (90) 0.4 -2.4 
NS-3 .24 (.02) .24 (.02) .24 (.02) 2 200 (60) 190 (50) 200 (60) 0.1 -2.4 
NS-4 .29 (.03) .29 (.03) .29 (.03) 2 290 (80) 280 (80) 300 (80) 0.1 -1.6 
NS-5 .27 (.03) .26 (.02) .27 (.03) 3 180 (90) 170 (70) 180 (100) 0.2 -2.3 
All NS .27 (.02) .26 (.02) .27 (.02) 2 (1) 220 (80) 210 (80) 220 (80) 0.2 (0.2) -2.1 (0.4) 
COPD-1 .36 (.05) .36 (.05) .35 (.05) 16 330 (130) 360 (150) 290 (110) 8 -1.9 
COPD-2 .41 (.05) .43 (.04) .39 (.05) 16 540 (280) 610 (320) 470 (200) 11 -1.7 
COPD-3 .35 (.03) .36 (.03) .34 (.04) 5 370 (150) 410 (160) 330 (120) 8 -1.9 
COPD-4 .50 (.08) .54 (.07) .48 (.08) 45 670 (350) 750 (350) 630 (340) 26 -1.7 
COPD-5 .33 (.04) .30 (.04) .34 (.04) 14 310 (120) 290 (110) 320 (130) 8 -1.9 
COPD-6 .50 (.05) .56 (.05) .54 (.06) 31 790 (380) 630 (330) 960 (350) 24 -1.8 
COPD-7 .39 (.07) .43 (.08) .39 (.07) 30 370 (220) 410 (220) 360 (210) 14 -1.6 
COPD-8 .43 (.06) .43 (.06) .43 (.06) 25 490 (240) 510 (250) 480 (230) 8 -1.6 
All COPD .41 (.07) .42 (.07) .41 (.07) 23 (13) 480 (250) 500 (250) 480 (230) 13 (8) -1.7 (0.1) 
AATD-1 .57 (.09) .51 (.06) .60 (.13) 27 1000 (410) 920 (440) 1100 (330) 19 -1.4 
AATD-2 .46 (.08) .39 (.07) .51 (.10) 53 680 (320) 610 (280) 940 (350) 23 -1.9 
AATD-3 .67 (.10) .60 (.08) .73 (.12) 13 1200 (360) 1200 (380) 1270 (330) 31 -1.3 
AATD-4 .53 (.08) .52 (.07) .56 (.08) 17 1110 (220) 1070 (220) 1140 (210) 19 -1.5 
AATD-5 .47 (.12) .48 (.10) .46 (.12) 49 700 (350) 700 (360) 700 (340) 27 -1.6 
AATD-6 .41 (.09) .41 (.06) .41 (.10) 10 710 (190) 720 (190) 710 (190) 3 -1.9 
AATD-7 .44 (.09) .48 (.06) .39 (.12) 21 840 (260) 950 (240) 780 (240) 14 -1.4 
AATD-8 .53 (.04) .45 (.03) .57 (.05) 37 810 (440) 520 (270) 960 (430) 22 -1.7 
All AATD .51 (.08) .48 (.07) .53 (.11) 28 (16) 890 (330) 840 (310) 950 (310) 20 (9) -1.6 (0.2) 

 

SD=standard deviation; ADC=apparent diffusion coefficient; WL=whole lung; Ap=apical lung; Ba=basal lung; VDP=ventilation defect percent; Lm=mean 

linear intercept; S/V=surface to volume ratio; RA950=relative area of the CT density histogram with attenuation values < -950 HU; LAC=low attenuating 

clusters 
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 Discussion 

For patients with AATD, pulmonary function tests and thoracic CT measurements of 

emphysema are typically used to evaluate disease severity, disease progression and 

response to therapy.  Unfortunately, such measurements are relatively insensitive to small 

changes over time and do not fully explain longitudinal changes in symptoms and quality 

of life.  Therefore, here our objective was to evaluate inhaled-gas MRI biomarkers of 

emphysema in AATD patients and compare these with CT and other clinical measurements 

of emphysema in elderly never-smokers and COPD patients with smoking-related 

emphysema.21,23  We measured MRI and CT biomarkers of emphysema and observed: 1) 

abnormal MRI ADC and Lm measurements that were significantly worse in AATD as 

compared to COPD patients in whom CT RA950, airway count and other pulmonary 

function test measurements were not significantly different, 2) differences in ADC and Lm 

in elderly never-smokers with normal CT, reflecting different senile emphysematous 

changes, and, 3) highly abnormal basal lung MRI Lm values in AATD patients although 

there was no basal lung ventilation in some AATD patients.  

As might be expected, in AATD patients, MRI measurements of ventilation (VDP) and 

parenchyma microstructure (ADC) were abnormally elevated in the basal lung.  Ventilation 

defects were prominent in participants AATD-1, AATD-2 and AATD-5 and this was 

consistent with the notion that in severe emphysema, the time constants for lung filling 

were longer than the MRI acquisition timeframe.  Ventilation defects were also spatially 

related to regions with abnormal RA950 and this was previously shown in severe COPD.45,46  

In particular, in patient AATD-2, there were large ventilation defects, which was coincident 

with a highly abnormal SGRQ score of 80.  It is important to note that in this patient, FEV1 

did not reflect the severity of emphysema, nor symptoms.  In contrast, for Subject AATD-

6, there was imaging evidence of very mild emphysema and this was in agreement with 

modestly abnormal SGRQ, 6MWD and DLCO values.   

We were surprised to observe that there was no difference in pulmonary function test and 

CT biomarkers of emphysema in AATD patients compared to COPD ex-smokers in whom 

there were significantly different Lm, S/V and ADC (WL and basal) measurements.  This 
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may be due to different underlying pathophysiological mechanisms for panlobular 

emphysema, common in AATD patients, as compared to centrilobular emphysema more 

common in current or previous smokers without AATD.  There was no difference in airway 

count between the COPD and AATD subgroups.  This is somewhat surprising because 

airway count has been suggested as a unique biomarker of COPD in smokers and ex-

smokers and is an independent predictor of BMI, airflow obstruction, dyspnea, and exercise 

capacity (BODE) index47 in COPD patients. The airway count result may stem from a small 

sample size but we also note that there was a difference between COPD and NS participants 

for airway count.  This may suggest that similar to ex-smokers with COPD, in AATD 

emphysema, terminal airways are also occluded or obliterated so that they cannot be 

resolved using CT.  To our knowledge this is a novel result.  It is also noteworthy that for 

AATD patients with greater overall MRI evidence of airspace enlargement, suggestive of 

emphysema, there was greater apical lung ADC which supports the notion that as AATD 

worsens, both the basal and apical lung are involved.  It is important to point out however 

that not all AATD patients present with basal-dominant emphysema48 and this was also 

observed here in AATD-7, with greater apical as compared to basal ADC and Lm.  Elevated 

apical Lm and ADC in AATD-7 may be explained by a 43 pack-year smoking history, 

although there is no apical-dominant disease in patient AATD-3 (35 pack years) or patient 

AATD-8 (30 pack years).  Furthermore, the range of Lm and ADC values for NS may be 

indicative of different senile emphysematous changes.   While NS-1 and NS-5 both have 

smaller airspaces as measured by MRI than age matched NS-4 who has airspaces 

approximately 50% larger (190µm vs 290µm).  The reasons for this difference is not clear, 

but differences in unappreciated environmental exposures or other undetermined causes of 

accelerated lung aging in these individuals is possible. 

While these cross-sectional results provide good evidence of the feasibility of acquiring 

MRI biomarkers in AATD patients, they also provide a better understanding of regional 

emphysema and the relationship of emphysema with quality of life in these patients.   For 

example, perhaps because of the small sample size, SGRQ was the only clinical 

measurement that was significantly different in COPD and AATD patients.  This finding 

is consistent with previous work that showed the relationship of modestly diminished DLCO 
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with MRI biomarkers in ex-smokers with normal spirometry but abnormal SGRQ and 

6MWD.49  The elevated Lm, ADC and S/V measurements in AATD patients here also 

revealed the sensitivity of MRI biomarkers to subtle differences in airspace enlargement 

even in the absence of CT measurement differences.  Our results suggest that ADC may 

better distinguish airspace enlargement observed in NS participants and COPD participants 

while Lm may better distinguish between emphysematous lesions in COPD and AATD 

patients.  We note that previous work50 reported a similar finding for ADC and Lm in ex-

smokers with and without emphysema using ROC analysis with AUC = .9 (p=.002) for 

ADC, and .91 (p=.02) for Lm, respectively. Taken together, these data suggest that MRI-

derived Lm captures subtle differences between panlobular (AATD) and centrilobular 

(COPD) emphysema.  We think the sensitivity of MRI can play an important role in 

measuring disease progression in longitudinal studies or response to therapy in clinical 

trials with small sample sizes, such as evaluated here.  Similar to CT biomarkers of 

emphysema, MRI biomarkers of airspace enlargement may play an important role in 

measuring emphysema in AATD patients undergoing augmentation therapy which is 

especially important given the high cost of treatment. 

We must acknowledge a number of study limitations and caveats.  It is important to note 

that a shortcoming of inhaled gas MRI is the reliance of measurements on lung regions that 

are well-ventilated.  In other words, where there are ventilation defects, no values can be 

reported; this generates a bias towards normal values from ventilated lung (in this case, 

apical lung).  Furthermore, for longitudinal evaluation it is important to ensure that lung 

inflation levels is consistent between scans, such as in the RAPID trial4, and this would 

certainly help with reproducibility and measurement precision.  It is also important to note 

that diffusion-weighted MRI reproducibility was previously evaluated by three different 

groups including the measurement of precision of ADC values (28, 51, 52) and Lm values 

(53).   These previous results provided a strong foundation for our approach and for future 

longitudinal studies.  These factors are important to consider if the techniques evaluated 

here are to be used clinically to monitor disease progression in AATD patients over time 

and those undergoing augmentation therapy.  Using CT emphysema measurements, 

augmentation therapy has been shown to slow the rate of lung tissue density loss and we 
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expect that MRI biomarker sensitivity can also be exploited for longitudinal evaluations of 

this patient population. We also note that for one participant who was severely impaired, 

plethysmography measurements and the 6MWT could not be undertaken; this is certainly 

something worth considering for longitudinal studies in AATD patients.  It is important to 

recognize that we used a cylindrical airway geometry model to estimate MRI Lm which 

may not be appropriate in the case of very severe emphysema.  Recent work examined the 

use of three different emphysema modelling approaches and showed good agreement 

between the cylindrical model and another model which made no geometrical 

assumptions.29  This and the fact that we did not constrain internal acinar duct radial 

parameters suggests that the comparisons made here between COPD and AATD patients 

are physiologically relevant.  In addition to this, these results are in agreement with recent 

morphomic measurements,23 taken at 1.5T, using histology and diffusion-weighted MRI 

which measured S/V ratios of approximately 250 cm-1 for healthy controls, 100-140 cm-1 

for mild emphysema and 50-55 cm-1 for severe emphysema.  These findings are in good 

agreement with S/V values measured here in never-smoker (S/V=200±50 cm-1), COPD 

(S/V=110±50 cm-1) and AATD subjects (S/V=50±20 cm-1).  We should also underscore 

the age difference between the study groups which is a limitation of the study because it 

was previously established54 that MRI ADC and Lm values are age-dependent values.  

Importantly, the AATD participants we evaluated were significantly younger than the 

COPD patients, even though lung disease severity based on imaging biomarkers was 

greater.  This suggests that the elevated ADC and Lm values in the AATD patients were 

not due to age differences. 

An important limitation is the fact that MRI was performed at FRC+1L in all participants 

(i.e., the lung inflation volume was not normalized across subjects).  This is important 

because lung inflation volume, alveolar inflation and ADC/morphometry values are 

related.  In our study, MRI was performed at FRC+1L in all participants, with coaching by 

a pulmonary function technologist, to ensure that lung volumes were reproducible within 

and between participants.  This lung volume has been used extensively in the past which 

allows for comparison with previous studies and this is, in our experience a relatively 

straightforward maneuver for patients with respiratory disease.  We note however, that for 
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NS-2 and NS-5, the FRC+1L volume was very similar (FRC+1L = 3.8±0.2L) and there 

was no significant correlation between Lm and TLC (p=.7) and Lm and FRC+1L (p=.9). 

This present study builds upon previous MRI studies in AATD patients25-28 that evaluated 

ADC measurements and their changes over relatively short periods of time.  Previous work 

in COPD patients50 and healthy volunteers39,51 provides a foundation for the current study 

that extends the two b-value ADC approach with a single breath whole lung multiple b-

value morphometry approach.29  MRI provides similar and complementary information to 

CT with the advantage of being free of ionizing radiation, which is important for AATD 

patients who are diagnosed at relatively young ages. These patients have the opportunity 

to undergo augmentation therapy; MRI biomarkers that provide sensitive measurements of 

airspace enlargement can be considered for these treatment studies and longitudinal 

evaluations. MRI also offers novel structure-function biomarkers including measurements 

of parenchyma microstructure that correlate with histological samples.21,23,24  Moreover, as 

we transition to inhaled 129Xe gas as contrast,16  it is important to note that dissolved-phase 

129Xe MRI may be employed to simultaneously estimate ventilation, perfusion52 and 

surrogate measurements of DLCO.53  This information may be very helpful in studies that 

evaluate augmentation therapy and other AATD treatments for which direct evidence of 

efficacy3,4 has been difficult to ascertain. 

In summary, MRI biomarkers of emphysema were significantly different in AATD 

subjects as compared to age-matched never-smokers and older ex-smokers with smoking-

related emphysema.  Importantly, the significantly different and abnormal Lm values in 

AATD patients, who were not significantly different from COPD patients with respect to 

pulmonary function tests and CT emphysema measurements, reveals the sensitivity of MRI 

emphysema measurements in AATD patients for whom lifelong monitoring is required. 
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3 Chapter 3: Conclusions and Future Directions 

 Overview and Research Questions 

This thesis sought to provide measurements of pulmonary airspace enlargement using 

diffusion-weighted MRI in COPD and AATD.  This is crucial as quantification of lung 

structure can be considered the gold standard in evaluation of response to treatment in 

COPD.1  COPD is a disease that has tremendous costs both economically and socially in 

Canada2 and worldwide.3 

 Summary and Conclusions 

In this thesis, I examined a sample of patients with AATD.  I demonstrated that, by using 

a multiple-b value diffusion-weighted MRI approach, I could obtain similar, and 

complimentary, information to CT; this finding is important in the case of AATD where 

disease begins at a young age making longitudinal evaluation of disease using CT 

unattractive due to cumulative dose effects.  I compared these patients to age-matched 

healthy never-smokers and the AATD subjects were significantly worse as measured by 

both CT (LAC and RA950) and 3He diffusion MRI (VDP, ADC and morphometry).  In 

addition, I compared these AATD patients to a group of ex-smokers with smoking related 

emphysema.  These groups showed no differences in spirometry, CT measurements, 

ventilation measurements or exercise capabilities but the AATD group was statistically 

worse in terms of perceived quality of life, whole lung and basal ADC, and morphometry 

values (whole lung, apical and basal).  These results showed that using a small sample 

population it is possible to elucidate differences in disease severity by using diffusion-

weighted MRI. Ultimately, this approach may provide a method of performing smaller 

clinical trials examining treatment efficacy in AATD drug development. 

In summary, I have 1) examined a patient population who would greatly benefit from 

inhaled noble-gas morphometry as a sensitive measurement of disease severity, 2) 

demonstrated that whole lung multiple b-value measurements of airspace enlargement are 

feasible in this population and 3) demonstrated that this technique can differentiate between 
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smoking-related disease and AATD-related disease even in the absence of spirometry or 

CT differences. 

 Limitations 

Study specific limitations are discussed in detail in Chapter 2 but the most important 

limitations from Chapter 2 and a few major limitations will be discussed in more detail 

here.   

In Chapter 2 we explored a small sample of AATD patients (n=8) and observed 

significantly elevated morphometry values of airspace enlargement.  These are elevated as 

compared to COPD ex-smokers and age-matched elderly never-smokers.  The AATD 

subjects showed no difference between the COPD ex-smokers as visualized using CT or 

using standard clinical airflow measurements. 

Outside of the study specific limitations, there exist limitations inherent to the inhaled 

noble-gas morphometry method.  Inhaled noble-gas morphometry measurements are 

inherently reliant on gas dispersion throughout the lungs.  Essentially, in regions of 

ventilation defect, morphometry measurements cannot be acquired.  When reporting a 

whole lung mean value, this will skew the measurement towards the healthy lung tissue 

(regions which are ventilated).  Furthermore, this excludes fractions of the lung for 

quantitative evaluation, and unfortunately non-ventilated regions cannot distinguish 

between emphysematous destruction, mucus clogged airways or other reasons for lack of 

ventilation.   

Another major limitation of the ADC technique is the intrinsic variation in ADC 

measurements that depend on gradient timing parameters.  The temporal profile of the 

applied bipolar diffusion gradients affects the ADC measurement and as such it is 

important to keep this consistent between scans.4,5  Furthermore there is the effect of field 

strength on ADC measurements.4  Briefly, in previous work the authors observed 

significantly elevated ADC measurements obtained in the same subjects (n=5, healthy 

volunteers) at 3T versus 1.5T.  The authors concluded this difference was due to 

susceptibility-induced field inhomogeneities. Although, these differences could be 
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accounted for by differences in scanner manufacturers (Philips 3T and GE 1.5T).  

However, this is still important to keep in mind when comparing measurements across 

centres as a difference in obtained ADC may be due to a difference in field strength or 

possibly scanner manufacturer.  Other factors, such as the spatial profile of the magnetic 

field, surface relaxation and surface permeability, also have an effect on the ADC 

measured.5  

Perhaps the most important limitation of this thesis work is the availability and cost of 3He 

and limited access to polarization equipment.  This can be partially resolved through 

transition to 129Xe which is more cost effective and naturally abundant. However, until 

recently similar levels of polarization could not be achieved with 129Xe as could be 

achieved with 3He.  129Xe still needs to be polarized prior to use but can reach required 

polarization much quicker (~45 minutes) versus 3He (~18 hours) which makes it attractive 

for performing serial scans in a single day.  However, 129Xe that has been polarized and 

prepared for administration must be used as it now resides outside of the gas cell.  3He 

however does not exit the gas cell until immediately before administration meaning in the 

event of scan cancelation or failures up until the moment of administration 3He can still be 

recovered and used later whereas 129Xe will be wasted, or at best needs to be recycled. 

 Future Directions 

3.4.1 Overcoming Issues Related to Gas Dispersion 

A method of overcoming gas dispersion issues with regards to measuring tissue 

microstructure has been explored using modelled Carr-Purcell-Meiboom-Gill (CPMG) 

inter-echo time R2 dispersion6 unfortunately this method has yet to transition into in vivo 

measurements.  Briefly, in this work the authors tested an in silico model of alveoli as 

spherical airspaces and derived equations for the relaxation rate R2, the transverse 

relaxation rate.  They tested their model against deflated rat lungs and demonstrated good 

agreement between the mean alveolar radius as measured using this technique (31.5 ± 13 

µm) and literature (34 µm). 
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3.4.2 Accelerated Imaging 

Diffusion-weighted MRI with multiple-b values (5 values) may require as much as 16 

seconds acquiring 7 slices.  With parallel imaging or compressed sensing, the scan speed 

can be greatly increased and the possibility of greater number of slices (>14) can be 

achieved.  With this there would no longer be a requirement of taking a separate static 

ventilation scan to obtain VDP measurements.  This would in theory halve the required 

volume of gas used to obtain a full set of information that MRI can provide (VDP, ADC, 

morphometry).  This is especially important both in a clinical setting and a research setting 

as the cost of 3He continues to rise due to its natural scarcity.  Another possible benefit 

would be towards isotropic voxel sizes.  Currently 3.125x3.125x30 mm3 are common for 

diffusion-weighted scans, and 3.125x3.125x15 mm3 are common for static ventilation 

scans.  With a large increase in scan speed, smaller voxels would be possible.  Preliminary 

work has been done with acceleration factors up to x10 with only some lost details as 

compared to no acceleration.7 

Implementation of parallel imaging, using a multi-channel receive array, would allow an 

increase in scan speed.  However, it comes with limitations in reduced FOV and aliasing 

artifacts.  Using the known spatial information of the coils the resulting images are 

“unfolded” and the original image is reconstructed.  Preliminary work has been performed8 

using generalized autocalibrating partially parallel acquisitions (GRAPPA) and an 8-

channel receive coil, which demonstrated that lung morphometry can be calculated using 

parallel imaging without significant differences in measurements.  They conclude that even 

though the work was performed using 3He that it could be generalized to 129Xe.  This in 

turn makes this technique more clinically translatable. 

3.4.3 The Transition to 129Xe 

Much of the work in noble-gas lung morphometry has been done using 3He due to its high 

gyromagnetic ratio and achievable polarization levels.  However, with the inevitable 

transition from 3He to 129Xe due to the lower cost and greater natural abundance of 129Xe, 

it is important to ensure that methods can also be translated.  In our lab9 we have compared 

three different acinar duct models relying on 3He diffusion.  The cylindrical model used in 
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this thesis already has a theoretical formulation for the use of 129Xe and can be readily 

translated.10  Another geometrical model assuming spherical symmetry was explored 

which is based on varying the diffusion time as opposed to b-value during the scan and can 

be readily transitioned to use with 129Xe.  The third model, the stretched exponential model, 

is without geometrical assumptions, nor assumptions regarding gas diffusivity and due to 

this would also be translatable to 129Xe.  These considerations are important if this method 

is to be used to longitudinally evaluate patients with AATD. 

Outside of technical challenges, there is still much work to be done identifying potential 

biomarkers of disease using diffusion-weighted MRI in the lung.   

3.4.4 Functional Diffusion Maps of the Lungs 

There has been work in other organs, specifically in the brain examining the change in 

ADC measurements in an imaging voxel across periods of time.11  Functional Diffusion 

Maps (FDM), are co-registered ADC maps that stratify regions of the brain into three 

distinct categories, i.e., regions which have increased ADC, unchanged ADC or decreased 

ADC.  FDM has been examined as an early marker of biologic outcome and shows promise 

as a tool to predict treatment efficacy early in the drug development process.12  Although 

much of this work has been performed in analysis of the brain, FDM can be applied in a 

similar fashion as a potential lung disease biomarker.  To use FDM for lung disease, ADC 

images are taken at time points t1 and t2 (t2>t1).  These images are registered together using 

an affine transformation13 using the b = 0 s/cm2 slice to ensure the highest signal image is 

used in the registration.  Unlike in traditional brain FDM, an imaging voxel within the lung 

can be categorized into one of five categories: 1) increased ADC, 2) decreased ADC, 3) no 

change in ADC, 4) lost ventilation (i.e signal void at t2 where there was signal at t1) and 5) 

gained ventilation (i.e signal at t2 where there was a signal void at t1).  In order to determine 

whether a voxel has increased (or decreased) in ADC at t2 versus t1, a threshold (T) must 

be determined to categorize a change as significant.  A voxel is categorized as no change 

in ADC if |ΔADC| < T.  As a first step in determining T, the variability in ADC 

measurements must be determined.  Previous work14 has examined same-day rescan and 

7-day rescan and has demonstrated a coefficient of variation (COV) and mean ADC for 



 

62 

 

never-smokers, mild-moderate COPD and severe COPD.  Using the COV and mean ADC 

for each subgroup, a variability of approximately 0.01 cm2/s applies across all groups.  As 

a preliminary step, I defined a threshold of T = 0.01 cm2/s as a significant deviation from 

the t1 scan. Figure 3-1 shows a sample workflow for analysis of an AATD subject at two 

time points. 

 

Figure 3-1: Functional Diffusion Map Workflow 

A) Two visit ADC maps are co-registered  

B) Functional diffusion map is generated and clustered into 5 distinct non background 

regions 

C) A plot of V1 vs V2 ADC with points above the red line showing regions of increased 

ADC and points below the blue line showing regions of worse ADC.  Green line shows 

line of identity 

In order to evaluate the effect of a landmark based affine transformation and user variability 

on these five distinct regions, a single subject was evaluated five times each day for five 

days.  The coefficient of variation across both same-day and five day variability was 

determined to be 1%, indicating little variation between trials, this is important for 

implementation of this technique.  Future work should be aimed at examining large patient 

databases with multi-visit ADC measurements and evaluating relationships between 

clinical outcomes and FDM measurements.  Although the focus here has been on 2-visit 

ADC maps, it would be possible to extend this to n-visit maps and examine the longitudinal 
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change in ADC either as a voxel-wise slope or possibly through another method of analysis.  

With the focus of this thesis on multiple-b measurements of airspace enlargement, it would 

be simple to extend FDM to Lm maps or any other morphometry measurement acquired 

using the morphomic technique.  

3.4.5 Longitudinal Evaluation of AATD 

This thesis examined AATD disease cross-sectionally.  To build upon this cross-sectional 

evaluation, a longitudinal study evaluating disease progression over longer periods of time 

should be performed to examine the change in lung function as measured by standard 

clinical tools and by using hyperpolarized noble-gas MRI.  A small, preliminary evaluation 

of a single AATD subject (AATD-1 from this thesis) was performed over the course of 

approximately five years (Figure 3-2).   

 

Figure 3-2: Longitudinal Evaluation of AATD 

As shown in Figure 3-2 the subject has lost ventilation over time (primarily in the lower 

lobes as to be expected in AATD related disease) and shows an increase in both ADC and 

RA950 qualitatively located in the basal portion of the lungs.  Although this analysis was 

performed only a single subject it provides motivation for larger longitudinal studies in 
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AATD, with the possibility of examining subjects with and without augmentation therapy.  

In a continuation study currently undergoing in our lab, subjects with AATD are being 

recruited and will be scanned longitudinally (1-3 years follow-up) to examine their lung 

function decline as measured using both spirometry and imaging techniques such as CT 

and hyperpolarized MRI.  Furthermore, by acquiring 129Xe images in this population, the 

techniques used and information gained from this study will be one step closer to clinical 

translation. 

 Significance and Impact 

Alpha-1 antitrypsin deficiency results in early onset chronic obstructive pulmonary disease 

and there is no available cure.  Current therapies rely on slowing disease progression.  

Longitudinal evaluation of this population is done with nonspecific airflow measurements 

and frequent CT scans with the burden of ionizing radiation.  Clinical trial endpoints 

unfortunately still rely on these methods.  Hyperpolarized noble-gas diffusion-weighted 

MRI, in particular Lm, provides an opportunity to fill the role of a clinical trial endpoint 

and provide a measurement of treatment response that is sensitive to both disease 

progression and airspace enlargement.  Diffusion-weighted MRI combines the ability to 

obtain ventilation defect percentage and measurements of tissue microstructure obtainable 

within a single breath-hold without the use of ionizing radiation, making it an attractive 

clinical trial endpoint to gauge treatment efficacy.  Using a smaller sample than currently 

used in clinical trials, treatment efficacy can be evaluated quantitatively using multiple-b 

diffusion MRI and can impact the time and cost associated with development of novel 

treatments for AATD.  
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