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Abstract 

Viruses rely on host cell machinery, often mimicking cellular components, in order to 

circumvent host cell defenses and hijack cellular processes. DNA viruses, such as human 

Adenovirus (hAdV), rely on host RNA Polymerase II (RNAPII) to transcribe viral genes. 

RNAPII has a C-terminal domain (CTD), made up of highly conserved heptad repeats of 

tyrosine-serine-proline-threonine-serine-proline-serine (YSPTSPS). Post-translational 

modifications of residues within the CTD, including phosphorylation, coordinates the 

transcription cycle. Several viruses, including Human Immunodeficiency Virus (HIV), 

Human Cytomegalovirus (hCMV), Epstein-Bar Virus (EBV) and Herpes Simplex Virus 

(HSV), modify the phosphorylation state of the RNAPII CTD by hijacking cellular cyclin 

dependent kinases (CDKs) to enhance viral transcription. The hAdV E1A protein, 

specifically the conserved region 3 (CR3), is a potent transcriptional activator. This 

region contains a sequence (YSPVSEP), highly conserved across hAdV subtypes, that has 

considerate sequence similarity to the heptad repeat of the RNAPII CTD. Two serine 

residues in E1A (S185 and S188) are phosphorylated, mimicking the phosphorylation of 

serine at positions 2 and 5 of the RNAPII CTD. We believe that given the sequence 

similarity, and the phosphorylation at conserved serine residues, that E1A CR3 acts 

as a mimic of the CTD to promote transcriptional elongation of viral genes.  This 

study has demonstrated the role of the putative CTD mimic, and the specific 

phosphorylation of serine residues in this region, for maximal transcription activation. 

This study examined how this region may structurally and functionally mimic the 

RNAPII CTD. To assess functional mimicry, the E1A putative CTD mimic was 

investigated for it’s ability to interact with CDK9, a protein known to interact with the 

RNAPII CTD. Although this interaction is not specific to the phosphorylation of S185 

and S188, it may still rely on the putative CTD mimic region within E1A CR3.  Finally, I 

constructed a novel hAdV point mutant (JM17-E1A S185/188A) and characterized the 

kinetics of viral gene expression so that it can be used as a tool to examine the role of the 

putative CTD mimic in transcription of viral genes. Cells infected with JM17-E1A 

S185/188A showed decreased amounts of E1A production, but not other viral genes, 
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when compared to wild type (WT) virus. This study investigated a novel example of viral 

mimicry, and the mechanism by which it enhances viral transcription.  
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Chapter 1 : Introduction 

1 Introduction 

1.1 Adenovirus 
Human Adenovirus (hAdV) was first isolated in 1953 from adenoid tissue and was later 

implicated as a causative agent for acute respiratory disorder in 1954 (Huebner et al., 

1954; Rowe et al., 1953). As the first human virus discovered to cause cancer in rodents 

and transform human cells, Adenovirus, like other small DNA tumour viruses, has taught 

researchers much about cell cycle control and has played a large role in identifying 

cellular proteins implicated in cancer (Berk, 2005; Howley and Livingston, 2009; Trentin 

et al., 1962). The viral protein encoded by Early Region 1A (E1A) has been particularity 

insightful into understanding aspects of both cellular and viral biology, including immune 

modulation, control of transcription, nuclear localization,  and viral mimicry, as it acts as 

a molecular hub interacting with a protein-protein interaction network that is potentially 

comprised of over 2100 proteins (Berk, 2005; Pelka et al., 2008). This thesis investigates 

E1A as a novel example of viral mimicry and its role in transcription activation. 

1.1.1 Taxonomy of Adenoviruses 

The Adenoviridae family, genus Mastadenovirus, are human pathogens that have been 

divided into seven species (A to G) based on phylogenetic distance and other shared 

characteristics (Table 1.1). Adenovirus types 1-51 were traditionally characterized by 

serological assays – combination tests of serum neutralization and hemagglutination (HA) 

inhibition. Newer adenovirus types, including 53-66, and as far as types 72, have been 

discovered by genome sequencing (Berk, 2007; King et al., 2012; Lion, 2014; Yoshitomi 

et al., 2016). Conventional naming has been modified to include identification of Penton 

Base, Hexon and Fibre genes, in order to accommodate for novel or 

recombinant/intratypic strains. The discovery of novel and recombinant or intratypic 

variants highlights the importance of screening populations to study adenovirus evolution 

and global spread (Aoki et al., 2011; Berk, 2007). 
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Table 1.1. Classification schemes for hAdV.  Adenovirus types 1-51 were traditionally characterized by serological assays, while 

newer adenovirus types have been discovered by genome sequencing (Figure adapted from Berk, 2007; Kojaoghlanian et al., 2003; 

Lion, 2014). 

Species HA Group CAR 
Receptor Serotypes Site of Infection Tumors in 

Animals 

Transformation 
in Tissue 
Culture 

% G+ C 
in DNA 

A IV 
(little or no 

agglutination) 

+ 12,18,31, 61 GI Tract High + 48-49 

B I 
(Complete 

agglutination 
of monkey 

erythrocytes) 

-  
(CD46) 

3,7,11,14,16, 
21,34,35,50,55,66, 

72 

Lung, Eye, 
Urinary Tract 

Moderate + 50-52 

C III 
(partial 

agglutination 
of rat 

erythrocytes) 

+ 1,2,5,6, 57 Upper 
Respiratory Tract 

Low/None + 57-59 

D II 
(complete 

agglutination 
of rat 

erythrocytes) 

+ 8,9,10,13,15, 
17,19,20,22-30 

32,33,36-39 
42-49,51, 53, 54, 56, 

58-60, 63-67 

Eye, GI Tract Low/None + 57-61 

E III + 4 Respiratory Tract Low/None + 57-59 

F III + 40,41 Gastrointestinal 
Tract 

Unknown Unknown 50-51 

G Unknown + 52 Gastrointestinal 
Tract 

Unknown N/A 55 



3 

 

 

 

1.1.2 Adenovirus Infection and Persistence 

Adenovirus infection had been linked to acute illness, severe illness in 

immunocompromised individuals and among certain populations, and in some cases 

persistent infection is linked to rarer manifestations of disease. In immunocompetent 

adults and children, acute infections consist of respiratory illness, gastroenteritis and 

keratoconjunctivitis/conjunctivitis (Table 1.1). Species B and C are most often associated 

with respiratory illness, including pneumonia and febrile respiratory illness. Adenovirus 

types 40 and 41 from species F, the newly discovered species G (hAdV52), and some 

types from species A and D are associated with gastroenteritis (Jones et al., 2007; King et 

al., 2012; Kojaoghlanian et al., 2003). Types from species B and D cause adenoidal–

pharyngeal conjunctivitis (hAdV3, 4, 7, 14) and keratoconjunctivitis (hAdV8, 19, 37, 53, 

54). hAdV37, 8 and 19 are sometimes associated with sexually transmitted urethritis and 

can present concurrently with conjunctivitis (Bradshaw et al., 2002; Liddle et al., 2015). 

Incidences of viral co-infection have been observed with adenoviral species B, C and E 

(Vora et al., 2006; Wang et al., 2013). In immunosuppressed patients, such as those 

following organ transplant or those with Human Immunodeficiency Virus (HIV), 

infections can disseminate and become fatal (Lion, 2014). Adenovirus infection, by types 

4 and 7 and to a lesser extent types 21 and 14, is particularly high among military recruits 

due to the close quarters and high stress environment experienced during basic training. A 

new oral vaccine strategy against hAdV4 and 7 was implemented in 2011 that has a 99% 

efficacy (Lion, 2014; Russell et al., 2006)  

A recent study demonstrated the first model of Adenovirus persistence whereby 

interferon gamma (IFNγ)  suppresses virus replication to evade the immune system and 

establish a persistent infection in normal, non-transformed cells (King et al., 2016a; 

Zheng et al., 2016).  Persistent hAdV infections are associated with an inflammatory 

response relevant to Chronic Obstructive Pulmonary Disease and asthma risk (Hogg, 

2001). Adenoviridae are also among a number of different viruses that cause acute and 

chronic forms of heart disease.  DNA has been detected in the myocardium of 3-23% 

patients with myocarditis (Bowles et al., 2003; Pankuweit and Klingel, 2013).  From 
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patient biopsy data, persistent infection has been associated with the development of 

dilated cardiomyopathy and progressive cardiac dysfunction (Kühl et al., 2005; Tátrai et 

al., 2011). In the first mouse model of its kind, researchers demonstrated that acute 

adenovirus infection leads to expression of IFNg and myocyte necrosis, while a persistent 

infection is associated with an increased heart mass and cardiac hypertrophy (McCarthy 

et al., 2015; Weinberg et al., 2005). hAdV (types 36, 37, and 5) is one of five infectious 

agents linked to obesity in both animals and humans (Mitra and Clarke, 2010). In 

humans, hAdV36 seropositivity in adipose tissues is associated with risk of obesity and 

weight gain (Ponterio and Gnessi, 2015; Tambo et al., 2016). Adenovirus infection has 

also been shown in a number of different animal studies (rodent and non-human primate 

models) to induce adiposity (weight gain and increased body fat), to modify the serum 

lipid composition, and shows an increase in insulin sensitivity (Dhurandhar et al., 2002; 

Kapila et al., 2004; Pasarica et al., 2006). 

1.1.3 Transformation and Apoptosis 

In 1962, when researchers demonstrated that hAdV12 induced tumours in hamsters, 

Adenovirus joined the growing group of animal viruses with the ability to cause cancer 

and became the first human oncovirus (Trentin et al., 1962). Future studies showed 

species A viruses (12, 18, 31) were highly oncogenic in rodents, while species B (3), 

species C (2) and species D (9) were more weakly oncogenic (Berk, 2007; Brusca et al., 

1984; Freeman et al., 1967a, 1967b; Huebner et al., 1962). While Adenovirus can 

transform human cells in culture models, it is not associated with cancer in humans. It 

appears only to cause tumours in rats and hamsters. Transfection by the hAdV genes E1A 

and E1B alone proves sufficient for transformation of human and rodent cells.  Indeed, 

Human Embryonic Kidney (HEK 293) cells were immortalized by stable transfection of 

the left end of the hAdV genome, which includes E1A and E1B (Graham et al., 1977; 

Whittaker et al., 1984).  E1A functions to promote cell cycle progression from G1 to S 

phase, primarily though the interaction with the Retinoblastoma Protein (pRb) (Felsani et 

al., 2006). Thus, the E1A oncoprotein became a powerful and insightful tool in 

identifying cellular proteins and host pathways involved in cancer (Berk, 2005; Howley 

and Livingston, 2009; Pelka et al., 2008). Other viral proteins involved in tumorigenesis 
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include the anti-apoptotic factors, E1B-55K and E1B-19K (Chiou et al., 1994; Dobner et 

al., 1996; Nevels et al., 1999). The viral proteins E4orf3 and E4orf6 further play a role in 

tumorigenesis and can substitute for E1B (Täuber and Dobner, 2001). The E1B and E4 

genes are described in greater detail in Section 1.1.4.  In human cells, disrupting cell 

cycle regulation, as described above, leads to a permissive environment for Adenovirus 

replication. However, in rodents this same dysregulation leads to tumorigenesis (Berk, 

2007). Paradoxically, E1A expressed at high levels in already transformed cell lines, 

suppresses the oncogenic phenotypes and acts to promote apoptosis and mesenchymal to 

epithelial transition (Douglas and Quinlan, 1995; Frisch and Mymryk, 2002; Schaeper et 

al., 1995). Genetically modified Adenoviral vectors are also used in oncolytic virotherapy 

as experimental cancer treatments (Yamamoto et al., 2017).  

1.1.4 Physical Properties of Adenovirus 

The hAdV species C type 5 and type 2 are the most commonly studied types. Most of 

what we know about Adenovirus biology is based on these two virus types because they 

are easy to grow in the laboratory. In the Mymryk lab, we commonly study hAdV5, 

which will be the focus of this thesis as well. The virus capsid has icosahedral symmetry 

(Figure 1.1 A, B), meaning it has 20 facets, that are made up of 240 hexon trimers. Each 

of the 12 vertices is comprised of a pentameric penton base and a trimeric fibre protein. 

Structural proteins IIIa, VI, VII, and IX are considered minor components of the capsid, 

which are involved in stability and assembly. Proteins V, VII, U, IVa2 and the TP are 

structural components that are associated with the dsDNA genome as part of the viral 

core. Finally, the p23 viral cysteine protease is a structural protein that is necessary for 

assembly and maturation of the virion by cleaving precursors of viral proteins (Berk, 

2007; Russell, 2009).  
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Figure 1.1. Physical Properties of Human Adenovirus Type 5.  

A) Virion Structure. Electron micrograph of a negatively stained hAdV5 particle. 

Bar=50nm. B) Diagrammatic representation of Adenovirus structure. Major and 

minor structural proteins are depicted, as well as the DNA/Protein core. C) Genome 

Organization. The 36 kbp genome is represented in blue with the red TP at the 5’ end of 

each strand. Green and Tan arrows represent RNAPII and RNPIII transcription products, 

respectively, and are labeled in bold type. Hatched lines show splicing of the Late 

transcript.  ITR = Inverted terminal repeat. TP = terminal protein. Ori = Origin of 

Replication. (Modified from Flint et al., 2015) 
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The hAdV5 dsDNA genome is approximately 36 000 kilobase pairs (kbp) in length and 

encodes for around 40 proteins (Berk, 2007). It contains a perfect inverted terminal repeat 

(ITR) that is 100 nucleotides long and has a 55 kilodalton (kDa) terminal protein (TP) 

covalently bound to the 5’ ends of each strand. The TP is thought to act as a protein 

primer during genome replication (Rekosh et al., 1977). Genes are expressed on both 

strands of the genome. The genome is expressed temporally with Early (E1A, E1B, E2E, 

E3 and E4), Intermediate (IX and IaV2, E2L) and Late Genes (L1-L5) (Figure 1.1 C) 

(Berk, 2007).   

 

1.1.5 The Genes and Life Cycle of Adenovirus 

Adenovirus gains entry into the host cell via receptor mediated endocytosis. Attachment 

by species A and species C-G occurs when the viral fibre protein binds coxsackie and 

adenovirus receptor (CAR), whereas species B viruses bind to CD46 (Berk, 2007; 

Roelvink et al., 1998; Seya et al., 1998).  Subsequently the penton base binds to integrin 

via an RGD (Arg-Gly-Asp) peptide motif to stimulate internalization of the virus. The 

fibre proteins detach and the viral capsid is endocytosed via clathrin coated vesicles 

(Cuzange et al., 1994; Varga et al., 1991; Wickham et al., 1993). Ad40 and 41 do not use 

integrins for infection and instead use an alternative mechanism for internalization 

(Albinsson and Kidd, 1999; Berk, 2007). Acidification within the endosome causes the 

virions to disassemble, promoting release of the virion core containing the viral genome. 

The core traffics via microtubules to the nuclear pore where the final stages of core 

disassembly occurs. The genome is released into the nucleus via the nuclear pore for 

DNA replication and transcription of viral genes necessary for production of progeny 

virions (Dales and Chardonnet, 1973; Greber and Way, 2006; Leopold et al., 2000; 

Lonberg-Holm and Philipson, 1969; Philipson and Lonberg-Holm, 1969).  

E1A is the first protein expressed during viral infection and it’s many functions will be 

described in Section 1.2. It plays two main roles during initiation of the viral replication 

cycle: 1) Promotes cell cycle progression from G1 to S phase to make the cell permissive 

to viral replication and 2) turns on all early viral gene transcription (Berk, 2007).  
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The Early Region 1 is composed of E1A and E1B. E1B proteins are named after their 

molecular weight and function primarily to block apoptosis induced by E1A (Berk, 2007). 

E1B-55K binds and inhibits p53 to repress transcription of p53 responsive genes and, in 

conjunction with E4orf6, targets p53 for polyubiquitination and its subsequent 

degradation (Querido et al., 2001; Yew and Berk, 1992; Yew et al., 1994). E1B-55K also 

regulates the Mre11-Rad50-Nbs1 (MRN) complex in conjunction with E4orf6 to inhibit 

this DNA damage response, that otherwise triggers the concatenation of viral genomes 

into unpackageable multimers (Karen et al., 2009; Stracker et al., 2002). E1B-19K acts as 

a homologue of the cellular BCL-2 protein to bind and inhibit apoptotic BAX and BAK 

(Chiou et al., 1994; Sundararajan et al., 2001; White et al., 1992).  

The E2 transcription unit encodes the DNA-dependent-DNA Polymerase, the TP, and the 

DNA Binding Protein (DBP) that function to replicate the genome. Viral replication is 

primed by the 5’ TP and proceeds in a 5’ to 3’ direction by the DNA polymerase. DBP 

binds and stabilizes single stranded DNA, aiding in initiation and elongation of viral 

replication, by binding of TP to complete second strand synthesis of progeny genomes 

(Challberg and Kelly, 1979; Dekker et al., 1997; Hoeben and Uil, 2013; Mul and van der 

Vliet, 1993).  

The E3 region encodes six proteins: where the receptor internalization and degradation 

(RIDab) complex, gp19K, E3 14.7K, and E3 6.7K function to evade the host immune 

system for cell survival, and the adenovirus death portion (ADP) functions in cell lysis for 

release of progeny virions (Reviewed in Lichtenstein et al., 2004).  While ADP is pro-

apoptotic (Tollefson et al., 1996), RIDab, E3 14.7K, and 6.7K function as anti-apoptotic 

factors by blocking cell death signaling pathways triggered by Tumour Necrosis Factor 

(TNF), Fas ligand, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-

kB), and TNF-related apoptosis-inducing ligand (TRAIL). RIDab and E3 6.7K are 

transmembrane proteins that function by downregulating cellular ”death” receptors as 

well as antagonizing signalling pathways (Benedict et al., 2001; Elsing and Burgert, 

1998; Friedman and Horwitz, 2002; Lichtenstein et al., 2004; Moise et al., 2002; 

Tollefson et al., 2001). E3 14.7K is a soluble protein and functions by binding and 

inhibiting factors such as TNF and NF-kB (Gooding et al., 1990; Lichtenstein et al., 
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2004). gp19K is a transmembrane protein in the endoplasmic reticulum that 

downregulates MHCI expression on the cell surface and evades the CTL-mediated killing 

of adenovirus infected cells (Andersson et al., 1985; Burgert and Kvist, 1985). As of yet, 

E3 12.5K has no known function and it’s deletion does not affect viral growth (Hawkins 

and Wold, 1992).  

The E4 region produces 7 differentially spliced protein products named after the open 

reading frame (orfs) and they have a diverse set of functions including viral replication, 

cell cycle control and regulating the switch from early to late stages of infection (Halbert 

et al., 1985; Tigges and Raskas, 1984; Weitzman, 2005; Yoder and Berget, 1986). E4orf1 

functions only in Group D Adenovirus to promote transformation of rodent cells (Javier, 

1994; Weiss et al., 1997). E4orf2 and E4orf3/4 do not have any known functions and their 

deletion has no effect on viral growth (Dix and Leppard, 1995). E4orf3 inhibits the MRN 

complex by interacting with promyelocytic leukemia nuclear bodies and altering their 

structure. E4orf3 may function to inhibit the DNA damage response and play a role in 

viral replication (Carvalho et al., 1995; Stracker et al., 2002). E4orf4 binds to protein 

phosphatase 2A, thus inhibiting it and downregulating transactivation (Kleinberger and 

Shenk, 1993). E4orf4 is also capable of inducing p53-independent apoptosis (Marcellus et 

al., 1998). As mentioned previously, E4orf6 can function in conjunction with E1B to 

inhibit p53 and the MRN complex (Dobner et al., 1996; Karen et al., 2009; Querido et al., 

2001). E4orf6/7 works in conjunction with E1A to stimulate the transcription at the E2 

promoter by binding directly to the E2 Binding Factor (E2F), which promotes stable 

DNA binding at the promoter (Neill et al., 1990). 

The early gene products function to make the host cell environment permissive to virus 

replication and assembly of progeny virions. Early genes induce cell cycle progression, 

inhibit the cellular antiviral response, activate transcription of cellular and viral genes, 

and disrupt protein-protein regulatory networks (Berk, 2007). Adenovirus also encodes 

two non-coding virally associated (VA) RNAs that help to subvert the immune system 

and promote transcription of late viral genes. VA RNAI and VA RNAII are transcribed 

by RNAP III, they are approximately 150-200 nucleotides long, and are expressed at high 

levels in infected cells. VA RNAI is the most predominant from and is required for 
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efficient viral replication. It inhibits the anti-viral response by the double-stranded RNA-

activated protein kinase (Ma and Mathews, 1996; Mathews and Shenk, 1991).  VA RNAs 

interfere with host cell RNA interference system by interacting with the nuclear Exportin 

5. This inhibits cellular miRNA’s and the Dicer complex from being exported into the 

cytoplasm. In the cytoplasm, VA RNA also directly inhibits Dicer from processing 

cellular miRNA’s (Lu and Cullen, 2004; Vachon and Conn, 2016; Xu et al., 2007). The 

structural and non-structural late proteins (expressed by L1-L5 transcription units) 

function to package the viral genome and assemble progeny virions. The host cell is then 

lysed and progeny virions are released (Berk, 2007).  

1.2  Adenovirus E1A 

1.2.1 Adenovirus E1A Gene and Transcripts 

The hAdV E1A protein is the first protein expressed in viral infection and is required for 

productive viral replication through transactivation of viral genes and in reprogramming 

the host cell for productive infection. The hAdV E1A gene produces 5 mRNA products 

(Figure 1.2 A) 13S, 12S, 11S, 10S and 9S that are translated into 289, 243, 217, 171, and 

55 residues (R) proteins respectively (Perricaudet et al., 1979; Stephens and Harlow, 

1987; Ulfendahl et al., 1987; Virtanen and Pettersson, 1983). The 13S (289R) and 12S 

(243R) forms are the most predominant forms expressed during infection. The 243 form 

differs in the 46 amino acid transactivating portion. 13S and 12S are capable of 

transformation, but only 13S is capable of transactivation of both cellular and viral genes 

(Berk and Sharp, 1978; Ferguson et al., 1985; Roberts et al., 1985).  Produced later in 

infection, 10S (217R) and 11S (171R) mRNA are translated in the same reading frame as 

12S and 13S mRNAs but differ in that they lack 72 amino acids (aa 27 to 98) present in 

the larger isoforms. Viruses expressing only 10S and 11S E1A products are limited in 

virus growth, transcription activation and fail to transform rodent cells. These 

observations highlighted the importance of the region from aa 27 to 98 for transformation 

(Stephens and Harlow, 1987; Ulfendahl et al., 1987). The majority of current research 

focuses on the function of 13S and 12S E1A isoforms and little is known about the 

functions of 10S and 11S isoforms. However, a recent study in our lab examined the 

function of 9S (55R) E1A. 9S E1A is expressed at late times in infection and consists of 
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the first 26 amino acids in the N-terminus of E1A which is shared with other E1A 

isoforms, as well as a unique C-terminus caused by a frame shift in the exon 2 reading 

frame. Through the N-terminal portion (shared with other E1A) isoforms, 55R E1A was 

shown to interact with S8, a regulatory component of the 26S proteasome, and that this 

interaction is required for viral replication. Additionally, there may be novel binding 

partners that target the unique frame shifted C-terminal region of 9S E1A (Miller et al., 

2012; Virtanen and Pettersson, 1983). 

 

1.2.2 E1A as a Molecular Hub 

E1A is a structurally disordered protein, meaning that it lacks a tertiary structure, and it 

has no known crystal structure to date (Ferreon et al., 2013; Wright and Dyson, 2015). 

Bioinformatics analysis of the protein suggests the protein exists in a native unfolded 

conformation with the exception of the structured zinc finger in CR3 and an alpha helix 

region in the N-terminus (Pelka et al., 2008). Sequence alignment from a number of 

adenoviral serotypes has revealed regions of highly conserved sequences: CR1, CR2, 

CR3 and CR4 (Figure 1.2 B) (Avvakumov et al., 2002, 2004). Structurally disordered 

proteins act in a dynamic fashion as their interaction is not limited to a single fold or 

globular domain, and instead can interact with a number of different proteins through 

short linear sequences in a number of different conformations (Davey et al., 2011).  Such 

proteins act as molecular hubs, which functionally interact with a number of different 

pathways. E1A is thus considered a molecular hub (Figure 1.3), where regions within 

CR1, CR2, CR3, and CR4 interact directly or indirectly with a potential network of over 

2100 different proteins to alter many different aspects of the host cell to make it 

permissive to viral replication (Pelka et al., 2008). The multi-functional hAdV E1A has 

led to many discoveries and a greater understanding of transcription and cell cycle (Berk, 

2005). 
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Figure 1.2. hAdV5 E1A Splice Products.  

A) The primary RNA transcript from the hAdV5 E1A gene is differentially spiced into 5 

mRNA products ranging in size from 13S to 9S. Blocks represent the exons, while lines 

represent introns. All splice events maintain the translational reading frame except in 9S 

mRNA transcript and is represented by a grey block. B) A representation of the E1A 

protein products encoded by the 5 mRNA products. Conserved Regions (CR) 1 - 4 are 

labeled and denoted by yellow, green, blue and orange blocks respectively. The novel 

sequence in the 55R protein produced by the 9S mRNA is denoted by a grey block.  
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The N-terminus/CR1 region is involved in transformation, cell cycle progression, cell 

signalling and transactivation. The N-terminus of E1A comprises the first 41 amino acids 

and CR1 covers the region from aa 42-72 (Pelka et al., 2008). The N-terminus interacts 

with: proteasomal subunits including S8 and S4 of the 19S regulatory proteasome subunit 

(Rasti et al., 2005), cellular kinases including Nek9 (Pelka et al., 2007) and Protein 

Kinase A (PKA) (King et al., 2016b), and factors that coordinate transactivation including 

p300/CBP associated factor (pCAF) (Pelka et al., 2009a), p300/CBP (Rasti et al., 2005), 

GCN5 (Ablack et al., 2012) and TATA Binding Protein (TBP) (Rasti et al., 2005). The N-

terminus of E1A also binds the p400 complex and coordinates with CR1 for binding of  

p300/CBP and Transformation/Transcription domain associated factor (TRAAP) all of 

which are necessary for the transforming activity of E1A (Fuchs et al., 2001).  

The interaction of E1A with pRb is coordinated by CR2 and CR1, and is necessary for 

transformation of primary rodent cells (Subramanian et al., 1991). CR2 spans residues 

115-137 and functions in cell cycle regulation and transformation. pRb interacts with 

CR2 of E1A though the pocket binding domain. This high affinity binding provides an 

accumulation of stable pRb-E2F/CR2 complexes that allows CR1 to bind pRb and forces 

E2F dissociation. CR1 directly competes with E2F from pRb and helps drive complete 

dissociation of E2F and the binding of CR2 to pRb. E2F dissociation is also related to 

E2F activated transcription, which drives cell cycle progression from G1 to S phase 

which makes the cells permissive to adenovirus replication (Dyson et al., 1992; Felsani et 

al., 2006; Morris and Dyson, 2001). CR2 also has an area of high density overlapping 

protein motifs that are involved in the binding to cellular proteins such as BS69, UBC9 

and the newly discovered interaction with STING (Ansieau and Leutz, 2002; Lau et al., 

2015; Yousef et al., 2010).  

The function of CR3 is largely attributed to transactivation. CR3 transactivation is the 

main focus of this thesis and is covered in greater detail in the following sections (Section 

1.2.3-1.2.5).  
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Figure 1.3. E1A as a Molecular Hub 

E1A interacts with at least 31 primary interactors and a potential network of 2125 

secondary interactors. Primary interactors were chosen from the literature, with at least 

two citations in PubMed. Secondary interactors were then determined via the BioGRID 

database. Gephi was then used to visualize the protein interaction network of E1A. 

(Figure provided by J.S. Mymryk).  
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CR4 spans residues 240 to 288 and plays a role in E1A induced oncogenesis.  It is 

required for transformation with E1B, but paradoxically can also induce mesenchymal-to-

epithelial transition and act as a tumour suppressor (Chinnadurai, 2002; Douglas and 

Quinlan, 1995; Schaeper et al., 1995; Subramanian et al., 1991).  CR4 interacts with C-

terminal Binding Protein (CtBP), dual-specificity tyrosine-regulated kinase 1A (DYRK1), 

HANII and Forkhead transcription factors (FOXK1 and FOXK2) (Chinnadurai, 2002; 

Komorek et al., 2010; Zhang et al., 2001). The CtBP and DYRK1A interaction with CR4 

are required for E1B-55K mediated transformation. Recent data suggests that CtBP is not 

involved in Ras mediated suppression of transformation but that DYRK1 with HANII and 

FOXK1/FOXK2 may carry out this function (Cohen et al., 2013). The C-terminal portion 

of E1A CR4 also contains a well characterized Nuclear Localization Signal (NLS), aa 

285-289 (KRPRP), that interacts with importin alpha3 for nuclear import (Köhler et al., 

2001; Lyons et al., 1987).  

 

1.2.3 CR3 Model for Transactivation 

CR3, which spans aa 139 to 204 in hAdV5, is a potent transcriptional activator. CR3 

alone is sufficient to activate transcription when tethered to a promotor via fusion with a 

heterologous DNA Binding Domain (DBD) (Lillie and Green, 1989).  Models of CR3 

activation were primarily studied in the hAdV5 background, but this region is highly 

conserved across species of Adenovirus (Avvakumov et al., 2002, 2004). Not 

surprisingly, CR3 can act as a transcriptional activator in all six species tested (species A-

F), although there are differences in the activation potential between species. All species 

require binding to factors such as MED23 for activation of transcription (Ablack et al., 

2010).  

Like many viral and cellular proteins that activate transcription, E1A has a consensus zinc 

finger motif that binds a zinc ion through four conserved cysteine residues (C154, C157, 

C171, and C174). Bioinformatics analysis of this region suggests that this region is 

structured. Mutating the zinc coordinating cysteine residues or a number of other residues 

within this region leads to loss of function, likely due to loss of structure and the ability to 
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bind the zinc ion (Culp et al., 1988; Geisberg et al., 1994; Pelka et al., 2008; Webster and 

Ricciardi, 1991). E1A binds to TBP and MED23 through the zinc finger region of CR3. 

The interaction of E1A CR3 with TBP and MED23 require separate residues within CR3, 

but both require the coordination of the zinc ion for binding (Figure 1.4).  Binding of TBP 

and MED23 leads to transcriptional activation through the rapid formation of the pre-

initiation complex, which includes RNAPII  and TBP-Associated Factors (TAFs) (Berk, 

2005; Boyer et al., 1999; Geisberg et al., 1994; Stevens et al., 2002).  

Since E1A has no DNA binding capabilities, E1A must first be targeted to the promoter. 

This is primarily thought to occur via the recruitment by sequence specific transcrption 

factors such as YY1, USF, ATF-2, SP1, S8 of the 19S proteosome and TAFII110 and 

TAFII250 (See Section 1.2.4. and Table 1.2). These factors interact with E1A through the 

portion of CR3 from aa 180-188, named the promotor targeting region of CR3 (Liu and 

Green, 1994; Webster and Ricciardi, 1991). The current model for CR3 function is that 

E1A is recruited to promotors of viral genes via the promotor targeting region, after 

which the zinc finger region recruits TBP and MED23 in order to nucleate the pre-

initiation complex and activate transcription (Figure 1.4). 

E1A CR3 has more recently been shown to interact with additional factors that elegantly 

fine tune coordination of transcription activation. For example, E1A CR3 serves as a 

second independent interaction site for the histone acetyltransferases pCAF and 

p300/CBP, which also bind E1A via the N-terminus. These chromatin modifying 

enzymes act as co-activators of transcription (Pelka et al., 2009a, 2009b). The E1A 

interaction with CtBP has a second binding site in CR3 in addition to the binding site in 

CR4. This interaction acts to relieve repression by CtBP at viral promotors (Bruton et al., 

2008). The 26 Proteasome is made up of the 20S proteolytic subunit and the 19S 

regulatory subunit. The 20S subunit activates transcription independently of the 19S 

subunit though interaction with E1A aa 161-177. Presumably, proteosome-mediated 

degradation of E1A, or E1A regulatory proteins, regulates the capacity for E1A 

transactivation (Rasti et al., 2006). 
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Top: A linear representation of 289R E1A. CRs are labeled, and AR1 is denoted in 

yellow.  

Bottom: Residues of E1A CR3 from aa 139 to 200 are indicated using a one-letter code. 

The coordinating cysteines are circled, and the key targets of CR3 are shown in green 

(TBP), blue (MED23), and red (Transcription Factors (TFs)), respectively. The key 

residues interacting with each target are indicated by the corresponding colors. The 

boundaries of the residues of CR3 known to be required for interaction with APIS 

(residues 169 to 188) and the 20S proteasome (residues 161 to 177), pCAF (residues 139-

147 and 180-188) and CtBP (residues 161-167) are marked by # and *, ^, and ~ 

respectively. p300/CBP interacts with residues within 137-204 E1A CR3. (Figure 

modified from Pelka et al., 2008.) 

^^

~

^ ^

~

Figure 1.4. The current model of E1A CR3-dependent activation of transcription 
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A third region of CR3 is important for the efficient transactivation ability of E1A hAdV5. 

It is required for transcription activation of all early viral promotors as well as the cellular 

HSP70 gene. Named Auxiliary Region 1 (AR1), it consists of six glutamic acid-proline 

(EP) repeats, spanning amino acid residues 189 to 200 in the 289R E1A gene.  It was 

shown that the number of EP repeats is critical for function; reducing the number of 

repeats to four or increasing the number of repeats to eight or ten, significantly reduces 

the transactivation capabilities of E1A. When the glutamic acid residues of AR1 were 

mutated to aspartic acid, E1A retained its transactivation capabilities. However, when 

mutating this residue to a positively charged amino acid, it impaired transactivation 

abilities by E1A. Mutating the proline residues did not reduce the transactivation abilities. 

Therefore, the activation function appears to be due to the acidic nature of this region and 

the number of repeats present (Ström et al., 1998). 

 

1.2.4 Promoter Targeting by CR3 

While E1A has no specific DNA binding activity, it can interact with a number of other 

proteins or transcription factors (Table 1.2), which directly interact with DNA and directs 

E1A to the promoter regions of viral genes (Pelka et al., 2008). Activating Transcription 

Factors (ATFs) are a family of proteins that have basic/leucine (bZIP) DBDs. ATF 

binding sites are found within E1A targeted promotors of viral early genes. In particular, 

the ATF binding site within the E4 promoter region is required for E1A mediated 

transactivation. This led researchers to the discovery of the first cellular transcription 

factor that E1A uses for promotor targeting purposes. E1A binds ATF-2, and through it’s 

sequence specific DBD, is recruited to promoters containing ATF sites to mediate 

transcription activation by E1A (Gilardi and Perricaudet, 1986; Liu and Green, 1990). 

Researchers later discovered that E1A can interact with other members of the ATF family 

(ATF-1 and ATF-3) as well as other cellular transcription factors that contain different 

DNA binding domains, such as c-JUN (bZIP DBD), SP1 (zinc finger DNA DBD) and 

USF (basic/helix-loop-helix bHLH DBD). These interactions were able to mediate E1A 

activated transcription (Liu and Green, 1994).  
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Table 1.2. List of Proteins to Interact with the Promotor Targeting Region of CR3 

Protein Interaction Residues Function Reference 
YY1 140-188  

 
Cellular transcription factor (Lewis et al., 

1995) 
TAFII110 
TAFII250 

 

180-188 TBP - Associated Factor (Geisberg et 
al., 1995) 

ATF-2 179-193 Activating Transcription Factor (Liu and 
Green, 1990) 

 
c-Jun 

 
179-193 Transcription Factor AP-1 (Liu and 

Green, 1994) 
USF 179-193 Upstream Stimulatory Factor 

 
(Liu and 

Green, 1994) 
Sp1 179-193 

 
Specificity Protein 1 (Liu and 

Green, 1994) 
S8  169 -188 26S Protease 

Subunit/Transcription Factor 
(Rasti et al., 

2006) 

pCAF 180-188 p300/CBP Associated Factor (Pelka et al., 
2009a) 

GCN5 178-188 Cellular Lysine Acetyltransferase  (Ablack et al., 
2012) 
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Additionally, E1A CR3 interacts via the promotor targeting region with several additional 

components of the transcription apparatus. Activation of transcription by TBP with E1A 

CR3 is dependent on several TBP associated factors (TAFs), including TAFII110 and 

TAFII250 (Geisberg et al., 1995). YY1 is a zinc finger protein and a cellular transcription 

factor that represses transcription when bound upstream of heterologous basal promoters. 

E1A proteins binds YY1 though both the N terminus (aa 15-35) and CR3 (aa 140-188) 

and relives the repression by YY1, thus activating transcription (Lewis et al., 1995). E1A 

also binds the S8 subunit of the 19S regulatory proteasome component that binds E1A via 

aa 169-188, which includes the promotor targeting region. This interaction activates 

transcription initiation independently of the 20S proteolytic component (Rasti et al., 

2006).  

 

1.2.5 E1A and Elongation 

There is increasing evidence that E1A is involved in regulating transcription past the 

formation of the pre-initiation complex. This makes studies of the effects of E1A on 

transcriptional elongation an important area of research in future studies.  E1A binds 

hBre1 (human BREfeldin A sensitivity) through the N-terminus and recruits the hPaf1 

complex to early viral genes. The hPaf1 complex is known for its ability to promote 

RNAPII mediated elongation which may account for E1A/hPaf1 activation of early viral 

genes and increased viral replication (Fonseca et al., 2014). E1A, S8 and the 20S 

proteasome are found at various gene elements throughout the E1B gene, in addition to at 

enhancer and promotor regions. This indicates that these components transit with the 

elongating polymerase from the transcription start site and may also be involved in 

elongation. Although proteasome-mediated degradation of E1A is required for efficient 

E1A-CR3 mediated transcription initiation, other proteasome components may function 

to regulate elongation, given that S8 functions independently of the 20S proteasome.  

SUG1, the yeast homolog of S8, is required for both transcription activation and 

elongation, which suggests S8 may play a conserved role in cellular and viral genes (Rasti 

et al., 2006). All E1A isoforms, including the 9S (55R) isoform, interacts with S8 via aa 
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4-25 which suggests  a role for the N-terminus in addition to CR3 in elongation and 

initiation (Miller et al., 2012; Rasti et al., 2005).  

E1A CR3 also interacts with CDK9 as well as other components of the super elongation 

complex, including CDK9, cyclin T1/T2, AFF4, ELL, and EAF. CDK9 is critical for 

activating transcription in vitro, for hAdV replication and in activating transcription of 

early viral genes such as E2 and E4.  CDK9 may play a role in elongation of viral genes 

through interaction with E1A CR3 and possibly MED23 (Vijayalingam and Chinnadurai, 

2013). Elucidating the mechanism by which CDK9 in involved with regulating elongation 

of viral genes is an exciting avenue for future research and may link Adenovirus E1A to 

other viral models of elongation regulation (See Section 1.4). 

In addition to activation and promoting efficient elongation, E1A may negatively regulate 

elongation. GCN5 is a cellular lysine acetyl transferase and a chromatin modifying factor 

that facilitates elongation by acetylation of histones. E1A binds and recruits GCN5 to 

viral promotors through both the N-terminus of E1A and aa 178-188 of CR3 (Table 1.2). 

E1A recruited GCN5 acetylates histone H3 at the viral E4 promotor and is a negative 

regulator on elongation. E1A recruited GCN5 may also potentially acetylate CDK9 which 

represses it’s ability to phosphorylate RNAPII and activate elongation (Ablack et al., 

2012).  

 

1.3 Mimicry 
 

1.3.1 Introduction to Linear Motifs 

For many years, viral mimicry and the study of protein-protein interactions was thought 

only to pertain to folded globular domains. However, the role of linear motifs or non-

globular motifs, particularly in viral mimicry, is an expanding field of study. The 

following sections introduce the importance of linear motifs, particularly the importance 

of these motifs in understanding how hAdV5 E1A functions. Linear motifs (LMs), also 

called short linear interaction motifs (SLiMs), MiniMotifs or Eukaryotic Linear Motifs 
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(ELMs), are three to ten aa in length and function independently of a tertiary structure. In 

viral proteins, these ELMs are involved in hijacking a number of different cellular 

processes such as viral entry and cellular transport, transcriptional regulation, cell cycle 

regulation, subverting host cell protein- protein interaction networks, and modulating the 

host cell immune response. The limited length of these ELMs allows viral proteins to 

encode a large number of these motifs in a single protein. The use of ELMs is 

advantageous, as they are resistant to mutation, are permissive for functional redundancy, 

and are conducive to convergent evolution (Chemes et al., 2015; Davey et al., 2011; Dyer 

et al., 2008). To date the ELM database contains over 170 linear motif classes, 111 of 

these are ligand sites (LIG) or interaction motifs that mediate protein binding (Davey et 

al., 2012; Dinkel et al., 2012). 

 

1.3.2 Mimicry in Viral Pathogenesis  

Viruses rely heavily on host cell machinery, repurposing it for their own use, in order to 

control cell cycle and transcription, immune responses and nuclear import.  In order to 

circumvent host cell defenses and hijack cellular processes, viruses will often mimic the 

host cell (Dyer et al., 2008). Viruses such as HIV, EBV, Kaposi's sarcoma-associated 

herpesvirus (KSHV), Respiratory Syncytial Virus, and hCMV, encode globular domains 

in viral proteins that mimic cellular cytokines and chemokines. Other viruses encode 

proteins that mimic cytokine and chemokine receptors (Alcami, 2003). However, viral 

proteins are often significantly shorter than host proteins given genome size limitations, 

and therefore numerous viruses such as EBV, HIV, Adenovirus, Influenza and HPV will 

use ELMs rather than globular domains to usurp host cell processes (Reviewed in Davey 

et al., 2011). As some selected examples, HIV Nef1 mimics the SH3 binding PxxP motif 

of cSrc and activates members of the Src family tyrosine kinases Hck, Lyn and and cSrc 

itself (Moarefi et al., 1997; Saksela et al., 1995; Trible et al., 2006). Some studies suggest 

the Nef PxxP motif plays a role in AIDS progression and HIV pathogenesis and this has 

led to screens of large libraries of small molecule inhibitors in order to discover new 

therapeutics to target these interactions (Moroco et al., 2015; Trible et al., 2006; Wales et 

al., 2015). Influenza PB2 (a component of the influenza virus polymerase) and Simian 
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Virus 40 (SV40) T-Antigen mimic bipartite and monopartite nuclear localization signals 

(NLSs) respectively, and these motifs mediate binding to importin alpha. By mimicking 

mammalian NLSs viruses can make use of host cell transport machinery to traffic viral 

proteins to the nucleus (Fontes et al., 2003; Mukaigawa and Nayak, 1991; Tarendeau et 

al., 2007).  

Motif rich viral proteins also play an important role in oncogenesis and these proteins 

have led to many discoveries about cell cycle progression (Davey et al., 2011). The 

density of motif mimicry within EBV latent membrane protein (LMP1) leads to 

dysregulation of multiple cellular pathways by a single protein and results in cancer 

progression. LMP1 mimics cellular CD40, a member of the TNF receptor family, in order 

to hijack cellular signalling pathways for immortalization of B cells by disrupting cellular 

proliferation and apoptosis.  The EBV LMP1 protein interacts with JAK through the 

proline rich PxxPxP motif which leads to phosphorylation of JAK and the activation of 

the JAK/STAT pathway (Gires et al., 1999). LMP1 also binds TNFR-associated factor 

(TRAF) through the PxQxT motif which leads to activation of the NF-kB pathway 

(Mitchell and Sugden, 1995; Ye et al., 1999).  

In summary, the examples above are by no means an exhaustive list, but they highlight 

the importance of viruses mimicking host proteins at all stages of the viral replication 

cycle.  

 

1.3.3 Mimicry and Evolution 

Adenoviral E1A, Human Papilloma Virus (HPV) E7, SV40 T-antigen, JC virus T antigen, 

and BK virus T-antigen, all interact with pRb via an LxCxE motif, suggesting that similar 

functions though SLiMs evolved via different pathways in various families of DNA 

tumour viruses (Felsani et al., 2006). ELMs do indeed tend to be the product of 

convergent evolution, which is defined as: “Multiple independent appearances of a given 

motif that can occur both in unrelated proteins and in separate branches of a protein 

phylogeny” (Chemes et al., 2015; Hagai et al., 2014). Globular domains evolve slowly, 

restricted in that they must maintain correct folding, but these linear sequences easily 
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appear and readily undergo positive selection in a population (Chemes et al., 2015; Davey 

et al., 2011). Researchers took a data set of over 2208 non-redundant viruses and scanned 

the disordered domains of all viral proteins that match with a database of ELMs (Dinkel 

et al., 2012; Hagai et al., 2014). They discovered ELMs tended to be shorter and less 

complex, and that the number of ELMs correlated to the length of the disordered regions 

in viral proteins. Additionally, certain pairs of ELMs exist in viral proteins, which 

suggests highly regulated interaction networks (Hagai et al., 2014). Computational 

biology is an invaluable tool for studying large datasets of viral proteins to identify new 

instances of ELMs, as well as novel ELMs, leading to the discovery of novel protein-

protein interactions. Such approaches have become a vital tool in studying evolution in 

pathogenesis. Furthermore, the rapid evolution of viral ELMs leads to rapidly changing 

host-virus interaction networks, which may have an important long term impact on the 

evolutionary course of host cells (Bhowmick et al., 2015; Dinkel et al., 2012; Edwards 

and Palopoli, 2015; Elde and Malik, 2009; Hagai et al., 2014).  

 

1.3.4 Mimicry by Adenovirus  

Adenovirus has a genome of approximately 36 kbp and employs multiple examples of 

structural, functional and motif mimicry in order to get around the limited coding capacity 

of the genome and hijack the host cell for permissive viral replication. The adenoviral 

penton base expresses an RGD-containing loop, that mimics the integrin binding motif 

present on extracellular matrix proteins such as fibronectin, and is critical for adenoviral 

binding to integrins for internalization of the virus (Bai et al., 1993; Chiu et al., 1999; 

Cuzange et al., 1994; Nemerow and Stewart, 2016). The adenoviral genome is packaged 

in a way that resembles chromatin, where the nucleoprotein VII (PVII) condenses 

adenoviral DNA akin to cellular nucleosomes. During infection, PVII is also found 

associated with cellular nucleosomes in host DNA, where it can protect DNA from 

degradation. Thus, the PVII protein not only acts as a functional histone mimic in viral 

chromatin like structures, but also acts within the host cell chromatin to bind cellular 

factors and block host immune responses (Avgousti et al., 2016; Johnson et al., 2004; 

King et al., 2016c; Vayda et al., 1983). The adenoviral E1B-19K protein functions like 
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the cellular oncogene BCL-2 to inhibit apoptosis and is required for transformation of 

rodent cells (Chiou et al., 1994; Radke et al., 2014). 

 

1.3.5 Mimicry by hAdV E1A 

Although E1A is only 289 amino acids long, it alone interacts directly with over 30 

proteins and potentially targets a protein-protein network of over 2100 cellular proteins 

(Figure 1.3). To accomplish this task, E1A itself must also therefore rely on numerous 

examples of structural, functional and motif mimicry. The N-terminal region of E1A, aa 

14-28, functionally and structurally mimics cellular A-kinase anchoring proteins 

(AKAPs) in order to bind PKA and relocate it to the nucleus to increase transcription of 

viral genes and increase virus replication (King et al., 2016b). E1A interacts with the 

OCT4 transcription factor via the N-terminus and CR3 where E1A acts as a mimic of a 

cofactor required to activate OCT4 and regulates reprogramming of host cells to induce 

pleuripotent stem cells (Brehm et al., 1999; Marthaler et al., 2016; Schöler et al., 1991).  

E1A CRs extensively mimics a number of ELMs that function in binding to cellular 

factors to hijack for the virus’s own use (Reviewed in Davey et al., 2011). For example, 

E1A binds the transcriptional regulators CREB binding protein (CBP) and p300 via the 

conserved FxDxxxL motif (O’Connor et al., 1999).  CtBP interacts with E1A through the 

PxDLS motif in CR4 of E1A and regulates oncogenic transformation (Chinnadurai, 2002; 

Schaeper et al., 1995, 1998). BS69 interacts with E1A through the PxLxP motif in CR2 

and acts as a suppressor of E1A mediated transactivation (Ansieau and Leutz, 2002; 

Hateboer et al., 1995). E1A interacts with pRb via the LxxLY motif in CR1, and also 

binds to pRb pocket binding domain via the LxCxE motif in CR2 (Dyson et al., 1992; 

Felsani et al., 2006; Morris and Dyson, 2001). New data shows that the LxCxE motif is 

also critical for E1A interaction with STING, which may antagonize the DNA sensing 

cGAS pathway to prevent an antiviral response (Lau et al., 2015). pRb, BS69, STING as 

well as UBC9 all interact with both distinct and overlapping motifs in the CR2 region of 

E1A. This density of interactions highlights the importance of motif mimicry and making 
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use of functional motifs to use the minimum amount of coded protein for the maximum 

functional output (Davey et al., 2011; Pelka et al., 2008). 

 

1.4 Viruses, the CTD, and Elongation 
Of the three cellular RNA polymerases (RNAPI, II, and III), RNAPII is largely 

responsible for the production of mRNA.  DNA viruses, such as hAdV, rely primarily on 

RNAPII to transcribe viral genes. RNAPII is made up of a ten subunit core with the 

Rpb4/7 subcomplex flexibly linked to the RNAPII core. The C-terminal domain (CTD) is 

linked to the largest subunit of RNAPII (Rpb1) by an 80 residue flexible linker, and itself 

consists of a consensus sequence tyrosine-serine-proline-threonine-serine-proline-serine 

(YSPTSPS). The functional unit is defined as one full repeat and the next four residues 

(Cramer et al., 2008; Eick and Geyer, 2013). The CTD is largely unstructured, although it 

shows some evidence of B-turns formed by SPXX motifs (Meinhart et al., 2005; Suzuki, 

1989) The length of the CTD and the overall structural disorder is critical for function 

(Liu et al., 2010). In humans, there are 52 heptad repeats, and a minimum of 22 are 

required to support transcription (Rosonina and Blencowe, 2004).  

The functional motifs of the CTD are post translationally modified by phosphorylation, 

glycosylation, methylation and isomerization, which together creates a so-called CTD 

code. A single functional unit has over 10 000 potential combinations of post translational 

combinations. This, along with the disordered nature of the CTD, allows for multiple 

different and dynamic docking sites for a number factors involved in mRNA splicing and 

coordination of the transcription cycle (Eick and Geyer, 2013; Meinhart et al., 2005).  

Two important modifications of the CTD are the phosphorylation of serines at positions 2 

and 5 of the heptad repeat. Unphosphorylated RNAPII (also called hypophosphorylated 

or RNAPIIa) is recruited to the DNA template.  CDK7 in complex with Cyclin H then 

preferentially phosphorylates serine 5 (S5) for transcription initiation. Positive 

transcription elongation factor b (P-TEFb), which consists of CDK9 in complex with 

Cyclin T, next preferentially phosphorylates serine 2 (S2) to stimulate transcription 
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elongation, resulting in the hyperphosphorylated form of RNAPII (RNAPIIo) (Eick and 

Geyer, 2013). A further regulation step consists of controlling the release of the stalled 

polymerase, paused proximally at the promoter. Negative elongation factor (NELF) acts 

with DRB sensitivity-inducing factor (DSIF) to pause the polymerase complex after it 

transcribes the initial 20 to 60 nucleotides.  P-TEFb then phosphorylates NELF and DSIF 

to de-repress paused transcription, releasing the polymerase to continue transcriptional 

elongation (Gilchrist et al., 2008; Kwak and Lis, 2013).  

A number of different viral proteins from viruses such as; HIV, EBV, hCMV, HSV, 

KSHV, and Human T-lymphotropic virus type 1 (HTLV), have been shown to interact 

with CDK9 to enhance viral transcription by relief of promotor pausing to promote 

elongation.  Several of these viruses, including HIV, EBV, hCMV and HSV, will also 

modify the phosphorylation state of the RNAPII CTD through regulation and recruitment 

of CDK9 (Reviewed in Zaborowska et al., 2016).  Adenovirus E1A has also been shown 

to interact with CDK9 and this may be a way by which it too promotes elongation of viral 

genes (Vijayalingam and Chinnadurai, 2013). Investigating this interaction is of great 

importance as it may place Adenovirus in a category with other viruses that hijack 

RNAPII for virally enhanced elongation. 

 

1.4.1 HIV 

HIV is likely the most well studied of these viruses and the mechanism by which it affects 

transcriptional elongation has been well characterized. Early on, researchers discovered 

that HIV Tat (a transcriptional activator) modifies the substrate specificity of CDK9 to 

phosphorylate S5 in addition to S2 of RNAPII CTD (Zhou et al., 2000).  During 

elongation, Tat binds to the transactivation response (TAR) - RNA element, which is a 

stem loop structure that forms at the 5’ end of nascent viral transcripts, and the P-TEFb 

complex is recruited to TAR. Tat directed CDK9 phosphorylation is critical for this 

interaction (Garber et al., 2000; Kim et al., 2002). The complex then phosphorylates the 

CTD, as well as NELF and DSIF, to release the stalled polymerase and stimulate efficient 

elongation (Ott et al., 2011; Zhou et al., 2000). Treating cells with the P-TEFb/CDK9 
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inhibitors such as DRB (6-dichloro-1-b-D-ribofuranosylbenzimidazole) or Flavopiridol 

reduced Tat induced CDK9 phosphorylation and blocks HIV transcription and replication 

(Chao et al., 2000; Zhou et al., 2000). 

 

1.4.2 HTLV-1 

HTLV-1 encodes a transcriptional activator Tax. P-TEFb is recruited to promotors in the 

presence of Tax, where Tax induces the phosphorylation and activation of CDK9. The 

use of a CDK9 inhibitor (Flavopiridol) and siRNA against CDK9 demonstrates that 

CDK9 is critical for Tax transactivation (Zhou et al., 2006). Further studies show the dual 

roles for Tax in regulating the P-TEFb complex. Tax displaces the inhibitory 7SK 

snRNP/HEXIM1 complex from P-TEFb to form the Tax/P-TEFb complex, which results 

in more efficient transcriptional activation at the HTLV-1 LTR. Normally Brd4 is present 

on the HTLV-LTR in an inactive form, but in the presence of Tax, Brd4 levels decrease 

while the levels of CDK9 increase. This suggests that the Tax/P-TEFb complex is 

recruited to the LTR to activate transcription (Cho et al., 2010; Zaborowska et al., 2016).  

 

1.4.3 EBV 

In a similar fashion to HIV-Tat, the EBNA-2 protein of EBV is involved in 

transcriptional activation, and specifically requires CDK9. EBNA-2 hijacks CDK9 to 

phosphorylate S5 of the CTD of RNAPII rather than S2. This may indicate CDK9 and 

EBNA-2 modify RNAPII in order to direct promotor clearance and elongation. DRB 

treatment also inhibits EBNA-2 activated transcription, which further highlights the 

importance of CDK9 in viral transcriptional activation and CTD phosphorylation. DRB 

and Flavopiridol were discussed as potential treatments for EBV infection (Bark-Jones et 

al., 2006). 
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1.4.4 hCMV 

HCMV infection leads to the formation of transcriptomes, which are the site of 

intermediate early gene transcription and thus function as recruitment centres for cellular 

transcriptional regulators. HCMV infection alters the phosphorylation of RNAPII and the 

accumulation of CDK7 and CKD9 at these centres at different stages of infection. HCMV 

infection also results in higher kinase activity of CDK7 and CDK9. At early times in 

infection, S2 phosphorylated RNAPII, CDK9, and CDK7 colocalize with the intermediate 

early (IE1/IE2) proteins. At 48 hours post infection, CDK7 and unphosphorylated 

RNAPII are found at viral replication centres, while CDK9 and S2 phosphorylated 

RNAPII are observed in punctate around the nuclei, and S5 phosphorylated RNAPII is 

seen at the peripheries of the replication centres. Treating with the CDK inhibitor 

Roscovitine at early times of infection reduced phosphorylation of RNAPII and 

transcription of viral genes. These observations suggests that a viral protein functions to 

regulate the cellular CDKs and the alters phosphorylation of RNAPII to promote viral 

transcription (Tamrakar et al., 2005). 

In fact there are three proteins expressed by hCMV that interact with P-TEFb: pUL69, 

pUL97 and IE2 86 (Graf et al., 2013; Kapasi et al., 2009; Rechter et al., 2009).  pUL97 is 

considered a mimic of CDKs activity due to structural and functional similarities to its 

cellular counterpart. Deletion of pUL97 leads to decreased viral replication. pUL97 

interacts with Cyclin-T1 but does not phosphorylate RNAPII in vivo (although it does in 

vitro) (Baek et al., 2004; Graf et al., 2013). pUL97 phosphorylates pUL69 which can 

modulate pUL69 function and nuclear localization during hCMV infection. pUL69 is a 

transcriptional activator and mRNA export factor, which is also phosphorylated by 

CDK9, providing another level of regulation (Graf et al., 2013; Rechter et al., 2009). IE2 

86 is a 86-kDa is major immediate-early protein, and it contains a serine rich region that 

must be phosphorylated for efficient transcription of viral genes (Barrasa et al., 2005). 

Later studies showed that the viral protein IE2 86 is vital for the interaction between 

Cyclin T1 and CDK9, for CDK9 activity, and for the recruitment of CDK9 to viral 

replication centres (Kapasi and Spector, 2008; Kapasi et al., 2009).  Thus, hCMV encodes 

a number of different factors that interact with the P-TEFb regulatory complex. 
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Collectively, these induce an infection specific subcellular localization of viral and 

cellular factors, induce hyperphosphorylation of RNAPII, and promote viral transcription 

and replication (Zaborowska et al., 2016).  

Although the viral protein pUL79 does not bind to cellular CDKs and does not modify the 

phosphorylation of RNAPII, it does appear to act as a virally encoded factor that relieves 

a stalled polymerase and promote elongation of viral genes at late points of infection 

(Perng et al., 2014).  

 

1.4.5 HSV 

HSV infection has also been shown to modify the phosphorylation state of the CTD, 

producing an HSV specific from of RNAPII, an RNAPIIi or intermediate form that is 

solely phosphorylated on S5. ICP22 interacts with CDK9 and phosphorylates the RNAPII 

CTD on S5 in a fashion that is dependent on the viral US3 protein. Additionally, ICP22 

with viral UL13 triggers the loss of phosphorylated S2 in an alternate mechanism (Durand 

and Roizman, 2008; Durand et al., 2005; Rice et al., 1995). The regulatory protein ICP27 

interacts with RNAPII and may play a role in relocalization of RNAPII to viral 

transcription sites, where S2 phosphorylated RNAPII undergoes proteasomal degradation, 

resulting in a global reduction in levels of phosphorylated S2 during infection (Dai-Ju et 

al., 2006; Fraser and Rice, 2005, 2007).  

In addition, HSV modification of RNAPII by ICP22 is essential for transcription of viral 

genes. During HSV infection, CDK9 and RNAPII co-localize with ICP22, bringing 

researchers to believe that CDK9 may bring ICP22 into the RNAPII complex. ICP22 then 

functions to alter expression of viral genes though interactions with viral proteins such as 

UL13 or VP16 (Bastian and Rice, 2009; Durand and Roizman, 2008; Guo et al., 2012; 

Rice et al., 1995). Inhibiting CDK9 with DRB, Flavopiridol, or Roscovitine impedes 

transcription of viral genes in HSV infection (Durand et al., 2005; Ou and Sandri-Goldin, 

2013).  
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1.4.6 KSHV 

As an interesting example of mimicry, the region from aa 633 to 652 in the KSHV 

transactivator protein K-RTA shows homology to a region in the NELF-B component of 

NELF. Within this region of homology, these two proteins in particular share conserved 

phosphorylated serine residues. These residues, serine-634 and serine-636, in K-RTA are 

phosphorylated by the recruitment of CDK9 in vitro. Replacing these residues with 

alanines in K-RTA impaired its ability to activate transcription, reduced CDK9 

recruitment, and resulted in an overall decrease in KSHV replication. Treating infected 

cells with CDK9 inhibitors such as Flavopiridol, Roscovitine, or DRB, led to a reduction 

in transcription of K-RTA regulated genes.  They concluded that this motif in K-RTA 

bears similarity to a functional domain in NELF-B and functions to recruit CDK9 to the 

viral genome for more efficient transcription, perhaps through bypassing promotor 

pausing of RNAPII  (Tsai et al., 2012). 

 

1.5 Thesis Overview 
 

1.5.1 Rationale 

The hAdV E1A protein is the first gene expressed upon adenovirus infection.  E1A is a 

potent activator of transcription and is responsible for turning on all early viral genes.  

E1A CR3 is necessary and sufficient to activate transcription when fused to a 

heterologous DBD in mammalian cells (Ablack et al., 2010, 2012; Shuen et al., 2002). 

For full transcriptional activation, CR3 requires all three functional regions be intact: the 

zinc finger region, the C-terminal region, and the negatively charged AR1 (Glenn and 

Ricciardi, 1987; Pelka et al., 2008; Ström et al., 1998; Webster and Ricciardi, 1991).  

Of these regions, the role of the C-terminal region of CR3 (aa 180-188) in transcriptional 

activation is probably the least well understood. The earliest studies demonstrating a 

function in this region were based on the characterization of random mutations created by 

treating hADv5 virions with nitrous acid. The host range 5 (hr5) mutant was sequenced 
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and found to have a single amino acid substitution at S185 for asparagine. The hr5 mutant 

was unable to activate transcription at early viral genes E2, E3 and E4 (Berk et al., 1979; 

Glenn and Ricciardi, 1985). A pair of deletion mutants in this region, which include 

dl1114 (∆178-184) and dl1115 (∆188-204), were also unable to activate transcription 

(Jelsma et al., 1988). Following these studies, Webster and Ricciardi mutated every single 

amino acid in E1A and examined the resulting peptides for their ability to activate 

transcription. Any substitutions in residues in this C-terminal region, or its deletion in its 

entirety, also abolished transactivation capabilities. Interestingly enough, mutating the C-

terminal portion but leaving the zinc finger region of CR3 intact resulted in a trans-

dominant phenotype. In this case, co-expression of the mutant E1A blocks transactivation 

by wild type (WT) E1A.  Mechanistically, it was thought that while the above dominant 

negative mutants cannot bind a subset of associated cellular factors required for 

transactivation, it retains binding with the cellular transcription machinery that is 

recruited through the zinc finger and titrates such factors away from the early viral 

promotors (Glenn and Ricciardi, 1987; Webster and Ricciardi, 1991). These experiments 

established the C-terminal region as its own functional domain separate from the zinc 

finger domain (Glenn and Ricciardi, 1987; Webster and Ricciardi, 1991).  

The C-terminal region appears unstructured and this likely contributes to its ability to 

interact with a number of different proteins.  Studies have suggested that this C-terminal 

region binds to DNA binding transcription factors, such as members of the ATF family, 

USF, Sp1, TAFII250 and TAFII135 and S8 (Geisberg et al., 1995; Pelka et al., 2008; 

Rasti et al., 2006; Webster and Ricciardi, 1991). These discoveries established the C-

terminal portion of CR3 as the promotor targeting region, and from here on in will be 

referred to as such. As E1A has no DNA binding capabilities, it is thought that the 

promotor targeting region of CR3 directs E1A to transcriptional templates for activation 

and formation of the pre-initiation complex (Ferguson et al., 1985; Liu and Green, 1994). 

However, how the promotor targeting region functions, in relation to the DNA binding 

proteins or other unknown factors, remains to be understood. 

This promotor targeting region of E1A is arguably the most conserved region across 

adenovirus subtypes (Avvakumov et al., 2004). Therefore, it is an interesting observation 
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that in E1A CR3 we find a sequence (YSPVSEP) which has considerable sequence 

similarity to the consensus heptad repeat of the RNAPII CTD (YSPTSPS) (Figure 1.5). In 

addition, both the promotor targeting region of E1A CR3 and the RNAPII CTD are 

believed to be unstructured (Pelka et al., 2008; Srivastava and Ahn, 2015). Two serine 

residues in E1A CR3 (S185 and S188) are invariant and phosphorylated, which 

corresponds to the phosphorylation of S2 and S5 of the RNAPII CTD. S185 and S188 are 

shown to be hyperphosphorylated in vivo. Those researchers also show that S185 is found 

within a mitogen-activated protein kinase (MAPK) consensus phosphorylation site, and in 

vitro is phosphorylated by MAPK.  However, S188 is not phosphorylated by MAPK, but 

appears to be phosphorylated by a kinase that is activated by MAPK, although the 

specific kinase is unknown. Phosphorylation of these residues, S185 and S188,  were 

shown to be required for transactivation of the viral E4 gene by E1A (Whalen et al., 

1997). Mutating these highly conserved serine residues impairs transactivation by E1A, 

particularly of the E4 gene, which highlights the importance of phosphorylation in 

transactivation regulation (Avvakumov et al., 2002, Glenn and Ricciardi, 1987; Whalen et 

al., 1997).  

 

1.5.2 Hypothesis 

We believe that given the sequence similarity, structural similarity, and the 

phosphorylation at conserved residues, that E1A CR3 acts as a mimic of the RNAPII 

CTD to promote transcription of viral genes.   

E1A has been shown to interact with CDK9 and some evidence exists that E1A activates 

viral gene expression at both the initiation and elongation steps. Given the current models 

for HIV and EBV, that hijack CDK9 to relieve promotor pausing and allow for efficient 

elongation of viral genes, we further believe that E1A may function in a similar fashion.  

 

 



34 

 

 

1.5.3 Objectives 

1) To determine the role of the putative CTD mimic in transcription activation.  

2) To establish the extent of the structural/functional mimicry by E1A CR3 based on the 

sequence similarities between RNAPII CTD and E1A CR3. 

3) To elucidate the mechanism by which the putative CTD mimic promotes transcription. 
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Alignment demonstrates high conservation between adenovirus species in the promotor 

targeting region of E1A and demonstrates a high level of sequence similarity to the 

RNAPII CTD. Darker shading indicates highly conserved amino acids. + indicates 

conserved cysteine residues that coordinate a zinc ion to bind TBP and Mediator. * 

indicates conserved serine residues that are phosphorylated in both hAdV E1A and 

RNAPII.  

 

Figure 1.5. Sequence alignment of all hAdV Species (A-G) E1A CR3 with the RNAPII 

CTD consensus sequence. 

CR3
Zn Finger CTD Mimic? AR1

* *+ + + +
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Chapter 2 : Methods 

2 Methods  
 

2.1  Cells, Cell Culture, and Transfections 
Human cell lines: A549 (alveolar basal epithelial cell line), HT1080 (fibrosarcoma cell 

line), and HEK293A (embryonal kidney cell line) were originally obtained from the 

American type culture collection (ATCC). All cells were maintained at 37°C and 5% 

CO2 in Dulbecco Modified Eagle medium (Wisent) with 10% Performance Fetal Bovine 

Serum (Wisent) and 100 U/ml of penicillin-streptomycin (Wisent). HT1080 cells were 

transfected with the X-tremeGene HP DNA transfection reagent (Sigma) according to the 

manufacturer's directions in a ratio of 4µl to 1µg of DNA. 

 

2.2  Viruses and Virus Construction 
HAdV5, dl309 (expresses all E1A proteins), has been described previously (Jones and 

Shenk, 1979) and is used as wildtype (WT) in my experiments. 

pXC1-Ad5 E1A S185/188A was created by cloning the E1A S185/188A coding sequence 

into the EcoRI and SalI restriction sites of pXC1 (a generous gift of F. Graham). CR3 

S185/188A was amplified using the following primers, by a previous student (Greg 

Fonseca, 2013) in our lab, via two-step PCR:   

CR3 5’ F-CTACGCTCCTGTGGCTGAACCTGAGCC and  

CR3 5’ R- ACTGTCGACTTATGGCCTGGGACGTTTACAGCTC,  

CR3 3’ F-CGACGAATTCATGAGACATATTATCTGC and  

CR3 3’ R-GGTTCAGCCACAGGAGCGTAGACAAAC.  
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(Figure adapted from Vectorbiolabs.com, 2016) 

 

 

 

 

 

 

 

Figure 2.1. Steps involved in the rescue of the JM17 E1A S185/188A virus. 



38 

 

 

HEK 293A cells were seeded in 10cm dishes 24 hours prior to transfection with the 

pXC1-E1A S185/188A plasmid and pJM17.  HEK 293A cells constitutively express the 

E1 genes and are often used in order to create pure populations of mutant viruses. The 

cells complement defects in viruses containing mutations in the E1A and E1B genes by 

supplying the WT E1A and E1B in trans (Amalfitano et al., 1996; Graham et al., 1977; 

Ketner and Boyer, 2007; Krougliak and Graham, 1995). Recombinant virus was rescued 

by transfecting 5µg of pXC1- E1A S185/188A and 10µg of pJM17 into HEK 293A cells, 

using a 2:1 X-tremeGene HP DNA transfection reagent (Sigma) to DNA ratio (Figure 

2.1). The pXC1 plasmid contains 16% of the left end of the hAdV5 genome, which 

includes the entire E1 region (McKinnon et al., 1982, 1985). For my experiments, WT 

E1A was replaced with the E1A S185/188A mutation. The pJM17 plasmid is an 

adenoviral shuttle vector containing the entire adenoviral genome without the packaging 

signal required for the encapsidation of the viral genome. This plasmid also contains an 

insert that makes the genome approximately 2 kbp larger than the maximum amount of 

DNA that can be packaged in adenoviral capsids. Infectious virus particles will only be 

produced when a recombination event takes place to excise the insert. pJM17 efficiently 

recombines with plasmids containing the left hand end of the adenoviral genome, such as 

the pXCI plasmid containing the desired E1A mutation (Ghosh-Choudhury et al., 1987; 

McGrory et al., 1988). Successful recombination results in a full length packagable 

genome and the production of infectious virus. Viral production and infection causes 

subsequent cell lysis.  When 100% cytopathic effect (CPE) is observed in the transfected 

HEK293 cells, approximately 7 days post transfection, a crude viral stock is prepared 

harvesting cells and supernatant and repeatedly freeze/thawing the samples to release the 

virus particles.  

Virus was serially diluted and titered by plaque assay. Single plaques were picked for 

propagation and sequencing of viral DNA (Purelink Viral RNA/DNA Mini Kit 

Invitrogen). Sequenced clones (BioBasic) demonstrated the successful rescue of the 

mutant JM17-E1A S185/188A virus. A single viral clone was amplified by infecting 6 x 

15 cm plates of HEK 293 cells. Cells were harvested and the virus was purified by CsCl 

density gradient purification using standard methods. Briefly, cells were incubated with 

Tris Buffered Saline (TBS), 0.5% Deoxycholic acid, 0.02M MgCl2, and 10mg/ml RNAse 
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prior to sonication. The density was adjusted to 1.34g/cc CsCl with TBS and transferred 

to a centrifuge tube. Sealed centrifuge tubes were spun overnight (~16 hours) at 33 000 

rpm in a T65 rotor, Beckman Optima XL-100K Ultracentrifuge (Tollefson et al., 2007). 

Virus was then titered by plaque assay to determine plaque forming units (PFU/mL) in 

order to use the virus for future experiments with reliable and quantifiable results (n=2). 

Again, viral DNA from single plaques were sequenced to confirm the purified stock of 

virus contained a pure population of JM17-E1A S185/188A mutant virus.  

Similar steps were taken to produce a virus replacing S185 and S188 of E1A with aspartic 

acid (S185/188D), thus creating a phospho-mimic of WT E1A. However, after the initial 

recombination step, the rescued virus was not infectious and could not be amplified and 

purified.  

Virus infections were performed using A549 cells at the indicated multiplicity of 

infection (MOI) and cells were harvested at the indicated time points. 

2.3  Plasmid Construction and Large Scale Preparations 

All plasmids (Table 2.1) were transformed into DH5a competent cells (Bethesda 

Research Laboratories, 1986) and were grown in Luria Broth with appropriate antibiotics 

at 37 °C overnight. Small-scale preparations were made using PureLink Quick Plasmid 

Mini Kit (Invitrogen) and all large-scale preparations were made by PureLink HiPure 

Plasmid Filter Midiprep Kit (Invitrogen). All correct clones were verified by sequencing 

(Biobasic). 

The GAL4-responsive luciferase reporter vector pGL2-(Gal4)6-Luc and GAL4-DBD 

fusion for hAdV E1A CR3 has been described previously (Avvakumov et al., 2003; 

Shuen et al., 2002). E1A CR3 S185/188A CR3 S185/188D were cloned into EcoRI/SalI 

sites of pM (Clontech Labratories Inc.) or pGFP (expresses the green fluorescence protein 

driven by the cytomegalovirus promotor).  E1A CR3 truncations (CR3 190T, 189T, 182T, 

178T) were PCR amplified by a previous student in the lab (Jai Ablack, 2012) and were 

cloned into pM or pGFP via EcoRI/SalI restriction sites.  
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Table 2.1. A list of plasmids utilized in this study and their sources (JMB is Joe 

Mymryk Bacteria Database) 

Gene Parent Vector JMB Source 

Empty Vector pM 301 Clonetech  

CR3  pM 1493 Weimin Liu 

CR3 S185/188A pM 4429 Greg Fonseca 

CR3 S185/188D pM 4430 Greg Fonseca 

CR3 190T pM 3706 Jai Ablack 

CR3 189T pM 3705 Jai Ablack 

CR3 182T pM 3575 Jai Ablack 

CR3 178T pM 3876 Jai Ablack 

CR3 183-200 WT pM 4638 This study 

CR3183-200 S185/188A pM 4639 This study 

CR3183-200 S185/188D pM 4640 This study 

CR3 183-190  pM 4643 This study 

CR3 183-192 pM 4642 This study 

CR3 183-196 pM 4641 This study 

EP x6 pM 4644 This study 

Human CTD Heptad pM 4645 This study 

Empty Vector pGFP 925 Stephanie Derbyshire 

CR3  pGFP 1756 Weimin Liu 

CR3 S185/188A pGFP 4440 Greg Fonseca 

CR3 S185/188 D pGFP 4441 Greg Fonseca 

CR3 190T pGFP 3708 Jai Ablack 

CR3 182T pGFP 3889 Jai Ablack 

CR3 D180-188 pGFP 3168 Jai Ablack 

CR3 183-200 WT pGFP 4646 This study 

CR3183-200 S185/188A pGFP 4647 This study 

CR3183-200 S185/188D pGFP 4648 This study 

CR3 183-190  pGFP 4651 This study 

CR3 183-192 pGFP 4650 This study 
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CR3 183-196 pGFP 4649 This study 

EP x6 pGFP 4652 This study 

Human CTD Heptad pGFP 4653 This study 

13S E1A pGFP 1449 Jennifer Curran 

13S E1A S185/188A pGFP 4654 This study 

13S E1A S185/188D pGFP 4655 This study 

13S E1A pXC1 152 F. Graham 

13S E1A S185/188A pXC1 4427 Greg Fonseca 

13S E1A S185/188D pXC1 4426 Greg Fonseca 

CDK9 pCDNA4-HA  This study 

hAdV5 Genome JM17 184 Joe Mymryk 
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Table 2.2. List of self-annealing oligonucleotides used in this thesis. 

 

 

 

 

 

 

  
Forward Primer 

 
Reverse Primer 

CR3 183-200 WT 
AATTCTTTGTCTACGATCCT
GTGTCTGAACCTGAGCCTG
AGCCCGAGCCAGAACCGG
AGCCTTAAG 

TCGACTTAAGGCTCCGGTT
CTGGCTCGGGCTCAGGCT
CAGGTTCAGCCACAGGAGC
GTAGACAAAG 

CR3 183-200 

S185/188A 

AATTCTTTGTCTACGCTCCT
GTGGCTGAACCTGAGCCTG
AGCCCGAGCCAGAACCGG
AGCCTTAAG 

TCGACTTAAGGCTCCGGTT
CTGGCTCGGGCTCAGGCT
CAGGTTCAGCCACAGGAGC
GTAGACAAAG 

CR3 183-200 

S185/188D 

AATTCTTTGTCTACGATCCT
GTGGATGAACCTGAGCCTG
AGCCCGAGCCAGAACCGG
AGCCTTAAG 

TCGACTTAAGGCTCCGGTT
CTGGCTCGGGCTCAGGCT
CAGGTTCATCCACAGGATC
GTAGACAAAG 

CR3 183-190  AATTCTTTGTCTACAGTCCT
GTGTCTGAACCTTAAG 

TCGACTTAAGGTTCAGACA
CAGGACTGTAGACAAAG 

CR3 183-192 
AATTCTTTGTCTACAGTCCT
GTGTCTGAACCTGAGCCTT
AAG 

TCGACTTAAGGCTCAGGTT
CAGACACAGGACTGTAGAC
AAAG 

CR3 183-196 
AATTCTTTGTCTACAGTCCT
GTGTCTGAACCTGAGCCTG
AGCCCGAGCCATAAG 

TCGACTTATGGCTCGGGCT
CAGGCTCAGGTTCAGACAC
AGGACTGTAGACAAAG 

EP x6 
AATTCTTTGTCGAACCTGA
GCCTGAGCCCGAGCCAGA
ACCGGAGCCTTAAG 

TCGACTTAAGGCTCCGGTT
CTGGCTCGGGCTCAGGCT
CAGGTTCGACAAAG 

Human CTD Heptad AATTCTTTGTCTATAGCCCG
ACCAGCCCGAGCTAAG 

TCGACTTAGCTCGGGCTGG
TCGGGCTATAGACAAAG 
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Pairs of self-annealing oligonucleotides (Table 2.2), designed with EcoRI and SalI sticky 

ends, were purchased from Integrated DNA Technologies (IDT) and cloned into  

the EcoRI/SalI sites of either pM or pGFP.  Correct clones were identified by restriction 

digest with XhoI/XbaI (pM clones) and XhoI/HpaI (pGFP clones).   

 

WT 13S E1A fused to GFP has been described previously. 13S E1A S185/188A and 13S 

E1A S185/188D were cut from their respective pXC1 plasmids with EcoRI and SalI and 

cloned into EcoRI/SalI cut pGFP.  

 

The CDK9 expression vector was generated using a custom gene synthesis service from 

IDT and was cloned into pCDNA4-HA with EcoRI/SalI. 

 

2.4  Luciferase Reporter Assay 
24 hours prior to transfection, HT1080 cells were seeded into six-well plates at a density 

of approximately of 2 x 105 cells/well. 

The GAL4 fusion assay has been described previously (Ablack et al., 2010). The E1A 

CR3 activation assay was performed as follows: cells were first transfected in a 1:1 ratio 

of reporter vector [pGL2-(Gal4)6-Luc] to activator (pM-CR3). Cells were then harvested 

24 hours post transfection in 1x cell culture lysis buffer (Promega). Lysates were assayed 

for luciferase activity using Steady-Glo substrate (Promega) and the Lumat LB 9507 

(Berthold) luminometer. Many thanks to the Drs. DiMattia and Shepard laboratory for the 

use of the machine. The number of relative light units (RLUs) were normalized to the 

protein concentration and plotted as the mean fold activation above that achieved with 

GAL4-DBD alone (pM) ± standard deviation (SD). 

The competition assay has been described previously (Ablack et al., 2010). The 

competition assay was performed as follows: cells were first transfected in a 1:1:1 ratio of 

reporter [pGL2-(Gal4)6-Luc]: activator (pM-CR3): squelcher (either pGFP or pGFP-CR3 

fusion). Cells were harvested at 24 hours post transfection, as described above. The 

number of RLUs were normalized to the protein concentration and plotted as a percentage 
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of GAL4-Ad5 E1A CR3 WT (pM-CR3) activation with pGFP (empty vector) as the 

competitor ± SD.  

 

2.5  Western Blotting and Co-Immunoprecipitation 
Details for primary and secondary antibodies may be found in Table 2.3. 

HT1080 cells were seeded 24 hours prior to transfection. Cells were then harvested 24 

hours post transfection by scraping and washed once with 1X Phosphate Buffered Saline 

(PBS). In order to preserve phosphorylation of serine residues, cells lysates prepared for 

co-immunoprecipitation (Co-IP) were prepared in RIPA Buffer (50mM Tris, 150nM 

NaCl, 1% NP-40, 0.5% Na-Deoxycholate, 0.1% SDS, pH7.5) supplemented with 1X 

protease inhibitor cocktail (Sigma) and phosphatase inhibitors (0.5M NaF and 200mM 

Na-Orthovanadate and 225 mM Na-Pyrophospate). Co-IP protein samples were incubated 

overnight with rocking at 4°C with 100µl of 10% ProteinA-Sepharose beads (Sigma) and 

either 1µl of α-GFP or α-RNA Polymerase II antibodies. Typically, immunoprecipitates 

were washed five times with 1mL RIPA lysis buffer, resuspended in 25µl 1X NuPAGE 

LDS (lithium dodecyl sulfate) sample buffer with DTT, and boiled for 5 minutes.  Cell 

lysates prepared for Western blotting (luciferase assay and virus infection time course) 

were prepared in NP-40 lysis buffer (150mM NaCl, 50 mM Tris-HCl pH 7.5, 0.1% NP-

40) with 1X protease inhibitor cocktail (Sigma). Protein concentrations were determined 

with a BioRad protein assay reagent using BSA as a standard. Samples were prepared 

with equal amounts of protein by first calculating the amount of protein present in 26µl of 

the sample with the lowest concentration of protein. Diluted samples were boiled with 

10µl 1X NUPAGE LDS sample buffer with 4µl DTT for 5 minutes. All samples were 

separated on precast NuPage 4-12% Bis-Tris gradient gels (Invitrogen) and transferred to 

PVDF membranes (Amersham) using the NuPage system. Membranes were blocked in 

TBS with 0.1% Tween-20, and 5% skim milk (BioShop) or 5% Bovine Serum Albumin 

(BSA) (Sigma).  Western blot (IB) analysis was carried out with indicated primary 

overnight, followed by horseradish peroxidase (HRP)-conjugated secondary antibodies 

for one hour, and were then detected using an ECL Plus Western blotting detection 
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system (Amersham) and autoradiography with High performance chemiluminescence 

film (Amersham Hyperfilm ECL).  

 

2.6  RNA isolation and RT- qPCR 
Total RNA was prepared with PureLink RNA MiniKit (Invitrogen).  A total of 1µg of 

RNA was reverse transcribed into cDNA with SuperScript Vilo MasterMix (Invitrogen) 

following the manufacturer’s instructions. Quantification of cDNA was performed in 

triplicate using Power SYBR-Green PCR MasterMix (Applied Biosystems) for real time 

quantitative PCR (RT-qPCR) (Quant Studio 5, Applied Biosystems) with oligonucleotide 

sequences that specifically recognize Beta-actin (F- CTCGCCTTTGCCGATCC, R- 

GAATCCTTCTGACCCATGCC),E1A (F- AGTTTTGTCTACAGTCCTGTGTCTGAA, 

R- GATAGCAGGCGCCATTTTAGG) and E4 (F- GCCCCCATAGGAGGTATAAC, R- 

GGCTGCCGCTGTGGAAGCGC). Relative expression was calculated using the ∆∆CT 

method, and results were normalized to Beta-actin and the uninfected sample (See User 

Bulletin #2, Applied Biosystems).   
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Table 2.3. List of antibodies used in this thesis. (Clone name indicated in brackets) 

 

Antibody Dilution Description Source (Catalog #) 

HA (3F10) 100 ng/µl Rat monoclonal Roche (431001) 

E1A (M73) 1:100 Mouse monoclonal In house hybridoma  

(Harlow et al., 1985)  

E1A (M58) 1:100 Mouse monoclonal In house hybridoma  

(Harlow et al., 1985)  

GFP 1:2000 Rabbit polyclonal Clontech Living Colours 

(632592) 

GFP 1:20 000 Mouse monoclonal Clontech Living Colours 

(632375) 

RNAPII  

(pSer2-pSer5) 

1:1000 Rabbit polyclonal Cell Signalling (4725) 

GAL4 (DBD) 1:500 Mouse monoclonal Santa Cruz (sc510) 

DBP (E2A) 1:200 Mouse monoclonal In house hybridoma 

CDK9 (H-169) 1:1000 Rabbit polyclonal SantaCruz (sc8338) 

Ad5 - Capsid 1:10 000 Rabbit polyclonal  Cedar Lane (ab6982) 

Actin 1:1000 Rabbit polyclonal Sigma (A2066) 

Tubulin 1:1000 Mouse monoclonal Sigma (T6199) 

Anti-Rat IgG  1:20 000 Goat, HRP Pierce (31470) 

Anti-Mouse IgG 1:5000 Goat, HRP  Jackson Immunoresearch 

Anti-Rabbit IgG  1:5000 Goat, HRP  Jackson Immunoresearch 
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Chapter 3 : Results  

3 Results  
 

3.1 Transcriptional Activation by the Putative CTD Mimic 
Transactivation by E1A CR3 has been studied predominantly in hAdV5 which makes it a 

well-established model for CR3 function. E1A CR3 is necessary and sufficient to activate 

transcription when fused to a heterologous DBD in mammalian cells (Jelsma et al., 1988; 

Shuen et al., 2002). Transactivation by this chimeric fusion is a model system that has 

been used for many years in our laboratory and is a simple way to examine the effect of 

mutations on activation of transcription (Ablack et al., 2010, 2012, Pelka et al., 2009a, 

2009b).  For maximum transcriptional activation, CR3 requires the three functional 

subregions be intact: the zinc finger region, the promoter targeting region, and AR1 

(Figure 1.4) (Glenn and Ricciardi, 1987; Pelka et al., 2008; Ström et al., 1998; Webster 

and Ricciardi, 1991).  However, the role of the promotor targeting region (aa 180-188) 

and how it contributes to the transactivation capability of E1A is the least well 

understood. We have proposed that this region acts as a RNAPII CTD mimic to promote 

transcription of viral genes (Figure 1.5). Therefore, transcription activation by this region 

(termed the putative CTD mimic for the purpose of this thesis) will be examined using a 

luciferase activation assay system, using specific substitution and truncation mutants to 

dissect the important residues of this region of interest. 

 

3.1.1 Activation by CR3 of E1A 

Consequently, for the purpose of these experiments, plasmids express the CR3 region 

from hAdV5 E1A (aa 139-204) in isolation from the rest of the protein.  Wild type CR3 is 

known to be phosphorylated on serines at positions 185 and 188. These serines 

correspond to the phosphorylated serines at position 2 and 5 in the heptad repeat of the 

RNAPII CTD (Figure 1.5).  
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Wild Type Conserved Region 3 (CR3). A non-phosphorylatable mutant with alanine 

substitutions at positions S185 and S188 (CR3 S185/188A) and a phospho-mimic with 

aspartic acid substitutions at positions 185 and 188 (CR3 S185/188D). CR3 truncated at 

amino acid 190 (CR3 190T), CR3 189T, CR3 182T, CR3 178T.  

 

 

 

 

 

PEPEPEPEPEPARPT

PEPEPEPEPEPARPT

PEPEPEPEPEPARPT

139 184 204

CR3 S185/188A

CR3 190T

CR3 182T
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CR3 S185/188D
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P
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YDPVDE
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Figure 3.1. Map of CR3 constructs used in luciferase experiments. 
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S185 and S188 were mutated to aspartic acid to create a phospho-mimetic (CR3 

S185/188D) of WT CR3. The negatively charged aspartic acid residues are substituted for 

serine in similar studies to mimic the phosphorylation of serines (Smith et al., 2004; Tsai 

et al., 2012). Lastly, a non-phosphorylatable mutant was created with alanines at the 

positions S185 and S188 (CR3 S185/188A). In addition, truncation mutants were 

constructed that first truncates CR3 at aa 190 (CR3 190T) and 189 (CR3 189T), which 

deletes AR1 but leaves the zinc finger and the putative CTD mimic intact. Next, a 

truncation at amino acid 182 (CR3 182T) then deletes the putative CTD mimic entirely. A 

final truncation that cuts into the zinc finger domain at amino acid 178 (CR3 178T) was 

constructed as a negative control. Although these mutants were created by previous 

students, I cloned them into the appropriate vectors for the purpose of these experiments. 

For the initial work, mutants of CR3 are fused to a GAL4 DBD (pM) to directly test them 

as activators in the luciferase assay (Figure 3.1). 

HT1080 cells, a fibrosarcoma cell line, were used for activation assays as they express 

high levels of transfected plasmids and are easily transfected. HT1080 cells were co-

transfected with GAL4 DBD fusions (Figure 3.1.) at a 1:1 ratio to the luciferase reporter 

plasmid [pGL2-(Gal4)6-Luc]. 24 hours post-transfection cell lysates were collected and 

assayed for luciferase activity. Activity was normalized to protein concentration and 

expressed as fold activation over that of the vector. Significance was determined by 

Students T-test.  

As expected in these experiments, WT full length CR3 fused to the GAL4 DBD strongly 

activated expression of the luciferase reporter (Figure 3.2). Compared to WT CR3, the 

phospho-mimic (CR3 S185/188D) had no significant difference in its ability to activate 

transcription, whereas the non-phosphorylatable mutant (CR3 S185/188A) shows a 

significant decrease in its ability to activate transcription. These experiments suggest that 

phosphorylation of S185 and S188 is important for maximal transactivation by E1A CR3.  

In these experiments, truncating CR3 at the zinc finger domain (182T), which deletes 

both AR1 and the putative CTD mimic, still allows for considerable levels of 

transactivation with no significant differences when compared to that of WT CR3.  
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HT1080 cells were co-transfected with a GAL4-responsive luciferase reporter and vectors 

expressing the indicated CR3 GAL4 fusions or empty vector. Luciferase activity was 

normalized to protein concentration and expressed as fold activation over that for the 

empty vector ± SD (n=4). Activation in E1A-CR3 vs indicated E1A-CR3 mutants were 

compared by Student’s T-Test and significance is indicated.  ns=non-significant. * = 

P<0.05. *** = P< 0.0002. 

Figure 3.2. Transcriptional activation of E1A-CR3 and selected E1A-CR3 

mutants  
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However, truncations at aa 190 or 189 show decreased transactivation activity when 

compared to wild type (Figure 3.2). Thus, these residues seem necessary for activation by 

CR3 when the putative CTD mimic is present but not when it is absent. Lastly, truncating 

CR3 by cutting into the zinc finger domain (178T) abolishes CR3 transactivation entirely. 

Unlike the other mutants, this protein may no longer be stable, as shown in the Western 

blot (Figure 3.2 inset).  

Western blot with an antibody for GAL4 was used to determine if differences in protein 

expression could explain the loss of function by the various mutants (Figure 3.2 inset). I 

observed consistent amounts of GAL4-E1A CR3 fusion for all constructs with the 

exception of 178T. Thus, the differences in transactivation by the various mutants, except 

for the completely defective 178T, are not likely due to differences in protein expression 

of the GAL4-E1A CR3 fusions. This also provides an explanation for the total ablation of 

activity when CR3 is truncated at aa 178, as the protein appears to lose stability entirely. 

 

3.1.2 Competition by CR3 and CR3 Point Mutants 

As another approach to further understand the role of the putative CTD mimic in 

transactivation by CR3, we performed competition/ squelching assays (Ablack et al., 

2010).  In these experiments, a soluble form of CR3 is expressed in conjunction with WT 

CR3 fused to the GAL4 DBD.  If the soluble form of CR3 binds factors required for the 

promotor bound CR3, the competitive sequestration of these factors can reduce activation 

of the reporter. In the competition assays that I performed, E1A CR3 and E1A CR3 point 

mutants were fused to GFP (Figure 3.1) to act as competitors. HT1080 cells were co-

transfected with the GAL4 luciferase reporter vector [pGL2-(Gal4)6-Luc] and WT GAL4-

CR3 (activator), along with decreasing amounts of GFP fusions (soluble competitor). 100 

% activation is that of WT GAL4-E1A CR3 alone with only the empty vector (pGFP) as a 

competitor. Competition activity is expressed as a percentage of full activation (Figure 

3.3). In these assays, if a competitor (pGFP-CR3 fusions) does not target factors required 

by the activator (GAL4-CR3), the level of transactivation should remain at 100% 

regardless of the level of competitor present.  
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Figure 3.3. Squelching of Ad5 E1A CR3 function is less efficient with non-

phosphorylatable CR3 (S185/188A) mutant. 

HT1080 cells were co-transfected with a GAL4-responsive luciferase reporter, a GAL4-

CR3 (activator) vector and decreasing amounts of GFP-CR3 fusions (soluble 

competitors). Luciferase activity is expressed as a percentage of the fold activation of 

GAL4-CR3 (activator) with pGFP (empty vector) as the competitor ± SD. (n=3) 
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However, if the competitor targets the necessary factors required for function by the 

activator, a dose dependent restoration of transactivation will be observed as the level of 

the competitor is decreased. 

When WT CR3 or the phospho-mimic of CR3 (CR3 S185/188D) are fused to GFP and 

used as a competitor, they successfully sequester factors to squelch transactivation in a 

dose dependent manner (Figure 3.3). Although, the non-phosphorylatable mutant (CR3 

S185/188A) also demonstrates an ability to sequester factors and squelch transactivation 

in a dose dependent manner, it is less efficient in its ability to squelch activation. There is 

a significant difference, as determined by Student’s T-Test, in its ability to compete for 

factors at high doses of the competitor. The trend continues for lower doses of the 

competitor. This result suggests that the non-phosphorylatable E1A CR3 mutant is less 

able to sequester a limiting factor away from promotor bound E1A. This once again 

highlights the importance of phosphorylated S185 and S188 in CR3 for activation of 

transcription through binding of an unknown transcriptional regulator. 

 

3.1.3 Activation by the Putative CTD Mimic 

Prior experiments studied deletions and mutations in full length CR3, which includes the 

powerful transactivating capabilities of zinc finger. As the putative CTD mimic is 

predicted to be unstructured, we next wanted to fuse only this region to the GAL4-DBD 

and examine its ability to activate transcription on its own. Pairs of self-annealing 

oligonucleotides (Table 2.1) were designed to express different mutations and truncations 

of the putative CTD mimic region (aa 183-200) independently from the rest of CR3 

(Figure 3.4). As in previous experiments, the serines in the region were substituted with 

alanine (to create a non-phosphorylatable mutant CR3 S185/188A) and aspartic acid (to 

create a phospho-mimetic CR3 S185/188D). Truncation mutants cut into the EP repeats 

of AR1, with plasmids expressing aa 183-196, 183-192 and 183-190 of CR3. An AR1 

control, consisting of only the EP repeats, was used ensure that the activity of the other 

peptides was not simply due to the acidic nature of the peptide but rather to the specific 

residues  
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Figure 3.4. Map of CR3 putative CTD mimic constructs. 

CR3 WT (aa 183-200). A non-phosphorylatable point mutant (CR3 183-200 S185/188A) 

and a phospho-mimetic (CR3 183-200 S185/188D). Truncation mutants (CR3 183-190, 

CR3 183-192, CR3 183-196). The AR1 of CR3 (EP x6).  The human RNAPII CTD 

heptad repeat (YSPTSPS). 
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that mimic the heptad repeat of the RNAPII CTD. Finally, the human RNAPII CTD 

heptad consensus sequence was fused to the GAL4-DBD in order to examine its activity 

compared to the related E1A specific sequence.  

HT1080 cells were transfected with GAL4 fusions (Figure 3.4) at a 1:1 ratio to the 

luciferase reporter plasmid [pGL2-(Gal4)6-Luc].  At 24 hours post-transfection, cell 

lysates were collected and assayed for luciferase activity. Activity was normalized to 

protein concentration and expressed as fold activation over that of the vector.  Tuckey’s 

multiple comparisons test was used to test for any significant differences between any of 

GAL4-CR3 peptides. Western blots with an antibody for GAL4 (Figure 3.5 inset) indicate 

that all GAL4 fusions were expressed at consistent levels. Thus, the differences in 

transactivation by the various mutants are not likely due to differences in expression of 

the GAL4 fusions. 

The transcriptional activation capabilities of the short peptides of interest appear less than 

that of full length CR3 (Figure 3.2 and Figure 3.5). This is as expected because the 

powerful transactivation capabilities of the zinc finger are no longer present. However, it 

is evident that the putative CTD mimic can activate transcription to some extent on its 

own. The GAL4-CR3 peptides activate transcription about five times over that of the 

vector alone, however I did not observe any significant differences between the various 

mutations and truncations. It is possible that the assay is not sensitive enough to detect 

small differences in these low activation values due to the wide variation between 

replicates. Like the CTD mimic (CR3 183-190), the AR1 (EP X6) construct shows a low 

level of activation. This allows us to conclude that both subregions of CR3 can function 

independently to activate transcription at a low level. The RNAPII CTD heptad repeat, 

when fused to a GAL4-DBD shows comparably measurable but weak activity to that of 

the hAdV5 CTD putative CTD mimic sequence (CR3 183-190). Thus, in addition to the 

sequence similarity between E1A and the CTD, they function equivalently as 

transactivators in this assay.  
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HT1080 cells were co-transfected with a GAL4-responsive luciferase reporter and vectors 

expressing the indicated CR3 GAL4-DBD fusions or empty vector. Luciferase activity 

was normalized to protein concentrations and expressed as fold activation over that for 

the empty vector ± SD. (n=3)  

Figure 3.5. Transcriptional activation by putative CTD Mimic. 
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3.1.4  Competition by the Putative CTD Mimic 

In a corresponding competition assay, HT1080 cells were transfected with indicated GFP 

fusions of the constructs used in the direct transactivation assays presented above (Figure 

3.4). GFP-CR3 fusions (soluble competitors) were transfected at a 1:1:1 ratio to GAL4 

luciferase reporter vector [pGL2-(Gal4)6-Luc]  and GAL4-CR3 (activator). 100 % 

activation is that of GAL4-CR3 alone with only the empty vector (pGFP) as a competitor. 

Competition activity is expressed as a percentage of full activation. Tuckey’s multiple 

comparisons test was used to test for any significant differences in squelching ability by 

the CR3 peptides. Western blots with an antibody for GFP (Figure 3.6 inset) indicate that 

each construct is consistently expressed as a GFP fusion. Thus, differences in squelching 

are not due to differences in expression of the GFP-CR3 fusion. GFP-CR3 peptides, that 

express various mutations and truncations of the putative CTD mimic, are able to squelch 

activation by approximately 50% (Figure 3.6). While this is not as potent as the 

squelching by the full length CR3 (Figure 3.3), it does show that the putative CTD mimic 

is able to bind certain factors away from the promoter and squelch activiation of the full 

length CR3. Differences between the squelching ability of the various GFP-CR3 fusions 

are not significant (Tukey’s multiple comparisons test). Due to the variance between 

replicates the assay may not be sensitive enough to look at differences between peptides 

that act only as weak competitors. The AR1 (EP x6) control peptide and the minimum 

sequence corresponding to the putative CTD mimic (CR3 183-190) can both function 

independently as competitors. However, CR3 183-200 WT, which is made of both these 

subregions, appears to function slightly better as a competitor. Finally, when using the 

consensus sequence for the RNAPII heptad repeat of the CTD as a competitor (CTD 

Heptad), it is able to squelch the activity of CR3 comparable to that of the hAdV5 

specific sequence believed to act as the CTD mimic (CR3 183-190). Taken together, the 

putative CTD mimic can function, in a manner comparable to the RNAPII CTD, to bind 

certain cellular factors in isolation of the zinc finger and squelch activation. These 

interactions do not necessarily rely on the acidic nature of AR1. 
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HT1080 cells were co-transfected with a 1:1:1 ratio of GAL4-responsive luciferase 

reporter : GAL4-Ad5 CR3 (activator) : empty vector (pGFP) or pGFP-CR3 183-200 

fusions (competitors). Luciferase activity is expressed as a percentage of the fold 

activation of GAL4-Ad5 CR3 (activator) with pGFP (empty vector) as the competitor ± 

SD. (n=4) 

Figure 3.6. Squelching of GAL4 Ad5-CR3 by the putative CTD mimic. 
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3.2  Characterizing the Interaction between CDK9 and E1A 
CR3 

Given the sequence similarity between RNAPII CTD and E1A-CR3, we believe that E1A 

would functionally mimic RNAPII at a molecular level and would therefore interact with 

RNAPII interacting proteins such as CDK9, CDK7, CA150, or RNGTT (Eick and Geyer, 

2013).   

CDK9 was an ideal first candidate by which to test the functional mimicry of the RNAPII 

CTD by E1A CR3.  CDK9 is a CTD kinase which binds the RNAPII CTD 

phosphorylated at S2 and S5 and controls the initiation of transcription elongation. (Eick 

and Geyer, 2013). In a 2013 paper, Vijayalingam and Chinnadurai demonstrated an 

interaction between CDK9 and 13S E1A (L-E1A) but not 12S E1A (S-E1A). As 12S E1A 

lacks CR3, but is otherwise identical to 13S E1A, this indicates that CR3 of E1A is 

responsible for the interaction between CDK9 and E1A. The group further demonstrated 

that CDK9 played a role in early adenoviral gene transcription and for viral replication 

(Vijayalingam and Chinnadurai, 2013). We therefore sought to identify whether the 

putative CTD mimic is involved in the interaction between CDK9 and 13S E1A, 

specifically through the phosphorylated residues S185 and S188. 

 

3.2.1 Assessment of the Interaction between E1A CR3 and 
Endogenous CDK9 

To test this directly, HT1080 cells were transfected with either GFP (empty vector) or the 

indicated GFP-CR3 fusions (Figure 3.7). Lysates from transfected cells were 

immunoprecipitated using a GFP specific antibody and the interaction with CDK9 was 

assayed by immunoblotting using antibodies specific to GFP and CDK9.  It was expected 

that E1A CR3 alone would co-immunoprecipitate with endogenous CDK9. If the 

phosphorylation of these two residues played a role in the interaction with CDK9, it 

would be expected that the non-phosphorylatable mutant E1A CR3 S185/188A would not 

interact with CDK9. 



60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HT1080 cells were transfected with GFP (empty vector) or GFP-CR3, GFP-CR3 

S185/188A or GFP-CR3 S185/188D. Co-immunoprecipitation was performed by IP with 

an antibody specific for GFP. Western Blot (IB) analysis was performed with an antibody 

specific to CDK9 or GFP.  Input corresponds to 2% of the total lysate prior to IP.  
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Figure 3.7. Assessment of the Interaction between E1A CR3 and Endogenous 

CDK9. 
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Then, the phospho-mimetic E1A CR3 S185/188D would co-immunoprecipitate with 

CDK9, as it would act like WT E1A CR3. However, due to high background from the 

CDK9 antibody, it cross-reacts with the protein ladder and other proteins non-

specifically, it was difficult to conclude the interaction exists between CDK9 and E1A 

CR3 and that the serine residues play any role in this interaction. Additionally, both the 

GFP antibodies and the CDK9 antibodies are of the same species (rabbit) which further 

creates higher levels of background.  Attempts to reduce background included pre-

blocking the ProteinA Sepharose beads with 0.5% BSA/PBS and pre-binding the 

antibody by nutating for 1 hour at room temperature (RT).  These efforts were met with 

limited success. While CR3 has been shown to be required for the interaction of E1A with 

CDK9, it may not be sufficient. 

 

3.2.2 Assessment of the Interaction between Full Length E1A and 
Endogenous CDK9 

Given the limitations using E1A CR3 GFP fusions, we next thought to use plasmids 

expressing full length E1A and E1A S185/188A (pXC1). This allows us to use mouse 

monoclonal antibodies for the IP of E1A and rabbit CDK9 antibodies for immunoblotting 

in an attempt to decrease background levels from species cross-reactivity. Additionally, if 

CR3 is necessary but not sufficient for CDK9 interaction, we may be able to investigate 

the role S185 and S188 residues in this interaction, but in the context of full length E1A. 

Cells were transfected with WT E1A or E1A S185/188A plasmids. Lysates from cells 

were immunoprecipitated with an antibody cocktail for E1A (M73+M58) (Figure 3.8). If 

my hypothesis was correct, I anticipated that WT E1A and CDK9 would co-

immunoprecipitate but E1A S185/188A would not. However, I did not observe co-

immunoprecipitation of either full length WT E1A or E1A S185/188A with endogenous 

CDK9. I still experienced high levels of background, in particular, the antibody continued 

to interact with the protein ladder and other unknown proteins.  
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HT1080 cells were transfected with pXC1-E1A or pXC1-E1A S185/188A. Co-

immunoprecipitation was performed by IP with an antibody specific to E1A (M73+M58). 

Western Blot analysis was performed with antibodies specific to CDK9, E1A 

(M73+M58) and actin. Input corresponds to 2% of the total lysate prior to IP.  
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Figure 3.8. Assessment of the Interaction between Full Length E1A and Endogenous 

CDK9 in HT1080 cells. 
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A549 cells were either mock infected (UI) or infected with WT hAdV5 (MOI 3) or JM17-

E1A S185/188A virus (MOI 30). Co-immunoprecipitation was performed by IP with an 

antibody specific to E1A (M73+M58). Western Blot analysis was performed with 

antibodies specific to CDK9, E1A (M73+M58) and actin. Input corresponds to 2% of the 

total lysate prior to IP.  
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Figure 3.9. Assessment of the Interaction between E1A and Endogenous CDK9 

in virally infected A549 cells. 
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As a next step, I thought that transiently transfected full length E1A may not be sufficient 

for an interaction with CDK9. Since Vijayalingam and Chinnadurai paper shows 

interaction between E1A and CDK9 in cells infected with a virus expressing WT E1A 

(Vijayalingam and Chinnadurai, 2013), I thought that the interaction between CDK9 and 

E1A might require other factors that are present during infection.  

Cells were infected with WT virus at an MOI of 3 or with JM17-E1A S185/188A at an 

MOI of 30 (See results section 3.4). I aimed to express equal amounts of E1A in order to 

determine the ability of E1A to interact with CDK9 based only on the presence or 

absence of phosphorylated S185 and S188 and not based on the levels of E1A protein 

expressed. Lysates from infected cells were immunoprecipitated using an E1A specific 

antibody cocktail (M73+M58) and the presence of CDK9 was assayed by 

immunoblotting for endogenous CDK9 (Figure 3.9). However, I was still unable to 

observe an interaction between E1A and CDK9, whether it be WT E1A or E1A 

S185/188A. I was also unable to observe any differences between the WT E1A and E1A 

S185/188A, likely due to continued high levels of background from the CDK9 antibody.  

 

3.2.3 Characterizing the Interaction between E1A CR3 and CDK9-
HA 

In an attempt to distance ourselves from the CDK9 antibody with it’s high background, I 

instead thought to transiently express CDK9 tagged with the hemagglutinin (HA) epitope 

tag in order to clean up the immunoprecipitation process. Expressing CDK9-HA though 

transient transfection also allows CDK9 to be expressed at higher levels than endogenous 

CDK9. The high levels of CDK9-HA expression following transfection had no observed 

phenotypic effect on the cells.  E.g. I did not observe any differences in cell morphology 

or an increase in cell death. I ordered a custom gene synthesis of CDK9 from IDT and I 

subsequently cloned it into a pCDNA4-HA expression plasmid to create the HA tagged 

CDK9. Thus, future experiments only require the use of the HA antibody to assay for 

CDK9 expression in immunoblotting.  Additionally, the HA antibody is a rat antibody, 

while GFP is rabbit, so species cross-reactivity will be reduced.  
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HT1080 cells were transfected with GFP (empty vector) or indicated GFP-CR3 fusions 

along with equal amounts of CDK9-HA plasmid where indicated (+). Co-

immunoprecipitation was performed by IP with an antibody specific for GFP. Western 

blot analysis was performed with antibodies specific to HA or GFP.  Input corresponds to 

2% of the total lysate prior to IP. 
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Figure 3.10. Assessment of the Interaction between E1A CR3 and CDK9-HA 



66 

 

 

 

 

Figure 3.11. CDK9-HA interacts with full Length 13S E1A. 

HT1080 cells were transfected with 2µg GFP (empty vector) or 2µg of the indicated 

GFP-CR3 fusions along with 4µg of CDK9-HA plasmid where indicated (+). Co-

immunoprecipitation was performed by IP with an antibody specific for GFP. Western 

blot analysis was performed with antibodies specific to HA or GFP.  Input corresponds to 

2% of the total lysate prior to IP. (*) Denotes gel motility shift due to phosphorylation of 

S89 of E1A. 

IB: HA

IB: HA

IB: GFP

IB: GFP

2% Input

IgG Heavy Chain

GFP-CR3

CDK9-HA 43 kDa

GFP

Ve
ct

or

13
S 

E1
A

C
R

3

C
R

3 
S1

85
/1

88
A 

C
R

3 
S1

85
/1

88
D

IP: α GFP

GFP-13S E1A

Ve
ct

or

C
R

3 
18

3-
20

0
GFP-CR3 183 – 200

CDK9 HA      + - + + + + + +

*
GFP-CR3

GFP

GFP-13S E1A

GFP-CR3 183 – 200



67 

 

 

HT1080 cells were transfected with GFP (empty vector) or indicated GFP-CR3 fusions 

along with equal amounts of CDK9-HA (Figure 3.10). E1A CR3 mutants were chosen to 

determine if the putative CTD mimic is necessary for an interaction between E1A CR3 

and CDK9. Lysates from transfected cells were immunoprecipitated using an antibody 

specific to GFP and the interaction with CDK9 was assayed by immunoblotting with an 

antibody against HA. At first it appeared that CDK9 and E1A CR3 may interact, however 

we observed GFP (empty vector) our negative control, also interacts with CDK9. Thus, I 

cannot conclude that E1A CR3 is sufficient for an interaction with CDK9-HA. Any 

differences observed between CR3 and the CR3 mutants are therefore inconclusive.  

Both myself and other students in the lab were plagued with a sticky GFP vector where 

our empty vector control sticks to our protein of interest, which in my case was CDK9. It 

was therefore difficult to conclusively demonstrate a clean interaction between E1A CR3 

and CDK9. A number of different techniques were employed to minimize the binding of 

GFP to CDK9 and to abolish the high levels of background in our negative control. Cell 

lysates were pre-cleared with ProteinA Sepharose beads at RT for 1 hour, or at 4° C for 6 

hour or overnight incubations. In some cases, the antibody was blocked with 0.5% 

BSA/PBS and pre-bound to the beads for 1 hour at RT. IP’s were washed up to ten times 

and samples were vortexed during washes rather than washing by inverting. Finally, 

antibody incubation time with the lysate was decreased to 4 hours at 4° C rather than 

overnight at 4°C. However, these variations had little to no effect on the level of 

background in the negative control lane.  

Based on a previous student’s report, we last thought to decrease the amount of pGFP 

plasmids being expressed. Transfections with the pGFP fusions were decreased to 2µg of 

DNA while CDK9-HA remained at 4µg. HT1080 cells were transfected as described 

previously and cell lysates were immunoprecipitated using an antibody specific to GFP 

(Figure 3.11).   At last, the pGFP (empty vector) control no longer appears to interact 

with CDK9. Full length E1A (GFP-13S) interacts with CDK9 as shown previously 

(Vijayalingam and Chinnadurai, 2013b). E1A 13S GFP appears as two bands on the gel, 

at 48.5 kDa and 52 kDa.  The phosphorylation of serine 89 has been described in the 

literature as being responsible for this gel-motility shift. The phosphorylation at this site is 
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not essential for E1A function; de-phosphorylation at this site does not affect the ability 

of E1A to transform cells or to activate transcription (Dumont et al., 1989; Smith et al., 

1989; Tremblay et al., 1989).  

Although E1A CR3 is thought to be necessary for interaction of CDK9 in the context of 

full length E1A, it was not found to be sufficient. Neither E1A CR3 nor any of the CR3 

mutants interact with CDK9 under the new transfection conditions. It was expected that if 

WT E1A CR3 interacts with CDK9, S185 and S188 would prove to be responsible for 

this interaction. Thus, it was expected that the alanine substitutions in CR3 would disrupt 

this interaction. However, as I didn’t observe an interaction between E1A CR3 alone and 

CDK9, I could not conclude anything about the involvement of the S185 and S188 

residues in this interaction.  

Furthermore, this experiment clarifies results from previous experiments (Figure 3.7 and 

Figure 3.10) where the potential interaction could not be distinguished from background 

levels with GFP. Figure 3.7 uses 8µg of the GFP plasmid DNA which brings into 

question the validity of those results, in addition to already high background levels from 

the antibody. 2µg of transfected GFP was later proved to be sufficient to observe an 

interaction with CDK9 and that greater than 2µg of transfected GFP led to an interaction 

in the negative control lane.  

 

3.2.4 Characterizing the Interaction between Full Length 13S E1A 
and CDK9-HA 

While CDK9 did not interact with E1A CR3 alone under the conditions that I tried, it 

does interact with full length 13S E1A (Vijayalingam and Chinnadurai, 2013 and Figure 

3.11). In order to determine if S185 and S188 play a role in this interaction, I cloned full 

length E1A S185/188A and E1A S185/188D from their respective pXC1 plasmids into 

pGFP.  Once again, only 2µg of pGFP (empty vector) and the indicated pGFP-E1A 

plasmids were transfected along with 4µg of CDK9-HA plasmid. WT 13S E1A co-

precipitated with CDK9-HA and the interaction between full length 13S E1A and CDK9 

is once again confirmed (Figure 3.12). Again, 13S E1A appears as two bands on the gel  
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HT1080 cells were transfected with 2µg pGFP (empty vector) or 2µg of the indicated 

GFP-CR3 fusions along with 4µg of CDK9-HA plasmid where indicated (+). Co-

immunoprecipitation was performed by IP with an antibody specific for GFP. Western 

blot analysis was performed with antibodies specific to HA or GFP.  Input corresponds to 

2% of the total lysate prior to IP. 
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due to the phosphorylation of S89 (Dumont et al., 1989; Smith et al., 1989; Tremblay et 

al., 1989). However, while this confirms the interaction of full length E1A with CDK9, 

both E1A S185/188A and E1A S185/188D bind similarly to WT E1A. The two mutants 

may both show a slight decrease in the interaction with CDK9-HA compared to WT E1A, 

but this may also be explained by a slightly lower level of expression from these two 

plasmids, as seen by the input.  If the phosphorylation of these two residues played a role 

in the interaction with CDK9-HA, it would be expected that the unphosphorylated mutant 

E1A S185/188A would not interact with CDK9, while the phospho-mimetic E1A 

S185/188D would retain this interaction. Based on this result, it is therefore not likely that 

the phosphorylation of both S185 and S188 plays a role in the interaction between E1A 

and CDK9.  

 

3.3  Investigating Potential Structural Mimicry by E1A CR3 
In a previous study in our lab, the N-terminus of E1A was shown to both functionally and 

structurally mimic a cellular AKAP (King et al., 2016b). In this thesis, I investigated 

whether E1A functionally mimics the RNAPII CTD by binding to CDK9. Demonstrating 

that CDK9, or another known target of the RNAPII CTD, could be bound by the putative 

CTD mimic in E1A, it would suggest that E1A CR3 functionally mimics the RNAPII 

CTD and would therefore imply that E1A CR3 would also structurally mimic the CTD.  

We first based our hypothesis on the high degree of sequence similarity between these 

two motifs (Figure 1.3). Secondly, both the RNAPII CTD and the putative CTD mimic 

are phosphorylated at serines in position 2 and 5 of the peptide, corresponding to S185 

and S188 in E1A (Eick and Geyer, 2013; Whalen et al., 1997). Additionally, both the 

RNAPII CTD and the region in E1A CR3 are thought to be unstructured (Eick and Geyer, 

2013; Pelka et al., 2008). We hypothesized that, based on functional similarities and 

primary sequence similarities, there would be a high probability of structural homology 

between the two peptides.  
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To test for structural mimicry, we would use an antibody specific to the doubly 

phosphorylated RNAPII CTD to see if it similarly recognizes the phosphorylated E1A-

CR3 peptide. Original reports supporting this hypothesis from Dr. Greg Fonseca were 

promising (Unpublished results, 2013). However, I attempted to reproduce this data 

several times with varying results, and no clear conclusion.  

 

3.3.1 E1A CR3 Cross-Recognition by an RNAPII Antibody 

HT1080 cells were transfected with GFP (empty vector), GFP-CR3, GFP-CR3 

S185/188A or GFP-CR3 S185/188D. 24 hours post transfection, cells were harvested and 

lysates were immunoprecipitated with an antibody for the doubly phosphorylated RNAPII 

CTD and immunoblotted with an antibody for GFP-E1A CR3. We expected that lysates 

would demonstrate that E1A CR3 has been immunoprecipitated by the RNAPII antibody 

with a band at 42 kDa indicating GFP-E1A CR3. We further expected the non-

phosphorylatable mutant (CR3 S185/188A) would not be immunoprecipitated by the 

phosphorylation specific antibody but that the phospho-mimetic (CR3 S185/188D) would 

also be recognized. Lysates immunoprecipitated with the RNAPII antibody occasionally 

appear to demonstrate this cross-recognition (Figure 3.13 A-C), with a band at 42 kDa for 

GFP-E1A CR3. In contrast, RNAPII was also immunoprecipitated by the RNAPII 

antibody, as the band appears at 260 kDa. In figure 3.13 A, E1A CR3 appeared to have 

been immunoprecipitated by the RNAPII antibody. However, subsequent attempts show 

greatly varying results. In figure 3.13 B, E1A CR3 S185/188A, rather than WT E1A CR3, 

appeared to immunoprecipitated with the RNAPII antibody. In figure 3.13 C, it appears 

that E1A CR3 was immunoprecipitated by RNAPII irrespective of phosphorylation state 

and it appears that the negative control is immunoprecipitated in a similar fashion. On 

many occasions, represented by figure 3.13 D, I observed no cross recognition at all. I 

could not conclude that that E1A-CR3 was recognized by the RNAPII antibody and I 

could conclude that this phenomenon is phosphorylation specific. Evidence of structural 

mimicry was not conclusive.  
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HT1080 cells were transfected with GFP (empty vector) or indicated GFP-CR3 fusions. 

Co-immunoprecipitation was performed by IP with an antibody specific for RNAPII. 

Western blot analysis was performed with antibodies specific to GFP or RNAPII.  Input 

corresponds to 2% of the total lysate prior to IP.  

 

 

 

 

 

 

 

 

Figure 3.13. Assessment of the cross-recognition between RNAPII and E1A CR3 
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3.3.2 E1A CR3 Interaction with RNAPII  

HT1080 cells were transfected and harvested as above. Lysates were immunoprecipitated 

with an antibody for GFP and immunoblotted with an antibody for the doubly 

phosphorylated RNAPII.  We expected that lysates immunoprecipitated with GFP and 

immunoblotted with RNAPII would show cross-recognition by RNAPII for GFP-CR3 at 

approximately 42 kDa. However, lysates instead appeared to show an interaction between 

E1A CR3 and RNAPII, with a band for phosphorylated RNAPII at 260 kD, rather than 

cross-recognition by the antibodies. Occasionally it appeared that E1A CR3 may interact 

with RNAPII in a phosphorylation specific manner. It appeared that WT E1A CR3 and 

the phospho-mimetic (CR3 S185/188D) interacts with RNAPII but not the phospho-

mutant (CR3 S185/188A) (Figure 3.14 A and B). While this observation does not support 

the hypothesis that E1A CR3 structurally mimics the RNAPII CTD, E1A interacting with 

RNAPII in a phosphorylation specific manner may have been an interesting result in 

itself. However, results varied greatly, and subsequent attempts to repeat this finding 

yielded widely different results (Figure 3.14 C-F). In some cases, RNAPII appeared to 

interact with each E1A CR3, CR3 mutants, as well as the empty vector with no specificity 

at all (Figure 3.14 C and F). In other cases it appeared that only the empty vector 

interacted with RNAPII (Figure 3.14 D). In summary, we could not conclude with 

confidence that E1A CR3 interacts with RNAPII and it remains unclear if this potential 

interaction is phosphorylation specific.   
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HT1080 cells were transfected with GFP (empty vector) or indicated GFP-CR3 fusions. 

Co-immunoprecipitation was performed by IP with an antibody specific for GFP. 

Western blot analysis was performed with antibodies specific to RNAPII or GFP.  Input 

corresponds to 2% of the total lysate prior to IP.  

 

 

 

 

 

 

 

Figure 3.14. Assessment of the co-immunoprecipitation between E1A CR3 and 

RNAPII. 
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3.4  Characterizing a Novel hAdV Point Mutant  
The original mutation that identified the role of the promotor targeting region of CR3 

used host range mutant 5 (hr5), which corresponds to S185N. These studies demonstrated  

that the hr5 mutant could not activate transcription as well as its’ WT counterpart, but it 

could bind to certain cellular transcription factors and squelch them away from WT E1A 

during a competition assay (Glenn and Ricciardi, 1985, 1987). The same hr5 mutant virus 

was used in studies to demonstrate the requirement for phosphorylation of S185 in the 

transcription of the viral E4 gene (Whalen et al., 1997). Other previous studies used 

viruses containing various deletion mutants that span aa 178-184 (dl1114) and aa 188-204 

(dl115) and identified these regions as part of the transactivating region of E1A (Jelsma et 

al., 1988).  However, researchers have yet to create an infectious virus that could be used 

to study the role of phosphorylated S185 and S188 within the putative CTD mimic. For 

this reason, I have created a novel virus with two amino acid substitutions – replacing the 

S185 and S188 of E1A CR3 with alanine (Figure 2.1). This creates the novel hAdV 

JM17-E1A S185/188A. This virus expresses a non-phosphorylatable mutant of E1A CR3, 

allowing me to fully investigate, in an infection model, the role of these amino acids in 

transactivation on viral genes (specifically E4) and any effect these point mutants may 

have on replication. Characterizing the kinetics of viral protein and mRNA during 

infection with the novel JM17-E1A S185/188A virus allows us to assess the effects of the 

mutations on the virus.  After a clear understanding of the properties of this novel virus is 

obtained, it can then be used as a powerful tool in future experiments.   

 

3.4.1 Infection Time Course WT vs. JM17-E1A S185/188A (MOI 
10) 

The A549 human alveolar basal epithelial cell line was chosen for my studies, as they are 

commonly used as a diagnostic cell line for clinical hAdV infection (Smith et al., 1986; 

Woods and Young, 1988). Approximately 2 x 105 A549 cells/well were seeded on a 6 

well plate 24 hours prior to infection. Cells were either mock infected (UI) or infected 
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with either WT virus (MOI 10) or the JM17-E1A S185/188A virus (MOI 10). Cells were 

harvested at 24 and 48 hours post infection (hpi) from which both RNA and protein 

samples were collected. Representative Western blots and RT-qPCR data were collected 

to assess the impact of these mutations on E1A function.  

At both 24 and 48 hpi, I observed higher amounts of E1A mRNA transcripts produced by 

the WT hAdV5 virus compared to that of the mutant S185/188 virus (Figure 3.15 A). 

This corresponds to an increase in protein expression, as detected via Western blotting 

with the indicated antibodies for E1A (Figure 3.15 C). E1A, the earliest viral protein 

expressed during infection, is expressed at high levels by the WT virus at 24 and 48 hpi. 

In cells infected with the JM17-E1A S185/188A virus, E1A expression is greater at 48 

hpi. Whereas the WT virus shows two bands on the Western blot, corresponding to the 

13S and the 12S isoforms of E1A being expressed (Harlow et al., 1985, 1986),  the 

S185/188A mutant virus does not show any expression of the 12S isoform of E1A.  

To assess the effect of mutating the putative CTD mimic on early viral gene expression, 

E4 was chosen as a candidate gene because the hr5 mutant showed a decrease in E4 

transactivation (Whalen et al., 1997). I observed an increase in E4 RNA transcripts in the 

mutant S185/188A virus when compared to that of WT hAdV5 (Figure 3.15 B). There 

was a corresponding slight increase in the protein expression of other viral genes such as 

the DBP and viral capsid proteins (Figure 3.15 C). DBP is expressed at both 24 and 48 

hours by both the WT virus and the S185/188A virus. The capsid proteins are expressed 

by both viruses at 48 hours. A Western blot for the actin control shows equal loading of 

protein. 

Previous studies have shown that only a small amount of E1A is required to turn on the 

other viral genes and allow for virus production. WT hAdV5 virus produces E1A in 

excess of what is required (Hitt and Graham, 1990). The S185/188A point mutations have 

an effect on the amount of E1A expressed during infection but these point mutations do 

not affect the expression of other viral genes such as E4, DBP, and viral capsid proteins 

(Hexon, Penton, Protein V, Protein VI, Protein VII.) 
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A549 cells were mock infected (UI) or infected with an MOI of 10 with WT (dl309) and 

JM17-E1A S185/188A Mutant hAdV. Cells were collected at indicated time points and 

RNA and protein was collected A) Relative E1A Expression is higher in WT Virus. 

RT-qPCR was performed for early transcripts E1A, normalized to Beta-actin, and plotted 

as increase over uninfected (UI) samples. B) Relative E4 Expression is higher in the 

JM17-E1A S185/188A Mutant Virus. RT-qPCR was performed for early transcript E4, 

normalized to Beta-actin, and plotted as increase over UI samples. C) hAdV5 protein 

expression. Protein was detected via Western blotting with the indicated antibodies. E1A 

represents immediate early gene expression, DBD represents early gene expression, and 

capsid proteins represent late gene expression. 

Figure 3.15. Kinetics of virus infection WT Virus vs. JM17-E1A S185/188A Virus 

(MOI 10). 

IB: E1A

24 hpi 48 hpi

U
I 

W
T

S1
85

/1
88

A

IB: Actin

IB: Ad5 Capsid 

IB: DBP (E2A) 

U
I 

W
T

S1
85

/1
88

A

13S E1A

Protein V 46 kDa

Hexon 66 kDa

Protein VI 30 kDa
Protein VII 22 kDa

12S E1A

Penton 98 kDa

C 



81 

 

 

3.4.2 Virus Time Course WT vs. JM17-E1A S185/188A (MOI 3 vs 
MOI 30)   

My observation that the WT and the JM17-E1A S185/188A mutant virus produce 

different amounts of E1A when infecting cells with an equal MOI (10) suggested that this 

differential expression of E1A protein could be masking functional differences. To 

address this, I next set out to determine the appropriate MOIs at which the WT and 

S185/188A mutant virus might express comparable amounts of E1A. Approximately 2 x 

105 A549 cells/well were seeded onto 6 well plates 24 hours prior to infection. Cells were 

either mock infected (UI) or infected with WT virus (MOI of 1, 3, or 5) and JM17-E1A 

S185/188A virus (MOI 10 or 30). Cell were harvested at 24, 48 and 72 hpi where both 

RNA and protein samples were collected. Representative Western blots and RT-qPCR 

experiments were performed to determine E1A expression at both the protein and mRNA 

levels across this range of MOIs.  

At all three time points (24, 48 and 72 hpi), I observed higher amounts of E1A mRNA 

transcripts produced by the WT hAdV5 virus compared to that of the mutant S185/188A 

virus (Figure 3.16 A). This was the case even when the mutant virus was used at an MOI 

that was 10X that of WT virus. This observation corresponded well with E1A protein 

expression, detected by Western blotting (Figure 3.16 C). E1A was highly expressed by 

the WT virus at all three time points, and cells infected at higher MOIs exhibited dose 

dependent increased levels of E1A expression. However, cells infected with the 

S185/188A virus do not appear to express comparable amounts of E1A as WT virus. WT 

virus shows two bands on the Western blot, corresponding to the 13S and the 12S 

isoforms of E1A being expressed (Harlow et al., 1985, 1986), but the 12S form was not 

observed in infection with the S185/188A mutant virus.  

From these experiments, WT virus at an MOI of 3 and S185/188A virus at an MOI of 30 

appear to show comparable amounts of E1A expression. These conditions were therefore 

used to study the expression of E4 via RT-qPCR. I again observed an increase in E4 RNA 

transcripts in the mutant S185/188A virus when compared to that of WT hAdV5 (Figure 

3.16 B). This corresponds to the increase in protein expression of other viral genes such 

as DBP and viral capsid proteins (Figure 3.16 C). DBP expression is not affected by the 



82 

 

 

difference of E1A expression between the two viruses. The S185/188A mutant virus 

shows a slight increase in DBP protein expression. Capsid proteins are expressed by both 

viruses from 48 hours post-infection, where the S185/188A virus shows far greater 

amount of protein expression than the WT virus. A second panel with a shorter exposure 

time is shown for the 48 and 72 hour time points to more clearly show that the individual 

capsid proteins are being expressed in both viruses. Expression of capsid proteins did not 

appear to be affected by the difference in E1A expression between the two viruses. A 

Western blot for the actin control shows equal loading of protein. These experiments 

demonstrate that the S185/188A point mutations reduced the amount of E1A expressed 

during infection. However, these point mutations do not affect the expression of other 

viral genes such as E4, DBP and viral capsid proteins (Hexon, Penton, Protein V, Protein 

VI, Protein VII). Although increasing the MOI of the JM17-E1A S185/188A virus 

compared to WT does not fully rescue E1A expression, it does have the expected dose 

dependent effect on the expression of other viral proteins.  

Interestingly, cells infected with the JM17-E1A S185/188A mutant at an MOI of 30 

shows expression of the viral capsid proteins at 24 hpi. It is unusual to see late protein 

expression earlier in a mutant virus infection than during WT infection. Additionally, cell 

monolayers show a greater amount of CPE at 72 hours compared to that of WT virus or 

JM17-E1A S185/188A (MOI 10). It appears that cells infected with an MOI of 30 passes 

though the replication cycle faster than those infected with a lower MOI.  
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A549 cells were mock infected (UI) or infected with WT (dl309) virus (MOI of 1, 3, or 5) 

and JM17-E1A S185/188A (MOI 10 or 30). Cells were harvested at indicated time points 

and RNA and protein was collected A) Relative E1A Expression is higher in WT 

Virus. RT-qPCR was performed for early transcripts E1A, normalized to Beta-actin, and 

plotted as increase over uninfected (UI) samples. B) Relative E4 Expression is higher in 

the JM17-E1A S185/188A Mutant Virus. RT-qPCR was performed for early transcript 

E4, normalized to Beta-actin, and plotted as increase over UI samples. C) hAdV5 protein 

expression. Protein was detected via Western blotting with the indicated antibodies. E1A 

represents immediate early gene expression, DBD represents early gene expression, and 

capsid proteins represent late gene expression. 

 

 

 

 

 

 

Figure 3.16. Kinetics of virus infection WT Virus (MOI 1, 3, 5) vs. JM17-E1A 

S185/188A Virus (MOI 10, 30). 
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Chapter 4 : Discussion & Future Directions 

4 Discussion & Future Directions   
The study of molecular and motif mimicry is a common theme in viral infection. Many 

viruses use ELMs to mimic host cell proteins as a way to get around their limited coding 

capacity and hijack cellular processes for replication and infection (Davey et al., 2011). A 

number of different examples of mimicry can be found in Adenovirus E1A, including 

mimicking cellular AKAP for PKA binding and the binding of cellular pRb via the 

LxCxE motif (Davey et al., 2011; King et al., 2016b). Of the many examples of mimicry 

in E1A, none have been reported within CR3, which functions as a strong transactivation 

domain. Although early mutational studies showed that the promotor targeting region of 

E1A CR3 is important in the maximum transcriptional activation by the E1 region, the 

exact determinants, targets and mechanism of action were never fully elucidated (Glenn 

and Ricciardi, 1987; Webster and Ricciardi, 1991). It was established that this region is 

specifically required for the transcription of the E4 region, specifically though the 

phosphorylation of S185 and S188 (Whalen et al., 1997). Interestingly, we observed that 

this region contains the largest stretch of amino acids that is highly conserved across 

Adenovirus species, and that this region contains significant sequence homology to the 

heptad repeat of RNAPII CTD (Figure 1.5). Additionally, the phosphorylated serines, 

S185 and S188, correspond to the phosphorylated serines S2 and S5 in RNAPII that 

control the transcription cycle. Based on these similarities, we hypothesized that the 

promotor targeting region (aa 183-190) of hAdV5 E1A CR3 might act as a mimic of the 

RNAPII CTD to promote transcription of viral genes and support viral replication. We 

sought to characterize the roles of the putative CTD mimic in transcriptional activation 

and to determine the extent of structural and functional mimicry by the putative CTD 

mimic. Specifically, we examined the interaction between E1A CR3 and CDK9 in order 

to study the role of this interaction to promote transcriptional elongation. A novel hAdV5 

virus containing alanine substitutions in E1A S185 and S188 within the putative CTD 

mimic was created for future experiments to fully understand the role these two amino 

acids play in transcription of viral genes and in viral replication.  
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4.1 The role of the putative CTD mimic in Transactivation 
CR3 of E1A hAdV5 is a potent activator of transcription and is commonly used as a 

model to study the role of cellular and viral factors in the control of gene expression 

(Ablack et al., 2010; Frisch and Mymryk, 2002; Pelka et al., 2008). A simple system has 

been used for many years by our lab and others in order to measure the transactivation 

capabilities of certain proteins, namely E1A, when fused to a heterologous DBD (Ablack 

et al., 2010; Avvakumov et al., 2003; Jelsma et al., 1988; Pelka et al., 2009a, 2009b; 

Shuen et al., 2002). We present, for the first time, an in depth analysis of the specific 

residues in the promotor targeting region of CR3 that are important for transactivation. 

We show that when CR3 is tethered to a heterologous DBD, that the likely 

phosphorylation of S185 and S188 are required for maximal transactivation by CR3 in a 

luciferase activation assay. Our findings support data from early mutation studies that 

show that any disruption in the promotor targeting region of CR3 impairs transcription 

activation, specifically the mutation of serine at 185 (Glenn and Ricciardi, 1987). 

Additionally, we show through a squelching assay, that the phosphorylation of these 

residues is also important for binding to transcriptional regulators required for CR3 

activation. These could potentially include known factors such as members of the ATF 

family, USF, Sp1, TAFII250, TAFII135 or the S8 component of the 19S regulatory 

subunit (Pelka et al., 2008). This may also include yet unidentified factors involved in the 

complex and ever evolving model of transactivation by hAdV E1A (Ablack et al., 2010), 

such as those we are investigating for their role in interacting with the putative CTD 

mimic.  

Using the DBD fusion system, my experiments show that the putative CTD mimic and 

AR1 each function as weak activators when fused to the heterologous DBD, activating 

transcription about 5 times over the vector. The putative CTD mimic can also act to 

squelch limited cellular factors away from promoter bound E1A CR3. This does not rely 

on AR1, although AR1 again may be involved in maximal function of the C-terminal 

portion of CR3.  In addition to sequence similarity between E1A and the RNAPII CTD, 

the putative CTD mimic and the human CTD heptad repeat appear to function similarly to 
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activate transcription in the transactivation assay. The putative CTD mimic and the 

human CTD heptad demonstrate comparable ability to sequester cellular factors. 

Experiments studying full length E1A-CR3 demonstrated the importance of conserved 

phosphorylated serines for maximum transactivation and squelching abilities. 

Collectively, these experiments provide some support for the hypothesis that this region 

of E1A functions as a CTD mimic.  

 

4.2 Functional Mimicry of RNAPII CTD by E1A CR3 
To test the functional mimicry of RNAPII CTD by E1A CR3 we wanted to examine the 

ability of the putative CTD mimic to confer interactions between E1A and proteins that 

are known to interact with the RNAPII CTD. The first candidate for this type of inquiry 

was CDK9. CDK9 had been shown previously to interact with E1A specifically though 

the CR3 region (Vijayalingam and Chinnadurai, 2013). CDK9 typically phosphorylates 

RNAPII CTD at S2 to initiate elongation of cellular genes. However, in the presence of 

viral infection from viruses such as EBV and HIV, viral proteins hijack CDK9 to 

phosphorylate S5 of the RNAPII CTD in order to facilitate elongation of viral genes 

(Bark-Jones et al., 2006; Eick and Geyer, 2013; Zhou et al., 2000). CDK9 is thus an 

important target to study for its involvement in the elongation of adenoviral genes. 

Initially we tested for co-immunoprecipitation between endogenous CDK9 and E1A CR3 

or full length E1A. However, the antibody for endogenous CDK9 had high levels of 

background and I was not able to confirm this interaction. We constructed a plasmid 

expressing exogenous CDK9 with a HA tag in order to transiently express CDK9 along 

with E1A CR3. E1A CR3 alone was not found to be sufficient for binding to CDK9 but I 

was able to confirm that full length 13S E1A was capable of this interaction. I was unable 

to demonstrate that the phosphorylation S185 and S188 played a role in this interaction in 

the context of 13S E1A. However, this doesn’t rule out the possibility that the putative 

CTD mimic region as a whole does not play a role in this interaction.  

Future co-immunoprecipitation studies should be performed in the context of full length 

13S E1A in order to identify the specific residues or regions involved in the interaction 



89 

 

 

between 13S E1A and CDK9. First, we would need to determine if the putative CTD 

mimic region, the AR1 region, or perhaps both, are needed for the interaction with CDK9.  

To do so, we could construct GFP fused 13S E1A, with either ∆183-200 (deletes the 

putative CTD mimic and AR1), ∆183-190 (deletes only the putative CTD mimic) and 

∆189-200 (deletes only AR1).  Failure for these proteins to interact with CDK9-HA in co-

immunoprecipitation experiments would highlight the role of the putative CTD mimic 

and AR1 in the interaction between CDK9 and 13S E1A. If the deletion of these regions 

does affect CDK9 interaction, this would lead us to conclude the C-terminal portion of 

E1A CR3 does not play a role in the interaction between E1A and CDK9, suggesting that 

CDK9 interacts with E1A through the zinc-finger region of CR3. If the putative CTD 

region was found necessary for the interaction between CDK9, this would provide 

exciting evidence that supports the hypothesis set forth in this thesis.  

In their 2013 paper, Vijayalingam and Chinnadurai also employ a similar GAL4-

luciferase assay in order to highlight the role of the CDK9/CR3 interaction on E1A CR3 

mediated transactivation. They measure activation by promotor bound E1A CR3 either 

with the addition of increasing concentrations of a CDK9 plasmid or in the presence of a 

dominant negative CDK9 plasmid. Increasing amounts of CDK9 increased maximal 

transactivation by CR3 while introducing a dnCDK9 severely impaired the ability of CR3 

to activate transcription (Vijayalingam and Chinnadurai, 2013). In future experiments, we 

might employ similar techniques to test the role of CDK9 in increasing maximal 

transactivation by full length CR3, CR3 mutants, or the putative CTD mimic peptides. 

This would demonstrate further which residues are involved in the CDK9 and E1A 

interaction, as well as providing further evidence to support the hypothesis that E1A is 

acting as an RNAPII CTD mimic.  

Although I found that CR3 was not sufficient for interaction with CDK9, it was reported 

to be necessary for the interaction with full length E1A (Vijayalingam and Chinnadurai, 

2013). Future experiments could examine other residues or regions in E1A to determine if 

they are required for this interaction with CDK9. Many proteins that interact with E1A 

have two distinct interaction regions. Similar co-immunoprecipitation experiments to 

those above could be carried out to examine the interaction between CDK9 and E1A 
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fragments expressing CR3 with either N-Terminus/CR1, CR2 or CR4.  Co-

immunoprecipitation of CDK9 with these fragments would identify other CRs, in 

conjunction with CR3, that are necessary and possibly sufficient for the interaction with 

CDK9. Additionally, we could use an established  panel of deletion mutants, to narrow 

down the regions of interest, and identify specific residues required for the interaction 

between full length 13S E1A and CDK9 (Jelsma et al., 1988).  

In my experiments, I discovered that S185 and S188 of the putative CTD mimic do not 

mediate the interaction between full length E1A and CDK9. However, future experiments 

may show the putative CTD mimic region as a whole is involved in this interaction. Other 

experiments may be able to pinpoint other residues and CRs of E1A that are involved in 

this interaction. Characterizing the interaction between CDK9 and E1A will help define 

the role of CDK9 in transcriptional activation by E1A.  These experiments may suggest 

E1A and CDK9 cooperate to promote efficient elongation of viral genes as proposed in 

models developed from studies of viral transactivation by HIV, EBV, HSV and CMV 

(Reviewed in Zaborowska et al., 2016).  Alternatively, this would lead to the discovery an 

entirely new model instead.  

While the putative CTD mimic may not interact with CDK9, it is possible that it interacts 

with other proteins known to interact with the RNAPII CTD. These proteins include, the 

CTD kinases CDK7 and CDK8, and transcription factors such as Paf1, RNGTT, 

RPRD1a, CA150 and Set2 (Eick and Geyer, 2013).  All of these targets function at 

various points of the transcription cycle from initiation, to elongation, termination and 

RNA processing. Specifically, CDK7, a CTD kinase, binds unphosphorylated RNAPII 

and phosphorylates Serine-5 of the CTD to trigger transcription initiation. CDK8, in 

complex with Cyclin C, is a subunit of the mediator complex and plays a role in bridging 

transcription factors with RNAPII  in the preinitiation complex (Eick and Geyer, 2013). 

Paf1 is the major subunit of the Paf1 complex, which binds the phosphorylated S2 CTD, 

and is involved in histone modification and transcription elongation (Chu et al., 2013). 

RNGTT is a capping enzyme, a guanyl-transferase, recruited to RNAPII phosphorylated 

at Serine-5 of the CTD (Dunn and Cowling, 2015). Set2 is a Histone3 Lysine36 (H3K36) 

methyltransferase that plays a role in transcription elongation though interaction with 
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doubly phosphorylated RNAPII CTD (Schaft et al., 2003). CA150 is a transcription 

factor, that regulates RNAPII though the recruitment of other transcription associated 

proteins. CA150 interacts via its FF domains with the negative charges on the doubly 

phosphorylated RNAPII CTD. The acidic EP repeats of AR1 may mimic the negative 

charges in this interaction, expanding the functional domain that mimics the CTD in CR3, 

and aid in binding to CA150 and other transcription associated factors (Smith et al., 

2004). RPRD1a binds the CTD phosphorylated on S2 with S7 and acts as a scaffold for 

S5 dephosphorylation (Ni et al., 2014).  Future work could focus on determining which, if 

any, of these factors interacts with the putative CTD mimic. This would lead us to 

identify at which stage of transcription the putative CTD mimic functions: mRNA 

capping, initiation, elongation, termination. To investigate the interaction between full 

length 13S E1A and any other proteins that might bind to the putative CTD mimic, I 

would use similar approaches to those that I propose above with CDK9. Collectively, the 

results from past and future experiments would allow us to form a working model for the 

region’s involvement in transcription and viral replication. 

 

4.3 Structural Mimicry of RNAPII CTD by E1A CR3 
We first based our hypothesis that E1A CR3 structurally mimics the RNAPII CTD based 

on the high degree of sequence similarity (Figure 1.5). Second, both the RNAPII CTD 

and the putative CTD mimic are phosphorylated at serines in position 2 and 5 of the 

peptide, corresponding to S185 and S188 in E1A (Eick and Geyer, 2013; Whalen et al., 

1997). Finally, both the RNAPII CTD and the region in E1A CR3 are both thought to be 

intrinsically disordered (Eick and Geyer, 2013; Pelka et al., 2008). Previous studies in our 

lab and others suggest a link between functional and structural mimicry (King et al., 

2016b; Tsai et al., 2012). By identifying a factor (or factors) that interact with the putative 

CTD mimic, it would suggest that E1A CR3 functionally mimics the RNAPII CTD and 

would imply that E1A-CR3 also structurally mimics the RNAPII CTD.  

Based on original reports supporting this hypothesis from Dr. Greg Fonseca (Unpublished 

results, 2013), I attempted to demonstrate this structural mimicry by using an antibody for 
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the doubly phosphorylated RNAPII CTD to see if it recognizes E1A CR3.  However, I 

was unable to reproduce results from the original reports and subsequent attempts 

produced a wide variation in results. Lysates immunoprecipitated with RNAPII and 

immunoblotted with GFP occasionally demonstrated that E1A CR3 has been 

immunoprecipitated by the RNAPII antibody.  However, results were not consistent and 

often resulted in no evidence of cross recognition at all (Figure 3.13). On the other hand, 

occasionally lysates immunoprecipitated with GFP and immunoblotted for RNAPII 

appeared to show an interaction between E1A CR3 and RNAPII. Furthermore, it 

appeared that E1A CR3 may interact with RNAPII in a phosphorylation specific manner 

(Figure 3.14 A and B). However, attempts to reproduce this experiment once again 

resulted in a wide range of different results (Figure 3.14 C-F). Overall, I could not 

conclude that that E1A CR3 was recognized by the RNAPII antibody nor could I 

conclude that E1A CR3 interacted with RNAPII. Furthermore, I could not conclude that 

these results are phosphorylation specific. Thus, evidence of structural mimicry is not 

conclusive.  

Additionally, I discovered during functional mimicry experiments that overexpression 

(4µg) of transfected GFP leads to positive co-immunoprecipitation results in our negative 

control conditions. The above structural mimicry experiments were carried out with 

transfection of 8µg of GFP plasmid DNA per 10cm dish and 2x10cm dishes were used 

per IP reaction. This further puts into question the validity of these experiments. This 

likely explains the presence of a band in my negative control lanes, as seen in figure 3.14 

A, C, D, and F as well as figure 3.13 C. Any future experiments using GFP should pay 

special attention to whether the empty vector negative control interacts with the protein of 

interest, in this case RNAPII. The amount of GFP should be optimized and titrated to 

minimize this effect.  

It would prove very interesting if this cross-recognition is in fact true, that E1A 

structurally mimics RNAPII CTD. However, to clear up the conflicting results, we should 

move away from using GFP tagged E1A CR3 and use another protein tag entirely. E1A 

CR3 peptides can be fused to a FLAG epitope tag (DYKDDDDK) and then use FLAG-

specific agarose (ANTI-FLAG® M2 Affinity Gel, Sigma) in order to immunoprecipitate 
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E1A CR3 (Gerace and Moazed, 2015). This would minimize background and create a 

more stable platform by which to carry out a co-immunoprecipitation reaction.  This 

would provide clear indications whether CR3 interacts with RNAPII in a phosphorylation 

specific manner and may be able to confirm whether there are any structural similarities 

between E1A CR3 and the RNAPII CTD. 

 

4.4 Characterizing JM17-E1A S185/188A 
Previous studies with hAdV5 infection used transactivation impaired viruses with 

deletions from aa 178-184 (dl114) and aa 188-204 (dl115), or the point mutant hr5 which 

replaces S185 with asparagine. However, there has never before been a virus created that 

replaces both S185 and S188 with alanine, designed to study the effects of both conserved 

phosphorylated serines on transactivation. I constructed the JM17- E1A S185/188A virus 

by rescuing the desired point substitutions into the viral genome, propagating the virus 

and ultimately purifying it by a CsCl density gradient for use in current and future 

experiments (Figure 2.1). The E1A protein produced by this mutant can’t be 

phosphorylated at the two conserved serine residues in the putative CTD mimic. RNA 

and protein samples were collected over 48 and 72 hour time courses from A549 cells 

infected with various MOIs in order to characterize this virus. When infecting cells with 

equal MOIs (10) of both the WT and JM17-E1A S185/188A virus, the mutant virus 

showed markedly less E1A production in terms of both protein and RNA levels (Figure 

3.15 A, C). These results indicate that the mutation affects the ability of E1A to be 

expressed. Given the corresponding reduction in mRNA levels, this is not simply due to 

decreased stability of the protein. In contrast to E1A expression, the expression of other 

viral genes, E4, DBP, and capsid proteins express comparable levels of both protein and 

RNA (Figure 3.15 B, C). These results indicate that the phosphorylation of the putative 

CTD mimic is not necessary for efficient viral early gene expression. This differs with the 

reduction in E4 expression described previously (Whalen et al., 1997). While these 

residues may be important for transactivation in a transfection model, these residues 

might not play a significant biological role in transactivation of viral genes during 



94 

 

 

infection with hAdV, likely due to the presence of other viral factors and a dysregulated 

cellular environment.  

E1A levels of the JM17-E1A S185/188A mutant still did not meet the level of WT when I 

attempted to obtain comparable levels of E1A expression by infecting cells with 10X the 

mutant virus (MOI 30) compared to WT virus (MOI 3) (Figure 3.16 A, C). The 

expression of other viral genes such as E4, DBP and capsid proteins show a dose 

dependent increase in the mutant when compared to WT (Figure 3.16 B, C). These results 

further suggest that this mutant does not have a defect in activating early gene expression, 

other than for expression of E1A itself.  

As a consequence of these experiments, this raised the question of whether future 

experiments should use cells infected with equal MOIs or should use cells infected with 

different MOIs but with equal E1A expression.  For the sake of our immunoprecipitation 

experiments, we used different MOIs but equal E1A expression in order to test the role of 

specific residues (S185 and S188) in the interaction between E1A and CDK9, rather than 

based on amount of E1A present. In other experiments, the alternative approach to 

normalize the infection could be used, such that the equal number of viral genome 

templates are available for transcription and the levels of all other viral proteins are 

produced in equal amounts.  

My observation that the JM17-E1A S185/188A mutant virus expresses less E1A was not 

anticipated. It is known that E1A has separate activation and repression activities 

including activation and repression of E1A itself via autoregulation (Smith et al., 1985; 

Tibbetts et al., 1986).  E1A also has been shown to represses heterologous SV40 and 

polyoma promotors, Ad2 E2 late expression, as well as promotors of cellular genes 

(Borrelli et al., 1984; Hen et al., 1985; Sogawa et al., 1989; Velcich and Ziff, 1985; 

Webster et al., 1988). These activities are thought to be temporally regulated, early in 

infection E1A gene products return to the nucleus for auto-amplification. Then later in 

infection, E1A might repress activation in order to allow for a shift from early gene 

products to late gene products (Tibbetts et al., 1986). These functions are also spatially 

separated, where repression takes place at enhancers upstream of the E1A gene and 

activation takes place at the promotor and initiation start sites (Borrelli et al., 1984; Cogan 



95 

 

 

et al., 1992; Hearing and Shenk, 1983; Jones and Tibbetts, 1989; Smith et al., 1985). 

Autoregulation by E1A may explain the differences in E1A expression in the JM17- E1A 

S185/188A mutant virus at both the RNA and protein level. We thought perhaps there 

was an issue with the enhancer sequence upstream of E1A, which leads to auto-repression 

of E1A. Sequencing of the pXC1 S185/188A plasmid that was used to construct the novel 

virus does not reveal any defects in the promotor/enhancer region. 13S E1A but not 12S 

E1A can mediate autoregulation suggesting that CR3 plays a role in autoregulation 

(Hearing and Shenk, 1985). However, sequencing of the coding region of the JM17-E1A 

S185/188 mutant virus itself did not reveal any unexpected abnormalities in CR3. 

Although unlikely, this region may have acquired a defect during the initial 

recombination event and further efforts should be taken to sequence various regions 

within and surrounding E1A before we may attribute defects in expression specifically to 

S185/188A.  

Early and late gene expression, including E4, DBP (E2E), and capsid proteins depend on 

activation by E1A for their transcription (Berk, 1986; Jones and Shenk, 1979). But while 

E1A is expressed to lower levels in the JM17-E1A S185/188A mutant virus (MOI 30) we 

still observe higher amounts of E4, DBP, and capsid proteins in cells infected with the 

mutant virus versus WT (MOI 3). The increased expression may be explained due to the 

fact that there is a higher number of DNA templates available prior to DNA replication in 

cells infected with the mutant virus at 10X the MOI of WT (Tibbetts et al., 1986). 

Although E1A is limited, low levels of E1A are sufficient for virus production and 

infection still results in in expected dose dependent expression of other viral genes (Hitt 

and Graham, 1990). 

 

4.5 Future Directions into understanding elongation of hAdV 
genes 

Transcription activation and regulation is a complex process, one that E1A intersects with 

at many points from initiation to termination. Researchers are increasingly keen on 

investigating the role of E1A in elongation. Some recent work shows that E1A recruits 
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mediator complex and CDK9 to promote transcription of viral genes, possibly through 

elongation (Vijayalingam and Chinnadurai, 2013). Additionally, our lab found that that 

the N-terminus of E1A would make use of the hBre1 protein to recruit the Paf1 complex 

and promote elongation of viral transcripts (Fonseca et al., 2014).  Future experiments 

could be designed to fully elucidate the mechanism by which E1A is involved in 

elongation of viral genes. Specifically, to determine if 1) S185 and S188 play a role in 

elongation, 2) if the putative CTD mimic plays a role in elongation, and 3) what role does 

the interaction between CDK9 and E1A play in transcription. 

To determine the role of phosphorylated S185 and S188 in elongation, experiments will 

be carried out in a similar fashion to previous elongation studies in our lab. Cells could be 

infected with either WT of JM17 E1A S185/188A virus after which chromatin 

immunoprecipitation (ChIP) followed by RT-qPCR that will examine occupancy of 

RNAPll on viral genes. Primers are designed to amplify amplicons located at the C-

terminal (5’) and N-terminal (5’) of viral genes, including E1A E1B, E2, E3 and E4 

(Fonseca et al., 2014). Greater RNAPII occupancy in the 3’ end of viral genes, in cells 

infected with WT versus mutant S185188A virus, indicates that phosphorylated S185 and 

S188 play a role elongation. Greater RNAPII occupancy at the 5’ of viral genes in cells 

infected with WT virus indicates phosphorylated S185 and S188 play a role in initiation.  

We may discover that the phosphorylation of S185 and S188 play a role in elongation or 

in initiation of viral genes. While S185 and S188 do not appear to contribute to the 

interaction with CDK9, these residues may be required for interaction with other RNAPII 

CTD interacting proteins, and these proteins may be involved in the process of initiation 

and elongation. For example, in previous studies in our lab, siRNA knockdown of hPaf1 

in the context of hBre and E1A leads to decreased elongation, which is indicated by 

decreased occupancy of RNAPII on the 3’ region of viral genes (Fonseca et al., 2014). 

Future experiments could follow this design to highlight the role of E1A interactions in 

transcription regulation. Thus, it is possible to study if any of the above cellular factors 

that may have been identified to interact with E1A, are also involved in transcription of 

viral genes. To do so, siRNA could be used to knock down any of the identified cellular 

factors. Alternatively, those with enzymatic activity could be targeted with inhibitors, 
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provided they are available. Studies would compare the effects on transcription in WT 

versus the JM17-E1A S185/188A mutant. If any of these factors are involved in 

transcription, knocking down these factors would lead to a decrease in RANPII 

occupancy in the 5’ (initiation) or 3’ region (elongation) of viral genes in WT virus. 

JM17-E1A S185/188A may prove resistant to these changes, and this would highlight the 

role of phosphorylated serines in the interaction with cellular factors and provide 

evidence of their ability to function as a CTD mimic during transcription.   

While the phosphorylation of S185 and S188A does not seem to play a role in an 

interaction with CDK9, the putative CTD mimic may still be involved in this interaction. 

Co-immunoprecipitation experiments may outline which residues of 13S E1A are 

required for interaction with CDK9, whether it be through the putative CTD mimic or by 

other regions of E1A. The above ChIP experiments might then be used to study WT virus 

versus a mutant virus (unable to bind CDK9) and the occupancy of RNAPII on viral 

genes. Furthermore, experiments could be designed to study, through the use of siRNA 

and CDK inhibitors, how the presence or absence of CDK9 might affect elongation or 

initiation. It was expected that the putative E1A CTD mimic will be involved in 

promoting elongation of viral genes via an interaction with CDK9.  HIV and EBV 

proteins act though the cellular CDK9 to release promotor pausing and promote 

elongation, and it was expected that Adenovirus E1A would act in a similar fashion 

(Bark-Jones et al., 2006; Zhou et al., 2000). This may place Adenovirus in the same 

model as HIV and EBV, highlighting a fascinating mechanism conserved in multiple 

viruses to hijack host cell machinery to carry out efficient elongation. 

Other studies use immunofluorescence microscopy to visualize viral transcription centers 

during hCMV and HSV infections and to identify the various components that are 

recruited to these centers. These studies demonstrate the co-localization between CDK9 

(and in some cases CDK7) and RNAPII. Additionally, these studies identify other viral 

proteins required for this interaction, and for active transcription. These groups often use 

CDK inhibitors or siRNA to knock down CDKs in order to elucidate the mechanism by 

which this occurs. Researchers also identify temporal differences, at early versus late 

times post infection. Lastly, during viral infection, and in the presence or absence of 
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various cellular factors, researchers can examine the total levels of unphosphorylated 

RNAPII versus S2, S5, or S2/S5 phosphorylated RNAPII, in order to fully understand the 

effects of the virus in hijacking host cell machinery (Dai-Ju et al., 2006; Durand and 

Roizman, 2008; Kapasi and Spector, 2008; Kapasi et al., 2009; Tamrakar et al., 2005). 

We may use the infection of WT versus a JM17-E1A S185/188A virus, or an E1A D180-

188 virus, along with similar immunofluorescence techniques outlined above to 

understand the modifications taken by the virus to usurp host transcription machinery and 

use it for the transcription of viral genes. These experiments will outline the effect of the 

putative CTD mimic on transcription or demonstrate if in fact the sequence similarity 

observed between RANPII and E1A does not actually play a functional role in hAdV5 

infection and E1A transactivation.  

 

4.6 Significance 
We demonstrated the importance for S185 and S188 in E1A CR3 transactivation and 

show that the highly conserved putative CTD mimic plays a role in transactivation, 

presumably by binding of cellular factors. While we discovered that the phosphorylation 

of S185 and S188 does not play a role in the interaction of 13S E1A and CDK9, it is 

possible that the putative CTD mimic as a whole may still play a role in this interaction. 

Alternatively, the phosphorylation of S185 and S188 may be involved in an interaction 

with other cellular factors. Establishing the promotor targeting region as a putative CTD 

mimic through binding of RNAPII CTD interacting proteins would demonstrate a novel 

example of mimicry to add to a growing list of examples for the use of mimicry via 

ELMs in viral evolution, specifically in Adenoviral evolution. Identifying new targets of 

E1A that depend on the phosphorylation of S185 and S188 mimic may at last provide 

novel insights into the C-terminal portion of E1A CR3.   This study demonstrates the 

characterization of a novel point mutant of hAdV5 JM17-E1A S185/188A, which could 

prove to be a useful tool in studying the effect of these point mutations on transcription of 

viral genes as well as study the importance of these serines for interaction with identified 

cellular factors. 
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Although I confirmed that 13S E1A interacts with CDK9, future work will be required to 

determine the specific residues involved in this interaction. ChIP experiments may 

highlight the role of CDK9 in elongation of viral genes, thus identifying a new 

mechanism by which E1A promotes transcription and places adenovirus in the same 

model as viruses such as EBV and HIV. Based on this model, there is a potential 

application of CDK inhibitors as anti-viral therapeutics. These CDK inhibitors, including 

Flavopiridol (binds to the ATP site of CDK9 though hydrogen like interaction), DRB (an 

adenosine analogue that is a specific inhibitor of CDK9) and Roscovitine (a purine 

derivative), have been shown to inhibit HIV replication and transcription by targeting 

CDK9. Broad spectrum CDK inhibitors tend to have negative effects on cell cycle 

progression, cellular proliferation and other adverse or cytotoxic effects, thus there is a 

search for alternatives with less negative effects (Chao et al., 2000; Sadaie et al., 2004). A 

recent study using the small molecule CDK inhibitor FIT-039 showed an inhibition of 

replication of HSV-1 and HSV-2, hAdV and hCMV without detrimental effects to 

mammalian cells (Yamamoto et al., 2014). Thus, drugs targeting such pathways may have 

utility as novel antiviral agents. Indeed, researchers show that treatment of hAdV2, 5, 8 

and 37 infected cells with Flavopiridol, or otherwise inhibiting CDK9, led to a reduction 

of viral replication, abrogated the production of E1A and altered levels of phosphorylated 

RNAPII (Prasad et al., 2017).  
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