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Abstract

In the first part of the thesis, an efficient macromodeling technique based on Loewner Matrix

(LM) approach has been presented to model multi-port distributed systems using tabulated

noisy data. In the proposed method, Loewner Model data from previous rational approximation

are used to create less noisy eigenvectors in an iterative manner. As a result, the biasing effect

of the LM model approximated by the noisy data is reduced. It is illustrated that this method

improves the accuracy of the Loewner Matrix modeling for noisy frequency data.

In the second part, a fast and robust algorithm is introduced for time-domain simulation of

interconnects with few nonlinear elements based on Large Change Sensitivity approach. After

macromodeling interconnects, linear parts of the system construct very large matrix. Large

linear matrix with nonlinear components makes time domain simulation a Central Processing

Unit (CPU) intensive task where inversion (one Lower/Upper (LU) decomposition and one for-

ward/backward substitution) of this large matrix is done at each step of the Newton-Raphson

iteration. Using the proposed method, large system matrix is partitioned into linear and non-

linear parts and LU decomposition of linear matrix is done only once in the entire simulation.

Nonlinear elements construct a very small matrix compared to large linear matrix. In this pro-

posed method, small matrix is inverted at each Newton iteration. Cost of inverting a small

matrix is much cheaper than inverting a very large matrix. Therefore, this approach is faster

than the conventional matrix inversion method. Numerical examples are presented illustrating

validity and efficiency of the above method.

Keywords: Frequency domain modeling, interconnect modeling, iterative Loewner method,

large change sensitivity, noisy frequency responses, transient analysis.
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Chapter 1

Introduction

1.1 Background and Motivation

Advances in Very-Large-Scale-Integration (VLSI) technology have made phenomenal growth

in operating speed, densities and diminishing device sizes. With increasing frequency, inter-

connect analysis has become a major requirement for all state-of-the-art circuit design and sim-

ulations. Interconnects can exist at various levels such as on-chip, packaging structures, vias,

printed circuit boards (PCB) and backplanes etc. Once neglected interconnect effects such as

ringing, signal delay, distortion and attenuation give rise to signal integrity issues [1–5]. Accu-

rate capture of signal integrity issues at early stage of design ensures circuit performance and

reliability [1].

Circuit simulators like SPICE face difficulties to simulate interconnects in the presence of

nonlinear components due to mixed frequency/time problem as well as CPU inefficiency. This

is because, characteristics of interconnects are governed by Telegrapher’s equations which are

Partial Differential Equations (PDEs) and are best solved in the frequency domain, whereas

nonlinear elements are described only in the time domain with nonlinear Ordinary Differential

Equations (ODEs). Different numerical macromodeling techniques are used to convert PDEs

to ODEs to simulate interconnects with nonlinear elements [1, 3, 5, 6].

1



Chapter 1. Introduction 2

At first we can divide interconnect macromodeling strategies into two cases. In the first case,

physical characteristics of the interconnect structure are known and modeling is based on

Quasi-Transverse Electromagnetic mode of propagation of waves. In the second case, where

physical structure is unknown or any analytic solution is hard to derive, rational macromodel-

ing approximation from full-wave electromagnetic simulation or port-port measured data are

used to model interconnects [7].

Two types of macromodeling are done with known physical characteristics of interconnects.

One is rational approximation and other is delay extraction based modeling techniques. Brute

force lumped segmentation modeling [8], passive reduced-order interconnect macromodel-

ing algorithm (PRIMA) [9], matrix rational approximation (MRA) [10, 11], compact differ-

ence [12], integral congruent transformation [13, 14] are included under rational approxima-

tion modeling. These modeling algorithms are passive by construction. However, they require

high order approximation to capture the delay. On the other hand, delay extraction method

like Method of Characteristics (MoC) [15] use a low order approximation as the delay of the

transfer function is extracted. However, MoC is not passive by construction.

Macromodeling algorithms for interconnects with no prior knowledge of the physical charac-

teristics are based on frequency domain, multiport tabulated data obtained either from elec-

tromagnetic simulations or from measurements [16–37]. Frequency domain data are often

presented in the form of impedance, hybrid, scattering or admittance parameters data. One

approach to convert frequency domain data into time domain analysis is based on convolution

techniques [19, 20]. However, this approach is time consuming [21] and requires high mem-

ory allocation [22]. Another approach is to generate closed form time domain macromodels.

These methods approximate the transfer function in descriptor system (DS) or pole-residue for-

mat. They can be directly incorporated into modified nodal analysis equations [23] or recursive

convolution can be used to obtain transient response [24].

A popular pole-residue based system identification tool is called Vector Fitting (VF) [16] which

is formulated as a linear least squares problem and depends on an iterative pole relocation
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approach to improve the approximation. Various enhancements have been made to improve

its accuracy and efficiency [25–27]. VF has also been used for multiport network using QR

decomposition and parallel processing [28]. In recent years, Loewner Matrix (LM) [29–31]

framework has been proposed to generate descriptor state-space models from frequency do-

main measured data of interconnect network. Unlike VF, LM method is very efficient to iden-

tify the system from the tabulated data with fewer state-space equations [29, 31]. In Loewner

Matrix modeling, order of the system can be identified from the Singular Value Decomposition

(SVD) of Loewner Matrix [29]. Delay extraction based Loewner modeling method has been

proposed in [32] to approximate a low-order rational model.

In the presence of noise in frequency domain data, several modifications have been proposed

for vector fitting algorithm. They are such as pole adding and skimming method [33], least

squares weighted functions [34] and instrumental variable VF method [35]. Moreover, LM

interpolation method faces some issues to accurately identify the system from contaminated

frequency domain data [36]. In [36] which pole/residues are relevant based on examining the

norms of the residues and in [37] an iterative least square based LM interpolation approxima-

tion are proposed to identify system from noisy data, respectively.

After macromodeling interconnects, nonlinear components like drivers and receivers are in-

cluded in time domain circuit simulations. For transient analysis, integration techniques are

used to convert differential equations into difference equations. To solve the difference equa-

tions with nonlinear elements at each time step, Newton-Raphson iterations are required. Mod-

eling of interconnects leads to large circuit matrix making time-domain analysis a CPU inten-

sive task for nonlinear circuit simulators [3]. In order to address the above issue, a fast and

efficient algorithm for transient analysis of large interconnect network is presented in this the-

sis.
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1.2 Objectives

The first objective of this thesis is to develop an algorithm to improve the accuracy of the

identified state-space system from the noisy data based on Loewner modeling approach. The

second objective is to apply Large Change Sensitivity (LCS) [38,39] approach for fast transient

analysis of interconnects circuits including nonlinear loads, drivers and receivers.

1.3 Contributions

The main contributions of the thesis are as follows:

1. An iterative algorithm is proposed to create less noisy data from previous Loewner

Matrix approximated model. Then this data is used to create less noisy eigenvectors. As a

result, the biasing effect of the LM solution caused by the noise of the eigenvectors created

from original data is reduced by this method.

2. This proposed iterative method has been applied to multiport network. Numerical ex-

amples are presented to compare the LM based approximation and proposed iterative LM ap-

proximated models.

3. Large Change Sensitivity approach is used for fast transient analysis of large distributed

networks terminated with nonlinear loads and drivers.

4. LM method has been used to model large interconnect network from measured frequency

data. Loewner method together with Large Change Sensitivity (LCS) approach is used for

transient analysis of nonlinear distributed networks.

1.4 Organization of the Thesis

The organization of the thesis is as follows. Chapter 2 gives brief review of interconnects

modeling, modified nodal analysis of linear and nonlinear distributed networks and transient

analysis of nonlinear networks. Chapter 3 develops an efficient method to macromodel large
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multiport systems characterized by noisy frequency domain data, using an iterative Loewner

Matrix algorithm. It is illustrated that the proposed approach can increase the accuracy of

the Loewner modeling with noisy tabulated data. Chapter 4 discusses a fast transient analysis

algorithm based on Large Change Sensitivity approach. Here distributed interconnect network

has been modeled using lumped modeling and Loewner matrix modeling techniques. Time and

accuracy have been compared between conventional matrix inversion and proposed approach

for transient analysis for both modeling approaches. Finally, Chapter 5 summarises the work

proposed along with some future research suggestions.



Chapter 2

High Speed Interconnects

2.1 Introduction

Interconnects propagate signals between electrical devices. At low frequencies, they behave

like short circuits. As the frequency increases, they start to behave like transmission lines

and are responsible for signal degradation in the circuit. Modern VLSI circuits have made

modeling and analyzing of interconnects a necessary task. The aim of this chapter is to review

some of the interconnect macromodels and numerical techniques that are used for interconnect

analysis.

2.2 Interconnect Modeling

Interconnect modeling depends on the physical structure as well as the operating frequency

of the electrical circuit. Electrical length of interconnects is an essential factor to model and

analyze them. Interconnects are considered to be ‘electrically short’, if they are physically

shorter than one-tenth of the wavelength of the operating signal [3].

l
λ
< 0.1; λ =

v
f

(2.1)

6
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where l is the interconnect length, λ is the signal wavelength, v is the propagation velocity

and f is the frequency. Otherwise, interconnects are considered,‘electrically long’. A practical

relationship between maximum frequency denoted by fmax and rise time represented as tr of a

signal can be expressed as [3, 40],

fmax ≈
0.35

tr
(2.2)

Figure 2.1 shows the top view and cross sectional view of an interconnect system consists of

Figure 2.1: Interconnect system top view and cross sectional view

four conductors and ground plane. Modeling of interconnects depends on the operating fre-

quency, signal rise and fall times, length of interconnects and their physical properties. These

factors determine whether the modeling of interconnects is based on quasi-transverse electro-

magnetic (quasi-TEM) or full wave assumptions. For interconnect structure that cannot be

modeled analytically, linear networks characterized by tabulated or measured data have been

proposed.
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2.3 Quasi-Transverse Electromagnetic Models

Transverse electromagnetic (TEM) waves exist for interconnects with homogeneous mediums

and perfect conductors [2]. Under these conditions, interconnects produce electric and mag-

netic fields that are transverse or perpendicular to one another and to the direction of propa-

gation. Quasi-TEM assumptions remain the dominant trend for analyzing interconnects, since

the approximation is valid for most practical structures and offers relative ease and low com-

putation cost compared to full wave approaches [3, 5].

The voltages and currents for interconnects under quasi-TEM assumption are described by

partial differential equations (PDEs) known as Telegrapher’s equations,

∂v(x, t)
∂x

= −Ri(x, t) − L
∂i(x, t)
∂t

∂i(x, t)
∂x

= −Gv(x, t) −C
∂v(x, t)
∂t

(2.3)

where voltage v(x, t) and current i(x, t) are functions of position x and time t; R, L, C and G are

the per unit length (p.u.l.) resistance, inductance, capacitance and conductance of the intercon-

nect respectively. The p.u.l parameters are obtained from the cross-sectional dimensions and

physical characteristics of the transmission line. They are also used to determine voltages and

currents of the transmission line [2].

2.3.1 Distributed Lumped Modeling

Lumped segmentation technique uses lumped resistive-inductive-conductive-capacitive (RLGC)

model of the transmission lines to approximate Telegrapher’s equations. Applying Euler’s

method [2] to (2.3) yields

v(x + ∆x, t) − v(x, t) = −∆xRi(x, t) − ∆xL
∂i(x, t)
∂t

i(x + ∆x, t) − i(x, t) = −∆xGv(x + ∆x, t) − ∆xC
∂v(x + ∆x, t)

∂t
(2.4)
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where x = [1, 2, ..., η], ∆x = l/η, η is the number of sections and l is the length of intercon-

nect. Equation (2.4) can be implemented by lumped equivalent circuit composed of resistors,

inductors, conductors, and capacitors.

Figure 2.2: Distributed Lumped model segment

Figure 2.2 shows the general lumped component for a two conductor transmission line. HSPICE

[41] use equation (2.5) in order to estimate the number of sections for time domain analysis of

interconnects.

η = 20
l.
√

LC
tr

(2.5)

where tr is the rise/fall time. The lumped segmentation model is passive and provides a direct

method to discretize interconnects. However the approximation is only valid if ∆x is chosen

to be a small fraction of the wave length. If the rise/fall time is fast or if the interconnect is

electrically long, many lumped segments are required for an accurate model. This leads to

large circuit matrix increasing CPU time for time domain simulation.

2.3.2 Method of Characteristics

Another most commonly used algorithms to model interconnect are based on the generalized

method of characteristics (MoC) [15, 22, 42–46]. In MoC, the line propagation delay is ex-
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tracted and exact models are produced applying to lossless transmission lines [15]. These

methods are also applied to model lossy MTLs [42–46]. The MoC is based on extracting

the propagation delay allowing the attenuation function to be approximated with a low order

rational transfer function. It reduces the computation complexity for long lines with low losses.

The original method of characteristics [15] or Branin’s method was used to represent inter-

connects as ODEs containing time delays. Although it was developed in the time-domain

using characteristics curves (hence the name), a simpler alternative in the frequency domain is

presented here. The frequency domain solution of Telegrapher’s equation for two-conductor

transmission lines (one signal conductor and another reference conductor) [46] is

I1

I2

 =
1

Z0(1 − e−2γl)

1 + e−2γl −2e−γl

−2e−γl 1 + e−2γl


V1

V2

 (2.6)

γ =
√

(R + sL)(G + sC) Z0 =

√
R + sL
G + sC

where γ is the propagation constant and Z0 is the characteristics impedance.

Figure 2.3: Transmission Line Model for Method of Characteristics

After some re-arrangement, the terms in (2.6) can be expressed as,

V1 = Z0I1 + W1

V2 = Z0I2 + W2 (2.7)
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Here W1 and W2 have a recursive relation as

W1 = e−γl(2V2 −W2)

W2 = e−γl(2V1 −W1) (2.8)

For lossless transmission lines, R = 0 and G = 0. Thus γ and Z0 reduces to

γ = s
√

LC Z0 =

√
L
C

(2.9)

As a result, γ becomes purely imaginary and Z0 becomes a real constant. By taking the inverse

Laplace transform of (2.7) & (2.8), we can get the time domain solution of MoC as,

v1(t) = Z0i1(t) + w1(t)

v2(t) = Z0i2(t) + w2(t)

w1(t + τ) = 2v2(t) − w2(t)

w2(t + τ) = 2v1(t) − w1(t) (2.10)

where τ = γl is a delay term in the time-domain. A transmission line model for MoC in time-

domain is shown in Figure 2.3. For lossy transmission lines, γ is not purely imaginary and Z0

is not a real constant. They are irrational function of complex frequency s. As a result, direct

time domain representation is not possible. In this case, rational approximation of γ and Z0 has

been proposed [42–46] for lossy transmission line models.
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Therefore, γ and Z0 are approximated as,

Z0 = Z0(s) '
∑

n

RZ
n

s − pZ
n

+ Z∞

γ = γ(s) =
√

(R + sL)(G + sC) ≈ s
√

L∞C∞ + P(s)

P(s) '
∑

n

RP
n

s − pP
n

+ P∞

Here Z0(s) and P(s) are approximated in pole residue form. RZ
n and pZ

n are real or complex

residues and poles of Z0(s). RP
n and pP

n are real or complex residues and poles of P(s). L∞, C∞

are inductance and capacitance at s = j∞ respectively.

2.4 Full Wave Models

If the cross-sectional dimensions of interconnects become a significant fraction of the circuits

operating wavelength, field components in the direction of propagation can no longer be ig-

nored [47]. Under these conditions, quasi-TEM assumptions become inadequate to describe

interconnect and full wave models are required.

Full wave models provide better accuracy when compared to quasi-TEM models. However,

full wave models are not used by circuit simulators because of the expensive CPU require-

ments [48]. The cost of full wave simulation associated with each interconnect at a particular

frequency point is extremely high. Generally, high speed interconnects require thousands of

frequency points to accurately model the response of the system. The cost of the computa-

tion of the full wave model combined with the evaluation cost of the overall circuit makes the

technique unreasonably expensive to use in circuit simulation.

Another problem with full wave methods is to represent the model in the circuit simulator.

The information provided by wave full wave analysis is in terms of field parameters such as

propagation constants, characteristic impedances, current eigenvectors, etc. Circuit simulators

require information in terms of voltages, currents and impedances. Therefore, an interface
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needs to be developed to link full wave methods into circuit simulators.

2.5 Measured Data Model

For interconnects having geometric inhomogeneity and discontinuities, sometimes it is not

possible to obtain accurate analytical physics based models. To overcome this issue, modeling

techniques based on measured data or tabulated data have been proposed [49,50]. Interconnects

are modeled using measured data from frequency dependent scattering parameters, electromag-

netic simulations or by time domain terminal measurements. Time domain measurements can

be acquired by numerical solution of the electromagnetic field problems [51, 52] or by time

domain reflectometry (TDR) methods [53]. Measured data obtained by different methods are

contaminated by noise. To decrease the impact of noise, large data sets are required.

2.5.1 Vector Fitting

Vector fitting (VF) uses an iterative approach to acquire a rational function to approximate

the data obtained by measurement or electromagnetic simulation. It was first introduced by

Gustavsen in 1998 and many developments have been made over the years in [16, 54–57].

The objective of vector fitting is to determine a rational approximation of a set of measured

data {s,Y(s)} as,

f (s) =

N∑
n=1

rn

s − pn
+ d + se (2.11)

where rn and pn correspond to real or conjugate residues and poles respectively, while the

real variables d and e are optional; s is the Laplace variable, Y(s) is the measured data value

at s and N is the number of poles and residues or the order of the rational function. The

nonlinear problem in (2.11) can be solved by following two steps. The first step is an iterative

pole identification process and the second step is to identify the residues using a least square

approximation. To obtain an approximation for the poles pn, an unknown function α(s) is
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introduced as,

α(s) =

N∑
n=1

r̃n

s − p̃n
+ 1 (2.12)

where p̃n are the starting poles and the remaining terms are unknowns. In addition, the rational

approximation for α(s) f (s) can be described as,

α(s) f (s) � (α f )(s) =

N∑
n=1

rn

s − p̃n
+ d + se (2.13)

Multiplying (2.12) by f (s) and equating with (2.13), yields the following system of equation,

N∑
n=1

rn

s − p̃n
+ d + se = (

N∑
n=1

r̃n

s − p̃n
+ 1) f (s) (2.14)

This linear problem has rn, r̃n, d and e as unknowns. For each frequency point s j, the system

of (2.14) can be expressed as,

A jX = b j (2.15)

where

A j =

Re(z j
1) .... Re(z j

N) 1 0 Re(z̃ j
1) .... Re(z̃ j

N)

Im(z j
1) .... Im(z j

N) 1 0 Im(z̃ j
1) .... Im(z̃ j

N)


X =

[
r1 .... rN d e r̃1 .... r̃N

]
(2.16)

b j =

Re(Y(s j))

Im(Y(s j))


For real poles and residues, the coefficients of (2.16) will become,

z j
k =

1
s j − p̃k

; z̃ j
k =
−Y(s j)
s j − p̃k
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For complex conjugate pole and residue pairs, the coefficients of (2.16) will be

z j
k =

1
s j − p̃k

+
1

s j − p̃k+1
; z j

k+1 =
i

s j − p̃k
−

i
s j − p̃k+1

z̃ j
k =
−Y(s j)
s j − p̃k

+
−Y(s j)

s j − p̃k+1
; z̃ j

k+1 =
−iY(s j)
s j − p̃k

+
iY(s j)

s j − p̃k+1

rk = Re(rk); rk+1 = Re(rk)

r̃k = Re(r̃k); r̃k+1 = Re(r̃k)

From all the above equations, an overdetermined system of equation can be formed for all the

frequency points as,

AX = b (2.17)

The solution of X can be obtained by the least square solution by doing,

X = (AT A)−1(AT b) (2.18)

From the least square solution of (2.18), we can get approximations for α(s) and (α f )(s) and

they can be written as,

α(s) f it =

∏N
n=1(s − ãn)∏N
n=1(s − p̃n)

(α f ) f it(s) = e
∏N+1

n=1 (s − an)∏N
n=1(s − p̃n)

(2.19)

The poles of (2.19) cancel each other out to get a rational approximation for f (s) as,

f (s) =
(α f ) f it(s)
α(s) f it

= e
∏N+1

n=1 (s − an)∏N
n=1(s − ãn)

(2.20)

where the zeros of α(s) f it becomes the poles of f (s). By taking this new set of poles ãn as

the new guess for the next iterations to replace previous poles pn. This iterative procedure is

continued until convergence.
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After the poles of the system are determined, an additional least square solution is needed for

the residues to obtain and the terms d and e if they are present in the system.

2.5.2 Loewner Matrix Model

In time domain, a multiport Linear Time Invariant (LTI) system with P inputs and outputs can

be described as a state-space model:

Eẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t) (2.21)

where x(t) ∈ Rr vector contains internal variables, u(t) ∈ RP and y(t) ∈ RP vectors contains

input and output port voltages and currents, respectively. The matrices E, A ∈ Rr×r, B ∈ Rr×P,

C ∈ RP×r, D ∈ Rr×P describe the system and r is the order of the system. The closed form

expression of frequency domain Y-parameters of the LTI system in (2.21) can be presented by,

Y(s) = C(sE − A)−1B + D (2.22)

Loewner Matrix method [29–31] is used to get a time domain macromodel from the frequency

domain measured or simulated data. Frequency domain data are often presented in the form of

impedance, hybrid, scattering (S -parameter) or admittance (Y-parameter) parameter data.

The frequency domain data is expressed as,

{sm,Y(sm)} (2.23)

where sm is the complex frequency, Y(sm) is the S -parameter or Y-parameter data at frequency

sm and m = 1, 2, . . . ,M, where M is the number of data points. The frequency data is splitted
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into odd and even data points as follows:

{s1, . . . , sM} = {τ1, . . . , τm} ∪ {υ1, . . . , υm}

{Y(s1), . . . ,Y(sM)} = {Y(τ1), . . . ,Y(τm)} ∪ {Y(υ1), . . . ,Y(υm)}

{Y(τ1), . . . ,Y(τm)} = {W1, . . . ,Wm}

{Y(υ1), . . . ,Y(υm)} = {U1, . . . ,Um}

(2.24)

Here m + m = M.

m = m =
M
2

Here M is even

m = m + 1 =
M + 1

2
Here M is odd

Here frequency data is splitted into odd and even data points.

Right data set:

Γ= diag[τ1, . . . , τm] ∈ Cm×m, R = [R1, . . . ,Rm] ∈ CP×m, W = [W1, . . . ,Wm] ∈ CP×m

Left data set:

Υ= diag[υ1, . . . , υm] ∈ Cm×m, LT = [L1, . . . , Lm] ∈ Cm×P, UT = [U1, . . . ,Um] ∈ Cm×P

Here R and L are random matrices. Loewner matrix L and shifted Loewner Matrix σL are

calculated as:

L =


U1R1−L1W1

υ1−τ1
. . . U1Rm−L1Wm

υ1−τm

...
. . .

...

UmR1−LmW1

υm−τ1
. . .

UmRm−LmWm

υm−τm

 (2.25)

σL =


υ1U1R1−τ1L1W1

υ1−τ1
. . . υ1U1Rm−τmL1Wm

υ1−τm

...
. . .

...

υmUmR1−τ1LmW1

υm−τ1
. . .

υmUmRm−τmLmWm

υm−τm

 (2.26)

The LMs are complex matrices. In order to get a real macromodel, a similarity transformaion

is used as follows [29, 31]

LR = T∗LT, σLR = T∗σLT
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UR = T∗U, WR = TW (2.27)

where,

T = blkdiag[t, . . . , t] ∈ Cm×m, t =
1
√

2

1 − j

1 + j


According to [29] state-space realization of the time domain model can be extracted from the

regular part of the Loewner Matrix pencil (sLR−σLR). The regular part is extracted from SVD

of (sLR − σLR). Any value of s can be chosen unless it is not the eigenvalue of (LR, σLR).

Using singular value decomposition (SVD), the realization can be obtained as follows:

S VD(sLR − σLR) = YΣX;

rank(sLR − σLR) = rank(Σ) = r;

Y1 ∈ R
m×r and X1 ∈ R

m×r

(2.28)

Here order or rank of the system is r. HereY andX are left and right eigenvectors. Y1 andX1

are constructed from the first r columns of Y and X. The system matrices are defined as,

E = Y∗1LRX1; A = Y∗1σLRX1;

B = Y∗1UR; C = −WRX1; D = 0;
(2.29)

At this stage D matrix is always zero. Sometimes embedded D matrix is needed to be extracted

to get a stable macromodel as illustrated in [31].

2.6 Circuit Formulation of Distributed Networks

This section illustrates the circuit formulation of distributed electrical networks.
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Figure 2.4: Linear Distributed Network

2.6.1 Linear Distributed Networks

Let us consider the linear distributed network shown in Figure 2.4. The Modified Nodal Anal-

ysis (MNA) equation can be expressed in time domain as,


G1 0

0 0



v1

v2

 +


0 0

0 C2



dv1

dt
dv2

dt

 +


i1

i2

 =


J(t)

0

 (2.30)

In the frequency domain, Y-parameter expression of the 2-port distributed network in Figure

2.4 can be expressed as, 
I1

I2

 =


Y11 Y12

Y21 Y22



V1

V2

 (2.31)

After macromodeling the distributed network using Loewner modeling, let us consider r ele-

ments are present in the port system. In the time domain, following equation (2.21) state space

equation for this 2-port system can be written as,


e11 . . . e1r

...
. . .

...

er1 . . . err





dx1

dt
...

dxr

dt


=


a11 . . . a1r

...
. . .

...

ar1 . . . arr




x1

...

xr


+


b11 b12

...
...

br1 br2



v1

v2

 (2.32)



Chapter 2. High Speed Interconnects 20


i1

i2

 =


c11 . . . c1r

c21 . . . c2r



x1

...

xr


+


d11 d12

d21 d22



v1

v2

 (2.33)

Now equations (2.32) and (2.33) are embedded in equation (2.30). We first substitute (2.33)

into i1 and i2 in (2.30). We obtain an equation with parameter x = [x1 . . . xr] as,


G1 + d11 d12 c11 . . . c1r

d21 d22 c21 . . . c2r





v1

v2

x1

...

xr


+


0 0 0 . . . 0

0 C2 0 . . . 0





dv1

dt
dv2

dt
dx1

dt
...

dxr

dt


=



J(t)

0

0

...

0


(2.34)

Now we add equation (2.32) to the bottom of equation (2.34). We can get the integrated MNA

equation for the whole circuit shown in Figure 2.4 as,



G1 + d11 d12 c11 . . . c1r

d21 d22 c21 . . . c2r

−b11 −b12 −a11 . . . −a1r

...
...

...
. . .

...

−br1 −br2 −ar1 . . . −arr





v1

v2

x1

...

xr


+



0 0 0 . . . 0

0 C2 0 . . . 0

0 0 e11 . . . e1r

...
...

...
. . .

...

0 0 er1 . . . err





dv1

dt
dv2

dt
dx1

dt
...

dxr

dt


=



J(t)

0

0

...

0


(2.35)

2.6.2 Nonlinear Distributed Networks

In general, distributed networks in the presence of nonlinear elements can be expressed as [5]

Cφ

dxφ(t)
dt

+ Gφxφ(t) +

Nt∑
k=1

Dkik(t) + F(xφ(t)) = bφ(t)
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Ik(s) = Vk(s)Yk(s) (2.36)

where

• xφ(t) is a vector, which includes node voltages appended by independent and dependent

voltage source currents, inductor currents, nonlinear capacitor charge, and nonlinear in-

ductor flux waveform. Gφ and Cφ are constant matrices describing the lumped memo-

ryless and memory elements of the network, respectively. bφ(t) is a vector with entries

determined by the independent voltage and current sources. F(xφ(t)) is a vector describ-

ing the nonlinear elements.

• Dk = [di, j ∈ {0, 1}] is a selector matrix that maps the vector of terminal currents ik(t)

entering the interconnect k into the node space of the circuit network, where i ∈ 1, . . . , φ,

j ∈ 1, . . . , 2Mk and Mk is the number of coupled signal conductors in the kth intercon-

nect. Nt is the number of distributed structures. Yk(s) is the admittance parameters of

interconnect subnetwork in the Laplace domain. Vk(s) and Ik(s) represent the Laplace

terminal voltages and currents of interconnect k.

2.6.3 Nonlinear Network

After macromodeling the distributed transmission lines into ODEs, large nonlinear intercon-

nect network can be expressed by,

Cψ

dx(t)
dt

+ Gψ(t) + F(x(t)) = b(t) (2.37)

Here Cψ matrix contains the admittances for capacitive and inductive elements and Gψ matrix

contains the admittances of resistive and conductive elements. F(x(t)) vector comprises the

nonlinear elements and x vector represents node voltages and currents flowing through voltage

sources and inductors. The vector b(t) contains the values of the independent current sources

and independent voltage sources.
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2.7 Transient Analysis of Nonlinear Network

The time domain solution of (2.37) is derived by converting the nonlinear differential equa-

tions to nonlinear algebraic equations using explicit method such as Forward Euler and implicit

methods like Backward Euler and Trapezoidal rule. Explicit methods require no matrix inver-

sion making them computationally less expensive than implicit methods that require matrix

inversion. But explicit methods are never used for circuit simulation as they are not absolutely

stable for all step sizes. On the other hand, implicit methods are absolutely stable and used

for solving nonlinear circuits with Newton-Raphson iteration at each time step. For multinode

network after using Trapezoidal rule difference equation of (2.37) can be written as

(
Cψ

∆t
+

Gψ

2
)xt+1 +

F(xt+1)
2

− (
Cψ

∆t
−

Gψ

2
)xt +

F(xt)
2

=
bt + bt+1

2
(2.38)

Here ∆t is the step size. Let us consider step size ∆t is very small and does not change during

time domain simulation.

After applying Newton-Raphson method the problem becomes solving the following function,

f k
t+1 = (

Cψ

∆t
+

Gψ

2
)xt+1 +

F(xt+1)
2

− (
Cψ

∆t
−

Gψ

2
)xt +

F(xt)
2
−

bt + bt+1

2
= 0 (2.39)

where xt+1 is the unknown vector with n number of variables to be solved at each iteration by

applying,

xk+1
t+1 = xk

t+1 + ∆xk
t+1 (2.40)

∆xk
t+1 = −(Mk

t+1)−1 f k
t+1 (2.41)

where k is the iteration number. HereM is an n × n Jacobian matrix and can be expressed as,

M
k
t+1 = (

Cψ

∆t
+

Gψ

2
) +

1
2

dF(xk
t+1)

dxt+1
(2.42)

The most costly matrix calculation at each step of Newton iteration is solving the inverse of
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the Jacobian matrix in equation (2.42). Each iteration costs one LU factorization and one

forward/backward substitution.

In the Jacobian matrix, Cψ and Gψ are very large matrices. To invert the Jacobian matrix at

each step of Newton iteration becomes a CPU intensive task for time domain analysis. This

issue has been addressed in this thesis.

2.8 Conclusion

In this chapter, an overview of different macromodeling techniques of interconnect is given

based on known and unknown physical characteristics of the structures. Furthermore, MNA

equations are derived for Loewner matrix modeling technique. Finally, a brief review of non-

linear circuit analysis algorithm is presented.



Chapter 3

Noisy Data Iterative Loewner

Macromodeling

3.1 Introduction

System identification has become a challenging task for high speed devices and structures. To

identify a system without any prior knowledge of physical characteristics is based on frequency

domain tabulated data. Recently Loewner Matrix (LM) [29–31] based method was proposed to

generate state-space macromodels from frequency domain measured data. This method faces

difficulty to identify a system accurately from contaminated noisy frequency data [36]. This

chapter presents an iterative method to macromodel a system from frequency data contami-

nated by noise based on Loewner Matrix framework. In this proposed algorithm, eigenvectors

are generated from previous Loewner Matrix approximated model. As previous approximated

model has less noise in it than the original data, it is illustrated that this method will give

better approximation of Loewner matrix method thus improving the accuracy of the approxi-

mated Loewner matrix model. Numerical examples are provided to demonstrate the validity

and accuracy of the proposed method.

24
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3.2 LM for Noisy Frequency Responses

A single port or a multiport network can be characterized by measured data in the form of

admittance, impedance, hybrid or scattering parameter data. Let us consider that the frequency

domain scattering (S -parameter) or admittance (Y-parameter) data can be expressed as,

{sm,Y(sm)}

Y(sm) = [Yi j(sm)] (i, j ∈ 1, ...., P)
(3.1)

where, sm is the complex frequency, Y(sm) is the S -parameter or Y-parameter data at frequency

sm, m = 1, 2, . . . ,M, where M is the number of data points and P is the number of ports of the

network. Let us consider the frequency domain noisy data as,

Ỹ(sm) = Y(sm) + ε(sm) (3.2)

Here Ỹ is the contaminated data and ε is a zero-mean random noise (meaning the expected

mean value E[ε] is zero).

From noisy data set {sm, Ỹ(sm)}, using equation (2.24) right and left noisy complex data matri-

ces W̃ and Ũ are created respectively and can be expressed as,

W̃ = W +HWε

Ũ = U +HUε

(3.3)

HereHWε andHUε are due to noise ε in the data. As ε is a zero mean randon noise, the expected

mean values of HWε and HUε are zero.

E[HWε ] = 0

E[HUε ] = 0
(3.4)

From noisy complex W̃ and Ũ matrices following equation (2.25) to (2.27) W̃R, ŨR, L̃R, ˜σLR
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matrices are created and can be expressed as,

W̃R = WR +HWRε

ŨR = UR +HURε

L̃R = LR +HURε +HWRε

˜σLR = σLR +HURε +HWRε

(3.5)

Here W̃R, ŨR, L̃R, ˜σLR are real right data noisy matrix, real left data noisy matrix, real noisy

Loewner matrix and real noisy shifted Loewner matrix from given noisy data respectively.

H
WRε and HURε comes from the noisy data matrices W̃ and Ũ, respectively. Since expected

mean value E[ε] is zero, expected mean values of HWRε and HURε are also zero.

E[HWRε ] = 0

E[HURε ] = 0
(3.6)

H
WRε and HURε matrices do not statistically bias the results of LM approximation. However,

Singular Value Decomposition (SVD) of Loewner Matrix and shifted Loewner Matrix is per-

tubed as bellow,

S VD(sL̃R − ˜σLR) = ỸΣ̃X̃; (3.7)

For different example perturbation of SVD of Loewner matrices is different. SVD of noisy

Loewner Matrices of Example 2 & 3 (which are described later in Chapter 3) are given in

Figure 3.1 & 3.2, respectively. In these figures different noise values are added to frequency

domain data to see the change of SVD of Loewner matrices. As a result, from equation (3.7)

left and right eigenvectors Ỹ and X̃, respectively, has noise in it.

Ỹ and X̃ are noisy left and right eigenvectors. Ỹ1 and X̃1 are constructed from the first r

columns of Ỹ and X̃.
Ỹ1 = Y1 +Y

URε
1 +Y

WRε
1

X̃1 = X1 +X
URε
1 +X

WRε
1

(3.8)
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Figure 3.1: Normalized Singular Values (Example 2).

Figure 3.2: Normalized Singular Values (Example 3).
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Here YURε
1 , YWRε

1 , XURε
1 and XWRε

1 are noise terms. When we constructed Ỹ1 and X̃1 from the

first r columns of Ỹ and X̃, we eliminate most of the noisy parts from Ỹ and X̃ matrices. As

a result, expected mean value of YURε
1 , YWRε

1 , XURε
1 and XWRε

1 matrices are not equal to zero.

The matrices recovered from the noisy data are perturbed from the original values because of

Y
URε
1 , YWRε

1 , XURε
1 and XWRε

1 matrices. As a result, the realization E, A, B,C are perturbed by

the noisy data and the noisy realization becomes following equation (2.29) as,

Ẽ = Ỹ∗1L̃RX̃1 = E + En;

Ã = Ỹ∗1
˜σLRX̃1 = A + An;

B̃ = Ỹ∗1ŨR = B + Bn;

C̃ = −W̃RX̃1 = C + Cn;

(3.9)

Here En, An, Bn and Cn are noise parts in the realization due to YURε
1 , YWRε

1 , XURε
1 and XWRε

1

matrices. Following section describes an approach to reduce this noise in the realization to

improve the accuracy of LM approximation.

3.3 Proposed Algorithm

3.3.1 Eigenvector Correction from Noise-free Data

Let us see what happens if we use the eigenvectors Y1 and X1 from the actual (noise-free)

data and data matrices (W̃R, ŨR, L̃R, ˜σLR) from the noisy data. In this case, our realization

becomes,

È = Y∗1L̃RX1;

À = Y∗1
˜σLRX1;

B̀ = Y∗1ŨR;

C̀ = −W̃RX1;

(3.10)



Chapter 3. Noisy Data Iterative LoewnerMacromodeling 29

(a) (b)

Figure 3.3: Rational Approximation of the 18-dB SNR data using Noisy Eigenvectors (blue)
and Actual (Noise-free) Eigenvectors (red). (a) Real part and (b) Imaginary part plots (Example
1).

This realization is different from equation (3.9). From Figure 3.3, we can see two approxi-

mations, one by using eigenvectors from the actual (noise-free) data and other one from noisy

data. We can get a better approximation of the LM model by using eigenvectors from actual

data. As mentioned above, noise part in W̃R, ŨR, L̃R, ˜σLR matrices have expected mean values

of zero due to noise ε, these matrices do not statistically bias the results of LM approximation.

3.3.2 Eigenvector Correction from Noisy Data

In reality we do not have the noise free data to get the actual eigenvectors. Thus we are

proposing an algorithm to use the eigenvectors from previous Loewner method approximated

data to reduce the noise in the eigenvectors. Though this data is biased, it has comparatively

less noise in it after first approximation. As a result, Loewner and shifted Loewner matrices

formed by approximated data will have less noise in them. As eigenvectors are too sensitive to

SVD change of Loewner matrices, eigenvectors created from approximated data is closer to the

actual or noise-free eigenvectors. We are using an iterative approach to have these less noisy

eigenvectors from previous approximation. Consequently, we can get a better approximation of

the macromodel from the measured noisy data. Here the proposed method has been described.
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Algorithm 1 Update eigenvectors from previous LM approximated data for order r

Given: {Ỹ(sm), sm} where Ỹ(sm) are the measured parameters at frequency fm = sm
2π

Output: Ê, Â, B̂, Ĉ model of the system.
1: {Ỹ(sm), sm} → Construct L̃R, ˜σLR, W̃R, ŨR using (2.24)-(2.27)
2: [Ỹ, Σ̃, X̃]=svd(sL̃R − σ̃LR).
3: Ỹ1 = Ỹ(:, 1 : r), X̃1 = X̃(:, 1 : r).
4: Ẽ ← Ỹ∗1L̃RX̃1, Ã← Ỹ∗1σ̃LRX̃1, B̃← Ỹ∗1ŨR, C̃ ← −W̃RX̃1.
5: Ỹ1(s)← C̃(sẼ − Ã)−1B̃
6: {Ỹ1(sm), sm} → Construct LRΨ, σLRΨ,WRΨ, URΨ using (2.24)-(2.27)
7: [YΨ,ΣΨ,XΨ]=svd(sLRΨ − σLRΨ).
8: YΨ1 = YΨ(:, 1 : r), XΨ1 = XΨ(:, 1 : r).
9: Ê←Y∗

Ψ1L̃RXΨ1, Â←Y∗
Ψ1σ̃LRXΨ1, B̂←Y∗

Ψ1ŨR, Ĉ←−W̃RXΨ1.
10: Ỹ2(s) = Ĉ(sÊ − Â)−1B̂
11: Update Ỹ1(s)← Ỹ2(s), goto step 6 and repeat 6-11 until convergence.
12: Update Ỹ1(s)← Ỹ2(s), goto step 6 and repeat 6-9 to get the output Loewner model matrices.

3.3.3 Description of Proposed Method with LM

After the first approximation, we got Ẽ, Ã, B̃ and C̃ matrices mentioned in equation (3.9). Then

we create our first approximated data as,

Ỹ1(s) = C̃(sẼ − Ã)−1B̃ (3.11)

Our first approximated data becomes,

Ỹ1(sm) = Y(sm) + Ψ(sm) (3.12)

where Ψ is the error in the first approximation of noisy data Ỹ(s). Here Ψ is less noisy than

ε and Ψ is not zero-mean random noise (meaning expected mean value is not equal to zero as

E[Ψ] , 0)

Using this first approximated data, Ỹ1 using equation (2.24) we construct complex right data
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matrix W̃Ψ and complex left data matrix ŨΨ. They are expressed as,

W̃Ψ = W +HWΨ

ŨΨ = U +HUΨ

(3.13)

H
WΨ andHUΨ are noise terms due to Ψ in first approximated data Ỹ1. Expected mean values of

H
WΨ and HUΨ are not zero as Ψ is not zero-mean randon noise.

E[HWΨ] , 0

E[HWΨ] , 0
(3.14)

From W̃Ψ and ŨΨ matrices we create WRΨ, URΨ, LRΨ and σLRΨ matrices following equation

(2.25) to (2.27) and can be expressed as,

WRΨ = WR +HWRΨ

URΨ = UR +HURΨ

LRΨ = LR +HURΨ +HWRΨ

σLRΨ = σLR +HURΨ +HWRΨ

(3.15)

HereWRΨ,URΨ, LRΨ and σLRΨ matrices are real right data biased matrix, real left data biased

matrix, real biased Loewner matrix and real biased shifted Loewner matrix, respectively. Here

H
WRΨ and HURΨ matrices are the biased terms. Expected mean values of HWRΨ and HURΨ are

also not zero because Ψ is not a zero-mean randon noise.

E[HWRΨ] , 0

E[HURΨ] , 0
(3.16)

The expected mean values of the biased terms present in WRΨ, URΨ, LRΨ and σLRΨ matrices

are not zero as Ψ is not a zero-mean random noise. So, these matrices are biased. As a result,

they were not used for our second approximation. Instead W̃R, ŨR, L̃R, ˜σLR matrices are used
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from equation (3.5) due to zero-mean random noise ε terms present in them. However, LRΨ

and σLRΨ matrices were used to get less noisy eigenvectors, because they have less noise due

to noise Ψ.

From the SVD of (sLRΨ − σLRΨ) matrix we get YΨ & XΨ matrices.

S VD (sLRΨ − σLRΨ) = YΨΣΨXΨ (3.17)

YΨ & XΨ are left and right noisy eigenvectors of the first approximated data. From the first r

columns of YΨ & XΨ, we create YΨ1 and XΨ1 matrices as,

YΨ1 = Y1 +Y
URΨ

1 +Y
WRΨ

1

XΨ1 = X1 +X
URΨ

1 +X
WRΨ

1

(3.18)

Here YURΨ

1 , YWRΨ

1 , XURΨ

1 and XWRΨ

1 matrices are noise terms and expected mean values of

these matrices are not zero.

AgainYURΨ

1 ,YWRΨ

1 ,XURΨ

1 andXWRΨ

1 matrices are less noisy thanYURε
1 ,YWRε

1 ,XURε
1 andXWRε

1

matrices because Ψ has less noise in it than ε. As a result,YΨ1 andXΨ1 eigenvectors have less

noise in it than Ỹ1 and X̃1 eigenvectors. Therefore, for our second approximation we use YΨ1

and XΨ1 eigenvectors instead of Ỹ1 and X̃1 eigenvectors. The realization of matrices using

eigenvectors from first approximated data can be defined as,

Ê = Y∗Ψ1L̃RXΨ1;

Â = Y∗Ψ1
˜σLRXΨ1;

B̂ = Y∗Ψ1ŨR;

Ĉ = −W̃RXΨ1;

(3.19)

Using these matrices from equation (3.19) we get our second approximation as,

Ỹ2(s) = Ĉ(sÊ − Â)−1B̂ (3.20)
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To make an iteration of this method, we update the data value of Ỹ1(s) from Ỹ2(s) data and

repeat this method for a selected order until convergence. This proposed approach will yield

more accurate result than LM solution of (3.11).

3.3.4 Methodology to Construct Previous Approximations with LM

Algorithm 1 describes the procedure to construct the less noisy eigenvectors to remove noise

from the measured data and the procedure to extract a model from the given data.

Figure 3.4: RMS error vs. order (Example 1)
SNR=18dB

Figure 3.5: Proposed RMS error vs. order
(Example 1) SNR=18dB.

Figure 3.6: RMS error vs. order (Example 1)
SNR=16dB.

Figure 3.7: Proposed RMS error vs. order
(Example 1) SNR=16dB.



Chapter 3. Noisy Data Iterative LoewnerMacromodeling 34

3.3.5 Order Selection

In Loewner Matrix modeling, an order is selected for model order reduction of the system. This

order of the system can be identified from the Singular Value Decomposition (SVD) drop of

Loewner Matrix [29]. When there is noise present in the data, SVD of the Loewner matrices is

contaminated and order of the system is hard to calculate from the SVD drop of LM. Therefore,

we have used LM approximated model RMS error / H2 error vs. order as our reference graph

to select the order of the system. From LM approximated model RMS error / H2 error vs. order

graph we pick a range of orders. In case of Example 1 the range is from 15 to 21 shown in

Figure 3.4 for SNR=18 dB. Then for all these orders we apply our proposed algorithm. From

Figure 3.5, representing proposed RMS error vs. order graph, we can see for order 17 the error

is lowest. And thus order 17 was chosen for Example 1 in case of SNR=18dB. For SNR=16dB

the range of order is selected from 12 to 25 in Figure 3.6 showing LM approximated model

RMS error vs. order of the system. After applying our proposed algorithm for these range of

order values, the lowest error occurred at order 19 shown in Figure 3.7.

3.4 Numerical Examples

Four numerical examples are provided in this section to demonstrate the accuracy of the pro-

posed iterative LM method for the noisy frequency data. In the controlled experiments ε is the

added random noise [12, 17] and is defined as,

ε(sm) = Y(sm) × 10−S NR/10 × (Nr + jNi) (3.21)

Here Nr & Ni are real and imaginary random Gaussian noise. The noise level can be changed

by adjusting the Signal to Noise Ratio (SNR).
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Table 3.1: Poles and Residues of the TF (Example 1)

Poles (GHz) (pk) Residues (GHz) (rk)

-0.6132 ± 3.4551i -0.9877 ∓ 0.0809i

-0.3940 ± 7.3758i -0.2067 ∓ 0.0131i

-0.0880 ± 14.3024i -0.1382 ∓ 0.0145i

-0.4097 ± 17.7864i -0.1182 ∓ 0.0166i

-0.2991 ± 28.4622i -0.2426 ∓ 0.0145i

-0.6447 ± 35.2669i -0.4043 ∓ 0.0297i

-1.0135 ± 37.9655i -0.6787 ∓ 0.1465i

-0.5711 ± 57.4748i -0.2626 ∓ 0.1037i

d=0.980

3.4.1 Example 1

The first example is a synthetic transfer function (TF) with 16 poles are described in Table 3.1

is from [35]. Here 18 dB and 16 dB signal-to-noise ratios (SNRs) are considered.

(a) (b)

Figure 3.8: Rational Approximation of the 18-dB SNR data using LM and LM-Proposed ap-
proximation. (a) Real part and (b) Imaginary part plots (Example 1).

Case 1:

Figure 3.8 shows the sample response of the TF with 18 dB SNR, TF from Loewner model-

ing and proposed LM method using 1000 sample points distributed evenly between 0-10 GHz.
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Figure 3.9: Normalized SVD versus Order
(Example 1).

Figure 3.10: RMS error vs. iteration count for
SNR= 18 dB (Example 1).

The LM algorithm is not able to catch the poles of the system due to biasing from the model

approximation, while the proposed method to use the eigenvectors from the previous approx-

imation iteratively shows good agreement with the original TF. Here order was found 17 to

approximate the previous LM model.

The SVD of actual (noise-free) data, noisy data and proposed method data are shown in Figure

3.9. Figure 3.10 shows the root mean square (rms) error versus iteration number, calculated as

RMS error =

√√√
1
Ns

Ns∑
j=1

||Y(s j) − Yapp(s j)||2 (3.22)

where Y(s j) is equal to noisy TF and Yapp(s j) corresponds to approximated TF. The rms error

for LM is 0.1032, while the rms error of LM-proposed is 0.01991 at tenth iteration.

Table 3.2 shows that the proposed iterative algorithm matches the poles of the original system

to within 0.0764%, while LM algorithm missed the pole at -0.3940 ± 7.3758. Figure 3.11

illustrates logarithmic RMS error vs. frequency plots for actual (noise-free) data LM approxi-

mation, noisy data LM approximation and noisy data proposed LM approximation.
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Figure 3.11: Log10(RMS error) vs. frequency plots for actual (noise-free) data approximation
with LM (black), noisy data approximation with LM (blue) and noisy data approximation with
LM-proposed (red) (Example 1)

(a) (b)

Figure 3.12: Rational Approximation of the 16-dB SNR data using LM and LM-Proposed
approximation. (a) Real part and (b) Imaginary part plots (Example 1).
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Table 3.2: Calculated Poles Using LM and proposed method (Example 1) (SNR=18 dB)

LM LM-Proposed

Poles (GHz) Error Poles (GHz) Error

-0.5440 ± 3.4970i 2.31% -0.6123 ± 3.4556i 0.0285%

-57.9609 ± 75.6642i 1209.2% -0.3922 ± 7.3793i 0.0534%

-0.0803 ± 14.2929i 0.085% -0.0876 ± 14.3026i 0.0029%

-0.2563 ± 16.6408i 0.64% -0.3973 ± 17.7809i 0.0764%

-0.3035 ± 28.3783i 0.29% -0.2992 ± 28.4618i 0.0013%

-0.8762 ± 35.0419i 0.91% -0.6387 ± 35.2633i 0.0199%

-0.7672 ± 37.7031i 0.94% -1.0142 ± 37.9710i 0.0145%

-0.8999 ± 57.4897i 0.57% -0.5720 ± 57.4780i 0.0058%

Table 3.3: Calculated Poles Using LM and proposed method (Example 1) (SNR=16 dB)

LM LM-Proposed

Poles (GHz) Error Poles (GHz) Error

Missed pole N/A -0.6102 ± 3.4071i 1.3707%

Missed pole N/A Missed pole N/A

-0.0727 ± 14.2661i 0.2752% -0.0822 ±14.3026i 0.0406%

Missed pole N/A Missed pole N/A

-0.4927 ± 28.3885i 0.7279% -0.2675 ± 28.4702i 0.1147%

-1.4391 ± 35.4639i 2.3203% -0.5848 ± 35.1600i 0.3473%

-1.0001 ± 37.1711i 2.0920% -0.9123 ± 38.1052i 0.4541%

-1.0039 ± 57.6811i 0.8341% -0.5498 ± 57.3972i 0.14%

Table 3.4: 100 simulations with different random noise (Example 1)

Example 1 order LM average error LM-proposed average error

18 dB 17 0.0813 0.0362

16 dB 19 0.0503 0.0297

Case 2:

Figure 3.12 shows the sample response of the TF with 16 dB SNR, TF from Loewner modeling

and proposed LM method using 1000 sample points distributed evenly between 0-10 GHz.
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Here order 17 was used to approximate the previous LM model. Table 3.3 shows that LM

approximation missed three poles whereas our proposed iterative algorithm missed two poles.

To verify the proposed algorithm, 100 simulations are performed with 18dB and 16dB SNRs

with different random noise added to the TF. The average RMS error for LM and proposed

iterative LM method are given in Table 3.4.

Figure 3.13: Transmission line network (Example 2)

3.4.2 Example 2

A transmission-line network is shown in Figure 3.13. The per-unit-length parameters of each

line are R = 8.26Ω/m, L = 361nH/m, C = 140pF/m, and G = 0.0S/m, and the length of the

lines are listed in Figure 3.13. The Y-parameters of the three-port circuit described by the box

of Figure 3.13 is calculated at 1000 frequency points distributed evenly between 0-10 GHz and

treated as tabulated data. The data was generated using HSPICE. In this example, the added

noise has an SNR of 25 dB and 20dB.
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Figure 3.14: log10 (H2 error) vs order for SNR=25dB (Example 2)

Figure 3.15: Normalized Singular Values (Example 2)

(a) (b)

Figure 3.16: Rational Approximation of Y(1,3) (Example 2)(SNR=25dB).

Case 1:

For SNR=25 dB, a range of order between 85 to 109 is found from Figure 3.14 showing LM

approximated model log10(H2 error) vs. order graph. For all these orders proposed algorithm
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(a) (b)

Figure 3.17: Rational Approximation of Y(2,3) (Example 2) (SNR=25dB).

(a) (b)

Figure 3.18: Rational Approximation of Y(2,2) (Example 2) (SNR=25dB).

has been applied and order of the system is found 105. After choosing an order 105 normalized

singular values are changed like Figure 3.15. Rational approximation of Y(1,3), Y(2,3) &

Y(2,2) are shown is Figure 3.16, 3.17, 3.18 respectively. Figure 3.19 shows RMS error vs.

iteration count for Y(1,3), Y(2,3) & Y(2,2). Figure 3.20 depicts H2 error vs. iteration count for

SNR=25dB for Example 2. H2-norm error of the system is calculated as follows:

H2 error =

√√∑Ns
k=1 ||Yapp(sk) − Y(sk)||2F∑Ns

k=1 ||Y(sk)||2F
(3.23)
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Figure 3.19: RMS error versus iteration count
for SNR=25 dB (Example 2).

Figure 3.20: H2-norm error versus iteration
count for SNR=25 dB (Example 2)

Figure 3.21: LM approximation of actual/noise-free data (black), LM approximation with
noisy data (Blue) and proposed method approximation (Red) for order 105 (Example 2)
(SNR=25dB)

Figure 3.21 shows comparison between LM approximation of actual/noise-free data, LM ap-

proximation with noisy data and proposed method with noisy data approximation for order 105
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(a) (b)

Figure 3.22: Rational Approximation of Y(1,3) (Example 2) (SNR=20dB)

(a) (b)

Figure 3.23: Rational Approximation of Y(2, 3) (Example 2) (SNR=20dB).

using the following equation at each frequency point,

H2 error (sk) =

√
||Yapp(sk) − Y(sk)||2F

||Y(sk)||2F
(3.24)
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(a) (b)

Figure 3.24: Rational Approximation of Y(2, 2) (Example 2) (SNR=20dB).

Figure 3.25: RMS error versus iteration count
for SNR=20 dB (Example 2).

Figure 3.26: H2-norm error versus iteration
count for SNR=20 dB (Example 2)

Case 2:

For SNR=20 dB, order of the system is found 120. Figure 3.22, 3.23 and 3.24 show rational

approximation of Y(1, 3), Y(2, 3) & Y(2, 2) respectively. Figure 3.25 shows RMS error vs. it-

eration count for Y(1, 3), Y(2, 3) & Y(2, 2). Figure 3.26 depicts H2 error vs. iteration count for

SNR=20dB for Example 2. Figure 3.27 shows comparison between LM approximation of ac-

tual (noise-free) data, LM approximation with noisy data and proposed method approximation

with noisy data for order 120.
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Figure 3.27: LM approximation of actual (noise-free) data (Black), LM approximation with
noisy data (Blue) and proposed method approximation (Red) for order 120 (Example 2) (SNR=

20dB)

3.4.3 Example 3

This is an example of 18 port transmission line network depicted in Figure 3.28, contain-

ing nine coupled lines and nine noncoupled lines. Models for both coupled and noncoupled

lines are shown in [2]. The parameter values for the coupled line are taken from [58]. The

parameter values (per unit length) for noncoupled line are R = 3.74Ω/m, L = 283.7nH/m,

C = 84.6pF/m, and G = 0.0S/m. The lengths of the coupled and non-coupled lines are 0.1m

and 0.05m, respectively. The network is characterized by its terminal responses (Y-parameters)

as tabulated data over a bandwidth of 0 − 7 GHz. The data was generated using HSPICE. For

this example, SNR=30dB noise is added to data according to Equation (3.20).

Figure 3.29 shows normalized SVD vs. order for SNR=30dB for this 18-port system. From

this figure we can see that order is from 250 to 450. Thus we plot LM approximated H2 error vs.

order graph in Figure 3.30 for this range of orders. Then from Figure 3.30, the range of order to
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Figure 3.28: Circuit Diagram (Example 3)

apply our proposed algorithm is found from 370 to 391. The final order of the system is found

to be 376 from Figure 3.31. Figure 3.32, 3.33 and 3.34 show the rational approximation of

Y(1,18), Y(17,18) and Y(6,10) respectively. Comparison between LM approximation without

noise data, LM approximation with noisy data and proposed method approximation for order

376 is shown in Figure 3.35.
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Figure 3.29: Normalized singular values vs. order for SNR=30dB (Example 3)

Figure 3.30: log10(H2 error) vs. order for
SNR=30 dB (Example 3)

Figure 3.31: Proposed H2 error vs. order for
SNR=30 dB (Example 3)

(a) (b)

Figure 3.32: Rational Approximation of Y(1,18) (Example 3).
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(a) (b)

Figure 3.33: Rational Approximation of Y(17,18) (Example 3).

(a) (b)

Figure 3.34: Rational Approximation of Y(6,10) (Example 3).

3.4.4 Example 4

Figure 3.36 corresponds to a four-port network, which illustrates the far-end crosstalk between

two differential pairs of StradaWhisper connectors provided by TE Connectivity, Harrisburg,

PA. The network is characterized by real life measurements up to 20 GHz of the S -parameters

using a vector network analyzer (VNA).

The order of the system was found to be 363. Figure 3.37, 3.38 and 3.39 represent the ratio-

nal approximation of S(1, 3), S(2, 3) and S(2, 2). RMS error vs. iteration count for S(1,3),

S(2,3) and S(2,2) is depicted in Figure 3.40 and H2 error versus iteration count is in Figure

3.41. Relative H2 norm error for noisy data LM approximation and noisy data proposed LM
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Figure 3.35: Relative Error of actual (noise-free) data LM approximation, noisy data LM ap-
proximation and proposed method LM approximation (Example 3)

approximation are presented in Figure 3.42.

3.5 Limitations of Proposed Method

As the noise in the data increases, the LM approximation becomes more inaccurate to identify

the system. Therefore, too much noise present in the data will affect the approximation of the

proposed method. For each iteration, we need to do SVD and Loewner Modeling of the data

Figure 3.36: Four-port network (Example 4).
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(a) (b)

Figure 3.37: Rational Approximation of S(1,3) (Example 4).

(a) (b)

Figure 3.38: Rational Approximation of S(2, 3) (Example 4).

which are CPU intensive task for large number of data. As a result, if the number of iteration

increases our method will take longer time to approximate the data to identify the system.

3.6 Conclusion

In this chapter, an iterative Loewner modeling approach has been presented to increase the

accuracy and efficiency of the Loewner matrix identification of a system for noisy frequency-

domain responses. It is illustrated that by using the LM approximations from previous iteration

to create the eigenvectors, biasing effect of the realization caused by the noisy data sample is
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(a) (b)

Figure 3.39: Rational Approximation of S(2, 2) (Example 4).

Figure 3.40: RMS error versus iteration count
(Example 4).

Figure 3.41: H2-norm error versus iteration
count (Example 4)

Figure 3.42: Relative Error of LM and Proposed Method (Example 4)
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reduced. This improves the accuracy of the approximated TF.



Chapter 4

Fast Transient Analysis of Nonlinear

Distributed Networks

4.1 Introduction

Interconnects are modeled to link them with nonlinear elements for transient analysis in cir-

cuit simulators. These modeling techniques give rise to many linear differential equations. At

the termination of these interconnect networks there are nonlinear elements like drivers and

receivers. These nonlinear components give rise to nonlinear differential equations. To convert

differential equations into difference equations integration techniques are applied. Nonlinear

difference equations are solved using Newton-Raphson iteration at each time step. Thus solv-

ing many nonlinear difference equations becomes a CPU intensive task for nonlinear circuit

simulators [3]. By using Large Change Sensitivity [38, 39] method, these nonlinear parts can

be separated from linear parts. During the time domain analysis only the matrices containing

nonlinear terms need to be inverted. These matrices are very small matrices compared to ma-

trices containing linear circuit equations. The cost of inverting a small matrix compared to a

relatively very large matrix is really low. Thus use of this method will minimize the cost of

CPU and make time-domain analysis faster.

53
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4.2 Review of Large Change Sensitivity

Large Change Sensitivity (LCS) measures the variation in output due to change in linear ele-

ments like resistors, inductors, capacitors etc. in network equations [38, 39]. Let us consider

a given network to be solved for specific nominal values of linear components. If some linear

elements values are changed, LCS makes it possible without resolving the problem to obtain

an exact solution. LCS method is summarized as follows:

Consider a network equation (n-sized) with linear elements assigned their nominal values,

T0X0 = W (4.1)

where, T0 is the network matrix, X0 is the network state vector, and W is the input excitation

vector. The solution of (4.1) is:

X0 = T−1
0 W (4.2)

Let us suppose, m components of the network are subject to variations (can be from zero to

infinity). The modified system can be described by,

T X = (T0 + PδQt) = W (4.3)

where, T and X are the new network matrix and new network state vector, δ = diag[δi],

i = 1, . . . ,m. Here P and Q are n ×m matrices which contain 0 and ±1 entries and indicate the

location of the changed elements and described by,

P = [p1, p2, ....., pm]

Q = [q1, q2, ....., qm]
(4.4)

In the direct approach, equation (4.3) is solved by factorization (LU decomposition) of the

coefficient matrix T and followed by a series of forward/backward substitutions to find X. But,
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when the number of the changed variables m is much smaller than the size of the system n,

LCS approach offers a cheap computational cost compared to the direct approach.

T0X + P δ QtX︸︷︷︸
y︸  ︷︷  ︸

z

= W (4.5)

T0X + Pz = W (4.6)

y = δ−1z (4.7)

QtX = y (4.8)

From (4.6),

X = T−1
0 W − T−1

0 Pz (4.9)

Substituting y from (4.7) and X from (4.9) into (4.8) and rearranging,

δ−1z + QtT−1
0 Pz = QtT−1

0 W (4.10)

z = (δ−1 + QtT−1
0 P)−1QtT−1

0 W = δ(I + QtT−1
0 Pδ)−1QtT−1

0 W (4.11)

Substituting z into (4.9),

X = T−1
0 W︸︷︷︸

Known

−T−1
0 Pδ(I + QtT−1

0 Pδ)−1Qt T−1
0 W︸︷︷︸

Known︸                                   ︷︷                                   ︸
one forward/backward substitution

(4.12)

As a result, the new modified system can be solved by one forward/backward substitution and

factorization of T matrix is not needed.
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4.3 Large Change Sensitivity for Nonlinear Distributed Net-

work Analysis

This section describes proposed LCS for nonlinear interconnect analysis.

4.3.1 Nonlinear Distributed Network Analysis

As described in Chapter 2, MNA equation of nonlinear distributed networks can be written by,

Cψ

dx(t)
dt

+ Gψ(t) + F(x(t)) = b(t) (4.13)

After using Trapezoidal rule, the difference equation becomes,

(
Cψ

∆t
+

Gψ

2
)xt+1 +

F(xt+1)
2

− (
Cψ

∆t
−

Gψ

2
)xt +

F(xt)
2

=
bt + bt+1

2
(4.14)

After applying Newton-Raphson method the problem becomes solving the following function,

f k
t+1 = (

Cψ

∆t
+

Gψ

2
)xt+1 +

F(xt+1)
2

− (
Cψ

∆t
−

Gψ

2
)xt +

F(xt)
2
−

bt + bt+1

2
= 0 (4.15)

xt+1 is solved at each iteration by applying

xk+1
t+1 = xk

t+1 + ∆xk
t+1 (4.16)

∆xk
t+1 = −((

Cψ

∆t
+

Gψ

2
) +

1
2

dF(xk
t+1)

dxt+1
)−1 f k

t+1 (4.17)

Here (
Cψ

∆t
+

Gψ

2
)+

1
2

dF(xk
t+1)

dxt+1
is an n×n Jacobian matrix. This matrix is usually very large matrix.

To solve equation (4.17) at each step of Newton-Raphson iteration cost one LU decomposition

and one forward/backward substitution making time domain analysis a CPU intensive task.

In the Jacobian matrix, (
Cψ

∆t
+

Gψ

2
) part comes from linear components and step size ∆t is con-
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stant. As a result, this part remains unchanged whereas
1
2

dF(xk
t+1)

dxt+1
part comes from nonlinear

elements and changes at each step of iteration. As the number of nonlinear elements are very

few compared to linear elements,
1
2

dF(xk
t+1)

dxt+1
matrix is very small compared to large linear ma-

trix (
Cψ

∆t
+

Gψ

2
). Equation (4.17) can be solved using Large Change Sensitivity approach where

a small nonlinear element matrix needs to be inverted at each step of Newton iteration. Cost

of inverting a small matrix is much less than inverting a very large Jacobian matrix. Thus this

method makes time domain analysis faster.

4.3.2 Application of LCS for Nonlinear Distributed Network Analysis

The unchanged network equation is given by,

(
Cψ

∆t
+

Gψ

2
)xk

t+1 = − f k
t+1

⇒ xk
t+1 = −(

Cψ

∆t
+

Gψ

2
)−1 f k

t+1

(4.18)

The equation describing the modified system with nonlinear parts is given by,

((
Cψ

∆t
+

Gψ

2
) +

1
2

dF(xk
t+1)

dxt+1
)∆xk

t+1 = − f k
t+1 (4.19)

In conventional approach ∆xk
t+1 is solved by one LU decomposition and one forward/backward

substitution of Jacobian matrix (
Cψ

∆t
+

Gψ

2
) +

1
2

dF(xk
t+1)

dxt+1
at each Newton iteration.

The variation in xk
t+1 due to

1
2

dF(xk
t+1)

dxt+1
is calculated using LCS approach. To apply Large

Change Sensitivity,
1
2

dF(xk
t+1)

dxt+1
is parted into three matrices like,

1
2

dF(xk
t+1)

dxt+1
= PδQt

Here P and Q are n × m incident matrices which contain 0 and ±1 entries and are associated

with the nonlinear devices. Here n is the size of the system and m depends on number of
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currents passing through nonlinear devices.

P = [p1, p2, ....., pm]

Q = [q1, q2, ....., qm]
(4.20)

and δ is a diagonal m × m matrix. δ is the derivative of the currents of nonlinear elements with

respect to node voltages.

δ = diag[δi] =
1
2

dF(xk
t+1)

dxt+1
(4.21)

LCS technique reduces substantial computational cost when number of currents passing through

nonlinear devices m, is much smaller than the size of the system n. By applying LCS, equation

(4.19) becomes,

(
Cψ

∆t
+

Gψ

2
)∆xk

t+1 + P δQt∆xk
t+1︸  ︷︷  ︸

y︸     ︷︷     ︸
z

= − f k
t+1 (4.22)

(
Cψ

∆t
+

Gψ

2
)∆xk

t+1 + Pz = − f k
t+1 (4.23)

y = δ−1z (4.24)

Qt∆xk
t+1 = y (4.25)

From (4.23),

∆xk
t+1 = −(

Cψ

∆t
+

Gψ

2
)−1 f k

t+1 − (
Cψ

∆t
+

Gψ

2
)−1Pz (4.26)

Substituting y from (4.24) and ∆xk
t+1 from (4.26) into (4.25) and rearranging,

δ−1z + Qt(
Cψ

∆t
+

Gψ

2
)−1Pz = −Qt(

Cψ

∆t
+

Gψ

2
)−1 f k

t+1 (4.27)

z = −(δ−1 + Qt(
Cψ

∆t
+

Gψ

2
)−1P)−1Qt(

Cψ

∆t
+

Gψ

2
)−1 f k

t+1

= −δ(I + Qt(
Cψ

∆t
+

Gψ

2
)−1Pδ)−1Qt(

Cψ

∆t
+

Gψ

2
)−1 f k

t+1

(4.28)



Chapter 4. Fast Transient Analysis of Nonlinear Distributed Networks 59

Substituting z from (4.28) into (4.26) we can get,

∆xk
t+1 = −(

Cψ

∆t
+

Gψ

2
)−1 f k

t+1 +(
Cψ

∆t
+

Gψ

2
)−1Pδ(I+Qt(

Cψ

∆t
+

Gψ

2
)−1Pδ)−1Qt(

Cψ

∆t
+

Gψ

2
)−1 f k

t+1 (4.29)

Thus ∆xk
t+1 can be solved using equation (4.29) by using LCS approach. An illustrative example

has been presented in the following section.

4.3.3 Illustrative Example

Figure 4.1: Illustrative LCS example

To describe the process consider the nonlinear circuit shown in Figure 4.1. The individuals

presented in equation (4.13) with respect to the given nonlinear circuit network can be obtained

by,

Gψ =



g1 0 0 0

0 0 0 1

0 0 0 −1

0 1 −1 0


Cψ =



0 0 0 0

0 c1 0 0

0 0 c2 0

0 0 0 −l1
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F =



e40(V1−V2) − 1

−e40(V1−V2) + 1

0

0


x =



V1

V2

V3

IL1


b =



J

0

0

0



1
2

dF
dx

=
1
2



40e40(V1−V2) −40e40(V1−V2) 0 0

−40e40(V1−V2) 40e40(V1−V2) 0 0

0 0 0 0

0 0 0 0


= PδQt

Now to apply Large Change Sensitivity approach, P, δ and Q matrices for this example are

described as,

P =



1

−1

0

0


δ =

1
2

[
40e40(V1−V2)

]
Qt =

[
1 −1 0 0

]

Using conventional approach ∆xk
t+1 can be solved by,

∆xk
t+1 = − ((

Cψ

∆t
+

Gψ

2
) +

1
2

dF(xk
t+1)

dxt+1
)−1 f k

t+1︸                                    ︷︷                                    ︸
one LU decomposition and one forward/backward substitution

(4.30)

Using LCS ∆xk
t+1 can be calculated by,

∆xk
t+1 = − (

Cψ

∆t
+

Gψ

2
)−1 f k

t+1︸               ︷︷               ︸
first forward/backward substitution

+ (
Cψ

∆t
+

Gψ

2
)−1Pδ (I + Qt(

Cψ

∆t
+

Gψ

2
)−1Pδ)−1︸                           ︷︷                           ︸

an 1 × 1 matrix inversion

Qt (
Cψ

∆t
+

Gψ

2
)−1 f k

t+1︸               ︷︷               ︸
first forward/backward substitution︸                                                                                       ︷︷                                                                                       ︸

second forward/backward substitution

(4.31)
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One LU decomposition costs equals three forward/backward substitutions. Using conventional

approach ∆xk
t+1 is solved by one LU decomposition and one forward/backward substitution at

each Newton iteration. As (
Cψ

∆t
+

Gψ

2
) is fixed during the simulation, using LCS approach LU

decomposition of (
Cψ

∆t
+

Gψ

2
) is done only once in the entire simulation. This LU decomposi-

tion has been reused to determine ∆xk
t+1 with two forward/backward substitution and a small

matrix inversion at each Newton iteration. This makes time domain analysis faster than the

conventional approach.

4.3.4 Cost of Applying LCS for Nonlinear Circuit Simulation

Using the proposed approach the total simulation cost becomes (2NRCFB + CLU) whereas the

total cost for conventional approach is (NR(CFB + CLU)), where NR is the total number of

Newton-Raphson iteration, CLU is cost of LU decomposition of (
Cψ

∆t
+

Gψ

2
) and CFB is the

cost of forward/backward substitutions for solving (
Cψ

∆t
+

Gψ

2
)−1 f k

t+1 and (
Cψ

∆t
+

Gψ

2
)−1Pδ(I +

Qt(
Cψ

∆t
+

Gψ

2
)−1Pδ)−1Qt(

Cψ

∆t
+

Gψ

2
)−1 f k

t+1.

4.4 Numerical Examples

Four numerical examples are given here. Two types of modeling approaches have been used

here. Interconnects of the first three examples are modeled using distributed lumped modeling.

Interconnect network of the last example has been modeled from frequency domain data using

Loewner matrix method approach. All timing results are executed in MATLAB 2014b on

64-bit operating system with Intel(R) Core(TM) i5660 CPU at 3.33 GHz and 4 GB RAM.

4.4.1 Example 1

The circuit considered in this example is shown in Figure 4.2. It contains three lossy TLs

numbered by sub-circuits 1 − 3. The lengths of the TLs in sub-circuits 1 − 3 are 0.04, 0.1, and



Chapter 4. Fast Transient Analysis of Nonlinear Distributed Networks 62

Figure 4.2: Circuit containing three lossy TLs (Example 1)

0.06 m, respectively. The electrical parameters of TL#1 are L1 = 600 nH/m, C1 = 1 nF/m,

R1 = 1Ω/m, and G1 = 5 mS/m. The parameters of TL#2 are

L2 =


600 50

50 600

nH/m

C2 =


1.2 −0.11

−0.11 1.2

nF/m

R2 =


2.25 0

0 2.25

 Ω/m

G2 =


7.5 0

0 7.5

mS/m

The parameters of TL#3 are
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Table 4.1: Simulation Results using Conventinal matrix inversion and Proposed LCS method

Modeling Variable size Conventional (sec) Proposed (sec) Improvement (times)

Example 1 Lumped 981 26.040 10.956 2.37

Example 2 Lumped 1513 61.057 27.758 2.20

Example 3 Lumped 1809 21.626 7.809 2.76

Example 4 Loewner 481 166.831 51.164 3.26

L3 =



1 0.11 0.03 0

0.11 1 0.11 0.03

0.03 0.11 1 0.11

0 0.03 0.11 1


µH/m

C3 =



1.5 −0.17 −0.03 0

−0.07 1.5 −0.07 −0.03

−0.03 −0.07 1.5 −0.07

0 −0.03 −0.07 1.5


nF/m

R3 =



3.5 0 0 0

0 3.5 0 0

0 0 3.5 0

0 0 0 3.5


Ω/m

G3 =



10 1 0.1 0

1 10 1 0.1

0.1 1 10 1

0 0.1 1 10


mS/m



Chapter 4. Fast Transient Analysis of Nonlinear Distributed Networks 64

Figure 4.3: Transient response of the circuit shown in Figure 4.1 at node Vout

Figure 4.4: Error at node Vout

The applied voltage is a trapezoidal pulse with a rise and fall time of 1 ns, a pulsewidth of 7

ns, and a magnitude of 2 V. Lumped sections for TLs in sub-circuits 1 − 3 are 20, 54, and 48

respectively. All nonlinear resistors follow the I = V3 relation. The voltage response at node

Vout is shown in Figure 4.3. Error at node Vout between two methods is given in Figure 4.4.

4.4.2 Example 2

In this example, an interconnect system depicted in Figure 4.5 with several multiconductor

transmission lines is considered. The lengths of the TLs are 0.05 cm. The applied voltage is

a trapezoidal pulse with a rise and fall time of 0.1 ns, a pulsewidth of 10 ns, and a magnitude

of 3 V. For lumped modeling 20 sections are used. The transient response at node M1 using

conventional matrix inversion and proposed LCS method is shown in Figure 4.6. The p.u.l.

parameters of the coupled lines are
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Figure 4.5: Circuit of (Example 2)

C5 =



1.32 −0.75 −0.0363 −0.0154 −0.0147
−0.75 1.80 −0.74 −0.0285 −0.0154
−0.0363 −0.74 1.80 −0.73 −0.0154
−0.0154 −0.0285 −0.73 1.78 −0.75
−0.0147 −0.0154 −0.0154 −0.75 1.32


pF/cm

L5 =



3.89 2.19 1.33 0.86 0.60

2.19 3.71 2.10 1.29 0.86

1.33 2.10 3.67 2.10 1.33

0.86 1.29 2.10 3.71 2.19

0.60 0.86 1.33 2.19 3.89


µH/cm

R5 =



3.5 0 0 0

0 3.5 0 0

0 0 3.5 0

0 0 0 3.5


Ω/cm
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Figure 4.6: Transient Analysis at node M1 of Example 2

Figure 4.7: Circuit of (Example 3)

4.4.3 Example 3

The third example in Figure 4.7 has twenty interconnect lines with six non-linear inverters.

The length of the TLs #1, 2, 3, 10, 11, 12 are 0.1 cm, #4, 5, 13, 14, 15, 18, 19, 20 are 0.2cm,

and #6, 7, 8, 9, 16, 17 are 0.3 cm. The per unit length parameters of the interconnect lines are

L = 11.6 µH/cm, C = 3.22 pF/cm, R = 338 Ω/cm. Here the applied voltage is a trapezoidal

pulse with a rise and fall time of 1.2223 ns, a pulsewidth of 48.78 ns, and a magnitude of 3 V.

Here 30 lumped sections are used for all TLs. The transient response at node P1 is presented
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Figure 4.8: Transient Analysis at node P1 of Example 3

in Figure 4.8.

Figure 4.9: Circuit of (Example 4)

4.4.4 Example 4

This example is the 18-port example from Chapter 3. Nine nonlinear elements are added at

the termiation of port 10 to port 18 depicted in Figure 4.9. For this example, Loewner matrix
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Figure 4.10: Transient Analysis at port 10 (Example 4)

modeling has been used. Port frequency data has been acquired from Hspice simulation. Here

applied voltage at Port-1 is a trapezoidal pulse with a rise and fall time of 0.1 ns, a pulsewidth

of 12.1 ns and a magnitude of 1V. The transient simulation at port 10 is shown in Figure

4.10 applying conventional matrix inversion (actual) and proposed methods incorporation with

Loewner modeling and Hspice simulation.

Simulation time results between conventional matrix inversion and LCS approach have been

given in Table 4.1 for these four examples. We can have 2.20 to 3.26 time faster simulation

time using our proposed method than the matrix inversion technique.

4.5 Limitations of Proposed LCS Method

In our proposed algorithm, we have considered time step size as a constant. If the step size

changes, large linear matrices change at each time step. Therefore, LU decomposition of the
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large linear matrices needs to be done at each time step. As a result, we will not get any speed

up from this method. Another criteria has been considered here is nonlinear elements are very

few compared to linear elements. If nonlinear element matrix size is equal to linear matrix size

then our proposed algorithm will not give any speed up. To gain speed up, nonlinear elements

must be of very small numbers compared to linear elements.

4.6 Conclusion

In this chapter, two macromodeling approaches have been used for time domain analysis of

distributed networks with nonlinear elements. For both modeling methods, LCS approach has

been used. From the results given in Table 4.2 we can see that, proposed approach can be

done 2.20 to 3.26 times faster than the conventional matrix inversion approach. A number of

examples were presented showing the accuracy of the LCS method compared to the matrix

inversion technique.



Chapter 5

Summary and Future Work

5.1 Summary

In chapter 2, an overview of different macromodeling techniques has been presented. These

methods acknowledge both categories where there is knowledge for the physical characteristics

and dimensions of the structure available and when the model is derived from the measured

tabulated data. Loewner Matrix method has been proposed to identify a system from measured

frequency data. In this thesis, two issues have been addressed. The first is that in the presence

of noise Loewner matrix method has issues to identify the system from tabulated data. Another

issue is associated with time domain simulation of interconnect networks with nonlinear drivers

and loads. After macromodeling high speed interconnects using lumped or Loewner modeling

linear networks become large matrices making time domain analysis a CPU intensive task for

circuit simulators with nonlinear components.

In chapter 3, an iterative Loewner method is proposed to approximate the eigenvectors from

previously approximated Loewner model. We can see that using this iterative approximation,

eigenvectors become less noisy and this improves the approximation of the rational transfer

function using this method. An order selection approach is also described here to select the

best order to approximate the system. Numerical examples are presented here to validate the

70
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accuracy of the proposed method.

In chapter 4, a faster time domain simulation approach has been proposed using Large Change

Sensitivity approach. Interconnect networks have been modeled using lumped modeling and

Loewner modeling approaches. In conventional approach to perform transient simulation, cir-

cuit equations are solved at each time point with one LU decomposition and one forward/backward

substitution. Using Large Change Sensitivity approach linear parts are partitioned from nonlin-

ear parts. As a result, in transient analysis only the nonlinear part is inverted and the linear part

remains same. Nonlinear part is smaller compared to the linear part. Cost of inverting a large

matrix is much more than inverting a smaller one. As a result, time domain simulation becomes

faster using the proposed approach. For both of the modeling approaches, LCS algorithm is

faster than the conventional matrix inversion method.

5.2 Future Work

Based on the work presented in this thesis, some suggestions for future work are provided here

in this section as follows,

1. Delay extraction based Loewner modeling approach has been used for long interconnects

[32]. Our proposed iterative Loewner modeling along with delay extraction can be used for

further improvement of the rational approximation. One advantage of using delay extraction is

that it will give low-order approximation for the frequency domain noisy data.

2. Large Change Sensitivity approach has been used for fast time domain analysis for all

the variables of the system. To check the reliability of the system, sometimes we do not need

to calculate all the variables of the system. We only need some variables to be calculated.

An adjoint approach can be applied to calculate a few variables of the system. The issue of

applying this adjoint approach is we need knowledge on all system variables for time domain

analysis of adjoint network. A variational approach presented in [59] can be used to solve this

issue. The adjoint network can be solved backward in time without having knowledge of the
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system variables. By applying adjoint approach incorporation with LCS method can make time

domain analysis much faster.

3. Another approach known as Barycentric vector fitting has been recently proposed to ap-

proximate multiport measured data [60]. In this approach interpolation approach of the points

is different than Vector fitting algorithm. This approach is faster than Vector fitting approach

for multiport system. To improve convergence and accuracy of Barycentric vector fitting an

instrumental variable approach like [35] can be applied in the step where the coefficients of

the rational approximation are determined in a least square sense. This will minimize the bi-

asing effect of the least square solution caused by the noisy data. These instruments will be

generated from the rational approximation of the previous iteration. As a result, computational

complexity of Barycentric vector fitting will not be increased.
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