
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

5-3-2017 12:00 AM

Solving Capacitated Data Storage Placement Problems in Sensor Solving Capacitated Data Storage Placement Problems in Sensor

Networks Networks

Zhenfei Wu, The University of Western Ontario

Supervisor: Roberto Solis-oba, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in

Computer Science

© Zhenfei Wu 2017

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Wu, Zhenfei, "Solving Capacitated Data Storage Placement Problems in Sensor Networks" (2017).
Electronic Thesis and Dissertation Repository. 4540.
https://ir.lib.uwo.ca/etd/4540

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F4540&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ir.lib.uwo.ca%2Fetd%2F4540&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/4540?utm_source=ir.lib.uwo.ca%2Fetd%2F4540&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract
Data storage is an important issue in sensor networks as the large amount of data collected by
the sensors in such networks needs to be archived for future processing. In this thesis we con-
sider sensor networks in which the information produced by the sensors needs to be collected
by storage nodes where the information is compressed and then sent to a central storage node
called the sink. We study the problem of selecting k sensors to be used as storage nodes so
as to minimize the total cost of sending information from the sensors to the storage nodes and
from the storage nodes to the sink. We formulate this problem as a version of the capacitat-
ed k-median problem and design an approximation algorithm for it with approximation ratio
(16 + 23β+ 15

2 β
2) where β is a parameter that measures the relative cost of sending compressed

information from the storage nodes to the sink compared to the cost of sending raw data from
the sensors to the storage nodes. We assume that each storage node has limited capacity so it
can collect information from only a restricted number of sensors. Our algorithm is based on
an algorithm by Guha for the capacitated k-median problem. We also study the version of the
problem where a storage node has unlimited capacity, so it can collect information from any
number of sensors. We show that a local search algorithm by Arya et al. can be used for this
problem and it produces a solution of cost at most 5 times the cost of an optimum solution.

Keywords: data storage, capacited k-median problem, approximation algorithm

ii

Contents

Abstract ii

1 Introduction 1
1.1 Related Work . 7
1.2 Our Contributions . 8

2 Local Search Algorithm for the Uncapacitated Data Storage Placement Problem 9
2.1 The Local Search Algorithm . 9
2.2 Analysis of the Local Search Algorithm for the Uncapcitated Data Storage

Placement Problem . 10

3 Approximation Algorithm for the Capacitated Data Storage Placement Problem 17
3.1 Outline of the Algorithm . 17
3.2 Step 1: Identifying Core Nodes . 19
3.3 Step 2: Consolidating Storage Nodes . 20
3.4 Step 3: Obtaining a

{
1
2 , 1
}
-Integral Solution . 23

3.5 Step 4: Rounding to an Integral Solution . 25

4 Computing the Total Cost of the Solution and the Time Complexity of the Algo-
rithm 34
4.1 Analyzing the Total Cost of the Solution . 34
4.2 Time Complexity of Our Algorithm . 37

5 Conclusions 40

Bibliography 42

iii

Chapter 1

Introduction

Nowadays, wireless sensor networks are widely used in industrial applications. A wireless
sensor network uses autonomous sensors to monitor physical or environmental conditions, such
as temperature, sound, pressure, etc. Sensor networks have military, environmental, health,
domestic and commercial applications [3].

A sensor network is composed of nodes. There may be hundreds or even thousands of
nodes each connected to one or several sensors that collect data and pass it through the network
to a central storage facility. In a military field, sensor networks can be deployed in a target
area to gather battle damage assessment data before or after attacks. As operations evolve
and new operational plans are prepared, new sensor networks can be deployed for battlefield
surveillance.

There are some environmental applications of sensor networks including tracking the move-
ments of birds, small mammals, and insects; monitoring environmental conditions that affec-
t crops and livestock; deploying macroinstruments for large-scale Earth monitoring; detect-
ing chemical/biological agents; performing precision agriculture; environmental monitoring
in marine, soil, and atmospheric contexts; detecting forest fires; meteorological or geophysi-
cal research; flood detection; bio-complexity mapping of the environment and pollution stud-
ies [2, 6, 7, 9, 10, 17, 26, 27, 29, 35, 51, 53]. Since sensor nodes may be strategically deployed in
a forest, sensor nodes can detect fires and rely this information to the end users before a fire is
spread uncontrollably [11].

Health applications for sensor networks include integrated patient monitoring, diagnostics,
drug administration in hospitals; telemonitoring of human physiological data, and tracking and
monitoring of doctors and patients inside a hospital [9,35,44,47,53]. For example, each patient
could have a small and light-weight sensor attached to them. Each sensor has a specific task.
Some may detect the heart rate while other might detect the blood pressure. This technolo-
gy can also be used in our homes, as smart sensor nodes and actuators can be embedded in
appliances such as vacuum cleaners, micro-wave ovens, refrigerators, and VCRs [45].

The air conditioning and heating of most buildings are centrally controlled. The tempera-
ture inside a room can vary by a few degrees; because of the distributed central system, one
side might be warmer than the other. Once we installed a distributed wireless sensor network
for the system, the air flow and temperature can be controlled in every room. It is estimated that
such distributed technology could reduce energy consumption by two quadrillion British Ther-
mal Units (BTUs) in the US, which amounts to savings of $55 billion per year and reducing 35

1

2 Chapter 1. Introduction

million metric tons of carbon emissions [47].
In this thesis we consider data storage systems that store in a single base station (that we

call the sink) data collected from sensors. These systems might not be very efficient because
some sensors might be far away from the base station and so it is expensive to send their data
to the sink. An example of this kind of system is shown in Figure 1.1.

Figure 1.1: Example of a sensor network without storage nodes.

A more efficient system is one in which some sensors are designated as storage nodes which
can collect data received from adjacent sensors. A storage node is an enhanced version of a
sensor node. It can also generate data and has much larger storage space and a bigger power
source than the sensor nodes. Each sensor sends the information that it collects to a storage
node and storage nodes send a summary of the information collected from the sensors to the
sink node. This way the total amount of information sent to the sink is much smaller than the
total amount of information that the storage nodes receive.

Storage nodes have a higher cost than sensor nodes as they need to provide storage for the
data that they collect. We assume then that there is a limited number k of storage nodes and
that storage nodes have limited capacity, so that at most M sensors can send data to the same
storage node, for some value M > 0. The problem that we consider in this thesis is given a
wireless sensor network, select a set of at most k nodes to be designated as storage nodes that
minimizes the cost of collecting the data from the sensor nodes and sending it to the sink. We
call this problem the capacitated data storage placement problem (CDSP). A formal definition
of the problem follows. Let N denote the number of sensor nodes including the sink. The sink
is denoted as node 0. For each sensor i ∈ N we define a variable

yi =

1 if i is a storage node
0 otherwise

3

For each pair i, j of sensors (i could be equal to j) we define a variable:

xi j =

1 if yi = 1 and sensor node j sends its data to storage node i
0 otherwise

Figure 1.2: Example of a sensor network with storage nodes.

We use ci j to denote the distance between nodes i and j and let δi be the distance between
node i and the sink. The distance between two nodes might be the Euclidean distance or any
other metric. The cost or energy used by node j to send data of size d to node i is ci j ∗ d.

The capacitated data storage placement (CDSP) problem can be formulated as the following
integer program:

IP:

min
∑
i, j∈N

xi j(α1ci j + α2δi)

s.t.
∑
i∈N

xi j = 1,∀ j ∈ N,∑
i∈N

yi ≤ k,∑
j∈N

xi j ≤ Myi,∀i ∈ N

xi j ≤ yi,∀i, j ∈ N
y0 = 1, yi, xi j ∈ {0, 1} , ∀i, j ∈ N. (1.1)

In this integer program, α1 is the total size of the data transferred between a sensor node and
its assigned storage node and α2 is the size of the compressed data from a single sensor node

4 Chapter 1. Introduction

that a storage node needs to send to the sink. For determining α1 and α2, we assume that each
node generates rg readings per unit of time, and the data size of each reading is sr. Also we
assume there are rq queries per unit of time and σ is the ratio between the raw data and the
compressed data that a sensor node sends to the sink. Then α1 = rgsr and α2 = rqσsr. The
objective function aims to minimize the total cost of transmitting information, which is equal
to the sum of the cost of sending information from sensor nodes to storage nodes and the cost
of sending information from storage nodes to the sink.

The first constraint,
∑

i∈N xi j = 1,∀ j ∈ N guarantees that each sensor node is assigned to
a storage node. If node j is assigned to storage node i, then xi j = 1 and for all other storage
nodes h, xh j = 0. If xi j = 1 then sensor node j sends its data to storage node i. The second
constraint,

∑
i∈N yi ≤ k ensures that at most k storage nodes are selected. Each selected storage

node i has yi = 1. The third constraint,
∑

j∈N xi j ≤ Myi ensures that the total number of sensor
nodes assigned to a storage node is at most M. This constraint is required because each storage
node has limited capacity M. We also require that xi j ≤ yi, which means if i has been chosen
as a storage node, then yi must be 1 and xi j could be 0 (sensor node j not assigned to i) or 1
(sensor node j assigned to i); however, if i is not a storage node then the value of xi j cannot be
1. The last constraint, y0 = 1, guarantees that the sink is a storage node.

There is a well known optimization problem that is a special case of the CDSP problem
called the k-median problem, which can be formulated as the following integer program:

IP:

min
∑
i, j∈N

xi jci j

s.t.
∑
i∈N

xi j = 1,∀ j ∈ N,∑
i∈N

yi ≤ k,∑
j∈N

xi j ≤ Myi,∀i ∈ N

xi j ≤ yi,∀i, j ∈ N
yi, xi j ∈ {0, 1} , ∀i, j ∈ N. (1.2)

The k-median problem is given a network, select k nodes to be storage nodes that minimize
the total cost of transmitting information from the other nodes to the storage nodes. In the
capacitated k-median problem we restrict the capacity of the storage nodes, which means that
only a limited number of sensor nodes can be assigned to a storage node.

5

Figure 1.3: Definition of pi j.

The k-median problem and the capacitated k-median problem are known to be NP-hard.
A problem H is NP-hard if every decision problem in NP can be reduced in polynomial time
to H [55]. If a problem is NP-hard, it is very unlikely that there exists a polynomial time al-
gorithm for solving it as if such an algorithm existed then polynomial time algorithms would
exist for all problems in NP. Hence, in this thesis we will concentrate on the design of ap-
proximation algorithms for the capacitated data storage placement problem. An approximation
algorithm is an algorithms that can find approximate solutions to an optimization problem in
polynomial time. Approximation algorithms are often used to deal with NP-hard problems, for
which existing exact polynomial-time algorithms are too slow. The approximation ratio of an
approximation algorithm A for a problem H is the maximum ratio max{ S OL

OPT ,
OPT
S OL } of the value

S OL of the solution produced by the algorithm A for any instance I of problem H to the value
OPT of an optimum solution for I.

For the CDSP problem, depending on the values of α1 and α2, the first term,
∑

i, j∈N α1ci jxi j,
or the second term,

∑
i, j∈N α2xi jδi, in the objective function might be the dominant term. If α1

is much larger than α2, then the optimum solution will select a set of storage nodes that are
close to the sensor nodes. Otherwise, if α2 is much larger than α1, then the optimum solution
will select a set of storage nodes close to the sink. In general, we wish to find a set of storage
nodes that are close to both the sensor nodes and the sink. For simplicity of notation we define
pi j = ci j + βδi as the local cost, where β = α2

α1
and 0 < β < 1, so we can simplify the objective

function in the integer program (1.1) to min
∑

i, j∈N xi j pi j.
We consider in this thesis the case when the distance function ci j satisfies the triangle in-

equality [37]. The triangle inequality states that for any three nodes, h, i, j, ci j + c jh ≥ cih. Note
that the cost function pi j does not necessarily satisfy the triangle inequality even if ci j does.
Furthermore, pi j might not be symmetric as pi j = ci j + βδi and p ji = c ji + βδ j.

We denote a solution for integer program (1.1) as (x, y). This solution assigns values to the
variables y j and xi j and these values can be stored in a vector y and in a matrix x. For example,
consider the network with five nodes A, B, C, D and E in the two dimension space in Figure
1.4. We assume that node E is the sink. A solution to the CDSP problem corresponding to this
network and k = 2 is shown in Figure 1.4; nodes E and A are the storage nodes.

6 Chapter 1. Introduction

We can see from Figure 1.4 that nodes B, C and D are connected to the storage node A and
A is connected to the sink E. In this solution, A and E are selected as storage nodes, so the
values of yA and yE are 1, and the value of yi for the other nodes is 0. Thus, the vector y is
(1, 0, 0, 0, 1) (entries are in alphabetical order). xEA, xAB, xAC, xAD and xEE are all 1; all other
variables xi j have value zero. Thus, the matrix x is as follows:

0 1 1 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 1

In this thesis we present an approximation algorithm for the capacitated data storage placement
problem in sensor networks with approximation ratio (16 + 23β + 15

2 β
2), where β = α2

α1
. The

solution produced by our algorithm violates the capacity constraints
∑

j∈N xi j ≤ Myi by at most
a factor of 3, i.e. for any solution (x, y) produced by our algorithm

∑
j∈N xi j ≤ 3Myi, or in other

words the solution assumes that each storage node receives data from up to 3M sensor nodes.

Figure 1.4: A solution for the CDSP problem. Nodes A and E are storage nodes.

Our algorithm first solves a modified integer program IP in which we allow variables yi

and xi j to take fractional values. Such a modification produces a so called linear program. The
reason why we do this is that linear programs can be solved in polynomial time, but solving an
integer program is NP-hard. The drawback of solving a linear program is that variables yi and
xi j can have fractional values. So, for example if yi = 1

2 and y j = 1
2 that means that nodes i and

j are ”half” storage nodes. Clearly such a solution, called a fractional solution, does not make
sense for our problem.

To transform a fractional solution into a valid solution for our problem (this latter solution
is technically called an integer solution) we need to round the fractional values of the variables
to integer values. Such a rounding causes the capacity constraint to be violated. If storage
nodes have hard capacities (i.e. they can not be violated), we could initially set M′ = M

3 and
solve the CDSP problem with capacities M′.

1.1. RelatedWork 7

1.1 Related Work
The data storage placement problem on sensor networks was proposed by Sheng et al. [49].
They assumed that sensor nodes have unlimited capacity, or in other words, that a storage node
can receive information from an arbitrary number of sensor nodes and presented an approx-
imation algorithm for the problem with approximation ratio 10. In this thesis, we show that
an algorithm by Arya et al. [5] can be used to solve the problem studied by Sheng et al. and
the approximation ratio of the latter algorithm is only 5, greatly improving on the algorithm by
Sheng et al.

The data storage placement problem is a generalization of the classical k-median problem.
In the k-median problem, the goal is to select a set S of k nodes from a graph G = (V, E)
to be designated as centers, so that the sum of distances from the vertices in V \ S to S is
minimum [5, 13, 32, 33]. The k-median problem has been extensively studied by the research
community as it has a large number of applications in many areas like networks [36], data
mining [43] and the web [46].

In the metric k-median problem, the distance function on the edges of the input graph G
satisfies the triangle inequality. Lin and Vitter proposed an approximation algorithm for the
k-median problem with approximation ratio 1 + ε for any value ε > 0, but that selects a set of
(1 + 1

ε
)(ln(n) + 1)k nodes as centers, where n is the number of nodes in the graph [41]. The first

approximation algorithm with constant approximation ratio for the metric k-median problem
was proposed by Charikar, Guha, Shmoys and Tardos and it has approximation ratio 62

3 [13].
The algorithm is based on the solution of a linear programming relaxation of the problem
and a complicated rounding procedure. Jain and Vazirani [32] improved on that algorithm by
proposing an elegant algorithm based on primal-dual linear programming with approximation
ratio 6 and running time O(m log m(L + log(n))) where m is the number of edges, n is the
number of vertices, and L = log2 dmax, where dmax is the maximum length of the edges of the
input graph. A primal dual approximation algorithm iteratively modifies two solutions: one for
the linear program and one for its dual. A local search algorithm by Arya et al. [5] for the metric
k-median problem is the currently best algorithm for the problem and it has approximation ratio
3+ 2

p for any integer p > 0. Local search algorithms move from solution to solution in the space
of candidate solutions (the search space) by applying local changes, until a solution deemed
optimal is found.

A widely studied problem that is very related to the k-median problem is the facility location
problem. Here we are given costs fi ≥ 0 for opening facilities. The problem is to select a subset
of facilities to serve a group of clients such that the total facility cost plus the total service cost
is minimized. The facility location problem is similar to the k-median problem except for the
cost for opening the facilities. Thus, much of the research done on the k-median problem also
considers the facility location problem. The facility location problem has many applications
in operations research [20, 39], in network design problems such as placement of routers and
caches [24,40], agglomeration of traffic or data [4,25], and web server replications in a content
distribution network [34,46]. In the last decade this problem has been studied extensively from
the perspective of approximation algorithms [14, 18, 19, 23, 38, 50, 52].

Arya et al. [5] proposed a local search algorithm for the facility location problem and this
algorithm has approximation ratio 3. Jain and Vazirani [32] used primal dual programming to
design an approximation algorithm with approximation ratio 3 and running time O(m log m).

8 Chapter 1. Introduction

The capacitated facility location problem limits the number of clients that can connect to one
facility. Jain et al. [31] gave a 3-approximation algorithm for a capacitated version of the
facility location problem using primal-dual programming. Arya et al. [5] also proposed a
local search algorithm for the capacitated facility location problem with approximation ratio
3.732 + ε for any ε > 0. When we set a capacity for each facility in the k-median problem, the
problem is called the capacitated k-median problem. Charikar [15] presented an approximation
algorithm for the capacitated k-median problem with approximation ratio 16; There is also a
greedy algorithm by Mahdian et al [30] with approximation ratio 1.61 for the uncapacitated
k-median problem.

1.2 Our Contributions
In this thesis we study a local search algorithm for the k-median problem by Arya et al. [5] and
show that we can use it to approximately solve the uncapacitated data storage placement prob-
lem. We show that this algorithm has approximation ratio 5, greatly improving the algorithm
by Sheng et al. which has approximation ratio 10.

We also propose an approximation algorithm for the capacitated version of the data storage
placement problem in sensor networks with approximation ratio (16 + 23β + 15

2 β
2) with the

capacity of the facilities increased from M to 3M. This is the first work that has considered the
capacitated version of the data storage placement problem, which models real sensor networks.
The thesis is organized as follows. In Chapter 2 we analyze the local search algorithm of Arya
et al. [5] when used to solve the uncapacitated data storage placement problem and show that it
has approximation ratio 5. In Chapter 3 we give an outline of the algorithm for the capacitated
data storage placement problem and then gives the algorithm in detail. Chapter 4 analyzes the
cost of the solution produced by the algorithm and its running time considering each node’s
demand. Chapter 5 gives our conclusions.

Chapter 2

Local Search Algorithm for the
Uncapacitated Data Storage Placement
Problem

2.1 The Local Search Algorithm
We first would like to mention that in the nomenclature commonly employed with the k-median
and facility location problems, storage nodes are called centers and sensor nodes are called
clients. In this chapter we show that the local search algorithm in [5] for the k-median problem
can be used to solve the uncapacitated data storage placement problem.

The algorithm first selects as initial solution S any set of k sensors. Then the solution S is
repeatedly modified by performing swap operations. In a swap operation, a storage node from
S is swapped with a node not in S ; if the new solution has a cost smaller than S , then the new
solution is kept. Formally, the swap operation is defined as follows:

swap < s, s′ >:= S − s + s′ for s ∈ S and s′ < S .
The algorithm is shown below.

Algorithm 1 Local-Search (G, k)
Input: Graph G = (V, E) and value k.
Output: A set of k nodes to be used as storage nodes.
1. S ← an arbitrary set of k nodes from G
2. While there is a swap operation < s, s′ > such that cost(S − s + s′) < cost(S) do

S ← S − s + s′

3. return S

In Algorithm 1, cost(S) denotes the sum of all the local costs pi j defined in Chapter 1.
Through the execution of the algorithm, there must be a time when we can not find two nodes
to swap so that cost(S − s + s′) < cost(S); at that moment, the algorithm ends and returns the
solution S . For an example, consider the instance shown in Figure 2.1 where k = 4. Initially
the algorithm selects S = {s1, s2, s3, sink}. The algorithm first considers the swap < s1, s′1 >,
which yields a solution S 2 = {s′1, s2, s3, sink} of lower cost, so S 2 is adopted over S 1 (see Figure

9

10Chapter 2. Local SearchAlgorithm for theUncapacitatedData Storage Placement Problem

Figure 2.1: Solution S.

2.2). The swap < s2, s′2 > then produces a solution S 3 = {s′1, s
′
2, s3, sink} of smaller cost than

S 2, so S 3 is taken as the current solution (see Figure 2.3). No swap can further reduce the cost,
so S 3 is a local optimum solution.

2.2 Analysis of the Local Search Algorithm for the Uncapci-
tated Data Storage Placement Problem

Let NS (s) denote the set of sensor nodes that send their data to storage node s ∈ S in the local
optimum solution produced by algorithm Local-Search and let NS ∗(o) denote the set of sensor
nodes that send their data to storage node o ∈ S ∗ in an optimum solution S ∗. We now compare
the costs of solutions S and S ∗ to determine the quality of the solution computed by Local
Search. In the sequel, if a sensor node s′ sends data to storage node s, we say that s serves s′.
Sensor nodes and storage nodes will sometimes be called just nodes when the meaning is clear
from the context.

Since S is a local optimal solution, we know that any swap < s, o > involving two different
nodes s ∈ S and o ∈ S ∗ \S is such that

cost(S − s + o) ≥ cost(S) (2.1)

For any nodes s ∈ S and o ∈ S ∗ we define ps = NS ∗(o) ∩ NS (s) as the set of sensor nodes that
are served by, both, s in the local optimum solution and o in the optimum solution.

A 1-1 mapping is a function f : V → W such that f (v) = f (w) ⇒ v = w for v ∈ V,w ∈ W.
An onto mapping is a function f ′ : V → W such that ∀w ∈ W,∃v ∈ V such that f ′(v) = w.

2.2. Analysis of the Local SearchAlgorithm for theUncapcitatedData Storage Placement Problem 11

Figure 2.2: Solution S 2.

Figure 2.3: Solution S 3.

12Chapter 2. Local SearchAlgorithm for theUncapacitatedData Storage Placement Problem

Figure 2.4: Solution S 1.

Consider a 1-1 and onto mapping π : NS ∗(o)→ NS ∗(o) with the property that for all s ∈ S such
that |ps| ≤

1
2 |NS ∗(o)|, π(ps)

⋂
ps = ∅. To see how to build the mapping π, the reader is referred

to [5].
We say that a storage node o ∈ S ∗ is captured by a storage node s ∈ S if |NS (s)

⋂
NS ∗(o)| >

1
2 |NS ∗(o)|. We call a storage node s ∈ S , bad if it captures at least one storage node in S ∗
and good otherwise. To clarify these concepts consider the example shown in Figures 2.4 and
2.5. The optimum solution S ∗ = {s1, s2, s3} for this example is shown in Figure 2.5 and a
(non-optimum) solution S 1 = {s1, s2, s′3} is shown in Figure 2.4. There are four nodes that
send data to storage node s3 in S ∗: a, b, s′3 and s3; also node s′3 receives data from four
nodes in solution S 1: a, b, s3 and s′3. Thus, we say that s′3 captures s3 because it satisfies
|NS 1(s′3)

⋂
NS ∗(s3)| > 1

2 |NS ∗(s3)| and hence s′3 is a bad storage node.
Consider now the solution S 4 shown in Figure 2.6. Node s′′3 is a good storage node because

it does not capture any storage nodes in S ∗ as |NS 4(s′′3)
⋂

NS ∗(s3)| = {b, s3}, so the number of
sensor nodes that send information to s′′3 is just half of the number of nodes in NS ∗(s3).

To compare the cost of the solution S computed by the local search algorithm with the
cost of an optimum solution S ∗, we consider the following set of k swap operations < s, o >
between storage nodes in S and storage nodes in S ∗ :

1. If s is a bad storage node that captures only one storage node o ∈ S ∗, we consider the
swap < s, o >.

2. Bad storage nodes capturing at least 2 storage nodes from S ∗ will not be swapped.

3. Each good storage node in S is swapped with a storage node in S ∗ which is not consid-
ered in Step 1, so that no node in S ∗ is swapped more than twice. Note that since the bad

2.2. Analysis of the Local SearchAlgorithm for theUncapcitatedData Storage Placement Problem 13

Figure 2.5: Optimum Solution S ∗.

Figure 2.6: Solution S 4.

14Chapter 2. Local SearchAlgorithm for theUncapacitatedData Storage Placement Problem

storage nodes in S capturing at least 2 nodes of S ∗ are not swapped, then the number of
good storage nodes in S is at least half of the number of storage nodes in S ∗ which are
not considered in step 1.

Note that in the above set of swap operations, if a swap < s, o > is considered, the storage node
s does not capture any node o′ ∈ S ∗, o′ , o. When a swap < s, o > operation is considered
we need to reassign the sensor nodes in NS (s)∪ NS ∗(o) to the storage nodes in S − s + o. After
we perform the swap operation < s, o > all sensor nodes j ∈ NS ∗(o) are assigned to o and each
sensor node j is assigned to the storage node s j ∈ S − s + o for which ps j j is minimum.

Figure 2.7: Reassigning the nodes in NS (s) ∪ NS ∗(o).

Consider a node j′ ∈ NS (s) ∩ NS ∗(o′), for o′ , o. As s does not capture o′, then |NS (s) ∩
NS ∗(o′)| ≤ 1

2 |NS ∗(o′)| and by the way in which mapping π has been defined, we have that π(j′) <
NS (s). So let π(j′) ∈ NS (s′). Note that the cost of assigning j′ to a storage node in S − s + o is
at most c j′s′ (see Figure 2.7). Since storage nodes need to forward information to the sink, as
explained in Chapter 1, the cost function in which we are interested is ps′ j′ = cs′ j′ + βδs′ , which
indicates that the communication cost between s′ and j′ is equal to the cost of transmitting
information from node j′ to the storage node s′ plus the cost of sending information from the
storage node s′ to the sink. So let us analyze ps′ j′ .

Lemma 2.2.1 ps′ j′ ≤ po′ j′ + po′π(j′) + ps′π(j′) − 2βδo′

2.2. Analysis of the Local SearchAlgorithm for theUncapcitatedData Storage Placement Problem 15

Proof We know that by the triangle inequality, cs′ j′ ≤ cs′π(j′) + co′π(j′) + co′ j′ , then

ps′ j′ =cs′ j′ + βδs′ ≤ co′ j′ + co′π(j′) + cs′π(j′) + βδs′

≤ co′ j′ + co′π(j′) + ps′π(j′)

≤ co′ j′ + co′π(j′) + ps′π(j′) + (2βδo′ − 2βδo′)
= co′ j′ + βδo′ + co′π(j′) + βδo′ + ps′π(j′) − 2βδo′

= po′ j′ + po′π(j′) + ps′π(j′) − 2βδo′

�

Figure 2.8: Relationship between the nodes in Lemma 2.2.1.

We can now compare cost(S) and cost(S ∗). First, by inequality (2.1),

0 ≤ cost(S − s + o) − cost(S)

=
∑

j∈NS ∗(o)

(po j − ps j) +
∑

j∈NS (s), j<NS ∗(o)

(ps′j j − ps j)

≤
∑

j∈NS ∗(o)

(po j − ps j) +
∑

j∈NS (s), j<NS ∗(o)

(po j + poπ(j) + psπ(j) − ps j − 2βδo) (2.2)

where the last inequality follows from Lemma 2.2.1.
Inequality (2.2) holds for each swap operation < s, o > where s ∈ S and o ∈ S ∗. If we

consider the set of k swap operations described above, then note that each storage node s ∈ S
participates in at most two swaps; hence the last term in inequality (2.2) added over all k swaps
is at most 2

∑
j∈N(po j j + po jπ(j) + ps jπ(j) − ps j j − 2βδo j), where o j is the storage node that collects

16Chapter 2. Local SearchAlgorithm for theUncapacitatedData Storage Placement Problem

the information from sensor node j in the optimum solution S ∗ and s j is the storage node that
collects information from node j in solution S .

Since π is a 1 − 1 and onto mapping, then each node j is mapped to a unique node π(j) and
so ∑

j∈N

po j j =
∑
j∈N

po jπ(j) = cost(S ∗).

Similarly,
∑

j∈N ps j j =
∑

j∈N ps jπ(j). Therefore, by the above equation

2
∑
j∈N

(po j j + po jπ(j) + ps jπ(j) − ps j j − 2βδo) = 4cost(S ∗) − 4β
∑
j∈C

δo j .

By inequality 2.2 added over all k swap operations, we get:

0 ≤
∑
j∈N

(po j j − ps j j) +
∑
j∈N

(po j j + po jπ(j) + ps jπ(j) − ps j j − 2βδo j)

≤ cost(S ∗) − cost(S) + 4cost(S ∗) − 4
∑
j∈N

βδo j .

≤ 5cost(S ∗) − cost(S) (2.1)

Hence: cost(S) ≤ 5cost(S ∗)
This shows that the approximation ratio of our algorithm is at most 5.

Chapter 3

Approximation Algorithm for the
Capacitated Data Storage Placement
Problem

3.1 Outline of the Algorithm
In the linear program relaxation of an integer program the requirement that the variables take
only integer values is relaxed by allowing them to take real values. We will consider a more
general version of integer program (1.1) by allowing each node j to have a non-negative de-
mand d j. This demand can be regarded as the importance of the node or the size of the data that
it generates. We will use this more general formulation of the problem as it is more convenient
for expressing and analyzing our algorithm. The linear programming relaxation of this more
general version of (1.1) is the following:

min
∑
i, j∈N

d j pi jxi j

s.t.
∑
i∈N

xi j = 1,∀ j ∈ N,∑
i∈N

yi ≤ k,∑
j∈N

d jxi j ≤ Myi,∀i ∈ N

yi ≥ xi j ≥ 0,∀i, j ∈ N, y0 = 1 (3.1)

In the data storage placement problem, the demand d j is set to 1 for all nodes j. However,
later to analyze the algorithm we will modify the demands of the nodes and that is why we
have added the terms d j to the objective function. Recall that pi j is neither symmetric (i.e.
pi j = ci j + βδi is not necessarily equal to p ji = c ji + βδ j) nor proportional to the Euclidean
distance between i and j, as pi j = ci j + βδi.

The steps of our algorithm for the capacitated data storage placement problem are outlined
below. Each step is analyzed in detail in the following sections.

17

18Chapter 3. ApproximationAlgorithm for theCapacitatedData Storage Placement Problem

Step 1: Compute a solution (x̄, ȳ) for the linear program (3.1). Let C̄p
j indicate the cost of

processing the information generated by sensor node j in solution (x̄, ȳ); i.e.

C̄p
j =
∑
i∈N

pi j x̄i j

Then the value of the solution (x̄, ȳ) can be written as:

C̄LP(x̄, ȳ) =
∑
j∈N

d jC̄
p
j

Next we find a set N′ of nodes that satisfies the following two properties.

• For all j ∈ N − N′ there exists i ∈ N′ such that ci j ≤ 4C̄p
j .

• For all i, j ∈ N′, ci j > 4 max{C̄p
i , C̄

p
j }.

We call N′ the set of core nodes. For every core node i in N′ there is a radius 2C̄p
i such that

every node j ∈ N − N′ within this radius is closer to i than to any other core node (see Figure
3.1).

Figure 3.1: Core nodes.

To understand the notion of core nodes, consider the example in Figure 3.1. From the
above figure we can see that ci1i2 is larger than 4 max{C̄p

i1
, C̄p

i2
} which satisfies the second above

3.2. Step 1: Identifying Core Nodes 19

property. Node j1 ∈ N − N′ is no more than 4C̄p
i1

away from i1, so j1 satisfies the first property.
On the other hand, node j2 ∈ N − N′ is not within the 4C̄p

i1
radius of i1, but it must be within

that distance from other core node. Additionally, j3 is within the 2C̄p
i2

radius of i2, so it is closer
to i2 than to any other core node.

Step 2: Modify the solution (x̄, ȳ) computed in Step 1 by combining fractional values (a
value z is called fractional if it is not integer) x̄i j and ȳi to obtain a new solution (x′, y′) with
fewer variables with positive values. A node i ∈ N − N′ is called a fractional center if ȳi is not
integer. Each fractional center is assigned to the closest node in N′ (breaking ties arbitrarily).
For every fractional center i we consider the set of sensor nodes assigned to it and redistribute
them among node i and the node in N′ closest to it so that every variable y′i has value at least
1
2 . Note that the solution created in this manner could violate the capacity constraints because
too many sensor nodes could be assigned to a storage node.

Step 3: Further modify the solution obtained in the previous step to produce a {1/2, 1}-
integral solution for the linear program. In a {1/2, 1}-integral solution, all variables have value
0, 1

2 or 1.
Step 4: Convert the {1/2,1}-integral solution into an integral solution (x̂, ŷ) with at most a

factor 3 increase in the capacities. In the next sections we explain in detail each step of the
algorithm.

3.2 Step 1: Identifying Core Nodes
We first compute a solution (x̄, ȳ) for the linear program (3.1) using the Ellipsoid algorithm
[1, 8] and identify a set N′ of core nodes in the following manner. Initially, N′ = φ; let
N = {1, . . . , n} be the set of nodes indexed in increasing order of C̄p

j , i.e. C̄p
1 ≤ · · · ≤ C̄p

n .
Consider the nodes j = 1, . . . , n in this order. For each node j, if there is no node i < j, i ∈ N′

for which ci j ≤ 4C̄p
j , then add j to N′. For a node j ∈ N, let l(j) denote the closest node to j in

N′ breaking ties arbitrarily.

Corollary 3.2.1 cl(j) j ≤ 4C̄p
j

Proof Because of the way in which the set N′ is chosen, for any node j ∈ N, cl(j) j ≤ 4C̄p
j . �

For each node i ∈ N′ we define Mi as the set of nodes in N closer to i than to any other node
in N′, i.e. Mi = { j ∈ N : l(j) = i}. We define the fractional center value of Mi as zi =

∑
j∈Mi

y j.
Since for any i, h ∈ N′, cih > 4C̄p

i , then each node j ∈ N within a 2C̄p
i radius of i ∈ N′ must be

closer to i than to any other node in N′ and so it must belong to Mi.
Note that for any node j ∈ N, C̄p

j =
∑

i∈N pi j x̄i j can be regarded as the weighted average of
the costs pi j, where x̄i j is the weight of pi j. Since in any weighted average, less than half of the
total weight can be given to values more than twice the average, then∑

i:pi j>2C̄p
j

x̄i j <
1
2

(3.2.1)

Since
∑

i∈N x̄i j = 1 and x̄i j ≤ ȳi for each i ∈ N, then∑
i:pi j≤2C̄p

j

ȳi ≥
∑

i:pi j≤2C̄p
j

x̄i j ≥
1
2

(3.2.2)

20Chapter 3. ApproximationAlgorithm for theCapacitatedData Storage Placement Problem

Additionally, because pi j ≥ ci j, then∑
ci j≤2C̄p

j

ȳi ≥
∑

pi j≤2C̄p
j

ȳi ≥
1
2

Thus, for any feasible fractional solution (x̄, ȳ) of linear program (3.1),
∑

i:ci j≤2C̄p
j
ȳi ≥

1
2 for each

j ∈ N. Therefore, the total fractional center value zi of the set Mi is greater than or equal to 1
2 .

3.3 Step 2: Consolidating Storage Nodes
We modify the solution (x̄, ȳ) by performing a series of transfer operations as indicated by the
following algorithm.

Algorithm 2 Transfer (x̄,ȳ, Mi, i)
Input: Solution (x̄, ȳ) of linear program (3.1), core node i and set of nodes Mi.
Output: Modified solution (x′, y′).
1. Initially, set (x′, y′) = (x̄, ȳ). Sort the nodes j in Mi in increasing order of ci j, i.e. if the sorted
nodes are j1, j2, . . . , jm, then ci j1 ≤ ci j2 ≤ · · · ≤ ci jm .
2. Let jt be the first node in the sequence j1, . . . , jm such that y′jt < 1. Let js be the first node in
the sequence jt+1, . . . , jm such that y′js

> 0. If either js or jt does not exist, go to step 6.
3. q← min(y′js

, 1 − y′jt).
4. For all nodes j′ ∈ N, set

x′′jt j′ ← x′jt j′ +
q

y′js

x′js j′

x′′js j′ ← x′js j′ −
q

y′js

x′js j′

Set y′′jt ← y′jt + q, y′′js
← y′js

− q.
5. For all j′ ∈ N, set x′jt j′ ← x′′jt j′ , x′js j′ ← x′′js j′ , y′jt ← y′′jt , y′js

← y′′js
and then go back to step 2.

6. If there is a node jt, 1 < t ≤ m such that 0 < y′jt < 1, then we assign the demand served by jt

to jt−1: For all nodes j′ ∈ N, we set

x′jt−1 j′ ← x′jt−1 j′ + x′jt j′

x′jt j′ ← 0

y′jt ← 0

7. Return (x′, y′)

We now show that the solution (x′′, y′′) computed in Step 4 of algorithm Transfer satisfies
the third constraint of linear program (3.1) and so in this solution the maximum load of any
storage node is M. The proof is by induction on the number of iteration of the loop consisting
of steps 2-5 of Transfer. If the number of iteration is zero the claim holds trivially. Assume the
claim holds after i iterations. Then for the (i + 1) − th iteration note that the third constraint

3.3. Step 2: Consolidating Storage Nodes 21

is satisfied for all j1, j2, . . . , jt−1 by induction hypothesis and the fact that (x̄, ȳ) is a solution of
(3.1). To see that the constraint holds for js, note that∑

j′∈N

d jx′′js j′ =
∑
j′∈N

d j(x′js j′ −
q

y′js

x′js j′)

= (1 −
q

y′js

)
∑
j′∈N

d jx′js j′

≤ (1 −
q

y′js

)My j′s by induction hypothesis

= M(y′js
− q) = My′′js

A very similar argument shows that the constraint also holds for jt.
Step 6 of Transfer, however might increase the load of node jt−1 to at most 2M as the whole

load of node jt is transferred to jt−1.
To show how algorithm Transfer works, consider an instance where for core node i, Mi =

{ j1, j2, j3, j4, j5}, and suppose that y′ = (2
3

1
2

1
3 0 0); the values x′ji jh

for 1 ≤ i, h ≤ 5 are given by
the following matrix:

2
3

1
2

1
2

2
3

1
2

1
3

1
2

1
3 0 1

2
0 0 1

6
1
3 0

0 0 0 0 0
0 0 0 0 0

In this example, the sum of values in each column is 1. In the first execution of steps 2-5
algorithm Transfer sets jt = j1 and js = j2; the values in y′ change to (1 1

6
1
3 0 0). The matrix

x′ becomes
8
9

5
6

13
18

2
3

5
6

1
9

1
6

1
9 0 1

6
0 0 1

6
1
3 0

0 0 0 0 0
0 0 0 0 0

because part of the load from the nodes assigned to j2 is now transferred to j1. In the second
execution of steps 2-5 the algorithm chooses jt = j2 and js = j3. The new vector y′ is y′ =

(1 1
2 0 0 0) and x′ is

8
9

5
6

13
18

2
3

5
6

1
9

1
6

5
18

1
3

1
6

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Since the value of y′j2 is greater than 0 and less than 1, step 6 is executed to produce the final
solution y′ = (1 0 0 0 0) and

x′ =

1 1 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

22Chapter 3. ApproximationAlgorithm for theCapacitatedData Storage Placement Problem

Note that y′j2 = 0 which means this node will not receive message from any other nodes and so
the load of node j2 is transferred to j1; the load of j1 increases to at most 2M.

In step 4, variable x′js j′ is combined with x′jt j′ . We say that x′js j′ is terminally modified to
node jt in step 4 if and only if zl(js) =

∑
i∈Ml(js)

y′i ≥ 1, otherwise, the variable is said to be non-
terminally modified. The reason we call these variables terminally modified and non-terminally
modified is because if zl(js) ≥ 1, then the values y′i of the nodes i in Ml(js) can be transferred to
l(js) so l(js) will be one of the chosen storage nodes and so sensor node js will be ”terminally”
assigned to l(js); otherwise, nodes in Ml(js) do not accumulate enough value zl(js) and thus l(js)
will not be a storage node, so the sensor nodes in Ml(js) will be assigned to other nodes. The
following two lemmas bound the cost of the solution produced by algorithm Transfer.

Lemma 3.3.1 For variable x′i j > 0 terminally modified to node i′ ∈ Ml(i), pi′ j ≤ (3 + 2β)pi j +

8(1 + β)C̄p
j .

Proof By Steps 1 and 2 of algorithm Transfer, i′ must appear before i in the ordering of Ml(i),
thus,

cl(i)i′ ≤ cl(i)i. (3.3.1)

Since for any node j ∈ N, pi′ j = ci′ j +βδi′ and δi′ = coi′ , where o is the sink, then by the triangle
inequality (see Figure 3.2),

pi′ j = ci′ j + βδi′ ≤ ci′l(i) + cl(i)i + ci j + β(δi + ci′i)
≤ 2cl(i)i + ci j + β(δi + ci′l(i) + cl(i)i), by inequality (3.3.1) and the triangle inequality
≤ 2cl(i)i + ci j + β(δi + 2cl(i)i), by inequality (3.3.1)
≤ 2(1 + β)cl(j)i + ci j + βδi, as i is closer to l(i) than to l(j)
≤ 2(1 + β)(cl(j) j + ci j) + ci j + βδi, by the triangle inequality
= 2(1 + β)cl(j) j + (3 + 2β)ci j + βδi

≤ 2(1 + β)cl(j) j + (3 + 2β)pi j

≤ 2(1 + β)pl(j) j + (3 + 2β)pi j, as pl(j) j ≥ cl(j) j

≤ 8(1 + β)C̄p
j + (3 + 2β)pi j, by Corollary 3.2.1

�

Lemma 3.3.2 For variable x̄i j > 0 non-terminally modified to l(i), we have pl(i) j ≤ (2 + β)pi j +

4(1 + β)C̄p
j .

Proof By the triangle inequality: cl(j)i ≤ ci j + cl(j) j and cl(i) j ≤ ci j + cl(i)i ≤ ci j + cl(j)i because
i is closer to l(i) than to l(j). Combining these two inequalities we get cl(i) j ≤ 2ci j + cl(j) j. In
addition, βδl(i) ≤ β(cl(i)i + δi) ≤ β(cl(j)i + δi) ≤ β(ci j + cl(j) j + δi) by the triangle inequality. Thus,
pl(i) j = cl(i) j + βδl(i) ≤ 2ci j + cl(j) j + βci j + βcl(j) j + βδi ≤ (2 + β)pi j + 4(1 + β)C̄p

j by Corollary
3.2.1. �

We define the modified demand d′i of a core node i ∈ N′ as follows.

d′i ←
∑
j∈N

d jx′i j

For all nodes i ∈ N − N′, we define d′i ← 0.

3.4. Step 3: Obtaining a
{

1
2 , 1
}
-Integral Solution 23

Figure 3.2: Relationship between the nodes in the proof of Lemma 3.3.1.

3.4 Step 3: Obtaining a
{

1
2, 1
}
-Integral Solution

We now define two new sets of nodes: N1 =
{
i ∈ N : y′i > 0

}
and N2 =

{
i ∈ N : 0 < y′i < 1

}
.

Note that according to algorithm Transfer the only nodes that belong to N2 are those core
nodes i′ ∈ N′ for which y′i < 1 and y′j = 0 for all j ∈ Mi. Therefore, N2 is a subset of N′. Let
|N1| = ` and |N2| = m.

Lemma 3.4.1 For each node i ∈ N2, y′i ≥
1
2 .

Proof Since i is a core node and y′j = 0 for all j ∈ Mi except i, then i collects all the information
sent by the nodes in Mi. By the discussion at the end of Section 3.2,

1
2
≤ zi =

∑
j∈Mi

y′j = y′i

�

To obtain a
{

1
2 , 1
}
-integral solution (x̂, ŷ) from the solution (x′, y′) computed by algorithm Trans-

fer we first set ŷ j ← 1 for all nodes j ∈ N1 − N2. We sort the nodes j in N2 in increasing order
of value d′j ps(j) j: let these nodes be j1, . . . , jm. We give the first 2(` − k) nodes j in this order
value ŷ j = 1

2 and for the rest we set ŷ j = 1. We also sort the nodes in N1 in the same above
order. For each node j ∈ N2, let s(j) be the node in N1 − { j} that has the minimum value ps(j) j

breaking ties in favor of a node with smaller index.
Observe that the new solution (x′, ŷ) could be infeasible because the last constraint,

ŷi ≥ x′i j ∀i, j ∈ N

24Chapter 3. ApproximationAlgorithm for theCapacitatedData Storage Placement Problem

of linear program (3.1) might not be satisfied as some values ŷ j are smaller than the corre-
sponding values y′j.

The following lemma shows that for every node i with value ŷi = 1
2 the total demand served

by it is at most M.

Lemma 3.4.2 For any node i,

1. If ŷi = 1
2 , then

∑
j∈N d jx′i j ≤ M.

2. If ŷi = 1, then
∑

j∈N d jx′i j ≤ 2M.

Proof The only nodes i with value ŷi = 1
2 belong to N2, i.e. core nodes for which y′ < 1 and

y′j = 0 for all j ∈ Mi. Algorithm Transfer does not change the value y′i for these nodes and
so by the third constraint of linear program (3.1),

∑
j∈N d jx′i j ≤ My′i ≤ M. The last step of

algorithm Transfer might change the values of some variables y′i so that 1 < y′i < 2. For such
variables y′i the value of the corresponding variable ŷi is 1. By the third constraint of linear
program (3.1),

∑
j∈N d jx′i j ≤ My′i < 2M. Finally, for those variables y′i that have value 1, ŷi = 1

and
∑

j∈N d jx′i j ≤ My′i ≤ M < 2M. �

The following lemma will help us bound the total cost of our solution.

Lemma 3.4.3 ∑
i∈N2

(1 − ŷi)d′i ps(i)i ≤
∑
i∈N2

(1 − y′i)d
′
i ps(i)i

.

Proof Note that∑
i∈N1

(1 − y′i)d
′
i ps(i)i =

∑
i∈N2

(1 − y′i)d
′
i ps(i)i +

∑
i∈N1−N2

(1 − y′i)d
′
i ps(i)i =

∑
i∈N2

(1 − y′i)d
′
i ps(i)i

because y′i = 1 for all i ∈ N1 − N2. Hence, to prove the lemma we only need to show that
the function f (y1, y2, . . . , y`) =

∑
i∈N1

(1− y j)di ps(i)i has its minimum value when y1, y2, . . . , y` =

ŷ1, ŷ2, . . . , ŷ` given that yi ≥
1
2 for all i = 1, 2, . . . , `.

Since the variables yi are indexed in non-decreasing order of di ps(i)i, and di ps(i)i > 0 for all
i = 1, 2, . . . , `, function f will have its minimum value when the first variables yi (with smallest
di ps(i)i value) have value 1

2 and the last variables yi (with large di ps(i)i value) have value 1. Since
by the second constraint of linear program (3.1),

∑
i∈N1

yi = k, then the minimum is achieved
when the first 2(` − k) variables have value 1

2 and the remaining ones have value 1. Note that
with this assignment of values to the variables yi,∑

i∈N1

yi =
1
2

2(` − k) + ` − (2(` − k))

= ` − k + ` − 2` + 2k = k as required.

Thus f achieves its minimum value at ŷ1, ŷ2, . . . , ŷ`. �

3.5. Step 4: Rounding to an Integral Solution 25

3.5 Step 4: Rounding to an Integral Solution

The last step of the algorithm transforms the solution (x′, ŷ) into an integral solution. To do this
we first build a directed graph as follows. Create a node for each i ∈ N1. For each i ∈ N2 with
ŷi = 1

2 , add a directed edge from i to s(i); see Figure 3.3.

Figure 3.3: Directed graph induced by s(j).

Note that because of the way in which s(i) is chosen for a node i, the only cycles in this
directed graph are formed by pairs of vertices (i, j) such that s(i) = j and s(j) = i.

For each cycle, we designate one of the vertices as a root node and delete the edge directed
from the root to the other vertex to form a tree. If the directed graph has several components,
this process transforms the graph into a collection of trees. In the figure, we can see that the
edges between nodes j1 and j2 form a cycle. We choose j1 as root and remove the edge from
j1 to j2 (see Figure 3.4). Observe that the nodes with only directed edges pointing to them are
the roots of the trees.

26Chapter 3. ApproximationAlgorithm for theCapacitatedData Storage Placement Problem

Figure 3.4: Converting the directed graph into a tree.

The above process produces a collection of rooted trees spanning the nodes i ∈ N2 with ŷi =
1
2 . In the solution (x′, ŷ) we choose all the nodes i with ŷi = 1 as storage nodes. Additionally,
we will choose half of the nodes i with ŷi = 1

2 as storage nodes as described below.
We define the level of a node in a tree to be the number of edges on the path from the node

to the root of the tree. Consider any tree T in the collection. We decompose T into a collection
of stars that will be used to select the nodes that will be chosen as storage nodes. Start from a
leaf node i of T of highest level and remove the subtree rooted at its parent s(i). This creates a
star rooted at s(i). Repeat this procedure until the tree is empty or it consists of a single node i.
In the latter case, if ŷi = 1

2 , we add i to the star rooted at s(i). Recall that s(i) is the node that
has the minimum value ps(i)i in N1 − {i}. The figure below shows how to split a tree into stars
for the above example.

Figure 3.5: Splitting a tree into stars.

3.5. Step 4: Rounding to an Integral Solution 27

Definition A star is called even if the sum of the ŷi values of the nodes i in the star is integer.
A star that is not an even star is called an odd star.

To determine which of the nodes in a star is going to be selected as a storage node, we need to
consider 4 cases depending on whether the star is even or odd and whether the root i of the star
has value ŷi = 1 or ŷi = 1

2 . For each one of these cases we will consider two different selections
of storage nodes. At the end we will choose either the selection of storage nodes of smaller
cost or the selection with smaller number of nodes, as explained later.

In all cases the root i of a star is selected as a storage node.

1. Even star rooted at a node i with ŷi = 1. Let j1, . . . , j2r be the children of i in non-decreasing
order of pi jk . Note that since the star is even and ŷi = 1 then the number of children of i
must be even. We consider the two following selections of storage nodes.

a) Select j1, j3, . . . , j2r−1 as storage nodes. Node j2s is assigned to node j2s−1 for each
s = 1, 2, . . . , r, which means that the demand of j2s is transferred to j2s−1. To reflect this
fact the variables x′ need to be updated: For each node i ∈ N, set x′j2s−1i ← x′j2s−1i + x′j2si
and x′j2si ← 0. In the sequel we will not explicitly indicate how the values of the variables
x′ are updated. For this case, nodes j2s−1, s = 1, 2, . . . , r, have demand at most 2M by
Lemma 3.4.2. By the same lemma the demand of node i is at most 2M.

Figure 3.6: Case (1), selection (a).

b) Select nodes j2, j4, . . . , j2r as storage nodes. Node j1 is assigned to the root i and node
j2s+1 is assigned to j2s for all s = 1, 2, . . . , r − 1. By Lemma 3.4.2 the root i has demand
at most 2M because ŷi = 1; hence, its demand becomes at most 3M after assigning j1 to
it.

28Chapter 3. ApproximationAlgorithm for theCapacitatedData Storage Placement Problem

Figure 3.7: Case (1), selection (b).

2. Even star rooted at a node i with ŷi = 1
2 . Let j1, . . . , j2r+1 be the children of i in non-

decreasing order of pi jk

a) Select nodes j2, j4, . . . , j2r as storage nodes. Node j1 is assigned to the root i and node
j2s+1 is assigned to node j2s for all s = 1, 2, . . . , r; this will cause the demand of the
storage nodes to increase to at most 2M.

Figure 3.8: Case (2), selection (a).

b) Select nodes j3, j5, . . . , j2r+1 as storage nodes. Nodes j1 and j2 are assigned to the root i
and node j2s+2 is assigned to j2s+1 for s = 1, 2, . . . , r − 1. The root i will have a demand
of at most 3M after assigning j1 and j2 to it.

3.5. Step 4: Rounding to an Integral Solution 29

Figure 3.9: Case (2), selection (b).

3. Odd star rooted at node i with ŷi = 1. Let j1, . . . , j2r+1 be the children of i in non-decreasing
order of pi jk .

a) Select nodes j2, j4, . . . , j2r, j2r+1 as storage nodes. Node j1 is assigned to the root i. Node
j2s+1 is assigned to j2s for all s = 1, 2, . . . , r−1. This will cause an increase in the demand
of some storage nodes to at most 2M. Since j1 moved its demand to the root, the demand
for the root increased to at most 3M.

Figure 3.10: Case (3), selection (a).

b) Select nodes j1, j3, j5, . . . , j2r−1 as storage nodes. Node j2r+1 is assigned to the root i and
node j2s is assigned to j2s−1 for all s = 1, 2, . . . , r. From Lemma 3.4.2, the demand of the
root i is 2M and then i will have a demand at most 3M after assigning j2r+1 with demand
M to it.

30Chapter 3. ApproximationAlgorithm for theCapacitatedData Storage Placement Problem

Figure 3.11: Case (3), selection (b).

4. Odd star rooted at i with ŷi = 1
2 . Let j1, . . . , j2r be the children of i in non-decreasing order

of pi jk .

a) Select nodes j2, j4, . . . , j2r as storage nodes. Node j1 is assigned to the root. Each node
j2s+1 is assigned to node j2s for all s = 1, 2, . . . , r − 1. In this case, some storage nodes
have a demand of at most 2M.

Figure 3.12: Case (4), selection (a).

b) Select nodes j3, j5, . . . , j2r−1 as storage nodes. Nodes j1 and j2 are assigned to the root i
and each one of the remaining even nodes j2s is assigned to node j2s−1. In this case, the
root i has a capacity of at most 3M.

3.5. Step 4: Rounding to an Integral Solution 31

Figure 3.13: Case (4), selection (b).

From the above discussion, we see that the demand for storage nodes can be increased to at
most 3M.

Let r(i) be the storage node to which node i was assigned in the above process. The cost
of a selection S of storage nodes is defined to be

∑
i∈S d′i pr(i)i. For each even star we choose

the selection of storage nodes (a) or (b) of smaller cost. For odd stars we proceed as follows.
Note that there is an even number of odd stars S 1, S 2, . . . , S 2q because the total sum of the ŷi

variables must be integer. Let Ca(`) denote the cost of star S ` under selection (a) and Cb(`) for
selection (b). We let the stars be numbered in increasing order of value |Ca(`) − Cb(`)|. We
choose the lower cost selection for S q+1, . . . , S 2q and choose the selection with smaller number
of centers for S 1, . . . , S q. Now we analyze the total cost of the stars.

Lemma 3.5.1 The total cost of the stars computed by the above procedure is bounded by the
sum over all stars of the average cost of the two selections (a) and (b).

Proof For the even stars, we choose the selection of storage nodes of smaller cost, so their
total cost is at most the sum of average costs of (a) and (b). For the odd stars, we need to be
more careful, as we might choose the larger cost selection for some of them. Consider pairs of
odd stars (S `, S 2q−`+1) for ` ≤ q; the worst case is when the cost for S ` is the higher of (a) and
(b). Note that given two non-negative values f and g,

max(f , g) =
1
2
| f − g| +

1
2
| f + g| and (3.5.1)

min(f , g) =
1
2
| f + g| −

1
2
| f − g| (3.5.2)

Thus, the cost for pair (S `, S 2q−`+1) can be bounded by

min(Ca(2q − ` + 1),Cb(2q − ` + 1)) + max(Ca(`),Cb(`))

=
1
2
|Ca(2q − ` + 1) + Cb(2q − ` + 1)| +

1
2
|Ca(`) + Cb(`)|

+
1
2
|Ca(`) −Cb(`)| −

1
2
|Ca(2q − ` + 1) −Cb(2q − ` + 1)|, By equality 3.5.1 and 3.5.2

32Chapter 3. ApproximationAlgorithm for theCapacitatedData Storage Placement Problem

Consider the last two terms in the above expression. Because of the way in which the costs of
the stars S ` were ordered we know that

|Ca(`) −Cb(`)| ≤ |Ca(2q − ` + 1) −Cb(2q − ` + 1)|.

Thus,

min(Ca(2q − ` + 1),Cb(2q − ` + 1)) + max(Ca(`),Cb(`))

≤
1
2
|Ca(2q − ` + 1) + Cb(2q − ` + 1)| +

1
2
|Ca(`) + Cb(`)|

�

We now use the previous lemma to bound the cost of the stars chosen by the algorithm.

Lemma 3.5.2 The cost of the stars chosen by the algorithm can be bounded by (1+
β

2)
∑

j∈N2,ŷ j=
1
2

d′j ps(j) j.

Proof Recall that in a star S ` all the children nodes j have value ŷ j = 1
2 . The cost of the root

i of S ` is zero as i is selected as a storage node. For the children nodes j we need to consider
tree cases:

(1) In one of the selections (a) or (b), node j is chosen as a storage node (so its cost is zero)
and in the other selection j is assigned to one of its siblings j′. In the latter case the cost of j is
d′j p j′ j.

Figure 3.14: Relationship between nodes in Lemma 3.5.2.

3.5. Step 4: Rounding to an Integral Solution 33

Note that (see Figure 3.14)

p j′ j = c j′ j + βδ j′ ≤ cs(j) j + cs(j) j′ + β(δs(j) + cs(j) j′), by the triangle inequality
≤ 2cs(j) j + βcs(j) j + βδs(j), cs(j) j′ ≤ cs(j) j by the way in which storage nodes are chosen
< (2 + β)cs(j) j + βδs(j)

< (2 + β)ps(j) j

Hence, the average cost of j is at most 1
2 (0 + (2 + β)d′j ps(j) j) = (1 +

β

2)d′j ps(j) j.
(2) In one of the selections (a) or (b), j is chosen as a storage node and in the other it is

assigned to the root. In the second case the cost of j is d′j ps(j) j.
(3) Node j is assigned to the root in both selections (a) and (b). The cost of j is then d′j ps(j) j.
In the three cases the average cost of j is at most (1 +

β

2)d′j ps(j) j. By Lemma 3.5.1 the cost
of the stars is as stated. �

We are now ready to bound the cost of the non-terminal assignments.

Lemma 3.5.3 In the solution provided by our algorithm, the cost of the non-terminal assign-
ments increases by the cost of the stars, which is 2(1 +

β

2)
∑

j∈N2
(1 − y′j)d

′
j ps(j) j.

Proof Recall that we have defined d′j =
∑

j∈N d jx′i j. Consider all the non-terminal assignments
from nodes j to node i, that are re-assigned in the above procedure to r(i):∑

j

d jx′i j pr(i) j =
∑

j

d jx′i jcr(i) j +
∑

j

d jx′i jβδr(i)

≤
∑

j

d jx′i jcr(i)i +
∑

j

d jx′i jci j +
∑

j

d jx′i jβδr(i), by the triangle inequality

≤
∑

j

d′j pr(i)i +
∑

j

d jx′i j pi j

The first term of the right hand side of the last inequality is the cost of the stars and the second
term is the cost of the non-terminal assignments before step 4. The nodes in the stars are all in
N′ and for all the children nodes j, y′j = 1

2 , so using Lemma 3.5.2, the first term can be bounded
by:

(1 +
β

2
)
∑

j∈N2,ŷ j=
1
2

d′j ps(j) j = (1 +
β

2
)
∑
j∈N2

2(1 − ŷ j)d′j ps(j) j ≤ (1 +
β

2
)
∑
j∈N2

2(1 − y′j)d
′
j ps(j) j

The last inequality follows from Lemma 3.4.3. �

Chapter 4

Computing the Total Cost of the Solution
and the Time Complexity of the Algorithm

In this chapter we analyze the total cost of the solution for the data storage placement problem
produced by our algorithm and compute its time complexity. We have proven some lemmas in
the previous chapters that will help us compute the total cost of the solution.

4.1 Analyzing the Total Cost of the Solution

In Section 3.3 we computed a solution (x′, y′), and for some of the sensor nodes j we produced
terminally modified assignments xi j. These assignments are part of the final solution, i.e. if
xi j = 1 then i is a storage node in the final solution and sensor node j is assigned to it. For
other sensor nodes j we produced non-terminally modified assignments. For such nodes the
final selection of storage nodes to which they will be assigned is made in Section 3.4 and 3.5.
To determine the total cost of the solution we need to compute the cost of the terminally and
non-terminally modified assignments. The cost of the terminally modified assignments is given
by Lemma 3.3.1:

∑
j∈N

∑
i:zl(i)≥1,i∈N′

((3 + 2β)pi j + 8(1 + β)C̄p
i)d jx′i j (4.1)

Computing the cost of the non-terminal assignments is more complicated. By Lemma 3.3.2
the cost of these assignments after step 2 is

∑
j∈N

∑
i:zl(i)<1

((2 + β)pi j + 4(1 + β)C̄p
j)d jx′i j (4.2)

34

4.1. Analyzing the Total Cost of the Solution 35

Steps 3 and 4 change the non-terminal assignments and by Lemma 3.5.3 they increase the cost
of these assignments by

2(1 +
β

2
)
∑
j∈N2

(1 − y′j)d
′
j ps(j) j = 2(1 +

β

2
)
∑

j∈N2,z j<1

(1 − y′j)d
′
j ps(j) j (as z j < 1 for all j ∈ N2)

≤ 2(1 +
β

2
)
∑
i∈N

∑
j∈N2,z j<1

(1 − y′j)dix′ji ps(j) j, by the definition of d′

= 2(1 +
β

2
)
∑
i∈N

[
∑

j∈N2,z j<1, j,l(i)

(1 − y′j)dix′ji ps(j) j +
∑

j∈N2,z j<1, j=l(i)

(1 − y′j)dix′ji ps(j) j]

(4.3)

We consider each one of the last two terms separately. First we consider the case j , l(i).
Because s(j) was defined as the node in N1 − { j} with minimum value ps(j) j, then ps(j) j ≤ pl(i) j.
Recall that M j = {i′|l(i′) = j}. Hence for each i′ ∈ M j:

ps(j) j ≤ pl(i) j ≤ c ji′ + ci′l(i) + βδl(i) ≤ 2ci′l(i) + βδl(i) ≤ 2pl(i)i′ (4.4)

The third inequality holds as i′ ∈ M j. Using the fact that ci′l(i) ≤ ci′i + cil(i), we get

pl(i)i′ = ci′l(i) + βδl(i)

≤ ci′i + cil(i) + βδl(i)

≤ ci′i + cil(i) + β(δi′ + cil(i) + ci′i) (by the triangle inequality)
≤ (1 + β)(pi′i + cil(i))

Thus, from inequality (4.4) we get

ps(j) j ≤ 2(1 + β)(pi′i + cil(i)) (4.5)

By Corollary 3.2.1 and Inequality (4.5) and since x′ji =
∑

i′,l(i′)= j x̄i′i, the first term of inequality
(4.3) can be bounded by

2(1 +
β

2
)
∑
i∈N

∑
j∈N2,z j<1, j,l(i)

(1 − y′j)dix′ji ps(j) j

≤ 2(1 +
β

2
)
∑
i∈N

∑
j∈N2,z j<1, j,l(i)

∑
i′∈N,l(i′)= j

(1 − y′j)di x̄i′i2(1 + β)(pi′i + 4C̄p
i) (4.6)

Since we assume j , l(i) and in the above summation j = l(i′) then l(i) , l(i′) for all i′.
Furthermore, by Lemma 3.4.1, y′j ≥

1
2 for all non-zero y′j, so 2(1 − y′j) ≤ 1. Thus the right hand

side of Inequality (4.6) is bounded by

(1 +
β

2
)
∑
i∈N

∑
i′∈N,zl(i′)<1,l(i′),l(i)

di x̄i′i(1 + β)(2pi′i + 8C̄p
i) (4.7)

We now consider the second term in the right hand side of (4.3), so let i, j ∈ N2 and j = l(i).
Since j ∈ N2 then y′j < 1. Hence, by the first and forth constraints of linear program

36Chapter 4. Computing the TotalCost of the Solution and the TimeComplexity of theAlgorithm

(3.1), there must be at least one node i′ < M j for which xi′ j > 0. Furthermore, C̄p
j =∑

h∈N ph j x̄h j =
∑

h∈M j
ph j x̄h j +

∑
h<M j

ph j x̄h j. Let i′ < M j be the node with minimum pi′ j

value, then
∑

h<M j
pi′ j x̄h j ≤

∑
h<M j

ph j x̄h j ≤ C̄p
j . By the first and fourth constraints of (3.1),∑

h<M j
x̄h j = 1 − y′j and therefore∑

h<M j

pi′ j x̄h j = pi′ j(1 − y′j) ≤ C̄p
j (4.8)

Note that since i′ < M j then l(i′) , j, and so l(i′) will be closer to i′ than j, so

cl(i′)i′ ≤ c ji′ . (4.9)

For each node j ∈ N2 we defined s(j) as the node in N1 − { j} for which ps(j) j is minimum, so

ps(j) j ≤ pl(i′) j (4.10)

By the triangle inequality, pl(i′) j = cl(i′) j + βδl(i′) ≤ (c ji′ + cl(i′)i′) + βδl(i′) ≤ (c ji′ + cl(i′)i′) + β(δi′ +

cl(i′)i′) ≤ 2c ji′ + β(δ j + c ji′). Therefore, ps(j) j ≤ pl(i′) j ≤ 2c ji′ + β(δi′ + c ji′) ≤ 2(1 + β)c ji′ + βδi′ ≤

2(1 +β)pi′ j. Since j = l(i) then in Step 1 of the algorithm (see Section 3.2), node j was indexed
before node i, so C̄p

j ≤ C̄p
i , and hence by Inequality (4.8):

(1 − y′j)ps(j) j ≤ 2(1 + β)(1 − y′j)pi′ j ≤ 2(1 + β)C̄p
j ≤ 2(1 + β)C̄p

i (4.11)

Finally, the second term in the right hand side of inequality (4.3) can be written as

2(1 +
β

2
)
∑
i∈N

∑
j∈N2,z j<1, j=l(i)

∑
i′:l(i′)= j

di x̄i′i(1 − y′j)ps(j) j ≤ (1 +
β

2
)
∑
i∈N

∑
i′∈N,zl(i′)<1,l(i′)=l(i)

4(1 + β)C̄p
i di x̄i′i

(4.12)

Adding (4.2) to the increase, (4.7) and (4.12), the total cost of the non-terminal assignments is
at most

(1 +
β

2
)
∑
j∈N

∑
i′∈N,zl(i′)<1

((4 + 3β)pi′ j + 12(1 + β)C̄p
j)d j x̄i′ j

Adding this to the total cost of the terminal assignments in (4.1) gives an upper bound on the
total cost of the solution:

(1 +
β

2
)
∑
j∈N

∑
i′∈N

((4 + 3β)pi′ j + 12(1 + β)C̄p
j)d j x̄i′ j

≤ (1 +
β

2
)
∑
j∈N

((4 + 3β)C̄p
j + 12(1 + β)C̄p

j)d j

≤ (1 +
β

2
)
∑

j

(16 + 15β)C̄p
j d j = (1 +

β

2
)(16 + 15β)C̄LP(x̄, ȳ) = (16 + 23β +

15
2
β2)C̄LP(x̄, ȳ)

where C̄LP(x̄, ȳ) is the value of the solution for linear program (3.1). Recall that C̄LP(x̄, ȳ) is
less than or equal to the optimum solution for the capacitated data storage placement problem.
Thus our algorithm has approximation ratio 16 + 23β + 15

2 β
2,

4.2. Time Complexity of Our Algorithm 37

4.2 Time Complexity of Our Algorithm
First we analyze the amount of time needed for solving the linear program (3.1). We solve
(3.1) by using Khachiyan’s ellipsoid algorithm [1], described below. Linear program (3.1) can
be written as follows:

LP: min
∑
i, j∈N

d j pi jxi j

s.t.
∑
i∈N

xi j = 1,∀ j ∈ N,∑
i∈N

yi − k = 0,

Myi −
∑
j∈N

d jxi j ≥ 0,∀i ∈ N

yi − xi j ≥ 0∀i, j ∈ N.
yi ≥ 0, xi j ≥ 0,∀i, j ∈ N, y0 = 1.

We let A be the constraint matrix for this linear program which then can be written as

min cT x
s.t. Ax ≥ b

where b is a vector containing the right hand side values of the constraints and c is the cost
vector. Since there are n nodes in N, the matrix A has η = n ∗ n columns as there is a variables
xi j for each i ∈ N and j ∈ N and it has 2n2 + n + 1 rows as that is the number of constraints.

We define L = n2 ∗ n2 +
∑

i, j∈N log(ci j) ≤ n4 + n2 log cmax = O(n4) where cmax is the largest
distance between a sensor node and a storage node; we assume that the distances ci j are poly-
nomial in the number of nodes, so log cmax is O(logn). L is an upper bound on the number of
bits needed to store matrix A and vector b, c. The Ellipsoid Algorithm is presented below, in
Algorithm 3.

Now we prove that the time needed by the ellipsoid algorithm to solve the above linear
program is O(n42 log2 n).

Lemma 4.2.1 The running time of the ellipsoid algorithm on linear programming LP is O(n42 log2 n)

Proof The number of iterations of Step 2 of the ellipsoid algorithm is B = η2L = O(n8).
Each iteration of the loop in step 2 needs to verify that (x, y)k is a feasible solution. This

requires O(n2) arithmetic operations as all constraints need to be tested. Further more, each
iteration of the loop in Step 2 performs O(n6) operations for the computations in Step 2.2
because the size of the matrix Ak is O(n2) × O(n2) and v is a vector of length n2; therefore, the
total number of the operations performed by the loop is O(n14). Each entry in A0 has O(log n)
bits and every distance ci j is encoded with O(log n) bits, therefore through all the iterations of
the loop the largest number of bits needed to encode any value is the total number of arithmetic
operations times the maximum number of bits which is at most O(n14)∗O(log n) = O(n14 log n).

Each iteration of the loop performs O(n6) operations on values encoded with O(n14 log n)
bits; the most expensive operations are multiplications and each one of them needs O(n28 log2 n)

38Chapter 4. Computing the TotalCost of the Solution and the TimeComplexity of theAlgorithm

Algorithm 3 Ellipsoid (A, b,C, n, L)
Input: Constraint matrix A, right hand side vector b, cost vector C for linear program LP,
number of nodes n and bound L for the number of bits needed to store A, b and c.
Output: An optimum solution for program LP, if one exists.
0. Let η be the number of columns of A.
1. Set the value of each entry in initial solution (x, y)0 to be 0 i.e. (x, y)0 = 0 and A0 = η2L2I,
where I is the identity matrix of size η ∗ η and (x, y)0 is an η − vector.
2. For all values k = 0, 1, . . . , η2L do:

(2.1) If (x, y)k is a feasible solution for LP, label k as a feasible index and set v = C. Else
let (x, y)k violate the i − th constraint of LP; set v to be the i − th row of A and label k as an
infeasible index.

(2.2) Compute

qk =
Akv√
vT Akv

(x, y)k+1 = (x, y)k −
qk

n + 1

Ak+1 =
n2

n2 − 1
(Ak −

2
n + 1

qkqT
k)

3. Output the solution (x, y)k for which CT (x, y)k = max {CT (x, y)i|i is a feasible index}.

time, so one iteration of the loop can be performed in O(n34 log2 n) time. Since the loop is
repeated O(n8) times, the total time is O(n42 log2 n). In step 1 of the Ellipsoid algorithm, the
time needed to build the matrix A0 is O(η) = O(n2) because we only deal with the diagonal
element of the matrix I. In step 3, we find out the maximum CT (x, y)k and that costs O(k) =

O(η2L) = O(n8) time. Overall, the total running time of the algorithm is O(n42 log2 n) �

We now analyze the running time of the remaining steps of our algorithm for the capacitated
data storage placement problem (CDSP).

In Step 1 described in Section 3.2, which identifies the core nodes, sorting the sensor nodes
in increasing order of C̄p

j value needs time O(n log n). Computing each value C̄p
j needs O(n)

time. To identify the nodes in N′ we need to consider one by one the nodes and for each one
of them we need to perform a linear search over the set N′ to find the node closest to it. Since
a linear search takes O(n) time and we need to perform them n times, the total running time of
Step 1 is O(n2).

In Step 2 described in Section 3.3, the nodes in each set Mi need to be sorted and that takes
O(|Mi| log |Mi|) time. Then the nodes in each set Mi are sequentially scanned and the values of
the variables x′, y′ are updated; this takes time O(|Mi|). Since the total number of nodes in all
the sets Mi is n, the total time needed by this step is O(n log n).

In Step 3 described in Section 3.4, we need to compute s(j) for each node j. This requires
O(n2) time. The nodes in N2 are then sorted and the values of the variables ŷi are computed;
this needs O(n log n) time. Thus Step 3 needs O(n2) time.

In Step 4 described in Section 3.5, we make a set of trees in O(n) time. The trees are
traversed and split into stars. This needs O(n) time. In each star the children of the root are
sorted and then the demands are modified. This requires O(n log n) time.

4.2. Time Complexity of Our Algorithm 39

Solving the linear program requires the largest amount of time, so the total time complexity
of the algorithm for the CDSP problem is O(n42 log2 n).

Chapter 5

Conclusions

The data storage placement problem models many applications in sensor networks e.g., mon-
itoring learning behavior of children, senior care systems and environment sensing. In sensor
networks the storage nodes are needed to reduce the amount of information that is sent to the
sink; sensors have limited storage space and battery life. In some applications, the data accu-
mulated on each storage node can be transported periodically to a data warehouse by robots
or vehicles using physical mobility such as Data Mule [48]. In early sensor networks, the
sink node periodically queries the sensor nodes for information by broadcasting query mes-
sages [27, 28, 42]. Sensors return data back to the sink upon receiving a query. Those systems
were not efficient as they do not take into account the amount of information that needs to be
sent to the sink and the limited storage capacity of the sensor nodes. We are the first to consider
the limited capacity of storage nodes in the data storage placement problem and we call this
the capacitated data storage placement problem.

In this thesis, we study the capacitated storage node placement problem in sensor network-
s. We have designed an approximation algorithm for the capacitated data storage placement
problem based on Guha’s algorithm for the capacitated k-median problem. The approximation
ratio of our algorithm is (16 + 23β + 15

2 β
2) where β measures the relative cost of sending in-

formation to the sink compared to the cost of sending information to the storage nodes. The
solution produced by our algorithm might surpass the capacities of the storage nodes by factor
of at most 3. The algorithm consists of 4 steps: Obtaining a solution for a linear programming
formulation of the problem; consolidating storage nodes identified by this solution; transform-
ing the solution to a

{
1
2 , 1
}
-integral solution; rounding the solution to an integral one. We also

analyzed a local search algorithm of Arya et al. [5] when applied to the uncapacitated data stor-
age placement problem and show that it has approximation ratio 5, improving on the algorithm
by Sheng et al. which has approximation ratio 10.

We note that Guha’s algorithm for the capacitated k-median problem is not applicable to
our problem because our cost function is not symmetric and it does not satisfy the triangle
inequality. Guha’s algorithm strongly relies on these properties.

One way in which we could try to improve the approximation ratio of our algorithm is
by using a primal-dual approach, as described in [12] or a combination of a greedy approach,
scaling, and a linear programming approach as used in [12]. One of the benefits of the primal-
dual method is that it leads to a very general methodology for the design of approximation
algorithms for NP-hard problems. It is one of the few existing general methods for designing

40

41

approximation algorithm [22].
There are some open problems we can consider in the future. It would be interesting to ex-

tend our algorithm to the hierarchical placement problem (HPP). The HPP requires distributing
caches amoung nodes in a hierarchical network [24]. For example, the small caches should be
placed close to the users while larger ones should reside the backbone of the network [16, 54].
This problem arises when trying to alleviate network congestion and accelerate access to users
information access and solving the problem could improve network performance [21]. Another
interesting problem is when there is an opening cost for each storage node. This problem is
related to the k-facility location problem.

Bibliography

[1] The ellipsoid algorithm for linear programming. https://www.cs.princeton.edu/
courses/archive/fall05/cos521/ellipsoid.pdf.

[2] Jon Agre and Loren Clare. An integrated architecture for cooperative sensing networks.
Computer, 33(5):106–108, 2000.

[3] Ian F Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci. Wireless
sensor networks: A survey. Computer Networks, 38(4):393–422, 2002.

[4] Matthew Andrews and Lisa Zhang. The access network design problem. In 39th Annual
Symposium on Foundations of Computer Science, 1998. Proceedings, pages 40–49. IEEE,
1998.

[5] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and
Vinayaka Pandit. Local search heuristics for k-median and facility location problems.
SIAM Journal on Computing, 33(3):544–562, 2004.

[6] Manish Bhardwaj, Timothy Garnett, and Anantha P Chandrakasan. Upper bounds on
the lifetime of sensor networks. In IEEE International Conference on Communications,
2001. ICC 2001, volume 3, pages 785–790. IEEE, 2001.

[7] Philippe Bonnet, Johannes Gehrke, and Praveen Seshadri. Querying the physical world.
Personal Communications, IEEE, 7(5):10–15, 2000.

[8] Stephen P Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan Balakrishnan. Lin-
ear Matrix Inequalities in System and Control Theory, volume 15. SIAM, 1994.

[9] Nirupama Bulusu, Deborah Estrin, Lewis Girod, and John Heidemann. Scalable coordi-
nation for wireless sensor networks: Self-configuring localization systems. In Interna-
tional Symposium on Communication Theory and Applications (ISCTA 2001), Ambleside,
UK, 2001.

[10] Alberto Cerpa and Deborah Estrin. Ascent: Adaptive self-configuring sensor networks
topologies. IEEE Transactions on Mobile Computing, 3(3):272–285, 2004.

[11] Anantha Chandrakasan, Rajeevain Amirtharajah, SeongHwan Cho, James Goodman,
Gangadhar Konduri, Joanna Kulik, Wendi Rabiner, and Alice Wang. Design consider-
ations for distributed micro-sensor systems. In Proceedings of the IEEE 1999 Custom
Integrated Circuits Conference, San Diego, CA, May 1999, pages 279–286. IEEE, 1999.

42

BIBLIOGRAPHY 43

[12] Moses Charikar and Sudipto Guha. Improved combinatorial algorithms for the facility
location and k-median problems. In 40th Annual Symposium on Foundations of Computer
Science, 1999, pages 378–388. IEEE, 1999.

[13] Moses Charikar, Sudipto Guha, Éva Tardos, and David B Shmoys. A constant-factor
approximation algorithm for the k-median problem. In Proceedings of the Thirty-first
Annual ACM Symposium on Theory of Computing, pages 1–10. ACM, 1999.

[14] Moses Charikar, Samir Khuller, David M Mount, and Giri Narasimhan. Algorithms for
facility location problems with outliers. In Proceedings of the Twelfth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 642–651. Society for Industrial and Applied
Mathematics, 2001.

[15] Moses Charikar, Liadan O’Callaghan, and Rina Panigrahy. Better streaming algorithms
for clustering problems. In Proceedings of the Thirty-fifth Annual ACM Symposium on
Theory of Computing, pages 30–39. ACM, 2003.

[16] Cho-Yu Chiang, Ming T Liu, and Mervin E Muller. Caching neighborhood protocol: A
foundation for building dynamic web caching hierarchies with proxy servers. In 1999 In-
ternational Conference on Parallel Processing, 1999. Proceedings, pages 516–523. IEEE,
1999.

[17] SeongHwan Cho and Anantha P Chandrakasan. Energy efficient protocols for low duty
cycle wireless microsensor networks. In 2001 IEEE International Conference on Acous-
tics, Speech, and Signal Processing, 2001. Proceedings.(ICASSP’01), volume 4, pages
2041–2044. IEEE, 2001.

[18] Fabián A Chudak. Improved Approximation Algorithms for Uncapacitated Facility Lo-
cation. Springer, 1998.

[19] Fabián A Chudak and David B Shmoys. Improved approximation algorithms for the
uncapacitated facility location problem. SIAM Journal on Computing, 33(1):1–25, 2003.

[20] Gerard Cornuejols, George L Nemhauser, and Lairemce A Wolsey. The uncapacitated
facility location problem. Technical report, DTIC Document, 1983.

[21] Amitabha Das, Hung Keng Pung, Francis Bu Sung Lee, and Lawrence Wong Wai
Choong. NETWORKING 2008 Ad Hoc and Sensor Networks, Wireless Networks, Nex-
t Generation Internet: 7th International IFIP-TC6 Networking Conference Singapore,
May 5-9, 2008, Proceedings, volume 4982. Springer, 2008.

[22] Michel X Goemans and David P Williamson. The primal-dual method for approximation
algorithms and its application to network design problems. Approximation Algorithms
for NP-hard Problems, pages 144–191, 1997.

[23] Sudipto Guha and Samir Khuller. Greedy strikes back: Improved facility location algo-
rithms. Journal of Algorithms, 31(1):228–248, 1999.

44 BIBLIOGRAPHY

[24] Sudipto Guha, Adam Meyerson, and Kamesh Munagala. Hierarchical placement and net-
work design problems. In 41st Annual Symposium on Foundations of Computer Science,
2000. Proceedings, pages 603–612. IEEE, 2000.

[25] Sudipto Guha, Adam Meyerson, and Kamesh Munagala. Improved combinatorial al-
gorithms for single sink edge installation problems. Technical report, Technical Report
STAN-CS-TN00-96, Stanford University, 2000.

[26] Wendi Rabiner Heinzelman, Joanna Kulik, and Hari Balakrishnan. Adaptive protocols for
information dissemination in wireless sensor networks. In Proceedings of the 5th Annual
ACM/IEEE International Conference on Mobile Computing and Networking, pages 174–
185. ACM, 1999.

[27] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Directed diffusion:
A scalable and robust communication paradigm for sensor networks. In Proceedings of
the 6th Annual International Conference on Mobile Computing and Networking, pages
56–67. ACM, 2000.

[28] Chalermek Intanagonwiwat, Ramesh Govindan, Deborah Estrin, John Heidemann, and
Fabio Silva. Directed diffusion for wireless sensor networking. IEEE/ACM Transactions
on Networking, 11(1):2–16, 2003.

[29] Chaiporn Jaikaeo, Chavalit Srisathapornphat, and Chien-Chung Shen. Diagnosis of sen-
sor networks. In IEEE International Conference on Communications, 2001. ICC 2001,
volume 5, pages 1627–1632. IEEE, 2001.

[30] Kamal Jain, Mohammad Mahdian, Evangelos Markakis, Amin Saberi, and Vijay V Vazi-
rani. Greedy facility location algorithms analyzed using dual fitting with factor-revealing
lp. Journal of the ACM (JACM), 50(6):795–824, 2003.

[31] Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for facility
location problems. In Proceedings of the Thiry-fourth Annual ACM Symposium on Theory
of Computing, pages 731–740. ACM, 2002.

[32] Kamal Jain and Vijay V Vazirani. Primal-dual approximation algorithms for metric fa-
cility location and k-median problems. In 40th Annual Symposium on Foundations of
Computer Science, 1999, pages 2–13. IEEE, 1999.

[33] Kamal Jain and Vijay V Vazirani. Approximation algorithms for metric facility location
and k-median problems using the primal-dual schema and lagrangian relaxation. Journal
of the ACM (JACM), 48(2):274–296, 2001.

[34] Sugih Jamin, Cheng Jin, Yixin Jin, Danny Raz, Yuval Shavitt, and Lixia Zhang. On
the placement of internet instrumentation. In INFOCOM 2000. Nineteenth Annual Joint
Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE,
volume 1, pages 295–304. IEEE, 2000.

BIBLIOGRAPHY 45

[35] Joseph M Kahn, Randy H Katz, and Kristofer SJ Pister. Next century challenges: Mobile
networking for smart dust. In Proceedings of the 5th Annual ACM/IEEE International
Conference on Mobile Computing and Networking, pages 271–278. ACM, 1999.

[36] Oded Kariv and S Louis Hakimi. An algorithmic approach to network location problems.
ii: The p-medians. SIAM Journal on Applied Mathematics, 37(3):539–560, 1979.

[37] Mohamed A Khamsi and William A Kirk. An Introduction to Metric Spaces and Fixed
Point Theory, volume 53. John Wiley & Sons, 2011.

[38] Madhukar R Korupolu, C Greg Plaxton, and Rajmohan Rajaraman. Analysis of a local
search heuristic for facility location problems. Journal of Algorithms, 37(1):146–188,
2000.

[39] Alfred A Kuehn and Michael J Hamburger. A heuristic program for locating warehouses.
Management Science, 9(4):643–666, 1963.

[40] Bo Li, Mordecai J Golin, Giuseppe F Italiano, Xin Deng, and Kazem Sohraby. On the
optimal placement of web proxies in the internet. In INFOCOM’99. Eighteenth Annual
Joint Conference of the IEEE Computer and Communications Societies. Proceedings.
IEEE, volume 3, pages 1282–1290. IEEE, 1999.

[41] Jyh-Han Lin and Jeffrey Scott Vitter. Approximation algorithms for geometric median
problems. Information Processing Letters, 44(5):245–249, 1992.

[42] Samuel Madden, Michael J Franklin, Joseph M Hellerstein, and Wei Hong. Tag: A
tiny aggregation service for ad-hoc sensor networks. ACM SIGOPS Operating Systems
Review, 36(SI):131–146, 2002.

[43] Olvi L Mangasarian. Mathematical programming in data mining. Data Mining and
Knowledge Discovery, 1(2):183–201, 1997.

[44] Norbert Noury, Thierry Hervé, Vicent Rialle, Gilles Virone, Eric Mercier, Gilles Morey,
Aldo Moro, and Thierry Porcheron. Monitoring behavior in home using a smart fall sen-
sor and position sensors. In Conference on Microtechnologies in Medicine and Biology,
1st Annual International. 2000, pages 607–610. IEEE, 2000.

[45] Emile M Petriu, Nicolas D Georganas, Dorina C Petriu, Dimitrios Makrakis, and Voicu Z
Groza. Sensor-based information appliances. Instrumentation&Measurement Magazine,
IEEE, 3(4):31–35, 2000.

[46] Lili Qiu, Venkata N Padmanabhan, and Geoffrey M Voelker. On the placement of web
server replicas. In INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE, volume 3, pages 1587–
1596. IEEE, 2001.

[47] Jan M Rabaey, M Josie Ammer, Julio L da Silva Jr, Danny Patel, and Shad Roundy.
Picoradio supports ad hoc ultra-low power wireless networking. Computer, 33(7):42–48,
2000.

46 BIBLIOGRAPHY

[48] Rahul C Shah, Sumit Roy, Sushant Jain, and Waylon Brunette. Data mules: Modeling
and analysis of a three-tier architecture for sparse sensor networks. Ad Hoc Networks,
1(2):215–233, 2003.

[49] Bo Sheng, Qun Li, and Weizhen Mao. Data storage placement in sensor networks. In
Proceedings of the 7th ACM International Symposium on Mobile Ad Hoc Networking and
Computing, pages 344–355. ACM, 2006.

[50] David B Shmoys, Éva Tardos, and Karen Aardal. Approximation algorithms for facil-
ity location problems. In Proceedings of the Twenty-ninth Annual ACM Symposium on
Theory of Computing, pages 265–274. ACM, 1997.

[51] Sasha Slijepcevic and Miodrag Potkonjak. Power efficient organization of wireless sen-
sor networks. In IEEE International Conference on Communications, 2001. ICC 2001,
volume 2, pages 472–476. IEEE, 2001.

[52] Mikkel Thorup. Quick k-median, k-center, and facility location for sparse graphs. SIAM
Journal on Computing, 34(2):405–432, 2005.

[53] Brett Warneke, Matt Last, Brian Liebowitz, and Kristofer SJ Pister. Smart dust: Commu-
nicating with a cubic-millimeter computer. Computer, 34(1):44–51, 2001.

[54] Duane Wessels. Configuring hierarchical squid caches. National Laboratory for Ad-
vanced Network Research, 1997.

[55] Herbert S Wilf. Algorithms and Complexity, volume 986.

	Solving Capacitated Data Storage Placement Problems in Sensor Networks
	Recommended Citation

