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Abstract 

For conventional buildings, the proper estimation of wind-induced pressures on the 

external façade, the roof surface, or the net pressures across elements like a canopy or parapet, 

which are exposed to wind on both sides, can be easily done using conventional wind tunnel 

tests. But in the case of air-permeable multi-layer systems, which have gaps or porosity in the 

external layer along with a cavity between the external and inner layers, the estimation of wind 

loading across the external layer or in the inner cavity by wind tunnel tests can be quite difficult 

due to practical difficulties in exactly simulating the dimensions of the gaps in the physical 

model with small model scales or other practical issues related to the tubing of the pressure 

sensors.  

Pressure equalization plays a major role on the wind loading on individual members of 

multi-layer systems and in this study, an analytical model to estimate the time- varying cavity 

pressure distributions in a double-layer system with an air-permeable outer layer was 

developed, given the external pressure on the outer surface. The pressure drop associated with 

the flow through the gaps in the external layer was modeled using orifice flow equation and 

mass conservation equation (Oh. J.H. & Kopp, G.A., 2014). The model accounts the geometric 

parameters like the cavity depth (H) which is the distance between the outer layer and the inner 

non-porous layer along with loss coefficient for the orifice flow through the gaps in the external 

layer. Moreover, the pressure drop due to flow through the gaps (G) in the external layer are 

accounted based on a lumped-leakage approach. The results from the analytical model are 

compared with wind-induced loads obtained from the wind tunnel test of roof-mounted 

photovoltaic solar array system with high G/H ratio obtained from Stenabaugh (2015).  
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Nomenclature 

The nomenclature used throughout the thesis is listed below. 

𝑘     = the discharge coefficient  

�̇�   = the temporal-derivative of the velocity through the area of the opening 

𝑉ℎ
̅̅ ̅  = the mean velocity at roof height 

𝐴   = the tributary area 

𝐴𝑜  = the area of openings 

 𝐶𝐿  = orifice loss coefficient 

𝐶𝑝𝑒(𝑡)  = instantaneous external pressure coefficient  

𝐶𝑝𝑖(𝑡)  = instantaneous cavity pressure coefficient  

𝐺    = the gap between the modules or panels  

𝐻   = the depth of the cavity 

𝐾𝐿   = effective steady state loss coefficient 

𝑃𝐴𝐸    = area-averaged pressure 

𝑃𝑒(𝑡)  = instantaneous external pressure time series  

𝑃𝑖(𝑡)  = instantaneous cavity pressure time series 

𝑃𝑜  = the static pressure 

𝑎𝑖  = weighted area for the area-averaged pressure 

𝑓𝑏  = the body force 

𝑓𝑖  = the pipe-friction factor 

𝑙𝑒  = effective length of the fluid passing through the orifice 

𝑙𝑜  = the thickness of the external layer 

𝑝   = pressure 

 𝑢𝑗   = the velocity component along  𝑗 direction 

𝑢𝑘  = the velocity component along  𝑘 direction 



 

xv 

 

∆𝑃  = the differential pressure  

𝜇  = the viscosity of the fluid 

𝜌  = density of the fluid (air) 
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Chapter 1  

1 Introduction 

  Nowadays, the design community is coming up with wide variety of designs for 

tall buildings and civil structures, which add value to not only the aesthetic looks but also 

to the overall performance of the buildings in terms of energy consumption and design 

wind loading. This urge to come up with creative designs has led to the introduction of 

unique elements in the outer layer, or façade, of buildings and roofs. Some of the new 

approaches in design are shown in Figure 1.1, which include intelligent facades that react 

to the outdoor temperature and light and change properties with respect to the outdoor 

conditions. There are also solar façades, which function as exterior façades as well as 

generating electricity, double skin facades and porous façades for better aesthetics and 

performance in energy consumption. But the most important point to be noted here is that 

the wind-loading mechanism for these new elements are different from those on 

conventional glass facades, for many reasons. One of the most important discrepancies 

between these new type of designs and the conventional ones is the presence of a cavity 

between the outer layer and the inner layer, along with the permeability of the outer layer. 

A schematic diagram showing the wind loading mechanism on a double-layer façade 

system is shown in Figure 1.2. The figure indicates that the outer surface of the external 

layer is exposed to wind, which causes a time-varying surface pressure distribution. At the 

gaps, the external pressures are (partially) transmitted through the opening, such that there 

is airflow in the cavity, causing a time-varying pressure distribution on the interior surfaces. 

For many cladding systems, such as rain screen walls, the design intent is to have as little 

load as possible on the external layer, Depending on the geometry of the openings and 

cladding system, the cavity pressure can become relatively close to the external pressure, 

which leads to low net wind loads. This process is called pressure equalization (or, 

sometimes, pressure moderation).   
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1.1 Background 

In conventional buildings, a proper understanding of wind-induced pressures on the 

outer layer of the building is enough for the design of the façade elements. But in buildings 

with double skin façades or multi-layer systems, as shown in Figure 1.1, the outer layer 

can be porous or have gaps between the layers such that the wind-induced external 

pressures can be transferred to the cavity between the layers. So, for the design of these 

systems, it is important to know the mechanisms of overall net wind loading on the external 

layer, as well as the cavity pressure. The mechanism of transfer of external pressure to the 

cavity, and, thereby, equalizing the external and cavity pressure, is known as pressure 

equalization. Significant pressure equalization occurs when the external or outer flow 

pressure is transmitted to the underside of a layer through the openings. Normally the term 

pressure equalization is used in the case of cladding components with openings, as it 

denotes a tendency to decrease the net wind load, which is the overall effect of external 

and cavity pressures. 
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(a) 

 

(b) 

   

(c) 

Figure 1-1: Different types of façade systems: (a) Solar Facade (b) Double-Skin 

Façade (c) Two high-rise buildings with porous façades. 
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Figure 1-2: Schematic representation of wind loading mechanism on a double-skin, 

air-permeable façade system. 

Some practical examples in which the mechanism of pressure equalization occurs are solar 

panel array systems in roof and loose-laid roof pavers, shown in Figure 1.3, along with the 

systems shown in Figure 1.1. In all these systems, there is an external layer with openings 

and an internal layer separated by a cavity. Hence, the external layer gets pressurized from 

both sides and pressure equalization plays a major role in these systems. In the following 

sections, the literature regarding wind loads on such systems is examined, with a summary 

of all relevant papers provided in Appendix A in tabular form. 
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(a)                                                                (b) 

Figure 1-3: Example of double-layer systems (a) Solar panel array on a sloped roof 

(b) Loose-laid roof pavers   

1.2 Analytical models in literature 

The initial attempts to develop an analytical model for pressure equalization were 

by Killip and Cheetham, (1984); Fazio and Kontopidis, (1988); Baskaran and Brown, 

(1992); Xie et al, (1992) which used the discharge equation for flow through openings with 

the assumption of incompressible flow. Burgess (1995) and Van Schijndel and Schols 

(1998) developed analytical models using the discharge equation for flow through openings 

and the ideal gas law.  

Inculet and Davenport (1994), Choi and Wang (1998), and Kumar and Van 

Schijndel (1999) introduced unsteadiness by using the unsteady discharge equation, i.e., 

the Helmholtz resonator model of Holmes, (1979) and Vickery, (1986), and the predicted 

net pressures on the outer layer. These models were observed to match the experimental 

data well. However, the models were limited to the particular condition of spatially uniform 

external pressure, i.e., a single external pressure. To model cavity pressures that are 

spatially varying because of longitudinal flow in the cavity, Amano et al. (1988), Trung et 

al. (2010) and Lou et al. (2012) also used Helmholtz resonator model from Holmes, (1979) 

and Vickery, (1986). 

    The discharge equation has been widely employed in wind engineering to model 

the flow through an opening by Holmes (1979), Vickery (1986), Sharma and Richards 

(1997), Oh et al. (2007), Kopp et al. (2008) and Ginger et al. (2010). However, it may not 

be sufficient to describe fluid motion in the cavity because there should be significant 
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viscous effects involved in the cavity flow, in particular, in the case of a cavity, which is 

thin and long. Sun and Bienkiewicz (1993) developed an analytical model to estimate the 

pressure distributions in the cavity underneath loose-laid roof pavers with the assumption 

of steady flows in gap and cavity and, hence, Darcy’s law was used to model the mean 

flow. But this model is applicable only for flow at low Reynolds Number. 

For conventional buildings, the proper estimation of wind-induced pressures on the 

external façade or net pressures across elements like canopies or parapets, which are 

exposed to wind on both sides can be easily done using conventional wind tunnel test. But 

in the case of multi-layer systems having gaps/porosity in the external layer and a cavity 

between external and inner layer, the estimation of wind loading across the external layer 

or in the inner layer can be quite difficult for many practical reasons. Mainly, conventional 

wind tunnel tests are conducted at a range of model scales from 1:200 to 1:400 and in that 

range of model scales, it is practically impossible to model the gap between the outer and 

inner layers as they will be very small in magnitude. As well, the wind tunnel tests model, 

the volume of the cavity can be different from the real case due to the PVC tubes that are 

used to connect the pressure sensors with the scanner, which can create significant 

blockage and resistance to the flow in the cavity, changing the flow characteristics and 

pressure distribution.  

So, the prediction of cavity pressures by analytical models is a worthwhile endeavor 

and there has been significant previous research that deals with the mechanisms of pressure 

equalization and estimation of wind-induced pressures on roof mounted solar panel 

systems or other such multi-layer systems.  

But the problem has not been completely resolved and there is still a lack of 

accurate models for the estimation of cavity pressure in multi-layer systems. Even the 

current codes/standards don’t provide guidance for the design of multi-layer systems, apart 

from ASCE 7-10 which suggest a reduction factor for the design of porous cladding only 

if the test data or literature approve lower loads. Some of the findings from the studies 

mentioned earlier have begun to appear in NEN 7250 (2013) and SEAOC PV2-2012 

(2012). Many of the analytical models that are developed in the past were focused on 
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modeling and estimating the cavity pressure within the compartment, whereas there has 

been less attention towards the variation of cavity pressures, spatially and temporally. It is 

important to know the influence of porosity of the external layer on the cavity pressure for 

suggesting realistic design loads. With this vision, a new approach has been used to 

estimate the cavity pressures in air-permeable, multi-layered systems and the results are 

validated with experimental results from Stenabaugh (2015).  

1.3 Previous studies on loose-laid pavers 

Some of the most important research related to the mechanisms of pressure 

equalization were carried out for loose-laid paver systems on flat roofs, which analyzed the 

effect of gaps between the modules as well as the impact of cavity depth. Kind and 

Wardlaw (1982) conducted failure model studies on loose-laid roof pavers to understand 

the lifting and overturning of roof-mounted pavers. The results showed that the net wind 

loading on the outer layer of the roof system (i.e., the pavers) was much lower than the 

pressure values on a normal roof due to pressure equalization between the upper and lower 

surface of the roof pavers. In other words, introducing gaps in between the roof pavers can 

reduce the chances of failure or blow-off of roof pavers. Based on the results from the 

failure model tests, a correlation model was developed by Kind et al. (1988) for predicting 

the wind speeds causing failure of roof pavers. Okada and Okabe (1991) analyzed the effect 

of height of cavity beneath the roof pavers by conducting failure tests at different heights 

and found that too much height can have a reverse impact on pressure equalization and can 

lead to failure of roof pavers.  

Bienkiewicz and Sun (1992, 1997) experimentally studied the pressures, especially 

the cavity pressures beneath the scaled paver systems on the flat roof of a low-rise building 

for a cornering wind direction, and found that even a small cavity beneath the panels can 

significantly reduce the peak and mean cavity pressures and that the cavity pressures can 

be more of uniform for relatively larger cavity depths. The change in net loading due to the 

introduction of flow resistance in the cavity were also analyzed. These authors concluded 

that both the paver size and aspect ratio play a major role in the wind resistance of the roof 

pavers systems.  



8 

 

Sun and Bienkiewicz (1993) developed an analytical model to estimate the pressure 

distributions in the cavities below the loose-laid roof pavers. The model was developed 

based on the assumption that the flow through the gaps as well as the cavities are steady 

flow and, hence, Darcy’s law was used to model the mean flow. However, the model can 

be used only for small crack-like openings where the Reynold’s number of the flow is very 

small.  

Holmes (2007) also did similar studies for cornering winds and investigated the 

mechanism behind loading on roof pavers due to flow separation and re-attachment caused 

due to the rotation of vortices, when the wind is along the corner of the roof. Bienkiewicz 

and Endo (2009) did similar studies as Bienkiewicz and Sun (1992, 1997) by accounting 

for the effects of gaps on the overall loading on roof paver systems. The results showed 

that overall loading on the pavers depend on the permeability of the outer layers and the 

flow resistance in the cavity and that the wind uplift can be significantly reduced by 

increasing the gaps (permeability) in the outer layers. The reduction in the uplift of the 

pavers for different values of the permeability of outer layers was also quantified. The 

effect of ratio of gap (G) between the outer layer and the inner layer and the depth of the 

cavity (H) was examined in large-scale tests conducted at Wall of Wind by Asghari 

Mooneghi et al. (2014) and concluded that increasing the G/H ratio can lead to reduced net 

loading on these systems.  

1.4 Previous studies on roof-mounted solar panels 

Pressure equalization plays a vital role in the wind design of roof-mounted solar 

panel array systems. The pressure in the cavity between the solar panel module and the 

roof had to be approximately equivalent to the pressure on the external or upper surface of 

the panel to achieve appropriate pressure equalization and thereby reducing the net loads 

on the solar panel modules. Proper understanding about the wind loading mechanism on 

the solar panels modules are extremely important as it may affect the overall cost and also 

the lifespan of the solar panel array systems.  

There have been many studies which examined the various factors which affect the 

wind loading and also the mechanism of pressure equalization on the solar panel arrays  
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(Pratt and Kopp, 2013; Kopp et al., 2012; Kopp and Banks, 2013; Geurts and van Bentum 

2006, 2007; Banks, 2013; Banks et al., 2000; Cao et al., 2013). Pratt and Kopp (2013) have 

shown that building size plays a significant role in the wind loads on tilted solar panel 

arrays mounted on building roofs, as the size of the vortices generated on the roof are 

controlled by the building size. This was reconfirmed by Kopp et al. (2012) and Banks 

(2013) who showed that this was due to the formation of corner vortices since the corner 

vortices are strengthened by vortex stretching and continuous separation along the building 

walls.  Kopp et al. (2012) also confirmed that the forces acting on the solar panel array 

mounted on a building roof can be complex since the wind field is influenced not only by 

the natural turbulence of the wind but also from vortices and separation along building 

edges. The strength of the vortex created directly controls the magnitude of suctions on the 

roof (Kind, 1986). Banks et al. (2000) found that the position of largest peak suctions on 

the roof was between the vortex core and the reattachment line on the roof. Kopp (2013) 

found out that the estimation of aerodynamic forces, especially the uplift, is pivotal for the 

design of tilted solar panel arrays installed on flat roofs of low-rise buildings since they 

control the required counter force to resist the uplift of panels. Banks (2013) showed 

through his research that the wind loads are sensitive to the direction of panel tilt and swirl 

direction of the corner vortex for solar panel installations on building roof and hence using 

the existing literature for the design of panel arrays installed on building roof has to be 

done with extreme caution especially when the panel array rows are not aligned with 

building edges. In addition to the above results, Browne et al. (2013) also reviewed the 

impact of parapets on wind loading on solar panel arrays on building roofs and found that 

the corner vortices can increase the loads when there are parapets around the panel arrays.  

The role of array geometry on wind loads was studied by Kopp et al. (2012) and 

they found that loading mechanisms on solar panel arrays were different depending on the 

tilt angle of the modules and also showed that larger modules were associated with an 

increase in the wind loads for the higher tilt models whereas the module dimensions had 

much less impact on the lower tilt systems. The study also showed that wind loads on low-

tilt arrays were governed by pressure equalization across the modules from the building 

generated (roof) pressures, whereas the higher tilt arrays were significantly influenced by 

array-generated flow, which can increase the loads due to weakened pressure equalization. 
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Kopp (2013) found that both the row spacing and the minimum height above the roof 

surface (when kept below a particular height) had limited impact on the net wind loads. 

The applicability of roof zones in current design standards were studied by Banks 

(2013) and Kopp (2013). Since it is obvious that the wind loading on panel arrays is 

different than that on bare roof loads, there have been some recent studies that focused on 

the applicability of current design codes/standards for designing solar panel arrays on the 

roof, especially the applicability of roof zones in these systems. In addition to this, Kopp 

(2013) reported that edge roof zones for solar panel designs should be larger, i.e., about 

50-60% of H for lower tilt angles and 80% of H for higher tilt angles, which will account 

for the different locations of peak uplift in the panel arrays.  The fact that the aerodynamics 

of solar panel systems are different from conventional flat roofs was further confirmed by 

Pratt and Kopp (2013) by simultaneous pressure measurements and particle image 

velocimetry (PIV) which measured the flow field in an experiment and the results showed 

that the largest uplift on solar panels are caused by the vertical velocity component in the 

vortex which was created due to the separation of flow at the building edge.  

Ginger et al. (2011), Stenabaugh et al. (2010, 2011) and Geurts and Blackmore 

(2013) studied the wind loading and pressure equalization on solar modules mounted 

parallel to roofs. Ginger et al. (2011) studied the wind loads on solar panel arrays on gable 

roofs with different slopes from 7.5 degrees to 22.5 degrees and developed design 

guidelines. The position of arrays on gable roofs was changed for each configuration and 

that effect was also analyzed. The results showed that H did not have a significant impact 

over the results. However, it is critical to note that the arrays were modeled with no gaps 

between the panels and hence the whole array was considered as a single large panel. A 

similar study was done by Stenabaugh et al. (2010, 2011) in which a single solid panel was 

used to represent the whole panel array and the results indicated that the net loads were 

close to the external pressure coefficients on bare roof. The impact of changing the position 

of the panels were also studied and found that when the panel arrays are located at the 

ridge, the uplift forces could be increased due to the positive pressure acting on the 

underside of the panels located near the ridge. Aly and Bitsuamlak (2014) also reported 
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similar results from the studies conducted on solar panel modules mounted parallel to a 

sloped gable roof system.  

Another study conducted on solar panel arrays modeled as a single unit was done 

by Geurts and Blackmore (2013) in which both full-scale and model scale tests were 

conducted on a hip roof. Eventhough this study considered a single module with no gaps 

like Stenabaugh et al. (2010, 2011) and Ginger et al. (2011), the module was considerably 

smaller. The results showed that the external peak pressures on the upper side of the panel 

are higher for large H, whereas on the underside of the panel, peak positive pressures were 

found to be increasing with increase in H and peak suctions were smaller. The results 

confirmed that there was significant correlation between external and cavity pressures but 

the intensity of pressure equalization was different from Stenabaugh et al. (2010, 2011) 

and Ginger et al. (2011), as the modules used in their studies were much larger in size. 

Stenabaugh et al. (2015) studied the effect of G and H on the wind loading on photovoltaic 

panel arrays and found that larger G along with smaller H will yield low net loads on panels 

and a pressure equalization factor was also evaluated using the peak minima as a function 

of tributary areas of panels.    

1.5 Previous studies on porous and rainscreen systems 

Some of the most notable studies on wind loading on porous cladding systems were 

by Gerhardt and Kramer (1983), Cheung and Melbourne (1988), Gerhardt and Janser 

(1994), Richardson and Richards (1995), Lee and Kim (1998), Richardson and Richards 

(1999), Briassoulis et al. (2010) and Cope et al. (2013). 

One of the most important early experimental investigations on the wind loading 

on porous cladding systems was carried out by Gerhardt and Kramer (1983), whose results 

showed that increasing the permeability of cladding systems or increasing the resistance of 

cavity flow can decrease the net wind pressures across the porous layer. Cheung and 

Melbourne (1988) studied the effects of porosity and internal volume on the mean, standard 

deviation and peak pressures on a porous surface and reduction factors were suggested so 

that design wind loads on porous cladding can be estimated from external pressure 

coefficients in codes.  
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Gerhardt and Janser (1994) extended their previous work and studied the impact of 

parameters like relative building dimensions, porosity and gap width and the results were 

validated, to some extent, with full-scale measurements. The results showed that the 

internal pressure in the gap followed the external pressure qualitatively for small gaps, but 

was almost independent of building “height” or “dimensions” for large gap widths. The net 

wind pressure coefficient across the outer permeable skin was highest when the gap was 

large and increased permeability of the outer layer reduced the net wind pressure 

coefficient and moreover edge sealing, i.e., the vertical edges of the buildings are closed, 

which prevents the wind to flow from one façade to another, helps to reduce the net wind 

load across the permeable outer layer.  

Richardson and Richards (1995) conducted full-scale measurements of porous 

wind break and the response of porous structures at different frequencies were analyzed. 

The study was further extended by Richardson and Richards (1999) to understand the 

relation between porosity and loss coefficient and their impact on wind loading and found 

that for round wire mesh screens, the loss coefficient is related to the porosity and for other 

structures the loss coefficient depends on the porosity and the construction. The shelter 

effect of a porous wind fence on a triangular prism was experimentally simulated in a 

circulating water channel by Lee and Kim (1998) and results showed that the fence 

decreases the turbulent intensity and turbulent kinetic energy around the prism, especially 

at the top of prism model, turbulent kinetic energy is about half of that without the fence. 

Lee and Park (1998) extended their previous research and found that a porous fence with 

porosity of 40-50% is most effective for the reduction of pressure fluctuations on the model 

surface and the mean pressure coefficients decreased when the fence height is greater than 

the model height. 

Some of the most important research about the design wind loading and the pressure 

equalization mechanism in rainscreen systems were conducted by  Killip and Cheetham 

(1984); Pazio and Kontopidis (1988); Baskaran and Brown (1992); Inculet and Davenport 

(1994); Burgees (1995); Kumar and van Schijndel (1999); Kumar and Wisse (2001); 

Kumar et al. (2003). Killip et al. (1984) studied the mechanism of rain penetration through 

walls and joints and a theory about the functioning of the pressure equalizing rain-screen 
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wall was suggested, which recommended the methods to improve the effectiveness of 

pressure equalization in the cavities of rainscreen systems. Pazio and Kontopidis (1988) 

investigated the correlation among cavity pressure, wind pressure and openings and the 

results showed that the cavity pressure is equal to the average of wind pressure around the 

building where the outer layer has only cracks and no vent hole and the cavity pressure is 

not equal to average for uniformly distributed openings on outer layer. Baskaran and 

Brown (1992) developed an analytical model to simulate Pressure Equalized Rainscreen 

(PER) wall performance and also conducted full-scale field measurements as well as 

laboratory tests to compare the results, which showed that venting area of at least 1% of 

the wall area is necessary for pressure equalization in cavities. The results from Baskaran 

and Brown (1992) were also compared with the numerical model created using 

Computational Fluid Dynamics (CFD) by Baskaran (1994).  

Inculet and Davenport (1994) analyzed the impact of venting area, air barrier 

leakage, cavity volume and compartment size in pressure equalization of rainscreen walls 

and concluded that an increase in venting area for constant volume or a decrease in volume 

for constant venting area results in both a higher natural frequency and a higher critical 

damping frequency. Burgees (1995) studied the effect of geometric alterations i.e. joint 

opening area and joint cavity volume in pressure equalization and suggested that 100% air 

pressure equalization can be achieved purely through geometric alteration of the 

dimensions of pressure equalized, rainscreened joints. Kumar and van Schijndel (1999) 

developed two theoretical models, one based on mass balance and the other based on 

Helmholtz resonant theory to understand the influence of various design parameters on 

pressure equalization and the results showed that the model based on mass balance was 

sufficiently accurate to predict the pressure equalization and the results were also compared 

with the full scale data. Kumar and Wisse (2001) did frequency domain analysis to 

understand the technicalities of the pressure equalization in rainscreen facades and the 

results were matching with the previous studies. Kumar et al. (2003) did full-scale 

measurements on rainscreen walls and the results were used to highlight the shortfalls of 

codes/standards in addressing the loads for rainscreen facades. Previous studies on areas 

related to pressure equalization and their relevant theoretical and experimental studies have 

been summarized in Appendix A along with their contributions. 
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1.6 Objective of the thesis 

Air-permeable multi-layer systems are becoming more popular as an integral part 

of buildings. These systems can be in the form of solar panel arrays on the roof of the 

building, double-skin facades or as loose-laid roof paver systems. In all these systems, 

which have an air-permeable external layer along with a cavity between the external and 

internal layer, the determination of wind loads on the inner cavity or across the external 

layer, by experimental method like wind tunnel test, is not possible due to practical reasons. 

From the literature survey explained above, it is clear that there has been a lot of studies 

which focused on the effect of opening size and the impact of cavity depth and other factors 

which controls the pressure equalization in these systems. But an accurate, practical, 

analytical model which can address the issues completely is still lacking.  

The objective of this study is to do a proof-of-concept work to make sure that the 

lumped-leakage approach can be used to estimate the time-varying cavity pressure distributions 

in a double-layer system with an air-permeable outer layer, given the external pressure on the 

outer surface. As a part of this work, a framework for an analytical model that can estimate the 

cavity pressure will be suggested. The model uses orifice discharge equation and 

conservation of mass equation as governing equations and the results from the analytical 

model are compared with wind tunnel results of a solar panel array study obtained from 

Stenabaugh (2015). 
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Chapter 2  

2 Analytical modeling for the estimation of cavity pressure 

2.1 Introduction 

In this chapter, an analytical model for the estimation of cavity pressure in an air-

permeable double-layer system is modelled. The governing equations of the analytical 

model were derived from the general equation for orifice flow. The model uses the time 

histories obtained from the pressure taps located on the external surface of the system as 

input, along with the geometric parameters of the multi-layer cavity system, to estimate 

time histories of cavity pressures. 

2.2 Mathematical Formulation 

The general equation for flow through an orifice can be derived from the Navier-

Stokes equation, as shown in Oh and Kopp (2014). The assumptions considered in the 

derivation and other parameters accounted in the mathematical derivation are explained 

below. 

2.2.1 Equations for flow through an orifice 

The equation for fluid flow through an orifice can be derived from the Navier-

Stokes equation for incompressible flows, 

𝜌 
𝜕𝑢𝑗

𝜕𝑡
+ 𝜌𝑢𝑘

𝜕𝑢𝑗

𝜕𝑥𝑘
= −

𝜕𝑝 

𝜕𝑥𝑗
+ 𝜇

𝜕2𝑢𝑗

𝜕𝑥𝑗𝜕𝑥𝑗
+ 𝜌𝑓𝑏𝑗                                                                      (2.1) 

where 𝜌 is the density of the fluid, 𝑢𝑗  is the velocity component along  𝑗 direction, 𝑢𝑘 is the 

velocity component along  𝑘 direction, 𝑝 is the pressure, 𝜇 is the viscosity of the fluid and 

𝑓𝑏 is the body force.  
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Figure 2-1: Flow into and out of a double-layer system with two openings (Oh and 

Kopp, 2014). 

Oh and Kopp (2014) and Oh (2014) showed that Eq. 2.1, when applied to the 

system shown in Figure 2.1, becomes 

𝜌𝑙𝑒�̇� + 𝐶𝐿

𝜌

2
𝑈|𝑈| +

12𝜇𝑙𝑜

𝐺2
𝑈 = ∆𝑃                                                                                         (2.2) 

where 𝑙𝑒 is the “effective length” of the fluid passing through the orifice, �̇�  is the temporal-

derivative of the velocity through the area of the opening, which is 
𝑑𝑈

𝑑𝑡
 and is assumed to 

be constant, 𝐶𝐿 is a loss coefficient, 𝑙𝑜 is the thickness of the external layer, 𝐺  is the width 

of the opening, i.e., the orifice, and ∆𝑃 is the differential pressure which is the difference 

in external pressures at locations x1  and x2 i.e. Pe1 and Pe2, as shown in Figure 2.1. The 

arrows in the figure indicate the direction of flow for Pe1 > Pe2. It is also assumed that there 

is no vertical pressure gradient such that there is a single value for the pressure at each 

horizontal location. 

A similar approach has been used by Holmes (1979), Vickery (1986) and Oh et al. 

(2007) to estimate the internal pressures within buildings. In such cases, where there is a 

single opening into a sealed room or building, the continuity equation was used along with 
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the unsteady discharge equation, (Eq. (2.2)), which provides two unknowns, i.e., the 

velocity of flow through the opening and the internal pressure.  

2.2.2 Concept of neutral pressure line 

Oh and Kopp (2014, 2015) studied the mechanism of pressure equalization and suggested 

the concept of neutral pressure line. Consider a panel array as shown in Figure 2.2 (a), with 

five openings and the flow entering and leaving the cavity are also shown using arrows. 

The idealization of mean flow and pressure distribution mechanisms on external surface 

and interior cavity are shown in Figure 2.2 (b).  

 
(a) 

 

 
(b) 

 

Figure 2-2: Simplified idealization of (a) mean flow and (b) pressure distributions 

on external surface and cavity of panels (Oh and Kopp, 2014) 

In these plots, the pressure distributions are idealized for simplification and to better 

explain the mechanism. As a part of this simplification, the distribution of mean external 

pressure coefficient is depicted as a solid straight line and if the G/H ratio is small, the 
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mean cavity pressure coefficients are more uniform. This leads to the formation of three 

different pressure zones in the panels depending on the gradients of mean external 

coefficient of pressure, 𝐶̅pe and mean cavity coefficient of pressure, 𝐶̅pi. The regions in 

which 𝐶̅pe < 𝐶̅pi, there will be higher suction zones, i.e., the mean upward pressures will 

be higher and in regions where 𝐶̅pe > 𝐶̅pi, the mean downward pressures will be higher 

resulting in lower suction zones. At 𝐶̅pe = 𝐶̅pi, there will be zero pressures and this region 

is called as neutral pressure line. The flow through the gaps are generated due to the 

difference of external pressures between the gaps. 

2.2.3 Equations for flow through multiple openings 

Consider a one-dimensional flow in a cavity with multiple openings, as shown in 

Figure 2.3. In this case, there are five openings and, hence, there will be five discharge 

equations, one for the flow through each opening (orifice). Here it is assumed that the flow 

is entering the cavity through openings x1, x2 and x3 and the flow is leaving the cavity 

through openings x4 and x5, as indicated by the directions of the arrows.  

 

Figure 2-3: Flow into and out of a double-layer system with multiple openings 
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In other words, by applying Eq. 2.2 for the double layer system shown in Figure 2.2 for 

multiple openings, one obtains 

𝜌𝑙𝑒1�̇�𝑔1(𝑡) + 𝐶𝐿1
𝜌

2
𝑈𝑔1(𝑡)|𝑈𝑔1(𝑡)| +

12𝜇𝑙𝑜1

𝐺1
2 𝑈𝑔1(𝑡) = 𝑃𝑒1(𝑡) − 𝑃𝑖1(𝑡)                          (2.3)  

𝜌𝑙𝑒2�̇�𝑔2(𝑡) + 𝐶𝐿2

𝜌

2
𝑈𝑔2(𝑡)|𝑈𝑔2(𝑡)| +

12𝜇𝑙𝑜2

𝐺2
2 𝑈𝑔2(𝑡) = 𝑃𝑒2(𝑡) − 𝑃𝑖2(𝑡)                       (2.4) 

𝜌𝑙𝑒3�̇�𝑔3(𝑡) + 𝐶𝐿3

𝜌

2
𝑈𝑔3(𝑡)|𝑈𝑔3(𝑡)| +

12𝜇𝑙𝑜3

𝐺3
2 𝑈𝑔3(𝑡) = 𝑃𝑒3(𝑡) − 𝑃𝑖3(𝑡)                       (2.5) 

𝜌𝑙𝑒4�̇�𝑔4(𝑡) + 𝐶𝐿4

𝜌

2
𝑈𝑔4(𝑡)|𝑈𝑔4(𝑡)| +

12𝜇𝑙𝑜4

𝐺4
2 𝑈𝑔4(𝑡) = 𝑃𝑒4(𝑡) − 𝑃𝑖4(𝑡)                       (2.6) 

𝜌𝑙𝑒5�̇�𝑔5(𝑡) + 𝐶𝐿5

𝜌

2
𝑈𝑔5(𝑡)|𝑈𝑔5(𝑡)| +

12𝜇𝑙𝑜5

𝐺5
2 𝑈𝑔5(𝑡) = 𝑃𝑒5(𝑡) − 𝑃𝑖5(𝑡)                       (2.7) 

The velocity at each opening in the outer layer is referred as 𝑈𝑔(𝑡) whereas 𝑃𝑒(𝑡) 

and 𝑃𝑖(𝑡) refer to the external pressure and cavity pressure, respectively. The numbers in 

the subscripts (i.e., 1, 2, 3, 4, and 5) denote the location of the gaps, as depicted in Figure 

2.2. In order to solve this set of equations, equations representing the conservation of mass 

are also used. 

Employing conservation of mass for the system shown in Figure 2-2, the flow rate 

entering the cavity should be equal to the flow rate leaving the cavity, i.e.,  

𝑄1 + 𝑄2 + 𝑄3 = 𝑄4 + 𝑄5                                                                                                        (2.8) 

where 𝑄 is the flow rate through the area of the opening, which gives 

𝐴1. 𝑈𝑔1 + 𝐴2. 𝑈𝑔2 + 𝐴3. 𝑈𝑔3 = 𝐴4. 𝑈𝑔4 + 𝐴5. 𝑈𝑔5                                                                (2.9) 

where 𝐴 is the area of the opening. 

It should be noted that in general, the flow direction through each opening is 

unknown until the values for 𝑃𝑖1, 𝑃𝑖2, 𝑃𝑖3, 𝑃𝑖4 and 𝑃𝑖5 are established. Thus, the velocity 
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through the opening is set by its sign. To keep the direction of the losses correct, the form 

of the loss term is set, as given in the equations. 

To date, this kind of approach has only been applied for simulating the one-

dimensional cavity pressure distributions due to orifice-type flows through openings, as 

shown in Oh and Kopp (2014) and Oh (2014). The equations as shown above, cannot be 

used directly for systems with double layers, such as that as shown in Figure 2.3, without 

some significant new assumptions and approximations. In double-layer systems such as 

solar panel arrays located on roofs of buildings, there are gaps (G) between the panel arrays 

in both directions and the panels are placed at a height (H) above the roof. The openings 

or gaps between the panels are spread across the whole panel array system and the 

equations 2.3 to 2.7 have not been previously applied, for estimating the cavity pressures. 

However, it should be noted that Sun and Bienkiewicz (1993) applied the steady form of 

these equations to estimate the mean cavity pressure distribution for a roof paver system. 

(Here, the objective is to establish an unsteady solution.) 

Consider the double-layer system shown in Figure 2.3. One of the primary 

challenges is that the entry points of flow into the cavity below the panels and the exit 

locations for the cavity flows, which depend on the external pressure distribution, are 

unknown. In addition to that, a single value for the loss coefficient was used for the original 

equations. This may not be a practically feasible solution for all scenarios in double-layer 

systems. Hence, an approach for estimating the cavity pressure in situations where the 

cavity pressure is uniform is to be developed herein, which utilizes the external pressure 

distribution, as well as the geometrical parameters, as input parameters. The current 

analytical model is developed with certain assumptions, which are explained below. 



21 

 

 

Figure 2-4: Schematic representation of a solar panel array system located on the 

roof of a building 

2.2.4 Assumptions considered in the proposed analytical model 

The basic assumptions mentioned with respect to Eq. (2.2) remain with the current 

approach, except for a few modifications. Before getting into the changes to the basic 

equation, it is important to understand these assumptions: 

1. For a double-layer system, as shown in Figure 2.3, the flow can enter or leave the 

cavity through any openings between the panels or through the gaps between the 

panels and the roof surface at the edge of the array. In the current model, it will be 

assumed that the flow can enter or leave the cavity only through the openings in the 

external layer such that all other openings in the system are closed. In the case of a 

solar panel array, all other edges are closed by a shroud as shown in Figure 2.4 (a). 

Similarly, in the case of a double-layer system on a façade, there should be 

complete edge sealing, which restricts the entry of flow from one cavity to another 

cavity on the adjacent façade, as shown in Figure 2.4 (b). In both these cases, this 

ensures that the cavity volume is well-defined.                                                                                                                                            

Solar Panels 

Gap between the panels, G 
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(a)  

 

                              

(b) 

Figure 2-5: (a) Schematic representation of shroud around the panel array system to 

restrict the direct entry of air to the cavity through sides, and (b) edge sealing in 

double-skin façades, which prevents cavity flow to enter adjacent cavity. 

Shroud around the solar 

panel array on the roof 

such that the flow only 

moves through the gaps 

between adjacent panels 

Edge sealing to restrict flows from 

cavities on one surface into cavities on 

adjacent building surfaces. 

External layer 
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2. The second important assumption is regarding the cavity pressure. From section 

2.2.2, it is clear that the basic equations mentioned in Eq. (2.3) through (2.7) can be 

used to estimate the spatial variations of cavity pressure values depending on the 

number of openings. From Oh and Kopp (2015) it is obvious that for small gap to 

height ratios (G/H), pressure equalization is less effective and the cavity pressure 

is uniform. In the current model, the cavity pressure is assumed to be uniform, i.e., 

the effective G/H ratio must be small. This has a significant influence on the 

approach to solving the equations. 

2.2.5 Analytical model for estimating the cavity pressure using a 
lumped-leakage approach  

From the assumptions mentioned in Section 2.2.3 above, consider that for the solar 

panel array system shown in Figure 2.5, the cavity pressure is approximately uniform and 

flow can enter or leave the cavity only through the openings between the panels. As well, 

the solar panel modules in this array are placed at equal distances from each other and the 

distance between the panels and the roof surface are also kept constant, i.e., the G and H 

values are constant and uniform. 

It is well-known that when wind reaches a building, the flow is separated at edges, 

creating large vortices and large pressure gradients on the external surface. Normally, the 

windward edge of the roof has high suctions, caused by separated and accelerated flow, 

which reduce as the flow reattaches. Due to the difference in pressure over the external 

surface, flow may enter the cavity and the gradient in external pressure distribution 

determines the entry and exit points for the flow through the cavity. For example, as shown 

in Figure 2.6, the flow in to the cavity may enter through all the openings in the external 

surface of region ‘1’ while the flow out of the cavity may come through all the openings in 

the external surface of the region ‘2’. The location of the reference (red) line in the figure 

depends upon the distribution of external pressures, which Oh and Kopp (2014, 2015) 

called the neutral pressure line, as mentioned in section 2.2.2. 
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(a) 

 

(b) 

Figure 2-6: Schematic representation of flow separation and cavity flow when the 

wind direction is perpendicular to the face: (a) Isometric view and (b) Sectional 

view. 

Moreover, if the flow is entering the cavity through all openings in Region ‘1’, then 

the external pressure distribution over the entire region ‘1’ may be accounted for in the 

original equation, Eq. (2.2). So, instead of using the individual 𝑃𝑒(𝑡) values, an area-

averaged external pressure value is given as input to the analytical model. The area-

averaged value of the pressure in region 1 will be called 𝑃𝐴𝐸1 and area-averaged value of 

Gap between the panels, G 

Cavity depth, H 
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the pressure in region 2 will be 𝑃𝐴𝐸2. This assumption will be tested and validated in 

Chapter 3. 

In addition, the loss coefficient 𝐶𝐿 also had to be updated to match with the 

assumptions stated above. In equation 2.25, 𝐶𝐿 value refers to the loss coefficient through 

a single opening. But in the current model, the losses due to flow through openings are 

lumped for a specific area and hence, instead of loss coefficient for each opening, a single 

effective loss coefficient, 𝐾𝐿 will be used (Guha, 2011). 𝐾𝐿 can be estimated using the 

Bernoulli`s obstruction theory (White, 1999) with a reasonable assumption that the area of 

the openings are much smaller, when compared to the total area of the panel array. 

 𝐾𝐿 =
1 − (𝐴𝑜/𝐴)2

𝐶𝑑
2                                                                                                                      (2.9) 

Where 𝐴𝑜 refers to the area of openings considered in the specific region, 𝐴 refers to the 

total area of the specific region and 𝐶𝑑
 
is the discharge coefficient through the lumped 

openings. The value of the discharge coefficient used in this study is 0.38 (Guha, 2011). 

After considering all of the above mentioned changes above to the original 

discharge equations, the current model, which will be evaluated in this work, is: 

𝜌𝑙𝑒1�̇�𝑔1(𝑡) + 𝐾𝐿1
𝜌

2
𝑈𝑔1(𝑡)|𝑈𝑔1(𝑡)| +

12𝜇𝑙𝑜1

𝐺1
2 𝑈𝑔1(𝑡) = 𝑃𝐴𝐸1(𝑡) − 𝑃𝑖(𝑡)                       (2.10)  

𝜌𝑙𝑒2�̇�𝑔2(𝑡) + 𝐾𝐿2

𝜌

2
𝑈𝑔2(𝑡)|𝑈𝑔2(𝑡)| +

12𝜇𝑙𝑜2

𝐺2
2 𝑈𝑔2(𝑡) = 𝑃𝐴𝐸2(𝑡) − 𝑃𝑖(𝑡)                    (2.11) 

𝐴1𝑈𝑔1 + 𝐴2𝑈𝑔2 = 0                                                                                                                 (2.12) 

where 𝑈𝑔1(𝑡) and 𝑈𝑔2(𝑡) refers to the velocities of flow in to and out of the cavity through 

the openings in regions 1 and 2, 𝐾𝐿1 and 𝐾𝐿2 represent the effective loss coefficients for 

regions 1 and 2,  𝑃𝐴𝐸1(𝑡) and 𝑃𝐴𝐸2(𝑡) are the area-averaged external pressures for the 

regions 1 and 2, respectively. 𝑃𝑖(𝑡) represents the uniform cavity pressure as mentioned in 

the assumptions in section 2.2.3.  
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Now consider the case in which the flow direction is not perpendicular to the face 

and the wind is coming towards the roof at an angle as shown in Figure 2.7. When the wind 

is coming at such an angle to the roof, the flow is separated at the edge in such a way that 

corner vortices form, as shown in Figure 2.7.  

 

Figure 2-7: Schematic representation of flow separation and cavity flow when the 

wind direction is coming at an inclined angle to the roof 

Due to the formation of corner vortices, the distribution of external pressures over 

the upper surface of the solar panels are different from the pattern discussed in the previous 

section. Since the wind is coming at an angle to the roof, corner vortices are generated 

along the two edges as shown in Figure 2-7. The corner vortices causes high sectional 

pressures along the edges and a relatively lower suction zone in the central portion of the 

roof. In this case it makes sense to think about three distinct pressure regions on the roof, 

which are labelled in Figure 2.7. 
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The estimation of cavity pressure in this scenario can be done using the following four 

equations  

𝜌𝑙𝑒1�̇�𝑔1(𝑡) + 𝐾𝐿1

𝜌

2
𝑈𝑔1(𝑡)|𝑈𝑔1(𝑡)| +

12𝜇𝑙𝑜1

𝐺1
2 𝑈𝑔1(𝑡) = 𝑃𝐴𝐸1(𝑡) − 𝑃𝑖(𝑡)                    (2.13) 

𝜌𝑙𝑒2�̇�𝑔2(𝑡) + 𝐾𝐿2

𝜌

2
𝑈𝑔2(𝑡)|𝑈𝑔2(𝑡)| +

12𝜇𝑙𝑜2

𝐺2
2 𝑈𝑔2(𝑡) = 𝑃𝐴𝐸2(𝑡) − 𝑃𝑖(𝑡)                    (2.14) 

𝜌𝑙𝑒3�̇�𝑔3(𝑡) + 𝐾𝐿3

𝜌

2
𝑈𝑔3(𝑡)|𝑈𝑔3(𝑡)| +

12𝜇𝑙𝑜3

𝐺3
2 𝑈𝑔3(𝑡) = 𝑃𝐴𝐸3(𝑡) − 𝑃𝑖(𝑡)                    (2.15) 

𝐴1𝑈𝑔1 + 𝐴2𝑈𝑔2 + 𝐴3𝑈𝑔3 = 0                                                                                                (2.16)  

In Chapter 3, this modeling approach will be tested and validated. 

2.3 Details of the numerical simulation 

For estimating the (uniform) cavity pressure, the unsteady discharge equations 

along with conservation of mass equation must be solved as described above. This requires 

a numerical method. In this study, a second-order, backward-differencing, numerical 

scheme is used (Chapra and Canale, 2006) where, at each time step, the given time series 

of the external pressures are used to solve for the (unknown) velocities through the gaps 

and the cavity pressure. The details of the numerical method, along with the algorithm for 

solving the equations, are explained in Appendix B. 

The time varying pressure coefficients on the external or outer surface of the double 

layer system,  𝐶𝑝𝑒(𝑡) are given by  

𝐶𝑝𝑒(𝑡) =  
𝑃𝑒(𝑡) − 𝑃𝑜

1
2 𝜌𝑉ℎ

2̅̅ ̅̅̅
                                                                                                                (2.17) 

where 𝑃𝑒(𝑡) is the external pressure time series obtained from the wind tunnel test, 𝑃𝑜 is 

the static pressure and 𝑉ℎ
̅̅ ̅ is the mean velocity at roof height. Similarly, the time varying 

pressure coefficient in the cavity is given by 
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𝐶𝑝𝑖(𝑡) =  
𝑃𝑖(𝑡) − 𝑃𝑜

1
2 𝜌𝑉ℎ

2̅̅ ̅̅̅
                                                                                                                 (2.18) 

where 𝑃𝑖(𝑡) is the cavity pressure time series. 

The area-averaged pressure coefficients are calculated by integrating the pressures 

of all taps within a specific area simultaneously. The area-averaged pressure coefficient for 

a given area for the external or upper surface is given by  

𝐶𝑝𝐴𝐸(𝑡) =  
∑ 𝐶𝑝𝐸(𝑡)𝑛

𝑖=1  
. 𝑎𝑖

𝐴
                                                                                                  (2.19) 

where 𝐶𝑝𝐸(𝑡) are the time history of the pressure coefficients on the upper or external 

surface of the module, 𝑎𝑖 
is the tributary area associated with the specific pressure tap ‘i’ 

and 𝐴 is the sum of all tributary areas on one surface of the module.  

The results obtained from the analytical model are validated by comparing the 

simulation results with the cavity pressures from the experimental study conducted on a 

roof-mounted solar panel array by Stenabaugh (2015), as discussed in Chapter 3. 
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Chapter 3  

3 Results and Discussion 

3.1 Introduction 

In this chapter, the results from the analytical model are compared with the 

experimental results obtained from Stenabaugh (2015). The assumptions considered while 

developing the analytical model are also assessed.  

3.2 Experimental set-up 

The wind tunnel experiments for the solar panel array system were conducted in 

the Boundary Layer Wind Tunnel II at the University of Western Ontario by Stenabaugh 

(2015). Figure 3.1 shows the photo of a sloped roof model; however the results from the 

analytical model are compared with the experimental results obtained from a flat roof 

model as shown in Figure 3.4 

 

Figure 3-1: Photo of the Boundary Layer Wind Tunnel at the University of Western 

Ontario along with the study model having solar panels on the sloped roof 

(Stenabaugh, 2015). 
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The wind tunnel has a working cross-section of 3.4m (11ft) wide by 2.4m (8ft) high 

along with an upstream fetch length of 39m (128ft). In the wind tunnel, an open country 

profile was simulated. The wind tunnel tests were conducted using 1/20 scale physical 

model. This scale was used because of the challenges in manufacturability of the panels 

and other practical issues associated with the solar panel module pressure tubing and 

spacing. The Reynold’s number using the mean building roof height was about 3 x 105 and 

the blockage ratio of the physical model in the wind tunnel was 4.2%. 

 

Figure 3-2: Wind tunnel physical model of the solar panel arrays on the flat roof 

surrounded by shroud (Stenabaugh (2015)) 

The solar panel modules were modeled as flat panels, made from white Delrin 

(acetyl) plastic, with equivalent full-scale dimensions of 50cm x 145.5cm, which gives an 

equivalent module area of 0.73 m2, as shown in Figure 3.3. The solar panel modules have 

a thickness of 0.3cm at a model scale of 1:20 and this was maintained to achieve the 

minimum thickness for the pressure tubes within them.  
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(a) 

 

 
(b) 

Figure 3-3: Drawings of the solar panel array showing the panel dimensions: (a) top 

view and (b) sectional view (Stenabaugh, 2015). 

To obtain detailed information about the pressures acting on the external and 

internal surface of the solar panel array system, a high density pressure tap layout was 

required. With that intention, 20 pressure taps were placed on each individual solar panel 

module, i.e., 10 on the upper surface and 10 on the lower surface of each solar panel module 

by Stenabaugh (2015). Figure 3.4(a) shows the panel array of 28 modules used in the wind 

tunnel test and 3.4(b) shows a close-up view of a single panel (module) along with locations 

of pressure taps. 
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(a) 

 

 
(b) 

Figure 3-4: (a) Photos of the solar panel array system and (b) a close-up view of a 

single panel showing the position of pressure taps on the top surface of the panel 

(Stenabaugh, 2015). 

During the wind tunnel test, experiments were carried out for different 

configurations and for different roofs. In the current study, we are comparing the results 

from the analytical model with the experimental results from flat roof configuration having 

a gap between the panels (G) equivalent to 12cm and the distance between the panel and 

the roof of 20cm.   

The flat roof model used in the wind tunnel test has full-scale dimensions of 15m x 

7.5m along with an eave height of 6m. The solar panel array was located at the corner of 

the flat roof, adjacent to the walls so that it would experience maximum suction due to the 

flow separations. As mentioned in section 2.2.3, the results from the analytical model have 

to be compared with experimental data in which the flow into or out of the cavity can 

Pressure taps 
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happen only through the gaps between the panel modules. For that purpose, the 

experimental configuration in which the solar array was surrounded by a shroud, as shown 

in Figure 3.2, was selected. The bottom of the shroud was sealed to the roof surface and 

the top of the shroud was flush with the top level of solar panels.  

During the wind tunnel tests, the pressure measurements were made at a reference 

speed of approximately 14 m/s, which corresponds to a mean wind speed at the mean roof 

height of 42 m/s in full scale, based on a velocity scale of 1:3. The wind tunnel 

measurements were collected for 16 wind directions in 22.5o increments. The pressure data 

samples were collected for 360 seconds at a sampling rate of 400 samples per second, 

which is equivalent to a full-scale sampling period of approximately 40 minutes. A low-

pass filter was used to filter the data at 200 Hz. 

3.3 Assumptions considered in the analytical model 

Before presenting the comparison of predicted results with the experimental data, 

it is important to ensure that the assumptions considered during the development of the 

analytical model are correct. The primary assumption of uniform cavity pressure in double 

layer systems is the most important one. 

3.3.1 Validation of the assumptions considered in the analytical 
model 

The mean pressure distribution for external and cavity pressures obtained from the 

wind tunnel test results for a few angles are compared.  The contour plots for the wind 

direction of 135 degrees are shown in Figure 3.5. From the contour plots in Figure 3.5 (a), 

it is clear that, at the building edge, the flow is separated and the external surface of the 

solar panels are subjected to higher suction due to the formation of corner vortices, as 

shown in Figure 2.6.  

However, the mean distribution of cavity pressure values obtained from wind tunnel test, 

shown in Figure 3.5 (b) have a more uniform distribution throughout the panel array, except 

at a few locations. There are a few locations in the cavity that show slight variation to the 

uniform pressure assumption and it may be due to some localized flows through the gaps. 
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But generally, looking at the overall pressure distribution, it is reasonable to consider a 

uniform pressure distribution in the cavity. Any deviations from uniformity will lead to 

inaccuracies in the modeling approach, and consequent errors in the modeling of the net 

wind loads on the outer layer.  

 
(a) 

 

(b) 

Figure 3-5: The mean pressure distribution for 135 degree wind direction for                      

(a) external and (b) cavity pressures. 
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Similarly the external pressure distribution values are compared with the cavity 

pressure distribution for some other wind directions, 203, 225 and 315 degrees. The 

contour plots comparing the pressure distributions of external and cavity surfaces are 

shown in Figures 3.6, 3.7 and 3.8.  As explained earlier, for 135 degrees, the external 

pressure distributions for most of the wind directions have the similar pattern, i.e., the 

cavity pressure values can be considered as being close to uniform for most of the locations 

and for the majority of the angles. There are a few exceptions, as mentioned in previous 

section.       
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(a) 

 

(b) 

Figure 3-6: The mean pressure distribution for 203 degree wind direction for                      

(a) external and (b) cavity pressures. 
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(a) 

 

(b) 

Figure 3-7: The mean pressure distribution for 225 degree wind direction for                   

(a) external and (b) cavity pressures. 
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(a) 

 

(b) 

Figure 3-8: The mean pressure distribution for 315 degree wind direction for                  

(a) external and (b) cavity pressures. 
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3.4 Method 

As mentioned in Section 2.2, the analytical model uses orifice discharge equation and 

conservation of mass equation for estimating the cavity pressure in double-layered systems. 

The step-by-step procedure of the working of analytical model are shown in the form of a 

flowchart in Figure 3-9. The first step is to examine the pressure distribution on the external 

surface of the panel array, which is obtained from the wind tunnel tests. The mean external 

pressure distribution is a crucial factor which decides the average flow through the 

openings and the location of neutral pressure line. The second step is estimating location 

of the neutral pressure line. Initially, since the cavity pressure is unknown, the spatial 

average of all the external pressures is taken as the cavity pressure. This allows one to set 

a neutral pressure line and based on its location, the areas of flow entry and exit are decided. 

In reality, these areas can be quite complicated and, hence, the areas are simplified into 

rectangular or triangular shapes, depending upon the wind direction and pressure 

distribution pattern. Then, the governing equations, mentioned in the previous section, are 

solved for each of the simplified areas, using the numerical method. Once the equations 

are solved, one obtains the cavity pressure. At that point, one needs to check whether the 

flow directions and regions are more precise with the actual distribution. If the predicted 

cavity pressure are sufficiently accurate, then we can proceed with the calculation of net 

wind loads. If the predicted cavity pressure is too different than the actual pressure, then 

the model must be recalculated from the second step, i.e., setting the neutral pressure line. 

The user then uses the model results to decide the neutral pressure line based on the cavity 

pressure obtained from the first iteration and this whole process is continued until a 

sufficiently accurate cavity pressure is obtained. 

The flowchart in Figure 3-9 shows the framework for the analytical model. In this study, 

the results from the lumped leakage approach were compared with the experimental results. 

But in the case of using this method as a practical tool, more detailed investigations are 

needed, especially on how to make sure that the neutral pressure line matches with real 

condition. Also, the iteration process, which changes the location of neutral pressure line, 

needs to be investigated in detail. 
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Figure 3-9: Flow chart showing the algorithm of the analytical model 

 

 

 

Obtain the mean external 

pressure distribution 

Assume the mean cavity pressure as the spatial average 

of all the external pressure time series 

Choose the simplified areas for input, based on the 

location of the estimated neutral pressure line 

Start 

Solve the Eq. (2.13) to Eq. (2.15), using the numerical 

method explained in Appendix B, to get the cavity pressure 

Calculate net loads on panels for design 

Yes 

No 

New areas based on the obtained neutral pressure line 

Check whether the neutral pressure line matches 

with the actual pressure distribution 
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3.4.1 Consideration of simplified areas as input for the model 

As mentioned in the flow chart in Figure 3-9, the area-averaged external pressures are 

calculated for simplified areas based on the location of the neutral pressure line and 

simplified areas, for four wind directions, are shown in Figure 3-10. In this study, the 

simplified areas are triangular. This is because for all four wind directions, which are 

coming at an angle to the roof, the three areas for area-averaging are chosen in such a way 

that two will be representing the corner vortices whereas the third one should be 

representing the central zone between the corner vortices. As shown in Figure 3-10, the 

corner vortices have significant gradients, whereas the central pressure zone is almost 

uniform, which is natural for pressure distributions on roofs.  The neutral pressure lines 

considered in this study are shown as dotted lines in Figure 3-10 and the area in each of 

those specified regions were considered for the estimation of area-averaged external 

pressure. Since this was the first attempt to check whether the lumped-leakage approach 

can be used to estimate the cavity pressure, the neutral pressure lines were chosen 

manually.   

In the current study, the selection of simplified areas was done manually, by 

considering the pattern of external pressure distribution and angle of wind direction. This 

was done manually to check whether the concept mentioned in Figure 3-9 could work. The 

automation of this step would be the next step and that process will depend on many 

constraints based on the application. For example, the process for solar panel array on roof 

will be different from a high-rise cladding system. But those points will be considered as a 

future recommendation and currently we are focusing on the validation of the concept.   
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3-10: Areas considered for the area-averaged external pressures for various 

wind directions (a) 135 degree (b) 203 degree (c) 225 degree and (d) 315 degree 
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3.5 Results 

3.5.1 Comparison of time-series and spectra of area-averaged 
pressure coefficients 

The cavity pressure time histories are estimated by applying the lumped-leakage 

approach to the orifice flow equations as explained in Chapter 2. A segment of the time 

history is shown for a wind direction of 135 degrees in Figure 3.11. The time history for 

the experiments is obtained via an area-average of the measured cavity pressures. There is 

good agreement between the predicted values and the experimental results and the results 

showed that the analytical model can capture the variations and distribution of cavity 

pressure, although there are clearly some differences. Figure 3.12 shows the comparison 

of the spectra from the numerical model and the experimental results, which match well 

over the range of relevant frequencies.  

 

Figure 3-11: Comparison of time series obtained from analytical model with the 

experimental results for a wind direction of 135 degrees. 

 

 

 



44 

 

 

Figure 3-12: Spectra comparison of analytical results with the experimental results 

for 135 degree wind direction 

Table 3-1 shows the statistical comparison of the predicted values with the 

experimental results. From the values in the table, it is clear that there is good agreement 

between the predicted and experimental results. The similarity between the experimental 

values and predicted values are not only in mean values. Standard deviation, maximum and 

minimum values from both time series are compared and the results showed that the 

predicted cavity pressure time series are similar to the experimental values, with the 

analytical results within about 5% of the experimental. The model results tend to under-

estimate the experimental for the overall fluctuations, but since the model tends to over-

estimate at the higher frequencies, the peak values are also over-estimated in magnitude. 
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Table 3-1: Statistical comparison of results obtained from the analytical model with 

the spatially averaged time-series obtained from the wind tunnel test. 

Wind 
Direction 

             Pressure Mean RMS Max     Min 

135o 

𝐶𝑝𝐴𝐸(𝑡) -0.561  0.088  -0.256  -1.084  

 𝐶𝑝𝑖  from wind tunnel test -0.447 0.061  -0.225  -0.806  

 𝐶𝑝𝑖  from analytical model -0.434 0.059  -0.208  -0.843  

Ratio of Analytical result to 
wind tunnel result 

  0.97  0.96  0.92  1.05  

203o 

𝐶𝑝𝐴𝐸(𝑡) -0.754  0.114 -0.399  -1.271 

 𝐶𝑝𝑖  from wind tunnel test -0.610  0.088  -0.287 -1.015 

 𝐶𝑝𝑖  from analytical model -0.582  0.085  -0.301 -1.071 

Ratio of Analytical result to 
wind tunnel result 

   0.95   0.97    1.05   1.06 

225o 

𝐶𝑝𝐴𝐸(𝑡) -0.689 0.100 -0.318 -1.212 

 𝐶𝑝𝑖  from wind tunnel test -0.538  0.074  -0.226 -0.910 

 𝐶𝑝𝑖  from analytical model𝑖  -0.518  0.068  -0.244 -0.919 

Ratio of Analytical result to 
wind tunnel result 

   0.96  0.92     1.08   1.01 

315o 

𝐶𝑝𝐴𝐸(𝑡) -0.524  0.064 -0.308 -0.833 

 𝐶𝑝𝑖  from wind tunnel test -0.444  0.053  -0.244 -0.714 

 𝐶𝑝𝑖  from analytical model𝑖  -0.418  0.049  -0.235  -0.747 

Ratio of Analytical result to 
wind tunnel result 

   0.94   0.93     0.97    1.05 

Similarly, the time series from the predicted results and the experimental results are 

compared for a few more wind angles and the results are shown in Figure 3.13 through 

Figure 3.18. For the 135-degree wind direction results, there is, again, good agreement 

between the predicted time series obtained from the analytical model and the experimental 

results. The comparison of mean, standard deviation, maximum and minimum of the 

experimental and predicted values of external pressure and cavity pressures for all the four 

wind directions are shown in Table 3-1. From the comparison of results, it is clear that 

there is a good statistical agreement between the predicted and experimental values.  
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Figure 3-13: Comparison of time series obtained from analytical model with the 

experimental results for 203-degree wind direction. 

 

Figure 3-14: Spectra comparison of analytical results with the experimental results 

for 203-degree wind direction. 
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Figure 3-15: Comparison of time series obtained from analytical model with the 

experimental results for 225-degree wind direction. 

 

Figure 3-16: Spectra comparison of analytical results with the experimental results 

for 225-degree wind direction. 
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Figure 3-17: Comparison of time series obtained from analytical model with the 

experimental results for 315-degree wind direction. 

 

Figure 3-18: Spectra comparison of analytical results with the experimental results 

for 315-degree wind direction. 
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3.5.2 Comparison of predicted cavity pressure time-series with 
individual cavity pressure tap time series 

In section 3.4.1, the time series obtained from the analytical model using the 

equations mentioned in chapter 2 are compared with cavity pressure time series. Both these 

time-series are area-averaged with respect to the whole array (or cavity) area. In this 

section, the area-averaged time series obtained from the analytical model are compared 

with the individual pressure taps in the cavity. Figure 3-19 shows the distribution of 

correlation coefficients between the external and cavity pressure tap time series, for 225 

degree wind direction, and both these time series used for the calculation of correlation 

coefficients are taken from the wind tunnel experiment of Stenabaugh (2015). There are a 

few low values along the top edge of the panel arrays which may be due to the significant 

difference in pressure values, as shown in Figure 3-7. 

 

Figure 3-19: Distribution of the external and cavity pressure correlation coefficients 

from the experimental results 

In Figure 3-20, the distribution of correlation coefficients between the external 

pressure tap time series and the cavity pressure time series are plotted for 225 degree wind 

direction, in which the external time-series are the same as those in the Figure 3-19, 

whereas the cavity pressure time series are those obtained from the analytical model.  
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Figure 3-20: Distribution of the external and cavity pressure correlation coefficients 

from the analytical model 

From the comparison of correlation coefficients plotted in Figure 3-19 and 3-20, it 

is clear that there is a reasonable agreement between the correlation coefficients in most of 

the locations, especially in the regions of uniform cavity pressure. There are a few locations 

in the panel array where there are discrepancies in correlation coefficient values which 

indicates the disagreement between the actual cavity pressure time series and the predicted 

one. The discrepancies may be due to the approximations considered in the analytical 

model or also due to some of the pressure values which are entirely off from the rest of the 

values. Moreover, it has to be accounted that the cavity pressure time series used in Figure 

3-19 was the individual cavity pressure tap time series whereas the one used for the 

calculation of correlation coefficient in Figure 3-20 was the area-averaged time series 

obtained from the analytical model. 

3.5.3 Comparison of net pressure distributions 

The most important parameter considered for the design of solar panel systems, 

especially in the case of wind loading, are the net loading across the panels as both the 

external (upper) surface and the cavity (lower) are exposed to wind. Net loading is the 

difference between the pressures on the upper and lower surfaces and it is what is required 

for the design of mounting and support systems for the solar panel arrays.  
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In Figure 3-21 (a), the mean net pressures are plotted for the135-degree wind 

direction, i.e., the difference between the external pressures and the cavity pressures 

obtained from the wind tunnel experiment, whereas Figure 3-21 (b) shows the values 

obtained from the analytical model. The primary differences between the experimental and 

predicted values are near the top left corner of panels in the first row, which may be due to 

the non-uniformity of cavity pressures along that region. The cavity pressures in that region 

have some high values due to the localized flows through the gaps, as mentioned in section 

3.4.1.  

   

(a)                                                                   (b) 

   

(c)                                                                  (d) 

Figure 3-21: Contour map of net pressure distributions for the 135-degree wind 

direction for (a) experimental and (b) analytical mean net pressures and for (c) 

experimental and (d) analytical peak net pressures. 

Figure 3-21 (c) shows the peak net loads, for the 135-degree wind direction, from 

the experimental and the predicted cavity pressures. The peak net pressure coefficients are 

statistically calculated using Lieblein BLUE method (Lieblein, 1974). In this method, the 

time-series will be divided into ten equal segments and picking the peak value from each 

of the ten segments. The mode and dispersion are calculated using the peak values and 
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Type I extreme value distribution can be used to estimate a more reliable peak for the entire 

time series. 

The results show the same pattern as observed for the mean net pressure 

comparisons. There is a strong agreement between the experimental and predicted peak net 

pressures for most of the regions in the panel where the cavity pressures are uniform. 

Similar to mean net pressure distribution, there are some differences in peak net pressures 

along the top left edge values due to the high cavity pressures. 

   

(a)                                                                   (b) 

   

(c)                                                                  (d) 

Figure 3-22: Contour map of net pressure distributions for the 203-degree wind 

direction for (a) experimental and (b) analytical mean net pressures and for (c) 

experimental and (d) analytical peak net pressures. 
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(a)                                                                   (b) 

  

(c)                                                                  (d) 

Figure 3-23: Contour map of net pressure distributions for the 225-degree wind 

direction for (a) experimental and (b) analytical mean net pressures and for (c) 

experimental and (d) analytical peak net pressures. 

The mean as well as peak net pressure distributions from experimental and 

analytical model, for wind directions of 203, 225 and 315 degrees are shown in Figure 3-

22, 3-23 and 3-24. The results showed that for most regions of the panel array, the 

analytical model is able to predict the mean as well as peak net pressures when compared 

to the experimental results.  
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(a)                                                                   (b) 

   

(c)                                                                  (d) 

Figure 3-24: Contour map of net pressure distributions for the 315-degree wind 

direction for (a) experimental and (b) analytical mean net pressures and for (c) 

experimental and (d) analytical peak net pressures. 
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3.5.4 Comparison of panel-averaged cavity pressures with 
predicted time-series 

The area-averaged time series of the cavity pressure obtained from the analytical 

model are also compared with the pressures that are area-averaged over each panel 

individually. Figure 3-25 shows the comparison of mean as well as peak pressures, for 

the135-degree wind direction. The red and blue dots represents the mean and peak results 

whereas the red and blue lines represent the single values from the analytical model, 

respectively. The figure shows that the predicted mean area-averaged cavity pressure 

obtained from the analytical model matches most of the experimental values except at a 

few locations, where the cavity pressure lack uniformity. 

 

Figure 3-25: Comparison of panel-averaged cavity pressures from the experimental 

data with the (single) cavity pressure obtained from the analytical model for 135-

degree wind direction 

In the case of the peak pressures, the predicted values are almost in line with the peak 

experimental values that are crucial for the design purposes, i.e., the largest magnitude 
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values. However, there are a few hotspots where the peak panel area-averaged pressures 

are slightly higher than the predicted values. 

 

Figure 3-26: Comparison of panel-averaged cavity pressures from the experimental 

data with the (single) cavity pressure obtained from the analytical model for 203-

degree wind direction 

Similarly, the comparison of mean and peak panel-averaged cavity pressures for angles 

203, 225 and 315-degrees are shown in Figures 3-26, 3-27 and 3-28, respectively. For 203 

degrees, there are a few regions where the mean as well as peak loading on certain panels 

are higher than the predicted results due to some high pressure hot spots in some panels. 

But the overall pressure distribution looks reasonable. Similarly, a few high pressure zones 

were observed in certain panels for 225-degree wind direction, but the overall pressure 

distribution was reasonable. 
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Figure 3-27: Comparison of panel-averaged cavity pressures from the experimental 

data with the (single) cavity pressure obtained from the analytical model for 225-

degree wind direction 

For 315-degree wind direction, shown in Figure 3-28, the predicted mean pressure 

distribution is in good agreement with the actual values, whereas the peak predicted 

pressures are significantly higher when compared to panel-averaged values. Compared to 

other wind directions, the gradients in peak net pressures for 315-degree wind direction 

were high and this has to be investigated.   

-1.80

-1.60

-1.40

-1.20

-1.00

-0.80

-0.60

-0.40

-0.20

0.00
C

av
it

y
 P

re
ss

u
re

 C
o
ef

fi
ci

en
ts

Mean Panel-averaged Mean Predicted

Peak Panel-averaged Peak Predicted



58 

 

 

Figure 3-28: Comparison of panel-averaged cavity pressures from the experimental 

data with the (single) cavity pressure obtained from the analytical model for 315-

degree wind direction 

3.6 Validation of areas considered in the input for the model 

Before proceeding with the results discussion, it is reasonable to make sure that the 

assumptions considered and the areas taken for the calculation of area-averaged external 

pressures, which are given as input to the model, are sensible. Hence, a sensitivity analysis 

was carried out to check the validity of areas considered for the calculation of area-

averaged external pressures, for a wind direction of 225 degrees. This check was conducted 

only for one wind direction, i.e., 225 degrees, since it will be the same for other wind 

directions also.   

Four combinations of areas, as shown in Figure 3-29, are used to estimate the area-

averaged external pressures and these external pressures are used as input for the analytical 
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model to predict the uniform cavity pressures. The details of uniform cavity pressures 

obtained from the analytical model when the four combinations of external area-averaged 

pressures were given as input, are given in Table 3-2.  

 

   
(a)                                                                  (b) 

 

   
                                (c)                                                                    (d) 

Figure 3-29: Various combinations of external pressures and areas checked for 225 

degree wind direction 

From Table 3-2, it is obvious that that out of the four combinations, combination 

“a” is the best combination of areas to be considered for the estimation of area-averaged 

external pressures. For Combination “a”, most of the ratios of predicted value to the 

experimental values are within ±10%. Moreover, when considering the angle of wind 

direction, combination “a” is in good agreement with the external pressure distribution 

pattern. The ratios of predicted values to the experimental results for other combinations 

like “b”, “c” and “d” are very different, ranging up to almost 40% different. 
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Table 3-2: Sensitivity of predicted results for various combinations of external 

pressures for 225-degree wind direction 

Combinations 

Coefficient 

of Pressure 
Mean RMS Max Min 

Experimental -0.5380 0.0743 -0.2264 -0.9100 

a 

Predicted /Experimental 

Predicted 

-0.5180 

0.96 

0.0680 

0.92 

-0.2440 

1.08 

-0.9197 

1.01 

b 

Predicted /Experimental 

-0.4250 

0.79 

0.0439 

0.59 

-0.1854 

0.82 

-0.8719 

0.96 

c 

Predicted /Experimental 

-0.4398 

0.82 

0.0581 

0.78 

-0.1875 

0.83 

-0.8325 

0.91 

d 

Predicted /Experimental 

-0.4022 

0.75 

0.0423 

0.57 

-0.1652 

0.73 

-0.8674 

0.95 

 

3.6.1 Sensitivity of the chosen area combination 

From Table 3-2, it is clear that out of the 4 combinations, combination “a” is the best option 

for considering areas for the estimation of area-averaged external pressures. But it is also 

necessary to make sure how precise the areas need to be to get a reasonably accurate result. 

For that, a sensitivity study was carried out with combination “a”. Different cases of 

sensitivity studies were carried out and the areas considered for each of those cases are 

shown in Figure 3-30. The red lines is the actual combination “a” case explained in the 

previous section. The green and black lines denote the areas of two case studies considered 

for checking the sensitivity of the simplified areas chosen. Each of the case studies were 

carried out by either increasing or decreasing the areas considered for each simplified areas. 
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Figure 3-30: Sensitivity cases considered for combination “a” for 225-degree wind 

direction. 

For example, assume that, in the case of combination “a”, the areas considered for the 

calculation of area-averaged external pressures PAE1, PAE2 and PAE3 are A, B and C, 

respectively. In the sensitivity study, these areas are either increased or decreased by 25% 

and 50% and their various combinations are used, as shown in Table 3-3. The case 1 in 

Table 3-3 is the combination “a” and case 2 through 13 are the various combinations of 

areas studied, either by increasing or decreasing the areas.  

From the sensitivity study, it is clear that when the areas considered in combination “a” 

were changed by either increasing or decreasing the simplified areas, the predicted cavity 

pressure values were varying within a range of around ±14% of the experimental value. So 

that means, the combination of areas has to be selected based on the external pressure 

distribution and wind direction. Once a combination is selected based on the above factors, 

the impact of area changes on the cavity pressure calculation is minimal.  
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Table 3-3: Sensitivity of predicted results for various combinations of external 

pressures in combination “a” for 225-degree wind direction 

 

Case 

Areas considered for the 

calculation of area-averaged 

external pressures 

 

Coefficient of Pressure of predicted cavity 

pressure 

PAE1 PAE2 PAE3 Mean RMS Max Min 

1 A B C -0.5180 0.0680 -0.2440 -0.9197 

2 +25% A -25% B C -0.4869 0.0632 -0.2318 -0.8737 

3 +50% A -50% B C -0.4610 0.0612 -0.2147 -0.8001 

4 -25% A +25% B C -0.5439 0.0721 -0.2611 -0.9749 

5 -50% A +50% B C -0.5698 0.0762 -0.2708 -1.0393 

6 +25% A B -25% C -0.4772 0.0620 -0.2295 -0.8650 

7 +50% A B -50% C -0.4518 0.0600 -0.2126 -0.7921 

8 -25% A B +25% C -0.5330 0.0706 -0.2585 -0.9651 

9 -50% A B +50% C -0.5584 0.0746 -0.2681 -1.0289 

10 A +25% B -25% C -0.5113 0.0664 -0.2503 -0.9436 

11 A +50% B -50% C -0.4841 0.0643 -0.2319 -0.8642 

12 A -25% B +25% C -0.5711 0.0757 -0.2741 -1.0209 

13 A -50% B +50% C -0.5755 0.0664 -0.2630 -1.0107 
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Chapter 4  

4 Conclusions 

4.1 Conclusions 

The main objective of this study was to do a proof-of-concept work to assess whether 

or not the lumped-leakage approach can be used in an analytical model which can predict the 

cavity pressures in a double-layer system, given user-chosen area-averaged external 

pressures as input. The method was developed with the assumptions that the cavity volume 

is well-defined and the cavity pressure is uniform. Both the assumptions were true for the 

case of the wind tunnel experiment data used for the validation of the model results. An 

algorithm was developed which explains the working of the analytical model in a step by 

step manner was also suggested. In this study, the process of selecting the simplified areas, 

which is the third step in the algorithm was done manually to check whether the concept 

of lumped leakage could work. The steps for automating the whole process was also 

suggested in the algorithm. The comparison of results from the analytical model with the 

experimental results, obtained from Stenabaugh (2015), shows a reasonable agreement. 

There is good statistical agreement between the predicted results and the experimental 

ones. The comparison of mean as well as peak loads shows reasonable match between both 

the results.  

4.2 Future Recommendations 

As mentioned in the conclusions, the simplified areas selection process in the model 

was done manually in this study. But to convert this concept to an accurate, practical 

analytical model, the whole process has to be automated.  Moreover, in this study, the wind 

tunnel experiment data used for the validation of the equations and concept of lumped 

leakage was taken from a single configuration of solar panel array study. The analytical 

model has to be compared with a variety of wind tunnel experiment data from different 

types of double-layer systems.   
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Appendix A: Summary of previous research on pressure equalization 

Author Year Building Geometry Scale Contribution 

Gerhardt and Kramer 

 

1983 

 

Width = 2 m, 

Height = 1.6 m 
None Wind loads on wind permeable facades of low-rise buildings  

Cheung and 

Melbourne 

 

1986 

 

1.21* 1.21*0.2 m None 
The effects of porosity and internal volume on the mean, 

standard deviation and peak pressures on a porous surface  

Amano and Fujii 

 

1988 

 

3.45 * 3.45*1.48 m None 
The internal pressure distribution under a known external 

pressure field  

Gerhardt and Janser 

 

1994 

 

None 
 

1:350 

 

Wind loading on a porous façade systems  

Richardson and 

Richards 

 

1995 

 

1.83 * 1.05 m 

Depth = 2m 
None 

Streamwise turbulence spectra in the vicinity of a porous 

windbreak  

Bofah et al. 

 

1996 

 

None None 
The flow underneath a loosely laid insulation board or a 

paver  

Fang and Wang 

 

1997 

 

None None The turbulent flow around a vertical porous fence was  

Lee and Kim 

 

 

1998 

 

Height = 25 mm 

B/H = 0.012 
None 

The shelter effect of a porous wind fence on a triangular 

prism  
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Author Year Building Geometry Scale Contribution 

Lee and Park 

 

 

1998 

 

Height = 25 mm 

B/H = 0.012 
None 

Surface-pressure variations on a two-dimensional triangular 

prism model behind porous wind fences. 

Shiau 

 

1998 

3 mm thickness 

10 cm high 

300 cm long 
None 

Measurements of the turbulence characteristics for a 

turbulent boundary layer flow past porous windscreen  

Lee and Kim 

 

 

1999 

Height = 40 mm 

Width = 300 mm 

Thickness = 4 mm 
None Flow characteristics of turbulent wake behind porous fences  

Lee and Park 

 

 

1999 

Height = 40 mm 

Breadth = 95 mm 

Depth  = 0-120 mm 
None The shelter effect of porous wind fences on wind-blown dust  

Richards and 

Robinson 

 

1999 

 

None 
The factors that determine the wind load on porous 

structures  

Lee and Park 

 

 

2000 

Height = 40 mm 

Breadth  95 mm 

Depth  = 0-120 mm 
None 

The shelter effect of porous wind fences on surface pressure 

and wall shear stress  

Letchford et al. 

 

2000 

 

Breadth 300 mm 

Depth  300 mm 

 

1:50 

Mean overall lift and drag forces on a range of canopy or 

open roof forms with varying porosities  

Robertson et al. 

 

2002 

Height = 1.83 m 

Breadth = 4 m 

Depth  = 4 m 
1:2 The pressure coefficient data for cladding. 

Boldes et al. 

 

2003 

 

Height  = 20 cm 1:15 

A cylindrical vortex embedded in a low turbulence 

stationary horizontal stream, running through a two-

dimensional narrow vertical woven fence located on the 

wind tunnel floor. 
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Author Year Building Geometry Scale Contribution 

Trung et al. 

 

2009 

200 mm high (H) 

470 mm wide (B)  

710 mm deep 

1:50 

 

The effects of parapet and underneath volume on wind 

loading on porous roof cover sheets  

Briassoulis et al. 

 

2010 

Height = 5m 

Width = 7m 

Depth = 2m 
None 

The wind pressures on experimental scale panels covered by 

various types of nets  

Giannoulis and 

Briassoulis 

 

2010 
Height = 3 m 

Width = 7m 

Depth = 2m 

None The analysis of air flow around an elevated permeable panel  

Trung et al. 

 

2010 

200 mm high 

470 mm wide 

710 mm deep 

1:50 

 

The lower surface pressures on a porous sunshade roof cover 

sheet with respect to two porosities  

Cope et al. 

 

2013 

 

30 * 40*17 ft None 

Wind pressure loading on layers of exterior wall assemblies 

that include vinyl siding, insulation in the wall cavity and 

gypsum board interior sheathing  

Cope et al. 

 

2013 

 

30 * 40*17 ft None 
The loads on the fasteners used to attach the siding to the 

wall  

Oh and Kopp 

 

2014 

 

 

 

1:30 

 

Time-varying pressure distributions in the cavity of air-

permeable layer, double-layer systems 

Oh and Kopp 

 

 

2015 

 

 
1:30 

 

The effects of the gaps between panels (G), cavity depth 

between layers (H), and the panel size (L) on the pressures 

and panel loads 

Killip and Cheetham 

 

1984 

 

None None A theory on pressure equalizing rain-screen wall 
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Author Year Building Geometry Scale Contribution 

Pazio and Kontopidis 

 

1988 

 

2.4*3.6*2.6 m None 
The correlation among cavity pressure, wind pressure and 

openings 

Baskaran and Brown 

 

1992 

 

1.5*1.5*2.1 m None An analytical model to simulate PER wall performance 

Baskaran 

 

1994 

 

 None 
A numerical model to simulate the performance of the 

Pressure equalized rainscreen walls 

Inculet and Davenport 

 

1994 

 

0.6*0.6*0.6 m 
 

1:12 

The effect of venting area, air barrier leakage, cavity 

volume and compartment size 

Burgess 

 

1995 

 

635*750*960 mm None The effect of joint opening area and joint cavity volume  

Burgess 

 

 

1995 

 

None None 
A numerical model to solve the governing equations of 

pressure equalization. 

Kumar and Schijndel 

 

1999 

 

1*1.3 m None 
Two theoretical models (based on mass balance and 

Helmholtz resonant theory) 

Kumar 

 

2000 

 

None None 
Investigated all the previous research works on pressure 

equalization of rain screen walls 

Kumar and Wisse 

 

2001 

 

167*20*44.6 m None 
Frequency domain analysis to understand the pressure 

equalization of rain screen walls 
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Author Year Building Geometry Scale Contribution 

Kumar et al. 

 

2003 

 

1*1.3 m None 
Full scale measurements of wind loading on rainscreen 

walls 

Kala et al. 

 

2008 

 

167*20*44.6 m None 
Parameters affecting the pressure equalization were 

discussed. 

 

Mas et al. 

 

2011 

 

0.6*0.9 m None 
The performance of rain screen walls when water gets into 

contact with the façade. 

Langmans et al. 

 

2015 

 

2.7*1 m None 

The impact of various cladding materials and the size of 

ventilation openings on residential rainscreen cladding 

systems 
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Appendix B: Numerical Method 

As mentioned in section 2.3 of chapter 2, the ordinary differential equations used in the 

analytical model can be solved by a 2nd order backward differencing numerical method 

(Chapra and Canale, 2006).  

In this method, the derivative term can be assumed as  

𝑈𝑡 ̇ =
3 𝑈(𝑡)  −   4 𝑈(𝑡 − 1) +  𝑈(𝑡 − 2) 

2ℎ
                                                               (𝐴. 1) 

where t = 1,2,…,n is the time index and h is the time step between t and t-1. 

By substituting the term A.1 in the original equations make them a set of non-linear 

simultaneous equations and to solve them the non-linear term in the equation i.e., 

𝑈𝑔(𝑡)|𝑈𝑔(𝑡)| is linearized by assigning an approximate value for |𝑈𝑔(𝑡)| . By doing so, 

the non-linear equations become four simultaneous linear equations with four unknowns 

i.e., 𝑈𝑔1(𝑡), 𝑈𝑔2(𝑡), 𝑈𝑔3(𝑡) and 𝑃𝑖(𝑡). Now these simultaneous linear equations can be 

solved for the given area-averaged external pressure data, 𝑃𝐴𝐸1(𝑡), 𝑃𝐴𝐸2(𝑡), 𝑃𝐴𝐸3(𝑡) and 

also for the initial values of the 𝑈𝑔(𝑡 − 1) and 𝑈𝑔(𝑡 − 2). After solving the equations, the 

obtained 𝑈𝑔(𝑡) should be similar to assumed approximate value for |𝑈𝑔(𝑡)|. If not, a new 

approximate value for |𝑈𝑔(𝑡)| should be assumed and the equations are solved. The new 

assumed approximate value can be taken as 0.5𝑈𝑔(𝑡)+0.5|𝑈𝑔(𝑡)|old . This computation 

process will be continued until the solution of 𝑈𝑔(𝑡) and |𝑈𝑔(𝑡)| are converged.   

 

 

 

  

76 



 

Curriculum Vitae 

 

Name:   Rahul Prabhakaran Nair Sreedevi 

 

Post-secondary  Anna University 

Education and  Chennai, Tamil Nadu, India 

Degrees:   2002-2006 B.E. (Mechanical Engineering) 

 

University of Kerala 

Trivandrum, Kerala, India 

2006-2008 M.Tech (Machine Design) 

 

Related Work  Project Engineer 

Experience   RWDI Consulting Engineers and Scientists India (Pvt.) Ltd 

2008-2015 

 

   Teaching Assistant 

   The University of Western Ontario 

2015-2017 

 

Conference Publications: 

 

Aswin Kumar, Rahul P S, K. Suresh Kumar (2013), Performance optimization of tall 

buildings subjected to wind – An Indian scenario, 8th Asia-Pacific Conference 

on Wind Engineering, Chennai, India.  

 

K. Suresh Kumar, Rahul P S, Valerie Sifton (2012), Assessment of Wind Directionality in 

metropolitan cities in India, 6th National Conference on Wind Engineering, 

Central Road Research Institute, New Delhi, India. 

 

Krishna Chaithanya, Rahul P S, Suresh Kumar (2014), Wind-Induced response of tall 

buildings: Comparison of Indian code with American, Canadian and Australian 

codes, Structural Engineering Convention 2014, IIT Delhi, India.  

 

Rahul P S, Jayaraj Kochupillai (2008),  Finite element based analysis of 

Magnetorheological Damper, National Conference on Technological Trends, 

College of Engineering Trivandrum, India.  

 

 

77 


	Estimation of cavity pressures in air-permeable, multi-layer systems using a lumped-leakage approach
	Recommended Citation

	ETD word template

