
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

6-29-2017 12:00 AM 

A Single-Bout of Aerobic Exercise Improved Executive Control: A Single-Bout of Aerobic Exercise Improved Executive Control: 

Evidence From the Antisaccade Task Evidence From the Antisaccade Task 

Ashna Samani, The University of Western Ontario 

Supervisor: Dr. Matthew Heath, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in 

Kinesiology 

© Ashna Samani 2017 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Cognitive Neuroscience Commons 

Recommended Citation Recommended Citation 
Samani, Ashna, "A Single-Bout of Aerobic Exercise Improved Executive Control: Evidence From the 
Antisaccade Task" (2017). Electronic Thesis and Dissertation Repository. 4644. 
https://ir.lib.uwo.ca/etd/4644 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F4644&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/57?utm_source=ir.lib.uwo.ca%2Fetd%2F4644&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/4644?utm_source=ir.lib.uwo.ca%2Fetd%2F4644&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


Abstract 

 

A single-bout of moderate-to-vigorous intensity exercise increases activity within frontoparietal 

networks, producing a temporary ‘boost’ to executive-related cognitive control – an effect that is 

thought to be selective to exercise durations greater than 20 minutes.  It is possible that previous 

tasks evaluating executive control did not provide the requisite resolution to detect executive 

changes associated with shorter exercise durations.  To that end, I had participants perform a 10-

minute bout of moderate-to-vigorous intensity aerobic exercise, examining pre- and post-

exercise executive control via the antisaccade task. Extensive literature has shown that 

antisaccades are mediated via frontoparietal networks, modulated following exercise training.  

Results showed that antisaccade reaction time (RT) decreased by 27 ms from pre- to post-

exercise assessments, and was a finding shown to be exercise-specific.  Accordingly, I propose 

that a 10-minute single-bout of aerobic exercise increases arousal and activity within executive-

related frontoparietal networks. 

 

 

 

 

 

 

 

 

 



ii 

 

Keywords 

Aerobic exercise 

Antisaccades 

Executive control 

Oculomotor 

Single-bout 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

Co-Authorship 

 

The author, under the supervision and mentorship of Dr. Matthew Heath, conducted the work in 

this master’s thesis. With the guidance of Dr. Matthew Heath, I designed the experiments, and 

collected, analyzed, interpreted all of the data, and prepared the manuscript. For this manuscript, 

Ashna Samani was the first author and Dr. Matthew Heath served as a co-author.  

  



iv 

 

Acknowledgments 

 

First and foremost, I would like to express my greatest appreciation to my graduate supervisor, 

Dr. Matthew Heath for all his knowledge, support, and copious amount of help that he has 

provided me. But most of all I am sincerely grateful for the patience he has had with me, 

constantly encouraging me to never give up. His passion in what he does is definitely reflective 

by his display of constant hard work while maintaining composed.  

I would like to thank all those that participated in my research study. Without their 

commitment to participate through those strenuous sessions this study would not have been 

possible. A very special thanks also goes to all the members of the lab (Shirin Davarpanah Jazi, 

Jennifer Campbell, Joseph Manzone, and Brandon Webb) who supported me and provided me 

with guidance, feedback, and most importantly made each day enjoyable. 

I would also like to thank my amazing family who, despite living thousands of kilometers 

away, were always there for me by constantly keeping me going, listening to all my problems 

and giving me uplifting advice.   

Finally, I would like to provide a special thank you to the those involved with funding 

and supporting my research, which includes the Discovery Grant from the Natural Sciences and 

Engineering Research Council of Canada and Faculty Scholar and Major Academic 

Development Fund Awards from the University of Western Ontario. 

I cannot imagine making it here without all these aforementioned people, and so, once 

again, I would like to thank them all sincerely.  

 

  

 



v 

 

Table of Contents 

 

Abstract ........................................................................................................................................ i 

Keywords .................................................................................................................................... ii 

Co-Authorship............................................................................................................................ iii 

Acknowledgments...................................................................................................................... iv 

Table of Contents ........................................................................................................................ v 

List of Tables ............................................................................................................................. vi 

List of Figures ........................................................................................................................... vii 

List of Appendices ..................................................................................................................... ix 

INTRODUCTION ................................................................................................................................ 1 

EXPERIMENT 1 ................................................................................................................................. 4 

Methods....................................................................................................................................... 5 

Results ......................................................................................................................................... 9 

Experiment 1:  Discussion ........................................................................................................ 16 

EXPERIMENT 2 ............................................................................................................................... 16 

Methods..................................................................................................................................... 16 

Results ....................................................................................................................................... 18 

Experiment 2: Discussion ......................................................................................................... 23 

General Discussion ................................................................................................................... 23 

Conclusions ............................................................................................................................... 28 

References ................................................................................................................................. 29 

Appendix A ............................................................................................................................... 34 

Appendix B ............................................................................................................................... 35 

 

 

 

 

 

 

 

 



vi 

 

List of Tables 

  

Table 1. Participant scores on the Godin Leisure Time Exercise Quotient (GLTEQ) for 

Experiment 1. .......................................................................................................................... 6 

Table 2. Participant scores on the Godin Leisure Time Exercise Quotient (GLTEQ) for 

Experiment 2. ........................................................................................................................ 17 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 

 

 

 

 

 

 



vii 

 

List of Figures 

 

Figure 1. Experiment 1: Percent frequency histograms for pro- (top panels) and antisaccade 

(bottom panels) reaction time (RT: ms) at pre- and post-exercise assessments. The bins for 

each figure begin at 100 ms and continue to 500 ms with individual bin widths of 20 ms .. 10 

Figure 2. Experiments 1 and 2: The large panels show pro- and antisaccade reaction time (RT: 

ms) for Experiment 1 (top panel) and Experiment 2 (bottom panel) as a function of pre- and 

post-exercise assessments (i.e., Experiment 1) and pre- and post-break assessment 

(Experiment 2). Error bars represent the 95% within-participants’ confidence intervals 

computed via the mean-squared error term for the time by task interaction (Loftus and 

Masson, 1994).  The offset panels in each figure show mean assessment difference scores 

(Experiment 1: pre-exercise minus post-exercise; Experiment 2: pre-break minus post-

break) computed separately for pro- and antisaccades.  Error bars represent 95% between-

participant confidence intervals and the absence of overlap between an error bar and zero 

(i.e., the horizontal line) can be interpreted as a reliable effect inclusive to a test of the null 

hypothesis (Cumming, 2013). ............................................................................................... 11 

Figure 4. Experiment 1: Percent frequency histograms for pro- (top panels) and antisaccade 

(bottom panels) amplitudes (AMP: ) at pre- and post-exercise assessments. The bins for 

each figure at start at 0 and continue to 30 with individual bin widths of 2 .................... 14 

Figure 5. Experiment 1: The large panels in this figure show pro- and antisaccade amplitude () 

as a function of pre- and post-exercise assessment for the proximal (top panel) and distal 

(bottom panel) targets. Error bars represent the 95% within-participants’ confidence interval 

computed via the mean-squared error term for the time by task interaction (Loftus and 

Masson, 1994).  The offset panels show mean between-assessment difference scores (pre-

exercise minus post-exercise) computed separately for pro- and antisaccades. Error bars 

represent 95% between-participant confidence intervals and the absence of overlap between 

an error bar and zero (i.e., the horizontal line) can be interpreted as a reliable effect 

inclusive to a test of the null hypothesis (Cumming, 2013) ................................................. 15 

Figure 6. Experiment 2: Percent frequency histograms for pro- (top panels) and antisaccade 

(bottom panels) reaction time (RT: ms) at the pre- and post-break assessments. The bins for 

each figure begin at 100 ms and continue to 500 ms with individual bin widths of 20 ms .. 19 

Figure 7. Experiment 2: Percentage of pro- and antisaccade directional errors (%) at pre- and 

post-break assessments. Error bars represent the 95% within-participants’ confidence 

interval computed via the mean-squared error term for the task by time interaction (Loftus 

and Masson, 1994) ................................................................................................................ 20 

Figure 8. Experiment 2: Percent frequency histograms for pro- (top panels) and antisaccade 

(bottom panels) amplitudes (AMP: ) at pre- and post-break assessments. The bins for each 

figure start at 0 and continue to 30 with individual bin widths of 2 ................................ 21 



viii 

 

Figure 9. Experiment 2: The large panels in this figure show pro- and antisaccade amplitude () 

as a function of pre- and post-break assessments for the proximal (top panel) and distal 

(bottom panel) target eccentricities. Error bars represent the 95% within-participants’ 

confidence interval computed via the mean-squared error term for the time by task 

interaction (Loftus and Masson, 1994). The offset panels show mean between-assessment 

difference scores (pre-break minus post-break) computed separately for pro- and 

antisaccades. Error bars represent 95% between-participant confidence intervals and the 

absence of overlap between an error bar and zero (i.e., the horizontal line) can be interpreted 

as a reliable effect inclusive to a test of the null hypothesis (Cumming, 2013) ................... 22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

List of Appendices 

 

Appendix A: Approval Notice from the Office of Research Ethics, The University of Western 

Ontario .......................................................................................................................................... 34 

Appendix B: Continuing Approval Notice from the Office of Research Ethics, The University of 

Western Ontario ............................................................................................................................ 35 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1  

 

Introduction 

A wealth of evidence has shown that participation in a long-term (i.e., > 6 weeks) 

aerobic- and/or resistance-based exercise program improves not only general physical health, but 

also benefits brain health (e.g., Etnier & Landers, 1995).  Colcombe and Kramer’s (2003) 

seminal meta-analysis reported that exercise training in healthy young and older (i.e., > 55 years 

of age) adults produces broad benefits in cognition (e.g., working memory and attention), and 

more specifically enhances executive-related control.  As well, recent work has shown that a 6-

month aerobic and/or resistance-based exercise program improves executive control in older 

adults in the prodromal stages of Alzheimer’s disease (Heath, Weiler, Gregory, Gill, & Petrella, 

2016b; Heath, Shellington, Titheridge, Gill, & Petrella, 2017).  Broadly speaking, executive 

control relates to an individual’s ability to process and attend single and multiple stimuli, update 

and monitor working memory, and assert high-level inhibitory control (Norman & Shallice, 

1986). It is thought that long-term exercise programs improve cognition and executive 

functioning via a range of neurophysiological changes including: (1) increased levels of brain-

derived neurotrophic factors (BDNF) that promote neuroplasticity and synaptic efficiency 

(Cotman & Berchtold, 2002), (2) stimulating hippocampal neurogenesis via cell proliferation 

(van Praag, Kempermann, & Gage, 1999), and (3) promoting activity, connectivity and density 

within frontoparietal executive structures (Colcombe, Kramer, Erickson, Scalf, McAuley et al., 

2004; Colcombe, Erickson, Scalf, Kim, Prakash et al., 2006; Ruscheweyh, Willemer, Krüger, 

Duning, Warnecks et al., 2011; Voss, Erickson, Prakash, Chaddock, Malkowski et al., 2010).  

 In addition to long-term exercise effects, work has examined whether a single-bout of 

exercise elicits a short-term cognitive ‘boost’.  Some work has shown that a single-bout of 

exercise produces a cognitive benefit (e.g., Fleury & Bard, 1987), whereas other studies have not 

(e.g., Coles & Tomporowski, 2008).  Although the results of individual studies are mixed, the 

meta-analysis by Chang, Labban, Gapin, and Etnier (2012) concluded that a single-bout of 

exercise (aerobic, resistance, or combined) produces a small but reliable cognitive benefit when 

the exercise session is performed at a moderate-to-vigorous level of intensity (i.e., 60 – 85% of 

predicted maximum heart rate; see also Lambourne & Tomporowski, 2010; Etnier, Sibley, 

Pomeroy, & Kao, 2003).  Moreover, Chang et al. (2012) identified that an additional moderator 

of the single-bout exercise effect was the administration of a task sensitive to addressing 
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executive-related cognitive processes. Indeed, most early studies examining the single-bout 

effect employed tasks involving simple reaction time (RT) (Aks, 1998; Fleury & Bard, 1987; 

McMorris & Keen, 1994), visual recognition (Bard & Fleury, 1978), and working memory 

(Coles & Tomporowski, 2008), and did not report a reliable cognitive benefit.  In turn, more 

recent work has reported that tasks involving high-level executive functioning elicit a positive 

exercise benefit (for review see Lambourne & Tomporowski, 2010).  For example, Chang et al. 

(2014) had adult participants (mean age = 58.1 years) perform a single-bout of resistance 

exercises (e.g., biceps and leg curls at 70% of each participants’ 10-repetition maximum) for 20-

25 minutes and evaluated pre- and post-exercise executive control via the Stroop task.  In 

addition, Stroop task performance was assessed in separate sessions interleaved by a 30-minute 

control condition interval (e.g., participants sat and read).  The Stroop task is a speeded reaction 

time task wherein a series of colour names are printed in ink that is congruent (i.e., standard 

word-naming task) or incongruent (i.e., non-standard colour-naming task) to the word name.  

Results consistently report that RTs for the non-standard task are longer – and responses are 

more errorful – than the standard task, and is a result in part attributed to high-level executive 

demands related to inhibiting a pre-potent response.  Chang et al. (2014) reported that RTs for 

stimuli-strings were measured via a handheld chronometer and the authors reported that post-test 

RTs in both exercise and control conditions were shorter than their pre-test counterparts; albeit 

with the magnitude of the improvement being larger in the exercise (i.e., 22%) than the control 

(6%) condition.  Accordingly, Chang et al. (2014) reported that a single-bout of exercise “…has 

a more beneficial effect on cognition that involves executive control.” (p. 51).  In addressing the 

improved post-exercise performance, Dietrich and Audiffren’s (2011) reticular-activating 

hyperfrontality hypothesis asserts that a single-bout of exercise optimizes physiological and 

psychological arousal within frontoparietal executive networks and promotes enhanced executive 

control.  In turn, Verburgh, Königs, Scherder, and Oosterlaan (2014) proposed that a single-bout 

of exercise increases cerebral oxygenation and results in increased regional cerebral blood flow 

(rCBF) to executive-related cortical structures.  Regardless of the precise explanation, 

convergent evidence suggests that a single-bout of exercise benefits the activity of executive-

related cortical structures. 

 The positive benefit to executive control outlined in the previous paragraph has been 

reported to be contingent on the exercise duration.  Both Lambourne and Tomporowski’s (2010) 
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and Chang et al’s (2012) meta-analyses reported that short duration exercise sessions (i.e., <20 

minutes) produced a negative or null effect on cognitive and executive performance, whereas 

durations greater than 20 minutes produced a positive benefit (see also Brisswalter, Collardeau, 

& René, 2002).  Based on this evidence, it was proposed that the physiological changes 

necessary to promote an executive-related performance benefit require at least 20 minutes of 

sustained moderate-to-vigorous intensity physical activity.  It is, however, important to consider 

that the duration effect may be influenced by the temporal and spatial precision associated with 

the equipment and task used to address executive control.  Recall that Chang et al’s (2014) study 

employed handheld chronometry to examine exercise related changes to the Stroop task.  The 

measurement precision afforded via handheld chronometry may not provide an accurate basis to 

detect subtle – yet reliable – changes in executive performance for shorter duration exercise 

sessions.  In addition, the Stroop task and a myriad of other ‘executive’ tasks (e.g., Tower of 

London, flanker, visual and acoustic oddball tasks) require not only high-level executive control 

but also non-executive functions including language, attentional and visuo-spatial analyses.  It is 

therefore possible that the non-executive components associated with the aforementioned tasks 

preclude an accurate determination of the minimum time required to elicit an exercise-based 

change in executive control.  As such, my thesis work employed the antisaccade task to 

determine whether a 10-minute single-bout of moderate-to-vigorous intensity aerobic exercise 

elicits a reliable executive-related performance benefit. The antisaccade task requires that an 

individual complete a goal-directed eye movement (i.e., a saccade) mirror-symmetrical to the 

location of a visual stimulus (Hallett, 1978).  Extensive behavioural and neuroimaging work 

from humans as well as electrophysiology from non-human primates has shown that antisaccades 

are a cognitively challenging and executive-mediated task requiring the suppression of a 

stimulus-driven response (i.e., response suppression) and the visual remapping of a target’s 

coordinates (i.e., vector inversion) (for review see Munoz & Everling, 2004).  Moreover, the 

performance of directionally correct antisaccades has been linked to increased activation of 

executive-related frontoparietal networks (Ford, Goltz, Brown, & Everling, 2005; Weiler, 

Hassall, Krigolson, & Heath, 2015; Zhang & Barash, 2000; for review see Everling & Johnston, 

2013) – cortical regions linked to modified activity following a single-bout (Hiura, Mizuno, & 

Fujimoto, 2010; Seifert & Secher, 2011) and long-term (Colcombe et al. 2004; Voss et al. 2010) 

exercise.  Thus, the hands- and language-free nature of antisaccades coupled with the temporal 
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precision of eye-tracking (i.e., 360 Hz in the present investigation) make it an ideal task for 

determining whether a short-duration single-bout of aerobic exercise benefits executive-related 

oculomotor control.  

Experiment 1 evaluated pro- (i.e., saccade to a veridical target location) and antisaccade 

performance at pre- and post-exercise assessments.  The intervention entailed a single-bout of 

moderate-to-vigorous intensity aerobic exercise on a cycle ergometer (10 minutes at 60-85% of 

predicted maximum heart rate with 2.5 minutes each of warm-up and cool-down).  In terms of 

research predictions, if aerobic exercise produces an immediate boost to executive-related 

oculomotor control then antisaccades should demonstrate a reliable post-exercise RT reduction, 

and may exhibit increased response accuracy.  In turn, equivalent antisaccade RTs at pre- and 

post-exercise assessments would indicate that the duration of the single-bout of aerobic exercise 

used here does not contribute to a reliable improvement to executive function. The present 

investigation included prosaccades because such actions are mediated via direct retinotopic 

projections within the superior colliculus (Wurtz & Albano, 1980), and therefore operate largely 

independent of executive control (Pierrot-Deseilligny, Rivaud, Gaymard, Müri, & Vermersch, 

1995).  Thus, prosaccades serve as a natural control to antisaccades because they are mediated 

via subcortical structures that are refractory to exercise-related modulation (see Colcombe & 

Kramer, 2003).  A follow-up experiment (i.e., Experiment 2) involving separate pro- and 

antisaccade sessions interspersed between a rest interval was included to exclude the possibility 

that a between-assessment change in antisaccade RTs relate to a practice-related performance 

benefit.  

Experiment 1 

Participants completed a 10-minute single-bout of moderate-to-vigorous intensity 

exercise on a cycle ergometer and I examined pre- and post-exercise pro- and antisaccade 

performance.  As such, Experiment 1 provided a framework to determine whether 10-minutes of 

aerobic exercise imparts an immediate benefit to executive-related oculomotor control. 
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Methods 

Participants 

Fourteen participants (5 female, 9 male; age range = 19-26 years of age) from the 

University of Western Ontario community volunteered for this research. Participants were right 

hand dominant (University of Waterloo Handedness Questionnaire), had normal or corrected-to-

normal vision, and reported no history of neurological impairment or eye injury. Additionally, 

participants obtained a full score on the Physical Activity Readiness Questionnaire (PAR-Q) and 

completed the Godin Leisure-Time Exercise Questionnaire (GLTEQ). The GLTEQ is an 

objective assessment of typical leisure and physical activity involvement, and is widely used as a 

screening tool to ensure a normally distributed overall exercise involvement by participants 

(Godin & Shephard, 1997).  

The GLTEQ was used to determine each participant’s self-reported weekly frequency for 

light, moderate, and strenuous activity levels.  A score of 23 or less on the questionnaire 

indicates that an individual partakes in an insufficient amount of weekly physical activity as per 

the North American Public Health Guidelines (Amireault, Godin, Lacombe, & Sabiston, 2015).  

All participants in the present study achieved a score of greater than 23 and resulted in a group 

mean of 75 (SD=45) (Table 1). Participants refrained from alcohol and caffeine consumption 12 

hours prior to the exercise protocol, did not engage in a severe exercise session 48 hours prior to 

the protocol, and were encouraged to get eight hours of sleep the night before data collection.  

All testing sessions took place during the mid-afternoon (i.e., 2 to 4pm).  Participants signed 

consent forms approved by the Office of Research Ethics, University of Western Ontario, and 

this work was conducted according to the Declaration of Helsinki. Finally, no participant 

mortality was associated with recruitment.  
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Table 1. Participant scores on the Godin Leisure Time Exercise Quotient (GLTEQ) for 

Experiment 1. 

 
aLight Activity Frequency = Minimal effort e.g., yoga, bowling, golf, easy-walking 
bModerate Activity Frequency = Not exhausting e.g., easy bicycling, fast walking, leisure 

swimming 
cVigorous Activity Frequency = Rapid heart-beat e.g., running, vigorous swimming, Long-

distance bicycling, jogging 
dNote: GLETQ = Godin Leisure Activity Time Quotient;  

Leisure Score Index (LSI) Formulation = (9 × Vigorous) + (5 × Moderate) + (3 × Light)  
eClassification: LSI ≤ 23 = Insufficiently Active; LSI ≥ 23 = Active 

 

Exercise Intervention 

During the exercise intervention participants sat on a cycle ergometer (Monark 818E 

Ergometer, Monark Exercise AB, Vansbro, Sweden) with a heart-rate monitor strapped to their 

chest (Polar Wearlink+ Coded Transmitter, Polar Electro Inc., Lake Success, NY, USA).  

Participants adjusted the ergometer seat height and handlebar to their individual morphological 

characteristics and pedaled on the ergometer in the conventional seated position.   

The first 2.5 minutes of the intervention included a warm-up at approximately 90W, with 

the precaution that heart rate did not exceed 50% of their maximum (Karvonen Formulae: see 

Robergs & Landwehr, 2002). Following the warm-up, participants exercised at a moderate-to-

vigorous intensity (i.e., 60-85% of predicted maximum heart rate) for 10 minutes.  The 

Participant# Activity Frequency (hours/week) GLTEQ 

(LSI)d 

Classificatione 

Lighta Moderateb Vigorousc 

1 10 0 2 48 Active 

2 6 0 1 27 Active 

3 25 15 3 177 Active 

4 5 2 6 79 Active 

5 0 5 2 43 Active 

6 1 4 3 50 Active 

7 5 2 3 52 Active 

8 3 3 3 51 Active 

9 5 7 8 122 Active 

10 12 1 0 41 Active 

11 1 2 3 40 Active 

12 5 5 10 130 Active 

13 7 2 6 85 Active 

14 0 6 0 30 Active 
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moderate-to-vigorous exercise definition used here was based on nomenclature adopted from the 

Surgeon General’s Report on Physical Activity and Health (US Department of Health and 

Human Services, 1996) and reflects an exercise intensity that promotes cardiorespiratory fitness 

as well as being sufficient for everyday health. During this timeframe, participants adjusted the 

resistance lever on the ergometer to maintain the instructed target heart rate level; however, 

when necessary I prompted the participant to modify the resistance level. Following the 10-

minute exercise session participants completed a 2.5-minute cool-down period.  

Oculomotor task 

Participants sat in front of a tabletop (height 775 mm) during the oculomotor assessment 

with their head placed in a head/chin rest.  A 30-inch LCD monitor (60 Hz, 8 ms response rate, 

1,280 x 960 pixels; Dell 3007WFP, Round Rock, TX, USA) located at participants’ midline and 

550 mm from the front edge of the tabletop was used to present visual stimuli. The gaze location 

of participants’ left eye was measured via a video-based eye-tracking system (Eye-Trac6: 

Applied Sciences Laboratories, Bedford, MA, USA) sampling at 360 Hz. In addition to the 

stimulus monitor, two additional monitors visible only to the experimenter provided real-time 

point of gaze information, trial-by-trial saccade kinematics (e.g. displacement, velocity), and 

information related to the accuracy of the eye tracking system (i.e., to perform a calibration and 

recalibration when necessary).  Computer events and the presentation of visual stimuli were 

controlled via MATLAB (7.6: The MathWorks, Natick, MA, USA) and the Psychophysics 

Toolbox extensions (ver 3.0; Brainard 1997). The lights in the experimental suite were 

extinguished throughout data collection. 

 Visual stimuli were presented on a high-contrast black background and included a white 

fixation cross (1°:  135 cd/cm2) located at the centre of the monitor and target stimuli located at 

amplitudes 10.5° (i.e., proximal target) and 15.5° (i.e., distal target) left and right of the fixation 

and in the same horizontal axis.  Target stimuli were filled yellow circles (127 cd/cm2) 2.7° in 

diameter.  At the start of a trial the fixation cross was presented and signaled participants to 

direct their gaze to its location. Once a stable gaze was attained (+1.5° for 420 ms) a randomized 

foreperiod was initiated (i.e., 1,000 to 2,000 ms). After the foreperiod, the fixation cross was 

extinguished (i.e., gap paradigm) and a target stimulus was presented 200 ms thereafter. The 

onset of the target stimulus cued participants to pro- (i.e., saccade to the veridical target location) 
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or antisaccade (i.e., saccade mirror-symmetrical to the target stimulus) “as quickly and 

accurately as possible”. Targets were presented for 50 ms.  The brief target presentation was 

used to preclude extraretinal feedback for pro- and antisaccades (Heath, Weiler, Marriott, & 

Welsh, 2011).  

Pro- and antisaccades were completed in separate and randomly ordered blocks. Within 

each block, each target location (i.e., left and right of fixation) and target eccentricity (i.e., 10.5° 

and 15.5°) combination was ordered randomly and presented on 20 trials.  Once the pre-exercise 

oculomotor assessment was completed participants immediately began their single-bout exercise 

task.  Following the single-bout of exercise a second oculomotor assessment (i.e., post-exercise) 

was completed. The post-exercise assessment was completed from between one and three 

minutes following the cool-down period (i.e., when an individual participant’s heart rate was 

within 10-15 beats per minute of their resting value).  Pre- and post-exercise oculomotor 

assessments required between 12-15 minutes for completion. 

Data Reduction, Dependent Variables and Statistical Analysis 

Displacement data were filtered offline using a dual-pass Butterworth filter employing a 

low-pass cut-off frequency of 15 Hz. A five-point central-finite difference algorithm was used to 

compute instantaneous velocities.  Acceleration data were similarly obtained from the velocity 

data.  Saccade onset was determined via velocity and acceleration values that exceeded 30°/s and 

8,000° /s2, respectively. In turn, saccade offset was determined when velocity fell below 30°/s 

for 15 consecutive samples (i.e., 42 ms).   

Dependent variables were reaction time (RT: time from target onset to saccade onset), the 

coefficient of variation (CV) of RT (standard deviation/mean x 100%), the percentage of 

directional errors (i.e., the completion of a prosaccade instead of an instructed antisaccade, and 

vice versa) and saccade amplitude in the primary (i.e., horizontal) movement direction. 

Dependent variables were examined via 2 (time: pre-exercise, post-exercise) by 2 (task: 

prosaccade, antisaccade) by 2 (target eccentricity: 10.5° [proximal target], 15.5° [distal target]) 

fully repeated measures analysis of variance (ANOVA)1.  Trials involving an express saccade 

                                                 
1 The visual field (i.e., left versus right of fixation) associated with target presentation has been shown to not 

reliably influence antisaccade metrics (e.g., West et al. 2009) and for that reason it was not included in the current 

ANOVA model.   
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(i.e., RT < 100 ms) (Wenban-Smith & Findlay, 1991), an amplitude less than 2° or greater than 

two standard deviations above a participant- and target-specific mean (Weiler & Heath, 2014), 

were excluded from data analysis.  Less than 5% of trials were removed due the aforementioned 

criteria.   

Results 

Reaction time and reaction time variability. 

Figure 1 shows percent frequency histograms for pro- and antisaccade RTs at pre- and 

post-exercise assessments. The panels graphically depict that antisaccade RTs were longer than 

prosaccades and qualitatively demonstrates the top-down and time-consuming demands of 

antisaccades. In terms of quantitative analyses, RT produced a main effect for task, F(1,13) = 

71.99, p < 0.001, p
2 = 0.85, and a time by task interaction, F(1,13) = 11.49, p < 0.01, p

2 = 0.47. 

Figure 2 shows that prosaccade RTs did not reliably vary between pre- and post-exercise 

assessments (t(13) =0.45, p = 0.66, dz = 0.17), whereas antisaccades RTs were shorter for the 

post- than the pre-exercise assessment (t(13) = 3.88, p < 0.01, dz = 1.04).   

 The CV of RT produced main effects of time, F(1,13) = 11.54, p < 0.01, p
2 = 0.47, and 

task, F(1,13) = 48.41, p < 0.001, p
2 = 0.79, and the two variables did not reliably interact, 

F(1,13) = 0.28, p = 0.60, p
2 = 0.02.  Accordingly, pre-exercise (24, SD=9) and prosaccade (28, 

SD=9) CV values were larger than their post-exercise (22, SD=10) and antisaccade counterparts 

(18, SD=6). 
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Figure 1. Experiment 1: Percent frequency histograms for pro- (top panels) and antisaccade 

(bottom panels) reaction time (RT: ms) at pre- and post-exercise assessments. The bins for each 

figure begin at 100 ms and continue to 500 ms with individual bin widths of 20 ms. 
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Figure 2. Experiments 1 and 2: The large panels show pro- and antisaccade reaction time (RT: 

ms) for Experiment 1 (top panel) and Experiment 2 (bottom panel) as a function of pre- and post-

exercise assessments (i.e., Experiment 1) and pre- and post-break assessment (Experiment 2). 

Error bars represent the 95% within-participants’ confidence intervals computed via the mean-

squared error term for the time by task interaction (Loftus and Masson, 1994).  The offset panels 

in each figure show mean assessment difference scores (Experiment 1: pre-exercise minus post-

exercise; Experiment 2: pre-break minus post-break) computed separately for pro- and 

antisaccades.  Error bars represent 95% between-participant confidence intervals and the absence 

of overlap between an error bar and zero (i.e., the horizontal line) can be interpreted as a reliable 

effect inclusive to a test of the null hypothesis (Cumming, 2013). 
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Directional errors and endpoint accuracy. 

Results for directional errors indicated a main effect for task, F(1,13) = 31.14, p<0.001, 

p
2 = 0.71, such that antisaccades (11%, SD=9) produced more directional errors than 

prosaccades (1%, SD=8).  As well, and given the objective of this study, Figure 3 shows that 

neither the main effect of time, F(1,13) = 2.41, p=0.15, p
2 = 0.16, nor the time by task 

interaction, F(1,13) = 2.81, p = 0.12, p
2 = 0.18, was significant. In other words, the exercise 

intervention did not reliably modify the percentage of pro- and antisaccade directional errors. 

Figure 4 shows the percent frequency histograms for pro- and antisaccade amplitudes 

and demonstrates that antisaccade amplitudes were shorter than prosaccades – an expected 

finding attributed to the fact that vector inversion renders motor output specified via a less 

accurate representation of target location (Heath, Gillen & Weiler, 2015).  In terms of 

quantitative analyses, results yielded a main effect for task, F(1,13) = 5.70, p < 0.05, p
2 = 0.31, 

and a task by target eccentricity interaction, F(1,13) = 46.59, p < 0.001, p
2 = 0.78. Figure 5 

shows that prosaccade amplitudes increased with increasing target eccentricity (t(13)=11.43, p < 

0.001, dz = 3.15), whereas antisaccade amplitudes did not (t(13) = 1.05, p = 0.32, dz = 0.32).  

Further, results did not yield a reliable effect of time nor any higher-order interaction involving 

time, all F(1,13) < 1.05, ps > 0.32, all p
2 <0.07. 
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Figure 3. Experiment 1: Percentage of pro- and antisaccade directional errors (%) at pre- and 

post-exercise assessments. Error bars represent the 95% within-participants’ confidence interval 

computed via the mean-squared error term for the time by task interaction (Loftus and Masson, 

1994). 
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Figure 4. Experiment 1: Percent frequency histograms for pro- (top panels) and antisaccade 

(bottom panels) amplitudes (AMP: ) at pre- and post-exercise assessments. The bins for each 

figure at start at 0 and continue to 30 with individual bin widths of 2. 
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Figure 5. Experiment 1: The large panels in this figure show pro- and antisaccade amplitude () 

as a function of pre- and post-exercise assessment for the proximal (top panel) and distal (bottom 

panel) targets. Error bars represent the 95% within-participants’ confidence interval computed 

via the mean-squared error term for the time by task interaction (Loftus and Masson, 1994).  The 

offset panels show mean between-assessment difference scores (pre-exercise minus post-

exercise) computed separately for pro- and antisaccades. Error bars represent 95% between-

participant confidence intervals and the absence of overlap between an error bar and zero (i.e., 

the horizontal line) can be interpreted as a reliable effect inclusive to a test of the null hypothesis 

(Cumming, 2013).   
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Experiment 1:  Discussion 

Antisaccade – but not prosaccade – RTs decreased from the pre- to post-exercise 

assessment.  One interpretation of this finding is that a 10-minute single-bout of moderate-to-

vigorous intensity aerobic exercise improves executive-related oculomotor control.  

Alternatively, it is possible that the post-exercise reduction in antisaccade RT relates to a practice 

effect; that is, from pre- to post-exercise assessments participants were better able to evoke the 

task-set appropriate for the top-down demands of antisaccades. To address this issue, I recruited 

a separate corpus of participants for Experiment 2 and included pro- and antisaccade assessments 

across separate sessions interspersed by a ‘break’ interval (i.e., participants sat and read a 

magazine for 15 minutes between pre- and post-break oculomotor assessments). 

Experiment 2 

Methods 

Participants 

I recruited twelve participants (6 female, 6 male; age range = 19-26 years of age) for this 

experiment, and the same inclusion/exclusion criteria and ethics protocol used in Experiment 1 

were used here (see Table 2 for participant-specific GLTEQ values).   
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Table 2. Participant scores on the Godin Leisure Time Exercise Quotient (GLTEQ) for 

Experiment 2. 

 
aLight Activity Frequency = Minimal effort e.g., yoga, bowling, golf, easy-walking 
bModerate Activity Frequency = Not exhausting e.g., easy bicycling, fast walking, leisure 

swimming 
cVigorous Activity Frequency = Rapid heart-beat e.g., running, vigorous swimming, Long-

distance bicycling, jogging 
dNote: GLETQ = Godin Leisure Activity Time Quotient;  

Leisure Score Index (LSI) Formulation = (9 × Vigorous) + (5 × Moderate) + (3 × Light)  
eClassification: LSI ≤ 23 = Insufficiently Active; LSI ≥ 23 = Active 

Intervention and Oculomotor task 

The only difference between Experiment 1 and the present experiment is that I did not 

employ an exercise intervention; rather, following the initial oculomotor assessment (i.e., pre-

break) participants sat and read a magazine for 15 minutes before completing their second 

oculomotor assessment (i.e., post-break).  As such, Experiment 2 was designed to determine 

whether the post-exercise antisaccade RT benefit observed in Experiment 1 was specific to the 

aerobic intervention, or is attributed a practice-related performance benefit. 

Data Reduction, Dependent Variables and Statistical Analysis 

Data post-processing and analyses were the same as Experiment 1.  I removed less than 

4% of trials from the final data set (see outlier criterion defined in Experiment 1). 

Participant# 

 

Activity Frequency (hours/week) GLTEQ 

(LSI)d 

Classificatione 

Lighta Moderateb Vigorousc 

1 7 2 2 49 Active 

2 3 3 1 33 Active 

3 10 4 0 50 Active 

4 12 5 6 115 Active 

5 2 5 3 58 Active 

6 8 2 4 70 Active 

7 7 1 1 35 Active 

8 5 3 0 30 Active 

9 1 7 6 92 Active 

10 2 4 1 35 Active 

11 3 5 5 79 Active 

12 3 2 5 64 Active 
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Results 

Reaction time and reaction time variability. 

Figure 6 presents percent frequency histograms for pro- and antisaccade RTs at pre- and 

post-break intervals. RT produced a main effect for task, F(1,11) = 57.67, p < 0.001, p
2 = 0.84: 

RTs for prosaccades (233 ms, SD= 29) were shorter than antisaccades (312 ms, SD= 44).  

Further, and given the primary objective of this study, results for RT did not produce a main 

effect for time or a task by time interaction, all F(1,11) < 1.01, ps > 0.36, all p
2 < 0.03; that is, 

neither pro- nor antisaccade RTs decreased from the pre- to post-break assessment (Figure 2). 

 The CV of RT produced main a main effect of task, F(1,11) = 16.70, p < 0.01, p
2 = 0.60, 

such that prosaccade values (28, SD=11) were larger than antisaccades (18, SD=8).  As in 

Experiment 1, this variable did not elicit a reliable time by task interaction, F(1,11) =1.41, p = 

0.30, p
2 = 0.11.  
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Figure 6. Experiment 2: Percent frequency histograms for pro- (top panels) and antisaccade 

(bottom panels) reaction time (RT: ms) at the pre- and post-break assessments. The bins for each 

figure begin at 100 ms and continue to 500 ms with individual bin widths of 20 ms. 
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Directional errors and endpoint accuracy. 

Antisaccades (14%, SD=28) produced more directional errors than prosaccades (2%, 

SD=6), F(1,11) = 6.54, p < 0.05, p
2 = 0.37, and Figure 7 shows that neither the main effect of 

time, nor the time by task interaction, all F(1,11) < 1.90, ps > 0.19; all p
2 < 0.01, were 

significant. 

 

Figure 7. Experiment 2: Percentage of pro- and antisaccade directional errors (%) at pre- and 

post-break assessments. Error bars represent the 95% within-participants’ confidence interval 

computed via the mean-squared error term for the task by time interaction (Loftus and Masson, 

1994). 

 Figure 8 shows percent frequency histograms for amplitude. Amplitude produced a main 

effect for target eccentricity, F(1,11) = 67.37, p < 0.001, p
2 = 0.86, and an interaction involving 

task by target eccentricity, F(1,11) = 114.27, p < 0.001, p
2 = 0.91.  Prosaccade amplitudes 

increased with increasing target eccentricity (t(11) = 19.14, p < 0.001, dz = 6.89), whereas 

antisaccade amplitudes did not reliably vary with target eccentricity (t(11) = 1.44, p = 0.18, dz = 
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0.45) (Figure 9). Results did not yield a main effect for time, or any higher-order interaction 

involving time, all F(1,11) < 1.11, ps > 0.74, all p
2 = <0.01. 

 

 

Figure 8. Experiment 2: Percent frequency histograms for pro- (top panels) and antisaccade 

(bottom panels) amplitudes (AMP: ) at pre- and post-break assessments. The bins for each 

figure start at 0 and continue to 30 with individual bin widths of 2. 
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Figure 9. Experiment 2: The large panels in this figure show pro- and antisaccade amplitude () 

as a function of pre- and post-break assessments for the proximal (top panel) and distal (bottom 

panel) target eccentricities. Error bars represent the 95% within-participants’ confidence interval 

computed via the mean-squared error term for the time by task interaction (Loftus and Masson, 

1994). The offset panels show mean between-assessment difference scores (pre-break minus 

post-break) computed separately for pro- and antisaccades. Error bars represent 95% between-

participant confidence intervals and the absence of overlap between an error bar and zero (i.e., 

the horizontal line) can be interpreted as a reliable effect inclusive to a test of the null hypothesis 

(Cumming, 2013). 
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Between-experiment comparison of GLETQ and Pre-exercise assessment pro- and antisaccade 

RTs. 

GLETQ values did not reliably differ between Experiments 1 and 2 (t(24) < 1) – a result 

demonstrating equivalent between-experiment engagement in leisure time physical activity.   As 

well, I contrasted between-experiment pre-exercise and pre-break pro- and antisaccade RTs via 2 

(Experiment: Experiment 1, Experiment 2) by 2 (task: pro-, antisaccade) mixed-groups ANOVA. 

Results did not elicit reliable main effects or an interaction, all F < 1.  Thus, participants in 

Experiments 1 and 2 exhibited comparable baseline oculomotor performance. 

Experiment 2: Discussion 

Pro- and antisaccade metrics did not reliably vary from the pre- to post-break 

assessments. As will be outlined in more detail below, such findings support previous work 

demonstrating that pro- and antisaccade performance remains stable over repeated testing 

sessions (Klein & Berg, 2001; Roy-Byrne, Radant, Wingerson, & Cowley, 1995), and further 

evinces that the post-exercise antisaccade RT benefit in Experiment 1 cannot be attributed to a 

practice-related performance benefit. 

General Discussion 

Experiment 1 examined whether a 10-minute single-bout of moderate-to-vigorous 

intensity aerobic exercise differentially influenced pre- and post-exercise pro- and antisaccade 

control.  I included both pro- and antisaccades to determine whether a putative exercise-based 

change to oculomotor is specific to an executive task.  For Experiment 2, I examined the same 

tasks when completed in separate sessions interspersed by a rest break to determine whether 

changes in oculomotor control are exercise-specific.  In outlining my findings, I will first discuss 

the general difference between pro- and antisaccade metrics, and subsequently address how 

aerobic exercise influenced performance for each task. 

Pro- and antisaccade RT, directional errors and endpoint accuracy.  

Experiments 1 and 2 showed that antisaccade RTs were longer, produced more 

directional errors and showed decreased amplitude scaling (i.e., reduced accuracy) than 
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prosaccades.  This is an expected finding attributed to the fact that antisaccades require the time-

consuming and executive demands of response suppression (i.e., inhibiting a pre-potent 

prosaccade) and vector inversion (i.e., decoupling the spatial relations between stimulus and 

response). In particular, the constituent elements of the antisaccade task have been linked to 

increased activity of:  (1) prefrontal executive networks (Everling & Johnston, 2013) that support 

maintenance of high-level tasks rules and, (2) frontoparietal networks mediating response 

suppression and vector inversion (Connolly, Goodale, Desouza, Menon, & Vilis, 2000; Ford et 

al. 2005; for review see Munoz & Everling, 2004).  In turn, the more efficient and effective 

performance of prosaccades relates to the fact that actions with overlapping stimulus and 

response spatial relations are mediated via direct retinotopic motor maps within the superior 

colliculus (SC).  Thus, the RT findings from the present work indicate that the antisaccade task 

that I conducted provided a viable tool for examining executive-related oculomotor control.  

Pre- and post-exercise pro- and antisaccade performance:  Reaction time modulation is selective 

to executive-related oculomotor control.  

Some work has shown that subcortical structures exhibit exercise-based morphological 

changes.  For example, magnetic resonance imaging has shown that higher-fit children (e.g., VO2 

max average of 51.5 mL/kg/min) have greater dorsal striatal and hippocampal volumes than their 

lower fit (e.g., VO2 max average of 36.4 mL/kg/min) counterparts, and is a result linked to 

improved performance on memory-based tasks (Chaddock, Erickson, Prakash, Kim, & Voss et 

al., 2010a; Chaddock, Erickson, Prakash, Vanpatter, & Voss et al., 2010b)2.  I am, however, 

unaware of any work reporting that single-bout or chronic exercise programs modulate the 

activity of midbrain structures (e.g., SC) or influence executive-related functions.  Moreover, 

that prosaccade metrics in Experiment 1 did not reliably vary from the pre- to post-exercise 

assessment supports the view that a single-bout of exercise does not alter and/or benefit SC 

activity.  In contrast, Experiment 1 showed a 27 ms reduction in antisaccade RTs from the pre- to 

post-exercise assessment and this result was not associated with concomitant changes in the 

coefficient of variation of RT, directional errors or endpoint accuracy. The absence of a pre-to-

                                                 
2 Although the hippocampus lies beneath the cerebral cortex it has not been directly identified as a subcortical 

structure; rather, it is often referred to as being part of the paleocortex (Kandel et al. 2012) or a transition zone 

between the neo- and allocortex.  Regardless, we include the hippocampus here to demonstrate that structures 

distinct from the neocortex exhibit exercise-related plasticity. 
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post change in directional errors and endpoint accuracy coupled with the non-selective task-

related change in the coefficient of variation of RT represent important findings because they 

demonstrate that the post-exercise RT modulation cannot be tied to a speed-accuracy trade-off 

(Heath, Samani, Tremblay, & Elliott, 2016a).   In other words, participants did not simply 

decrease their post-intervention antisaccade RTs at the cost of decreased accuracy.  Furthermore, 

in the oculomotor control literature the post-exercise antisaccade RT reduction reported here can 

only be described as ‘large’ in magnitude (Munoz & Everling, 2004; DeSimone, Everling, & 

Heath, 2015) and is an interpretation supported via the large effect size (i.e., dz = 1.04) associated 

with the comparison of pre- and post-exercise antisaccade RTs (Cohen 1990).  Given these 

findings, a tentative conclusion is that the exercise intervention used here provided a ‘boost’ to 

executive-related oculomotor control mechanisms. 

An alternate explanation for the post-exercise modulation of antisaccade RTs is that the 

cognitively challenging nature of the task coupled with its evaluation across temporally proximal 

assessment (i.e., pre- and post-exercise oculomotor assessments were separated by 

approximately 15 minutes) allowed participants to develop a refined set of task-rules to improve 

response suppression and vector inversion.  Put another way, a ‘practice effect’ may account for 

the improved post-exercise antisaccade RTs.  In addressing this issue, it is noted that antisaccade 

RTs are stable when tested in deliberate practice sessions completed over a 4-week period (Klein 

& Berg, 2001; Roy-Byrne et al., 1995).  Moreover, previous work has shown that within-session 

antisaccade RTs remain stable even when performed across an extensive (i.e., > 500) number of 

trials (Gillen & Heath, 2014a; 2014b; Heath et al., 2015; Weiler et al., 2014; 2015).  Thus, 

indirect evidence suggests that the change in antisaccade RT observed here cannot be attributed 

to a practice effect. More directly, Experiment 2 demonstrated that pro- and antisaccade RTs (as 

well as directional errors and accuracy) did not reliably vary when oculomotor assessments were 

separated by a 15-minute interval that did not include an aerobic task.  Accordingly, convergent 

findings from Experiments 1 and 2 indicate an exercise-specific benefit to the executive-related 

planning mechanisms supporting antisaccades.   

An important issue to address is why the 10-minute exercise duration used here improved 

executive control, whereas previous work has reported that the benefit is generally limited to 

durations greater than 20-minutes (Chang et al. 2012; Lambourne & Tomporowski, 2010).  One 

possible explanation is that previous work did not examine executive tasks providing for a 
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specific measure of executive control.  For example, Yagi, Coburn, Estes, and Arruda (1999) had 

participants perform an oddball identification task (i.e., identify an uncommon shape/sound from 

familiar shape/sound presentation strings) pre and post a 10-minute single-bout of aerobic 

exercise (i.e., cycle ergometer at 130-150 beats/min).  Similarly, Pontifex and Hillman (2007) 

had participants complete a single-bout (~12-minute) of aerobic exercise (60% heart rate 

maximum) and examined pre- and post-exercise performance on a flanker task.  Results showed 

that oddball and flanker tasks did not yield reliable post-exercise improvements in RT or 

response accuracy.  The authors therefore reported that their exercise durations did not provide a 

sufficient time frame to benefit executive control.  It is, however, important to recognize that 

oddball and flanker tasks entail language-based and visuospatial discrimination that do not 

provide a direct measure of executive control (for detailed list of experiments with exercise 

durations < 20 minutes see Table 2 of Lambourne & Tomporowski, 2010).  A second possible 

explanation is that previous work employing exercise durations less than 20 minutes were 

purpose designed to examine cognitive functions apart from executive control.  Indeed, studies 

employing simple/choice RT and perception-based visual discrimination (e.g., Bard & Fleury, 

1978; Bender & McGlynn, 1977; McGlynn, Laughlin, & Rowe et al., 1979) reported null post-

exercise cognitive benefits.  In contrast to the above, the antisaccade task employed here is a 

specific executive task and the increase in antisaccade RTs relative to the prosaccades is 

overwhelmingly related to response suppression (Olk & Kingstone, 2003; Weiler, Holmes, 

Mulla, & Heath, 2011) – a processing demand directly tied to executive control (Norman & 

Shallice, 1986).  Moreover, antisaccades are mediated via frontoparietal structures (Ford et al., 

2005; Zhang & Barash, 2000; for review see Everling & Johnston, 2013) that show task-specific 

modulation following single-bout (Hiura, Mizuno, & Fujimoto, 2010; for reviews see Siefert & 

Secher, 2011; Verburgh et al., 2014) and chronic (Voss et al., 2010) exercise training.  I therefore 

propose that the hands- and language-free nature of antisaccades coupled with the task’s reliance 

on cortical structures sensitive to exercise-based modulations make it an ideal tool for identifying 

subtle executive changes associated with a brief duration of aerobic exercise (see also Kaufman, 

Pratt, Levine, & Black, 2012; Heath et al., 2016b; 2017; Peltsch, Hemraj, Garcia, & Munoz, 

2014).  
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Study limitations and future directions. 

I recognize that interpretation and extension of my work may be limited to several 

methodological traits.  First, the moderate-to-vigorous intensity exercise intervention used here 

was predicated on participants maximum predicted heart rate (i.e., Karvonen formulae: HRmax).  

This measure exhibits considerable between-participant variability and is dependent on 

individual lifestyle characteristics (i.e., body weight, level of physical fitness) (Whaley, 

Kaminsky, Dwyer, Getchell, & Norton, 1992).  The HRmax may have therefore provided a 

limited basis for ensuring comparable between-participant exercise intensity and aerobic output.  

Future work should employ a more quantitative determinant of exercise intensity (i.e., 

participant-specific VO2max or lactate threshold values) to identify the intensity level benefiting 

executive control following a short-duration exercise session.  Second, the participants used in 

this study were young and reported a healthy lifestyle as determined via the GLTEQ.  It is 

therefore unclear whether the exercise intervention used here would serve to produce an 

executive ‘boost’ for individuals outside the current age range, individuals who do not partake in 

a physically active lifestyle, and individuals in the prodromal stages of Alzheimer’s disease (i.e., 

mild cognitive impairment (MCI), cognitive impairment not dementia (CIND)). An important 

research question is represented here, given previous work showing that chronic (i.e., 6-month) 

aerobic and/or resistance training programs improve executive-related oculomotor control in the 

MCI and CIND populations (Heath et al. 2016b; 2017).  It may be that individuals from the 

above-mentioned groups who are unable to commit to chronic exercise programs or are 

physically limited to short-duration exercise sessions may accrue an executive benefit from the 

10-minute single-bout protocol used here.  Third, it is unclear how long the executive benefit 

persists post-exercise.  In the present study, the post-exercise oculomotor assessment was 

completed within 18 minutes of the exercise intervention (see Methods: Oculomotor Task).  

Chang et al’s (2012) meta-analysis reported that for exercise durations of 20 minutes or greater 

the largest positive effect on executive control was observed when executive performance was 

examined 11-20 minutes post-exercise (i.e., the time frame used here), whereas longer post-

exercise delays (>20 minutes) produced smaller to negligible effects.  It would therefore be 

interesting to employ the antisaccade task across a range of post-exercise intervals to identify the 

time frame by which executive performance benefits persist. Additionally, subsequent work 

should employ shorter intervals (<10 minutes) as the minimum time frame for the antisaccade 
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benefit, which would further our knowledge to the extent that an aerobic exercise intervention 

could serve to produce this executive ‘boost’. 

Conclusions 

The present findings demonstrate that a 10-minute single-bout of aerobic exercise at a moderate-

to-vigorous intensity improved antisaccade – but not prosaccade – planning times.  I believe that 

such results add importantly to the literature insomuch as they demonstrate that the antisaccade 

task provides a reliable basis to detect subtle improvements to executive control for exercise 

durations as brief as 10 minutes.    
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