
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

5-11-2017 12:00 AM

Computing Limit Points of Quasi-components of Regular Chains Computing Limit Points of Quasi-components of Regular Chains

and its Applications and its Applications

Parisa Alvandi, The University of Western Ontario

Supervisor: Dr. Marc Moreno Maza, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree

in Computer Science

© Parisa Alvandi 2017

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Alvandi, Parisa, "Computing Limit Points of Quasi-components of Regular Chains and its Applications"
(2017). Electronic Thesis and Dissertation Repository. 4565.
https://ir.lib.uwo.ca/etd/4565

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F4565&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ir.lib.uwo.ca%2Fetd%2F4565&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/4565?utm_source=ir.lib.uwo.ca%2Fetd%2F4565&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract
Computing limits is a fundamental task in mathematics and different mathematical con-

cepts are defined in terms of limit computations. Among these mathematical concepts, we are
interested in three different types of limit computations: first, computing the limit points of so-
lutions of polynomial systems represented by regular chains, second, computing tangent cones
of space curves at their singular points which can be viewed as computing limit of secant lines,
and third, computing the limit of real multivariate rational functions.

For computing the limit of solutions of polynomial systems represented by regular chains,
we present two different methods based on Puiseux series expansions and linear changes of
coordinates. The first method, which is based on Puiseux series expansions, addresses the
problem of computing real and complex limit points corresponding to regular chains of di-
mension one. The second method studies regular chains under changes of coordinates. It
especially computes the limit points corresponding to regular chains of dimension higher than
one for some cases. we consider strategies where these changes of coordinates can be either
generic or guided by the input.

For computing the Puiseux parametrizations corresponding to regular chains of dimension
one, we rely on extended Hensel construction (EHC). The Extended Hensel Construction is
a procedure which, for an input bivariate polynomial with complex coefficients, can serve the
same purpose as the Newton-Puiseux algorithm, and, for the multivariate case, can be seen as
an effective variant of Jung-Abhyankar Theorem. We show that the EHC requires only linear
algebra and univariate polynomial arithmetic. We deduce complexity estimates and report on
a software implementation together with experimental results.

We also outline a method for computing the tangent cone of a space curve at any of its
points. We rely on the theory of regular chains and Puiseux series expansions. Our approach is
novel in that it explicitly constructs the tangent cone at arbitrary and possibly irrational points
without using a standard basis.

We also present an algorithm for determining the existence of the limit of a real multivariate
rational function q at a given point which is an isolated zero of the denominator of q. When
the limit exists, the algorithm computes it, without making any assumption on the number
of variables. A process, which extends the work of Cadavid, Molina and Velez, reduces the
multivariate setting to computing limits of bivariate rational functions. By using regular chain
theory and triangular decomposition of semi-algebraic systems, we avoid the computation of
singular loci and the decomposition of algebraic sets into irreducible components.

Keywords: Regular chains, quasi-components, limit points, tangent cone, limit of multi-
variate rational functions, extended Hensel construction.

i

Acknowlegements

I would like to thank all the people who contributed in some way to the work described in this
thesis. First, I would like to express my sincere appreciation and gratitude to professor Marc
Moreno Maza for his guidance during my research. His support and inspiring suggestions
have been precious for the accomplishments of this thesis content. During my study at The
University of Western Ontario, he contributed to a rewarding graduate school experience by
supporting my attendance at various conferences, engaging me in new ideas, and demanding a
high quality of work in all my endeavors.

Additionally, I would like to thank my committee members Professor Agnes Szanto, Pro-
fessor Jan Minac, Professor Lila Kari, and Professor Olga Veksler for their interest in my work.

Every result described in this thesis was accomplished with the help and support of fellow
labmates and collaborators. I feel honoured to collaborate with my brilliant, insightful co-
authors: Professor Amir Hashemi, Professor Éric Schost, Dr. Changbo Chen, Dr. Paul Vrbik,
Dr. Masoud Ataei, and Mahsa Kazemi.

Finally, I would like to acknowledge friends and family who supported me during my time
here. First and foremost, I would like to thank my mother and father , Fariba and Hossein, and
my brothers, Mostafa, Mohammad, and Reza, for their great love, support and sacrifices. I also
would like to thank my friends Sugi Magesan and Elham Karami for supporting me all along
this way. I am also grateful for their help in proofreading some chapters of my thesis.

ii

Contents

Abstract i

Acknowlegements i

List of Algorithms vi

List of Figures vii

List of Tables viii

1 Overview 1
1.1 Goals . 8
1.2 Thesis accomplishments . 9

1.2.1 Computing limit points of quasi-components of regular chains of di-
mension one. 10

1.2.2 Improving the extended Hensel construction. 10
1.2.3 Computing the real limit points of the quasi-component of a regular

chain of dimension one. 11
1.2.4 Studying regular chains under changes of coordinates. 11
1.2.5 Introducing new tools for computing tangent cones of space curves. . . 11
1.2.6 Computing limit of real multivariate rational functions. 11
1.2.7 Separating the real and complex branches of space curves. 12
1.2.8 Thesis contribution in RegularChains and PowerSeries libraries. . . 13

1.3 Contribution statement . 14
1.4 Thesis outline . 14

2 Background and Related Work 16
2.1 Solving polynomial systems . 16

2.1.1 Limit points . 21
2.2 Power series and Puiseux expansions . 21
2.3 The problem and related work . 23

3 Extended Hensel Construction 26
3.1 Introduction . 26
3.2 Extended Hensel construction . 28

3.2.1 Extended Hensel construction of multivariate polynomials 32
3.2.2 Complete factorization in C(〈Y∗〉)[X] 34

iii

3.3 On the Yun-Moses polynomials . 34
3.3.1 Computing the Wλ . 37
3.3.2 Complexity analysis . 38

3.4 Lifting the factors . 39
3.4.1 Complexity analysis . 41

3.5 Experimentation . 41

4 Computing Limit Points via Puiseux Series Expansions 44
4.1 Introduction . 44
4.2 Preliminaries . 47

4.2.1 Basic techniques . 49
4.3 Puiseux expansions of a regular chain . 52
4.4 Puiseux parametrization in finite accuracy . 54
4.5 Computing in finite accuracy . 56
4.6 Accuracy estimates . 60
4.7 Algorithm . 62
4.8 Experimentation . 64
4.9 Concluding remarks . 65

5 Real Limit Points of Space Curves 66
5.1 Introduction . 66
5.2 Real limit points . 68

5.2.1 Real branches of bivariate polynomials 70
5.2.2 Real branches of space curves . 73

5.3 Experimentation . 74

6 Computing Limit Points via Changes of Coordinates 76
6.1 Introduction . 76
6.2 Preliminaries . 77
6.3 Algorithm for linear change of coordinates . 78

6.3.1 The PALGIE algorithm for the prime case 80
6.3.2 Regularity test in IsRegular(p,C,R) 89
6.3.3 The PALGIE algorithm for linear change of coordinates 89

6.4 Noether normalization and regular chains . 90
6.5 Applications of random linear changes of coordinates 91
6.6 On the computation of lim(W(T)) and sat(T) 93
6.7 Conclusion . 99

7 Tangent Cones of Space Curves 100
7.1 Introduction . 100
7.2 Preliminaries . 101

7.2.1 Tangent cone of a space curve . 102
7.2.2 Regular chains . 103

7.3 Computing intersection multiplicities in higher dimension 104
7.4 Computing tangent lines as limits of secants 105

iv

7.4.1 An algorithmic principle . 105
7.4.2 Algorithm . 107
7.4.3 Equations of tangent cones . 109
7.4.4 Examples . 110

7.5 Conclusion . 113

8 Computing Limits of Multivariate Rational Functions 115
8.1 Introduction . 115
8.2 Preliminaries . 118

8.2.1 Lagrange multipliers . 118
8.2.2 Regular chain theory . 119
8.2.3 Parametric polynomial systems . 120
8.2.4 Triangular decomposition of semi-algebraic sets 121
8.2.5 Puiseux series . 123

8.3 Basic lemmas . 123
8.4 Main Algorithm . 126
8.5 Optimizations . 130
8.6 Limits of multivariate rational functions: general case 131
8.7 Experimentation . 134
8.8 Conclusion . 135

9 Conclusion 137
9.1 Computing limit points of quasi-components of regular chains 137
9.2 Computing Puiseux expansions of bivariate polynomials 138
9.3 Computing tangent cones of space curves at their singular points 138
9.4 Computing limits of real multivariate rational functions 139

v

List of Algorithms

1 EHC Lift . 32
2 NonzeroTerm . 56
3 NewtonPuiseux . 57
4 LimitPointsAtZero . 63
5 LimitPoints . 63
6 RealPuiseuxExpansions . 72
7 RealRegularChainBranches . 74
8 IsRegular(p,C,R) . 81
9 Saturate(C,H,R) . 82
10 Extend(C,D,R) . 82
11 EnsureRank(p,R,C,R) . 83
12 EnsureLeadingCoefficient(p, v,R,C,R) . 83
13 Gcdn(q, p, v,C

−

v ,R,C,R) . 84
14 Palgie(C,R,R) . 85
15 Closure(T) . 96
16 TangentCone . 109
17 LimitAlongCurve . 127
18 RandomEllipse . 127
19 LimitInner . 129
20 Limit . 130

vi

List of Figures

1.1 The commands solve and RealRoot . 2
1.2 The Steiner surface S . 3
1.3 q(s, t) := s2 + t2 + s − t + 1 = 0 does not have any real solutions. 3
1.4 The image of the map r is contained in the surface S 4
1.5 The intersection of the image of the parametrization r with plane y = 1. 4
1.6 The intersection of Steiner surface S with plane y = 1. 5
1.7 The intersection of Steiner surface S with plane y = 1. 6
1.8 The points on Steiner surface S and the plane y = 1 which do not belong to the

intersection of the image of the parametrization r given by (1.2) and the plane
y = 1. 7

1.9 Closure of Image(r). 7
1.10 The tangent cone of the fish given by f := y2 − x2 (x + 4) = 0 at the origin . . . 8
1.11 Intersection multiplicity . 9
1.12 The surface defined by q = z around the origin. 10
1.13 A surface and the paths represented by its discriminant variety 12
1.14 Separating the branches of the curve given by f := y (x − 2)2 + x = 0 13
1.15 RegularChainBranches command for regular chain rc 13

2.1 The eve surface . 20
2.2 The real solutions of V(F) computed by RealTriangularize 20
2.3 The complex solutions of V(F) computed by Triangularize 21
2.4 Weierstrass Preparation Factorization and Extended Hensel construction 22
2.5 Extended Hensel construction applied to a bivariate polynomial 22

3.1 EHC applied to a trivariate polynomial. 26
3.2 Computational of limit points: complex and real cases. 28
3.3 Comparison of three different implementations of EHC algorithm 42

5.1 Computing the limit points of a regular chain: complex case vs real case. 67

7.1 The planner curve called ”fish” and its tangent cone at the origin 102
7.2 Limiting secants along V(x2 + y2 + z2 − 1, x2 − y2 − z). 111
7.3 Secants along V(x2 + y2 + z2 − 1) ∩ V(x2 − y2 − z(z − 1)) limiting to (0, 0, 1). . 113

8.1 The graph corresponding to f (x,y)
g(x,y) = z . 133

8.2 Limit of real bivariate rational functions . 134

vii

List of Tables

3.1 The total number of multiplications and additions of M1M2 39
3.2 Comparing EHC versus Kung-Traub’s method (timings are in seconds) 43

4.1 Removing redundant components. 64

5.1 Complex limit points vs real limit points . 75

8.1 Comparisons of the commands limit, TestLimit, and RationalFunctionLimit . . . 136

viii

Chapter 1

Overview

In computational mathematics, computer algebra, also known as symbolic computation, is an
area that develops algorithms and software for solving mathematical problems by means of
exact computation. Here, exact computation implies that mathematical entities are represented
by their formal definitions instead of using approximations. For instance, computer algebra
algorithms may represent

√
2 as the positive solution of x2 = 2 while numerical methods

would generally use a floating point approximation like 1.414213562.
The software that perform symbolic computations are called computer algebra systems.

Some of the most famous computer algebra systems include Singular, Aldor, Maple, Mathematica,
AXIOM, CoCoA, MAGMA, and many others. Development of computer algebra systems began in
1960s mainly to serve the two fields of theoretical physics and Artificial Intelligence1.

Nowadays, general-purpose computer algebra systems can solve a wide range of mathe-
matical problems from factoring an integer number, solving linear systems, determining the
real roots of a univariate polynomial to solving a system of non-linear equations, and solving a
system of partial differential equations (see Figure 1.1). Hence, computer algebra systems ma-
nipulate numbers, matrices, polynomials and other algebraic objects. These capabilities stems
from the fact that many algebraic properties can be stated in terms of closed-form expressions
and established by means of rewriting systems.

While computer algebra systems can perform highly sophisticated algebraic tasks, such as
solving (formally) a system of partial differential equations, they are much less equipped for
solving problems from analysis in a symbolic, or exact manner. Some problems in analysis,
like the manipulation of Taylor series and the calculation of limits of univariate functions, that
is essentially undergraduate univariate calculus, is available (with some limitation) in general-
purpose computer algebra systems such as Maple and Mathematica. However, limits of mul-
tivariate functions and more advanced notions of limits, e.g. topological closures, are almost
absent from such systems. For instance, Maple is not capable of computing limits of rational
functions in more than two variables.

Many fundamental concepts in mathematics are defined in terms of limits and it is desir-
able for computer algebra to implement those concepts. However, they are, by essence, hard
to compute, or even not computable, in an algorithmic fashion, say by doing finitely many

1See https://en.wikipedia.org/wiki/Computer_algebra_system for more details about computer
algebra systems, as of May 2017.

1

https://en.wikipedia.org/wiki/Computer_algebra_system

2 Chapter 1. Overview

Figure 1.1: The computer algebra system Maple uses commands solve and RealRoot to
solve polynomial systems; the command solve can solve both linear and non-linear systems;
the command RealRoot isolates the real roots of univariate polynomials in intervals.

rational operations on polynomials or matrices, over the usual coefficient fields of symbolic
computation.

Let us give an example of a limit computation process by means of computer algebra tools.
This example is taken from Computer Aided Geometric Design and uses an important question
raised in studying algebraic surfaces. Given an algebraic surface S ⊆ R3 and a parametrization
of S described by the following mapping:

r : R2 → R3

(s, t) 7→ r(s, t)

determine whether Image(r) = S holds or not. That is, determine whether every point of S can
be reached with the parametrization r.

Consider the Roman surface or Steiner surface2(see Figure 1.2) with implicit formula f =

0, where f is the following polynomials in the variables x, y, z:

f := 4 x4 − 8 yx3 + 9 x2y2 − 8 yzx2 − 5 y3x + 8 y2zx + y4

−2 y3z + 3 y2z2 − 2 yz3 + z4 − 8 yx2 + 8 zx2 + 8 y2x
−8 xyz − 2 y3 + 2 y2z − 2 yz2 + 4 x2 − 4 yx + y2.

(1.1)

With q(s, t) := s2 + t2 + s − t + 1, consider also the following map

r : R2 → R3

(s, t) 7→
(

s2

q(s,t) ,
s2+t2
q(s,t) ,

s2+s t+s+t
q(s,t)

)
,

(1.2)

2see https://en.wikipedia.org/wiki/Roman_surface for more information about Steiner, also called
Roman, surface, as of May 2017.

https://en.wikipedia.org/wiki/Roman_surface

3

Figure 1.2: The Steiner surface S (this image is taken from [86]).

We want to determine whether Image(r) = S holds or not. The Maple session shown on
Figure 1.3 proves that q(s, t) does not vanish over the reals while the Maple session shown on
Figure 1.4 implies that Image(r) ⊆ S holds.

Figure 1.3: q(s, t) := s2 + t2 + s − t + 1 = 0 does not have any real solutions.

We now verify that the equality Image(r) = S does not hold. To do so, we shall compare
the points of Image(r) satisfying y = 1 with the points of S satisfying y = 1.

First, we compute the intersection of the image of the parametrization r with the plane
y = 1. This can be determined to be the ellipse calculated in the Maple session shown on
Figure 1.5, namely the plane curve with Cartesian equation:

2 x2 + 2 x z + z2 − 3 x − 2 z + 1 = 0.

Next, if we substitute y = 1 in the implicit formula f = 0 of Steiner surface (see Figure 1.6),
then we obtain

(2 x2 − 2 x z + z2 − x) (2 x2 + 2 x z + z2 − 3 x − 2 z + 1) = 0

yielding two different ellipses E1 and E2, see Figure (1.7).
Thus the parametrization r does not cover the ellipse E1 related to the first factor, see

Figure 1.8. In fact, more advanced calculations can show that the points that are missed by the
parametrization r are exactly those points belonging to E1 and not to E2.

Deciding whether a parametrization is surjective, or equivalently, determining its missing
points are questions that can be phrased in terms of topological closures, and thus in terms of
limit computations. To see this on our example, we associate the map r with the polynomial

4 Chapter 1. Overview

Figure 1.4: The command Difference computes the points in the image of r that do not
belong to surface S , which is empty.

Figure 1.5: The intersection of the image of the parametrization r with plane y = 1.

system R shown in Equation (1.3)

R :=


q(s, t) x − s2 = 0
q(s, t) y − (s2 + t2) = 0
q(s, t) z − (s2 + s t + s + t) = 0
q(s, t) , 0

(1.3)

Broadly speaking, Theorem 2 in [29] implies that eliminating s, t from the polynomial system
R yields a polynomial g such that the topological closure of Image(r) is exactly the zero set of
g. The Maple session of Figure 1.9 shows that this polynomial g is precisely the polynomial f
introduced in Equation (1.1).

Therefore, our original question, that is, checking whether Image(r) ⊆ S holds or not, can
be answered by

1. computing the topological closure of Image(r), and
2. comparing it against S .

5

Figure 1.6: The intersection of Steiner surface S with plane y = 1.

Note that comparing the topological closure of Image(r) against Image(r) will produce the
points missed by the parametrization r.

Computing topological closures of solution sets of polynomial systems, and thus computing
missing points of parametrizations, are the questions motivating this thesis.

To see how those latter questions can be addressed in terms of limit computations, we intro-
duce some notations before considering two examples. Let W be the zero set of a polynomial
system R and let W be the topological closure of W in the Euclidean topology. Often W is
known while W is to be computed. In the previous example, the set W was Image(r). In the
next, and simpler example, we shall see that the set-theoretic difference W \W can be obtained
via a limit computation process. Consider the following system R

R :=


z x − y2 = 0
y5 − z4 = 0
z , 0

. (1.4)

Let us denote by W the set of all (x, y, z) ∈ C3 solving R. A natural parametrization3 of W can
be given by {

x =
y2

z
y = z4/5 ,

where z now can play the role of a parameter. To be more formal, we can write this parametriza-
tion as 

x = t8/5
t

y = t4/5

z = t
,

where t is a parameter. For this parametrization, z (and consequently t) can accept any complex
value but zero in order to be able to determine the values of x and y.

To compute W \W, that is, the possible missing points of that parametrization, we compute
the limit of x, y, z, regarded as functions of t, at t = 0. Thus we have:

3Such parametrization will be defined formally later with the notion of Puiseux Series.

6 Chapter 1. Overview

Figure 1.7: The intersection of Steiner surface S with plane y = 1.

limt→0 z = limt→0 t = 0,
limt→0 y = limt→0 t4/5 = 0,
limt→0 x = limt→0

y2

t = limt→0
(t4/5)2

t = limt→0 t
3
5 = 0.

Therefore, (0, 0, 0) is a missing point, or in other words, a limit point of the set W in the
Euclidean topology.

Let us consider now this other system, which is a variation of (1.4) in which the term z4 in
the second equation is replaced with z2:

z x − y2 = 0
y5 − z2 = 0
z , 0

. (1.5)

The following is a parametrization of the above system:
x = t4/5

t
y = t2/5

z = t
.

Therefore,
limt→0 z = limt→0 t = 0,
limt→0 y = limx1→0 t2/5 = 0,
limt→0 x = limt→0

y2

t = limt→0
(t2/5)2

t = limt→0
1

t
1
5

= ±∞.

Since there is no finite limit for x at t = 0, there is no limit point for the system of Equation (1.5)
in R3.

7

Figure 1.8: The points on Steiner surface S and the plane y = 1 which do not belong to the
intersection of the image of the parametrization r given by (1.2) and the plane y = 1.

Figure 1.9: Closure of Image(r).

The above approach, which is based on computing the limits of different variables, is an
inspiring method. However, there is a difficulty in applying this approach to more advanced
cases. To see this, let us have a look at a slightly more complicated example and consider the
solution set W of the system R in the variables t, y, x, given by:

R :=


(t + 2) t x2 + (y + 1) (x + 1) = 0
t y5 − y + 1 = 0
(t + 2) t , 0

, (1.6)

where the variable t is regarded as a parameter. In order to apply the same process as before,
one needs to compute x and y as functions in t. For the last two examples, this was really easy.
But now the obstacle is how to find such functions in general.

In this thesis, we aim at answering the question of how to compute both real and complex
limit points of the solution sets of polynomial systems. The computation of missing points
of rational parametrizations is one application, as we have seen above. Other applications,
discussed in this thesis, are:

8 Chapter 1. Overview

• the computation of the tangent cone of a space curve at one of its singular points, and
• the computation of limits of multivariate rational functions.
In the rest of this chapter, the main goals of this thesis are presented followed by our

accomplishments towards those goals. We end this chapter by giving a brief overview of all
chapters presented in this thesis.

1.1 Goals
In this thesis, we have three main objectives that we explain in this section.

Our first and most important goal is to compute the topological closures, or equivalently
limit points, of solution sets of polynomial systems. The examples that we used above suggest
to use parametric representations of such sets. To be technically more precise, they suggest
to use representations given by rational functions. Unfortunately, this is not always possible
and one needs to use a weaker notion of “parametrization”, which is given by that of a regular
chain4.

Using the fact that the solution set of every polynomial system (over the complex number as
well as over the reals) can be decomposed into the solution sets of finitely many regular chains,
we restate our main objective as follows, where all technical terms are defined in Chapter 2.

Given a regular chain R ⊂ Q[x1, . . . , xn], denoting by hR the product of its initials, our goal
is to compute the (non-trivial) limit points of both

1. the set ZR(R) consisting of the real zeros of R which do not cancel hR, and
2. the set W(R) consisting of the complex zeros of R which do not cancel hR.
In other words, denoting by ZR(R) and W(R) the closures of ZR(R) and W(R) in the Eu-

clidean topology and Zariski topology, respectively, we want to determine the set lim(ZR(R)) :=
ZR(R) \ ZR(R) and lim(W(R)) := W(R) \W(R).

Figure 1.10: The tangent cone of the “fish” given by f := y2 − x2 (x + 4) = 0 at the origin
consists of two tangent lines: y = 2 x and y = −2 x.

Our second objective is to compute the tangent cone5 of a space curve at one of its singular
4The notion of regular chain will be defined formally in Chapter 2.
5The tangent cone of a space curve at one of its points is a linear approximation of that curve around that point,

see Figure 1.10 for an illustration.

1.2. Thesis accomplishments 9

> F :=
[
(x2 + y2)2 + 3x2y − y3, (x2 + y2)3 − 4x2y2

]
:

> plots[implicitplot](Fs, x = −2..2, y = −2..2) :

> R := PolynomialRing ([x, y], 101) :
> TriangularizeWithMultiplicity(F,R);[[

1,
{

x − 1 = 0
y + 14 = 0

]]
,

[[
1,

{
x + 1 = 0

y + 14 = 0

]]
,

[[
1,

{
x − 47 = 0
y − 14 = 0

]]
,[[

1,
{

x + 47 = 0
y − 14 = 0

]]
,

[[
14,

{
x = 0
y = 0

]]

Figure 1.11: In the RegularChains library in Maple, the command TriangularizeWithMul-
tiplicity computes the intersection multiplicity of V(F) for all the points p ∈ V(F). In the
above Maple session, computations are performed modulo a prime number for the only rea-
son of keeping output expressions small. The same calculations can be performed with the
TriangularizeWithMultiplicity command over the reals.

points without relying on standard basis computations. This topic is a follow-up on a prelimi-
nary work by S. Marcus, M. Moreno Maza and P. Vrbik on computing intersection multiplic-
ities of zero-dimensional algebraic sets by means of regular chain theory [62]. Figure 1.11
illustrates how the RegularChains library in Maple computes triangular decomposition of
zero-dimensional algebraic sets together with intersection multiplicities. In [62], the authors
reduce their problem to that of computing the tangent cone of a space curve at one of its singu-
lar points. Therefore, the second objective of this thesis aims at completing the project initiated
in [62].

Our third and final objective deals with the computations of limits of real multivariate ra-
tional functions. For example, for the multivariate rational function q =

x4+3 x2 y−x2−y2

x2+y2 , we are
interested in determining whether lim(x,y)→(0,0) q exists or not, and, if it exists, to compute it, see
Figure 1.12.

1.2 Thesis accomplishments

In this section, we would like to explain which achievements were obtained towards the objec-
tives presented in Section 1.1.

10 Chapter 1. Overview

Figure 1.12: The surface defined by q = z around the origin.

1.2.1 Computing limit points of quasi-components of regular chains of
dimension one.

Regarding the first objective, that is, computing the limit points of solution sets of polynomial
systems, we have established a method for computing limit points of solution sets of regular
chains in dimension one, see Chapter 4 and the article [6] co-authored with C. Chen and M.
Moreno Maza. Puiseux expansions play a central role in our results. The work presented in
Chapter 4 focuses on limit points corresponding to the regular chains of dimension one with
respect to Zariski topology.

1.2.2 Improving the extended Hensel construction.

For computing Puiseux series expansions, we were initially relying on the puiseux command
of the algcurve package of Maple. This command only accepts input polynomials with two
variables and, consequently, cannot be used for computing Puiseux parametrizations of regu-
lar chains with dimension higher than one. Therefore, a complete implementation computing
Puiseux expansions of algebraic functions in several variables was needed. Up to our knowl-
edge, there is only one practical method meeting our needs, namely the so-called extended
Hensel construction (EHC, for short) a method introduced by T. Sasaki and F. Kako in [82].
Our current implementation of the EHC is integrated into the PowerSeries6 package of Maple.
In Chapter 3, a short review of the EHC is followed by our new techniques for improving the
computational efficiency of that algorithm. We show that the EHC requires only linear alge-
bra and univariate polynomial arithmetic. We deduce complexity estimates and report on a
software implementation together with experimental results. This is a joint work with Masoud
Ataei and Marc Moreno Maza.

6This package can be downloaded from http://www.regularchains.org/downloads.html

http://www.regularchains.org/downloads.html

1.2. Thesis accomplishments 11

1.2.3 Computing the real limit points of the quasi-component of a regular
chain of dimension one.

One of the interesting facts about the EHC is the following. Suppose that, for a bivariate
polynomial F ∈ K[X,Y], where K is a field extension of Q (the field of rational numbers)
we want to factor F into linear factors in X over the field of Puiseux series of Y . Then, the
EHC will not only determine the algebraic extension L of K necessary to do so, but it will
also, for each linear factor of F, characterize the sub-field of L which is required to express the
coefficients of that factor. Thanks to this fact, we have proposed a method for computing the
”real” limit points of regular chains of dimension one in Chapter 5; see also Section 5 in [3].

1.2.4 Studying regular chains under changes of coordinates.
As mentioned above, the ideas presented in Chapters 4 and 5 (respectively for computing the
complex and real limit points of the quasi-components of regular chains) are only applicable to
regular chains with dimension one. Therefore, a complete algorithm is still needed to compute
the limit points of quasi-components of regular chains in higher dimension. That is why we
take the second approach presented in Chapter 6 and [4]. Broadly speaking, the intention is
to map the limit point computation from a coordinate system where it is difficult to perform
to another coordinate system where it is easy to do. We do not propose a general method
achieving this intention, but we propose criteria which appear to be helpful in practice.

1.2.5 Introducing new tools for computing tangent cones of space curves.
Computing limit points of quasi-components of regular chains can be applied to perform other
”limit computations”. The first example, discussed in Chapter 7, is the computation of the
tangent cone of a space curve C (and more generally algebraic set) at one of its points, say P.
Indeed, the tangent cone of C at P is the set of the limits of the secants PQ where Q is a point on
C approaching P. Taking advantage of this method, in Chapter 7, we have proposed a method
for computing the tangent cone of algebraic curves, which is the main tool for computing the
intersection multiplicity of algebraic curves at any point. This means we have also met our
second objective of this proposal for computing the tangent cones of space curves at their
singular points.

1.2.6 Computing limit of real multivariate rational functions.
Regarding the last objective of this dissertation, we have answered the questions of

1. how to determine whether the limit of a real multivariate rational function at the origin
exists or not, and

2. if it exists, how to compute it,
provided that the origin is an isolated zero of the denominator. Our proposed method reduces to
computing the real limit points of regular chains of dimension one, which in turn demonstrates
another application of the methods presented in Chapters 4 and 5. Our proposed technique
for computing the limit of real multivariate rational functions at the origin is explained in
Chapter 8 and also [8]; these techniques extend and enhance the papers [21] and [98] for

12 Chapter 1. Overview

respectively computing the limit of real bivariate and trivariate rational functions at the origin
when the origin is an isolated zero of the denominator. The key point in this method is that for
computing the limit of a multivariate rational function q at the origin, it is enough to compute
the limit of q at the origin along a finite number of special paths, represented by a so-called
discriminant variety. For example, for the real multivariate rational function q := x4+3 x2 y−x2−y2

x2+y2 ,
see Figure 1.13, its discriminant variety consists of three different paths through the origin.
Following each of them, one can verify that the limit of q at the origin exists and is equal to
−1.

For covering the case when the origin is not an isolated solution of the denominator, we
suggest possible directions, in particular by following the paper [54] in which the L’Hospital’s
rule for multivariate rational functions is introduced. It is worth noting that in 2014, S.J. Xiao
and G.X. Zeng, in [104], proposed a first algorithm that decides whether lim(x1,...,xn)→(0,...,0) q is
zero or not, without any assumptions on the denominator of q. However, the results of our
experimentation shows that our implementation outperforms the one in [104].

Figure 1.13: On the left: the surface defined by q := x4+3 x2 y−x2−y2

x2+y2 = z around the origin. On the
right: the three paths of discriminant variety of q going through the point (0,0,-1).

1.2.7 Separating the real and complex branches of space curves.
For computing the limit of a real multivariate rational function q at the origin, one needs to
compute local parametrizations of all the paths represented by the discriminant variety (in the
sense of the papers [21] and [98]) of q around the origin. In the set up of the method described
in Chapter 8 and also [8], we represent the discriminant variety of q as the union of finitely
many regular semi-algebraic sets. Thus for computing and separating all of those special real
paths, we compute real Puiseux parametrizations corresponding to all of the regular chain parts
of the regular semi-algebraic sets representing the discriminant variety of q at the origin, see
Figure1.13. In fact, we propose a method for separating the real and complex branches of
space curves given by regular chains from the ones that escape to infinity when the parameter
corresponding to the given curve approaches zero, see Figure 1.14.

The command RegularChainBrancheswhich is integrated in RegularChains library, im-
plements this method for an input regular chain with dimension one. Note that the input regular

1.2. Thesis accomplishments 13

Figure 1.14: On the right: Close to the origin, the irreducible polynomial f := y (x − 2)2 + x
contains two different paths: one passing through the origin and the other one not. On the left:
RegularChainBranches returns a parametrization for the path of f going through the origin.

chain might have more branches than the ones printed in the output of RegularChainBranches.
In fact, those branches corresponding to the given regular chain that escape to infinity, when
the parameter of the given regular chain approaches zero, are excluded from the output of the
command RegularChainBranches (see Figure 1.15).

Figure 1.15: The command RegularChainBranches computes a parametrization for the com-
plex and real paths of the quasi-component defined by rc. When coefficient argument is set as
real, then the command RegularChainBranches computes the real branches.

1.2.8 Thesis contribution in RegularChains and PowerSeries libraries.
The recent progress on regular chain theory and all the new features added to RegularChains
library, described in this thesis, are presented in [5] and in [7] with a focus on limit point
computations. All of these features are integrated to AlgebraicGeometryTools package of
the RegularChains library. Furthermore, the RegularChains library has a new companion,
called the PowerSeries library, to support computations with power series and Puiseux series.
The command ExtendedHenselConstruction, which computes the Puiseux expansions of an

14 Chapter 1. Overview

input multivariate polynomial with respect to its main variable, is integrated into PowerSeries
library. The source code of both the RegularChains and PowerSeries libraries are available
at http://www.regularchains.org/.

1.3 Contribution statement
Each chapter of the present thesis, except Chapter 2, is based on a refereed publication. In the
sequel, we discuss the relations between those publications and chapters, as well as co-authors’
contributions.

The work presented in Chapter 3, about the extended Hensel construction, is accepted at
the ISSAC 2017 conference [3]. This is a joint work with Marc Moreno Maza and Masoud
Ataei.

The method presented in Chapter 4, for computing complex limit points of regular chains
of dimension one with respect to Zariski topology, is a joint work with Marc Moreno Maza and
Changbo Chen. It was published in 2013 in the CASC conference [6].

The method for finding the real limit points corresponding to the regular chains of dimen-
sion one, which forms Chapter 5, is mainly the work of the author of the present thesis; it is
also presented in Section 5 of [3].

The materials presented in Chapter 6, except Section 6.3.1, were published in 2015 in
the CASC conference [4]; this is a joint work with Marc Moreno Maza, Amir Hashemi, and
Changbo Chen. Section 6.3.1 in Chapter 6 is about the PALGIE algorithm, which was orig-
inally introduced in [18, 20] by François Boulier, François Lemaire and Marc Moreno Maza
for differential regular chains. We present this algorithm in a purely algebraic setting and ex-
tensions of his specifications are proposed; this work was done by Marc Moreno Maza and the
author of the present thesis.

The work presented in Chapter 7, based on the CASC 2015 article [9] by the author of
the present thesis with Marc Moreno Maza, Éric Schost, and Paul Vrbik. In fact, this work
builds upon the PhD thesis of Paul Vrbik, see [100] and is an application of computing limit of
quasi-components of regular chains.

Finally, the materials forming Chapter 8 are mainly taken from the ISSAC 2016 article [8].
This is a joint work of the author of the present paper with Marc Moreno Maza and Mahsa
Kazemi.

1.4 Thesis outline
This thesis contains seven different chapters, in addition to the current one.

Chapter 2 provides definitions and notations used throughout this thesis about our main
tools, namely regular chains and Puiseux series expansions. It also provides some information
about the related work.

Chapter 3 is devoted to the extended Hensel construction (EHC) and its implementation.
In Section 3.2, we give a brief review of the EHC for bivariate and multivariate polynomials.
For computing Puiseux expansions of bivariate polynomials using EHC, there are two main
steps. The first one is to compute the so-called Yun-Moses polynomials corresponding to the

http://www.regularchains.org/

1.4. Thesis outline 15

initial factors of the Newton polynomial. To do so, we suggest an efficient algorithm together
with complexity estimates in Section 3.3. The second step is to compute the product of the
lifted factors at each iteration. In Section 3.4, we explain our method for multiplying the lifted
factors, efficiently; in particular, we demonstrate how to recycle the computations performed
in previous iterations. Finally, in Section 8.7, we present experimental results comparing our
improved EHC against the original one.

In Chapter 4, we address the problem of computing (non-trivial) limit points induced by
regular chains of dimension one with respect to Zariski topology. The method described in
Chapter 4 for computing such limits is via Puiseux series expansions. We first establish the no-
tion of Puiseux parametrizations for regular chains of dimension one around a point vanishing
the product of the initials of the polynomials contained in the given regular chain. By using
a few of the first terms of such Puiseux series appearing in the Puiseux parametrizations of a
regular chain, one can compute the desired limit points. Later on, we give several results on
how to truncate the series appearing in the Puiseux parametrizations while having sufficiently
many terms to calculate the limit points. We conclude Chapter 4 by an application of finding
limit points corresponding to regular chains in removing redundant components in triangular
decompositions of polynomial systems.

In Chapter 6, we discuss how to compute limit points of quasi-components of regular chains
via changes of coordinates. The results in this chapter cover the case where regular chains
have positive dimension and not necessarily dimension one. One of the main challenges in this
method is that after applying a change of coordinates to a regular chain, the resulted polyno-
mial set might not be a regular chain. Our goal is, then, to replace this polynomial set by one
regular chain at a “cheap computational cost. We achieve this by employing the PALGIE algo-
rithm [18, 20] We also consider Noether normalization and its effect on regular chains structure.
Finally, we present several results for computing the limit points of quasi-components of the
regular chains with respect to Zariski topology.

Chapter 7 describes our method for computing the tangent cones of a space curve at one
of its singular points. As explained in Section 1.1, the main idea is to compute limits of
families of secant lines; this trick permits a reduction to the computations of limit points of
quasi-components of regular chains in dimension one.

In Chapter 8, we discuss how to compute the limit of real multivariate rational functions
at the origin. We first present our method for computing such limits when this latter point
is an isolated zero of the denominator. This work was published in [8]. Section 8.3 states
fundamental lemmas as the main ingredients to the proof of the correctness of Algorithm 20,
in Section 8.4. Then, in Section 8.6, we suggest how to compute the limits of real multivariate
rational functions at the origin when this latter point is not an isolated zero of the denominator.

Finally, Chapter 9 summarizes the accomplishments of the present thesis for addressing the
main goals of this thesis. Chapter 9 also discusses the problems that have remained unsolved
with respect to our goals.

All the algorithms presented in this thesis are implemented in Maple and are integrated into
RegularChains and PowerSeries libraries.

Chapter 2

Background and Related Work

In this chapter, we gather definitions and notations used throughout this thesis. The problem
of computing limit points of regular chains is also explained more formally. Moreover, related
works are also discussed.

2.1 Solving polynomial systems
Solving linear polynomial systems is a cornerstone in mathematical sciences. This problem
has been at the centre of attention of many researchers in both the academia and the industry,
yielding fast algorithms and efficient implementation. However, replacing linear systems with
nonlinear ones results in a dramatic decline in what can be achieved in practice, due to the
inherent higher complexity of the problem. This is especially true when exactness and com-
pleteness are required features for the computed solution sets. Therefore, it is desirable for
symbolic methods, which aim at providing these features, to emphasize the development of
better and better algorithms for solving polynomial systems.

Among all the avenues by which such systems can be solved, the one significant method is
triangular decomposition, see [19, 25, 22, 11], which decomposes each nonlinear system into
several components, with special shapes and rich properties, called regular chains.

Before stating formal definitions, we start with an example. Consider the polynomial set
F := { f1, f2, f3} where the polynomials

f1 = x2 + y + z − 10, f2 = y2 + x + z − 1, f3 = z2 + x + y − 1

have rational number coefficients and three variables z, y, x, that we order as z < y < x. The
solution set of F, that is, the set of the points (x, y, z) with complex coordinates satisfying

f1 = f2 = f3 = 0,

can be decomposed as follows into four components:

R1 :=


x − z = 0
y − z = 0
z2 + 2 z − 1 = 0

, R2 :=


x = 0
y = 0
z − 1 = 0

, R3 :=


x = 0
y − 1 = 0
z = 0

, R4 :=


x − 1 = 0
y = 0
z = 0

.

16

2.1. Solving polynomial systems 17

Each of the polynomial sets defining those components has a triangular shape and is called a
regular chains. In our example, we denote these four regular chains by R1,R2,R3,R4 respec-
tively and we say that {R1,R2,R3,R4} forms a triangular decomposition for F. As one can see,
it is easy to read the solutions for each of the regular chains R1,R2,R3,R4, even if, for R1, a bit
of work is needed (solving the equation in z and substituting in the other two equations).

Let X1, . . . , Xn be n independent variables. A monomial in variables X1, . . . , Xn is of the
form Xα1

1 · · · X
αn
n , where αi ∈ Z≥0, for i = 1, . . . , n. For convenience, we denote a monomial as

Xα. The degree of this monomial is defined as α1 + · · · + αn and denoted by deg(Xα).
The set all of the polynomials in X1, . . . , Xn with coefficients in the field k is denoted as

k[X1, . . . , Xn], or k[X], and is called a polynomial ring over k. In this thesis, we are mainly
interested in polynomial rings over the real and complex numbers, that is, when k is the field
of real or complex numbers.

Let X1 < · · · < Xn be an order on these variables. For a non-constant polynomial f , the
greatest variable appearing in f is called the main variable of f , denoted by mvar(f), and the
leading coefficient of f w.r.t. mvar(f) is called the initial of f , denoted by init(f). These
notations support algorithms where the polynomial f is considered as a univariate polynomial
in its main variable.

Example 1. For f = 2 X1X2
2 + X2 ∈ Q[X1, X2], its main variable is X2 and its initial is 2 X1.

Let k be a field and k be its algebraic closure1. Since in this thesis, the field k will often be
the field R of the real numbers or the field C of the complex numbers, we have k = C. For a
polynomial set F ⊆ k[X], the set of all common solutions (or zeros) of the polynomials in F is
denoted by V(F) and called the algebraic set, or algebraic variety, of F. Hence, we have:

V(F) := {(a1, . . . , an) ∈ k
n
| f (a1, . . . , an) = 0 for each f ∈ F},

.

Example 2. Let F = {X1 + X2
2 , X

2
1 + X2} ⊂ C[X1, X2]. Then

V(F) =

(0, 0), (−1,−1), (
1 + i

√
3

2
,

1 − i
√

3
2

), (
1 − i

√
3

2
,

1 + i
√

3
2

)

 .
It is worth mentioning that the solutions of a polynomial system depend on the field over

which the solutions are searched for. For instance, in Example 2, if we solve F over Q then we
have

VQ(F) = {(0, 0), (−1,−1)} .

Definition 1. A set R of non-constant polynomials in k[X] is said to be a triangular set, if for
all f , g ∈ R, with f , g, we have mvar(f) , mvar(g). A variable Xi is said free w.r.t. R if there
is no f ∈ R such that mvar(f) = Xi, otherwise, it is said algebraic.

Example 3. Consider the set R defined as following:

R =

{
r2 := X1 X3 − X2

2
r1 := X4

2 − X5
1

⊆ Q[X1, X2, X3].

1See the wikipedia page https://en.wikipedia.org/wiki/Algebraic_closure, as of May 2017.

https://en.wikipedia.org/wiki/Algebraic_closure

18 Chapter 2. Background and RelatedWork

Then, R is a triangular set since mvar(r2) = X3 , mvar(r1) = X2. Moreover, X1 is the only free
variable of this set.

Definition 2. A set I ⊂ k[X1, . . . , Xn] is an ideal if it satisfies the following conditions:

1. 0 ∈ I,

2. if f , g ∈ I, then f + g ∈ I, and

3. if f ∈ I and h ∈ k[X1, . . . , Xn], then h f ∈ I.

Lemma 1 (See [29], Chapter 1, Lemma 3). Let f1, . . . , fs be polynomials in k[X1, . . . , Xn].
Consider the set defined as follows:

〈 f1, . . . , fs〉 :=

 s∑
i=1

hi fi | h1, . . . , hs ∈ k[X1, . . . , Xn]

 .
Then, the set 〈 f1, . . . , fs〉 is an ideal and is called the ideal generated by f1, . . . , fs.

Definition 3. For a nonempty triangular set R, we define the saturated ideal of R, which is
denoted by sat(R), to be the ideal

〈R〉 : h∞R :=
{
f ∈ k[X] | ∃m ∈ N : hm

R f ∈ 〈R〉
}
,

where hR is the product of the initials of the polynomials in R. The saturated ideal of the empty
triangular set is defined as the trivial ideal.

The ideal sat(R) has several properties, in particular it is unmixed (see [19]). We denote the
number of polynomials in R by e. It turns out that sat(R) has dimension n− e (see Theorem 1.6
in [19]). Moreover, writing R = {r1, . . . , re} and assuming mvar(ri) = Xn−e+i, for 1 ≤ i ≤ e, the
intersection k[X1, . . . , Xn−e] ∩ sat(R) is the trivial ideal 〈0〉.

Definition 4. Let I ⊂ k[X1, . . . , Xn] be an ideal. A polynomial is regular modulo I, if it is
neither zero nor a zero-divisor2 modulo I.

Definition 5. We say that the triangular set R = {r1, . . . , re} is a regular chain whenever R is
empty or {r1, . . . , re−1} is a regular chain and the initial of re is regular modulo the saturated
ideal sat({r1, . . . , re−1}). The regular chain R is said to be strongly normalized whenever no
algebraic variables appear in the initials of the polynomials of R,

Example 4. One more time consider the triangular set

R :=
{

X1 X3 − X2
2

X4
2 − X5

1
.

Then R is a regular chain because hR = X1 is regular modulo sat({r1}) = 〈X4
2 − X5

1〉, where
r1 := X4

2 − X5
1 . Indeed, the regularity of a polynomial modulo the saturated ideal of a regular

chain can be checked using pseudo division (see [25]).

2See the wikipedia page https://en.wikipedia.org/wiki/Zero_divisor, as of May 2017.

https://en.wikipedia.org/wiki/Zero_divisor

2.1. Solving polynomial systems 19

Definition 6. We denote by W(R) := V(R) \ V(hR) the quasi-component of R, that is, the
common zeros of R that do not cancel hR.

Definition 7. Let S ⊂ k
n
. The Zariski closure of the set S , denoted as S , is defined to be

V(I(S)) where
I(S) = { f ∈ k[X1, . . . , Xn] | f (a) = 0 for all a ∈ S }.

It can be proved that S is also the intersection of all algebraic sets containing S , that is, the
smallest algebraic set containing S .

Regular chains enjoy many properties. In particular, the quasi-component W(R) of the
regular chain is not empty. Moreover, the Zariski closure of W(R) satisfies the following:
W(R) = V(sat(R)).

Definition 8. Let F ⊂ k[X]. The regular chains R1, . . . ,Rs of k[X] form a triangular de-
composition of V(F) in the sense of Kalkbrener (resp. Wu and Lazard) whenever we have
V(F) = ∪s

i=1W(Ri) (resp. V(F) = ∪s
i=1W(Ri)). We denote by Triangularize an algorithm, such

as the one in [25], computing a Kalkbrener triangular decomposition.

Regular chains are defined in multivariate polynomial rings where coefficients are them-
selves in a (commutative) ring. In practice, coefficients are often rational numbers while the
values of the unknowns are either complex or real numbers. In the latter scenario, it is desirable
to have an algorithm decomposing the solutions of polynomial systems over R rather than over
C. This is done by another algorithm called RealTriangularize introduced in [22] by C. Chen,
J. H. Davenport, J. P. May, M. Moreno Maza, B. Xia and R. Xiao.

Example 5. Let F := {5 y6 − 15 y5 + 15 y4 + 2 x z2 − 5 y3 + 5 x2 + 5 z2} ⊂ Q[z < y < x].
The command RealTriangularize in the RegularChains library in Maple can solve for
the real solutions of F, see Figure 2.2. These real solutions form the so-called Eve surface
displayed on Figure 2.13. On the other hand, the command Triangularize can solve the
complex solutions of the above system as illustrated on Figure 2.3.

Regular chains can be used to represent the solution sets of systems of equations, inequa-
tions and inequalities. More generally, they support the implementation of set-theoretic oper-
ations (union, intersection, difference) of algebraic sets, constructible sets, and semi-algebraic
sets. To illustrate the difference between triangular decompositions in the sense of Kalkbrener,
and triangular decompositions in the sense of Lazard and Wu (see Definition 8) we consider
the following example.

Example 6. For the variable order b < a < y < x, consider the polynomial set F = {a x +

b, b x + y} and the regular chain R1 = {b x + y, a y − b2}. Using calculations in Maple, one can
verify that we have

V(F) = W(R), (2.1)

3This image is taken from the gallery of algebraic surfaces at http://homepage.univie.ac.at/herwig.
hauser/bildergalerie/gallery.html

http://homepage.univie.ac.at/herwig.hauser/bildergalerie/gallery.html
http://homepage.univie.ac.at/herwig.hauser/bildergalerie/gallery.html

20 Chapter 2. Background and RelatedWork

Figure 2.1: The eve surface

Figure 2.2: The real solutions of V(F) computed by RealTriangularize

which means that {R1} is a triangular decomposition of F in the sense of Kalkbrener. Using the
notion of localization in algebra 4, it is possible to interpret Equation (2.1) by stating that R1

describes the solutions of F of the following form:{
x = −

y
b

y = b2

a

,

for any complex value of a and b where a b , 0. However, this latter solution set is missing
the solutions of F given by the regular chains R2 = {x, y, b} and R3 = {y, a, b}. In fact, one can
easily verify, with Maple calculations, that the following holds:

V(F) = (V(R1) \ V(a b)) ∪ V(R2) ∪ V(R3),

which means that {R1,R2,R3} is a triangular decomposition of F in the sense of Lazard and
Wu.

In Example 8, one can see that we have

W(R1) \W(R1) = V(R2) ∪ V(R3),

that is, the limit points of W(R1) in Zariski topology consist of W(R1) and the two lines given
by V(R2) and V(R3). At this point, we review the notion of a limit point.

4See the wikipedia page https://en.wikipedia.org/wiki/Localization_(algebra), as of May 2017.

https://en.wikipedia.org/wiki/Localization_(algebra)

2.2. Power series and Puiseux expansions 21

Figure 2.3: The complex solutions of V(F) computed by Triangularize

2.1.1 Limit points
Let (X, τ) be a topological space. A point p ∈ X is a limit of a sequence (xn, n ∈ N) of points
of X if, for every neighbourhood U of p, there exists an N such that, for every n ≥ N, we
have xn ∈ U; when this holds we write limn→∞ xn = p. If X is a Hausdorff space then limits
of sequences are unique, when they exist. Let S ⊆ X be a subset. A point p ∈ X is a limit
point of S if every neighbourhood of p contains at least one point of S different from p itself.
Equivalently, p is a limit point of S if it is in the closure of S \ {p}. In addition, the closure
of S is equal to the union of S and the set of its limit points. If the space X is sequential,
and in particular if X is a metric space, the point p is a limit point of S if and only if there
exists a sequence (xn, n ∈ N) of points of S \ {p} with p as limit. In practice, the “interesting”
limit points of S are those which do not belong to S . For this reason, we call such limit points
non-trivial and we denote by lim(S) the set of non-trivial limit points of S .

Definition 9. For the regular chain R ⊂ k[X1, . . . , Xn] a point p ∈ k
n

is called a limit point
of R, if it is a limit point of W(R) in the above topological sense. Further, the point p is said
a non-trivial limit point of R if it is a non-trivial limit point of W(R). The set of all non-trivial
limit points of W(R) is denoted by lim(W(R)). From now on, when we talk about the limit points
of a quasi-component of a regular chain, we actually refer to its non-trivial limit points.

2.2 Power series and Puiseux expansions
In mathematics, Puiseux series are a generalization of power series. As we know, power series
are used to approximate an analytic function with a polynomial about a point. As an example,

1
1−x =

∑∞
i=0 xi = 1 + x + x2 + x3 + · · · is the power series expansion of the function 1

1−x about
x = 0. Now one might ask the question of how to approximate a plane algebraic curve about
one of its points, in particular singular points. In this case, such curve may not be seen as the
graph of an analytic function, even locally. Puiseux series address this more general setting. A
Puiseux series5 in x typically looks like

∞∑
i=k

cix
i
d ,

where d is a positive integer and k is an integer, possibly negative.
(Univariate) Puiseux series in X1, with complex number coefficients, form an algebraically

closed field, denoted by C((X∗1)). Consequently, any bivariate polynomial F ∈ C[X1, X2] can be
factored into linear factors in X2 with coefficients in C((X∗1)). This result, known as Puiseux’s

5See the wikipedia page https://en.wikipedia.org/wiki/Puiseux_series, as of May 2017.

https://en.wikipedia.org/wiki/Puiseux_series

22 Chapter 2. Background and RelatedWork

theorem, has a geometrical interpretation. These linear factors correspond to the branches of
the plane curve6 F(X1, X2) = 0 around the origin. Being able to compute the branches of a
plane curve around one of its points will be an essential tool in Chapter 4, upon which we will
build our algorithm for computing the limit points of regular chains with one free variable.

Example 7. By factoring the polynomial F := X1X3
2 + X2

2 + X2 + X1, over C((X∗1)), we obtain
the following three linear factors:
• X2 + 1,
• X2 + X1 + X2

1 + O(X3
1),

• X2 + 1
X1
− 1 − X1 − X2

1 + O(X3
1),

and thus a description of the branches of F(X1, X2) = 0 around the origin:
• X2 = −1,
• X2 = −X1 − X2

1 + O(X3
1),

• X2 = − 1
X1

+ 1 + X1 + X2
1 + O(X3

1),

Since Puiseux expansions may not have finitely many terms, the big-oh notation is used to
indicate that higher-order terms are not displayed.

Figure 2.4: On the right: Weierstrass Preparation Factorization for a univariate polynomial
with multivariate power series coefficients. On the Left: Extended Hensel construction applied
to a trivariate polynomial for computing its absolute factorization.

Figure 2.5: Extended Hensel construction applied to a bivariate polynomial for computing its
Puiseux parametrizations around the origin.

For computing Puiseux expansions of multivariate polynomials, we rely on the PowerSeries
library in Maple. The PowerSeries library consists of two modules, dedicated respectively

6See the wikipedia page https://en.wikipedia.org/wiki/Algebraic_curve, as of May 2017.

https://en.wikipedia.org/wiki/Algebraic_curve

2.3. The problem and related work 23

to multivariate power series over the algebraic closure of Q, and univariate polynomials with
multivariate power series coefficients.

Figure 2.4 illustrates Weiertrass Preparation Factorization7. The command PolynomialPart
displays all the terms of a power series (or a univariate polynomial over power series) up
to a specified degree. In fact, each power series is represented by its terms that have been
computed so far together with a program for computing the next ones. A command like
WeiertrassPreparation computes the terms of the factors p and α up to the specified de-
gree; moreover, the encoding of p and α contains a program for computing their terms in higher
degree.

Figures 2.4 and 2.5 illustrate the Extended Hensel Construction (EHC) which will be dis-
cussed in Chapter 38. For the case of an input bivariate polynomial, see Figure 2.5, the EHC
coincides with the Newton-Puiseux algorithm, thus computing the Puiseux parametrizations
of a plane curve about a point; this functionality is at the core of the LimitPoints command
of the RegularChains library for computing limit points of quasi-components of the regular
chains of dimension one. Note that the latter command can be used in two different flavors
LimitPoints(R, coe f f icient = real) and LimitPoints(R, coe f f icient = complex), where
the argument coefficient is used to indicate the coefficient ring for computing limit points
corresponding to input regular chain R. For the case of a univariate polynomial with multi-
variate polynomial coefficients, the EHC is a weak version of Jung-Abhyankar Theorem9. The
command ExtendedHenselConstruction of the sub-package UnivariatePolynomialOver-
PowerSeries in the PowerSeries library provides this latter flavor of the EHC.

2.3 The problem and related work

In regular chain theory, one desirable and challenging objective is, given a regular chain R, to
obtain the (non-trivial) limit points of its quasi-component W(R), or equivalently, computing
the variety of its saturated ideal sat(R). The set lim(W(R)) of the non-trivial limit points of
W(R) satisfies V(sat(R)) = W(R) = W(R) ∪ lim(W(R)). Hence, lim(W(R)) is the set-theoretic
difference V(sat(R)) \ W(R). Deducing lim(W(R)) or V(sat(R)) from R is a central question
which has theoretical applications (like the so-called Ritt Problem) and practical ones (like
removing redundant components in triangular decomposition, or tangent cone computation).

In this thesis, the main problem we are facing is computing limit points corresponding to
a regular chain. Up to our knowledge, the only way to compute limit points, is via a method
based on Gröbner basis theory, using the well-known Rabinowitsch trick, see https://en.
wikipedia.org/wiki/Rabinowitsch_trick (as of May 2017).

This latter method, when applied to the computation of sat(R) does not take the advantage
of the triangular structure of the regular chain R. Therefore, it is desirable to consider a method
well-adapted to regular chains. Moreover, one may wonder whether it is possible to compute

7See the wikipedia page https://en.wikipedia.org/wiki/Weierstrass_preparation_theorem, as
of May 2017.

8For Hensel Lemma, see the wikipedia page https://en.wikipedia.org/wiki/Hensel%27s_lemma, as
of May 2017.

9See this page from MathOverflow https://mathoverflow.net/questions/92618/

what-is-the-original-statement-of-jung-abhyankar-theorem

https://en.wikipedia.org/wiki/Rabinowitsch_trick
https://en.wikipedia.org/wiki/Rabinowitsch_trick
https://en.wikipedia.org/wiki/Weierstrass_preparation_theorem
https://en.wikipedia.org/wiki/Hensel%27s_lemma
https://mathoverflow.net/questions/92618/what-is-the-original-statement-of-jung-abhyankar-theorem
https://mathoverflow.net/questions/92618/what-is-the-original-statement-of-jung-abhyankar-theorem

24 Chapter 2. Background and RelatedWork

lim(W(R)) in polynomial time with respect to the degrees and coefficient heights of our input
regular chain R.

Our method for computing lim(W(R)), when sat(R) has dimension 1, see Chapter 4, relies
on a theorem of D. Munfored [70], which relates the closures of a constructible set in the
Euclidean and Zariski topologies. One the problem is transported in the Euclidean topology,
one can Puiseux series expansions, see [63, 2].

Initially, our implementation of the LimitPoints command was built upon Maple’s algcurve
package, which implements Newton-Puiseux’s algorithm. But, as we wanted to factor poly-
nomials over multivariate Puiseux series rings, we had to switch to the EHC. And since no
implementation of the EHC is available in Maple, we had to realize our own, which was the
original motivation for developing the PowerSeries library10.

The EHC was originally introduced in [82] by Sasaki and Kako. Their work was further
extended by their students in [47, 81, 48, 46, 83]. In [3], and thus in Chapter 3, we present tech-
niques enhancing the EHC as well as complexity estimates for its main sub-routines. In [51],
Kung and Traub also present a complexity analysis for Newton-Puiseux algorithm over the
field C of complex numbers. Considering that EHC method computes all the branches while
Newton-Puiseux algorithm computes only one branch among the conjugate branches, our com-
plexity results matches theirs, up to some log factors.

Returning to the problem of computing limit points of quasi-components of regular chains,
we have also taken another approach to address this problem, by using changes of coordinates,
see [4] and Chapter 6. This work not only focuses on computing limit points but also tries
studying regular chains under changes of coordinates specially N other normalization. For
more details on Nöther normalization, see books [39, 34] and papers [84, 43].

Turning our attention now to applications of limit point computations, we discuss tangent
cones of space curves. Tangent cone computations can be approached at least in two ways.
First, one can consider the formulation based on homogeneous components of least degree, see
Definition 21. The original algorithm of Mora [65] follows this point of view. Secondly, one
can consider the more “intuitive” characterization based on limits of secants, see Lemma 31.

As it was mentioned in Chapter 1, parametric representations of algebraic curves and sur-
faces are used in Computer Aided Geometric Design. However, working with parametric rep-
resentation instead of the implicit representation bring its own challenges, in particular the
problem of determining missing points. One way of dealing with this problem is to find, when
it exists, a parametrization that covers the whole curve or surface, or, in other words, a normal
parametrization. In the case of a curve, this problem is solved in [85], while it remains open
for algebraic surfaces. An alternative approach, taken in [12], [86], and [87] is to compute
finitely many parametric representations to cover all the points on the surface.

Another interesting application of computing limit points of quasi-components of regular
chains is computing the limit of fractions of multivariate polynomials. Computing limits of
such functions is a basic task in multivariate calculus and different mathematical concepts are
defined based on these limits. The case of univariate analytic functions, including transcen-
dental ones, has been well studied [40, 41, 80] and the corresponding algorithms are available
in popular computer algebra systems. In calculus, we learned how to use L’hospital’s rule in
order to compute the limit of univariate functions. In [54] by G.R. Lawlor, a generalization of

10This package can be downloaded from http://regularchains.org/downloads.html.

http://regularchains.org/downloads.html

2.3. The problem and related work 25

L’hospital’s rule has been developed for computing the limit of multivariate functions in some
special cases. Surprisingly, the limit computations of multivariate functions is still an active
research area.

In [104] S.J. Xiao and G.X. Zeng proposed a first algorithm that, given a multivariate
rational function q ∈ Q(x1, . . . , xn), decides whether lim(x1,...,xn)→(0,...,0) q is zero or not. The
“not-case” includes the situation where lim(x1,...,xn)→(0,...,0) q does not exist as well as the case
where it exists but it is not zero.

In [21], C. Cadavid, S. Molina and J.D. Vélez proposed an algorithm, now available in
Maple as the limit/multi command, for determining the existence and possible value of
limits of the form lim(x,y)→(0,0) q, where q is a bivariate rational function, and such that (0, 0)
is an isolated zero of the real algebraic set defined by the denominator of q. In a follow-up
preprint [98], J.D. Vélez, P. Hernández and C. Cadavid extend the method of [21] to rational
functions in three variables, still assuming that the origin is an isolated zero of the denominator.
Both papers [21] and [98] rely on the key observation that, for determining the existence
and possible value of limits of the form lim(x,y)→(0,0) q and lim(x,y,z)→(0,0,0) q, it is sufficient to
study limits along a real algebraic set χ(q), that is, limits of the form lim(x,y)→(0,0),(x,y)∈χ(q) q and
lim(x,y,z)→(0,0,0),(x,y,z)∈χ(q) q.

The method of S.J. Xiao and G.X. Zeng [104] has the advantage of not making any assump-
tions on the number of variables nor the zero set of the denominator. Meanwhile, the works
of C. Cadavid, S. Molina, J.D. Vélez and P. Hernández avoid the use of infinitesimal elements
and rely on a deeper geometrical insight, through a notion of discriminant variety; unfortu-
nately, the recourse to singular loci and irreducible decomposition is a limitation in view of an
implementation of the method proposed in [21].

In [8], we have proposed an algorithm for determining the existence and possible value of
lim(x1,...,xn)→(0,...,0) q, for an arbitrary number n of variables. As in [21] and [98], we assume that
the origin is an isolated zero of the denominator of the rational function q. However, we avoid
the computation of singular loci and the decomposition into irreducible components of the real
and complex algebraic sets involved in the method. Instead, we take advantage of the theory of
regular chains and the RealTriangularize algorithm [23, 22] for decomposing semi-algebraic
systems.

The experimental results reported in Section 6 of [8], suggest that our algorithm can solve
more problems than the algorithm of S.J. Xiao and G.X. Zeng, in particular when the number
of variables increases.

As it was mentioned, we have made an assumption on the problem of computing the limit
of fractions of multivariate functions: the origin must be an isolated zero of the denominator
of q. The relaxation of this assumption is discussed in Section 8.6.

Chapter 3

Extended Hensel Construction

3.1 Introduction
The Extended Hensel Construction (EHC) is an algorithm which is used for factorizing uni-
variate polynomials with power series coefficients. It was proposed in [82] by T. Sasaki and
F. Kako. Their goal was to provide a practically more efficient alternative to the classical
Newton-Puiseux method for univariate power series coefficients. In the same paper, Sasaki and
Kako proposed an extension of the EHC to power series coefficients in more than one variable.
Figure 3.1 illustrates our implementation of the EHC in the PowerSeries library, available at
www.regularchains.org.

Figure 3.1: EHC applied to a trivariate polynomial.

The work of Sasaki and Kako was further extended by their students, see the papers [47,
81, 48, 46, 83]. See also the works of S. Abhyankar [1] and T.-C. Kuo [52]. The EHC relies on
the so-called Yun-Moses polynomials originally introduced in [69], studied in [94], and called
Lagrange interpolation polynomials in [82]. The definition of those polynomials suggests to
compute them by applying the Extended Euclidean Algorithm (EEA) over a field of multivari-
ate rational functions. In practice, this is a computational bottleneck. In [81], Sasaki and D.
Inaba suggest to use Gröbner bases instead and report on favourable experimental results.

In this chapter, we propose a new method for computing the Yun-Moses polynomials using
Wronskian matrices. For an input bivariate polynomial F(X,Y) with coefficients in a field

26

www.regularchains.org

3.1. Introduction 27

k and total degree d, we show that the Yun-Moses polynomials (needed when applying the
EHC to F(X,Y)) can be computed within O(d3 M(d)) operations in k, where n 7−→ M(n) is a
(polynomial) multiplication time [99]. In addition, we exhibit a new strategy for performing
the lifting steps so that the k-th lifting step of the EHC applied to F(X,Y), can be computed
within O(k d M(d)2) operations in k (instead of O(k2 d M(d)2) in a direct approach) or within
O(k d M(d)) operations in the algebraic closure of k. These enhancements of the EHC are
described in Sections 3.3 to 3.4, and supported by the experimentation reported in Section 3.5.

In [51], H.T. Kung and J.F. Traub present a complexity analysis for the Newton-Puiseux
method over the field C of complex numbers. They show that the first k iterations of Newton-
Puiseux on an input bivariate polynomial of degree d requires O(d k M(k)) operations in C
using a linear lifting scheme (Theorem 5.2 in [51]) and O(d M(k)) operations in C using a
quadratic lifting scheme (Corollary 5.1 in [51]). This latter estimate is improved in [28] by D.
V. Chudnovsky and G. V. Chudnovsky, yielding O(d k) operations in C. When the base field k
is finite, state of the art algorithms are presented by A. Poteaux and M. Rybowicz in [73].

In both [51] and [28], the estimated cost is for computing a single branch. Thus, for com-
puting all branches, the costs of the linear and quadratic lifting schemes of [51] become re-
spectively O(d2 k M(k)) and O(d2 M(k)) operations in C. The EHC currently uses a linear lifting
scheme and, with the enhancements proposed in this chapter, it computes all the branches, for
the first k operations, withinO(k2 d M(d)) operations inC. The experimentation reported in Sec-
tion 3.5 show that, for problems of practical interest, an EHC implementation can outperform
counterparts based on the linear and quadratic lifting schemes of [51]. Since we implemented
both Kung and Traub’s algorithm and our enhanced EHC, let us go further in comparing their
algebraic complexity. All the above mentioned algorithms need to factor a univariate poly-
nomial over C. This is the Newton polynomial of F(X,Y) in the case of the EHC and the
polynomial F(X, 0) for the algorithm of Kung and Traub. If both polynomials split into linear
factors over k, where k is Q or an algebraic extension of Q, and putting aside the cost of factor-
ing those polynomials (which can be regarded as similar), the total cost, counting operations in
C, of factoring F(X,Y) into linear factors in X over C(〈Y∗〉), computing k terms in each branch,
is O(d3M(d) + k2 d M(d)) for the EHC and O(d2 k M(k)) (resp. O(d2 M(k))) the algorithm of
Kung and Traub using a linear (resp. quadratic) lifting scheme.

Let F(X,Y) be the input polynomial for both EHC algorithm and Kung and Traub algo-
rithm. In the fair case, assume all roots of F(X, 0) and the Newton polynomial are simple root.
Therefore the Kung and Traub algorithm will be in regular case and the EHC algorithm will
be called once. The complexity of Kung and Traub algorithm, to compute all branches, is
O(d2 k M(k)) operations over C, using a linear lifting scheme, and the complexity of our EHC
algorithm, to compute all branches, is O(d3M(d) + k2dM(d)) operations over C. Hence, for
the fixed input polynomial, our EHC algorithm is asymptotically faster than Kung and Traub
algorithm. By Corollary 6 in [59], the splitting field of a degree d polynomial f (X) ∈ Z[X]
can be computed in time polynomial to the degree of the splitting field over Q and (

∑d
i=0 a2

i)1/2

where, for i = 0, . . . , d, ai is the coefficient of Xi in f (X). So the worst case of this algorithm
costs O(d!). But Renault and Yokoyama in the more recent result in [75, 74] presented an algo-
rithm in which the cost of computing the splitting field of f (X) is a polynomial to d, c(G f) and
M(log(BR)) where G f is Galois group of f and c(G f) is c−size of it [74], also BR is such that∏s

i=1 qi = O(BR) where multi-modular algorithm happens in qi’s which are powers of prime p
and finally M(q) is the unit cost of integer arithmetics of size q.

28 Chapter 3. Extended Hensel Construction

In practice, the EHC has the advantage that its computation flow has a simpler structure and
offers opportunities for efficient implementation. This observation is based on our experience
with both approaches through a series of papers [6, 9, 8] .

Figure 3.2: Computational of limit points: complex and real cases.

In addition to polynomial factorization, the EHC can be applied to the computation of limits
of multivariate rational functions [8] and tangent cones [9]. In [6], an algorithm is proposed
for computing the non-trivial limit points of the quasi-component W(T) of a regular chain
T ⊂ Q[X1, . . . , Xn]. Those points form the set W(T) \W(T), where W(T) is the Zariski closure
of W(T).

In Chapter 5, we use the EHC for computing the non-trivial limit points of the real quasi-
component of T . To be precise, letting WR(T) := ZR(T) \ ZR(hT), we are interested in the
set WR(T) \ WR(T), where WR(T) is the closure of WR(T) in Rn endowed with the Euclidean
topology. Unfortunately, it is not true that the non-trivial limit points of WR(T) are the non-
trivial limit points of W(T) with real coordinates. Figure 3.2 yields a counter-example, which
illustrates how the factorization produced by the EHC helps computing the limit points of both
W(T) (complex case) and WR(T) (real case). Section 5.2 is devoted to this question.

3.2 Extended Hensel construction
The purpose of this chapter requires a somehow detailed review of the EHC. Most of the proofs
are omitted, though, and we refer to [82]. We also recall the notion of Puiseux series and refer
to the book of G. Fischer [35] for this topic.

Notation 1. Let F(X,Y) ∈ C[X,Y] be a bivariate polynomial with complex number coefficients.
We assume that F is monic and square-free as a univariate polynomial in X; we denote by d
its partial degree w.r.t. X. We assume that F has at least two terms and that F(X, 0) = Xd

3.2. Extended Hensel construction 29

holds. We explain in Remark 2 how to reduce to this latter hypothesis. For f1, . . . , fm in some
polynomial ring, we denote by 〈 f1, . . . , fm〉 the ideal that f1, . . . , fm generate in that ring.

Newton line. We plot each non-zero term c XexYey of F(X,Y) to the point of coordinates (ex, ey)
in the Euclidean plane equipped with Cartesian coordinates. We call Newton Line the straight
line L passing through the point (d, 0) and another point, such that no other points lie below L.
The equation of L is ex/d + ey/δ = 1 for some δ ∈ Q. We define δ̂, d̂ ∈ Z>0 such that δ̂/d̂ = δ/d
and gcd(δ̂, d̂) = 1 both hold.
Newton polynomial. The sum of all the terms of F(X,Y), which are plotted on the Newton
line of F, is called the Newton polynomial of F. We denote it by F(0). Observe that Newton’s
polynomial is a homogeneous polynomial in (X,Yδ/d). Let ζ1, . . . , ζr ∈ C be the distinct roots
of F(0)(X, 1), for some r ≥ 2. Hence we have ζi , ζ j for all 1 ≤ i < j ≤ r and there exist
positive integers m1 ≤ m2 ≤ · · · ≤ mr such that, using the homogeneity of F(0)(X,Y), we have

F(0)(X,Y) = (X − ζ1Yδ/d)m1 · · · (X − ζrYδ/d)mr .

The initial factors of F(0)(X,Y) are

G(0)
i (X,Y) := (X − ζiYδ/d)mi ,

for 1 ≤ i ≤ r. For simplicity, we put Ŷ = Y δ̂/d̂.
Puiseux series. Let k be an algebraic number field and k its algebraic closure. We denote by
k[[Y]] and k〈Y〉 the respective rings of formal power series and convergent power series in
Y with coefficients in k. We denote by k[[Y∗]] =

⋃∞
`=1 k[[Y

1
`]] the ring of formal Puiseux

series. Hence, given ϕ ∈ k[[Y∗]], there exists ` ∈ N>0 such that ϕ ∈ k[[Y
1
`]] holds and we can

write ϕ =
∑∞

m=0 amY
m
` , for some a0, . . . , am, . . . ∈ k. We denote by k((Y∗)) the quotient field of

k[[Y∗]]. Let ϕ ∈ k[[Y∗]] and ` ∈ N such that ϕ = f (Y
1
`) holds for some f ∈ k[[Y]]. We say that

the Puiseux series ϕ is convergent if we have f ∈ k〈Y〉. The ring of convergent Puiseux series
is denoted by k〈Y∗〉 and its quotient field by k(〈Y∗〉). We recall Puiseux’s theorem: if k is an
algebraically closed field of characteristic zero, the field k((Y∗)) of formal Puiseux series over
k is the algebraic closure of the field of formal Laurent series over k; moreover, if k = C, then
the field C(〈Y∗〉) of convergent Puiseux series over C is algebraically closed as well.

The purpose of the EHC, as stated in Algorithm 1, is to factorize F(X,Y) as F(X,Y) =

G1(X,Y) · · · Gr(X,Y), with Gi(X,Y) ∈ C(〈Y∗〉)[X] and degX (Gi) = mi, for 1 ≤ i ≤ r. Thus,
the EHC factorizes F(X,Y) over C(〈Y∗〉). However, degX (Gi) = 1 may not hold for some i.
Nevertheless, as shown hereafter factorizing F(X,Y) into linear factors is achieved by repeated
applications of the EHC. Lemma 2 and Theorem 1 are the fundamental results of the EHC.

Lemma 2 (Yun-Moses polynomials). Let Ĝi(X, Ŷ) ∈ C〈Ŷ〉[X], for i = 1, . . . , r with r ≥ 2,
be homogeneous polynomials in (X, Ŷ) such that gcd(Ĝi, Ĝ j) = 1 for any i , j. Let d =

degX

(
Ĝ1 · · · Ĝr

)
and degX (Ĝi) = mi, for i = 1, . . . , r. Then, for each ` ∈ {0, . . . , d − 1}, there

exists a unique set of polynomials {W (`)
i (X, Ŷ) ∈ C〈Ŷ〉[X] | i = 1, . . . , r} satisfying

W (`)
1

((
Ĝ1 · · · Ĝr

)
/Ĝ1

)
+ · · · + W (`)

r

((
Ĝ1 · · · Ĝr

)
/Ĝr

)
= X`Ŷd−`,

where degX (W (`)
i (X, Ŷ)) < degX (Ĝi(X, Ŷ)), i = 1, . . . , r. The polynomials W (0)

i , . . . ,W (d−1)
i

for 1 ≤ i ≤ r are homogeneous in (X, Ŷ) of degree mi. We call Yun-Moses polynomials the
elements of {W (`)

i | (`, i) ∈ {0, . . . , d − 1} × {1, . . . , r}}.

30 Chapter 3. Extended Hensel Construction

Proof. We shall first prove that there exists only one set of polynomials {W (`)
i (x, 1) | i =

1, . . . , r} satisfying the condition in the above lemma, when Ŷ = 1. Using the extended Eu-
clidean algorithm, one can compute A1, . . . , Ar ∈ C[X] such that A1

Ĝ1···Ĝr

Ĝ1
+ · · · + Ar

Ĝ1···Ĝr

Ĝr
= 1.

If we multiply both sides of the above equality by X`, then we have

A1X` Ĝ1 · · · Ĝr

Ĝ1
+ · · · + ArX` Ĝ1 · · · Ĝr

Ĝr
= X`. (3.1)

For each i = 1, . . . , r−1, let Qi,Ri ∈ C[X] such that AiX` = QiĜi +Ri and degX (Ri) < degX(Ĝi).
Thus the last equality can be re-written as:

R1
Ĝ1 · · · Ĝr

Ĝ1
+ · · · + Rr−1

Ĝ1 · · · Ĝr

Ĝr−1
+ (ArX` +

r−1∑
i=1

QiĜr)
Ĝ1 · · · Ĝr

Ĝr
= X`.

Observe that we have degX (Ri
Ĝ1···Ĝr

Ĝi
) < d for i = 1, . . . , r − 1, degX(Ĝ1···Ĝr

Ĝr
) = d − mr, and also

` < d. Combined with relation 3.1, we obtain

degX(ArX` +

r−1∑
i=1

QiĜr) < mr = degX(Ĝr).

Hence, we set W (`)
i (X, 1) = Ri, for i = 1, . . . , r − 1 and W (`)

r (X, 1) = ArX` +
∑r−1

i=1 QiĜr. Since

degX

(
W (`)

i (X, 1)
(
Ĝ1 · · · Ĝr

)
/Ĝi

)
< d,

we can homogenize in degree d both W (`)
i (X, 1) and Ĝi(X, 1), for i = 1, . . . , r, using Ŷ as homog-

enization variable. This homogenization process defines each W (`)
i (X, Ŷ) uniquely. Moreover,

we have degX(W (`)
i (X, Ŷ)) < degX(Ĝi). �

Theorem 1 (Extended Hensel Construction). Let F be as in Notation 1 and let F(0)(X,Y) be
the Newton polynomial of F(X,Y). We denote by G(0)

1 (X,Y), . . . ,G(0)
r (X,Y) the initial factors of

F(0)(X,Y). Hence we have

F(0)(X,Y) = G(0)
1 (X,Y) · · ·G(0)

r (X,Y),

where G(0)
i (X,Y) = (X − ζiY δ̂/d̂)mi for i = 1, . . . , r and ζi ∈ C. We define the ideal

S k = 〈XdY (k+0)/d̂, Xd−1Y (k+δ̂)/d̂, . . . , X0Y (k+dδ̂)/d̂〉, (3.2)

for k = 1, 2, Then, for all integer k > 0, we can construct G(k)
i (X,Y) ∈ C〈Y1/d̂〉[X], for

i = 1, . . . , r, satisfying

F(X,Y) = G(k)
1 (X,Y) · · ·G(k)

r (X,Y) mod S k+1, (3.3)

and G(k)
i (X,Y) ≡ G(0)

i (X,Y) mod S 1, for all i = 1, . . . , r.

3.2. Extended Hensel construction 31

Proof. See Theorem 1 in [82]. The proof is constructive and by induction on k. Base case:
Since F(X,Y) ≡ F(0)(X,Y) mod S 1, the theorem is valid for k = 0. Inductive step: Let the
theorem be valid up to the (k − 1)-th construction. We write:

G(k−1)
i = G(0)

i (X,Y) + ∆G(1)
i (X,Y) + · · · + ∆G(k−1)

i (X,Y),

such that G(k′)
i (X,Y) ∈ S k′ , and degX(∆G(k′)

i (X,Y)) < degX(G(0)
i (X,Y)) = mi for k′ = 1, . . . , k−1.

These latter properties are part of the induction hypothesis. Now define

∆F(k)(X,Y) := F(X,Y) −G(k−1)
1 · · ·G(k−1)

r mod S k+1.

It follows from the induction hypotheses that ∆F(k)(X,Y) ∈ S k holds. Thus, we can write

∆F(k)(X,Y) = f (k)
d−1Xd−1Y δ̂/d̂ + · · · + f (k)

0 X0Ydδ̂/d̂ (3.4)

where f (k)
` = c(k)

` Yk/d̂ and c(k)
` ∈ C for ` = 0, . . . , d − 1. We construct G(k)

i (X,Y), and thus
∆G(k)

1 , . . . ,∆G(k)
r , such that we have:

G(k)
i (X,Y) = G(k−1)

i (X,Y) + ∆G(k)
i (X,Y),

and ∆G(k)
i (X,Y) ≡ 0 mod S k. Then we have:

F(X,Y) ≡
∏r

i=1

(
G(k−1)

i + ∆G(k)
i

)
mod S k+1

≡ G(k−1)
1 · · ·G(k−1)

r + ∆G(k)
1

F(0)

G(0)
1

+ · · · + ∆G(k)
r

F(0)

G(0)
r

+ other terms︸ ︷︷ ︸
containing ∆G(k)

i (X,Y)∆G(k)
j (X,Y)

mod S k+1

≡ G(k−1)
1 · · ·G(k−1)

r + ∆G(k)
1

F(0)

G(0)
r

+ · · · + ∆G(k)
r

F(0)

G(0)
r

mod S k+1.

Indeed, we have ∆G(k)
i (X,Y)∆G(k′)

j (X,Y) ≡ 0 mod S k+1 for k, k′ ≥ 0, from the induction
hypotheses and the relation S kS k′ = S k+k′ . Therefore, we have

∆F(k) ≡ ∆G(k)
1

F(0)

G(0)
1

+ · · · + ∆G(k)
r

F(0)

G(0)
r

mod S k+1. (3.5)

If in Lemma 2, we let Ĝi(X, Ŷ) = G(0)
i (X, Ŷ), combining Equations (3.4) and (3.5), one can

solve for ∆G(k)
1 , . . . ,∆G(k)

r ∑r
i=1 ∆G(k)

i
F(0)

G(0)
i

=
∑d−1
`=0 f (k)

` X`Ŷd−`

=
∑d−1
`=0 f (k)

`

(∑r
i=1 W (`)

i
F(0)

G(0)
i

)
=

∑r
i=1

(∑d−1
`=0 f (k)

` W (`)
i

)
F(0)

G(0)
i
.

Since degX(f (k)
` W (`)

i) < degX(G(0)
i) and degX(∆G(k)

i (X,Y)) < degX(G(0)
i) both hold for i =

1, . . . , r, we deduce ∆G(k)
i (X,Y) =

∑d−1
`=0 W (`)

i (X,Y) f (k)
` (Y), for i = 1, . . . , r. �

Remark 1. Theorem 1 still holds if G(0)
1 (X,Y), . . . , G(0)

r (X,Y) just satisfy the same properties
as Ĝ1(X, Ŷ), . . . , Ĝr(X, Ŷ) of Lemma 2.

32 Chapter 3. Extended Hensel Construction

Remark 2. Write F(X, 0) = Xd +a1Xe1 + · · ·+amXem +am+1. If the polynomial F doesn’t satisfy
the assumption F(X, 0) = Xd, we apply to F(X,Y) the change of variables (X,Y) := (W/Y1/d,Y)
and factor out 1/Y. We obtain a polynomial F(W,Y) satisfying F(W, 0) = Wd. After applying
the EHC to F, we multiply each computed factor by 1/Y1/d and revert the change of variables.

Remark 3. Assume the Newton polynomial factorizes to F(0) = (X−aY)d for some a ∈ k. Since
d ≥ 2, we split F(0) into at least two factors, as follows. Let Y = 1 and apply the change of
variables X := W − a/d, called the Shreedharacharya-Tschirnhaus trick in Lemma 1.8 of [61].
After homogenizing back, we obtain a polynomial F(W,Y) whose Newton polynomial splits
into at least two co-prime factors. Applying the EHC to F(W,Y) produces at least two factors.

Algorithm 1: EHC Lift
Input: a given F as in Notation 1 and a positive integer k
Output: Extended Hensel Construction on F.
begin1

Compute the Newton polynomial F(0) and δ̂, d̂;2

Compute F(0) = G(0)
1 · · ·G

(0)
r , see Remark 1;3

if r = 1 then4

Apply the change of variable in Remark 3;5

Compute the Yun-Moses polynomials W (`)
i for i = 1, · · · , r and ` = 0, · · · , d − 1; (see6

Section 3.3);
for j = 1, . . . , k do7

Compute ∆F(j)(X,Y) := F(X,Y) −
∏r

i=1 G(j−1)
i mod S̄ j+1 (see Section 3.4 as well8

as Page 13 of [82]);
Compute ∆G(j)

i =
∑m−1
`=0 W (`)

i f (j)
` , for i = 1, · · · , r;9

Let G(j)
i = G(j−1)

i + ∆G(j)
i for i = 1, · · · , r;10

Reverse the change of variable, if any;11

return G(k)
1 , . . . ,G

(k)
r ;12

end13

3.2.1 Extended Hensel construction of multivariate polynomials
Let F(X,Y1, . . . ,Yn) ∈ k[X,Y1, . . . ,Yn] be monic, square-free in X, and F(X, 0, . . . , 0) = Xd.
Let U be a new variable called total degree variable. We perform the following substitutions
in F:

Y1 7→ U Y1, . . . ,Yn 7→ U Yn.

The intention of this substitution is to view F as a bivariate polynomial in X,U where
Y1, . . . ,Yn are now regarded as parameters. To be more precise, we regard F as a polynomial
in k(Y1, . . . ,Yn)[X,U].
Newton Line for multivariate polynomials. We plot each non-zero term c XexY

ey1
1 · · · Y

eyn
n of

F(X,Y1, . . . ,Yn) to the point of coordinates (ex, ey1 + · · · + eyn) in the (ex, eU) two-dimensional

3.2. Extended Hensel construction 33

Euclidean plane equipped with Cartesian coordinates, where eU := ey1 + · · · + eyn . We call
Newton Line the straight line L passing through the point (d, 0) and another plotted point such
that no other plotted points lie below L. This line L has a Cartesian equation of the form
ex/d + eU/δ = 1 for some δ ∈ Q. We define δ̂, d̂ ∈ Z>0 such that δ̂/d̂ = δ/d and gcd(δ̂, d̂) = 1
both hold.
Newton polynomial for multivariate polynomials. The sum of all the terms of F(X,Y1, . . . ,Yn),
which are plotted on the Newton line of F, is called the Newton polynomial of F. We denote it
by F(0). Observe that Newton polynomial is a homogeneous polynomial in (X,Uδ/d).

Lemma 3. Any non-constant monomial of F is plotted at one of the points of the set{
(d, (k + 0)/d̂), (d − 1, (k + δ̂/d̂)), . . . , (0, (k + dδ̂)/d̂)

}
Note again that F(0) is homogeneous in (X, Û) where Û := U δ̂/d̂. Define

S k :=
{
Xd U (k+0)/d̂, Xd−1 U (k+δ̂)/d̂, . . . ,U (k+dδ̂)/d̂

}
.

Let also
S ′k :=

{
Xd, Xd−1, . . . , 1

}
.

In general, F(0)(X,Y1, . . . ,Yn) can be factorized in C[X,Y1, . . . ,Yn] as following:

F(0)(X,Y1, . . . ,Yn) = H(0)
1 (X,Y1, . . . ,Yn)m1 · · ·H(0)

s (X,Y1, . . . ,Yn)ms

gcd(H(0)
i ,H(0)

j) = 1, for any i , j, and degX(H(0)
i) = ri

(3.6)

where each H(0)
i is an irreducible factor for F(0). Suppose s ≥ 2. We let

F(0)
i = H(0)

i (X,Y1, . . . ,Yn)mi for i = 1 . . . s.

Lemma 4 (Yun-Moses polynomials). For each ` = 1, . . . , d − 1, there exist Yun-moses polyno-
mials W (`)

1 , . . .W (`)
s ∈ C(Y1, . . . ,Yn)[X] satisfying,

• W (`)
1

(
F(0)

1 · · · F
(0)
s /F(0)

1

)
+ · · · + W (`)

1

(
F(0)

1 · · · F
(0)
s /F(0)

s

)
= X`

• degX(W (`)
i) < degX(F(0)

i), i = 1, . . . , s

For each i = 1, . . . , s, W (`)
i Ûd−` are homogenous in X and Û where Û = U δ̂/d̂ of total degree

degX(F(0)
i) w.r.t X and Û.

Remark 4. Since W (`)
i are rational functions in Y1, . . . ,Yn with different denominators, it is not

possible any time to clear denominators by multiplying a simple expression to the equality.

Theorem 2 (Extended Hensel Construction for multivarate case). Let F(X,Y1, . . . ,Yn) ∈
C[X,Y1, . . . ,Yn] be monic in X and square-free. Let also F(0) be its Newton polynomial which
is factorized as in 3.6. Then for any integer k, we can construct F(k)

i such that
• F(X,Y1, . . . ,Yn) ≡ F(k)

1 (X,Y1, . . . ,Yn) · · · F(k)
s (X,Y1, . . . ,Yn) mod S ′k+1

• F(k)
1 (X,Y1, . . . ,Yn) ≡ Hi(X,Y1, . . . ,Yn)mi mod S ′1, i = 1, . . . , s

Each coefficient of the term XeX UeU in F(k)
i (X,Y1, . . . ,Yn) is of the form N

D where N and D are
homogenous polynomials in Y1, . . . ,Yn and deg(N) − deg(D) = eU .

34 Chapter 3. Extended Hensel Construction

3.2.2 Complete factorization in C(〈Y∗〉)[X]

To separate all the branches of the curve F(X,Y) = 0 around the origin, one should use a
sufficient accuracy (that is, degree in Y) for the lifted factors. Theorem 4.5 in [44] suggests a
minimum accuracy of B := 2 degX(F) degY(F).

After applying EHC Lift(F, k) with k = d̂B− δ̂, which is the number of iteration needed for
accuracy B, one needs to re-apply the EHC on each lifted factor of multiplicity greater than 1.
For each additional call, with a lifted factor G := G(k)

i (X,Y), the value of k is set to d̂B′ − δ̂,
where B′ := 2 degX(G) degY(G). Moreover, for each lifted factor G(k)

i (X,Y), with the notations
of Theorem 1, we apply the change of coordinates X = X − ζiY . See [82] for details. This
process generates a tree of calls to the EHC. Obviously, one needs to do at most d calls in total.

One may wonder what is the maximum total number of lifting steps along a branch of that
tree. One can easily verify that after completing the factorization of F in C(〈Y∗〉)[X] into linear
factors, that this maximum is given by d̂B − δ̂.

3.3 On the Yun-Moses polynomials

We use the notations of Section 3.2, including the proof of Theorem 1. Define Ỹ = Y1/d̂. In
this section, we take advantage of the fact each Yun-Moses polynomial is a rational function in
X,Y , whose denominator is just a power of Y .

Lemma 5. We have ∆F(k) ∈ K[X, Ỹ], for all k = 1, 2,

Proof. From the Extended Hensel Construction, it is known that ∆F(k) ≡ F−G(k−1)
1 · · ·G(k−1)

r mod
S k+1, where G(k−1)

i = G(0)
i + ∆G(1)

i + · · · + ∆G(k−1)
i . And we have

∆F(k)(X, Ỹ) = f (k)
d−1Xd−1Ỹ δ̂ + · · · + f (k)

0 X0Ỹdδ̂

where f (k)
` = c(k)

` Ỹk with c(k)
` ∈ C for ` = 0, . . . , d − 1. The goal is to prove c(k)

` ∈ K and we
prove it by induction. For k = 1, ∆F(1) ≡ F − F(0) mod S 2. Since F, F(0) ∈ K[X,Y], we have
∆F(1) ∈ K[X, Ỹ]. Now assume ∆F(k−1) ∈ K[X, Ỹ], thus G(k−2)

1 · · ·G(k−2)
r = F−∆F(k−1) ∈ K[X, Ỹ].

We want to prove ∆F(k) ∈ K[X, Ỹ]. In modulo S k+1, we have

∆F(k) ≡ F −G(k−1)
1 · · ·G(k−1)

r

≡ F − (G(k−2)
1 + ∆G(k−1)

1) · · · (G(k−2)
r + ∆G(k−1)

r)
≡ F − (G(k−2)

1 · · ·G(k−2)
r +

∑r
i=1 ∆G(k−1)

i
F(0)

G(0)
i

).

Last equivalence is valid, due to ∆G(k−1)
i ∆G(k−1)

j ≡ 0 mod S k+1 and (G(k−1)
1 · · ·G(k−1)

r)/G(k−1)
i ≡

(G(0)
1 · · ·G

(0)
r)/G(0)

i mod S k+1. On the other hand, ∆G(k−1)
i =

∑d−1
`=0 W (`)

i f (k−1)
` . So, we have∑r

i=1 ∆G(k−1)
i

F(0)

G(0)
i

=
∑r

i=1
∑d−1
`=0 W (`)

i f (k−1)
`

F(0)

G(0)
i

=
∑d−1
`=0 f (k−1)

`

∑r
i=1 W (`)

i
F(0)

G(0)
i

=
∑d−1
`=0 f (k−1)

` XdỸ δ̂(d−`),

3.3. On the Yun-Moses polynomials 35

therefore, modulo S k+1, we have

∆F(k) ≡ F − (G(k−1)
1 · · ·G(k−1)

r +
∑d−1
`=0 f (k−1)

` XdỸ δ̂(d−`))
≡ F − (G(k−1)

1 · · ·G(k−1)
r +

∑d−1
`=0 c(k−1)

` XdỸ (k−1)δ̂(d−`)).

By induction assumption for k− 1, we have c(k−1)
` ∈ K and G(k−1)

1 · · ·G(k−1)
r ∈ K[X, Ỹ], therefore,

∆F(k) ∈ K[X, Ỹ]. �

From Lemma 2, the Yun-Moses polynomials associated with the initial factors G(0)
1 , . . . ,G(0)

r

of F(0) satisfy
r∑

i=1

W (`)
i

F(0)

G(0)
i

= X`Ŷd−` for ` = 0, · · · d − 1, (3.7)

where Ŷ = Y δ̂/d̂ with G(0)
i = (X − ζiŶ)mi where ζi is a root of F(0)(X, 1) and mi is its multiplicity.

Also, we have degX(W (`)
i) < mi, thus, we write W (`)

i =
∑mi−1

j=0 w(`)
i, j (Ŷ)X j for any `. Let us fix λ in

{1, . . . , r}. Define the column vector X`λ = [w(`)
λ, j]. The goal is to find X`λ, what we shall do by

solving a system of linear equations. Now for µ = 0, 1, . . . ,mλ − 1, we take the µ-th derivative
of each side in Equation (3.7) and let X = ζλŶ in those derivatives. In other words, we have

∂µ

∂Xµ

 r∑
i=1

W (`)
i

F(0)

G(0)
i

 ∣∣∣∣∣
X=ζλŶ

=
∂µ

∂Xµ
(X`Ŷd−`)|X=ζλŶ .

On the left-hand side of the above equality, after evaluating at X = ζλŶ , all terms of the sum
become zero, except the λ-th term. Therefore, we have

∂µ

∂Xµ

W (`)
λ

F(0)

G(0)
λ

 ∣∣∣∣∣
X=ζλŶ

=
∂µ

∂Xµ
(X`Ŷd−`)|X=ζλŶ .

Also we have W (`)
λ =

∑mλ−1
j=0 wλ, j(Ŷ)X j, thus, we have

mλ−1∑
j=0

∂µ

∂Xµ

X j F(0)

G(0)
λ

 ∣∣∣∣∣
X=ζλŶ

w(`)
λ, j =

∂µ

∂Xµ
(X`Ŷd−`)

∣∣∣X=ζλŶ . (3.8)

On the other hand, we know that

∂µ

∂Xµ

F(0)

G(0)
λ

 ∣∣∣∣∣
X=ζλŶ

=
1

mλ!
∂µ+mλ

∂Xµ+mλ
(F(0))

∣∣∣X=ζλŶ .

Since F(0) ∈ k[X, Ŷ], we have ∂µ

∂Xµ

(
F(0)

G(0)
λ

) ∣∣∣X=ζλŶ ∈ k(ζλ)[Ŷ]. So, Equation (3.8) is a system of

linear equationsWλX
(`)
λ = B

(`)
λ in k(ζλ)[Ŷ] (also see [82]) with coefficient matrix

Wλ = [α j,µ] with α j,µ =
∂µ

∂Xµ

X j F(0)

G(0)
λ

 ∣∣∣∣∣
X=ζλŶ

, (3.9)

36 Chapter 3. Extended Hensel Construction

unknown vector X`λ = [w(`)
λ, j] and constant vector

B
(`)
λ = [βµ] with βµ =

∂µ

∂Xµ
(X`Ŷd−`)|X=ζλŶ (3.10)

for j, µ = 0, 1, . . . ,mλ−1. The matrixWλ is a Wronskian matrix. It is known that a Wronskian
matrix is invertible whenever the functions in the first row are analytic and linearly independent,

see [16]. In our case, the functions
(
X j F(0)

G(0)
λ

)
|X=ζλŶ , for j = 0, 1, . . . ,mλ − 1, are, indeed, linearly

independent polynomials in k(ζλ)[Ŷ], therefore, the Wronskian matrixWλ is invertible.

Now let us find the inverse of Wλ. For simplicity of notations, let f :=
(

F(0)

G(0)
λ

)
|X=ζλŶ and

f (µ) :=
(
∂µ

∂Xµ
F(0)

G(0)
λ

) ∣∣∣∣∣
X=ζλŶ

for µ = 1, . . . ,mλ − 1.

Proposition 1. The inverse ofWλ isW−1
λ = M2M1 where M1 and M2 are square matrices of

order mλ, defined as follows. The matrix M1 writes M1 = M1(mλ−1) · · ·M11M10 such that, for
j = 0, · · · ,mλ − 1, we have

M1 j =



1 0 · · · 0 0 0 · · · 0
0 1 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
...

0 0 · · · 1 0 0 · · · 0
0 0 · · · 0 1

j! f 0 · · · 0

0 0 · · · 0
(

j+1
j

)
− f ′

f 1 · · · 0
...

...
...

...
...

. . .
...

0 0 · · · 0
(
mλ−1

j

)
− f (mλ−1− j)

f 0 · · · 1


.

Hence, the matrix M1 j differs from the identity matrix only in its (j + 1)-th column. The matrix
M2 is an upper triangular matrix M2 = [γ j,k] with γ j,k = (−1) j+k

(
k

k− j

)
ζ

k− j
λ Ŷk− j if j ≤ k and

γ j,k = 0 if j > k, for j, k ∈ {0, 1, . . . ,mλ − 1}.

Proof. To proveW−1
λ = M2M1, it is enough to show that M−1

2 = M1Wλ holds, where M−1
2

is given by the next claim.
Claim: M−1

2 is upper triangular with
(

k
k− j

)
ζ

k− j
λ Ŷk− j as (j, k)−entry.

Proof of the claim: Let A be the upper triangular matrix with
(

k
k− j

)
T k− j as (j, k)−entry where

T is a new variable. We show that A|T=ζλŶ · M2 = I where I is the identity matrix of order mλ.
Let us look at the dot product of the (j+1)−th row of A and the (k +1)−th column of M2 where
k ≥ j. This dot product is:

k− j∑
l=0

(−1)k+ j+l

(
k

k − j − l

)
T l

(
j + l

l

)
ζ

k− j−l
λ Ŷk− j−l.

The above quantity is also equal to each side of Equation (3.11):(
k
j

) k− j∑
l=0

(−1)k+ j+l

(
k − j

l

)
T lζ

k− j−l
λ Ŷk− j−l =

(
k
j

)
(T − ζλŶ)k− j. (3.11)

3.3. On the Yun-Moses polynomials 37

So for k = j, the right hand side of Equation (3.11) equals 1, and when k , j (i.e. k > j), by
evaluating T = ζλŶ , it is 0. Hence, we have A|T=ζλŶ · M2 = I and M−1

2 = A|T=ζλŶ , proving the
claim.

Now, it is enough to show that M−1
2 = M1 · Wλ holds. Observe that M1 j is the product

of some elementary matrices (which are obtained by applying one elementary row operation
on the identity matrix, like above matrices). Let N j−1 := M1(j−1) · · ·M10Wλ. By multiplying
M1 j by N j−1, we are factoring out f from the (j + 1)−th row and adding −

(
k
j

)
f (k) multiple of

the (j + 1)−th row to the (j + k)−th row for k = 2, . . . ,mλ − j − 1. Therefore, the factor f
will be removed from the (j + 1)−th row. Furthermore, the term with highest derivative will
also be removed from all rows after the (j + 1)−th one. Hence, M1(mλ−1) · · ·M10Wλ is an upper
triangular matrix such that every entry in the upper triangle is given by multiplying the term

with lowest derivative of f by 1/(j! f). Since the (j + 1, k + 1)−entry ofWλ is ∂ j

∂X j

(
Xk F(0)

G(0)
λ

)
at

X = ζλŶ , the (j + 1, k + 1)−entry of M1(mλ−1) · · ·M10Wλ is

1
j! f

k!
(k − j)!

ζ
k− j
λ Ŷk− j f =

(
k

k − j

)
ζ

k− j
λ Ŷk− j,

which is exactly M−1
2 . This completes the proof. �

Lemma 2 yields the following for Yun-Moses polynomials.

Corollary 1. If F(X,Y) ∈ K[X,Y], then W (`)
λ ∈ K(ζλ)〈Ŷ〉[X], where ζλ is the root of the initial

factor of F(0) corresponding to W (`)
λ ,

Proof. From Lemma 2, we have W`
λ ∈ C〈Ŷ〉[X]. Thus, it is enough to show that the

coefficients of W`
λ are from K(ζλ). First, observe that F(0) and G(0)

λ are two homogeneous
polynomials of degrees

∑
j m j and mλ in K[X, Ŷ] and K(ζλ)[X, Ŷ], respectively. For any µ =

0, 1, . . . ,mλ − 1, we have
∂µ

∂Xµ

F(0)

G(0)
λ

 ∣∣∣∣∣
X=ζλŶ

∈ k(ζλ)[Ŷ].

Hence, the coefficients of all entries of W−1
λ , defined in Proposition 1, live in K(ζλ). Also,

observe that the coefficients of all entries in matrix B(`)
λ defined in (3.10) live in the same field

K(ζλ), therefore, wλ, j ∈ K(ζλ)〈Y〉, for all j = 0, 1, . . . ,mλ − 1. Hence W (`)
λ ∈ K(ζλ)〈Y〉[X]. �

3.3.1 Computing the Wλ

In this section, we discuss how we compute the Yun-Moses polynomials Wλ. We regard each
Wλ as a univariate polynomial in X, so we need to compute the coefficients of X j for j =

0, 1, . . . ,mλ − 1, which are univariate polynomials in Ŷ = Y δ̂/d̂. Therefore, we need to compute
the inverse of the Wronskian matrixWλ by computing M10,M11, . . . ,M1(mλ−1) and M2 at X =

ζλŶ . Since F(0)

G(0)
λ

(X, Ŷ) is a homogeneous polynomial, then f , as defined before Proposition 1,

is just a term in Ŷ . Therefore, all entries of W−1
λ are just terms in Ŷ; so to compute W−1

λ =

M2M10 · · ·M1(mλ−1), we just need to do arithmetic on the coefficients of Ŷ and keep track of the
degree of Ŷ in each entry. We can observe that the degree of Ŷ in the (j, k)−entry ofW−1

λ is
mλ − d − j + k (see Section 3.3.2). On the other hand, the degree of Ŷ in the j−th entry of B(`)

λ

38 Chapter 3. Extended Hensel Construction

is d − j (see Section 3.3.2). Hence, computing the productW−1
λ = M2M10 · · ·M1(mλ−1) can be

done as if those matrices had coefficients in K(ζλ) rather than K(ζλ)[Ŷ].

3.3.2 Complexity analysis
Let f := F(0)(X, Ŷ)/(X − ζλŶ)mλ , where ζλ is a root of F(0)(X, 1), and let d f be the degree of f
w.r.t. X. So d f = d − mλ. We use the notations of Proposition 1. After evaluation at X = ζλŶ ,
in all entries of M1 below the main diagonal, the degree of the denominator of the (j, k)−entry
is (j − k + 1)d f , the degree of the numerator is (j − k)(d f − 1) for j, k = 1, . . . ,mλ, with j ≥ k.
Thus, in the (j, k)−entry, the degree of Ŷ is −(d − mλ + j − k). In M2, the degree of Ŷ on the
(j, k)−entry is k − j for j, k = 1, . . . ,mλ with k ≥ j. Hence, the Ŷ-degree in the (j, k)−entry of
W−1

λ is 2mλ − d + k − j.
In particular, M(n) is an upper bound for the number of operations in K(ζλ) required for

multiplying two univariate polynomials in K(ζλ) with degree less than n. Let A(n) be an upper
bound for the number of operations in K required by one addition or multiplication in a simple
algebraic extension of K of degree n. We have: A(n) ∈ O(M(n)). Observe that the cost of
evaluating f and its derivatives up to f (mλ−1) is negligible. Let C1 be the cost of constructing
the matrices M10,M11, . . . ,M1(mλ−1) and M2. Assuming that 1/ζλ and all involved binomial
coefficients are precomputed, we have:

C1 =

 (mλ − 1)mλ

2
+

mλ−1∑
j=0

mλ − j

 A(d).

The cost C2 of multiplying M10,M11, . . . ,M1(mλ−1) and M2 is:

C2 =

mλ−1∑
j=1

(mλ − j)(2 j − 1) + mλ

mλ∑
j=1

2(j − 1) − 2
mλ∑
k=1

k∑
j=1

j

 A(d).

To understand where the factor A(d) comes from, one should note that, if F(0)(X, 1) does not
split into linear factors over k, it is sufficient to work with its irreducible factors over k, see
Remark 1. Therefore, the cost CYM of computing the Yun-Moses polynomials W (`)

λ , for ` ∈
{0, . . . , d − 1}, is given by CYM = C1 + C2 = O(m3

λM(d)). This leads us to:

Theorem 3. One can compute all the Yun-Moses polynomials W (`)
i (0 ≤ ` ≤ d − 1, 1 ≤ i ≤ r),

within O(d3 M(d)) operations in k.

Proof. For constructing the matrices M10,M11, . . . ,M1(mλ−1), we need, respectively, mλ,mλ−

1, . . . , 1 arithmetic calculations and therefore, we have
(

(mλ−1)mλ

2

)
A(d) as the total cost. Also for

M2, since it is an upper triangular matrix, it needs
∑mλ−1

j=0 mλ − j arithmetic computations. Thus
the total cost for constructing the matrices M10,M11, . . . ,M1(mλ−1), and M2 is

C1 =

 (mλ − 1)mλ

2
+

mλ−1∑
j=0

mλ − j

 A(d).

For multiplying matrices M10,M11, . . . ,M1(mλ−1), due to sparsity of these matrices, there are∑mλ−1
j=1 (mλ− j)(2 j−1) multiplications and additions required to compute M1 = M10M11 . . . M1(mλ−1).

3.4. Lifting the factors 39

hhhhhhhhhhhhRow j of M1

Column k of M2 1 2 3 · · · k · · · mλ

1 2 mλ 2 (mλ − 1) 2 (mλ − 2) · · · 2 (mλ − k − 1) · · · 2
2 2 (mλ − 1) 2 (mλ − 1) 2 (mλ − 2) · · · 2 (mλ − k − 2) · · · 2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

j 2 (mλ − j + 1) 2 (mλ − j + 1) 2 (mλ − j + 1) · · · 2 (mλ − k − j) · · · 2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

mλ 2 2 2 · · · 2 · · · 2

Table 3.1: Calculation of the total number of multiplications and additions for multiplying each
row of M1 by each column of M2.

Next, we multiply M2 and M1. As we know, the matrices M2 and M1 are, respectively,
upper and lower triangular matrices. Here we suppose that the multiplication of a number
and zero is negligible. The number of multiplications and additions for multiplying each row
of M2 by each column of M1 is listed in Table 3.1. Thus the total number of the arithmetic
computations for computing M2M1 ismλ

mλ∑
j=1

2(j − 1) − 2
mλ∑
k=1

k∑
j=1

j

 A(d).

Thus the total cost of arithmetic computations for building M1 = M10M11 · · ·M1(mλ−1) and
multiplying M2 and M1 is

C2 =

mλ−1∑
j=1

(mλ − j)(2 j − 1) + mλ

mλ∑
j=1

2(j − 1) − 2
mλ∑
k=1

k∑
j=1

j

 A(d).

Thus the cost of computing Yun-Moses polynomials W (`)
λ , for ` = 0, . . . , d−1, isO(m3

λM(d)).
Thus the total cost for computing all the Yun-Moses polynomials W (

i `), for ` = 0, . . . , d − 1,
and for i = 1, . . . , r, is O(d3 M(d)). �

3.4 Lifting the factors
We turn our attention to the lifting of the factors during the EHC, Lines 8-12 in Algorithm 1.
A naive implementation of that step would make the running-time of the i-iteration growing
quadratically with i. Adapting and enhancing an idea of L. Bernardin in [15], we make this
running-time in Θ(i) instead of Θ(i2).

Let Ỹ = Y1/d̂. Let ∆k
i be such that ∆G(k)

i = ∆k
i Ỹ

k and define ∆0
i = G(0)

i . Therefore, ∆k
i , for

k > 0, is homogeneous with respect to (X, Ŷ) of degree mi and we can write

G(k)
i = ∆0

i + ∆1
i Ỹ + ∆2

i Ỹ2 + · · · + ∆k
i Ỹ

k.

While Bernardin in [15] discusses his “recycling” strategy for univariate polynomials with
constant coefficients, we enhance his idea for the bivariate polynomials G(k)

i .

40 Chapter 3. Extended Hensel Construction

For j = 2, . . . , r and k ≥ 1, we let Pk
j be a degree k univariate polynomial in Ỹ satisfying

Pk
j ≡ G(k−1)

1 · · ·G(k−1)
j mod S k+1. So, initially, we have P1

j ≡ G(0)
1 · · ·G

(0)
j mod S 2, for j = 2, . . . , r.

For j = 2 and k > 1 we have

Pk
2 ≡ G(k−1)

1 G(k−1)
2 mod S k+1, so

Pk
2 = ∆0

1∆
0
2 +

(
∆0

1∆
1
2 + ∆0

2∆
1
1

)
Ỹ + · · ·

+
(
∆0

1∆
k−1
2 + · · · + ∆0

2∆
k−1
1

)
Ỹk−1

+
(
∆1

1∆
k−1
2 + · · · + ∆1

2∆
k−1
1

)
Ỹk.

For the next iteration, that is from k to k + 1, we have:

Pk+1
2 ≡ G(k)

1 G(k)
2 mod S k+2, so

Pk+1
2 = ∆0

1∆
0
2 +

(
∆0

1∆
1
2 + ∆0

2∆
1
1

)
Ỹ + · · ·

+
(
∆0

1∆
k−1
2 + · · · + ∆0

2∆
k−1
1

)
Ỹk−1

+
(
∆0

1∆
k
2 + · · · + ∆0

2∆
k
1

)
Ỹk

+
(
∆1

1∆
k
2 + · · · + ∆1

2∆
k
1

)
Ỹk+1.

If we assume that Pk
2 has been computed and stored at the previous iteration, then it is enough

to compute ∆0
1∆

k
2, ∆0

2∆
k
1 and ∆1

1∆
k
2 + · · · + ∆1

2∆
k
1 in the current iteration in order to deduce Pk+1

2 ,
with the following recursive formula:

Pk+1
2 = Pk

2 + (∆0
1∆

k
2 + ∆k

1∆
0
2)Ỹk + (∆1

1∆
k
2 + · · · + ∆k

1∆
1
2)Ỹk+1.

Now for j = 3, . . . , r, define

Pk
j ≡ Pk

j−1G
(k−1)
j mod S k+1, so

Pk
j = pk,0

j−1∆
0
j +

(
pk,1

j−1∆
0
j + pk,0

j−1∆
1
j

)
Ỹ + · · ·

+
(
pk,0

j−1∆
k−1
j + · · · + pk,k−1

j−1 ∆0
j

)
Ỹk−1

+
(
pk,1

j−1∆
k−1
j + · · · + pk,k

j−1∆
0
j

)
Ỹk,

where Pk
j−1 = pk,0

j−1 + pk,1
j−1Ỹ + · · · + pk,k

j−1Ỹk. Hence, we deduce:

Pk+1
j = Pk+1

j−1G(k)
j mod S k+2, so

Pk+1
j = pk+1,0

j−1 ∆0
j +

(
pk+1,1

j−1 ∆0
j + pk+1,0

j−1 ∆1
j

)
Ỹ + · · ·

+
(
pk+1,0

j−1 ∆k−1
j + · · · + pk+1,k−1

j−1 ∆0
j

)
Ỹk−1

+
(
pk+1,0

j−1 ∆k
j + · · · + pk+1,k

j−1 ∆0
j

)
Ỹk

+
(
pk+1,1

j−1 ∆k
j + · · · + pk+1,k+1

j−1 ∆0
j

)
Ỹk+1.

If we assume that Pk
j and Pk

j−1 have been computed and stored at the previous iteration, then
we can recycle some of the terms of Pk

j and Pk
j−1 in support of the calculation of Pk+1

j . However,
there are definitely new terms in Pk+1

j that we need to compute in the current iteration, namely
pk+1,0

j−1 ∆k
j and pk+1,1

j−1 ∆k
j + · · · + pk+1,k+1

j−1 ∆0
j .

3.5. Experimentation 41

Observe that pk+1,i
j−1 = pk,i

j−1 holds for i = 0, 1, . . . , k − 1, while pk+1,k
j−1 = pk,k

j−1 + qk+1
j holds,

where qk+1
j is recursively given by

qk+1
j = pk+1,0

j−1 ∆k
j + qk+1

j−1∆0
j with qk+1

2 = ∆k
2∆

0
1 + ∆0

2∆
k
1. (3.12)

Now observe that we have

pk+1,k
j = pk+1,0

j−1 ∆k
j + · · · + pk+1,k

j−1 ∆0
j

= pk+1,0
j−1 ∆k

j + pk,1
j−1∆

k−1
j + · · · + pk,k−1

j−1 ∆1
j + (pk,k

j−1 + qk+1
j)∆0

j

= pk+1,0
j−1 ∆k

j + pk,k
j + qk+1

j−1∆0
j = pk,k

j + qk+1
j .

Therefore, we can write

Pk+1
j = Pk

j + qk+1
j Ỹk +

(
pk+1,1

j−1 ∆k
j + · · · + pk+1,k+1

j−1 ∆0
j

)
Ỹk+1. (3.13)

Note: the term qk+1
j is missing in the formula at the top of the left column on p. 3 of [15].

3.4.1 Complexity analysis
It follows from Equation (3.13) that each P`

j, for 0 ≤ ` ≤ k + 1, is derived from P`−1
j and

P`
j−1 in a Pascal Triangle fashion. More precisely, letting ` = k + 1, if Pk

j and Pk+1
j−1 are known,

computing Pk+1
j requires 2 multiplications for computing qk+1

j (see Equations (3.12) and (3.13))
and k multiplications for the new terms (see Equation(3.13)). All multiplications are product
of a polynomial of degree m j to a polynomial of degree m1 + · · · + m j−1. Also, all P`

j for
j = 1, . . . , r and ` = 1, . . . , k need to be computed before computing Pk+1

r . Let Clift be the cost
of computing Pk+1

r . We have: Clift =
∑r

l=2(k + 2)M(max(m1 + · · · + ml−1,ml))A(d). This leads us
to the following result.

Theorem 4. The k-th iteration of Step 9 in the Algorithm 1 runs in O(k dM(d)2) operations in
k.

3.5 Experimentation
Table 3.2 gathers running times for comparing the EHC and Kung-Traub’s method for k = 10
and k = 20, where k is as in Section 3.1. The columns KT Lin and KT Quad correspond
to linear and quadratic lifting methods of Kung and Traub, respectively. Thus, for the EHC,
which is based on a linear lifting, as well as for KT Lin, k = 10 and k = 20 means 10 and 20
iterations of the “main loop”. For KT Quad, k = 10 and k = 20 means 4 and 5 iterations of the
“main loop”.

Each test-example has a number and can be found from wwww.regularchains.org/

papers/Benchmark-ISSAC-2017.zip. The column MD gives the degree of the main vari-
able in the input polynomial. The columns KT10 and KT20 correspond to k = 10 and k = 20.
The sub-columns EHC10 and EHC20 under EHCWM, give the timings for our enhanced EHC,
described in this chapter, that is, based on Sections 3.3 and 3.4. The sub-column EHC10, under
EHCEEA, gives the timings for an implementation of the original EHC method as described

wwww.regularchains.org/papers/Benchmark-ISSAC-2017.zip
wwww.regularchains.org/papers/Benchmark-ISSAC-2017.zip

42 Chapter 3. Extended Hensel Construction

in [82]. The sub-columns YM1 and YM2 show the timings for computing the Yun-Moses
polynomials corresponding to EHC10, respectively for EHCWM and EHCEEA.

In Table 3.2, the three most significant digits of the timings are recorded and ∞ means the
computations exceeded either the time limit of 3600sec, or the memory limit of 48Gb. These
experimental results were obtained on an Ubuntu desktop (1.6GHz Intel(R) Xeon(R) CPU).

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

the kth iteration

tim
e

sp
en

to
n

lif
tin

g
pr

oc
es

s
(s

ec
)

Extended Euclidean algorithm
Simplifying by Maple Normal command

Simplifying by regular chains

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8

the kth iteration

tim
e

sp
en

to
n

lif
tin

g
pr

oc
es

s
(s

ec
)

Extended Euclidean algorithm
Simplifying by Maple Normal command

Simplifying by regular chains

Figure 3.3: For each k on the x-axis, these plots show the time spent for lifting the factors of
EHC, from step k − 1 to step k see Lines 8-12 in Algorithm 1: (1) the black curve corresponds
to the original EHC [82]; (2) The red curve corresponds to the implementation of EHC with
the optimization tricks presented in the current chapter, when the simplifications of algebraic
numbers are done with the Normal command of Maple, and (3) the blue curve is the timing of
EHC with the optimization tricks when the simplifications of algebraic numbers are done with
the RegularChains library.

Figure 3.3 focuses on the performance of the optimization tricks applied on the lifting
process of EHC as explained in this chapter, for two different bivariate polynomials. Note that
square-root scaling has been used for the y-axis. The EHC algorithm, as well as Kung-Traub’s
method, are implemented in Maple and they are integrated into PowerSeries library. The
PowerSeries library is available at www.regularchains.org.

www.regularchains.org

3.5. Experimentation 43

Ex MD
KT Lin KT Quad EHCWM EHCEEA

KT10 KT20 KT10 KT20 EHC10 YM1 EHC20 EHC10 YM2
1 5 2.22 18.6 4.93 4.91 0.48 0.22 0.73 0.90 0.21
7 4 5.60 65.8 0.56 0.58 0.22 0.14 0.23 0.34 0.13
8 4 14.9 230 1.25 1.25 0.23 0.13 0.28 0.36 0.12
9 3 5.53 114 1.51 1.56 0.30 0.11 0.39 0.88 0.10

10 3 2.71 42.0 0.28 0.63 0.16 0.08 0.20 0.32 0.12
11 3 0.46 2.34 0.21 0.21 0.16 0.08 0.17 0.26 0.12
12 3 0.50 6.86 0.28 0.32 0.16 0.08 0.18 0.30 0.12
13 4 0.86 10.9 0.50 0.48 0.26 0.15 0.28 0.46 0.24
14 4 3.21 34.8 0.69 0.71 0.26 0.15 0.34 0.52 0.24
15 6 27.6 535 4.85 4.85 0.64 0.42 0.82 2.05 1.08
16 7 45.6 836 8.45 9.91 0.64 0.43 0.92 2.33 1.74
17 7 145 ∞ 23.4 23.2 0.78 0.43 3.37 4.12 1.77
19 4 0.14 0.16 0.16 0.14 0.39 0.26 0.45 0.51 0.15
20 4 2.79 7.98 0.77 0.82 0.26 0.15 0.29 0.50 0.24
21 4 8.58 143 1.96 1.93 0.23 0.12 0.31 0.47 0.16
24 5 2.90 24.8 1.11 1.11 0.26 0.15 0.35 0.49 0.17
25 7 1.83 9.45 0.90 1.00 0.46 0.31 0.50 0.73 0.42
26 8 2.35 12.3 3.09 3.29 0.66 0.53 0.74 2.18 1.80
27 8 60.8 2876 23.1 27.1 0.77 0.53 1.20 2.31 1.28
28 9 215 ∞ 73.8 123 1.88 1.03 2.11 7.03 4.92
30 17 ∞ ∞ ∞ ∞ 39.8 6.70 41.3 53.8 16.5
31 32 ∞ ∞ ∞ ∞ 599 24.9 ∞ ∞ ∞

32 33 ∞ ∞ ∞ ∞ 224 25.0 ∞ ∞ ∞

Table 3.2: Comparing EHC versus Kung-Traub’s method (timings are in seconds)

Chapter 4

Computing Limit Points via Puiseux
Series Expansions

4.1 Introduction

The theory of regular chains, since its introduction by J.F. Ritt [77], has been applied suc-
cessfully in many areas including differential systems [27, 17, 45], difference systems [37],
unmixed decompositions [49] and primary decomposition [91] of polynomial ideals, intersec-
tion multiplicity calculations [62], cylindrical algebraic decomposition [26], parametric [105]
and non-parametric [22] semi-algebraic systems. Today, regular chains are at the core of al-
gorithms computing triangular decomposition of polynomial systems and which are available
in several software packages [58, 102, 103]. Moreover, those algorithms provide back-engines
for computer algebra system front-end solvers, such as Maple’s solve command.

One of the algorithmic strengths of the theory of regular chains is its regularity test pro-
cedure. Given a polynomial p and a regular chain R, both in a multivariate polynomial ring
k[X1, . . . , Xn] over a field k, this procedure computes regular chains R1, . . . ,Re such that R1, . . . ,Re

is a decomposition of R in some technical sense 1 and for each 1 ≤ i ≤ e the polynomial p is
either null or regular modulo the saturated ideal of Ri. Thanks to the D5 Principle [32], this
regularity test avoids factorization into irreducible polynomials and involves only polynomial
GCD and resultant computations.

One of the technical difficulties of this theory, however, is the fact that regular chains do
not fit well in the “usual algebraic-geometric dictionary” (Chapter 4, [29]). Indeed, the “good”
zero set encoded by a regular chain R is a constructible set W(R), called the quasi-component
of R, which does not correspond exactly to the “good” ideal encoded by R, namely sat(R), the
saturated ideal of R. In fact, the affine variety defined by sat(R) equals W(R), that is, the Zariski
closure of W(R).

For this reason, a decomposition algorithm, such as the one of M. Kalkbrener [49] (which,
for an input polynomial ideal I computes regular chains R1, . . . ,Re such that

√
I equals the

intersection of the radicals of the saturated ideals of R1, . . . ,Re) can not be seen as a decom-
position algorithm for the variety V(I). Indeed, the output of Kalkbrener’s algorithm yields

1The radical of the saturated ideal of R is equal to the intersection of the radicals of the saturated ideals of
R1, . . . ,Re.

44

4.1. Introduction 45

V(I) = W(R1) ∪ · · · ∪ W(Re) while a decomposition of the form V(I) = W(R1) ∪ · · · ∪ W(R f)
would be more explicit.

Kalkbrener’s decompositions, and in fact all decompositions of differential ideals [27, 17,
45] raise another notorious issue: the Ritt problem, stated as follows. Given two regular chains
(algebraic or differential) R and S , check whether the inclusion of saturated ideals sat(R) ⊆
sat(S) holds or not. In the algebraic case, this inclusion can be tested by computing a set of
generators of sat(R) , using Gröbner bases. In practice, this solution is too expensive for the
purpose of removing redundant components in Kalkbrener’s decompositions and only some
criteria are applied [57]. In the differential case , there has not even an algorithmic solution.

In the algebraic case, both issues would be resolved if one would have a practically efficient
procedure with the following specification: for the regular chain R compute regular chains
R1, . . . ,Re such that we have W(R) = W(R1) ∪ · · · ∪ W(Re). If in addition, such procedure
does not require a system of generators of sat(R), this might suggest a solution in the differential
version of the Ritt problem.

We propose a solution to this algorithmic quest, in the algebraic case. To be precise, our
procedure computes the non-trivial limit points of the quasi-component W(R), that is, the set
lim(W(R)) := W(R) \W(R) as a finite union of quasi-components of some other regular chains,
see Theorem 11 in Section 4.7. This turns out to be W(R) ∩ V(hR), where V(hR) is the hy-
persurface defined by the product of the initials of polynomials in R. We focus on the case
where sat(R) has dimension one. The case sat(R) has dimension higher than one is discussed
in Chapter 6.

When the regular chain R consists of a single polynomial r, primitive w.r.t. its main vari-
able, one can easily check that lim(W(R)) = V(r, hr) holds, where hr is the initial of r. Unfortu-
nately, there is no generalization of this result when R consists of several polynomials, unless
R enjoys remarkable properties, such as being a primitive regular chain [57]. To overcome
this difficulty, it becomes necessary to view R as a “parametric representation” of the quasi-
component W(R). In this setting, the points of lim(W(R)) can be computed as limits (in the
usual sense of the Euclidean topology 2) of sequences of points along “branches” (in the sense
of the theory of algebraic curves) of W(R) . It turns out that these limits can be obtained as con-
stant terms of convergent Puiseux series defining the “branches” of W(R) in the neighborhood
of the points of interest.

Here comes the main technical difficulty of this approach. When computing a particular
point of lim(W(R)), one needs to follow one branch per defining equation of R. Following
a branch means computing a truncated Puiseux expansion about a point. Since the equation
of R defining a given variable, say X j, depends on the equations of R defining the variables
X j−1, X j−2, . . ., the truncated Puiseux expansion for X j is defined by an equation whose coeffi-
cients involve the truncated Puiseux expansions for X j−1, X j−2,

From Sections 4.3 to 4.7, we show that this principle indeed computes the desired limit
points. In particular, we introduce the notion of a system of Puiseux parametrizations of a
regular chain, see Section 4.3. This allows us to state in Theorem 7 a concise formula for
lim(W(R)) in terms of this latter notion. Then, we estimate to which accuracy one needs to
effectively compute such a system of Puiseux parametrizations in order to deduce lim(W(R)),
see Theorem 10 in Section 4.6.

2The closures of W(R) in Zariski and the Euclidean topologies are equal when k = C.

46 Chapter 4. Computing Limit Points via Puiseux Series Expansions

In Section 4.8, we report on a preliminary implementation of the algorithms presented
in this chapter. We evaluate our code by applying it to the question of removing redundant
components in Kalkbrener’s decompositions and observe the benefits of this strategy.

In order to facilitate the presentation of those technical materials, we dedicate Section 4.2.1
to the case of regular chains in 3 variables. Section 4.2 briefly reviews notions from the theories
of regular chains and algebraic curves. We conclude this introduction with an example.

Consider the regular chain R = {r1, r2} ⊂ k[X1, X2, X3] with r1 = X1X2
2 + X2 + 1, r2 =

(X1 + 2)X1X2
3 + (X2 + 1)(X3 + 1). We have W(R) = V(R) \ V(hR) with hR = X2

1(X1 + 2). To
determine lim(W(R)), we compute Puiseux series expansions of r1 at X1 = 0 and X1 = −2. For
such calculation, we use Maple’s command algcurves[puiseux] [95]. We start with X1 = 0.
The Puiseux expansions of r1 at X1 = 0 are:

[X1 = T, X2 = −T 2−T
T + O(T 2)],

[X1 = T, X2 = −1+T 2+T
T + O(T 2)].

Clearly, the second expansion does not yield a limit point. After substituting the first expansion
into r2, we have:

r′2 = r2(X1 = T, X2 = −T 2−T
T + O(T 2), X3)

= (T + 2)T X2
3 + (−T + O(T 2))(X3 + 1)

Now, we compute Puiseux series expansions of r′2 which are

[T = T, X3 = 1 − 1/3T + O(T 2)],
[T = T, X3 = −1/2 + 1/12 T + O(T 2)].

So the regular chains {X1, X2 +1, X3−1} and {X1, X2 +1, X3 +1/2} give the limit points of W(R)
at X1 = 0.

Next, we consider X1 = −2. We compute Puiseux series expansions of r1 at the point
X1 = −2. We have:

[X1 = T − 2, X2 = 1 + 1/3 T + O(T 2)],
[X1 = T − 2, X2 = −1/2 − 1/12 T + O(T 2)].

After substitution into r2, we obtain:

r′12 = r2(X1 = T − 2, X2 = 1 + 1/3 T + O(T 2), X3)
= (T − 2) T X3

2 +
(
2 + 1/3 T + O(T 2)

)
(X3 + 1)

r′22 = r2([X1 = T − 2, X2 = −1/2 − 1/12 T + O(T 2))
= (T − 2) T X3

2 +
(
1/2 − 1/12 T + O(T 2)

)
(X3 + 1) .

So those Puiseux expansions of r′12 and r′22 at T = 0 which result in a limit point are as follows:

i) for r′12: [T = T, X3 = T 2−T
T + O(T 2)]

ii) for r′22: [T = T, X3 = 4 T 2−T
T + O(T 2)]

Thus, the limit points of R at the point X1 = −2 can be represented by the regular chains
{X1+2, X2−1, X3+1} and {X1+2, X2+1/2, X3+1}. One can check that a triangular decomposition
of the system R ∪ {X1} is {X2 + 1, X1} and, thus, does not yield lim(W(R)) ∩ V(X1), but in fact
a superset of it.

4.2. Preliminaries 47

4.2 Preliminaries
This section is a review of various notions from the theories of regular chains, algebraic curves
and topology. For these latter subjects, our references are the textbooks of R.J. Walker [101],
G. Fischer [35] and J. R. Munkres [71]. Notations and hypotheses introduced in this section
are used throughout this chapter.
Multivariate polynomials. Let k be a field which is algebraically closed. Let X1 < · · · < Xs

be s ≥ 1 ordered variables. We denote by k[X1, . . . , Xs] the ring of polynomials in the vari-
ables X1, . . . , Xs and with coefficients in k. For a non-constant polynomial p ∈ k[X1, . . . , Xs],
the greatest variable in p is called main variable of p, denoted by mvar(p), and the leading
coefficient of p w.r.t. mvar(p) is called initial of p, denoted by init(p).
Zariski topology. We denote by As the affine s-space over k. An affine variety of As is the set of
common zeroes of a collection F ⊆ k[X1, . . . , Xs] of polynomials. The Zariski topology on As

is the topology whose closed sets are the affine varieties of As. The Zariski closure of a subset
W ⊆ As is the intersection of all affine varieties containing W. This is also the set of common
zeroes of the polynomials in k[X1, . . . , Xs] vanishing at any point of W.
Relation between Zariski topology and the Euclidean topology. When k = C, the affine space
As is endowed with both Zariski topology and the Euclidean topology. The basic open sets
of the Euclidean topology are the balls while the basic open sets of Zariski topology are the
complements of hypersurfaces. A Zariski closed (resp. open) set is closed (resp. open) in the
Euclidean topology on As. The following properties emphasize the fact that Zariski topology
is coarser than the Euclidean topology: every nonempty Euclidean open set is Zariski dense
and every nonempty Zariski open set is dense in the Euclidean topology on As. However, the
closures of a constructible set in Zariski topology and the Euclidean topology are equal. More
formally, we have the following (Corollary 1 in I.10 of [70]) key result. Let V ⊆ As be an
irreducible affine variety and U ⊆ V be open in the Zariski topology induced on V . Then, the
closure of U in Zariski topology and the closure of U in the Euclidean topology are both equal
to V .
Limit points. Let (X, τ) be a topological space. A point p ∈ X is a limit of a sequence (xn, n ∈ N)
of points of X if, for every neighborhood U of p, there exists an N such that, for every n ≥ N,
we have xn ∈ U; when this holds we write limn→∞ xn = p. If X is a Hausdorff space then limits
of sequences are unique, when they exist. Let S ⊆ X be a subset. A point p ∈ X is a limit
point of S if every neighborhood of p contains at least one point of S different from p itself.
Equivalently, p is a limit point of S if it is in the closure of S \ {p}. In addition, the closure
of S is equal to the union of S and the set of its limit points. If the space X is sequential,
and in particular if X is a metric space, the point p is a limit point of S if and only if there
exists a sequence (xn, n ∈ N) of points of S \ {p} with p as limit. In practice, the “interesting”
limit points of S are those which do not belong to S . For this reason, we call such limit points
non-trivial and we denote by lim(S) the set of non-trivial limit points of S .
Regular chain. A set R of non-constant polynomials in k[X1, . . . , Xs] is called a triangular
set, if for all p, q ∈ R with p , q we have mvar(p) , mvar(q). A variable Xi is said free
w.r.t. R if there exists no p ∈ R such that mvar(p) = Xi. For a nonempty triangular set R, we
define the saturated ideal sat(R) of R to be the ideal 〈R〉 : h∞R , where hR is the product of the
initials of the polynomials in R. The saturated ideal of the empty triangular set is defined as

48 Chapter 4. Computing Limit Points via Puiseux Series Expansions

the trivial ideal 〈0〉. The ideal sat(R) has several properties, in particular it is unmixed [19].
We denote its height, that is the number of polynomials in R, by e, thus sat(R) has dimension
s − e. Let Xi1 < · · · < Xie be the main variables of the polynomials in R. We denote by r j the
polynomial of R whose main variable is Xi j and by h j the initial of r j. Thus hR is the product
h1 · · · he. We say that R is a regular chain whenever R is empty or {r1, . . . , re−1} is a regular
chain and he is regular modulo the saturated ideal sat({r1, . . . , re−1}). The regular chain R is
said strongly normalized whenever each of the main variables of the polynomials of R (that is,
Xi1 < · · · < Xie) does not appear in hR.
Limit points of the quasi-component of a regular chain. We denote by W(R) := V(R) \ V(hR)
the quasi-component of R, that is, the common zeros of R that do not cancel hR. The above
discussion implies that the closure of W(R) in Zariski topology and the closure of W(R) in the
Euclidean topology are both equal to V(sat(R)), that is, the affine variety of sat(R). We denote
by W(R) this common closure and lim(W(R)) this common set of limit points.
Rings of formal power series. Recall that k is an algebraically closed field. From now on, we fur-
ther assume that k is topologically complete. Hence k may be the field C of complex numbers
but not the algebraic closure of the field Q of rational numbers. We denote by k[[X1, . . . , Xs]]
and k〈X1, . . . , Xs〉 the rings of formal and convergent power series in X1, . . . , Xs with coeffi-
cients in k. Note that the ring k〈X1, . . . , Xs〉 is a subring of k[[X1, . . . , Xs]]. When s = 1, we
write T instead of X1. Thus k[[T]] and k〈T 〉 are the rings of formal and convergent univariate
power series in T and coefficients in k. For f ∈ k[[X1, . . . , Xs]], its order is defined by

ord(f) =

{
min{d | f(d) , 0} if f , 0,
∞ if f = 0.

where f(d) is the homogeneous part of f in degree d. Recall that k[[X1, . . . , Xs]] is topologically
complete for Krull Topology and that k〈X1, . . . , Xs〉 is a Banach Algebra for the norm defined
by ‖ f ‖ρ = Σe |ae|ρ

e where f = Σe aeXe ∈ k[[X1, . . . , Xs]] and ρ = (ρ1, . . . , ρs) ∈ Rs
>0. We

denote byMs the only maximal ideal of k[[X1, . . . , Xs]], that is,

Ms = { f ∈ k[[X1, . . . , Xs]] | ord(f) ≥ 1}.

Let f ∈ k[[X1, . . . , Xs]] with f , 0. Let k ∈ N. We say that f is (1) general in Xs if f ,
0 modMs−1, (2) general in Xs of order k if we have ord(f modMs−1) = k.
Formal Puiseux series. We denote by k[[T ∗]] =

⋃∞
n=1 k[[T

1
n]] the ring of formal Puiseux series.

For a fixed ϕ ∈ k[[T ∗]], there is an n ∈ N>0 such that ϕ ∈ k[[T
1
n]]. Hence ϕ =

∑∞
m=0 amT

m
n ,

where am ∈ k. We call order of ϕ the rational number defined by ord(ϕ) = min{mn | am ,
0} ≥ 0. We denote by k((T ∗)) the quotient field of k[[T ∗]].
Convergent Puiseux series. Let ϕ ∈ C[[T ∗]] and n ∈ N such that ϕ = f (T

1
n) holds for some

f ∈ C[[T]]. We say that the Puiseux series ϕ is convergent if we have f ∈ C〈T 〉. Convergent
Puiseux series form an integral domain denoted by C〈T ∗〉; its quotient field is denoted by
C(〈T ∗〉). For every ϕ ∈ C((T ∗)), there exist n ∈ Z, r ∈ N>0 and a sequence of complex numbers
an, an+1, an+2, . . . such that we have

ϕ =

∞∑
m=n

amT
m
r and an , 0.

4.2. Preliminaries 49

Then, we define ord(ϕ) = n
r .

Puiseux Theorem. If k has characteristic zero, the field k((T ∗)) is the algebraic closure of the
field of formal Laurent series over k. Moreover, if k = C, the field C(〈T ∗〉) is algebraically
closed as well. From now on, we assume k = C.
Puiseux expansion. Let B = C((X∗)) or C(〈X∗〉). Let f ∈ B[Y], where d := deg(f ,Y) > 0.
Let h := lc(f ,Y). According to Puiseux Theorem, there exists ϕi ∈ B, i = 1, . . . , d, such that
f
h = (Y − ϕ1) · · · (Y − ϕd). We call ϕ1, . . . , ϕd the Puiseux expansions of f at the origin.
Puiseux parametrization. Let f ∈ C〈X〉[Y]. A Puiseux parametrization of f is a pair (ψ(T), ϕ(T))
of elements of C〈T 〉 for some new variable T , such that (1) ψ(T) = T ς, for some ς ∈ N>0; (2)
f (X = ψ(T),Y = ϕ(T)) = 0 holds in C〈T 〉, and (3) there is no integer k > 1 such that both
ψ(T) and ϕ(T) are in C〈T k〉. The index ς is called the ramification index of the parametrization
(T ς, ϕ(T)). It is intrinsic to f and ς ≤ deg(f ,Y). Let z1, . . . , zς denote the distinct roots of
unity of order ς in C. Then ϕ(ziX1/ς), for i = 1, . . . , ς, are ς Puiseux expansions of f . For a
Puiseux expansion ϕ of f , let c minimum such that both ϕ = g(T 1/c) and g ∈ C〈T 〉 holds. Then
(T c, g(T)) is a Puiseux parametrization of f .

We conclude this section by a few lemmas which are immediate consequences of the above
review.

Lemma 6. We have: lim(W(R)) = W(R) ∩ V(hR). In particular, lim(W(R)) is either empty or
an affine variety of dimension s − e − 1.

Lemma 7. If R is a primitive regular chain, that is, if R is a system of generators of its saturated
ideal, then we have lim(W(R)) = V(R) ∩ V(hR).

Lemma 8. If N is a strongly normalized regular chain such that sat(R) = sat(N) and V(hN) =

V(ĥR) both hold, then we have lim(W(R)) ⊆ lim(W(N)).

Lemma 9. Let x ∈ As such that x < W(R). Then x ∈ lim(W(R)) holds if and only if there exists
a sequence (αn, n ∈ N) of points in As such that αn ∈ W(R) for all n ∈ N and limn→∞ αn = x.

Lemma 10. Recall that R writes {r1, . . . , re}. If e > 1 holds, writing R′ = {r1, . . . , re−1} and
r = re, we have

lim(W(R′ ∪ r)) ⊆ lim(W(R′)) ∩ lim(W(r)).

Lemma 11. Let ϕ ∈ C(〈T ∗〉) and let p/q ∈ Q be the order of ϕ. Let (αn, n ∈ N) be a sequence
of complex numbers converging to zero and let N be a positive integer such that (ϕ(αn), n ≥ N)
is well defined. Then, if p/q < 0 holds, the sequence (ϕ(αn), n ≥ N) escapes to infinity while if
p/q ≥ 0, the sequence (ϕ(αn), n ≥ N) converges to the complex number ϕ(0).

4.2.1 Basic techniques
This section is an overview of the basic techniques of this chapter . This presentation is meant to
help the non-expert reader understand our objectives and solutions. In particular, the results of
this section are stated for regular chains in three variables, while the statements of Sections 4.3
to 4.7 do not have this restriction.

50 Chapter 4. Computing Limit Points via Puiseux Series Expansions

Recall that R ⊆ C[X1, . . . , Xs] is a regular chain whose saturated ideal has height 1 ≤ e ≤ s.
As mentioned in the introduction, we mainly focus on the case e = s − 1, that is, sat(R) has
dimension one.

Lemma 6 and the assumption e = s − 1 imply that lim(W(R)) consists of finitely many
points.

We further assume that R is strongly normalized, thus we have hR lies in C[X1].
Lemma 7 and the assumption hR ∈ C[X1] imply that computing lim(W(R)) reduces to check,

for each root α ∈ C of hR whether or not there is a point x ∈ lim(W(R)) whose X1-coordinate is
α. Without loss of generality, it is enough to develop our results for the case α = 0. Indeed, a
change of coordinates can be used to reduce to this latter assumption.

We start by considering the case n = 2. Thus, our regular chain R consists of a single
polynomial r1 ∈ C[X1, X2] whose initial h1 satisfies h1(0) = 0. Lemma 12 provides a necessary
and sufficient condition for a point of (α, β) ∈ A2, with α = 0, to satisfy (α, β) ∈ lim(W({r1})).

Let d be the degree of r1 in X2. Applying Puiseux Theorem, we consider ϕ1, . . . , ϕd ∈

C(〈X∗1〉) such that the following holds

r1

h1
= (X2 − ϕ1) · · · (X2 − ϕd) (4.1)

in C(〈X∗1〉)[X2]. We assume that the series ϕ1, . . . , ϕd are numbered in such a way that each of
ϕ1, . . . , ϕc has a non-negative order while each of ϕc+1, . . . , ϕd has a negative order, for some c
such that 0 ≤ c ≤ d.

Lemma 12. With h1(0) = 0, for all β ∈ C, the following two conditions are equivalent

(i) (0, β) ∈ lim(W(r1)) holds,

(ii) there exists 1 ≤ j ≤ c and a sequence (αn, n ∈ N) of complex numbers such that the
sequence (ϕ j(αn), n ∈ N) is well defined, we have h1(αn) , 0 for all n ∈ N and we we
have

lim
n→∞

αn = 0 and lim
n→∞

ϕ j(αn) = β.

Proof. We first prove the implication (ii) ⇒ (i). Equation (4.1) together with (ii) implies
(αn, ϕ j(αn)) ∈ V(r1) for all n ∈ N. Since we also have (αn, ϕ j(αn)) < V(h1) for all n ∈ N and
limn→∞ (αn, ϕ j(αn)) = (0, β), we deduce (i), thanks to Lemma 9.

We now prove the implication (i)⇒ (ii). By Lemma 9, there exists a sequence ((αn, βn), n ∈
N) in A2 such that for all n ∈ N we have: (1) h1(αn) , 0, (2) r1(αn, βn) = 0, and (3)
limn→∞ (αn, βn) = (0, β). Since limn→∞ αn = 0, each series ϕ1(αn), . . . , ϕd(αn) is well defined
for n larger than some positive integer N. Hypotheses (1) and (2), together with Equation (4.1),
imply that for all n ≥ N the product

(βn − ϕ1(αn)) · · · (βn − ϕc(αn))(βn − ϕc+1(αn)) · · · (βn − ϕd(αn))

is 0. Since limn→∞ βn = β, and by definition of the integer c, each of the sequences (βn −

ϕ1(αn)), . . . , (βn−ϕc(αn)) converges while each of the sequences (βn−ϕc+1(αn)), . . . , (βn−ϕd(αn))
escapes to infinity. Thus, for n large enough the product (βn − ϕ1(αn)) · · · (βn − ϕc(αn)) is zero.
Therefore, one of sequences (βn − ϕ1(αn)), . . . , (βn − ϕc(αn)) converges to 0 and the conclusion
follows. �

4.2. Preliminaries 51

Lemmas 11 and 12 immediately imply the following.

Proposition 2. With h1(0) = 0, for all β ∈ C, we have

(0, β) ∈ lim(W(r1)) ⇐⇒ β ∈ {ϕ1(0), . . . , ϕc(0)}.

Next, we consider the case n = 3. Hence, our regular chain R consists of two polynomials
r1 ∈ C[X1, X2] and r2 ∈ C[X1, X2, X3] with respective initials h1 and h2. We assume that
0 is a root of the product h1h2 and we are looking for all β ∈ C and all γ ∈ C such that
(0, β, γ) ∈ lim(W(r1, r2)).

Lemma 10 tells us that (0, β, γ) ∈ lim(W(r1, r2)) implies (0, β) ∈ lim(W(r1)). This observa-
tion together with Proposition 2 yields immediately the following.

Proposition 3. With h1(0) = 0 and h2(0) , 0, assuming that r1 is primitive over C[X1], for all
β ∈ C and all γ ∈ C, we have

(0, β, γ) ∈ lim(W(r1, r2)) ⇐⇒ (0, β, γ) ∈ V(r1, r2).

We turn now our attention to the case h1(0) = h2(0) = 0. Since (0, β) ∈ lim(W(r1)) is a
necessary condition for (0, β, γ) ∈ lim(W(r1, r2)) to hold we apply Proposition 2 and assume
β ∈ {ϕ1(0), . . . , ϕc(0)}. Without loss of generality, we further assume β = 0. For each 1 ≤ j ≤ c,
such that ϕ j(0) = 0 holds, we define the univariate polynomial f j

2 ∈ C(〈X∗1〉)[X3] by

f j
2 (X1, X3) = r2(X1, ϕ j(X1), X3). (4.2)

Let b be the degree of f j
2 . Applying again Puiseux theorem, we consider ψ1, . . . , ψb ∈ C(〈X∗1〉)

such that the following holds

f j
2

h2
= (X3 − ψ1) · · · (X3 − ψb) (4.3)

in C(〈X∗1〉)[X3]. We assume that the series ψ1, . . . , ψb are numbered in such a way that each of
ψ1, . . . , ψa has a non-negative order while each of ψa+1, . . . , ψb has a negative order, for some a
such that 0 ≤ a ≤ b.

Lemma 13. For all γ ∈ C, the following two conditions are equivalent.

(i) (0, 0, γ) ∈ lim(W(r1, r2)) holds,

(ii) there exist integers j, k with 1 ≤ j ≤ c and 1 ≤ k ≤ a, and two sequences (αn, n ∈ N),
(βn, n ∈ N) of complex numbers such that:

(a) the sequences (ϕ j(αn), n ∈ N) and (ψk(βn), n ∈ N) are well defined,

(b) h1(αn) , 0 and h2(αn) , 0, for all n ∈ N,

(c) βn = ϕ j(αn), for all n ∈ N,

(d) limn→∞ (αn, βn, ψk(βn)) = (0, 0, γ).

52 Chapter 4. Computing Limit Points via Puiseux Series Expansions

Proof. Proving the implication (ii) ⇒ (i) is easy. We now prove the implication (i) ⇒ (ii). By
Lemma 9, there exists a sequence ((αn, βn, γn), n ∈ N) in A3 s.t. for all n ∈ N we have: (1)
h1(αn) , 0, (2) h2(αn) , 0, (3) r1(αn, βn) = 0, (4) r2(αn, βn, γn) = 0, (5) limn→∞ (αn, βn, γn) =

(0, 0, γ). Following the proof of Lemma 12, we know that for n large enough the product (βn −

ϕ1(αn)) · · · (βn − ϕc(αn)) is zero. Therefore, from one of the sequences (βn − ϕ1(αn)), . . . , (βn −

ϕc(αn)), say the j-th, one can extract an (infinite) sub-sequence whose terms are all zero. Thus,
without loss of generality, we assume that βn = ϕ j(αn) holds, for all n ∈ N. Hence, for all
n ∈ N, we have f j

2 (αn, γn) = r2(αn, βn, γn) = 0. Together with Equation (4.3) and following the
proof of Lemma 12, we deduce the desired result. �

Lemmas 11 and 13 immediately imply the following.

Proposition 4. For all γ ∈ C, the following two conditions are equivalent.

(i) (0, 0, γ) ∈ lim(W(r1, r2)) holds,

(ii) there exist integers j, k with 1 ≤ j ≤ c and 1 ≤ k ≤ a, such that ϕ j(0) = 0 and ψk(0) = γ.

Therefore, applying Puiseux theorem to r1 and f j
2 , then checking the constant terms of

the series ψ1, . . . , ψb provides a way to compute all γ ∈ C such that (0, 0, γ) is a limit point of
W(r1, r2). Theorem 7 in Sections 4.3 states this principle formally for an arbitrary regular chain
R in dimension one.

Finally, one should also consider the case h1(0) , 0, h2(0) = 0. In fact, it is easy to see that
this latter case can be handled in a similar manner as the case h1(0) = 0, h2(0) = 0.

4.3 Puiseux expansions of a regular chain
In this section, we introduce the notion of Puiseux expansions of a regular chain, motivated
by the work of [63, 2] on Puiseux expansions of space curves. Throughout this section, let
R = {r1, . . . , rs−1} ⊂ C[X1 < · · · < Xs] be a strongly normalized regular chain whose saturated
ideal has dimension one and assume that X1 is free w.r.t. R.

Lemma 14. Let hR(X1) be the product of the initials of the polynomials in R. Let ρ > 0
be small enough such that the set Uρ := {x = (x1, . . . , xs) ∈ Cs | 0 < |x1| < ρ} does not
contain any zeros of hR. Define Vρ(R) := V(R) ∩ Uρ. Then, we have W(R) ∩ Uρ = Vρ(R). Let
R′ := {primpart(r1), . . . , primpart(rs−1)}. Then Vρ(R) = Vρ(R′).

Proof. Let x ∈ W(R) ∩ Uρ, then x ∈ V(R) and x ∈ Uρ hold, which implies that W(R) ∩
Uρ ⊆ V(R) ∩ Uρ. Let x ∈ V(R) ∩ Uρ. Since Uρ ∩ V(hR) = ∅, we have x ∈ W(R). Thus
V(R) ∩ Uρ ⊆ W(R) ∩ Uρ. So W(R) ∩ Uρ = Vρ(R). Similarly we have Vρ(R) = Vρ(R′). �

Notation 2. Let W ⊆ Cs. Denote lim0(W) := {x = (x1, . . . , xs) ∈ Cs | x ∈ lim(W) and x1 = 0}.

Lemma 15. We have lim0(W(R)) = lim0(Vρ(R)).

Proof. By Lemma 14, we have W(R) ∩ Uρ = Vρ(R). Meanwhile, lim0(W(R)) = lim0(W(R) ∩
Uρ) holds. Thus lim0(W(R)) = lim0(Vρ(R)) holds. �

4.3. Puiseux expansions of a regular chain 53

Lemma 16. For 1 ≤ i ≤ s−1, let di := deg(ri, Xi+1). Then R generates a zero-dimensional ideal
in C(〈X∗1〉)[X2, . . . , Xs]. Let V∗(R) be the zero set of R in C(〈X∗1〉)

s−1. Then V∗(R) has exactly∏s−1
i=1 di points, counting multiplicities.

Proof. It follows directly from the definition of regular chain, and the fact that C(〈X∗1〉) is an
algebraically closed field. �

Definition 10. We use the notations of Lemma 16. Each point in V∗(R) is called a Puiseux
expansion of R.

Notation 3. Let m = |V∗(R)|. Write V∗(R) = {Φ1, . . . ,Φm}. For i = 1, . . . ,m, write Φi =

(Φ1
i (X1), . . . ,Φs−1

i (X1)). Let ρ > 0 be small enough such that for 1 ≤ i ≤ m, 1 ≤ j ≤ s − 1,
each Φ

j
i (X1) converges in 0 < |X1| < ρ. We define V∗ρ(R) := ∪m

i=1{x ∈ C
s | 0 < |x1| < ρ, x j+1 =

Φ
j
i (x1), j = 1, . . . , s − 1}.

Theorem 5. We have V∗ρ(R) = Vρ(R).

Proof. We prove this by induction on s. For i = 1, . . . , s − 1, recall that hi is the initial of ri. If
s = 2, we have

r1(X1, X2) = h1(X1)
d1∏
i=1

(X2 − Φ1
i (X1)).

So V∗ρ(R) = Vρ(R) clearly holds.
Now we consider s > 2. Write R′ = {r1, . . . , rs−2}, R = R′ ∪ {rs−1}, X′ = X2, . . . , Xs−1,

X = (X1, X′, Xs), x′ = x2, . . . , xs−1, x = (x1, x′, xs), and m′ = |V∗(R′)|. For i = 1, . . . ,m, let
Φi = (Φ′i ,Φ

s−1
i), where Φ′i stands for Φ1

i , . . . ,Φ
s−2
i . Assume the theorem holds for R′, that is

V∗ρ(R′) = Vρ(R′). For any i = 1, . . . ,m′, there exist i1, . . . , ids−1 ∈ {1, . . . ,m} such that we have

rs−1(X1, X′ = Φ′i , Xs) = hs−1(X1)
ds−1∏
k=1

(Xs − Φs−1
ik (X1)). (4.4)

Note that V∗(R) = ∪m′
i=1 ∪

ds−1
k=1 {(X

′ = Φ′i , Xs = Φs−1
ik

)}. Therefore, by induction hypothesis and
Equation (4.4), we have

V∗ρ(R) = ∪m′
i=1 ∪

ds−1
k=1 {x | x ∈ Uρ, x′ = Φ′i(x1), xs = Φs−1

ik
(x1)}

= ∪
ds−1
k=1 {x | (x1, x′) ∈ V∗ρ(R′), xs = Φs−1

ik
(x1)}

= {x | (x1, x′) ∈ V∗ρ(R′), rs−1(x1, x′, xs) = 0}
= {x | (x1, x′) ∈ Vρ(R′), rs−1(x1, x′, xs) = 0}
= Vρ(R).

�

Theorem 6. Let V∗
≥0(R) := {Φ = (Φ1, . . . ,Φs−1) ∈ V∗(R) | ord(Φ j) ≥ 0, j = 1, . . . , s − 1}. Then

we have
lim0(W(R)) = ∪Φ∈V∗

≥0(R){(X1 = 0,Φ(X1 = 0))}.

54 Chapter 4. Computing Limit Points via Puiseux Series Expansions

Proof. By definition of V∗
≥0(R), we immediately have

lim0(V∗ρ(R)) = ∪Φ∈V∗
≥0(R){(X1 = 0,Φ(X1 = 0))}.

Next, by Theorem 5, we have V∗ρ(R) = Vρ(R). Thus, we have lim0(V∗ρ(R)) = lim0(Vρ(R)).
Besides, with Lemma 15, we have lim0(W(R)) = lim0(Vρ(R)). Thus the theorem holds. �

Definition 11. Let V∗
≥0(R) be as defined in Theorem 6. Let M = |V∗

≥0(R)|. For each Φi =

(Φ1
i , . . . ,Φ

s−1
i) ∈ V∗

≥0(R), 1 ≤ i ≤ M, we know that Φ
j
i ∈ C(〈X∗1〉). Moreover, by Equation (4.4),

we know that for j = 1, . . . , s − 1, Φ
j
i is a Puiseux expansion of r j(X1, X2 = Φ1

i , . . . , X j =

Φ
j−1
i , X j+1). Let ςi, j be the ramification index of Φ

j
i and (T ςi, j , X j+1 = ϕ

j
i (T)), where ϕ j

i ∈ C〈T 〉,
be the corresponding Puiseux parametrization of Φ

j
i . Let ςi be the least common multiple of

{ςi,1, . . . , ςi,s−1}. Let g j
i = ϕ

j
i (T = T ςi/ςi, j). We call the setGR := {(X1 = T ςi , X2 = g1

i (T), . . . , Xs =

gs−1
i (T)), i = 1, . . . ,M} a system of Puiseux parametrizations of R.

Theorem 7. We have
lim0(W(R)) = GR(T = 0).

Proof. It follows directly from Theorem 6 and Definition 11. �

Remark 5. The limit points of W(R) at X1 = α , 0 can be reduced to the computation of
lim0(W(R)) by a coordinate transformation X1 = X1 + α. Given an arbitrary one-dimensional
regular chain R, the set lim(W(R)) can be computed in the following manner. Compute a
regular chain N which is strongly normalized and such that sat(R) = sat(N) and V(hN) = V(ĥR)
both hold, where ĥR is the iterated resultant of hR w.r.t R. See [25]. Let Xi := mvar(hR). Note
that N is still a regular chain w.r.t. the new order Xi < {X1, . . . , Xn} \ {Xi}. By Lemma 8, we
have lim(W(R)) = lim(W(N)) \W(R).

4.4 Puiseux parametrization in finite accuracy
In this section, we define the Puiseux parametrizations of a polynomial f ∈ C〈X〉[Y] in finite
accuracy, see Definition 13. For f ∈ C〈X〉[Y], we also define the approximation of f for a
given accuracy, see Definition 12. This approximation of f is a polynomial in C[X,Y]. In
Sections 4.5 and 4.6, we prove that to compute a Puiseux parametrization of f of a given
accuracy, it suffices to compute a Puiseux parametrization of an approximation of f of some
finite accuracy.

In this section, we review and adapt the classical Newton-Puiseux algorithm to compute
Puiseux parametrizations of a polynomial f ∈ C[X,Y] of a given accuracy. Since we do
not need to compute the singular part of Puiseux parametrizations, the usual requirement
discrim(f ,Y) , 0 is dropped.

Definition 12. Let f =
∑∞

i=0 aiXi ∈ C[[X]]. For any τ ∈ N, we call f (τ) :=
∑τ

i=0 aiXi the
polynomial part of f of accuracy τ + 1. Let f =

∑d
i=0 ai(X)Y i ∈ C〈X〉[Y]. For any τ ∈ N, we

call f̃ (τ) :=
∑d

i=0 a(τ)
i Y i the approximation of f of accuracy τ + 1.

4.4. Puiseux parametrization in finite accuracy 55

Definition 13. Let f ∈ C〈X〉[Y], with deg(f ,Y) > 0. Let σ, τ ∈ N>0 and g(T) =
∑τ−1

k=0 bkT k. Let
{T k1 , . . . ,T km} be the support of g(T). The pair (Tσ, g(T)) is called a Puiseux parametrization
of f of accuracy τ if there exists a Puiseux parametrization (T ς, ϕ(T)) of f such that:

(i) σ divides ς.
(ii) gcd(σ, k1, . . . , km) = 1.

(iii) g(T ς/σ) is the polynomial part of ϕ(T) of accuracy (ς/σ)(τ − 1) + 1.
Note that if σ = ς, then g(T) is the polynomial part of ϕ(T) of accuracy τ.

We borrow the following notion from [33] in order to state an algorithm for computing
Puiseux parametrizations.

Definition 14 ([33]). A C-term3 is defined as a triple t = (q, p, β), where q and p are coprime
integers, q > 0 and β ∈ C is non-zero. A C-expansion is a sequence π = (t1, t2, . . .) of C-terms,
where ti = (qi, pi, βi). We say that π is finite if there are only finitely many elements in π.

Definition 15. Let π = (t1, . . . , tN) be a finite C-expansion. We define a pair (Tσ, g(T)) of
polynomials in C[T] in the following manner:

(i) if N = 1, set σ = 1, g(T) = 0 and δN = 0,
(ii) otherwise, let a :=

∏N
i=1 qi, ci :=

∑i
j=1

(
p j

∏N
k= j+1 qk

)
(1 ≤ i ≤ N), and δi := ci/gcd(a, c1, . . . , cN)

(1 ≤ i ≤ N). Set σ := a/gcd(a, c1, . . . , cN) and g(T) :=
∑N

i=1 βiT δi .
We call the pair (Tσ, g(T)) the Puiseux parametrization of π of accuracy δN + 1. Denote by
ConstructParametrization an algorithm to compute (Tσ, g(T)) from π.

Definition 16. Let f ∈ C〈X〉[Y] and write f as f (X,Y) :=
∑d

i=0

(∑∞
j=0 ai, jX j

)
Y i. The Newton

Polygon of f is defined as the lower part of the convex hull of the set of points (i, j) in the plane
such that ai, j , 0.

Let f ∈ C〈X〉[Y]. Next we present an algorithm, called NewtonPolygon to compute the
segments in the Newton Polygon of f . This algorithm is from R.J. Walker’s book [101].

NewtonPolygon(f , I)
Input: A polynomial f ∈ C〈X〉[Y]; a controlling flag I, whose value is 1 or 2.
Output: The Newton Polygon of f . If I = 1, only segments with non-positive slopes are
computed. If I = 2, only segments with negative slopes are computed.
Description:

– Write f as f =
∑d

i=0 bi(X)Y i, where bi(X) =
∑∞

j=0 ai, jX j.
– For 0 ≤ i ≤ d, define δi := ord(bi).
– For 0 ≤ i ≤ d, we plot the points Pi with coordinates (i, δi); we omit Pi if δi = ∞.
– We join P0 to Pd with a convex polygonal arc each of whose vertices is a Pi and

such that no Pi lies below the arc.
– If I = 1, output all segments with non-positive slopes in the polygon; if I = 2,

output all segments with negative slopes in the polygon.
Next we introduce some notations which are necessary to present Algorithm 3 for comput-

ing Puiseux parametrization of some finite accuracy as defined in Definition 13.
Let f ∈ C[X,Y], t = (q, p, β) be a C-term and ` ∈ N s.t. NewPoly(f , t, `) := X−` f (Xq, Xp(β+

Y)) ∈ C[X,Y]. Let f =
∑d

i=0
∑m

j=0 ai, jX jY i ∈ C[X,Y] and let ∆ be a segment of the Newton

3It is a simplified version of Duval’s definition.

56 Chapter 4. Computing Limit Points via Puiseux Series Expansions

Polygon of f . Denote SegmentPoly(f ,∆) := (q, p, `, φ) such that the following holds: (1)
q, p, ` ∈ N; φ ∈ C[Z]; q and p are coprime, q > 0; (2) for any (i, j) ∈ ∆, we have q j + pi = `;
and (3) letting i0 := min({i | (i, j) ∈ ∆}), we have φ =

∑
(i, j)∈∆ ai, jZ(i−i0)/q.

Theorem 8. Algorithm 3 terminates and is correct.

Proof. It directly follows from the proof of the Newton-Puiseux algorithm in Walker’s book [101],
the relation between C-expansion and Puiseux parametrization discussed in Duval’s paper [33],
and Definitions 15 and 13. �

Algorithm 2: NonzeroTerm
Input: f ∈ C[X,Y]; I = 1 or 2.
Output: A finite set of pairs (t, `), where t is a C-term, and ` ∈ N.
begin1

S := ∅;2

for each ∆ ∈ NewtonPolygon(f , I) do3

(q, p, `, φ) := SegmentPoly(f ,∆);4

for each root ξ of φ in C do5

for each root β of Uq − ξ in C do6

t := (q, p, β);7

S := S ∪ {(t, `)}8

return S9

end10

4.5 Computing in finite accuracy
Let f ∈ C〈X〉[Y]. In this section, we consider the following problems:

(a) Is it possible to use an approximation of f of some finite accuracy m in order to compute
a Puiseux parametrization of f of some finite accuracy τ?

(b) If yes, how to deduce m from f and τ?
(c) Provide a bound on m.

Theorem 9 provides the answers to (a) and (b) while Lemma 20 answers (c).

Lemma 17 ([35]). Let X = X1, . . . , Xs and Y = Y1, . . . ,Ym. For g1, . . . , gs ∈ C[[Y]], with
ord(gi) ≥ 1, there is a C-algebra homomorphism (called the substitution homomorphism)

Φg :
C[[X]] −→ C[[Y]]

f 7−→ f (g1(Y), . . . , gs(Y)).

Moreover, if g1, . . . , gs are convergent power series, then we have Φg(C〈X〉) ⊆ C〈Y〉 holds.

Definition 17 ([35]). Let f =
∑

aµνXµYν ∈ C[[X,Y]]. The carrier of f is defined as

carr(f) = {(µ, ν) ∈ N2 | aµν , 0}.

4.5. Computing in finite accuracy 57

Algorithm 3: NewtonPuiseux
Input: f ∈ C[X,Y]; a given accuracy τ > 0 ∈ N.
Output: All the Puiseux parametrizations of f of accuracy τ.
begin1

π := (); S := {(π, f)}; P := ∅;2

while S , ∅ do3

choose (π∗, f ∗) ∈ S ; S := S \ {(π∗, f ∗)};4

if π∗ = () then I := 1 else I := 2;5

(Tσ, g(T)) := ConstructParametrization(π∗);6

if deg(g(T),T) + 1 < τ then7

C := NonzeroTerm(f ∗, I);8

if C = ∅ then9

P := P ∪ {(Tσ, g(T))}// a finite Puiseux parametrization is10

found

else11

for each (t = (p, q, β), `) ∈ C do12

π∗∗ := π∗ ∪ (t);13

f ∗∗ := NewPoly(f ∗, t, `);14

S := S ∪ {(π∗∗, f ∗∗)}15

else16

P := P ∪ {(Tσ, g(T))}17

return P18

end19

Lemma 18. Let f ∈ C〈X〉[Y]. Let d := deg(f ,Y) > 0. Let q ∈ N>0, p, ` ∈ N and assume that
q and p are coprime. Let β , 0 ∈ C. Assume that q, p, ` define a line L : q j + pi = ` in the
(i, j)-plane such that:

(a) There are at least two points (j1, i1) ∈ carr(f) and (j2, i2) ∈ carr(f) on L with i1 , i2.
(b) For any (j, i) ∈ carr(f), we have q j + pi ≥ `.

Let f1 := X−`1 f (Xq
1 , X

p
1 (β + Y1)).

Then, we have the following results:
(i) We have f1 ∈ C〈X1〉[Y1].

(ii) For any given m1 ∈ N, there exists a number m ∈ N such that the approximation of f1 of
accuracy m1 can be computed from the approximation of f of accuracy m.

(iii) Moreover, it suffices to take m = bm1+`
q c.

Proof. Since q > 0 holds, we know that ord(Xq
1) = q > 0 holds. We also have

f (Xq
1 , X

p
1 (β + Y1)) ∈ C〈X1〉[Y1].

Let

f (X,Y) :=
d∑

i=0

 ∞∑
j=0

ai, jX j

 Y i.

58 Chapter 4. Computing Limit Points via Puiseux Series Expansions

Then we have f1(X1,Y1) =
∑d

i=0

(∑∞
j=0 ai, jX

(q j+pi−`)
1

)
(β + Y1)i. Since for any (j, i) ∈ carr(f), we

have q j + pi ≥ `, the power of X1 cannot be negative. By Lemma 17, we have f1 ∈ C〈X1〉[Y1].
That is (i) holds.

We prove (ii). We have

f1(X1,Y1) mod 〈Xm1
1 〉

=
∑d

i=0

(∑
q j+pi−`<m1

ai, jX
(q j+pi−`)
1

)
(β + Y1)i.

Since q ∈ N>0 and m1, ` and i are all finite, we know that j has to be finite. In other words,
there exists a finite m such that the approximation of f1 of accuracy m1 can be computed from
the approximation of f of accuracy m. That is, (ii) holds.

Since the first m1 terms of f1 depends on the j-th terms of f , which satisfies the constraint
q j + pi − ` < m1, we have j < (m1+`)−pi

q ≤
(m1+`)

q . Let m′ be the the maximum of these j’s . Now
we have m′ − 1 < (m1+`)

q . Since m′ is an integer, we have m′ ≤ b (m1+`)
q c holds. Let m = b

(m1+`)
q c.

Next we show shat m1 ≥ 1 implies that m ≥ 1 holds. If there is at least one point (i, j) ∈ L such
that j ≥ 1, then we have ` ≥ q, which implies m ≥ 1. If the j-coordinates of all points on L is
0, then q = 1 and ` = 0, which implies also m ≥ 1. Thus (iii) is proved. �

Remark 6. We use the same notations as in the previous lemma. In particular, let f (X,Y) :=∑d
i=0

(∑∞
j=0 ai, jX j

)
Y i and f1 := X−`1 f (Xq

1 , X
p
1 (β + Y1)). For a fixed term ai, jX jY i of f , it appears

in f1 as

ai, jX
q j+pi−`
1 (β + Y1)i =

i∑
k=0

((
i
k

)
βi−kai, jX

q j+pi−`
1

)
Yk

1 .

For two fixed terms ai, j1 X j1Y i and ai, j2 X j2Y i of f with j1 < j2, since q j1 + pi − ` < q j2 + pi − `,
we know that for any fixed k, ai, j2 X j2Y i always contributes strictly higher order of powers of X1

than ai, j1 X j1Y i in f1.

Remark 7. Let f (X,Y) :=
∑d

i=0

(∑∞
j=0 ai, jX j

)
Y i. For 0 ≤ i ≤ d, let ai, j∗ be the first nonzero

coefficient among {ai, j|0 ≤ j < ∞}. We observe that the Newton polygon of f is completely
determined by ai, j∗ , 0 ≤ i ≤ d.

Theorem 9. Let f ∈ C〈X〉[Y]. Let τ ∈ N>0. Let σ ∈ N>0 and g(T) =
∑τ−1

k=0 bkT k. Assume that
(Tσ, g(T)) is a Puiseux parametrization of f of accuracy τ. Then one can compute a number
m ∈ N such that (Tσ, g(T)) is a Puiseux parametrization of accuracy τ of f̃ m−1, where f̃ m−1

is the approximation of f of accuracy m. We denote by AccuracyEstimate an algorithm to
compute m from f and τ.

Proof. Let f0 := f , X0 := X and Y0 := Y . For i = 1, 2, . . ., the Newton-Puiseux algorithm
computes numbers qi, pi, `i, βi and the transformation

fi := X−`i
i fi−1(Xqi

i , X
pi
i (βi + Yi))

such that the assumption of Lemma 18 is satisfied.
By Lemma 18, we know that for any i, a given number of terms of the coefficients of fi

in Yi can be computed from a finite number of terms of the coefficients of fi−1 in Yi−1. Thus

4.5. Computing in finite accuracy 59

for any i, a given number of terms of the coefficients of fi in Yi can be computed from a finite
number of terms of the coefficients of f in Y .

On the other hand, the construction of the Newton-Puiseux algorithm and Remark 7 tell us
that there exists a finite M, such that σ and all the terms of g(T) can be computed from a finite
number of terms of the coefficients of fi in Yi, i = 1, . . . ,M.

Thus we conclude that there exists a number m ∈ N such that (Tσ, g(T)) is a Puiseux
parametrization of accuracy τ of the approximation of f of accuracy m.

Next we show that there is an algorithm to compute m. We initially set m′ := τ. Let
f0 :=

∑d
i=0

(∑m′
j=0 ai, jX j

)
Y i. That is, f0 is the approximation of f of accuracy m′ + 1. We

run the Newton-Puiseux algorithm to check whether the terms ak,m′Xm′Yk, 0 ≤ k ≤ d, make
any contributions in constructing the Newton Polygons of all fi. If at least one of them make
contributions, we increase the value of m′ and restart the Newton-Puiseux algorithm until none
of the terms ak,m′Xm′Yk, 0 ≤ k ≤ d, makes any contributions in constructing the Newton
Polygons of all fi. By Remark 6, we can set m := m′. �

Lemma 19. Let d, τ ∈ N>0. Let ai, j, 0 ≤ i ≤ d, 0 ≤ j < τ, and bk, 0 ≤ k < τ be sym-
bols. Write a = (a0,0, . . . , a0,τ−1, . . . , ad,0, . . . , ad,τ−1) and b = (b0, . . . , bτ−1). Let f (a, X,Y) =∑d

i=0

(∑τ−1
j=0 ai, jX j

)
Y i ∈ C[a][X,Y] and let g(b, X) =

∑τ−1
k=0 bkXk ∈ C[b][X]. Let p := f (a, X,Y =

g(b, X)). Let Fk := coeff(p, Xk), 0 ≤ k < τ − 1, and F := {F0, . . . , Fτ−1}. Then under the order
a < b and b0 < b1 < · · · < bτ−1, F forms a zero-dimensional regular chain in C(a)[b] with
main variables (b0, b1, . . . , bτ−1) and main degrees (d, 1, . . . , 1). In addition, we have

(i) F0 =
∑d

i=0 ai,0bi
0 and

(ii) init(F1) = · · · = init(Fτ−1) = der(F0, b0) =
∑d

i=1 i · ai,0bi−1
0 .

Proof. Write p =
∑d

i=0

(∑τ−1
j=0 ai, jX j

) (∑τ−1
k=0 bkXk

)i
as a univariate polynomial in X. Observe that

F0 =
∑d

i=0 ai,0bi
0. Therefore F0 is irreducible in C(a)[b]. Moreover, we have mvar(F0) = b0 and

mdeg(F0) = d.
Since d > 0, we know that a1,0

(∑τ−1
k=0 bkXk

)
appears in p. Thus, for 0 ≤ k < τ, bk appears in

Fk. Moreover, for any k ≥ 1 and i < k, bk can not appear in Fi since bk and Xk are always raised
to the same power. For the same reason, for any i > 1, bi

k cannot appear in Fk, for 1 ≤ k < τ.
Thus {F0, . . . , Fτ−1} is a triangular set with main variables (b0, b1, . . . , bτ−1) and main degrees
(d, 1, . . . , 1).

Moreover, we have init(F1) = · · · = init(Fτ−1) =
∑d

i=1 i · ai,0bi−1
0 , which is coprime with F0.

Thus F = {F0, . . . , Fτ−1} is a regular chain. �

Lemma 20. Let f =
∑d

i=0

(∑∞
j=0 ai, jX j

)
Y i ∈ C[[X]][Y]. Assume that d = deg(f ,Y) > 0 and f

is general in Y. Let ϕ(X) =
∑∞

k=0 bkXk ∈ C[[X]] such that f (X, ϕ(X)) = 0 holds. Let τ > 0 ∈ N.
Then all coefficients bi, for 0 ≤ i < τ, can be completely determined by {ai, j | 0 ≤ i ≤ d, 0 ≤
j < τ} if and only if b0 is a simple zero of f (0,Y). Therefore, “generically”, all coefficients bi,
for 0 ≤ i < τ, can be completely determined by the approximation of f of accuracy τ.

Proof. By f (X,Y) = 0, we know that f (X,Y) = 0 mod 〈Xτ〉. Therefore, we have

d∑
i=0

∑
j<τ

ai, jX j


∑

k<τ

bkXk

i

= 0 mod 〈Xτ〉.

60 Chapter 4. Computing Limit Points via Puiseux Series Expansions

Let p =
∑d

i=0

(∑
j<τ ai, jX j

) (∑
k<τ bkXk

)i
. Let Fi := {coeff(p, Xi), 0 ≤ i < τ}, and F :=

{F0, . . . , Fτ−1}. Since f is general in Y and f (X, ϕ(X)) = 0, there exists i∗ > 0 such that
ai∗,0 , 0. By Lemma 19, we have F0 =

∑d
i=0 ai,0bi

0. Thus b0 can be completely determined
by ai,0, 0 ≤ i ≤ d. In order to completely determine b1, . . . , bτ−1, it is enough to guarantee
res(F0, Fi, b0) , 0 holds. Therefore the values of bk, 0 ≤ k < τ can be completely determined
from almost all the values of ai, j, 0 ≤ i ≤ d, 0 ≤ j < τ. �

4.6 Accuracy estimates
Let R := {r1(X1, X2), . . . , rs−1(X1, . . . , Xs)} ⊂ C[X1 < · · · < Xs] be a strongly normalized regular
chain. In this section, we show that to compute the limit points of W(R), it suffices to compute
the Puiseux parametrizations of R of some accuracy. Moreover, we provide accuracy estimates
in Theorem 10.

Lemma 21. Let f = ad(X)Yd + · · ·+ a0(X) ∈ C〈X〉[Y], where d = deg(f ,Y) > 0. For 0 ≤ i ≤ d,
let δi := ord(ai). Let k := min(δ0, . . . , δd). Let f̃ := X−k f . Then we have f̃ ∈ C〈X〉[Y] and f̃
is general in Y. This operation of producing f̃ from f is called “making f general” and we
denote it by MakeGeneral.

Proof. Since k = min(δ0, . . . , δd), there exists i, 1 ≤ i ≤ d, such that k = δi. Moreover,
for all 1 ≤ j ≤ d, we have δ j ≥ k. Thus for every such i, we have ord(ai(X)/Xk) = 0 and
a j(X)/Xk ∈ C〈X〉, 0 ≤ j ≤ d. This shows that f̃ ∈ C〈X〉[Y] and f̃ is general in Y .

�

The following lemma shows that computing limit points reduces to making a polynomial f
general.

Lemma 22. Let f ∈ C〈X〉[Y], where deg(f ,Y) > 0, be general in Y. Let ρ > 0 be small enough
such that f converges in |X| < ρ. Let Vρ(f) := {(x, y) ∈ C2 | 0 < |x| < ρ, f (x, y) = 0}. Then
lim0(Vρ(f)) = {(0, y) ∈ C2 | f (0, y) = 0} holds.

Proof. With 1 ≤ i ≤ c, for some c such that 1 ≤ c ≤ deg(f ,Y), let (X = T ςi ,Y = ϕi(T)) be the
distinct Puiseux parametrizations of f . By Lemma 14 and Theorem 7, we have lim0(Vρ(f)) =

∪c
i=1{(0, y) ∈ C2 | y = ϕi(0)}. Let (X = Tσi , gi(T)), i = 1, . . . , c, be the corresponding Puiseux

parametrizations of f of accuracy 1. By Theorem 9, there exists an approximation f̃ of f of
some finite accuracy such that (X = Tσi , gi(T)), i = 1, . . . , c, are also Puiseux parametrizations
of f̃ of accuracy 1. Thus, we have ϕi(0) = gi(0), i = 1, . . . , c. Since f̃ is general in Y , by
Theorem 2.3 in [101], we have ∪c

i=1{(0, y) ∈ C2 | y = gi(0)} = {(0, y) ∈ C2 | f̃ (0, y) = 0}. Since
f̃ (0, y) = f (0, y), the lemma holds. �

Lemma 23. Let a(X1, . . . , Xs) ∈ C[X1, . . . , Xs]. Let gi =
∑∞

j=0 ci jT j ∈ C〈T 〉, for i = 1 · · · s. We
write a(g1, . . . , gs) as

∑∞
k=0 bkT k. To compute a given coefficient bk, one only needs to know the

coefficients of the polynomial a and the coefficients ci, j for 1 ≤ i ≤ s, 0 ≤ j ≤ k.

Proof. We observe that any ci, j, where j > k, does not make any contribution to bk. �

4.6. Accuracy estimates 61

Lemma 24. Let f = ad(X)Yd + · · · + a0(X) ∈ C〈X〉[Y], where d = deg(f ,Y) > 0. Let δ :=
ord(ad(X)). Then “generically”, a Puiseux parametrization of f of accuracy τ can be computed
from an approximation of f of accuracy τ + δ.

Proof. Let f̃ := MakeGeneral(f). Observe that f and f̃ have the same system of Puiseux
parametrizations. Then the conclusion follows from Lemma 21 and 20. �

Let R := {r1(X1, X2), . . . , rs−1(X1, . . . , Xs)} ⊂ C[X1 < · · · < Xs] be a strongly normalized
regular chain. For 1 ≤ i ≤ s − 1, let hi := init(ri), di := deg(ri, Xi+1) and δi := ord(hi). We
define fi, ςi, Ti, ϕi(Ti), 1 ≤ i ≤ s − 1, as follows. Let f1 := r1. Let (X1 = T ς1

1 , X2 = ϕ1(T1)) be a
Puiseux parametrization of f1. For i = 2, . . . , s − 1 do

(i) Let fi := ri(X1 = T ς1
1 , X2 = ϕ1(T1), . . . , Xi = ϕi−1(Ti−1), Xi+1).

(ii) Let (Ti−1 = T ςi
i , Xi+1 = ϕi(Ti)) be a Puiseux parametrization of fi.

Before stating our main result on the bound, we first present several lemmas.

Lemma 25. For 0 ≤ i ≤ s − 2, define gi(Ts−2) := T
∏s−2

k=i+1 ςk

s−2 . Let T0 := X1. Then we have
Ti = gi(Ts−2), 0 ≤ i ≤ s − 2.

Proof. We prove it by induction. Clearly it holds for i = s− 2. Suppose it holds for i. Then we
have

Ti−1 = T ςi
i =

(
T

∏s−2
k=i+1 ςk

s−2

)ςi

=

(
T

∏s−2
k=i ςk

s−2

)
.

Therefore it also holds for i − 1. So it holds for all 0 ≤ i ≤ s − 2. �

Lemma 26. There exist numbers τ1, . . . , τs−2 ∈ N such that in order to make fs−1 general in
Xs, it suffices to compute the polynomial parts of ϕi of accuracy τi, 1 ≤ i ≤ s − 2. Moreover, if
we write the algorithm AccuracyEstimate for short as θ, the accuracies τi can be computed in
the following manner:
• let τs−2 := (

∏s−2
k=1 ςk)δs−1 + 1

• let τi−1 := max(θ(fi, τi), (
∏i−1

k=1 ςk)δs−1 + 1), for 2 ≤ i ≤ s − 2.

Proof. By Lemma 25, we have g0(Ts−2) = T
∏s−2

k=1 ςk

s−2 . Since ord(hs−1(X1)) = δs−1, we have

ord(hs−1(X1 = g0(Ts−2))) =

 s−2∏
k=1

ςk

 δs−1.

Let τs−2 := (
∏s−2

k=1 ςk)δs−1 + 1. By Lemma 21, to make fs−1 general in Xs, it suffices to compute
the polynomial parts of the coefficients of fs−1 of accuracy τs−2.

By Lemma 23, we need to compute the polynomial parts of ϕi(gi(Ts−2)), 1 ≤ i ≤ s − 2, of
accuracy τs−2. Since ord(gi(Ts−2)) =

∏s−2
k=i+1 ςk, to achieve this accuracy, it is enough to compute

the polynomial parts of ϕi of accuracy (
∏i

k=1 ςk)δs−1 + 1, for 1 ≤ i ≤ s − 2.
Since we have fi = ri(X1 = T ς1

1 , X2 = ϕ1(T1), . . . , Xi = ϕi−1(Ti−1), Xi+1) and (Ti−1 =

T ςi
i , Xi+1 = ϕi(Ti)) is a Puiseux parametrization of fi, by Theorem 9 and Lemma 23, to com-

pute the polynomial part of ϕi of accuracy τi, we need the polynomial part of ϕi−1 of accu-
racy θ(fi, τi). Thus, τs−2 := (

∏s−2
k=1 ςk)δs−1 + 1 and τi−1 = max(θ(fi, τi), (

∏i−1
k=1 ςk)δs−1 + 1) for

2 ≤ i ≤ s − 2 will guarantee fs−1 can be made general in Xs. �

62 Chapter 4. Computing Limit Points via Puiseux Series Expansions

Theorem 10. One can compute positive integer numbers τ1, . . . , τs−1 such that, in order to
compute lim0(W(R)), it suffices to compute Puiseux parametrizations of fi of accuracy τi, for
i = 1, . . . , s − 1. Moreover, generically, one can choose τi, i = 1, . . . , s − 1, as follows

• τs−1 := 1,

• τs−2 := (
∏s−2

k=1 ςk)δs−1 + 1,

• τi = (
∏s−2

k=1 ςk)(
∑s−1

k=2 δi) + 1, for i = 1, . . . , s − 3,

and each index ςk can be set to dk, for k = 1, . . . , s − 2.

Proof. By Lemma 26, we know that τ1, . . . , τs−1 can be computed. By Lemma 25, we have
X1 = T

∏i−1
k=1 ςk

i−1 . Since ord(hi(X1)) = δi, we have

ord(hi(X1 = T
∏i−1

k=1 ςk

i−1)) =

 i−1∏
k=1

ςk

 δi.

By Lemma 24, generically a Puiseux parametrization of fi of accuracy τi can be computed
from an approximation of fi of accuracy τi + δi. In Lemma 26, let θ(fi, τi) = τi + (

∏i−1
k=1 ςk)δi,

2 ≤ i ≤ s − 2, which implies the bound in the theorem. Finally we observe that ςk ≤ dk holds,
for 1 ≤ k ≤ s − 2. �

4.7 Algorithm
In this section, we provide a complete algorithm for computing the non-trivial limit points
of the quasi-component of a one-dimensional strongly normalized regular chain based on the
results of the previous sections.

Remark 8. Note that line 9 of Algorithm 4 computes Puiseux parametrizations of fi of accu-
racy τi. Thus (φ(Ti), ϕ(Ti)) at line 10 cannot have negative orders.

Proposition 5. Algorithm 5 is correct and terminates.

Proof. This follows from Theorem 7, Theorem 9, Theorem 10 and Lemma 22. �

Theorem 11. Let R ⊂ Q[X1, . . . , Xn] be a regular chain such that dim(sat(R)) = 1. Then
there exists an algorithm to compute regular chains Ri ∈ Q[X1, . . . , Xn], i = 1, . . . , e, such that
lim(W(R)) = ∪e

i=1W(Ri).

Proof. By Remark 5, we can assume that R is strongly normalized and X1 is free w.r.t. R.
By Proposition 5, there is an algorithm to compute lim(W(R)). Thus, it suffices to prove that
lim(W(R)) can be represented by regular chains in Q[X1, . . . , Xn], whenever R ⊂ Q[X1, . . . , Xn]
holds. By examining carefully Algorithms 2, 3, 4, 5, and their subroutines, one observes that
only Algorithms 2 and 5 may introduce numbers that are in the algebraic closure Q of Q, and
not in Q itself. In fact, for each x = (x1, . . . , xn) ∈ lim(W(R)), Algorithms 2 and 5 introduce
a field extension Q(ξ1, . . . , ξm) such that we have xi ∈ Q[ξ1, . . . , ξm]. Let Y1, . . . ,Ym be m

4.7. Algorithm 63

Algorithm 4: LimitPointsAtZero
Input: R := {r1(X1, X2), . . . , rs−1(X1, . . . , Xs)} ⊂ C[X1 < · · · < Xs], s > 1, is a strongly

normalized regular chain.
Output: The non-trivial limit points of W(R) whose X1-coordinates are 0.
begin1

let S := {(T0)};2

compute the accuracy estimates τ1, . . . , τs−2 by Theorem 10; let τs−1 = 1;3

for i from 1 to s − 1 do4

S ′ := ∅;5

for Φ ∈ S do6

fi := ri(X1 = Φ1, . . . , Xi = Φi, Xi+1);7

if i > 1 then8

let δ := ord(fi,Ti−1); let fi := fi/T δ
i−1;9

E := NewtonPuiseux(fi, τi);10

for (Ti−1 = φ(Ti), Xi+1 = ϕ(Ti)) ∈ E do11

S ′ := S ′ ∪ {Φ(Ti−1 = φ(Ti)) ∪ (ϕ(Ti))}12

S := S ′13

if S = ∅ then14

return ∅15

else16

return eval(S ,Ts−1 = 0)17

end18

Algorithm 5: LimitPoints
Input: A strongly normalized regular chain
R := {r1(X1, X2), . . . , rs−1(X1, . . . , Xs)} ⊂ C[X1 < · · · < Xs], s > 1.
Output: All the non-trivial limit points of W(R).
begin1

let hR := init(R); let L be the set of zeros of hR in C;2

S := ∅;3

for α ∈ L do4

Rα := R(X1 = X1 + α);5

S α := LimitPointsAtZero(Rα);6

update S α by replacing the first coordinate of every point in S α by α;7

S := S ∪ S α8

return S9

end10

64 Chapter 4. Computing Limit Points via Puiseux Series Expansions

Sys T #(T) d-1 d-0 R #(R)
f-744 14.360 4 1 3 432.567 1

Liu-Lorenz 0.412 3 3 0 216.125 3
MontesS3 0.072 2 2 0 0.064 2

Neural 0.296 5 5 0 1.660 5
Solotareff-4a 0.632 7 7 0 32.362 7

Vermeer 1.172 2 2 0 75.332 2
Wang-1991c 3.084 13 13 0 6.280 13

Table 4.1: Removing redundant components.

new symbols. Let G := {g1(Y1), g2(Y1,Y2), . . . , gm(Y1,Y2, . . . ,Ym)} be an irreducible regular
chain (i.e. generating a maximal ideal over Q) such that G(Y1 = ξ1, . . . ,Ym = ξm) = 0 holds.
Since xi ∈ Q[ξ1, . . . , ξm], there exists fi ∈ Q[Y1, . . . ,Ym], i = 1, . . . , n, such that xi = fi(Y1 =

ξ1, . . . ,Ym = ξm). Let Sx := {X1 = f1(Y1, . . . ,Ym), . . . , Xn = fn(Y1, . . . ,Ym),G(Y1, . . . ,Ym) = 0}.
The projection of the zero set of Sx on the (X1, . . . , Xn)-space is the zero set of an irregular
chain Rx ∈ Q[X1, . . . , Xm] and we have lim(W(R)) = ∪x∈lim(W(R))W(Rx). �

4.8 Experimentation
We have implemented Algorithm 5 of Section 4.7, which computes the limit points of the
quasi-component of a one-dimensional strongly normalized regular chain. The implementation
is based on the RegularChains library and the command algcurves[puiseux] [95] of Maple.
The code is available at http://www.orcca.on.ca/˜cchen/ACM13/LimitPoints.mpl. This
preliminary implementation relies on algebraic factorization, whereas, as suggested in [33],
applying the D5 principle [32], in the spirit of triangular decomposition algorithms, for in-
stance [25], would be sufficient when computations need to split into different cases. This
would certainly improve performance greatly and this enhancement is work in progress.

As pointed out in the introduction, the computation of the limit points of the quasi-component
of a regular chain can be applied to removing redundant components in a Kalkbrener triangular
decomposition. In Table 4.1, we report on experimental results of this application.

The polynomial systems listed in this table are one-dimensional polynomial systems se-
lected from the literature [24, 25]. For each system, we first call the Triangularize command
of the library RegularChains, with the option “’normalized=’strongly’, ’radical’=’yes’”. For
the input system, this process computes a Kalkbrener triangular decomposition R where the
regular chains are strongly normalized and their saturated ideals are radical. Next, for each
one-dimensional regular chain R in the output, we compute the limit points lim(W(R)), thus
deducing a set of regular chains R1, . . . ,Re such that the union of their quasi-components equals
the Zariski closure W(R). The algorithm Difference [24] is then called to test whether or not
there exists a pair R,R′ of regular chains of R such that the inclusion W(R) ⊆ W(R′) holds. In
Table 4.1, the columns T and #(T) denote respectively the timings spent by Triangularize and
the number of regular chains returned by this command; the columns d-1 and d-0 denote re-
spectively the number of 1-dimensional and 0-dimensional regular chains; the columns R and
#(R) denote respectively the timings spent on removing redundant components in the output of

http://www.orcca.on.ca/~cchen/ACM13/LimitPoints.mpl

4.9. Concluding remarks 65

Triangularize and the number of regular chains in the output irredundant decomposition. As we
can see in the table, most of the decompositions are checked to be irredundant, which we could
not do before this work by means of triangular decomposition algorithms. In addition, the three
redundant 0-dimensional components in the Kalkbrener triangular decomposition of system f-
744 are successfully removed in about 7 minutes, whereas we cannot draw this conclusion in
more than one hour by a brute-force method computing the generators of the saturated ide-
als of regular chains. Therefore, we have verified experimentally the benefits provided by the
proposed algorithms.

4.9 Concluding remarks
We conclude with a few remarks about special cases and a generalization of the algorithms
presented in this chapter.
Reduction to strongly normalized chains. Using the hypotheses of Lemma 8, we observe that
one can reduce the computation of lim(W(R)) to that of lim(W(N)). Indeed, under the as-
sumption that sat(R) has dimension one, both lim(W(R)) and lim(W(N)) are finite. Once the
set lim(W(N)) is computed, one can easily check which points in lim(W(N)) do not belong to
W(R) and then deduce lim(W(R)). This reduction to strongly normalized regular chains has
the advantage that hN is a univariate polynomial in C[X1], which simplifies the presentation of
the basic ideas of our algorithms, see Section 4.2.1. However, it has two drawbacks. First the
coefficients of N are generally much larger than those of R. Secondly, lim(W(N)) may also
be much larger than lim(W(R)). A detailed presentation of a direct computation of lim(W(R)),
without reducing to lim(W(N)), will be done in a future paper.
Shape lemma case. Here, by reference to the paper [13] (which deals with polynomial ideals of
dimension zero) we assume that, for 2 ≤ i ≤ e, the polynomial ri involves only the variables
X1, X2, Xi and that deg(ri, Xi) = 1 holds. In this case, computing Puiseux series expansions is
required only for the polynomial of R of lower rank, namely r1. In this case, the algorithms
presented in this chapter are much simplified. However, for the specific purpose of solving
polynomial systems via triangular decompositions, reducing to this Shape lemma case, via a
random change of coordinates, has a negative impact on performance and software design, for
many problems of practical interest. In contrast, the point of view of the work initiated in this
chapter is two-fold: first, deliver algorithms that do not require any genericity assumptions;
second develop criteria that take advantage of specific properties of the input systems in order
to speedup computations. Yet, in our implementation, several tricks are used to avoid unneces-
sary Puiseux series expansions, such as applying the theorem (see [35] p.113) on the continuity
of the roots of a parametric polynomial. In this chapter, we proposed an algorithm for comput-
ing the limit points of the quasi-component of a regular chain in dimension one by means of
Puiseux series expansions. In the future, we will investigate how to compute the limit points in
higher dimension with the help of the Abhyankar-Jung theorem [72].

Chapter 5

Real Limit Points of Space Curves

5.1 Introduction
The work reported here is motivated by problems arising in solving polynomial systems over
the real numbers. Consider the following two polynomials over Q;

f1 = −y3 + y2 + z5 and f2 = z4x + y3 − y2. (5.1)

For each real value of z and each real value of y satisfying both f1 = 0 and z , 0, there is a
real value of x satisfying f2 = 0. A natural question is what happens to x when z approaches
0? This type of questions arises in the study of parametrizations of algebraic sets [88, 10] and
the computation of limits of rational functions [21, 98, 104, 8].

The following question generalizes the previous ones. Given a regular chain T ⊂ Q[X1, . . . , Xn],
denoting by hT the product of its initials, we are interested in computing the (non-trivial) limit
points of the set ZR(T) consisting of the real zeros of T which do not cancel hT . In other words,
denoting by ZR(T) the closure of ZR(T) in the Euclidean topology, we want to determine the
set lim(ZR(T)) := ZR(T) \ ZR(T). On the above example, our first question asks to compute
lim(ZR({ f1, f2})). Indeed, the set { f1, f2} is a regular chain for the variable ordering z < y < x.

With T and hT as above, it was shown in [6], how to compute the limit points of the quasi-
component W(T) := V(T) \ V(hT), that is, the set of the complex zeros of T which do not
cancel hT . In other words, denoting by W(T) the closure of W(T) in the Zariski topology, the
algorithms of [6] determine the set lim(W(T)) := W(T)\W(T). The work of [6] requires that T
is a one-dimensional regular chain, that is, W(T) is a one-dimensional algebraic set. However,
techniques proposed in [4] replace that assumption with weaker ones, thus allowing to deal
with regular chains in higher dimension under some circumstances.

For the above example, with T = { f1, f2}, the set lim(W(T)) consists of two points, as shown
in Figure 5.1, with our implementation in the RegularChains library www.regularchains.
org. Notably, both points have real coordinates. But only one of them belongs to lim(ZR(T)).
In fact, the first two Puiseux parametrizations corresponding to regular chain T around z = 0, as
shown in Figure 5.1 and in the output of RegularChainBranches command, have RootOf(Z2 + 1)
in their coefficients. In Maple, the notation RootOf(Z2 + 1) is an encoding for the com-
plex number

√
−1. These latter two Puiseux parametrizations result in the first limit point

(x = 0, y = 0, z = 0). Thus, the point (x = 0, y = 0, z = 0) can not belong to lim(ZR(T)).

66

www.regularchains.org
www.regularchains.org

5.1. Introduction 67

Therefore, lim(ZR(T)) cannot be obtained simply as lim(W(T)) ∩ Rn. The goal of this
chapter is to explain how to adapt the algorithm of [6] in order to compute lim(ZR(T)), for a
one-dimensional regular chain.

Figure 5.1: Computing the limit points of a regular chain: complex case vs real case.

The first step, made in Section 5.2.1, is to revisit the problem of determining the real
Puiseux expansions of a bivariate polynomial. This problem is discussed in [21] with the
objective of computing limits of bivariate rational functions. For our purpose of adapting the
algorithms of [6], we need more information about the structure of Puiseux expansions of a
bivariate polynomial. To this end, we rely on the Extended Hensel Construction of [82] as well
as algorithms for computing splitting fields [93, 53]

In a second step, illustrated in Section 5.2.2 we explain how the ideas of Section 5.2.1 can
help computing lim(ZR(T)), that is, the real limit points of the regular chain T of dimension
one.

Specially our latest work [8] (also presented in Chapter 8), the problem of computing limits
of real multivariate rational functions highly depends on finding the real solutions of the closure
of the regular-semi-algebraic systems in Euclidean topology. In fact, based on ideas of [98], we
have proposed a method in [8] to reduce the problem of computing lim(x1,...,xn)→(0,...,0) q(x1, . . . , xn),
to the problem of computing the limits of lim(x1,...,xn)→(0,...,0),(x1,...,xn)∈ZR(S i) q(x1, . . . , xn) where S i is
regular semi-algebraic system of dimension one, for i = 1, . . . , e, and q is a multivariate rational
function. Based on Algorithm 4 in [8], one can compute lim(x1,...,xn)→(0,...,0),(x1,...,xn)∈ZR(S i) q(x1, . . . , xn)
for i = 1, . . . , e, via computing the real limit points of regular chain part of S i. This can be
done by relying on the ideas of [6] for computing W(T) \ W(T) where T is a regular chain
and W(T) := V(T) \ V(hT) with hT being the product of the initials of the polynomials in T .
As it can be seen in Example 9, it is not always possible to detect the real limit points of a
regular semi-algebraic system by finding the real solutions among the limit points computed
by the work described in Chapter 4 (see also [6]). The main issue with this approach is that the
computations of finding the limit points of the constructible sets W(T) are done with respect to
Zariski topology. Thus more consideration is required in order to compute the real limit points
of regular semi-algebraic systems with respect to Euclidean topology. In order to compute the
non-trivial limit points of ZR(S), for regular semi-algebraic system S of dimension one, one

68 Chapter 5. Real Limit Points of Space Curves

needs to compute the real Puiseux parametrizations of ZR(S) about some point, which are the
parametrizations with coefficients in R. To do so, it is enough to have a method for detecting
the real Puiseux expansions of a single bivariate polynomial.

The idea of computing lim(ZR(T)) is also inspired by the problem of finding a normal
parametrization for surfaces. As it was mentioned in the Introduction chapter, parametric rep-
resentations of surfaces are used so often specially in Computer Aided Geometric Design.
However, working with parametric representation instead of the implicit representation will
bring its own obstacles; it is possible that some information of the surface might be missed in
the parametric representation due to missing to cover some points on the surface in the para-
metric representation. These missing points actually form a constructible set, since the image
of the parametrization is also a constructible set. Therefore, for each parametrization, it is im-
portant to detect whether it covers all the points of the surface or ”some points’” are actually
missing. One way of dealing with this problem is to find parametrizations that cover the whole
surface or in the other words a normal parametrization. For the case the surface is actually a
curve, this problem is addressed in [85]. In fact, the problem of finding a normal parametriza-
tion turns to a complicated problem for general case. Up to our knowledge, this is still an open
problem. Nevertheless, there are other alternatives to address this difficulty. One way to do so
is the approach of [12], [86], and [87] in which the authors compute finitely many parametric
representations to cover all the points on the surface, of some specific type, in their image.

Another approach to this problem is via triangular decomposition. As it was explained,
triangular decomposition results in a parametric representation; however, some points might be
missing in this representation. Therefore, computing the missing points of a regular chain helps
to recover all the missing points in this kind of representation and encode them as new regular
chains and consequently, parametric representation for the whole space curve. The methods
in [6] and [4] can be used in order to compute the missing points in the parametrizations of
surfaces, specially space curves.

5.2 Real limit points
Let T ⊂ Q[X1, . . . , Xn] be a one-dimensional regular chain; we denote by U its free vari-
able. In [6], an algorithm is proposed for computing the non-trivial limit points of the quasi-
component W(T), that is, the set W(T) \W(T) (where W(T) is the Zariski closure of W(T)). In
Algorithm 4 of [8] , a similar, but different, computation is needed. In this case, we need the
non-trivial limit points of WR(T) := ZR(T)\ZR(hT), that is, the set WR(T)\WR(T), where WR(T)
is the closure of WR(T) in Rn endowed with the Euclidean topology. Unfortunately, it is not
true that the non-trivial limit points of WR(T) are the non-trivial limit points of W(T) with real
coordinates, as shown by the example of Figure 3.2. However, the algorithm of [6], based on
Puiseux series, can be adapted in order to compute the non-trivial limit points of WR(T). This
adaptation is explained hereafter. The LimitPoints command of the RegularChains library in
Maple handles both cases, W(T) \W(T) and WR(T) \WR(T). The Puiseux parametrizations
of the regular chain T in Definition 18 (see also [6], Definition 2) encode all the branches of
V(sat(T)) when the free variable U approaches zero. It is proved in [6] that the non-trivial limit
points of W(T) around U = 0, where U = 0 is a root of the product hT of the initials of T ,
are obtained by letting U to be zero in all the Puiseux parametrizations of T around U = 0.

5.2. Real limit points 69

Therefore, for computing all the non-trivial limit points of W(T), one needs to compute all the
Puiseux parametrizations of T when U approaches any root of hT .

Definition 18. Let T := {t1, . . . , tn−1} ⊂ Q[X1 < · · · < Xn] be a one-dimensional and strongly
normalized regular chain whose free variable is U = X1. Thus, the product hT of the ini-
tials of T is a univariate polynomial in X1. Assume that X1 = 0 is a root of hT . Let χ =

(χ2(U), . . . , χn(U)) be a vector of C((U∗))n−1 and let ς1 = 1. We assume that, for all 2 ≤ j ≤ n,
there exists a positive integer ς j such that (Uς j , χ j(U)) is a Puiseux parametrization of the
univariate polynomial t j−1(Uς j−1 , χ2(U), . . . , χ j−1(U), X j) around U = 0, where the minimum

exponent of U in χ j(U) is non-negative. Let ς := lcm(ς2, . . . , ςn) and φ j = χ j(U
ς
ς j). Then

(Uς, φ2, . . . , φn) is called a Puiseux parametrization of T around U = 0.

Remark 9. If α is a root of hT , one can define the Puiseux parametrizations of T at X1 = α, by
reducing to the case α = 0 via a change of coordinates and proceed as in Definition 18. For
convenience, when we talk about any Puiseux parametrization of T at a root of hT , we assume
w.l.o.g that the given Puiseux parametrization is for X1 = 0.

Remark 10. Definition 18 implies each Puiseux parametrization (Uς, φ2, . . . , φn) of T belongs
to C〈U〉n.

Example 8. Let T := {t1, t2} ⊆ Q[X1 < X2 < X3] be a regular chain where t1 := X4
2 − 2 X3

2 +

X2
2 + X5

1 and t2 := X4
1 X3 + X3

2 − X2
2 . We note that the product of the initials of T is hT := X4

1 .
We would like to compute the Puiseux parametrizations of the regular chain T around X1 = 0.
Using the ExtendedHenselConstruction command of our library PowerSeries 1, one can
compute the Puiseux parametrizations of t1 around X1 = 0 and obtain:

Φ1 :=
(
X1 = U2, X2 = 1 +

√
−1 U5 + U10 + O(U15)

)
,

Φ2 :=
(
X1 = U2, X2 = 1 −

√
−1 U5 + U10 + O(U15)

)
,

Φ3 :=
(
X1 = U2, X2 =

√
−1 U5 − U10 + O(U15)

)
,

Φ4 :=
(
X1 = U2, X2 = −

√
−1 U5 − U10 + O(U15)

)
.

(5.2)

The big-oh notation is used above to indicate at which degree the displayed power series are
truncated.

Now by substituting Φ1 into t2, we obtain t21 := U8 X3+(1+
√
−1 U5+U10)3−(1+

√
−1 U5+

U10)2. Next, we compute Puiseux parametrizations of t21 around U = 0 and obtain:U = U, X3 = −

√
−1

U4 + U2 − 3
√
−1 U7 + O(U8)

 .
Since there is a negative exponent of U appearing in the above Puiseux parametrization of t21,
this parametrization would not result in a Puiseux parametrization for the regular chain T . By
repeating the same process with Φ2, one obtains a Puiseux parametrization in which negative
exponents of U appear as well. However, the scenario is different when substituting Φ3 into

1This library is freely available from www.regularchains.org

www.regularchains.org

70 Chapter 5. Real Limit Points of Space Curves

t2. Indeed, this substitution yields t23 := U8 X3 + (
√
−1 U5 − U10)3 − (

√
−1 U5 − U10)2, whose

Puiseux parametrization around U = 0 is

X3 = −U2
(
−U20 + 3

√
−1 U15 + 2 U10 +

√
−1 U5 + 1 + O(U25)

)
.

Since there is no negative exponents of U in the latter Puiseux parametrization, we deduce the
following Puiseux parametrization of the regular chain T:

Φ2,3 := (X1 = U2, X2 =
√
−1 U5 − U10 + O(U15),

X3 = U22 − 3
√
−1 U17 − 2 U12 −

√
−1 U7 − U2 + O(U27))

Proceeding similarly with Φ4, one obtains the second Puiseux parametrization of T:

Φ2,4 := (X1 = U2, X2 = −
√
−1 U5 − U10 + O(U15),

X3 = U22 + 3
√
−1 U17 − 2 U12 +

√
−1 U7 − U2 + O(U27))

In both Puiseux parametrizations of regular chain T , the ramification index is ς = lcm(2, 1) =

2.

Definition 19. Using the notations of Definition 18, the Puiseux parametrization (Uς, φ2, . . . , φn)
is called a real Puiseux parametrization of T if φi ∈ R〈U〉, for i = 2, . . . , n.

Example 9. Let T be again the regular chain in Example 8 with Puiseux parametrizations
Φ2,3,Φ2,4 at U = 0. Then by substituting U = 0 in Φ2,3,Φ2,4, we obtain one non-trivial limit
point for W(T), namely {(X1 = 0, X2 = 0, X3 = 0)}, for which its coordinates are real. However,
none of the branches of the space curve defined by W(T) is real. Hence, WR(T) has no non-
trivial limit points!

As we shall see, one can obtain the non-trivial limit points of ZR(T) by computing the
real Puiseux parametrizations of ZR(T) when its free variable approaches any root of hT . To
do so, it is enough to have a method for detecting the real Puiseux expansions of a single
polynomial. As it is explained in [21], when T only contains one bivariate polynomial, one
way of separating the real Puiseux expansions from the complex ones, is to detect for which
initial factors of the method of computing the Puiseux expansions, complex coefficients will
appear in the computations. However, no method is proposed for general cases when T has
more than one polynomial. In Section 5.2.1, we propose Algorithm 6 for computing real
Puiseux parametrizations of regular chains of dimension one.

5.2.1 Real branches of bivariate polynomials
Proposition 6. Let k be an algebraic number field and f (U,Y) ∈ k〈U〉[Y] be square-free,
monic w.r.t Y, and of degree s > 0 in Y. Then, for each ` = 1, . . . , s, one can compute a positive
integer σ` as well as algebraic numbers Θ1

` , . . . ,Θ
σ`
` over k such that

1. for i = 1, . . . , σ`, the algebraic number Θi
` has a minimal polynomial of the form hi

`(Y) ∈
k(Θ1

` , . . . ,Θ
i−1
`)[Y],

2. f (U,Y) factorizes as (Y − χ1(U)) · · · (Y − χs(U)) where χ`(U) ∈ k(Θ1
` , . . . ,Θ

σ`
`)((U∗)).,

i = 1, . . . , σ`.

5.2. Real limit points 71

Proof. Based on Theorem 1, the existence of expansions χ1(U), . . . , χs(U) is guaranteed.
To prove this proposition, we should show that there exist algebraic numbers Θ1

` , . . . ,Θ
σ`
`

over k such that χ`(U) ∈ k(Θ1
` , . . . ,Θ

σ`
`)((U∗)), for ` = 1, . . . , s.

Let f0 := F(U,Y). Then based on Theorem 1, there are f1, . . . , fσ` ∈ C((U∗))[Y] such that
fi ∈ EHC(fi−1), for i = 1, . . . , σ`, and fσ` = Y − χ`(U).

Based on Lemma 5 and Corollary 1, there is at most one algebraic number Θ1
` with minimal

polynomial h1
`(Y) ∈ k[Y] (which is, indeed, computed by substituting U = 1 in Newton poly-

nomial of f0) such that k1 := k(Θ1
`) and f1 ∈ k1((U∗))[Y]. Since EHC is applied recursively on

polynomials fi, thus there are algebraic numbers Θi
` with minimal polynomials hi

`(Y) ∈ ki−1[Y],
where ki := ki−1(Θi

`) and fi ∈ ki((U∗))[Y], for i = 2, . . . , σ`. Therefore, fσ` ∈ kσ`((U∗))[Y]
and consequently, χ`(Y) ∈ kσ`((U∗)) = k(Θ1

` , . . . ,Θ
σ`
`)((U∗)).

Note that EHC sometimes does a change of coordinates on the input polynomial, but this
change of coordinates is within the coefficient ring of its input polynomial. Thus it does not
introduce any new algebraic number. �

Proposition 6 follows from the extended Hensel construction. This proposition shows that
there is a finite extension of k for which f (U,Y) can be written as (Y −χ1(U)) · · · (Y −χs(U)),
and therefore all the coefficients of the Puiseux expansions of f are determined. Especially,
when k = Q, then determining whether or not χ`(U) is a real Puiseux expansion is equivalent
to the fact that each Θi−1

` is a real algebraic number over Q(Θ1
` , . . . ,Θ

i−1
`), for i = 1, . . . , σ`.

Furthermore, based on the construction of hi
`(Y), all of the roots of each polynomial hi

`(Y)
will appear in some of Puiseux expansions of f (U,Y). Since some of those roots may not be
real, it is necessary to use an encoding of the roots of hi

`(Y) that allows us to separate the real
ones from the others. For simplicity of presentation, we do that by considering the splitting
fields of hi

`(Y), see Remark 11. For computational efficiency, one should prefer techniques
based on real algebraic closures as in [76].

Let h(Y) ∈ k[Y] be an irreducible and monic polynomial with degree s. Let also k[X1,...,Xn]
〈F〉

be the residue class ring of k[X1, . . . , Xn] with respect to F, where F ⊂ k[X1, . . . , Xn].

Remark 11. To construct the splitting field L of h(Y) and compute the factorization of h(Y)
into linear factors over L, one can proceeds as follows.

1. Initialize i := 1, Xi := Y, L := k, R0 := {}, P := {} and F := {h(Y)}; the set F is assumed
to maintain a list of univariate polynomials in Yi irreducible over L and of degree at
least two,

2. While F is not empty do
(a) pick a polynomial f (Xi) ∈ F over L,
(b) let αi be a root of f (Xi) (in the algebraic closure of k),
(c) replace L by L(αi), that is, by adjoining αi to L,
(d) replace T by Ri := Ri−1 ∪ {ri(X1, . . . , Xi)}, where the multivariate ri(X1, . . . , Xi) is

obtained from f (Xi) after replacing the algebraic numbers α1, . . . , αi−1 with the
variables X1, . . . , Xi−1,

(e) factor f (Xi) into irreducible factors over L, then add the obtained factors of degree
1 (resp. greater than 1) to P (resp. F); when adding a factor to P replace Xi

with Y;when adding a factor to F , replace Xi with Xi+1 and α1, . . . , αi−1, αi with
X1, . . . , Xi−1, Xi,

(f) if F is not empty then i := i + 1.

72 Chapter 5. Real Limit Points of Space Curves

3. Let s′ := i.
At the end of this procedure, the set Rs′ is a regular chain in the polynomial ring k[X1, . . . , Xs′]

generating a maximal ideal such that k[X1, . . . , Xs′]/〈Rs′〉 is isomorphic to the splitting field
k(p) of h(Y). Furthermore,

k[Y] ⊂
k[X1]
〈R1〉

[Y] ⊂ · · · ⊂
k[X1, . . . , Xs′]
〈Rs′〉

[Y].

Algorithm 6: RealPuiseuxExpansions
Input: f (U,Y) ∈ k[U,Y].
Output: Real Puiseux expansions of f when U → 0
begin1

B := Puiseux expansions of f (U,Y) at U = 0;2

R := {};3

for χ(U) ∈ B do4

let χ(U) ∈ k(Θ1, . . . ,Θσ)((U∗));5

let Ri
ji
⊂ k[Xi,1, . . . , Xi, ji] be the zero-dimensional regular chain encoding the6

algebraic number Θi, for i = 1, . . . , σ;
let C be a regular chain encoding the field k;7

F := C ∪ R1
j1 ∪ · · · ∪ Rσ

jσ8

if RealTriangularize(F) , ∅ then9

R := R ∪ {χ(U)};10

return R;11

end12

Using regular chains R1, . . . ,Rs′ in Remark 11, one can encode all the solutions of polyno-
mial h(Y), ”uniquely”. It is worth mentioning that the Split command of the PolynomialTools
package in Maple computes the regular chains R1, . . . ,Rs′ , implicitly.

Example 10. Suppose h(Y) := Y3 + Y2 + 3. Using Split command in Maple, one obtains
R1 := {X3

1 + X2
1 + 3} and R2 := R1 ∪ {X2

2 + (1 + X1) X2 + X2
1 + X1}, for which Q[X1,X2]

〈R2〉
[Y] is

the splitting field of h(Y). Using the command RealTriangularize of the RegularChains
library, we can check that ZR(R1) contains one real solution, while the set ZR(R2) does not have
any real solutions.

Definition 20. Let Θ be a root of h(Y). Let also j be the smallest integer for which Θ ∈
k[X1,...,X j]
〈R j〉

,
then R j is called a regular chain encoding of Θ.

Following up on Definition 20, determining whether or not Θ is a real algebraic number
over k is equivalent to check whether or not ZR(R j) has a real solution or not over k. Further-
more, k must be a real extension of Q. To make sure that a polynomial system has real solu-
tions, one can use the RealTriangularize command of the RegularChains Library in Maple.
In fact, the command RealTriangularize computes the real solutions of the polynomial system
defined by F, where F ⊂ Q[X1, . . . , Xn]. Thus, for checking whether or not Θ is a real algebraic

5.2. Real limit points 73

number over k, using RealTriangularize, more considerations are required due to the constraint
imposed by the coefficient ring. To remove this constraint, since k is an algebraic extension
of Q, thus one can compute a zero-dimensional regular chain C ⊂ Q[Y1, . . . ,Ym] (for some m)
such that Q[Y1,...,Ym]

〈C〉 is isomorphic to k. This means that one can apply RealTriangularize on the
system defined by C ∪ R j ⊂ Q[Y1, . . . ,Ym, X1, . . . , X j]; if this system has real solutions, then
we deduce that Θ is a real algebraic number over k.

Algorithm 6 implements the above idea and computes the real Puiseux expansions of the
bivariate polynomial f at U = 0. This algorithm, first, computes all of the Puiseux expansions
of the polynomial f at U = 0 and then determines which one is a real expansion for f .

5.2.2 Real branches of space curves
Proposition 7. With the notations of Definition 18, consider the Puiseux parametrization
(Uς, φ2, . . . , φn) of the regular chain T around U = 0. Then, for each j = 2, . . . , n, one can
compute algebraic numbers Θ1

j , . . . ,Θ
σ j

j over k j−1 such that φ j(U) ∈ k j[U], where k1 := Q and
k j := k j−1(Θ1

j , . . . ,Θ
σ j

j) for some non-negative integer σ j.

Proof. To prove this proposition, it is enough to prove that χ j(U) ∈ k j[U], for j = 2, . . . , n.
We prove this by induction on j. For j = 2, (Uς, χ2(U)) is a Puiseux parametrization of
the bivariate polynomial t1(U, X2) around U = 0. Since t1(U, X2) ∈ Q[U, X2], thus accord-
ing to Proposition 6, there exist algebraic numbers Θ1

2, . . . ,Θ
σ2
2 over Q such that χ2(U) ∈

Q(Θ1
2, . . . ,Θ

σ2
2). Suppose χ j−1(U) ∈ k j−1[U]. Thus, χ j(U) is a Puiseux expansion of bivari-

ate polynomial
t j−1(Uς j−1 , χ2(U), . . . , χ j−1(U), X j)

which, in turn, belongs to k j−1[U, X j] by induction hypothesis step. Based on Proposition 6,
there exists algebraic numbers Θ1

j , . . . ,Θ
σ j

j over k j−1 such that χi(U) ∈ k j−1(Θ1
j , . . . ,Θ

σ j

j)[U].
Now if we let k j := k j−1(Θ1

j , . . . ,Θ
σ j

j), this completes the proof. �

Proposition 8. Following up on Proposition 7, the Puiseux parametrization

(Uς, φ2(U), . . . , φn(U))

is a real Puiseux parametrization of T if and only if kn is a real extension of Q.

Proof. The correctness of the relation k1 := Q ⊆ k2 ⊆ · · · ⊆ kn is trivial based on
the constructive proof of Proposition 7. Thus for determining whether or not the Puiseux
parametrization (Uς, φ2, . . . , φn) is real, it is enough to check if kn is a real extension over Q. �

Algorithm 7 computes the real Puiseux parametrizations corresponding to regular chain
T . Based on Definition 18, for computing the Puiseux parametrizations of T , one needs to
compute the Puiseux parametrizations (Uς j , χ j(U)) of the bivariate polynomial

t j−1(Uς j−1 , χ2(U), . . . , χ j−1(U), X j),

for j = 2, . . . , n. If any of such parametrization has complex coefficients, then it would not
result in a real Puiseux parametrization for regular chain T . Thus, we should only consider the
real Puiseux parametrizations of bivariate polynomials t j−1(Uς j−1 , χ2(U), . . . , χ j−1(U), X j). To

74 Chapter 5. Real Limit Points of Space Curves

Algorithm 7: RealRegularChainBranches
Input: one dimensional regular chain T with free variable U.
Output: Real Puiseux parametrizations of T when U → 0
begin1

R := {};2

ς1 = 1;3

for j from 2 to n do4

R j := {};5

for (χ2(U), . . . , χ j−1(U)) ∈ R do6

B := RealPuiseuxExpansions(t j−1(Uς j−1 , χ2(U), . . . , χ j−1(U), X j), 0);7

ς j = RamificationIndex(t j−1(Uς j−1 , χ2(U), . . . , χ j−1(U), X j), 0);8

if B , ∅ then9

let B := {χ1
j(U), . . . , χ` j

j (U)};10

R j :=11

R j ∪
{(
χ2(U), . . . , χ j−1(U), χ1

j(U)
)
, . . . ,

(
χ2(U), . . . , χ j−1(U), χ` j

j (U)
)}

;

R := R j;12

return R;13

end14

do so, in Algorithm 7 at line 7, we call Algorithm 6 for computing the real Puiseux expansions
of bivariate polynomials to filter out the expansions that would not contribute in building a real
Puiseux parametrization for regular chain T .

Based on Definition 18, for computing the Puiseux parametrizations of T , one needs to
compute the Puiseux parametrizations (Uς j , χ j(U)) of the bivariate polynomial

t j−1(Uς j−1 , χ2(U), . . . , χ j−1(U), X j),

for j = 2, . . . , n. If any of such parametrization has complex coefficients, then it would not
result in a real Puiseux parametrization for regular chain T . Thus, we should only consider the
real Puiseux parametrizations of bivariate polynomials t j−1(Uς j−1 , χ2(U), . . . , χ j−1(U), X j). To
do so, one needs to use Algorithm 6, successively.

5.3 Experimentation
Table 5.1 demonstrates the time consumptions for computing real and complex limit points
corresponding to the regular chains of dimension one in the triangular decomposition of the
polynomial systems in the first column. The second and third columns are respectivly, the
time spent for computing and the number of real limit points. The fourth and fifth columns
are respectivly, the time spent for computing and the number of complex limit points. The
command for computing real and complex limit points of regular chains is called LimitPoints
and it is part of RegularChains library of Maple. The command LimitPoints has two different
signatures, LimitPoints(R, coe f f icient = real) and LimitPoints(R, coe f f icient = complex) for
computing, respectively, the real and complex limit points of the input regular chain R.

5.3. Experimentation 75

Sys RealLimit (sec) #LM ComplexLimit (sec) #LM
Liu-Lorenz 777.300 4 1708.829 9
MontesS3 0.015 0 0.015 0

Neural 1.538 3 2.368 3
cox-issac07 0.438 0 0.575 1

Table 5.1: Complex limit points vs real limit points

Chapter 6

Computing Limit Points via Changes of
Coordinates

6.1 Introduction

Applying a change of coordinates to the algebraic or differential representation of a geomet-
rical object is a fundamental technique to obtain a more convenient representation and reveal
properties. For instance, random linear change of coordinates are performed in algorithms
for solving systems of polynomial equations and inequations in the algorithms of Krick and
Logar [50], Rouillier [79], Verschelde [92] and Lecerf [56].

For polynomial ideals, one desirable representation is Noether normalization, which was
introduced by Emmy Noether in 1926. This basic tool in commutative algebra and algebraic
geometry is widely used to study different topics such as affine K-algebras [39], dimension
theory [38], solving systems of polynomial equations and inequations [56] and radical of ideals
[50]. In the last two decades, several algorithms have been proposed to compute Noether
normalization of a quotient ring (see [60, 39, 14, 42, 78]). However, all these algorithms use
random changes of coordinates and most of them use Gröbner bases w.r.t. lexicographical
ordering which may lead to large coefficient growth. In this direction, a general algorithm was
given by Vasconcelos [97]. Logar [60] proposed a probabilistic algorithm based on Gröbner
bases calculations to compute Noether normalization corresponding to prime ideals. Further,
Greuel et al. [39] proposed a general algorithm using random triangular linear changes of
variables and also Gröbner bases. Bermejo et al. [14] presented another method by applying
sparser random triangular linear changes of variables and Gröbner bases. In [42], Hashemi
provided an algorithm which uses an incremental random linear changes of variables without
computing the dimension of the input ideal. Finally, Robertz [78] described a new approach
based on Janet bases and Satnley decompositions. We give also the references [84, 43] to
deterministic approaches to compute Noether normalization. We shall note that in this chapter,
we apply the algorithm presented in [43]. For more details on Noether normalization, we refer
to the books [39, 34].

In regular chain theory, one desirable and challenging objective is, given a regular chain T ,
to obtain the (non-trivial) limit points of its quasi-component W(T), or equivalently, computing
the variety of its saturated ideal sat(T). The set lim(W(T)) of the non-trivial limit points of

76

6.2. Preliminaries 77

W(T) satisfies V(sat(T)) = W(T) = W(T) ∪ lim(W(T)). Hence, lim(W(T)) is the set-theoretic
difference V(sat(T)) \ W(T). Deducing lim(W(T)) or V(sat(T)) from T is a central question
which has theoretical applications (like the so-called Ritt Problem) and practical ones (like
removing redundant components in triangular decomposition).

Of course V(sat(T)) can be computed from T via Gröbner basis techniques. But this ap-
proach is of limited practical interest. In fact, considering the case where the base field is Q,
we are looking for approaches that would run in polynomial time w.r.t. the degrees and coeffi-
cient heights of T . Thanks to the work of [31], algorithms for change of variable orders (and
more generally, algorithms for linear changes of coordinates) are good candidates. Indeed [31]
shows that change of variable orders for regular chains can be done in polynomial time w.r.t
input data size. The articles [18, 20] propose an alternative method for the same task, called
PALGIE. Both algorithms are part of the RegularChains library in Maple and experimentally,
the second one performs better, while its algebraic complexity is unknown.

Returning to Noether normalization1, we ask in Section 6.4 how “simple” can T be if we
assume that sat(T) is in Noether position. Unfortunately, an additional hypothesis is needed in
order to obtain a satisfactory answer like “all initials of T are constant”, see Theorem 13 and
Remark 12.

In Section 6.5 and 6.6, we develop a few criteria for computing lim(W(T)) or V(sat(T)).
Our techniques (see Proposition 18, Theorem 14, Theorem 15, Theorem 16 and Algorithm 15)
rely on linear changes of coordinates and allow us to relax the “dimension one” hypothesis in
our previous paper [6], where lim(W(T)) was computed via Puiseux series.

Therefore, the techniques proposed in this chapter can be used to compute lim(W(T)) or
V(sat(T)) without Gröbner basis or Puiseux series calculations. Moreover, these new tech-
niques can handle cases where the results of our previous paper [6] could not apply. One of
the main ideas of our new results (see for instance Theorem 14) is to use a linear change of
coordinates so as to replace the description of W(T) by one for which W(T) ∩ V(hT) can
be computed by means of standard operations on regular chains. Nevertheless, our proposed
techniques do not cover all possible cases and the problem of finding a “Gröbner-basis-free”
general algorithm for lim(W(T)) or V(sat(T)) remains unsolved.

6.2 Preliminaries

Throughout this chapter, polynomials have coefficients in a field k and variables in a set x of
n ordered variables x1 < · · · < xn. The corresponding polynomial ring is denoted by k[x].
Let F be a subset of k[x]. We denote by 〈F〉 the ideal generated by F in k[x]. Recall that a
polynomial f ∈ k[x] is regular modulo the ideal 〈F〉 whenever f does not belong to any prime
ideals associated with 〈F〉, thus, whenever f is neither null nor a zero-divisor modulo 〈F〉.
Further, k stands for the algebraic closure of k and V(F) ⊂ k

n
for the algebraic set consisting

of all common zeros of all f ∈ F. For a set W ⊂ k
n
, we denote by W the Zariski closure of W,

that is, the intersection of all algebraic sets containing W.
We briefly review standard notions and concepts related to regular chains and we refer

to [11, 25] for details. For a non-constant f ∈ k[x], we denote by mvar(f), mdeg(f) and

1Section 6.4 contains a brief review of Noether normalization which makes this chapter self-contained.

78 Chapter 6. Computing Limit Points via Changes of Coordinates

init(f), the variable of greatest rank appearing in f , the degree of f w.r.t. that variable and the
leading coefficient of f w.r.t. that same variable. The quantities mvar(f), mdeg(f) and init(f)
are called respectively the main variable, main degree and initial of f . A set T of non-constant
polynomials from k[x] is called triangular if no two polynomials from T have the same main
variable. Let T ⊂ k[x] be a triangular set. Observe that T is necessarily finite and that every
subset of T is itself triangular. For a variable v ∈ x, if there exists f ∈ T such that mvar(f) = v,
we denote this polynomial by Tv and say that v is algebraic w.r.t. T , otherwise we say that v
is free w.r.t. T ; in all cases, we define T<v := {g ∈ T | mvar(g) < v} and denote by free(T)
the set of the variables from x which are free w.r.t. T . We denote by hT the product of the
polynomials init(f), for f ∈ T . We say that T is strongly normalized if all variables occurring
in hT are in free(T); when this holds, it is easy to check that T is a Gröbner basis of the ideal
that T generates in k(u)[x \ u] where u := free(T) and k(u) is the field of rational functions
over k and with variables in u. Moreover, we say that T is monic whenever hT ∈ k holds. The
saturated ideal of T , written sat(T), is defined as the colon ideal sat(T) = 〈T 〉 : h∞T . The quasi-
component of T is the basic constructible set given by W(T) := V(T) \ V(hT). The following
two properties are easy to prove:

W(T) = V(sat(T)) and W(T) = W(T) ∪ lim(W(T)), (6.1)

where lim(W(T)) := W(T) ∩ V(hT) holds and the points of that latter set are called the (non-
trivial) limit points of W(T), for reasons explained in [6]. We say that T is a regular chain
whenever T is empty or T<w is a regular chain and the initial of Tw is regular modulo sat(T<w),
where w is the largest main variable of a polynomial in T . If T consists of n − d polynomials,
for 0 ≤ d < n, then sat(T) has dimension d and either lim(W(T)) is empty or has dimension
d − 1; moreover, we have k[u] ∩ sat(T) = 〈0〉, where u := free(T).

Let F ⊂ k[x] be finite. Let T1, . . . ,Te be finitely many regular chains of k[x]. We say that
{T1, . . . ,Te} is a Kalkbrener triangular decomposition of V(F) if we have V(F) = ∪e

i=1W(Ti).
We say that {T1, . . . ,Te} is a Lazard-Wu triangular decomposition of V(F) if we have V(F) =

∪e
i=1W(Ti).

We call affine change of coordinates in k
n

any bijective map A of the form

A : k
n
→ k

n

x 7−→ (A1(x), . . . , An(x))
(6.2)

where A1, . . . , An are affine forms over k. Hence A(x) can be written as Mx + b where M is an
invertible matrix over k and b ∈ k

n
. If b is null, we call A a linear change of coordinates in k

n
.

For the algebraic set V(F), we denote

VA(F) := V({ f A | f ∈ F}), (6.3)

where f A(x) := f (A1(x), . . . , An(x)). Observe that if V(F) is irreducible, then so is VA(F).
Similarly, the image of W(T) under A is

WA(T) = VA(T) \ VA(hT). (6.4)

6.3. Algorithm for linear change of coordinates 79

6.3 Algorithm for linear change of coordinates
The goal of this section is to present a practically efficient algorithmic solution to the following
problem.

Problem 1. Given a regular chain T ⊂ k[x] and given a linear change of coordinates A in k
n
,

compute finitely many regular chains C1, . . . ,Ce such that

WA(T) = W(C1) ∪ · · · ∪ W(Ce).

In the literature, see [18, 20, 31], the following related problem has been addressed.

Problem 2. Given two total orderings R and R on {x1, . . . , xn}, given T ⊂ k[x1, . . . , xn], as-
suming that

1. T is a regular chain for the ordering R on {x1, . . . , xn} and,
2. the saturated ideal sat(T,R) (which is an alias of sat(T) with a second argument recalling

the ordering) of T of k[x1, . . . , xn] is prime,
compute C ⊂ k[x1, . . . , xn] such that

3. C is a regular chain for the ordering R on {x1, . . . , xn} and,
4. the saturated ideal sat(C,R) of C in k[x1, . . . , xn] is equal to sat(T,R).

We call this second problem change of variable order. The articles [18, 20] are actually
dedicated to the case of differential regular chains, where a differential counterpart of Problem 2
is termed ranking conversion. However, these articles suggest that, from the differential case, a
solution to Problem 2 could be derived and they call it PALGIE, which is an acronym for Prime
ALGebraic IdEal. We present such an algebraic derivation in Section 6.3.1. Then, towards
solving Problem 1, we consider the following.

Problem 3. Given two total orderings R and R on {x1, . . . , xn}, given T ⊂ k[x1, . . . , xn], assum-
ing that T is a regular chain for the ordering R on {x1, . . . , xn}, compute finitely many regular
chains C1, . . . ,Ce such that the radical of the saturated ideal sat(T,R) of T in k[x1, . . . , xn] is
equal to the intersection of the radicals of the saturated ideals sat(Ci,R) of Ci in k[x1, . . . , xn],
for 1 ≤ i ≤ e.

Extending the PALGIE algorithm (as suggested in [18]) to a solution of Problem 3 can be
achieved by standard techniques from regular chain theory, see [25].

Finally, the PALGIE algorithm is further extended to a solution of Problem 1 in Sec-
tion 6.3.3.

Before entering Section 6.3.1, we argue that Problem 2 deals with a special case of Prob-
lem 1, that is, ranking conversions are, indeed, a special case of linear change of coordinates.

As in the statement of Problem 2, consider two total orderings R and R on {x1, . . . , xn} as
well as a regular chain T ⊂ k[x1, . . . , xn] for the order R such that its saturated ideal sat(T,R) is
prime. W.l.o.g. we can assume that the order R on {x1, . . . , xn} is given by x1 < · · · < xn. Then,
the change of variable order from R to R can be interpreted as a permutation σ of the sequence
(x1, . . . , xn). Let A be the linear change of coordinates replacing the column vector (x1, . . . , xn)t

with Mσ(y1, ..., yn)t where (y1, . . . , yn) stand for the new coordinates and Mσ is the matrix of σ
w.r.t. the canonical basis of k

n
as a vector space over k. Running the extended version of the

80 Chapter 6. Computing Limit Points via Changes of Coordinates

PALGIE algorithm solving Problem 1 and presented in Section 6.3.3, we obtain a regular chain
C such that we have

sat(C) = sat(T)A.

Then simply renaming yi with xσ(i), for 1 ≤ i ≤ n, in C produces a regular chain D satisfying
the output specifications of the original version of the PALGIE algorithm (see Section 6.3.1)
whose purpose is to perform change of variable order. To make the proof strict, requiring that
T and D be strongly normalized (and reduced Gröbner bases over the field of rational functions
k(free(T))) make them unique which completes the proof.

6.3.1 The PALGIE algorithm for the prime case

We consider two total orderings R and R on x. Let F ⊂ k[x] be a finite set of polynomials, let k
be the algebraic closure of k and V(F) the zero set of F in the affine space k

n
. We assume that

the ideal 〈F〉 generated by F in k[x] is prime. We also assume that we are given another finite
polynomial set C ⊂ k[x] which is a regular chain for the total ordering R and whose saturated
ideal is 〈F〉.

The goal of this section is to describe an algorithm, namely Algorithm 14, which given C,
R and R, computes a polynomial set C ⊂ k[x] which is a regular chain for the total ordering R
and whose saturated ideal is 〈F〉.

Our main procedure is Algorithm 14. It relies on five other procedures for which pseudo-
code is given through Algorithm 8, 9, 10, 11 and 13. It also relies on standard procedures for
which no pseudo-code is given. For instance, in Algorithm 14, for p ∈ k[x] and for a regular
chain C ⊂ k[x] w.r.t. R, the function call red(p,C,R) returns a polynomial r ∈ k[x] such that
p − r ∈ sat(C,R)

Proving the termination of Algorithm 8, 9, 10, 11, 13 and Algorithm 14 can be done fol-
lowing techniques that are standard in the literature dedicated to the theory of regular chains.
Hence, we focus on the correctness, which is rather easy to prove and follows from Theo-
rem 12.

Proposition 9. Algorithm 8 satisfies its specifications.

Proof. The termination of Algorithm 8 follows from the fact that, at each recursive call,
either the rank of the first argument or the rank of the second decreases. The correctness
follows essentially from the following result: p is regular w.r.t. sat(C,R) if and only if the
iterated resultant of p w.r.t. C is not zero. The key feature of Algorithm 8 is the fact that at
most one Boolean value bi is true; this is easily verified by induction. �

Proposition 10. Algorithm 9 satisfies its specifications.

Proof. This follows easily from the specifications of Algorithm 8. �

Proposition 11. Algorithm 10 satisfies its specifications.

Proof. This follows easily from the specifications of Algorithm 8. �

Proposition 12. Algorithm 11 satisfies its specifications.

6.3. Algorithm for linear change of coordinates 81

Algorithm 8: IsRegular(p,C,R)
Input: C ⊂ k[x] a regular chain for the variable order R and a polynomial p ∈ k[x].
Output: pairs (b1,C1), . . . , (be,Ce) where each bi is a Boolean and each Ci ⊂ k[x] a

regular chain for R s.t. (1) the intersection of the
√

sat(Ci,R) equals
√

sat(C,R), (2) p is regular w.r.t. sat(Ci,R) if and only if bi is true, (3) p is zero
modulo sat(Ci,R) if and only if bi is false, and (4) at most one bi is true.

begin1

if p = 0 then2

return (false,C) ;3

if p ∈ k then4

return (true,C) ;5

if C = ∅ then6

return (true,C) ;7

if (∀q ∈ C) deg(p,mvar(q)) = 0 then8

return (true,C) ;9

Let v be the largest variable in p which is algebraic in C ;10

r := res(p,Cv, v) ;11

if r = 0 then12

g := gcd(p,Cv) ;13

C1 := C−v ∪ {g} ∪ C
+

v ;14

q := Cv/g ;15

C2 := C−v ∪ {q} ∪ C
+

v ;16

output (false,C1) ;17

return IsRegular(p,C2,R) ;18

if r ∈ k then19

return (true,C) ;20

return IsRegular(r,C,R) ;21

end22

82 Chapter 6. Computing Limit Points via Changes of Coordinates

Algorithm 9: Saturate(C,H,R)
Input: C ⊂ k[x] a regular chain for the variable order R and a polynomial set H ⊂ k[x].
Output: D ⊂ k[x] a regular chain for the variable order R s.t. sat(C,R) : H∞ = sat(D,R)

and each polynomial h ∈ H is regular w.r.t. sat(D), thus we have
sat(D,R) : H∞ = sat(D,R).

begin1

for h ∈ H do2

for (bool,D) ∈ IsRegular(h,C,R) do3

if bool then4

C := D;5

break;6

return C;7

end8

Algorithm 10: Extend(C,D,R)
Input: C,D ⊂ k[x] two regular chains for the variable order R such that for every f ∈ C

and every g ∈ D, we have mvar(f) < mvar(g).
Output: E ⊂ k[x] a regular chain for the variable order R s.t.

sat(C ∪ D,R) : H∞ = sat(E,R) where H = {init(p,R) | p ∈ D}.
begin1

E := C;2

repeat3

Let p ∈ D with minimum rank in R ;4

D := D \ {p} ;5

for (bool, F) ∈ IsRegular(init(p,R), E,R) do6

if bool then7

p := PrimitivePart(red(p, F,R),mvar(p,R));8

E := F ∪ {p};9

break;10

until D = ∅ ;11

return E;12

end13

6.3. Algorithm for linear change of coordinates 83

Algorithm 11: EnsureRank(p,R,C,R)

Input: R and R total orders on x; C ⊂ k[x] a regular chain for R and a polynomial
p ∈ k[x] such that p ∈ I.

Output: a polynomial r ∈ k[x] and two polynomial sets P′,H′ ⊂ k[x] such that
p − r ∈ 〈P′〉, P′ ⊂ I and H′ = {init(r,R)}, if r < k, otherwise H′ = ∅.

begin1

P′ := ∅ ;2

while p , 0 and init(p,R) ∈ sat(C,R) do3

P′ := P′ ∪ {init(p,R)} ;4

p := tail(p,R) ;5

if p , 0 then6

H′ := {init(p,R)} ;7

return(p, P′,H′) ;8

end9

Algorithm 12: EnsureLeadingCoefficient(p, v,R,C,R)

Input: R and R total orders on x; C ⊂ k[x] a regular chain for R and a polynomial
p ∈ k[x] such that p ∈ I and v ∈ x a variable.

Output: a polynomial r ∈ k[x] and two polynomial sets P′,H′ ⊂ k[x] such that
p − r ∈ 〈P′〉, P′ ⊂ I and H′ = {lc(r, v)}, if r < k, otherwise H′ = ∅.

begin1

P′ := ∅ ;2

while p , 0 and lc(p, v) ∈ sat(C,R) do3

P′ := P′ ∪ {lc(p, v)} ;4

p := reductum(p, v) ;5

if p , 0 then6

H′ := {lc(p, v)} ;7

return(p, P′,H′) ;8

end9

84 Chapter 6. Computing Limit Points via Changes of Coordinates

Algorithm 13: Gcdn(q, p, v,C
−

v ,R,C,R)

Input: R and R total orders on x; v ∈ x a variable; q, p ∈ k[x] two non-constant
polynomials with common main variable v w.r.t. R s.t. deg(q, v) > deg(p, v)
holds; C ⊂ k[x] a regular chain for R s.t. I := sat(C,R) is prime; C

−

v ⊂ k[x] a

regular chain for R where all variables are less than v w.r.t. R and both init(p,R),
init(q,R) are regular w.r.t. sat(C

−

v ,R).
Output: a polynomial g ∈ k[x] s.t. g is a GCD of p, q in L[v] where L is the total ring

of fractions of k[xi ∈ x | xi <R v]/sat(C
−

v ,R) s.t. if both q, p belong to I then
g ∈ I and deg(g, v) > 0 both hold; two polynomial sets P,H ⊂ k[x] s.t. (1) g
belongs to the ideal generated by q, p and P, (2) we have P ⊂ I and (3) H is
the set of the initials of the intermediate pseudo-remainders from q, p to g.

begin1

(p1, p2) := (q, p) ;2

(P,H) := (∅, ∅) ;3

while true do4

δ := deg(p1, v) − deg(p2, v) ;5

ψ := −1 ;6

β := (−1)δ+1 ;7

α := lc(p2, v) ;8

while deg(p2, v) > 0 do9

p3 := exquo(prem(p1, p2, v), β) ;10

d3 := deg(p3, v) ;11

(p3, P′,H′) := EnsureLeadingCoefficient(p3, v,R,C,R) ;12

(P,H) := (P ∪ P′,H ∪ H′) ;13

p3 := red(p3,C
−

v ,R) ;14

if p3 = 0 then15

return(p2, P,H)16

if deg(p3, v) < d3 then17

(p1, p2) := (p2, p3) ;18

break ;19

if δ > 0 then20

ψ := exquo((−α)δ, ψδ−1) ;21

(p1, p2) := (p2, p3) ;22

if deg(p2, v) > 0 then23

δ := deg(p1, v) − deg(p2, v) ;24

β := −αψδ ;25

α := lc(p2, v) ;26

if p2 = 0 then27

return(p1, P,H)28

else29

return(p2, P,H)30

end31

6.3. Algorithm for linear change of coordinates 85

Algorithm 14: Palgie(C,R,R)

Input: R and R total orders on x; C ⊂ k[x] a regular chain for R s.t. I := sat(C,R) is
prime.

Output: C ⊂ k[x] a regular chain for R s.t. sat(C,R) = sat(C,R).
begin1

P := C;2

H := {init(p,R) for p ∈ C};3

C := ∅ ;4

repeat5

Let p ∈ P with minimum rank in R ;6

P := P \ {p} ;7

p := red(p,C,R) ;8

(p, P′,H′) := EnsureRank(p,R,C,R) ;9

(P,H) := (P ∪ P′,H ∪ H′) ;10

if p , 0 then11

v := mvar(p) ;12

C := Saturate(C, {init(p,R)},R) ;13

if (∀q ∈ C) mvar(q) , v then14

C := Extend(C
−

v ∪ {p},C
+

v ,R) ;15

else16

(g, P′,H′) := Gcdn(Cv, p,C
−

v ,R,C,R) ;17

(P,H) := (P ∪ P′,H ∪ H′) ;18

C := Saturate(C, {init(g,R)},R) ;19

C := C \ {Cv} ∪ {g} ;20

C := Saturate(C,H,R) ;21

until P = ∅ ;22

return(C);23

end24

86 Chapter 6. Computing Limit Points via Changes of Coordinates

Proof. This is clear. �

Proposition 13. Algorithm 13 satisfies its specifications.

Proof. Let us first ignore Line (14) in the first place and assume that at each execution of
Line (17) we have d3 = deg(p3, v). Under these assumptions, Algorithm 13 computes a GCD
of q, p in the ring L[v]. Note that L may not be a field, not even a direct product of fields and
this GCD is in the sense of [67].

Now let us assume that at some iteration of the inner while-loop the condition d3 =

deg(p3, v) becomes false at Line (17). Then, the inner while-loop breaks out and the pair (q, p)
is replaced by the current value of (p2, p3) at the beginning of the outer while-loop. It is not
difficult to see that if Algorithm 13 satisfies its specifications with (p2, p3) as input then it does
with (q, p) as well.

Now let us take Line (14) into account. The question is whether the exact divisions per-
formed at Lines (10) and (21) in the polynomial ring k[xi ∈ x | xi <R v][v] are indeed exact
when p3 is replaced by red(p3,C

−

v ,R). The answer is yes, thanks to the main theorem of [67]
which allows to replace p3 as computed at Line (10) by λ3 p3 where λ3 is any regular element
in the ring L.

The last (non-trivial) point that remains to be explained is the following claim: if both
q, p belong to I then deg(g, v) > 0 holds. Hence we assume that q, p ∈ I holds. Observe
that, by construction, the polynomial g belongs to I as well. Assume, by contradiction, that
deg(g, v) = 0 holds. At Line (12), the input polynomial p3 of EnsureRank belongs to I; hence
the specifications of EnsureRank imply that the output polynomial p′3 is null if deg(p′3, v) = 0
holds. Hence, we can assume that, at Line (13), deg(p3, v) > 0 holds. Now, if the output
polynomial p′3 at Line (14) satisfies deg(p′3, v) = 0, we would have init(p′3,R) ∈ sat(C

−

v ,R).
However, by construction, the polynomials of C belong to Iwhile each of their initials does not
(see Proposition 16). Hence, we have sat(C

−

v ,R) ⊆ I. Therefore, we would have init(p′3,R) ∈
I, contradicting with the specifications of EnsureRank. �

Proposition 14. The following invariant properties hold at the beginning and at the end of
each iteration of the while-loop of the execution of Algorithm 14.

(i) P ⊂ I,

(ii) C is a regular chain for R,

(iii) every polynomial h ∈ H is regular w.r.t. sat(C,R).

Proof. We first prove (i). At Line (2), the set P is initialized with C which satisfies
C ⊂ C : H∞ = I. At Lines (10) and (18), the set P is incremented directly or indirectly by the
procedure EnsureRank which adds to P polynomials belonging to sat(C,R) = I. Thus, Claim
(i) is proved.

Next, we prove (ii) proceeding by induction. At the beginning of the first iteration of the
while-loop, we have C = ∅; hence C is a regular chain. Assume that, at the beginning of each
subsequent iteration of the while-loop, C is a regular chain forR. If at Line (11), the polynomial
p is null, then the conclusion is clear. From now on, we assume p , 0. Observe that p cannot
be a non-zero constant polynomial; indeed we have p ∈ I from (i) and I is not the entire

6.3. Algorithm for linear change of coordinates 87

polynomial ring k[x]. Hence, the main variable v of p is well-defined. After executing Line
(13), the initial of p w.r.t. R is regular w.r.t. sat(C,R), thus C

−

v ∪ {p} is a regular chain for R.
If v is not algebraic in C, then the specifications of Extend imply that C is still a regular chain
after executing (15). If v is algebraic in C, then the specifications of RegularGcd imply that C
is still a regular chain after executing (20). For understanding this latter claim, one should note
that g, as computed at Line (17), has a positive degree in v but its initial in Rmay not be regular
w.r.t. C

−

v . Indeed, Algorithm 13 does not perform any regularity test. For this reason, Line (19)
is essential. Therefore, Claim (ii) is proved.

Finally, Claim (iii) follows easily from the specifications of Saturate. One should note that
the instruction at Line (21) could be moved just after Line (22). Then, Algorithm 14 would still
satisfy its specifications. However, enforcing the fact that every polynomial h ∈ H is regular
w.r.t. sat(C,R) at the beginning of the each iteration of the while-loop has the following benefit
in terms of performance: it keeps the main degrees in C as small as possible. Since this implies
to perform lots of regularity tests, the optimization described in Section 6.3.2 is crucial. �

Lemma 27. Considering the i-th iteration of the while-loop of the execution of Algorithm 14,
we denote by pi the polynomial p which is selected from P at Line (6) and by Ci the value
of the regular chain C at the end of that iteration. Let ` be the index of the last iteration the
while-loop of the execution of Algorithm 14. Then, the following properties hold:

(i) for all 1 ≤ i < `, we have sat(Ci,R) ⊆ sat(Ci+1,R),

(ii) for all 1 ≤ i ≤ `, we have pi ∈ sat(C,R).

Proof. We first prove (i). It clearly follows from the specifications of Saturate that at
each of the Lines (13), (19), (21) the input and output values of C, say Cin and Cout, satisfy
sat(Cin,R) ⊆ sat(Cout,R). Similarly, if we denote by Cin and Cout, the regular chains computed
at Line (13) and (15) respectively, we have again sat(Cin,R) ⊆ sat(Cout,R). This proves Claim
(i). Next, we prove (ii). The proof is by induction on j := ` − i, thus for 0 ≤ j ≤ `. So, we
first consider j = 0, that is, the last iteration. During this iteration, the set P is not incremented.
Then, three cases arise:

• either p` is proved to be zero modulo sat(C,R) at Line (8),

• or p` is added to C at Line (15),

• or Cv is replaced by g = Gcdn(Cv, p`,C
−

v ,R,C,R) at Line (20).

In each of these three cases, it is clear that we have p` ∈ sat(C,R). Now let 0 ≤ j < ` and
assume that all polynomials p selected at iterations ` − (j + 1), . . . , ` will be proved to belong
to sat(C,R). We shall prove that pi, with i = ` − j, also satisfies pi ∈ sat(C,R). Observe that
after Line(9):

• either pi was proved to be zero modulo sat(C,R) at Line (8),

• or pi was replaced by a polynomial (p′)i and polynomials added to P at Line (9).

88 Chapter 6. Computing Limit Points via Changes of Coordinates

Our induction hypothesis implies that those polynomials added to P will be proved later on
to belong to sat(C,R). Hence, it is enough to prove that (p′)i ∈ sat(C,R). This can be done
easily using the same type of arguments that have been using so far in this proof. Hence, we
can conclude that Claim (ii) holds. �

Proposition 15. At the end of last iteration of the while-loop of the execution of Algorithm 14,
the properties hold:

(i) C ⊂ sat(C,R),

(ii) sat(C,R) ⊆ sat(C,R).

Proof. Claim (i) follows from Property (ii) of Lemma 27 and the fact that the set P is
initialized with C at Line (2) in Algorithm 14. Claim (ii) from Claim (i), the fact that H is
initialized with the set of the initials of C at Line (3) in Algorithm 14, as well as Property (iii)
of Proposition 14. �

Proposition 16. At the end of each iteration of the while-loop of the execution of Algorithm 14,
the following properties hold:

(i) every initial of a polynomial p ∈ C is regular w.r.t. sat(C,R),

(ii) C ⊂ sat(C,R),

(iiii) sat(C,R) ⊆ sat(C,R).

Proof. We prove (i) and (ii). Both properties trivially hold at the beginning of the first
iteration of the while-loop of Algorithm 14. In the course of the execution of Algorithm 14,
the regular chain C is modified in two ways:

• either by adding to C a polynomial which belongs to I and whose initial does not belong
to I, at Lines (15) and (19-20),

• or by saturation at Lines (13), (15) and (21).

The second way preserves Properties (i) and (ii) since those saturations are performed w.r.t.
elements which do not belong to I and I is prime. To be more precise, when a polynomial is

not regular modulo C, Saturate function should preserves two properties

1. choosing a branch where the polynomials still belong to I where I is prime,

2. choosing a branch where polynomials still form a regular chain.

As one can see, the second property has been taken care of in Algorithm 9. But when we want
to add a new polynomial p to C which is not regular and therefore we need to choose the right
branch of C, we do not check either in Saturate or IsRegular, if that branch still belongs to I
or not. In fact, when we pass p to IsRegular, we discard the branch C1 at line (14) without
checking whether it belongs to I or not. But actually it is not really necessary thank to the
prime property of I. Since polynomial p is regular modulo I, thus polynomial g in line (13)

6.3. Algorithm for linear change of coordinates 89

is also regular and subsequently does not belong to I; which implies that Algorithm 8 chooses
the right branch of C automatically.

The fact that the first way preserves Properties (i) and (ii) follows from Theorem 6.1 in [11]
and the fact that the ideal I is prime. It is worth noting that in Line (15), when we add poly-
nomial p to C, property (ii) might not be valid since some factors of p might not belong to I,
but then by applying the line (21) , we discard those unnecessary factors, and so property (ii)
still remains valid at the end of the while-loop. Finally Claim (iii) follows immediately from
Claims (i) and (ii). �

Theorem 12. Algorithm 14 satisfies its specifications.

Proof. From Proposition 15 we have sat(C,R) ⊆ sat(C,R), while from Proposition 16 we
have sat(C,R) ⊆ sat(C,R). Moreover, from Proposition 14, the triangular set C is a regular
chain, which completes the proof. �

6.3.2 Regularity test in IsRegular(p,C,R)

The motivation is to prevent from checking that p is regular w.r.t. sat(C,R) whenever this could
be deduced from previous computations. To this end, let us assume that IsRegular(p,C,R)
is called by a wrapper-function IsRegular(p,C,R,T) where the fourth argument T is a table
whose keys are polynomials and values are bit vectors. The wrapper-function IsRegular(p,C,R,T)
works as follows:

1. if p is not a key of T, then

(a) IsRegular(p,C,R) is run; let (true,D) be the returned pair whose first item is true.

(b) let V(p) be the vector of size n defined as follows: the i-th bit of V(p) is 1 if (and
only if) the i-th variable of x w.r.t. R is algebraic in D.

(c) we add (p,V(p)) to T and return what IsRegular(p,C,R) computed.

2. if p is a key of T, then

(a) we compute the current value of the vector V(p) and compare it with the one stored
in T, that we denote by V0(p);

(b) let v be the main variable of p in R and ` be its rank in R;

(c) if the first ` bits of V(p) and V0(p) agree, then no computation is needed and
(true,C) is returned;

(d) otherwise, IsRegular(p,C,R) is run; let (true,D) be the returned pair item whose
first item is true; we update V(p) into T using D and we return what IsRegular(p,C,R)
computed.

90 Chapter 6. Computing Limit Points via Changes of Coordinates

6.3.3 The PALGIE algorithm for linear change of coordinates
We turn our attention back to Problem 1 and suggest how a solution of Problem 3 can lead
to a solution of Problem 1. Let T ⊂ k[x] be a regular chain and let A be a linear change
of coordinates in k

n
. We denote by d the dimension of sat(T). W.l.o.g. we assume that

the variables x1 < · · · < xd are algebraically independent modulo sat(T), that is, free(T) =

{x1, . . . , xd}. Let us write T = {td+1, . . . , tn} such that ti has main variable xi and initial hi. We
apply the extended version of the PALGIE algorithm (that is, the one solving Problem 3) to the
solving of the polynomial system S below

tA
n (x) = 0

...
...

...
tA
d+1(x) = 0

hA
d+1(x) · · · hA

n (x) , 0

(6.5)

We denote by Z(S) ⊂ k
n

the zero set of S . Observe that for all polynomials f ∈ k[x], we have

f ∈ 〈Z(S)〉 ⇐⇒ f A−1
∈

√
sat(T). (6.6)

where 〈Z(S)〉 is the ideal of k[x] consisting of all polynomials vanishing on Z(S). Relation
(6.6) allows one to easily adapt the master - student relationship described in Section 3.2 of
[20] and thus to adapt the (extended version of the) PALGIE algorithm so as to solve Problem 1.

6.4 Noether normalization and regular chains
In this section, we study the relation between Noether normalization and regular chains. Our
initial quest was to determine whether, for a prime ideal P ⊂ k[x] in Noether position, one
could find a monic regular chain T whose saturated ideal is precisely P. For this purpose, we
start by reviewing basic properties of Noether normalization, following Logar’s paper [60].

Let P ⊂ k[x] be a (proper) prime ideal and G the reduced lexicographical Gröbner basis of
P. Recall that x counts n variables ordered as x1 < · · · < xn. We assume that k is an infinite
field. We denote by TP the set defined by

TP = {v ∈ x | (∀g ∈ G) mvar(g) , v}. (6.7)

This set satisfies two important properties:
• TP is algebraically independent modulo P that is, P ∩ k[TP] = 〈0〉,
• the number of elements in TP gives the dimension of P, that is, dim(P) = card(TP).

A variable xs ∈ x is said integral over k[x1, . . . , xs−1] modulo P if there exists f ∈ P ∩
k[x1, . . . , xs−1, xs] such that mvar(f) = xs and init(f) ∈ k. Integral variables satisfy two impor-
tant properties:
• A variable xs ∈ x is integral over k[x1, . . . , xs−1] modulo P if and only if there exists

g ∈ G such that lm(g) = xds
s for some positive integer ds,

• if a variable xs ∈ x is integral over k[x1, . . . , xs−1,u] modulo P, with u ⊆ TP disjoint
from {x1, . . . , xs}, then xs is also integral over k[x1, . . . , xs−1] modulo P.

6.4. Noether normalization and regular chains 91

Thanks to the above properties, we may assume w.l.o.g. that if d = dim(P) then we have
TP = {x1, . . . , xd}. Consider a linear change of coordinates A in k

n
defined by a matrix M of

the following form:

M =


Id×d

a1,d+1 . . . a1,n
...

...
...

ad,d+1 . . . ad,n

0 I(n−d)×(n−d)

 (6.8)

where ai, j ∈ k. We denote by PA the ideal generated by f A for all f ∈ P. Then, by Noether
normalization lemma, for a generic choice of a1,d+1, . . . , ad,n the following properties hold:

1. x1, . . . , xd are algebraically independent modulo PA,
2. xd+i is integral over k[x1, . . . , xd] modulo PA for all i = 1, . . . , n − d.

In this case, we say that PA is in Noether position.
We turn our attention to the regular chain representation of the prime ideal P. To this end,

using Theorem 3.3 of [11], one can extract, in an algorithmic fashion, a subset T of G such that
T is a regular chain whose saturated ideal is precisely P. Let H be the reduced lexicographical
Gröbner basis of PA and C be the regular chain extracted from H using the same theorem
from [11].

Theorem 13. If T generates its saturated ideal, then the regular chain C is monic, that is, for
each polynomial f ∈ C we have init(f) ∈ k.

Proof. Assume by contradiction that there exists f ∈ C such that init(f) < k and let us
choose such an f with minimum main variable. Since x1, . . . , xd are algebraically independent
modulo PA and since C is a regular chain, one can compute a polynomial f ′ such that init(f ′) ∈
k[x1, . . . , xd] and sat(C′) = sat(C) holds with C′ = C \ { f } ∪ { f ′}.

Let mvar(f) = xr. Since PA is in Noether position, it follows from [60] that there exists a
polynomial Hxr ∈ H whose leading monomial is of the form xdr

r . Since init(Hxr) ∈ k, we have

deg(f ′, xr) = deg(f , xr) < dr = deg(Hxr , xr). (6.9)

Indeed, otherwise the polynomial Hxr would have been selected as an element of the regular
chain C.

From the choice of f and the assumption on T , the regular chain C′ ∩ k[x1, . . . , xr] is a
basis of PA ∩ k[x1, . . . , xr]. Therefore, the polynomial Hxr reduces to zero through multivariate
division by C′ ∩ k[x1, . . . , xr] and thus by C ∩ k[x1, . . . , xr]. This contradicts the fact that H
is a reduced Gröbner basis. �

Remark 12. Theorem 13 states that if T generates sat(T) and PA is in Noether position, then
C is monic. Unfortunately, if T does not generate sat(T), then the previous conclusion may not
hold as shown by the following example.

Example 11. Consider the regular chain T := {x5
2 − x4

1, x1x3 − x2
2} ⊂ Q[x1 < x2 < x3] which

does not generate its saturated ideal. Consider also the linear change of coordinates A defined
by the matrix below

M =

 1 0 −1
0 1 0
0 0 1

 .

92 Chapter 6. Computing Limit Points via Changes of Coordinates

Then 〈T 〉A is in Noether position and under this new change of coordinates we can compute
the regular chain C = {c1, c2} such that

√
sat(C) =

√
sat(T)A where c1 = x5

2−2x4
2+x3

2+4x2
1x2

2−x4
1

and c2 =
(
−x3

1 + 2x2
2x1

)
x3 + x2

1x2
2 − x4

2 + x3
2. As you can see init(c2) < Q.

6.5 Applications of random linear changes of coordinates
Let T ⊂ k[x] be a regular chain whose saturated ideal has dimension d. Let u be the free
variables of T . Recall that hT stands for the product of the init(f) for f ∈ T . Let A be a linear
change of coordinates in k

n
. Assume that the extended version of the PALGIE algorithm (see

Problem 3 in Section 6.3) applied to T and A produces a single regular chain C ⊂ k[x], thus
satisfying

WA(T) = W(C). (6.10)

Let hT and hC be the products of the initials of T and C, respectively. Let rA
T and rC be the

iterated resultants (see [25] for this term) of hA
T and hC w.r.t. C.

Proposition 17 gathers elementary properties of rA
T and rC. Proposition 18 provides con-

ditions for deriving a basis of sat(T) from the calculation of C while Theorem 14 provides a
condition for deriving lim(W(T)) = W(T) ∩ V(hT) from the calculation of C. The basic idea
of Theorem 14 is to use a linear change of coordinates so as to replace the description of W(T)
by one for which W(T) ∩ V(hT) can be computed by set-theoretic operations on constructible
sets (represented by regular chain as in [24]). Moreover, Corollary 2 shows that, if T generates
sat(T), then the computation of lim(W(T)) can always be achieved by the techniques of [24].

Proposition 17. The following properties hold:

(i) the polynomial hA
T is regular w.r.t. sat(C),

(ii) the polynomials rA
T and rC belong to k[u] and are non-zero.

Proof. Property (i) is by construction, that is, following the extended PALGIE algorithm
applied to T and A. Property (ii) follows from (i) and the relations between regular chains and
iterated resultants, see [25]. �

Proposition 18. The following properties hold:

(i) if sat(T) is radical and if the ideal 〈hT , (hA−1

C)〉 equals the whole ring k[x], then T ∪ CA−1

generates sat(T),

(ii) if the regular chain C is monic, then CA−1
generates sat(T).

Proof. We prove Property (i). Since sat(T) is radical, the relations WA(T) = W(C)
implies CA−1

⊂ sat(T). Hence, we “only” need to prove that if a polynomial f belongs to
sat(T), then f is generated by T ∪ CA−1

. So let f ∈ sat(T). On one hand, there exists a non-
negative integer e such that he

T f ∈ 〈T 〉. On the other, there exists a non-negative integer d such
that (hA−1

C)d f ∈ 〈CA−1
〉. Since the ideal 〈he

T , (h
A−1
C)d〉 is the whole ring k[x], then we can write

f as an element of 〈T,CA−1
〉. Now we prove (ii). Since C is monic, it is a Gröbner basis of

6.5. Applications of random linear changes of coordinates 93

sat(C), and, from the specifications of the PALGIE algorithm, a basis of sat(T)A as well. Thus
CA−1

:= { f A−1
| f ∈ C} is a basis of sat(T). �

From now on, we assume that the coefficients of the matrix M = (mi j) are pairwise different
variables. We view the coefficients of M, as well as the coefficients of all polynomials, as
elements of the field of rational functions k(mi j). Moreover, the base field k is either R or C
so that the affine space k

n
is endowed with the Euclidean topology. In this context, we recall

from [6] that the quasi-component W(T) has the same closure in both the Euclidean and the
Zariski topologies.

Theorem 14. For all values of (mi j) such that V(rA
T , rC) is empty, we have

lim(W(T)) = {A−1(y) | y ∈ V(hA
T) ∩ W(C)}. (6.11)

Proof. Observe first that V(rA
T , rC) is empty if and only if V(rT , rA−1

c) is empty. Observe next

that any zero ζ ∈ k
n

of hT extends a zero ζ′ ∈ k
d

of rT , see [24]. Therefore, for any choice of
the parameters (mi j) such that V(rA

T , rC) is empty, one can let (x1, . . . , xn) approach a given root
of hT while staying within a bounded open set of WA−1

(C) leading to finitely many (possibly
zero) finite limits for (x1, . . . , xn). Since, by construction, the constructible sets WA−1

(C) and
W(T) have the same Zariski closure, it follows that the points of V(hA

T) ∩ W(C) are the images
by A of the desired limit points of W(T). �

Example 12. Consider the regular chain T := {x4, x2x3 + x2
1} ⊂ Q[x1 < x2 < x3 < x4] and the

linear change of coordinates A corresponding to the matrix

M =


0 0 0 1
0 1 1 0
0 1 0 0
1 0 0 0

 .
Using the extended of PALGIE, we can compute C := {x4, x2

3 + x2x3 + x2
1} and consequently,

rA
T = x2

1 and rC = 1. Then 〈rA
T , rC〉 = 〈1〉 holds. Using Triangularize command of Maple,

one can get
〈C, hA

T 〉
A−1

= 〈x4, x2, x1〉 = lim(W(T)).

Corollary 2. Assume that T generates sat(T). Then we have

lim(W(T)) = V(T) \W(T) (6.12)

Hence, lim(W(T)) can be obtained by set-theoretic operations on constructible sets. Moreover,
generically, the set lim(W(T)) is determined by V(hA

T) ∩ W(C).

Proof. We prove the first claim. The hypothesis implies V(T) = W(T). Since V(T) =

W(T) ∪ (V(T) ∩ V(hT)), the conclusion follows. The second claim follows immediately from
Theorems 14 and 13. �

94 Chapter 6. Computing Limit Points via Changes of Coordinates

6.6 On the computation of lim(W(T)) and sat(T)

Let T be a regular chain whose saturated ideal has dimension d. A driving application of this
chapter is the computation of lim(W(T)). Section 6.5 was primarily dedicated to the case where
T is a basis of its saturated ideal, while in the present section we replace this assumption by
others. Recall that we have the follow equalities:

V(sat(T)) = W(T) =
(
W(T) ∩ V(hT)

)
∪W(T) = lim(W(T)) ∪W(T).

Therefore, computing lim(W(T)) and computing V(sat(T)) are equivalent problems. Theo-
rems 15, 16 and Lemma 29 below deal with the latter problem while Proposition 19 is con-
cerned with the former. All these results make some assumption on T and we do not know a
general procedure for computing either lim(W(T)) or V(sat(T)) that would avoid Gröbner basis
calculation.

Lemma 28. Let I be a radical ideal of k[x]. Let h ∈ k[x]. Assume that the dimension of any
associated prime p of I is at least d. Then dim(V(I, h)) < d implies that h is regular modulo
I. If the dimension of any associated prime p of I is d, that is, if I is an unmixed ideal of
dimension d, then dim(V(I, h)) < d holds if and only if h is regular modulo I.

Proof. Let I = ∩s
i=1pi, where pi are the associated prime of I. Assume that dim(V(I, h)) <

d, it is enough to show that h does not belong to any pi. On the other hand, we have V(I, h) =

∪s
i=1V(pi, h). If h belongs to some pi, then V(pi, h) = V(pi). Since dim(pi) ≥ d, we know that

dim(V(I, h)) ≥ d, which is a contradiction to the assumption that dim(I, h) < d.
If I is an unmixed ideal of dimension d, by the above argument, dim(V(I, h)) < d implies

that h is regular modulo I. On the other hand, if h is regular modulo I, then h does not belong
to any pi. Thus dim(V(I, h)) = max(dim(V(pi, h))) < max(dim(pi)) = d. �

Theorem 15. Let T ⊂ k[x] be a regular chain with free variables x1, . . . , xd. Let hT be the
product of the initials of the polynomials in T . Then, we have

√
〈T 〉 =

√
sat(T) if and only if

dim(V(T, hT)) < d holds.

Proof. First we claim that for any associated prime p of
√
〈T 〉, we have dim(p) ≥ n − d.

To prove this, we first notice that the associated primes p of
√
〈T 〉 are exactly the minimal

associated primes p of 〈T 〉. On the other hand, since 〈T 〉 ⊆ sat(T) and V(sat(T)) , ∅ hold, we
know that 〈T 〉 generates a proper ideal. By Krull’s principle ideal theorem, for any minimal
associated prime p of 〈T 〉, the height of p is less than or equal to |T |. Since |T | = n−d, we have
dim(p) ≥ n − d. The claim is proved.

Now we prove that we have
√
〈T 〉 =

√
sat(T) if and only if dim(V(T, hT)) < d holds. First,

we show that the condition is sufficient. If dim(V(T, hT)) < d holds, with the previous claim and
Lemma 28, we deduce that hT is regular modulo

√
〈T 〉. Thus, we have

√
sat(T) =

√
〈T 〉 : h∞T =

√
〈T 〉 : h∞T =

√
〈T 〉. Next, we show that the condition is necessary. If

√
〈T 〉 =

√
sat(T), then

√
〈T 〉 is an unmixed ideal and hT is regular modulo

√
〈T 〉. Thus, dim(V(T, hT)) < d holds by

Lemma 28. �

Remark 13. As an immediate corollary, we have V(T) = W(T) if and only if dim(V(T, hT)) <
d. There are many ways to compute the dimension of an algebraic set. In particular, this
dimension can be determined by computing a Kalkbrener triangular decomposition. We denote
by IsClosure a procedure to test V(T) = W(T), by applying Theorem 15.

6.6. On the computation of lim(W(T)) and sat(T) 95

Example 13. Consider the regular chain T := {x1x2 + x1, x1x3 + 1} of Q[x1 < x2 < x3]. Since
the first polynomial is not primitive w.r.t. x2, T is not a primitive regular chain in the sense
of [57]. Since V(T, x1) = ∅ holds, applying Theorem 15, we have

√
〈T 〉 =

√
sat(T). Actually

〈T 〉 = sat(T) also holds.

Theorem 16. Let T be a regular chain of k[x] with free variables x1, . . . , xd. Let C1, . . . ,Cs ⊂

k[x]. Assume that 〈Ci〉 ⊆
√

sat(T) holds, for all i = 1, . . . , s. Let I = 〈T,C1, . . . ,Cs〉. Then
√

sat(T) =
√
I if and only if there exist regular chains Ti, i = 1, . . . , t, such that each of the

following properties hold:

(i)
√
I = ∩t

i=1

√
sat(Ti),

(ii) |T1| = · · · = |Tt| = n − d,

(iii) hT is regular modulo all
√

sat(Ti).

Proof. The direction “⇒”obviously holds. Next we prove the direction “⇐”. By (i)
and (ii), we know that

√
I is an unmixed ideal of dimension d. Since hT is regular modulo

all
√

sat(Ti), by Lemma 28, we have dim(V(hT , sat(Ti))) < d. Thus dim(V(I, hT)) < d holds.
Applying Lemma 28 again, we know that hT is regular modulo

√
I. Thus

√
I =

√
I : h∞T =√

I : h∞T holds. On the other hand, we have 〈T 〉 ⊆ I, thus we deduce that
√

sat(T) ⊆
√
I.

Since I = 〈T,C1, . . . ,Cs〉 and 〈Ci〉 ⊆
√

sat(T), we also have I ⊆
√

sat(T). The theorem is
proved. �

Remark 14. In Theorem 16, if s = 0, then the theorem trivially holds for t = 1 and T1 = T.
In practice, for example in Algorithm 15, the polynomial sets Ci, for all i = 1, . . . , s, are
regular chains for different orderings such that

√
sat(Ci) =

√
sat(T) holds. Let T1, . . . ,Tt be

regular chains in the output of Triangularize(I). Then (i) automatically holds. If condition
(ii) is satisfied, then W(T) = V(I) holds if and only if (iii) holds, which is easy to check by
computing iterated resultants of hT w.r.t. the regular chains Ti. Thus, this theorem provides an
algorithmic recipe which may compute W(T) in somes cases, see Algorithm 15.

Example 14. We illustrate Algorithm 15 on one example. Consider the regular chain T :=
{x5

2 − x2
1, x1x3 − x2

2(x2 + 1)} of Q[x1 < x2 < x3]. Then V(T, x1) := {(x1, x2, x3) | x1 = x2 = 0},
whose dimension is 1. By Theorem 15, we know that V(T) , V(sat(T)). Let C := {x2x2

3 −

x2
2 − 2x2 − 1, x3x1 − x3

2 − x2
2} be another regular chain of Q[x2 < x3 < x1]. One can verify that

sat(C) = sat(T) holds. Let I := 〈C,T 〉. A Kalkbrener triangular decomposition of I w.r.t. the
order x1 < x2 < x3 consists only of one regular chain, which is T itself. Thus by Theorem 16,
we have V(sat(T)) = V(I).

Remark 15. We selected 22 one-dimensional non-primitive regular chains to test Algorithm 15.
For 10 of them, the algorithm could successfully compute W(T). We also tested some random
examples. The random regular chains are generated as follows. We choose a pair of random
polynomials with 4 variables and of total degree 2. Then we apply Triangularize to this pair,
thus obtaining 2-dimensional regular chains. In this way, we generated 20 regular chains, out
of which 16 turned out to be non-primitive regular chains. Algorithm 15 successfully computed
W(T) for 10 of those 16 examples.

96 Chapter 6. Computing Limit Points via Changes of Coordinates

Algorithm 15: Closure(T)
Input: A non-empty regular chain T of k[x1 < · · · < xn].
Output: Return ∅ or a polynomial set G such that W(T) = V(G). If ∅ is returned, this

means that the algorithm fails to compute W(T).
begin1

G := ∅;2

for i from 1 to n do3

if i = 1 then4

C := T ;5

else6

let R be the ordering xi < xi+1 < · · · < xn < x1 · · · < xi−1;7

D := PALGIE(T,R);8

if |D| , 1 then9

return ∅10

else11

let C be the only regular chain inD;12

if IsClosure(C) then13

return C;14

else15

G := G ∪C;16

D := Triangularize(G,mode = K)// compute a Kalkbrener17

triangular decomposition of V(G)
if all regular chains inD have dimension d and hT is regular w.r.t. each of18

them then
return G19

return ∅;20

end21

6.6. On the computation of lim(W(T)) and sat(T) 97

Lemma 29. Let T = {t2(x1, x2), t3(x1, x3), . . . , ts(x1, xs)} be a regular chain of k[x1 < · · · < xs].
Assume that for all i = 2, . . . , s, the polynomial ti is a primitive polynomial w.r.t. its main
variable xi. Then, the regular chain T generates its saturated ideal.

Proof. To prove this lemma, it is enough to prove by induction that sat(Ti) = 〈Ti〉, for
i = 2 . . . , s, where Ti := {t2, . . . , ti}. The lemma clearly holds for i = 2. Assume that the regular
chain Ti−1 is generating its saturated ideal. If tail(ti) is invertible modulo 〈init(ti)} ∪ Ti−1〉, then
〈Ti〉 = sat(Ti) holds (see [57]). Suppose that tail(ti) is not invertible modulo 〈{init(ti)} ∪ Ti−1〉,
then 〈{init(ti)}∪Ti−1〉 generates a proper zero-dimensional ideal, since init(ti) is regular modulo
〈Ti−1〉. Let p be an associated prime of this ideal. If tail(ti) is not regular modulo p, then all the
coefficients of ti belong to p. On the other hand, since ts(x1, xi) is primitive, the ideal formed
by the coefficients of ti is the field k, a contradiction. �

Remark 16. If a regular chain T has the same shape as in Lemma 29, except that the poly-
nomials ti are not necessarily primitive, for i = 2, . . . , s, then by making all the polynomials ti

primitive, we obtain a new regular chain T ′ such that we have 〈T ′〉 = sat(T ′) = sat(T).

Example 15. Let T := {x2
3 − 2 x1, 3 x3

2 + 4 x2
1} ⊂ Q[x1 < x2 < x3] be a 1-dimensional regular

chain. As you can see both elements of T are primitive bivariate polynomials. Then Lemma 29
implies that T generates its saturated ideal.

Example 16. The above lemma clearly does not hold for regular chains with more than one
free variable. Consider for example the regular chain T := {x1x3 + x2, x1x4 + x2}, where
x1 < x2 < x3 < x4. It is clear that x4 − x3 < 〈T 〉. However, one can prove that x4 − x3 ∈ sat(T)
because x1x4 + x2 = x1(x4 − x3) modulo 〈x1x3 + x2〉.

Lemma 30. Let T ⊂ k[x] be a regular chain with free variable x1. Let C2 = T and let Ci, for
3 ≤ i ≤ n, be regular chains w.r.t. the order x1 < xi < x \ {x1, xi} such that

√
sat(Ci) =

√
sat(T).

Assume that all the polynomials of Ci are primitive w.r.t. their main variables for i = 2, . . . , n.
Then dim(V(C2, . . . ,Cn)) = 1 holds.

Proof. By the fact that W(T) = W(Ci), we know that W(T) ⊆ V(C2, . . . ,Cn), which
implies that dim(V(C2, . . . ,Cn)) ≥ 1. Let ci be the polynomial in Ci with the main variable xi.
Then the set C := {c2, . . . , cn} is clearly a regular chain since init(ci) ∈ k[x1] holds for each
i = 2, . . . , s. Moreover C generates its saturated ideal by Lemma 29. Thus dim(V(C)) = 1.
Since V(C2, . . . ,Cn) ⊆ V(C), we know that dim(V(C2, . . . ,Cn)) ≤ 1. Thus the lemma holds. �

Example 17. Let T := {x5
2 − x4

1, x1x3 − x2
2} be a regular chain of Q[x1 < x2 < x3]. Let

also C := {x5
3 − x3

1, x
2
3x2 − x2

1} be a regular chain of Q[x1 < x3 < x2] for which we have
sat(C) = sat(T). One can verify that dim(V(T,C)) = 1. Indeed a Kalkbrener triangular
decomposition of T ∪ C computed by the Triangularize command of RegularChains library
w.r.t. the order x1 < x2 < x3 is {T,D}, where D := {x1, x2, x3}.

It is easy to observe that the decomposition computed by Triangularize is redundant, that
is we have sat(T) ⊆ sat(D) holds. By Theorem 16, we conclude that

√
〈T,C〉 =

√
sat(T).

However, for this example, Algorithm 15 fails to compute the set G such that W(T) = V(G),
since T and D do not have the same height.

98 Chapter 6. Computing Limit Points via Changes of Coordinates

Lemma 30, Example 17 and Theorem 16 show that it is possible to compute sat(T) by a
change of order of the variables. One might wonder if this is always true. In particular, we ask
the following two questions.

Question 1. Let C1, . . . ,Cn be regular chains of k[x] w.r.t. the order xi < xi+1 < · · · < xn <
x1 · · · < xi−1, for i = 1, . . . , n. Assume that

√
sat(C1) = · · · =

√
sat(Cn). Does

√
sat(C1) =√

〈∪n
i=1Ci〉 always hold?

Question 2. Let C1, . . . ,Cn be polynomial sets of k[x] such that Ci is a regular chain for the
order xi < xi+1 < · · · < xn < x1 · · · < xi−1, for i = 1, . . . , n. Assume that

√
sat(Ci) =

√
sat(C j)

for all 1 ≤ i < j ≤ n. Let Pi ∈ Ci be the polynomial of least rank. Let H1 be the product of the
initials of C1. Does the relation

lim(W(C1)) = V(C1 ∪ {P1, . . . , Pn,H1})

always hold?

To answer the two questions, we investigated over 35 different polynomial systems, and all
of them succeeded but two of which failed. Here is one of them.

Example 18. Suppose T := {t1, t2} ⊂ Q[x1 < x2 < x3 < x4] is a regular chain of dimen-
sion two, where t1 = −93 x1x2

2 + (53 x1 − 35) x2 + 93 x3
1 − 26 x2

1 − 57 x1 and t2 = 93 x1x4 +(
(3233 x1 − 2135) x2 + 5673 x3

1 + 213 x2
1 − 3477 x1

)
x3+

(
−530 x2

1 − 3091 x1

)
x2−930 x4

1+6119 x3
1+

570 x2
1 − 1767 x1. One can verify that T does not generate its saturated ideal.

Following the notations of Question 1, using PALGIE, we will be able to compute regular
chains Ci for i = 1, . . . , 4 w.r.t the orders mentioned in Question 1. To see whether the statement
of Question 1 is true or not, on one hand, we can find the Kalkbrener triangular decomposition
{C1,R1,R2} for V(∪4

i=1Ci) where C1 = T, R1 := {x4 − 19, x2, x1}, and R2 := {961 x2
4 + 42428 x4 +

279756, x3, x2, x1}.
On the other hand, using methods based on Gröbner bases computations to find a generator

for sat(C1), one can find the Kalkbrener triangular decomposition {C1,R1} for V(sat(C1)).
Therefore, we have

V(sat(C1)) = W(C1) ∪ W(R1) , V(∪4
i=1Ci) = W(C1) ∪ W(R1) ∪ W(R2).

This shows that the statement of Question 1 is not true.
Furthermore,

V(C1 ∪ {P1, . . . , P4,H1}) = W(R1) ∪ W(R2)

where H1 is the product of the initials of C1 and Pi is the polynomial in Ci with least
rank for i = 1, . . . , 4. But the correct limit points are only represented by R1 which means
lim(W(C1)) , V(C1 ∪ {P1, . . . , P4,H1}). Cosequently, for this example, the answer to both
Questions 1 and 2 is negative.

In Example 18, as one can see, we computed the limit points plus some extra points. The
extra component R2 in this example is of dimension 0 while the limit points we are expecting
are of dimension 1.

6.7. Conclusion 99

Proposition 19. Let T be a regular chain such that sat(T) has dimension d and let F ⊂ sat(T)
such that V(T ∪ F ∪ {hT }) has dimension d− 1 and is irreducible. Suppose also that lim(W(T))
is not empty. Then, we have lim(W(T)) = V(T ∪ F ∪ {hT }).

Proof. The proof is straightforward. �

Example 19. Consider the regular chain T := {x1 x3 + x2, x2 x4 + x1} ⊂ Q[x1 < x2 < x3 < x4].
One can consider F to be the regular chain computed by applying PALGIE to T w.r.t. the
variable order x3 < x4 < x1 < x2 and consequently, “fish” the polynomial x3 x4 − 1 ∈ sat(T).
Then

V(T ∪ F ∪ {hT }) = V(x1 x3 + x2, x2 x4 + x1, x3 x4 − 1, x1 x2)
= V(x1, x2, x3 x4 − 1)
= lim(W(T)).

6.7 Conclusion
Among all the methods we have considered for computing lim(W(T)) and sat(T), those based
on linear changes of coordinates seem very promising. They are a good trick for finding a
subset F ⊂ sat(T) such that F ∪ T is a basis of sat(T), see Proposition 19. To develop that
direction further, we are currently investigating the following related questions:

• decide whether lim(W(T)) is empty

• decide whether W(R) ⊆ lim(W(T)) for a given regular chain.

Chapter 7

Tangent Cones of Space Curves

7.1 Introduction

Traditionally, standard bases, Gröbner bases and cylindrical algebraic decomposition are the
fundamental tools of computational algebraic geometry. The computer algebra systems Co-
CoA, Macaulay 2, Magma, Reduce, Singular have well-developed packages for computing
standard bases or Gröbner bases, on which they rely in order to provide powerful toolkits to
algebraic geometers.

Recent progress in the theory of regular chains has exhibited efficient algorithms for doing
local analysis on algebraic sets. One of the algorithmic strengths of the theory of regular
chains is its regularity test procedure. In algebraic terms, this procedure decides whether a
hypersurface contains at least one irreducible component of the zero set of the saturated ideal
of a regular chain. Broadly speaking, this procedure separates the zeros of a regular chain that
belong to a given hypersurface from those which do not. This regularity test permits to extend
an algorithm working over a field into an algorithm working over a direct product of fields.
Or, to phrase it in another way, it allows one to extend an algorithm working at a point into an
algorithm working at a group of points.

Following that strategy, the authors of [62] have proposed an extension of Fulton’s algo-
rithm for computing the intersection multiplicity of two plane curves at the origin. To be
precise, this chapter extends Fulton’s algorithm in two ways. First, thanks to the regularity test
for regular chains, the construction is adapted such that it can work correctly at any point in the
intersection of two plane curves, whether this point has rational coordinates or not. Secondly,
an algorithmic criterion, see Theorem 17, is proposed for reducing intersection multiplicity
computation in arbitrary dimension to the case of two plane curves. This algorithmic criterion
requires to compute the tangent cone TCp(C) of a space curve C at one of its points p. In
principle, this latter problem can be handled by means of standard basis (or Gröbner basis)
computation. Available implementations (like those in Magma or Singular) require that the
point p is uniquely determined by the values of its coordinates. However, when decomposing
a polynomial system, a point may be defined as one of the roots of a particular sub-system
(typically a regular chain h). Therefore, being able to compute the tangent cones of C at all its
points defined by a given regular chain h, becomes a desirable operation. Similarly, and as dis-
cussed in [62], another desirable operation is the computation of the intersection multiplicity

100

7.2. Preliminaries 101

of a zero-dimensional algebraic set V at all its points defined by a given regular chain h. This
type of tangent cone computation is addressed in the present Chapter (see also [9]).

Tangent cone computations can be approached at least in two ways. First, one can consider
the formulation based on homogeneous components of least degree, see Definition 21. The
original algorithm of Mora [65] follows this point of view. Secondly, one can consider the more
“intuitive” characterization based on limits of secants, see Lemma 31. This second approach,
that we follow in this chapter, requires to compute limits of algebraic functions. For this task,
we take advantage of [6] where the authors show how to compute the limit points of the quasi-
component of a regular chain. This type of calculation can be used for computing the Zariski
closure of a constructible set. In the present Chapter, it is used for computing tangent cones of
space curves, thus providing an alternative to the standard approaches based on Gröbner bases
and standard bases.

The contributions of the present chapter are as follows

1. In Section 7.3, we present a proof of our algorithmic criterion for reducing intersec-
tion multiplicity computation in arbitrary dimension to the plane case; this criterion was
stated with no justification in [62].

2. In Section 7.4.1, with Lemma 32, under a smoothness assumption, we establish a natural
method for computing TCp(C); as limit of intersection of tangent spaces.

3. In Section 7.4.2, we relax the assumption of Section 7.4.1 and exhibit an algorithm for
computing TCp(C).

This latter algorithm is implemented, in the AlgebraicGeometryTools subpackage [5] of the
RegularChains library which is available at www.regularchains.org. Section 7.4.4 offers
different examples for computing tangent cones of space curves.

7.2 Preliminaries
Throughout this article, we denote by k a field with algebraic closure k, and by An+1(k) the
(n+1)-dimensional affine space over k, for some positive integer n. Let x := x0, . . . , xn be n+1
variables ordered as x0 � · · · � xn. We denote by k[x] the corresponding polynomial ring. Let
h ⊂ k[x] be a subset and h ∈ k[x] be a polynomial. We say that h is regular modulo the ideal
〈h〉 of k[x] whenever h does not belong to any prime ideals associated with 〈h〉, thus, whenever
h is neither null nor a zero-divisor modulo 〈h〉. The algebraic set of An+1(k) consisting of the
common zeros of the polynomials in h is written as V(h). For W ⊂ An+1(k), we denote by
I(W) the ideal of k[x] generated by the polynomials vanishing at every point of W. The ideal
I(W) is radical and when k = k holds, Hilbert’s Nullstellensatz states that

√
〈h〉 = I(V(h)).

In the next two sections, we review the main concepts used in this chapter, namely tangent
cones and regular chains. For the former, we restrict ourselves to tangent cones of a space
curve and refer to [29] for details and the general1 case. For the latter concept, we refer to [25],
in particular for the specifications of the basic operations on regular chains.

1 Note that in the book [25], and other classical algebraic geometry textbooks like [90], the tangent cone of an
algebraic set at one of its points, is also an algebraic set. Two equivalent definitions appear in [25] and are recalled
in Definition 21 and Lemma 31.

www.regularchains.org

102 Chapter 7. Tangent Cones of Space Curves

7.2.1 Tangent cone of a space curve
As above, let h ⊂ k[x]. Define V := V(h) and let p := (p0, . . . , pn) ∈ V be a point. We denote
by dimp (V) the maximum dimension of an irreducible component C of V such that we have
p ∈ C. Recall that the tangent space of V(h) at p is the algebraic set given by

Tp(h) := V(dp (f) : f ∈ I(V))

where dp (f) is the linear part of f at p, that is, the affine form ∂ f
∂x0

(p)(x0− p0)+ · · ·+
∂ f
∂xn

(p)(xn−

pn). Note that Tp(h) is a linear space. We say that V(h) is smooth at p whenever the dimension
of Tp(h) is dimp (V) and singular otherwise. The singular locus of V(h), denoted by sing(h),
is the set of the points p ∈ V(h) at which V(h) is singular.

Let f ∈ k[x] be a polynomial of total degree d and p := (p0, . . . , pn) ∈ An+1(k) be a point
such that f (p) = 0 holds. Let α = (α0, . . . , αn) ∈ N≥n+1 be a (n + 1)-tuple of non-negative
integers. Denote: (x − p)α := (x0 − p0)α0 · · · (xn − pn)αn , where |α| = α0 + · · · + αn is the total
degree of x − p. Since the polynomial f ∈ k[x] has total degree d, it writes as a k-linear
combination of the form:

f =
∑
|α|=0

cα(x − p)α + · · · +
∑
|α|=d

cα(x − p)α

with all coefficients cα belonging to k. Each summand hcp (f ; j) :=
∑
|α|= j cα(x − p)α is called

the homogeneous component in x− p of f in degree j . Moreover, the homogeneous component
of least degree of f in x− p is given by hcp (f ; min) := hcp (f ; jmin) where jmin = min(j ∈ N≥ :
hcp (f ; j) , 0).

Definition 21 (Tangent Cone of a Curve). Let C ⊂ An+1(k) be a curve and p ∈ C be a point.
The tangent cone of C at a point p is the algebraic set denoted by TCp(C) and defined by
TCp(C) = V(hcp (f ; min) : f ∈ I(C)).

One can show that TCp(C) consists of finitely many lines, all intersecting at p.

Figure 7.1: A figure displays the typical “fish”
curve, which is a planar curve given by h = y2−

x2(x + 1) ∈ Q[x, y]. Clearly, two tangent lines
are needed to form a “linear approximation” of
the curve at the origin. Elementary calculations
show these two lines actually form the tangent
cone of the fish curve at the origin.

7.2. Preliminaries 103

If I(C) is generated by a single polynomial then computing TCp(C) is easy. Otherwise,
this is a much harder computation. Let h ⊂ k[x] be such that V(h) = C. As pointed out by
Mora et al. in [66], one can compute 〈 hcp (f ; min) : f ∈ I(C) 〉 via a graded Gröbner basis,
say G, of the homogenization of h (a process where an additional variable xn+1 is used to make
every h ∈ h a homogeneous polynomial in k[x][xn+1]). Dehomogenizing G by letting xn+1 = 1
produces the tangent cone of h (see Chapter 9.7, Proposition 4 in [29]).

Tangent cones are intimately related to the notion of intersection multiplicity that we review
below. As mentioned in the introduction, computing intersection multiplicities is the main
motivation of the algorithm presented in this chapter.

Definition 22. Let h ⊂ k[x]. The intersection multiplicity of p in V(h) is defined by im(p; h) :=
dimvec(O/〈h〉) where O :=

{
f /g : f , g ∈ k[x], g(p) , 0

}
is the localization ring of k[x] at p

and dimvec(O/〈h〉) is the dimension of O/〈h〉 as a vector space over k. Note by [30, Chap-
ter 4.2, Proposition 11] we may substitute the power series ring k[[x − p]] for O.

Example 20. Let x = [x, y, z] and h = {x, y − z3, z2
(
z4 + 1

)
}. We have:

k[[x]]/〈h〉 = k[[x]]/〈x, y − z3, z2〉 = k[[x]]/〈x, y, z2〉 = {a + bz : a, b ∈ k}

implying im(0; h) = 2.

7.2.2 Regular chains
Broadly speaking, a regular chain of k[x] is a system of equations and inequations defined
by polynomials in k[x] such that each equation specifies, in an implicit manner, the possible
values of one of the variables xi as a function of the variables of least rank, namely xi+1, . . . , xn.
Regular chains are a convenient way to describe the solution set of a polynomial system. More
precise statements follow.

Let h ∈ k[x] be a non-constant polynomial. The main variable of h is the largest variable
x ∈ x (for the ordering x0 � · · · � xn) such that h has a positive degree in x. The initial of h,
denoted init(h), is the leading coefficient of h w.r.t. its main variable. For instance the initial of
zx + t is x in Q[x � y � z � t] and 1 in Q[t � z � y � x].

Let T ⊂ k[x] consist of non-constant polynomials. Then, the set T is said triangular if any
two polynomials in T have different main variables. When T is a triangular set, denoting by
IT the product of the initials init(f) for f ∈ T , we call saturated ideal of T , written sat(T), the
column ideal sat(T) = 〈T 〉 : I∞T and we call quasi-component of T the basic constructible set
W(T) := V(T) \ V(IT).

Definition 23 (Regular Chain). The triangular set T ⊂ k[x] is a regular chain if either T is
empty or T \ { f } is a regular chain and the initial of f is regular modulo sat(T \ { f }), where f
is the polynomial in T with largest main variable.

Regular chains are used to decompose both algebraic sets and radical ideals, leading to two
types of decompositions called respectively Wu-Lazard and Kalkbrener decompositions. More
precisely, we have the following definition.

Finitely many regular chains T0, . . . ,Te ⊂ k[x] form a Kalkbrener decomposition of
√
〈h〉

(resp. a Wu-Lazard decomposition of V(h)) whenever we have
√
〈h〉 =

√
sat(T0) ∩ · · · ∩

104 Chapter 7. Tangent Cones of Space Curves

√
sat(Te) (resp. V(h) = W(T0) ∪ · · · ∪W(Te)). These two types are different since the quasi-

component of a regular chain T may not be an algebraic set. One should note that the Zariski
closure of W(T) (that is, the intersection of all algebraic sets containing W(T)) is the zero set
(i.e. algebraic set) of sat(T). One should observe, however, that if sat(T) is zero-dimensional
then the quasi-component W(T) and the algebraic set V(T) coincide. Practically efficient algo-
rithms computing both types of decompositions appear in [25].

Regular chains enjoy important algorithmic properties. One of them is the ability to test
whether a given polynomial f ∈ k[x] is regular or not modulo the saturated ideal of a regular
chain T ⊂ k[x]. This allows us to specify an operation, called Regularize, as follows. The
function call Regularize (f ,T) computes regular chains T0, . . . ,Te ⊂ k[x] such that

√
sat(T) =

√
sat(T0) ∩ · · · ∩

√
sat(Te) holds and for i = 0, . . . , e, either f is zero modulo sat(Ti) or f is

regular modulo sat(Ti). When sat(T) is zero-dimensional, one can give a simple geometrical
interpretation to Regularize: this operation separates the points of V(T) belonging to V(f)
from those which do not lie on V(f).

7.3 Computing intersection multiplicities in higher dimen-
sion

Our interest in a standard-basis free algorithm for computing tangent cones comes by way of
an overall goal to compute intersection multiplicities in arbitrary dimension. As mentioned in
the introduction, in a previous paper [62], relying on the book of Fulton [36] and the theory
of regular chains, authors derived an algorithm for computing intersection multiplicities of
planar curves. They also sketched an algorithm criterion, see Theorem 17 below, for reducing
the computation of intersection multiplicities in arbitrary dimension to computing intersection
multiplicities in lower dimension. When applicable, successive uses of this criterion reduces
intersection multiplicity computation in arbitrary dimension to the bivariate case.

Theorem 17. For h = h0, . . . , hn−1, hn ∈ k[x] such that V(h0, . . . , hn−1, hn) is zero-dimensional,
for p ∈ V(hn), if the hyper-surface V(hn) is not singular at p and if that the tangent space π of
V(hn) at p intersects transversally2 the tangent cone of the curve V(h0, . . . , hn−1) at p, then we
have

im(p; h0, . . . , hn−1, hn) = im(p; h0, . . . , hn−1, π) ,

hence, there is a polynomial map which takes h to a lower dimensional subspace while leaving
the intersection multiplicity of V(h) at p invariant.

Checking whether this criterion is applicable, requires to compute the tangent cone of the
curve V(h0, . . . , hn−1) at p, which motivates the present chapter. This algorithmic criterion
was stated in [62] without justification, although the authors had a long and technical proof
available in a technical report extending [62]. In the PhD thesis of the fourth author [100], a
simpler proof was obtained.

2 Two algebraic sets V0 and V1 in An+1(k) transversally intersect at a point p ∈ V0 ∩V1 whenever their tangent
cones intersect at {p} only once or not at all. Note that if one of V0 is a linear space, then it is its own tangent cone
at p. Note also that, for a sake of clarity, we have restricted Definition 21 to tangent cones of curves, although
tangent cones of algebraic sets of higher dimension are defined similarly, see [29].

7.4. Computing tangent lines as limits of secants 105

7.4 Computing tangent lines as limits of secants

From now on, the coefficient field k is the field C of complex numbers and the affine space
An+1(C) is endowed with both Zariski topology and the Euclidean topology. While Zariski
topology is coarser than the Euclidean topology, we have the following key result (Corollary 1
in Section I.10 of Mumford’s book [70]): For an irreducible algebraic set V and a subset U ⊆ V
open in the Zariski topology induced on V, the closure of U in Zariski topology and the closure
of U in the Euclidean topology are both equal to V. It follows that, for a regular chain T ⊂ C[x]
the closure of W(T) in Zariski topology and the closure of W(T) in the Euclidean topology are
equal, thus both equal to V(sat(T)). This result provides a bridge between techniques from
algebra and techniques from analysis. The authors of [6] take advantage of Mumford’s result
to tackle the following problem: given a regular chain T ⊂ C[x], compute the (non-trivial)
limit points of the quasi-component of T , that is, the set lim(W(T)) := W(T) \W(T).

In the present chapter, we shall obtain the lines forming the tangent cone of a space curve
at a point by means of a limit computation process. And in fact, this limit computation will
reduce to computing lim(W(T)) for some regular chain T . To this end, we start by stating the
principle of our method in Section 7.4.1. Then, we turn this principle into an actual algorithm
in Section 7.4.2 via an alternative characterization of a tangent cone, based on secants.

7.4.1 An algorithmic principle

Let h = {h0, . . . , hn−1} ⊂ C[x] be n polynomials such that C = V(h) is a curve, that is, a one-
dimensional algebraic set. Let p ∈ C be a point. The following proposition is well-known, see
Theorem 6 in Chapter 9 of [29].

Lemma 31. A line L through p lies in the tangent cone TCp(C) if and only if there exists a
sequence {qk : k ∈ N≥} of points on C \ {p} converging to p and such that the secant line Lk

containing p and qk becomes L when qk approaches p.

Under some mild assumption, we derive from Lemma 31 a method for computing TCp(C).
We assume that for each h ∈ h, the hyper-surface V(h) is non-singular at p. This assump-
tion allows us to approach the lines of TCp(C) with the intersection of the tangent spaces
Tq(h0) , . . . ,Tq(hn−1) when q ∈ C is an sufficiently small neighborhood of p. A more precise
description follows.

For each branch of a connected component D through p of C = V(h) there exists a neigh-
borhood B about p (in the Euclidean topology) such that V(h0), . . . ,V(hn−1) are all non-singular
at each q ∈ (B∩D) \ {p}. Observe also that the singular locus sing (D) contains a finite number
of points. It follows that we can take B small enough so that B ∩ sing (D) is either empty or
{p}. Define

v(q) := Tq(h0) ∩ · · · ∩ Tq(hn−1) ,

where Tq(hi) is the tangent space of V(hi) at q.
Lemma 32 states that we can obtain TCp(C) by finding the limits of v(q) as q approaches

p. Since TCp(C) is the union of all the TCp(D), this yields a method for computing TCp(C).

106 Chapter 7. Tangent Cones of Space Curves

Lemma 32. The collection of limits of lines v(q) as q approaches p in (B ∩ D) \ {p} gives the
tangent cone ofD at q. That is to say

TCp(D) = lim
q→p

v(q) = lim
q→p

Tq(h0) ∩ · · · ∩ Tq(hn−1) .

Proof. There are two cases, either

1. D is smooth at p and B ∩ sing (D) = ∅, or

2. D is singular at p and B ∩ sing (D) = {p}.

Case 1. Assume q ∈ B ∩ D is arbitrary and observe D is smooth within B and thereby the
tangent cone ofD is simply the tangent space (i.e. TCq(D) = Tq(D)).

Notice Tq(D) is a sub-vector space of v(q). Indeed, let w ∈ Tq(D) be any tangent vector to
D at q. As D is a curve in each V(h) for h ∈ h it follows w is a vector tangent to each V(h) as
well. Correspondingly w ∈ Tq(h) for any h ∈ h and thus w ∈ v(q).

Finally, since h0, . . . , hn−1 form a local complete intersection in B, we know v(q) is a one-
dimensional subspace of each Tq(h0). Since w ∈ Tq(h) for each h ∈ h, the vector w must span
this subspace. Thus, for each q ∈ B ∩ D, we have

Tq(D) = Tq(h0) ∩ · · · ∩ Tq(hn−1) .

Taking the limit of each side of the above equality, when q approaches p and using again the
fact thatD is smooth at q = p, we obtain the desired result, that is, TCp(D) = limq→p v(q) .

Case 2. Assume D ∩ B − {p} is a finite union of smooth curves D0, . . . , D j. These are the
smooth branches ofD∩ B meeting at the singular point p. Each j corresponds to a unique line

L j = lim
q→p

v(q) ⊂ Tp(D)

as q approaches p alongD j.

By Lemma 31 the tangent cone TCp(D) is the collection of limits to p of secant lines
through p inD. Such lines given by secants alongD j must coincide with L j. More precisely

L0 ∪ · · · ∪ L j ⊂ TCp(D) .

Because eachD j is smooth there is only one secant line for each j and thereby

L0 ∪ · · · ∪ L j = TCp(D)

as desired. �

7.4. Computing tangent lines as limits of secants 107

7.4.2 Algorithm
Under a smoothness assumption, Lemma 32 states a principle for computing TCp(C). Let us
now turn this principle into a precise algorithm and relax this smoothness assumption as well.
To this end, we make use of Lemma 31.

Let q be a point on the curve C = V(h) with coordinates x. Further let p̂q be a unit vector
in the direction of pq (i.e. the line through p and q). To exploit Lemma 31 we must calculate
the set lim

q→p
q,p

p̂q
 ,

which is indeed a set because C may have several branches through p yielding several lines in
the tangent cone TCp(C).

Let T ⊂ C[y][x] be a zero-dimensional regular chain encoding3 the point p, that is, such
that we have V(T) = {p}. Note that the introduction of y for the coordinates of p is neces-
sary because the “moving point” q is already using x for its own coordinates. Consider the
polynomial set

s = T ∪ h.

and observe that the ideal 〈s〉 is one-dimensional in the polynomial ring C[xn−1 � · · · � x0 �

yn−1 � · · · � y0]. Let T0, . . . , Te ⊂ C[y][x] be one-dimensional regular chains forming a
Kalkbrener decomposition of

√
〈s〉. Thus we have

V(s) = W(T0) ∪ · · · ∪W(Te).

Computing with the normal vector p̂q is unnecessary and instead we divide the vector −→pq by
xn − yn. Since the n-th coordinate of

−→pq
xn−yn

is 1, this vector remains non-zero when q approaches
p. However, this trick leads to a valid limit computation provided that xn − yn vanishes finitely
many times in V(s). When this is the case, the lines of the tangent cone, that are not contained in
the hyperplane yn = xn, can be obtained via limits of meromorphic functions (namely Puiseux
series expansions) by letting xn approach yn and using the techniques of [6]. As we shall argue
below, an ordering of x, for which xn − yn is regular, always exists. Hence, up to variable
re-ordering, this tricks applies.

Since the tangent cone may have lines contained in the hyperplane yn = xn, additional
computations are needed to capture them. There are essentially two options:

1. Perform a random linear change of the coordinates so as to assume that, generically,
yn = xn contains no lines of TCp(C).

2. Compute in turn the lines not contained in the hyperplane yi = xi for all i = 0, . . . , n and
remove the duplicates; indeed no lines of the tangent cone can simultaneously satisfy
yi = xi for all i = 0, . . . , n.

Our experiments with theses two approaches suggest that, although the second one seems com-
putationally more expensive, it avoids expression swell of the first one and is practically more
efficient.

3In practice, we may use a zero-dimensional regular chain T ⊂ C[y][x] such that {p} ⊆ V(T) ⊆ C holds. Then,
the following discussion will bring the tangent cone at several points of C instead of p only.

108 Chapter 7. Tangent Cones of Space Curves

From now on, we focus on computing the lines of the tangent cone not contained in the
hyperplane yn = xn. We note that, deciding whether xn − yn vanishes finitely many times in
V(s) can be done algorithmically by testing whether xn−yn is regular modulo the saturated ideal
of each regular chain T0, . . . , Te. The operation Regularize described in Section 7.2 performs
this task.

Consider now T j, that is, one of the regular chains T0, . . . , Te. Thanks to the specifications
of Regularize, we may assume w.l.o.g. that either xn − yn is regular modulo sat(T j) or that
xn − yn ≡ 0 mod sat(T j) holds.

Consider the latter case first. If xn − yn ≡ 0 mod sat(T j) then W(T j) ⊆ V(xn − yn) holds and
we try to divide each component of pq by xn−1 − yn−1 instead of xn − yn. A key observation
is that there is d ∈ [0, n] such that xd − yd � 0 mod sat(T j) necessarily holds. Indeed, if
xi − yi ≡ 0 mod sat(T j) would hold for all i ∈ [0, n] then W(T j) ⊂ V(x0 − y0)∩ · · · ∩ V(xn − yn)
would hold as well. Since the y coordinates are fixed by T , the algebraic set W(T j) would be
zero-dimensional—a contradiction.

Hence, up to a variable renaming, we can assume that xn − yn is regular modulo sat(T j).
Therefore, the algebraic set V(xn − yn) ∩W(T j) is zero-dimensional, thus, each component of
pq is divisible by xn − yn, when q is close enough to p, with q , p. Define

m0 =
x0 − y0

xn − yn
, . . . , mn =

xn − yn

xn − yn
.

and regard m = m0, . . . ,mn as new variables, that we call slopes, for clear reasons. Observe
that the vector of coordinates (m0, . . . ,mn, 1) is a normal vector of the secant line pq. Thus, our
goal is to “solve for” m when xn approaches yn with (y0, . . . , yn, x0, . . . , xn) ∈W(T j).

We turn this question into one computing the limit points of a one-dimensional regular
chain, so as to use the algorithm of [6]. To this end, we extend the regular chain T j to the
regular chain M j ⊂ C[m][y][x] given by

M j = T j ∪


m0(xn − yn) − (x0 − y0)
...

mn(xn − yn) − (xn − yn)

.

Note that M j is one-dimensional in this extended space and computing lim(W(M j)), using the
algorithm of [6], solves for m when xn → yn with (x, y) ∈W(T0). Therefore and finally, the de-
sired set {limq→p,q,p p̂q} is obtained as the limit points of the quasi-components of M0, . . . ,Mn.

Algorithm 16 describes the algorithm for computing the tangent cone of the curve C at the
point p. Note that the function LimitPoints, is the function for computing lim(W(M j)) which
is described in Section 7.4.1, Algorithm 5.

Remark 17. Observe that the above process determines the slopes m0, . . . , mn as roots of the
top n polynomials of zero-dimensional regular chains in the variables mn � · · · � m0 � xn �

· · · � x0 � yn · · · � y0. Performing a change of variable ordering to x � m � y expresses
m0, . . . ,mn−1 as functions of the coordinates of the point p only. We consider this a more
desirable output.

7.4. Computing tangent lines as limits of secants 109

Algorithm 16: TangentCone
Input: The 0-dimensional regular chain T ⊂ k[x0, . . . , xn] representing the point p on

the curve C; the set h containing n polynomials and representing the curve C.
Output: The tangent cone of the curve C at the point p.
begin1

Consider new independent variables y0, . . . , yn;2

Substitute the variables x0, . . . , xn in T with y0, . . . , yn, respectively;3

{T0, . . . ,Te} := Triangularize(h ∪ T,R), where R is a variable ordering defined as4

R := xn > · · · > x0 > yn > · · · > y0;
lm := {};5

for each Ti do6

for ` from 0 to n do7

if x` − y` is regular modulo Ti then8

Let m j := x j−y j

x`−y`
, for j = 0, . . . , n;9

Extend Ti with (x` − y`) m j − (x j − y j) to a regular chain Mi,`;10

lm := lm ∪ LimitPoints(Mi,`,R
′), where R′ is a variable ordering defined11

as R′ := mn > · · · > m0 > xn > · · · > x0 > yn > · · · > y0;

Remove redundant vectors such that all direction vectors in lm are pairwise colinear;12

return (lm)13

end14

7.4.3 Equations of tangent cones
In the previous section, we saw how to compute the tangent cone TCp(C) in the form of the
slopes of vectors defining the lines of TCp(C). Instead, one may prefer to obtain TCp(C) in the
form of the equations of the lines of TCp(C). We explain below how to achieve this. Let S be
an arbitrary point with coordinates (X0, . . . , Xn). This point belongs to one of the lines of the
tangent cone (corresponding to the branches of the curve defined by W(T j)) if and only if the
vectors

−→pq
xn − yn

=


1

mn−1
...

m0

 and p S =


Xn − yn

Xn−1 − yn−1
...

X0 − y0


are collinear. That is, if and only if we have the following relations

Xn = mn(xn − yn) + yn
...

X0 = m0(xn − yn) + y0.

(7.1)

Consider a regular chain (obtained with the process described in Remark 17) thus express-
ing the slopes m0, . . . ,mn−1 as functions of the coordinates y0, . . . , yn of p. Let us extend this
regular chain with the relations from Equation (7.1), so as to obtain a one-dimensional regular
chain in the variables Xn � · · · � X0 � mn−1 � · · · � m0 � yn · · · � y0. Next, we eliminate the

110 Chapter 7. Tangent Cones of Space Curves

variables m0, . . . ,mn−1, with the above equations. This is, indeed, legal since the only point of
a line of the tangent cone where the equation xn = yn holds is p itself. Finally, this elimination
process consists simply of substituting Xi−yi

xn−yn
for mi into the equations defining m0, . . . ,mn.

7.4.4 Examples
The following examples illustrates our technique for computing tangent cones as limits.

Example 21. Consider calculating the tangent cone of the fish in Figure 7.1 represented by
the the set h := {x2

1 − x2
0(x0 + 1)} at the origin, given by regular chain T := {x1, x0}. Based on

Algorithm 16 we have:
1. First do a change of variables on T and obtain T ′ := {y1, y0}.
2. Then we obtain regular chain

T1 :=


x2

1 − x2
0(x0 + 1)

y1

y0

which is a Kalkbrener decomposition of the set h ∪ T ′ w.r.t variable ordering x1 � x0 �

y1 � y0 (Line 4 of Algorithm 16).
3. One can check that both x0 − y0 and x1 − y1 are regular modulo T1. This can be done by

using the IsRegular command of RegularChains Library.
4. Extend T1 by the set {m0 − 1, (x0 − y0)m1 − (x1 − y1)} and obtain the regular chain

M1,0 :=


(x0 − y0)m1 − (x1 − y1)
m0 − 1
x2

1 − x2
0(x0 + 1)

y1

y0

w.r.t variable ordering m1 � m0 � x1 � x0 � y1 � y0 (Line 10 of Algorithm 16).
5. Then by applying LimitPoints command on M1,0 we obtain the following regular chains:

lm1 :=



m1 + 1
m0 − 1
x1

x0

y1

y0

lm2 :=



m1 − 1
m0 − 1
x1

x0

y1

y0

6. By applying the same process for x1 − y1, we obtain the same set of regular chains
lm1, lm2.

Thus the fish curve represented by the set h has two lines in its tangent cone at the origin with
the slopes 1 and −1.

Example 22. Consider Figure 7.2, which is given by the zero set of h = {x2
2 + x2

1 + x2
0 − 1, x2

2 −

x2
1 − x0} ⊂ k[x2, x1, x0]. Let also p is the point represented by the zero dimensional regular

chain T = {x2 + x1, 2x2
2 − 1, x0}. We want to compute the tangent cone of the curve represented

by h at the point p. Based on Algorithm 16 we have:

7.4. Computing tangent lines as limits of secants 111

Figure 7.2: Limiting secants along V(x2 + y2 + z2 − 1, x2 − y2 − z).

1. Substitute the variables x2, x1, x0 in T with y2, y1, y0 and obtain T ′ := {y2+y1, 2y2
2−1, y0}.

2. Then we obtain the regular chain

T1 :=


2x2

2 + x2
0 − x0 − 1

2x2
1 + x2

0 + x0 − 1
y2 + y1

2y2
2 − 1

y0

which is a Kalkbrener decomposition of the set h ∪ T ′ w.r.t variable ordering x2 � x1 �

x0 � y2 � y1 � y0 (Line 4 of Algorithm 16).
3. One can check that x j − y j, for j = 1, 2, 3, is regular modulo T1.

• Extend T1 by the set {m0 − 1, (x0 − y0)m1 − (x1 − y1), (x0 − y0)m2 − (x2 − y2)} and
obtain the regular chain

M1,0 :=



(x0 − y0)m2 − (x2 − y2)
(x0 − y0)m1 − (x1 − y1)
m0 − 1
x2

1 − x2
0(x0 + 1)

y1

y0

w.r.t variable ordering m2 � m1 � m0 � x2 � x1 � x0 � y2 � y1 � y0 (Line 10 of
Algorithm 16).

• Then by applying LimitPoints command on M1,0 we obtain the following regular
chains:

112 Chapter 7. Tangent Cones of Space Curves

lm1 :=



2m2 + y1

2m1 + y1

m0 − 1
x2 + y1

x1 + y1

x0

y2 + y1

2y2
1 − 1

y0

• By applying the same process for x1 − y1, we obtain:

lm2 :=



m2 + 1
m1 − 1
m0

x2 − y1

x1 + y1

x0

y2 + y1

2y2
1 − 1

y0

, lm3 :=



m2 − 1
m1 − 1
m0 + 4y1

x2 + y1

x1 − y1

x0

y2 + y1

2y2
1 − 1

y0

, lm4 :=



m2

m1 − 1
m0

x2 + y1

x1 + y1

x0

y2 + y1

2y2
1 − 1

y0

, lm5 :=



2m2 + 2x2y1 + 1
m1 − 1
m0 − y1

2x2 − 1
x1 + y1

x0 + 1
y2 + y1

2y2
1 − 1

y0

• And finally by applying the same process for x2 − y2 we obtain:

lm6 :=



m2 − 1
m1 − 1
m0 + 4y1

x2 + y1

x1 − y1

x0

y2 + y1

2y2
1 − 1

y0

, lm7 :=



m2 − 1
m1

m0

x2 − y1

x1 − y1

x0

y2 + y1

2y2
1 − 1

y0

, lm8 :=



m2 − 1
m1 + 1
m0

x2 − y1

x1 + y1

x0

y2 + y1

2y2
1 − 1

y0

, lm9 :=



m2 − 1
2m1 − 2x1y1 + 1
m0 − y1

x2 − y1

2x1 + 1
x0 − 1
y2 + y1

2y2
1 − 1

y0

In fact, in the computations above, there are some redundancies for computing the slopes.
After removing the redundancies, we obtain the following slopes:

s1 :=


m2 + 1 = 0
m1 − 1 = 0
m0 = 0

, s2 :=


m2 − 1 = 0
m1 + 1 = 0
m0 = 0

, s3 :=


2m2x1 = 0
2m1 + x1 = 0
m0 − 1 = 0

, s4 :=


m2 − 1 = 0
m1 − 1 = 0
m0 − 4x1 = 0

where x1 corresponds to the x1 coordinate of the solutions of the regular chain T which
is { 1

√
2
,− 1
√

2
}.

7.5. Conclusion 113

Furthermore, based on Remark 17, one can obtain the equations of the lines contained in
the tangent cone of h as following:{

X0 = 0
X2 + X1 = 0 ,

{
4X1x1 + X0 − 2 = 0
X2 − X1 + 2x1 = 0

As one can see, since x1 ∈ {
1
√

2
,− 1
√

2
}, thus we have the equations of three different lines in

the tangent cone of the curve represented by h at the point p. Nevertheless, we deduced four
different direction vectors s1, s2, s3, s4. In fact, the vectors s1 and s2 are colinear and thus one
of them is redundant. This justifies why we obtained three equations for the lines contained in
tangent cone of h.

Figure 7.3: Secants along V(x2 + y2 + z2 − 1) ∩ V(x2 − y2 − z(z − 1)) limiting to (0, 0, 1).

Example 23. Consider the curve C in Figure 7.3 which is represented by h = {x2
2 + x2

1 + x2
0 −

1, x22 − x2
1 − x0(x0 − 1)} ⊂ k[x2, x1, x0]. Consider the point (0, 0, 1) on this curve. Then using

TangentCone command of RegularChains library, one can compute the slopes of the lines
contained in the tangent cone of the curve C at the point (0, 0, 1). To do this, it is required to
pass the option slopes to the command TangentCone. These slopes are given by the systems
below: 

3 m2
2 − 1 = 0

m1 − 1 = 0
m0 = 0

,


m2 − 1 = 0
m2

1 − 1 = 0
m0 = 0

The command TangentCone also returns the equations of the lines contained in the tangent
cone of the curve C, by default, as following:{

X0 − 1 = 0
X2

1 − 3 X2
2 = 0

7.5 Conclusion
We presented an alternative and Gröbner-free method for calculating the tangent cone of a
space curve at any of its points. In essence, this is done by simulating a limit calculation along

114 Chapter 7. Tangent Cones of Space Curves

a curve using variable elimination. From this limit we can construct each line of the tangent
cone by solving for the vector of instantaneous slope along each tangents corresponding secant
lines. Finally, this slope vector can be converted into equations of lines.

Chapter 8

Computing Limits of Multivariate
Rational Functions

8.1 Introduction

Computing limits of functions is a basic task in multivariate calculus and many fundamental
mathematical concepts are defined in terms of such limits. The case of univariate functions,
including transcendental ones, has been well studied [40, 41, 80] and the corresponding algo-
rithms are available in popular computer algebra systems. Surprisingly, the case of multivariate
rational functions (i.e. quotients of polynomials) is still an active research area. Undergradu-
ate students learn heuristics, like the adaptation of L’hospital’s rule presented in [54] by G.R.
Lawlor, but no general procedures for handling limits of multivariate rational functions.

Two recent papers have revitalized the search for such general procedures. In [104] S.J.
Xiao and G.X. Zeng propose a first algorithm that, given a multivariate rational function q ∈
Q(X1, . . . , Xn), decides whether lim(x1,...,xn)→(0,...,0) q is zero or not. The “not-case” includes the
situation where lim(x1,...,xn)→(0,...,0) q does not exist as well as the case where it exists but it is
not zero. Their algorithm is based on the observation that the posed question can be phrased
as a quantifier elimination problem, that the authors solve using triangular decomposition of
algebraic systems, rational univariate representation as well as adjoining infinitesimal elements
to the base field. A second algorithm and a result in the paper reduce the question of deciding
whether lim(x1,...,xn)→(0,...,0) q exists or not (and computing it, when it exists) to calling the first
algorithm.

In [21], C. Cadavid, S. Molina and J.D. Vélez propose an algorithm, now available in Maple
as the limit/multi command, for determining the existence and possible value of limits of
the form lim(x,y)→(0,0) q, where q is a bivariate rational function, and such that (0, 0) is an isolated
zero of the real algebraic set defined by the denominator of q. In a follow-up preprint [98], J.D.
Vélez, P. Hernández and C. Cadavid extend the method of [21] to rational functions in three
variables, still assuming that the origin is an isolated zero of the denominator. Both papers [21]
and [98] rely on the key observation that, for determining the existence and possible value of
limits of the form lim(x,y)→(0,0) q and lim(x,y,z)→(0,0,0) q, it is sufficient to study limits along a real
algebraic set χ(q), that is, limits of the form lim(x,y)→(0,0),(x,y)∈χ(q) q and lim(x,y,z)→(0,0,0),(x,y,z)∈χ(q) q.
This latter notion is defined in Section 8.3 of the present chapter . In the three variable case, the

115

116 Chapter 8. Computing Limits ofMultivariate Rational Functions

method of [98] requires to compute the singular locus of χ(q) and the irreducible components
of the algebraic set over C associated with χ(q).

The method of S.J. Xiao and G.X. Zeng [104] has the advantage of not making any as-
sumptions on the number of variables nor the zero set of the denominator. Meanwhile, the
works of C. Cadavid, S. Molina, J.D. Vélez and P. Hernández avoid the use of infinitesimal
elements and rely on a deeper geometrical insight, through a notion of discriminant variety,
see Notation 4; unfortunately, the recourse to singular loci and irreducible decomposition is a
limitation in view of an implementation.

In this chapter , we propose an algorithm for determining the existence and possible value
of lim(x1,...,xn)→(0,...,0) q, for an arbitrary number n of variables. As in [21] and [98], we firstassume
that the origin is an isolated zero of the denominator of the rational function q, for Section 8.3
to Section 8.4. However, we avoid the computation of singular loci and decompositions into
irreducible components of the real and complex algebraic sets involved in the method. Instead,
we take advantage of the theory of regular chains and the RealTriangularize algorithm [23, 22]
for decomposing semi-algebraic systems. The experimental results reported in Section 8.7
suggest that our algorithm can solve more problems than the algorithm of S.J. Xiao and G.X.
Zeng, in particular when the number n of variables increases. For computing limit of real
multivariate rational functions, when the origin is not an isolated zero of the denominator, we
describe several results including multivariate L’Hospital rule in Section 8.6. However, the
non-isolated case is work is progress We illustrate our algorithm for the case the origin is an
isolated zero of the denominator with two examples.

Example 24. Let q ∈ Q(x, y, z,w) be the rational function defined by q(x, y, z,w) =
z w+x2+y2

x2+y2+z2+w2 .
We aim at computing lim(x,y,z,w)→(0,0,0,0) q. A first step of the procedure consists in calculating the
real algebraic set χ(q) such that our limit problem reduces to compute lim(x,y,z,w)→(0,0,0,0),(x,y,z,w)∈χ(q) q.
The set χ(q), defined in Notation 4, is obtained by the method of Lagrange multipliers, see Sec-
tion 8.2.1 and the proof of Lemma 33. The RealTriangularize algorithm yields the following
decomposition: χ(q) = ZR(R1) ∪ ZR(R2) ∪ ZR(R3) ∪ ZR(R4), where R1,R2,R3,R4 are respec-
tively given by the regular semi-algebraic systems (see Section 8.2.4 for this term):

x = 0
y = 0
z = 0
w = 0

,

{
z = 0
w = 0 ,


x = 0
y = 0
z + w = 0

and


x = 0
y = 0
z − w = 0

.

For our purpose of limit computation, only R2,R3,R4 are interesting, since they define either
a curve or a surface passing through the origin, whereas R1 is simply the origin.

Computing the limit of q along each of the curves ZR(R3) and ZR(R4) is achieved by a
specific procedure presented in Section 5.2, based on Puiseux series. This procedure extends
to the real case a technique presented in [6] for the complex case. On this particular example,
evaluating q(x, y, z,w) at ZR(R3) and ZR(R4), immediately yields the value of the limit in each
case, which are −1

2 and 1
2 , respectively.

Now we focus on R2 which consists simply of a regular chain, namely T := {t1, t2} with
t1 = z and t2 = w. In order to compute the limit of q(x, y, z,w) along ZR(R2), we apply again
the method of Lagrange multipliers. More precisely, we wish to optimize q(x, y, z,w) along
t1(x, y, z,w) = t2(x, y, z,w) = 0 intercepted with a family of ellipsoids

8.1. Introduction 117

Er(x, y, z,w) = 0 with Er := A1 x2 + A2 y2 + A3z2 + A4 w2 − r2, where A1, A2, A3, A4 are positive
values to be determined.

By definition of χ(q), the gradient ∇x,y,z,wq is proportional to (x, y, z,w) along χ(q). Hence,
in order to apply the Lagrange multipliers method, we need to check that the vectors ∇x,y,z,wt1,
∇x,y,z,wt2 and (x, y, z,w) are linearly independent almost everywhere on ZR(R2). By considering
the following Jacobian matrix

x y z w
∂t1
∂x

∂t1
∂y

∂t1
∂z

∂t1
∂w

∂t2
∂x

∂t2
∂y

∂t2
∂z

∂t2
∂w

 =

 x y z w
0 0 1 0
0 0 0 1


we see that the vectors ∇x,y,z,wt1, ∇x,y,z,wt2 and (x, y, z,w) are linearly independent as long as
x , 0 or y , 0 holds. We choose to impose the constraint y , 0; using the incremental version
of RealTriangularize, we compute the intersection ZR(R2) ∩ {y , 0} and obtain ZR(R5) where
R5 := {z = 0,w = 0, y , 0}. Now we choose (A1, A2, A3, A4) = (3, 1, 2, 3) such that[

A1x A2y A3z A4w
x y z w

]
is full rank. We are ready to apply the method of Lagrange multipliers, considering the follow-
ing matrix 

A1x A2y A3z A4w
x y z w
∂t1
∂x

∂t1
∂y

∂t1
∂z

∂t1
∂w

∂t2
∂x

∂t2
∂y

∂t2
∂z

∂t2
∂w

 =


3x 1y 2z 3w
x y z w
0 0 1 0
0 0 0 1


which has a single non-zero minor, namely m = 4xy. Using again the incremental version of
RealTriangularize, we compute ZR(R5) ∩ ZR(m = 0) and obtain ZR(R6), where R6 := {x =

0, z = 0,w = 0, y , 0}. We are now in dimension one. Using the procedure of Section 5.2
(or, on this particular example, using substitution and elementary calculations) yields 1 as the
limit along ZR(R6).

Putting everything together, we have three different values for the limit of q(x, y, z,w) along
the three curves ZR(R3), ZR(R4) and ZR(R6). The corresponding values are −1

2 ,
1
2 , 1, which

shows that the limit of q at the origin does not exist.

Example 25. Let q ∈ Q(x, y, z) be the rational function defined by q(x, y, z) =
x2yz2

x4+z4+y4 . Here
again, we aim at computing lim(x,y,z)→(0,0,0) q. RealTriangularize produces the following decom-
position of the real algebraic set χ(q): χ(q) = ZR(R1) ∪ ZR(R2) ∪ ZR(R3) ∪ ZR(R4), where
R1,R2,R3,R4 are respectively given by the regular semi-algebraic systems:

{
x = 0 ,

{
z = 0 ,


x2 − z2 = 0
y6 + 3 y4 z2 − 2 z6 = 0
z , 0

and


x = 0
y = 0
z = 0

.

The system R4 can be discarded and the system R3 has dimension one, hence the limit of q
along ZR(R3) is handled by the procedure of Section 5.2, which yields 0.

118 Chapter 8. Computing Limits ofMultivariate Rational Functions

We focus on R1 and R2. Similarly to the previous example, we consider the non-linear
program consisting of optimizing q(x, y, z) subject to (x, y, z) ∈ ZR(R1) (resp. (x, y, z) ∈ ZR(R2))
and Er(x, y, z) = 0 with Er := A1 x2 + A2 y2 + A3z2 − r2, where A1, A2, A3 are positive values to
be determined.

Let T := {t1} = {x} be the regular chain part of R1. Recall that ∇x,y,zq is proportional to
(x, y, z) along χ(q). Hence, we first determine when the following matrix[

x y z
∂t1
∂x

∂t1
∂y

∂t1
∂z

]
=

[
x y z
1 0 0

]
is full rank. The set of its 2-by-2 minors is {y, z, 0}; hence this matrix is full rank whenever
y , 0 or z , 0 holds. Since ZR(R1) * ZR(y) holds, we impose the constraint y , 0 and compute
ZR(R1)∩ {y , 0} yielding ZR(R5) with R5 := {x = 0, y , 0}. Next, we let (A1, A2, A3) = (9, 10, 2)
such that [

A1x A2y A3z
x y z

]
has at least one non-zero minor. Putting the three gradient vectors together, we form the
following matrix 

A1x A2y A3z
x y z
∂t1
∂x

∂t1
∂y

∂t1
∂z

 =

 9x 10y 2z
x y z
1 0 0

 .
Its determinant is 8 y z and we compute ZR(R5) ∩ {y z = 0} yielding ZR(R6) with R6 := {x =

0, z = 0, y , 0}. The regular semi-algebraic system R6 represents a space curve and the
procedure of Section 5.2 computes the limit of q at the origin along ZR(R6), yielding 0. We
proceed similarly with R2. In this case, the non-linear programming trick yields the following
space curve {y = 0, z = 0, x , 0} along which the limit of q at the origin is also 0. Finally, the
limit of q at origin exists and is equal to 0.

The chapter is organized as follows. In Section 8.2, we review different mathematical con-
cepts and techniques used throughout the chapter . Regular chains (Section 8.2.2) and regular
semi-algebraic systems (Section 8.2.4) are the key concepts. They have rich properties. A reg-
ular semi-algebraic system R can be seen as a parametrization of its zero ZR(R). Therefore, the
fundamental properties of parametric polynomial systems (Section 8.2.3) are essential to take
full advantage of the theory of regular semi-algebraic systems.

Section 8.3 gathers lemmas which together with the proportions of Section 8.2, support
the correctness and termination of our algorithm, which is presented in Sections 8.4 and 5.2.
Section 8.6 targets comuting limits of real multivariate rational functions, when the origin is
a non-isolated zero of the denominator. Sections 8.7 and 8.8 offer experimental results and
conclusions.

8.2 Preliminaries

8.2.1 Lagrange multipliers
The following review is based on [96]. Let n,m be positive integers. Let Ω be an open set
of Rn, let f , g1, . . . , gm : Ω → R be C1 functions, let b = (b1, . . . , bm) ∈ Rm and let x∗ be a

8.2. Preliminaries 119

point of Ω. Define Σb := {y ∈ Rn : g1(y) = b1, . . . , gm(y) = bm}. The point x? is called a
local conditional extremal point of f under the constraints g1 = b1, . . . , gm = bm, whenever
there exists a neighbourhood U of x? such that f (x) takes an extremal value (maximum or
minimum) at x = x∗ on Σb ∩ U. When this holds, the gradients ∇ f (x?),∇g1(x?), . . . ,∇gm(x?)
are linearly dependent. The above theorem is, in fact, usually stated when m < n holds and
∇g1(x?), . . . ,∇gm(x?) are linearly independent, i.e. when g(x?) is a regular value of the function
g = (g1, . . . , gm) (at least if we restrict g to some neighbourhood V of x?). Then, the necessary
condition of the theorem can be translated into the identity

∇ f (x?) = λ?1∇g1(x?) + . . . + λ?m∇gm(x?) , (8.1)

for some real numbers λ?1 , . . . , λ
?
m called Lagrange multipliers. Observe that, if we define the

Lagrange function

F(x, λ) = f (x) +

m∑
i=1

λi(bi − gi(x)) , (8.2)

then the conditions (8.1) and x? ∈ Σb, for some neighbourhood U of x? are equivalent to the
fact that (x?, λ?) is a critical point of F.

8.2.2 Regular chain theory
This section is a brief summary of concepts and algorithms for which details can be found
in [25]. Throughout this chapter, k is a field of characteristic 0 and k is its algebraic closure.
We say that k is an algebraic number field if it is a finite degree field extension of the field Q of
rational numbers. Here degree refers to the dimension of k as a vector space over Q. Let k[X]
be the polynomial ring over k and with ordered variables X = X1 < · · · < Xn. Let p ∈ k[X].
Assume that p < k. Denote by mvar(p), init(p), and mdeg(p) respectively the greatest variable
appearing in p (called the main variable of p), the leading coefficient of p w.r.t. mvar(p) (called
the initial of p), and the degree of p w.r.t. mvar(p) (called the main degree of p); denote by
discrim(p) the discriminant of p w.r.t. mvar(p). For F ⊂ k[X], we denote by 〈F〉 and V(F) the
ideal generated by F in k[X] and the algebraic set of k

n
consisting of the common roots of the

polynomials of F.
Triangular set. Let T ⊂ k[X] be a triangular set, that is, a set of non-constant polynomials

with pairwise distinct main variables. Denote by mvar(T) the set of main variables of the
polynomials in T . A variable v ∈ X is called algebraic w.r.t. T if v ∈ mvar(T), otherwise it
is said free w.r.t. T . If no confusion is possible, we shall always denote by U = U1, . . . ,Ud

and Y = Y1, . . . ,Ym the free variables and the main variables of T , respectively. We let d = 0
whenever T has no free variables. For v ∈ mvar(T), we denote by Tv and T−v the polynomial
f ∈ T with mvar(f) = v and the polynomials f ∈ T with mvar(f) < v, respectively. Let hT be
the product of the initials of the polynomials in T . We denote by sat(T) the saturated ideal of
T : if T is the empty triangular set, then sat(T) is defined as the trivial ideal 〈0〉, otherwise it is
the ideal 〈T 〉 : h∞T . The quasi-component W(T) of T is defined as V(T) \ V(hT). The Zariski
closure of W(T) in k

n
, denoted by W(T), is the intersection of all algebraic sets V ⊆ k

n
such that

W(T) ⊆ V holds; moreover we have W(T) = V(sat(T)). For f ∈ k[X], we denote by res(f ,T)
the iterated resultant of f w.r.t. T , that is, f itself, if f is constant, or res(res(f ,Tv, v),T−v) if
v ∈ mvar(T) and v = mvar(f) hold, or res(f ,T−v) otherwise.

120 Chapter 8. Computing Limits ofMultivariate Rational Functions

Regular chain. A triangular set T ⊂ k[X] is a regular chain if either T is empty, or letting
v be the largest variable occurring in T , the set T−v is a regular chain, and the initial of Tv is
regular (that is, neither zero nor zero divisor) modulo sat(T−v). Let H ⊂ k[X]. The pair [T,H]
is a regular system if each polynomial in H is regular modulo sat(T). If H consists of a single
polynomial h, then we also write [T, h], for short, instead of [T,H]. The dimension of T is the
dimension of its saturated ideal. A regular chain T , or a regular system [T,H], is square-free
if for all t ∈ T , the polynomial der(t) is regular w.r.t. sat(T), where der(t) = ∂t

∂v and v = mvar(t).
By [T,H,], we denote the algebraic system consisting of the equations f = 0 for all f ∈ T and
the inequations h , 0 for h ∈ H ∪ {hT }.
Triangular decomposition. Let F ⊂ k[X]. Regular chains T1, . . . ,Te of k[X] form a trian-

gular decomposition of V(F) in the sense of Kalkbrener (resp. Wu and Lazard) whenever we
have V(F) = ∪e

i=1W(Ti) (resp. V(F) = ∪e
i=1W(Ti)). We denote by Triangularize an algorithm,

such as the one of [25], computing a Kalkbrener triangular decomposition.
Regularization. Let p ∈ k[X] and T ⊂ k[X] be a regular chain. The function call Regularize(p,T)
computes a set of regular chains {T1, . . . ,Te} such that: (1) for each i = 1, . . . , e, either
p ∈ sat(Ti) holds or p is regular w.r.t. sat(Ti); (2) we have W(T) = W(T1) ∪ · · · ∪ W(Te),
and mvar(T) = mvar(Ti) holds for each i = 1, . . . , e.
Good specialization. Let [T,H] be a square-free regular system of k[X]. Recall that Y and

U = U1, . . . ,Ud stand respectively for mvar(T) and X \Y . Let a = (a1, . . . , ad) be a point of k
d
.

We say that [T,H] specializes well at a if: (i) for each t ∈ T the polynomial init(t) is not zero
modulo the ideal 〈U1 − a1, . . . ,Ud − ad〉; (ii) the image of [T,H] modulo 〈U1 − a1, . . . ,Ud − ad〉

is a square-free regular system.
Border polynomial [105]. Let [T,H] be a square-free regular system of k[X]. Let bp be the

primitive and square free part of the product of all res(der(t),T) res(h,T) for h ∈ H and t ∈ T .
We call bp the border polynomial of [T,H]. Proposition 20 follows from the specialization
property of sub-resultants and states a fundamental property of border polynomials.

Proposition 20. The system [T,H] specializes well at a ∈ k
d

if and only if the border polyno-
mial bp(a) , 0.

8.2.3 Parametric polynomial systems
The following is based on [55] and [68]. In the sequel of this section, the field k is either R or C.
Let f1, . . . , fs, p1, . . . , pr ∈ Q[X], with, as before X = X1 < · · · < Xn. Consider the constructible
set C = {x ∈ Cn : f1(x) = · · · = fs(x) = 0, p1(x) , 0, . . . , pr(x) , 0} and the semi-algebraic
set S = {x ∈ Rn : f1(x) = · · · = fs(x) = 0, p1(x) > 0, . . . , pr(x) > 0}. Let 1 ≤ d < n. We view
the variables X1, . . . , Xd as parameters and we rename them as U = U1, . . . ,Ud. We denote by
ΠU the canonical projection on the parameter space.

Discriminant variety in the complex case. Let δ be the dimension of ΠU(C) = ΠU(C). An
algebraic set W ⊂ Cd is a discriminant variety of C w.r.t. ΠU if the following four conditions
hold:

1. W ⊆ ΠU(C) holds,
2. W = ΠU(C) holds if and only if Π−1

U (u) ∩ C is infinite for almost all u ∈ ΠU(C),

8.2. Preliminaries 121

3. the connected components U1, . . . ,Uk of ΠU(C) \ W are analytic sub-manifolds of di-
mension δ, and

4. for all 1 ≤ i ≤ k, the pair (Π−1
U (Ui),ΠU) is an analytic covering ofUi.

This latter condition implies that there exists finitely many disjoint connected subsetsC1, . . . ,Cik
of Cn such that their union equals Π−1

U (Ui) ∩ C and ΠU is a local diffeomorphism from C j onto
Ui, for 1 ≤ j ≤ ik and 1 ≤ i ≤ k. Moreover, W contains the union of the critical values of the
restriction of ΠU to the regular locus of C, as well as the projection of the singular locus of C.

Proposition 21 (Theorem 4, [68]). Let [T,H] be a square-free regular system of k[X] and bp
its border polynomial. Then, the zero set of bp in kd is the ⊆-minimal discriminant variety
of [T,H,] regarded as a parametric polynomial system, for which the parameters are the free
variables of T .

The real case. In practice, studying the parametric semi-algebraic system S can be done by
1. computing a discriminant variety W of the parametric constructible set C, and
2. applying the following proposition.

Proposition 22 (Corollary 1, [55]). Assume that W , ΠU(C) holds. Then, (ΠU(C)\W)∩Rd has
finitely many connected components,U1, . . . ,Ue, which are real analytic manifolds. Moreover,
for each i = 1, . . . , e, the number of points of S overUi is constant, and if Π−1

U (Ui) ∩ S is not
empty, then (Π−1

U (Ui) ∩ S,ΠU) is a real analytic covering ofUi.

8.2.4 Triangular decomposition of semi-algebraic sets
In this section, we recall that any semi-algebraic system decomposes into finitely many regular
semi-algebraic systems (see Definition 24 for this term). For coherency with our software
implementation, we assume the base field k of our polynomial coefficients is Q instead of R.
See [22] for details. Nevertheless, one can easily reduce the case where k is a real algebraic
extension of Q to the case k = Q by encoding this extension with a regular semi-algebraic
system given by polynomials with coefficients in Q.
Semi-algebraic system. Let us consider four finite polynomial subsets F = { f1, . . . , fs},

N = {n1, . . . , nt}, P = {p1, . . . , pr} and H = {h1, . . . , h`} of Q[X], where, as before, X stands for
n ordered variables X1 < · · · < Xn. Let N≥ denote the set of the inequalities {n1 ≥ 0, . . . , nt ≥ 0}.
Let P> denote the set of the inequalities {p1 > 0, . . . , pr > 0}. Let H, denote the set of
inequations {h1 , 0, . . . , h` , 0}. We will denote by [F, P>] the basic semi-algebraic system
{ f1 = 0, . . . , fs = 0, p1 > 0, . . . , pr > 0} and by S := [F,N≥, P>,H,] the semi-algebraic system
(SAS) which is the conjunction of the following conditions: f1 = 0, . . . , fs = 0, n1 ≥ 0, . . . , nt ≥

0, p1 > 0, . . . , pr > 0 and h1 , 0, . . . , h` , 0. The semi-algebraic set consisting of the zeros
of S in Rn is denoted by ZR(S) while the constructible set consisting of the zeros of [F,N≥] in
Cn is denoted by ZC([F,N≥]); if N≥ is empty we simply write V(F) instead of ZC([F,N≥]). For
an algebraic set W ⊆ Cn, we denote by W ∩ Rn the subset of Rn consisting of the points of W
with real coordinates.

Definition 24. Let T ⊂ Q[X] be a square-free regular chain. As before, let U = U1, . . . ,Ud and
Y = Y1, . . . ,Yn−d designate respectively the variables of X that are free w.r.t. T , and those that
are algebraic w.r.t. T . With P ⊂ Q[X] as above, assume that each polynomial in P is regular

122 Chapter 8. Computing Limits ofMultivariate Rational Functions

w.r.t. sat(T). LetQ be a quantifier-free formula overQ[X] involving only the U variables. LetO
be the semi-algebraic subset of Rd defined by Q. We say that R := [Q,T, P>] is a regular semi-
algebraic system if either d = 0 and the semi-algebraic system [T, P>] admits real solutions,
or d > 0 and the following conditions hold:

(i) O is a non-empty open subset in Rd,
(ii) the regular system [T, P] specializes well at every point a of O,

(iii) at each point a of O, the specialized system [T (a), P(a)>] admits real solutions.
The zero set of R, denoted by ZR(R), is the set of points (a, ζ) ∈ Rd ×Rn−d such that Q(a) holds,
and t(a, ζ) = 0, p(a, ζ) > 0 both hold for all t ∈ T and all p ∈ P.

Remark 18. Using the notations of Definition 24, let R = [Q,T, P>] be a regular semi-
algebraic system. Since O is open, each connected component C of O in Rd is locally home-
omorphic to the hyper-cube (0, 1)d. From Property (ii), the zero set ZR(R) consists of disjoint
graphs of continuous semi-algebraic functions defined on each such C. Moreover, from Prop-
erty (iii), there is at least one such graph. For these reasons, the regular semi-algebraic system
R can be understood as a parameterization of the set ZR(R). Clearly, the dimension of ZR(R) is
d.

Moreover, from Property (ii), together with Proposition 20 and Proposition 22, we deduce
that for every connected component C of O, (Π−1

U (C) ∩ ZR(R),ΠU) is a real analytic covering
of C. This implies that, at each point a of O, the Jacobian matrix of T (a) is full rank.

Proposition 23. As above, let S := [F,N≥, P>,H,] be a semi-algebraic system. Then, there
exists a finite family of regular semi-algebraic systems R1, . . . ,Re such that ZR(S) equals the
union of ZR(R1), . . . ,ZR(Re). We call R1, . . . ,Re a triangular decomposition of S and we denote
by RealTriangularize an algorithm computing such a decomposition.

Remark 19. Expanding Remark 18, recall that we have observed that the dimension of ZR(R)
is d. In practice, this number is immediately deduced from the number of polynomials in the
regular chain T . Indeed, we have d = n − #(T), where #(T) denotes the number of elements of
T .

An important feature of the RealTriangularize algorithm [22] is the fact that triangular
decompositions of semi-algebraic sets can be computed incrementally. Indeed, this algorithm
relies on a procedure, called Intersect, such that, for a given semi-algebraic constraint (that is,
either a polynomial equation, or a polynomial inequality) C, the function call Intersect(R,C)
returns regular semi-algebraic systems R1, . . . ,Re such that ZR(R) ∩ ZR(C) equals the union of
ZR(R1), . . . ,ZR(Re).

The algorithms of Section 8.4 use another important procedure: for a regular semi-algebraic
system R, one needs to check whether the origin o of Rn belongs or not to the closure of ZR(R)
in the Euclidean topology. The fact that the closure of ZR(R) is a semi-algebraic set can be
proved by constructing this set from other semi-algebraic sets by means if set-theoretic opera-
tions, as well as projection. Algorithms for those latter operations are described in [22] and
[23]; this leads naturally to an algorithm for deciding whether or not o belongs to the closure
of ZR(R).

8.3. Basic lemmas 123

8.2.5 Puiseux series
This section is devoted to concepts and notations related to Puiseux series, taken from [35].
Let k be an algebraic number field and k its algebraic closure. We denote by k[[X1, . . . , Xn]]
and k〈X1, . . . , Xn〉 the respective rings of formal power series and convergent power series in
X1, . . . , Xn with coefficients in k. When n = 1, we write U instead of X1. Thus k[[U]] and k〈U〉
are the rings of formal and convergent univariate power series in U and coefficients in k.
Puiseux series. We denote by k[[U∗]] =

⋃∞
`=1 k[[U

1
`]] the ring of formal Puiseux series.

Hence, given ϕ ∈ k[[U∗]], there exists ` ∈ N>0 such that ϕ ∈ k[[U
1
`]] holds. Hence, we can

write ϕ =
∑∞

m=0 amU
m
` , for some a0, . . . , am, . . . ∈ k. We denote by k((U∗)) the quotient field

of k[[U∗]]. Let ϕ ∈ k[[U∗]] and ` ∈ N such that ϕ = f (U
1
`) holds for some f ∈ k[[U]]. We say

that the Puiseux series ϕ is convergent if we have f ∈ k〈U〉. Convergent Puiseux series form
an integral domain denoted by k〈U∗〉; its quotient field is denoted by k(〈U∗〉).
Puiseux parameterization. Let f ∈ k〈X1〉[X2] be of positive degree d in X2. A Puiseux

parametrization of f is a pair (ψ(U), ϕ(U)) of elements of k〈U〉 for some new variable U, such
that

1. ψ(U) = Uς, for some ς ∈ N>0;
2. f (ψ(U), ϕ(U)) = 0 holds in k〈U〉, and
3. there is no integer ` > 1 such that both ψ(U) and ϕ(U) are in k〈U`〉.

The index ς is called the ramification index of the parametrization (Uς, ϕ(U)). Assume that
f is general in X2 of order k ≥ 1, that is, f (0, X2) , 0 and the minimum degree of a term
in f (0, X2) is k. Then, Puiseux’s theorem guarantees that f admits Puiseux parameterizations
and Newton-Puiseux’s algorithm computes them. Assume further that f is monic in X2. Then,
there exist ϕ1, . . . , ϕd ∈ k〈U〉 such that we have f (Ud, X2) = (X2 − ϕ1(U)) · · · (X2 − ϕd(U)).

8.3 Basic lemmas
Fix a real number ρ > 0 and let D∗ρ be the punctured ball

D∗ρ = {(x1, . . . , xn) ∈ Rn | 0 <
√

x2
1 + · · · + x2

n < ρ}.

Let q : Rn −→ R be a rational function defined on D∗ρ.

Notation 4. Let χ(q) be the subset of Rn (regarded as an affine space) where the gradient
∇x1,...,xnq of q at (x1, . . . , xn) and the vector (x1, . . . , xn) of Rn (regarded as a vector space) are
co-linear. For n = 2, writing (x, y) for (x1, x2), we have

χ(q) = {(x, y) ∈ R2 | y∂q
∂x − x ∂q

∂y = 0}.

In higher dimension, using McCoy theorem, the real algebraic set χ(q) is the vanishing locus
of all 2-by-2 minors of the 2-by-n matrix which rows are ∇x1,...,xnq and (x1, . . . , xn).

Definition 25. Let S be a semi-algebraic set of dimension at least 1 and such that the origin
of Rn belongs to the closure ZR(S) of ZR(S) in the Euclidean topology. Let L ∈ R. We say
that, when (x1, . . . , xn) ∈ Rn approaches the origin along S , the limit of the rational function

124 Chapter 8. Computing Limits ofMultivariate Rational Functions

q(x1, . . . , xn) exists and equals L, whenever for all ε > 0, there exists 0 < δ such that for all
(x1, . . . , xn) ∈ S ∩ D∗δ the inequality |q(x1, . . . , xn) − L| < ε holds. When this holds, we write

lim
(x1, . . . , xn)→ (0, . . . , 0)
(x1, . . . , xn) ∈ S

q(x1, . . . , xn) = L

Lemma 33 is a direct generalization of Proposition 1 in [21] and Lemma 36 is a less di-
rect generalization of one of the properties established in Proposition 17 of [21]. We provide
proofs for those results since they are essential for understanding the algorithm presented in
Section 8.4. Meanwhile, Lemma 34 follows from Lemma 33 and elementary reasoning about
limits; hence we omit its proof.

Lemma 33. For all L ∈ R the following two assertions are equivalent:
(i) lim(x1,...,xn)→(0,...,0) q(x1, . . . , xn) exists and equals L,

(ii) lim (x1, . . . , xn)→ (0, . . . , 0)
(x1, . . . , xn) ∈ χ(q)

q(x1, . . . , xn) exists and equals L.

Proof. Clearly the first assertion implies the second one. Next, we assume that the
second one holds and we prove that the first one holds as well. Hence, we assume that for
all ε > 0, there exists 0 < δ < ρ such that for all (x1, . . . , xn) ∈ χ(q) ∩ D∗δ the inequality
|q(x1, . . . , xn) − L| < ε holds. We fix ε > 0. For every r > 0, we define Cr = {(x1, . . . , xn) ∈

Rn |

√
x2

1 + · · · + x2
n = r}. For all 0 < r < ρ, we choose t1(r) (resp. t2(r)) minimizing (resp.

maximizing) q on Cr. Applying the method of Lagrange multipliers, we have t1(r), t2(r) ∈ χ(q),

for all 0 < r < ρ. Observe that for all (x1, . . . , xn) ∈ Rn, with r :=
√

x2
1 + · · · + x2

n < ρ,
we have q(t1(r)) − L ≤ q(x1, . . . , xn) − L ≤ q(t2(r)) − L. From the assumption and the
definitions of t1(r), t2(r), there exists 0 < δ < ρ such that, for all r < δ, we have −ε < q(t1(r)) −
L and q(t2(r)) − L < ε. Therefore, there exists 0 < δ < ρ such that for all (x1, . . . , xn) ∈ D∗δ the
inequality |q(x1, . . . , xn) − L| < ε holds. �

Lemma 34. Let R1, . . . ,Re be regular semi-algebraic systems forming a triangular decompo-
sition of χ(q) in the sense of Proposition 23. Then, for all L ∈ R the following two assertions
are equivalent:

(i) lim (x1, . . . , xn)→ (0, . . . , 0)
(x1, . . . , xn) ∈ χ(q)

q(x1, . . . , xn) exists and equals L.

(ii) for all i ∈ {1, . . . , e} such that ZR(Ri) has dimension at least 1 and the origin belongs to
ZR(Ri), we have lim (x1, . . . , xn)→ (0, . . . , 0)

(x1, . . . , xn) ∈ ZR(Ri)
q(x1, . . . , xn) exists and equals L.

Notation 5. For any complex algebraic set (resp. real algebraic set) S ⊆ Cn (resp. S ⊆ Rn)
we denote by Sing(S) the singular locus of S .

Lemma 35. Let h ∈ R[X1, . . . , Xn] be of positive degree in Xn. Let U0 ⊂ R
n−1 be a neighbour-

hood of the origin such that there exists a real number λ such that ∇h(p) = λp holds for all
p ∈ U0. Furthermore assume that both the leading coefficient c of h in Xn and the discriminant
∆ of h in Xn vanish nowehere on U0. Then, for every smooth function u : U0 −→ R for which
h(x1, . . . , xn−1, u(x1, . . . , xn−1)) = 0 holds, for all (x1, . . . , xn−1) ∈ U0, then, the graph of u is
contained in a sphere centred at the origin.

8.3. Basic lemmas 125

Proof. We view h as a parametric polynomial in Xn with X1, . . . , Xn−1 as parameters. Since
the leading coefficient c of h in Xn and the discriminant ∆ of h in Xn vanish nowehere on U0,
it follows from Section 8.2.3 that the intersection of U0 and the discriminant variety of h is
empty. Therefore, there exists a smooth analytic function u : U0 −→ R such that Property (i)
holds. Let

W = {(X1, . . . , Xn−1, Xn) | X1, . . . , Xn−1 ∈ U0 and Xn = u(X1, . . . , Xn−1)}.

Thus, the set W is the graph of u. For any t ∈ W, the normal vector at t is given by

n(t) =
(−∂u/∂X1, . . . ,−∂u/∂Xn−1, 1)√

(∂u/∂X1)2 + · · · + (∂u/∂Xn−1)2 + 1
.

Now, let µ := λ/‖∇h(t)‖, then ∇h(t) = µ‖∇h(t)‖t. Therefore, from t ∈ W, we deduce that
n(t) can also be written as

n(t) =
(X1, . . . , Xn−1, u(X1, . . . , Xn−1))√

X2
1 + · · · + X2

n−1 + u2(X1, . . . , Xn−1)

which results in the following equalities:
Xi√

X2
1+···+X2

n−1+u2(X1,...,Xn−1)
= − ∂u/∂Xi√

(∂u/∂X1)2+···+(∂u/∂Xn−1)2+1
, i = 1, . . . , n − 1

u(X1,...,Xn−1)√
X2

1+···+X2
n−1+u2(X1,...,Xn−1)

= 1√
(∂u/∂X1)2+···+(∂u/∂Xn−1)2+1

(8.3)

The last equality in (8.3) implies that we have:

u(X1, . . . , Xn−1) =

√
X2

1 + · · · + X2
n−1 + u2(X1, . . . , Xn−1)√

(∂u/∂X1)2 + · · · + (∂u/∂Xn−1)2 + 1

Consequently, we obtain the following system of PDEs:{
u(X1, . . . , Xn−1) ∂u/∂Xi = −Xi , for i = 1, . . . , n − 1.

Now for i = 1, we integrate both sides of Equation (8.3) with respect to X1. There exits a
differentiable function F2(X2, . . . , Xn−1) such that

u2(X1, . . . , Xn−1)
2

=
−X2

1

2
+ F2(X2, . . . , Xn−1). (8.4)

Now by taking derivative of both sides of Equation (8.4) with respect to X2, we have u ∂u/∂X2 =

∂F2/∂X2. After substitution of the latter equality in the equation u ∂u/∂X2 = −X2, there exits a
differentiable function F3(X3, . . . , Xn−1) such that

−X2
2

2
= F2(X2, . . . , Xn−1) + F3(X3, . . . , Xn−1).

By continuing the same process, we have

−X2
i−1

2
= Fi−1(Xi−1, . . . , Xn−1) + Fi(Xi, . . . , Xn−1).

126 Chapter 8. Computing Limits ofMultivariate Rational Functions

for i = 2, 3, . . . n − 2. But for i = n − 1, we have u ∂u/∂Xn−1 = ∂Fn−1/∂Xn−1. After substitution
of the latter equality in u ∂u/∂Xn−1 = −Xn−1, there exits a constant C such that

−X2
n−1

2
= Fn−1(Xn−1) + C.

Therefore
u2(X1, . . . , Xn−1)

2
= −

X2
1

2
− · · · −

X2
n−1

2
+ C.

Let α = (α1, . . . , αn−1, αn) be a point of W. Since u(α1, . . . , αn−1) = αn, we have C = 1/2(α2
1 +

· · · + α2
n). So

u(X1, . . . , Xn−1) =

√
r2 − X2

1 − · · · − X2
n−1,

where r2 := α2
1 + · · · + α2

n. Then we conclude W is a neighbourhood of p ∈ D∗ρ which is part of
a sphere centred at the origin. �

Lemma 36. Assume n ≥ 3. Let S = [Q, {tn}, P>] be a regular semi-algebraic system of
Q[X1, . . . , Xn] such that ZR(S) has dimension d := n − 1, and the closure ZR(S) contains the
origin. W.l.o.g. we assume that mvar(tn) = Xn holds. LetM be the 2× n matrix with the vector
(X1, . . . , Xn) as first row and the gradient vector ∇tn =

(
∂tn
∂X1
· · ·

∂tn
∂Xn

)
as second row. Then, there

exists a non-empty set O ⊂ D∗ρ ∩ ZR(S), which is open relatively to ZR(S), such thatM is full
rank at any point of O, and the origin is in the closure of O.

Proof. Consider first the case d = n − 1, that is, T consists of the single polynomial tn.
Assume that there exists 0 < r < ρ such that M is not full rank at any point of D∗r ∩ ZR(S).
Then, the system of partial differential equations (PDEs) X j

∂tn
∂Xi
− Xi

∂tn
∂X j

= 0, for 1 ≤ i < j ≤ n
holds at any point of D∗r ∩ ZR(S). Lemma 35 implies that tn = u(X2

1 + · · · + X2
n) where u is a

univariate polynomial. Let 0 < r′ < r and S r′ be the sphere centred at the origin, with radius
r′. Our hypotheses and the previous PDE argument imply that ZR(S) contains a non-empty set
Vr′ ⊂ S r′ which is an open set in the Euclidean topology induced on S r′ . The fact that this holds
for all r′, with 0 < r′ < r, contradicts the fact that ZR(S) is a semi-algebraic set of dimension
less than n.

Therefore, for all r > 0 small enough, the set D∗r ∩ ZR(S) contains a point pr, as well as
a neighbourhood Nr of pr (due to the full rank characterization in terms of minors) such that
Nr is open relatively to ZR(S) and M is full rank at any point of Nr. From there, the desired
conclusion follows. �

8.4 Main Algorithm

We describe in this section our procedure for determining the existence and the possible value
of limits of the form lim(x1,...,xn)→(0,...,0) q(x1, . . . , xn). Recall that q is a rational function in the
n ordered variables X1 < · · · < Xn and with rational number coefficients. We assume that the

8.4. Main Algorithm 127

origin is an isolated zero of the denominator. The pseudo-code for this procedure is stated in
Algorithms 20, 19, 18 and 17.

Algorithm 17: LimitAlongCurve
Input: q ∈ Q(X1, . . . , Xn); real curve C given by regular chain T .
Output: Limit of rational function q at origin along real curve C.
begin1

Let f , g be the numerator and denominator of q;2

Let R := {gXn+1 − f } ∪ T with Xn+1 a new variable;3

// R is a regular chain for X1 < · · · < Xn+1;

Compute the limit points of ZR(R) \ ZR(hR) in Rn for the Euclidean topology;4

If there is only one such point (x1, . . . , xn, xn+1) with x1 = · · · = xn = 0, then xn+1 is5

the desired limit of q;
Return no limit since q has no limit along C at the origin;6

end7

Algorithm 18: RandomEllipse
Input: n ∈ N
Output: Ellipse in Rn randomly generated
begin1

repeat2

choose A1, . . . , An, r randomly with r > 0;3

let Er :=
∑n

i=1 AiX2
i − r2;4

S :=
[

∂Er
∂X1

· · ·
∂Er
∂Xn

X1 · · · Xn

]
;

5

until S has at least one non-zero minor ;6

return (A1, . . . , An, r);7

end8

Proposition 24. Algorithm 20 terminates and returns finitely many pairs (L1, S 1), . . . , (Le, S e)
where each of L1, . . . , Le is either a real number, or the flag no limit, and S 1, . . . , S e are all
regular semi-algebraic systems such that each of the sets ZR(S 1), . . . , ZR(S e) has dimension
one and contains the origin in its closure. Moreover, if Li ∈ R, then Li is the limit of q at the
origin along the ZR(S i) for all i = 1, . . . , e. In addition, the rational function q admits a finite
limit at the origin if and only if L1, . . . , Le are all real and equal; if this holds, then this common
value is the limit of q at the origin.

Proof. Algorithm 20 applies Lemma 33 as follows. At Line (1), it computes the real
algebraic set χ(q) defined in Notation 4 and at Line (2) computes a triangular decompositionD
of χ(q) as defined in Proposition 23. Following Lemma 34, each regular semi-algebraic system
S ∈ D which is zero-dimensional, or such that the origin is not contained in the closure of
ZR(S), is discarded at Line (6). For all the other regular semi-algebraic systems (RSASs), one
runs Limitinner(q, S) at Line (7), that is, makes a call to Algorithm 19.

128 Chapter 8. Computing Limits ofMultivariate Rational Functions

Algorithm 19 is the core routine. It first checks whether ZR(S) has dimension one or not.
If dim(ZR(S)) = 1 holds, one runs LimitAlongCurve(q, S), that is, Algorithm 17. Applying
Algorithm 19 with RSASs of dimension one can be seen as the base case of that recursive
routine while the rest of that routine reduces computation with RSASs of dimension higher
than one to the one-dimensional case.

This reduction is performed by repeated applications of the Lagrange multipliers trick, as
in the proof of Lemma 33. It follows from Lemma 36 that there exists a minor m ∈ Minors(M)
(whereM is defined at Line (6) of Algorithm 19) such that we have ZR(S) * ZR(m). Note that
we know that the Jacobian of T (that is, the matrix formed with the ∇t, for t ∈ T) is full rank.
This follows from Proposition 22 and explains why we do not need to compute any singular
loci.

Once such a minor m ∈ Minors(M) is found, we compute ZR(S) ∩ ZR({m , 0}) using the
Intersect command defined in Remark 19; this is done at Line (12). The resulting triangular
decomposition consists of RSASs with the same dimension as S . The goal of Line (13) is to
remove any RSAS S ′ such that ZR(S ′) does not contain the origin; see also Remark 19 for that
test.

At Lines (16) to (19), we prepare for applying the Lagrange multipliers trick: since∇(X1,...,Xn)q
is proportional to (X1, . . . , Xn) along χ(q) we cannot re-use the family of circles Cr as in the
proof of Lemma 33; instead, we use a family of ellipsoids, given by Er; this idea was intro-
duced in [98]. In particular, at Line (16), we determine values for the coefficients A1, . . . , An

of the polynomial Er such that at least one minor ofM′ is not zero. This task is delegated to
Algorithm 18: in practice, choosing A1, . . . , An all positive at random works; if this would not
work, A1, . . . , An would be determined by solving polynomial systems.

The for-loop located between Lines (21) and (43) runs until we find a minor m′ of the
matrix M′ (where M′ is defined at Line (18) of Algorithm 19) such that the dimension of
ZR(S) ∩ ZR({m′ = 0}) is less than that of ZR(S). This search is expected to be successful
because the non-linear programs consisting of minimizing/maximizing q(x1, . . . , xn) under the
constraints (x1, . . . , xn) ∈ ZR(S) ∩ {Er = 0} have solutions, necessarily. However, this search
depends on the minor m, as well. In fact, what the previous non-linear optimization argument
guarantees is the existence of a pair of minors (m,m′) such that M is full rank for m , 0
whileM′ is not full rank for m′ = 0. For this reason, for certain m, the search for m′, or the
recursive call at Line (31), may fail. Such a situation leads the algorithm to try the next m from
Minors(M). It follows that Algorithm 19 must implement a backtracking mechanism.

This backtracking feature is achieved by enhancing the algorithm with a state machine.
Note that at Lines (7), (20), (32), (40), (45), and (50) a variable called state is assigned in
order to record the new state of the algorithm. Observe that, if the variable state never receives
the value backtrack during the execution of Algorithm 19, then only the first minor m ∈
Minors(M) and the first minor m′ ∈ Minors(M′) are considered by the algorithm.

Observe that, during one iteration of the for-loop located between Lines (21) and (43), if the
variable L receives the value backtrack , or the variable I remains empty, then this iteration
failed to find a minor m′; as a consequence either this for-loop goes for another iteration, or, if
all iterations have been executed, the variable state will receive the value backtrack implying
that the current value of the minor m cannot lead to find a minor m′ with the desired properties.

Finally, observe that the execution of the for-loop located between Lines (8) and (54) termi-
nates either with state reaching the value found second minor (implying that a pair of minors

8.4. Main Algorithm 129

(m,m′) with the desired properties has been found) or with state having the value backtrack
(implying that no such pair was found).

It follows from the above discussion that Algorithm 19 always terminates and so does
Algorithm 20. Moreover, and as mentioned above, since the non-linear programs consisting
of minimizing/maximizing q under the constraints (x1, . . . , xn) ∈ ZR(S) ∩ {Er = 0} necessarily
have solutions (where q and S are the input of Algorithm 19), the calls that Algorithm 20 makes
to Algorithm 19 will ultimately produce an answer of the form (L1, S 1), . . . , (Le, S e) with the
desired properties. �

Algorithm 19: LimitInner
Input: q ∈ Q(X1, . . . , Xn); a given regular semi-algebraic system S .
Output: Limit of rational function q at origin along zero set of S .
begin

Algorithm 1 Limit of the rational function q ∈ Q(X1, . . . ,Xn) at the origin along the zero set of the
regular semi-algebraic system S (Part 1)

1: procedure LimitInner(q, S)
2: if dim(ZR(S)) = 1 then
3: return (LimitAlongCurve(q, S), S);
4: end if
5: let [Q, T,P>] ∶= S;

6: M ∶= [X1 ⋯ Xn∇t, t ∈ T];
7: state := search first minor;
8: for m ∈Minors(M) do
9: if ZR(S) ⊆ ZR(m) then next;

10: end if
11: J ∶= ∅;
12: for S′ ∈ Intersect(S,{m ≠ 0}) do

13: if o /∈ ZR(S′) or dim(ZR(S′)) = 0
then

14: next;
15: end if
16: (A1, . . . ,An, r) ∶= RandomEllipse(n);
17: let Er ∶= ∑n

i=1AiX
2
i − r2;

18: M′ ∶=
⎡⎢⎢⎢⎢⎢⎣

∂Er

∂X1
⋯ ∂Er

∂Xn

X1 ⋯ Xn∇t, t ∈ T
⎤⎥⎥⎥⎥⎥⎦
;

19: let [Q′, T ′, P>′] ∶= S′;
20: state := search second minor;
21: for m′ ∈Minors(M′) do
22: if res(m′, T ′) = 0 then
23: next;
24: end if
25: I ∶= ∅;
26: for C ∈ Intersect(S′,m′ = 0) do

27: if o /∈ ZR(C) or
dim(ZR(C)) = 0 then

28: next;
29: end if
30: L ∶= LimitInner(q,C);
31: if L = backtrack then
32: state := backtrack;
33: break;
34: else
35: I ∶= I ∪ {L};
36: end if
37: end for
38: if I ≠ ∅ and state ≠ backtrack

then
39: J ∶= J ∪ I;
40: state := found second minor;
41: break;
42: end if
43: end for
44: if state ≠ found second minor then
45: state := backtrack;
46: break;
47: end if
48: end for
49: if state ≠ backtrack then
50: state := found first minor;
51: break;
52: end if
53: end for
54: if state = found first minor then
55: return J ;
56: else
57: return backtrack;
58: end if
59: end procedure

end

130 Chapter 8. Computing Limits ofMultivariate Rational Functions

Algorithm 20: Limit
Input: q ∈ Q(X1, . . . , Xn).
Output: Limit of rational function q at origin.
begin1

A := Minors(
[

X1 · · · Xn
∂q
∂X1

· · ·
∂q
∂Xn

]
);

2

D := RealTriangularize(A);3

L := ∅;4

for S ∈ D do5

if o ∈ ZR(S) and dim(ZR(S)) > 0 then6

L := L ∪ {LimitInner(q, S)};7

return L;8

end9

8.5 Optimizations
In this section, we discuss how we apply different optimizations on the implementation of
Algorithm 20. Two optimizations will be discussed here. The first optimization is given by
Lemma 37; see also the Proposition 2.2 of [104].

Lemma 37. Let f and g be two non-zero polynomials in R[X1, . . . , Xn], and also consider the
lexicographic order X1 < · · · < Xn on variables. If limx→o

f
g exists, then the trailing monomial

of f is not lower than the trailing monomial of g with respect to the order X1 < · · · < Xn.

Lemma 37 implies that if the trailing monomial of f is lower than the trailing monomial of
g with respect to any lexicographic variable ordering over X1, . . . , Xn, then it is guaranteed that
limx→o

f
g does not exist.

The second optimization trick is described in the next lemma. This lemma is taken from
[89], Theorem 2.

Lemma 38. Let a1, . . . , an be non-negative integers, m1, . . . ,mn be positive inetgers and c1, . . . , cn

be positive real numbers, where n > 1. Then

lim
(x1,...,xn)→(0,...,0)

xa1
1 · · · x

an
n

c1 x2m1
1 + · · · + cnx2mn

n

(8.5)

exists and equals zero if and only if
∑N

i=1
ai

2 mi
> 1.

Since the criterion of Lemma 38 can be applied to a very small set of examples, we have
extended this idea and proposed Theorem 18.

Theorem 18. Let f and g be two polynomials in R[X1, . . . , Xn] and g is of the form c1 X2m1
1 +

· · ·+cnX2mn
n for some positive inetgers m1, . . . ,mn and positive real numbers c1, . . . , cn. Let also

r, q ∈ R[X1, . . . , Xn] be the remainder and quotient in the Euclidean division of f by g w.r.t.
X1. Then lim(x1,...,xn)→(0,...,0)

f (x1,...,xn)
g(x1,...,xn) exists and equals to L if for each term Xa1

1 · · · X
an
n (where

8.6. Limits of multivariate rational functions: general case 131

a1, . . . , an are non-negative integers) of the polynomial r(X1, . . . , Xn), we have
∑N

i=1
ai

2 mi
> 1 and

also lim(x1,...,xn)→(0,...,0) q = L.

Theorem 18 gives a sufficent condition for lim(x1,...,xn)→(0,...,0)
f (x1,...,xn)
g(x1,...,xn) to exist when g is of

the form c1 X2m1
1 + · · · + cnX2mn

n . However, this condition is not necessary, on the contrary to
that of Lemma 38. In fact, when the condition of

∑N
i=1

ai
2 mi

> 1 does not hold for some terms of
r(X1, . . . , Xn), then we can not claim whether or not lim(x1,...,xn)→(0,...,0)

f (x1,...,xn)
g(x1,...,xn) exist.

8.6 Limit of a multivariate rational function at a point which
is not an isolated zero of the denominator

In this section, we discuss how to compute the limit of multivariate rational functions at the
origin, when the origin is not an isolated zero of the denominator.

Let again f , g ∈ Q[X1, . . . , Xn] such that the fraction q := f /g is irreducible and not con-
stant. Let ZR(f) := {(x1, . . . , xn) ∈ Rn | f (x1, . . . , xn) = 0}. Similarly, we define ZR(g).
We assume that o := (0, . . . , 0) ∈ ZR(f) ∩ ZR(g) holds. Let C f ,o and Cg,o be the connected
components of ZR(f) and ZR(g) to which o belongs. Assume dim(Cg,o) > 0.

Over C, we have either W(f) ∩W(g) = ∅ or dim (W(f) ∩W(g)) = dim (W(f)) − 1, while
this phenomenon may break over R.

Example 26. Consider f := (X − Y)2 + (X2 + Z2T 2)2 and g := (X − Y)2 + (Y2 + Z2T 2)2. Note
that f , g are different and irreducible and the euqality Cg,o = C f ,o holds for them.

Example 27. Consider f := (X − Y)2 + (Z − Y)2 and g := (X − Y)2 + (Z − X)2. Then Cg,o ∩C f ,o

consists of a single point, which is the origin;

Computing rational function limits often reduces to path tracking whithin semi-algebraic
sets. The following lemma gives an interesting result about selecting a real analytic curve going
through the origin and lying in a given semi-algebraic set.

Lemma 39 (Curve selection Lemma 3.1,[64]). Let f1, . . . , fm, g1, . . . , gp ∈ Q[X1, . . . , Xn] such
that the origin o is in the closure of the semi-algebraic set S defined by:

f1 = · · · = fm = 0, g1 > 0, . . . , gp > 0.

Then, there exists real analytic curve γ : [0, ε)→ Rn, with γ(0) = o, and γ(t) ∈ S for t > 0.

Remark 20. For a semi-algebraic set S , testing o ∈ S can be phrased as a quantifier elimina-
tion problem and thus solved by Cylindrical Algebraic Decomposition (CAD):

o ∈ S ⇐⇒ (∀ε > 0) (∃x ∈ Rn) ‖x‖ < ε =⇒ x ∈ S .

For n = 2, one can use “lighter” methods for this test. For instance, computing the real
branches (thus Puiseux series, which form an ordered field) of f (x1, x2) = 0 about (x1, x2) =

(0, 0) and check which ones satisfy g(x1, x2) > 0.

132 Chapter 8. Computing Limits ofMultivariate Rational Functions

In the following, we present two propositions that studies the limit of real multivariate
rational functions at the origin, when Cg,o ⊆ C f ,o does not hold.

Proposition 25. Assume that o ∈ {g = 0, f > 0}, then lim(x1,...,xn)→o
f (x1,...,xn)
g(x1,...,xn) can not be finite.

Proof. Assume by contradiction that lim(x1,...,xn)→o
f (x1,...,xn)
g(x1,...,xn) exists and equals ` ∈ R. Let

us fix ε > 0. Then, there exists r > 0 such that for all x ∈ B(o, r), we have ` − ε ≤ q(x) ≤
` + ε. Thus, q(x) is bounded on B(o, r). From the hypothesis, for all r′ > 0, we can choose
y ∈ B(o, r′) ∩ {g = 0, f > 0}. Using the continuity of f and making r′ small enough, we have
B(y, r′) ∩ C f ,o = ∅ as well as B(y, r′) ⊆ B(o, r). Observe that 1/(g(x)) is arbitrary large (in
absolute value) on B(y, r′) while f (x) remains bounded on B(y, r′). This contradicts the fact
that q(x) is bounded on B(o, r). �

Proposition 26. Assume that both o ∈ { f = 0, g > 0} and o ∈ {g = 0, f > 0} hold. Then,
lim(x1,...,xn)→(0,...,0)

f (x1,...,xn)
g(x1,...,xn) does not exist.

Proof. In one hand, from the first assumption and Lemma 39, there exists a path to the
origin along which q is identically zero. Hence, lim(x1,...,xn)→(0,...,0) q(x1, . . . , xn) must be null, if
it exists. On the other hand, the assumption o ∈ {g = 0, f > 0} and Proposition 25 imply that
lim(x1,...,xn)→(0,...,0) q(x1, . . . , xn) cannot be finite. �

The results that are obtained from Proposition 25 and Proposition 26 imply that

lim
(x1,...,xn)→(0,...,0)

q(x1, . . . , xn)

does not have any finite limit, when o ∈ { f ,, g = 0}. Assume from now on that Cg,o ⊆ C f ,o

holds. Let E be a connected component of Rn \ C f ,o. Theorem 2.1 in [54], suggests that one
can apply a multivariate version of L’Hospital’s Rule to compute

lim
(x1, . . . , xn)→ (0, . . . , 0)
(x1, . . . , xn) ∈ E

f (x1, . . . , xn)
g(x1, . . . , xn)

,

which might cause a recursive call to this procedure. Note that multivariate versions of L’Hospital’s
Rule have more assumptions than their univariate counterpart. What to do when these assump-
tions are not met is work in progress.

Theorem 19 (Theorem 10, [106]). Let U ⊆ {(x, y) ∈ R2 | 0 ≤ x and 0 ≤ y} be a
neighbourhood of o such that [0, ε]×[0, ε] ⊆ U holds for ε > 0 small enough. Let f , g : U → R
such that the partial derivatives fxy and gxy exist on]0, ε]×]0, ε]. Assume (limo fxy, limo gxy) <
{(0, 0), (±∞,±∞)}, that is, no indeterminate forms. Then we have

lim
(x, y)→ (0, 0)
(x, y) ∈ U

f (x, y)
g(x, y)

= lim
(x, y)→ (0, 0)
(x, y) ∈ U

fxy(x, y)
gxy(x, y)

.

Example 28. Consider f (x, y) = x y2 − y and g(x, y) = xy − x3. Then one can obtain ZR(f) =

{xy − 1} ∪ {y = 0} and ZR(g) = {x2 + y = 0, y < 0} ∪ {x = 0} by using the command
RealTriangularize of RegularChains library. Then we have:

8.6. Limits of multivariate rational functions: general case 133

Figure 8.1: The graph corresponding to f (x,y)
g(x,y) = z

lim (x, y)→ (0, 0)
(x, y) ∈ U

f (x,y)
g(x,y) =

lim (x, y)→ (0, 0)
(x, y) ∈ U

fxy(x,y)
gxy(x,y) =

lim (x, y)→ (0, 0)
(x, y) ∈ U

2y
1 = 0.

Based on Theorem 19, the value 0 is the limit of lim(x,y)→(0,0)
f (x,y)
g(x,y) over the quadrant x > 0, y > 0

and consequently, the global limit, see Figure 8.1.

The following theorem is taken from [54], Theorem 2.1. This theorem is the multivariate
counterpart of L’hôpital rule in one variable. The method of L’hôpital rule is a way to remove
the indetermination that might occur when computing limx→o

f
g .

Theorem 20 (Bivariate L’hôpital rule). Let N be a neighbourhood in R2 containing a point
p at which two differentiable functions f : N → R and g : N → R are zero. Set C :=
{(x, y) ∈ N : f (x, y) = g(x, y) = 0}, and suppose that C is a smooth curve through p. Suppose
there exists a vector v not tangent to C at p such that the directional derivative Dv(g) of g in
the direction of v is never zero within N . More generally, if C consists of a union of two or
more smooth curves through p, suppose that for each component Ei of N \ C we can find a
vector vi, not tangent at p to any of the curves comprising C such that Dvi(g) , 0 on Ei. Then
lim(x,y)→p

f (x,y)
g(x,y) exists if the limits lim(x,y)→p,(x,y)∈Ei

Dvi (f)
Dvi (g) exist and are equal for all i. Each limit

is assumed to be taken over the domain of points where the denominator is nonzero, and we
assume in each case that p is a limit point of that domain.

Let g(x, y) = 0 be an analytic curve for which R2 \ {g(x, y) = 0} consists two semi-algebraic
sets E1 and E2, see Figure 8.2. Then, Theorem 20, Proposition 25 and Proposition 26, imply
that for computing lim(x,y)→p

f (x,y)
g(x,y) , it is enough to compute lim(x,y)→p

f (x,y)
g(x,y) within E1 and E2.

The same theorem holds for real-valued functions of n variables, with C a union of hyper-
surfaces.

Theorem 21 (Multivariate L’hôpital rule). Let f and g be two polynomials in R[X1, . . . , Xn]
and the origin is a non-isolated zero of ZR(g). Let also dim (ZR(g)) = n−1 and ZR(g) is smooth

134 Chapter 8. Computing Limits ofMultivariate Rational Functions

E1

E2

g(x, y) = 0

x axis

y axis

Figure 8.2: Limit of real bivariate rational functions

at the origin. Suppose that E1, . . . , Ee are the connected components of Rn \ ZR(g). For every
vector v such that]0, v) intersects Ei on a segment, we assume that there exists r > 0 such that
Dv(g)(x) , 0 holds in Ei ∩ B(o, r). Then we have:

lim
(x1,...,xn)→p

f (x1, . . . , xn)
g(x1, . . . , xn)

= lim
(x1,...,xn)→p,(x1,...,xn)∈Ei

Dvi(f (x1, . . . , xn))
Dvi(g(x1, . . . , xn))

.

Example 29. Consider f (x, y) = x2 − y2 and g(x, y) = (x − y)2 + z2. Then one can com-
pute ZR(f) = {x = y} ∪ {x = −y} and ZR(g) = {x − y, z = 0} by using the command
RealTriangularize in RegularChains library. Within R3 \ ZR(g), consider the CAD cell
E := {x , y}. Choose v = (−1, 1, 0), thus Dv g = ∇g · v = −4x + 4y. Observe that Dv g does
not vanish within E. Then, we have:

lim
x→ o
x ∈ E

f (x)
g(x)

= lim
x→ o
x ∈ E

Dv f (x)
Dv g(x)

= lim
x→ o
x ∈ E

−2x − 2y
−4x + 4y

,

which implies that the latter limit, and consequently, limx→o
f (x)
g(x) does not exist.

8.7 Experimentation
This section is devoted to an experimental comparison of various Maple’s codes for computing
limits of multivariate rational functions: Maple’s built-in command limit, the TestLimit
command presented in [104] and our implementation of the algorithm of Section 8.4 within the
RationalFunctionLimit command of the RegularChains library. We used more than 50
test-examples1 and a representative subset of them is provided in Table 8.1. The abbreviations
LM, TL, and RFL stand for limit, TestLimit, and RationalFunctionLimit commands.
Further, NV, TD and LV represent the number of variables, the maximum total degree between
numerator and denominator, and the value of the limit, respectively. The timings in columns
LM, TL, RFL are in seconds.

For bivariate rational functions (examples 1-5), both LM and TL run faster than RFL, except
on example 2. Recall that LM applies to bivariate rational functions only.

1The list of the examples and the timings corresponding to Table 8.1 can be found at www.regularchains.
org/RationalLimit/RationalFunctionLimit.zip and www.regularchains.org/RationalLimit/

Report, respectively.

www.regularchains.org/RationalLimit/RationalFunctionLimit.zip
www.regularchains.org/RationalLimit/RationalFunctionLimit.zip
www.regularchains.org/RationalLimit/Report
www.regularchains.org/RationalLimit/Report

8.8. Conclusion 135

Out of the 25 examples in 3 variables or more, TL and RFL solve respectively 9 and 24
examples within the prescribed resource limits of 2 GB of memory and 1800 sec of CPU time.
Moreover, out of those 25 examples, TL fails on 8 of them due to a division-by-zero error. For
the 17 examples in 3 variables or more, for which TL does not hit such an error, RFL runs
faster than TL on 10 examples.

Taking into account the 30 examples: (1) TL and RFL solve respectively 13 and 29 exam-
ples, (2) for the 21 examples for which TL does not hit an error, RFL runs faster than TL 11
times, and (3) for the 13 examples for which TL computes the answer, TL is faster than RFL
on 10 times.

Using RegularChains library one could use RationalFunctionLimit(q(X1, . . . , Xn), [X1 =

0, . . . , Xn = 0]) to obtain the limit of q at the origin. These experimental results were obtained
on an Ubuntu desktop (3.33GHz Intel Core i5 CPU, 3.7Gb total mem.).

8.8 Conclusion
We have presented a procedure for determining the existence and possible value of limits of
n-variate rational function over Q. Our work extends the articles [21] and [98] dedicated to
n = 2 and n = 3, respectively. We rely on the theory of regular chains, which allows us to avoid
computing singular loci and decompositions into irreducible components. Our main tool is the
RealTriangularize algorithm. We have implemented our procedure within the RegularChains
library and our code is available at www.regularchains.org.

Experimental results show that our code solves more test cases than the implementation
of [104], in particular as variable number or total degree increases. Nevertheless, our code is
still under development and many optimizations are planned, including borrowing techniques
used in [104].

As in [21] and [98], we assume that the origin is an isolated zero of the denominator.
However, relaxing this assumption is work in progress thanks to RealTriangularize and the
ideas proposed in [55].

In Chapter5, we have presented an algorithm for determining the real branches of a space
curve about one of its point. This is a core routine for computing limits of real multivariate
rational functions as well as for addressing topological questions like whether a point belongs
to the closure of a CAD cell. To this end, we revisited the Hensel-Sasaki construction and
established properties of the Yun-Moses polynomials (see Chapter 3). In Section 8.6, we have
presented several results for computing limits of real multivariate rational functions at the ori-
gin, when the origin is not an isolated zero of the denominator. The case of computing limits
of real multivariate rational functions is work in progress.

www.regularchains.org

136 Chapter 8. Computing Limits ofMultivariate Rational Functions

Ex NV TD LM TL RFL LV
1 2 4 0.061 0.097 0.134 -1
2 2 4 0.056 wrong answer 0.126 -1
3 2 2 0.015 0.002 0.074 undefined
4 2 4 0.096 0.001 0.906 undefined
5 2 4 0.064 0.089 0.127 -1
6 3 5 N/A 0.508 5.278 0
7 3 8 N/A > 2GB > 2GB 0
8 3 18 N/A 10.422 0.166 0
9 3 18 N/A 0.502 0.128 0

10 4 4 N/A 0.002 1.498 undefined
11 4 2 N/A 0.003 0.205 undefined
12 4 4 N/A 0.002 1.495 undefined
13 4 5 N/A > 2GB 1.991 0
14 4 21 N/A > 2GB 0.545 0
15 4 6 N/A > 2GB 0.526 0
16 5 19 N/A > 2GB 0.376 0
17 5 4 N/A 2.705 1.205 0
18 6 6 N/A Error 1.228 0
19 6 6 N/A Error 1.399 undefined
20 6 18 N/A Error 0.391 0
21 6 10 N/A > 2GB 0.627 0
22 6 10 N/A > 2GB 1.143 0
23 6 6 N/A Error 3.497 0
24 7 6 N/A 0.002 0.012 undefined
25 8 5 N/A > 2GB 5.445 0
26 8 9 N/A Error 19.747 undefined
27 9 4 N/A 0.003 3.628 undefined
28 9 10 N/A Error 36.959 0
29 9 5 N/A Error 1.193 0
30 10 10 N/A Error 7.093 0

Table 8.1: Comparisons between three different commands for computing the limit of real
multivairate rational functions: limit, TestLimit, and RationalFunctionLimit.

Chapter 9

Conclusion

In this thesis, we have pursued four main different goals. Each Section 9.1, 9.2, 9.3, and 9.4
is dedicated to one of our goals. For each goal, we first illustrate the accomplishments of this
thesis to meet that goal; then we explain what has remained unsolved for a future work w.r.t
each goal; finally, we report on software presentations of our methods for solving the four main
goals of the present thesis.

9.1 Computing limit points of quasi-components of regular
chains

For computing limit points corresponding to regular chains, we have proposed two different
methods: (1) computing limit points corresponding to regular chains via Puiseux series expan-
sions, and (2) computing limit points corresponding to regular chains via changes of coordi-
nates. The first method for computing such limits only works for regular chains in dimension
one. This method is based on a theorem from [70], which relates the Euclidean and Zariski
topologies. This theorem enables us to use analytic tools to solve our algebraic problem of
computing limit points corresponding to regular chains.

The new techniques proposed by the second method for computing limit points of regular
chains can handle cases where the results of our first method (based on Puiseux series expan-
sions) could not apply. One of the main ideas of our new results is to use a linear change
of coordinates to replace the input regular chain to one such that the computations of limit
points corresponding to the input regular chain can be done by means of standard operations
on regular chains. Nevertheless, our proposed techniques do not cover all possible cases and
the problem of finding limit points of quasi-components of regular chains remains unsolved.

The algorithm for computing limit points corresponding to regular chains of dimension one
is implemented in the AlgebraicGeometryTools subpackage [5] of the RegularChains
library which is available at www.regularchains.org. The function that implements the
latter algorithm is called LimitPoints. The command LimitPoints can compute both real and
complex limit points corresponding to regular chains of dimension one.

We have also implemened the Palgie algorithm for computing the regular chain C for a
given regular chain C under changes of variable orderings and linear changes of coordinates in

137

www.regularchains.org

138 Chapter 9. Conclusion

ChainTools subpackage of RegularChains library. The functions that implement the latter
algorithms are respectively called ChangeOfOrder and ChangeOfCoordinates.

9.2 Computing Puiseux expansions of bivariate polynomials
One of the essential tools for computing limit points corresponding to regular chains of dimen-
sion one is Puiseux series expansions of bivariate polynomials. For computing the Puiseux ex-
pansions of bivariate polynomials, we rely on the extended Hensel construction (EHC) method.
We have enhanced two steps of the EHC algorithm. First, we proposed a new method for
computing the Yun-Moses polynomials using Wronskian matrices. For an input bivariate poly-
nomial F(X,Y) with coefficients in a field k and total degree d, we show that the Yun-Moses
polynomials (needed when applying the EHC to F(X,Y)) can be computed within O(d3 M(d))
operations in k, where n 7−→ M(n) is a (polynomial) multiplication time [99]. In addition, we
exhibit a new strategy for performing the lifting steps so that the k-th lifting step of the EHC
applied to bivariate polynomial F(X,Y), can be computed within O(k d M(d)2) operations in k
(instead of O(k2 d M(d)2) in a direct approach) or within O(k d M(d)) operations in the algebraic
closure of k.

The EHC algorithm is used for factorizing univariate polynomials with power series coeffi-
cients. Our enhancement of the EHC computes all the linear factors in the factorization of such
polynomials within O(d3M(d) + k2 d M(d)) operations in C. In [51], H.T. Kung and J.F. Traub
propose a method for computing one of the linear factors of bivariate polynomials. Using the
method of Kung and Traub, the estimated time for computing all linear factors of F(X,Y) is
withinO(d2 k M(k)) (resp. O(d2 M(k))) operations over C, using a linear (resp. quadratic) lifting
scheme. Furthermore, by the improvments of the method of Kung and Traub, which is given by
D. V. Chudnovsky and G. V. Chudnovsky in [28], one can compute all the branches of F(X,Y)
within O(d2M(k)) operations over C.

The EHC currently uses a linear lifting scheme. The experimentation reported in Sec-
tion 3.5 show that, for problems of practical interest, an EHC implementation can outperform
counterparts based on the linear and quadratic lifting schemes of [51]. However, one interesting
question can be how to have a quadratic lifting scheme for the EHC algorithm.

The EHC method and the algorithm of Kung and Traub are implemented in PowerSeries
library. The functions for latter algorithms are respectively called ExtendedHenselConstruc-
tion and KungTraub. The PowerSeries library can be downloaded from www.regularchains.
org.

9.3 Computing tangent cones of space curves at their singu-
lar points

For computing tangent cones of space curves at their singular points, we have proposed an
algorithm based on computing the limit of the secant lines, which are the lines going through
the given singular point and an arbitrary moving point on the given space curve. The compu-
tation of limit of such secant lines is possible through the method of computing limit points
corresponding to regular chains of dimension one.

www.regularchains.org
www.regularchains.org

9.4. Computing limits of real multivariate rational functions 139

The function TangentCone implements this algorithm in the AlgebraicGeometryTools
subpackage [5] of the RegularChains library.

9.4 Computing limits of real multivariate rational functions
We have proposed an algorithm for computing limits of real multivariate rational functions
at the origin. We first assume that the origin is an isolated zero of the denominator of the
given rational function. To do so, we take advantage of the theory of regular chains and the
RealTriangularize algorithm for decomposing semi-algebraic systems. For computing limits of
real multivariate rational functions, when the origin is not an isolated zero of the denominator,
we describe several results including multivariate L’Hospital rule. However, the non-isolated
case is still work in progress.

The RationalFunctionLimit implements our algorithm for computing the limit of real mul-
tivariate rational functions at the origin, when the origin is an isolated zero of the denominator.
This function is integrated into AlgebraicGeometryTools subpackage of RegularChains
library.

Bibliography

[1] S. S. Abhyankar. Irreducibility criterion for germs of analytic functions of two complex
variables. Advances in Mathematics, 74(2):190 – 257, 1989.

[2] M.E. Alonso, T. Mora, G. Niesi, and M. Raimondo. An algorithm for computing an-
alytic branches of space curves at singular points. In Proc. of the 1992 International
Workshop on Mathematics Mechanization, pages 135–166. International Academic Pub-
lishers, 1992.

[3] P. Alvandi, M. Ataei, and M. Moreno Maza. On the extended Hensel construction and its
application to the computation of limit points. In Symbolic and Algebraic Computation,
International Symposium (ISSAC 2017), Kaiserslautern,Germany, 2017, preprint.

[4] P. Alvandi, C. Chen, A. Hashemi, and M. Moreno Maza. Regular chains under linear
changes of coordinates and applications. In Computer Algebra in Scientific Computing
- 17th International Workshop, CASC 2015, Aachen, Germany, September 14-18, 2015,
Proceedings, pages 30–44. Springer, 2015.

[5] P. Alvandi, C. Chen, S. Marcus, M. Moreno Maza, É. Schost, and P. Vrbik. Doing
algebraic geometry with the regularchains library. In Mathematical Software - ICMS
2014 - 4th International Congress, Seoul, South Korea, August 5-9, 2014. Proceedings,
pages 472–479. Springer, 2014.

[6] P. Alvandi, C. Chen, and M. Moreno Maza. Computing the limit points of the quasi-
component of a regular chain in dimension one. In Proc. of CASC, volume 8136, pages
30–45, 2013.

[7] P. Alvandi, M. Kazemi, and M. Moreno Maza. Computing limits with the
regularchains and powerseries libraries: From rational functions to zariski clo-
sure. In Proceedings of International Symposium on Symbolic and Algebraic Compu-
tation (ISSAC 2016), Waterloo, Canada, 2016. Refereed software.

[8] P. Alvandi, M. Kazemi, and M. Moreno Maza. Computing limits of real multivariate
rational functions. In Proc. of ISSAC, pages 39–46. ACM, 2016.

[9] P. Alvandi, M. Moreno Maza, É. Schost, and P. Vrbik. A standard basis free algorithm
for computing the tangent cones of a space curve. In Proc. of CASC, pages 45–60.
Springer, 2015.

140

BIBLIOGRAPHY 141

[10] C. Andradas and T. Recio. Plotting missing points and branches of real parametric
curves. Appl. Algebra Eng. Commun. Comput., 18(1-2):107–126, 2007.

[11] P. Aubry, D. Lazard, and M. Moreno Maza. On the theories of triangular sets. J. Symb.
Comput., 28(1-2):105–124, 1999.

[12] C. L. Bajaj and A. V. Royappa. Finite representations of real parametric curves and
surfaces. In Modeling in Computer Graphics, Methods and Applications [selection of
papers from the conference held at Genoa, Italy, on June 28-July 1, 1993], pages 347–
358. Springer, 1993.

[13] E. Becker, T. Mora, M. G. Marinari, and C. Traverso. The shape of the Shape Lemma.
In Proc. of ISSAC’94, pages 129–133. ACM, 1994.

[14] I. Bermejo and P. Gimenez. Saturation and Castelnuovo-Mumford regularity. J. Algebra,
303:592–617, 2006.

[15] L. Bernardin. On bivariate Hensel and its parallelization. In Proc. of ISSAC, pages
96–100. ACM, 1998.

[16] M. Bocher. The theory of linear dependence. Annals of Mathematics, Second Series,
2(1/4):81–96, 1900.

[17] F. Boulier, D. Lazard, F. Ollivier, and M. Petitot. Representation for the radical of a
finitely generated differential ideal. In Proc. of ISSAC, pages 158–166. ACM, 1995.

[18] F. Boulier, F. Lemaire, and M. Moreno Maza. Pardi! In Proc. of ISSAC, pages 38–47.
ACM, 2001.

[19] F. Boulier, F. Lemaire, and M. Moreno Maza. Well known theorems on triangular sys-
tems and the D5 principle. In Proc. of Transgressive Computing 2006, pages 79–91,
Granada, Spain, 2006.

[20] F. Boulier, F. Lemaire, and M. Moreno Maza. Computing differential characteristic sets
by change of ordering. J. Symb. Comput., 45(1):124–149, 2010.

[21] C. Cadavid, S. Molina, and J. D. Vélez. Limits of quotients of bivariate real analytic
functions. J. Symb. Comput., 50:197–207, 2013.

[22] C. Chen, J. H. Davenport, J. P. May, M. Moreno Maza, B. Xia, and R. Xiao. Triangular
decomposition of semi-algebraic systems. J. Symb. Comput., 49:3–26, 2013.

[23] C. Chen, J. H. Davenport, M. Moreno Maza, B. Xia, and R. Xiao. Computing with
semi-algebraic sets: Relaxation techniques and effective boundaries. J. Symb. Comput.,
52:72–96, 2013.

[24] C. Chen, O. Golubitsky, F. Lemaire, M. Moreno Maza, and W. Pan. Comprehensive
triangular decomposition. In Proc. of CASC, pages 73–101. Springer, 2007.

142 BIBLIOGRAPHY

[25] C. Chen and M. Moreno Maza. Algorithms for computing triangular decomposition of
polynomial systems. J. Symb. Comput., 47(6):610–642, 2012.

[26] C. Chen, M. Moreno Maza, B. Xia, and L. Yang. Computing cylindrical algebraic
decomposition via triangular decomposition. In Proc. of ISSAC, pages 95–102. ACM,
2009.

[27] S. C. Chou and X. S. Gao. A zero structure theorem for differential parametric systems.
J. Symb. Comput., 16(6):585–595, 1993.

[28] D. V. Chudnovsky and G. V. Chudnovsky. On expansion of algebraic functions in power
and Puiseux series, I. J. Complexity, 2(4):271–294, 1986.

[29] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. Spinger-Verlag, 1st
edition, 1992.

[30] D. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry. Graduate Text in Mathe-
matics, 185. Springer-Verlag, New-York, 1998.

[31] X. Dahan, X. Jin, M. Moreno Maza, and É. Schost. Change of order for regular chains
in positive dimension. Theor. Comput. Sci., 392(1-3):37–65, 2008.

[32] J. Della Dora, C. Dicrescenzo, and D. Duval. About a new method for computing in
algebraic number fields. In Proc. of EUROCAL’ 85, pages 289–290. Springer, 1985.

[33] D. Duval. Rational Puiseux expansions. Compos. Math., 70(2):119–154, 1989.

[34] D. Eisenbud. Commutative Algebra with a View toward Algebraic Geometry. Springer-
Verlag, New York, 1995.

[35] G. Fischer. Plane Algebraic Curves. American Mathematical Society, 2001.

[36] W. Fulton. Algebraic curves. Advanced Book Classics. Addison-Wesley, 1989.

[37] X. S. Gao, J. Van der Hoeven, C. M. Yuan, and G. L. Zhang. Characteristic set method
for differential-difference polynomial systems. J. Symb. Comput., 44(9):1137–1163,
2009.

[38] M. Giusti, K. Hägele, G. Lecerf, J. Marchand, and B. Salvy. The projective Nœther
Maple package: Computing the dimension of a projective variety. J. Symbolic Comput.,
30(3):291–307, 2000.

[39] G. M. Greuel and G. Pfister. A Singular Introduction to Commutative Algebra. Springer-
Verlag, Berlin, 2002.

[40] D. Gruntz. A new algorithm for computing asymptotic series. In Proc. of ISSAC, pages
239–244. ACM, 1993.

[41] D. Gruntz. On computing limits in a symbolic manipulation system. PhD thesis, ETZ
Zurich, 1996.

BIBLIOGRAPHY 143

[42] A. Hashemi. Efficient algorithms for computing Nœther normalization. In Asian Sym-
posium on Computer Mathematics (ASCM 2007), volume 5081 of Lecture Notes in Ar-
tificial Intelligence, pages 97–107. Springer, 2007.

[43] A. Hashemi. Effective computation of radical of ideals and its application to invariant
theory. In Proc. of ICMS, volume 8592 of Lect. Notes Comput. Sci., pages 382–389.
Springer, 2014.

[44] D. L. Hilliker and E. G. Straus. Determination of bounds for the solutions to those
binary diophantine equations that satisfy the hypotheses of Runge’s theorem. Trans.
AMS, 280(2):637–657, 1983.

[45] E. Hubert. Factorization-free decomposition algorithms in differential algebra. J. Symb.
Comput., 29(4-5):641–662, 2000.

[46] D. Inaba. Factorization of multivariate polynomials by extended Hensel construction.
SIGSAM Bull., 39(1):2–14, March 2005.

[47] D. Inaba and T. Sasaki. A numerical study of extended Hensel series. In Symbolic-
Numeric Computation, SNC 2007, International Workshop, 25-27 July 2007, University
of Western Ontario, London, Ontario, Canada, pages 103–109. ACM, 2007.

[48] M. Iwami. Analytic factorization of the multivariate polynomial. Proc. of CASC, pages
213–225, 2003.

[49] M. Kalkbrener. Algorithmic properties of polynomial rings. J. Symb. Comput.,
26(5):525–581, 1998.

[50] T. Krick and A. Logar. An algorithm for the computation of the radical of an ideal in the
ring of polynomials. In Applied Algebra, Algebraic Algorithms and Error-Correcting
Codes (AAECC 1991), volume 539 of Lect. Notes Comput. Sci., pages 195–205, 1991.

[51] H. T. Kung and J. F. Traub. All algebraic functions can be computed fast. J. ACM,
25(2):245–260, 1978.

[52] T. Kuo. Generalized NewtonPuiseux theory and Hensel’s lemma in C[x, y]. Canad. J.
Math., 41:1101–1116, 1989.

[53] S. Landau and G. L. Miller. Solvability by radicals is in polynomial time. In Proceedings
of the Fifteenth Annual ACM Symposium on Theory of Computing, STOC ’83, pages
140–151. ACM, 1983.

[54] G. R. Lawlor. A L’Hospital’s rule for multivariable functions. ArXiv e-prints, August
2012.

[55] D. Lazard and F. Rouillier. Solving parametric polynomial systems. J. Symb. Comput.,
42(6):636–667, 2007.

[56] G. Lecerf. Computing the equidimensional decomposition of an algebraic closed set by
means of lifting fibers. J. of Complexity, 19(4):564–596, 2003.

144 BIBLIOGRAPHY

[57] F. Lemaire, M. Moreno Maza, W. Pan, and Y. Xie. When does 〈T 〉 equal sat(T)? J.
Symb. Comput., 46(12):1291–1305, 2011.

[58] F. Lemaire, M. Moreno Maza, and Y. Xie. The RegularChains library. In Maple 10,
Maplesoft, Canada, 2005. Refereed software.

[59] Arjen K. Lenstra. Factoring multivariate polynomials over algebraic number fields.
SIAM Journal on Computing, 16(3):591–598, 1987.

[60] A. Logar. A computational proof of the Noether normalization lemma. In Applied
Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC 1988), volume
357 of Lect. Notes Comput. Sci., pages 259–273, 1988.

[61] B. Mannaa and T. Coquand. Dynamic Newton-Puiseux theorem. arxiv::1304.6770v2,
2013.

[62] S. Marcus, M. Moreno Maza, and P. Vrbik. On Fulton’s algorithm for computing in-
tersection multiplicities. In Computer Algebra in Scientific Computing, pages 198–211.
Springer Berlin Heidelberg, 2012.

[63] J. Maurer. Puiseux expansion for space curves. Manuscripta Math., 32:91–100, 1980.

[64] J.W. Milnor. Singular Points of Complex Hypersurfaces. Annals of mathematics studies.
Princeton University Press, 1968.

[65] F. Mora. An algorithm to compute the equations of tangent cones. In Jacques Calmet,
editor, Computer Algebra, volume 144 of Lecture Notes in Computer Science, pages
158–165. Springer Berlin Heidelberg, 1982.

[66] T. Mora, C. Traverso, and G. Pfister. An introduction to the tangent cone algorithm
issues in robotics and non-linear geometry. Advances in Computing Research, 6:199–
270, 1992.

[67] M. Moreno Maza and R. Rioboo. Polynomial gcd computations over towers of alge-
braic extensions. In Applied Algebra, Algebraic Algorithms and Error-Correcting Codes
(AAECC 1995), volume 948 of Lect. Notes Comput. Sci., pages 365–382, 1995.

[68] M. Moreno Maza, B. Xia, and R. Xiao. On solving parametric polynomial systems.
Mathematics in Computer Science, 6(4):457–473, 2012.

[69] J. Moses and D.Y.Y. Yun. The EZ-GCD algorithm. In Proceedings of the ACM Annual
Conference, ACM ’73, pages 159–166. ACM, 1973.

[70] D. Mumford. The Red Book of Varieties and Schemes. Springer-Verlag, 2nd edition,
1999.

[71] J. R. Munkres. Topology. Prentice Hall, 2nd edition, 2000.

[72] A. Parusiński and G. Rond. The Abhyankar-Jung theorem. J. Algebra, 365:29–41, 2012.

BIBLIOGRAPHY 145

[73] A. Poteaux and M. Rybowicz. Improving complexity bounds for the computation of
Puiseux series over finite fields. In Proc. of ISSAC, pages 299–306. ACM, 2015.

[74] Guénaël Renault and Kazuhiro Yokoyama. A modular method for computing the split-
ting field of a polynomial. In Proceedings of the 7th International Conference on Algo-
rithmic Number Theory, ANTS’06, pages 124–140, Berlin, Heidelberg, 2006. Springer-
Verlag.

[75] Guénaël Renault and Kazuhiro Yokoyama. Multi-modular algorithm for computing
the splitting field of a polynomial. In Symbolic and Algebraic Computation, Interna-
tional Symposium, ISSAC 2008, Linz/Hagenberg, Austria, July 20-23, 2008, Proceed-
ings, pages 247–254, 2008.

[76] R. Rioboo. Real algebraic closure of an ordered field: Implementation in Axiom. In
ISSAC, pages 206–215. ACM, 1992.

[77] J. F. Ritt. Differential Equations from an Algebraic Standpoint, volume 14. American
Mathematical Society, 1932.

[78] D. Robertz. Noether normalization guided by monomial cone decompositions. J. Symb.
Comput., 44:1359–1373, 2009.

[79] F. Rouillier. Solving zero-dimensional systems through the rational univariate represen-
tation. Appl. Algebra Eng. Commun. Comput., 9(5):433–461, 1999.

[80] B. Salvy and J. Shackell. Symbolic asymptotics: Multiseries of inverse functions. J.
Symb. Comput., 27(6):543–563, 1999.

[81] T. Sasaki and D. Inaba. Enhancing the extended Hensel construction by using Gröbner
bases. In Proc. of CASC, volume 9890, pages 457–472. Springer, 2016.

[82] T. Sasaki and F. Kako. Solving multivariate algebraic equation by Hensel construction.
Japan Journal of Industrial and Applied Mathematics, 1999.

[83] T. Sasaki and S. Yamaguchi. An analysis of cancellation error in multivariate Hensel
construction with floating-point number arithmetic. In Proc. of ISSAC, pages 1–8. ACM,
1998.

[84] W. M. Seiler. A combinatorial approach to involution and δ-regularity II: Structure
analysis of polynomial modules with Pommaret bases. Appl. Alg. Eng. Comm. Comp.,
20:261–338, 2009.

[85] J. R. Sendra. Normal Parametrizations of Algebraic Plane Curves. J. Symb. Comput,
33(6):863 – 885”, 2002.

[86] J. R. Sendra, D. Sevilla, and C. Villarino. Covering of surfaces parametrized without
projective base points. In Proc. of ISSAC, pages 375–380. ACM, 2014.

[87] J. R. Sendra, D. Sevilla, and C. Villarino. Covering rational ruled surfaces. CoRR,
abs/1406.2140, 2014.

146 BIBLIOGRAPHY

[88] J. R. Sendra, C. Villarino, and D. Sevilla. Missing sets in rational parametrizations of
surfaces of revolution. Computer-Aided Design, 66:55–61, 2015.

[89] A. S. Sertöz. Continuity of multivariate rational functions. arXiv:1403.7434, 2010.

[90] I. R. Shafarevich. Basic algebraic geometry. 1. Springer-Verlag, Berlin, second edition,
1994.

[91] T. Shimoyama and K. Yokoyama. Localization and primary decomposition of polyno-
mial ideals. J. Symb. Comput., 22(3):247–277, 1996.

[92] A. J. Sommese and J. Verschelde. Numerical homotopies to compute generic points on
positive dimensional algebraic sets. J. Complexity, 16(3):572–602, 2000.

[93] B. M. Trager. Algebraic factoring and rational function integration. In Proceedings
of the Third ACM Symposium on Symbolic and Algebraic Computation, SYMSAC ’76,
pages 219–226. ACM, 1976.

[94] K. Tsuji. An improved ez-gcd algorithm for multivariate polynomials. J. Symb. Comput.,
44(1):99–110, 2009.

[95] M. van Hoeij. An algorithm for computing an integral basis in an algebraic function
field. J. Symb. Comput., 18(4):353 – 363, 1994.

[96] I. B. Vapnyarskii. Encyclopedia of Mathematics, chapter Lagrange multipliers. Springer.

[97] W. V. Vasconcelos. Computational Methods in Commutative Algebra and Algebraic
Geometry. Springer-Verlag, 1998.

[98] J. D. Vélez, J. P. Hernández, and C. A. Cadavid. Limits of quotients of real polynomial
functions of three variables. ArXiv e-prints, April 2016.

[99] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University
Press, 2 edition, 2003.

[100] P. Vrbik. Computing Intersection Multiplicity via Triangular Decomposition. PhD the-
sis, The University of Western Ontario, 2014.

[101] R. J. Walker. Algebraic Curves. Springer-Verlag, 1978.

[102] D. K. Wang. The Wsolve package. http://www.mmrc.iss.ac.cn/∼dwang/wsolve.html.

[103] D. M. Wang. Epsilon 0.618. http://www-calfor.lip6.fr/∼wang/epsilon.

[104] S. J. Xiao and G. X. Zeng. Determination of the limits for multivariate rational functions.
Science China Mathematics, 57(2):397–416, 2014.

[105] L. Yang, X. R. Hou, and B. Xia. A complete algorithm for automated discovering of a
class of inequality-type theorems. Science in China, Series F, 44(1):33–49, 2001.

[106] W. H. Young. On indeterminate forms. In Proc. London Math. Soc., volume 8, pages
40–76, 1910.

Curriculum Vitae

Name: Parisa Alvandi

Post-Secondary The University of Western Ontario
Education and London, Ontario, Canada
Degrees: Ph.D. Computer Science, May 2017

Isfahan University Of Technology
Khomeyni Shahr, Isfahan, Iran
M.Sc. Pure Mathematics (Geometry), August 2011

K. N. Toosi University of Technology
Tehran, Tehran, Iran
B.Sc. Pure Mathematics, August 2009

Related Work Internship
Experience: Maplesoft incorporation, Waterloo, Ontario, Canada

July 2013 - October 2013

Research and Teaching Assistant
The University of Western Ontario
2012 - 2017

Research Assistant
Isfahan University Of Technology
2009 - 2011

147

Publications: Parisa Alvandi, Masoud Ataei, Marc Moreno Maza.
On the extended Hensel construction and its application to
the computation of limit points, ISSAC ’17.

Parisa Alvandi, Mahsa Kazemi, Marc Moreno Maza.
Computing Limits of Real Multivariate Rational Functions ISSAC ’16.

Parisa Alvandi, Mahsa Kazemi, Marc Moreno Maza.
Computing Limits with the RegularChains and PowerSeries libraries:
From Rational Functions to Zariski Closure, ISSAC ’16.

Parisa Alvandi, Marc Moreno Maza.
Real limit points of quasi-componenets of regular chains, ISSAC ’16.

Parisa Alvandi, Changbo Chen, Amir Hashemi, Marc Moreno Maza.
Regular Chains under Linear Changes of Coordinates and
Applications , CASC 2015.

Parisa Alvandi, Marc Moreno Maza, Éric Schost, Paul Vrbik.
A Standard Basis Free Algorithm for Computing the Tangent Cones of
a Space Curve, CASC 2015.

Parisa Alvandi, Changbo Chen, Steffen Marcus,
Marc Moreno Maza, Éric Schost, Paul Vrbik.
Doing Algebraic Geometry with the RegularChains Library, ICMS 2014.

Parisa Alvandi, Changbo Chen, Marc Moreno Maza.
Computing the Limit Points of the Quasi-component of
a Regular Chain in Dimension One , CASC 2013.

Parisa Alvandi, Amir Hashemi.
Applyling Buchberger’s Criteria for Computing Gröbner Bases over
Finite Chain Rings, Journal of Algebra and its Applications 2013.

Parisa Alvandi, Amir Hashemi.
Detecting Unnecessary Reductions in Gröbner Bases
over Galois Rings , Proceeding of the 42nd Annual
Iranian Mathematics Conference, 2011.

Software AlgebraicGeometryTools subpackage of RegularChains library
Packages: implemented in Maple, http://www.regularchains.org/

PowerSeries library
implemented in Maple, http://www.regularchains.org/

148

http://www.regularchains.org/
http://www.regularchains.org/

	Computing Limit Points of Quasi-components of Regular Chains and its Applications
	Recommended Citation

	Abstract
	Acknowlegements
	List of Algorithms
	List of Figures
	List of Tables
	Overview
	Goals
	Thesis accomplishments
	Computing limit points of quasi-components of regular chains of dimension one.
	Improving the extended Hensel construction.
	Computing the real limit points of the quasi-component of a regular chain of dimension one.
	Studying regular chains under changes of coordinates.
	Introducing new tools for computing tangent cones of space curves.
	Computing limit of real multivariate rational functions.
	Separating the real and complex branches of space curves.
	Thesis contribution in RegularChains and PowerSeries libraries.

	Contribution statement
	Thesis outline

	Background and Related Work
	Solving polynomial systems
	Limit points

	Power series and Puiseux expansions
	The problem and related work

	Extended Hensel Construction
	Introduction
	Extended Hensel construction
	Extended Hensel construction of multivariate polynomials
	Complete factorization in C("426830A Y* "526930B)[X]

	On the Yun-Moses polynomials
	Computing the W
	Complexity analysis

	Lifting the factors
	Complexity analysis

	Experimentation

	Computing Limit Points via Puiseux Series Expansions
	Introduction
	Preliminaries
	Basic techniques

	Puiseux expansions of a regular chain
	Puiseux parametrization in finite accuracy
	Computing in finite accuracy
	Accuracy estimates
	Algorithm
	Experimentation
	Concluding remarks

	Real Limit Points of Space Curves
	Introduction
	Real limit points
	Real branches of bivariate polynomials
	Real branches of space curves

	Experimentation

	Computing Limit Points via Changes of Coordinates
	Introduction
	Preliminaries
	Algorithm for linear change of coordinates
	The PALGIE algorithm for the prime case
	Regularity test in IsRegular(p, C, R)
	The PALGIE algorithm for linear change of coordinates

	Noether normalization and regular chains
	Applications of random linear changes of coordinates
	On the computation of lim(W(T)) and sat(T)
	Conclusion

	Tangent Cones of Space Curves
	Introduction
	Preliminaries
	Tangent cone of a space curve
	Regular chains

	Computing intersection multiplicities in higher dimension
	Computing tangent lines as limits of secants
	An algorithmic principle
	Algorithm
	Equations of tangent cones
	Examples

	Conclusion

	Computing Limits of Multivariate Rational Functions
	Introduction
	Preliminaries
	Lagrange multipliers
	Regular chain theory
	Parametric polynomial systems
	Triangular decomposition of semi-algebraic sets
	Puiseux series

	Basic lemmas
	Main Algorithm
	Optimizations
	Limits of multivariate rational functions: general case
	Experimentation
	Conclusion

	Conclusion
	Computing limit points of quasi-components of regular chains
	Computing Puiseux expansions of bivariate polynomials
	Computing tangent cones of space curves at their singular points
	Computing limits of real multivariate rational functions

