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Abstract
Histology of the microvasculature depicts detailed characteristics relevant to tissue perfusion.
One important histologic feature is the smooth muscle component of the microvessel wall,
which is responsible for controlling vessel caliber. Abnormalities can cause disease and or-
gan failure, as seen in hypertensive retinopathy, diabetic ischemia, Alzheimer’s disease and
improper cardiovascular development. However, assessments of smooth muscle cell content
are conventionally performed on selected fields of view on 2D sections, which may lead to
measurement bias. We have developed a software platform for automated (1) 3D vascular re-
construction, (2) detection and segmentation of muscularized microvessels, (3) classification of
vascular subtypes, and (4) simulation of function through blood flow modeling. Vessels were
stained for α-actin using 3,3’-Diaminobenzidine, assessing both normal (n=9 mice) and regen-
erated vasculature (n=5 at day 14, n=4 at day 28). 2D locally adaptive segmentation involved
vessel detection, skeletonization, and fragment connection. 3D reconstruction was performed
using our novel nucleus landmark-based registration. Arterioles and venules were categorized
using supervised machine learning based on texture and morphometry. Simulation of blood
flow for the normal and regenerated vasculature was performed at baseline and during demand
based on the structural measures obtained from the above tools. Vessel medial area and vessel
wall thickness were found to be greater in the normal vasculature as compared to the regener-
ated vasculature (p < 0.001) and a higher density of arterioles was found in the regenerated
tissue (p < 0.05). Validation showed: a Dice coefficient of 0.88 (compared to manual) for
the segmentations, a 3D reconstruction target registration error of 4 µm, and area under the
receiver operator curve of 0.89 for vessel classification. We found 89% and 67% decreases in
the blood flow through the network for the regenerated vasculature during increased oxygen
demand as compared to the normal vasculature, respectively for 14 and 28 days post-ischemia.
We developed a software platform for automated vasculature histology analysis involving 3D
reconstruction, segmentation, and arteriole vs. venule classification. This advanced the knowl-
edge of conventional histology sampling compared to whole slide analysis, the morphological
and density differences in the regenerated vasculature, and the effect of the differences on blood
flow and function.

Keywords: Microvasculature, Regeneration, Vascular Smooth Muscle, Whole-slide Imag-
ing, Histology, Immunohistochemistry, Reconstruction, Simulation, Segmentation, Machine
Learning

i



Co-Authorship Statement

This thesis is presented in an integrated article format, the chapters of which are based on the
following publications that are either published or in preparation for submission. My contribu-
tions to the first author peer-reviewed manuscripts included all aspects of the studies, including
manuscript preparation and submission. Specifically, this involved algorithm development, de-
signing research questions, and implementing experiments, as well as drafting, revising, and
submission of all manuscripts. The work was performed under the supervision of Dr. Aaron
Ward and Dr. J. Geoffrey Pickering who provided ongoing guidance and were responsible for
study conception, defining the research questions, designing and analyzing the experiments;
interpreting the results and drafting the manuscript. The histological tissues were processed
by Caroline O’Neil, Hao Yin, and Zengxuan Nong. For each manuscript contained in this the-
sis, all other co-authors contributed to reviewing and editing the manuscript and their specific
contributions are described below.

Chapter 2 is an original research article entitled “A method for 3D histopathology recon-
struction supporting mouse microvasculature analysis” and was published in PlosONE in May
2015. This manuscript was co-authored by J. Geoffrey Pickering, Zengxuan Nong, Eli Gib-
son, John-Michael Arpino, Hao Yin, and Aaron Ward. Zengxuan Nong, John-Michael Arpino,
and Hao Yin aided in the procurement of samples, histological processing and interpretation
of the results. Eli Gibson provided an implementation for registration error calculation and
interpretation of the results.

Chapter 3 is an original research article entitled “Segmentation of digitized histological
sections for quantification of the muscularized vasculature in the mouse hind limb” and was
published in the Journal of Microscopy in February 2017. This manuscript was co-authored
by J. Geoffrey Pickering, Zengxuan Nong, and Aaron Ward. Zengxuan Nong aided in the
procurement of samples and histological processing.

Chapter 4 is an original research article entitled “Differentiation of arterioles from venules
in mouse histology images using machine learning” and was published in the Journal of Med-
ical Imaging in February 2017. This manuscript was co-authored by J. Sachi Elkerton, J. Ge-
offrey Pickering, and Aaron Ward. As the joint first author, J. Sachi Elkerton was involved in
designing and analyzing the experiments; interpreting the results and drafting the manuscript.

Chapter 5 titled “High throughput analysis of microvascular smooth muscle reveals defi-
cient wrapping and impaired blood flow reserve” involved J. Geoffrey Pickering, Daniel Gold-
man, Zengxuan Nong, and Aaron Ward. Daniel Goldman provided an implementation for the
blood flow simulation, aided in designing research experiments, and interpretation of the re-
sults. Zengxuan Nong aided in the procurement of samples and histological processing.

ii



Acknowlegements

This work would not have been possible without the support of the following individuals.
I am exceptionally grateful to both my supervisors, both of whom provided different per-

spectives, insights and mentorship. Dr. Aaron Ward not only provided detailed directions on
the projects but has gone above and beyond in mentorship, such that I am not only a stronger
researcher but a professional with valuable communication skills. Dr. Geoffrey Pickering’s
dedication and passion for discovery is unparalleled. I always come out of our brainstorming
sessions with more insights to pursue.

I would like to thank the members of my advisory committee. I am grateful for Dr. Aaron
Fenster’s guidance and support throughout my studies. His pursuit of innovation and his con-
fidence in my expertise was very motivating. Dr. Daniel Goldman provided expert guidance
when he came on my advisory committee for which I am grateful for. I would also like to thank
Dr. Charles McKenzie for his guidance from the very start of my graduate degree.

This collaborative project has given me the opportunity to interact with groups of remark-
ably perceptive and thoughtful colleagues both at the Baines Imaging Laboratory and Robarts
and Research Institute. This ability to communicate with individuals from different scientific
backgrounds was the key to the success of the projects. I could brainstorm around solutions to
software but also fundamental processes in vascular biology.

Members of the department of Medical Biophysics are a very intellectual and supportive
group. I cannot enumerate the number of people whom I’ve had a positive interaction with
throughout these past years.

I would also like to thank my family and friends for always providing me with their kind-
ness and support.

iii



Contents

Abstract i

Co-Authorship Statement ii

Acknowlegements iii

List of Figures viii

List of Tables xiii

List of Appendices xiv

List of Abbreviations xv

1 Introduction 1
1.1 Vasculature development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Vasculogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Arteriogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Angiogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.4 The mature vasculature . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Vascular disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Atherosclerosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Current treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Diagnostic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Post-ischemic regeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Hind limb ischemia model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.1 Surgical ligation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.2 Assessment of the ischemia model . . . . . . . . . . . . . . . . . . . . 11

1.5 Role and regulation of SMC Function . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Vascular assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6.1 Micro CT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6.2 Vascular Casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6.3 Frozen section block face imaging . . . . . . . . . . . . . . . . . . . . 15
1.6.4 Confocal microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6.5 Immunohistochemistry . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Stain standardization . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
IHC assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

iv



1.7 Image Analysis Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.7.1 Image registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.7.2 Image segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.7.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.8 State of the Art in Histology Image Analysis . . . . . . . . . . . . . . . . . . . 28
1.9 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Chapter 2: A method for 3D histopathology reconstruction supporting
mouse microvasculature analysis . . . . . . . . . . . . . . . 31

Chapter 3: Segmentation of digitized histological sections for quan-
tification of the muscularized vasculature in the mouse hind
limb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Chapter 4: Differentiation of arterioles from venules in mouse histol-
ogy images using machine learning . . . . . . . . . . . . . . 32

Chapter 5: High content analysis of the microvasculature in the post-
ischemic skeletal muscle reveals the emergence of abnor-
mally thin-walled arteries and arterioles: Implications for
flow reserve in regenerated muscle . . . . . . . . . . . . . . 32

2 A method for 3D histopathology reconstruction supporting mouse microvascu-
lature analysis 46
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.2.1 Animal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Ethics Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2.2 Image registration and validation approach . . . . . . . . . . . . . . . . 50
2.2.3 Experimental methods . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2.4 Intensity-based registration . . . . . . . . . . . . . . . . . . . . . . . . 54
2.2.5 Nucleus feature extraction, correspondence, and registration . . . . . . 54

Evaluation of registration accuracy . . . . . . . . . . . . . . . . . . . . 58
Evaluation of image similarity metrics . . . . . . . . . . . . . . . . . . 59

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.1 Vessel reconstruction properties . . . . . . . . . . . . . . . . . . . . . 60

Registration technique comparisons . . . . . . . . . . . . . . . . . . . 62
2.3.2 Evaluation of registration accuracy . . . . . . . . . . . . . . . . . . . . 62
2.3.3 Evaluation of image similarity metrics . . . . . . . . . . . . . . . . . . 66

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.4.1 Evaluation of registration accuracy . . . . . . . . . . . . . . . . . . . . 69
2.4.2 Evaluation of image similarity metrics . . . . . . . . . . . . . . . . . . 72
2.4.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3 Segmentation of digitized histological sections for quantification of the muscu-
larized vasculature in the mouse hind limb 78
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.1.1 Previous Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

v



3.1.2 Our Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3.1 Vessel Fragment Detection . . . . . . . . . . . . . . . . . . . . . . . . 84
3.3.2 Vessel Fragment Connection . . . . . . . . . . . . . . . . . . . . . . . 86
3.3.3 Locally Adaptive Segmentation Refinement . . . . . . . . . . . . . . . 87

3.4 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.4.1 Evaluation of Segmentation Accuracy . . . . . . . . . . . . . . . . . . 88
3.4.2 Field of View Sampling Simulation . . . . . . . . . . . . . . . . . . . 89
3.4.3 Vessel Measurement and Statistical Analysis . . . . . . . . . . . . . . . 89

3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.5.1 Segmentation Validation . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.5.2 Field of View Sampling Simulation . . . . . . . . . . . . . . . . . . . 95

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.6.1 Whole-slide Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.6.2 Segmentation Validation . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.6.3 Field of View Sampling Simulation . . . . . . . . . . . . . . . . . . . 99
3.6.4 Biological Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.6.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4 Differentiation of Arterioles from Venules in Mouse Histology Images Using
Machine Learning 106
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.2.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.2.2 Methods overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.2.3 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.2.4 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.2.5 Supervised machine learning . . . . . . . . . . . . . . . . . . . . . . . 111
4.2.6 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.2.7 Classifier Confidence . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.2.8 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.3.1 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.3.2 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5 Muscularized microvascular analysis 132
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.2.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.2.2 Vessel segmentation summary . . . . . . . . . . . . . . . . . . . . . . 135
5.2.3 Vascular measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 135

vi



5.2.4 Blood flow simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.2.5 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.3.1 Increase in density of muscularized vasculature . . . . . . . . . . . . . 137
5.3.2 Decrease in vascular SMC wrapping in regenerated skeletal muscle . . 138
5.3.3 Lower blood flow in the regenerated arteriolar network . . . . . . . . . 142

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6 Conclusions and Future Directions 152
6.1 Thesis contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.1.1 Technological advancements . . . . . . . . . . . . . . . . . . . . . . . 153
A 3D histology reconstruction algorithm was developed using intrinsic

landmarks within the tissue, which results in more accurate
registration compared to conventional intensity based regis-
tration for tissue reconstruction. . . . . . . . . . . . . . . . . 153

An automated segmentation algorithm for the muscularized microvas-
culature was developed for examining the distribution of vas-
cular morphology in a biological system. . . . . . . . . . . . 154

A machine learning platform was developed to separate arterioles from
the rest of the vasculature automatically for analysis. . . . . . 155

6.1.2 Knowledge advancements . . . . . . . . . . . . . . . . . . . . . . . . 155
How does conventional field of view sampling compare to our devel-

oped 2D whole tissue section analysis, with respect to vascu-
lar assessment? . . . . . . . . . . . . . . . . . . . . . . . . . 155

What are the main differences in smooth muscle cell content in the post
ischemic arteriolar microvasculature compared to the normal
tissue? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

How do these structural differences affect blood flow and function? . . . 156
6.2 Applications and future directions . . . . . . . . . . . . . . . . . . . . . . . . 157

6.2.1 Vascular analysis in different organs and stains . . . . . . . . . . . . . 157
6.2.2 Adaptation of developed techniques for additional applications . . . . . 157
6.2.3 Potential applications for immunohistochemistry (IHC) analysis . . . . 158

6.3 Remaining gaps in automated histology analysis . . . . . . . . . . . . . . . . . 159

A Permission for Reproduction of Scientific Articles 164

B Curriculum Vitae 172

Curriculum Vitae 172

vii



List of Figures

1.1 Vessel wall components of the (a) endothelial tube, (b) capillary, (d) arteri-
ole and venule, as well as the wall of larger vessels (d). Adapted from Jian,
2003. Nature medicine by Nature Publishing Company Reproduced with per-
mission of NATURE PUBLISHING GROUP in the format Republish in a the-
sis/dissertation via Copyright Clearance Center. . . . . . . . . . . . . . . . . . 2

1.2 Stages of vascular development including vasculogenesis, arteriogenesis and
angiogenesis. Adapted from Herbert et al. 2011. Nature Reviews Molec-
ular Cell Biology by Nature Publishing Company Reproduced with permis-
sion of NATURE PUBLISHING GROUP in the format Republish in a the-
sis/dissertation via Copyright Clearance Center. . . . . . . . . . . . . . . . . . 3

1.3 Vascular and skeletal muscle structure after hind limb ischemia (HLI, right pan-
els) as compared to the control (left panels). A (artery) and V (vein) in (a,b)
indicates the collateral vessels. Multicellular infiltrations reside in the location
of the arrowhead in (d), where there are also muscle cells without nuclei. There
is an increase in capillary density post ischemia within the skeletal muscle tis-
sue (e,f). Scale bars: 100µm. Adapted from Limbourg et al. 2009. Nature
Protocols by Nature Publishing Company Reproduced with permission of NA-
TURE PUBLISHING GROUP in the format Republish in a thesis/dissertation
via Copyright Clearance Center. . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Micro-CT angiograms of Matrigel implants. Adapted from Frontini et al. 2011.
Nature biotechnology by Nature Publishing Company Reproduced with per-
mission of NATURE PUBLISHING GROUP in the format Republish in a the-
sis/dissertation via Copyright Clearance Center. . . . . . . . . . . . . . . . . . 14

1.5 Fluorescent confocal images of vascular constructs stained for the endothelium
and vascular smooth muscle of the vessel wall. Adapted from Frontini et al.
2011. Nature biotechnology by Nature Publishing Company Reproduced with
permission of NATURE PUBLISHING GROUP in the format Republish in a
thesis/dissertation via Copyright Clearance Center. . . . . . . . . . . . . . . . 17

1.6 Immunohistochemistry targeting vascular smooth muscle in the mouse hind
limb with the arteriole and venules indicated by the arrows. . . . . . . . . . . 18

1.7 First order intensity measure (mean) and second order texture measure (unifor-
mity) of a synthetic dataset. The uniformity is decreasing from left to right and
the mean is increasing, where the middle panels are indistinguishable by the
first order intensity measure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

viii



2.1 Regenerated hind limb tissue following ischemic damage. The tissue was
immunostained with smooth muscle α-actin and DAB chromogen and counter-
stained with hematoxylin. Blue arrows indicate nuclei and black arrows indi-
cate the stained arteriole. Scale bar (A) 500 µm, (B) 100µm. . . . . . . . . . . . 50

2.2 Diagram depicting the registration methods. The flow diagram in (A) de-
picts the overall experimental process, with (B) and (C) giving exploded views
of the intensity-based and nucleus-based registration steps. Both approaches
were initialized with a rigid, low-resolution intensity-based registration. The
intensity-based registrations (B) were done using a standard iterative optimiza-
tion loop. The nucleus-based registration (C) was computed non-iteratively in
closed form based on automatically segmented and corresponded nucleus land-
marks. Both methods were executed pairwise on each adjacent section pair, and
as a final step these pairwise registrations were composed to form the final 3D
reconstructed volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3 Comparison of the alignment of bisected nuclei when measuring the accu-
mulated registration error. (A) The ideal error-free reference reconstruction,
with bisected nuclei aligned with minimum residual error (a pairwise target reg-
istration error between corresponding halves of bisected nuclei of zero is de-
picted). (B) A reconstruction aligning nuclei with spatially unbiased error; but
vessel connectedness (topology) and angle (geometry) are mostly conserved.
(C) A reconstruction optimizing pairwise alignment of salient structures (the
vessel cross sections in this example) preserves vessel topology but not geom-
etry. Note that the pairwise target registration errors in (B) and (C) are similar,
despite the lack of geometry preservation in C. The accumulated target regis-
tration error does capture the difference between (B) and (C); the plots in the
bottom row indicate increasing accumulated error through the stack of sections. 53

2.4 Separate set of mouse hind limb tissues that were not used for the experiments
reported in this chapter. These tissues were used to determine nucleus size and
colour for nucleus extraction. Scale bar 100 µm. . . . . . . . . . . . . . . . . . 55

2.5 Nucleus segmentation method. (A) The segmented nucleus labeled blue on
the histology section stained with DAB and hematoxylin counter stain. (B) The
surrounding region (white) of each nucleus was defined by morphological di-
lation and used to evaluate whether the extracted nucleus was within the tissue,
or was instead a false positive corresponding to debris on a white background
outside of the tissue, indicated with the white arrows. Scale bar 50 µm. . . . . . 56

ix



2.6 Nucleus correspondence method. (An illustration depicting the approach
to establishing correspondence of nucleus p in section I with its best match-
ing nucleus in adjacent section J. In this example, the candidate nuclei on
section J are p′, q1, and q2, lying within a dashed circle of radius T cen-
tred on p (only 3 of the 18 candidate nuclei within the circle are illustrated
here for simplicity). The candidate nucleus with the most similar surrounding
tissue appearance is selected to correspond to p. Surrounding tissue appear-
ance similarity is measured using the MSE image similarity metric, compar-
ing the local square region I(p) centered on p with the local square regions
J(p′), J(q1), and J(q2) centered on the candidates p′, q1, and q2. In this ex-
ample, since MS E(I(p), J(p′)) < MS E(I(p), J(q1)) and MS E(I(p), J(p′)) <
MS E(I(p), J(q2)), p is corresponded with p′. . . . . . . . . . . . . . . . . . . 57

2.7 3D and 2D histology comparisons. 2D histology sections (pixel size 0.25
µm × 0.25 µm) and corresponding 3D reconstruction (voxel size of 0.25 µm×
0.25 µm× 5 µm) of serial histology sections of a normal (A-D) and regener-
ated mouse (E-H) TA post-femoral artery excision, immunostained for smooth
muscle alpha-actin. A and E are registered using affine intensity based regis-
tration. B and F are registered using affine nucleus based registration. Within
each column, the dashed lines indicate correspondence (according to colour)
between parts of the 2D sections and their locations on the 3D views. Also
within each column, the lower case letter labels indicate correspondence be-
tween vessel cross sections on the 2D sections and their homologous locations
within the 3D views. Blue arrows indicate incorrect vessel wall discontinuities
arising from reconstruction error. The insets in the red boxes show 2D and
3D diameter measurements of the same vessel; note that the 2D measurement
overestimates the 3D measurement by a factor of > 6. Scale bars 100 µm. . . . 61

2.8 Registration accuracy measurement values. Box plots of the rigid and affine
target registration error (TRE) computed for each adjacent pair of sections
(pairwise) and propagated throughout the 3D reconstruction (accumulated). . . 65

3.1 Mouse hind limb tissue immunostained with an antibody to smooth muscle
α-actin and DAB chromogen and counter-stained with hematoxylin. . . . . . . 81

3.2 A block diagram depicting each step in the automated vessel segmentation al-
gorithm starting with whole slide histology images and resulting in vessel wall
contours and measurements. The main steps include vessel fragment detection
(a), vessel fragment connection (b), locally adaptive segmentation refinement
(c) and vessel measurement (d). . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.3 Colour deconvolution of the immunostained bright field image (a) separating
the haematoxylin (b) and DAB (c) channel, also shown in grayscale (d). . . . . 85

3.4 Vessel fragment component connection for locally adaptive segmentation. The
binary image (c) from the global threshold of the greyscale DAB channel (b)
of the bright field image (a) was skeletonized (d). The skeleton endpoints were
connected to define each vessel as a single unit and created bounding boxes (e)
for locally adaptive segmentation refinement. . . . . . . . . . . . . . . . . . . 87

x



3.5 Automatic vessel smooth muscle morphological and density measures. The
vessel measures were aggregated by median values for each mouse for vessel
count per tissue area (a), smooth muscle layer area (b), lumen area (c), lumen
perimeter (d), smooth muscle layer thickness (e), and standard deviation (SD)
(f) for all vessels and separated by vessel diameter. Each glyph represents one
mouse sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.6 Contours of manually delineated (a) and automatically segmented (b) vessel
walls in the mouse hind limb stained with DAB for α-actin smooth muscle. . . 94

3.7 Bland-Altman plots depicting the differences between the smooth muscle (SM)
layer area, thickness and lumen perimeter measurements derived from manual
and automated segmentations. Difference: (automated - manual segmentation
measure), Average: (automated + manual segmentation measure)/2. . . . . . . 95

3.8 The percent difference in vessel measures of the simulated fields of view (FOV)
- the whole slide for each tissue section. The vessel measures were aggregated
by median values for each FOV for vessel count per tissue area (a), smooth
muscle layer area (b), lumen area (c), lumen perimeter (d), smooth muscle
layer thickness (e), and variance (f) for all tissue sections (n = 69). Boxplots
include the median, 25th, 75th percentiles, and whiskers at the 5th and 95th
percentiles. Distribution of measurement simulations (n = 100) extrapolated
from FOVs for each mouse tissue section. . . . . . . . . . . . . . . . . . . . . 96

3.9 The distribution of vessel measures when taking 6 fields of view (FOV) from
each tissue section and compared to the whole slide measurement (median
shown in grey) for each of the 5 samples. The vessel measures were aggregated
by median values for each mouse for vessel count per tissue area (a), smooth
muscle layer area (b), lumen area (c), lumen perimeter (d), smooth muscle layer
thickness (e), and variance (f) for all tissue sections (n = 69). Boxplots include
the median, 25th, 75th percentiles, and whiskers at the 5th and 95th percentiles.
Distribution of measurement simulations (n = 400) extrapolated from 6 FOVs
for each mouse tissue section. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.1 Arteriole with the DAB stain (a), and the binary mask (b) output from the
automated segmentation. Scale bar is 50 µm. . . . . . . . . . . . . . . . . . . . 109

4.2 Arterioles and venules are shown in the normal and regenerated tissues. The
microvessels have distinguishable differences in the normal vasculature where
the smooth muscle layer is thicker and more pronounced on the arteriolar side
and have a visibly darker stain. Venules also appear to have a more tortuous
vessel wall. This difference is less apparent in the regenerated vasculature. . . 109

4.3 Block diagram to demonstrate the method followed in this experiment for a
leave-one-mouse-out cross validation. . . . . . . . . . . . . . . . . . . . . . . 110

4.4 AUC (a) and error rate (b) as a function of number of features used for classi-
fication. The error bars represent the standard error of the mean. All features
were chosen using a forward feature selection and classifiers were trained with
a LOMO cross validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.5 Three features chosen from forward feature selection over the 10 cross valida-
tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

xi



4.6 Receiver operating characteristic curves for each of the classifiers trained on 2
features. LOGLC AUC: 0.89, SVM AUC: 0.89, RFC AUC: 0.84. . . . . . . . . 115

4.7 Histogram of the confidences from the LOGLC (a,b), SVM (c,d) and RFC
(e,f) classification using 2 features with their respective confidence thresholds,
where “none” indicates no confidence threshold was applied and all vessels
were categorized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.8 AUC (a) and error rate (b) as a function of number of features used for classi-
fication. All features were chosen using a forward feature selection and classi-
fiers were trained with an independent training set. . . . . . . . . . . . . . . . 119

4.9 Receiver operating characteristic curves for each of the classifiers from classi-
fier trained on 2 features. LOGLC AUC: 0.91, SVM AUC: 0.92, RFC AUC:
0.89. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.10 Histogram of the confidences from the LOGLC (a,b), SVM (c,d) and RFC (e,f)
classifications with their respective confidence thresholds. . . . . . . . . . . . 122

4.11 Incorrectly (a-e) and correctly (f-j) classified arterioles by the LOGLC. Scale
bar is 20 µm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.1 Normal (a) and regenerated (day 28) (b) hind limb tissue following ischemic
damage, immunostained with an antibody to smooth muscle α-actin and DAB
chromogen and counter-stained with hematoxylin. Distribution of density (c)
with regards to the vessel diameter where All indicates where the total dis-
tribution is represented in the boxplots. The boxes represent the median and
interquartile range values and the whiskers are at the 5th and 95th percentile.
Significance in the form of a Kruskal-Wallis and post-hoc test is indicated for
p < 0.05 for density (n for number of mice). Scale bar 50 µm. . . . . . . . . . 138

5.2 Normal (a-d) and regenerated (e-h) hind limb tissue following ischemic dam-
age, immunostained with an antibody to smooth muscle a-actin and DAB chro-
mogen and counter-stained with hematoxylin. Scale bar 50 µm for full vessels,
10 µm for vessel walls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.3 Distribution of morphological values with regards to the vessel diameter where
All indicates where the total distribution is represented in the boxplots. The
boxes represent the median and interquartile range values and the whiskers are
at the 5th and 95th percentile. Significance in the form of a Kruskal-Wallis and
post-hoc test is indicated for p < 0.0026 (n for number of vessels). . . . . . . . 141

5.4 Distribution of vessel measurements between the normal and regenerated ves-
sel media at day 14 and day 28 post-ischemia. The media area with respect
to the lumen area (a) and the median vessel wall thickness with respect to the
vessel diameter (b) are represented with the three distributions. . . . . . . . . . 142

5.5 Simulated blood flow in the normal (a, b) and regenerated (c, d) networks for
vessel diameters at baseline (a, c) and when the tissues are in the state of perfu-
sion demand where the vessel diameter is dilated. Vessel diameter at baseline
ranges from 12 to 120µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

xii



List of Tables

1.1 A summary of previous studies on registration for 3D vascular histology recon-
struction (work presented in this thesis in boldface). . . . . . . . . . . . . . . . 29

1.2 A summary of previous studies on segmentation of vasculature in histology
(work presented in this thesis in boldface). . . . . . . . . . . . . . . . . . . . . 30

2.1 Pairwise affine registration errors (µm) of the reference nucleus landmarks . . . 63
2.2 Pairwise and accumulated target registration error (TRE) values (µm) of the

rigid and affine intensity-based and nucleus-based landmark registration (best
in boldface) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.3 Mean and SD of maximum pairwise and accumulated target registration error
(TRE), observed on each section for the rigid and affine intensity-based and
nucleus-based landmark registration (best results in boldface) . . . . . . . . . . 64

2.4 The displacement of the optimal mean squared error transformation from the
affine nucleus-based registration . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.1 Summary of the histology samples used for each experiment . . . . . . . . . . 82
3.2 Descriptive statistics of vessel count and density . . . . . . . . . . . . . . . . . 91
3.3 Automated morphological measures of the smooth muscle layer . . . . . . . . 92
3.4 Segmentation validation metrics . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.5 Field of view sampling simulation . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1 Performance metrics from cross validation using 2 features from forward fea-
ture selection (mean ± SD) All Vessels . . . . . . . . . . . . . . . . . . . . . . 116

4.2 The classification errors from the 2 featured forward feature selection with a
LOMO cross validation as the confidence threshold increases and vessels are
eliminated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.3 Performance metrics using 2 features from forward feature selection. . . . . . . 121
4.4 List of all the features extracted from each vessel image. . . . . . . . . . . . . 127
4.5 List of all the features extracted from each vessel image. . . . . . . . . . . . . 128

5.1 Vessel density of the muscularized microvasculature (N indicates number of
mice) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.2 Morphological measures of the smooth muscle (SM) layer (N indicates number
of vessels) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.3 Simulated blood flow measures and network parameters . . . . . . . . . . . . . 143
5.4 Smooth muscle (SM) layer thickness binned based on vessel diameter(dB) in

the normal (Tnorm) and regenerated (Treg) vasculature . . . . . . . . . . . . . . 147

xiii



List of Appendices

Appendix A Permission for Reproduction of Scientific Articles . . . . . . . . . . . . . . 164
Appendix B Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

xiv



List of Abbreviations

2D Two-dimensional
3D Three-dimensional
ABI ankle-brachial index
ANCOVA analysis of covariance
AUC area under the receiver operating characteristic curve
CMYK cyan-magenta-yellow-black
CT computed tomography
CVD cardiovascular disease
DAB 3,3’-Diaminobenzidine chromogen
DSC Dice similarity coefficient
EC endothelial cell
ECM extracellular matrix
EDL extensor digitorum longus
EDRF endothelium derived relaxing factor
FNR false negative rate
FOV fields of view
FPR false positive rate
FRE fiducial registration error
GLCM gray-level co-occurrence matrix
H&E hematoxylin and eosin
HRP horseradish peroxidase
HSV hue saturation and value
ICP iterative closest point
IHC immunohistochemistry
IQR interquartile range
ITK Insight Segmentation and Registration Toolkit Version
LOGLC logistic linear classifier
LOMO leave-one-mouse-out
LOOCV leave-one-out cross validation
MAD mean absolute boundary distance
MSE mean squared error
NCC normalized cross correlation

xv



NMI normalized mutual information
NO nitric oxide
OD optical density
PAD peripheral arterial disease
PL peroneus longus
PVD peripheral vascular disease
SM smooth muscle
RMS root mean square error
ROC receiver operating characteristic
SD standard deviation
SIFT scale-invariant feature transform
SM smooth muscle
SMC smooth muscle cell
SNS sympathetic nervous system
SVM support vector machine
TA tibialis anterior
TMA tissue microarrays
TRE target registration error

xvi



Chapter 1

Introduction

The vascular circulatory system is essential for fluid flow throughout the human body. It pro-
vides a network for the delivery of oxygen, nutrients, and minerals to cells, enabling the sur-
vival of organs within the system. Vessel walls generally have a similar structure throughout
the network with varying distributions of sizes and composition including the intima, media
and adventitia. (Fig. 1.1) The intimal layer lines the lumina of all vessel walls and is composed
of endothelial cells (ECs) with varying permeability depending on the location. The basement
membrane on which the ECs reside is composed of laminin, collagen and nidogen. [1] The
internal elastic lamina is comprised of elastin fibers, which separate- the intima and the me-
dia. It contributes to the elasticity of the vessel wall and the capacitance in lieu of pressure
changes. [2] The media is comprised of smooth muscle cells (SMCs) and, in small vessels,
pericytes and contributes to the structural integrity and contractility of the vessel wall. [3] The
external elastic lamina is another sheet of elastic fibers, which resides between the media and
the adventitia. The adventitia is the outermost layer of the vessel wall and is composed of
mainly collagen, thus giving the vessel structural integrity and connectivity to the surrounding
tissue. [4] Vessels of different sizes have different compositions and therefore different roles in
the vascular network. Studies have been focused on the macrovasculature and capillaries with
very few works focused on arterioles that controls local blood flow.

One of the main components that contribute to the stability and the dynamic structure of
the vasculature is the vascular SMC. They are the most abundant components of the vessel
wall and have both structural and physiological functions. One of their features is contrac-
tility enabling control of vessel tone. [5] This is performed in order to provide peripheral
blood flow resistance at the level of arteries and arterioles in order to regulate blood pressure.
[3] SMC are quiescent in their developed form and provide the capacity to withstand blood
pressure throughout the circulatory system. There is a need for quantitative understanding of
the muscularized microvasculature. They are involved in many processes including vascular
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development, regeneration after injury and control of local blood flow. [3], [6]–[8]
The broad goal of my research was to characterize the SMC content in microvasculature

to study the effects of ischemia on vascular morphology and function. My studies focus on
addressing the technology gap in automated quantitative histology assessment and the mea-
surement of SMC changes after skeletal tissue regeneration post-ischemia. To address this
goal, my objectives are to develop an automated software system for comprehensive vascu-
lar histology quantitation and use the developed system to infer differences in the regenerated
vasculature as compared to uninjured tissues.

Figure 1.1: Vessel wall components of the (a) endothelial tube, (b) capillary, (d) arteriole and
venule, as well as the wall of larger vessels (d). Adapted from Jian, 2003. Nature medicine by
Nature Publishing Company Reproduced with permission of NATURE PUBLISHING GROUP
in the format Republish in a thesis/dissertation via Copyright Clearance Center.

1.1 Vasculature development

Development of a functional vascular system is essential to organ morphogenesis, and thus
initiates at the stage of embryonic development. [7] The tissues need oxygen and nutrients to
grow and mature, as well as receive signals for differentiation. The vasculature is developed
de novo through mechanisms of vasculogenesis, arteriogenesis and angiogenesis at the early



1.1. Vasculature development 3

stages of life. (Fig. 1.2) [9] Each mechanism encompasses stages of creating a vascular net-
work that is stable in adulthood. The vessels are derived from endothelial precursor cells, in the
form of angioblasts, derived from hematopoietic progenitors. [2] This links the development of
the vasculature to the red blood cells within the network and is essential for angiogenic repair
in the mature vascular system. [7]

Arteriogenesis 

Figure 1.2: Stages of vascular development including vasculogenesis, arteriogenesis and angio-
genesis. Adapted from Herbert et al. 2011. Nature Reviews Molecular Cell Biology by Nature
Publishing Company Reproduced with permission of NATURE PUBLISHING GROUP in the
format Republish in a thesis/dissertation via Copyright Clearance Center.
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1.1.1 Vasculogenesis

Vasculogenesis involves the formation of the endothelium and the initial formation of the vas-
cular plexus. [2] Development of the overall vascular network through vasculogenesis occurs
at the stage of embryonic development. [10] This process generates the initial vascular plexus
through the migration of angioblasts. It involves the differentiation of the ECs through sprout-
ing, after the condensation of the primary vascular network. Although unstable, the network
cells have arterial or venous fate and are remodeling into an organized network of arteries,
capillaries, and veins. [11] The network model’s objective is to achieve homeostasis through
adaptation to the environmental, physiological and pathological conditions. At this stage, the
vasculature does not involve mural cells.

1.1.2 Arteriogenesis

Arteriogenesis leads to the stabilization and maturation of the developing embryonic vascular
network. [6] This involves interactions between the pre-existing ECs and the recruitment of
mural cells to the network. [12] During EC remodeling, factors such as platelet derived growth
factor B are released and attract pericytes, which then migrate towards the vasculature. [6]
The factors act as chemo-attractants in the recruitment process of mural cells. The cells then
have direct contact with the endothelium of the vasculature and act to stabilize the network by
promoting EC survival. [8] The mural cells also differentiate into SMCs at the level of arteries
and into pericytes at the pre-capillary level. They sheath the vasculature at the arterial and
venous side. This results in vascular quiescence. [13]

1.1.3 Angiogenesis

Angiogenesis, commonly known as the growth of the vasculature, is specifically the expan-
sion of the pre-existing vasculature through vessel sprouting. [14], [15] This occurs at the
embryonic stage and in adulthood. The expansion of the vascular plexus at the embryonic
stage involves remodeling in the form of growth, as well as pruning and differentiation. [16]
At this stage, the networking structure is becoming highly organized and is being stabilized by
pericytes and SMCs. In the mature vasculature, angiogenesis is driven by hypoxia in ischemic
tissues. [11] This could be caused by a blockage in the blood flow or in the case of tumour de-
velopment. With respect to oncology, the rapid tissue growth increases the demand for oxygen,
through hypoxia, triggering the angiogenic switch. [17] Angiogenesis can occur in ischemic
muscle tissue to compensate for hypoxia.
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Figure 1.3: Vascular and skeletal muscle structure after hind limb ischemia (HLI, right panels)
as compared to the control (left panels). A (artery) and V (vein) in (a,b) indicates the collateral
vessels. Multicellular infiltrations reside in the location of the arrowhead in (d), where there
are also muscle cells without nuclei. There is an increase in capillary density post ischemia
within the skeletal muscle tissue (e,f). Scale bars: 100µm. Adapted from Limbourg et al.
2009. Nature Protocols by Nature Publishing Company Reproduced with permission of NA-
TURE PUBLISHING GROUP in the format Republish in a thesis/dissertation via Copyright
Clearance Center.
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1.1.4 The mature vasculature

In the mature vasculature, the demand for remodeling through the disruption of homeostasis
can promote arteriogenesis. [18] This disruption can be in the form of hypoxia in ischemic
tissues. Pro-angiogenic signals, including those that can reverse the stabilization of the mature
vasculature, are initiated to facilitate vascular remodeling. [14] This involves the detachment
of mural cells for plasticity. [5] In the case of ischemia caused by blockage of main arteries, our
vascular system contains collateral arteries. They redirect flow and increase perfusion to the
organ, for the rescue of ischemic tissues. [19] The opening and remodeling of collateral vessels
are a response from an increase in shear stress on the vasculature, due to the artery blockage.
(Fig. 1.3b) [20] Wall tension and shear stress can cause an increase in lumen diameter and the
thickening of the vessel wall. [19] The growth involves angiogenic growth factors, including
signaling from ECs for the recruitment of mural cells. Arteriogenesis also takes place during
the formation of new vasculature in adulthood. [6] However, the histopathology in this process
is understudied in the context of microvascular arteriole morphology and density.

1.2 Vascular disease

The vasculature, through development or aging, can succumb to disease. Cardiovascular dis-
ease (CVD) is one of the leading causes of death in industrialized countries. [20] Atheroscle-
rosis, or the occlusion of blood vessels through asymmetrical thickening of the artery intima, is
one of the dominant causes of CVD. [21] Occlusion of vessels leads to myocardial infarction,
coronary artery disease, stroke and claudication in the form of pain during exercise. The risk
factors for these disorders include hypertension, smoking, and diabetes. [10] One particular
disease that effects the extremeties is peripheral arterial disease (PAD). Diabetes specifically
has a role in causing claudication PAD. [22] This leads to a leg amputation due to diabetes ev-
ery 20 seconds in the world. PAD is in up to 50% of this patient population. [22] The chronic
blockage leads to intermittent claudication, characterized by ischemic pain and weakness dur-
ing locomotion and relief at rest. [23] The initiation of this disorder may be undetected, as
50% of the elderly population with PAD may not be symptomatic due to immobility from
other comorbidities, such as arthritis. Asymptomatic patients simply may not have the capa-
bility to walk fast enough to induce claudication. [23] Patients with severe blockage may not
have sufficient blood flow at rest and thus experience chronic pain even at rest. [12] This is
accompanied by tissue loss due to the ischemic state of the limb, which develops at the level of
the ankle, heel, or leg starting with ulceration in > 80% of cases and eventually leads to gan-
grene and amputation if not treated. [22] As individuals with diabetes have reduced capacity



1.2. Vascular disease 7

for wound healing, there is a higher risk for amputation. [22]

1.2.1 Atherosclerosis

Atherosclerosis is an inflammatory disease that involves stages of plaque accumulation, infiltra-
tion of inflammatory cells, and fibrosis. The lesions consist of small necrotic cells, connective
tissue, lipids and debris. [10], [21] The lesion, or specifically atheroma, is located in the mid-
dle of the intimal layer of the artery wall. [21] They are especially likely to occur at artery
bifurcations. The atherosclerotic lesion is induced by blood flow such that regions with higher
shear stress, like bifurcations, are especially prone. ECs may express atheroprotective genes
along the intimal layer of the vessel wall and areas of low or normal shear stress are generally
protected. [10] The immune system plays a key role in thickening of the artery, which occurs
asymmetrically and locally. The adventitia or outermost layer of the vasculature facilitates the
infiltration of lymphocytes. This leads to a cascade of immune competent cells, promoting
inflammation and buildup of debris. [10]

The core cells involved in the progression of atherosclerosis are inflammatory, blood borne
immune, endothelial and SMCs. The initiation of an atheroma may occur during youth and is
preceded by a fatty streak. [24] This streak is the accumulation of cells beneath the endothe-
lium, which are especially lipid laden, [25] such as macrophages and T cell lymphocytes, but
may eventually disappear or initiate the development of an occlusion. [21], [26] The lesion is
initialized with the activation of ECs in the presence of expressive adhesion molecules. These
adhesion molecules facilitate the attachment of monocytes and T cells to the ECs and pene-
trate the intimal layer of the vasculature. [10] Other cell types, which may also be present in
the lesion, are dendritic cells, mast cells and neutrophils. SMCs can change in phenotype and
migrate from the media into the intima, contributing to the growing lesion. The distribution
of cells within the region includes foam cells and lipid droplets in the core. The SMC and
collagen rich matrix caps the lesion and the cell infiltrates shoulder the region of growth. [21]

1.2.2 Current treatments

Treatment options for a compromised blood supply due to complications of cardiovascular and
metabolic disease can be non-invasive through pharmacological drugs. [27] Anti-inflammatory
and immunosuppressant agents can be used to combat acute coronary syndromes. Immuno-
suppressant agents can be administered to block the activation of T cell lymphocytes and SMC
proliferation, which are some of the main components of the atheroma. Anti-inflammatory
agents include inhibitors that decrease lipid levels. Statins can inhibit antigen dependent T-cell
activation. [21] On type of statin is Atorvastatin, which can also be used for arthritis because
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of its anti-inflammatory effects. [28] They also reduce platelet activity by EC nitric oxide
production, causing vasodilation and fibrinolysis, which is the breakdown of blood clots. [29]

Depending on the severity of PAD, rehabilitation or surgical salvage of the limb may be
necessary. In the case of mild ischemia and when the patient has the capability of wound
healing, rehabilitation through exercise and foot care may manage the symptoms of intermittent
claudication. [23] However, when PAD is hindering the ability to heal wounds or claudication
is interfering with quality of life, revascularization through endovascular repair or bypass is
recommended. There are risks associated with revascularization and thus this procedure is
generally not performed on frail patients or those who have a short life expectancy. [30] This
includes individuals with pre-existing impairments, such that an amputation would not decrease
the quality of life. If patients have a large volume of unsalvageable necrotic tissue, the only
option would be amputation. Limb salvage rates for those who qualify for revascularization
are at 80-85%, with 60% of ulcerations healing within one year. [30] Follow ups involve the
assessment of the entire lower extremity circulation, where the arteries are visualized in detail
below the knee. The goal of the procedure is to restore pulsatile flow to the arteries in the foot.
[30]

1.2.3 Diagnostic methods

Diagnosis of PAD severity can decide if salvage surgery is necessary. This involves the as-
sessment of the blood flow to the lower extremities and the identification of a history of PAD
symptoms. [30] Blood flow is measured using hand held Doppler ultrasound at the level of the
foot arteries. The ankle-brachial index (ABI) or toe-brachial index is measured to determine
the ratio of blood pressure measured at the ankle compared to the pressure at the arm. Thus,
a lower ABI can indicate a blockage or a narrowing of the arteries in the lower extremities.
An ABI of > 0.9 indicates that PAD is likely. Symptoms of ischemia, with an ABI of > 0.6,
indicates mild PAD and wound healing is assessed after 6 weeks of care. [30] Follow up when
wound healing is poor may involve an angiography. Other examinations may include palpation
of the carotid and abdomen, as well as inspection of the feet for discolouration, temperature,
and skin integrity, such as trophic skin changes and ulcerations. [23] In order to advance the
methods of diagnosis and treatment, there needs to be further understanding of the regeneration
process involved in tissue healing at the microvascular level.
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1.3 Post-ischemic regeneration

Several vascular diseases occur at the level of the arteries. Improper perfusion leads to ischemia
and tissue damage downstream of the aberration. The issues could be caused by several factors,
such as atherosclerosis, lead by an occlusion of the artery, diabetes and hypertension. [27] This
occlusion, or lack of blood flow, causes ischemia and potentially tissue death due to the reduc-
tion in oxygen supply. [20] The vasculature compensates for the hypoxic conditions through
arteriogenesis and angiogenesis. However, unlike the mechanism behind vascular development
at the embryonic stage, the underlying mechanism is not known. [10]

There are several animal models indicating compensation for the lack of tissue perfusion
during post-ischemia regeneration. [9] At the macro scale, depending on the level of ischemia
and tissue perfusion, the effect can range from no necrosis to toe necrosis. [31] At the level of
arteries, collateral vessels open and remodel, which may compensate for hypoxia. This process
involves increasing lumen diameter and smooth muscle wrapping to increase flow and stabilize
the vessel. (Fig. 1.3b) The changes in the femoral collateral arteries initiate around day 3 post
femoral artery ligation. [11]

Arteriogenesis is initiated by factors that are independent of ischemia severity. Most organs
in the body have pre-existing collateral vessels in adulthood, which can open up in case there
is a blockage in the conductance artery. [32] Blockage in the large conductance artery initiates
the process of arteriogenesis, when the blood flow is redirected and thus causes an increase
in pressure to the collateral vessels. [12] The resistance to blood flow increases and there are
changes in the biomechanical forces within the vasculature. The path of least resistance is now
at the collateral vessels, thus the blood flow is redirected to open up the reserve vasculature.
[20] The blood flow within the pre-existing collaterals causes shear stress against the ECs.
The recruitment process of the SMC through signaling from the ECs is initiated, thickening
the collateral vessel wall. [33], [34] The release of nitric oxide by the ECs also causes the
relaxation of the SMC, dilating the collateral arterial network. [20]

With the reperfusion of the tissues post collateral opening, there is a combination of pre-
existing vasculature reperfusion and angiogenesis. [11] The understanding of angiogenesis
has been defined at the embryonic stage when a new vasculature is being developed, but the
mechanism is not known at the stage of repair from an ischemic event. After perfusion of the
skeletal muscles by the collateral vasculature, there is an increase in capillary density, (Fig.
1.3f) compared to tissue in the non-ischemic state (Fig. 1.3e). [11]
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1.4 Hind limb ischemia model

To assess mechanisms of vascular reperfusion after ischemia, involving angiogenesis and arte-
riogenesis, animal models have been developed based on human conditions of disease, involv-
ing arterial blockages. [9] This provides a model that enables assessment and understanding
of therapies prior to clinical trials. Investigations can be performed on the mechanisms behind
arterial disease and the roles of cells and various factors, which may affect the regeneration
process. [11] These models were initiated with unilateral hind limb ischemia in the rabbit and
have progressed to the more commonly used model in mice. Genetically engineered mouse
models can provide insights into methods of vascular adaptation. Increasing levels of ischemia
can be induced to model the severity of disease.

Models have been developed at different sites to model states of ischemia. The result of the
femoral artery ligation or excision changes the state of the network and results in development
of the collateral vasculature. This is similar to human PAD and can model similar states of
ischemia at other sites. The blockage of the main conductance artery causes an increase in
blood flow distal to the origin of the deep branch. This change remodels the collateral vessels
into main conductance vessels through arteriogenesis. [34] It is a simpler surgical operation
than other processes, such as ligation of the arterial supply to the ear. Ligation of carotid arteries
can be performed for the assessment of cerebral arteriogenesis. One of the few methods of
studying angiogenesis after the embryonic stage is to analyse the developing retina after birth.
[11]

1.4.1 Surgical ligation

The most common limb ischemia model in the literature is the surgical ligation of the femoral
artery. [11] The vascular structure at this level of the arterial system includes the common
femoral artery, which goes into the deep branch (arteria profunda femoris). This divides into
collateral vessels that are interarterial connections residing in the proximal limb. They are
closed and dormant prior to the induction of ischemia. Unilateral hind limb ischemia is induced
by exposing the vessel at the location of the femoral artery through incision of the skin, which
covers the middle portion of the hind limb. This is typically performed on the left limb of
the mouse. [9], [11], [32] For example, the proximal end of this femoral artery could be
permanently ligated along with the distal saphenous artery. The side branches and arteries in
this region are excised to prevent flow along the main network. There is impaired flow in this
model after surgery. [11]
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1.4.2 Assessment of the ischemia model

The hind limb model can be assessed at different stages of recovery through histological and
blood flow measurement processes. The assessment of recovery from ischemia can be per-
formed at different time points after surgery to analyse the development process. Longitudinal
studies can be performed using laser Doppler imaging to analyse the level of reperfusion. Mea-
sures can be taken at the suggested time points; days 3, 7, 14, 21 and 28 post artery ligation.
[11] The oxygen saturation can be measured within the ischemic muscle with an inserted probe.
The level of necrosis can be measured with the number of necrotic toes distal to the ligated limb.
Histologic tissues can be used to measure the capillary density at certain time points to assess
the level of angiogenesis. Due to muscle atrophy, the number of capillaries per muscle fibre
is more representative of the microvessel density than the number of capillaries per area. (Fig.
1.3f) [11], [32], [35] Immunohistochemistry can also be used to visualize regions of hypoxia.

1.5 Role and regulation of SMC Function

The control of vascular tone by SMCs is essential to proper organ function through the main-
tenance of homeostasis. The inability to control and the lack of vascular tone is incompatible
with life. [5] The control of the blood flow through the dilation and contraction of the SMC
enables the direction of flow to organs in demand locally. Improper control through excessive
contractile tone can lead to high levels of blood pressure. The individual cells communicate
for proper function. This communication between the vascular SMCs and ECs, which line the
vessel lumen, enables the ability for contraction and dilation. The communication initiates at
the stage of vessel formation during embryonic development. [2]

Communication within the mature vasculature, through signaling, maintains blood flow
within the network. Signaling begins at the stage of embryogenesis throughout the processes
of vessel formation, and this continues to regulate tone and blood pressure. Vessel relaxation is
regulated by calcium dependent factors. Endothelium derived relaxing factors (EDRFs) include
soluble and secreted molecules. [3] The EC and SMC are adjacent and thus enables efficient
signaling between the cells. The endothelial factors, which are diffused or secreted, include
nitric oxide (NO), prostacyclin and hyperpolarizing agents.

The main relaxing factor released by the endothelium is NO, previously known as EDRF.
The endothelium can be stimulated by biological factors to release NO, but NO can also be
used exogenously to create vasodilation independently of the endothelium. Stimuli including
acetylcholine, serotonin, thrombin, bradykinin and shear stress causes hyperpolarization of
the ECs, involving the influx of calcium ions. This influx activates endothelial nitric oxide
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synthase, which generates NO within the ECs. [3] The NO diffuses into the vascular SMCs and
causes vasodilation through the guanylate cyclase pathway. The NO stimulates the generation
of cyclic guanosine monophosphate, which then causes the relaxation of the smooth muscle
and dilates the vessel. [36] NO can cause vasodilation exogenously, so treatments that release
NO, such as nitroglycerin and sodium nitroprusside, are effective dilators. [36] Compounds can
release NO directly or it can be released through an enzymatic reaction to treat hypertension
and congestive heart failure. [36]

The contractile ability of the vasculature in order to maintain tone is controlled by the
sympathetic nervous system (SNS). [5] The SNS is responsible for increasing blood flow to
compensate for metabolic demand. Blood flow can be redirected locally to organs in the
demand state. The detection of luminal pressure leads to the contractile response. The ex-
tracellular matrix (ECM) surrounding the SMC facilitates the detection of pressure through
mechanotransduction. [5] The strain on the ECM, or the elastin where present, stretches the
SMC. The contraction of the resistance arteries leads to a reduction in vessel lumen diameter.
The mechanotransduction and contractility mechanisms are dependent on myosin light chain
phosphorylation. The interactions between actin and myosin generate contractions in the SMC.
Hormones through other pathways also stimulate the phosphorylation process, along with pro-
teins, such as calponins and caldesmons. EDRFs, endothelin and angiotensin II, are released
by the endothelium and increase vasal tone. [2] Thus, it is important to understand the SMC
content that the microvascular level as they are involved in control of local blood flow.

1.6 Vascular assessment

Several methods exist for assessing the vasculature either in vivo or through histological ap-
proaches. The network structure of the vascular lumen can be visualized through techniques
involving vascular casts and micro-CT in three dimensions. Other modalities are used for
imaging two dimensional (2D) structures, with stains on the feature of interest. Cryomicro-
tomes facilitate the visualization of stains on the block face of tissues. Confocal microscopy
penetrates tissues below the surface. [9] Histology involves sectioning and staining for tissue
features at high resolutions in 2D. Each modality has its strengths and limitations, which makes
them applicable to certain studies and not others.

1.6.1 Micro CT

Micro-computed tomography (CT) enables the visualization of the anatomical vascular struc-
ture in 3D, at high resolutions. There is an increase in the availability of micro-CT systems
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with applications to preclinical imaging. This is due to the commercial availability of the sys-
tems and the ability to perform in vivo and ex vivo imaging. The 3D image volumes have a
higher spatial resolution than clinical CT systems, with an isotropic voxel size of 100 mm3,
for the visualization of the reconstructed 2D slices and structures segmented in 3D. [37] Spe-
cific to the assessment of vasculature, contrast agents can be perfused in the lumen to provide
visualization.

Micro-CT systems are like conventional CT systems, including similar methodologies and
components. Image reconstruction is performed using filtered back projection or iterative al-
gorithms. In biological specimens, there is generally poor tissue contrast, as there is not a
large difference in the attenuation of x-rays within soft tissues. To differentiate organs, or sites
of interest within the tissue, higher attenuating contrast agents are introduced to the system.
Osmium staining is used to phenotype mouse embryos ex vivo. [38] Less toxic stains, such
as iodine and phosphotungstaic acid, can be an alternative for staining. Specific to vascular
imaging, contrast agents can be perfused within the vasculature to visualize the lumen, thus
the network structure. Clinical CT imaging contrast agents, such as Omnipaque (GE Health-
care), are iodine based and are also used in preclinical rodent studies. [37] However, due to the
low molecular weight, it clears the mouse vascular system within seconds. Iodine based blood
pooling can last much longer in the rodent system, with durations from minutes to hours. [39]
Passive and active targeting nanoparticles are now under development and may provide func-
tional information on a molecular level. For high resolution micro-CT images, there is higher
amounts of exposure to radiation of the subject or pre-clinical specimens. In the mouse, 135
µm resolution requires a whole-body dose of 0.25Gy and 65 µm resolution requires 5Gy. This
is feasible because the lethal dose 50/30 in mice ranges between 5-7.6Gy, and they recover
below this lethal dose. [37]

Micro-CT can be applied to image the biological system with regards to bone, lung, cancer,
and the cardiovasculature. [37] With regards to the vasculature, ex vivo imaging of the vessel
lumen can be performed with a silicon based contrast agent; MICROFIL (FlowTech, Inc.,
Carver, MA, USA). (Fig. 1.4) This results in the enhanced contrast within the coronary arteries,
for example, for cardiac vascular 3D visualization. [38] Similarly, this could also be perfused
in the mouse hind limb to visualize the 3D network vasculature of the extremities. In vivo
cardiac imaging can be performed using blood pool contrast agents to differentiate the blood
and the myocardial tissue. Functional data can be acquired using 4D-CT. [40] This system is
limited by long scanning times for high resolution and the radiation dose. For microvasculature
applications, the perfusion of the vessels is limited at a fine scale for contrast agents, with
limited soft tissue contrast to discern the vessel wall.
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Figure 1.4: Micro-CT angiograms of Matrigel implants. Adapted from Frontini et al. 2011.
Nature biotechnology by Nature Publishing Company Reproduced with permission of NA-
TURE PUBLISHING GROUP in the format Republish in a thesis/dissertation via Copyright
Clearance Center.

1.6.2 Vascular Casting

Vascular casts are a conventional method for visualizing the three-dimensional (3D) vessel
network through the perfusion of the vessel lumen. Overall, the method involves injecting the
specimen with a material that will harden, such as a coloured gelatin, latex or plastic. [41] Vas-
cular casting can involve visualizing the vasculature at this stage or further processing through
corrosion casting. The tissue surrounding the material is later digested to visualize the network
structure. The casting processing involves perfusion of the vasculature through cannulating the
feeder artery of the vascular bed. [42] The blood is then removed and the vessels flushed with
a buffer solution. The vasculature is then infused with a polymerizing material with contrast,
so that the vascular bed can be visualized. The casting material penetrates several centime-
ters into the capillary bed, enabling the visualization of connections from the arterioles to the
venules and the parallel connections between the capillaries. Features such as vessel diameter,
length and branching can be measured under light or electron microscopy after vascular cast-
ing. However, when there is a high density of capillaries in the vascular bed, the depth of view
is limited to 1mm. [41]

Corrosion casting is used for the visualization of intra-organ vasculature. The vessel net-
work can be replicated by digesting the surrounding tissue. [41] After the perfusion of the
vasculature with casting material, the surrounding tissue is removed through maceration with a
corrosive solution, such as a concentrated acid or base. The visualization of the network struc-
tures can lead to the measurement of the capillary density in the heart, to assess changes in the
normal and hypertensive states. The description of the vascular anatomy, including branching
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angles, diameters and lengths, can be input into simulations for vessel function. The vessel
density again can affect the measurement of the vascular network over long distances. How-
ever, the vessels can be trimmed down to the arteriolar level to visualize vessels of interest.
Casting at non-physiological pressures is a potential source of error in the final replicated vas-
culature. Other variables that may affect the quality and accuracy of the cast is the polymer
dilution, and may affect the viscosity when perfusing the network. The presence of air bubbles
in the casting resin is also an issue. Because the reaction involved is exothermic, the cast can
shrink during the polymerization process.

1.6.3 Frozen section block face imaging

The imaging cryomicrotome, or episcopic microtome, is used for the visualization of 3D vas-
culature through reconstruction of block face histological images. [41] This process involves
imaging separate histological slices and aligning the images in 3D to create an image volume.
The histological images are taken from the block face of the tissue after each tissue section
is removed. This process overcomes the distortions of the tissue from sectioning. [43] The
resulting image volume can provide structural or functional measurements though the use of
high resolution fluorescence imaging, typically imaged at an isotropic voxel resolution of 25
µm. The fluorescent probes enable the visualization of vasculature or specific cells of inter-
est within the tissues. Many probes can be targeted with fluorescence and visualized all at
once through spectral unmixing. [41] 3D reconstruction of the features of interest within the
tissue can be performed with post processing for quantitative assessments. Segmentation of
the vasculature, for example, can be performed for the detection of connecting vessel nodes,
vessel angles, and diameters. Methods such as skeletonization can then be applied to find the
vessel centerlines for the vessel segments. This process is also used in angiography; however,
cryomicrotomes provide more extensive information with regards to tissue content.

There are several limitations to this technique. There is a trade-off between the resolution
and field of view, as with other imaging techniques, and this affects the ability to visualize
vessels smaller than arterioles. Whole organ and whole mouse imaging can be performed with
a large FOV; however, the resolution is limited. Paraffin embedding enables visualization of
histological tissues at higher resolutions of 0.5 to 5 µm. With vessel lumen filling methods for
vessel visualization, this limits the ability to differentiate between arteries and veins. Distor-
tions to the images can be caused by blurring of the lens, optical noise and artifacts created
by the fluorescence beneath the surface of the tissue block. [44] Post-processing of the im-
ages for quantification is then dependent on the quality of the image volume. Validation of the
technique through histological assessment of the tissue section can be limited.



16 Chapter 1. Introduction

1.6.4 Confocal microscopy

Confocal fluorescence microscopy is an optical technique for imaging tissue at high resolu-
tions, in 3D. Thin optical sections can be taken for a 2D image, or serial optical sections can
be combined for a 3D volume of thick fluorescent tissues or whole cell imaging. (Fig. 1.5)
The planes of view do not have to be orthogonal to the line of sight and advancements have
been made to penetrate deep (100 µm) into tissues. [45] Multiple fluorophores can be targeted
and registered for an image encompassing multiple cellular components into one image. [46]
The technique, for reconstructing images, involves a point light source in the form of a laser
at the frequency appropriate for the fluorophore of interest. One location is illuminated at a
time in the specimen to avoid scatter from the surrounding tissue, which will cause blurring.
[47] This results in light reflected from a single focal plane. The specimen is scanned at loca-
tions on one focal plane for a 2D image. Multiple planes can be captured at different depths
and combined for a 3D image. [45] Confocal microscopy does have the disadvantage of being
more labour intensive than bright field microscopy for acquiring an image. It also does not
incorporate imaging components of tissues or cells, which were not targeted by fluorophores.
In general, the fluorescent probes are only active for a set period. However, with the advance-
ment of hardware and software, whole slide fluorescence confocal scanners will also be widely
available.
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Endothelium            Smooth muscle 

Figure 1.5: Fluorescent confocal images of vascular constructs stained for the endothelium and
vascular smooth muscle of the vessel wall. Adapted from Frontini et al. 2011. Nature biotech-
nology by Nature Publishing Company Reproduced with permission of NATURE PUBLISH-
ING GROUP in the format Republish in a thesis/dissertation via Copyright Clearance Center.

1.6.5 Immunohistochemistry

Histology is used as a gold standard in both clinical diagnostics and animal model research. To
visualise tissue morphology and protein expression, tissue can be removed from the body and
specimen for assessment through histological techniques. (Fig. 1.6) The tissues are generally
immersed in a fixative to stop the autolysis process and cut small enough for fast penetration.
The solution will be based on the stain that will be applied, such as formalin, a 4% solution of
formaldehyde, or a zinc based fixative. [48] Formalin is the most widely used fixative because it
is inexpensive, easily stored and readily available. It also preserves morphological detail. [49]
One of the contributors to staining intensity variability in the histological tissue is fixation.
The duration of fixation can vary from 6 hours to longer than a day, and the fixative may not
be freshly prepared. [50] This, in addition to the different rates of penetration of the tissues,
can lead to variability in the final image and is uncontrolled due to the need for transporting
the slides and the volume of samples one pathology lab can get at a time. The tissues are then
embedded in paraffin and sectioned, usually at the thickness of 5 µm. [50] The deparaffinising
process involves heating and treating the tissue with chemicals. Then the tissues are ready for
staining, whether it is conventional hematoxylin and eosin (H&E), a Movat cocktail of several
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stains, or immunostains targeting a specific antigen. [48]
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Figure 1.6: Immunohistochemistry targeting vascular smooth muscle in the mouse hind limb
with the arteriole and venules indicated by the arrows.

Immunohistochemistry (IHC) involves exposing the antigen and application of antibod-
ies to visualize and interpret the protein distribution within tissues. [51] Antigen retrieval is
performed to unmask the antigens, which was affected by the fixation process. Most of the
variation in staining occurs due to incomplete antigen exposure. [52] This procedure involves
heating the sample in acid buffers in the form of pressure cooking, microwaving or a water
bath. [53] Enzyme treatments can also be performed. The application of the primary antibody
that binds to the antigen, can be at different concentrations. [54] The antibody, produced by
mouse or rabbit immunization processes, is then washed off to remove unbound residuals. [48]
The secondary antibody binds specifically to the primary antibody. It comprises of a tag such
as horseradish peroxidase or is conjugated to biotin. The final detection phase to visualise the
targeted protein involves applying a chromogen or a fluorescently tagged molecule.

This process contains several stages and thus many opportunities for staining intensity vari-
ation. There is variability at stages of fixation, tissue treatments, the reagents, the concentration
of the reagents, detection methods, and how the final histology image is interpreted. [55]–[57]
At the fixation stage, if the tissues are not optimally treated then the subsequent stages of
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antigen retrieval are affected. The process of antigen retrieval itself does not have a standard-
ized protocol within all labs. This can lead to insufficient retrieval being interpreted as low or
negative results. [58] The differences in the dilution of the antibodies can make comparisons
difficult between different labs or even between experiments. Not only the dilution, but the
antibody itself can be different and thus have different levels of sensitivity and specificity of
protein detection.

Stain standardization

Standardization processes can be implemented to mitigate components of intensity variation in
IHC staining for quantification. [59], [60] Automated immunostainers have been developed but
are still prone to variation and are not yet widely available. [50] When comparing IHC to other
assays, it is similar to the quantitative enzyme lined immunoabsorbent assay. [50] The same
reagents are used for both processes. However, because IHC is distributed on a tissue section,
it is viewed as a stain. Standardization techniques can be applied and protocols developed for
variables, such as the heating processes, temperature, time and pH for antigen retrieval. [51]
Because the protocols by the reagent providers are not identical to the procedure followed in the
lab, the validation metrics are not relevant. Each lab may want to standardize using their own
validation measures for each type of immunostain and tissue. [50] Measurement is generally
performed semi-quantitatively without reference standards, but methods have been developed
for internal standardization of IHC. [61]

IHC assessment

Assessment of IHC can be challenging due to the differences in reactivity of the reagents in-
volved and the method used for assessment. The IHC target can vary in location within the
tissue. The target protein can be within the membrane, cytoplasm, nucleus or stroma. The as-
sessments can vary ranging from manual quantification through counting to the quick eye-ball.
The intensity of the stain itself can vary by batch. [58] It is usually not assessed quantita-
tively and can be inconsistent. In the clinic, observations are subjective to the operator, with
the reference point being experience. Diaminobenzidine (DAB) IHC is also nonlinear with
respect to the relationship between intensity and amount of protein in the tissues. This needs
to be considered, especially at high levels of intensity. [62] The perceived ratio of large cells
compared to relatively small cells can be used for a grading system. Reference standards are
used to make judgements, however the inter-observer variability for references is 60%. [63]
Semi-quantitative assessment could lead to tissue measurements, such as area and intensity,
or simply as positive or negative for the stain. Common measurements include positive cell
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counts and percentage of staining in a select field of view within the whole tissue section. The
data are can be stratified in to ranges for scoring.

With standardization, IHC can be viewed as an assay and be quantified through semi-
quantitative and computer assisted methods. [64], [65] H&E can also be interpreted differently
by individuals, but has components that have been quantitatively assessed. IHC variability is
even higher in interpretation. Under controlled settings, image analysis methods can be supe-
rior to manual observation. Commercially available solutions do exist to aid semi-quantitation
of the tissues; however they may not be available to smaller labs or academia due to cost or lack
of expertise. [50] As semi-automated software requires user input from experienced individu-
als, such as pathologists, it would take more time out of their hectic schedule. [50] Previously,
there were hardware and software deficiencies with respect to cameras and management of
large file types. However, with recent advancements on both fronts and further standardization
of the specimen through image analysis, accurate and reliable quantification is feasible in IHC.

1.7 Image Analysis Techniques

1.7.1 Image registration

Within structures, such as the vasculature, it is important to assess and visualize morphologies
of the tissues in the 3D context. Bright field histology enables the visualization and measure-
ment cellular and subcellular components with various stains, but it is conventionally 2D. There
are several key features that cannot be measured or may be misinterpreted in the 2D context
when the features of interest are inherently 3D. [66] For example, the vasculature contains bi-
furcations where there will be infiltration of specific cell types, which are of interest to analyze.
[67] The points of bifurcation cannot be identified in 2D. Another related feature is the branch-
ing of the vasculature. Without the 3D context, we do not have the capability of following
individual vessels from one histology section to another to assess the changes in vessel wall
composition, as the vessel increases in vessel order. Vascular tortuosity would also be lost in
2D analysis. For example, a tortuous vessel weaving in and out of one section could increase
the vessel density count when measurements are performed in 2D. Stereology, the ability to
infer 3D information from 2D representations, has been previously applied to infer structure of
the vasculature. [68], [69] However, manual stereological measurements may not be feasible
for the whole-slide assessments to be conducted in this work.

Reconstruction of 2D histology involves registration of serial sections in order to define a
coordinate system where histological features are aligned and represented in a volume. [70],
[71] This would result in the continuity of structures of interest within the tissue for purposes of
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quantification and visualization in 3D. [72]–[74] Registration can involve image-based registra-
tion and feature-based registration. Both involve mapping the target image into the coordinate
system of the reference image. [75] Image-based approaches involve measuring the alignment
through quantitative measures of intensities within the image. The conventional registration
scheme involves a similarity metric between the images that are being compared, an optimiza-
tion technique for the metric, a transformation, and an interpolator. Feature-based registration
involves the definition of an image transform from corresponding points or features between
two images. [76]

Image-based registration may involve a wide range of image similarity metrics and the
types used will depend on the properties of the images involved in the alignment process. In
the case of histology sections, when the images have been stained consistently with the same
stain, the mean square error (MSE) metric would be reasonable to use. MSE metric measures
the direct differences in pixel intensity between the two images. The MSE metric assumes the
target and reference images have the same intensity ranges and that the objects within the image
have the same intensity. [75] When there is a potential overstaining of the tissue or increase in
stain from one section to another, normalized cross correlation (NCC) would be useful, as it
takes linear intensity displacements into account. [76] In cases where it is of interest to align
histology images with different types of stains, normalized mutual information (NMI) may be
used. For NMI to be effective, the intensities in the reference image can be mapped to the
intensity of the target image in the same object. This mapping does not need to be linear. [77]
NMI requires computation of a joint intensity histogram, causing it to be more computationally
intensive than MSE and NCC.

The optimal image similarity measure can be computed by brute force by transforming the
target image through all possible transformations through space, but this is not feasible due
to the length of time required for image transformations and the computation of the similar-
ity metrics. Optimizers are thus used to find the globally optimal metric value by traversing
through the solution space, which is defined by the image similarity metric and the image pairs
to be registered. [75] For the optimizer to not be trapped at a local minimum, parameters such
as the step size in a gradient decent optimizer need to be considered. Registration is performed
at multiple resolutions through an image pyramid for initialization and prevention of the opti-
mizer finding a local minimum not representative of the globally optimal solution. [78] Coarse
alignment is performed at lower resolutions, which would also reduce the search space of the
objective function. Optimization can contain first order properties, such as the gradient descent
or ascent optimizer, which has linear convergence properties. There are also higher order and
derivative free approaches to optimization.

The goal of registration is to align homologous points in two or more images. When the
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images sample different tissues, care must be taken in identifying truly homologous points, and
they can be sparse. In the case of two histology sections obtained from immediately adjacent
loci in the tissue, a homologous point pair can be defined by a single structure that appears on
both sections and is oriented orthogonally to the sectioning plane. Thus, for instance, cross
sections of a vessel oriented 45 degrees to the sectioning plane are not truly homologous; if
a registration algorithm were to align them, the result would be a vessel falsely reoriented to
be orthogonal to the sectioning plane. This issue poses a particular challenge to intensity-
based approaches, which will tend to align large and salient structures regardless of whether
they are oriented orthogonally to the sectioning plane. This causes the well-known banana-
into-cylinder effect observed in some histology reconstruction algorithms. [66] In order to
preserve geometry, features unbiased in their orientation can be used within the tissues. [79]
The features can be corresponded using a variety of techniques to define a transformation.
Landmarks can be corresponded independently of the image through iterative closest point.
[80]–[82] Scale-invariant feature transform can be used to identify and correspond matching
features. [83]

Depending on the deformation of the target image to the source image, different types
of image transformations can be applied. The transformations can be derived from image
based and feature based techniques. Linear transformations include rigid, similarity and affine
transformations, which have increasing degrees of freedom. In cases where the deformation of
the image, that needs to be registered, cannot be compensated by a linear transform, deformable
registration can be performed. [84] Transformations such as thin-plate spline lead to local
deformations. [75]

Registration techniques require accuracy measurement for assessment and validation. There
are several metrics that may involve a set of gold standard landmarks, which are placed or val-
idated manually. [85]–[87] Other methods of assessing the quality of the 3D histology recon-
structions may involve measures of smoothness from one serial section to another, such as the
Haralick contrast feature. [88] Other measures include calculating the target and fiducial regis-
tration error of the landmarks. [85], [86] Common metrics used in the assessment of histology
reconstruction and registration have been the Hausdorff distance, [89] root mean square error
and accumulated error. However, some studies are using visual validation for the assessment
of registration accuracy. [90]

1.7.2 Image segmentation

To perform assessments on features within histology, in the form of morphology and stain
intensity, the structures need to be detected and segmented. [91]–[93] The detection and seg-
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mentation can be performed manually, and at different levels of automation. [50] This could
be performed fully manually. For example, the vessel diameter is measured or the number
of vessels in a field of view is counted, such that a density measure is calculated. [94] Fully
manual techniques have inter- and intra-operator variability and are limited to small regions of
histological tissue because whole-slide analysis is labour intensive. [58] Techniques have been
performed in a semi-automated approach, which may involve initializing an automated process
or correcting the process manually through post-processing. [50] For example, the user would
define a threshold for each field of view to detect vessels, and the final number detected may
be assessed again by the user. Fully automatic approaches have no input from the operator.
This may be in the form of inputting an image into an algorithm with predefined parameters,
with the output of defined measures. This type of analysis increases the throughput of image
analysis because the algorithm can quantify whole-slide histology images without the need to
extrapolate from small fields of view. [95]

The current state of the art in histology assessment involves quantification and qualitative
assessment on bright field microscopes, on small fields of view. [94], [96] This could then
involve extrapolating the measurement. For large vessels, such as the aorta, this involves taking
sections at locations along the vessel, and assessing the components within the individual vessel
wall. [25] This is feasible to perform manually, as there are usually a few vessels to visually
assess per sample, or there is only one large vessel, and any quantitative measurements can
be performed on a small sample size. A common measurement in studying the vasculature, in
the context of vascular disease or oncological related studies, is to assess the capillary density.
[97] This is typically assessed by taking random fields of view within the tissue section at
representative locations to get an assessment or quantitative measure for the density of the
capillaries. [94], [98], [99] This is also performed with cell count or the positive number of
cells.

At the level of arterioles containing SMCs, where they are many vessels on the slide, there
is interest in the morphology of the vasculature. Density is the main feature of interest when
assessing capillaries. However, the arterioles contain a smooth muscle layer with differences in
distributions, which needs to be measured. [100] They are also much larger in numbers when
compared to large arteries or the aorta, [6] so manually assessing a distribution large enough
to represent the population would be tedious. Thus, there is a need to assess the distribution of
vascular smooth muscle along the vessel wall on whole slide histology, and encompassing all
vasculature within the section. This would involve detection of the vessels on high resolution
images and segmenting them automatically to measure the morphological differences between
disease models. The segmentation method needs to be comparable to operator variability, and
represent the differences found between sample groups of interest accurately. [50]
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The segmentation method has to take into account the input image size and in a histologi-
cal context, this could vary depending on the imaging technique and method of analysis. [101]
Three main groups of image types are; bright field images from conventional microscopes,
scanned tissue microarrays (TMAs) and scanned whole-slide images. The typical workflow
involves images taken from a charge-coupled device camera mounted on top of a bright field
microscope. These images usually enable quantification within fields of view, thus there is a
trade-off between the magnification of the image and the amount of tissue represented in the
image. The resulting images are relatively small and can be assessed in a manual or automated
fashion. The user has the option to manually stitch together the images to reconstruct a larger
field of view. [102] TMAs can be analyzed in the same way or through whole slide scanning.
They represent a small portion of the tissue and are commonly generated through biopsies.
[103], [104] The largest representation of the sample are whole-section images. Because his-
tology images are in colour and currently can be scanned at an isotropic pixel size of 0.25
µm, they result in images of larger than 1 gigabyte. Thus, the segmentation algorithm needs
to adapt to the size of the input images because the full image cannot be processed within the
working memory of a computer. [105] One way to overcome this obstacle would be to detect
the features of interest in a downsampled image, and then performed the segmentation locally
at full resolution, in the image region applicable to the feature.

Assessment of the vasculature would involve defining a contour around the inner and outer
boundary of the vessel wall through segmentation. The type of segmentation technique will
depend on the features within the image and the object to be segmented. There are many
techniques that all group mainly into low-level and model-based segmentations. [101] These
two categories differ in that low-level segmentation methods rely on features in the image and
model-based methods, which takes a-priori knowledge of shape into account. Both results in
boundaries around the objects of interest. [106]

Low-level segmentation approaches involve methods such as thresholding, watershed trans-
formations and region growing. [107] Thresholding creates a boundary between different pixel
values, where positive values are within the segmented region. The threshold level can be
determined manually or automatically using techniques such as Otsu’s method [108] and k-
means clustering. [109] One or multiple levels of thresholding can be determined. Methods
such as watershed segmentation involve calculating the gradient within the image in order to
locate the edges of the contours of the object. [110] Region growing is another commonly
used method. The algorithm is initialized with a seed and compares the neighbouring pixels to
include similar pixel values within the same region. [107]

Model-based segmentation methods can be used when there is a-priori knowledge of the
objects of interest, such as boundary smoothness, shape and appearance. This includes active
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contour models (snakes) [111] and level set methods. [112] Both methods involve, and can
be sensitive to, the initialization curve of the segmentation. Snakes involve optimizing an
energy function, which incorporates features of the curve itself and features within the image.
Each object to be segmented needs an individual initialization. [111] This may not be the best
approach for segmenting features that have variability in the curvature of their contours. The
resulting vessel wall segmentations have different curvatures and smoothness to their contours,
which is why it is of interest to analyse them. Level set segmentations are represented through
a signed distance to the boundary of the object to be segmented. [112] They have the capability
of implicitly defining the boundary and provide different topologies. [106]

With colour images, one can extract the feature of interest through colour separation, to use
a simpler low-level segmentation method. Colour deconvolution can be performed to represent
the colour of interest in one greyscale image. [113], [114] In general, IHC is in colour, due
to the oxidization process, and through colour deconvolution. We can rescale the colours such
that they represent the stain. This could make the segmentation process more generalizable for
various stain types due to the initial step of stain separation. For example, another commonly
used secondary antibody is Fast Red in IHC, which results in a red colour. Potentially, the same
segmentation algorithm could be used to automatically contour features that have been stained
for Fast Red and the typical brown DAB because colour deconvolution extracts the intensity of
the decomposed image for the same scale.

1.7.3 Machine Learning

The vasculature involves several calibres of vessels, as a part of a continuous network, com-
prising of dynamic components within the vascular wall. For convenience, they are categorised
and labeled as arteries, and veins, with capillaries in between. There are several tiers of the vas-
culature from the aorta to arteries and arterioles. [6] At the level of microvessels, vasculature
primarily contains a layer of mural wrapping or simply one layer of endothelium for perfu-
sion. [7] With IHC targeting the SMC component of the vasculature, both inflow and draining
vessels are visible. The inflow vessels in the form of arteries and arterioles are functionally
and structurally different from veins and venules. Our interest is at the level of the arterioles
because they can control local blood flow, thus the venules should be separated in a different
category for comprehensive quantification.

To automatically differentiate the categories of vessel after segmentation, features or quan-
titative measures can be extracted from the vessels of interest. The features could include the
vessel morphology, based on the geometric measures of the segmented vessel wall. [115] Mea-
sures can also be extracted from the intensity distribution in the IHC stained SMC. This can
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include first order and second order intensity statistics. First order statistics are independent
of the pixel location. (Fig. 1.7) Higher order features account for neighbouring pixel relation-
ships.

Bright field histology is represented in colour, as the values are within the visible spectrum,
thus the intensity features can have different representations. The standard colour channels in-
clude red-green-blue (RGB), cyan-magenta-yellow-black (CMYK), hue-saturation-value (HSV),
and Lab space. [116] This could be performed for the stain typically used for IHC, which is
the DAB precipitate, resulting in a brown hue. The other stains could be extracted in the same
process. Features such as nuclei could also be extracted from the image, with the selection of
the blue-purple hue of hematoxylin, and has been performed in previous works. [117]

Mean: 126 Mean: 169  

Uniformity: 0.49  Uniformity: 0.47 

Mean: 169  

Uniformity: 0.42  

Mean: 212 

Uniformity: 0.35  

Figure 1.7: First order intensity measure (mean) and second order texture measure (uniformity)
of a synthetic dataset. The uniformity is decreasing from left to right and the mean is increasing,
where the middle panels are indistinguishable by the first order intensity measure.

First and second order statistics could then be calculated, as measures of the intensity val-
ues, to differentiate between the categories of vessels. [118] First order statistics do not involve
the spatial relations between the pixels within an image. These values include measures such
as the mean, median, and grey level skewness, on all the grey levels within an image, or within
the segmented vessel wall. [115], [119] Higher order statistics take into account the neigh-
bouring pixel relations to measure texture within the greyscale representation of each colour
channel. [119] One method to calculate higher order features is through creating a high order
histogram in the form of a grey-level-co-occurrence matrix (GLCM). [88], [120], [121] This is
created through measuring the correlation of neighbouring pixel pairs. The neighbour could be
defined at any direction or distance away from the current pixel. This results in a GLCM that
incorporates the paired pixel directions and the intensity of the pixel pairs. [122] Measures can
be derived from the GLCM and be used as features, such as contrast, dissimilarity and entropy.

Classifiers can be built from combinations of features automatically through machine learn-
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ing. [122] Through this process the system can predict outcomes through models dependent
on characteristics of the input. Supervised machine learning is when the data being input are
labeled and the features are directly mapped into the output. [123] Unsupervised machine
learning recognises patterns within the input without the user providing labels. An example
of a supervised system with a binary outcome is the input of features contained within two
classes, arterioles and venules. Each sample is labeled as a feature of either category. The
output can then be either one of the two labels. However, machine learning can also encom-
pass continuous outputs, such as providing a probability of a certain circumstance. This may
involve the process of selecting the optimal set of features and using different classification
methods. [123]

Feature selection is a means to sift relevant features and incorporate them into the machine
learning algorithm. This processed enables the ability to remove redundant and correlated
features in multivariate methods, in order to prevent overfitting. [124] Through this process,
features can be ranked based on their performance. Features that work well in combination
with others can be included as well, even if they are unable to separate the classes on their own.
Thus, through feature selection, the optimal subsets of features are chosen for class separation,
avoiding overfitting to the dataset. This involves two main groups of methods; wrappers and
filters. [125] Wrappers score features based on their predictive power. These are typically
greedy search techniques and are robust to overfitting. Nested subsets of feature are created
using methods such as forward selection. The top predictive features are continuously added
to the feature set. [125] This also includes backward elimination. In this case, all the features
are used at first, and the least predictive or redundant variables are removed. Filters are another
method that involves pre-processing to select the features and is not dependent on the classifier.
These techniques are used to prevent overfitting and false positive classifications.

Machine learning involves creating classifiers through algorithms. Classifiers form deci-
sion boundaries between the classes in feature space. [122] This can be in the form of linear
classifiers in the form of a line, plane, or hyperplane. [126] Other techniques include higher
order hyperplanes, support vector machines (SVMs), naive Bayes, and decision trees. [127]
A commonly used classifier is the SVM, as it maximizes the margin between the classes in
feature space. [128] SVM is a linear classifier; however, features can be transformed, such that
they can be linearly separated in feature space.

The classifiers created need to be evaluated based on their performance, and there are meth-
ods of validation. [129] In the case of arteriole and venule separation, a binary classification
can be compared to user determined labels, through measures such as the true positive, true
negative, false positive and false negative values. Error rates can be derived from these values,
such as the precision, sensitivity and specificity of the system. The area under the operator
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receiver curve can be measured to determine the trade-off between true and false positive clas-
sification. Cross-validations can be performed, with subsets of samples are left out, such that
the machine learning algorithm is blind to those datasets. They could also be externally vali-
dated on samples from different centers.

1.8 State of the Art in Histology Image Analysis

The work described in this thesis involves development of automated software modules for
the analysis of vascular histology, in the context of microvascular regeneration, at the level of
the arterioles. Other studies have approached similar problems, with different solutions, for
histology image registration (Table 1.1) and segmentation (Table 1.2). Developed solutions in
both fields involve applications of either manual, semi-automated, or fully automated methods
enabling the analysis of vasculature or their feature of interest, within the histological context.
They demonstrated the feasibility of developing an automated system and the need for such
approaches.

One of the main focuses of histology registration involves alignment of 2D serial sections
for 3D volume reconstruction. Table 1.1 shows a summary of works for 3D reconstruction
with application for the vasculature. The work by Steiniger et al. demonstrated the need for 3D
reconstruction. They performed manual reconstruction of the capillary network in the spleen
in order to assess the network structure and the arterial microvascular ends, suggesting an
open circulatory system. [130] Semi-automatic reconstructions involve initializing the serial
histology sections using a revolving microscope or Photoshop to roughly align the images
prior to intensity based registration. [72], [131] Manual or automatic methods may not have
been validated through measures such as the registration error. [132]–[134] When they were
measured, metrics such as the Hausdorff distance, root mean squared error, and quantitative
smoothness measures were used to assess accuracy on either synthetic or sample data sets. Our
technique results in fully automatic 3D reconstructions of arterioles on whole-slide histology.

The vascular segmentation in the histological context mainly focuses on IHC, which is
demonstrated by Table 1.2. Unlike H&E staining, which results in magenta coloured tissues,
IHC provides contrast for the vasculature in the form of capillaries, arterioles and arteries. The
techniques developed involve semi-automated methods, developed as early as 1998 by Van der
Laak et al. [135] Since then, other semi- and fully automated methods have been developed,
mainly focusing on the capillaries, and aim to achieve an accurate density measure. [131],
[136]–[140] Segmentation of vessel wall, not simply the outer boundary of the vessel, has
been performed. This enabled the measurement of the vessel wall area compared to the lumen.
[138] Depending on the hardware available, the samples included TMAs, field of views taken
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Table 1.1: A summary of previous studies on registration for 3D vascular histology reconstruc-
tion (work presented in this thesis in boldface).

Year 1st Author Stain Tissue Calibre Method Image Automation

2005 Gijtenbeek IHC Patients Arteriole/

Capil-
lary

Manual/
intensity
based

Conventional
Microscope

Semi

2006 Gilhuis IHC Patients Capillary Manual/
intensity
based

Conventional
Microscope

Semi

2011 Feuerstein H&E Rat Artery Markov
random
field

Whole-
slide

Fully

2011 Steiniger IHC Patients Capillary Image
overlays

Conventional
Microscope

Manual

2013 Song H&E Patients Artery Intensity
based

Whole-
slide

Fully

2013 Schwier H&E Rat Artery Iterative
best fit

Whole-
slide

Fully

2014 Galambos H&E/

IHC
Patients Artery/

arteriole
Manual
alignment

Conventional
Microscope

Manual

2015 Wang H&E Patients Artery Manual/
Photoshop

Whole-
slide

Semi

2015 Xu IHC Mice Artery/

arteri-
ole

Landmark
based

Whole-
slide

Fully

from a conventional microscope, and whole-slide imaging. The steps involved with the seg-
mentation process typically involved thresholding, either at a user given value, or using Otsu’s
method. Post-processing steps were performed, such as smoothing, skeletonization and sepa-
rating attached vessels through watershed segmentation. [138] Validation of the segmentation
techniques involved comparison between manual assessments. The accuracy of detection and
segmentation was reported in some studies. Our technique results in fully automatic segmen-
tations of the arteriole wall on whole-slide histology.

Automated image analysis techniques in the context of histology are not restricted to the
study of vasculature. Other developed methods can be adapted for the assessment of vessels.
Reconstructions of serial histological sections have been performed on the brain, [71], [141]
liver, glomerulus and whole mouse embryos. [142] Registration of serial tissue sections with
different stains has been performed for co-localisation of positivity, which would require both
registration and segmentation of the stains of interest. [132], [143] Oncological applications
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Table 1.2: A summary of previous studies on segmentation of vasculature in histology (work
presented in this thesis in boldface).

Year 1st Author Stain Tissue Calibre Segmented Image Automation

1998 Van der
Laak

IHC Patients Capillary Stain Conventional
Microscope

Semi

2003 Chantrain IHC Patients Capillary Stain Whole-
slide

Semi

2005 Gijtenbeek IHC Patients Arteriole/

capillary
Endothelial
cells and
pericytes

Conventional
Microscope

Semi

2008 Hu IHC Porcine Aorta Stain Conventional
Microscope

Semi

2009 Sullivan IHC Patients Capillary Stain Tissue Mi-
croarray

Fully

2011 Reyes-
Aldasoro

IHC Patients/
Mice

Capillary Vessel
wall

Conventional
Microscope

Fully

2013 Fernandez-
Carrobles

IHC Mice Capillary Vessel
outer
boundary

Tissue Mi-
croarray

Fully

2014 Galambos H&E/

IHC
Patients Artery/

arteriole
Vessel Conventional

Microscope
Manual

2015 Kather IHC Patients Capillary Vessel
wall

Whole-
slide

Fully

2016 Xu IHC Mice Arteriole Vessel
wall

Whole-
slide

Fully

have been at the forefront for applications of histology tissue segmentation, and there has been
a special focus on the accurate detection of nuclei. [144]

1.9 Thesis Outline

To address the technology gap, with respect to the comprehensive assessment of muscularized
microvasculature, the overarching objective of this thesis is to develop an automated software
platform to assess the differences in morphology of the post-ischemic vasculature compared to
normal and its impact on function. The central research questions of this thesis are:

1. Does using 2D whole tissue section analysis result in different vasculature measurements
of morphology and density as compared to conventional field of view sampling?

2. Are there differences in SMC content with respect to density and morphology between
post ischemic and normal arterioles?
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3. Do the differences in SMC content between post ischemic and normal arterioles affect
blood flow and function?

To answer these research questions, this thesis has the following five aims:

1. To develop an automated registration software module for 3D vascular reconstruction

2. To develop an automated detection and segmentation software module for vessel con-
tours

3. To classify arterioles from venules using a machine learning platform

4. To compare morphology measurements between regenerated and normal vasculature

5. To infer difference in local blood flow control of SMC through modeling

Chapter 2: A method for 3D histopathology reconstruction supporting mouse microvas-
culature analysis

The purpose of this work was to develop an automated registration method, for whole-slide
serial histology sections, to reconstruct 3D histological volumes for the visualization of the
microvasculature. The developed technique aims to preserve the topology and geometry of
the vessels with accuracy, high enough for the microvessels down to the level of precapillary
arterioles. This would enable the visualization of structural abnormalities in the post-ischemic
hind limb compared to the normal. We aim to use fiducial markers within the tissue section
for registration to avoid deformation of the features within the tissue. We hypothesized that
a fully automated nucleus landmark based registration algorithm can be developed to perform
high accuracy 3D histology reconstruction for the visualization of the microvasculature.

Chapter 3: Segmentation of digitized histological sections for quantification of the mus-
cularized vasculature in the mouse hind limb

The objective of this work was to develop a fully automated software algorithm for the de-
tection and segmentation of vascular smooth muscle containing microvasculature. Chapter 2
provided the visualization of the vessels of interest, but delineations are necessary to provide
a mode for quantification. Up to hundreds of arterioles and venules are present within each
section, and thus a comprehensive measurement requires automated accurate detection and
segmentation without field of view sampling. We hypothesized that a fully automated detec-
tion and segmentation algorithm can be developed with high accuracy compared to manual
delineations, for quantification of vasculature on whole slide histology images.
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Chapter 4: Differentiation of arterioles from venules in mouse histology images using
machine learning

The objective of this work was to automatically classify arterioles separately from venules.
Chapter 3 described the developed automated segmentation of vessels containing vascular
smooth muscle. However, arterioles and venules are functionally and morphologically dif-
ferent, thus valuable quantitation cannot be performed unless they are analyzed separately.
Morphological and intensity based features were extracted from the segmented vasculature
to define a classifier to separate the feeder and draining vessels in both the normal and post-
ischemic mouse model, through machine learning. We hypothesized that automated and accu-
rate classification of arterioles and venules is feasible with a machine learning platform.

Chapter 5: High content analysis of the microvasculature in the post-ischemic skeletal
muscle reveals the emergence of abnormally thin-walled arteries and arterioles: Implica-
tions for flow reserve in regenerated muscle

The purpose of this work was to characterise the differences in morphology and function of the
vascular smooth muscle distribution between the post-ischemic and normal vasculature. Chap-
ters 2-4 encompass the development of a platform for a comprehensive analysis of the muscu-
larized microvasculature. This enabled the quantitative analysis of the difference in vessel wall
morphology in the post-ischemic stage. The morphology could then be used as parameters
for functional modeling of the blood flow through the network. Our hypothesis was that the
comprehensive quantification of the vasculature would result in the detection of differences in
the morphology of the vessel wall in the post-ischemic mice, as compared to the normal, and
functional modeling will demonstrate deficiencies in the injured vascular network.
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Chapter 2

A method for 3D histopathology
reconstruction supporting mouse
microvasculature analysis

The contents of this chapter were previously published in the journal Plos One:

Xu Y, Pickering JG, Nong Z, Gibson E, Arpino JM, Yin H, Ward AD. A method for 3D histopathol-

ogy reconstruction supporting mouse microvasculature analysis. Plos One. 2015 May 29;

10(5): e0126817. Permission to reproduce this article was granted by Plos One and is pro-

vided in Appendix A.

2.1 Introduction

The microvasculature constitutes the complex distal end of the vascular tree, the structure of
which is vital to ensuring optimal delivery of oxygenated blood throughout the tissue. Mi-
crovascular structure is inherently 3D, as the vessels are arranged as a highly branched net-
work that courses throughout the tissue. Understanding the microvessel network organization,
and its rearrangement during pathology, could thus be critical to dissecting the basis of organ
dysfunction during disease. A structural appreciation of the vessel wall components of the mi-
crovascular tree is also vital. This is particularly important for assessing arterioles and venules,
vessels that are wrapped to varying extents by vascular smooth muscle cells. The smooth mus-
cle layer of the vessel wall determines vascular tone and thus blood pressure and flow rate.
Thickening of the smooth muscle layer can lead to hypertension [1] and the arrangement of the
smooth muscle layers with respect to vessel density, organization, and circumferential wrap-
ping are vital to downstream flow in capillary beds. [2]

46
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Conventional 2D histology provides planar information on microvessels and is useful for
identifying components of the vessel wall. However, 3-dimensional architectural information
cannot be ascertained. Moreover, 2D assessment of the microvasculature may lead to misin-
terpretations, particularly in the setting of restructured microvasculature during disease, where
vessel and network morphometry cannot be predicted. In contrast to large and medium-sized
vessels that can be embedded and sectioned in specific directions, the orientation of arterioles
and venules of the microvasculature cannot be determined from standard histologic sections.
Because of this, branching, bifurcations, and tortuosity of microvessels are difficult to interpret
in conventional histology sections and misleading interpretations could arise from the 2D as-
sessment of complex 3D structures. Focal pathology (e.g. occurring at bifurcation points and
subregions of the vessel wall) can be better detected in a 3D volume of reconstructed tissue.
Thus, there is a need for a highly accurate 3D reconstruction [3] to visualize and measure the
microvasculature architecture in normal and diseased conditions.

There are various modalities with which to image the vasculature with 3D spatial informa-
tion; however, most lack the sensitivity to assess fine pathological perturbations. Traditional
light microscopy imaging of histology sections provides detailed information on tissue compo-
nents and structure in 2D at high resolutions, but lacks the 3D context necessary for assessing
structural aspects of pathologies in the vasculature. [4] Micro-CT allows for the spatial visu-
alization of the lumina of the vessels after injection of a contrast agent. The surrounding soft
tissue components, such as the vessel walls and connective tissues, are poorly resolved using
this imaging modality due to lack of soft tissue contrast and retention of the contrast agent
within the lumina. Casting the vasculature provides excellent lumen detail but is limited by
the fact that the casting agent does not always perfuse throughout the microvasculature, and
depiction of the vessel wall and surrounding tissue components is not possible. [5] Confocal
fluorescence microscopy imaging is a powerful tool but has a limited spectrum of molecules
which can be visualized, according to probe availability. This modality is also limited by the
field of view and depth of penetration of the probes into the tissue. [6]

3D histology reconstruction of the microvasculature has been explained in a few contexts
and proven to be useful. Steiniger et al undertook a 3D histology assessment of the spleen vas-
culature to reveal the terminal microvessel nodules. However, the alignment procedure used
was performed manually and was therefore subject to the accompanying labour and operator
variability. [7] 3D confocal microscopy has been used to observe microvascular branching pat-
terns in diabetic models, but the authors noted there was possible bias in the results due to the
limited depth of field. [8] Also using 3D confocal microscopy, capillary vessels in the skele-
tal muscle have been evaluated for vessel tortuosity, orientation, and mean capillary length.
However the authors highlighted that the problem of variable visualization of capillaries “is
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even more pronounced [in thick sections], because antibodies and dyes have to travel longer
distance[s] from the boundary of the sample.” They noted that new strategies in microscopy
would be useful. [9] 3D reconstructions of histological tissues may also aid in the validation of
high resolution 3D imaging techniques.

Accurate 3D visualization of histology could allow for obtaining features of the vessel wall,
the surrounding tissue features, and the inherent spatial configuration of the vasculature. The
lack of 3D spatial context in 2D histology may lead to misinterpretations of several different
aspects of the vasculature, including vessel angle, vessel size, and vessel wall thickness. 3D
reconstruction of 2D histology sections renders these types of measurements readily available
and unambiguous. In previous work, 3D histology reconstruction has been performed using
section-by-section pairwise registrations optimizing a feature or image similarity metric for
adjacent section pairs, assuming that co-registration of similar structures in the 2D space of the
pairwise images yields an accurate reconstruction. [10] This assumption is challenged by the
fact that adjacent sections sample different tissue, and an accurate 3D reconstruction may not
result in the section-to-section alignment of structures having similar appearance, such as two
adjacent cross sections of a blood vessel. This notion is clear when one considers the case of a
blood vessel oriented non-perpendicularly to the tissue section; in a correct 3D reconstruction,
on any adjacent pair of sections, the blood vessel cross sections will not be exactly aligned in
the 2D space of the histology sections to account for the non-perpendicular angular direction
of the vessel in 3D. In general, 3D reconstruction techniques must be designed to avoid forcing
curved or non-section-orthogonal structures to be orthogonal to the tissue sections [3] , also
known as the ”banana-into-cylinder” problem [11], in order to preserve the original orientation
of the vasculature for accurate assessment.

The objective of this work was to design, implement, and evaluate a method for 3D recon-
struction of 2D histology sections of mouse tissue that is sufficiently accurate to enable inter-
pretation of 3D arteriolar and venular networks. To address the banana-into-cylinder problem,
the reconstruction method uses a section pairwise landmark-based registration, where the land-
marks were homologous nuclei that were bisected by the microtome blade during sectioning.
This choice of landmark type is based on the insight that cell nuclei, approximately 5µm in
diameter [12], are unlikely to appear on more than two adjacent sections. We conjectured that
the use of such landmarks may address the banana-into-cylinder problem due to their appear-
ance on not more than two consecutive sections, and their lack of orientational bias. This is in
contrast to, for instance, the use of vessel centerlines to define landmarks; vessels will appear
on many consecutive tissue sections and their angles of orientation through multiple tissue sec-
tions are coherent and smoothly varying. In general, there is a lack of bias in the centroid to
centroid vectors of bisected nuclei across adjacent slides, compared to multi-slice non-section-
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orthogonal objects (such as the previously described vessels) that are smoothly varying at the
scale of the section thickness. Also, nuclei are roughly spherically symmetric, so arbitrary cuts
through nuclei should yield section-orthogonal centroid-to-centroid orientations. We compared
the reconstruction error of the proposed nucleus-based registration to that given by more con-
ventional intensity based registration. The registration algorithms were evaluated based on
reference standard homologous nucleus features on adjacent sections to determine registration
accuracy.

2.2 Materials and Methods

2.2.1 Animal model

The experiments were conducted on tissue samples of the upper one third tibialis anterior (TA)
hind limb muscle from 11 wild type C57BL/J6 mice. In 5 of the 11 mice, tissue was collected
two weeks after induction of hind limb ischemia by femoral artery excision; these samples
were expected to contain regenerated vasculature. This particular muscle segment was selected
because of the consistent development of microvessels of diverse caliber following hindlimb
ischemia. The remaining 6 mice were not subjected to hind limb ischemia; these samples were
expected to contain normal vasculature. There were between 9 and 14 serial sections obtained
from each sample.

The mice were perfused with saline post-mortem to remove the red blood cells from the ves-
sel lumina and then perfusion-fixed at physiological pressure with 4% paraformaldehyde. The
tissues were processed and paraffin-embedded after harvesting, then cut into 7×5 mm blocks
and sectioned at 5 µm. To visualize the smooth muscle distribution down to the level of the ar-
terioles and venules, sections were immunostained with smooth muscle (SM) α -actin using the
monoclonal antibody (DAKO, M0851), and bound primary antibody detected with horseradish
peroxidase (HRP)-conjugated secondary antibody and 3,3’-Diaminobenzidine chromogen (DAB,
Vector Laboratories, SK-4100). This marked the smooth muscle layer of the vasculature (re-
sulting in the vessel walls being stained with a brown colour) which is shown in Figure 2.1. The
tissue was then counter stained with hematoxylin, resulting in blue-stained nuclei. The stained
sections were then imaged with a ScanScope CS (Aperio Technologies, Vista, CA, USA) bright
field slide scanner, at 20 × objective with the 2 × magnification engaged, resulting in a 0.25
µm isotropic pixel size.
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Ethics Statement

All experiments in this study were approved by the Animal Care and Veterinary Service Com-
mittee at The University of Western Ontario (Protocol # 2010-244) and were carried out in
accordance with their requirements. Surgeries were performed under isoflurane anesthesia.

A 

B 

Figure 2.1: Regenerated hind limb tissue following ischemic damage. The tissue was im-
munostained with smooth muscle α-actin and DAB chromogen and counter-stained with hema-
toxylin. Blue arrows indicate nuclei and black arrows indicate the stained arteriole. Scale bar
(A) 500 µm, (B) 100µm.

2.2.2 Image registration and validation approach

A high level overview of the methods is shown in Figure 2.2. All processing was performed
using custom software developed in MATLAB 7.13 (The Mathworks Inc., Natick, MA, USA)
except where otherwise indicated. Pairwise non-rigid affine nucleus landmark and intensity
based registration was performed between serial sections of tissue in two dimensions and used
to create a three dimensional volume. Two non-rigid affine registration methods were com-
pared: high-resolution intensity-based registration using a mean squared error (MSE) image
similarity metric, and the affine nucleus landmark-based registration that is the main contri-
bution of this paper. A non-rigid affine registration involves rotation, translation, scaling and
skew for non-rigid alignment of the moving image to the fixed image. The registrations were
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Figure 2.2: Diagram depicting the registration methods. The flow diagram in (A) depicts the
overall experimental process, with (B) and (C) giving exploded views of the intensity-based and
nucleus-based registration steps. Both approaches were initialized with a rigid, low-resolution
intensity-based registration. The intensity-based registrations (B) were done using a standard
iterative optimization loop. The nucleus-based registration (C) was computed non-iteratively
in closed form based on automatically segmented and corresponded nucleus landmarks. Both
methods were executed pairwise on each adjacent section pair, and as a final step these pairwise
registrations were composed to form the final 3D reconstructed volume.

initialized with a rigid registration, which involves only rotation and translation of the moving
image. MSE is the mean of the squared intensity differences between each pair of overlapping
pixels in the fixed and moving comparison images. The ideal value of MSE is zero, and a
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gradient descent optimizer was used to find the optimal registration yielding an MSE closest
to zero. Both methods are provided with the same initialization from a coarse, intensity-based
rigid registration performed on low-resolution (downsampled) images using the MSE metric.
This coarse 3D reconstruction was first performed via pairwise registration of adjacent tissue
sections using an intensity-based registration, on low-resolution images (with extents of 172
× 264 pixels) obtained by downsampling using bilinear interpolation. This coarse registration
yielded an initial alignment that was provided to both tested registration algorithms. For the
landmark-based registration, nucleus landmarks were automatically extracted based on size and
the hematoxylin stain colour, and corresponded across adjacent sections according to similarity
metric measures of the surrounding local image neighborhood. After pairwise adjacent section
registration, the tissues were rendered into a 3D volume by a stacking process to visualize the
histological vasculature.

2.2.3 Experimental methods

A set of homologous reference nucleus landmarks were located with the segmentation algo-
rithm. The landmarks were manually verified for accuracy, corresponded in pairs on adjacent
sections, and used to evaluate the registrations. This set of nucleus landmarks was not used in
registering the images (i.e. the reference landmarks were specifically excluded in the computa-
tions described in the Section 2.5). A reference reconstruction using these reference landmarks
provides a surrogate for an ideal reconstruction (Figure 2.3A) that preserves both topology and
geometry. Topology preservation maintains connectedness of structures and geometry preser-
vation maintains the original positions and orientations of structures in the reconstruction.

Our need for high-accuracy reconstructions requires that we evaluate our method against
a reference standard providing precision of < 10 µm , with accuracy measured throughout all
regions of the tissue. These requirements preclude the use of a 3D reference image obtained
using CT or MRI as these imaging modalities do not provide the necessary resolution and/or
soft tissue contrast to resolve the necessary small, homologous point landmarks to measure re-
construction error throughout the spatial extents of the volume. Micro CT of contrast-enhanced
vasculature could provide sufficient landmarking precision at vessel bifurcation points, but this
would spatially concentrate reconstruction error measurements around these points, precluding
error measurement throughout all other tissue regions.

An ideal reference against which to evaluate our reconstructions would be a set of dense
and evenly distributed landmarks, localizable with the necessary precision and accuracy. As it
would be impractical to introduce a set of extrinsic landmarks meeting these criteria, we turn
to a close intrinsic surrogate: the small, highly localizable cell nuclei distributed throughout
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Figure 2.3: Comparison of the alignment of bisected nuclei when measuring the accu-
mulated registration error. (A) The ideal error-free reference reconstruction, with bisected
nuclei aligned with minimum residual error (a pairwise target registration error between cor-
responding halves of bisected nuclei of zero is depicted). (B) A reconstruction aligning nuclei
with spatially unbiased error; but vessel connectedness (topology) and angle (geometry) are
mostly conserved. (C) A reconstruction optimizing pairwise alignment of salient structures
(the vessel cross sections in this example) preserves vessel topology but not geometry. Note
that the pairwise target registration errors in (B) and (C) are similar, despite the lack of ge-
ometry preservation in C. The accumulated target registration error does capture the difference
between (B) and (C); the plots in the bottom row indicate increasing accumulated error through
the stack of sections.

the tissue. Specifically, we manually localized the subset of nuclei that were bisected by the
microtome blade; these nuclei appear on homologous points on adjacent tissue sections. By
aligning these bisected nuclei on adjacent sections throughout the volume, we re-established
the spatial tissue homology that was broken during the tissue cutting process, yielding a refer-
ence 3D reconstruction that depicts the geometric and topological configuration of the tissue
before it was cut.

It is important to note that although the method for constructing the reference reconstruction
and the method for performing automatic reconstruction are both based on nuclei, there are
two important differences that justify the use of this validation approach. First, as is typical
in landmark-based registration evaluation, the landmarks used for the reference reconstruction
are not used by the registration algorithm. Thus, the algorithm is validated using a completely
different set of landmarks than those used to perform the reconstruction. Second, the landmarks
used for the reference reconstruction were all manually verified by an operator for truth of
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correspondence and localisation, whereas for the reconstruction process, the landmarks were
fully automatically identified and not checked by an operator.

2.2.4 Intensity-based registration

The histology images were obtained from the Scanscope CS slide scanner with isotropic 0.25
µm pixels and had extents of 17135 × 26398 pixels. To support faster processing for the
intensity-based registration only, these images were downsampled to obtain images with isotropic
4 µm pixels using bilinear interpolation, resulting in an image size of 1071 × 1650 pixels.
These downsampled images were then converted into greyscale images by averaging of the
RGB colour channels.

Figure 2.2B describes the intensity-based registration algorithm we tested. The images
were registered using custom C++ software built on the Insight Segmentation and Registration
Toolkit Version 4.4.1 (ITK) [13]12. In the interests of computational efficiency, we used the
MSE image similarity metric because this is a mono-modality image registration problem and
tissue staining is anticipated to be consistent within a set of serial sections. The space of 2D
rigid transformations was searched to minimize MSE using a regular step gradient descent op-
timizer initialized with zero rotation and translation. Non-rigid affine registration was applied
after the rigid intensity based registration with the optimizer initialized using the rigid registra-
tion parameters. After optimization, MATLAB’s imtransform function was used to apply the
resulting set of 2D affine spatial transformations. This mapped the full resolution RGB histol-
ogy image of each section to that of its adjacent section, yielding a 3D reconstruction from the
intensity-based registration.

2.2.5 Nucleus feature extraction, correspondence, and registration

Figure 2.2C describes our nucleus landmark-based registration algorithm. Cell nuclei were
automatically extracted from the images based on combined criteria of colour and size. To
determine the colour and size criteria to be used for nucleus extraction, we used a separate
set of mouse hind limb tissues that were not used for the experiments reported in this chapter.

1For the low-resolution registration used as initialization, the itk::RegularStepGradientDescentOptimizer op-
timizer was tuned for scale differences in transformation parameters using its SetScales() function; scales were
set to be 102 and 10−2 for the rotational and the translational components of the transformation, respectively.
The maximum (i.e. initial) and minimum (i.e. defining convergence criterion) step sizes were set to 4 and 0.1,
respectively, using the optimizer’s SetMaximumStepLength() and SetMinimumStepLength() functions. For the
high resolution registration, these parameters were adjusted to 0.01 and 0.001, respectively, to refine convergence
to the local optimum found by the low-resolution registration.

2Parameters were chosen on experimentation with a sample not included in this study and not tuned for the
samples in the study.
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On this separate set of tissues, we manually delineated nuclei which were counter stained with
hematoxylin with varying degrees of staining (Figure 2.4). Based on these manual delineations,
a threshold value of < 80 % in the green channel of the red-green-blue (RGB) colour space and
an area range of 6 µm2 - 160 µm2 were determined as the criteria for defining nuclei.2 Both the
colour and area criteria needed to be met for detection of each nucleus; samples of extracted
nucleus points are shown in Figure 2.5A. Debris can occur in the blank/white space of the
microscope slide surrounding the tissue and can have similar colour and size criteria as nuclei.
This debris was automatically excluded as nuclei by determining whether the surrounding area
had similar appearance to the measured slide background. The surrounding area is defined by
a 5 µm disk-shaped morphological dilation2 seen in Figure 2.5B. The area was compared to a
mean green channel of > 95%, standard deviation of < 4%, which were chosen according to
the typical appearance of the clear glass slide regions.2 The centroids of the extracted nuclei
were used as the nucleus landmarks for registration.

Figure 2.4: Separate set of mouse hind limb tissues that were not used for the experiments
reported in this chapter. These tissues were used to determine nucleus size and colour for
nucleus extraction. Scale bar 100 µm.

Next, we estimated a correspondence between bisected homologous nuclei appearing on
adjacent sections, in order to define an affine transformation registering each pair. Our ap-
proach to correspondence establishment is inspired by block matching-based image registra-
tion [14], and is based on the conjecture that for a given nucleus on a section, if a homologous
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A B 

Figure 2.5: Nucleus segmentation method. (A) The segmented nucleus labeled blue on the
histology section stained with DAB and hematoxylin counter stain. (B) The surrounding region
(white) of each nucleus was defined by morphological dilation and used to evaluate whether
the extracted nucleus was within the tissue, or was instead a false positive corresponding to
debris on a white background outside of the tissue, indicated with the white arrows. Scale bar
50 µm.

nucleus exists within a local neighbourhood on a neighbouring section, it will be surrounded
by tissue having similar appearance. All of the tunable parameters in our method were chosen
based on experimentation with a sample not used in the study. Our approach to estimating
correspondence for each detected nucleus involves defining a set of candidate nuclei within
a defined local neighbourhood on the adjacent section. An image similarity metric is then
evaluated within a local region surrounding each candidate to find the candidate with the most
similar surrounding tissue. A square local region was used to compare the neighbourhoods
of candidate nucleus landmark correspondences (Figure 2.6). The green channel of the square
image was used and the window/level was adjusted (by software, without human interaction) to
the window of 14 and level of 235 to enhance tissue-background contrast.2 The neighbourhood
image I(p) has a side length2 of 250 µm and surrounds each nucleus p on section I. We cal-
culated the mean-squared error (MSE in the equation below) image similarity metric between
I(p) and the local image neighbourhoods J(q) surrounding all candidate nuclei q (within T =

100 µm of p)2 on adjacent section J. We corresponded each nucleus p on each section to the
best matching nucleus p′ on the adjacent section, with the best match defined as the one having
the smallest MS E as defined above. Precisely,
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p′ = arg min
q∈{xi

j,∀i|D(p,xi
j)<T }

MS E(I(p), J(q)) (2.1)

where xi j is defined to be the ith nucleus on image J and D is defined to be the 2D Eu-
clidean distance function. For each adjacent section pair, we defined a rigid transformation
minimizing the residual error between the corresponding nuclei (i.e. the established p→ p′

correspondences) having the best (smallest) 100 MS E values2 found for that section pair. We
retain only the best correspondences to define the registration since there will undoubtedly be
many nuclei that do not have a homologous nucleus on the adjacent section, since not all nuclei
are bisected by the microtome blade. The composition of these transformations, both rigid and
affine, for each section pair yielded the 3D nucleus landmark reconstruction.
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Figure 2.6: Nucleus correspondence method. (An illustration depicting the approach to es-
tablishing correspondence of nucleus p in section I with its best matching nucleus in adja-
cent section J. In this example, the candidate nuclei on section J are p′, q1, and q2, lying
within a dashed circle of radius T centred on p (only 3 of the 18 candidate nuclei within
the circle are illustrated here for simplicity). The candidate nucleus with the most similar
surrounding tissue appearance is selected to correspond to p. Surrounding tissue appearance
similarity is measured using the MSE image similarity metric, comparing the local square re-
gion I(p) centered on p with the local square regions J(p′), J(q1), and J(q2) centered on the
candidates p′, q1, and q2. In this example, since MS E(I(p), J(p′)) < MS E(I(p), J(q1)) and
MS E(I(p), J(p′)) < MS E(I(p), J(q2)), p is corresponded with p′.
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Evaluation of registration accuracy

The registration accuracy was measured in terms of topology (i.e. preservation of structural
connectivity) and geometry (i.e. preservation of distances and angles between structures). Ac-
curacy was measured based on reference reconstructions of the tissues. For each sample, the
reference reconstruction was determined by reference nucleus landmarks, which formed a sep-
arate set of corresponded nuclei not used to define the automated registration. To ensure the
correctness of the reference reconstructions, every reference landmark correspondence was
verified manually and any incorrect correspondences were discarded. We measured the pair-
wise registration error as the post-registration misalignment of reference nuclei on each section
with the homologous corresponding reference nuclei on the next adjacent section. Thus, the
pairwise registration error for a single nucleus is measured within the 2D spatial context of a
section on which it appears. We also measured the accumulated registration error as the dif-
ference between the position of a reference nucleus given by a registration algorithm and its
position within the reference registration. Thus, the accumulated registration error for a sin-
gle nucleus is measured within the 3D spatial context of the reference reconstruction. This
captures accumulation of error propagated through the series of pairwise section registrations.
The pairwise error characterizes the performance of the reconstruction algorithm for each pair-
wise registration of adjacent sections independently. However, the accumulated error provides
information about spatial bias in the pairwise error that may result in a reconstruction that is
more erroneous than the pairwise error would suggest. This scenario is depicted in Figure 2.3.
Although the scenarios depicted in Figures 2.3B and 2.3C have the same pairwise registration
error and both preserve topology, the reconstruction Figure in 2.3B better preserves geome-
try and this is reflected in a lower accumulated registration error. Errors measured in these
two spatial contexts are thus complementary, with the pairwise registration error capturing er-
rors in topology of the reconstructed vasculature, and accumulated registration error capturing
geometric errors.

Within the different spatial contexts described above, we measured two different types of
registration error: the target registration error (TRE) and fiducial registration error (FRE). The
“targets” and “fiducials” refer to reference points. Both the TRE and FRE are measured as the
post-registration Euclidean distance between homologous fiducial pairs. Since, in an ideal reg-
istration, these homologous fiducial pairs should be perfectly aligned, the ideal value of TRE
and FRE is zero. The difference between the FRE and TRE is in the choice of fiducials used.
To calculate the FRE, the same nucleus landmarks that were used to define the registration
are used to calculate the error. To calculate the TRE, the nucleus landmarks that were used
to define the registration are not used to calculate the error; the separate set of reference land-
marks, to which the algorithm is blinded, are used instead. Thus, the FRE provides sense of
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the best-case performance of the algorithm since the algorithm optimized the alignment of the
same landmarks used to calculate the error, and the TRE provides a more realistic measure of
performance. We evaluated the intensity-based and nucleus-based reconstructions separately
by calculating the pairwise and accumulated TREs for each algorithm on each of both normal
and regenerated mouse tissues. To determine the appropriate statistical tests for comparing the
TREs generated by the different approaches, Kolmogorov-Smirnov normality tests were per-
formed on the TRE distributions. We tested the null hypothesis that the median pairwise TRE
of the intensity-based registration was the same as the median pairwise TRE of the nucleus-
based registration using the non-parametric Wilcoxon sign rank test. A similar null hypothesis
for the accumulated TRE was also tested.

We undertook several steps to give context to our measured registration errors. As a best-
case estimate of fidelity of the reference reconstruction to a hypothetical ideal reconstruction,
we measured the pairwise FRE of the reference reconstruction based on manually validated
nucleus landmark correspondences. This measure reflects the amount of tissue distortion that
was not compensated by our affine transformation model, which gives a sense of the discrep-
ancy between the reference reconstruction and an ideal reconstruction. To provide context for
interpretation of the pairwise TREs from the tested algorithms, we also measured the pair-
wise TRE using the reference nuclei using leave-one-out cross validation (LOOCV). Using
this technique, one of the reference landmark pairs is removed (“left out”) and the registration
is defined based on the remaining pairs. The registration error for the removed pair is calcu-
lated. This is performed N times for each of the N reference fiducial pairs, yielding N distinct
TRE measurements which are averaged. Since the algorithm is only blinded to one reference
landmark pair at a time, the pairwise TRE measured by LOOCV over the reference nuclei
provides an optimistic measure of registration performance against which to compare the TRE
calculated when the algorithm is blinded to all of the reference nuclei.

Evaluation of image similarity metrics

Any observed differences the in error values observed between the intensity-based and nucleus-
based reconstructions could be attributed to two main sources. The first is that the transfor-
mation yielding the MSE similarity metric optimum may not be coincident with the nucleus
landmark-based transformation as defined by

TMS E = arg min
T

MS E(I, J) (2.2)

where I and J are images of adjacent sections. The second is that the intensity-based
registration optimizer could fail to converge to the desired optimum. If the optimum is not
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coincident with the landmark-based transformation, one could assert that the reconstructions
given by the nucleus landmark-based approach would be different from those given by the
intensity-based approach. This would be the case even with the use of a hypothetical ideal
optimizer. If the intensity-based registration did not converge to the optimum, one could assert
that the intensity-based approach using the MSE metric could perform equally as well as the
nucleus landmark-based approach, given improvements to optimization. To gain insight into
the reasons behind any such observed differences in error, we calculated the MSE image simi-
larity metric in the spatial neighbourhood of the transformations yielded by the nucleus-based
reconstruction. This exploration could determine that the MSE optimum and nucleus landmark
optimum are not coincident (i.e. if there exists a transformation with a lower MSE value than
that given by the nucleus landmark transformation); in this case, a hypothetical ideal optimizer
would not yield a reconstruction based on the MSE metric that would be equivalent to the
nucleus-based reconstruction.

In this experiment, we explored the space of translations along the x and y directions sepa-
rately, within ranges of 20 µm from the nucleus-based optimum, in increments of 0.5 µm. This
experiment was performed on full resolution serial section images. For each of the x and y

directions we found the optimal translation yielding the lowest MSE and recorded this value
as a displacement from the nucleus landmark registration (i.e. a displacement of 0 µm reflects
an MSE optimum coincident with a nucleus landmark registration optimum). We calculated
the 95% prediction intervals of these displacements and recorded the upper bounds of these
intervals to obtain an estimate of the expected translational offset between the nucleus based
registrations and the registrations one could obtain via optimization of the MSE image sim-
ilarity metric within the local neighbourhood of the nucleus based registration. Under some
assumptions (discussed in the penultimate paragraph of this paper), this allows a comparison
between the nucleus-based reconstructions and reconstructions that could be achieved without
the need for explicit localization and correspondence of nucleus landmarks (e.g. using robust
optimization of MSE in a multi-resolution framework).

2.3 Results

2.3.1 Vessel reconstruction properties

Images of the 3D reconstructed volumes were rendered using 3D Slicer 4.1.1 (Harvard SPL,
Boston, MA, USA), with a voxel size of 0.25 µm× 0.25 µm× 5 µm. [15] Regions of interest
from whole-slide reconstructions of both normal and regenerated vasculature are shown in
Figure 2.7, with selected corresponding 2D histological sections; both nucleus landmark-based
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Figure 2.7: 3D and 2D histology comparisons. 2D histology sections (pixel size 0.25 µm
× 0.25 µm) and corresponding 3D reconstruction (voxel size of 0.25 µm× 0.25 µm× 5 µm)
of serial histology sections of a normal (A-D) and regenerated mouse (E-H) TA post-femoral
artery excision, immunostained for smooth muscle alpha-actin. A and E are registered using
affine intensity based registration. B and F are registered using affine nucleus based regis-
tration. Within each column, the dashed lines indicate correspondence (according to colour)
between parts of the 2D sections and their locations on the 3D views. Also within each col-
umn, the lower case letter labels indicate correspondence between vessel cross sections on the
2D sections and their homologous locations within the 3D views. Blue arrows indicate incor-
rect vessel wall discontinuities arising from reconstruction error. The insets in the red boxes
show 2D and 3D diameter measurements of the same vessel; note that the 2D measurement
overestimates the 3D measurement by a factor of > 6. Scale bars 100 µm.

and intensity-based reconstructions are shown. In Figure 2.7C, a distinct vessel cross section
is visible on one histology section, labeled as a. Figure 2.7D depicts another section taken
60 µm deeper into the tissue, showing two vessel cross sections, labeled as b and c. If only
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2D histology images were available, one might conclude that these three vessel cross sections
correspond to multiple distinct vessels. However, the 3D reconstruction shown in Figure 2.7B
reveals that a, b, and c are in fact all connected within the same vessel. Figures 2.7G and H
depict two sections taken 50 µm apart, with seven vessel cross sections indicated with labels d
through j. Based on inspection of only these 2D sections, one might conclude that there were
four distinct vessels represented: one vessel d appearing on only one section, and three more
vessels connecting e to h, f to i, and g to j, respectively. However, the 3D reconstruction of
this tissue shown in Figure 2.7F reveals that in fact the connectivity is d to h, e to i, and an
undulating vessel connecting f, j, and g. Thus, both the number of distinct vessels and their
connectivity would be incorrectly estimated based on 2D sections alone. Additionally, the un-
dulation creates the appearance of incorrectly large vessel lumina in 2D, which is demonstrated
particularly for cross sections labeled f and j, arising from the fact that the plane of sectioning
runs nearly parallel to the direction of the vessel in these areas. We compared spatially corre-
sponding 2D and 3D manual diameter measurements of a total of 40 randomly chosen vessels
from all 11 mouse samples. This yielded 40 paired differences (2D diameter - 3D diameter),
the median ± interquartile range of which was 21.09 ± 27.95 µm. We also calculated the 2D
diameter / 3D diameter ratio for each of the 40 vessels and found a median ± interquartile range
of 1.6 ± 1.2. For each of the 40 vessels, the 2D diameter was larger than the 3D diameter.

Registration technique comparisons

We observed qualitative differences between the different reconstruction approaches, with a
smoother reconstruction in the nucleus landmark registration. Volumes depicting 3D recon-
structions of normal and regenerated vasculature are shown in Figure 2.7. The intensity based
reconstruction was generally observed to preserve vessel topology/connectedness for larger
vessels but more geometric disruptions were qualitatively observed, compared to the nucleus-
based reconstructions as seen in Figure 2.7A and 2.7E (intensity-based reconstruction), com-
pared to Figure 2.7B and 2.7F (nucleus-based reconstruction), respectively.

2.3.2 Evaluation of registration accuracy

In all of our experiments, the TRE values were found to be non-normally distributed (p < .01),
therefore non-parametric testing (Wilcoxon sign rank test) of null hypotheses of equivalent
medians was performed, and descriptive statistics were reported as the median ± interquartile
range (IQR). For reference in terms of the best possible performance using non-rigid affine
registration, the measured pairwise FRE and the TRE of the reference reconstruction are shown
in Table 2.1.
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Table 2.1: Pairwise affine registration errors (µm) of the reference nucleus landmarks

Normal Median ± IQR CI 95%

FRE 3.42 ± 4.44 [3.32,3.52]
TRE 3.54 ± 4.63 [3.42,3.63]

Regenerated

FRE 2.49 ± 4.44 [2.43,2.57]
TRE 2.57 ± 4.63 [2.50,2.65]

Table 2.2 shows both the pairwise and accumulated TRE values for normal and regenerated
samples, with 95% confidence intervals on the medians. Intensity-based registration at low res-
olution was also reported, which was used to initialize the subsequent high-resolution intensity-
and nucleus landmark-based registrations.

Table 2.2: Pairwise and accumulated target registration error (TRE) values (µm) of the rigid
and affine intensity-based and nucleus-based landmark registration (best in boldface)

Rigid Registration Affine Registration

Normal Regenerated Normal Regenerated
Pairwise TRE (µm)

Intensity-based Median ± IQR 12.90 ± 13.85 10.31 ± 13.03
(low-res) CI [12.6,13.3] [10.1,10.6]

Intensity-based Median ± IQR 9.07 ± 14.96 6.70 ± 7.39 7.70 ± 12.41 4.73 ± 6.33
(high-res) CI [8.81,9.34] [6.53,6.89] [7.43,7.99] [4.61,4.87]

Nucleus based Median ± IQR 6.54 ± 8.02 5.93 ± 7.68 4.97 ± 5.75 4.54 ± 6.67
CI [6.36,6.76] [5.74,6.07] [4.87,5.12] [4.41,4.68]

Accumulated TRE (µm)

Intensity-based Median ± IQR 34.43 ± 42.49 31.58 ± 32.70
(low-res) CI [33.4,35.6] [30.8,32.4]

Intensity-based Median ± IQR 33.70 ± 40.48 17.95 ± 23.71 22.49 ± 38.59 13.62 ± 20.19
(high-res) CI [32.8,34.7] [17.3,18.5] [21.7,23.2] [13.1,14.1]

Nucleus based Median ± IQR 12.67 ± 15.84 12.42 ± 12.91 9.78 ± 17.09 9.81 ± 15.71
CI [12.3,13.1] [12.0,12.7] [9.4,10.2] [9.4,10.1]

Table 2.2 also shows the pairwise and accumulated TRE values for these subsequent rigid
and non-rigid affine registrations for both high resolution intensity based registration and nu-
cleus landmark registration. The intensity based registrations were performed on grayscale
images; no significant differences were found between these reported error values and those
measured when the registration was performed on the red, green or blue channels separately.
Since the TRE values were found to be non-normally distributed, these confidence intervals



64 Chapter 2. 3D histology reconstruction

were computed non-parametrically as [L,U], with lower bound L and upper bound U defined
as the TRE values having ranks of n/2 - 1.96 /2 and n/2 + 1.96 /2, respectively, in the sorted
list of TREs. [16] There was a statistically significant difference in the median pairwise TRE
values between the intensity-based and the nucleus-based registrations for normal and regen-
erated mouse tissues (p < .001). The medians of the accumulated TRE were also statistically
significantly different between the intensity-based and the nucleus-based registrations for both
normal and regenerated tissues (p < .001). For both normal and regenerated tissues, we also
calculated the maximum post-registration distance between any pair of homologous nucleus
landmarks used for the TRE calculation. Table 2.3 reports the mean and standard deviation of
these maximum differences.

Table 2.3: Mean and SD of maximum pairwise and accumulated target registration error (TRE),
observed on each section for the rigid and affine intensity-based and nucleus-based landmark
registration (best results in boldface)

Pairwise (Mean ± SD) Accumulated (Mean ± SD)
Normal Regenerated Normal Regenerated

Rigid Registration TRE (µm)

Intensity-based 49.02 ± 32.19 31.73 ± 17.65
(low-res)

Intensity-based 47.47 ± 38.51 26.96 ± 19.26 46.47 ± 35.40 24.06 ± 15.34
(high-res)

Nucleus based 38.89 ± 30.68 24.32 ± 15.43 35.87 ± 32.06 24.49 ± 21.67

Affine Registration TRE (µm)

Intensity-based 90.22 ± 52.86 66.22 ± 38.74
(low-res)

Intensity-based 90.87 ± 79.05 37.14 ± 22.20 78.63 ± 65.44 41.78 ± 25.31
(high-res)

Nucleus based 43.06 ± 34.71 28.47 ± 12.80 30.05 ± 23.52 39.41 ± 48.03

Box plots of the distributions of the TRE values are shown in Figure 2.8 for the high res-
olution affine intensity based registration and the affine nucleus landmark based registration.
These plots provide a more detailed view of the error measurements, and showing the distribu-
tions of pairwise and accumulated TRE values at every section in the reconstruction. For the
pairwise TRE, Figure 2.8 shows the TRE distributions for each section pair, where the num-
ber on the horizontal axis indicates the larger of the two section numbers in the pair (e.g. at
horizontal axis point 2, the pairwise TRE distribution for sections 1 and 2 is shown). For the
accumulated TRE, Figure 2.8 shows the TRE distributions for each section number as indicated
on the horizontal axis. For the pairwise TRE, the horizontal axis value of one clearly has no
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Figure 2.8: Registration accuracy measurement values. Box plots of the rigid and affine
target registration error (TRE) computed for each adjacent pair of sections (pairwise) and prop-
agated throughout the 3D reconstruction (accumulated).

defined TRE distribution, and for the accumulated TRE at this point on the horizontal axis all
TREs are zero (since section 1 is an untransformed reference section forming the basis of the
reconstruction). It is for this reason that the horizontal axes begin at section 2 in Figure 2.8.
For the rigid transformation model, we observed a more pronounced trend toward increasing
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accumulated TRE values with increasing section number for the intensity-based reconstruction,
as compared with the nucleus-based reconstruction. For most sections, concordant with the
observations in Tables 2.2 and 2.3, we observed larger error magnitude and variability using
intensity-based registration. Overall, the affine transformation model outperformed the rigid
transformational model and suffered fewer effects of accumulation of error.

2.3.3 Evaluation of image similarity metrics

Table 2.4 shows the medians and interquartile ranges of the displacements described in the ex-
perimental methods along the x and y directions for normal and regenerated samples, and for all
samples in aggregate. The upper bounds of the associated prediction intervals are also shown.
As these samples were found to be non-normally distributed, a non-parametric approach to
calculating the prediction interval was used, where the maximum TRE value observed in the
sample defined the upper bound of the P % prediction interval, where P = (N−1)/(N +1). [17]
For all the samples in aggregate, an upper bound of not more than 10 µm was observed in
the 98% prediction interval, suggesting that with robust optimization of the MSE image sim-
ilarity metric on full resolution images, the resulting pairwise registrations are unlikely to be
displaced more than 10 µm from those given by the nucleus-based registration.

Table 2.4: The displacement of the optimal mean squared error transformation from the affine
nucleus-based registration

Sample Displacement Median IQR Upper bound of P (%)
direction (µm) non-parametric P%

prediction interval (µm)

Normal X 1.50 ± 2.25 9.58 97
Y 1.00 ± 1.50 5.37 97

Regenerated X 1.50 ± 2.00 6.5 97
Y 1.50 ± 2.00 8.87 97

All Values X 1.50 ± 2.38 10 98
Y 1.50 ± 1.50 8.52 98

2.4 Discussion

Vascular abnormalities perturb organ perfusion and could lead to damage and tissue dysfunc-
tion. The microvasculature which underlies tissue perfusion is inherently 3D and aspects of
the vascular pathology may be unaccounted for when assessing the vessels in conventional 2D
histology. Visualizations in 3D could remove potential ambiguities in the interpretation of the
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histological samples. This is demonstrated by our results in Figure 2.7, where several different
types of misinterpretations may potentially occur. The density of vessels in one region could
be misinterpreted and the branching or structural detail at the bifurcation point is lost. The
reconstructed normal tissue in (B) demonstrates the connectivity of the vessels shown in the
cross sections (C) and (D). Without the 3D image, the interpretation of the connectivity of
microvasculature can be challenging. Cross sections 50 µm apart in Figure 2.7G and H demon-
strate regenerated vessels, portions of which (indicated by f and i) run nearly parallel to the
section plane. In this example, the vessels could be misinterpreted to have larger lumina and
have a higher vessel count in plane due to multiple views in cross section of one vessel. For
example, the vessel labeled f in Figure 2.7G is connected to the vessel labeled g on the same
figure due to the tortuosity of the vessel. When quantifying vessel features within 2D sections,
this tortuosity could lead to an erroneously high vessel density count. In the corresponding
reconstruction (F), connectivity, tortuosity and thickness of the vessel are visualized. Errors
in 2D measurement of vessel diameter arising from non-orthogonality of vessels to sections
can be resolved in a 3D reconstruction. This is demonstrated with an example in Figure 2.7,
where the measured lumen diameter in 2D is 93 µm due to the vessel running nearly parallel
to the section plane. In the 3D reconstruction, we are able to measure the diameter of the ves-
sel in a direction perpendicular to the vessel’s 3D centerline, yielding a lumen diameter of 15
µm. Our experiment comparing 2D and 3D measurements on 40 different vessels revealed that
2D measurements are biased to overestimate vessel diameter, with overestimations of 50% or
more occurring frequently. These observations are clear in the 3D reconstruction but nearly
impossible to make with only the ambiguous 2D histology.

Previous work on 3D imaging of vessel wall components has been performed using phase-
contrast computed tomography (CT) imaging in order to differentiate the soft tissue layers of
the human carotid artery and potentially characterize arterial plaque. [18] The authors showed
that several layers of formalin-fixed carotid artery could be differentiated using a conventional
X-ray tube with 100 µm resolution, using radiation doses much higher than those used for clin-
ical CT imaging. Although 100 µm resolution is insufficient for microvasculature visualization
(where vessel sizes are approximately 10 µm and vessel wall components are even smaller),
our 3D histology reconstruction approach could be used to address the authors’ stated diffi-
culty in obtaining a precise co-registration between their 2D histologic sections (used for CT
imaging validation) and the 3D CT images. Our approach is also complementary in its ability
to provide 3D reconstructions of specific structures and proteins revealed by histology stains,
complementing the vessel wall layer information provided by phase-contrast CT.

These recent investigations make clear the need for highly accurate, automated, repeatable
3D reconstructions of thin histology sections both as a complement to confocal microscopy
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and as an independent means of answering important research questions involving microvas-
culature analysis and quantification. The automatic registration of the serial sections would
speed up the process of manual alignment for volume reconstruction by increasing the sample
size with a minimal corresponding increase in manual labour and time. The smooth muscle
surrounding the vasculature was stained using the smooth muscle α-actin primary antibody in
the samples of this study, but other tissue components could also be stained and incorporated
into the 3D reconstruction. Multiple stains could be applied to the tissue to visualize different
components; e.g., vascular endothelial cells and smooth muscle could be stained to visualise
both components. [19] The reconstruction of histology into the 3D context could also facilitate
co-registration with 3D in vivo imaging (as has been done at the millimeter scale in human
imaging [20]–[22]) such as micro-CT, where co-registered 3D histology could provide com-
plementary information to the vessel lumina visualized using the iodinated CT contrast agent.

In this study, we evaluated intensity-based and nucleus landmark-based 3D reconstruc-
tion methods on TA muscle samples of wild type mice under both normal and hind limb is-
chemic conditions. Our hybrid approach uses a coarse initialization from on a low-resolution
intensity-based registration, followed by a refinement using a landmark-based registration de-
fined using bisected cell nuclei appearing on adjacent tissue sections. Our approach is inspired
by previously published methods that applied intensity-based coarse registration followed by
landmark-based registration refinement, [4] but differs from previous work in two primary
respects. First, in contrast to methods relying on the introduction of extrinsic landmarks (e.g.
needles) into the tissue, [23] our approach automatically extracts and corresponds intrinsic
cell nuclei, resulting in a more streamlined workflow and reduced tissue disruption. Second,
our specific choice of landmark type (cell nuclei) differs from landmark types used in previous
work and has demonstrated high accuracy for 3D reconstruction both in terms of pairwise and
accumulated TRE. This is based on the observation that the accuracy of a 3D reconstruction us-
ing landmark-based registration depends on the characteristics of the landmarks used to define
the registration transformation. This issue is especially important in the context of a 3D recon-
struction that is defined as a composition of multiple pairwise registrations; any spatial bias in
pairwise landmark correspondence error can propagate through the pairwise registrations and
result in a large accumulated error in the reconstruction. Our choice of small cell nuclei as
landmarks mitigates this issue as nucleus orientation in our specimens would not be expected
to have a spatial bias that would contribute to such error propagation. It is for this reason that
our method can overcome the issue of error propagation and the banana-into-cylinder effect,
as evidenced by our reported accumulated TRE values. Due to the abundance of nuclei in the
tissue, the registration is robust to the accuracy of segmentation of the cell nuclei when the
majority of nuclei present are segmented (as is the case using our algorithm). The number of
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nucleus landmark correspondences obtained by our algorithm far exceeds the number of pairs
necessary for defining an affine or rigid registration.

Our interest in ischemia and reperfusion is due to the critical need to understand the re-
generation process of the vasculature, as this has important therapeutic potential for patients
with vascular disease. However, this potential has yet to be fully realized and understanding
the 3D relationships amongst the neovasculature and the surrounding ischemic and/or regener-
ating tissue will be important in advancing this field. [24] We anticipate that in a larger study
of these mice, renderings of 3D reconstructed histology will clearly show the microvasculature
connectivity at the level of the arterioles and venules, which would not be apparent in conven-
tional 2D histology analysis (Figure 2.7). We also anticipate that 3D histology reconstructions
will permit more reliable quantifications of important surrounding tissue components that can
affect tissue perfusion, such as the volume and surface area of the nearby skeletal muscle
fibers. [25] In addition, vessel surface area cannot be measured in 2D histology, whereas it is
straightforward to measure in 3D on a segmented vessel network. As another illustration, due
to variability in the angle of sectioning, the medial wall thickness and vessel diameter can be
difficult to interpret. For example, if the tissue was sectioned off-orthogonal to the vessel, the
lumen would likely be measured to have a larger area than the correct area that would be mea-
sured if the tissue were sectioned orthogonal to the vessel direction (Figure 2.7G). We speculate
that vascular measurements, such as the vessel wall thickness, may be more consistent in 3D,
especially when malformations cause structural changes.

2.4.1 Evaluation of registration accuracy

It is helpful to the interpretation of registration errors in comparison to the reference recon-
struction to note that the lower bound of an arteriole microvessel diameter in the mouse is ap-
proximately 10 µm. [26] Imaging the tissue prior to sectioning may generate a volume which
does not have resolution high enough to resolve microvascular structures, thus a surrogate ref-
erence was used. The reference reconstruction generated through manually validated, intrinsic
nucleus landmarks provides a surrogate for an ideal 3D reference volume, where the intrinsic
landmarks are not subject to orientation bias. The pairwise and accumulated TREs indicate
that in the normal and regenerated tissue, the 95% confidence intervals on the median TRE
were lower than 5.2 µm for the affine nucleus landmark registration (Table 2.2), which sug-
gests accurate reconstruction of both microvessel topology and geometry in these samples.
The reference FRE shown in Table 2.1 provides a sense of the best-case registration that can
be achieved using an affine transformation of the manually validated reference landmarks; the
FRE thus provides insight into the amount of residual deformation in the tissue.
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The intensity-based reconstruction did not provide 95% confidence intervals of less than
10 µm for the accumulated TRE values. This, combined with the observation that the nucleus-
based reconstruction provided lower accumulated TRE for both the normal and the regenerated
tissues, suggests that this nucleus landmark-based registration is valuable for 3D histology re-
construction of microvasculature. To place our results within the context of a comparable,
recently published method investigating the accuracy of 3D histology reconstructions based on
semi-automatic non-rigid B-spline registration [10], we calculated and compared results anal-
ogous to those presented in [10] (Table 2.3). The authors of [10] demonstrated reconstructions
of metastatic colorectal carcinoma in human liver tissue, cirrhotic human liver tissue infected
with hepatitis C, and a rat glomerulus. Reconstruction error was quantified in terms of Haus-
dorff distance, and reported mean ± SD pairwise Hausdorff distance errors of 49 ± 31 µm and
54 ± 37 µm respectively for two specimens. Corresponding reported mean ± SD accumulated
Hausdorff distance errors (over 10 sections) were 112 ± 71 µm and 120 ± 88 µm, respec-
tively. By comparison, for our fully-automatic affine nucleus-based landmark registration, we
observed mean ± SD accumulated maximum per-section TREs of 30 ± 24 µm and 39 ± 48 µm

for normal and regenerated tissues respectively (Table 2.3).

The authors of [6], [27] proposed an intensity-based registration approach for 3D histology
reconstruction of tumor microvasculature using iterative optimization of an image similarity
metric to align a series of adjacent section pairs; our tested intensity-based method is similar in
these respects. The accuracy of the registrations in [6], [27] was evaluated by the authors using
qualitative inspection of the reconstructed volumes; our work extends this work by quantita-
tively measuring the registration error using intensity-based registration. The method described
in [28] intended for alignment of individual cells used a multi-resolution intensity-based regis-
tration. On their data sets consisting of serial sections, the majority of registration errors were
between 10 and 30 µm; this is concordant with our mean intensity-based registration errors (Ta-
ble 2.2). The method described in [29] is intended for human liver tissue reconstruction used
a block-matching intensity-based registration approach to align sections with the same type
of stain. Their results presented Hausdorff distance errors most frequently lying between 50
and 150 µm on a single specimen, which is concordant with our maximum observed intensity-
based registration errors (Table 2.3). Although the work presented in [30] was not intended
for microvasculature reconstruction, it has similarities to our work in that structures of interest
are segmented and used to refine an initial intensity-based registration for reconstruction of
mammary gland tissue. Reconstruction accuracy on real image data in [31] was assessed by
qualitative inspection of the 3D volumes. Similarly, the accuracies of the feature-based recon-
struction methods proposed in [4], [7], [32] were not measured quantitatively on real image
data, challenging the assessment of their utility for microvasculature reconstruction and anal-
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ysis where the requirements for accuracy are stringent. A block matching method proposed
in [14] reported a pairwise root mean square error (RMS) of 23.25 µm, which is larger than
our pairwise nucleus landmark-based registration RMS TRE values of 14.25 µm. Our work
extends these investigations by providing a rigorous quantitative assessment of reconstruction
error for a feature-based registration approach in the context of microvasculature assessment
in the mouse.

As intensity-based registration is driven by optimization of an image-similarity metric com-
puted over the entire image domain, misalignment of large, salient structures produces a larger
penalty to the optimizer and thus the tendency is to provide a registration aligning such struc-
tures from one section to the next. Registration of salient structures may propagate pairwise
error through the reconstructed volume, and this pairwise error may appear negligible unless
the salient structures have spatial bias. One example could be due to a large blood vessel ori-
ented non-orthogonally to the section. The result can be a non-negligible accumulation of error
throughout the reconstructed volume. This accumulation of registration error across multiple
sections has been previously observed in other intensity based pairwise registration methods.
[4], [10], [29] Knowledge of accurate structural orientation can be vital to differentiation be-
tween pathological models. These geometric measurements could be perturbed by pairwise
registration of salient features, which may force non-orthogonal features to be straight and
section-orthogonal. In the hind limb skeletal muscle tissues, the vasculature flows parallel to
muscle fibers, [32] and the tissue sections were taken in the transverse plane. In this case, forc-
ing the salient muscle fibres to align pairwise and run orthogonal to the plane of sectioning may
have been expected to result accurate 3D reconstructions. However, the accumulated TRE val-
ues (Table 2.2) and the reconstructed volumes (Figure 2.7) for the intensity-based registration
indicate otherwise. This accumulation of error may pose an even greater problem in tissues
with salient features which are not orthogonal to the plane of sectioning, such as muscle fibers
in the heart which have a helical configuration. Our results suggest that landmark-based regis-
tration of small features such as cell nuclei may aid in the alignment of tissues where geometry
preservation is a priority.

The non-negligible accumulation of error in the reconstructed volumes could lead to vessel
structure misinterpretations. As seen in Figure 2.7, although the differences in intensity-based
and landmark-based registration of the adjacent sections are not visually salient, the impact of
these differences is clear in the 3D reconstructions of the normal and regenerated mice. The
bias in the intensity based registration to align large, salient features on the adjacent sections is
disruptive to the preservation of microvasculature continuity.
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2.4.2 Evaluation of image similarity metrics

Based on the upper bound of the 95% prediction interval across all three samples, global MSE
optimization would transform the moving image to be not more than 10 µm - 100% of the typ-
ical diameter of a microvessel - from the transformed moving image given by nucleus-based
registration. It could therefore be expected that such differences could be disruptive to use-
ful 3D histology reconstructions for microvasculature analysis. This suggests that this image
similarity metric may not be suitable for this problem. In our informal initial experiments, we
did not observe reduced error using the normalized cross correlation or mutual information
image similarity metrics, so we opted to test the MSE metric in the interests of computational
efficiency for this mono-modality registration problem. The use of MSE seems particularly
appropriate given that each of our samples was processed in one preparation to mitigate any
potential effects of staining variability, with variables such as the concentration of the solutions
and the incubation time controlled.

2.4.3 Limitations

The scope of this study was to perform a technical evaluation of intensity-based and nucleus
landmark-based registration algorithms on the two types of mice: those with normal vascula-
ture, and those with post-ischemic regenerated vasculature. The differences observed between
the nucleus landmark and intensity based registrations were consistent with both the normal
and regenerated vasculature, with consistently higher accuracy using the nucleus landmark
registration technique. Comparison of vessel structure in the two types of mice is of interest
and the subject of future work; the work presented in this chapter is a critical first step toward
this future aim.

The results of this study need to be considered in the context of its strengths and limitations.
Although two distinct tissue types were studied, the sample size is small and thus new insights
may be expected to arise with additional samples. Moreover, the approach can be adapted for
variation in anatomy, pathology or stain. The key observation was the use of small structures
not spanning more than two adjacent sections could reduce the banana-into-cylinder problem
without the use of costly equipment. Serial sections cut by the microtome can be technically
challenging, but in the case of missed sections, a fine scale alignment of the tissue conserving
structural context can be used for exploration of the overall tissue. The local neighbourhood
size T = 100 µm was chosen (based on experimentation with a sample not included in this
study) to encompass the observed pairwise TREs from the intensity-based registration, in an
effort to ensure that corresponding nuclei lay within this neighbourhood. However, this param-
eter represents a brittle aspect of our algorithm; if a correctly corresponding nucleus is outside
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of this range, correct correspondence cannot occur. Our informal experimentation suggests
that the algorithm is not particularly sensitive to this neighbourhood size, but nevertheless this
is an important parameter that may need to be modified when adapting this algorithm to other
contexts, according to the observed error in the intensity-based registration. Finally, our con-
clusions regarding the performance of intensity-based registration for this task must take into
account the limitations of our experimental design; we tested only the MSE image similarity
metric and used gradient descent optimization. Although our results demonstrated that ideal
optimization of the MSE metric would yield reconstructions different from those given by our
nucleus landmark-based approach, we cannot conclude from this that a more suitable image
similarity metric (e.g. an approach based on M-estimators [14]) could not be devised that
would be suitable for this problem, and this would be a useful avenue of future work in this
area.

2.5 Conclusion

We have demonstrated that accurate 3D reconstructions of serial histology sections of mouse
hindlimb tissue can avoid potential misinterpretations of the vasculature arising from assess-
ment of 2D histology sections without 3D context. Such misinterpretations may relate to vessel
size, tortuosity, connectivity, and bifurcation, all of which are important to understand patholo-
gies of the vascular network at the arteriolar and venular levels. Our results demonstrated that
a 3D reconstruction algorithm based on section pairwise registrations using small, homologous
landmarks spanning not more than two tissue sections may support 3D reconstruction of dig-
ital histology images with sufficient accuracy to provide acceptable registration for the arteri-
oles and venules. This technique avoids the otherwise problematic banana-into-cylinder effect
where conventional intensity-based registration methods optimize the pairwise alignment of
large, salient structures, forcing them to be section-orthogonal. Our results demonstrated that
3D digital histology reconstruction of mouse hind-limb tissue stained for vascular smooth mus-
cle cells and hematoxylin could be performed accurately and fully automatically via a cascaded
approach beginning with pairwise low-resolution intensity based registration of adjacent tissue
sections, and refined by a landmark-based registration using corresponding nuclei that were
bisected by the microtome blade during sectioning. Intensity-based reconstructions driven by
larger, more salient features appear to preserve vascular topology but not geometry; the use of
nuclei for refinement of the reconstruction achieves both ends. With our ongoing validation and
refinement of this system on a larger data set, we aim to provide a valuable tool for scientists
conducting studies requiring high-throughput, high-accuracy (<10 µm error) 3D histology re-
constructions for analysis of 3D microvasculature and surrounding tissue components in small
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animal models.
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Chapter 3

Segmentation of digitized histological
sections for quantification of the
muscularized vasculature in the mouse
hind limb

The contents of this chapter were previously published in the Journal of Microscopy:
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quantification of the muscularized vasculature in the mouse hind limb. Journal of Microscopy.

2017 Apr 1; 266(1): 89-103. Permission to reproduce this article was granted by John Wiley

and Sons and is provided in Appendix A.

3.1 Introduction

Vascular restructuring is a prominent feature of wound healing, tissue regeneration, ischemic
disease and hypertension. The specifics of the vascular remodeling response can profoundly
impact tissue perfusion and organ function. To visualize and identify the features of interest,
histology is used to stain and visualize specific vessel wall components. Immunohistochemistry
(IHC) is a routine method for identifying cell types and localizing protein distributions at high
resolutions. [1] The vessel medial layer is comprised of smooth muscles. Differences in smooth
muscle cell distribution may be prominent in the blood vessels that redistribute during tissue
remodeling as well as ischemic and hypertensive conditions. [2] This variation in the amount
of smooth muscle cell wrapping around the vessel may modulate vasoreactivity, and thus flow
rate and tissue perfusion, which is imperative to organ function. Differences in smooth muscle
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cell distribution may be prominent in the blood vessels that remodel and/or regenerate during
ischemic conditions. [3] A robust measurement of vascular features throughout whole tissue
sections could enable the routine detection of focal pathologies, furthering our understanding
of vascular smooth muscle distributions.

It is particularly important to be able to obtain such measurements in the networks contain-
ing microvessels (arterioles and venules) immediately proximal to the capillaries. [4] These
networks are important because they contain the smallest vessels wrapped with smooth muscle
and are thus responsible for differentially directing blood to and away from capillary beds to
deliver oxygen and nutrients according to different tissue demands at any given time. Since
arterioles and venules can be as small as 10 µm in diameter [5] and there may exist hundreds
on even a small tissue section from a mouse, they are particularly difficult to comprehensively
quantify manually or automatically.

3.1.1 Previous Techniques

Assessment of cell type and protein content based on IHC has been performed using man-
ual and semi-automatic methods. [6] For instance, measurement of the number of positively
stained endothelial cells [7] has enabled capillary density estimation. [6] In the immediately
higher order vessels such as arterioles and venules, the vascular morphology is of interest, re-
quiring not only vessel counting but individual vessel morphometry measurement. However,
morphological characteristics can be challenging to measure manually, and some measure-
ments, such as the varying thickness of the arteriole wall, exceed the limits of practicality
of manual measurement when considering the fact that there could be hundreds of vessels in
one sample. Consequently, manual measurements are generally taken in a limited number of
fields of view (FOVs) and extrapolated to the whole tissue section, potentially introducing er-
ror and inter-observer variability. Several semi-automatic approaches to quantifying histology
use global thresholding followed by post-processing to remove artefacts. [1], [8], [9] However,
global approaches on 2D sections are challenged by within-section staining variability; lack of
standardization of IHC staining is a barrier to automated or manual quantification. [1]

Recent approaches to processing whole-slide histology images have been performed both
on conventional hematoxylin and eosin (H&E) as well as IHC images, with the main focus
on oncological applications. Features have been extracted from prostate histology in order to
determine the Gleason grade of prostate cancer. [10]. Modeling of colorectal adenocarcinoma
histology on H&E has been performed to assess tissue morphology parameters. [11] Regard-
ing IHC, vascular endothelial cell detection has been performed in order to assess tumour
microvessel density in previous work. [12], [13] Segmentation is a common method used in
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whole-slide assessment of histology, including the segmentation of nuclei in breast histology.
[14] Even without the process of whole-slide scanning, segmentation approaches for muscle
cell bundles allow for the assessment of growth, atrophy and repair. [15]

3.1.2 Our Technique

To address the issues of sparse sampling through field of view analysis and semi-automated
approaches, we have developed an automated segmentation method that uses three stages of
computations involving spatial localization to compensate for within-slide staining variability.
The first stage involves extraction of the vessel fragment boundaries after colour deconvolution.
[16] The second stage bridges non-artefactual fragments belonging to vessels according to the
spatial concordance of their topological skeletons [17], in order to form full vessel units. The
third stage of locally adaptive segmentation refinement creates fully-formed vessel boundaries.
Vessel density, wall area, perimeter, and thickness were measured on mouse hind limb samples.
We evaluated segmentation and measurement accuracy by comparison to manually-delineated
vessel walls.

3.2 Materials

The experiments were conducted on a total of 9 C57BL/J6 mice. Between 2 and 19 serial tissue
sections were obtained per mouse; all sections were used for analysis in this study. The design
of the experiment involved two tissues samples of C57BL/J6 mouse hindlimb tissue, indepen-
dent of the samples within this study. Validation of segmentation and detection was performed
on a subset of mice within this study (Table 3.1). The mice were sacrificed by overdose of
isoflurane. After the blood was flushed by intraventricular perfusion with phosphate buffered
saline, the tissues were fixed by intraventricular perfusion with formalin. The anterior calf bun-
dle, which contains tibialis anterior, extensor digitorum longus, and peroneus longus muscles,
was isolated. The tissues were then fixed in formalin for another 48 hours. The tissues were
processed and paraffin-embedded, and then cut into blocks and sectioned at 5 µm. To visualize
the smooth muscle distribution within the arterioles and venules, sections were immunostained
for smooth muscle (SM) α-actin using the monoclonal antibody (DAKO, M0851), and bound
primary antibody detected with horseradish peroxidase (HRP)-conjugated secondary antibody
and 3,3’-Diaminobenzidine chromogen (DAB, Vector Laboratories, SK-4100). This marked
the smooth muscle layer of the vasculature, resulting in the vessel walls being stained with a
brown colour (Fig. 3.1). The tissue was then counter stained with hematoxylin, resulting in
blue-stained nuclei. The sections were imaged with a ScanScope CS (Aperio Technologies,
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Vista, CA, USA) bright field slide scanner, at 20× objective with 2× magnification engaged,
resulting in 0.25 µm isotropic pixels. This yielded images with extents ranging from 12341 -
26398 pixels in the vertical dimension and 9000 to 17135 pixels in the horizontal dimension.

 

 

 

Figure 3.1: Mouse hind limb tissue immunostained with an antibody to smooth muscle α-actin
and DAB chromogen and counter-stained with hematoxylin.
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Table 3.1: Summary of the histology samples used for each experiment

Samples Used Number of sections

Algorithm design Two external samples Two sections from each
Measurements 9 mouse samples All sections
Validation 3 mouse samples One section from each
FOV Simulation 9 mouse samples All sections

All experiments in this study were approved by the Animal Care and Veterinary Service
Committee at The University of Western Ontario (Protocol # 2010-244) and were carried out
in accordance with their requirements. Surgeries were performed under isoflurane anesthesia.

3.3 Methods

The main steps in the automated vessel segmentation algorithm are vessel fragment detection,
vessel fragment connection, locally adaptive segmentation refinement, and vessel measurement
(Fig. 3.2). The detection and segmentation was validated with manual detection of vessels as
well as manual contours on a subset of vessels. Measurements of the vascular smooth muscle
layer were compared between the manual and automated segmentations.
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Figure 3.2: A block diagram depicting each step in the automated vessel segmentation algo-
rithm starting with whole slide histology images and resulting in vessel wall contours and mea-
surements. The main steps include vessel fragment detection (a), vessel fragment connection
(b), locally adaptive segmentation refinement (c) and vessel measurement (d).
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3.3.1 Vessel Fragment Detection

Colour deconvolution [16] was performed to extract the features stained by DAB, resulting in
a brown colour on the smooth muscle component of the vessel, into a single channel (Fig. 3.3).
The colour deconvolution previously described by Ruifrok et al. is based on the RGB model
of optical density (OD), defined as

ODC = −log10(IC/I0,C) = A ∗ cC (3.1)

where I0,C is the intensity of light entering the specimen, IC is the intensity of the light detected
after passing through the specimen, and A is the amount of stain with the absorption factor
c. The subscript C indicates the detection channel. The pure stain channels are specified by
the OD in each RGB channel. [16] A 3 by 1 vector describes each stain. The vector value is
proportional to A ∗ cC. In the case of RGB for 3 colour channels, the matrix is

∣∣∣∣∣∣∣∣∣∣
p11 p12 p13

p21 p22 p23

p31 p32 p33

∣∣∣∣∣∣∣∣∣∣ .
The absorption factor is normalized for each stain prior to an orthonormal transformation.

[16] The normalization of the first column of the OD matrix is

p̂11 = p11/
√

p2
11 + p2

12 + p2
13 (3.2)

p̂21 = p21/
√

p2
21 + p2

22 + p2
23 (3.3)

p̂31 = p31/
√

p2
31 + p2

32 + p2
33 (3.4)

with similar normalization for the other columns, to obtain the normalized matrix N

∣∣∣∣∣∣∣∣∣∣
p̂11 p̂12 p̂13

p̂21 p̂22 p̂23

p̂31 p̂32 p̂33

∣∣∣∣∣∣∣∣∣∣ .
Thus the stain amount vector C is defined as

C = D[y] (3.5)
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where D = N−1 and y is the OD at each pixel.

The greyscale colour deconvolution image C representing the intensity of the DAB stain
was then thresholded at 50% of the maximum image intensity value, yielding binary images.
The threshold level was chosen arbitrarily from a subset of images independent of our dataset
(Table 3.1). The colour deconvolution was performed using block processing and the resulting
greyscale image was reconstructed at full resolution. The binary image was then processed at
full resolution on the whole tissue section level. Positive foreground objects not in the region of
the tissue were masked out. In order to create the masks, the tissue section region was defined
by downsampling the grayscaled slide image to 4 µm isotropic pixel size, and thresholding to
remove the white slide background. Morphological image closing and filling of holes in the
mask were performed in order to close any gaps in the skeletal muscle of the anterior bundle.

After thresholding, foreground objects (eg. vessel fragments) were filtered according to size
in order to remove actin-positive cells unrelated to the smooth muscle wall. Any object smaller
than half the approximate size of a nucleus (5 µm in diameter or 19.6 µm2) was removed from
the foreground. This was introduced to remove spurious DAB precipitate and cells, which may
express smooth muscle α-actin, so that they are not candidates for vessel fragment connection.
Blue nuclei within the vessel walls can cause holes in the DAB channel, thus any holes in the
foreground objects smaller than the approximate size of a nucleus (5 µm in diameter or 19.6
µm2) were therefore filled.

(c) (d) 

(a) (b) 

 

Figure 3.3: Colour deconvolution of the immunostained bright field image (a) separating the
haematoxylin (b) and DAB (c) channel, also shown in grayscale (d).
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3.3.2 Vessel Fragment Connection

Due to variation in the intensity of the DAB stain throughout the whole slide image and within
some vessel walls, the preceding operations yield a set of foreground objects consisting of some
fully-formed vessels, and some neighbouring vessel fragments that require reconstitution into
fully-formed vessels. For instance, vessels with relatively weak staining in portions of the
vessel wall can be fragmented by the global threshold, causing disconnections in the smooth
muscle boundary (Fig. 3.4(c)). Foreground objects with an Euler characteristic or Euler num-
ber of one do not have holes or lumina in the case of vessels, and thus were considered as vessel
fragments potentially requiring connection. [18] Other foreground objects were considered as
compete vessels as they contain lumina and would not be considered for vessel connection.

The discontinuous vessel fragments were connected to form complete vessel walls using
the topological skeletons computed by thinning the vessel fragments using the thinning oper-
ation presented in [17] in order to prevent spurious branches. Pruning was performed on the
remaining branches to yield skeletons with no branch points. The selected pruned skeleton was
defined as

S = arg max
S i∈{S E ,S G}

DS C(R(S i), F) (3.6)

where S E and S G are the pruned skeletons with the longest Euclidean and geodesic distances
between their endpoints, respectively; R is a function that produces a binary image of an object
by reconstruction from its skeleton; F is the binary image of the vessel fragment prior to
skeletonization; and DSC is the Dice similarity coefficient. Intuitively, of the two pruned
skeletons, this approach chooses the one yielding the highest fidelity reconstruction of the
vessel fragment.

The endpoints of the pruned skeletons (Fig. 3.4(d)) were considered for connection to
join vessel fragments and form complete vessels. Endpoint pairs separated by less than 25
µm were considered as candidates for connection; this is based on the sizes of arterioles and
venules being within the range of around 15 to 40 µm. [5] Among these candidates, the optimal
assignment was determined by solving the resulting bipartite graph matching problem using the
Hungarian algorithm [19] minimizing the Euclidean distances between the endpoint pairs (Fig.
3.4(e)). A graph G is defined as a set of edges E and vertices V such that G = (E,V), where
each individual edge e has two vertices u and v. A bipartite graph has two sets of vertices,
where a vertex cannot be connected by an edge to another vertex in the same set. In our case,
the endpoints of the skeletons are the vertices. The edges matching the vertices is determined
by the Hungarian algorithm, which assigns matches based on a cost matrix formed between
the two sets of vertices. In this case, the cost is the Euclidean distance between the vertices or
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skeleton endpoints, and the assignment is created by minimizing the cost.
The automatic segmentation Aglob of each vessel based on global thresholding was defined

as the union of the vessel fragments and the connected skeleton S .

(a) (b) (e) (c) (d) 

2  

Figure 3.4: Vessel fragment component connection for locally adaptive segmentation. The
binary image (c) from the global threshold of the greyscale DAB channel (b) of the bright field
image (a) was skeletonized (d). The skeleton endpoints were connected to define each vessel
as a single unit and created bounding boxes (e) for locally adaptive segmentation refinement.

3.3.3 Locally Adaptive Segmentation Refinement

To compensate for staining variation within the tissue sections, adaptive thresholding was per-
formed on each vessel using Otsu’s method. [20] This method involves minimizing cumulative
moments in a gray-level histogram, represented by

σ2
W = ω0σ

2
0 + ω1σ

2
1 (3.7)

σ2
B = σ2 − σ2

W (3.8)

= ω0(µ0 − µT )2 + ω1(µ1 − µT )2 (3.9)

= ω0ω1 (µ1 − µ0)2 (3.10)

which are the within- (σW) and between- (σB) class variances.
Otsu segmentation was performed on the DAB channel image region defined by expansion

of a bounding box around the connected global segmentation Aglob (Fig. 3.4(c)) by a uniform
margin m to triple its area in order to allow for sampling of the local region of pixel intensi-
ties, including the skeletal tissue considered as background (Fig. 3.4(a)). The automatic local
segmentation Aloc of each vessel based on Otsu thresholding was defined as the union of the
connected skeleton S (Fig. 3.4(e), red and black lines) and the components of the Otsu seg-
mentation connected to S . If Aloc lay entirely within the dilated (by disk-shaped structuring
element with diameter m) convex hull of Aglob, then final segmentation A = Aloc. Otherwise,
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final segmentation A = Aglob. This last step renders the algorithm robust against Otsu segmen-
tation failures in cases of strong local overstaining of surrounding muscle bundles, which can
occur due to within-slide staining variability.

The outline of the outer vessel boundary is trivially defined as the outer boundary of A,
the final automatic segmentation. Determination of the outline of the inner vessel boundary is
challenged by the fact that vessel lumina can be partially or fully collapsed, causing disconti-
nuities. False lumina, created by holes in the vessel wall arising from weak staining and stain
occlusion by nuclei, provide further challenges to finding the true inner vessel boundary. To
determine the outline of the inner vessel boundary, the topological skeleton of the filled vessel
was computed [17] and pruned to the non-branching skeleton having the longest Euclidean dis-
tance between its endpoints. For vessels having an open lumen, the inner vessel boundary was
defined as the boundary of the open lumen region that was connected to the pruned skeleton
(to retain the true lumen and discard false lumina due to irregularities in the walls as described
above). In case of partially collapsed lumina, the inner vessel boundary was defined as union
of the pruned skeleton and any lumen which touched the skeleton. For fully collapsed vessels
having no open lumen, the pruned skeleton itself was taken to be the locus of the lumen.

3.4 Experimental Design

3.4.1 Evaluation of Segmentation Accuracy

Segmentation and detection validation were performed on a subset of our images consisting
of 3 whole mount tissue sections from 3 different mice within the data set (Table 3.1). Within
the 3 sections, all vessels were manually identified by a graduate student research assistant
with 5 years of experience working with histopathology. 50 vessels were manually delineated
on the 3 sections with at least 15 vessels delineated in each section. The manual delineations
and automated segmentations were compared pixel wise using the Dice similarity coefficient
(DS C), mean absolute boundary distance (MAD), sensitivity, specificity, and precision metrics.
These values are described as

DS C =
2T P

FP + 2T P + FN
(3.11)

MAD(A,M) =
1
n

∑
p∈M

min
q∈A

D(q, p) (3.12)

Sensitivity =
T P

T P + FN
(3.13)
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Specificity =
T N

T N + FP
(3.14)

Precision =
T P

T P + FP
(3.15)

which incorporates the true positive T P, true negative T N, false postitive FP and false negative
FN regions of the automated segmentations A as compared to the manual segmentations M as
well as the distance D between their boundaries (p, q).

3.4.2 Field of View Sampling Simulation

A simulation of FOV sampling was created to assess the accuracy and variability associated
with the current practice, where the user would select FOVs within the whole tissue section
on a conventional bright field microscope to estimate vessel measures by extrapolation. In this
case there is a trade-off between the FOV and resolution of the images taken due to the inherent
nature of the microscope. A selected number of non-overlapping FOVs, ranging from 1 to the
total number of FOVs required to cover the whole tissue area, were randomly selected from
the whole-slide images and used to measure the vessel density and morphology. The typical
system used would be a conventional bright field microscope, thus the parameters from such
a system was used in our simulation. The size of the FOVs was based on the image size from
the Olympus BX51 Microscope and the Q Imaging Retiga EXi digital camera at 40 × objec-
tive magnification (1024 by 1376 pixels or 256 by 344 µm); this represents a typical imaging
configuration for this type of study. In order to cover the whole tissue region, the random
FOVs were located on a grid. For each selected number of FOVs, random FOV selection was
repeated through 100 iterations. This process was repeated 4 times, with the grid position was
shifted 32 by 43 µm each time, producing a total of 400 simulations.

3.4.3 Vessel Measurement and Statistical Analysis

Measures of the vessel count and density were calculated for whole tissue sections. The vessel
wall area, lumen area (eq. 17), diameter (eq.18), inner perimeter and thickness were calculated
for each segmented vessel. Measures of vessel lumen area and diameter were derived from the
inner vessel wall perimeter, using a circular geometry. The vessel density was calculated as

Vessel density =
Total number of vessels in FOVs

Total tissue area in FOVs
(3.16)

as is the common practice.

Lumen Area =
Perimeter2

4π
(3.17)
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Vessel Diameter =
Perimeter

π
(3.18)

Thickness was measured locally (every 0.25 µm) along the perimeter as the Euclidean dis-
tance between point pairs along inner and outer vessel wall boundaries corresponded using
streamlines of the gradient of the solution to the Laplace equation. [21] In Cartesian coordi-
nates the Laplace equation is

∆ f =
∂2 f
∂x2 +

∂2 f
∂y2 +

∂2 f
∂z2 = 0 (3.19)

where f is the function, twice differentiated along x, y and z. The streamlines are computed by

E = −∆ f (3.20)

and normalized

N = E/ ‖E‖ (3.21)

where N is a unit vector defined along the inner and outer segmentation boundaries. The
streamlines between the two boundaries are parameterized by the vector

∂C(s)
∂s

= N(C(s)) (3.22)

where the Euclidean distance between C(0) and C(n) was taken as the thickness of the vessel.
The within-vessel variance in thickness, and the 5th and 95th percentile of the thickness, were
also measured to test the extrema for presence of local thinning or thickening of the vessels.

For analysis of the conventional technique of selecting FOV for measurement, no vessel
was measured twice; if a vessel appeared in more than one FOV, it was measured only in the
first FOV encountered in simulation. For all measures other than vessel count/density, only the
FOVs which contained vessels were taken into consideration.

Kolmogorov-Smirnov normality tests were performed using MATLAB 8.5 (The Math-
works Inc., Natick, MA, USA) for all measures. The simulation measures of vessel count
per tissue area were compared to the whole tissue vessel density using the paired Wilcoxon
sign rank test. The median differences and associated interquartile ranges were measured.
Morphological measures of vessels where compared between the automated segmentation and
the manual delineations using the paired Wilcoxon signed rank test.
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3.5 Experimental Results

The vessel measurements were found to be non-normally distributed (p < 0.05); thus, the
median and interquartile range (IQR) was reported and non-parametric statistical testing was
used. Descriptive statistics including vessel count and media area per section area are reported
in Table 3.2, where the vessels were also separated based on the vessel diameter. Descriptive
statistics on morphological measures are reported in Table 3.3. The smooth muscle layers and
vessel lumen measures were sorted based on the vessel diameter. Aggregated median values
for each mouse sample are shown in Fig. 3.5.

Table 3.2: Descriptive statistics of vessel count and density

Vessel Count/ Media Area/

Vessel Diameter
Section Area Section Area

(mm−2) (µm2/µm2)
Median IQR Median IQR

All vessels (n = 69) 6.58 3.01 0.0026 0.0016
0 to 10 2.56 1.49 0.0002 0.0002

10 to 40 3.38 2.18 0.0008 0.0004
40 to∞ 0.71 0.76 0.0017 0.0022
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Table 3.3: Automated morphological measures of the smooth muscle layer

Size Range of Vessel N SM Layer Area (µm2) Lumen Area (µm2) Lumen Perimeter (µm) Lumen Diameter (µm)
Diameter (µm) Median IQR Median IQR Median IQR Median IQR

0 ∞ 3391 147.31 251.48 114.41 430.16 37.92 54.37 12.07 17.31
0 2 9 58.38 27.52 2.41 0.43 5.50 0.49 1.75 0.15
2 4 139 50.56 19.48 8.99 3.83 10.63 2.26 3.38 0.72
4 6 419 59.56 33.63 20.22 7.16 15.94 2.84 5.07 0.90
6 8 463 77.50 64.56 37.98 10.24 21.85 2.94 6.95 0.94
8 10 377 90.00 77.67 61.92 15.22 27.90 3.40 8.88 1.08

10 12 280 126.91 107.50 93.47 16.76 34.27 3.06 10.91 0.98
12 14 221 165.38 127.31 128.98 20.40 40.26 3.16 12.82 1.00
14 16 146 179.75 111.38 177.85 22.33 47.28 2.96 15.05 0.94
16 18 166 228.78 111.56 227.61 23.42 53.48 2.75 17.02 0.88
18 20 113 233.88 156.84 279.07 33.13 59.22 3.51 18.85 1.12
20 30 406 325.22 188.38 463.75 200.43 76.34 16.37 24.30 5.21
30 40 140 399.38 266.75 879.54 268.63 105.13 15.80 33.46 5.03
40 50 138 686.69 505.25 1524.44 361.96 138.41 16.22 44.06 5.16
50 100 225 1033.00 1232.00 3980.64 2744.61 223.66 79.22 71.19 25.22

100 150 87 2360.69 4366.14 11039.29 3346.35 372.46 55.24 118.56 17.58
150 200 30 3608.25 3692.38 24175.45 8659.33 551.05 98.81 175.40 31.45
200 ∞ 32 7740.50 13718.56 98029.76 67131.69 1109.90 419.63 353.29 133.57

SM Layer Thickness (µm)
Size Range of Vessel N 5th Percentile 50th Percentile 95th Percentile Within-Vessel SD

Diameter (µm) Median IQR Median IQR Median IQR Median IQR

0 ∞ 3391 1.67 1.61 3.25 2.17 6.60 5.44 1.39 1.42
0 2 9 2.02 0.55 3.69 1.34 5.12 1.27 1.02 0.52
2 4 139 1.52 0.82 2.85 0.77 4.07 1.25 0.82 0.44
4 6 419 1.43 0.72 2.68 1.05 4.00 1.67 0.75 0.44
6 8 463 1.49 1.25 2.70 1.75 4.55 2.87 0.93 0.64
8 10 377 1.58 1.61 2.80 1.71 5.64 3.89 1.13 1.03

10 12 280 1.79 1.77 3.20 1.95 6.39 3.67 1.34 0.94
12 14 221 1.82 1.90 3.26 2.13 6.56 3.96 1.39 1.14
14 16 146 1.77 1.90 3.38 1.73 6.73 3.58 1.52 1.07
16 18 166 2.12 1.48 3.72 1.69 7.36 4.05 1.61 1.32
18 20 113 1.82 2.02 3.66 2.11 7.29 4.45 1.53 1.25
20 30 406 1.91 1.86 3.79 2.08 8.68 4.90 1.99 1.68
30 40 140 1.44 1.92 3.72 2.48 12.27 5.96 3.19 2.22
40 50 138 2.40 2.81 4.92 2.28 12.07 7.08 2.90 2.59
50 100 225 1.90 4.51 4.94 5.43 16.31 12.01 3.51 4.45

100 150 87 2.30 8.18 6.60 11.48 29.10 25.54 6.58 9.44
150 200 30 1.59 2.70 10.30 8.04 52.40 76.28 16.25 26.29
200 ∞ 32 2.97 8.55 12.54 9.37 89.37 56.02 24.85 18.01
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Figure 3.5: Automatic vessel smooth muscle morphological and density measures. The vessel
measures were aggregated by median values for each mouse for vessel count per tissue area
(a), smooth muscle layer area (b), lumen area (c), lumen perimeter (d), smooth muscle layer
thickness (e), and standard deviation (SD) (f) for all vessels and separated by vessel diameter.
Each glyph represents one mouse sample.

3.5.1 Segmentation Validation

Table 3.4 shows the segmentation validation measures, indicating good concordance between
the manual and automated segmentation methods (n = 50) in 3 separate mice (Table 1). The
measures were found to be non-normally distributed (p < 0.05); thus, the median and interquar-
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tile range (IQR) was reported for each vessel size range. The false negative and false positive
rates were 3.3% and 9.6% respectively for vessel detection. Fig. 3.6 shows a comparison
between manually delineated vessels and the automated segmentation on a small field of the
whole slide tissue section. No difference was found between the measures of smooth muscle
wall area or thickness (p > 0.05) however a bias of 9.75 µm was found in the vessel wall inner
perimeter (p < 0.05). The differences in the measures are demonstrated by the Bland-Altman
plots in Fig. 3.7.

Table 3.4: Segmentation validation metrics

Size Range of Vessel Diameter (µm)
All Vessels 0 to 10 10 to 40 40 to∞

n 50 12 29 9
Measure Median IQR Median IQR Median IQR Median IQR

Segmentation
MAD (µm) 0.40 0.28 0.38 0.29 0.39 0.29 0.46 0.28
DSC 0.89 0.06 0.87 0.07 0.89 0.04 0.93 0.05
Jaccard Index 0.81 0.09 0.77 0.12 0.80 0.06 0.87 0.08
Sensitivity 0.91 0.08 0.93 0.09 0.88 0.08 0.94 0.06
Specificity 0.97 0.05 0.90 0.18 0.97 0.04 0.98 0.02
Precision 0.93 0.09 0.88 0.15 0.93 0.09 0.93 0.04

(a) (b) 

50  

Figure 3.6: Contours of manually delineated (a) and automatically segmented (b) vessel walls
in the mouse hind limb stained with DAB for α-actin smooth muscle.
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Figure 3.7: Bland-Altman plots depicting the differences between the smooth muscle (SM)
layer area, thickness and lumen perimeter measurements derived from manual and automated
segmentations. Difference: (automated - manual segmentation measure), Average: (automated
+ manual segmentation measure)/2.

3.5.2 Field of View Sampling Simulation

The distribution of the differences between the simulated vessel measurements and the whole
slide values are shown in Fig. 3.8 for one to 206 FOVs for vessel density and one to 77
FOVs for vessel morphology. The simulation included 400 repeated measures with 4 FOV grid
positions, such that the whole tissue region was covered. The variation of the percent difference
between the whole slide measure and FOV measures decreases with an increase in the number
of FOV incorporated. The numbers of FOVs that needed to be sampled to obtain < 10% and
< 20% differences between FOV-estimated and whole-slide measurements for the majority of
simulations (those between the 25th and 75th percentiles of the simulations) are shown in Table
3.5.

Table 3.5: Field of view sampling simulation

Number of FOV to achieve percent difference ranges
10% 20%

Measure
Vessel count/Section area 103 63
Smooth muscle layer area 30 15
Vessel lumen area 52 30
Lumen perimeter 30 11
Smooth muscle layer thickness 9 3
Smooth muscle layer thickness SD 22 7



96 Chapter 3. Vascular smooth muscle segmentation

Number of FOV

P
e
rc

e
n

t 
D

if
fe

re
n

c
e
 (

F
O

V
 -

 W
h

o
le

 S
li
d

e
)

33 73 113 153 193
-300

-200

-100

0

100

200

Number of FOV

P
e
rc

e
n

t 
D

if
fe

re
n

c
e
 (

F
O

V
 -

 W
h

o
le

 S
li
d

e
)

13 28 43 58 73
-200

-100

0

100

200

300

Number of FOV

P
e
rc

e
n

t 
D

if
fe

re
n

c
e
 (

F
O

V
 -

 W
h

o
le

 S
li
d

e
)

13 28 43 58 73
-100

-50

0

50

100

Number of FOV

P
e
rc

e
n

t 
D

if
fe

re
n

c
e
 (

F
O

V
 -

 W
h

o
le

 S
li
d

e
)

13 28 43 58 73
-100

0

100

200

Number of FOV

P
e
rc

e
n

t 
D

if
fe

re
n

c
e
 (

F
O

V
 -

 W
h

o
le

 S
li
d

e
)

13 28 43 58 73
-100

-50

0

50

100

150

Number of FOV

P
e
rc

e
n

t 
D

if
fe

re
n

c
e
 (

F
O

V
 -

 W
h

o
le

 S
li
d

e
)

13 28 43 58 73
-200

-100

0

100

200

 

(a)  Vessel -2) 

 

  

 

 

Figure 3.8: The percent difference in vessel measures of the simulated fields of view (FOV) -
the whole slide for each tissue section. The vessel measures were aggregated by median values
for each FOV for vessel count per tissue area (a), smooth muscle layer area (b), lumen area (c),
lumen perimeter (d), smooth muscle layer thickness (e), and variance (f) for all tissue sections
(n = 69). Boxplots include the median, 25th, 75th percentiles, and whiskers at the 5th and 95th
percentiles. Distribution of measurement simulations (n = 100) extrapolated from FOVs for
each mouse tissue section.
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Figure 3.9: The distribution of vessel measures when taking 6 fields of view (FOV) from
each tissue section and compared to the whole slide measurement (median shown in grey)
for each of the 5 samples. The vessel measures were aggregated by median values for each
mouse for vessel count per tissue area (a), smooth muscle layer area (b), lumen area (c), lumen
perimeter (d), smooth muscle layer thickness (e), and variance (f) for all tissue sections (n =

69). Boxplots include the median, 25th, 75th percentiles, and whiskers at the 5th and 95th
percentiles. Distribution of measurement simulations (n = 400) extrapolated from 6 FOVs for
each mouse tissue section.
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A comparison between the median whole slide values within each mouse sample was per-
formed with the measurements from taking 6 fields of view (Fig. 3.9). The boxplots represents
the distributions of 400 simulations of the median calculated values as compared to the median
whole slide values.

3.6 Discussion

3.6.1 Whole-slide Imaging

Whole-slide imaging allows for the comprehensive quantification of key characteristics of the
microvasculature, which contains hundreds of vessels with varying properties. The presented
automated algorithm segmented 3391 vessels on 77 sections. Manual quantification on this
scale is impractical, requiring the use of subsampling within selected FOVs, and may be sub-
ject to operator variability. This system also has the inherent ability to detect vessels with
discontinuous vessel walls, which have previously been assessed in tumour vasculature. [22]
As demonstrated in Table 3.3, the vessels can be separated into respective sizes for analysis,
which is one example of how the vessels can be assessed based on calibre. Whole-slide imag-
ing also allows for the assessment of the density of vessels of different sizes (Table 3.2), and
also potentially the location of the vessels with respect to the tissue. This work allows for
an automated whole-slide quantification, which allows for high-throughput measurement with
concordant accuracy with manual delineations.

3.6.2 Segmentation Validation

The segmentation validation results suggest overall concordance of the automated vessel seg-
mentation with the manual contours resulting in an overall DSC of 0.89 and the resulting ves-
sel measurements (Table 3.4, Fig. 3.5).Vessel detection resulted in balanced false negative and
false positive rates of 3.3% and 9.6%. However, a few outlier segmentations did result from
unusually faintly stained vessels in some cases, which may be due to the lack of smooth muscle
cell wrapping on regions of the vessel. Faintly stained vessels would be difficult even for a user
to manually measure; therefore the vessels would likely be counted when considering vessel
density but not be measured for morsphological features due to the inconsistency of the stain
(i.e. detection/counting is more important than segmentation accuracy for very faintly-stained
vessels). Non-specific staining of IHC leads to the detection of false positives. This occurred in
portions of skeletal muscle with background staining and cells such as myofibroblasts within
the tissue also expressing smooth muscle α-actin. The manual and automated measures were
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not significantly different for the SM layer area or thickness. There is a bias in the inner lumen
perimeter and this may be due to the discrepancy in the delineation of closed lumina when
comparing manual to the automated segmentations. Due to the low false negative values and
the number of vessels which are detected per slide, one could validate the segmentations by
rapid user inspection. The choices could then be used in a machine learning algorithm [23] to
train the system to automatically detect the difference between detected vasculature and false
positives in future samples.

3.6.3 Field of View Sampling Simulation

The current practice of taking a small number of selected FOVs in order to manually measure
the vessel density by extrapolation may yield measurements representative of the whole tissue
section, provided that a sufficient number of FOVs is used. Our findings (Fig. 3.8) suggest that
with an increasing number of FOVs, there is less variation in the final measurement extrapo-
lated. The variation in morphological values from the fields of view decreases with an increase
in the number of FOV taken as there is an increase in the proportion of vessels incorporated
into the measurement. To take an example, we compared the measured values at 6 FOV in
400 iterations and compared it to the whole slide value (Fig. 3.9). The median values were
not largely different from the whole slide measures but one needs to take into consideration
the variation of the measures as represented by the boxplots. A single 6-FOV measurement
that would be used in a research study could come from anywhere within the plausible ranges
depicted on the box plots. When taking a random sampling, the number of FOVs may affect
whether the measure is representative of the whole slide. From Table 3.5, the number of FOVs
for the majority of the morphological measurements (those between the 25th and 75th per-
centiles) to stay within a 20% difference of the whole-slide measure is 3 to 30 fields of view,
depending on the measurement. A substantially larger number of FOVs is required for the sim-
ulated measures to be within a 20% difference for the measure of vessel density. This is due
to the fact that the tissues were uniformly sampled and the spatial distribution of arterioles and
venules vary (Fig. 1), and thus a substantially larger number of FOVs is required. Thus, when
taking FOV for measurements, bias or misrepresentations may occur when the FOV taken are
not representative of the tissues.

Previous segmentation research has been reported for vascular IHC. One example is the
capillary-focused method allowing the measurement of vessel density in non-small cell lung
cancer developed by Tsou et al. The capillaries were stained using CD31 and the segmentation
involved the delineation of the outer vessel wall boundary on FOV. The method was validated
using a synthetic dataset, with the lowest reported error rate of 28%. Our method is performed
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on whole-slide imaging focused on the smooth muscle wall component, where we are inter-
ested in the vessel wall thickness and not only the vessel density, and thus have to take the inner
vessel wall boundary into consideration as well. Colour deconvolution for the DAB stain was
performed in our method to isolate the stain as compared to a filtering method performed in the
method reported by Tsou et al. The two methods have a step which involves Otsu thresholding;
however from the resulting error rates it would appear that segmentation could be more chal-
lenging at the level of capillaries with CD31 as the target, even if both structures are related to
the vasculature and result in a similar brown stain due to IHC.

Taken as a whole, these results are encouraging in that they suggest that if the study hy-
pothesis is concerned only with measuring properties of arterioles and venules in the mouse
hind limb, then reliable measures can be obtained with existing extrapolation techniques us-
ing a representative number of FOVs which cover a substantial portion of the vessels within
the tissue. The random selection of FOVs in our simulation does not reflect any bias, which
presents using manual FOV selection by human operators. Accuracy of measures extracted
from manually selected FOVs will be affected by inter- and intra-operator variability and may
be biased to regions that operators subjectively deem a priori to be representative of the sam-
ple. The effective of this bias is described by West as follows: “If the sampling at any level of
the scheme is biased, the mean of repeated estimates will systematically deviate from the true
value regardless of the amount of sampling performed.” [24] This is especially the case when
considering cell counting, which is applied to various biological questions. [25]

3.6.4 Biological Validity

The system can be further validated through an interpretation of the results to determine whether
they are concordant with what would be expected from a biological standpoint. The distribu-
tion of the number of vessels as a function of vessel diameter (Fig. 3.5(a)) is as expected.
Most of the detected vessels are in the 10 - 40 µm range, capturing typical sizes of arterioles
and venules. A smaller proportion of the detected vessels are in the <10 µm range; this range
contains the smallest arterioles and venules and also contains the capillaries, which are not
detected due to a lack of smooth muscle surrounding them (thus they are not stained). The
detected vessels in the range of less than 10 µm in Fig. 3.5(a) are small arterioles transition-
ing into capillaries. The smallest proportion of the vessels are in the > 40 µm range, which
contains larger vessels further up in the vessel network above the arteriolar and venular level,
where the outliers were samples where the tibial anterior artery was within the tissue section.
As expected, the smooth muscle layer area increases with increasing vessel size (Fig. 3.5(b)).
There is also an increase in the smooth muscle layer thickness with the increasing vessel size
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(Fig. 3.5(e)). This is consistent with the understanding of larger calibre vessels, which need
more control of the higher pressure blood flow, and thus require a thicker muscle layer. This
is also demonstrated in Table 3.3, where the vessels were further broken down in to sub cate-
gories according to vessel diameter, thus one could assess the vascular density and morphology
within a certain vessel size range. As a simple self-consistency check, Fig. 3.5(c) reveals that
lumen area is directly proportional to vessel diameter. These observations provide evidence,
beyond that given by traditional segmentation error measures, that the measurements provided
by this algorithm are concordant with expectations; this provides further reassurance regarding
the utility of this tool for study of this muscle bundle.

3.6.5 Limitations

The findings of this study need to be considered within the context of its strengths and limita-
tions. The algorithm was applied on a common immunostain, DAB, which results in a brown
precipitate; other stains were not tested. Because the colour deconvolution step of the auto-
mated segmentation requires a representation of the DAB stain intensity, we believe that the
segmentation could be adapted by using a colour deconvolution representation of the stain of
interest. The chosen deconvolution method proposed by Ruifrok et al. is a widely cited work,
providing stain separation which allow for colour separation in our samples. Should the colour
deconvolution involve more than 3 channels or should the method be limited in accuracy due
to this process, other colour deconvolution algorithms should be explored and this could be an
avenue for future work. [26], [27] Slides may have variability with regard to staining intensity
and hue of the stain when performed in different labs with varying reagents, which may in
turn affect the intensity of the resulting DAB stain representation from the colour deconvolu-
tion. Stain normalization could be applied to the wholes slide images prior to the automated
segmentation process if the tissues were processed with varying reagents. This is beyond the
scope of this paper but several previous works have studied histology normalization. [26], [28]
For segmentation of the vessel wall endothelium, where the inner vessel wall is continuous
when void of fenestrations, a hysteresis thresholding approach may lead to increased fidelity
in the segmentation and reduce the need for fragment connection. However, in our application,
due to the fact that portions of the smooth muscle wall are devoid of DAB stain, a hysteresis
threshold method may not reduce the number of fragments.

Currently the implementation is in MATLAB, resulting a total processing time of around
25 minutes per image, however an optimized parallel framework would substantially increase
speed. The vessels are quantified in 2D, which does not allow for the assessment of 3D vascular
structure. However we have previously addressed this in our work on 3D histology reconstruc-
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tion, which could be used in a context where 3D vessel structure is necessary for vascular
pathology assessment. [29] Normal mouse samples were used in this dataset and are represen-
tative of the tissues processed in our lab. However this may not be representative of tissues
processed at a different center, and we have noted this in the limitations paragraph of our
manuscript. Our sample size is concordant with sample sizes used in the literature for ani-
mal studies, where 3 mice have been used per condition. [30]–[34] Inter- and intra-operator
variability is expected, especially in the case of faintly stained tissues, where the variability of
manual segmentation will depend on the meticulousness of the operator. The measure of oper-
ator variability would consist of several participants and is an under explored area in histology
quantification as it is not often performed.

3.7 Conclusion

The vascular smooth muscle component of the microvasculature allows for the control of blood
flow and was automatically and accurately segmented on a whole-slide level with the devel-
oped software algorithm. The system was shown to be capable of automated quantification
of density, vessel wall area, perimeter, and local thickness on several thousand vessels, a task
which is well beyond the practical limits of manual quantification. There was no significant
difference when comparing manual measurements of vessel wall area and thickness to the
measurements in our automated approach. The measurements of normal smooth muscle dis-
tribution and morphology demonstrate the biological plausibility of the readouts given by the
algorithm and support its utility for comprehensive microvasculature quantification in research
studies. We found that traditional vessel density and measurement quantification by extrapo-
lation from manual vessel counting on selected fields of view could be representative of the
whole-slide measure; however, the number of required fields of view ranged from 3 to 103,
depending on the type of measurement. This system constitutes a valuable tool for scientists
requiring high-throughput whole-slide vascular morphology quantification of arteriolar and
venular vasculature for disease state comparisons eliminating the need for manual measure-
ments and sparse sampling.
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Chapter 4

Differentiation of Arterioles from Venules
in Mouse Histology Images Using Machine
Learning
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A.

4.1 Introduction

The microvascular network consists of a hierarchical arrangement of arterioles, capillaries and
venules. Of these vessel categories, the arterioles and venules are wrapped by vascular smooth
muscle cells. They serve vital functions delivering blood to and from the tissue to ensure oxy-
gen and nutrient requirements are met. Assessment of the arteriolar and venular content, wall
structure, and network organization is thus essential to our understanding of multiple disease
scenarios. For example, in the eye, narrowing of retinal arterioles is related to diabetic macular
ischemia [1] and the arteriole-to-venule ratio is associated with hypertensive retinopathy. [2]
In the brain, proper arteriolar function is essential to maintaining adequate cerebral blood flow;
occlusion of even a single penetrating arteriole connecting the pial network to the subsurface
network results in the death of a 0.5 mm cylinder of cortical tissue. [3] In Alzheimer’s disease,
penetrating arterioles become tortuous whereas the venules do not. [4] Arterioles and venules
may also have distinct genetic drivers during embryonic development of the cardiovascular
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system as well as angiogenesis in the adult. [5] Importantly however, histologic analysis of
the microvasculature is far more complex than for the macrovasculature. The small caliber
vessels and their vast content carry a substantial risk of not reliably distinguishing arterioles
from venules. Thus, it is critical to have approaches that visualize and quantify microvascular
networks that can also distinguish, analyze and compare arterioles and venules.

Brightfield histology provides a wealth of information about vessel wall structure, with a
multitude of stains available to capture different structural aspects. For assessing the microvas-
culature, whole-mount slide scanners for digitization of entire tissue cross sections at 0.25 µm

pixel size is particularly helpful. [6] However, the volume of the acquired data makes com-
prehensive analysis very challenging; manual detection and measurement of vessels in tissue
requires a prohibitive amount of time. An automated microvessel detection and segmentation
algorithm for histological mouse hind limb tissue has been previously reported [7] and other
semi-automated approaches have been developed for this task. [8] However, to the best of
our knowledge, no automated method has yet been developed to classify arterioles and venules
to allow for the separate analysis of arteriolar and venular structure. Such a system would
eliminate the need for the laborious and observer-dependent manual classification performed
in previous studies. [9]–[11] Our interest is in understanding the cellular structure of the
microvascular vessel wall both under normal circumstances and in the post-ischemic and re-
generated microvasculature. Such a comparison may yield powerful insights into improving
therapeutic regimes after stroke or myocardial infarction. However, in regenerated tissue, the
arterioles and venules can be even more difficult to classify, partially due to the fact that newly-
generated arterioles often lack a fully-developed vessel wall structure and can have a similar
appearance on histology to venules. [12] This leads to a strong dependence on a skilled ob-
server to make the distinction between arterioles and venules.

In this chapter, we addressed this issue by designing, implementing, and testing a software
system for automatic classification of arterioles and venules on brightfield histology of the
mouse hind limb smooth muscle. The system automatically detects and segments microvessels
throughout the whole slide using our method described in. [7] It then extracts texture and
morphologic features from all the vessels, performs feature selection to extract the most useful
features for classification, and trains a classifier via supervised machine learning. We tested
system performance using cross validation on a sample containing tissue samples from normal
mice, and from mice previously subjected to hind limb ischemia.
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4.2 Materials and Methods

4.2.1 Materials

The experiments were conducted on tissue samples of the upper one third tibialis anterior
hind limb muscle from 10 wild type C57BL/J6 mice (1 tissue section per mouse). In 5 of
the 10 mice, tissue was collected two weeks after induction of hind limb ischemia by femoral
artery excision; these samples were expected to contain regenerated vasculature, where the
surgeries were performed under isoflurane anesthesia. The post-ischemic samples are referred
to as the regenerated samples. This particular muscle segment was selected because of the
consistent development of microvessels of various sizes following hind limb ischemia. The
mice were perfused with saline post-mortem to remove the red blood cells from the vessel
lumina and then perfusion-fixed at physiological pressure with 4% paraformaldehyde. The
tissues were processed and paraffin-embedded after harvesting, then cut into 7 mm by 5 mm
blocks and sectioned at 5 µm. All experiments in this study were approved by the Animal Care
and Veterinary Service Committee at The University of Western Ontario (Protocol # 2010-244)
and were carried out in accordance with their requirements.

To visualize the smooth muscle distribution down to the level of the arterioles and venules,
sections were immunostained with smooth muscle α-actin using a monoclonal antibody (DAKO,
M0851), and bound primary antibody detected with horseradish peroxidase (HRP)-conjugated
secondary antibody and 3,3’-Diaminobenzidine chromogen (DAB, Vector Laboratories, SK-
4100). This marked the smooth muscle layer of the vasculature (resulting in the vessel walls
being stained with a brown colour) which is shown in Figure 4.1(a). The tissue was then
counter stained with hematoxylin, resulting in blue-stained nuclei. The immunostain was per-
formed manually and the samples were processed in two separate batches. The stained sections
were then imaged with a ScanScope CS (Aperio Technologies, Vista, CA, USA) bright field
slide scanner, at 40× objective magnification (achieved on this scanner using a 20 objective
with the 2× magnification engaged), yielding a 0.25 µm isotropic pixel size. This resulted in
whole slide image dimensions ranging between 12341-26398 pixels in height and 9000-17135
pixels in width.

One tissue section was analyzed from each mouse, where each tissue section was known
to be either normal or regenerated post-ischemia, with vessels detected and segmented auto-
matically using our previously reported method. [7] Our segmentation algorithm resulted in
a Dice similarity coefficient of 0.89 with no bias towards over- or under-segmentation and a
detection sensitivity and specificity of 0.91 and 0.97 respectively, and the whole tissue section
was automatically extracted from the whole slide scan. A sample vessel and its segmentation
are shown in Figure 4.1. Every vessel on the whole slide image was manually classified by the
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(b) (a) 

Figure 4.1: Arteriole with the DAB stain (a), and the binary mask (b) output from the automated
segmentation. Scale bar is 50 µm.
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Figure 4.2: Arterioles and venules are shown in the normal and regenerated tissues. The mi-
crovessels have distinguishable differences in the normal vasculature where the smooth muscle
layer is thicker and more pronounced on the arteriolar side and have a visibly darker stain.
Venules also appear to have a more tortuous vessel wall. This difference is less apparent in the
regenerated vasculature.

consensus of two observers (i.e. both observers had to be in agreement) into the classes: arte-
riole, venule, or unknown/other based on vessel size, thickness of the vessel walls, intensity of
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the vessel walls, and the relative location of the vessel (Fig. 4.2). Only the arteriole and venule
image classes were used for this experiment, with a total of 192 arterioles and 127 venules.
This included all vessel sections that the observers were confidently able to classify manually.
Each of the 10 mice had a total of 7-66 vessels used from each tissue section.

4.2.2 Methods overview

After automatic vessel detection and segmentation which defined the outer boundary of the
vessel wall and the vessel lumen, features were extracted from these vessel walls. This included
statistical, texture and morphological features to use for supervised machine learning. Cross
validation was used test the system’s ability to differentiate arterioles from venules, with the
manual classifications used as the reference standard for comparison (Figure 4.3).

Automated 
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Feature Extraction 

Training of Classifier 

Feature Selection 

Validation 

Leave one 
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Leave-one-
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Results 

Figure 4.3: Block diagram to demonstrate the method followed in this experiment for a leave-
one-mouse-out cross validation.



4.2. Materials andMethods 111

4.2.3 Feature extraction

First and second-order feature computation was performed within each segmented vessel wall
on 10 colour channels separately: 3 red green and blue (RGB), 3 hue saturation and value
(HSV), three Lab, and a DAB stain channel extracted by colour deconvolution. [13], [14] The
colour images were decomposed into separate channels as they carry different information re-
garding the stains represented in the image. For example, HSV takes into the account the colour
spectrum, saturation of the colour and the brightness of the image and Lab space includes all
perceivable colours and approximates human perception of colour differences. Twenty-two
first-order features and 22 second-order gray-level co-occurrence matrix (GLCM) texture fea-
tures [15] were calculated on each colour channel (Table S4.4/5). The GLCM calculations
were performed in all 4 neighboring pixel directions, which were then averaged. 19 morpho-
logical features were also computed. In total, 459 features were computed for each vessel
(Table S4.4/5).

4.2.4 Feature selection

In an effort to select the optimal combination of features, forward feature selection was per-
formed and evaluated using PRTools 5.2.1 (Delft Pattern Recognition Research, Delft, The
Netherlands), with an inter-intra class distance criterion. [16] Other forms of feature selection
were not explored with our limited sample size in order to avoid overfitting. It is important to
note that feature selection was performed only on the training set at each iteration of cross vali-
dation. The entire data set was not used to select a single set of features for supervised machine
learning. The number of features used for classification was chosen by completing the process
for several different numbers of features and comparing the resulting errors and AUCs. It was
desired to minimize error and maximize the AUC while keeping the set of features consistent
through the cross validations.

4.2.5 Supervised machine learning

We tested the performance of three different machine learning classifiers using the selected fea-
tures, performed using PRTools. The following classifiers were used: support vector machine
(SVM), random forest classifier (RFC), and logistic linear classifier (LOGLC). The SVM cal-
culates the separation by maximizing the margin between the support vectors of the two classes
[17], trained with a linear kernel. In the random forest approach, multiple decision trees are
created by sampling different feature and data subsets, with classification determined by the
majority vote from all the trees. [18] 50 decision trees were trained for each classifier, each
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with data subsets chosen by bootstrapping. LOGLC is a linear classifier computed by maxi-
mum likelihood estimation using the logistic function. [19], [20]

To optimize the classifier performance, all the features were normalized. This was done by
taking each individual feature, subtracting the mean and dividing by the standard deviation. It
is important to normalize the features because of classifiers that are sensitive to the scale of the
features, such as the SVM. [21] The other classifiers were unaffected by this normalization.

4.2.6 Validation

Two separate analyses were performed in order to validate the resulting classifiers. First, each
classifier was tested using a leave-one-mouse-out (LOMO) cross validation (at each iteration,
one mouse sample was left out). Feature selection and normalization was performed on the
training set at each iteration and the selected features were used to train the classifiers. The
classification error rate, false positive rate (FPR), false negative rate (FNR) and area under
the receiver operating characteristic curve (AUC) were measured for each classifier. For this
experiment, a classification as an arteriole was considered to be a positive classification. In
the second experiment, a single classifier was defined using an independent training set and
tested on a separate testing set. Six mice were used for training (3 normal, 3 regenerated), and
4 mice were used for testing (remaining 2 normal and 2 regenerated). Aggregation of values
in the receiver operating characteristic (ROC) curves by averaging in the first experiment may
add a degree of freedom to the analysis; however, there is no such aggregation in experiment
two. The performance of the single classifier was validated with the testing set with the same
classification errors as the cross validation experiment.

4.2.7 Classifier Confidence

A confidence value was assigned to each vessel ranging from 0 to 1, where the confidence
threshold of 0.5 determines the binary classification of each vessel. For the random forest, the
confidence was based on the proportion of positive votes from all of the decision trees. For the
LOGLC and SVM, confidence was based on distance from the classification boundary which
was then scaled by a sigmoid function. [16]

In order to reduce the classification error rates, vessels with varying confidence levels were
thresholded and removed. The lowest confidence level is 0.5, representing the situation where
the vessel lies on the decision boundary in feature space, and the highest confidence level is
1.0. This enables the system to retain vessels which were classified with high confidence and
to eliminate vessels with confidence values near the decision boundary, which have a higher
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proportion of false positives. This shrinks the data set, but lowers the error rates, and can be
performed depending on the distribution of confidence values in a given sample.

4.2.8 Statistics

To determine statistical significance, a two-way ANOVA test was done. This was performed
on the classification error, FNR and FPR with the two factors of vessel type (normal and regen-
erated) and classifier type (RFC, LOGLC and SVM). A separate ANOVA was done to also test
for significant differences in errors between the classifier types and between classifiers trained
using different numbers of features.

4.3 Results

4.3.1 Experiment 1

The differences between the three classifiers with respect to the number of features used for
each classifier were reported in order to test the sensitivity of each classifier to the number of
features. Significant differences in the error rates (p < 0.05) were found between the 1-feature
and 2-feature classifiers; no other significant differences were found (Fig 4.4b). All classifiers
were trained on features from forward feature selection and evaluated using a LOMO cross
validation. The AUCs leveled off after 2-3 features at AUCs of > 0.89 for the LOGLC, > 0.89
for the SVM, and > 0.84 for the RFC (Figure 4.4a). Diminishing returns on error rates were
observed beyond 2 features, for which the LOGLC had an error rate of 17%, the SVM 16%,
and the RFC 21% (Figure 4.4b).

The sets of 3 features chosen from forward feature selection are shown in Figure 4.5. The
features chosen consistently at each of the 10 LOMO cross validations were Area Perimeter
Ratio (the ratio of the vessel wall area to the outer perimeter squared), and DAB Skewness
(skewness in the DAB channel). The third feature chosen was not consistent with every cross
validation. The errors resulting from the 2-feature classifiers are discussed for the remainder
of the results below.
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Figure 4.4: AUC (a) and error rate (b) as a function of number of features used for classifica-
tion. The error bars represent the standard error of the mean. All features were chosen using a
forward feature selection and classifiers were trained with a LOMO cross validation.
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The classification performance metrics using 2 features is provided in Table 4.1, where
the metrics for normal and regenerated tissues are shown separately. For Table 4.1, all three
classifiers performed similarly, with mean classification error rates between 17% and 21%, and
AUCs between 0.84 and 0.89. The ROC curves for each classifier type are shown in Figure 4.6,
where the curves were averaged over 10 cross validations. Each mouse sample was given equal
weightings for the ROC curves. However, ROC curve averaging may add a degree of freedom
to the analysis. By contrast, in the second experiment, only one ROC curve was computed
using a single classifier and a larger testing set.
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Figure 4.6: Receiver operating characteristic curves for each of the classifiers trained on 2
features. LOGLC AUC: 0.89, SVM AUC: 0.89, RFC AUC: 0.84.
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Table 4.1: Performance metrics from cross validation using 2 features from forward feature
selection (mean ± SD) All Vessels

All Vessels
LOGLC SVM RFC

Error Rate 0.17 ± 0.11 0.16 ± 0.10 0.21 ± 0.11
False Negative Rate 0.15 ± 0.24 0.14 ± 0.22 0.22 ± 0.27
False Positive Rate 0.26 ± 0.32 0.26 ± 0.32 0.25 ± 0.24
AUC 0.89 0.89 0.84

Normal
LOGLC SVM RFC

Error Rate 0.12 ± 0.11 0.11 ± 0.11 0.15 ± 0.10
False Negative Rate 0.04 ± 0.06 0.04 ± 0.05 0.12 ± 0.13
False Positive Rate 0.31 ± 0.41 0.31 ± 0.41 0.23 ± 0.16
AUC 0.94 0.93 0.9

Regenerated
LOGLC SVM RFC

Error Rate 0.21 ± 0.10 0.20 ± 0.08 0.29 ± 0.06
False Negative Rate 0.27 ± 0.31 0.25 ± 0.28 0.33 ± 0.36
False Positive Rate 0.21 ± 0.25 0.21 ± 0.25 0.33 ± 0.32
AUC 0.84 0.85 0.81
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Figure 4.7: Histogram of the confidences from the LOGLC (a,b), SVM (c,d) and RFC (e,f)
classification using 2 features with their respective confidence thresholds, where “none” indi-
cates no confidence threshold was applied and all vessels were categorized.
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The distribution of correctly and incorrectly classified vessels by the LOGLC, SVM and
RFC respectively for different levels of classifier confidence are shown in Figure 4.7 using 2
features. The LOGLC has 48%, SVM has 48%, and RFC has 54% of the vessels being correctly
classified with confidence >0.9. The results from categorizing vessels based on varying con-
fidence thresholds reduced the proportion of incorrectly classified vessels (Figure 4.7), where
no removal of vessels or no confidence threshold is denoted by “none”. The error rates of the
remaining vessels after the removal of lower confidence vessels after a confidence threshold
are shown in Table 4.2. As an example of how this confidence level was used, in Table 4.2, the
results reported in the “RFC” row and the “0.9” column show that 39.81% of all the classified
vessels had confidence thresholds < 0.9. Removing those vessels from the analysis resulted
in a classification error of 10.42% using an RFC. By contrast, the “none” column shows the
classification error when no confidence threshold was applied; this column shows the classifi-
cation errors using all vessels regardless of their confidence values. A two-way ANOVA test

Table 4.2: The classification errors from the 2 featured forward feature selection with a LOMO
cross validation as the confidence threshold increases and vessels are eliminated.

Confidence Threshold
none 0.6 0.7 0.8 0.9

LOGLC Classification Error 17.24 15.86 11.63 8.6 4.94
Fraction Removed 9.09 19.12 30.72 49.22

SVM Classification Error 16.61 16.15 12.26 8.11 4.94
Fraction Removed 8.78 18.18 30.41 49.22

RFC Classification Error 24.14 19.86 18.53 14.29 10.42
Fraction Removed 11.6 18.81 27.59 39.81

was performed to determine statistical significance between the different classifiers and normal
versus regenerated tissues. This was performed separately for the error rates, FNRs and FPRs.
There was found to be no statistical difference between the three classifiers (p > 0.05). There
was statistical difference between the normal and regenerated tissue error rates and FNRs (p <

0.05) but not the FPRs (p > 0.05).

A repeated measures two-way ANOVA was also performed on the different classifiers, and
between the errors from using 2 features and 3 features. Again there was found to be no
statistical difference between the three classifiers (p > 0.05), nor between the errors using 2
and 3 features (p > 0.05).
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4.3.2 Experiment 2

A single classifier was defined using an independent training set (6 mouse samples; 3 normal
and 3 regenerated) and tested on a separate testing set (4 mouse samples; 2 normal and 2
regenerated). In total, there were 206 vessels (84 normal and 122 regenerated) in the training
set and 113 vessels (50 normal and 63 regenerated) in the testing set.

The AUCs leveled off after 2 features at AUCs of >0.90 for the LOGLC, >0.91 for the
SVM, and >0.89 for the RFC (Figure 4.8a). Diminishing returns on error rates were observed
beyond 2 features, for which the LOGLC had an error rate of 15%, the SVM 17%, and the
RFC 21% (Figure 4.8b).
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Figure 4.8: AUC (a) and error rate (b) as a function of number of features used for classifi-
cation. All features were chosen using a forward feature selection and classifiers were trained
with an independent training set.
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The forward feature selection resulted in the selection DAB Skewness and Area Perimeter
Ratio as the top two features. These features chosen were identical those chosen in the LOMO
cross validation.

The error metrics are shown in Table 4.3 using those 2 features, and AUC curves are shown
in Figure 4.9. The classifier confidence histograms for all the classifiers with confidence thresh-
old levels are shown in Figure 4.10.
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Figure 4.9: Receiver operating characteristic curves for each of the classifiers from classifier
trained on 2 features. LOGLC AUC: 0.91, SVM AUC: 0.92, RFC AUC: 0.89.
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Table 4.3: Performance metrics using 2 features from forward feature selection.

All Vessels
LOGLC SVM RFC

Error Rate 0.15 0.17 0.21
False Negative Rate 0.15 0.15 0.24
False Positive Rate 0.15 0.2 0.17
AUC 0.91 0.92 0.89

Normal
LOGLC SVM RFC

Error Rate 0.06 0.1 0.16
False Negative Rate 0.08 0.08 0.23
False Positive Rate 0.04 0.12 0.08
AUC 0.97 0.95 0.92

Regenerated
LOGLC SVM RFC

Error Rate 0.22 0.22 0.25
False Negative Rate 0.2 0.2 0.24
False Positive Rate 0.27 0.27 0.27
AUC 0.85 0.84 0.87
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Figure 4.10: Histogram of the confidences from the LOGLC (a,b), SVM (c,d) and RFC (e,f)
classifications with their respective confidence thresholds.
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4.4 Discussion

Both arterioles and venules contain smooth muscle cells, which are contractile cells that wrap
the endothelial cells. We have established that differentiation of these two types of microvessessls
is feasible with the use of supervised machine learning. All of the tested classifiers provided
promising performance, with AUCs between 0.84 and 0.89 determined by cross validation for
our two-featured forward feature selection, where the same two features were consistently cho-
sen. Error rate, FNR, and FPR were consistent across classifiers and only two features were
required to achieve the reported performance. Variability in vessel size, shape, and staining
was observed in our data set. The upper row in Figure 4.11 shows arterioles that were incor-
rectly classified as venules (0.6 < confidence < 0.9). The lower row shows correctly classified
arterioles (0.6 < confidence < 1.0); note the variability in size, shape, and staining tolerated by
the LOGLC. Arterioles (scale bar 20 m) 

(a) 

Incorrectly Classified Arterioles 

Correctly Classified Arterioles 

(b) (c) (d) (e) 

(f) (g) (h) (i) (j) 

Figure 4.11: Incorrectly (a-e) and correctly (f-j) classified arterioles by the LOGLC. Scale bar
is 20 µm

The ability to accurately separate the arterioles from the venules is a key step in analyzing
the vascular system. The arterioles control the blood flow directly leading to the capillaries
whereas venules are critical to the outflow of blood and tissue waste products. Not only does
their function differ but the manner in which they remodel during disease can differ. Ac-
cordingly, assessment of diseases characterized by ischemia, injury, and inflammation may be
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substantially enhanced by separating the two types of vessels. [1]–[5] Automatic separation
allows for fast, high volume analysis that is not user-dependent. This will ultimately be in-
cluded in a total automated procedure that will include detection and segmentation [7], 3D
reconstruction [6], and analysis. The 2 features chosen during forward feature selection were
consistent with each round of cross validation. This is promising and suggests generalizabil-
ity of classifiers trained on these features. Although the error rates were slightly better in the
3-feature system, the inconsistent choice of the third feature across iterations makes this a less
favorable solution. The two features chosen included a morphological feature, Area Perimeter
Ratio, and vessel wall intensity feature, DAB Skewness, and they were both chosen at every
round of cross validation. The utility of the Area Perimeter Ratio feature is concordant with the
fact that venules are in general thinner and have less vessel wall area compared to arterioles,
which generally have thicker walls. It also may capture the amount of waviness of the vessel
walls where the venules in general have more curved walls than arterioles. The other selected
feature that was chosen for every cross validation was the DAB Skewness, which is concordant
with the fact that in general, arterioles are more darkly stained than the venules since they have
more smooth muscle. It is most likely the lack of dark DAB stain on many of the venules, and
the original DAB threshold used for segmentation, that causes a positive skewness on many of
the venules. The performance based on the type of classifier used was evaluated. There was no
significant difference between the errors from each of the classifiers (p <0.05). This indicates
that the error rates are independent of the classifier used.

The classification was performed on independent training and testing sets and demonstrated
the consistency of the feature selection and classification processes. In order to maintain the
generalizability of the classifier with two features, linear and Random Forest classifiers were
used to prevent overfitting to our current dataset. The features chosen were consistent with
the features chosen during cross validation including one feature based on vessel shape, Area
Perimeter Ratio and the other feature based on vessel stain content with regard to intensity in
the form of DAB Skewness. The error rates were also comparable to the rates when performing
a LOMO cross validation. This suggests the possibility of using a single trained classifier that
will be able to separate the vasculature accurately on unseen data.

We observed that in many instances of incorrect vessel classification, errors occurred due to
staining variability (e.g. weak staining in Figure 4.11(e)). Lightly stained arterioles tended to
be incorrectly classified as venules, and heavily stained venules incorrectly classified as arteri-
oles. This suggests a need for additional preprocessing to normalize the images for the overall
level of staining on each slide. Unusually thin-walled arterioles also caused false negatives
while thick-walled venules caused false positives. Many of these unusually thick or thin ves-
sels came from the regenerated vasculature. Figure 4.11(a-e) provides a qualitative illustration
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of the false negatives. There was significant difference between the normal and regenerated
vessel errors for the total error rates and the FNRs. This coheres with the observation that
the vessels in the regenerated tissues have less distinct differences between the arterioles and
venules and are also more difficult for an operator to differentiate.

The distributions of confidences for each classifier are similar. Between the 2 experiments,
the distributions were also similar, suggesting that the smaller training set seems representative
of the entire dataset. Thresholding the confidences and eliminating the vessels is a possibility if
more accurate classifications are desired. A subset of the vessels with lower confidences would
remain unclassified (Fig. 4.7(b,d,f)). The goal is to replicate a human classifier, where a human
will likely exclude several vessels based on uncertainty. However, there is a tradeoff between
accuracy of the classification and the number of vessels remaining for analysis and this is
dependent on the classifier and the distribution of confidences. In this experiment, thresholding
the confidence values based on all the classifiers decreased the error rates (Table 4.2). However,
the optimal threshold is dependent on the type of classifier used as the distribution of the vessel
confidences varies. One needs to take into consideration when analyzing abnormal vasculature
that the vessels of interest may lie in the range of lower confidences due to their structure (i.e.
interesting discoveries may be found when looking at unusual vasculature occurring in the “low
confidence” category). Once the algorithm has separated the vasculature into the three groups
(arteriole, venule and unknown), the user can then study the vessels in each category.

This work must be considered in the context of its strengths and limitations. Although we
had a large sample size of 192 arterioles and 127 venules of varying sizes, shapes, and staining
levels, all of the tissues in this study were prepared in a single laboratory. Additional testing
would be required to report on the generalizability of our methods to tissues prepared in differ-
ent laboratories, allowing for testing of various feature selection and classification techniques
without overfitting to the current dataset. Even so, there was still a large staining variability
between the mouse samples, including weakly stained vessels which may have been system-
atically under or over segmented. The technique used for histological slide preparation and
immunohistochemistry staining is a standard method for visualizing the microvascular wall.
However the classifiers, as trained in our experiments, cannot be directly applied to images us-
ing other methods of vessel visualization such as fluorescent staining. This study was also only
done on the mouse hind limb tissue and cannot be directly generalized to other tissue types. Al-
though we did not observe substantial improvement in classification performance when more
than two features were used, this may have been due to a lack of normalization for staining
variability. Our ongoing work includes staining normalization and a subsequent analysis of
performance with the inclusion of additional features and more feature selection methods.
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4.5 Conclusions

Distinguishing arterioles from venules is an unattained prerequisite to high-throughput, quan-
titative analysis of the microvascular network morphology. In addition, analysis and morpho-
logical comparison of arteriolar and venular sub-networks are essential to our understanding
of multiple diseases affecting all vascularized organ systems. We have developed and evalu-
ated the first fully automatic software system for differentiation of arterioles from venules on
high-resolution digital histology images of the mouse hind limb. This system eliminates the
need for laborious manual classification of the hundreds of microvessels occurring in a typical
sample, and paves the way for high-throughput analysis the arteriolar and venular networks in
the mouse.

Our software system based on supervised machine learning provided useful classification
accuracy for differentiation of arterioles and venules on high-resolution digital histology im-
ages of the mouse hind limb immunostained for smooth muscle α-actin. Our system achieved
an area under the receiver operating characteristic curve of 0.89. Feature selection was consis-
tent across cross validation iterations, and a small set of two features was required to achieve
the reported performance; this augurs well for the generalizability of this system. This sys-
tem will enable scientists to conduct high-throughput studies of animal models, measuring and
comparing arteriolar and venular networks to deepen our understanding of human disease so
that improved treatments can be sought.
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Table 4.4: List of all the features extracted from each vessel image.
Table 1a List of all the features extracted from each vessel image. 
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Table 4.5: List of all the features extracted from each vessel image.
Table 1b List of all the features extracted from each vessel image. 
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* g(i, j) refers to the GLCM, where HX and HY are entropies of gx and gy, HXY =

−
∑

i, jgi jlog2gi j, HXY1 = −
∑

i, jgi jlog2gx(i)gy( j), HXY2 = −
∑

i
∑

jgx(i)gy( j)log2[gx(i)gy( j)],
µ refers to the mean, x̃ refers to the median, σ refers to the standard deviation, and N refers to
the number of pixels. Ax, Px, and Wx, refer to the area, perimeter, and average width, respec-
tively, of structure x; Vessel refers to the vessel wall; Box refers to the vessels bounding box;
VesselHull refers to the vessels convex hull; and Lumen refers to the inner vessel boundary.
NRL is the normalized radial length. The GLCM neighborhood voxel distance was 0.25 µm

averaged over all directions.
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Chapter 5

High content analysis of the
microvasculature in the post-ischemic
skeletal muscle reveals the emergence of
abnormally thin-walled arteries and
arterioles: Implications for flow reserve in
regenerated muscle

An updated version of the following chapter will be submitted to the journal Angiogenesis:

Xu Y, Ward AD, Yin H, Arpino JM, O’Neil C, Nong Z, Pickering JG.

5.1 Introduction

Any compromise to the blood supply of organs can lead to impairment of function and tissue
loss. This can take the form of many pathologies, including peripheral vascular disease (PVD),
which is in the skeletal muscle and can be caused by atherosclerosis. [1], [2] Symptoms of PVD
include intermittent claudication, which results in pain during locomotion and in severe cases,
pain at rest. [3] There are few approaches to treatment. [4] Pharmacological methods are being
developed for therapeutic angiogenesis to combat ischemia. [5] This can result in an increased
walking distance of patients of 50%, but increases mortality in patients with heart failure,
which is common in PVD patients. [6] Typically, treatment options involve invasive procedures
for peripheral vascular disease. Surgical treatments such as endovascular reconstruction and

132
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surgical revascularization are often not an option. [3] This leads to 1.4 million limb amputations
annually from dysvascular disease, with diabetes as a main cause of disease. [7] Thus, it is
essential to study the composition of the vasculature and the manner in which it can self-repair
after an ischemic event.

The body has compensatory mechanisms for organ repair after an ischemic event, such as
regeneration of the skeletal muscle, but this does not necessarily result in the successful return
of the network to baseline structural and functional status. [8] In the adult, regeneration in-
volves arteriogenesis in the collateral vasculature, which opens and allows for reperfusion of
the ischemic tissues. [9], [10] It also involves angiogenesis, when new capillaries develop to
compensate for the deficiency of blood flow. [11] Almost all organs have collateral arteries,
which can open in the event of severe ischemia, to compensate for the lack of blood flow. [2]
Clinically in coronary artery disease, it has been shown that patients who develop a collateral
circulation have a reduced mortality rate, with a reduction of 36%. [12] This knowledge of
arteriogenesis and angiogenesis after an ischemic event has yet to facilitate the development
of new therapies because treatments mediating successful vascular regeneration are unknown.
[13] For example, it is not known whether it is best to stimulate the tissues for vascular devel-
opment, or to allow tissues to repair on their own.

One of the understudied vascular components after regeneration is the change in vascular
smooth muscle cell (SMC) wrapping. The SMC component is an integral part of this reperfu-
sion process. [9], [14] It allows for vascular tone control of the upstream vessels by commu-
nicating through surrounding vascular components and the sympathetic nervous system. [15]
The enlargement of the pre-existing collateral vessels and recruitment of vascular SMCs for
stability, through arteriogenesis in adulthood, allow for reperfusion of the ischemic tissues. [9]
The arterioles provide peripheral resistance in blood flow to regulate perfusion locally prior to
the capillary beds. [16] Previous studies have shown an increase in wrapping of the collateral
vessels. [17] However, the structure and content of the SMC wrapping at the distal end of the
arterial tree has not been studied comprehensively. Thus, we need comprehensive knowledge
of the distal arterial tree through careful examination of vascular histopathology.

In this study, our objective was to quantitatively and comprehensively characterize the ar-
teriolar vasculature after ischemia and regeneration, and model its impact on blood flow func-
tion. We recently demonstrated the inefficiency of the regenerated network focused on terminal
arterioles. [18] This led us to question the characteristics of the small artery and arteriolar net-
work, incorporating all muscularized microvessels on any given tissue section. The effects of
hypoxia on the remodeling of collateral vasculature and increased capillary density have been
previously assessed, [17], [19]–[21] capturing differences in steady-state blood flow. However,
the structure and functionality of the smooth muscle component after ischemia is not known
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in the context of SMC wrapping morphology and the density of the vessels which contain this
wrapping. Until recently, methods did not exist for comprehensive analysis for the analysis of
microvasculature at the arteriolar level. We recently developed an automated software system
for the analysis of microvasculature, [22], [23] to interrogate inherent abnormalities within the
network responsible for dynamic regulation. [24], [25] We used our developed method to ex-
tensively characterize the arteriolar network. These structural characterizations, such as vessel
density and morphology, were used to simulate blood flow function.

To address the need for a comprehensive analysis of SMC content after regeneration of the
microvasculature post an ischemic event, we used our developed automated software for vessel
measurements and blood flow modeling to infer changes to function. We expect differences in
the density and morphology of the muscularized microvasculature in the regenerated skeletal
muscle post-ischemia as compared to baseline. The aberrations in SMC content may lead to
a decrease in blood flow when the tissue isin a state of perfusion demand, leading to deficient
function.

5.2 Methods

5.2.1 Materials

The experiments were conducted on a total of 10 wild type C57BL/J6 mice. Five mice were
normal, and five had post-ischemia regenerated vasculature in the hind limb. Between 12 and
19 tissue sections were obtained per mouse; all sections were used for analysis in this study.
Mice were subjected to hindlimb ischemia by unilateral femoral artery excision as previously
described. [26] Fourteen days after ischemia induction, mice were sacrificed by overdose of
isoflurane. After the blood was flushed by intraventricular perfusion with phosphate buffered
saline, the tissues were fixed by intraventricular perfusion with formalin. The anterior calf bun-
dles, which contain the tibialis anterior, extensor digitorum longus, and peroneus longus mus-
cles, were isolated from the ischemic and contralateral nonischemic legs and fixed in formalin
for another 48 hours. The tissues were processed and paraffin-embedded, and then cut into
blocks and sectioned at 5 µm. To visualize the smooth muscle distribution within the arterioles
and venules, sections were immunostained for smooth muscle (SM) α-actin using the mono-
clonal antibody (DAKO, M0851), and bound primary antibody detected with horseradish per-
oxidase (HRP)-conjugated secondary antibody and 3,3’-Diaminobenzidine chromogen (DAB,
Vector Laboratories, SK-4100). This marked the smooth muscle layer of the vasculature (re-
sulting in the vessel walls being stained with a brown colour). The tissue was then counter
stained with hematoxylin, resulting in blue-stained nuclei. The sections were imaged with a
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ScanScope CS (Aperio Technologies, Vista, CA, USA) bright field slide scanner, at 20× ob-
jective with 2× magnification engaged, resulting in 0.25 µm isotropic pixels. These yielded
images with extents ranging from 11697 - 26398 pixels in the vertical dimension and 9000 -
17135 pixels in the horizontal dimension.

5.2.2 Vessel segmentation summary

The main steps in the automated vessel segmentation algorithm are vessel fragment detection,
vessel fragment connection, locally adaptive segmentation refinement, and vessel measure-
ment. [22], [23] The detection and segmentation were validated against manually detected
vessels and manually contoured vessels, respectively. Measurements of the vascular smooth
muscle layer were compared between the manual and automated segmentations.

5.2.3 Vascular measurements

Measurements of the smooth muscle vascular morphology were performed on all vessels within
the tibialis anterior (TA), extensor digitorum longus (EDL) and peroneus longus (PL). This was
mediated by an automatic detection and segmentation algorithm we previously developed. [22]
The components of the network were separated into the feeder and draining vessels, the arte-
riole and venules at the level of the microvasculature automatically using a machine learning
technique. [23] With the combination of the two techniques, the density and the morphology
of the arteriolar smooth muscle distribution was automatically assessed throughout the whole
slide images. The positive vessels were detected and then automatically contoured for the
smooth muscle wall, resulting in a boundary at the endothelial wall or inner vessel lumen and
a boundary around the stained smooth muscle wall component. The density of the arterioles
within the tissue was automatically measured. The morphological measurements defined in
Table 5.2 were measured for all vessels automatically. The assessments were performed for
the normal and regenerated vasculature at day 14 and day 28 post-ischemia.

5.2.4 Blood flow simulation

The parameters involved in the blood flow simulations include the pressure, vessel diameters,
and network geometry, which includes the number of vessels, their positions, orientations and
baseline diameters. [24], [25] The network geometry was kept consistent, except where addi-
tional branches were added to the distal end of the arteriolar tree to reflect the increase in vessel
density prior to the perfusion of capillaries. The dimensions of the bounding box containing
the arteriolar tree were defined by the extents covering the combined volume of the TA, EDL,



136 Chapter 5. Muscularized microvascular analysis

and PL muscles. The inflow and outflow pressures were set to different values to allow for
the same baseline flow for the normal and regenerated models, to compare the flow changes
when there is a dilation of the vasculature. The maximum dilation was defined as 140% of the
baseline diameter for arterioles and was based on the relative dilation of arteriolar vasculature
in response to sodium nitroprusside a vasodilator. [25]

The dilations of the vessel diameters (d) were based on the vessel wall thickness values
measured in the empirical analysis and ranged from 0 to 1. The vessels in the normal and
regenerated networks are defined to have the same diameters at baseline. The regenerated and
normal networks both have tree-based network topologies, but has more vessels at the distal
end, which have the same diameters as the distal vessels in the normal network. The normal
vessel diameters were all dilated to a maximum dilation of 140% of the baseline diameter to
model an increase in demand for blood flow. The regenerated vessel diameters were modulated
according to differences in their vessel wall thicknesses, as compared to their normal counter-
parts. The vessel diameters were binned into categories as defined in Table S5.4 and the vessels
in the simulation model were dilated with respect to the median thickness of the regenerated
vessel wall as compared to the normal, within each vessel diameter range. The dilated vessel
diameter dD in the regenerated model is defined as

dD = dB(1 + Dmax ×
Treg(dB)

Tnorm(dB)
) (5.1)

where Dmax is the maximum dilation factor of 0.4 dB is the diameter of the vessel segment
at baseline, and Treg and Tnorm are the median vessel wall thickness values for the regenerated
and normal vessels respectively for the vessel diameter range containing dB. (Table S5.4) For
example, if the baseline diameter dB for the vessel is 19 µm, the Treg and Tnorm are 3.03 and
3.75 µm respectively. (Table S5.4) Then the dilated diameter dD would be (19 µm)(1 + 0.4 ×
(3.03/3.75)) = (19 µm)(1.32) = 25 µm.

5.2.5 Statistical analysis

Kolmogorov-Smirnov normality tests were performed using MATLAB 8.5 (The Mathworks
Inc., Natick, MA, USA) for all measures. The null hypothesis was that the median area,
perimeter and thickness values were the same for the normal and post-ischemic tissue sam-
ples. ANOVA testing was performed using the non-parametric Kruskal-Wallis test with a
Bonferroni-corrected significance level of α/n, where n is the number of sections taken from
each mouse, to compensate for the potential correlation of vessel measures within each tissue
sample. Post-hoc testing was performed on the normal, day 14 and day 28 samples. Aggre-
gate values from each mouse were compared with the significance level of α. In addition, the
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measures were grouped with respect to each sample mouse. The median differences and as-
sociated interquartile ranges were measured. The difference in regressions of media area and
lumen area, as well as media thickness and vessel diameter was measured by the analysis of
covariance (ANCOVA).

5.3 Results

All analyses were performed on the small artery and arteriolar vasculature, excluding the venu-
lar side from the assessment, [23] in the anterior muscle bundle where we expect vascular re-
generation, downstream of the femoral artery excision. Femoral artery excision and vascular
regeneration resulted in changes to vasculature with respect to morphology and density.

5.3.1 Increase in density of muscularized vasculature

Through automated analysis, we found an overall increase (p < 0.05, n = 9, 5, 4 mice) in the
small artery and arteriolar density in the regenerated mice, computed as the number of vessels
per given tissue region (Table 5.1). Though the quantitative measurements were performed on
whole tissues sections, the differences in density can be visualized on portions of the tissue
when comparing the normal to the regenerated vasculature. (Fig. 5.1a, b) Most notably, there
was a two-fold increase in the vessel density after regeneration at both day 14 and day 28. (Fig.
5.1c) This difference holds when looking at the sub categories of vessels separated with respect
to size in the smaller vessel ranges of 5 - 10 µm and 10 - 40 µm.

Table 5.1: Vessel density of the muscularized microvasculature (N indicates number of mice)

Vessel Density (mm−2)
Bins N Median IQR

Normal 9 4.66 2.49
Day 14 5 10.26 10.93
Day 28 4 9.50 4.13
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Figure 5.1: Normal (a) and regenerated (day 28) (b) hind limb tissue following ischemic dam-
age, immunostained with an antibody to smooth muscle α-actin and DAB chromogen and
counter-stained with hematoxylin. Distribution of density (c) with regards to the vessel diam-
eter where All indicates where the total distribution is represented in the boxplots. The boxes
represent the median and interquartile range values and the whiskers are at the 5th and 95th per-
centile. Significance in the form of a Kruskal-Wallis and post-hoc test is indicated for p < 0.05
for density (n for number of mice). Scale bar 50 µm.

5.3.2 Decrease in vascular SMC wrapping in regenerated skeletal muscle

We were also interested in the effect of the regeneration on the vascular SMC wrapping. The
comprehensive morphological measurement also revealed significant differences in the SMC
wrapping around the arteriolar vasculature. (Table 5.2) There was a decrease in the vessel wall
area and thickness after regeneration. (p < 0.0001, n = 2725, 2164, 374 vessels, p = α/n =

0.05/19 = 0.0026) This is apparent when looking at all vessel sizes, both quantitatively through
automated measurements of thousands of vessels and visually examined when comparing se-
lected vessels of similar sizes on the histology section. (Fig. 5.2) The media area decrease
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loses statistical significance at day 28 (p > 0.0026) when assessing the vasculature at the 5 -
10 µm, 10 - 40 µm, and 40 - 150 µm vessel diameter ranges. (Fig. 5.3) These losses in statis-
tical significance for the size categories of vessels were also observed in the media vessel wall
thickness in the day 28 mice. We noted an increase of the median vessel wall thickness from
day 14 to day 28 in the 10 - 40 µm vessel diameter range (Fig. 5.3b).

Table 5.2: Morphological measures of the smooth muscle (SM) layer (N indicates number of
vessels)

Model N SM Layer Area (µm2) Lumen Area (µm2)
Median IQR Median IQR

Normal 2400 182.38 291.75 159.24 521.99
Day 14 2037 124.81 186.88 154.96 467.10
Day 28 350 115.22 152.25 97.15 283.89

Lumen Perimeter (µm) Lumen Diameter (µm)
Median IQR Median IQR

Normal 2400 44.73 58.68 14.24 18.68
Day 14 2037 44.13 53.67 14.05 17.08
Day 28 350 34.94 41.13 11.12 13.09

SM Layer Thickness (µm)
5th Percentile 50th Percentile

Median IQR Median IQR

Normal 2400 1.77 1.93 3.38 2.54
Day 14 2037 1.12 1.24 2.61 1.52
Day 28 350 1.25 1.28 2.85 1.84

95th Percentile Within-Vessel SD
Median IQR Median IQR

Normal 2400 7.29 5.92 1.53 1.47
Day 14 2037 5.46 4.88 1.25 1.46
Day 28 350 6.59 5.39 1.53 1.61
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Figure 5.2: Normal (a-d) and regenerated (e-h) hind limb tissue following ischemic damage,
immunostained with an antibody to smooth muscle a-actin and DAB chromogen and counter-
stained with hematoxylin. Scale bar 50 µm for full vessels, 10 µm for vessel walls.
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Figure 5.3: Distribution of morphological values with regards to the vessel diameter where
All indicates where the total distribution is represented in the boxplots. The boxes represent
the median and interquartile range values and the whiskers are at the 5th and 95th percentile.
Significance in the form of a Kruskal-Wallis and post-hoc test is indicated for p < 0.0026 (n
for number of vessels).

We also found an elastic (linear log-log) relationship between the vascular SMC wrapping
with respect to vessel calibre, demonstrating less SMC wrapping in the regenerated vasculature
compared to the normal. (Fig. 5.4) There were significant differences in the elevation of media
area between normal and the regenerated vasculature at days 14 and 28 (p < 0.0001), with
respect to the lumen area. This is not surprising when looking at the discrepancies in the
heights of the correlations in Figure 5.4a. There is a distinct group of vessels in the normal
vasculature, surpassing the media area of the regenerated vasculature, visible by the group
of blue points above the rest of the points. The overall trend between the lumen area and
media area of the vasculature has the same slope for normal, day 14 and day 28 (p = 0.74).
The regression lines for all groups are parallel, which indicates that within the normal and
regenerated vasculature, there is a global effect regarding the SMC component. There is a
decrease in SMC wrapping in the regenerated vasculature, regardless of vessel calibre. This
correlation between SMC content and vessel size is seen in the vessel diameter and median
vessel wall thickness as well. There was no difference between the slopes (p = 0.33), but
difference in the elevation of the distribution (p < 0.0001), where the normal group surpasses
that of the regenerated vasculature. (Fig. 5.4b)
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Figure 5.4: Distribution of vessel measurements between the normal and regenerated vessel
media at day 14 and day 28 post-ischemia. The media area with respect to the lumen area (a)
and the median vessel wall thickness with respect to the vessel diameter (b) are represented
with the three distributions.

5.3.3 Lower blood flow in the regenerated arteriolar network

We were interested in the impact of the vessel density and morphology changes on local blood
flow control after vascular regeneration. To address this, we performed functional modeling,
using the empirical measurements of density and thickness as parameters of the network. [24]
All other parameters were constant between the normal and the regenerated vasculature. We
modeled a state of perfusion demand between the normal and the regenerated vasculature (Ta-
ble 5.3). There was 89% (378% - 289%) and 67% (378% - 311%) less flow found in day 14
and day 28 as compared to the control in the dilated state (dilated control - dilated regenerated
percent of baseline flow). The distribution of flow is shown in Fig. 5.5, which demonstrates the
decrease in flow of the regenerated vasculature. The increase in vessel density is illustrated in
Figure 5.5c at the distal end of the arteriolar network, where there is an increase in the number
of vessel branches. An increase in the vessel diameter increases the flow in both the normal
(Fig. 5.5b) and regenerated (Fig. 5.5d) vascular network. The relative differences in flow of
the two models are captured when the tissues are in perfusion demand.
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Table 5.3: Simulated blood flow measures and network parameters

Baseline Dilated Full Dilated Reg 14 Dilated Reg 28
Normal Network

Total Flow (ml/s) 0.009 0.034 0.026 0.028
Max Dilation Factor 0 0.4 0.4 0.4
P0 (mmHg) 62 62 62 62
P1 (mmHg) 20 20 20 20
Number of Segments 199 199 199 199

Regenerated Network

Total Flow (ml/s) 0.009 0.034 0.026 0.028
Max Dilation Factor 0 0.4 0.4 0.4
P0 (mmHg) 56 56 56 56
P1 (mmHg) 20 20 20 20
Number of Segments 415 415 415 415

Percent of Baseline Flow 100% 378% 289% 311%
Percent of Normal Dilation Flow 26.47% 100.00% 76.47% 82.35%
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Figure 5: Simulated blood flow in the normal (a, b) and regenerated (c, d) networks for vessel 
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Figure 5.5: Simulated blood flow in the normal (a, b) and regenerated (c, d) networks for vessel
diameters at baseline (a, c) and when the tissues are in the state of perfusion demand where the
vessel diameter is dilated. Vessel diameter at baseline ranges from 12 to 120µm.
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5.4 Discussion

PVD and compromised blood supplies lead to damage of the vasculature affecting function,
which has not been previously studied with respect to SMC wrapping at the distal end of the
arteriolar tree for the impact on vascular tone. [27] Through the comprehensive analysis of
histology, we have isolated the small artery and arteriole components responsible for local
blood flow control, separate from the rest of the vasculature, on whole tissue sections. [22],
[23] This led to the discovery of an increase in density of muscularized microvessels in the
regenerated vasculature as compared to the control, suggesting compensation of the tissue for
lack of tissue perfusion. However, coupled with this was also the finding of a decrease in SMC
wrapping in the post-ischemic arteriolar vasculature. Modeling of these aberrations through
blood flow simulation identified a lower blood flow in the regenerated arteriolar network as
compared to the control, suggesting insufficient restoration of function.

Vascular regeneration can occur after an ischemic injury to the mouse skeletal muscle. [1]
This is facilitated by the opening of collateral vessels. [10] Previous studies have demonstrated
thickening of the main collaterals through arteriogenesis. [9] The reperfusion of the ischemic
tissues stimulates angiogenesis, resulting in an increase in capillary density. [17] The density
at the microvascular level not only increases, but surpasses the density in the normal tissue.
[17], [19]–[21], [28] This increase in density is not accompanied by normalization in function.
Our previous work demonstrated a flawed network structure and function. [18] Although the
network structure 14 days after ischemia resembles that of a normal network, the function was
not normalized. There was still low oxygen saturation due to arteriolar-venular shunting. [29],
[30] These functions and vessel densities have been previously analyzed at the capillary level,
but the dynamic vascular smooth muscle component merits further assessment.

Study of the microvasculature has not been comprehensively assessed at the calibre of
arterioles, but the understanding of dynamic blood flow control occurs at this level. This is due
to the sheer number of microvessels that contain a varying SMC component. Taking a small
sample may not represent the full distribution within the skeletal muscles. [22] Thus, most
studies at the microvasscular level focus on the density of the capillaries and steady-state blood
flow. [31], [32] Here, we provided a comprehensive assessment of the artery and arteriolar
network captured on high resolution histology, incorporating all sizes of vessels, excluding the
venules. [23] This is not feasible to perform by hand, [33] so we developed an automated
software system to accurately complete this task. This enabled measurement of vessel density
and morphology on the whole tissue section. This is essential because, unlike capillaries,
arterioles are not evenly distributed throughout the tissue and vary with regards to their SMC
content. [34]
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We found an increase in arteriole density in the regenerated vasculature. (Table 5.1) This
increase in vessel density is apparent across all vessel sizes. (Fig. 5.1c) This increase is not
significant in the 40 - 150 µm diameter vessels at day 28. The vessels incorporated within
this range could be collateral vessels, which can regenerate and become larger in size, thus no
longer in the below 150 µm diameter range. The arterioles have not been stratified by size in
previous studies. The increase in vessel density does correlate with the previously observed
increase in capillary density in other studies [17], [19]–[21], [28] and what is visualized on the
histology section. (Fig. 5.1) Angiogenesis is occurring to compensate for ischemia. [5], [21],
[35]

Assessment was performed on the SMC thickness in the whole tissue section with our
developed automated technique. [22], [23] Previous studies have been mainly focused on
vessel density at the microvascular level. [31], [32] We measured the thickness of the SMC
wrapping along each individual pixel of the vessel perimeter. The microvasculature has yet
to be assessed to this extent. There was a decrease in the smooth muscle content around the
arteriolar wall in the regenerated vasculature based both on SMC area and thickness. (Table
5.2) There was some incomplete improvement at day 28 compared to day 14 after ischemia.
(Fig. 5.3) However, we did not detect a significant difference when compared to the control
group. The lack of smooth muscle wrapping may be a contributing factor to the persistent
reduction in function after 14 days of regeneration. There could be a fundamental relationship
between the vessel size and adequate SMC wrapping, and there is a global effect of ischemia,
causing a decrease in vessel wall thickness regardless of vessel calibre. (Fig. 5.4)

We used a blood flow simulation model to evaluate the effect of a decrease in SMC thick-
ness on vascular function as it is essential to study the vasculature’s response to stress and
exercise, not only at rest. [24], [25] This flow model incorporated the empirical thickness dif-
ferences at all arteriole sizes. When only accounting for the discrepancy in vessel thickness
and density, the flow responsivity was blunted. (Fig. 5.5) As such, the model is very conser-
vative and is likely overestimating the flow response in the regenerated model. Other factors
may decrease flow and were not incorporated in the model. [18] These factors include vessel
shunting between arterioles and venules, overall network disorganization and different input
flow conditions. [30] The hind limb in the regenerated state cannot receive the same amount
of flow from collateral vessels, as compared to the control limb from the femoral artery. Even
without incorporating those factors, there was still an 89% lower flow in the regenerated limb
when compared to the control limb. To further validate this model, we are performing in vivo
blood flow analysis using Laser Doppler imaging. This is essential to the understanding of the
body’s response to stress and exercise.
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5.5 Conclusion

Our data describe the morphology and density differences in the arteriolar vasculature after
hind limb ischemia and regeneration. Previous analysis techniques have not allowed for the
comprehensive measurement for the vasculature at the artery and arteriolar level with regards
to SMC content. We characterized features of the arteriolar network with our developed, au-
tomated software system. This demonstrated a decrease in SMC wrapping and decreased flow
within the regenerated arteriolar network. Thus, even with the increase in vascular density, the
regenerated network may not perform efficiently in the state of perfusion demand.

Table 5.4: Smooth muscle (SM) layer thickness binned based on vessel diameter(dB) in the
normal (Tnorm) and regenerated (Treg) vasculature

SM Layer Thickness (µm)
Vessel diameter (µm) Normal Regenerated Day 14 Regenerated Day 28
Bin Min Bin Max N Median IQR N Median IQR N Median IQR

4 6 175 2.55 1.27 114 2.02 0.69 36 2.37 0.64
6 8 350 2.61 1.82 281 2.15 0.84 74 2.33 0.99
8 10 271 2.57 1.86 241 2.3 1.08 51 2.36 1.73
10 12 218 3.27 2.15 219 2.36 1.25 26 2.88 1.78
12 14 174 3.26 2.24 159 2.55 0.96 29 3.26 1.43
14 16 119 3.26 1.95 130 2.72 1.41 18 3.03 1.41
16 18 136 3.78 1.92 109 2.93 1.52 15 3.29 0.93
18 20 96 3.75 2.59 124 3.03 1.27 12 3.09 1.9
20 30 342 3.9 2.05 223 3.04 1.68 39 3.75 2
30 40 112 3.78 2.71 148 3.25 1.92 18 4.55 2.66
40 50 122 5.08 2.27 106 3.23 1.61 11 5.37 3.65
50 100 208 5.14 5.45 165 4.25 2.5 18 4.66 4.67
100 150 77 8.1 11.47 18 5.39 7.64 3 4.82 1.36
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Chapter 6

Conclusions and Future Directions

6.1 Thesis contributions

This thesis addresses an unmet need for technology advancement in automated digital histol-
ogy analysis involving 3D visualization, segmentation and classification. Methods for whole
slide tissue processing and the comprehensive assessment of the microvasculature were de-
veloped. Morphological comparisons between normal and regenerated tissues of the vascular
smooth muscle were performed using the developed automated system. This contributed to
the understanding of blood flow functionality after an ischemic event. The achievement of the
objectives (Chapter 1, Section 1.9) and answering of the research questions (Chapter 1, Sec-
tion 1.9) posed in the introduction led to the following technical contributions and knowledge
advancements:
Technological advancements (Chapter 1, Section 1.9):

1. A 3D histology reconstruction algorithm was developed using intrinsic landmarks within
the tissue, which results in more accurate registration compared to conventional intensity
based registration for tissue reconstruction.

2. An automated segmentation algorithm for the muscularized microvasculature was devel-
oped for examining the distribution of vascular morphology in a biological system.

3. A machine learning platform was developed to separate arterioles from the rest of the
vasculature automatically for analysis.

Knowledge advancements (Chapter 1, Section 1.9):

1. How does conventional field of view sampling compare to our developed 2D whole tissue
section analysis, with respect to vascular assessment?

152



6.1. Thesis contributions 153

• Using 2D whole tissue section analysis resulted in different vasculature measure-
ments of morphology and density as compared to conventional field of view sam-
pling.

2. What are the main differences in smooth muscle cell content in the post ischemic and
normal arterioles?

• There are differences in SMC content with respect to density and morphology be-
tween post ischemic and normal arterioles.

3. How do these structural differences affect blood flow and function?

• The differences in SMC content between post ischemic and normal arterioles effects
blood flow and function.

6.1.1 Technological advancements

A 3D histology reconstruction algorithm was developed using intrinsic landmarks within
the tissue, which results in more accurate registration compared to conventional intensity
based registration for tissue reconstruction.

Chapter 2 describes the developed automated software involving the automated detection of
small intrinsic landmarks for the registration of serial histological sections to preserve vessel
continuity and geometry. Conventional intensity based algorithms are driven by salient fea-
tures within the tissues and aim to register components into the same coordinate system. In
the context of histology reconstruction, the tissues are serial sections that appear to be visu-
ally similar. However, they are technically extracted from different locations in the tissue.
Registering the tissue sections using the conventional intensity-based or large feature based
algorithms created an accumulation of error due to the “banana-to-cylinder” effect. Larger
structures such as arteries and muscle bundles were registered in this case. This registration
may not be representative of the original tissue geometry. Previous techniques for histologi-
cal vascular reconstruction (Chapter 1, Table 1.1) used a combination of manual and intensity
based registration techniques, which may result in a bias for straightening large features in
the reconstructed planes. To preserve geometry of the reconstruction, we segmented intrinsic
landmarks, cell nuclei, which appear in the same spatial location on adjacent serial sections.
This resulted in registration of tissues with a target registration error of 3.5 µm. The nuclei are
not biased in their orientation and would not drive the registration in a certain direction. The
size is thick enough to be bisected at 5 µm thick sections but thin enough such that the nuclei
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are not visible on more than two tissue serial sections at that thickness. Thus, this thesis con-

tributed to the technological advancement of histology analysis by providing a new technique

for 3D reconstruction and introduced the concept of geometry preserving registration in serial

histology section registration using intrinsic fiducials.

An automated segmentation algorithm for the muscularized microvasculature was devel-
oped for examining the distribution of vascular morphology in a biological system.

Chapter 3 describes our developed technique for automated adaptive vascular smooth muscle
segmentation on whole slide histology, which was validated with respect to manual delin-
eations for detection and segmentation. This validation process involved the assessment of
validation measures evaluating detection, resulting in the sensitivity and specificity of 91% and
97% respectively. The segmentation measures of Dice similarity coefficient and mean absolute
distance were 89% and 0.40 µm respectively. This was the first work to segment arterioles and
venules, in the mouse, with this level of accuracy. Previous methods relating to vessel seg-
mentation were mainly focused at the capillary or artery level, and either extracted the outer
boundary of the stained capillary or the vessel lumen of arteries. (Chapter 1, Table 1.2) These
validation techniques have been used to assess automated and semi-automated segmentation
techniques in many different imaging modalities in 2D and 3D. [1], [2] We took the validation
a step further in order to assess the biological validity of the resulting measures from the au-
tomated detection and segmentation measure. We assessed the proportion of vessels in each
size category and demonstrated that there was the expected number of vessels for each level
of vasculature. As the stain targeted the smooth muscle component, we expected there to be
many vessels in the 10 to 40 µm range with fewer vessels in the > 40 µm range as there are
fewer large caliber vessels. There was also a smaller proportion of vasculature detected in
the < 10 µm range as this is at the level of the capillaries. The vessels either contain partial
pericyte wrapping or no smooth muscle component at this level of the vasculature. The vessel
wall thickness of the vascular smooth muscle was consistent with the size of the vessel. Larger
calibre vessels contain a thicker layer of smooth muscle that enables control of higher blood
flow. Thus, the thesis contributed to the technological advancement of quantitative vascular

assessment on whole slide histology, which provides a method for measuring the morphology

of the microvasculature at the arteriole and venule level with high throughput, independent of

user input.
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A machine learning platform was developed to separate arterioles from the rest of the
vasculature automatically for analysis.

Chapter 4 presented an automated method for classifying the arteriolar and venular components
of the vascular tree through machine learning techniques. This step is crucial for the assessment
of the arteriolar portion of the microvasculature that controls the local distribution of blood
flow. Accurate representation of the vascular smooth muscle of the arteriolar vascular tree
needs accurate classification. Previous classification has been performed manually and can be
laborious or observer dependent. The automated classification, which was developed, resulted
in AUC of 0.91 and an overall error rate of 15%. The technique resulted in a stable two feature
classifier, which results in the separation of the arterioles, and thus the accurate assessment of
this portion of the vasculature. Thus, the measurement is not hindered by the pollution of other
vessels detected and segmented by the algorithm targeting smooth muscle. Thus, the thesis

contributed to the technological advancement of automatically classifying features, specifically

arterioles, within histology using a machine learning platform.

6.1.2 Knowledge advancements

How does conventional field of view sampling compare to our developed 2D whole tissue
section analysis, with respect to vascular assessment?

Chapter 3 measured the difference between field of view (FOV) simulations and whole slide
analysis of morphological and density measurements of the vasculature. The analysis of mi-
crovasculature density measures at the level of the capillaries has been assessed in many previ-
ous studies in order to assess microvascular regeneration and tumour vascular growth. [3] This
approach has been performed by using FOV and extrapolating the value to compare the differ-
ences in samples. [4] Capillaries are generally evenly distributed and contain one endothelial
layer such that a density measure by manual counting on fields of view and extrapolation can
be representative of the tissue sections, if they are taken in representative areas of the tissue.
However, arterioles are not evenly distributed throughout the tissue section so a count within
a FOV will likely not account for the density within the whole slide section. The arterioles
also contain a layer of vascular smooth muscle, which varies in thickness down the vascular
tree, along with the size of the vessels. The sampling of a select few arterioles within a whole
slide image will not be representative of the whole slide image unless a substantial number
of FOV are selected, and for one measure up to 30 FOV at 40 times objective magnification.
In this case, many manual measurements need to be taken to assess the vasculature. Whole
slide analysis enables for a comprehensive assessment of morphology. The amount of vascular
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smooth muscle wrapping can be compared between mouse models. The detected aberrations
may affect function of the vasculature. Thus, the thesis advanced knowledge of the effects of

selecting fields of view for histological analysis compared to comprehensive measurements on

the whole slide using our developed automated detection and segmentation technique.

What are the main differences in smooth muscle cell content in the post ischemic arterio-
lar microvasculature compared to the normal tissue?

Chapter 5 evaluated the differences in vascular smooth muscle cell (SMC) morphology and
density in the regenerated post-ischemic hind limb as compared to the normal vasculature.
The platform described in chapters 3 and 4 involved the comprehensive quantitation of the
vascular smooth muscle on a whole slide level. This quantification, in the simplest form,
facilitates the comparison of the vessel density of the arteriolar tree. The two-fold increase
in the vessel density in the regenerated vasculature correlates with the increase in capillary
density described in previous literature and demonstrates regrowth of the vasculature. [5]–
[7] Morphological measures, computed by our developed automated technique, included the
vessel lumen diameter, perimeter, area of the vessel wall and the vessel wall thickness. A
feature of interest was the thickness of the vessel wall as it pertains to the SMC wrapping.
Thinner wrapping was found in the regenerated vasculature, which suggests a deficiency in the
control of vessel wall diameter for the control of blood flow. Previous literature demonstrated
a thickening of the collateral vasculature wall through arteriogenesis. However, the subsequent
microvasculature containing SMC is understudied. Thus, the thesis advanced knowledge in the

distribution and morphological differences in the regenerated arteriolar level vasculature post

an ischemic event.

How do these structural differences affect blood flow and function?

Chapter 5 inferred vasotone function at rest and in the state of oxygen demand through blood
flow modeling with the input of empirical measures from the automated segmentations of the
vasculature. The morphological measures alone do not demonstrate the effects of regenera-
tion on the vasculature. Incorporating comprehensive measurements into a functional model
resulted in the ability to demonstrate the functional consequences of structural aberrations.
Other complications in the vasculature are visible in the regenerated network through in vivo
imaging, were not considered in the blood flow model. These complications such as vascular
shunting and disorganization would only add to the deficiency in flow. Even without consider-
ing all aberrations in the regenerated network, we found that the deficiency in SMC wrapping
caused an 89% reduction in flow, compared to a normal vascular network. Thus, the thesis ad-
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vanced the knowledge of the arteriolar tree function with regards to blood flow after vascular

regeneration.

In summary, we have developed a software platform for: (1) automated 3D histology re-
construction for the visualization of microvasculature with the conservation of geometry and
topology, which resulted in the detection of rare aberrations within the tissue volume; (2) au-
tomated detection and segmentation of muscularized microvessels within the 2D whole slide
histological sections provided high throughput quantification; (3) classification of vascular sub-
types automatically through a machine learning platform for separation of the arteriolar net-
work enabled separate analysis; and (4) comprehensive measurement of the arteriolar vascular
tree with respect to vascular smooth muscle and simulation of vascular function through blood
flow modeling. With the use of the developed software platform, we could detect and model
the morphological and functional differences between the normal and regenerated vasculature
after an ischemic event.

6.2 Applications and future directions

6.2.1 Vascular analysis in different organs and stains

Reconstruction and segmentation techniques have been applied to tissues with different stains
and at different organ sites, thus demonstrates a need for automated vascular analysis. The tar-
geted vessel wall component of our experiments has been the vascular smooth muscle, stained
with IHC. The automated reconstruction algorithm developed is reliant on the detection of nu-
clei, which are present in all cell types. Adaptations of the current algorithms for applications
at different organ sites with different stains is feasible with the growth of histology digitization
and other advances parallel to the work presented in this thesis. Our work focused on the vas-
culature within the skeletal muscle of the hindlimb and other works of image registration for
reconstruction and segmentation have been performed on organs such as the brain, liver, and
glomerulus. [8] Some studies focused on the vasculature; [9]–[13] however other features such
as grey and white matter patterns in the brain were of interest. [14], [15] The separation of
stains is feasible with colour deconvolution techniques developed for stain separation and thus
the developed segmentation can target stains resulting in different colours. [16], [17]

6.2.2 Adaptation of developed techniques for additional applications

Machine learning was used for the classification of vessel subcategories within this thesis but
can be used for detection of abnormal pathologies within histology and in combination with
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other imaging modalities. Features derived from quantitative histopathology can be used to
train a classifier to detect abnormalities within the vasculature or other tissue types. Param-
eters of the vasculature through automated morphology measurement can potentially be used
to train a system to define a classifier for levels of vascular functionality. Applications of ma-
chine learning have been previously demonstrated in the literature in combination with image
analysis, and were used for cancer prediction and prognosis. [18], [19] This was not only
performed in the histological context but with MRI texture and structural morphology as well.
[20] Overall, machine learning facilitates users to take advantage of the large numbers of pa-
rameters, whether from features of histology or other means, and aids in parsing the dataset to
differentiate pathologies.

6.2.3 Potential applications for immunohistochemistry (IHC) analysis

Registration of serial tissue sections in histology can be used for 3D reconstruction, as demon-
strated by this thesis, but it can have other application in IHC analysis as well. 3D recon-
structions of 2D histology have been used to measure the density of the capillaries in tumour
volumes stained for CD31, the endothelial wall component. [9], [21] IHC targets the vascu-
lature and H&E staining enables the visualization of large components within the tissue such
as arteries. [22] 3D interpretation of tissue volumes can give the user the ability to assess
tissue components without mentally reconstructing through viewing multiple 2D images con-
secutively. IHC can target specific proteins on a given tissue section. Assessment of different
proteins can be performed on serial tissue sections. Colocalizations of proteins are essential
to the understanding of interaction within the tissue. Registration of serial sections targeting
different stains enables this interpretation of different probes without double IHC procedures.
[23]

Automated segmentation within histological tissue enables the comprehensive quantitative
assessment of previously user dependent qualitative judgements. Conventional analysis of IHC
can involve a “quick eyeball” where the result is based on the individual’s experience. [24]
Quantitative analysis involves subsampling fields of view within the tissue section and usually
getting a count of the features, essentially calculating a density measure. [25] Segmentation
of features in the tissues can aid the field of biological research and eventually in the clinical
with implementation of digitized histology. Morphological measurement and automated den-
sity counts are performed in the literature and recently, semi-automated commercial software is
now available for use in the biological sciences. [25] With further development, automated seg-
mentation will aid scientists and clinicians with the tedious task of cell counting. Automation
will also take measures on IHC sections, which were previous unfeasible to perform manually.
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One example would be the thickness measurement along each individual pixel of each vessel
on sections with hundreds of microvessels as demonstrated by chapter 3 of this thesis.

6.3 Remaining gaps in automated histology analysis

There are several software and hardware advancements that will produce robust histology re-
constructions. Registration techniques beyond those described within this thesis need to be
developed for robust alignment of different tissue types. Though our algorithm described in
chapter 2 resulted in the alignment of serial sections based on cell nuclei present in all tissue
types, it was only tested on the skeletal muscle of the mouse hindlimb. To test the robustness of
the developed algorithm and the others developed in this field, they need to be tested on differ-
ent tissue types processed in different labs. Due to the nature of sectioning paraffin embedded
tissues on a manual microtome, we can only get a set number of serial sections (under 20) for
tissue reconstruction. In order to visualize a large portion of the vascular tree or reconstruct
a whole mouse organ, hundreds of serial sections need to be taken. Recently, there has been
the development of a system that produces automated serial sectioning of paraffin embedded
tissues. [26] This enabled the reconstruction of histology volumes through proof of concept
studies. [27] Advancements in histology reconstruction has arisen with the combination of
the advancements of software algorithms for accurate registration and hardware for automated
serial sectioning.

Segmentation of features within the tissues facilitates morphological measurement and vi-
sual pattern quantitation within histological tissues. Within the context of this thesis, the vascu-
lar smooth muscle component of the arteriolar vessel tree was quantified with the development
of a segmentation algorithm and classification of the vasculature through machine learning.
However, this was only performed on one type of tissue and only encompasses one compo-
nent of the microvasculature. The tissues can be from different regions within the specimen
or taken from a patient through a biopsy. For the use of automated segmentation in research
and eventually in the clinic, algorithms need to be developed to be robust and site specific with
adaptation to different types of stains that may be used. Alongside the advancements of soft-
ware for segmentation, there needs to be standardization of the IHC process to a degree, within
one institution, such that the algorithms can perform accurately. [25] Works are performed for
stain normalization from center to center as well as from different batches of the IHC process
prior to assessments. [28], [29] However, this can only correct the tissue to a certain degree and
in some cases may occlude differences inherently to the tissue section. Thus, advancements
and standardized protocols need to be developed hand in hand to accommodate for automated
tissue segmentation for assessment.
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The field of histology has been incorporating fluorescence microscopy for visualization
of multiple probes on one tissue section. Reconstruction and segmentation processes in the
field of brightfield histology should take fluorescent images into account with advent of whole
slide fluorescent histology scanners and multiplexing. [30] The capability to stain for multiple
probes through multiplexing on one tissue section is not yet conventionally available, but is one
method for understanding colocalization of proteins. Building algorithms that may be adapted
for fluorescence as well as bright field microscopy with site specific analysis of abnormalities
will play a role in aiding researchers and clinicians assess features not possible by conventional
manual evaluations.
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