
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

4-28-2017 12:00 AM

MACHS: Mitigating the Achilles Heel of the Cloud through High MACHS: Mitigating the Achilles Heel of the Cloud through High

Availability and Performance-aware Solutions Availability and Performance-aware Solutions

Manar Jammal, The University of Western Ontario

Supervisor: Professor Abdallah Shami, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree

in Electrical and Computer Engineering

© Manar Jammal 2017

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Computer and Systems Architecture Commons, Digital Communications and Networking

Commons, Software Engineering Commons, Systems Architecture Commons, and the Theory and

Algorithms Commons

Recommended Citation Recommended Citation
Jammal, Manar, "MACHS: Mitigating the Achilles Heel of the Cloud through High Availability and
Performance-aware Solutions" (2017). Electronic Thesis and Dissertation Repository. 4548.
https://ir.lib.uwo.ca/etd/4548

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F4548&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=ir.lib.uwo.ca%2Fetd%2F4548&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=ir.lib.uwo.ca%2Fetd%2F4548&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=ir.lib.uwo.ca%2Fetd%2F4548&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Fetd%2F4548&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=ir.lib.uwo.ca%2Fetd%2F4548&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ir.lib.uwo.ca%2Fetd%2F4548&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ir.lib.uwo.ca%2Fetd%2F4548&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/4548?utm_source=ir.lib.uwo.ca%2Fetd%2F4548&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract

Cloud computing is continuously growing as a business model for hosting information
and communication technology applications. However, many concerns arise regarding the
quality of service (QoS) offered by the cloud. One major challenge is the high availabil-
ity (HA) of cloud-based applications. The key to achieving availability requirements is to
develop an approach that is immune to cloud failures while minimizing the service level
agreement (SLA) violations.
To this end, this thesis addresses the HA of cloud-based applications from different per-
spectives. First, the thesis proposes a component’s HA-ware scheduler (CHASE) to man-
age the deployments of carrier-grade cloud applications while maximizing their HA and
satisfying the QoS requirements. Second, a Stochastic Petri Net (SPN) model is proposed
to capture the stochastic characteristics of cloud services and quantify the expected avail-
ability offered by an application deployment. The SPN model is then associated with an
extensible policy-driven cloud scoring system that integrates other cloud challenges (i.e.
green and cost concerns) with HA objectives. The proposed HA-aware solutions are ex-
tended to include a live virtual machine migration model that provides a trade-off between
the migration time and the downtime while maintaining HA objective. Furthermore, the
thesis proposes a generic input template for cloud simulators, GITS, to facilitate the cre-
ation of cloud scenarios while ensuring reusability, simplicity, and portability. Finally, an
availability-aware CloudSim extension, ACE, is proposed. ACE extends CloudSim simu-
lator with failure injection, computational paths, repair, failover, load balancing, and other
availability-based modules.

Keywords: Cloud computing, High availability, Virtual machines, Dependability analy-
sis, Petri Net, Load balancing, Component-based architecture, Scheduling, Live migration,
Failover, CloudSim, Criticality, Redundancy, Interdependency, Computational path, Open-
Stack, JSON, Eclipse GMF.

ii

Co-Authorship

This thesis contains the following manuscripts that have been submitted, accepted, and
published.

1. M. Jammal, A. Kanso, and A. Shami, “High Availability-Aware Optimization Di-
gest for Applications Deployment in Cloud,” IEEE International Conference on
Communications (ICC), June 2015.

2. M. Jammal, A. Kanso, and A. Shami, “CHASE: Component High-Availability
Scheduler in Cloud Computing Environment,” IEEE International Conference on
Cloud Computing (CLOUD), June 2015.

3. A. Kanso, M. Jammal, and A. Shami, Component High Availability Scheduler,
P44248 US1, October 2014.

4. M. Jammal, A. Kanso, P. Heidari, and A. Shami, “A Formal Model for the Avail-
ability Analysis of Cloud Deployed Multi-Tiered Applications,” IEEE International
Symposium on Software Defined Systems, April 2016.

5. M. Jammal, A. Kanso, P. Heidari, and A. Shami, “Availability Analysis of Cloud
Deployed Applications,” IEEE International Conference on Cloud Engineering,
April 2016.

6. A. Kanso, P. Heidari, and M. Jammal, High availability multi-component cloud
application placement using stochastic availability models, P48033US1, November
2015.

7. M. Jammal, A. Kanso, P. Heidari, and A. Shami, “Scrutinize High Availability-
aware Deployments Using Stochastic Petri Net Model and Cloud Scoring Selection
Tool,” Submitted to IEEE Transactions on Services Computing, November 2016.

8. M. Jammal, H. Hawilo, A. Kanso, and A. Shami, “Mitigating the Risk of Cloud
Services Downtime Using Live Migration and High Availability-Aware Placement,”
IEEE International Conference on Cloud Computing Technology and Science (Cloud-
Com), December 2016.

9. M. Jammal, H.Hawilo, A. Kanso, and A. Shami, “GITS: Generic Input Template for
CloudSim and Cloud Simulators,” Submitted to Elsevier Future Generation Com-
puter Systems, 2017.

10. M. Jammal, H.Hawilo, A. Kanso, and A. Shami, “ACE: Availability-aware CloudSim
Extension,” Submitted to IEEE Transactions on Cloud Computing, 2017.

The following co-authors provided experimental and technical support for the studies listed
above:

iii

Co-Authorship

• A. Shami supervised the development of the work and provided technical expertise,
opinion, and perspective based on his experience as a professor at Western Univer-
sity. He supervised the work done in Chapter 2, Chapter 3, Chapter 4, Chapter 5, and
Chapter 6.

• A. Kanso supervised the development of the work and provided technical exper-
tise, opinion, and perspective based on his experience as a researcher at Ericsson,
Montreal and as a senior software engineer at IBM Watson Center, NY, USA. He
supervised to the work done in Chapter 2, Chapter 3, Chapter 4, Chapter 5, and
Chapter 6.

• H. Hawilo provided technical opinion on the design of GITS and ACE and helped in
the manuscripts preparation and review based on his experience as a Ph.D. student
at Western University. He contributed to the work done in Chapter 4, Chapter 5, and
Chapter 6.

• P. Heidari provided technical expertise on Petri Nets, helped in designing the cloud
scoring tool, and helped in analyzing Petri Net results based on her expertise as
a Postdoctoral researcher at Ericsson, Montreal and Western University. She con-
tributed to the work done in Chapter 3.

iv

This thesis work is dedicated to my beloved husband and great companion, Hassan, and
to the memory of my grandfather, Ahmad.

v

Acknowledgements

Doing my Ph.D. has been a turning point for me. It is true that pursuing Ph.D. studies is a
challenging step, but it is worth working for. During this journey, I have learned to hold on
regardless of obstacles. This would not have been possible without the support and help of
great people. I am grateful for all of them!

First, I would like to thank my supervisor Prof. Abdallah Shami. He has been very support-
ive since the days I began working with him in the OC2 group. I would like to express my
sincere appreciation for the motivation and guidance he gave me during my Ph.D. studies.
His immense knowledge and guidance helped me in all the research work. Prof. Shami has
supported me not only by providing a research supervision, but he was there for me as a
mentor and friend especially during the rough moments of this thesis. Thanks to him I also
had the opportunity to work with Ericsson Research, Montreal where I had the chance to
meet wonderful people there! Here, I would like to express my sincere gratitude to Dr. Ali
Kanso for his encouragement to keep up the hard work. With his knowledge, he guided me
through my thesis and made sure that I am always on the “right track”. I am very grateful
for the invaluable discussions, suggestions, and meetings. Above all, thanks for having him
as a mentor whom I can always count on his support.

Special thanks to my thesis and advisory committee members Prof. Ben Liang, Prof. Hanan
Lutfiyya, Prof. Jagath Samarabandu, Prof. Aleksander Essex, and Prof. Serguei Primak
for taking the time to read the thesis and for their invaluable comments and feedback.

Special thanks to Prof. Abdelouahed Gherbi for his support and insightful advice on my re-
search career. I would like to thank Prof. Armin Zimmermann for his technical insights on
TimeNET. Many thanks to my previous supervisors, Prof. Ayman Youssef, Prof. Youssef
Harkouss, and Mohamad Youssef, for their continual encouragement.

A very special word of gratitude to the administrative staff at Western Engineering, in
particular, Stephanie Tigert and Chris Marriott.

A good support is a key to survive “Azkaban” (Grad school), and I was lucky to have won-
derful friends along the way. Special thanks to my friend and labmate, Elena Uchiteleva.
During Ph.D., there is always stressing moments and obstacles that get in the way, but that
is where you always have that person as Elena who is there to support you, believe in you,
and show you that it is all worth it. Many thanks also to Amani Dahab, Amna Zeid, Abdel-
rahmein Zeid, and Sami Fayoumi, my amazing friends and second family. Thanks Amani

vi

Acknowledgements

for your continual support, warmth words, and delicious food! My friends, Farah Kazan,
Zeinab McHeimech, Sara Mantach, Anas Ibrahim, Tarek Menkad, Widad Hanin, Jad Atwi,
Fuad Shamieh, Ali El Takch, and Hoda Sbeity, thanks for being very supportive and caring.

I would like to extend my sincerest thanks to the wonderful IEEE London team and par-
ticularly the IEEE London Women In Engineering Group. Volunteering with you is a life-
changing experience. I am very thankful to have the opportunity to meet and work with
remarkable people like you. Special thanks to the outstanding volunteer, Murray MacDon-
ald. I have never met someone who is so much dedicated to his volunteer work as Murray.
He is an amazing and supportive person. Elena Uchiteleva, Maike Luiken, Ana Luisa Tre-
jos, Rebecca Jevnikar, Hassan Hawilo, Joanne Moniz, Iram Raza, Anas Ibrahim, Wafaa
Anani, and Lotfieh Albarazi: you are the best team! I have learned from you how giving
back to the community is so much rewarding and fun.

I would like to extend special thanks to my Western friends and labmates for their mo-
tivating and thoughtful words they gave throughout this journey. I am grateful to meet
supportive peers like you; Alexandra L’Heureux, Philip Kurowski, Mohamed Abu Sharkh,
Karim Hammad, Brad de Vlugt, Mohamed Kalil, Anas Saci, Mohamed Noor, Trevor Craw-
ford, Khalim Amjad Meerja, Mohamed Hussein, Khaled Al Hazmi, Abdallah Moubayed,
Emad Aqili, Sara Zimmo, Maysam Mirahmdi, Aidin Reyhani-Masouleh, Taranpreet Singh,
and Abdulfattah Noorwali.

I would never have completed this thesis without the assistance of my amazing family
and in-laws; in particular, Aunt Leila, Maryam, Gaby, and Aunt Randa. Thank you for
your love, encouragement, and support in all my pursuits. The big thank is to my cousin,
sister, best friend, and inner voice, Mira Kamal. Words cannot express how grateful I am
for having you. You have been with me throughout every step of my life. Thanks for al-
ways believing in me, cheering me up, and being there for me when I most needed you. I
would have never made it through my thesis without your energetic messages, inspirational
quotes, funny jokes, and best recipes (although I did not have the chance to try them all)!
“You are my Nemo. If you ever get lost in the big ocean, I will find you”.

I finish my acknowledgment with my basic source of energy: my beloved husband, Hassan
Hawilo. I have spent some time to figure out how to extend my heartfelt thanks to you.
Hassan has been living every single minute of my Ph.D., and without whom, I would not
have had the strength to decide on undertaking this journey. It is your support and encour-
agement to follow my dreams that made me whom I am today and inspired me when I got
weary. Thank you for supporting in the first place my decision to travel and for everything
you have done to make my dream comes true. Your unconditional love, care, and patience
throughout my lengthy working hours have allowed me to complete this thesis. Yet, during
this period; we had the chance to spend every moment of every day for the last four years
not only in the same apartment but also in the same lab insomuch that now we had our

vii

Acknowledgements

own language. Thank you for the sleepless nights and for all the times we spent discussing
universe wonders and arguing about different existence and behavioral theories. Above all,
thanks for being my best friend, gut-knowing, listener, financial manager, best comedian,
for keeping things going smoothly, and always showing how proud you are of me! I un-
doubtedly would not have done this without you.

This work is partially supported by the Natural Sciences and Engineering Research Council
of Canada (NSERC-STPGP 447230) and Ericsson Research.

On a final note, “Happiness can be found even in the darkest of times if only one remem-
bers to turn on the light” Albus Dumbledore.

I am grateful to all of you for making this journey memorable!

viii

Table of Contents

Abstract . ii

Co-Authorship . iii

Dedication . v

Acknowledgements . vi

Table of Contents . ix

List of Tables . xiii

List of Figures . xiv

Acronyms . xvii

1 Introduction . 1
1.1 Thesis Outline . 3
1.2 Thesis Contributions . 4

1.2.1 Chapter 2 contributions . 5
1.2.2 Chapter 3 contributions . 6
1.2.3 Chapter 4 contributions . 7
1.2.4 Chapter 5 contributions . 8
1.2.5 Chapter 6 contributions . 8

ix

Table of Contents

2 CHASE: Component High Availability-Aware Scheduler in Cloud Computing
Environment . 12
2.1 Introduction . 12
2.2 System Modelling and Schematization . 14

2.2.1 Cloud infrastructure model . 17
2.2.2 Cloud application model . 18
2.2.3 Cloud-Application integration . 19

2.3 Design and Implementation . 19
2.3.1 Criticality analysis . 21
2.3.2 Mathematical formulation . 22
2.3.3 CHASE: Component HA-aware scheduler 25

2.4 MILP Evaluation . 29
2.4.1 Availability analysis . 31
2.4.2 Computational complexity . 32
2.4.3 OpenStack filter scheduler . 32
2.4.4 Results . 33

2.5 CHASE Evaluation . 37
2.5.1 Small-Scale network setup . 37
2.5.2 Large-Scale network . 41

2.6 Prototype Implementation . 44
2.7 Related Work . 46

2.7.1 Replication approaches . 46
2.7.2 Diversified geographical sites and failover approaches 47

2.8 Conclusion . 49

3 Scrutinize High Availability-aware Deployments Using Stochastic Petri Net
Model and Cloud Scoring Selection Tool . 54
3.1 Introduction . 54
3.2 Modeling High Availability in Cloud . 57

3.2.1 Failure types and distributions . 57
3.2.2 Multi-tier applications in the cloud: 59
3.2.3 Stochastic Petri Nets in the cloud: 60

3.3 Cloud Scoring System . 62
3.3.1 Motivation: . 62
3.3.2 Cloud scoring approach: . 65

3.4 Approach . 67
3.4.1 Cloud model . 69
3.4.2 SCPN model building blocks . 71
3.4.3 Transformation of UML object diagram to SCPN model 79
3.4.4 Deployment scoring selection system 80

3.5 Case Study . 85
3.5.1 SCPN evaluation and results . 86

x

Table of Contents

3.5.2 Scoring selection system evaluation and results 90
3.6 Related Work . 94

3.6.1 Availability analysis using Petri Net models 94
3.6.2 Scoring and selection of cloud deployments 96

3.7 Conclusion . 98

4 Mitigating the Risk of Cloud Services Downtime Using Live Migration and
High Availability-Aware Placement . 109
4.1 Introduction . 109
4.2 Related Work . 110
4.3 Approach . 113

4.3.1 HA-aware placement . 113
4.3.2 Live VM migration . 118

4.4 Case Study . 123
4.4.1 HA-aware deployments analysis 123
4.4.2 Live migration preliminary results 124

4.5 Conclusion . 125

5 GITS: Generic Input Template for CloudSim and Cloud Simulators 131
5.1 Introduction . 131
5.2 Related Work . 133

5.2.1 Industry-based cloud orchestration and specifications 133
5.2.2 Research-Based cloud orchestration and specifications 135

5.3 Motivation . 137
5.3.1 CloudSim simulator . 137
5.3.2 Component-Based architecture 138
5.3.3 Issues and contributions . 139

5.4 GITS Framework . 142
5.4.1 GITS UML model . 142
5.4.2 GITS JSON file . 145
5.4.3 GITS graphical interface . 150
5.4.4 GITS transformation algorithm . 154

5.5 GITS Testbed and Evaluation . 156
5.6 Conclusion . 160

xi

Table of Contents

6 ACE: Availability-aware CloudSim Extension 168
6.1 Introduction . 168
6.2 Related Work . 172

6.2.1 Cloud simulators . 172
6.2.2 Scheduling approaches in distributed systems 174

6.3 Background and Motivation: . 176
6.3.1 CloudSim simulator . 176
6.3.2 Outages and fault tolerant approaches 178
6.3.3 Scheduling in the cloud . 181
6.3.4 Cloud model . 182

6.4 ACE Design . 184
6.4.1 ACE modules . 185
6.4.2 ACE building blocks . 193

6.5 ACE Evaluation . 196
6.5.1 ACE configuration . 197
6.5.2 Results . 200

6.6 Conclusion . 209

7 Conclusion . 219
7.1 Thesis Summary . 220

7.1.1 Chapter 2 summary . 220
7.1.2 Chapter 3 summary . 221
7.1.3 Chapter 4 summary . 221
7.1.4 Chapter 5 summary . 222
7.1.5 Chapter 6 summary . 222

7.2 Thesis Future Work . 222
7.2.1 Elasticity and storage mechanisms 223
7.2.2 Multi-objective cloud management system 224
7.2.3 Container Management Framework 224

Curriculum Vitae . 226

xii

List of Tables

2.1 Variable notations. 22
2.2 Evaluation parameters. 33
2.3 Availability improvement among different delay types using CHASE and

RAS. 44

3.1 Time function of DC model transitions. 72
3.2 Time function of server model transitions. 72
3.3 Time function of VM model transitions. 73
3.4 Time function of container model transitions. 74
3.5 Time function of Load balancer model transitions. 76
3.6 Time function of component model transitions. 79
3.7 Different MTTF, MTTR, and processing time. 86
3.8 DC evaluation metrics of the first case. 90
3.9 DC distances of the first case. 91
3.10 Deployment distances of the first case. 91
3.11 Optimal deployments of the first case. 92
3.12 DC carbon metrics in 2013 used in the second case. 92
3.13 DC distances of the second case. 92
3.14 Deployment distances of the second case. 93
3.15 Optimal deployments of the second case. 93

6.1 Different HA metrics distribution . 198
6.2 Computing metrics . 198

xiii

List of Figures

1.1 Overview of the thesis contributions. 3

2.1 Example of an application deployment in the cloud. 14
2.2 UML class diagram of CHASE cloud model. 15
2.3 Flowchart of CHASE approach. 25
2.4 Capacity algorithm of CHASE. 26
2.5 Delay Tolerance algorithm of CHASE. 27
2.6 Availability algorithm of CHASE. 28
2.7 Interdependency algorithm of CHASE. 29
2.8 Redundancy algorithm of CHASE. 30
2.9 Mapping algorithm between cloud infrastructure and cloud applications. . . 31
2.10 Downtime of each application’s component using MILP and OpenStack

scheduler for D0/D1 delay type. 34
2.11 Downtime of each application’s component using MILP and OpenStack

scheduler for D2 delay type. 35
2.12 Downtime of each application’s component using MILP and OpenStack

scheduler for D3 delay type. 36
2.13 Downtime of each application’s component using MILP and OpenStack

scheduler for D4 delay type. 37
2.14 Availability improvement for each application’s components among delay

zones using MILP model. 38
2.15 Downtime of each application’s component in small-scale network forD0/D1

delay type. 39
2.16 Downtime of each application’s component in small-scale network for D2

delay type. 39
2.17 Downtime of each application’s component in small-scale network for D3

delay type. 40
2.18 Downtime of each application’s component in small-scale network for D4

delay type. 40
2.19 Downtime of each application’s component in large-scale network forD0/D1

delay type. 41
2.20 Downtime of each application’s component in large-scale network for D2

delay type. 42
2.21 Downtime of each application’s component in large-scale network for D3

delay type. 42

xiv

List of Figures

2.22 Downtime of each application’s component in large-scale network for D4
delay type. 43

2.23 Architecture of CHASE prototype. 45
2.24 A screenshot of CHASE GUI. 46

3.1 SPN model and scoring selection approach. 56
3.2 Example of three-tier web application. 60
3.3 Different energy challenges and solutions in cloud DCs. 63
3.4 The overall SCPN approach. 68
3.5 The UML model for a cloud deployment. 69
3.6 Data center, server, VM, and container sub-SCPN models. 71
3.7 Load balancer SCPN model. 75
3.8 Component SCPN model. 78
3.9 Transformation algorithm to generate the SCPN model. 81
3.10 Scoring selection algorithm. 82
3.11 SCPN model of a three-tier Amazon web application running in a cloud

environment. 84
3.12 Service availability of different deployments and different MTTRs. DCs

have similar MTTF. 87
3.13 Service availability of different deployments and different MTTRs. DCs

have different MTTF (x; 1.5x; 2x). 88
3.14 Service availability of different deployments and different MTTRs. DCs

have different MTTF (x; 2x; 3x). 88
3.15 Served requests for different processing time. Request arrival rate is ‘a’. . . 89

4.1 HA-aware deployments analysis approach. 116
4.2 HA-based comparative analysis of placement algorithms in terms of the

number of served requests. 123
4.3 The downtime of each migrated VM for different migration mechanisms. . 125

5.1 UML class diagram of GITS cloud model. 141
5.2 HA solution state model. 143
5.3 Effect of redundancy model on failover time. 144
5.4 JSON-based cloud infrastructure template. 146
5.5 JSON-based provider-user mapping template. 147
5.6 JSON-based cloud application template. 149
5.7 Eclipse GMF overview. 151
5.8 GITS tool palette. 152
5.9 GITS graphical editor. 153
5.10 GMF2JSON approach. 154
5.11 JSON2UML2CloudSIM approach. 155
5.12 Cloud scenario created using GITS. 156
5.13 Evaluation of GITS cloud scenario in CloudSim. 158

xv

List of Figures

5.14 Example of GITS encoding to XML schema. 159

6.1 Different cloud challenges. 169
6.2 Different emerging technologies. 170
6.3 CloudSim architecture. 177
6.4 CloudSim class diagram. 178
6.5 Different roles in the cloud model. 181
6.6 ACE model (Using Eclispe Ecore representation). 185
6.7 ACE graphical editor. 186
6.8 ACE JSON template. 187
6.9 Example of three-tier web application. 188
6.10 Flowchart of the HA-aware placement algorithm in ACE. 189
6.11 ACE load balancing module. 190
6.12 ACE architecture and different modules. 192
6.13 Different building blocks of ACE. 193
6.14 Impact of redundancy models on the number of the served requests for

automatic request generation. 199
6.15 Number of served requests for static request generation and different re-

dundancy models. 200
6.16 Impact of the redundancy models on the request’s response and waiting times.201
6.17 Impact of the number of failure injections on the request number for differ-

ent redundancy models. 202
6.18 Impact of the number of failure injections on the request’s response and

waiting times. 204
6.19 Availability of each deployed component. 205
6.20 ACE scalability: Number of request processed using ACE for different

redundancy models. 205
6.21 ACE time complexity for dynamic requests generation. 207
6.22 ACE time complexity for static requests generation. 208

xvi

Acronyms

AaaS Application as a Service

AAD Adaptive Anomaly Detection

ACE Availability-aware CloudSim Extension

AFT Adaptive Fault Tolerance

AL Allowed Workload

API Application Programming Interface

App Application

AWS Amazon Web Services

AZ Availability Zone

BPEL Business Process Execution Language

BPMN Business Process Model and Notation

BSP Bulk Synchronous Parallel

CAMP Cloud Application Management for Platforms

CAPEX Capital Expenditure

CBA Component-based Architecture

CC Cloud Computing

CDN Content Delivery Network

CDO Cloud Deployment Option

CHASE Component High Availability Scheduler

CL Current Load

CLI Command-Line Interface

CMS Cloud Management System

COP21 21st Conference of the Parties

CORBA Common Object Request Broker Architecture

COTS Commercial off The Shelf

CoW-B Copy-on-Write-Basic

xvii

Acronyms

CRM Customer Relationship Management

DB Database

DC Data Center

DCN Data Center Network

DCOM Distributed Component Object Model

DeC Dependent Component

DES Discrete Event Simulator

DHCP Dynamic Host Configuration Protocol

DOM Document Object Model

DSL Domain Specific Language

DSPN Deterministic Stochastic Petri Net

EC2 Elastic Compute Cloud

ECE Energy and Carbon-Efficient

EMF Eclipse Modeling Framework

FCFS First Come First Serve

FE Front End

FFA Functional Failure Analysis

GDM Graphical Definition Model

GEF Graphical Editing Framework

GHG Greenhouse Gas

GITS Generic Input Template for Cloud Simulators

GMF Graphical Modeling Framework

GSPN Generalized Stochastic Petri Net

GUI Graphical User Interface

HA High Availability

HIPAA Health Insurance Portability and Accountability Act

HOT Heat Orchestration Template

HTTPS Hypertext Transfer Protocol Secure

IaaS Infrastructure as a Service

ICT Information and Communications Technology

IFT Intermediate Data Fault Tolerant

IoT Internet of Things

xviii

Acronyms

IT Information Technology

JAR Java Archive

JSON JavaScript Object Notation

LoB Lines Of Business

M2M Model-to-Model Transformation

M2T Model-to-Text Transformation

MILP Mixed Integer Linear Programming

MTBF Mean Time Between Failure

MTTF Mean Time To Failure

MTTR Mean Time To Repair

MVC Model-View-Controller

NFV Network Function Virtualization

NP Non-deterministic Polynomial Time

NRDC Natural Resources Defense Council

OASIS Organization for the Advancement of Structured Infor-

mation Standards

OL Overload Factor

OLB Opportunistic Load Balancing

OPEX Operational Expenditure

OS Operating System

PaaS Platform as a Service

PHA Preliminary Hazard Analysis

PM Physical Machine

PNs Petri Net

PUE Power Usage Effectiveness

QoE Quality of Service Experience

QoS Quality of Service

RAM Random-access memory

RAS Redundancy-Agnostic Scheduler

RBD Reliability Block Diagram

RDS Relational Database Service

ROI Return On Investment

RU Relative Average Utilization

xix

Acronyms

SaaS Software as a Service

SC Sponsor Component

SCPN Stochastic Colored Petri Net

SDN Software Defined Networking

SLA Service Level Agreement

SMI Service Management Index

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SPN Stochastic Petri Net

SPOF Single Point Of Failure

SRN Stochastic Reward Net

SSaaS Simulating a Software as a Service

SUMO Simulation of Urban Mobility

TCO Total Cost of Ownership

TDM Tooling Definition Model

TOSCA Topology and Orchestration Specification for Cloud

Applications

UML Unified Modelling Language

VE Virtual Environment

VM Virtual Machine

WSDL Web Services Description Language

XaaS Everything as a Service

XML Extensible Markup Language

YAML Yet Another Markup Language

xx

1

Chapter 1
Introduction

Today, cloud computing is one of the groundbreaking technologies that have transformed

the landscape to support new businesses with dynamic and changing workforce and de-

mands. It is becoming the lifeblood of most telecommunication network services and

information technology (IT) software applications [1] [2]. With the development of the

cloud market, it can be seen as an opportunity for information and communications tech-

nology (ICT) companies to deliver communication and IT services over any fixed or mo-

bile network with high performance and secure end-to-end quality of service (QoS) for end

users [3]. Although cloud computing provides benefits to different players in its ecosystem

and makes services available anytime, anywhere and in any context, many concerns arise

regarding the performance and quality of the services offered by the cloud. One major

concern for the enterprises is the high availability (HA) of cloud-based applications where

business is expected to be running in the occurrence of any disruptive incident or sudden

failure. Since these applications are hosted by a virtual environment (virtual machines

(VMs) or containers) residing on servers, their availability depends on that of the hosts

[4] [5] [6]. When a hosting server fails, its VMs/containers and their applications become

inoperative. The absence of application protection plan has a tremendous effect on busi-

ness continuity and IT enterprises. Outages can happen even on the well-managed cloud

platforms. For example, Amazon has faced an outage due to a “human typo” on Feb. 28,

2017, which has affected many services and websites including Quora, Sailthru newslet-

ter provider, Business Insider, Slack filesharing, and various connected Internet of things

(IoT) hardware [7]. Also, on Feb. 1, 2017, GitLab has reported data loss due to accident

deletion, which has caused the permanent loss of “six hours’ worth” of data [8]. With the

growing reliance on the cloud services and data centers (DCs), it is necessary to understand

the direct and indirect impact of outages on the enterprises. According to Aberdeen Group,

the cost of one hour of downtime is $74,000 for small organizations and $1.1 million for

Chapter 1: Introduction 2

larger ones [9]; excluding reputation damage that can be significantly greater in the longer

term. At the same time, a Disaster Recovery Preparedness Council survey has released that

27% of the enterprises have obtained a disaster readiness passing state [10]. In addition,

the Ponemon Institute study shows that the average cost of a DC outage has increased 38%

since 2010 (from $505,502 in 2010 to $740,357 in 2016) [11]. It is not always easy to

place a direct cost on downtime. Angry customers and bad publicity are all costly, but not

directly measured in currency. This also includes:

• Damage to mission-critical applications, marketplace reputation, and other assets

• Loss of trustworthiness among stakeholders and customers

• Cost to repair affected operational processes that handle the “core business and value

chain”

• Regulatory and legal effect, such as litigation cost

The number of active Facebook users has grown to 1.5 billion, which requires an immune

system to ensure data delivery anytime and anywhere [11]. Besides, Business Insider (BI)

Intelligence research determines that the number of globally shipped smartphones is ex-

pected to be above 1.5 billion [12]. Additionally, International Data Corporation (IDC)

expects that the IoT market will reach $1.7 trillion in 2020 [13]. These developments

and new technologies means more data and business opportunities are emerging. This

will cause a spurt growth in the cloud, which is expected to play a critical role to handle

these high data undertow, emerging technologies, and new market demands. However, the

Ponemon study indicates that the downtime costs is still rising, and the outages reasons

are similar to what they were few years ago. At the same time, many enterprises require

continuous availability of their resources and services. The key solution to these issues is

to develop a highly available system that protects services, avoids downtime, and maintains

business continuity. Achieving this mandate involves designing and development of mul-

tiple management systems for high availability including redundancy, failover, and other

HA practices. This thesis provides an approach that is immune to failure while satisfy-

ing other quality of service (QoS) requirements. It proposes a pragmatic methodology to

address the high availability in the cloud. This methodology consists of deployment and

design phases. Fig. 1.1 summarizes the thesis contributions. It starts with designing an

HA-aware scheduler for cloud applications and associates it with a stochastic availability

Chapter 1: Introduction 3

Figure 1.1: Overview of the thesis contributions.

model to assess different HA-aware deployments of applications’ components. It then pro-

vides a cloud scoring selection solution that integrates the HA-aware approach with other

challenges facing the cloud including energy and various performance measures. The the-

sis also provides a live VM migration as another HA-aware approach that can be triggered

for load balancing, overload, or pre-disaster recovery objectives. At the design phase, this

thesis alleviates the portability and orchestration challenges of cloud-based applications

and provides a generic input template for cloud systems. It also proposes availability aware

extension to CloudSim, well-defined cloud simulator, to mitigate the configuration settings

challenges of modeling and simulating HA-aware mechanisms in real-cloud platforms.

1.1 Thesis Outline
This thesis is organized as follows. Chapter 2 provides a novel HA-aware scheduling tech-

nique, CHASE, that maximizes applications availability while satisfying different func-

tionality constraints. This problem is formulated as a mixed integer linear programming

(MILP) optimization model, which is associated with a heuristic solution, CHASE. The

proposed approach envisions the cloud model as a cloud provider and user and integrates

them through a virtualization layer. It also performs a criticality analysis to prioritize the

deployment of mission-critical applications. To ensure HA-aware applications deploy-

Chapter 1: Introduction 4

ments, CHASE captures different redundancy and interdependency constraints and other

HA measures. It is evaluated on a 3-tier web application and is designed to communica-

tion with the cloud management system, OpenStack. Chapter 3 defines the different types

of cloud failures and provides an availability-centric analysis model using Stochastic Petri

Net (SPN). The SPN model captures the different elements of the cloud model and their

workflow. It then assesses different applications deployment in terms of HA while mod-

eling the requests, load balancing, failures, failover, and interdependency practices. The

proposed SPN model provides HA-aware guidelines for cloud scheduling solution. It is

also associated with an extensible scoring selection system that integrates HA objectives

with other performance and QoS norms in the cloud. In this chapter, the scoring sys-

tem selects the optimal HA-aware deployment while satisfying green and cost objectives.

Chapter 4 provides design considerations to implement an HA-aware deployment solution.

It also provides a comparative study to select best availability assessment model. It then

proposes a live VM migration approach to ensure data delivery upon unforeseen failures

(i.e., natural disasters). The proposed migration approach is formulated as a MILP model

that minimizes migration time and downtime. Chapter 5 provides GITS, a generic input

template for different cloud simulators. GITS alleviates the portability and orchestration

issues facing the cloud. For this purpose, the chapter models the cloud in terms of function-

ality measures and HA features and provides a JavaScript Object Notation (JSON) schema

to facilitate the creation of cloud scenarios and experiments reusability. Chapter 6 pro-

vides ACE, availability-aware CloudSim extension. ACE extends CloudSim simulator to

support HA measures and allows the modeling and evaluation of multiple HA mechanisms

in a cloud-based environment. To that end, ACE provides a mapping of the JSON tem-

plate to the CloudSim environment, supports dynamic request generations, injects failure,

recovers/repairs them, and provides other HA-aware features.

1.2 Thesis Contributions
The major contributions of the thesis are summarized as follows.

Chapter 1: Introduction 5

1.2.1 Chapter 2 contributions
Cloud schedulers that are agnostic of the intricacies of the tenant’s application may result

in suboptimal placements. In these placements, redundant components may be placed too

close to each other rendering their existence obsolete because a single failure can affect

them all, or the delay constraints can be violated, hindering the application functionality.

With this in mind, the main contributions of this chapter are the following:

1. This chapter proposes CHASE, a novel component’s HA-aware scheduling tech-

nique, which maximizes the availability of applications without violating service

level agreements (SLAs) with the end-users. For this purpose, the scheduling is

formulated as a MILP model associated with a heuristic solution.

2. CHASE captures at an abstract level details of both the applications and the cloud

infrastructure. When analyzing availability, the cloud topology should be defined to

pinpoint the single points of failure (SPOF) or possible bottlenecks that might affect

the data processing and availability. Using a unified modelling language (UML),

CHASE starts by modeling the applications with their functional and non-functional

requirements. Then it considers the cloud infrastructure model to be a constrained

solution space where a mapping between applications, VMs, and servers are gen-

erated to maximize the availability. With this model, we start with a specific cloud

infrastructure and a set of requested applications, and we end up by generating an

interface between the provider and user side using VM mappings.

3. Using CHASE, prior criticality analysis is conducted on applications to differentiate

between mission-critical and standard applications and consequently, schedule them

based on their impact on the execution environment and business functionality.

4. CHASE implements different approaches that deploy redundant models and failover

solutions. These practices are achieved through geographically distributed redun-

dant applications’ deployments without violating the interdependency requirements.

This allows the elimination of single point of failure caused at the level of VM, clus-

ter, or cloud.

5. CHASE overcomes the challenges of maintaining HA-aware application’s deploy-

ment and compromises between different functionality, failover, affinity, and anti-

affinity constraints affecting it.

Chapter 1: Introduction 6

6. CHASE prototype is designed to perform scheduling in a real cloud setting. The

scheduler communicates with the OpenStack cloud management system where cer-

tain capabilities of the existing filters of the OpenStack Nova scheduler complement

with CHASE HA filters. The scheduling tool is composed of several complementary

modules: I/O module, the graphical user interface (GUI) that is populated from an

instance of the designed cloud application UML model, OpenStack Nova database,

and the scheduler, CHASE.

1.2.2 Chapter 3 contributions
This chapter is divided to two sub-problems:

Dependability Analysis: It is not enough to provide an HA-aware solution that can miti-

gate failures and maintain certain availability baseline, but it is necessary to assess such

solution and its resiliency to any failure modes. A formal and analytical stochastic model

is needed for both the tenants and providers to quantify the expected availability offered

by an application deployment. Therefore, the main contributions of this chapter are the

following:

1. This chapter proposes a Stochastic Petri Net model (SPN) that captures the stochas-

tic characteristics of the cloud services and translates them into elements of an avail-

ability model.

2. Using linear temporal logic, the SPN model captures the stochastic nature of failures

according to different probability distribution functions.

3. The SPN model also captures the cloud elements (DCs, servers, and VMs/containers)

and the correlation aspect of their failures.

4. The SPN model envisions the functional workflow between the components of

multi-tiered applications (queuing and request forwarding) as well as the high avail-

ability mechanisms they employ (load balancing and redundancy schemes).

5. Finally, the model assesses and quantifies the expected availability of the cloud

services and their deployments in geographically distributed DCs.

Performance-aware cloud deployments: Although the SPN model provides generic guide-

lines to maintain HA of cloud applications, there are still a few concerns with respect to

the energy, cost, and other challenges associated with cloud. The environmental and cost

Chapter 1: Introduction 7

impacts of running the applications in the cloud are an integral part of incorporated respon-

sibility, where both the cloud providers and tenants intend to reduce. If multiple deploy-

ment options can satisfy the HA requirement, the question remains, how can we choose

the deployment that satisfies the other providers and tenants requirements? For instance,

choosing DCs with low carbon emissions can both reduce the environmental footprint and

potentially earn carbon tax credits that lessen the operational cost. Therefore, the main

contributions of this chapter are the following:

1. This chapter provides a solution that integrates the HA constraints with the other

cloud challenges. It couples the above SPN model with a cloud scoring system

that selects the optimal deployment according to predefined policies, such as lower

operational expenditure (OPEX), low carbon footprint, and/or other norms.

2. The scoring policies requirements are integrated with functionality and availability

constraints to select best placements of application components.

3. The scoring selection system envisions user needs and assesses DCs capabilities to

weight the best HA-aware deployments and select the optimal ones accordingly.

4. The proposed scoring system is extensible and depends on the capabilities and pref-

erences offered by the cloud providers such as green and cost criteria to evaluate

cloud DC.

1.2.3 Chapter 4 contributions
The workload of the cloud-based might vacillate due to growth of its applications or varia-

tion in its resources’ demands. This might generate hotspots that downgrade the QoS of the

applications and affect the service level agreements with the clients. Therefore, the main

contributions of this chapter are the following:

1. This chapter provides various guidelines to design an HA-aware solution for a cloud

system starting with system modeling, followed with a deployment solution up to a

dependability analysis model.

2. This chapter also proposes live migration approach, a different fault tolerant tech-

nique to ensure the delivery of services upon a sudden failure, a virtual machine

(VM)/infrastructure overload, or maintenance.

Chapter 1: Introduction 8

3. The live migration approach is formulated as a MILP optimization model that pro-

vides a trade-off between the migration time and the downtime. It employs the

iterative pre-copy mechanism to perform the VMs migration.

4. The migration approach minimizes the migration and downtime not only based on

the number of dirtied pages in the iterative stage but also depending on an optimal

placement of the virtual machines.

1.2.4 Chapter 5 contributions
The creation of cloud scenarios is time-consuming and requires error-prone programming

efforts, and consequently, the scenarios will be non-reusable and only feasible for experi-

enced programmers. Additionally, it is necessary to ensure that the applications, core of

the cloud model, are well orchestrated to fully realize the cloud capabilities. With this in

mind, the main contributions of this chapter are the following:

1. This chapter provides a generic input template for cloud simulators, GITS. The

template captures the specification of complex application behavior, cloud infras-

tructure, HA measures, and other SLA requirements.

2. GITS facilitates the creation of cloud scenarios in different cloud simulators in gen-

eral and CloudSim in particular.

3. GITS supports HA features including HA measures (failure, recovery, and repair

times), redundancy models, failover practices, and different failure types.

4. GITS ensures simplicity, reusability, and portability through defining different mod-

ules of the template including a UML module that captures system requirements, a

user Eclipse Graphical Modeling Framework (GMF) module for scenarios visual-

ization, Parser module, and a human readable module that uses JavaScript Object

Notation (JSON) templating.

5. GITS is an extensible template that can be easily modified to meet OpenStack Heat

template, Extensible Markup Language (XML), or other cloud schema.

1.2.5 Chapter 6 contributions
In the interconnected globe where service delivery is the measure of a success, high avail-

ability is an indispensable area that cannot be negotiated for enterprises migrating to the

cloud. HA is about building a resilient cloud system that can deliver continuous services

Chapter 1: Introduction 9

and applications. To design an HA-aware solution, cloud systems must be designed to han-

dle planned and unplanned outages of the cloud infrastructure and applications, whether it

is a failure at the granularity of a single software instance or an entire data center. How-

ever, the platform configuration settings can have a significant impact on the effectiveness

of the HA-aware approaches used to mitigate the impact of failures. To this end, simulation

tools can be used to evaluate availability solutions and assess a cloud resiliency against fail-

ures. CloudSim is a well-known and highly utilized cloud simulator that enables seamless

modeling, simulation, and experimenting of scheduling and allocation policies of large-

scale cloud platforms. It allows designing and evaluating of new scheduling and allocation

policies. However, CloudSim does not support HA properties, such as redundancy, fail-

ure/recovery rates, and HA-aware scheduling. With this in mind, the main contributions of

this chapter are the following:

1. This chapter provides a modular availability-aware solution CloudSim extension,

ACE.

2. ACE defines an HA-aware cloud architecture to capture the abstract level of the

cloud model and its HA measures.

3. ACE implements a graphical modeling interface and a JavaScript Object Notation

(JSON) template to ensure simplicity, repeatability, and reusability of cloud config-

urations and applications deployments.

4. ACE provides dynamic and static generation of requests and can determine the ap-

plications computational path and their protection group to ensure successful com-

pletion of request.

5. ACE embeds an HA-aware deployment solution that generates placement for cloud-

based applications cloud applications while maximizing their availability and mini-

mizing SLA violations.

6. ACE provides a fair load-balancing approach for requests distribution among the

different applications tiers.

7. For availability assessment, ACE injects failure, supports failover to redundant com-

ponents, and repairs faulty nodes to evaluate cloud system resiliency.

8. ACE provides the extensions needed to simulate the expected availability of an HA-

aware deployment.

10

References

[1] M.A. Sharkh, M. Jammal, A. Shami, and A. Ouda, “Resource allocation in a network-based

cloud computing environment: design challenges,” IEEE Communications Magazine, vol. 51,

no.11, pp. 46-52, November 2013.

[2] Microsoft, “The Economics of the Cloud,” http://www.microsoft.com/en-us/

news/presskits/cloud/docs/the-economics-of-the-cloud.pdf, Novem-

ber 2010. [September 14, 2014]

[3] ITU, “Cloud Computing Benefits from Telecommunication and ICT Perspectives,” http://

www.itu.int/dms_pub/itu-t/opb/fg/T-FG-CLOUD-2012-P7-PDF-E.pdf,

February 2012. [September 14, 2014]

[4] L. Grit, D. Irwin, A. Yumerefendi, and A. Chase, “Virtual Machine Hosting for Networked

Clusters: Building the Foundations for Autonomic Orchestration,” in 2nd International Work-

shop on Virtualization Technology in Distributed Computing, 2006.

[5] D. Jayasinghe, C. Pu, et al., “Improving Performance and Availability of Services Hosted on

IaaS Clouds with Structural Constraint-Aware Virtual Machine Placement,” in IEEE Interna-

tional Conference on Services Computing (SCC), pp. 72-79, July 4-9, 2011.

[6] J. Dean and L. Barroso, “The Tail at Scale,” Communications of the ACM, vol. 56, no. 2, pp.

74-80, February 2013.

[7] Tech Crunch, “Amazon AWS S3 outage is breaking things for a lot of websites and

apps,” https://techcrunch.com/2017/02/28/amazon-aws-s3-outage-is-

breaking-things-for-a-lot-of-websites-and-apps/, February 28, 2017.

[March 4, 2017]

[8] WHIR Hosting Cloud, “GitLab’s Not Alone: AWS, Google, and Other Clouds Can

Lose Data, Too,” http://www.thewhir.com/web-hosting-news/gitlabs-

 http://www.microsoft.com/en-us/news/presskits/cloud/docs/the-economics-of-the-cloud.pdf
 http://www.microsoft.com/en-us/news/presskits/cloud/docs/the-economics-of-the-cloud.pdf
http://www.itu.int/dms_pub/itu-t/opb/fg/T-FG-CLOUD-2012-P7-PDF-E.pdf
http://www.itu.int/dms_pub/itu-t/opb/fg/T-FG-CLOUD-2012-P7-PDF-E.pdf
https://techcrunch.com/2017/02/28/amazon-aws-s3-outage-is-breaking-things-for-a-lot-of-websites-and-apps/
https://techcrunch.com/2017/02/28/amazon-aws-s3-outage-is-breaking-things-for-a-lot-of-websites-and-apps/
http://www.thewhir.com/web-hosting-news/gitlabs-not-alone-aws-google-and-other-clouds-can-lose-data-too?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+thewhir+%28theWHIR.com+-+Daily+Web+Hosting+News%2C+Features%2C+Blogs+and+more%29
http://www.thewhir.com/web-hosting-news/gitlabs-not-alone-aws-google-and-other-clouds-can-lose-data-too?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+thewhir+%28theWHIR.com+-+Daily+Web+Hosting+News%2C+Features%2C+Blogs+and+more%29
http://www.thewhir.com/web-hosting-news/gitlabs-not-alone-aws-google-and-other-clouds-can-lose-data-too?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+thewhir+%28theWHIR.com+-+Daily+Web+Hosting+News%2C+Features%2C+Blogs+and+more%29

Chapter 1: Introduction 11

not-alone-aws-google-and-other-clouds-can-lose-data-too?

utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+

thewhir+%28theWHIR.com+-+Daily+Web+Hosting+News%2C+Features%

2C+Blogs+and+more%29, February 8, 2017. [February 15, 2017]

[9] Aberdeen Group, “Why Mid-Sized Enterprises Should Consider Using Disaster Recovery-

as-a-Service,” http://www.aberdeen.com/Aberdeen-Library/7873/AI-

disaster-recovery-downtime.aspx, April 2012. [August 25, 2016]

[10] Disaster Recovery Preparedness Council, “The State of Global Disaster Recovery Prepared-

ness,” Annual Report, https://drbenchmark.org/wp-content/uploads/2014/

02/ANNUAL_REPORT-DRPBenchmark_Survey_Results_2014_report.pdf,

2014.

[11] Ponemon Institute, “Cost of Data Center Outages,” http://files.server-

rack-online.com/2016-Cost-of-Data-Center-Outages.pdf, January 2016.

[September 9, 2016]

[12] Business Insider, “This year’s smartphone shipments might be worse than we previously

thought,” http://www.businessinsider.com/idc-lowers-smartphone-

shipment-predictions-again-2016-9, September 2016. [January 8, 2017]

[13] The Wall Street Journal, “Internet of Things Market to Reach $1.7 Trillion by 2020: IDC,”

http://blogs.wsj.com/cio/2015/06/02/internet-of-things-market-

to-reach-1-7-trillion-by-2020-idc/, June 2015. [December 15, 2016

http://www.thewhir.com/web-hosting-news/gitlabs-not-alone-aws-google-and-other-clouds-can-lose-data-too?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+thewhir+%28theWHIR.com+-+Daily+Web+Hosting+News%2C+Features%2C+Blogs+and+more%29
http://www.thewhir.com/web-hosting-news/gitlabs-not-alone-aws-google-and-other-clouds-can-lose-data-too?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+thewhir+%28theWHIR.com+-+Daily+Web+Hosting+News%2C+Features%2C+Blogs+and+more%29
http://www.thewhir.com/web-hosting-news/gitlabs-not-alone-aws-google-and-other-clouds-can-lose-data-too?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+thewhir+%28theWHIR.com+-+Daily+Web+Hosting+News%2C+Features%2C+Blogs+and+more%29
http://www.thewhir.com/web-hosting-news/gitlabs-not-alone-aws-google-and-other-clouds-can-lose-data-too?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+thewhir+%28theWHIR.com+-+Daily+Web+Hosting+News%2C+Features%2C+Blogs+and+more%29
http://www.thewhir.com/web-hosting-news/gitlabs-not-alone-aws-google-and-other-clouds-can-lose-data-too?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+thewhir+%28theWHIR.com+-+Daily+Web+Hosting+News%2C+Features%2C+Blogs+and+more%29
http://www.thewhir.com/web-hosting-news/gitlabs-not-alone-aws-google-and-other-clouds-can-lose-data-too?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+thewhir+%28theWHIR.com+-+Daily+Web+Hosting+News%2C+Features%2C+Blogs+and+more%29
http://www.aberdeen.com/Aberdeen-Library/7873/AI-disaster-recovery-downtime.aspx
http://www.aberdeen.com/Aberdeen-Library/7873/AI-disaster-recovery-downtime.aspx
https://drbenchmark.org/wp-content/uploads/2014/02/ANNUAL_REPORT-DRPBenchmark_Survey_Results_2014_report.pdf
https://drbenchmark.org/wp-content/uploads/2014/02/ANNUAL_REPORT-DRPBenchmark_Survey_Results_2014_report.pdf
http://files.server-rack-online.com/2016-Cost-of-Data-Center-Outages.pdf
http://files.server-rack-online.com/2016-Cost-of-Data-Center-Outages.pdf
http://www.businessinsider.com/idc-lowers-smartphone-shipment-predictions-again-2016-9
http://www.businessinsider.com/idc-lowers-smartphone-shipment-predictions-again-2016-9
http://blogs.wsj.com/cio/2015/06/02/internet-of-things-market-to-reach-1-7-trillion-by-2020-idc/
http://blogs.wsj.com/cio/2015/06/02/internet-of-things-market-to-reach-1-7-trillion-by-2020-idc/

12

Chapter 2

CHASE: Component High Availability-Aware

Scheduler in Cloud Computing Environment

2.1 Introduction
Cloud computing (CC) aims at transforming the data centers’(DCs) resources into virtual

services, where tenants can access anytime and anywhere on a pay-per-use basis. CC

promises flexible integration of the compute capabilities for on-demand access through

the concept of virtualization [3] [4]. Using this concept, a cohesive coupling between the

cloud provider’s infrastructure and the cloud tenant’s requirements is achieved using virtual

machines (VMs) mappings [5]. VMs are used to manage software services and allocate re-

sources for them while hiding the complexity from end-users. However, uncertainties are

raised regarding the high availability (HA) of cloud-hosted applications.

HA is a crucial requirement for multi-tier applications providing services for a broad range

of business enterprises. Planned and unplanned outages can cause failure of 80% of critical

applications [6]. According to [7], outages in DCs have tremendous financial costs varying

between $38,969 and $1,017,746 per organization. With these complexities, an HA-aware

plan that leverages the risks of applications’ or hardware’s outage, upgrade, and mainte-

nance is necessary. This plan should consider different factors that affect the application’s

deployment in a cloud environment and the business continuity. Therefore, it is important to

develop an HA-aware scheduler for the cloud tenants’ applications. This scheduler should

implement different patterns and approaches that deploy redundancy models and failover

The content of this chapter have been published [1] and [2].

This work is supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC-STPGP 447230) and Ericsson Research.

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 13

solutions. Single points of failure caused at the level of VM, server, rack, or DC can be

eliminated by distributing the deployment of the application’s components across multi-

ple availability zones. However, if this placement does not consider the other functional

requirements constraining the interdependencies between different application’s compo-

nents, it can jeopardize the application’s stability and availability.

This work aims to demonstrate the effect of application’s placement strategy on the HA of

the services provided by the virtualized cloud to its end users. To attain this objective, the

cloud provider and user are modelled as a unified modeling language (UML) class diagram

[1] [2]. This work puts the cloud UML model into practice as the basis for our model-driven

approach to automatically transform the model information into an HA-aware scheduling

technique and design its prototype in an OpenStack environment. Also, we propose a novel

scheduling technique that looks into the applications’ criticality, interdependencies, and re-

dundancies between application’s components, their failure scopes, their communication

delay tolerance, and resource utilization requirements. The technique examines not only

mean time to failure (MTTF) to measure the component downtime and consequently its

availability, but the analysis is based on the mean time to repair (MTTR), recovery, and

outage tolerance times as well. To this end, a mixed integer linear programming (MILP)

model is developed as an optimal solution for components’ scheduling in small-scale net-

work [1]. For large-scale systems, the MILP model is associated with an HA-aware sched-

uler for applications’ components, CHASE, as the heuristic solution [2].

The HA-aware scheduler is compared to the MILP model and OpenStack Nova scheduler

in a small data center network [1] [2]. As for large networks, it is compared to greedy HA-

agnostic and redundancy-agnostic schedulers. Evaluation results show that the proposed

solution improves the component’s availability while satisfying the delay and capacity re-

quirements.

The main contributions of this work are to:

• Capture all the functionality and availability constraints that affect application’s place-

ment.

• Reflect availability constraints not only by the failure rates of application’s compo-

nents and scheduled servers, but also by functionality requirements, which generate

anti-location and co-location constraints.

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 14

Figure 2.1: Example of an application deployment in the cloud.

• Consider various interdependencies and redundancies among application’s compo-

nents.

• Examine multiple failure scopes that might affect the component itself, its execution

environment, and its dependent components.

This chapter is organized as follows. Section 2.2 describes the cloud UML model. Sec-

tion 2.3 defines the HA-aware deployment problem and the proposed solution. Section 2.4

and Section 2.5 describe the simulation environment and the evaluation results of the MILP

model and CHASE. CHASE-OpenStack implementation is discussed in Section 2.6. Fi-

nally, the related work and conclusion are presented in Section 2.7 and Section 2.8.

2.2 System Modelling and Schematization
At the infrastructure as a service (IaaS) level, the cloud provider may offer a certain level of

availability for the VMs assigned to the tenants. However, this does not guarantee the HA

of the applications deployed in these VMs. For instance, Amazon EC2 has offered recently

3 nines of availability for their infrastructure, which allows several hours of downtime per

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 15

Figure 2.2: UML class diagram of CHASE cloud model.

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 16

year [8]. Moreover, the cloud provider is not responsible for the monetary losses caused

by the outage. Hence, ensuring the HA of the services becomes a joined responsibility

between the cloud provider and user. The provider should offer the VM placement that

accounts for the requirements of the tenants’ application. As for the cloud tenants, they

have to deploy their applications in an HA manner, where redundant standby components

can take over the workload when a VM or a server fails. To illustrate this point, we con-

sider the example of a multi-tier HA Web-server application consisting of three component

types: the front-end has the HTTPS servers, which handle static user requests and forward

dynamic ones to the App servers that dynamically generate HTML content. The users’

information is stored in the back-end databases (DBs). Fig. 2.1 illustrates a potential HA-

aware deployment of our application example. At the front-end, multiple active (stateless)

HTTPS servers are deployed on VM1 and VM2. They share the requests’ load in such

a way that if one fails, the other would serve its workload. Most likely, this will incur a

performance degradation. The (stateful) App server has a (2+1) redundancy model with

one standby backing up the two active ones. At the back-end, one active database serves

all the requests, and it is backed up by one standby. The functional dependency among the

different component types is clearly visible.

The notion of a computational path is defined as the path that a user’s request must follow

through a chain of dependent components until its successful completion. For instance,

in order to process a dynamic request, at least one active HTTPS server, App server, and

database must be healthy. The components of each type are deployed in a redundant manner

forming a redundancy group. Upon failure, each component can have a different impact on

the global service depending on how many active replicas it has. It is necessary to note that

the architecture of the web-application’s components (i.e. the number of tiers and the inter-

dependency between the application’s components) is defined before triggering CHASE.

The cloud can be modeled in terms of the cloud tenant’s applications and the cloud provider

infrastructure deployed in geographically distributed DCs housing various physical servers.

We believe that a HA-aware scheduling in the cloud should consider details of both the

applications and the cloud infrastructure. Therefore, the configurations of the cloud in-

frastructure and applications are described in the UML class diagram shown in Fig. 2.2.

This diagram models the interactions among many classes working together and provides

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 17

information required for scheduling the applications in cloud environment. Once the re-

lationships are extracted from the existing diagram, they are translated into a java code.

At runtime, the classes are instantiated to give the scheduler objects representing domain

classes. Then CHASE performs the scheduling based on an instance of this UML model.

It is necessary to note that different Eclipse integration plugins can be used to integrate the

UML model with the generated code and enable round-tripping engineering [9] [10].

2.2.1 Cloud infrastructure model
The proposed cloud architecture is captured in the UML class diagram. At the root level,

the cloud consists of data center networks distributed across various geographical areas.

Each data center consists of multiple racks communicating through aggregated switches.

Each rack has a set of shelves housing a large number of servers, which can have dif-

ferent capacities and failure rates. Servers residing on the same rack are connected with

each other through the same network device (the top of the rack switch). Finally, the VMs

are hosted on the servers. This tree structure determines the network delay constraints, and

consequently, the delay between the communicating applications. This architecture divides

the cloud into five different latency zones, which will be further discussed in Section 2.3.

In the proposed tree structure, each node i has its own failure rate (λ) and MTTR. The

MTTF and MTTR parameters divide the intra- and inter- data center networks into avail-

ability zones. We are assuming that the availability avail of the host h depends not only

on its λ and MTTR, but on that of corresponding DC and rack R as well. Thus, a request

is successfully processed if the corresponding component, its host, and its parent rack and

DC are all healthy. With this in mind, the cloud infrastructure is considered a series system

[11]. In the case of failure (i.e. natural disaster as the worst case scenario) and to minimize

the number of false negatives, it is assumed that the cloud infrastructure can resume its nor-

mal activity after the execution of the repair mechanism(s) of the faulty node(s) (i.e. after

passing of the MTTR(s)). Thus, each host h can be seen as (DC, R, S) and is associated

with a weight parameter, avail. In this scenario, it is assumed that a DC repair mechanism

happens gradually; first, the DC is repaired followed by the recovery of its racks and then

its corresponding servers. With this assumption, the false negatives (i.e. a node is con-

sidered healthy when it is actually a faulty one) are avoided. To this end, the host with

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 18

the highest avail is selected as a candidate placement for application’s component(s). The

avail is calculated as follows:

availh =
MTTFh

MTTFh +MTTRh
(1)

where


MTTFh = 1

λDC+λR+λs

MTTRh = MTTRDC +MTTRR +MTTRS

It is necessary to note that the avail parameter is only used to differentiate between different

hosts and prune the ones with the low MTTF and high MTTR values.

2.2.2 Cloud application model
Applications are typically developed using a component based architecture where each

application is made up of one or more components. The application combines its compo-

nents’ functionalities to provide a higher level of service [12] [13]. To maintain availability

requirements, each component can have one or more redundant components. The primary

component and its redundant ones are grouped into a dynamic redundancy group. In this

group, each component is assigned a specific number of active and standby redundant com-

ponents. As shown in the UML model, each redundancy group is assigned to at most one

application, which consists of at least one redundancy group.

As for the component, it belongs to one component type. A component type represents an

executable software deployment. From this perspective, the component represents a run-

ning instance of the component type. Components of the same type have the same attributes

defined in the component type class, such as computational resources (CPU and memory)

attributes.

Each component can be configured to depend on other components. The dependency re-

lation is captured at the type level and can be configured using the delay tolerance, outage

tolerance, and communication bandwidth attributes. The delay tolerance determines the

minimum required latency to maintain communication between sponsor and dependent

components. As for the outage tolerance or tolerance time, it is the time that the dependent

component can tolerate without the sponsor one. The same association is used to describe

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 19

the relation between redundant components that need to synchronize their states.

Finally, each component type is associated with at least one failure type. The list of fail-

ure types determines the failure scope of each component type, its MTTF, MTTR, and

recommended recovery.

2.2.3 Cloud-Application integration
Each component of the application model is scheduled on a server in the cloud provider

model using VM mappings. Each VM can be hosted on one server and can have at least

one component instance running in it. Sudden failure events can occur to cloud-application

such as natural disaster, network or runtime failures [14]. In order to deal with these events,

the inoperative VMs are switched off, and a failover group takes over the control. The

failover group consists of at least one VM, which is a redundant VM of the inoperative

one.

As mentioned earlier, the proposed HA-aware scheduling technique searches for the op-

timum physical server to host the requested component. Whenever a server is scheduled,

a VM is mapped to the corresponding component and to the chosen server. Therefore, a

component can reside on that VM.

2.3 Design and Implementation
The tenant’s application is specified as a partial instance of the UML class diagram, where

the cloud tenant describes the components forming the application and their requirements.

The HA-aware scheduling technique performs a criticality analysis to start scheduling the

components with the highest priority. Then it applies a sequence of filters that starts by

sifting out the servers that do not satisfy the functional requirements and then selects the

ones that maximize the availability constraints.

The proposed technique provides an efficient and highly available allocation by satisfying

the following constraints:

1) Capacity Constraints: These are functional constraints, which are satisfied by search-

ing for servers that meet the resource needs of each application. In the proposed

model, the computational resources consist of the CPU and memory.

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 20

2) Network Delay Constraints: Using these constraints, another list of servers is gen-

erated. These servers satisfy the latency requirements to avoid service degradation

between communicating applications. It is assumed that the delay requirements are

divided into five delay types (i.e., latency zones) as follows:

a) D0 Type: Requires that all communicating components should be hosted on

the same VM and consequently on the same server.

b) D1 Type: Requires that all the communicating components should be hosted

on the same server.

c) D2 Type: Requires that all the communicating components should be hosted

on the same rack.

d) D3 Type: Requires that all the communicating components should be hosted

on the same DC.

e) D4 Type: Requires that all the communicating components can be hosted

across different data centers but must be within the same cloud.

3) Availability Constraints: These constraints prune the candidate servers generated

by the capacity and delay constraints to select the ones that maintain a high level

of application’s availability. In order to maximize the HA of an application, three

sub-constraints should be satisfied:

a) Failure Rate Constraint: It determines that the selected server should maxi-

mize component’s availability. In order to satisfy this constraint, the model

searches for the server with maximum MTTF and minimum MTTR. When-

ever it is found, then the MTTFAc of the component C after being hosted can

be calculated as follows:

MTTFAc =
1

λc + λh
(2)

b) Dependency Constraint: This constraint is divided into two sub-constraints:

Co-location Constraint: This is valid whenever the tolerance time of the de-

pendent component is lower than the recovery time of its sponsor. When the

dependent component cannot tolerate the absence of its sponsor, then the fail-

ure of its server, its sponsor or sponsor’s server affects it. In order to minimize

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 21

its failure rate, both dependent and sponsor should share same server.

Anti-location Constraint:: It requires that the dependent component and its

sponsor should be placed on different servers. This is valid whenever the tol-

erance time of the dependent component is greater than the recovery time of

its sponsor. By considering this case, the MTTF of the application will be

maximized because of its inverse proportionality relation with λ.

c) Redundancy Constraint: It basically prevents redundant components of a pri-

mary one from residing on the same server and requires that they should be

placed far away from each other as the delay constraints allow.

With these constraints, we develop a MILP model and CHASE that minimize components’

downtime while finding the optimal physical server to host them.

2.3.1 Criticality analysis
Performing criticality analysis to applications is a significant step in any emergency or dis-

aster recovery plan. For instance, the contingency plan in Health Insurance Portability and

Accountability Act (HIPAA) requires to “assess the relative criticality of specific appli-

cations and data...” because they are not equally critical [15]. This is also applicable in

HA-aware scheduling, where the highly critical components are given the priority to reside

on more reliable servers. In the example shown in Fig. 2.1, there is only one active instance

of the DB; therefore, its failure affects all the incoming requests. This gives the DB a higher

impact where the failure of one instance of DB server affects half the requests.

Each component has its own MTTF (failure rate) and MTTR, and therefore its failure can

cause either an outage (o) of the application or a degradation (d) of the service. Let Nfail
be the failure occurrence. The criticality value of a component is the product of the com-

ponent’s unreliability and the number of occurrence of component’s failure [16]. The criti-

cality escalates when the failure scope of the component affects not only itself but also its

execution environment and its dependent component(s). Generally, front-end (FE) com-

ponents cause a service outage as expressed in (3). If a dependent component (DeC) can

tolerate the outage, (OT), of its sponsor (SC) until its recovery, then the failure of SC causes

service degradation as shown in (4). Conversely, the failure of the sponsor causes not only

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 22

Notation Significance Representation

R Resource Type: CPU or memory
Number of Cores and

MB of RAM

REDcc′ Redundancy matrix of C and C’ {0,1}

DEPcc′ Dependency matrix of C and C’ {0,1}

DELss′ Delay between S and S’ second

OTc Outage tolerance of C hour

RTc Recovery time of C hour

DTc Delay tolerance of C hour

Table 2.1: Variable notations.

a service degradation but also an outage as expressed in (5).

criticalityFE = (Nfail ×MTTR)
o

(3)

criticalityd = (Nfail ×MTTR)
d

(4)

criticalitydo =
∑
DeC

(Degradation+Outage) (5)

where

Degradation = ((Nfail)SC ×OTDeC)
d

Outage = ((Nfail)SC × (MTTRSC −OTDeC))
o

The redundancy relation influences the criticality calculation. It adds a weight parameter to

the criticality value, which changes according to the number of active and standby instances

of the used redundancy model. To finalize the criticality calculation, an impact equation is

used to determine the relation between the outage, degradation, and weighted fallouts.

2.3.2 Mathematical formulation
This section introduces a MILP model to solve the HA-aware placement problem. The

proposed MILP model was solved using the IBM ILOG CPLEX optimization solver.

2.3.2.1 Notations

Various parameters were used to solve the placement problem and develop the MILP

model.

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 23

a) Input Parameters

Let a virtual machine be denoted as V and a server as S. Each VM consists of an applica-

tion {A}, which consists of a specific number of components {C}, which are of component

types {CT}. Therefore, each application is a set of C and CT and can be denoted as A ={C,

CT}. This notation ensures that whenever a set of components C of types CT is scheduled,

its corresponding application is considered hosted. As for the computational resources,

Lcr and LTsr denote the set of resources, which can be memory or CPU of component and

server respectively. Table 2.3.2.1 shows the various parameters notations used in the MILP

model.

b) Decision Variables

The decision variables are defined as follow:

Xcs =

1 if S host C

0 otherwise
(6)

zc =

1 if DELss′ ≤ DTc

0 otherwise
(7)

2.3.2.2 MILP model

The downtime represents a duration during which a system is unavailable or fails to func-

tion. In this chapter, the system can be a component or a host. However, the downtime of

C does not only depend on the component itself (Downtimec), but on its hosting server

(Downtimes) as well. In order to minimize the overall downtime of C, the objective func-

tion of the formulated MILP model should minimize Downtimec and Downtimes. The

objective function and its constraints are formulated as follows:

Objective Function:

min
∑
c

∑
s

(Downtimec +Downtimes)×Xcs

Subject to:

Capacity Constraints:∑
c

(Xcs × Lcr) ≤ LTsr ∀ s, r (8)

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 24∑
s

Xcs = 1 ∀ c (9)

Xcs ∈ {0, 1} ∀ c, s (10)

Network Delay Constraints:

(Xc′s′ ×DELss′ −DTc) ≤M × zc′ ∀ c, c
′, s, s′ (11)

Xcs − 1 ≤M × (1− zc′) ∀ c, c′, s (12)

zc′ ∈ {0, 1} ∀ c′ (13)

Redundancy Constraint:

Xcs +Xc′s ≤ 1 ∀ c, c′, s, REDcc′ (14)

Dependency Co-location Constraint:

Xcs +Xc′s ≤ 2 ∀ c, c′, s, DEPcc′ (15)

Dependency Anti-location Constraint:

Xcs +Xc′s ≤ 1 ∀ c, c′, s, DEPcc′ (16)

Boundary Constraint:

Downtimec, Downtimes ≥ 0 ∀ c, s (17)

As discussed earlier, the HA-aware placement of the application is affected by capacity,

delay and availability constraints. Regarding capacity constraints, constraint (8) ensures

that the requested component’s resources must not exceed the available resources of the

selected destination server. Constraint (9) determines that the component can be placed on

at most one physical server. Constraint (10) ensures that the decision variable (Xcs) is a

binary integer. The delay constraints (11), (12), and (13) ensure that communicating com-

ponents will be placed on a server that satisfies the required latency. These constraints are

applied on the dependency and redundancy communication relations between scheduled

components.

The availability constraint (14) reflects the anti-location constraint between a component

and its redundant ones. Using constraint (15), the dependent components should share the

same server in case their outage tolerance is smaller than the recovery time of their sponsor

component. The anti-location constraint between dependent and sponsor components is

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 25

Figure 2.3: Flowchart of CHASE approach.

active in the contrary case as shown in (16). The boundary constraint (17) specifies real

positive values for downtimes of C and S.

2.3.3 CHASE: Component HA-aware scheduler
CHASE is based on a combination of greedy and pruning algorithms and aims to produce

locally optimal results. It is divided into different sub-algorithms as shown in Fig. 2.3. Each

sub-algorithm deals with a specific set of constraints such as capacity, delay, and availabil-

ity constraints.

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 26

Figure 2.4: Capacity algorithm of CHASE.

1) Capacity Algorithm: Once the most critical application’s component is selected, CHASE

executes the capacity sub-algorithm. This algorithm traverses the cloud and finds the

servers that satisfy the computation resources needed by the requested components. Fig. 2.4

describes the capacity algorithm.

In D0/D1 case, the application’s components should reside on the same VM/server. There-

fore, this algorithm searches for a server that can host them all. If no candidate host is

found, the algorithm tries to divide the application into multiple computation paths (if al-

lowed). Then it executes again the search for server(s) to host at least one computational

path of the application. Similarly, the algorithm might repeat the above computational path

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 27

Figure 2.5: Delay Tolerance algorithm of CHASE.

analysis in case the co-location constraints are satisfied for the other delay zones.

2) Delay Tolerance Algorithm: The set of candidate servers satisfying the capacity con-

straints are fed into the delay sub-algorithm. In this algorithm, a pruning procedure is

executed to discard the servers that violate the delay constraint. The delay and availability

sub-algorithms are applied to each delay zone. For instance, in D3 case, this algorithm

searches for servers in the same DC to host the component’s applications including the re-

dundant ones. If there is not enough servers, the algorithm deals with separate computation

paths instead of the whole application. Fig. 2.5 depicts the delay tolerance algorithm.

3) Availability Algorithm: After the delay pruning, communication performance is main-

tained between various components. At this point, an availability baseline must be achieved.

This feature is captured by the availability sub-algorithm shown in Fig. 2.6. In this algo-

rithm, the servers undergo another stage of pruning that tends to maximize the availability

of each component while finding the locally optimal deployment.

Before searching for the server with the highest availability, this algorithm executes the co-

location and anti-location algorithms depending on the relation between the tolerance time

of a dependent component and the recovery time of its sponsor. Fig. 2.7 depicts the inter-

dependency algorithm. If the co-location constraint is valid, the capacity algorithm must be

executed again to find a set of servers that satisfies the computational demands of a group

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 28

Figure 2.6: Availability algorithm of CHASE.

of components. Then this set is fed into the MaxAvailabilityServer algorithm to select the

server with the highest availability (high MTTF and low MTTR). If the capacity, delay, and

availability algorithms indicate that all components can be placed on servers satisfying all

the above constraints, the redundancy algorithm is executed to generate placements for the

redundant components based on the anti-location constraints. Fig. 2.8 describes the redun-

dancy algorithm.

At this stage, the algorithm has found a host for each component. However, a mapping

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 29

Figure 2.7: Interdependency algorithm of CHASE.

should be generated among the selected server, the component, and a VM. CHASE exe-

cutes a mapping sub-algorithm that creates VMs for the scheduled components and then

maps them to the chosen hosts. Fig. 2.9 shows the mapping algorithm.

2.4 MILP Evaluation
To assess the MILP model, different simulations are conducted using different data sets.

The MTTF, MTTR, and recovery time are used as measures of the downtime and avail-

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 30

Figure 2.8: Redundancy algorithm of CHASE.

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 31

Figure 2.9: Mapping algorithm between cloud infrastructure and cloud applications.

ability of various components. To clarify the importance of the proposed model, different

simulations are conducted to compare the model to the OpenStack Nova scheduler algo-

rithm for different delay zones [17].

2.4.1 Availability analysis
As mentioned earlier, the availability availc of a component C is inversely proportional

to its downtime. Since the downtime was generated in terms of hours per year, then the

availability is calculated as follows:

availc = (
8760− downtimec

8760
× 100) (18)

As for the downtime, it changes with delay types and can be calculated in terms of λ,

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 32

MTTR, and/or RT of a component, its corresponding DC, rack R, and server S. Since our

work considers redundancy and failover solutions, then downtime depends on λ and RT.

For instance, the downtime in D4 and D2 type is calculated as (19) and (20) respectively:

downtime
D4
c = (λc + λs + λDC + λR)×RTc (19)

downtime
D2
c = ((λc + λs)×RTc) + (λR ×RTR)

+ (λDC ×RTDC) (20)

2.4.2 Computational complexity
Any scheduling problem can be defined as a triplet α | β | γ. Starting with α, it represents

the problem environment. As for β and γ, they represent the problem constraints and the

objective to be optimized respectively [18]. This triplet can take various fields depending

on the scheduling type. Since the proposed scheduling work has n components to be as-

signed to m servers while minimizing downtime, it can be formulated as special case of the

transportation problem. It can be represented as Qm | pj |
∑

hj (Cj), where Qm indicates

that the problem environment consists of m different parallel machines, pj determines that

a job j can be processed using one machine m and finally h(k) represents the cost function

to be optimized. This special case is known as the bipartite matching or assignment prob-

lem. It is represented as bipartite graph G = (n1, n2, a). This graph consists of two sets of

nodes n1 and n2 connected using arc a. This arc a = {j, k} assigns node j of set n1 to node

k of set n2 and is represented by the decision variable Xcs defined in Section 2.3.2. This

type of scheduling problems is formulated using linear programming models, but it is char-

acterized by NP-hard complexity hierarchy. Because of the NP-hardness of the proposed

optimization model, it is only feasible for small DC networks [19]. In the evaluated small

network, the number of variables generated in the optimization solver is approximately

4000.

2.4.3 OpenStack filter scheduler
OpenStack is an open source cloud management system that satisfies the needs of private

and public clouds using computing, networking and storage services [17]. Nova is one

of the computing components of OpenStack that schedules VM based on a predefined in-

stance type such as CPU or RAM. Nova compute service provides different types of filters

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 33

Attributes Distribution Characteristics (hours)

MTTFS−C Exponential µ=2000

MTTRS−C Truncated Normal µ=3,0.05; σ=1,0.016

RecoveryT imeS−C Truncated Normal µ=0.05,0.08; σ=0.016,0.002

ToleranceT imeC Exponential µ=10

Table 2.2: Evaluation parameters.

and weights to host an instance. During the filtering stage, the scheduler generates list of

servers that are capable of hosting the instance. Then weight and cost functions are applied

to this list to determine the best compute node for it [20]. Nova supports other filters that

can be used to support HA placement such as availability zone, affinity, and anti-affinity

filters, however, these existing filters are agnostic of the delay tolerance and inter-VM de-

pendencies, which means they need to be extended. Also, the users have to manually define

the needed filter based on the instance properties [20]. Alternatively, our proposed work

eliminates the user interference. It provides an automated process for deploying VMs by

considering functionality (resources and delay) and availability (different types of depen-

dencies) requirements.

2.4.4 Results
Both the optimization model and the OpenStack scheduler are evaluated on a network con-

sisting of 20 components, 2 DCs, 4 racks, and 50 servers. The server’s and component’s

MTTFs are generated using an exponential distribution with mean = 2000 hours for both

[21]. As for the server’s and component’s MTTR, a truncated normal distribution is used

with mean = 3 and 0.05 hours and standard deviation = 1 and 0.016 hours respectively [21]

[22]. For server’s and component’s recovery times, a truncated normal distribution is used

with mean = 0.05 and 0.008 hours and standard deviation = 0.016 and 0.002 hours respec-

tively. Table 2.2 shows the distributions for the availability measures. Each physical server

has 30 GB and 32 CPU cores. VMs’ instances are configured in small, medium, or large

sizes [23] [24]. To evaluate the interdependencies and redundancies between components,

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 34

Figure 2.10: Downtime of each application’s component using MILP and OpenStack scheduler for
D0/D1 delay type.

the proposed MILP is evaluated on two real-time Web applications. The Web applications

include two types of dependencies among the components: (1) the synchronization depen-

dency between the active component and its replicas, and (2) the functional dependencies

where the App server depends on database server and sponsors the HTTPS server.

2.4.4.1 MILP vs OpenStack Nova scheduler

The MILP model is compared to the core and RAM filters in Nova scheduler in order to

show the impact of availability constraints on the downtime of each application’s com-

ponent per year. Using these filters, only servers with sufficient RAM and CPU cores

are eligible for hosting VMs. Fig. 2.10, Fig. 2.11, Fig. 2.12, and Fig. 2.13 show the down-

time difference for each application’s component using MILP model and OpenStack sched-

uler for different delay zones. Since the Nova filters do not consider delay requirements,

they generate similar results for each component for all delay types. As the delay zones

widen the solution space for the components’ placement, the difference between Open-

Stack scheduler and MILP increases gradually. Using the HA-aware MILP model, the

downtime of each component is reduced by 35%, 39%, and 52% for D0/D1, D2, and D3

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 35

Figure 2.11: Downtime of each application’s component using MILP and OpenStack scheduler for
D2 delay type.

types respectively. As for D4 type, it allows scheduling component on any server in the

cloud and allows placing primary and redundant components on two different DCs. In this

case, if the server, rack, or DC of component C fails, C will be down until it fails over to

its redundant. Therefore, the downtime of a C is calculated using (19). But sometimes a

sponsor component can affect the downtime of its dependents if the latter cannot tolerate

its failure. In any case, the component’s downtime is reduced significantly by 97% using

the HA-aware technique in D4 type.

Note that the downtime varies among the components because each one is characterized

by its availability metrics (MTTF, MTTR, and recovery time) and is deployed on a specific

host that has its own MTTF and MTTR. In other words, Nova filters discard HA constraints,

and consequently, they can host some components on servers with acceptable availability

(high MTTF and low MTTR) and can also choose servers with low MTTF or high MTTR

to deploy other components.

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 36

Figure 2.12: Downtime of each application’s component using MILP and OpenStack scheduler for
D3 delay type.

2.4.4.2 Availability improvement within MILP model

Although the MILP model maximizes the availability of components, its results change

among different delay zones. Since D0 and D1 types require placement of components in

the same server, then the solution space of the selection process is limited. Consequently,

the availability is affected and depends on the recovery time of the hosting server, rack,

and DC. However, the availability is highly improved in D4 because it depends only on

the recovery time of the hosted component. Additionally, this delay zone eliminates the

restrictions on the locations of the components. Fig. 2.14 shows the difference between

downtime among the 5 delay zones. Compared to D4 results, the availability of each com-

ponent is reduced as more restrictions are added to the servers’ location.

It is necessary to note that the confidence level of the deployments’ results of the MILP

model exceeds 95% for the same configuration settings of the cloud applications and in-

frastructure (i.e. same mean values for the MTTF and MTTR of the component and server

as shown in Table 2.2). In other words, the MILP model generates the same placements’

results for the application’s components using the same cloud scenario and metrics.

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 37

Figure 2.13: Downtime of each application’s component using MILP and OpenStack scheduler for
D4 delay type.

2.5 CHASE Evaluation
To assess the proposed CHASE scheduler, small and large-scale simulations are conducted

using different tiered applications and infrastructure data sets. The MTTF, MTTR, and

recovery time are the measures used to quantify the downtime and availability of the appli-

cation’s components.

2.5.1 Small-Scale network setup
The MILP model, OpenStack Nova scheduler [25], and CHASE are evaluated on a small-

scale network. The above network setup is used to evaluate CHASE. This setup consists of

20 components, 2 DCs, 4 racks, and 50 servers. VMs are configured in small, medium, and

large sizes using OpenStack options [24]. As for the availability measures, they are shown

in Table 2.2.

To evaluate the interdependencies and redundancies between the components, the proposed

approach is evaluated on two Web applications. Each application consists of three active

databases, two active and two standby App servers, and three active HTTPS servers. As

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 38

Figure 2.14: Availability improvement for each application’s components among delay zones using
MILP model.

for the interdependency relation, App server depends on a database server and sponsors an

HTTPS server. The results of the small-scale evaluation are shown below.

1) CHASE vs MILP: Fig. 2.15, Fig. 2.16, Fig. 2.17, and Fig. 2.18 compare the downtime of

each component using CHASE and the MILP model for different delay zones. There is a

small gap between the MILP and CHASE for each component for all the delay zones. This

gap increases as the solution space expands, and it does not exceed 10%.

2) CHASE vs Nova Scheduler: Fig. 2.15, Fig. 2.16, Fig. 2.17, and Fig. 2.18 also compare

the downtime of each component using CHASE and the core/RAM filters in OpenStack

Nova scheduler for different delay zones. These types of filters select hosts that can satisfy

the resources of components regardless of any other functionality or availability constraints.

Therefore, Nova scheduler generates the the same results for all delay zones. The Nova

scheduler supports certain HA features, such as the notions of availability zones, affinity,

and anti-affinity filters. However, it does not support the delay, criticality, and interdepen-

dency analysis.

Using CHASE, the downtime of each component is reduced by 48%, 34%, and 31% for

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 39

Figure 2.15: Downtime of each application’s component in small-scale network for D0/D1 delay
type.

Figure 2.16: Downtime of each application’s component in small-scale network for D2 delay type.

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 40

Figure 2.17: Downtime of each application’s component in small-scale network for D3 delay type.

Figure 2.18: Downtime of each application’s component in small-scale network for D4 delay type.

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 41

Figure 2.19: Downtime of each application’s component in large-scale network for D0/D1 delay
type.

D3,D2, andD0/D1 zones respectively. SinceD4 zone distributes the components between

DCs, the component’s downtime is reduced by 94% using CHASE. In D4 zone, if the host,

its rack, or DC fails, the hosted component becomes inoperative until it is replaced by its

redundant [1]. However, in D3 zone for instance, the failure of DC affects the hosted com-

ponents and their redundant ones. Consequently, end-users should wait for an execution of

a repair policy for the DC or a migration plan for the components.

2.5.2 Large-Scale network
Since finding the optimal placement is an NP-hard problem, the MILP solution is only

feasible for small networks [19]. Therefore, CHASE is proposed to remedy this issue and

schedule cloud-based applications with a more pragmatic approach. In order to evaluate its

scalability, a large-scale network is conducted on CHASE for different delay zones. This

network consists of 100 components, 4 DCs, 16 racks, and 1000 servers. The availability

measures follow the same statistical distribution shown in Table 2.2. For the large network,

CHASE is evaluated on ten Web applications.

For precision measurement, multiple data sets are generated with the same mean values for

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 42

Figure 2.20: Downtime of each application’s component in large-scale network for D2 delay type.

Figure 2.21: Downtime of each application’s component in large-scale network for D3 delay type.

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 43

Figure 2.22: Downtime of each application’s component in large-scale network for D4 delay type.

the MTTF and MTTR of the component and server shown in Table 2.2. The confidence

level exceeds 95%, which reflects the stability of the results as the scheduling procedure is

repeated for different delay zones.The results of the large-scale evaluation are shown be-

low.

1) CHASE vs Greedy HA-Agnostic Scheduler: Fig. 2.19, Fig. 2.20, Fig. 2.21, and Fig. 2.22

compare the component’s downtime between CHASE and the greedy HA-agnostic sched-

uler for different delay zones. The greedy algorithm searches for hosts that satisfy the

resources and network delay constraints for components. It considers neither redundancy

models, anti-location, co-location, nor availability constraints. Therefore, the gap between

both algorithms is large and due to the difference in the placement criterion. CHASE fil-

ters the servers according to functionality and availability constraints whereas the greedy

algorithm schedules a component on the first available server that satisfies its resources’

demands. Although all components are hosted on the same server in D0/D1 zone, the

availability curve fluctuates because each component type has different MTTF, MTTR,

and recovery time. For the other delay zones, the solution space expands, and consequently

the gap between CHASE and the greedy algorithm increases. By comparing the graphs, it

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 44

Availability
Improvement (%) D0-D1 D2 D3 D4

CHASE 99.981 99.981 99.984 99.99

RAS 99.27 99.21 99.1 99.07

Table 2.3: Availability improvement among different delay types using CHASE and RAS.

can be concluded that the D4 delay zone generates the lowest downtime per year compared

to D3, D2, D1, and D0. The difference between D4 and D2 exceeds 85%. Therefore,

expanding the solution space and minimizing the delay requirements maximize the appli-

cation’s availability.

2) CHASE vs Redundancy-Agnostic Scheduler: To show the effect of redundancy on the

availability analysis, CHASE is compared to a redundancy-agnostic scheduler (RAS) based

on the distributions shown in Table 2.2. The latter searches for the host that satisfies func-

tionality and interdependency constraints. However, it ignores redundancy models and

their effect on the availability analysis. Using CHASE, up to four nines availability can be

achieved whereas the redundancy-agnostic scheduler could not exceed two nines availabil-

ity as shown in Table 2.3. Using RAS, when a failure occurs, the whole application might

become inoperative until a repair plan is applied. Contrary, an inoperative component in

CHASE fails over to its redundant component to serve its workload.

Although the component’s availability is improved with the increase in the number of avail-

able servers, the time complexity of generating the scheduling plan also increases linearly

with the number of components.

2.6 Prototype Implementation
CHASE prototype is designed to perform scheduling in a real cloud setting. The scheduler

communicates with the OpenStack cloud management system, where certain capabilities

of the existing filters of OpenStack can be used to complement with CHASE HA filters

[17]. The scheduling tool is composed of several complementary modules as shown in

Fig. 2.23. The I/O module is responsible for the information exchange. It communicates

with the graphical user interface (GUI) to collect the application information specified by

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 45

Figure 2.23: Architecture of CHASE prototype.

the user. The GUI is used to populate an instance of the cloud-application UML model. It

also communicates with the Nova DB of OpenStack, which has been extended to support

the notions of DCs and racks. The existing DB table for the hosts is also extended to include

the failure and recovery information. The I/O module is also responsible for triggering the

CHASE algorithms, collecting the scheduling results, and applying them using the Nova

command-line interface (CLI) commands.

Fig. 2.24 illustrates the CHASE GUI. The GUI contains multiple panels that provide differ-

ent views of the application’s components and the cloud infrastructure. On the right-hand

side, the user specifies the applications, their redundancy groups, their components as well

as their component types and failure types. The user then schedules the applications. This

triggers the scheduling algorithm to define the VM placement. Then the I/O module up-

dates the Nova DB and the GUI’s left-hand side tree, which shows where the components

are scheduled.

CHASE is implemented as an Eclipse plug-in project. We use Papyrus to define CHASE

UML model. Papyrus is an EMF-based Eclipse plug-in, which offers advanced support of

UML modeling [26]. Since Papyrus has limited support for the graphical modeling and

Domain Specific Language (DSL) representation, the proposed implementation uses the

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 46

Figure 2.24: A screenshot of CHASE GUI.

Java Swing library to define the GUI. The scheduling algorithms are implemented in Java.

2.7 Related Work
High availability is an interesting concept that has attracted several recent research studies.

However, the way to attain a certain availability baseline when scheduling VMs or applica-

tions changes from one research study to another.

2.7.1 Replication approaches
Jung et al. propose a placement approach to generate VM configurations while maintain-

ing high availability for multi-tier applications and improving their performance [27]. They

develop a replication strategy to maintain HA constraints based on the mean time between

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 47

failures (MTBF) while satisfying latency demands to minimize performance degradation

for each application. The authors divide their solution into search and fit algorithms. The

search algorithm finds candidate placements that satisfy delay constraints while maintain-

ing an acceptable reliability level for each application. As for the fit algorithm, it finds the

actual placement of the application’s component using CPU capacity. Despite the simi-

larities with the objectives of this study, the authors do not consider the interdependencies

between the VMs and their associated impact on the availability of the applications hosted

by the scheduled VMs.

Addis et al. address the resource allocation problem for deployment of multi-tier applica-

tions [28]. They aim to maximize total service level agreement (SLA) profit while main-

taining a certain level of availability. They develop a non-linear programming model to

achieve their objective while guaranteeing a level of availability based on a load-sharing

fault-tolerance arrangement.

Other attempts that address the availability of VM deployments are proposed by Lu et al.

and Wenting et al. [29] [30]. While Lu et al. show the effect of redundancy on availability

analysis [29], both chapters have overlooked the effect of dependency models on that anal-

ysis.

Machida et al. propose a VM placement technique that generates redundant configura-

tions to avoid VM outages during host’s failures [31]. They aim to generate a minimum

number of VMs that could maintain the service performance and quality. Despite the im-

portance of redundancy model on the HA of applications, the authors ignore the effect of

delay tolerance, interdependency models, MTTF, MTTR, recovery, and tolerance times on

maintaining certain fault-tolerance level.

2.7.2 Diversified geographical sites and failover approaches
Li et al. address deployment of cloud applications that improves their availability and

performance [32]. Although the experimental evaluation shows good results, but the sug-

gested availability analysis is based only on the failures between task executors. However,

the authors do not consider the effect of the redundancy models, the dependency relations,

and their associated attributes such as the tolerance and recovery times on the applications’

availability.

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 48

Both Harper et al. and Bin et al. propose a failover plan during the placement problem

using different approach schemes [33] [34]. While Harper et al. exploit the co-location

and anti-location constraints between interdependent applications [33], their capacity, and

security constraints to provide a pseudo-optimal failover plan for an application, Bin et al.

assign each VM a resiliency level that enables it to relocate to a new host if its current host

fails [34]. It also uses the anti-location and co-location constraints between VMs to create

a backup for them against any failure. Another attempt that maximizes service availabil-

ity by providing a failure-resiliency plan is proposed by Abouzamazem et al. and Frincu

et al. [35] [36]. Frincu et al. address the scheduling of application’s components on the

cloud infrastructure [36]. They propose a multi-objective scheduling approach that tends

to maximize resource utilization, minimize the cost of application runtime, and maximize

application’s availability through a component replication approach.

Jinhua et al. propose a load balancing-aware scheduling algorithm of VM resources [37].

Using a scheduler controller and a resource monitor, the algorithm collects historical data

and system state. This data is loaded into the genetic algorithm to generate a mapping

solution for each VM while minimizing the issues of imbalance load distribution and mi-

gration cost. Similarly, Wenhong et al. develop a dynamic and integrated load balancing

scheduling algorithm (DAIRS) for cloud DCs [38]. The authors provide an integrated mea-

surement for the imbalance level of a DC as well as its servers. Using the latter values,

they propose load-balancing aware VM scheduling and migration algorithms. Although

the authors maximize the resource utilization, they ignore the availability constraints and

failure impact on the VM scheduling and service continuity.

Each of the previous literature studies has considered different strategies to maximize ap-

plications’ availability. Some approaches consider redundancy and failover solutions while

others look at MTTF and recovery time of components. However, this chapter proposes

a novel scheduling technique that looks into the interdependencies and redundancies be-

tween application’s components, their failure scopes, their communication delay tolerance,

and resource utilization requirements. It examines not only MTTF to measure the compo-

nent’s downtime and consequently its availability, but the analysis is based on the MTTR,

recovery, and outage tolerance times as well.

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 49

2.8 Conclusion
Unexpected cloud-services outages can have a profound impact on business continuity and

IT enterprises. The key to achieving availability requirements is to develop an approach

that is immune to failure while considering real-time interdependencies and redundancies

between applications. This chapter has addressed the problem environment from different

vantage points to generate highly available optimal placement for the requested applica-

tions. The proposed MILP model minimizes the downtime of applications, but its com-

putational complexity limits its evaluation on large networks. Therefore, the optimization

model was associated with a heuristic solution. CHASE solves the scheduling problem

in polynomial time while satisfying all QoS and SLA requirements and differentiating

between mission-critical and standard applications. The MILP and CHASE were evalu-

ated for different delay zones and different communication relations between components.

CHASE prototype was designed to schedule components in a real cloud environment while

communicating with OpenStack.

50

References

[1] M. Jammal, A. Kanso, and A. Shami, “High Availability-Aware Optimization Digest for Ap-

plications Deployment in Cloud,” IEEE International Conference on Communications (ICC),

June 8-12, 2015.

[2] M. Jammal, A. Kanso and A. Shami, “CHASE: Component High Availability-Aware Scheduler

in Cloud Computing Environment,” IEEE 8th International Conference on Cloud Computing,

pp. 477-484, 2015.

[3] H. Hawilo, A. Shami, M. Mirahmadi, and R. Asal, “NFV: State of the Art, Challenges and

Implementation in Next Generation Mobile Networks (vEPC),” IEEE Network, vol. 28, pp.

18-26, December 2014.

[4] M. Jammal, T. Singh, A. Shami, R. Asal, and Y. Li, “Software Defined Networking: State of the

art and research challenges,” Elsevier Computer Networks, vol. 72, pp. 74-98, October 2014.

[5] M. Abu Sharkh, M. Jammal, A. Shami, and A. Ouda, “Resource allocation in a network-based

cloud computing environment: design challenges,” IEEE Communications Magazine, vol. 51,

pp. 46-52, November 2013.

[6] HP, “The High Availability challenge: 24x7 in a Microsoft environment,” http://

h71028.www7.hp.com/enterprise/downloads/4AA0-3147ENA.pdf, Novem-

ber 2010. [February 5, 2015]

[7] NetMagic, “Data center outages impact, causes, costs, and how to mitigate,”

http://www.netmagicsolutions.com/uploads/pdf/resources/

whitepapers/WP_Datacenter-Outages.pdf, 2013. [February 10, 2015]

[8] Amazon EC2, “Amazon EC2 Service Level Agreement,” http://aws.amazon.com/

ec2/sla/, 2014. [January 18, 2015]

http://h71028.www7.hp.com/enterprise/downloads/4AA0-3147ENA.pdf
http://h71028.www7.hp.com/enterprise/downloads/4AA0-3147ENA.pdf
http://www.netmagicsolutions.com/uploads/pdf/resources/whitepapers/WP_Datacenter-Outages.pdf
http://www.netmagicsolutions.com/uploads/pdf/resources/whitepapers/WP_Datacenter-Outages.pdf
http://aws.amazon.com/ec2/sla/
http://aws.amazon.com/ec2/sla/

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 51

[9] Eclipse MarketPlace, “UML Lab Modeling IDE,” https://marketplace.eclipse.

org/category/free-tagging/round-trip-engineering-0, March 23, 2017.

[April 29, 2017]

[10] Visual Paradigm, “Round-trip engineering with Eclipse Integration,” https://knowhow.

visual-paradigm.com/uml/round-trip-eclipse/, August 2010. [May 1, 2017]

[11] Warwick Manufacturing Group, “Introduction to Reliability,” http://www2.warwick.

ac.uk/fac/sci/wmg/ftmsc/modules/modulelist/peuss/slides/

section_7a_reliability_notes.pdf, 2007. [April 30, 2017]

[12] SA Forum, “Service AvailabilityTM Forum Application Interface Specification,” http://

www.saforum.org/ResourceCenter/Download/16627˜333319?view=1, June

2014. [August 14, 2014]

[13] P3 InfoTech Solutions, “Web Application Deployment in the Cloud Using Amazon Web

Services From Infancy to Maturity,” http://www.slideshare.net/p3infotech_

solutions/web-application-deploymentaws#, July 2013. [September 20, 2014]

[14] P. Bodik, F. Armando, et al., “Characterizing, modeling, and generating workload spikes for

stateful services,” in ACM Symposium Cloud Computing, pp. 241-252, June 10-11, 2010.

[15] HIPAA, “Contingency Plan: Applications and Data Criticality Analysis-What to Do

and How to Do It,” http://www.hipaa.com/2009/04/contingency-plan-

applications-and-data-criticality-analysis-what-to-do-and-how-

to-do-it/, 2014. [February 9, 2015]

[16] Reliability HotWire, “Basic Concepts of FMEA and FMECA,” http://www.weibull.

com/hotwire/issue46/relbasics46.htm, 2017. [May 1, 2017]

[17] OpenStack, “OpenStack Cloud Software,” http://openstack.org. [September 20,

2014]

[18] M. Pinedo, Deterministic Models: Preliminaries, Scheduling Theory, Algorithms and Systems,

Spring, New York, pp. 13-33, 2008.

[19] O. Kone, C. Artigues, P. Lopez, and M. Mongeau, “Event-based MILP models for resource-

constrained project scheduling problems,” Computers and Operations Research, vol. 38, pp.

3-13, January 2011.

https://marketplace.eclipse.org/category/free-tagging/round-trip-engineering-0
https://marketplace.eclipse.org/category/free-tagging/round-trip-engineering-0
https://knowhow.visual-paradigm.com/uml/round-trip-eclipse/
https://knowhow.visual-paradigm.com/uml/round-trip-eclipse/
http://www2.warwick.ac.uk/fac/sci/wmg/ftmsc/modules/modulelist/peuss/slides/section_7a_reliability_notes.pdf
http://www2.warwick.ac.uk/fac/sci/wmg/ftmsc/modules/modulelist/peuss/slides/section_7a_reliability_notes.pdf
http://www2.warwick.ac.uk/fac/sci/wmg/ftmsc/modules/modulelist/peuss/slides/section_7a_reliability_notes.pdf
http://www.saforum.org/ResourceCenter/Download/16627~333319?view=1
http://www.saforum.org/ResourceCenter/Download/16627~333319?view=1
 http://www.slideshare.net/p3infotech_solutions/web-application-deploymentaws#
 http://www.slideshare.net/p3infotech_solutions/web-application-deploymentaws#
http://www.hipaa.com/2009/04/contingency-plan-applications-and-data-criticality-analysis-what-to-do-and-how-to-do-it/
http://www.hipaa.com/2009/04/contingency-plan-applications-and-data-criticality-analysis-what-to-do-and-how-to-do-it/
http://www.hipaa.com/2009/04/contingency-plan-applications-and-data-criticality-analysis-what-to-do-and-how-to-do-it/
http://www.weibull.com/hotwire/issue46/relbasics46.htm
http://www.weibull.com/hotwire/issue46/relbasics46.htm
 http://openstack.org

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 52

[20] OpenStack, “Filter Scheduler,” http://docs.openstack.org/developer/

cinder/devref/filter_scheduler.html#costs-and-weights, February

2013. [September 20, 2014]

[21] Reliability HotWire, “Availability and the Different Ways to Calculate It,” http://www.

weibull.com/hotwire/issue79/relbasics79.htm, September 2007. [September

20, 2014]

[22] EventHelix, “System Reliability and Availability,” http://www.eventhelix.com/

realtimemantra/faulthandling/system_reliability_availability.

htm#.U-AcuPldXCf, 2014. [September 20, 2014]

[23] Microsoft, “How to: Change the Size of a Windows Azure Virtual Machine,” http:

//msdn.microsoft.com/en-us/library/dn168976(v=nav.70).aspx, 2013.

[September 20, 2014]

[24] OpenStack, “OpenStack Operations Guide,” http://docs.openstack.org/

openstack-ops/openstack-ops-manual.pdf, 2015. [February 17, 2015]

[25] OpenStack, “Filter Scheduler,” http://docs.openstack.org/developer/

cinder/devref/filter_scheduler.html#costs-and-weights, Februray

2013. [January 18, 2015]

[26] Papyrus Eclipse Project, https://www.eclipse.org/papyrus/. [February 10, 2015]

[27] G. Jung, K.R. Joshi, M.A. Hiltunen, R.D. Schlichting, and C. Pu, “Performance and availabil-

ity aware regeneration for cloud based multitier applications,” IEEE/IFIP Conference Depend-

able Systems and Networks, pp. 497-506, June 28-July 1 2010.

[28] B. Addis, D. Ardagna, B. Panicucci, and L. Zhang, “Autonomic Management of Cloud Ser-

vice Centers with Availability Guarantees,” IEEE International Conference Cloud Computing

(CLOUD), pp. 220-227, July 5-10, 2010.

[29] Q. Lu et al., “Incorporating Uncertainty into In-Cloud Application Deployment Decisions for

Availability,” IEEE Sixth International Conference on Cloud Computing (CLOUD), pp. 454-

461, June 28-July 3 2013.

http://docs.openstack.org/developer/cinder/devref/filter_scheduler.html#costs-and-weights
http://docs.openstack.org/developer/cinder/devref/filter_scheduler.html#costs-and-weights
http://www.weibull.com/hotwire/issue79/relbasics79.htm
http://www.weibull.com/hotwire/issue79/relbasics79.htm
http://www.eventhelix.com/realtimemantra/faulthandling/system_reliability_availability.htm#.U-AcuPldXCf
http://www.eventhelix.com/realtimemantra/faulthandling/system_reliability_availability.htm#.U-AcuPldXCf
http://www.eventhelix.com/realtimemantra/faulthandling/system_reliability_availability.htm#.U-AcuPldXCf
http://msdn.microsoft.com/en-us/library/dn168976(v=nav.70).aspx
http://msdn.microsoft.com/en-us/library/dn168976(v=nav.70).aspx
http://docs.openstack.org/openstack-ops/openstack-ops-manual.pdf
http://docs.openstack.org/openstack-ops/openstack-ops-manual.pdf
http://docs.openstack.org/developer/cinder/devref/filter_scheduler.html#costs-and-weights
http://docs.openstack.org/developer/cinder/devref/filter_scheduler.html#costs-and-weights
https://www.eclipse.org/papyrus/

Chapter 2: CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment 53

[30] W. Wenting, C. Haopeng, and C. Xi, “An Availability-Aware Virtual Machine Placement Ap-

proach for Dynamic Scaling of Cloud Applications,” 9th International Conference on Ubiq-

uitous Intelligence & Computing Conference on Autonomic & Trusted Computing (UIC/ATC),

pp. 509-516, September 4-7, 2012.

[31] F. Machida, M. Kawato, and Y. Maeno, “Redundant virtual machine placement for fault-

tolerant consolidated server clusters,” IEEE Network Operations and Management Symposium

(NOMS), pp. 32-39, April 19-23, 2010.

[32] J. Li et al., “Improving Availability of Cloud-Based Applications through Deployment

Choices,” IEEE Sixth International Conference on Cloud Computing (CLOUD), pp. 43-50,

June 28-July 3 2013.

[33] R.E. Harper, R. Kyung, et al., “DynaPlan: Resource placement for application-level

clustering,” IEEE/IFIP 41st International Conference on Dependable Systems and Networks

Workshops (DSN-W), pp. 271-277, June 27-30, 2011.

[34] E. Bin et al., “Guaranteeing High Availability Goals for Virtual Machine Placement,” 31st

International Conference on Distributed Computing Systems (ICDCS), pp. 700-709, June 20-

24, 2011.

[35] A. Abouzamazem and P. Ezhilchelvan, “Efficient Inter-cloud Replication for High-Availability

Services,” IEEE International Conference Cloud Engineering (IC2E), pp. 132-139, March 25-

27, 2013.

[36] M.E. Frincu and C. Craciun, “Multi-objective Meta-heuristics for Scheduling Applications

with High Availability Requirements and Cost Constraints in Multi-Cloud Environments,”

IEEE Conference Utility and Cloud Computing, pp. 267-274, December 5-8, 2011.

[37] H. Jinhua, G. Jianhua Gu, S. Guofei, and Z. Tianhai, “A scheduling strategy on load balancing

of virtual machine resources in cloud computing environment,” IEEE third International Sym-

posium on Parallel Architectures, Algorithms and Programming (PAAP), pp. 89-96, December

18-20, 2010.

[38] T. Wenhong, Z. Yong, Z. Yuanliang, and X. Minxian, “A dynamic and integrated load-

balancing scheduling algorithm for Cloud datacenters,” IEEE International Conference on

Cloud Computing and Intelligence Systems (CCIS), pp. 311-315, September 15-17, 2011.

54

Chapter 3

Scrutinize High Availability-aware Deployments

Using Stochastic Petri Net Model and Cloud

Scoring Selection Tool

3.1 Introduction
With the cloud computing era, many business applications are offered as cloud services

where they can be accessed anytime and anywhere [4]. Infrastructure-as-a-Service (IaaS)

and Platform-as-a-Service (PaaS) are essential forms of cloud services provided for many

enterprises, such as Microsoft Azure and Amazon Elastic Compute Cloud (EC2) [5] [6].

Depending on the cloud user’s needs, PaaS and IaaS provide the required web applications

and computational resources in the form of virtual machines (VMs). With the widespread

of on-demand cloud services/VMs, their availability becomes a paramount aspect for cloud

providers and users [7]. It is important to note that availability is the percentage of time

where these services are available in a given duration. Cloud services encounter different

types of hardware and software failures and consequently become unavailable [8]. As for

the cloud users, they cannot prevent or mitigate the service downtime unless they have

their proprietary high availability (HA) solutions, such as the Netflix HA approach [9].

Therefore, cloud users and providers should handle the different hardware and software

failures, and other sporadic uncertainties by selecting and analyzing the best application

Part of this chapter has been published [1] and [2]. The work is then extended to a journal and
is submitted for publication [3].

This work is supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC-STPGP 447230) and Ericsson Research.

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 55

deployments in a given cloud environment. Nowadays, cloud users and providers de-

pend on affinity/anti-affinity policies, overprovisioning practices, and multi-zone/region

deployments to achieve high availability rather than defining a comprehensive and ana-

lytical model to analyze the HA of a cloud application. For instance, OpenStack Nova

schedulers use anti-affinity/affinity filters and availability zones notions to deploy appli-

cations in geographically distributed data centers (DCs) in a given cloud to maintain high

availability [10]. Although these notions minimize outage of cloud applications, they are

still missing a quantitative model to analyze the availability of these applications and pro-

vide generic guidelines for HA-aware scheduling solutions. The deployment of cloud ap-

plications to maintain the preferred availability is not a straightforward process. There-

fore, cloud providers should offer and evaluate HA solutions that mitigate any encountered

downtime and recover any data loss.

With the cloud being the lifeblood of many information technology (IT) applications and

telecommunication services, its DCs can be seen as an opportunity for flexible integra-

tion of multiple compute capabilities and virtual services for performance-aware and on-

demand access [11] [12]. Therefore, the comprehensive and analytical HA-aware model

should be associated with a performance-aware cloud scoring tool to select the best HA-

aware, energy efficient, and cost-aware applications deployments. The objective of this

chapter is to define an availability analysis approach that considers the effects of hard-

ware and software failure types, recovery duration, load balancing delay, and user request

processing time and accordingly assesses whether the given cloud deployment would be

able to satisfy the availability and performance requirements of the service level agreement

(SLA).

Our approach is based on a Stochastic Petri Net model (SPN) and a policy-driven cloud

scoring system to evaluate the availability of cloud services deployed in geographically

distributed data centers and select the optimal one [13]. Fig. 3.1 summarizes this approach.

First, the proposed Stochastic Petri Net model captures the characteristics of the cloud

provider and user. It translates them into elements of an availability model that can be

solved to calculate the expected availability and subsequently be used to guide the cloud

scheduling solution. These elements are then synchronized according to their interdepen-

dencies in order to form a stochastic availability model. The model generates HA-aware de-

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 56

Figure 3.1: SPN model and scoring selection approach.

ployments for a given application. These deployments are then inputted to the cloud scoring

tool to select the optimal one according to predefined policies, such as lower operational ex-

penditure (OPEX) and carbon footprint. Initially, our approach is used to evaluate whether

a given cloud deployment satisfies the availability requirements of a cloud-deployed ap-

plication. Then it provides a policy-driven ranking system to weight the best HA-aware

deployments and select the optimal ones among them. The scoring solution introduced in

this chapter is a generic approach where the evaluation criteria is determined based on the

cloud providers preferences, and the selection process is modified accordingly.

In this chapter, we discuss the challenges of availability analysis of cloud deployed appli-

cations. Additionally, we propose a comprehensive HA-aware analysis approach of cloud-

deployed applications using SPN [1] [2]. The latter uses SPN model to evaluate application

scheduling in a cloud environment while considering the HA objective and impact of func-

tionality constraints on their performance. Elaborate simulation results are generated to

provide guidelines for cloud deployments approaches. Although this approach models the

application behavior in terms of HA, it discards other challenges associated with cloud

applications deployments, such as energy and cost efficiency. It is necessary to design a

system that integrates HA-aware cloud applications deployments with other cloud applica-

tions issues. Therefore, we escalate that work to the following:

• Associate the HA-aware SPN model with policy-driven cloud scoring system.

• Capture energy/OPEX as scoring policies to provide HA and performance-aware

scheduling of cloud applications.

• Integrate the scoring policies with the functionality and availability constraints to

select best placements of application components to maximize HA and maintain

energy/cost needs.

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 57

• Envision user needs and assess DCs capabilities to filter out best HA-aware deploy-

ments to minimize Greenhouse Gas (GHG) emissions and OPEX in DCs.

• Scrutinize the deployments results of the SPN model using the scoring tool and com-

prehensive analysis.

• Provide an extensible scoring system that depends on the generic cloud environment.

• Modify the evaluation criterion based on the capabilities and preferences offered by

the cloud providers such as green and cost criteria to evaluate cloud DCs.

The rest of this chapter is organized as follows. Section 3.2 and 3.3 define the problem

background where it presents the different challenges of placement of applications com-

ponents, the need for SPN models, and scoring selection system for deployments of cloud

applications. Section 3.4 describes the cloud model, the cloud deployments, the proposed

SPN model, and the scoring selection system. Section 3.5 describes the evaluation and

results of the SPN model and the scoring selection tool. Section 3.6 presents some re-

lated works for availability analysis as well as green- and cost-aware scheduling. Finally,

Section 3.7 concludes the chapter.

3.2 Modeling High Availability in Cloud
Many HA solutions have been proposed to mitigate the software or hardware failures of

a virtualized system [14], [15], and [16]. However, these approaches do not associate

their solution with an availability assessment model to evaluate the impact of the above

requirements on that solution. Different types of failures affect the cloud infrastructure

and applications. Besides, some challenges are raised when choosing best deployment of

cloud applications while satisfying the HA, functionality, green, and cost requirements.

Therefore, it is necessary to understand the various failure forms affecting the cloud model,

the HA and performance-aware scheduling challenges, and the need for a SPN model and

cloud scoring selection tool to handle them.

3.2.1 Failure types and distributions
The cloud model typically consists of multiple data centers, each having a set of servers and

a set of applications with multiple components. Using the appropriate scheduling solution,

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 58

the applications are hosted on the servers that best fit the application requirements us-

ing VM (or containers) mapping. Consequently, any DC/server failure mode can bring the

hosted application down whether it is a planned or unplanned outage. Unplanned downtime

can be defined as the time where a system enters a failure mode and becomes unavailable.

Such downtime is a result of an unexpected failure event, and consequently, neither the

cloud provider nor the users are notified of it in advance. Therefore, it is necessary to have

a model that takes into account the actual effect of failures on the system availability. There

are different forms of failures:

1) Hardware/Infrastructure failures [17] [18]: Such failures happen at the data center and

server layers. They can be the results of faulty elements of the server, storage, and network,

such as faults in memory chips, disk drivers/arrays, switches, routers, or cabling. Such fail-

ures can be captured by the failure rates of the servers as well as the entire DC.

2) Application failures [19]: Such defects occur at the application and VM/container lev-

els. They might be generated from the hypervisor malfunctioning, unresponsiveness of

the operating system, files corruption or viruses and software bugs, such as Heisenbugs,

Bohrbugs, Schroedinbugs, or Mandelbugs [20]. We capture such failures by the failure

rates of the components and VMs/containers.

3) Force majeure failures [21]: These failure events affect both the cloud provider infras-

tructure and the cloud applications. They are generated from power loss, storms, fires,

earthquakes, floods, and other natural disasters. Due to their scale, we capture such failures

by the failure rate of the DC.

4) Cascading failures: These failures are the results of an accumulated impact of hardware

or software failure. For example, a malfunctioning dynamic host configuration protocol

(DHCP) server can flood the network with DHCP requests causing a DC failure. Con-

sequently, its corresponding servers, their hosted applications, and VMs/containers will

become inaccessible. The functionality of the corresponding application or VM/container

is ceased, which associate its recovery with the repair or recovery policy of its host. Due to

their propagation impact, we capture such failures by the failure rate of the DC.

Each of the previous failure states is associated with a failure rate or mean time to fail-

ure (MTTF) and mean time to repair or recover (MTTR) determined by the used repair or

recovery policy. Due to the stochastic nature of the corresponding failure events, it is as-

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 59

sumed that they are generated using certain probabilistic distribution functions. However,

there is no restriction or specific consent on the distribution type of every failure event.

It can follow exponential, Weibull, normal, or any other stochastic model. Regarding the

recovery or repair policy, it is assumed to have a deterministic or a stochastic nature de-

pending on the used recovery behavior [22].

The exponential failure distribution has been used in many previous failure analysis and

availability related works [23], [24], [25], [26], [27], and [28]. Therefore, in this chapter,

the exponential failure distribution is used to reflect failure rate or MTTF of DC, server,

application, and VM/container. Such distribution is applied on all the stochastic failure

transitions of the proposed Stochastic Petri Net model. As for the repair/recovery timed

transitions, a deterministic distribution is applied on them to trigger any repair or recovery

behavior for the DC, server, application, and VM/container [29] [30]. It should be noted

that our approach also supports other failure and repair rates, as our model does not depend

on a specific probability distribution.

3.2.2 Multi-tier applications in the cloud:
When it comes to HA-aware scheduling of applications in a cloud environment, various

HA approaches can be adopted to mitigate the outage impact. Some scheduling solutions

are associated with load balancing mechanism for HA purposes while other schedulers

incorporate their approach with replication or failover techniques to maintain certain HA

baseline. The challenge here lies in selecting the best deployment model while analyzing

the impact of the adopted HA mechanism, different failure types, functionality constraints,

the redundancy, and interdependency models between different components. For instance,

multi-tier application uses redundancy models and load balancing to maintain certain HA

baseline. Each layer consists of a primary component backed up with multiple active com-

ponents depending on the used redundancy model. Upon arrival of requests, the used load

balancer distributes them between different servers. Through constant monitoring, it en-

sures that these requests are served by healthy VMs. Upon failure detection, the load bal-

ancer removes the faulty machine from the load balancing group and redirects the request

to a healthy one.

Typical web applications consist of three-tiers with a frontend (e.g. multiple Hypertext

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 60

Figure 3.2: Example of three-tier web application.

Transfer Protocol Secure (HTTPS) servers), a business logic application (App) on the mid-

dle tier, and a database (DB) storing the system state at the backend. The HTTPS servers

depend on the App, which in turn, is sponsored by the DB. Each component type (HTTPS,

App, and DB) consists of a primary component and multiple active replicas as shown in

Fig. 3.2. Each type is associated with certain failure types. When it comes to deploying

such application in a single cloud with geographically distributed DCs, multiple options

are to be considered on whether inter- or intra- DC deployment should be selected. It is

not always the case that maximum inter-DC distribution is preferable because this decision

depends on many factors, such as the failure distributions, recovery behaviors, and the used

HA mechanisms as we will demonstrate in Subsection 3.5.1.

3.2.3 Stochastic Petri Nets in the cloud:
The stochastic nature of service failures and the urgent need for availability solutions re-

quire an availability evaluation model that identifies failures, their underlying causes, and

mitigates the associated risks and service outages. It has been shown that analytical mod-

els, such as SPNs and Markov chains have been used to analyze the reliability/availability

of many complicated IT systems [17] [18] [31]. However, the complicated nature of cloud

infrastructure configurations and dynamic state changes require a comprehensive and an-

alytical availability-centric model [32]. Such model should satisfy essential requirements

consisting of:

• Capture the stochastic nature of failures according to different probability distribu-

tion functions.

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 61

• Capture the cloud stack (DCs, servers, and virtual environment (VE)) and the corre-

lation aspect of their failures.

• Capture the functional workflow between the components of multi-tier applications

(queuing and request forwarding) as well as the HA mechanisms they employ (load

balancing and redundancy schemes).

• Capture different deployments of the application components in the cloud (inter- vs.

intra-DC deployment).

• Assess and quantify the expected availability of the application according to its cloud

deployment.

Petri Nets (PNs) are widely used to model the behavior of different Discrete Event Systems

(DES) [33]. They are graphically presented as directed graphs with two types of nodes:

places and transitions. Different extensions of PNs are introduced in the literature to make

them more expressive. Deterministic Stochastic Petri Nets (DSPN) are one of Petri Nets ex-

tensions for modeling the systems with stochastic and deterministic behaviors [34]. Three

transition types are defined in DSPN: immediate transitions model the actions that happen

without any delay under a condition, timed transitions model the actions that happen after

a deterministic delay, and stochastic transitions model the actions that happen after an ex-

ponentially distributed delay.

DSPN is formally presented as a tuple of (P, T, I, O,H,G,M0, τ,W,Π) where P and T

are the non-empty disjoint finite sets of places and transitions, respectively. I and O are the

forward and backward incidence functions such that I, O: (P ×T)∪ (T ×P)−→ N where

N is the set of non-negative integers. H describes the inhibition conditions. G is an en-

abling function that given a transition and a model state determines whether the transition

is enabled. M0 is the initial marking. The function τ associates timed transitions with a

non-negative rational number (τ : T −→ Q+, where Q+ stands for the set of non-negative

rational numbers). The function W associates an immediate transition with a weight (rel-

ative firing probability). Finally, Π associates an immediate transition with a priority to

determine a precedence among some simultaneously firable immediate transitions. Note

that the priority of timed transitions (either deterministic or stochastic) against immediate

ones is zero.

To model the behavior of an application running on the cloud with stochastic failures and

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 62

deterministic recovery events, we have used Stochastic Colored Petri Net (SCPN). SCPN

supports both stochastic and deterministic events, and it is a class of DSPN models where

the tokens can have different colors (types) [35]. The model is simulated and analyzed

using TimeNET [36]. Although DSPN imposes the restriction of only one enabled deter-

ministic transition in each marking, TimeNET provides transient and stationary analysis of

SCPN without any restriction on the number of concurrently enabled transitions. In Sub-

section 3.4.2, we explain the SCPN model proposed for a multi-tier application deployed

in the cloud.

Although the SCPN model captures the cloud characteristics and translates them into ele-

ments of an availability model, it overlooks the other challenges associated with the cloud.

In the following, we explain the policy-driven scoring system that weighs the HA-aware de-

ployments and selects the optimal ones according to a predefined policy (i.e. green and/or

cost).

3.3 Cloud Scoring System
Energy efficiency, carbon footprint, and OPEX are gaining a lot of interest in informa-

tion and communication technology (ICT) sector and cloud market. DCs and server farm

spaces can devour up to 100 times as much power as typical offices [37]. With this high

energy consumption, DCs are supposed to have performance- and energy-aware configu-

ration measures that can lessen the power use and save OPEX, all aimed at having HA,

green, and cost-aware solutions. This section explains the need to associate the analytical

SCPN model with a cloud scoring tool. The latter tool selects the optimal green- and/or

cost-aware deployment based on functionality features, such as lower carbon footprint and

OPEX.

3.3.1 Motivation:
Nowadays, the size of DCs has increased significantly to satisfy the migration to the cloud

and the growth in the usage of internet services [38]. Besides, many telcos are selling their

DCs and moving to the cloud, such as Verizon and AT&T [39]. With more DCs being built,

more services will be provided to the cloud users, and additional investments and incentives

will be brought to the market. This increase in the rate of DCs construction is accompanied

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 63

Figure 3.3: Different energy challenges and solutions in cloud DCs.

by a significant growth in energy consumption that might exceed in some scenarios the

thresholds introduced by the power delivery and cooling systems. In a DC, a large amount

of energy is wasted due to underutilized servers, cooling solutions, and heat dissipation of

electronic or network equipment. It was estimated that electricity usage in DCs is around

61 billion kilowatt-hours [40]. It is equivalent to the consumption of 5.8 million United

States (U.S.) households, and it is equal to the electricity usage of the U.S transportation

manufacturing industry.

DCs are also going to face an increase in operational costs due to the high energy consump-

tion. Running a large DC can cost 10 to 25 million dollars per year where 42% of the cost

is allocated to OPEX [41].

Regarding GHG emissions, they depend on the power consumption of DCs, the grid elec-

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 64

tricity, power supplies, and the materials used for power delivery. Based on Natural Re-

sources Defense Council (NRDC) nationwide study, DCs consume around 3% of the en-

ergy produced globally, but they generate 200 million metric tons of carbon [38].

GHG emissions also depend on the geographical location of a DC. For instance, a DC

located in a region where renewable energy resources can be accessed produces lower

GHG emissions compared to a DC located in an area using coal or natural gas as energy

resources. However, it is not always the case where it is allowed to place DC in environ-

ment friendly areas due to some governmental restrictions. Additionally, delay constraints

between interacting cloud applications can impose an obstacle in designing green-aware

solutions.

To mitigate the above challenges, energy efficiency directive proposes a “20-20-20”% en-

ergy improvement, renewable energy consumption, and carbon footprints reduction frame-

work to be issued by 2020. ICT sectors are integrated with this framework, and they in-

troduce strategies to achieve the designed target [42] [43]. They are incorporating in this

framework in direct, indirect, and systematic ways to reduce its energy demands and car-

bon emissions. Greenpeace is also pushing IT and telecommunication companies to have

carbon-free DCs [44]. One solution could be a migration to the cloud and adoption of vir-

tualization concept. The VMs, containers, and consolidation concepts can eliminate idle

servers and reduce OPEX while providing 75% increase in server efficiency [41] [45].

With the migration to the cloud, its providers are searching for alternative solutions to re-

duce the high energy consumption and expenditures. They adopt multiple approaches, such

as using renewable energy and building DCs in cooler areas to reduce cooling cost and earn

carbon tax credits. For example, many local governments are promising faster adoption of

green DC such as Paris (United Nations Climate Change Conference (COP21) agreement),

San Diego, and Las Vegas [46]. Norway as well is trying to minimize cooling costs by

using the environment resources. It is planning to use fjord to get cold water and cool halls

for its DCs [47]. Lately, Facebook has announced the construction of one of the most sus-

tainable, reliable, and green DC, Lulea [48].

Other cloud providers are benefiting from the tax breaks on building DCs in some states to

reduce costs. For instance, Arizona is providing tax breaks for big and medium-size multi-

and single-tenants’ operators in order to motivate DCs constructions [49].

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 65

Overall, the construction of more DCs and server farms is associated with high energy con-

sumption, a rise in expenditures, and GHG/carbon emissions. Many solutions are designed

to address these challenges and provide green and cost-aware cloud environment, such as

renewable energy, cloud solutions/scheduling, and government tax breaks. Fig. 3.3 repre-

sents the above challenges and solutions in DCs.

It has been shown that power and cooling solutions in DCs can reduce power bills, capital

investments for power plants, and GHG emissions, but one major impediment is raised re-

garding the reliability and performance. It is necessary to delineate an approach that will

compromise between the availability, cost, and green requirements. To ensure redundancy

and workload proximity, cloud providers should have multiple geographically distributed

DCs, each with a different OPEX. Having a profitable cloud necessitates a scoring mech-

anism that distributes the workload while satisfying the HA requirements (different avail-

ability zones, SLA level) and minimizing DCs energy consumption and OPEX. Note that

the scoring selection tool can use objectives other than green and cost efficiency depending

on the predefined options of the cloud providers.

3.3.2 Cloud scoring approach:
This chapter proposes a SCPN model that analyzes the availability of cloud applications

and chooses their best deployment nodes that satisfy HA requirements and functionality

constraints, such as latency and computational resources. In some cases, multiple HA-

aware deployments might be eligible for the application components with certain MTTF

and MTTR values of examined DCs. For instance, if the cloud user is looking for HA-

baseline greater than 90%, SCPN evaluation can end up with more than one satisfactory

solutions. Therefore, a scoring selection tool is needed to add weights to the selected de-

ployments and select optimal ones among them. The scoring selection tool is extensible

and can address different preferences of cloud providers. It has an evaluation criterion with

multiple options to allow scoring the deployments. In order to determine a pragmatic eval-

uation methodology, some afore steps are considered:

1) User Requirements Envisioning: The scoring approach envisions the user requirements

and usage patterns to generate certain groupings of the application components. For in-

stance, if the deployment of a 3-tier web application is scrutinized using the scoring tool,

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 66

the envisioning process should consider the interdependencies between components and

examine tolerance time of the dependent ones to generate the possible groupings. In the

3-tier web application case, HTTPS depends on the App that is sponsored by the DB. If

the HTTPS cannot tolerate the failure of App, HTTPS and App should be deployed in the

same DC. Consequently, a co-location group is generated, and the evaluation criterion se-

lects the best green and cost-aware DC accordingly. In this work, we focus on green and

cost objectives as the evaluation criterion to select optimal placement of the applications

components.

2) Cloud Infrastructure Assessment: It is necessary to measure the DCs capabilities in

terms of OPEX, carbon footprint, governmental regulations, usage patterns, etc [50]. With

these measures, DC workloads can be evaluated, and consequently, the overload factor can

be calculated for each DC. Overload represents the increased load that a DC can handle

upon a sudden failure, slashdot effect, or any other growth in workload. Generally, over-

loads require load balancing to distribute them to the DC that satisfies certain HA, green or

any other objective. Therefore, each DC is associated with its overload factor to help select

best DC upon load distribution or redirection process. In order to determine the overload

factor, it is necessary to select a baseline DC. The baseline DC, DCb, is the DC that has

the highest GHG emissions and OPEX. Therefore, we have assumed that DCb does not

improve OPEX, GHG emissions, or other metrics preference compared to other DCs with

higher metrics. Once the baseline is determined, it is assigned an overload factor OLb of 1.

Then the overload factors of remaining DCs, DCri , are calculated accordingly. For exam-

ple, if DCr1 has low carbon footprint, it is assigned up to x% overload. Subsequently, its

overload factor is calculated as follows:

OLri = OLb +
x

100
(1)

Generally, the x% overload is determined by the cloud provider during the DC planning

strategy. This overload percentage is affected by DC type (server room, small, mid-size,

large, etc), CPU, network, storage, memory, and power modeling in the corresponding DC

[51], [52], and [53].

Due to the above energy challenges and motivations, this chapter uses carbon footprint and

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 67

OPEX as assessment metrics of DCs. However, the assessment phase is not only bounded

to green and cost metrics, it can be extended to other objectives based on the capabilities

and choices of the cloud providers.

3) Evaluation Criteria Extraction: The envisioning process is integrated with the assess-

ment phase, and the suitable criterion is generated accordingly. For instance, if the cloud

user requires HA-aware deployments for interdependent application components while tak-

ing into consideration energy efficiency, the evaluation criterion will have low, medium, and

high carbon footprint options. Then the overload factors of the DCs are evaluated. Also,

an evaluation criterion can be a combination of multiple features/preferences where each

feature/preference is scrutinized in the cloud infrastructure.

While the proposed SCPN model handles the availability requirements, the scoring selec-

tion tool uses OPEX and carbon footprint as criteria for its evaluation/selection process.

The tool can also use other evaluation criteria depending on the preferences defined by the

cloud providers and users.

3.4 Approach
To address the challenges of HA, cost, and green-aware scheduling discussed in the previ-

ous sections, we need first to elaborate a behavioral model that can capture the stochastic

nature of different failures in a system and then associate it with an energy- and cost-aware

scoring selection tool.

The Unified Modeling Language (UML) can reflect the service availability features, but as

a semi-formal model, it cannot simulate the behavior of the system or measure the avail-

ability of a service while different stochastic failures are happening. On the other hand,

Stochastic Petri Nets are behavioral models that have proven to be suitable to model and

simulate the cloud system with stochastic and deterministic behaviors. Creating the SPN

model manually can be a tedious, time-consuming, and error prone task. To mitigate this

complexity, our approach is based on mapping an instance of the UML model describing

a given deployment of the cloud application to the corresponding Stochastic Colored Petri

Net model. Then this approach analyzes this model using TimeNET, a SCPN simulation

tool, to quantify the expected availability of the application.

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 68

Figure 3.4: The overall SCPN approach.

Fig. 3.4 summarizes this approach.

The SCPN model is used to select best HA-aware placements while overlooking energy

and cost objectives. Therefore, its results are inputted to a scoring tool to filter out deploy-

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 69

Figure 3.5: The UML model for a cloud deployment.

ments according to green and cost constraints. Once DCs are winnowed, the scoring tool

selects the optimal one.

In the following, we explain the transformation from a cloud system to the corresponding

SCPN model. Then we describe the evaluation criteria of the scoring selection system.

3.4.1 Cloud model
Many modeling approaches are developed to describe the heterogeneity of cloud archi-

tectures. They use different modeling frameworks in terms of general-purpose languages

or domain-specific languages. For instance, OpenStack proposes Heat as an orchestration

project that describes the cloud application and infrastructure, known as the stack, in Yet

Another Markup Language (YAML) file called Heat Orchestration Template (HOT) [54].

With this template, Heat allows some application programming interface (API) to be used

by clients to import templates to its engine. The latter parses the templates and then com-

municates with the necessary OpenStack services to create the specified stack and deploy

its associated resources [54]. Also, HOT provides HA, auto-scaling, and failover capabili-

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 70

ties within the created stack to allow automatic addition and destruction of VMs based on

the monitored workload. Similarly, Amazon Web Services (AWS) CloudFormation uses

JavaScript Object Notation (JSON) file to describe cloud architectures [55] [56] [57]. The

proposed template is used to address the AWS cloud infrastructure. It consists of resource

section that defines the stack properties such as Amazon Elastic Compute Cloud instance

and conditions to control creation and release of stack resources. With such templates,

AWS CloudFormation allows modeling and setting up of certain AWS resources while

minimizing service management time and keeping track of used services for repeatability

purposes.

Besides, general-purpose languages are widely used to describe cloud environment. For

instance, UML can describe platform, infrastructure, and software artifacts to reflect the

characteristics of different cloud component [58]. It can also specify the mapping of an

application on the best cloud host according to predefined policies (HA, green, perfor-

mance...).

With the generic property of UML, it is used as a template to capture a given cloud envi-

ronment, and it can be easily translated to a YAML or a JSON file. A typical cloud deploy-

ment is composed of multiple software components running on an execution environment.

The latter can be a VM hosted on a server or a container hosted either on a VM or on a

server. In any case, the server is deployed on a data center. In the previous chapters [27]

[28], we proposed a cloud-based UML model that captures a detailed description of a typ-

ical cloud system. We have modified the previous UML model to meet the requirements

of the HA analysis of a given cloud deployment. Fig. 3.5 illustrates our modified UML

model that captures such cloud deployment. Each application consists of multiple software

components of different types. Each software component has some attributes to capture

the incoming workload distribution (arrivalRate), the time duration required to process

a request (processingTime), the number of requests the component can process in parallel

(bufferSize), the maximum capacity of the requests waiting to be processed (queueSize), the

number of redundant replicas considered for each component (numberOfReplicas), and the

redundancy schema of the component (redundancyModel) to show which redundancy type

a component is capable of accepting. Execution environment (VM or container), server,

and DC may fail because of different failure types. Each failure type has a failure rate, a

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 71

Figure 3.6: Data center, server, VM, and container sub-SCPN models.

recommended recovery action, and recovery duration based on the recommended recovery.

With the transformable property of the UML model, multiple cloud deployments and pro-

files are generated as reusable templates to identify the mapping between cloud infrastruc-

ture and applications. Then these deployments are imported to the SCPN model and scoring

system to analyze and select best HA, energy, and cost-aware deployments accordingly.

3.4.2 SCPN model building blocks
This section explains SCPN model used to evaluate various HA application deployments in

a cloud environment. We define various building blocks of SCPN, which when combined

form a complete SCPN model that can be analyzed to assess the expected availability. We

propose six different building blocks that we use in our model transformation phase.

In our model, each of the software components can run on a virtual machine or a con-

tainer. The VM is hosted on a server while the container can be hosted either on a VM or

on a server. The server, in turn, is hosted on a DC. Each execution environment, server,

and DC have its own recovery time (MTTR) and failure rate/MTTF. Figures provided in

this chapter follow the representation of TimeNET. In TimeNET, the immediate transitions

are shown as black bars while deterministic and exponential timed transitions are shown

as thick white-filled bars. Note should be taken that this representation is slightly differ-

ent from the standard DSPN presentation where immediate transitions are modeled with

narrow bars, timed transitions are modeled with thick black-filled bars, and exponential

transitions are modeled with thick white-filled bars.

1) Data center model: Fig. 3.6a shows the data center model. A data center has two

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 72

states: healthy (the place DCi) and failed (the place DCi fail). Failure is modeled using

an exponential timed transition (Ti DCfail) whereas the recovery is a deterministic one

(Ti DCup) [22] [29] [30]. Table 3.1 lists these transitions, their types, and time functions.

Table 3.1: Time function of DC model transitions.

Transition Name Type Time Function

Ti DCfail Exponential EXP(dc.mttf)

Ti DCup Deterministic DET(dc.mttr)

2) Server model: Fig. 3.6b presents the server model. The server also has two states:

healthy (Si) and failed (Si fail). The server can fail, and the failure is an exponential

transition (Ti sfail). It can also fail immediately due to the failure of its hosting data center

(Ti sDCfail). We represent the data center hosting Si with S(i)DC . In the following, we

use the place name in the formulas to show the number of the tokens available in that place.

The immediate transition Ti sDCfail is guarded with:

GTi sDCfail = (S(i)DC == 0) (2)

The recovery occurs according to a deterministic transition (Ti sUP). A server cannot be

recovered unless its host data center is healthy. Thus, Ti sUP is guarded with:

GTi sUP = (S(i)DC == 1) (3)

Table 3.2 provides the information about the timed transitions of server sub-model.

Table 3.2: Time function of server model transitions.

Transition Name Type Time Function

Ti sfail Exponential EXP(server.mttf)

Ti sUP Deterministic DET(server.mttr)

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 73

3) VM model: A VM (Fig. 3.6c) can fail through an exponential transition (Ti fail) or

can fail immediately due to the failure of its hosting server or data center (Ti Hfail). We

refer to the server and DC hosting the VM with VM(i)Server and VM(i)DC , respectively.

Ti Hfail is guarded with:

GTi fail = (VM(i)DC == 0 ∨ VM(i)Server == 0) (4)

The recovery happens after a deterministic delay (Ti up). Note that in this case, also a VM

cannot be recovered unless its hosting data center and server are healthy. Thus, Ti up is

guarded with:

GTi up = (VM(i)DC == 1 ∧ VM(i)Server == 1) (5)

Table 3.3 provides the information of the timed transitions of the VM sub-model.

Table 3.3: Time function of VM model transitions.

Transition Name Type Time Function

Ti fail Exponential EXP(vm.mttf)

Ti up Deterministic DET(vm.mttr)

4) Container model: A container (Fig. 3.6d) can fail through an exponential transition

(Ti ctfail) or can fail immediately due to the failure of its host and data center (Ti hfails).

Note that the host can be a VM or server. In any case, the failure of server causes an

immediate outage of the container. We refer to the host and DC of the container with

Ct(i)H and Ct(i)DC , respectively where Ct(i)H can be Ct(i)VM or Ct(i)Server. If the

container is hosted on a VM then Ti hfails is guarded with:

GTi ctfail = (Ct(i)DC == 0 ∨ Ct(i)Server == 0 ∨ Ct(i)VM == 0) (6)

If the container is hosted on a server then Ti hfails is guarded with:

GTi ctfail = (Ct(i)DC == 0 ∨ Ct(i)Server) (7)

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 74

The recovery happens after a deterministic delay (Ti healthy). Note that in this case, also

a container cannot be recovered unless its host and data center are healthy. If the container

is hosted on a VM then Ti healthy is guarded with:

GTi healthy = (Ct(i)DC == 1 ∧ Ct(i)Server == 1 ∧ Ct(i)VM == 1) (8)

If the container is hosted on a server then Ti healthy is guarded with:

GTi healthy = (Ct(i)DC == 1 ∧ Ct(i)Server == 1) (9)

Table 3.4 provides the information of the timed transitions of the container sub-model.

Table 3.4: Time function of container model transitions.

Transition Name Type Time Function

Ti ctfail Exponential EXP(container.mttf)

Ti healthy Deterministic DET(container.mttr)

5) Load Balancer model: The load balancer distributes traffic among multiple compute

instances. It is an effective way to maintain the availability of a given cloud system. It

provides fault tolerance policy in a given application deployment [59] [60]. Upon failure

of some instances, load balancer seamlessly replaces them while maintaining the normal

operation of other nodes/instances. Amazon EC2 uses the concept of elastic load balancing

to provide HA among its Availability Zones (AZs) [59] [61].

Fig. 3.7 illustrates the load distributor and round robin load balancer sub-model. The place

LoadDistributor has a fixed number of tokens, and the load balancer transitions (T LBi

and T LB0) distribute the workload among the active replicas of the same component.

Each component has a queue place (Ci queue) to represent the number of requests it can

queue for processing and a flushing place (Ci flushing). The transitions T LBi and

The flushing place is a place holder for the load balancing mechanism to ensure a round robin
distribution, and thus it is not used to capture a specific component behavior.

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 75

Figure 3.7: Load balancer SCPN model.

Ti flush are guarded such that they model a round robin policy. When a component Ci
receives a token in its queue, its flushing place is marked, and the component will not

receive another token until its flushing place is unmarked. Let the round robin order be

C1, C2, C3, ...CM where M is the number of replicas (numberOfReplicas), and then the

same order repeats. The transition T LB1 is the first one that becomes enabled, and its

clock starts elapsing. Once it is fired, one token is produced in C1 queue, and one token

is produced in C1 flushing. As long as C1 flushing is marked, C1 cannot receive an-

other token. On the other hand, T1 flush cannot be fired until all other components have

received their share. As soon as C1 receives a token, the transition T LB2 becomes en-

abled, and its clock starts elapsing. Then, T LB2 fires, and C2 queue and C2 flushing

receive a token. The same way other components receive their share until CM receives a

token. At this time, T1 flush is enabled, and C1 flushing is unmarked. Subsequently,

T2 flush, T3 flush, ...TM flush also fire. According to the nature of workload arrival

of the system, T LBi can have different distributions (e.g. deterministic, exponential, ...).

Table 3.5 lists different timed transitions of the load balancer sub-model, their type, and

time functions.

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 76

Table 3.5: Time function of Load balancer model transitions.

Transition Name Type Time Function

T LB0 Deterministic∗ DET(comp.arrivalRate)

T LBi Deterministic∗ DET(comp.arrivalRate)

*: Depending on the nature of the workload arrival, these transitions can have other time functions.

Note that if a component is not available due to a full queue or a component failure,

VM/container failure, server failure, or data center failure, it should give its turn to the next

available component. If the execution environment is VM, then for M being the number of

replicas, L being the maximum capacity of a component queue (queueSize), VM(i)Server

and VM(i)DC being the host server and DC of VMi, we define V SDH(i) and V SDF (i)
as follows:

V SDH(i) = [VMi == 1 ∧ VM(i)Server == 1 ∧ VM(i)DC == 1] (10)

V SDF (i) = [VMi == 0 ∨ VM(i)Server == 0 ∨ VM(i)DC == 0] (11)

If the execution environment is container, then forM being the number of replicas, L being

the maximum capacity of a component queue (queueSize), Ct(i)H and Ct(i)DC being the

host VM/server and DC of Cti, we define V SDH(i) and V SDF (i) becomes as follows:

V SDH(i) = [Cti == 1 ∧ Ct(i)H == 1 ∧ Ct(i)DC == 1] (12)

V SDF (i) = [Cti == 0 ∨ Ct(i)H == 0 ∨ Ct(i)DC == 0] (13)

T LBi is guarded with GT LBi
:

∀i∈1:MGT LBi
= (Ci flushing == 0 ∧ V SDH(i) ∧ Ci queue < L)

∧
k=1:i−1

(Ck flushing == 1∨V SDF (k))
∧

j=i+1:M

(Cj flushing == 0∨V SDF (j)) (14)

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 77

And Ti flush is guarded with GTi flush:

∀i∈1:MGTi flush =
∧

j=1:i−1
(Cj flushing == 0 ∨ V SDF (j))

∧
k=i+1:M

(Ck flushing == 1 ∨ V SDF (k)) (15)

If all the components fail or their queues are full, the requests are dropped and sent to the

place DeniedService. If the execution environment is VM, the Transition T LB0 is guarded

with:

GT LB0
=

∧
i=1:M

(VMi == 0∨VM(i)Server == 0∨VM(i)DC == 0∨Ci queue ≥ L) (16)

An alternative solution to model the load distribution is to use the loop back arcs from

T LBi and T LB0 to the place LoadDistributor to continuously re-enable the load bal-

ancer transitions and regenerate the workload infinitely. Note should be taken that with

this alternative approach of load distributing, we can run into the issue of over-flooding

the model with tokens if the generation rate of the tokens (representing the arrival rate of

requests) is faster than the consumption rate of the tokens (representing the processing rate

of the requests).

To avoid this issue, we fix the number of tokens in the place LoadDistributor and do not

consider the feedback input arcs. The transitions and their guards remain the same to model

the round robin policy. We include both techniques in the chapter so that the reader can

select the one that best fits their simulation needs.

6) Component model: Fig. 3.8 illustrates the model of a component including partially the

load balancer delivering the workload to the component. In the following, the execution

environment is VM. Each component has a queue (Ci queue) to model the maximum ca-

pacity of the requests waiting to be processed and also a buffer to model the maximum

number of requests a component can process in parallel (Ci processing), such as multi-

threaded components. The requests stored in the queue can enter the buffer only if the

component, its corresponding server, and VM are healthy, and the number of tokens al-

ready in the buffer is below the maximum. When a component fails, all the requests in its

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 78

Figure 3.8: Component SCPN model.

buffer are lost and transferred to the place Lost in phasei where ‘i’ is the tier number. The

transition Ti Lost in Processing is guarded with:

GTi Lost in Processing = ((VM(i) == 0)∨(VM(i)Server == 0)∨(VM(i)DC == 0)) (17)

In addition, in each tier, if all the replicas fail at the same time, all the tokens stored in the

component queue are transferred to the place LostReq. The transition Ti Lost is guarded

with:

GTi Lost =
∧

i=1:M

(VM(i) == 0 ∨ VM(i)Server == 0 ∨ VM(i)DC == 0) (18)

When a component fails, the requests already stored in its queue are transferred again to the

load distributor to be failed over to the other healthy components. This behavior simulates

a multi-active stateful redundancy where each component is equally backed up by the other

components. The transition T failover Ci to LB is guarded with:

∀i∈1:MGT failover Ci to LB
=

(VM(i) == 0 ∨ VM(i)Server == 0 ∨ VM(i)DC == 0)∧

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 79∨

j=1:i−1
(VM(j) == 1 ∧ VM(j)Server == 1 ∧ VM(j)DC == 1)

∨
k=i+1:M

(VM(k) == 1 ∧ VM(k)Server == 1 ∧ VM(k)DC == 1) (19)

The tokens successfully processed are stored in the place Cmid. Note that in a multi-tier

system, the tokens successfully processed in one tier are carried to the next tier where they

are load balanced among the replicas of the next tier. The tokens successfully processed in

all the tiers are stored in a final place. The availability of the system is only determined by

those tokens that reach this final place. Table 3.6 presents the list of timed transitions and

their information.

Table 3.6: Time function of component model transitions.

Transition Name Type Time Function

Ti processed Deterministic DET(comp.processingTime)

T LBi Deterministic∗ DET(comp.arrivalRate)

*: Depending on the nature of the workload arrival, this transition can have other time functions.

3.4.3 Transformation of UML object diagram to SCPN model
Our approach is based on transforming an instance of the UML model (i.e. an object

model) into a solvable SCPN model. For example, an instance of the UML model can

be an AWS cloud web application described in [59] [60]. The AWS web application is a

three-tier model with a web server at the frontend forwarding traffic to an App server. At

the backend, Structured Query Language (SQL) databases store user information and act

as a common repository for content discovery. Each software component is backed up by

a redundant component to enable fault tolerant and HA policies [59] [60]. Then the object

UML model consists of three-tier component blocks, six VM blocks (two for each tier),

six server blocks (one for each VM) and two DC blocks (one for active components and

one for redundant ones). Each of cloud application and infrastructure is associated with its

availability metrics (MTTF, MTTR...). Although we explain the approach based on a UML

input model, the solution is extensible to other object-oriented models or any other con-

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 80

figuration snippets/templates such as OpenStack HOT, AWS CloudFormation application

template, or OpenNebula VM template [62] [63]. The given input model/template captures

the availability attributes of a cloud deployment such as MTTR, MTTF, and other attributes

described in the UML model. Having the required attributes in a given configuration script,

the transformation algorithm is applied to generate the SCPN building blocks.

The overall transformation algorithm is described in the flowchart shown in Fig. 3.9. The

algorithm starts by building a dependency graph based on the component types interdepen-

dencies. At this stage, we identify the number of tiers and their orders. Next, the algorithm

creates the places and transitions that are common in all SCPN models, such as the Load-

Distributor, LostReq, and DeniedService places. Then, the algorithm iterates over each

tier creating the load balancer, all the component replicas, their VMs/containers, and their

corresponding servers. This is based on the building blocks defined in the previous sub-

section. For instance, if the model includes five VMs, the VM building block is replicated

five times. However, the transition and guards of each building blocks may be different.

Then, in the final stage, the DCs are created, the transitions are annotated with the proper

rates, and the guards are annotated with the corresponding conditions. It is the annota-

tion phase that glues the model together reflecting the actual deployment and the failure

cascading effects.

3.4.4 Deployment scoring selection system
Once the solvable SCPN model is inputted into TimeNET, multiple deployments of appli-

cation components are evaluated in terms of HA and functionality constraints. In some

cases, multiple HA-aware deployments are eligible for certain HA baseline. Therefore, a

scoring selection system is required to choose the optimal deployment according to a given

policy (green-aware and/or cost-efficiency). The proposed scoring selection system con-

sists of evaluation criteria with multiple options and a scoring methodology.

1) Evaluation Criteria: Multiple measures can be used as evaluation criteria of the scoring

system [64]. The SCPN model evaluates the deployments of application components in

order to maximize the availability while taking into account functionality constraints, in-

terdependency and redundancy of application components. Therefore, the above measures

can be eliminated from the evaluation criteria.

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 81

Figure 3.9: Transformation algorithm to generate the SCPN model.

In order to inject cost and green objectives into the proposed approach, the evaluation crite-

rion assesses the cloud infrastructure in terms of OPEX and carbon footprint. During the as-

sessment process, each DC is examined, and its overload factor is calculated subsequently.

For a given OPEX or carbon footprint baseline, or a combination of both, the examined DC

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 82

Figure 3.10: Scoring selection algorithm.

operates at a higher load factor, the overload factor, compared to default/baseline DC [37]

[65]. This increase in the load factor gives preference for one DC over the others.

2) Scoring Methodology: Once the evaluation criterion is determined, and the SCPN model

evaluates the components deployments, the scoring methodology is used to select the opti-

mal one. The scoring selection algorithm is depicted in Fig. 3.10. Each DC is characterized

by a distance metric that represents its available capacity before reaching the allowed load.

Also, each deployment is characterized by a distance attribute that refers to its correspond-

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 83

ing DCs’ distances. The algorithm defines a scoring system that allows the selection of

the optimal deployment. For the initial deployment, a default preference is defined as the

baseline. For subsequent deployments, the algorithm evaluates each eligible deployment

distance and selects the one offering the largest distance.

Let NumDC be the total number of available DCs and CLi the current load of correspond-

ing DCi, then the relative average utilization (RU) of DCi is calculated as follows:

∀
i∈1:NumDC

DCi.RUi =

(
∑

j=1:NumDC|j 6=i
DCj .CLj)

(NumDC − 1)
(20)

Let OL be the overload factor of each DC, the maximum allowed workload (AL) is calcu-

lated as follows:

∀
i∈1:NumDC

DCi.ALi = DCi.RUi ×DCi.OLi (21)

Then the distance (dist) for each DC is calculated as follows:

∀
i∈1:NumDC

DCi.disti = DCi.ALi −DCi.CLi (22)

Suppose Dep is the set of DCs used in a deployment, and DepN is the number of ele-

ments in the set Dep. Then for every eligible deployment, its distance (Deployment.dist) is

calculated as follows:

Deployment.dist =

(
∑

∀i∈Dep
DCi.disti)

DepN
(23)

Then the eligible deployment that corresponds to the maximum deployment distance is

chosen as the optimal solution. The maximum distance is the measure used to capture the

imbalance between the examined DCs and the preferences of cloud providers (e.g., low

OPEX or carbon footprint).

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 84

Figure 3.11: SCPN model of a three-tier Amazon web application running in a cloud environment.

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 85

3.5 Case Study
This section provides an example of a cloud deployment modeled by SCPN, and then the

model is used to evaluate different deployments from HA perspective. The generated HA-

aware deployments undergo a green and cost-aware filtering phase where the optimal one

is selected using the proposed scoring tool. In this case study, we are particularly interested

to compare inter- and intra-DC scheduling, and we change alternatively the data center

hosting the servers and VMs. We assume that each VMi is hosted on the server Si. The

data center hosting Si is not fixed and depending on our deployment, the server can be

hosted on any of the available DCs. We refer to the data center hosting VMi and Si using

VM(i)DC .

The system under study is a three-tier web application. At the frontend, the load balancer

distributes the requests to the Web Servers that handle these requests and forward them

to the App Servers. The latter handles the application operations between cloud user and

backend DBs that store user content. In each tier, the software component is running on a

virtual machine, and the VM is hosted on a server. The server, in turn, is hosted on a DC.

Each tier is replicated three times using an active redundancy model. In each tier, an elastic

load balancer distributes the workload among the replicas based on a round robin policy.

Fig. 3.11 illustrates a snapshot of the SCPN model of this system. The depicted model is

using only VMs as an execution environment, but it can be easily modified to include con-

tainers. In the latter case, the container sub-model and guards defined in Subsection 3.4.2

can be added to the SCPN model to perform availability analysis and quantification. Note

that if the HA metrics of a given cloud application deployments are available, the SCPN

model can be used to analyze their corresponding availability. Amazon Web application

deployed using AWS Elastic Beanstalk [56] [66] can be a case study example for the pro-

posed SCPN model.

Analyzing the service availability can be done either by (1) quantifying the percentage of

time a given service is in a healthy state, or (2) by analyzing the percentage of served re-

quests in comparison to the total number of received requests. We used the latter technique;

therefore, we have fixed the number of tokens in the initial LoadDistributor place. Note

that when we create the model from the blocks already mentioned in Subsection 3.4.2,

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 86

some places may overlap. For example, the place ‘Lost in phasei’ is shared in each tier

among the replicas whereas the place ‘LostReq’ is unique per model. In each tier, served re-

quests are stored in a place, which serves as the load distributor of the next tier (e.g. Cmid

and Cmid1 places in Fig. 3.11). The tokens successfully processed in all of the three tiers

are stored in the place ServedReq in the 3rd tier. The percentage of the requests that are

successfully processed through the three tiers (ServedReq) indicates the service availability

of the cloud application. If all the components fail, or their queues are full, the requests are

dropped and sent to the place DeniedService. When a component fails, the requests already

stored in its queue are resent to the load distributor to be failed over to the other healthy

components. Lost in phase1, Lost in phase2, and Lost in phase3 collect in each phase

the lost requests from the components buffers. If all the replicas of a tier fail at the same

time, all the tokens waiting in the components queues are transferred to the place LostReq.

Table 3.7: Different MTTF, MTTR, and processing time.

MTTF(DC1; DC2; DC3) x∗;x;x x;1.5x;2x x;2x;3x

MTTR x/3 x/10 x/30

Load Processing Time a∗ 5a 10a

*: ‘x’ is the failure rate of DC1 and ‘a’ is the request arrival rate in each tier.

3.5.1 SCPN evaluation and results
To investigate different DC scheduling, we have considered multiple scenarios and con-

ducted some experiments with the SCPN model. The VMs and servers can fail due to

DC failure through immediate transitions Ti sDCfail and Ti Hfail. The failure rates of

VMs and servers (used in Ti fail and Ti sfail) are fixed throughout these experiments.

We consider that DCs can have similar or different failure rates. As a baseline, they all

have the same MTTF (x; x; x). Then we modify the failure rate of the DCs assuming that

DC1 fails more frequently, DC3 is always the most reliable one, and DC2 has a failure

rate between the two others. Then, we consider different MTTR for each variation of the

MTTF. However, recovery time is always the same among the DCs. Table 3.7 shows dif-

ferent parameters altered in our experiments.

We have considered three deployments: the first deployment maximizes the distribution

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 87

Figure 3.12: Service availability of different deployments and different MTTRs. DCs have similar
MTTF.

among the DCs, such that in each tier at least one of the replicas is on DC1, one is on

DC2, and one is on DC3 (named Dep.1-2-3). The DCs are distributed using Amazon DCs

distribution [67]. The latter are geographically distributed in the AWS Cloud that has 33

availability zones in 12 worldwide geographic regions [56] [67]. In our case, we have

assumed that DC1, DC2, and DC3 are located in Virginia, Oregon, and California respec-

tively [67]. In the second deployment, we put one replica of each tier onDC2 and two other

replicas of each tier on DC3 (called Dep. 2-3). In the third deployment, all the replicas

are hosted by the most reliable DC, which is DC3 (Dep.3 afterward). We aim to evalu-

ate which of the three deployments would maximize the availability of the application. If

DC3 is the most reliable one, is it better to choose the third deployment and put all of the

replicas on the most reliable DC or is it better to maximize the distribution among the DCs?

The model presented in Fig. 3.11 is analyzed with a transient simulation of the TimeNET4.2

running on a Linux VM with 225GB of RAM and 20 vCPUs running Ubuntu12.04. The

results presented in this chapter are the outcome of multiple repetitions of the simulation.

First, we consider the case where all of the DCs have the same MTTF (x; x; x), and we vary

the MTTR among DCs as presented in Table 3.7. Since we choose the values of MTTR as

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 88

Figure 3.13: Service availability of different deployments and different MTTRs. DCs have
different MTTF (x; 1.5x; 2x).

Figure 3.14: Service availability of different deployments and different MTTRs. DCs have
different MTTF (x; 2x; 3x).

a ratio of the MTTF, ‘x’ is instantiated to maintain the MTTR within the allowed downtime

for cloud providers [66] [68]. Fig. 3.12 depicts the corresponding results for the three de-

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 89

Figure 3.15: Served requests for different processing time. Request arrival rate is ‘a’.

ployments mentioned above. When the DCs have the same failure rates, we should go for

a maximum distribution as it reduces the probability of the service outage due to multi-DC

failures.

In the second step, we change the failure rates of DC1, DC2, and DC3 to x, 1.5x, and

2x, respectively and change the recovery time as listed in Table 3.7. Fig. 3.13 presents the

results. Finally, we consider the case where DCs have different MTTF of x, 2x, and 3x,

respectively. Again, we vary the MTTR according to Table 3.7. The results are presented

in Fig. 3.14. Based on the results of Fig. 3.13 and Fig. 3.14, when the reliability of DCs

differs, we can opt for the most reliable ones instead of maximum distribution. A single

DC deployment is not the optimal choice.

For the last set of experiments, we investigate the impact of changing the load processing

time. We assume that DC1, DC2 and DC3 have different MTTF of (x; 2x; 3x), respec-

tively. Let ‘a’ be the request arrival rate, we have experimented with three load processing

times of ‘a’, ‘5a’ and ‘10a’. The results are given in Fig. 3.15. The processing time af-

fects the length of the processing queue. An increased processing time reduces the system

availability due to the requests failed during processing. On the other hand, by decreasing

the processing time, we reduce the impact of failures and therefore reduce the difference in

HA between the intra- and inter-DC deployments.

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 90

The proposed SCPN approach is a framework verifying which scheduling options among

different placement possibilities can meet the required level of availability. It provides

HA-aware scheduling guidelines. The inferred keys can be applied to small- or large-scale

scheduling scenarios. Note that solving a model may take time some hours due to the

complicated stochastic analysis.

3.5.2 Scoring selection system evaluation and results
To select the optimal deployment, the scoring selection algorithm is applied to the above

SCPN evaluation results. Since we focus in this chapter on the DC failures impact on HA,

the evaluation criterion is applied to DCs. Two cases are presented to evaluate the selected

deployments against different policies. In the first case, the criterion is OPEX and carbon

footprint while in the second case only carbon footprint is considered.

The scoring selection algorithm is applied to the above SCPN evaluation cases: (same

MTTF, different MTTR), (different MTTF and MTTR), and (different ‘a’) using Dep.1-

2-3, Dep.2-3, and Dep.3 deployments. We aim to select the best deployment if multiple

eligible ones are chosen by the SCPN model.

Table 3.8: DC evaluation metrics of the first case.

DC
OPEX option

(%)

Carbon

footprint option

(%)

OL (%) OL factor CL (%)

DC1 medium none 20 1.2 42

DC2 none low 10 1.1 41

DC3 none none 0 1.0 40

1) First scoring case: In this case, each DC is examined in terms of OPEX and carbon

footprint, and its corresponding overload factor is generated. Table 3.8 shows an example

of metrics that characterize each DC, such as current load (CL), overload factor (OL),

OPEX, and carbon footprint improvement options. The option can be either high, medium,

low, or none where “high” represents a high improvement in OPEX or carbon footprint

reduction, and “none” reflects the opposite state.

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 91

Table 3.9: DC distances of the first case.

DC RU(%) AL(%) dist(%)

DC1 40.5 48.6 6.6

DC2 41 45.1 4.1

DC3 41.5 41.5 1.5

Table 3.9 shows the calculated relative utilization (RU), allowed load (AL), and distance

(dist) for each DC using (18)-(20). Using values of Table 3.9 and (21), the deployment

distances are calculated for each of evaluated placements as shown in Table 3.10.

Table 3.10: Deployment distances of the first case.

Dep Deployment Distances

Dep.1-2-3.dist 4.06

Dep.2-3.dist 2.8

Dep.3.dist 1.5

The scoring selection algorithm is applied to the three cases introduced in Subsection 3.5.1.

The results are shown in Table 3.11. In the first case (same DCs MTTF, different DCs

MTTR), Dep.1-2-3 and Dep.2-3 are the eligible solutions for MTTF of (x) and MTTR of

(x/10 and x/30) if the desired HA-baseline is greater than 80%. In the second case, Dep.1-

2-3 and Dep.2-3 are the eligible solutions for MTTF of (x, 2x, and 3x) and MTTR of (x/3,

x/10, and x/30) if the desired HA baseline is greater than 80%. In the third case, if the

desired HA baseline is greater than 80%, Dep.1-2-3 and Dep.2-3 are the eligible solutions

for (‘5a’, and ‘10a’), and Dep.1-2-3, Dep.2-3, and Dep.3 are eligible for ‘a’. Since three

deployments are eligible, the algorithm is applied to: Dep.1-2-3, Dep.2-3, and Dep.3 in

the three cases. Once the eligible solutions are selected, the scoring algorithm calculates

the (RU), (AL), and, (dist) for each DC. With these parameters, the Deployment.dist is

calculated, and consequently, Dep.1-2-3 is the optimal deployment since it has maximum

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 92

distance compared to the others.

Table 3.11: Optimal deployments of the first case.

Dep HA-baseline ≥ 80%

Eligible Dep(s) Dep.1-2-3, Dep.2-3, and Dep.3

Optimal Dep Dep.1-2-3

If the desired HA baseline is greater than 87%, the first case generates one eligible solution,

Dep.1-2-3 for MTTF of (x) and MTTR of (x/3). With the same HA-baseline applied to the

second case, Dep.1-2-3 and Dep.2-3 are the best placements for MTTF of (x, 2x, 3x) and

MTTR of (x/10 and x/30). As for the last case, Dep.1-2-3, Dep.2-3, and Dep.3 are the

eligible placements for ‘a’, Dep.1-2-3 and Dep.2-3 are the eligible solutions for ‘5a’, and

Dep.2-3 is the only eligible deployment for ‘10a’. Therefore, the scoring algorithm is only

applied to the second and the third cases where DCs have different MTTF of (x, 2x, 3x)

with (‘a’, ‘5a’) request arrival rates.

Table 3.12: DC carbon metrics in 2013 used in the second case.

DC

Carbon

Emission

(kg/million Btu)

Carbon

footprint option

(%)

OL (%) OL factor CL (%)

DC1 52.5 none 0 1.0 55

DC2 35.6 medium 39 1.39 10

DC3 51.4 low 2 1.02 25

Table 3.13: DC distances of the second case.

DC RU(%) AL(%) dist(%)

DC1 17.5 17.5 -37.5

DC2 40 55.6 45.6

DC3 32.5 33.15 -8.15

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 93

Table 3.14: Deployment distances of the second case.

Dep Deployment Distances

Dep.1-2-3.dist -0.016

Dep.2-3.dist 18.725

Dep.3.dist -8.15

2) Second scoring case: In this case, each DC is examined in terms of carbon emission

based on the U.S. energy report [69]. Table 3.12 shows the carbon emissions of industrial

sectors in California, Oregon, and Virginia where the above three DCs are located [69].

Since Virginia has highest carbon emissions, its DC, DC1, is considered the baseline one,

and consequently, its overload factor (OL) is one. The deployments evaluation is based

only on the carbon emission factor. Similarly, the option can be either high, medium, low,

or none.

Table 3.13 and Table 3.14 show the calculated relative utilization (RU), allowed load (AL),

distance (dist), and deployment distances for each DC and evaluated placements using

(18)-(21).

Table 3.15: Optimal deployments of the second case.

Dep HA-baseline ≥ 80%

Eligible Dep(s) Dep.1-2-3, Dep.2-3, and Dep.3

Optimal Dep Dep.2-3

The scoring selection algorithm is applied to the three cases introduced in Subsection 3.5.1.

The results are shown in Table 3.15. In the first case (same DCs MTTF, different DCs

MTTR), Dep.1-2-3 and Dep.2-3 are the eligible solutions for MTTF of (x) and MTTR of

(x/10 and x/30) if the desired HA-baseline is greater than 80%. In the second case, Dep.1-

2-3 and Dep.2-3 are the eligible solutions for MTTF of (x, 2x, and 3x) and MTTR of (x/3,

x/10, and x/30) if the desired HA baseline is greater than 80%. In the third case, if the

desired HA baseline is greater than 80%, Dep.1-2-3 and Dep.2-3 are the eligible solutions

for (‘5a’, and ‘10a’), and Dep.1-2-3, Dep.2-3, and Dep.3 are eligible for ‘a’. Since three

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 94

deployments are eligible, the algorithm is applied to: Dep.1-2-3, Dep.2-3, and Dep.3 in

the three cases. The scoring algorithm calculates the (RU), (AL), and, (dist) for each DC

of the eligible deployments. Then, the Deployment.dist is calculated, and consequently,

Dep.2-3 is the optimal deployment since it has maximum distance compared to the others.

Note that a change in the DC workload, its OPEX, or carbon footprint option affects the

(RU), (AL), and, (dist) calculation. Consequently, different deployment might win the

scoring test since Deployment.dist of the eligible solutions will be modified.

3.6 Related Work
Although organizations are facing a challenge in selecting the best HA solution to meet

the business requirements, a few literature studies address the scheduling of cloud services

and their availability and green analysis using different extensions of Petri Net models and

scoring selection system.

3.6.1 Availability analysis using Petri Net models
Many cloud providers analyze the services availability using empirical data. Service dash-

board provides a summary of the existing availability solutions and the status histories [68]

[70]. Longo et al. propose an availability analysis approach for cloud computing systems

using Stochastic Reward Net (SRN) and Markov chain models [71]. They develop mul-

tiple equations to analyze the impact of changing the number of physical machines, their

MTTF, and MTTR on the services availability. Although their approach minimizes the

problem-solving time and analyzes service availability in large-scale networks, the authors

only focus on the MTTF and MTTR of the servers discarding the impact of those of VMs

or software components. Also, the approach does not consider any redundancy or inter-

dependency models, stochastic nature of failures, functional workflow between different

components, and their impacts on the availability analysis.

Javadi et al. propose statistical models to predict the availability of a distributed system

[72]. Their main objective behind this prediction is to find host subsets with related statisti-

cal characteristics and availability models. They use randomness test to determine the hosts

having independent and identically distributed availability. When such hosts are identified,

they are clustered into subsets with comparable availability models. Although this work

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 95

tries to predict availability models of hosts in a distributed system, it ignores the impact

of other factors on the availability of the system, such as the VM failure, repairing plans,

redundant hosts or VMs, stochastic nature of failures, requests processing, and forwarding.

Ghosh et al. develop a performance analysis model for services deployment in a cloud sys-

tem using continuous time Markov chain model [73]. Their keys of interest are the service

availability and response delays. In order to evaluate the service performance, the authors

analyze the impact of failure rates, recovery modes, workload variation, and the available

resources on the quality of service. The proposed approach shows good results in terms of

the studied key metrics, but it focuses only on the infrastructure-side impact on the service

availability. It neglects the effect of services failures, interdependency between them, and

redundant models. Besides, it discards the impact of request processing time and load bal-

ancing on the availability of deployed services.

Paing et al. propose an approach that integrates virtualization, clustering methods, and soft-

ware rejuvenation mechanisms to analyze cloud applications availability [74]. The authors

use Stochastic Petri Net model where availability is expressed in terms of the stochastic

failure and recovery time transitions of the model. Similarly, Nguyen et al. propose a SRN

for availability analysis [75]. The used SRN considers various VM failures types, recov-

ery methods, and interdependency among VMs, hosts, and hypervisors. The availability

analysis is based on the number of lost transactions and impact of software rejuvenation.

While Salfner et al. propose queuing and Stochastic Petri Net service availability mod-

els through software rejuvenation and failure prevention [76], [77], and [78], Salfner et al.

propose another model that describes the impact of adding servers on service availability

using Stochastic Colored Petri Net [79]. Although the proposed models show performance

improvements, they only focus on few aspects of availability analysis. When it comes to

applications scheduled in a cloud model, various factors affects their availability. These

factors are not only associated with the existing infrastructure or the cloud user side, but

they are a combination of both. Additionally, these factors are affected by failover, request

processing time, and interaction between different components and their hosts.

Jiang et al. have modeled the behavior of software and hardware using Generalized Stochas-

tic Petri Net (GSPN) while considering failure dependency between software and hardware

[80]. They have shown the impact of disc redundancy on improving the system availability.

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 96

Also, they have analyzed the model to extract the suitable failure rate and recovery time to

achieve the required level of availability.

Melo et al. have used SPN and Reliability Block Diagram (RBD) to show the impact of

software rejuvenation as a solution to increase the high availability of the cloud systems

[81]. They have considered software aging and different rejuvenation policies and deter-

mined the positive impact of live migration on the availability of the system.

3.6.2 Scoring and selection of cloud deployments
Green DC and cloud solutions are interesting concepts that have attracted several research

studies. Subramanian et al. propose a cloud brokering approach that generates optimal

deployments for VMs placements in multiple heterogeneous clouds [82]. According to the

constraints defined in the service management index (SMI), the approach selects the best

deployments with optimal cost using mixed integer linear programming model. The cloud

user sends the corresponding request information and defines the requirements and their

weights in the SMI. Then the approach provides a scoring system to obtain optimal deploy-

ment. Although the authors provide optimal solutions, they overlooked HA and energy

requirements in their approach.

Joo et al. use Colored Petri Net model to provide workflow scheduling approach [83]. The

latter uses phased scheduling scheme that separates the scheduling and the execution phase

while minimizing processing cost and satisfying computational resources constraints. The

authors focus on performance requirements while discarding availability metrics. Energy

objective is discarded in the evaluation criteria of their scoring system.

Qian et al. propose a cloud service selection approach characterized by its automatic selec-

tion of existing infrastructures [84]. The approach focuses only on deployment costs, but it

also considers interdependency between multiple applications. Their approach is also as-

sociated with a step-wise placement algorithm to consider scalability solutions. Although

the proposed algorithm finds sub-optimal deployments, it does not take into account any

availability requirements including redundancy and load balancing solutions. While Fan et

al. describe a clustering deployment model that maximizes performance [85], Nguyen et

al. provide a comprehensive availability model using stochastic reward nets (SRN) [86].

Fan et al. generate communication performance of cloud nodes, selects the initial centroid

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 97

using a density-based algorithm, and then uses a greedy algorithm to select the optimal

placement [85]. In this work, the authors do not consider any HA guidelines neither appli-

cations interactions. However, Nguyen et al. use high availability configuration between

sites, existing fault and disaster tolerant mechanisms and considers the interaction between

different elements of cloud systems [86]. The latter proposes the SRN model to analyze

downtime cost.

Ranganathan et al. propose a technique that manages the server power in an ensemble

form [87]. The approach monitors the resource usage and allows active servers to hook

the power from the inactive ones. The proposed technique reduces power consumption and

cooling cost in data centers. Rusu et al. present a technique that determines which servers

should be turned on or off in order to minimize the overall power consumption [88]. Liu et

al. use VM migration to allow server consolidation and turn off underutilized servers [89].

Their approach aims to minimize the migration time and energy consumption. Therefore,

it iterates over the existing servers and selects the one with low energy consumption and

minimal migration overhead.

Bradley et al. propose a power management approach that minimizes the power consump-

tion while satisfying the workload demands [90]. They use CPU utilization to predict these

demands. When the utilization exceeds a certain threshold, extra servers are turned on to

minimize the CPU usage of all severs. On the other hand, when CPU usage in the servers

is below the given threshold, some servers are turned off. Khosravi et al. propose a VM

deployment solution that minimizes carbon footprint while distributing VMs across data

centers [91]. Each DC is associated with its carbon footprint rate and power usage ef-

fectiveness (PUE). Based on these parameters, the proposed energy and carbon-efficient

(ECE) cloud model places VMs in the suitable DC and server.

We distinguish ourselves from the related work by proposing a Petri Net model that takes

into account not only different stochastic failure types and deterministic recovery and repair

plans, but it captures the impact of service load balancing and processing, application/VM

failover, different redundancy models, and interdependency relations. In the proposed ap-

proach, HA-aware guidelines are provided that allow evaluating any deployment solution

and select the optimal one using the scoring selection sub-approach. It considers not only

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 98

HA requirements and functionality constraints, but also adds energy and cost objectives to

the scoring evaluation criteria. Starting with a certain HA-baseline, the user can end up

with HA, green, and cost-aware deployments.

3.7 Conclusion
Cloud services experience various stochastic failures and consequently become unavail-

able. With the always on and always available trend, inoperative services halt the business

continuity. It is not enough to provide HA solution that can mitigate failures and maintain

certain availability baseline, but it is necessary to assess such solution and its resiliency

to any failure modes. Additionally, it is essential to integrate such assessment with green

and cost requirements to uphold the quality of service (QoS) with lower carbon footprints

and OPEX. With these objectives, this chapter proposed a SCPN model that evaluates the

availability of cloud services and their deployments in inter- or intra-DCs. This model con-

siders different stochastic failures, deterministic repairs, functionality constraints, redun-

dancy, and interdependencies between different applications components. Consequently,

different decisions had been extracted from this model that aid in designing the best HA

solution of an existing cloud model. The SCPN model inputted the HA-aware deployments

into a scoring selection tool. Using the latter algorithm, HA-aware placements are filtered

in terms of energy and cost metrics to select the optimal deployment. The scoring selection

tool is extensible to different criteria and is not limited to the aforementioned measures.

99

References

[1] M. Jammal, A. Kanso, P. Heidari, and A. Shami, “Availability Analysis of Cloud Deployed

Applications,” IEEE International Conference on Cloud Engineering (IC2E), April 2016.

[2] M. Jammal, A. Kanso, P. Heidari, and A. Shami, “A Formal Model for the Availability Anal-

ysis of Cloud Deployed Multi-Tiered Applications,” Third IEEE International Symposium on

Software Defined Systems, April 2016.

[3] M. Jammal, A. Kanso, P. Heidari, and A. Shami, “Scrutinize High Availability-aware Deploy-

ments Using Stochastic Petri Net Model and Cloud Scoring Selection Tool,” Submitted to IEEE

Transactions on Services Computing, November 2016.

[4] M. Armbrust, A. Fox, et al., “A view of cloud computing,” IEEE Communications Magazine,

vol. 53, pp. 50-58, April 2010.

[5] Microsoft Azure, http://azure.microsoft.com/en-us/overview/what-is-

azure/. [July 22, 2015]

[6] Amazon ec2, http://aws.amazon.com/ec2, 2016. [April 2016]

[7] H. Hawilo, A. Kanso, and A. Shami, “Towards an Elasticity Framework for Legacy Highly

Available Applications in the Cloud,” IEEE World Congress on Services (SERVICES), pp. 253-

260, July 2015.

[8] P. Yong and H. Ning,“Research on dependability of cloud computing systems,” International

Conference on Reliability, Maintainability, and Safety (ICRMS), pp. 435-439, August 2014.

[9] NETFLIX, “AWS Re:Invent - High Availability Architecture at Netflix,” http:

//www.slideshare.net/adrianco/high-availability-architecture-

at-netflix, December 2012. [August 20, 2015]

[10] OpenStack, “Filter Scheduler,” http://docs.openstack.org/developer/nova/

filter_scheduler.html, 2010. [June 17, 2016]

http://azure.microsoft.com/en-us/overview/what-is-azure/
http://azure.microsoft.com/en-us/overview/what-is-azure/
http://aws.amazon.com/ec2
http://www.slideshare.net/adrianco/high-availability-architecture-at-netflix
http://www.slideshare.net/adrianco/high-availability-architecture-at-netflix
http://www.slideshare.net/adrianco/high-availability-architecture-at-netflix
http://docs.openstack.org/developer/nova/filter_scheduler.html
http://docs.openstack.org/developer/nova/filter_scheduler.html

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 100

[11] M. A. Sharkh, M. Jammal, A. Shami, A. Ouda, “Resource allocation in a network based cloud

computing environment: design challenges,” IEEE Communications Magazine, vol. 51, no. 11,

pp. 46-52, November 2013.

[12] Microsoft, “The Economics of the Cloud,” http://www.microsoft.com/en-us/

news/presskits/cloud/docs/theeconomics-of-the-cloud.pdf, November

2010. [October 2015]

[13] International Standard ISO/IEC, “High-Level Petri Nets - Concepts, Definitions and Graph-

ical Notation,” Final Committee Draft ISO/IEC 15909-1, May 2002, http://www.

petrinets.info/docs/pnstd-4.7.1.pdf.

[14] S. Loveland, E. M. Dow, F. LeFevre, D. Beyer, and P. F. Chan, “Leveraging virtualization

to optimize high-availability system configurations,” IBM Systems Journal, vol. 47, no. 4, pp.

591-604, 2008.

[15] B. Cully, G. Lefebvre, et al., “Remus: high availability via asynchronous virtual machine

replication,” 5th USENIX Symposium on Networked Systems Design and Implementation, pp.

161-174, 2008.

[16] E. M. Farr, R. E. Harper, L. F. Spainhower, and J. Xenidis, “A case for High Availability in a

virtualized environment (HAVEN),” Third International Conference on Availability, Reliability

and Security, pp. 675-682, March 2008.

[17] D. S. Kim, F. Machida, and K. S. Trivedi, “Availability modeling and analysis of a virtualized

system,” 15th IEEE Pacific Rim International Symposium on Dependable Computing, pp. 365-

371, November 2009.

[18] W. E. Smith, K. S. Trivedi, L. A. Tomek, and J. Ackaret, “Availability analysis of blade server

systems,” IBM Systems Journal, vol. 47, no. 4, pp. 621-640, 2008.

[19] M. Grottke, A. P. Nikora, and K. S. Trivedi, “An empirical investigation of fault types in space

mission system software,” IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN), pp. 447-456, 2010.

[20] K. Ramo, “Eliminating Software Failures-A Literature Survey,” Licentiate Thesis,

2009, http://www.doria.fi/bitstream/handle/10024/61561/nbnfi-

fe201005051790.pdf?sequence=3.

http://www.microsoft.com/en-us/news/presskits/cloud/docs/theeconomics-of-the-cloud.pdf
http://www.microsoft.com/en-us/news/presskits/cloud/docs/theeconomics-of-the-cloud.pdf
http://www.petrinets.info/docs/pnstd-4.7.1.pdf
http://www.petrinets.info/docs/pnstd-4.7.1.pdf
http://www.doria.fi/bitstream/handle/10024/61561/nbnfi-fe201005051790.pdf?sequence=3
http://www.doria.fi/bitstream/handle/10024/61561/nbnfi-fe201005051790.pdf?sequence=3

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 101

[21] P. Bodik, F. Armando, M. J. Franklin, M. I. Jordan, and D.A. Patterson, “Characterizing,

modeling, and generating workload spikes for stateful services,” ACM Symposium on Cloud

Computing, pp. 241-252, June 2010.

[22] Q. Anderson, “Storm real-time processing cookbook: Efficiently process unbounded streams

of data in real time,” Packt Publishing, 2013.

[23] F. Machida, D. S. Kim, and K. S. Trivedi, “Modeling and analysis of software rejuvenation

in a server virtualized system,” IEEE Second International Workshop on Software Aging and

Rejuvenation, pp. 1-6, November 2010.

[24] J. Xu, X. Li, Y. Zhong, and H. Zhang, “Availability modeling and analysis of a single-server

virtualized system with rejuvenation,” Journal of Software, vol. 9, no. 1, pp. 129-139, January

2014.

[25] M. T. Hla Myint and T. Thein, “Availability improvement in virtualized multiple servers with

software rejuvenation and virtualization,” Fourth International Conference on Secure Software

Integration and Reliability Improvement (SSIRI), pp. 156-162, June 2010.

[26] T. Thein and J. S. Park, “Availability analysis of application servers using software rejuve-

nation and virtualization,” Journal of Computer Science and Technology, vol. 24, no. 2, pp.

339-346, April 2009.

[27] M. Jammal, A. Kanso, and A. Shami, “High Availability-Aware Optimization Digest for Ap-

plications Deployment in Cloud,” 2015 IEEE International Conference on Communications

(ICC), pp. 6822-6828, June 2015. Available: http://vixra.org/pdf/1410.0193v1.

pdf

[28] M. Jammal, A. Kanso, and A. Shami, “CHASE: Component High-Availability Scheduler

in Cloud Computing Environment,” IEEE International Conference on Cloud Computing

(CLOUD), pp. 477-484, 2015.

[29] J. O. Grady, “System Requirements Analysis,” Elsevier, December 2013.

[30] P. L. Gonzalez-R, J. M. Framinan, A. Dopfer, and R. Ruiz-Usano, “Optimization Customized

Token-Based Production Control Systems Using Cross-Entropy,” Digital Enterprise Technol-

ogy, pp. 123-131, 2007.

http://vixra.org/pdf/1410.0193v1.pdf
http://vixra.org/pdf/1410.0193v1.pdf

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 102

[31] K. S. Trivedi, D. Kim, and R. Ghosh, “System availability assessment using stochastic

models,” Applied Stochastic Models in Business and Industry, vol. 29, no. 2, pp. 94-109, 2013.

[32] R. Ghosh, D. Kim, and K. S. Trivedi, “System resiliency quantification using non-state-space

and state-space analytic models,” Reliability Engineering & System Safety, vol. 116, pp. 109-

125, 2013.

[33] C. Petri, “Kommunication mit Automaten,” University of Bonn, 1962.

[34] G. Ciardo and C. Lindemann, “Analysis of deterministic and stochastic Petri nets,” 5th Inter-

national Workshop on Petri Nets and Performance Models, pp. 160-169, 1993.

[35] N. Gharbia, C. Dutheilletb, and M. Ioualalen, “Colored Stochastic Petri Nets for modelling

and analysis of multiclass retrial systems,” Math. Comput. Model., vol. 49, pp. 1436-1448,

2009.

[36] A. Zimmermann, “Modeling and Evaluation of Stochastic Petri Nets with TimeNET 4.1,”

6th International Conference on Performance Evaluation Methodologies and Tools (VALUE-

TOOLS), pp. 54-63, 2012.

[37] U.S. Department of Energy, “Best Practices Guide for Energy-Efficient Data Cen-

ter Design,” http://energy.gov/sites/prod/files/2013/10/f3/

eedatacenterbestpractices.pdf, March 2011. [October 2015]

[38] Data Center Knowledge, “Undertaking the Challenge to Reduce the Data Center Carbon

Footprint,” http://www.datacenterknowledge.com/archives/2014/12/17/

undertaking-challenge-reduce-data-center-carbon-footprint/, De-

cember 2014. [November 2015]

[39] Data Center Dynamics, “Verizon to auction its data centers report,” http:

//www.datacenterdynamics.com/design-strategy/verizon-to-

auction-its-data-centers-report/95445.article, January 2016. [Jan-

uary 2016]

[40] U.S. Environmental Protection Agency, “Report to Congress on Server and Data Center En-

ergy Efficiency,” http://hightech.lbl.gov/documents/data_centers/epa-

datacenters.pdf, August 2007. [August 2011]

http://energy.gov/sites/prod/files/2013/10/f3/eedatacenterbestpractices.pdf
http://energy.gov/sites/prod/files/2013/10/f3/eedatacenterbestpractices.pdf
http://www.datacenterknowledge.com/archives/2014/12/17/undertaking-challenge-reduce-data-center-carbon-footprint/
http://www.datacenterknowledge.com/archives/2014/12/17/undertaking-challenge-reduce-data-center-carbon-footprint/
http://www.datacenterdynamics.com/design-strategy/verizon-to-auction-its-data-centers-report/95445.article
http://www.datacenterdynamics.com/design-strategy/verizon-to-auction-its-data-centers-report/95445.article
http://www.datacenterdynamics.com/design-strategy/verizon-to-auction-its-data-centers-report/95445.article
http://hightech.lbl.gov/documents/data_centers/epa-datacenters.pdf
http://hightech.lbl.gov/documents/data_centers/epa-datacenters.pdf

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 103

[41] Ingram Micro Advisor, “How Data Center Design Impacts Efficiency and Profitability,”

http://www.ingrammicroadvisor.com/data-center/how-data-center-

design-impacts-efficiency-and-profitability, July 2015. [January 2016]

[42] International Telecommunication Union (ITU), “ITU and Climate Change,” http://

www.itu.int/dms_pub/itu-s/opb/gen/S-GEN-CLIM-2008-11-PDF-E.pdf,

2006. [November 2008]

[43] G. Koutitasa, and P. Demestichas, “A review of energy efficiency in telecommunication

networks,” 17th Telecommunications Forum, November 2009.

[44] Data Center Dynamics, “Reducing data center carbon: IT efficiency is king,” http:

//www.datacenterdynamics.com/critical-environment/reducing-

data-center-carbon-it-efficiency-is-king/80782.fullarticle, July

2013. [December 2015]

[45] H. Hawilo, A. Shami, M. Mirahmadi, and R. Asal, “NFV: state of the art, challenges, and

implementation in next generation mobile networks (vEPC),” IEEE Network, vol. 28, no. 6,

pp. 18-26, December 2014.

[46] Green Data Center News, “Local governments may force faster green data center

adoption,” http://www.greendatacenternews.org/articles/840122/

local-governments-may-force-faster-green-data-cent/, January 2016.

[January 2016]

[47] Data Center Knowledge, “Norway’s Fjord-Cooled Data Center,” http://www.

datacenterknowledge.com/archives/2011/12/20/norways-fjord-

cooled-data-center/, December 2011. [November 2015]

[48] EuroNews, “Facebook boasts green data centre in Lule, Sweden,” http:

//www.bloomberg.com/bw/articles/2013-10-03/facebooks-new-data-

center-in-sweden-puts-the-heat-on-hardware-makers, October 2015. [25

October 2015]

[49] Data Center Dynamics, “Arizona passes data center tax breaks,” http://www.

datacenterdynamics.com/design-strategy/arizona-passes-data-

center-tax-breaks/80453.fullarticle, June 2013. [December 2015]

http://www.ingrammicroadvisor.com/data-center/how-data-center-design-impacts-efficiency-and-profitability
http://www.ingrammicroadvisor.com/data-center/how-data-center-design-impacts-efficiency-and-profitability
http://www.itu.int/dms_pub/itu-s/opb/gen/S-GEN-CLIM-2008-11-PDF-E.pdf
http://www.itu.int/dms_pub/itu-s/opb/gen/S-GEN-CLIM-2008-11-PDF-E.pdf
http://www.datacenterdynamics.com/critical-environment/reducing-data-center-carbon-it-efficiency-is-king/80782.fullarticle
http://www.datacenterdynamics.com/critical-environment/reducing-data-center-carbon-it-efficiency-is-king/80782.fullarticle
http://www.datacenterdynamics.com/critical-environment/reducing-data-center-carbon-it-efficiency-is-king/80782.fullarticle
http://www.greendatacenternews.org/articles/840122/local-governments-may-force-faster-green-data-cent/
http://www.greendatacenternews.org/articles/840122/local-governments-may-force-faster-green-data-cent/
http://www.datacenterknowledge.com/archives/2011/12/20/norways-fjord-cooled-data-center/
http://www.datacenterknowledge.com/archives/2011/12/20/norways-fjord-cooled-data-center/
http://www.datacenterknowledge.com/archives/2011/12/20/norways-fjord-cooled-data-center/
http://www.bloomberg.com/bw/articles/2013-10-03/facebooks-new-data-center-in-sweden-puts-the-heat-on-hardware-makers
http://www.bloomberg.com/bw/articles/2013-10-03/facebooks-new-data-center-in-sweden-puts-the-heat-on-hardware-makers
http://www.bloomberg.com/bw/articles/2013-10-03/facebooks-new-data-center-in-sweden-puts-the-heat-on-hardware-makers
http://www.datacenterdynamics.com/design-strategy/arizona-passes-data-center-tax-breaks/80453.fullarticle
http://www.datacenterdynamics.com/design-strategy/arizona-passes-data-center-tax-breaks/80453.fullarticle
http://www.datacenterdynamics.com/design-strategy/arizona-passes-data-center-tax-breaks/80453.fullarticle

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 104

[50] Oracle, “Oracle’s Approach To Cloud,” http://www.oracle.com/technetwork/

topics/entarch/oracle-ds-cloud-approach-r3-0-1556829.pdf, 2012.

[December, 2015]

[51] S. Polfliet, F. Ryckbosch, and L. Eeckhout, “Optimizing the data center for data-centric

workloads,” The international conference on Supercomputing, pp. 182-191, 2011.

[52] C. Delimitrou and C. Kozyrakis, “Cross-Examination of Datacenter Workload Modeling

Techniques,” 31st International Conference on Distributed Computing Systems Workshops, pp.

72-79, June 2011.

[53] S. Shen, V. Beek, and A. Iosup, “Statistical Characterization of Business-Critical Workloads

Hosted in Cloud Datacenters,” 5th IEEE/ACM International Symposium on Cluster, Cloud, and

Grid Computing (CCGrid), pp. 465-474, May 2015.

[54] D. Michelino, “Implementation and testing of OpenStack Heat,” CERN openlab Summer Stu-

dent Report, September 2013, https://zenodo.org/record/7571/files/CERN_

openlab_report_Michelino.pdf.

[55] Amazon Web Services, “Template Anatomy,” http://docs.aws.amazon.com/

AWSCloudFormation/latest/UserGuide/template-anatomy.html, May

2015. [June 2016]

[56] Amazon Web Services, “AWS Template Format,” https://s3-us-

west-2.amazonaws.com/cloudformation-templates-us-west-2/

AutoScalingMultiAZWithNotifications.template, September 2010. [March

2016]

[57] Amazon Web Services, “AWS CloudFormation: User Guide,” http://docs.aws.

amazon.com/AWSCloudFormation/latest/UserGuide/cfn-ug.pdf, May

2010. [March 2016]

[58] S. Bernardi, J. Merseguer, and D. Petriu, “An UML profile for dependability analysis and

modeling of software systems,” Technical Report, May 2008, http://citeseerx.ist.

psu.edu/viewdoc/download?doi=10.1.1.205.4357&rep=rep1&type=pdf.

http://www.oracle.com/technetwork/topics/entarch/oracle-ds-cloud-approach-r3-0-1556829.pdf
http://www.oracle.com/technetwork/topics/entarch/oracle-ds-cloud-approach-r3-0-1556829.pdf
https://zenodo.org/record/7571/files/CERN_openlab_report_Michelino.pdf
https://zenodo.org/record/7571/files/CERN_openlab_report_Michelino.pdf
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html
https://s3-us-west-2.amazonaws.com/cloudformation-templates-us-west-2/AutoScalingMultiAZWithNotifications.template
https://s3-us-west-2.amazonaws.com/cloudformation-templates-us-west-2/AutoScalingMultiAZWithNotifications.template
https://s3-us-west-2.amazonaws.com/cloudformation-templates-us-west-2/AutoScalingMultiAZWithNotifications.template
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-ug.pdf
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-ug.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.205.4357&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.205.4357&rep=rep1&type=pdf

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 105

[59] M. Tavis and P. Fitzsimons, “Web Application Hosting in the AWS Cloud Best

Practices,” https://media.amazonwebservices.com/AWS_Web_Hosting_

Best_Practices.pdf, May 2010. [September 2012]

[60] Amazon Web Services, “Web Application Hosting,” http://media.

amazonwebservices.com/architecturecenter/AWS_ac_ra_web_01.pdf,

2016. [May 2016]

[61] Amazon Web Services, “Fault Tolerance and High Avaialbility,” http://media.

amazonwebservices.com/architecturecenter/AWS_ac_ra_ftha_04.pdf,

2016. [May 2016]

[62] OpenNebula, “Virtual Machine Definition File,” http://docs.opennebula.org/4.

12/user/references/template.html, 2015. [May 2016]

[63] OpenNebula, “Virtual Machine High Availability,” http://docs.opennebula.org/

4.6/advanced_administration/high_availability/ftguide.html#

virtual-machine-failures, 2014. [December 2015]

[64] Oracle, “Cloud Candidate Selection Tool: Guiding Cloud Adoption,” http:

//www.oracle.com/technetwork/topics/entarch/oracle-wp-cloud-

candidate-tool-r3-0-1434931.pdf, December 2011. [November 2015]

[65] PG&E, “Data Center Best Practices Guide: Energy efficiency solutions for high-performance

data centers,” http://www.pge.com/includes/docs/pdfs/mybusiness/

energysavingsrebates/incentivesbyindustry/DataCenters_

BestPractices.pdf, October 2012. [December 2015]

[66] A. Adegoke and E. Osimosu, “Service Availability in Cloud Computing-Threats and Best

Practices,” Bachelor Thesis, http://www.diva-portal.se/smash/get/diva2:

646329/FULLTEXT01.pdf, June 2013.

[67] Amazon Web Services, “AWS Global Infrastructure,” https://aws.amazon.com/

about-aws/global-infrastructure/, 2016. [May 2016]

[68] Amazon EC2, “Amazon EC2 Service Level Agreement,” http://aws.amazon.com/

ec2-sla/, June 1 2013. [July 20, 2015]

https://media.amazonwebservices.com/AWS_Web_Hosting_Best_Practices.pdf
https://media.amazonwebservices.com/AWS_Web_Hosting_Best_Practices.pdf
http://media.amazonwebservices.com/architecturecenter/AWS_ac_ra_web_01.pdf
http://media.amazonwebservices.com/architecturecenter/AWS_ac_ra_web_01.pdf
http://media.amazonwebservices.com/architecturecenter/AWS_ac_ra_ftha_04.pdf
http://media.amazonwebservices.com/architecturecenter/AWS_ac_ra_ftha_04.pdf
http://docs.opennebula.org/4.12/user/references/template.html
http://docs.opennebula.org/4.12/user/references/template.html
http://docs.opennebula.org/4.6/advanced_administration/high_availability/ftguide.html#virtual-machine-failures
http://docs.opennebula.org/4.6/advanced_administration/high_availability/ftguide.html#virtual-machine-failures
http://docs.opennebula.org/4.6/advanced_administration/high_availability/ftguide.html#virtual-machine-failures
http://www.oracle.com/technetwork/topics/entarch/oracle-wp-cloud-candidate-tool-r3-0-1434931.pdf
http://www.oracle.com/technetwork/topics/entarch/oracle-wp-cloud-candidate-tool-r3-0-1434931.pdf
http://www.oracle.com/technetwork/topics/entarch/oracle-wp-cloud-candidate-tool-r3-0-1434931.pdf
http://www.pge.com/includes/docs/pdfs/mybusiness/energysavingsrebates/incentivesbyindustry/DataCenters_BestPractices.pdf
http://www.pge.com/includes/docs/pdfs/mybusiness/energysavingsrebates/incentivesbyindustry/DataCenters_BestPractices.pdf
http://www.pge.com/includes/docs/pdfs/mybusiness/energysavingsrebates/incentivesbyindustry/DataCenters_BestPractices.pdf
http://www.diva-portal.se/smash/get/diva2:646329/FULLTEXT01.pdf
http://www.diva-portal.se/smash/get/diva2:646329/FULLTEXT01.pdf
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
http://aws.amazon.com/ec2-sla/
http://aws.amazon.com/ec2-sla/

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 106

[69] U.S. Energy Information Administration, “Energy-Related Carbon Dioxide Emissions at

the State Level, 2000-2013,” http://www.eia.gov/environment/emissions/

state/analysis/pdf/stateanalysis.pdf, October 2015. [April 2016]

[70] Google Cloud Platform, “Google Cloud Status,” https://status.cloud.google.

com/, July 23 2015. [August 10, 2015]

[71] F. Longo, R. Ghosh, V. Naik, and K. Trivedi, “A scalable availability model for infrastructure-

as-a-service cloud,” 41st IEEE/IFIP International Conference on Dependable Systems & Net-

works (DSN), pp. 335-346, June 2011.

[72] B. Javadi, D. Kondo, J. Vincent, and D. Anderson, “Discovering statistical models of avail-

ability in large distributed systems: An empirical study of seti@home,” IEEE Transactions on

Parallel and Distributed Systems, vol. 22, no. 11, pp. 1896-1903, November 2011.

[73] R. Ghosh, K. S. Trivedi, V. K. Naik, and D. S. Kim, “End-to-end performability analysis for

infrastructure-as-a-service cloud: An interacting stochastic models approach,” 16th IEEE Pa-

cific Rim International Symposium on Dependable Computing (PRDC), pp. 125-132, December

2010.

[74] A. M. Paing and N. L. Thein, “A Petri Net Model for High Availability in Virtualized Local

Disaster Recovery,” International Conference on Information Communication and Manage-

ment, vol. 16, pp. 158-164, 2011.

[75] T. A. Nguyen, D. S. Kim, and J. S. Park, “A Comprehensive Availability Modeling and Analy-

sis of a Virtualized Servers System Using Stochastic Reward Nets,” The Scientific World Jour-

nal, August 2014.

[76] F. Salfner and K. Wolter, “Analysis of service availability for time-triggered rejuvenation

policies,” Journal of Systems and Software, vol. 83, no. 9, pp. 1579-1590, May 2010.

[77] F. Salfner and K. Wolter, “Service Availability of Systems with Failure Prevention,” IEEE

Asia-Pacific Services Computing Conference, pp. 1219-1224, December 2008.

[78] F. Salfner and K. Wolter, “A queuing model for service availability of systems with

rejuvenation,” IEEE International Conference on Software Reliability Engineering Workshops

(ISSRE), pp. 1-5, 11-14 November 2008.

http://www.eia.gov/environment/emissions/state/analysis/pdf/stateanalysis.pdf
http://www.eia.gov/environment/emissions/state/analysis/pdf/stateanalysis.pdf
https://status.cloud.google.com/
https://status.cloud.google.com/

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 107

[79] F. Salfner and K. Wolter, “A Petri Net model for Service Availability in Redundant Computing

Systems,” Winter Simulation Conference (WSC), pp. 819-826, December 2009.

[80] S. Jian, W. Shaoping, and S. Yaoxing “Petri-Nets Based Availability Model of Fault-Tolerant

Server System,” IEEE Conference on Robotics, Automation, and Mechatronics, pp. 444-449,

2008.

[81] M. Melo, P. Maciel, J. Araujo, R. Matos, and C. Araujo, “Availability study on cloud comput-

ing environments: Live migration as a rejuvenation mechanism,” 43rd IEEE/IFIP International

Conference on Dependable Systems and Networks, pp. 1-6, 2013.

[82] T. Subramanian and N. Savarimuthu, “Application based brokering algorithm for optimal re-

source provisioning in multiple heterogeneous clouds,” Vietnam Journal of Computer Science,

pp. 1-14, December 2015.

[83] K. Joo, S.H. Kim, D. Kim, and C.H. Youn, “Cost-Aware Workflow Scheduling Scheme Based

on Colored Petri-net Model in Cloud,” International Conference on Future Web, November

2014.

[84] H. Qian, H. Zu, C. Cao, and Q. Wang, “CSS: Facilitate the cloud service selection in IaaS

platforms,” International Conference on Collaboration Technologies and Systems (CTS), pp.

347-354, May 2013.

[85] P. Fan, J. Wang, Z. Chen, Z. Zheng, and M. R. Lyu, “A spectral clustering-based optimal

deployment method for scientific application in cloud computing,” International Journal of

Web and Grid Services, vol. 8, pp. 31-55, 2012.

[86] T. A. Nguyen, D. S. Kim, and J. S. Park, “Availability modeling and analysis of a data center

for disaster tolerance,” Future Generation Computer Systems, vol. 56, pp. 27-50, October 2015.

[87] P. Ranganathan, P. Leech, D. Irwin, and J. Chase, “Ensemble-level power management for

dense blade servers,” ACM SIGARCH Computer Architecture News, vol. 34, no. 2, pp. 66-77,

2006.

[88] C. Rusu, A. Ferreira, C. Scordino, and A. Watson, “Energy-efficient real-time heterogeneous

server clusters,” 12th IEEE Real-Time and Embedded Technology and Applications Sympo-

sium, pp. 418-428, 2006.

Chapter 3: Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud
Scoring Selection Tool 108

[89] L. Liu, H. Wang, et al., “GreenCloud: a new architecture for green data center,” 6th interna-

tional ACM on Autonomic computing and communications industry session, pp. 29-38, 2009.

[90] D. J. Bradley, R. E. Harper, and S. W. Hunter, “Workload-based power management for par-

allel computer systems,” IBM Journal of Research and Development, vol. 47, pp. 703-718,

2003.

[91] A. Khosravi, S. K. Garg, and R. Buyya, “Energy and Carbon-Efficient Placement of Virtual

Machines in Distributed Cloud Data Centers,” 19th International Conference on Parallel Pro-

cessing, pp. 317-328, 2013.

109

Chapter 4

Mitigating the Risk of Cloud Services Downtime

Using Live Migration and High

Availability-Aware Placement

4.1 Introduction
Cloud computing emerges as a distributed platform that provides on-demand compute,

storage, software systems, or applications as a service [2]. Using virtualization and elas-

tic computing resources, the cloud aims to transform everything from file management,

desktop replacement to the information technology (IT) infrastructure into a service-driven

platform [3]. The cloud hosts different enterprise and real-time applications that are de-

ployed on virtual machines (VMs) or containers. However, planned and unplanned outages

are bound to occur and thus shutting down data-sensitive, critical or, any cloud application

[4] [5]. This emanates availability concerns regarding the adoption of the cloud applica-

tion. A highly available system should adopt design principles that prevent service loss by

managing failures and minimizing/avoiding downtime especially for critical applications

such as health, life, or economical-based services. The service level agreement (SLA) of-

fered by the cloud provider considers only the availability of the resources while discarding

that of the tenant’s applications using these resources. Therefore, it is crucial from a ten-

ant perspective to have the ability to assess the expected availability of its business critical

applications [6]. Using the proper assessment, a better high availability (HA) plan can be

associated with the cloud services to handle any unplanned outage and system interruptions

The content of this chapter have been published [1].

This work is supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC-STPGP 447230) and Ericsson Research.

Chapter 4: Mitigating the Risk of Cloud Services Downtime Using Live Migration and High
Availability-Aware Placement 110

of a single instance all the way to the servers and data centers (DCs).

Different strategies can be used to maintain certain HA baseline and gear the “always-on”

applications. The objective of this chapter is to propose a HA-aware solution that embraces

HA-aware placement and live migration strategies to achieve HA in the cloud and then

evaluate these approaches not only from HA perspective but also to assess the performance

metrics associated with the proposed solution. This chapter provides guidelines to design

and evaluate HA-aware placements of cloud applications. The placements are evaluated

using the Stochastic Colored Petri Net (SCPN) model designed earlier [7] [8]. Our evalu-

ation metric is based on the number of served, lost, and delayed requests. The assessment

stage is necessary to ensure the effectiveness of the deployments, their resiliency to failures

or sudden changes in the workload and consequently, maximizing the HA of the VM and

its hosted applications. Also, the chapter proposes a live VM migration to handle the cloud

infrastructure or application/VM failure, overload, or maintenance. It uses the HA-aware

placement approach to find new hosts for the migrated VMs while satisfying the HA, per-

formance, and other SLA requirements. For this purpose, the chapter provides a mixed

integer linear programming model that minimizes the migration downtime based on the

VM memory pages and the optimal HA-aware placement of the VM.

The rest of this chapter is organized as follows. Section 4.2 presents related work for live

migration and HA-aware placement solutions. Section 4.3 describes the proposed frame-

work where HA-aware placement and live migration are discussed. The evaluation and

results of the proposed framework are defined in Section 4.4. Finally, the conclusion is

presented in Section 4.5.

4.2 Related Work
Building highly available and resilient cloud system has attracted many studies. Many

prior research works address the availability of the cloud applications, each from a differ-

ent perspective. Some focus on live migration approaches while other tackle the HA-aware

applications placement, fault-tolerant, and redundancy techniques.

Liu et al. propose a technique in order to minimize the downtime of the migration [9]. This

technique performs the logging and replay strategy before the stop and copy stage. It copies

Chapter 4: Mitigating the Risk of Cloud Services Downtime Using Live Migration and High
Availability-Aware Placement 111

the execution log of the VM instead of the modified pages. It is an iterative technique since

the logged file is transferred during n rounds. The last log file is reduced to small size and

copied in the stop and copy stage thus generating minimized downtime. Riteau et al. pro-

pose Shrinker, a new scheme that searches for common data (same versions of programs,

shared libraries or kernels) between the migrated VM and the VMs residing on the new lo-

cation [10]. They use cryptographic hash table and digest algorithms that map the data into

a hash value. Whenever a common hash value is found then the pages are copied through

the local network instead of the WAN. They implement two subsystems to improve the

migration efficiency; site-wide distributed hash table that locates nodes having a copy of a

given page using its hash value and periodic memory indexer added to the hypervisors that

populate the distributed hash table.

Wood et al. propose Sandpiper, a technique that provides automated strategies for VM

migration in DC [11]. It consists of a black box, an application agnostic, that migrates

the VM, and a gray box that gathers statistics of the operating system and the application

in order to have better migration. Sandpiper uses a hotspot algorithm that determines the

suitable time to migrate, the best position for migration, and the best VM to be migrated. It

implements a nucleus in each server to gain statistics about the usage profile and determine

the hotspot that simulates the migration occurrence. Also, it implements a hotspot heuristic

that determines which overloaded VM to migrate and its placement while minimizing the

migration overhead (transferred data) and the migration time.

Keller et al. formulate the VM migration problem as a relocation problem [12]. It con-

sists of choosing the VM to be migrated and the server where it should reside. Because

the relocation problem minimizes the SLA violations, the order of migrated VMs and their

servers affects the migration performance. Therefore, the authors propose different re-

location policies that manipulate the orders of the candidate VMs and the target servers

according to their CPU utilization.

Shrivastava et al. propose a virtual machine migration method that takes into consideration

the real-time communication among VMs, the data center network (DCN) topology, and

the servers’ capacity (resources) [13]. This method aims to minimize the DCN traffic while

satisfying all of the server-side constraints. They develop an optimization model that min-

imizes the overhead of the VM migration by placing the dependent couple close to each

Chapter 4: Mitigating the Risk of Cloud Services Downtime Using Live Migration and High
Availability-Aware Placement 112

other in the data center topology. Because the proposed model is an NP-complete problem,

the authors develop an approximate solution (AppAware) that places the VM one at a time

on the suitable server while minimizing the mapping cost.

Bose et al. aim to maximize the number of in-migrations and minimize the number of

out-migrations [14]. In-migration means that active servers are the candidates for new mi-

gration. While the out-migration switches to new servers to accommodate the migrated

VMs. They develop an optimization model that minimizes the migration cost taking into

account the CPU and memory resources of the new servers and the overloaded VMs. How-

ever, the authors use heuristics in order to approximate the solution in a reasonable time

since real DCs contain hundreds of servers and thousands of VMs. Finally, Wei et al. de-

velop LVCMI model; live VM migration with less cost and application interference [15].

They propose a cost migration model that chooses the best VM to be migrated. The cost

model depends on the performance degradation that faces the user. Also, they propose an

interference model that generates an optimal placement of the migrated VM and minimizes

the relocation interference. Their work is implemented in Xen, and they implement a VM

monitor in each VM and PM monitor in each server to collect information about the state

of each VM and physical machine (PM).

Wu et al. estimate the migration time based on the resource allocation and management

strategies for a certain virtualized data center [16]. They control the CPU usage during

migration by providing the Xen with the ability to assign a specific amount of CPU to the

Dom0. Controlling the resources of Dom0 limits the CPU usage of each VM. They con-

clude that the availability of the CPU cycles and network bandwidth are important factors

for live VM migration. These two parameters are highly correlated during VM migration.

In other words, it is unnecessary to take into consideration the CPU and network bandwidth

availability to implement performance model for live VM migration.

Machida et al. propose a redundancy-aware approach where a minimum number of VMs is

generated to maintain the service availability [17]. Al-Omari et al. and Zhu et al. achieve a

fault tolerant design using a backup technique [18] [19]. The latter schedules the same task

in different processors to tackle failure and task execution.

Feller et al. consolidate the workload of different VMs and infrastructure clusters to pro-

vide a fault-tolerant system [20]. Wang and Xu et al. propose an approach that adds fault

Chapter 4: Mitigating the Risk of Cloud Services Downtime Using Live Migration and High
Availability-Aware Placement 113

handlers into the fault-tolerant system [21] [22]. The approach examines faults and ran-

domly generates others to update the system design.

While Jung et al. allocate multi-tier applications to maintain HA and service performance

[23], Zhong et al. use non-linear modeling to achieve application availability [24]. Zhong

et al. find the best placements for the replicas [24]. The placement approach takes into

consideration the impact of task failures on the execution of other correlated tasks.

4.3 Approach
High availability is a challenge that many enterprises are endeavoring to achieve. It can

be attained by designing a system that can handle different workload and cloud failures

while maximizing the service uptime. The chapter proposes a HA-aware approach that is

a function of HA-aware placement and live migration while considering the component

frequency of failure and its associated impact, the interactions of the applications compo-

nents, and the required computational resources and latency. In the following, different

design considerations are proposed to achieve and assess HA-aware placements. Then the

proposed placement is used in the live migration approach to find hosts for the migrated

VMs.

4.3.1 HA-aware placement
Cloud users are considered an important entity of any cloud application. They are the main

drivers of quality of service and policy makers where the performance of any cloud solution

depends on the impact it has on its users. Cloud users can be classified into four categories:

developers, authors, experts, and end users [25]. The developers are responsible for the

development, administration, and maintenance of the cloud applications. The authors pro-

vide services to be integrated into the workflows. The experts provision services resources

and allow interfacing with end-users. Finally, the end users require service provisioning

in a highly available mode. Therefore, it is the responsibility of cloud users to provide

a HA-aware placement for their cloud applications. The cloud provider offers different

SPI (Software, Platform, and Infrastructure as a Service) models and simplifies their com-

plexity as a foundation to help the cloud users choose and design their HA approach. For

instance, Netflix is one of the cloud users that maintains its application availability (e.g.

Chapter 4: Mitigating the Risk of Cloud Services Downtime Using Live Migration and High
Availability-Aware Placement 114

Eureka: elastic load balancing and failover tool) while using the Amazon infrastructure as

a service [26].

In this section, we explain the design considerations to architect a HA-aware placement

solution.

4.3.1.1 System modeling

The first step toward an HA architecture is conceptualizing and building the cloud using

system modeling such as Unified Modeling Language (UML) class diagrams. The mod-

eling step aims at defining the point of failures, faulty nodes, and different HA and per-

formance metrics. Furthermore, it allows a better understanding of the cloud applications

interactions such as dependency and redundancy relations.

The cloud consists of a cloud provider side that has multiple data centers (DCs) hosting

many servers and a cloud user side consisting of multiple applications components. Every

module of the cloud is assumed to fail at some point, and consequently, each is associated

with its mean time to failure (MTTF) and mean time to repair (MTTR). Note that MTTF

is the expected time until the first failure and MTTR is the time to repair a failed module.

Each application component has one or many redundant instances to avoid a single point of

failures. These components can be deployed with different redundancy models. If the com-

ponents are deployed in an active-active manner, the primary and redundant components

process requests/data in parallel. If the components are deployed in an active-hot-standby,

both primary and redundant are up where only the primary can process requests. Also, the

components can be deployed in an active-cold-standby manner. In this case, the redundant

components are powered off until the failure of the primary component.

In this scope, we address the placement of 3-tier web application that handles HTTPS re-

quests at the frontend and forwards them to the business logic or App server, which accesses

the database at the backend and returns an HTML response. Dividing the applications into

multiple separate tiers results in cloud applications that meet the economy of scale. The

3-tier web application allows the generation of different application layers where each is

responsible for part of the application processing. It is necessary to take into consideration

the interdependency relation between the application components during the placement

process to ensure the successful completion of requests and consequently, to maximize

the availability of multiple computational paths. Such relation requires placements that

Chapter 4: Mitigating the Risk of Cloud Services Downtime Using Live Migration and High
Availability-Aware Placement 115

minimize both the component-interaction latency and the impact of failures of the sponsor

components.

4.3.1.2 Placement algorithm

Amazon provides certain availability baseline using the multiple availability zones. It im-

plements redundancy approach to minimize downtime and provides three nines of HA.

Similarly, Microsoft azure service provides three nines of HA by defining an availability

set for a VM where each set has an update domain and a fault domain to determine which

VMs and hosts can be restarted and which VMs share same network switch and power

source respectively. Although these cloud platforms provide certain HA baselines, it is not

always the case that the inter-applications distribution can achieve a certain HA baseline

[7]. These platforms discard the impact of applications placement, interaction between

redundant and interdependent components, and other availability and performance require-

ments on the HA plan.

The HA-aware placement aims to deliver cloud services while minimizing their down-

time [27] [28]. The cloud applications and infrastructure model are used to extract the

placement objective and associated constraints. For this purpose, a mixed integer linear

programming optimization model can be used to generate optimal HA-aware deployments.

This model maximizes the applications availability while satisfying the computational re-

sources of each component and the latency requirements between redundant and interde-

pendent components. The computational complexity of such mathematical models hinders

their applicability on large scale networks. Therefore, it is necessary to extend this math-

ematical modeling to an approximate solution with the same objective and constraints and

apply it to real cloud settings.

Once the information is collected, the placement algorithm is triggered to find the best

HA and performance-aware hosts for the applications. The proposed HA-aware algorithms

consist of different filters to achieve its objective. The resources and latency filters find

a set of hosts that satisfy the functionality requirements. The availability filter aims at

minimizing both the frequency and impact of failures [6] [27] [28]. The availability filter

does not only select servers with high MTTF and low MTTR, but it selects the servers that

satisfy redundancy and dependency constraints as well. To avoid single point of failures,

redundant components should not be hosted on the same server if such policy does not vio-

Chapter 4: Mitigating the Risk of Cloud Services Downtime Using Live Migration and High
Availability-Aware Placement 116

Figure 4.1: HA-aware deployments analysis approach.

late functionality constraints. Similarly, the dependent components do not share its sponsor

host unless they cannot tolerate its failure.

Generally, cloud applications should expect the failure of some cloud entities. This outage

should not hinder the functionality and service delivery in the cloud. It is necessary to

inject failures and examine the applications resiliency to them. Therefore, SCPN model is

used to evaluate the above HA-aware deployments.

4.3.1.3 Deployments dependability analysis

Unplanned outages are the result of stochastic failure events, and consequently, the cloud

providers and users are not aware of it. Stochastic failures come in different forms and

occur at different cloud levels: infrastructure failures, applications errors, or cascaded fail-

ures [7] [8]. Although the HA-aware placement satisfies the availability and functionality

requirements, it is necessary to model the different stochastic failures of the cloud enti-

ties and evaluate the effectiveness of the HA-aware placement approach and its resiliency

to failures. Once the HA-aware deployments are generated, it is necessary to perform a

dependability analysis to assess the system availability. Dependability analysis aims at

answering the questions related to the availability of a given system, such as cloud ap-

plications availability. Using this analysis, we can determine if a component can tolerate

failures, if the cloud service can be provided during a specific time period, and the time

needed to recover the faulty entity upon a failure. Different analysis techniques can be

used to assess a system availability.

In order to find the technique that satisfies the system analysis objective, a comparative

analysis between multiple approaches is needed. The comparison is done in terms of the

Chapter 4: Mitigating the Risk of Cloud Services Downtime Using Live Migration and High
Availability-Aware Placement 117

techniques types, aims, and supported characteristics. Regarding the types, some tech-

niques are performed at the beginning of the design stage to identify the potential single

point of failures and their impacts at the next system levels, such as Functional Failure

Analysis (FFA) and Preliminary Hazard Analysis (PHA). Alternatively, other techniques

are performed after the system designing process to evaluate its reliability/availability and

provide guidelines for design alternatives. They aim at analyzing the effect of multiple

concurrent failures, such as Markov analysis, Petri Nets, and Truth Tables. Regarding the

analysis objective, it can be quantitative, qualitative, or both. Besides, it is necessary to de-

termine the capability of modeling a dependent behavior where a failure of an entity might

affect other dependent ones.

In the case of HA-aware deployments, the availability evaluation should model the compo-

nents deployments, interactions between redundant and dependent components, assess their

deployments, and improve them in terms of availability constraints if applicable. Also, the

analysis is not only performed to identify failures, their impacts, and repair/recovery poli-

cies, but it aims at estimating a numerical data as an availability metric under stochastic

or probabilistic failure assumptions as well. For this purpose, Petri Nets can be used to

evaluate HA-aware deployments and assess their resiliency to failures. They are expressive

and flexible models that represent the interactions between different entities, including the

firing of events. They support qualitative, quantitative, and dependency modeling analysis.

In our previous work, we developed a SCPN model to serve the above objectives [7] [8].

Such model assesses the HA-aware deployments. Briefly, upon the arrival of requests, the

load balancing event is triggered to distribute them across multiple components: the pri-

mary and its redundant ones. When the failure event is fired, failover is triggered and the

load balancer redistributes the workload among the redundant component(s). Once a given

deployments scenario is analyzed, the SCPN model generates the availability of that sce-

nario in terms of the successful requests number.

The analysis model does not only evaluate cloud system availability, but it provides guide-

lines to improve the deployments as well. In other words, it allows graceful degradation to

be considered in the cloud where a failure can still occur, but the cloud system is functional

and maintains its service delivery. The assessment approach is shown in Fig. 4.1.

The proposed HA-aware placement is used in the following live migration approach to find

Chapter 4: Mitigating the Risk of Cloud Services Downtime Using Live Migration and High
Availability-Aware Placement 118

hosts for the migrated VMs while satisfying availability and performance requirements.

4.3.2 Live VM migration
Live migration is the movement of VM from its original server to another one without

any disconnection in its activity. During live VM migration, the whole VM, its memory,

registers, storage, and operating system, are transferred from one host to another. It finds

a new host for the faulty or overloaded virtual machine while minimizing its downtime. It

can be applied in one DC or across DCs to maintain certain availability and performance

baselines. Live migration can be performed during different situations, such as:

• Migrating a VM host system for maintenance reasons such as, hardware mainte-

nance, software upgrade, or firmware update.

• Exploiting specific server resources or characteristics without violating the availabil-

ity and functionality requirements of the application.

• Balancing server workloads due to a sudden change in their VMs’ load, an abrupt

grouping of VMs with common resources demands or certain dependency relation.

• Optimizing resource usage in order to have a green cloud network.

• Pre-disaster recovery process that requires evacuation or shutting down certain DC

and thus migrating VMs before the disaster happens.

4.3.2.1 Live migration mechanism

The evaluation of a live migration mechanism depends on two metrics: the migration time

and the downtime. The migration time is the required time to migrate the VM from one

server to another. On the other hand, the downtime is a fraction of the migration time

in which the VM is halted [29]. There are different mechanisms for live migration that

conciliate the above two factors.

1. Post-copy migration mechanism: It transfers the content of the memory after migrating

its process state to new destination [30] [31]. The pages of the memory that are modified

in the original server are known as the demand-paged over the network. However, in post

copy technique, the transfer of the memory pages happens at most once. It uses dynamic

self-ballooning mechanism to handle the migration of the pages of the VM. It gets the pages

from the original host using following steps:

• Demand-Paging: It ensures that the pages are transferred once over the network.

Chapter 4: Mitigating the Risk of Cloud Services Downtime Using Live Migration and High
Availability-Aware Placement 119

• Active Push: It removes the dependency of the VM from the source server.

• Pre-Paging: It ensures that pages are not duplicated during the migration process

• Dynamic Self-Ballooning: It handles free memory pages.

Although this technique is easily implemented and minimizes the total migration time, but

it is characterized by high downtime.

2. Pure-on-demand migration mechanism: The VM is paused only to copy the essential

data, and its remaining address space is transferred when it is activated on the new server

[30]. This technique has low downtime, but it ends up with a high migration time.

3. Pre-copy migration mechanism: This mechanism provides a compromise between the

above techniques. It addresses their shortcomings by adding an iterative pre-copy stage

before starting the stop and copy step [30]. In general, the pre-copy technique selects a

target VM to be migrated, finds a new host for it, performs an iterative transfer of the VM

memory pages, and finally stops the VM for a final transfer iteration. The following steps

summarize the pre-copy technique:

• Pre-Migration: This step selects a target VM to be migrated. It then executes the

placement algorithm to select the destination host for the VM or to find candidate

destination hosts that satisfy the VMs performance and other QoS requirements.

• Reservation: This step reserves the resources of the VM at the destination host.

• Iterative Pre-Copy: This performs an iterative transferring of the dirtied pages to the

destination.

• Stop-and-Copy: The running operating system (OS) is suspended at the source host,

and its network traffic are transferred to the target host. The CPU state and the

remaining memory pages are transferred. At the end of this step, an image of the

VM resides on both the source and target hosts.

• Commitment: It provides an acknowledgment from the destination indicating a suc-

cessful migration of the VM.

• Activation: It activates the VM on the target destination.

4.3.2.2 Live migration approach

Due to stochastic failures and sudden increase in the computational demands of some appli-

cations, migration scheme is an inevitable step that mitigates the computational resources

and outage burdens.

Chapter 4: Mitigating the Risk of Cloud Services Downtime Using Live Migration and High
Availability-Aware Placement 120

Live migration aims at minimizing the downtime of the migrated VM. The downtime de-

pends on the number of pages transferred during the iterative and stop-copy stages, applica-

tions placements, and transmission delay. Once a dynamic pool of VMs requires migration,

the above HA-aware placement is triggered to generate new deployments while satisfying

the availability and functionality constraints. Then it is evaluated using the SCPN model.

If the deployments do not meet the SLA, the placement is re-executed. Note that if the

new destination does not satisfy the latency requirements between the interdependent and

redundant VMs, a new set should be migrated. In other words, the placement algorithm

generates new migration unit.

When the new hosts are selected, the iterative copy stage is activated. It is considered it-

erative because any application can cause a modification of its memory pages in a regular

manner. Once a page is modified, it should be recopied to the new server. It is noticeable

that the migration time is affected not only by the HA-aware deployments overhead but by

the pages dirty rate as well. Consequently, the migration approach minimizes the migration

downtime by moving the pages with high dirty rate during the iterative stage and those with

low rates during the stop-and-copy stage.

Ultimately, this objective is achieved using a mixed integer linear programming (MILP)

optimization model that embraces the above requirements and considerations to minimize

migration downtime.

4.3.2.3 Optimization model

The MILP model is solved using ILOG CPLEX optimization tool. Its objective function

minimizes the downtime of the migrated VM (Downtimev) while satisfying HA, func-

tionality, and other migration constraints.

a) Notations and decision variables: In this model, VM is denoted as V , a server is de-

noted as S, computational resources are denoted asRes, redundant and dependent VMs are

denoted as Red and Dep respectively. Also, the tolerance time, recovery time, and delay

tolerance of a VM are denoted as TT , RT , and DT respectively. P and P threshold rep-

resent the probability and its threshold to modify the VM memory pages. Memory pages

with high dirty rates are denoted Pgh. The iterations during the pre-copy iterative stage are

denoted as iter. Finally, the page size, transmission link bandwidth, and speed of light are

denoted as sizepg, BW , and c respectively.

Chapter 4: Mitigating the Risk of Cloud Services Downtime Using Live Migration and High
Availability-Aware Placement 121

As for decision variables, they are described as follows:

Wvs =

1 if S hosts V

0 otherwise

Xipv =

1 if pg is transferred during iter i

0 otherwise

MUv =

1 if V ∈ migration unit MU

0 otherwise

b) Mathematical Formulation: The MILP objective function is defined as follows:

min
∑
v

Downtimev

It is subjected to the following constraints:

Boundary and Page Constraints:

Wvs,MUv, Xpv ∈ {0, 1} ∀ v ∈ V, s ∈ S, p ∈ P (1)

Xipv ∗ ppv = P thresholdv ∀ v ∈ VM, p ∈ P, i ∈ iter (2)

Downtimev ≥ 0 ∀ v ∈ V (3)

Placement Constraints:

∑
v

(Wvs ∗ Resvr) ≤ Ressr ∀ s ∈ S, ∀r ∈ Res (4)

∑
s

Wvs = 1 ∀ v ∈ VM (5)

Chapter 4: Mitigating the Risk of Cloud Services Downtime Using Live Migration and High
Availability-Aware Placement 122

(Wv′s′ ∗ delayss′ −DTv) ≤M × yv′

Wvs − 1 ≤M × (1− yv′) (6)

yv′ ∈ {0, 1}

∀ s, s′ ∈ S, v, v′ ∈ Dep, Red

Wvs +Wv′s ≤ 1 ∀ s ∈ S, v, v′ ∈ Red (7)

Wvs +Wv′s ≤ 2 ∀ s ∈ S, v, v′ ∈ Dep TTv′ < RTv (8)

Wvs +Wv′s ≤ 1 ∀ s ∈ S, v, v′ ∈ Dep TTv′ > RTv (9)
(1−MUv) ≤ H ∗ zv′

(DTv − delayvv′) ≤ H ∗ (1− zv′) (10)

zv ∈ {0, 1} ∀ v, v′ ∈ Red, Dep

Downtime Constraint:

DTv ≤ (

∑
v
Pghv

BW
) ∗ sizepg +

delayssold
c

(11)

∀s, sold ∈ S, v ∈ V

Constraints (1) and (2) ensure that the downtime is a positive number, and the other deci-

sion variables are binary. Constraint (3) determines that the page sets with low dirty rate

are transferred during the iterative stage. Constraint (4) ensures that the VM computation

resources should not exceed those of the selected host. Constraint (5) shows that a VM

can be placed on only one server. Constraint (6) ensures that a migrated VM should be

placed on the server while satisfying latency requirements with is dependents and redun-

dant one. Constraint (7) shows that a VM cannot share the same host with its redundant

whether the latter is migrated or not. Similarly, constraints (8) and (9) determine that a

migrated VM cannot share the same host with its dependent(s) unless the latter cannot tol-

erate its absence. As for constraint (10), it shows that a VM belongs to migration unit if

the placement algorithm cannot find a server satisfying the interaction constraints with its

sponsor or redundant VMs. Finally, constraint (11) shows that the downtime is calculated

Chapter 4: Mitigating the Risk of Cloud Services Downtime Using Live Migration and High
Availability-Aware Placement 123

Figure 4.2: HA-based comparative analysis of placement algorithms in terms of the number of
served requests.

in terms of memory pages with high dirty rate and delay between the new and old host of

the corresponding VM.

4.4 Case Study
In this section, we perform a comparative analysis between different migration and place-

ment approaches.

4.4.1 HA-aware deployments analysis
The HA-aware placement is evaluated on a 3-tier web application using SCPN model [7]

[8]. At each tier, a component is backed up by 2 active redundant components. The infras-

tructure has 3 DCs and 50 servers. Once the placement algorithm generates the components

deployments, they are inputted to the SCPN model. The model analyzes the deployments

in terms of the number of served requests. During the analysis process, multiple compo-

Chapter 4: Mitigating the Risk of Cloud Services Downtime Using Live Migration and High
Availability-Aware Placement 124

nents, servers, or DC failures, repair, and failover events can happen.

The HA-aware placement is compared to an HA-agnostic algorithm. The latter overlooks

availability, redundancy, and interdependency constraints. It places the component on the

server that satisfies computational resources and latency constraints. Both algorithms’

deployments are evaluated using the SCPN. The model performs the evaluation with of

TimeNet4.2 using transient simulation [32]. Note that the HA-agnostic approach does not

support redundancy technique, and consequently, a component is not backed up when a

failure event is fired.

Fig. 4.2 shows the results of the comparative analysis between both placement approaches.

It is noticeable that the number of served requests is higher in the case of HA-aware de-

ployments. The latter implements a failover technique that is triggered by a failure of the

component, its host, or DC. Once a failure event is fired, the component is down, and its re-

quests failover to its redundant components. Simultaneously, the repair policy is triggered,

and the component is healthy again after the MTTR of the failed entity (component, its

server, or DC). As for the HA-agnostic approach, it discards a redundancy technique and

chooses the servers that satisfy only the functionality constraints. Consequently, the cho-

sen server do not necessary have high MTTF or low MTTR and consequently, additional

failures events might be fired. The failure of a component hinders the request processing,

and thus the request is lost. Once the HA-aware placement approach is proven to meet the

SLA, it is used to reserve new hosts for the migrated VMs.

4.4.2 Live migration preliminary results
The migration MILP model is also applied to a 3-tier web application and pool of 3 DCs

and 50 servers. A paging analysis is performed on the migrated VMs [30]. This technique

generates the writable working set of 4KB pages of the VM memory. This set determines

the dirty rate of memory pages. The guest VMs sizes range from 256 MB to 1024 MB with

BW = 256Mb/s. The MILP model is evaluated using CPLEX tool.

The downtime of each migrated VM is the metric used to compare the proposed HA-aware

migration model to two different migration mechanisms, HA-agnostic pre-copy and stop-

and-copy techniques. The results are shown in Fig. 4.3. The proposed migration model has

lower downtime compared to the other techniques. It does not only perform iterative pre-

Chapter 4: Mitigating the Risk of Cloud Services Downtime Using Live Migration and High
Availability-Aware Placement 125

Figure 4.3: The downtime of each migrated VM for different migration mechanisms.

copy migration but searches for a new server that satisfies the availability and functionality

constraints mentioned earlier. In addition to the high MTTF and low MTTR, the chosen

server meets the latency requirements between the migrated component and its dependents

such that the delay is reduced as much as possible to minimize the downtime. As for the

HA-agnostic pre-copy, it has higher downtime values compared to the proposed migration

model. It selects servers that satisfy computational resources requirements and perform

iterative copying of the VM pages. Finally, the stop-and-copy technique has the highest

downtime because it stops the VM and copies its memory to the selected destination. In

this case, the migration time is the downtime, and the VM memory pages are copied during

the pausing period whether they have low or high dirty rates.

4.5 Conclusion
The absence of HA policy can hinder the functionality of the business continuity. When

cloud outage is not an option, it is necessary then to implement proactive HA-aware solu-

tions to maintain service delivery and mitigate failures impacts. This chapter implemented

Chapter 4: Mitigating the Risk of Cloud Services Downtime Using Live Migration and High
Availability-Aware Placement 126

different HA techniques to ensure the delivery of “always-on” and “always-available” ser-

vices. The chapter provided design considerations to implement and evaluate a HA-aware

placement technique. It also developed a MILP model to achieve live VM migration in the

cloud while minimizing the downtime.

127

References

[1] M. Jammal, H. Hawilo, A. Kanso, and A. Shami, “Mitigating the Risk of Cloud Services

Downtime Using Live Migration and High Availability-Aware Placement,” IEEE International

Conference on Cloud Computing Technology and Science (CloudCom), December 2016.

[2] M. Armbrust, A. Fox, et al., “A view of cloud computing,” IEEE Communications Magazine,

vol. 53, pp. 50-58, April 2010.

[3] R. M. Sharma, “The Impact of Virtualization on Cloud Computing,” International Journal of

Recent Development in Engineering and Technology, July 2014.

[4] Ponemon Institute, “Study on Data Center Outages,” http://www.

emersonnetworkpower.com/en-US/Resources/Market/Data-Center/

Latest-Thinking/Ponemon/Documents/2016-Cost-of-Data-Center-

Outages-FINAL-2.pdf, September 2013.

[5] Century Link, “The Low Down on High Availability in the Cloud,” https://www.ctl.

io/assets/pdf/CenturyLink-High-Availability-Whitepaper.pdf, 2016.

[6] H. Hawilo, A. Kanso and A. Shami, “Towards an Elasticity Framework for Legacy Highly

Available Applications in the Cloud,” IEEE World Congress on Services, pp. 253-260, 2015.

[7] M. Jammal, A. Kanso, P. Heidari, and A. Shami, “A Formal Model for the Availability Anal-

ysis of Cloud Deployed Multi-Tiered Applications,” Third IEEE International Symposium on

Software Defined Systems, April 2016.

[8] M. Jammal, A. Kanso, P. Heidari, and A. Shami, “Availability Analysis of Cloud Deployed

Applications,” IEEE International Conference on Cloud Engineering (IC2E), April 2016.

[9] H. Liu, H. Jin, X. Liao, C. Yu, and C. Z. Xu, “Live Virtual Machine Migration via Asyn-

chronous Replication and State Synchronization,” IEEE Transactions on Parallel and Dis-

tributed Systems, vol. 22, no.12, pp. 1986-1999, 2011.

http://www.emersonnetworkpower.com/en-US/Resources/Market/Data-Center/Latest-Thinking/Ponemon/Documents/2016-Cost-of-Data-Center-Outages-FINAL-2.pdf
http://www.emersonnetworkpower.com/en-US/Resources/Market/Data-Center/Latest-Thinking/Ponemon/Documents/2016-Cost-of-Data-Center-Outages-FINAL-2.pdf
http://www.emersonnetworkpower.com/en-US/Resources/Market/Data-Center/Latest-Thinking/Ponemon/Documents/2016-Cost-of-Data-Center-Outages-FINAL-2.pdf
http://www.emersonnetworkpower.com/en-US/Resources/Market/Data-Center/Latest-Thinking/Ponemon/Documents/2016-Cost-of-Data-Center-Outages-FINAL-2.pdf
https://www.ctl.io/assets/pdf/CenturyLink-High-Availability-Whitepaper.pdf
https://www.ctl.io/assets/pdf/CenturyLink-High-Availability-Whitepaper.pdf

Chapter 4: Mitigating the Risk of Cloud Services Downtime Using Live Migration and High
Availability-Aware Placement 128

[10] P. Riteau, C. Morin, and T. Priol, “Shrinker: Efficient Wide-Area Live Virtual Machine Mi-

gration using Distributed Content-Based Addressing,” Springer Euro-Par parallel processing,

pp 431-442, 2011.

[11] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Black-box and gray-box strategies

for virtual machine migration,” 4th USENIX conference on Networked Systems Design And

Implementation, 2007.

[12] G. Keller, M. Tighe, H. Lutfiyya, and M. Bauer, “An analysis of first fit heuristics for the

virtual machine relocation problem,” 8th international conference and workshop on systems

virtualiztion management, pp. 406-413, October 2012.

[13] V. Shrivastava, et al., “Application-aware virtual machine migration in data centers,” IEEE

INFOCOM, pp. 66-70, April 2011.

[14] S.K. Bose and S. Sundarrajan, “Optimizing Migration of Virtual Machines across Data-

Centers,” International Conference on Parallel Processing Workshops, pp. 306-313, September

2009.

[15] Z. Wei et al., “LVMCI: Efficient and Effective VM Live Migration Selection Scheme in Virtu-

alized Data Centers,” IEEE 18th International Conference on Parallel and Distributed Systems,

pp. 368-375, December 2012.

[16] Y. Wu and M. Zhao, “Performance Modeling of Virtual Machine Live Migration,” IEEE 4th

International Conference on Cloud Computing, pp. 492-499, 2011.

[17] F. Machida, M. Kawato, and Y. Maeno, “Redundant Virtual Machine Placement for Fault-

tolerant Consolidated Server Clusters,” IEEE/IFIP Network Operations and Management Sym-

posium, pp. 2-39, 2010.

[18] R. Al-Omari, A.K. Somani, and G. Manimaran, “An adaptive scheme for fault-tolerant

scheduling of soft real-time tasks in multiprocessor systems,” Journal of Parallel Distributed

Computing, vol. 65, pp. 595-608, 2005.

[19] X. Zhu, X. Qin, and M. Qiu, “QoS-aware fault-tolerant scheduling for real-time tasks on

heterogeneous clusters,” IEEE Transaction on Parallel Distributed System, vol. 60, pp. 800-

812, 2011.

Chapter 4: Mitigating the Risk of Cloud Services Downtime Using Live Migration and High
Availability-Aware Placement 129

[20] E. Feller, L. Rilling, C. Morin, R. Lottiaux, D. Leprince, “Snooze: a scalable, fault-tolerant

and distributed consolidation manager for large-scale clusters,” IEEE/ACM Int’l Conference

on Green Computing and Communications and Int’l Conference on Cyber, Physical and Social

Computing, pp. 125-132, 2010.

[21] R. T. Wang, “A dependent model for fault tolerant software systems during debugging,” IEEE

Transactions on Reliability, vol. 61, no. 2, pp. 504-515, 2012.

[22] W. Xu and T. Zhang, “A time-aware fault tolerance scheme to improve reliability of multilevel

phase-change memory in the presence of significant resistance drift,” IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 19, no. 8, pp. 1357-1367, 2011.

[23] G. Jung, K. R. Joshi, M. A. Hiltunen, R. D. Schlichting, and C. Pu, “Performance and avail-

ability aware regeneration for cloud based multitier applications,” Dependable Systems and

Networks Conference, pp. 497-506, 2010.

[24] M. Zhong, K. Shen, and J.I. Seiferas, “Replication degree customization for high availability,”

3rd ACM SIGOPS/EuroSys European Conference on Computer Systems, pp. 55-68, 2008.

[25] M. Alam and K. A. Shakil, “Recent Developments in Cloud Based Systems: State of Art,”

https://arxiv.org/abs/1501.01323, 2015.

[26] Netflix, “Netflix Shares Cloud Load Balancing And Failover Tool: Eureka!,” http://

techblog.netflix.com/2012/09/eureka.html, September 2012. [July, 2016]

[27] M. Jammal, A. Kanso, and A. Shami, “High Availability-Aware Optimization Digest for Ap-

plications Deployment in Cloud,” IEEE International Conference on Communications (ICC),

pp. 6822-6828, 2015.

[28] M. Jammal, A. Kanso, and A. Shami, “CHASE: Component High- Availability Scheduler

in Cloud Computing Environment,” IEEE International Conference on Cloud Computing

(CLOUD), pp. 477-484, 2015.

[29] S. Akoush, R. Sohan, A. Rice, A. W. Moore, and A. Hopper, “Predicting the Performance of

Virtual Machine Migration,” IEEE International Symposium on Modeling, Analysis & Simula-

tion of Computer and Telecommunication Systems, pp. 37-46, August 2010.

https://arxiv.org/abs/1501.01323
http://techblog.netflix.com/2012/09/eureka.html
http://techblog.netflix.com/2012/09/eureka.html

Chapter 4: Mitigating the Risk of Cloud Services Downtime Using Live Migration and High
Availability-Aware Placement 130

[30] C. Clark, et al., “Live migration of virtual machines,” 2nd conference on Symposium on Net-

worked Systems Design & Implementation, p. 273-286, May 2005.

[31] D. Kapil, E. S. Pilli and R. C. Joshi, “Live virtual machine migration techniques: Survey

and research challenges,” 3rd IEEE International Advance Computing Conference (IACC), pp.

963-969, 2013.

[32] A. Zimmermann, “Modeling and Evaluation of Stochastic Petri Nets with TimeNET 4.1,”

6th International Conference on Performance Evaluation Methodologies and Tools, pp. 54-63,

2012.

131

Chapter 5

GITS: Generic Input Template for CloudSim

and Cloud Simulators

5.1 Introduction
Nowadays, many enterprises are moving to the cloud to benefit from the cloud applications

availability, elasticity, pay-per-use basis, multi-tenancy, and resource provisioning. With

the lightweight virtualization, the cloud infrastructure provides virtual machines (VMs)

and containers to run multiple applications in private, public, or hybrid cloud environments

[2] [3]. With this cloud migration movement, cloud-based applications are handling many

users’ demands while leveraging the economy of scale [4]. The application flexibility, man-

agement, and appearance over virtualized cloud infrastructure are the key points to measure

the competitiveness between different cloud providers and users. Therefore, it is necessary

to have an efficient cloud orchestration that handles the management, configuration, and

coordination of cloud-based applications. Cloud orchestration automates the management

of interacting applications and facilitates their portability across different cloud systems.

In order to ensure an automated cloud management, it is important to develop application-

infrastructure models and specifications that capture both cloud provider, cloud user, hy-

pervisor, and service level agreement (SLA) requirements including high availability, com-

putational performance, and latency.

Cloud offers different types of services including the Software, Infrastructure, and Plat-

form as a Service. Platform as a Service (PaaS), such as Google AppEngine [5] or Mi-

crosoft Azure [6] and Infrastructure as a Service (IaaS), such as GoGrid [7] or Amazon

The content of this chapter have been submitted for publication [1].

This work is supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC-STPGP 447230) and Ericsson Research.

Chapter 5: GITS: Generic Input Template for CloudSim and Cloud Simulators 132

Elastic Compute Cloud (EC2) [8] are the base of multiple cloud applications. Although

the deployment and optimization policies of these services are widely covered, there are

few approaches regarding the generic design of cloud-based applications and infrastructure

while satisfying the high availability (HA) requirements. The dependability on different

cloud offerings including Application as a Service (AaaS) requires a generic design for

the cloud-based application model that can be easily customized based on a given cloud

properties. Besides, applications deployments are user-specific and change the cloud prop-

erties and constraints where different clouds can allow different dependency and sharing

between applications components. This requires a user-customized cloud template that can

reach more customers while ensuring that elasticity, HA, and workload management are

maintained.

Designing generic cloud-based models should capture the cloud infrastructure, applications

architecture, and their interactions. Cloud-based applications consist of multiple compo-

nents running on different VMs or containers. The latter maps the application to the cloud

infrastructure consisting of data center (DC) networks. Besides, different interactions rela-

tions take place between cloud-based applications including dependency and redundancy.

Therefore, using a swivel chair interface to create cloud scenarios that capture a given cloud

system is a tedious and error-prone task [9] [10].

Cloud simulations are used to imitate cloud system behaviors. They give insights into

how cloud performs under certain conditions and constraints. CloudSim simulator allows

modeling and simulation of cloud infrastructure, cloud broker, and scheduling policies [9].

It provides virtualization engine that creates multiple services on a DC while considering

time- and space-shared allocation policies. However, a generic input template that model

cloud scenarios is still missing. In this chapter, we aim at providing a generic input tem-

plate for cloud simulators (GITS) in general and CloudSim specifically. The proposed

template models cloud infrastructure consisting of multiple DCs, cloud user consisting

of multiple interacting applications components, workload models, high availability (HA)

metrics and redundancy models, and other SLA requirements. In other words, GITS de-

fines the cloud infrastructure configurations and applications interoperable descriptions in-

cluding components, relationships, interdependencies, computational and latency require-

ments. GITS allows applications interoperability and automated orchestration across mul-

Chapter 5: GITS: Generic Input Template for CloudSim and Cloud Simulators 133

tiple cloud providers thus facilitating cloud scenarios creation, ensuring configurations and

models reusability, improving availability, and minimizing error, time, and cost-to-value.

This chapter provides a multi-layer input template. At the frontend layer, a graphic mod-

eling framework (GMF) project is designed to capture the above cloud model. GMF gen-

erates an Extensible Markup Language (XML) file. In order to ensure data reusability, the

XML file is inputted to the middle layer where a JavaScript Object Notation (JSON) tem-

plate is generated. This template provides the specifications of cloud model in a human

readable format. In the backend layer, the JSON template is mapped to a Unified Modeling

Language (UML) class diagram. With this diagram, CloudSim specification is extended to

include the cloud infrastructure, cloud application components, and HA requirements. It

is important to note that the proposed template can be easily mapped to any other cloud

simulator while applying few tuning to the transformation step.

The rest of this chapter is organized as follows. Section 5.2 presents related work for in-

dustry and research-based cloud orchestration and specifications. Section 5.3 defines the

motivation behind GITS where it describes CloudSim simulator, need for component-based

architecture to model cloud scenarios, cloud challenges, and GITS contributions that ad-

dress these issues. Section 5.4 describes the GITS framework, where it presents the GITS

graphical and textual models, and the transformation algorithm to translate them to a data

format that is understandable by CloudSim. The evaluation of GITS and other encoding

methods of proposed template are defined in Section 5.5. Finally, the conclusion is pre-

sented in Section 5.6.

5.2 Related Work
Several literature studies address the cloud applications orchestration and define the cloud

specifications models for simulation tools [11]-[17].

5.2.1 Industry-based cloud orchestration and specifications
Amazon Webservices (AWS) provide AWS CloudFormation as its proprietary orchestra-

tion approach [18]. It provides a stack, JSON template, that specifies AWS resources

(Elastic Load Balancer instances, Amazon Relational Database Service (RDS) instances).

The template describes the resources needed to process certain applications, and it is man-

Chapter 5: GITS: Generic Input Template for CloudSim and Cloud Simulators 134

aged as an entity. The AWS CloudFormation provisions resources, manages their creation,

deletions, and dependencies. However, the template ignores HA attributes and redundancy

models.

OpenStack proposes Heat as their orchestration platform. Heat uses templating approach,

Heat Orchestration Template (HOT) to manage resources creation and management and

facilitate portability between multiple clouds environments [19]. The proposed templates

have a similar structure as the AWS CloudFormation templates and can be integrated with

Puppet and Chef. Heat uses YAML files to define its template that supports auto-scaling

and some HA features including instances logical grouping, services running in an instance,

VMs or individual instances. Although HOT supports some HA features, but it discards the

mean time to failure (MTTF), mean time to repair (MTTR), recovery time, and tolerance

time as basic HA metrics. Also, it does not describe redundancy models and interdepen-

dency between multiple applications components.

Organization for the Advancement of Structured Information Standards (OASIS) proposes

Topology and Orchestration Specification for Cloud Applications (TOSCA) [20]. The lat-

ter is an industry-based standard developed to define and manage applications and facilitate

their portability between different multiple cloud providers and thus minimizing vendor

lock-in. Using XML-based template, TOSCA describes the topology of applications com-

ponents and their interactions, provides orchestration platform to manage applications de-

ployment, and supports interoperability. TOSCA defines topology as a graph with a set of

nodes and relationships, each assigned a type (inheritance, requirements, properties, imple-

mentations). Business Process Model and Notation (BPMN) and Business Process Execu-

tion Language (BPEL) are used in TOSCA management plans, which depend on standard

workflow settings. Based on OpenTOSCA [21] [22], a cloud-based modeling tool, Winery,

is designed to define cloud-based application topologies [23] [24] [25]. Winery is a web-

based graphical model that describes TOSCA cloud services topologies and management

plans. Winery consists of a type and template management modules that create and modify

components defined in TOSCA. It stores the information in a repository and uses TOSCA

packaging format to import and export them [24]. Similarly, both TOSCA and Winery do

not support HA features and redundancy relationships.

Carlson et al. propose Cloud Application Management for Platforms (CAMP) [21]. CAMP

Chapter 5: GITS: Generic Input Template for CloudSim and Cloud Simulators 135

is an approach that improves the cloud interoperability over different cloud infrastructures.

With CAMP, authors are aiming at defining specifications that facilitate the cloud appli-

cations management. CAMP provides a self-service management Application Program

Interface (API) that allows a platform implementation layer to control applications deploy-

ment and platform usage. Through its specifications, CAMP allows the creation of different

services that can interact with other platforms thus facilitating interoperability. Although

CAMP aims at facilitating cloud portability, it discards impact of interoperability on cloud

applications HA. It does not describe services interactions, redundancy models, recovery,

and repair policies.

5.2.2 Research-Based cloud orchestration and specifications
Tian et al. propose CloudSched, Java-based simulation tool to evaluate the resource al-

location for cloud-based applications [26]. The tool consists of a graphical user interface

(GUI) where the simulation setup and cloud scenarios are created. The specification of

cloud scenarios does not follow any standardized format, which hinders the reusability of

certain scenarios. The proposed GUI is simple and has restrictions on the number of phys-

ical machines and VMs, which limits its functionality in simulating real cloud systems.

Although CloudSched provides a GUI to facilitate setup creations, it discards the need for

data reusability. Additionally, it does not capture the cloud provider and user models and

overlooks any HA attributes or applications interactions. Filho et al. propose a YAML

document as a template to create scenarios to CloudSim [27]. Although YAML schema

ensures simplicity and reusability, but the proposed template is proprietary to CloudSim

and does not capture any HA metrics. This proprietary hinders the applications portability

across different cloud simulators.

Wickremasinghe et al. provide CloudAnalyst, an extension to CloudSim [28]. CloudAna-

lyst describes the cloud applications workloads, DCs resources, and traffic/DCs geographi-

cal locations. With these features, request response time, processing time, and other related

measures are determined. CloudAnalyst consists of a Java-based GUI to create different

cloud setups and a graphical output representation in table and charts forms. It also sup-

ports XML-based files to save simulations input data and results. Although CloudAnalyst

supports XML files, but it does not provide an input model template to minimize the error

Chapter 5: GITS: Generic Input Template for CloudSim and Cloud Simulators 136

and time consumed by cloud users.

Jakovits et al. and Srirama et al. develop Stratus cloud simulation framework [29] [30].

Stratus provides simulations of distributed cloud applications using bulk synchronous par-

allel (BSP) models. BSP consists of an iterative algorithm that ensures the tasks paral-

lelism. Stratus also provisions resources to allow scaling up and down of cloud scientific

applications. However, Stratus does not provide an input template to facilitate creation of

cloud scenarios. It also overlooks HA features of the cloud model. Guo et al. provide a

service specification for simulating a software as a service (SSaaS) [31]. The specification

describes service-oriented and SSaaS setups, which generates a meta-model for simulated

scenarios. Although the authors propose a web-based GUI, they do not capture HA metrics

of different cloud elements. Also, the GUI does not support a reusability and repeatability

features of the cloud scenarios.

While Balmer et al. propose MATSim, a traffic simulator [32], Behrisch et al. provide

Simulation of Urban mobility (SUMO) tool that can be modified to simulate cloud-based

scenarios [33]. In contrary to MATSim, SUMO has a GUI, but both simulators use config-

uration files to import its input parameters and export its simulation results. In both tools,

the cloud scenario discard HA characteristics, and its creation requires a deep knowledge

from the user to the configuration settings of the cloud system. In contrary, GITS propose

a human-readable and HA-aware template.

In this chapter, we distinguish our work from the previous initiatives by developing a

generic input template for any cloud simulator, mainly CloudSim. GITS has a graphical

modeler where Eclipse GMF model is created. In the middle layer, a Parser engine is de-

veloped to ensure the generation of a JSON-based template from an XML-based files. The

JSON template ensures the input models’ repeatability and reusability. It also captures the

cloud environment from both provider and user sides. It maps the cloud infrastructure with

cloud applications using lightweight virtualization technology, VMs or containers. One

of the main features of GITS is the HA-aware specifications. It describes the redundancy

models of cloud applications, recovery/repair policies, interdependency between applica-

tions, MTTF, MTTR, and other HA metrics. With GITS, any cloud scenario can be created,

which includes the needed infrastructure configuration files (resources and HA metrics) and

Chapter 5: GITS: Generic Input Template for CloudSim and Cloud Simulators 137

the cloud application structure information.

5.3 Motivation
Cloud computing is considered a transitioning technology for Information and Commu-

nications Technology (ICT) area where different service models are provided over broad-

band networks [34]. Given an SLA, a cloud model should satisfy different functional and

non-functional properties such as HA, performance, energy efficiency, and other attributes

[35]. In order to meet these requirements, a simulation environment is needed to evaluate

any cloud design and associated scenarios given a set of metrics (computational resources,

SLA requirements, HA parameters). Simulation is an important way for the cloud to al-

low repeatable scenarios in a controlled environment. They can evaluate different cloud

parameters such as outage or security issues. In turn, the evaluation strategies can be used

as filters for the failed approaches compared to other ones or for the approaches that do not

meet the quality of service (QoS). However, a simulation tool requires an input modeling

or templating of a cloud system to ensure scenarios reusability, system modularity, and

minimizes error associated during manual input model generation. In this section, we dis-

cuss CloudSim simulator, need for component-based architecture, challenges of the cloud

solutions, and GITS contributions.

5.3.1 CloudSim simulator
CloudSim is a Java-based open source framework for modeling, simulating, and evaluat-

ing cloud environments [9] [10]. It is proposed by GRIDS laboratory and developed on

the top of SimJava, a discrete event simulator [36]. CloudSim is used to model cloud

infrastructure (data centers (DCs) and servers), cloud broker, cloud information system,

and multiple time and space-based allocation and scheduling policies. Besides, it mod-

els containers/VMs processing including instantiation, provisioning, and destruction. With

CloudSim, large cloud systems can be processed using different scheduling approaches

where VMs/containers are mapped to the hosts that satisfy their computational resources.

Although CloudSim is a self-contained tool that models cloud architecture, it does not sup-

port the simpler creation of cloud scenarios. The latter is manually created or hard-coded,

which can be a tedious and error-prone job. Therefore, in this chapter, a generic input tem-

Chapter 5: GITS: Generic Input Template for CloudSim and Cloud Simulators 138

plate is proposed that models cloud infrastructure and applications. This template can be

easily tuned to model scenarios for different cloud simulators.

5.3.2 Component-Based architecture
Component-based architecture (CBA) provides well-designed complex systems with dif-

ferent methods, properties, and events. CBA decomposes the system design into logical

or functional sub-systems where each compromises a specific partition of the whole com-

municating system. With this system abstraction, CBA allows designing the cloud models

using software entities of Commercial off The Shelf (COTS) offered by multiple cloud

providers. Adapting CBA in building cloud templates ensures components reusability, re-

placeability, extensibility, and modularity. Each entity, known as a component, of the CBA

encapsulates certain properties, methods, and behaviors that represent for example an ele-

ment of the cloud-based model (application and infrastructure). For example, SaaS offers

services as interned-based applications including multiple component-based applications

[37]. These applications communicate using a message exchange engine that is based on

protocols, such as web services description language (WSDL) or simple object access pro-

tocol (SOAP). Different platforms can be used to build CBA including JavaBeans [38],

Common Object Request Broker Architecture (CORBA) [39], Distributed Component Ob-

ject Model (DCOM) [40], and Microsoft.NET. With component-based applications, the

cloud can offer scalable, interoperable, and highly available services.

To this end, CBA can be adopted to design a generic template for cloud simulators, which

aims at enhancing system quality, evaluation, and building scenarios from standard ele-

ments instead of redesigning the wheel. Additionally, it replaces the manual design of

cloud entities by an automated generation of scenarios that can be parameterized accord-

ing to a given cloud environment (provider and/or simulator objective) [41]. Thus, enti-

ties needed for particular application and infrastructure are instantiated from the proposed

template. This describes a framework that includes the structural entities, methods, and

parameters of the cloud system and the interconnection behaviors between its different ele-

ments. The main idea is to design interoperable cloud-based template through well-defined

connections that can be easily customized to meet a given cloud management system, such

as OpenStack (HOT) and AWS EC2 (CloudFormation template) and the associated SLA

Chapter 5: GITS: Generic Input Template for CloudSim and Cloud Simulators 139

requirements.

5.3.3 Issues and contributions
This section addresses the different cloud issues and the corresponding contributions pro-

posed by GITS framework.

1. Issue 1: Cloud-based Application Interactions

Cloud-based applications consist of multiple components that interact with each other due

to dependency-redundancy relations. When modeling these applications, it is necessary to

describe the interactions relations between their components and their dependency on the

cloud infrastructure.

GITS Contribution 1: In GITS, a component-based application is modeled to capture dif-

ferent redundancy and dependency relations among different components and their depen-

dencies on given cloud infrastructure.

2. Issue 2: Cloud Provider-User Partition

Vendor lock-in is one of the challenges faced by users when choosing the corresponding

cloud providers [42]. Many cloud-based applications are provided and offered by the same

vendors, such as the Google office suite application [43] or Salesforce Customer Rela-

tionship Management (CRM) application [44]. This creates users dependency on certain

providers. Therefore, it is necessary to separate the cloud providers and cloud applications,

which allows users to select the appropriate provider and application vendors. Besides,

this portioning allows the provider and user to enlarge their customer numbers and share a

standardized cloud provider-user template.

GITS Contribution 2: GITS provides a well-defined cloud template that ensures a separa-

tion between the cloud provider and cloud user while mapping them through a virtualization

engine, where VMs/containers are instantiated according to a given allocation objective.

The proposed template does not depend on certain technologies or cloud simulators.

3. Issue 3: High Availability for Cloud Applications

The dependency on multiple cloud services does not only increase the number of customers

but requires systems that are always available anytime and anywhere. Building highly avail-

able cloud environment becomes inevitable.

Although different HA-aware policies for cloud applications have been proposed [45], they

Chapter 5: GITS: Generic Input Template for CloudSim and Cloud Simulators 140

are proprietary approaches, which hamper the applications interoperability across different

providers. Also, the literature has many cloud simulations with predefined input models,

but up to our knowledge, the literature does not propose an input template that captures

availability metrics. These metrics include MTTF, MTTR, redundancy models, failover

policies, and other HA attributes.

GITS Contribution 3: High availability modeling is one of the main contributions of GITS.

Different redundancy models, availability parameters, failure types, and HA middleware

attributes are captured in GITS template.

4. Issue 4: Customization of Applications

Cloud users have different functional and non-functional requirements on applications. In

order to satisfy their needs, these applications should be well-defined, modeled, and eval-

uated while considering modularity and portability. Building a modular and portable tem-

plate allows the cloud users to adjust the application to meet certain objectives and a given

cloud infrastructure. Template customization requires prompt variability adaptation with-

out violating applications interactions. To ensure customization and modularity, generic

cloud templates should be designed, which can run on any cloud environment.

GITS Contribution 4: GITS template is generically designed to model cloud providers and

applications. With appropriate transformation algorithm, GITS can capture the input model

of CloudSim and any other cloud simulator or environment.

5. Issue 5: Unique Template for Cloud Management

Each cloud provider has its own application programming interfaces (APIs) and tools to

set up applications and infrastructures and provision them. It is necessary to define a rubric

that describes the necessary attributes for a cloud provider-user management module. An

architecture of a unification layer that syntactically and functionally unifies the APIs of

different providers and their provisioning infrastructure is needed. This unification layer is

the basis for describing the provider-independent provisioning scripts for applications.

GITS Contribution 5: GITS provides a generic specification that provides a unified view

of requirements, parameters, and interactions between different entities of a cloud. This

specification facilitates the description of management and provisioning unit for cloud in-

frastructure and applications.

In the following, we explain the GITS framework design and its mapping to CloudSim.

Chapter 5: GITS: Generic Input Template for CloudSim and Cloud Simulators 141

Figure 5.1: UML class diagram of GITS cloud model.

Chapter 5: GITS: Generic Input Template for CloudSim and Cloud Simulators 142

5.4 GITS Framework
Generating scenarios for CloudSim and other cloud simulators requires knowledge in de-

velopment and simulator environment. It is not always the case that the cloud users are

aware of the code needed to generate these scenarios. This can hinder the process of appli-

cations deployment and cloud systems evaluations because of the complexity challenge

associated with cloud scenarios creation. For instance, if cloud-based applications are

deployed while considering the impact of dependency relation among them, a new code

should be added that reflects this interaction. This can be an exhausting task, which is not

only an erroneous process but requires prerequisite knowledge in the tool used as well.

In order to have a generic input template for cloud simulators where any user can create it,

we propose GITS, a user-friendly approach that solves the above challenges. GITS mini-

mizes the exposure of cloud users to the development process and provides an intuitive way

to generate any cloud scenario that depicts applications, infrastructure, and their interfaces.

The objective of this template is to separate the cloud providers from the cloud users and

ensure their mapping through a virtualization layer. Besides, the proposed template cap-

tures the high availability features, such as redundancy models, availability metrics, failure

types, and repair policies. In addition to performance metrics (computational resources

and latency), modeling HA parameters allows considering the availability as an objective

during cloud applications deployment where applications are mapped to the providers that

protect them according to a given redundancy model and other related metrics.

Creating such template is achieved using a UML model to build cloud model, JSON file to

have a human readable template, and finally a graphical interface to maintain GITS user-

friendly feature. In the following, we describe the details of GITS design.

5.4.1 GITS UML model
The initial phase in designing a generic template for cloud simulators is abstracting the

cloud through system modeling. The objective of the abstract modeling is to define differ-

ent cloud characteristics, faulty points, redundancy model, recuperation phases, and other

availability and performance attributes. In this chapter, UML class diagram is used to

provide an abstract view of the cloud model. The diagram can be partitioned into cloud

infrastructure, cloud application, and virtualization layers.

Chapter 5: GITS: Generic Input Template for CloudSim and Cloud Simulators 143

Figure 5.2: HA solution state model.

Fig. 5.1 shows the cloud UML diagram.

1) Cloud Infrastructure:

The cloud infrastructure consists of data center network where each DC has its computa-

tional resources (CPU and memory) and associated HA metrics, such as MTTF and MTTR.

Each DC has one or many rack(s). Similarly, each rack is characterized by its available re-

sources and HA attributes. Multiple shelves can be grouped in one rack where each shelf

has one or more server(s). Each server is defined through its resources and HA parameters.

Each of these elements has other attributes defined in the class diagram to be used for de-

signing and scheduling purposes.

2) Cloud Application:

The cloud-based application consists of multiple component types. Each type has mul-

tiple components where one component is considered active while the others represent

the redundant ones. Each component type requires specific computational resources to be

properly processed. These resources are captured as flavors in the proposed diagram. Fla-

vors can be repressed as disk resources (disk size or speed), operating system specification,

CPU requirements (core, cache size, speed), memory (RAM size or speed), and/or network

(bandwidth or latency). Each component type has its own failure types that define failure

scope (impact of component type failure), MTTF, MTTR, and recovery time.

Each component type consists of multiple redundant components, which forms protection

or redundancy group. Each group determines the number of active, standby, and/or spare

components depending on the used redundancy model. In order to maintain HA, each

Chapter 5: GITS: Generic Input Template for CloudSim and Cloud Simulators 144

Figure 5.3: Effect of redundancy model on failover time.

component follows a sequence of operations during its life cycle. The state model of an

HA solution is captured in the UML diagram. Fig. 5.2 depicts the above component state

model. During this life cycle, an HA orchestrator or middleware monitors the health of

one or more components. Each orchestrator is characterized by a monitoring frequency

and a response time. Upon failure detection, the faulty component is isolated and fails over

to its redundant component(s). The failover time depends on the redundancy model (ac-

tive/active, active/standby, or active/spare). Fig. 5.3 depicts the impact of the redundancy

model type on the failover time calculation. For instance, if the redundancy model is ac-

tive/spare, the failover time is the summation of the instantiation time, fetch state delay,

parsing state delay, recuperation duration, execution time, and termination duration. Each

of these durations depends on the flavors of the component’s host.

Chapter 5: GITS: Generic Input Template for CloudSim and Cloud Simulators 145

Each component type can interact with other types through dependency relation. A type

can sponsor or depend on another type. A 3-tier web application can be an example of

cloud-based applications. A web application consists of Hypertext Transfer Protocol Se-

cure (HTTPS) server at the front-end, which processes user requests and forwards them to

an App server. The latter generates the required content and in turns depends on the back-

end database (DB) server that stores the users’ data. The communication between these

different component types forms the functional path that a request should follow to be suc-

cessfully processed. The dependency between different types is characterized by a delay

tolerance that represents the allowed delay between them and a tolerance time that deter-

mines how much a dependent component can tolerate the absence of its sponsor(s). These

metrics have an important role when selecting dependent and sponsor placements. Each

component is associated with an SLA that determines the allowed outage time, average

request arrival rate, recovery time objective, and other HA, performance, and scheduling

attributes.

3) Virtual Mapping:

The applications components are mapped to the servers that can satisfy their computation

needs, HA, and other performance objectives. Once the allocator finds the best server

that can host a given application components, a virtual mapping is generated between the

server and the component. The virtual mapping can be a virtual machine or a container.

This mapping forms the glue between the cloud provider and user.

5.4.2 GITS JSON file
UML class diagram is a general-purpose language that provides an abstract view of the

cloud model. However, it does not ensure simplicity in scenarios creation and repeatability.

For this purpose, we use JSON to represent a cloud template. JSON is a simple, human-

readable, and universal language. It is considered a lightweight format for data exchanging

[46]. JSON does not depend on the programming language type and can support multiple

data types (numbers, arrays, objects, strings, Boolean, and null) and deep level hierarchal

data. Also, JSON has many extensions that enable cyclic relations implementation, such

as dojox in Dojo toolkit used in Google Content Delivery Network (CDN) [47]. Besides,

JSON can be parsed to any other data schemas, such as XML and YAML documents. To

Chapter 5: GITS: Generic Input Template for CloudSim and Cloud Simulators 146

Figure 5.4: JSON-based cloud infrastructure template.

this end, we use JSON data format to represent a readable and reusable cloud settings.

Fig. 5.4, Fig. 5.5, and Fig. 5.6 show the JSON files for the cloud infrastructure, application,

Chapter 5: GITS: Generic Input Template for CloudSim and Cloud Simulators 147

Figure 5.5: JSON-based provider-user mapping template.

and virtualization layer.

The GITS JSON template consists of the following:

1) Objective:

It is a string data type that represents the goal behind using the template. It can be either

evaluation or scheduling. In the case of “evaluation” objective, the template is inputted to a

cloud simulator, such as CloudSim to evaluate certain applications deployment in terms of

availability or other performance. For this purpose, the template is populated with deploy-

ment information of a certain application, such as the hosts of the application components.

In the case of “scheduling” evaluation, the template is inputted to a cloud simulator to

schedule the application components.

2) Cloud Infrastructure Information:

DC: It represents the DC details of a given cloud infrastructure. It includes the DC name

(string), Availability zone (array of strings) that hosts its servers, FailureProperty (array of

numbers) that represents its MTTF and MTTR, and FailurePropertyUnit (array of strings)

that reflects units of MTTF and MTTR. If multiple DCs hold similar characteristics, a

DC count can be defined to automate their generation and avoid repetition.

Chapter 5: GITS: Generic Input Template for CloudSim and Cloud Simulators 148

Rack: It represents the rack details of a given cloud infrastructure. It includes the rack

name (string), HostingDC (DC object) that represents the DC hosting the corresponding

rack, FailureProperty (array of numbers) that represents its MTTF and MTTR, and Fail-

urePropertyUnit (array of strings) that reflects units of MTTF and MTTR. If multiple racks

hold similar characteristics and reside on same DC, a Rack count can be defined to auto-

mate their generation and avoid repetition.

Shelf : It represents the shelf details of a given cloud infrastructure. It includes the shelf

name (string) and HostingRack (rack object) that represents the rack hosting the corre-

sponding shelf. If multiple shelves hold similar characteristics and reside on the same rack,

a Shelf count can be defined to automate their generation and avoid repetition.

Server: It represents the server details of a given cloud infrastructure. It includes the server

name (string), Resources (array of numbers) that represents its computational resources,

Availability zone (string) that hosts it, HostingShelf (shelf object) that represents the shelf

hosting the corresponding server, FailureProperty (array of numbers) that represents its

MTTF and MTTR, and FailurePropertyUnit (array of strings) that reflects units of MTTF

and MTTR. If multiple servers hold similar characteristics and reside on the same shelf, a

Server count can be defined to automate their generation and avoid repetition.

3) Virtualization Layer Information:

VM: It represents the VM details of a given cloud environment. It includes the VM name

(string), Resources (array of numbers) that represents its computational resources, Host-

ingServer (server object) that represents the server hosting the corresponding VM, and

HostedComponent (array of multiple component objects) that represents the components

hosted on this VM. HostingServer and HostedComponent properties are populated only if

the objective is “evaluation”. Also, the VM includes FailureProperty (array of numbers)

that represents its MTTF, MTTR, and recovery time, and FailurePropertyUnit (array of

strings) that reflects units of MTTF, MTTR, and recovery time.

Container: It represents the container details of a given cloud environment. It has same

characteristics as the VM except that the Host (server and/or VM object) represents the

server hosting the corresponding container. As for the VM object, it is populated if the

container is hosted on a VM, otherwise, it is null.

4) Cloud Application Information:

Chapter 5: GITS: Generic Input Template for CloudSim and Cloud Simulators 149

Figure 5.6: JSON-based cloud application template.

CompType: It represents the component type details of a given cloud application. It in-

cludes the component type name (string), Resources (array of numbers) that represents

its computational resources, ApplicationType (string) and AssociatedWorkload (string) that

determine the names of the component type application and workload. Additionally, the

component type has FailureProperty (array of numbers) that represents its MTTF, MTTR,

and recovery time, and FailurePropertyUnit (array of strings) that reflects units of MTTF,

Chapter 5: GITS: Generic Input Template for CloudSim and Cloud Simulators 150

MTTR, and recovery time. The interaction between component types is also reflected in

the template. It has RedundancyModel (string) that determines the type of redundancy

model (i.e. active/active) and RedParam (number) that shows the allowed delay tolerance

between the redundant components. It also has DependsON (array of multiple component

type objects if applicable) that determines the sponsor(s) of the corresponding component

type, and DepParam (array of numbers) that shows the tolerance time of the correspond-

ing component type and the allowed delay tolerance between the dependent components.

The number of DepParam sub-arrays is the same as the size of DependsON. Finally, the

CompType determines the number and the names of the components of the same type by

populating CompType instances (number) and CompName (arrays of strings).

Application: It represents the applications deployed in the cloud and has one property,

name (string).

Workload: It represents the workload details associated with each component. It includes

the workload Name (string), the name of associated components, AssociatedComp (string),

and a number of average requests, RequestAverage (number).

SLA: It represents the SLA details associated with applications components. It includes the

SLA name (string), allowed time per request, maxExecutionTimePerRequest (number), ac-

ceptable failure rate, maxFailureRate (number), allowed recovery time objective, recovery-

TimeObjective (number), allowed outage time, totalAllowedOutageTime (number), average

arrival number of requests, averageRequestArrivalRate (number), average number of users

for each component, averageNumberOfUsers (number), and list of monitored components,

CompName (array of strings).

HAMonitor: It represents the details of HA monitor for applications components. It in-

cludes monitor name (string), the frequency of monitoring, monitorInterval (number), re-

action time to handle faulty node(s), reactionTime (number), and a list of monitored com-

ponents, CompName (array of strings).

5.4.3 GITS graphical interface
In GITS, it is possible to generate the cloud use cases not only using textual format but us-

ing a graphical one as well. In the latter case, users can create scenarios through a graphical

interface that implements the syntax of the cloud model at the infrastructure and application

Chapter 5: GITS: Generic Input Template for CloudSim and Cloud Simulators 151

Figure 5.7: Eclipse GMF overview.

levels. The graphical interface is the only interaction with the user, and the transformation

of the scenarios to the proper data format of the used cloud simulator happens behind the

scene. While the JSON template is a simple data representation and exchange format that

constructs the cloud scenarios, the proposed interface allows the users to graphically build

their cloud use cases with Graphic Modeling Framework (GMF) interaction. With GMF, a

graphical representation of a Domain Specific language (DSL) can be created and mapped

to a graphical and textual concrete syntax [48].

Based on the Graphical Editing Framework (GEF) and Eclipse Modeling Framework

(EMF), a GMF project provides a model-driven process for developing graphical editors in

Eclipse. It has a Model-View-Controller (MVC) architecture that isolates the graphical in-

terface from the domain model, which provides the diagram and domain model, permitting

better quality, productivity, and design independency. Fig. 5.7 shows the GMF overview.

The required graphical editor has created using Model-to-Model Transformation (M2M)

and Model-to-Text Transformation (M2T).

To generate GITS graphical editor, a domain, tooling, graphical, mapping, and generator

models are defined to build a functional graphical interface based on the GMF Runtime

[49]. The domain model is based on an Ecore model of the above UML class diagram.

Chapter 5: GITS: Generic Input Template for CloudSim and Cloud Simulators 152

Figure 5.8: GITS tool palette.

Once the Ecore generator model is created, a Graphical Definition Model (GDM) is created

that defines the cloud nodes (DC, rack, server, component types, and other nodes) and the

connections between these nodes (relationships defined in Ecore model). When the cloud

nodes and links are determined, the tool palette of the graphical editor can be created using

the Tooling Definition Model (TDM). The TDM describes the cloud elements, their names,

and their descriptive icons in the editor palette. Fig. 5.8 shows GITS tool palette. The do-

main model, GDM, and TDM are combined to generate the Mapping Model. The latter

is the base of GMF diagram because it generates the mapping between the nodes, links,

and corresponding icons. A successful mapping enables the generation of the desired GMF

generator model that produces an extensible graphical diagram based on the GMF run-

time [50]. The latter is an industry application framework that bridges the GEF and EMF

to create graphical editors. It provides reusable elements such as tool palette, connection

handles, and elements properties menu. GITS graphical editor is shown in Fig. 5.9. It is

a user-friendly interface where cloud elements can be dragged and dropped from the tool

Chapter 5: GITS: Generic Input Template for CloudSim and Cloud Simulators 153

Figure 5.9: GITS graphical editor.

Chapter 5: GITS: Generic Input Template for CloudSim and Cloud Simulators 154

Figure 5.10: GMF2JSON approach.

palette, and their corresponding properties and links are populated in the property panel.

Once the cloud elements properties and links are defined, the connections between them

are generated automatically.

GMF simplifies the development complexity of a Graphical User Interface (GUI) and re-

duces maintenance and testing life cycle. It is simple to generate Java codes from the

corresponding editor, and the model is stored as an XML file, a standard data exchange

format.

5.4.4 GITS transformation algorithm
GITS aims at generating a user-friendly, reusable, and interoperable cloud topology. For

this purpose, the users populate the GMF editor with a cloud scenario, and the transforma-

tion algorithm ensures the mapping of the graphical scenario into a readable data format

by the employed cloud simulator. In this chapter, CloudSim is the cloud simulator that is

extended with GITS. To achieve the data transformation, different sub-transformation al-

gorithms are designed:

1) GMF2JSON:

The model generated by the graphical editor can be stored as an XML file. Studies have

shown that the JSON files can be efficiently parsed in comparison to XML, and it can re-

place the XML as the data exchange format used in web applications [51]. Fig. 5.10 shows

the GMF2JSON transformation.

Once the XML file is generated, it is inputted to an XML-JSON parser to generate the de-

sired JSON template discussed above. A Document Object Model (DOM) parser is used

to create the document builder and examine the nodes, links, and attributes. Jackson 1.x is

then used to convert the generated Java objects into JSON data format. In order to create the

above JSON template, a mapper algorithm is used to implement the preferred JSON data

Chapter 5: GITS: Generic Input Template for CloudSim and Cloud Simulators 155

Figure 5.11: JSON2UML2CloudSIM approach.

structure. To this end, the graphical model is transformed to a user-readable and reusable

data format.

2) JSON2UML:

In this section, the JSON template is mapped to the above UML class diagram. Using Pa-

pyrus, open source UML tool is used to build the cloud UML model. The JSON template

is used to populate an instance of the UML model. The objects in JSON file are mapped to

Java objects and then mapped to the cloud objects defined in the UML diagram. Fig. 5.11

shows the GMF2JSON transformation.

3) GITS2CloudSimInput:

A Java Archive (JAR file) is used to populate the CloudSim input. The JSON template and

the JAR file are inputted to the CloudSim building environment. The CloudSim input can

then be populated using the given template. The CloudSim DCs and hosts are populated

from the GITS DCs and servers information. As for application level, CloudSim does not

model the cloud applications, but it captures the VM/container generation. CloudSim is

extended to model the cloud applications and their components as well. The latter is pop-

ulated from the applications and their component types data that is defined in GITS. The

VM/container in CloudSim is populated from the GITS VMs and containers information.

As for the other data, such as the SLA and HA monitor, their associated info can be ac-

cessed by any scheduling or allocation policy to evaluate certain deployment in terms of

Chapter 5: GITS: Generic Input Template for CloudSim and Cloud Simulators 156

Figure 5.12: Cloud scenario created using GITS.

performance or availability intentions.

Since CloudSim does not support any HA algorithms (failover, redundancy, etc.), some

of the template parameters are not used. However, the template and the JAR file can be

imported to any cloud simulator that supports performance and/or HA objectives, and the

simulator input model is populated accordingly. It is important to note that the JAR file and

the JSON template of GITS are available upon request.

5.5 GITS Testbed and Evaluation
In this section, GITS is evaluated on a three-tier web application as a use case for cloud

services. The web application consists of active HTTPS server, App logic, and a DB. Each

of these component types is backed up with redundant component(s). The functional and

protection chains between different component types are also captured as links between

different nodes. As for the cloud infrastructure, it consists of two DCs, two racks, four

Chapter 5: GITS: Generic Input Template for CloudSim and Cloud Simulators 157

shelves, and six servers. For evaluation purposes, each DC has a rack with two shelves

and three servers. The GMF is designed using Eclipse Modeling Tool, Kepler version. In

the following, we create cloud scenarios using GITS, test it in CloudSim, and discuss the

steps to map GITS to other cloud templates. Fig. 5.12 shows a sample of the cloud scenario

generated using GITS GMF.

The objective of GITS is to define the configuration information for cloud applications,

infrastructure, and interconnection relations and use them to simulate cloud behavior (such

as applications scheduling/deployment, VM creation and deletion).

1) Cloud Scenario Creation:

The GMF project is run as a Java application to create a cloud example, but the user can

populate the JSON template directly as well. The cloud infrastructure consists of two DCs,

each characterized by computational resources and availability metrics (MTTF in hours

per year and MTTR in seconds). The availability zone is “Z1”, which means that all the

servers of this DC are located in availability zone “Z1”. The DC count is one indicating

that only one DC with specified attributes is created. Similarly, the rack is populated with

resources and HA features, and each rack should determine its DC. Each of these racks has

two shelves, and each shelf has three servers. The server has CPU (cores), RAM (MB),

and storage (GB).

In this example, VM is used to represent the virtual mapping between the cloud infrastruc-

ture and the cloud applications. Since the objective of this scenario is “scheduling”, the

hosting server and hosted component of the VM are populated as “Null”. These properties

are populated after triggering an allocation policy of the cloud applications.

The cloud application consists of HTTPS component at the front end, App logic, and DB

at the backend. App server sponsors the HTTPS and consequently, the HTTPS compo-

nent type has DependsON property as “App” and the DepParam are populated with the

corresponding tolerance time and delay tolerance. The same applies to the App component

type. Since DB does not have sponsors, its DependsON and DepParam are “Null”. Each of

these types has a redundancy model to back them up upon failure. The redundancy relation

is described using RedundancyModel, RedParam, CompType instances, and names. Each

component type has its own workload characteristics. It is monitored by an HA middleware

and follows an SLA agreement.

Chapter 5: GITS: Generic Input Template for CloudSim and Cloud Simulators 158

Figure 5.13: Evaluation of GITS cloud scenario in CloudSim.

If the user describes the cloud scenarios using GMF, the transformation algorithm, which

consists of GMF2JSON, JSON2UML, and GITS2CloudSimInput, is triggered to automate

CloudSim population. If the user describes the cloud scenarios using the JSON template,

the transformation algorithm, which consists of JSON2UML and GITS2CloudSimInput,

automates the CloudSim population. The described cloud example is tested in CloudSim.

GITS does not only simplify scenarios creation and models repeatability, it also captures

HA properties including redundancy models and HA metrics. We have extended CloudSim

to include theses HA features and HA-aware allocation policy [52]-[54]. In the extended

CloudSim, application components, their dependents, and redundants are modeled. There-

fore, GITS template is evaluated using the extended CloudSim since it supports the appli-

cation and HA modeling. Fig. 5.13 shows the successful completion of simulation using

the above GITS scenario. As seen in Fig. 5.13, each component is hosted on a VM. The

extended CloudSim supports the functional chaining; therefore, multiple cloudlets can be

created on a VM. The finish time of the processed cloudlet is the start time of the waiting

cloudlet in the queue. As the simulation time increases, more cloudlets (requests) are cre-

ated to model the requests being processed by the application components.

The CloudSim input model is graphically and textually designed as a readable and reusable

scenario. CloudSim users do not require experience in the simulator environment and can

focus on the simulator features and scheduling extensibility to design solutions that over-

Chapter 5: GITS: Generic Input Template for CloudSim and Cloud Simulators 159

Figure 5.14: Example of GITS encoding to XML schema.

Chapter 5: GITS: Generic Input Template for CloudSim and Cloud Simulators 160

come other cloud challenges.

2) GITS Encoding:

GITS uses JSON as data exchange schema to define a cloud model. However, this schema

can be easily mapped to another encoding format, such as XML and YAML files. Fig. 5.14

shows JSON2XML translation. This ensures the ability to use this template not only for

CloudSim input, but it can also be adapted to other cloud providers, simulator, and cloud

management systems, such as OpenStack Heat. Heat is an orchestration service for Open-

Stack that uses template mechanism and control cloud resources groups.

In order to translate GITS to other cloud templates (OpenStack HOT); some key points

should be considered:

It is not necessary to use GITS as the base Heat data exchange scheme because the proposed

template of Heat can be translated to/from GITS.

• GITS template can be reshaped to meet the standards of HOT. For example, when

assigning servers resources, a mapping can be generated between resources number

and resources description in HOT (tiny, small, medium, and large instances).

• Multiple JSON-YAML parsers can be adopted in the GITS-HOT translator.

• It is also necessary to determine the relation between stack and OpenStack resources

because each module (Nova, Cinder, and Compute) requires different properties de-

fined in the stack parameters section.

The encoding method of cloud model can be easily modified to meet certain cloud system.

As long as the template captures the properties needed to manage cloud infrastructure and

applications, the translation method can be straightforwardly implemented.

5.6 Conclusion
The design of cloud template that provides simplicity, understandability, repeatability, and

interoperability is a paramount step in cloud design to fully exploit its benefits. To this end,

it is necessary to define a component-based architecture that describes the cloud infrastruc-

ture and applications parameters and enables applications congurability between different

cloud platforms. This architecture leverages the challenge of cloud scenarios development,

testing, and maintenance. Therefore, in this chapter, we proposed GITS to enable the above

Chapter 5: GITS: Generic Input Template for CloudSim and Cloud Simulators 161

features and reduce the complexity of understanding different cloud technologies. In this

chapter, graphical and textual interfaces were presented. The graphical interface is defined

in GMF to ensure the cloud scenarios visualization by any user without prior knowledge

of any data schemas. The textual interface is represented by JSON schema, but it can be

encoded in any other alternative data exchange format such as HOT template and XML.

JSON format is used for its simplicity, readability, and ability to enable repeatable cloud

models. GITS is mapped to CloudSim using a transformation algorithm, but it can be easily

translated to fit any cloud simulator or cloud management input.

162

References

[1] M. Jammal, H. Hawilo, A. Kanso, and A. Shami, “GITS: Generic Input Template for CloudSim

and Cloud Simulators,” Submitted to Elsevier Future Generation Computer Systems, 2017.

[2] M. Jammal, A. Kanso, and A. Shami, “High Availability-Aware Optimization Digest for Ap-

plications Deployment in Cloud,” IEEE International Conference on Communications (ICC),

pp. 6822-6828, June 2015.

[3] M. Jammal, A. Kanso, and A. Shami, “CHASE: Component High Availability Scheduler

in Cloud Computing Environment,” IEEE International Conference on Cloud Computing

(CLOUD), pp. 477-484, 2015.

[4] H. Hawilo, A. Kanso, and A. Shami, “Towards an Elasticity Framework for Legacy Highly

Available Applications in the Cloud,” IEEE World Congress on Services (SERVICES), pp. 253-

260, July 2015.

[5] Google, “Choosing an App Engine Environment,” https://cloud.google.com/

appengine/docs/the-appengine-environments, November 2016. [January 15,

2017]

[6] Microsoft Azure, “Microsoft Azure: Cloud Computing Platform & Services,” https://

azure.microsoft.com/en-us/?b=17.05, 2017. [February 2, 2017]

[7] Datapipe, “Public, Private, Hybrid: Understanding Your Cloud Options,”

https://www.datapipe.com/cloud/, 2016. [January 20, 2017]

[8] Amazon, “Amazon EC2,” https://aws.amazon.com/ec2/, 2017. [February 5, 2017]

[9] R.N. Calheiros, R. Ranjan, A, Beloglazov, C.A.F. De Rose, and R. Buyya, “CloudSim: a toolkit

for modeling and simulation of cloud computing environments and evaluation of resource pro-

visioning algorithms,” Software: Practice and Experience Journal, January 2011, pp. 23-50.

https://cloud.google.com/appengine/docs/the-appengine-environments
https://cloud.google.com/appengine/docs/the-appengine-environments
https://azure.microsoft.com/en-us/?b=17.05
https://azure.microsoft.com/en-us/?b=17.05
https://aws.amazon.com/ec2/

Chapter 5: GITS: Generic Input Template for CloudSim and Cloud Simulators 163

[10] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and simulation of scalable Cloud com-

puting environments and the CloudSim toolkit: Challenges and opportunities,” International

Conference on High-Performance Computing & Simulation, pp. 1-11, 2009.

[11] S. Strauch, V. Andrikopoulos, T. Bachmann, and F. Leymann, “Migrating application data to

the cloud using cloud data patterns,” CLOSER, 2013.

[12] OASIS, “Topology and orchestration specification for cloud applications version 1.0,” http:

//docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html, November

2013. [December 2016]

[13] A.F. Antonescu, P. Robinson, and T. Braun, “Dynamic topology orchestration for distributed

cloud-based applications,” Second Symposium on Network Cloud Computing and Applications

(NCCA), pp. 116-123, 2012.

[14] G. Juve and E. Deelman, “Automating application deployment in infrastructure clouds,” IEEE

Third International Conference on Cloud Computing Technology and Science (CloudCom), pp.

658-665, 2011.

[15] C. Liu, J. E. V. D. Merwe, and et al., “Cloud resource orchestration: A data-centric approach,”

Proceedings of the biennial Conference on Innovative Data Systems Research (CIDR), 2011.

[16] IBM, “IBM SmartCloud Orchestrator Architected for Extensibility,” http://www.iaas.

uni-stuttgart.de/lehre/vorlesung/2013_ws/vorlesungen/smcc/

materialien/SCOrchestrator%20Extensibility%20Architecture%

201105.pdf, November 2013. [December 2016]

[17] IBM, “Orchestration Simplifies and Streamlines Virtual and Cloud Data Center Management,”

https://goo.gl/8dEqle, January 2015. [December 2016]

[18] Amazon, “AWS CloudFormation Templates,” https://aws.amazon.com/

cloudformation/aws-cloudformation-templates/, 2017. [Februay 2017]

[19] OpenStack, “Heat Orchestration Template (HOT) Guide,” http://docs.openstack.

org/developer/heat/template_guide/hot_guide.html, 2013. [February

2017]

http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
http://www.iaas.uni-stuttgart.de/lehre/vorlesung/2013_ws/vorlesungen/smcc/materialien/SCOrchestrator%20Extensibility%20Architecture%201105.pdf
http://www.iaas.uni-stuttgart.de/lehre/vorlesung/2013_ws/vorlesungen/smcc/materialien/SCOrchestrator%20Extensibility%20Architecture%201105.pdf
http://www.iaas.uni-stuttgart.de/lehre/vorlesung/2013_ws/vorlesungen/smcc/materialien/SCOrchestrator%20Extensibility%20Architecture%201105.pdf
http://www.iaas.uni-stuttgart.de/lehre/vorlesung/2013_ws/vorlesungen/smcc/materialien/SCOrchestrator%20Extensibility%20Architecture%201105.pdf
https://goo.gl/8dEqle
https://aws.amazon.com/cloudformation/aws-cloudformation-templates/
https://aws.amazon.com/cloudformation/aws-cloudformation-templates/
http://docs.openstack.org/developer/heat/template_guide/hot_guide.html
http://docs.openstack.org/developer/heat/template_guide/hot_guide.html

Chapter 5: GITS: Generic Input Template for CloudSim and Cloud Simulators 164

[20] T. Binz, G. Breiter, F. Leymann, and T. Spatzier, “Portable cloud services using Tosca,” IEEE

Internet Computing, 2012.

[21] M. Carlson et al., “Cloud Application Management for Platforms,” https://www.

oasis-open.org/committees/download.php/47278/CAMP-v1.0.pdf,

August 2012.

[22] OpenTOSCA, “Open Source TOSCA Ecosystem,” http://www.iaas.uni-

stuttgart.de/OpenTOSCA/, June 2016. [February 2017]

[23] OpenTOSCA, “Winery tool,” http://winery.opentosca.org/winery/

servicetemplates/, November 2013. [January 2017]

[24] O. Kopp, T. Binz, U. Breitenbcher, and F. Leymann, “Winery-A Modeling Tool for TOSCA-

based Cloud Applications,” 11th International Conference on Service-Oriented Computing, pp.

700-704, December 2013.

[25] Eclipse, “Eclipse Winery,” https://projects.eclipse.org/projects/soa.

winery, 2017. [February 2017]

[26] W. Tian, Y. Zhao, M. Xu, Y. Zhong and X. Sun, “A Toolkit for Modeling and Simulation of

Real-Time Virtual Machine Allocation in a Cloud Data Center,” IEEE Transactions on Au-

tomation Science and Engineering, January 2015, pp. 153-161.

[27] M. C. S. Filho and J. J. P. C. Rodrigues, “Human Readable Scenario Specification for Auto-

mated Creation of Simulations on CloudSim,” Springer International Publishing, 2014.

[28] B. Wickremasinghe, R. N. Calheiros, and R. Buyya, “CloudAnalyst: A CloudSim-Based Vi-

sual Modeller for Analysing Cloud Computing Environments and Applications,” 24th IEEE

International Conference on Advanced Information Networking and Applications, pp. 446-452,

2010.

[29] P. Jakovits, S. N. Srirama, and I. Kromonov, “Stratus: A Distributed Computing Frame-

work for Scientific Simulations on the Cloud,” IEEE 14th International Conference on High-

Performance Computing and Communication & IEEE 9th International Conference on Embed-

ded Software and Systems, pp. 1053-1059, 2012.

https://www.oasis-open.org/committees/download.php/47278/CAMP-v1.0.pdf
https://www.oasis-open.org/committees/download.php/47278/CAMP-v1.0.pdf
http://www.iaas.uni-stuttgart.de/OpenTOSCA/
http://www.iaas.uni-stuttgart.de/OpenTOSCA/
http://winery.opentosca.org/winery/servicetemplates/
http://winery.opentosca.org/winery/servicetemplates/
https://projects.eclipse.org/projects/soa.winery
https://projects.eclipse.org/projects/soa.winery

Chapter 5: GITS: Generic Input Template for CloudSim and Cloud Simulators 165

[30] S. Srirama, O. Batrashev, and E. Vainikko, “SciCloud: Scientific Computing on the Cloud,”

10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, pp. 579-580,

2010.

[31] S. Guo, F. Bai and X. Hu, “Simulation software as a service and Service-Oriented simulation

experiment,” IEEE International Conference on Information Reuse & Integration, pp. 113-116,

2011.

[32] M. Balmer et al., “MATSim-T: Architecture and Simulation Times,” Multi-Agent Systems for

Traffic and Transportation Engineering, 2009, pp. 57-78.

[33] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “SUMO-Simulation of Urban Mobil-

ity An Overview,” Third International Conference on Advances in System Simulation, 2011.

[34] P. Altevogt, W. Denzel, and T. Kiss, “Cloud Modeling and Simulations,” IBM Research Re-

port, April 2013.

[35] Michael Armbrust et al., “Above the Clouds: A Berkeley View of Cloud Computing,” Univer-

sity of California, Berkeley Technical Report, February 2009.

[36] J. Hillston, “SimJava,” http://www.inf.ed.ac.uk/teaching/courses/ms/

notes/note12.pdf, November 2002.

[37] E. Truyen, B. Vanhaute, W. Joosen, P. Verbaeten and B. N. Jorgensen, “Dynamic and selective

combination of extensions in component-based applications,” Proceedings of the 23rd Interna-

tional Conference on Software Engineering, pp. 233-242, 2001.

[38] Oracle, “JavaBeans Spec,” http://www.oracle.com/technetwork/articles/

javaee/spec-136004.html, 2017. [February 2017]

[39] CORBA, “OMG Specifications,” http://www.omg.org/spec/#MW,January2017.

[February 2017]

[40] Microsoft, “Distributed Component Object Model, https://technet.microsoft.

com/en-us/library/cc958799.aspx, 2017. [February 2017]

[41] H. Petritsch, “Service-Oriented Architecture (SOA) vs. Component Based Architecture,”

Vienna University of Technology white paper, http://www.petritsch.co.at/

download/SOA_vs_component_based.pdf, 2006.

http://www.inf.ed.ac.uk/teaching/courses/ms/notes/note12.pdf
http://www.inf.ed.ac.uk/teaching/courses/ms/notes/note12.pdf
http://www.oracle.com/technetwork/articles/javaee/spec-136004.html
http://www.oracle.com/technetwork/articles/javaee/spec-136004.html
http://www.omg.org/spec/#MW, January 2017
https://technet.microsoft.com/en-us/library/cc958799.aspx
https://technet.microsoft.com/en-us/library/cc958799.aspx
http://www.petritsch.co.at/download/SOA_vs_component_based.pdf
http://www.petritsch.co.at/download/SOA_vs_component_based.pdf

Chapter 5: GITS: Generic Input Template for CloudSim and Cloud Simulators 166

[42] X. Wang, “Concept and Implementation of a Graphical Editor for Composite Applica-

tion Templates,” Thesis, http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.465.1373&rep=rep1&type=pdf, 2010.

[43] Google, “G Suite,” https://gsuite.google.com/, 2017. [February 2017]

[44] Salesforce, “Bring your CRM to the future,” https://www.salesforce.com/crm/,

2016. [February 2017]

[45] P. Salehi, A. Hamoud-Lhadj, P. Colombo, F. Khendek and M. Toeroe, “A UML-Based Do-

main Specific Modeling Language for the Availability Management Framework,” IEEE 12th

International Symposium on High Assurance Systems Engineering, pp. 35-44, 2010.

[46] M. Eriksson and V. Hallberg, “Comparison between JSON and YAML for data serialization,”

Bachelor Thesis, http://www.csc.kth.se/utbildning/kth/kurser/DD143X/

dkand11/Group2Mads/victor.hallberg.malin.eriksson.report.pdf,

2011.

[47] Dojo, “dojox.json.ref,” http://dojotoolkit.org/reference-guide/1.10/

dojox/json/ref.html, 2017. [February 2017]

[48] R. C. Gronback, “Eclipse Modeling Project-A DomainSpecific Language (DSL) Toolkit,

Addison-Wesley Longman, https://sisis.rz.htw-berlin.de/inh2009/12371395.pdf, 2009.

[49] Eclipse, “Graphical Modeling Project,” http://www.eclipse.org/modeling/

gmp/, 2017. [February 2017]

[50] F. Plante, “Introducing the GMF Runtime,” http://www.eclipse.org/articles/

Article-Introducing-GMF/article.html, January 2006

[51] D. Peng, L. Cao, and W. Xu, “Using JSON for Data Exchanging in Web Service Applications,”

Journal of Computational Information Systems, 2011, pp. 5883-5890.

[52] M. Jammal, A. Kanso, P. Heidari, and A. Shami, “Availability Analysis of Cloud Deployed

Applications,” IEEE International Conference on Cloud Engineering (IC2E), April 2016.

[53] M. Jammal, A. Kanso, P. Heidari, and A. Shami, “A Formal Model for the Availability Anal-

ysis of Cloud Deployed Multi-Tiered Applications,” 3rd IEEE International Symposium on

Software Defined Systems, April 2016.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.465.1373&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.465.1373&rep=rep1&type=pdf
https://gsuite.google.com/
https://www.salesforce.com/crm/
http://www.csc.kth.se/utbildning/kth/kurser/DD143X/dkand11/Group2Mads/victor.hallberg.malin.eriksson.report.pdf
http://www.csc.kth.se/utbildning/kth/kurser/DD143X/dkand11/Group2Mads/victor.hallberg.malin.eriksson.report.pdf
http://dojotoolkit.org/reference-guide/1.10/dojox/json/ref.html
http://dojotoolkit.org/reference-guide/1.10/dojox/json/ref.html
http://www.eclipse.org/modeling/gmp/
http://www.eclipse.org/modeling/gmp/
http://www.eclipse.org/articles/Article-Introducing-GMF/article.html
http://www.eclipse.org/articles/Article-Introducing-GMF/article.html

Chapter 5: GITS: Generic Input Template for CloudSim and Cloud Simulators 167

[54] M. Jammal, H. Hawilo, A. Kanso, and A. Shami, “Mitigating the Risk of Cloud Services

Downtime Using Live Migration and High Availability-Aware Placement,” IEEE International

Conference on Cloud Computing Technology and Science (CloudCom), December 2016.

168

Chapter 6

ACE: Availability-aware CloudSim Extension

6.1 Introduction
Although the cloud computing is not new, it is considered a game-changing concept in

the information and communications technology (ICT) fields. The cloud outsources the

information technology (IT) infrastructure to cloud provider not only to minimize the man-

agement challenges but also to allow new providers to enter the market with different capa-

bilities, infrastructure requirements, and costs. As for the cloud user, they encounter mul-

tiple challenges, such as providing automated operational tasks (software upgrades control

and management), satisfying service level agreements (SLAs), and other quality of service

(QoS) concerns. Studies show that cloud services have evolved to everything or anything

as a Service (XaaS), which will be responsible for the growth in the market of the cloud

services [2]. The XaaS includes software as a service (SaaS), infrastructure as a service

(IaaS), and platform as a service (PaaS) where X denotes “everything/anything” as a ser-

vice. Although large and medium enterprises have the capitals and manpower to invest

in the infrastructure, it is expected that these companies are going to drive the growth of

XaaS [3]. Additionally, XaaS will be needed by more enterprises to guarantee the balance

between their legacy systems with new versions.

In order to ensure the cloud adoption in many enterprises, different challenges should be ad-

dressed. These issues range from compliance and legal concerns, security, interoperability,

and other services management issues [4]. However, for the cloud paradigm, availability is

one of the key factors to ensure an optimal cloud performance and satisfy QoS and quality

The content of this chapter have been submitted for publication [1].

This work is supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC-STPGP 447230) and Ericsson Research.

Chapter 6: ACE: Availability-aware CloudSim Extension 169

Figure 6.1: Different cloud challenges.

of experience (QoE). Fig. 6.1 shows different cloud challenges and their dependencies. For

instance, the data management and applications’ availability affect the availability and elas-

ticity issues in the cloud. In fact, cloud services and data are safely stored and maintained in

well-managed cloud platforms because the latter has backups and other reliability policies

and consequently, is more trustworthy compared to on-premise infrastructure. However,

outages can happen even on these platforms. For example, GitLab has faced data loss

due to accident deletion on Feb. 1, 2017, which has caused the permanent loss of “six

hours’ worth” of data [5]. Similarly, Dropbox, Microsoft Azure, Google, and Amazon

Web Services have suffered cloud outages in the last few years [6] [7] [8] and [9]. Ad-

ditionally, according to [10], 86% of IT decision makers determine that high availability

(HA) is an important criterion in choosing a cloud service provider. Therefore, availability

and reliability are main concerns to be addressed in large distributed systems and appli-

cations, mainly cloud platforms [11]. With the emergence of the internet of things (IoT),

network function virtualization (NFV), software defined networking (SDN), and Big Data,

these HA desires are continually growing in many applications including communication,

finance, health, and social networking [12]. Fig. 6.2 shows different emerging technologies

in the cloud domain. Different approaches can be adopted to maintain HA in the cloud.

This includes backups, redundancy models, failover policies, and HA-aware deployments.

It is necessary to note that availability is the measure of the percentage of time a system is

Chapter 6: ACE: Availability-aware CloudSim Extension 170

Figure 6.2: Different emerging technologies.

available for normal usage in a given time interval [13].

On the endeavor to ensure a highly available cloud services is to design and implement a

cloud model and simulation that emulate real cloud outages and recover them accordingly.

Relying on the reliability guaranties of the cloud provider may not be enough to assure the

applications of the cloud users will maintain their HA status. Using real cloud settings (i.e.

Amazon Elastic Compute Cloud (EC2)) to model applications and service and evaluate

their behavior under certain performance policies is restricted by cloud platform configura-

tions and infrastructure. As an alternative, modeling and simulations can be used to model

the cloud, build new algorithms and policies, test them before the actual deployment in a

real cloud, and enhance the performance of large-scale distributed systems. This can save

the tenants significant time and effort and some degree of reassurance about the level of

HA they can expect. On the other hand, cloud provider can benefit from the simulations

to evaluate new features/extensions to their cloud and check if their offered HA guaranties

are realistic.

Due to their scalability and efficiency characteristics, discrete event simulators can be used

to in the modeling and evaluation of the distributed systems [14]. CloudSim is a sim-

ulation framework used for the scheduling and resource allocation algorithms on cloud

infrastructure. CloudSim is built over a discrete event simulator, where discrete events are

Chapter 6: ACE: Availability-aware CloudSim Extension 171

the simulator triggers. However, the simulator is not designed to model HA constructs and

therefore, overlooks the availability and failures of the cloud applications. The adoption of

an HA-aware model is indispensable to ensure an accurate modeling and evaluation of the

behavior of real cloud environment under a faulty nature.

In this chapter, we extend CloudSim simulator to include high availability constraints,

HA-aware policies, and HA metrics. The proposed extension, ACE (Availability-aware

CloudSim Extension), allows the injection of failures and failure-dependency between

cloud applications, where failures can happen in any cloud entity. The extension supports

load balancing and allows the separation between the cloud as a provider consisting of data

centers (DCs) and servers, and cloud user where applications components are modeled to

form functional chains and protection groups. ACE allows realistic detection of failed en-

tities and provides recovery and repair solutions for the users. With these extensions, the

simulated scenarios can be used not only to schedule cloud applications with HA objec-

tives but to evaluate fault tolerant cloud scheduling approaches as well. The extension can

be used to adopt reactive, proactive, and adaptive fault tolerant approaches. Any failure

type can be injected into the cloud infrastructure and applications as long as it is associated

with its failure and repair attributes, such as mean time to failure (MTTF) and mean time

to repair (MTTR). Also, ACE uses JavaScript Object Notation (JSON) data format to pro-

vide generic and repeatable input templates for cloud simulators, GITS. Through ACE, the

CloudSim is extended with the following:

• Input template (JSON-based) for the application and the failure/recover/repair infor-

mation

• Automated requests generation

• Computational path between cloud applications

• Load balancing module

• Failure injection module

• Recovery/failover module

• Requests processing module

• Repair module

The rest of this chapter is structured as follows. In Section 6.2, the related work is pre-

sented for cloud simulators and scheduling approaches for distributed systems. Section 6.3

Chapter 6: ACE: Availability-aware CloudSim Extension 172

presents the problem background and motivation where it defines CloudSim, different out-

ages, fault tolerant approaches, scheduling in the cloud, and complexity of cloud models.

In Section 6.4, ACE design and implementation are described. Section 6.5 defines the

evaluation results of ACE. Finally, Section 6.6 presents the conclusion.

6.2 Related Work
Several research studies address the cloud scheduling approaches in terms of availability,

performance, and other QoS objectives. Other literature efforts have investigated the cloud

behavior and tackled cloud simulators designs and implementations.

6.2.1 Cloud simulators
Wickremasinghe et al. propose CloudAnalyst as an extension to CloudSim [15]. The main

feature of CloudAnalyst is the graphical user interface (GUI) extension. In other words, the

proposed simulator can separate the scenarios creation from the simulation development. It

can be applied to large-scale applications and allows simulations repetition while chaining

of experiments parameters. CloudAnalyst extends CloudSim with a module for visualizing

the simulation results where the simulation settings can be saved as an Extensible Markup

Language (XML) file and the results can be exported as a Portable Document Format (PDF)

file. Although CloudAnalyst focuses on modeling simulations rather than development, it

supports neither HA-aware metrics nor a generic input template with HA features.

Garg et al. extend CloudSim with NetworkCloudSim to include network model for DCs

[16]. NetworkCloudSim models the DC network (DCN) in terms of latencies and sharing

of bandwidth (BW) thus allowing modeling of different topologies of DCNs. It allows the

design of efficient resource allocation, management, and scheduling algorithms, but it is

limited to small DCN because of high simulation time and memory restrictions. Besides,

NetworkCloudSim discards the HA considerations in terms of simulation scenarios, net-

work design, and placement approaches.

Kliazovich et al. propose GreenCloud as an energy-aware simulator for cloud DCs [17].

It extends the Ns 2 network simulator. GreenCloud models the energy consumption of

cloud infrastructure (DCs, servers, and network links) and packet-level communication

configurations. GreenCloud differentiates between computing energy, infrastructure en-

Chapter 6: ACE: Availability-aware CloudSim Extension 173

ergy consumption, and communication energy, to ensure detailed modeling of energy in

the cloud DCs. Gupta et al. propose Green Data Center Simulator (GDCSim) as another

energy-aware simulator to model DC behavior and resource management in terms of power

objectives [18]. GDCSim consists of a BlueSim module to generate simulation scenarios

using XML files and performs heat circulation studies to thermally evaluate DCs using

Computational Fluid Dynamics (CFD) simulations. Although energy and HA are two main

concerns in the cloud, GreenCloud and GDCSim exclude any HA modeling in the cloud

DCs.

Zhou et al. extend CloudSim with FTCloudSim to include reliability mechanisms [19]. It

evaluates the system performance under faulty events and generates the necessary details to

determine the pros and cons of the approach under evaluation. FTCloudSim supports reac-

tive fault tolerant mechanisms, such as checkpointing module and repairing mechanisms.

Although FTCloudSim supports some reliability features, it discards redundancy between

applications components as well as the dependency relations, which is highly affected by

any failure event. It does not support the automated generation of requests within the func-

tional chain of a certain application. Also, the recovery policies do not ensure a failover to

a redundant component and do not trigger the repair policy of the faulty component.

Calheiros et al. design EMUSIM on the top of CloudSim and Automated Emulation Frame-

work (AEF) [20]. It uses the application behavior to extract information and generate the

simulation scenarios accordingly. Tighe et al. propose Data Center Simulator (DCSim)

to evaluate different DC management and scheduling algorithms [21]. It is a Java-based

event-driven simulator to model DC providing IaaS to cloud users. Although DCSim mod-

els multi-tier applications and supports the dependency and replication simulations between

virtual machines (VMs), it discards other HA features (failure injection, repair, recovery,

and load balancing).

Lim et al. propose MDCSim as a discrete event simulator to model the infrastructure char-

acteristics of different components of a DC (links, switches, and servers) [22]. Ostermann

et al. propose GroudSim as Grid and Cloud simulator based on discrete events [23]. Ac-

cording to different distribution functions, GroudSim can simulate the execution of jobs on

computing resources and calculate the associated cost and workload. Sriram proposes Sim-

ulation Program for Elastic Cloud Infrastructures (SPECI) to explore scalability of cloud

Chapter 6: ACE: Availability-aware CloudSim Extension 174

DCs [24]. It evaluates DCs behaviors in terms of a given design scheme to explore new

aspects of future scalability. Although SPECI proposes scalability suggestions while con-

sidering failure rate of DCs, it discards any other HA impact on the evaluation process.

While Fittkau et al. extend CloudSim with CDOSim to simulate SLAs violations, response

time, cost, and other performance granularities of a cloud deployment option (CDO) and

choose the effective deployment accordingly [25], TeachCloud introduces Rain workload

generator framework [26]. TeachCloud provides a GUI for generating cloud infrastructure

scenarios and visualizing simulation results. Both simulators overlook the HA features in

terms of attributes, modeling, and cloud applications scheduling.

6.2.2 Scheduling approaches in distributed systems
Ta-Shma et al. propose a continuous data protection and live migration-based checkpoint-

ing algorithms to enhance the VMs availability [27]. This approach reverts VM state to

recover any operator error. While Ta-Shma et al. use data protection and live migration

checkpointing schemes [27], Wang et al. provide a checkpointing technique that stores

periodical checkpointing using a Copy-on-Write-Basic (CoW-B) mechanism [28]. Malik

et al. address the cloud failures by proposing an adaptive fault tolerance approach [29].

Based on the VM reliability level, the approach validates if it is removed or not from the

cloud infrastructure. The approach consists of a VM node that triggers the application al-

gorithm and an adjudicator node to check and assess the reliability of VM. While Cully

et al. propose Remus to achieve HA using asynchronous VM replications [30], Nakano

et al. provide ReVivel Input/output (I/O) undo and redo approach to deal with I/O in an

HA recovery servers [31]. Although these approaches attempt to improve cloud availabil-

ity, they overlook many of HA metrics and constraints including MTTF, the dependency

between different cloud applications/VMs, load balancing, protection groups, location and

anti-location metrics.

Qureshi et al. implement different load balancing techniques [32]. A load balancing

approach tends to enhance request response time while preventing the overloading state.

Yiqiu et al. and Sadhasivam et al. propose task scheduling scheme based on load balancing

in the cloud [33] [34]. The scheduler ensures load balancing of the tasks from an applica-

tion to a VM according to required resources. Then it enables load balancing from the VM

Chapter 6: ACE: Availability-aware CloudSim Extension 175

to a server that satisfies the resources demands. Wang et al. provide a three-level cloud net-

work consisting of a service node, service, and request managers [35]. This approach sup-

ports Opportunistic Load Balancing (OLB) in the scheduling algorithm. While Gahlawat

et al. evaluate the performance of cloud scheduling approaches using first come first serve

(FCFS) and Shortest Job First schemes [36], Pawar et al. propose a dynamic cloud re-

source scheduling approach [37]. James et al. propose a weight load balancing algorithm

in CloudSim [38]. According to the processing power, VMs are weighted accordingly to

process users’ requests. While James et al. use weight load balancing [38], Tawfeek et

al. propose an ant colony optimization model to map users requests to the best-fit VMs

[39]. Although these approaches support load balancing, one of the HA mechanisms, they

discard other availability constraints, such as dependency relations, redundancy models,

affinity and anti-affinity restrictions.

Jin et al. propose fault detection and recovery approaches in the Grids [40]. Through moni-

toring and checkpointing, fault detection and recovery mechanisms are achieved. Cox et al.

propose loosely synchronized redundant virtual machines (LSRVM) approach to address

the hardware fault tolerance using virtualization [41]. While Chun et al. build a prototype

that serves users’ requests using time-based CPU sharing [42], Garg et al. propose cost and

time-based resource allocation [43]. Both studies overlook the HA constraints during the

allocation process.

The literature has many workflow management approaches that are extended to address

cloud resources utilization [44], [45], and [46]. However, these approaches are limited in

terms of availability of cloud applications in contrary to the work proposed in this chapter.

Unlike other literature studies, we distinguish ourselves in this chapter with a unique well-

defined availability-aware extension of CloudSim simulator. The extension does not only

capture an HA-aware input templates for the simulator, but it supports different HA metrics

and features. This includes failure injection module, applications components recovery and

repair, HA-aware allocation mechanism, automated request generation to maintain applica-

tion functional chains, and load balancing. Besides, the ACE captures different redundancy

models and multiple distributions functions for the failure/repair rates.

Chapter 6: ACE: Availability-aware CloudSim Extension 176

6.3 Background and Motivation:
Unlike on-premise systems, the cloud is an ecosystem that can be accessed anytime and

anywhere. The cloud is considered a provisioning and management paradigm that does not

depend on a specific technology. It is characterized by different economic, technical, and

non-functional properties, such as multi-tenancy, data management, elasticity, reliability,

agility, quality of service, the return on investment (ROI), and pay per use [47]. The cloud

provides wider functionality and lines of business (LoB) options while reducing mainte-

nance and licensing costs and replacing the capital expenditures (CAPEX)-based models

of organization infrastructure by operational expenditures (OPEX)-based models. In con-

trary to monolithic on-premise IT infrastructure, the cloud has an elastic nature in a way

that it can expand according to the enterprises’ needs.

However, multiple challenges arise from the above cloud properties when attempting to

achieve them. According to [48], 82% of enterprises have a hybridized cloud model that

integrates legacy on-premise systems with private and public cloud solutions. With the

hybrid model and the increase dependency on the cloud, different concerns are facing the

cloud adoption including security issues, the absence of expertise, growing cloud costs, and

outages impacts. HA remains one of the primary dilemmas to be addressed in any cloud

solution. Realizing an HA-aware cloud system entails an intricate planning. However, to

design a cloud solution that alleviates the HA issues, a modeling and simulation environ-

ment is needed to model several cloud properties, such as availability, security, and energy.

A simulation environment can be applied to evaluate multiple scenarios under different

performance and HA constraints/limitations. Therefore, it is necessary to realize the cloud

simulator to model HA solution, the different failure natures and fault tolerant types, the

characteristic of a well-defined scheduling, and the nature of cloud applications.

6.3.1 CloudSim simulator
CloudSim is an extensible cloud-based simulator built in the CLOUDS Laboratory at the

University of Melbourne, Australia. It models and simulates cloud systems including in-

frastructure (DCs and servers), VMs, computational resources, and different scheduling

and allocation policies [49], [50], and [51]. Many of the existing simulators of the dis-

tributed systems are extensions of CloudSim, such as WorkflowSim, CloudSimEx, Simple-

Chapter 6: ACE: Availability-aware CloudSim Extension 177

Figure 6.3: CloudSim architecture.

Workflow, CloudReports, and CloudAnalyst [52]. This is because CloudSim implements

common provisioning schemes that can be easily extended. With CloudSim, researchers

can discard the complexity of event-driven modeling and can focus on evaluating certain

cloud objectives (energy and HA) [15]. CloudSim is an open-source simulator and is built

on the top of a discrete event simulator, SimJava [15] [53]. CloudSim supports the follow-

ing features:

• Simulation and modeling of cloud environments, such as DCs, hosts (servers), VMs,

and containers.

• Modeling cloud information systems, cloud broker, and different time and space-

shared allocation and provisioning policies.

• Simulation and modeling of network connectivity between different cloud entities.

The CloudSim components interact with each other using a message passing technique.

Fig. 6.3 shows the CloudSim architecture. The lower layer represents the core simula-

Chapter 6: ACE: Availability-aware CloudSim Extension 178

Figure 6.4: CloudSim class diagram.

tion engine that provides event-based functionalities including events processing, queue-

ing, cloud entities creation/pausing/deletion, cloud components interactions, and the sim-

ulation clock. The CloudSim layer contains the cloud model entities and corresponding

allocation/scheduling approaches. The User Code layer defines the number of users, broker

specifications, and configurations for hosts, applications tasks, and VMs. Fig. 6.4 shows

the CloudSim class diagram. These classes are extensible and represent the main building

blocks for generating cloud models.

Although CloudSim is a toolkit for modeling and simulating cloud use cases, it does not

support availability-aware properties, constraints, and/or allocation policy. Also, it does

not support a “ready-to-use” setting to generate cloud scenarios, but it needs a Java-based

code to create any cloud set-up using its components (DC, host, broker, VM, and alloca-

tion policies). Therefore, this chapter aims at extending CloudSim with HA features and

generic input template for creating cloud scenarios while ensuring repeatability, portability,

understandability, and simplicity.

6.3.2 Outages and fault tolerant approaches
Service outage does not only affect the QoE, but it is realized also as revenue losses. For

example, according to the International Working Group on Cloud Computing Resiliency

Chapter 6: ACE: Availability-aware CloudSim Extension 179

(IWGCR), Cisco, GitHub, and Facebook outages result in loss of 200,000 USD per hour

[54]. To alleviate these challenges, it is necessary to build an HA system that integrates

different approaches including redundancy, failover, auto-scaling, monitoring, and load

balancing. In order to determine the right HA solution for a certain cloud environment,

the failure types, impacts, and associated fault tolerance types should be clearly realized to

extract lessons that improve an HA solution. For instance, on January 10, 2014, a script

bug in Dropbox causes a reinstallation of some active machines, which affects the replica

components and brings the service down [55]. A verification layer is added to Dropbox

HA solution to alleviate such kind of failures. Also, on January 24, 2014, some Google

services (Gmail and Google Docs) face an outage for one hour due to a software bug in

the configuration-based system [55]. Afterward, Google updates the HA solution to in-

clude additional validation tests and enhanced failure detection and analysis module. In

any case, failure can happen due to planned or unplanned outage [56] [57], but the orga-

nization should assess the failure and remodel their management, analysis, and recovery

strategies [58].

1. Faults types

System failures can be a transient or permanent fault (hardware level), a bug/design error

(software level), an operator error, and/or external errors/faults. In a cloud system, faults

are realized as resources failures whether the resource is application or infrastructure. The

common two main types of failures behaviors in the cloud are:

Fail-stop/Crash failures: The component of a system changes to a failure state that can be

detected by other system components [59]. In other words, the faulty component is halted

as in the case of power outages.

Byzantine failures: Upon a failure, the component shows malicious and random behavior,

which sometimes collides with other components and causes the system to perform in an

arbitrary mode (unpredictable outputs) [59]. Byzantine failure is considered the worst-case

scenario due to its disruptive property. Therefore, any system should be designed to over-

come such failures.

With these two behaviors, different failures can occur in a system.

Residual defects at the application and infrastructure level can generate errors that escalate

to critical failures. If recovery solution fails to happen, a cascading failure is triggered.

Chapter 6: ACE: Availability-aware CloudSim Extension 180

For example, if a database server fails and is not quickly recovered, the dependent com-

ponents, such as App logic in a web application, will fail as well. A myriad of failures

cases can be major, such as failure of critical application component or minor outage due

to planned upgrade of system software. In any case, noticeable failures are conceived as

periods of service degradation and affect the HA metrics calculation. Therefore, any HA

solution should not overlook the availability metrics when performing any deployment, re-

dundancy, or failover solution.

2. Fault tolerance measures and policies

Any cloud solution should be designed to tackle or prevent any failure. A system is con-

sidered a fault-tolerant one if it continues to function normally in a sense that some com-

ponents of the system are faulty during the specific time interval. Fault-tolerance or avail-

ability of a system is expressed in terms of MTTF and MTTR where MTTF determines the

time in which the system functions normally before failure, and MTTR is the time needed

to resume the functionality of a failed system. The availability A is calculated as follows:

A =
MTTF

MTTF +MTTR
(1)

Fault tolerance policies can be represented in terms of three different types [60]:

Reactive fault tolerance: When the failure occurs, this policy is used to leverage its impact

on the execution of the system component. Replay-and-retry, replication, task-resubmission,

and checkpointing are examples of reactive fault tolerance techniques.

Proactive fault tolerance: It aims at preventing failures/errors recovery by predicting them

and replacing a faulty component with a normal one. Software rejuvenation, self-healing,

load balancing, and preemptive migration are examples of proactive fault tolerance tech-

niques.

Adaptive fault tolerance (AFT): It adapts to the components changes/states and improves

the fault tolerance policy accordingly. In a cloud environment, this technique monitors the

cloud state and reshapes its configurations to maintain its stability upon fault detection.

Byzantine fault tolerance cloud, intermediate data fault tolerant (IFT), MapReduce fault

tolerance with low latency, and adaptive anomaly detection system for cloud computing

Chapter 6: ACE: Availability-aware CloudSim Extension 181

Figure 6.5: Different roles in the cloud model.

infrastructures (AAD) are examples of AFT techniques [61] [62] [63] and [64].

6.3.3 Scheduling in the cloud
To ensure the fully-exploitation of cloud capabilities, it is necessary to design an HA-

aware solution while maintaining an efficient utilization of computational resources. Each

cloud DC hosts thousands of servers with hundreds of VMs. While VMs process multiple

tasks, the cloud receives new batches of users’ requests. In order to have a seamless pro-

cessing, these requests should be hosted by the VM/server that can satisfy computational

needs while maximizing their availability. Therefore, task scheduling and assignment are

paramount approaches to prevent any SLA violation in terms of HA and performance of

the cloud. Optimization models can be an option to perform task-host assignments, but

they are generally characterized by Non-Polynomial (NP) complexities including long pro-

cessing time to search and find optimal solutions [65] [66]. Instead, scheduling heuristics

can be used in the cloud to perform the assignment while finding near-the-optimal results.

Many scheduling algorithms are used in the cloud environment including Round-Robin,

Chapter 6: ACE: Availability-aware CloudSim Extension 182

Min-Min, First come First serve (FCFS), Min-Min, and meta-heuristic algorithms (Tabu

search, simulated annealing, and genetic algorithm (GA)) [67].

The scheduling aims at maximizing the cloud utility through well-defined metrics that gen-

erate statements regarding certain cloud allocation policies. With scheduling, different

cloud metrics and objectives can be evaluated in terms of each other (HA-energy-security

or HA-performance-fairness) to generate a tradeoff that satisfies the desirable SLA and

QoS. In order to perform scheduling in a cloud environment, different phases should be

executed:

• Determination phase: Defining type of “to-be-processed” requests/task, such as rigid

tasks (predefined resources by users), evolving tasks (changeable resources through

simulation), and moldable tasks (constrained resources by the scheduler) [68].

• Discover phase: Resource/HA/Energy-based pooling and filtering of available in-

frastructure

• Decision phase: Choosing target host (DC, server, and VM)

• Process phase: Submitting the request/task to the host to be processed.

In this chapter, the scheduling and allocation policies in the CloudSim are extended to

include HA attributes and constraints (affinity and anti-affinity restrictions, geo-redundancy

and dependency models).

6.3.4 Cloud model
Similar to Service Oriented Architecture (SOA), different roles can be defined in any cloud

environment [47]. Fig. 6.5 shows the cloud model. These roles can be distributed as fol-

lows:

Cloud provider offers PaaS and IaaS to the users. It consists of multiple DCs hosting thou-

sands of servers. Each infrastructure component is characterized by its resources and HA

metrics.

Cloud broker is an intermediate negotiator between the cloud service provider and con-

sumer.

Cloud aggregators combine different cloud providers’ platforms to offer a larger and hy-

brid infrastructure to cloud customers. Aggregators aim at achieving economy of scale

by matching the emerging the industry needs and the customer demands by offering cus-

Chapter 6: ACE: Availability-aware CloudSim Extension 183

tomized cloud services.

Cloud users consist of multiple applications components that use the cloud capabilities to

execute certain computations or to process requests. These components are characterized

by different dependency and redundancy relations. A 3-tier web application is an example

of cloud applications [69]. At the front-end, a Hypertext Transfer Protocol Secure (HTTPS)

server processes requests and forwards them to an App server. At the back-end, a database

(DB) server stores the users’ data and sponsors the App server that generates the required

information. The dependency interaction between these component types constitutes the

functional/computational path that should be followed by a request to be successfully exe-

cuted.

Even though, the cloud remains to be a complex system where cloud providers should

maintain the service delivery while isolating the underlying infrastructure complexity from

the cloud applications users. Therefore, to maintain certain availability baseline, the cloud

providers and users should maximize the applications HA using efficient HA-aware de-

ployment models with an indispensable service delivery. With the proper availability and

outsourcing solution, the Total Cost of Ownership (TCO) can be reduced while increasing

the ROI of the cloud model.

Although modeling and simulation environments are broadly used in different ICT branches,

some challenges arise when applying them to the cloud [70].

• All the cloud infrastructure entities should be taken into consideration during any

simulation experiment.

• Multiple intricacies between the cloud provider and cloud applications should be

considered to ensure the best HA-aware mapping between applications and corre-

sponding hosts.

• The dynamic property of cloud market requires a prompt prototyping where simula-

tions of new cloud approaches should be executed in a well-timed setting.

• The “always available” property of the cloud should be associated with a vertical

and horizontal scaling of cloud applications components. This can add hiccups to

existing deployment solutions. This requires an elasticity-aware technique to handle

sudden changes in resources or applications architecture.

• With the modern reshaping of DCs architecture to handle IoT, data warehousing,

Chapter 6: ACE: Availability-aware CloudSim Extension 184

data analytics, data lakes, virtualization, cloud, and real-time computing, scalable

solutions are required [71].

To this end, this chapter provides an abstract and generic simulation approach where dif-

ferent cloud nodes (DC, server, application components, VMs), load balancer, and HA

features are well-defined and modeled.

6.4 ACE Design
Discrete event simulation (DES) provides a flexible way to evaluate multiple approaches

designed for cloud systems, without the need to implement and assess them in a real-world

environment. CloudSim is one of the well-known cloud simulators that is built on the

top of a DES paradigm. It allows modeling and simulation of large-scale cloud scenarios.

However, contemporary requirements of the cloud, such as HA, should be addressed as

well in cloud-based simulators. HA is considered a hidden agenda behind the migration to

the cloud, and consequently, it is an open challenge for many IT enterprises.

For this purpose, we propose ACE, an availability-aware CloudSim extension that simulates

and evaluates cloud systems having an erroneous nature. The objective of ACE is to design

and evaluate HA-aware mechanisms for the cloud. ACE contributions are summarized as

follows:

• Define an architecture for HA-aware cloud (generic template for cloud model that

captures HA features).

• Provide automated generation of requests while discovering the functional chains

(computational path) and protection group (redundancy group) for cloud applica-

tions.

• Integrate HA-aware cloud allocation algorithm that places cloud applications while

maximizing their HA and satisfying other SLA performance requirements.

• Design a load balancing algorithm at each tier of a cloud application.

• Provide a failure injection module and recovery/repair mechanisms to ensure self-

healing upon failures of DCs, servers, VMs (representing cloud applications).

• Implement a modular and reusable HA-aware extension for CloudSim.

• Evaluate availability of different HA-aware deployments of cloud applications.

Chapter 6: ACE: Availability-aware CloudSim Extension 185

Figure 6.6: ACE model (Using Eclispe Ecore representation).

The source codes of ACE (extension for CloudSim) will be available in the GitHub repos-

itory. It is available now upon request. In the following, we describe the detailed design of

ACE where different entities, features, and mechanisms are modeled in an abstract way to

ensure modularity, reusability, extensibility, and scalability.

6.4.1 ACE modules
Input template module: CloudSim is extended with a user-friendly method, GITS (generic

input template for cloud simulators), for generating a scenario, without exposing the cloud

user to the details of development and coding examples in the simulator [72]. Manual cre-

ation of use cases in CloudSim can be a tedious and erroneous job. Therefore, GITS aims

at providing an imperative way to generate any cloud scenario that ensures configurations

reusability, repeatability, applications portability, and automated orchestration between dif-

ferent cloud providers while minimizing error, cost, and time-to-value.

GITS models the cloud provider, cloud user, and virtualization mapping between them

through VM/containers. It captures different HA attributes associated with each entity of

Chapter 6: ACE: Availability-aware CloudSim Extension 186

Figure 6.7: ACE graphical editor.

the cloud including HA statistical measures (MTTF, MTTR, and recovery time), redun-

dancy model, failure types, and recovery mechanisms. GITS models the cloud as a cloud

provider consisting of multiple DCs hosting multiple racks and servers and a cloud appli-

cation consisting of multiple components of different types. Each type is associated with

a failure type, redundancy model, SLA requirements, workload characteristics, and redun-

dancy model. Different redundancy and dependency relations between component types

are captured as well. Components can be modeled in an active-active redundancy model,

active-standby (cold and hot) model, and active-spare model. Fig. 6.6 shows Ecore diagram

for GITS cloud model.

To maintain modularity and easy-to-use features, GITS consists of a multi-layer input

model. At the frontend layer, an Eclipse graphic modeling framework (GMF) project is

Chapter 6: ACE: Availability-aware CloudSim Extension 187

Figure 6.8: ACE JSON template.

built to provide a user-friendly approach. An Extensible Markup Language (XML) file

is generated from the GMF, which will be inputted to the mid-layer and parsed into a

JavaScript Object Notation (JSON) template. JSON data format is used because it is a

human readable and reusable approach, which is mapped to a Unified Modeling Language

(UML) class diagram at the backend layer. GITS is generic in a sense that it can be easily

modified to fit any cloud simulator. Fig. 6.7 and Fig. 6.8 show the GMF and JSON tem-

plate.

It is necessary to note that the output of any simulation is saved as an excel sheet where

requests information is included.

Computational path and request generation module: Each application consists of multiple

components. Each component belongs to a certain type that can depend on and/or sponsor

other types. For example, a web application consists of 3 types: HTTPS-based compo-

nent type, App-based type, and DB-based type where HTTPS depends on the App that is

sponsored by DB. This interdependency communication between applications components

forms the computational path or functional chain. In other words, it is the route followed

by a user request to be successfully executed. Note that a request refers to a cloudlet.

CloudSim is extended to include this components chaining. Each computational path con-

sists of the different levels (three levels in case of the web application). The first level

Chapter 6: ACE: Availability-aware CloudSim Extension 188

Figure 6.9: Example of three-tier web application.

represents the components types that do not have any dependents (HTTPS type in case of

the web application). The requests arrive at the load balancer to be forwarded to the first

level/tier of the chain. The first tier represents the primary component and its redundant

ones. It is necessary to note that this redundancy relation forms a protection group (primary

and redundant components). The requests are distributed on the active components of the

first level. Once a request is processed, a sub-request is generated and forwarded again to

the load balancer to be distributed on the active components of the second tier. The same

process goes on until the request reaches the last tier. Fig. 6.9 shows the web application

with computational path and protection group. A request is successfully processed if all

the subrequests created at all the tiers of the path are successfully executed. CloudSim is

also extended to include automatic generation of requests. Upon completion, a new re-

quest is automatically generated and forwarded to be distributed by the load balancer to

the different tiers of the chain. It is necessary to note that user can either define a number

of requests at the beginning of simulation or trigger the automated generation of requests

while defining the simulation time.

HA-aware placement module: CloudSim provides space and time-based allocation poli-

cies, but it overlooks HA objective and constraints. ACE provides an HA-aware allocation

policy for applications components. A simulator user can use either the default policy or

the proposed HA-aware approach. The HA-aware approach is divided into sub-algorithms.

Prior to the applications components placement, a criticality analysis is performed to dif-

ferentiate between applications components priorities [66]. Once defined, the applications

Chapter 6: ACE: Availability-aware CloudSim Extension 189

Figure 6.10: Flowchart of the HA-aware placement algorithm in ACE.

components are then inputted to the placement algorithm. The first step towards alloca-

tion is to find set of servers that can satisfy the performance demands of the applications

components (computation resources and latency). For this purpose, a performance-aware

Chapter 6: ACE: Availability-aware CloudSim Extension 190

Figure 6.11: ACE load balancing module.

sub-algorithm is triggered to generate a pool of apt servers. The servers pool is imported to

the availability algorithm to find the best server while maximizing the HA of the applica-

tions components. To that end, the availability sub-algorithm is executed to select a server

from the pool with the highest availability measure (highest MTTF and lowest MTTR).

However, the chosen server should satisfy the delay, affinity, and anti-affinity constraints.

In other words, a component should be placed on a server that enables its communication

with its redundant components. As for the affinity constraints, the availability algorithm

restricts the placement of a component and its redundant ones on the same server (geo-

redundancy policy). It also places the dependent components on their sponsor server if

they cannot tolerate the sponsor failure. Otherwise, the algorithm provides different loca-

tions for the sponsor component and its dependents. Fig. 6.10 shows the flow chart of the

placement algorithm.

The HA-aware allocation algorithm generates the mapping between applications compo-

nents and their hosts (servers and DCs). It is necessary to note that the VMs represent the

applications components where each VM has the same characteristics (resources and HA

measures) as its component. Prior to simulation, the algorithm is executed, and the VM-

host (component-host) is defined. To that end, the CloudSim broker is extended to include

the VM-host binding at the beginning of the simulation. This extended broker class per-

forms the binding of the VM to the required server in order to ensure that we can access

the VM list of any server and the server of any VM, especially upon failure. Note that, in

the extension, a VM refers to an application component.

Load balancing module: A load balancing algorithm is added to CloudSim. At each tier

Chapter 6: ACE: Availability-aware CloudSim Extension 191

of the computational path, a load balancer is responsible for the distribution of the requests

between available VMs. A fair load balancing algorithm is implemented to ensure a fair

workload distribution among different entities. First, the fair load balancer searches for ac-

tive components (VMs) to process a request. Then assigns the workload to the VM having

the least waiting queue size (least number of requests in its queue). The load balancer does

not only distribute the requests on the relevant VMs, but it is also responsible for the redis-

tribution of requests upon failure of their corresponding VMs and/or hosts (servers and/or

DCs). Fig. 6.11 shows the load balancing model of ACE.

Failure injection module: Each cloud entity (DCs, servers, and application components

(VMs)) is associated with availability measures. With MTTF and MTTR, the availability

ratio is calculated using (1). The failure time is then determined by multiplying this ra-

tio with the simulation duration. Once determined, a failure is injected into the simulation.

The faulty entity is considered “destroyed”, and its corresponding requests are redistributed

to the redundants.

Recovery and repair module: Once the failure is injected, the extended broker detects and

isolates it to protect the rest of the cloud system. Simultaneously, it triggers the recovery

and repair policies. If the failure happens at the level of the VM, the VM “recovery time”

attribute determines when to trigger the recovery policy, and the MTTR determines when

the repair policy is launched. The broker triggers “DestroyVM” method to generate a fail-

ure event and acknowledges the DC with this event. To that end, the “CloudSim class” in

the core engine is extended to include dynamic future queue where its size can be updated

anytime due to any unplanned event (failure, recovery, and repair) during the simulation.

Since we can access the host id from a VM, the broker iterates over the “VM HashMap”

of the host of faulty VM and changes the latter status to inactive, which is simultaneously

updated in the VM list of the load balancer. The broker then determines the cloudlet queue

of the faulty VM, which is extracted from the scheduling policy. The cloudlet in the exe-

cution queue is considered “failed”. As for the cloudlets (requests) in the waiting queue,

they are released and associated with a “failed” flag. Concurrently, the broker calls the load

balancer to determine the available active redundant VM with the least cloudlet queue size.

It is necessary to note that the broker is extended to act as the brain of the simulation and

to ensure modularity and reusability of the code. For instance, any load balancer policy

Chapter 6: ACE: Availability-aware CloudSim Extension 192

Figure 6.12: ACE architecture and different modules.

Chapter 6: ACE: Availability-aware CloudSim Extension 193

Figure 6.13: Different building blocks of ACE.

can replace the proposed one without affecting the simulation. Once the broker gets the

apt redundant VM, it generates new cloudlets holding the same ids as the old ones and

triggers their failover to the corresponding VM. After VM repair time, the faulty VM is

active again and ready to process new requests. If the failure happens at the level of the

host, the broker iterates over its “VM HashMap” and repeats the previous VMs recovery

and repair policies. After MTTR of the faulty server, its status changes to normal, and it

is ready to host new VMs. Similarly, if the failure happens at the DC level, its servers fail

automatically, and the same applies to their hosted VMs. The VMs and its cloudlets are re-

covered/repaired as discussed above. The faulty DC and its servers are considered healthy

again after their MTTR. It is necessary to note that DC and server failures are associated

only with repair plans; we do not consider a hardware recovery policy (hardware redun-

dancy), only redundancy (recovery) is assigned at the level of applications components.

6.4.2 ACE building blocks
This section explains the different classes used to extend CloudSim with ACE. Fig. 6.12

and Fig. 6.13 show ACE architecture and its main classes.

CloudletExtension: This class extends the Cloudlet class in CloudSim to reflect availabil-

ity measures and computational path metrics (id, the status of completion, and depen-

dents/sponsors).

CloudletScheduler classes: These classes include CloudletSpaceSchedulerSpaceSharedEx-

Chapter 6: ACE: Availability-aware CloudSim Extension 194

tension and CloudletTimeSchedulerSpaceSharedExtension, which extend the classes of the

scheduler in CloudSim. They are extended to release the resources of the faulty VM in or-

der to ensure that it will have its full resources when it becomes healthy. Also, these classes

determine the waiting and execution lists of VMs and include the failure injection and re-

covery mechanisms (failure/resume of cloudlets).

ComponentToCloudletAdapter: This class maps the components of the ACE input template

(JSON template) to the extended cloudlet class (HA measures (MTTF, MTTR, tolerance

time) and dependents/sponsors). At this point, it is assumed that each component can pro-

cess one request at a time, but this class can be easily extended to include multiple requests

processing concurrently.

ComponentToVMCloudSimAdapter: This class ensures that each application component is

represented as a VM in the simulation. Consequently, the components of the ACE input

template (JSON template) are mapped to the extended VM class (HA measures (MTTF,

MTTR, tolerance time) and dependents/sponsors). Each VM is also associated with a

unique id, to be used for example, as a reference when searching the VM list of its hosts.

ComputingPathsForComponentsVMs: This class is used to determine the dependent(s)

and/or sponsor(s) of each component type and generate the computational path or the func-

tional chain of the corresponding applications.

ComputingPathStructure: This class determines the structure of the computational path

where the application component type of the first tier of the path, application components

of the path, and a number of active components in each tier are defined.

CreateCloudletForVM: This class generates the cloudlets of each VM (a component of a

specific type) where each cloudlet should have the characteristics of its corresponding VM

(resources, delay, and HA metrics).

DatacenterBrokerExtension: This class is considered the brain of ACE simulation. It is ex-

tended to include failure injection of VM/server/DC, dynamic generation of cloudlets/VMs

and computational path, dynamic destruction of VM/server/DC upon failure, recovery, and

repair policies. The broker is also extended to support static requests, dynamic requests,

and fluctuated workload generation. The main functionalities of ACE are implemented and

triggered in the extended broker to ensure code modularity and reusability where different

policies (load balancing and placement) can be added.

Chapter 6: ACE: Availability-aware CloudSim Extension 195

DatacenterExtension: This class is extended to capture HA measures (MTTF and MTTR)

of the DC and include the acknowledgment for a VM failure and the binding between the

VM and host according to the proposed HA-aware algorithm.

FailureTime classes: These classes include DatacenterFailureTime, HostFailureTime, and

VMFailureTime. They determine the data structure of the failure time of the DC, server,

and VM.

DatacenterToCloudSimDCAdapter: This class maps the DC of the ACE input template

(JSON template) to the extended DC class in CloudSim.

HighAvailabilityUtilities: This class is used to calculate the time to inject the failure of DC,

server, and VM based on the simulation duration.

HostExtension: This class is extended to include HA measures (MTTF and MTTR) of the

server and its map of the hosted VMs.

IntroduceVMFailureAndRecovery: This class tracks the simulation time to determine the

time to inject failures and trigger recovery. This class considers failure priority in a sense

that if DC, server, and VM fail at the same time, it will trigger DC failure then host fol-

lowed by VM. Also, if the MTTF is given same as MTTR of a VM, this class can handle

this error. It will initially trigger a VM failure followed by repair. This feature can be used

to redistribute requests of a certain VM to its redundants upon its overload.

LoadBalancing: This class is used to fairly distribute the requests to the active VMs at each

tier of the computational path. It also redistributes the requests to the redundant VMs upon

DC/server/VM failure.

PopulatingFromHAAllocator: This class is used to trigger the HA-aware allocation and get

the placements of the applications components on the best servers while maximizing the

components HA. These placements are used to perform the binding between the VMs and

servers in ACE.

RedundancyModelTags: This class defines tags for redundancy types (active, standby, or

spare) to be associated with each VM.

RequestInformationSet: This class generates HashMap of requests to facilitate the search.

RequestStructure: This class determines the structure of the request where it defines the

request unique id, status, final request state, and the sub-cloudlets. The latter is generated

at the different tiers of the chain, and it represents the main request.

Chapter 6: ACE: Availability-aware CloudSim Extension 196

VMAllocationPolicyExtension: This class is extended to include a method that releases the

resources of the faulty VM from its host. This is triggered when a VM fails where the

broker gets the host id of the VM and releases its resources to simulate real-time scenarios.

VMExtension: This class is extended to capture HA measure of a VM, its component type,

broker, host id, and its cloudlet mapping.

VMExtensionSetInformation: This class generates a mapping between different ACE enti-

ties where HashMap is used instead to facilitate the search.

VMRecoveryTime: This class determines the data structure of the recovery time of a VM.

CloudSim: It is one of the classes of CloudSim core engine. This class is extended to

include a dynamic update of the future queue. For instance, when the failure of an en-

tity is injected during the simulation, a failure event is generated. This event should be

added to the future queue of the DES, and consequently, the queue size should be updated

accordingly.

6.5 ACE Evaluation
This section provides an evaluation of ACE to show the impact of availability metrics on

the cloud performance. ACE is assessed on a three-tier web application. Amazon Web ap-

plication can be an example [73]. The application consists of different types of interaction:

the dependency relation between different types of the applications and the redundancy

relation between applications components of the same type. Each application component

id is mapped to a VM in ACE, and each VM is bound to a server based on the proposed

HA-aware placement of ACE. The MTTF, MTTR, and recovery time are the metrics used

to measure HA of deployed components (VMs), inject failures, and recover faulty nodes.

It is necessary to note that the downtime of an application component C is calculated in

terms of outage hours per year, and its availability AC is calculated as follows [65]:

AC =

(
8760− downtimeC

8760

)
× 100 (2)

In this section, availability of each deployed VM (components) is measured in terms of

outage hours per year, and the availability of a cloud scenario where its VMs are already

Chapter 6: ACE: Availability-aware CloudSim Extension 197

deployed is measured in terms of a number of served of successfully processed requests.

ACE can be used to test and evaluate different cloud-based objectives:

• Evaluate multiple availability and performance-aware allocation techniques.

• Assess the resiliency of cloud model under study in terms of different failures and

recovery policies.

• Provide availability analysis of any cloud placement solution. The analysis does

not only detect failures, their effects, and recovery/repair schemes, but it calculates

the availability of a cloud model under various stochastic and deterministic events

(failure, recovery, and overload). It is necessary to note that CloudSim with the

new extension (ACE) can be used as dependability analysis tools, such as Petri Net

models, Reliability Block Diagram (RBD), Functional Failure Analysis (FFA), and

Markov analysis [58].

• Assess the capability of each application component to process user requests under

different configurations.

• Evaluate the impact of redundancy models on the number of served requests, their

response, and waiting time. Similarly, ACE can assess the impact of failure injection

on the requests.

• Extract different HA-aware lessons to improve the cloud solution resiliency to fail-

ure in the future (anticipated elasticity to meet future needs or performance require-

ments).

• Model and evaluate different requests distribution where ACE can model fixed num-

ber requests, workload fluctuation (different distribution of workload to model real-

case scenarios, such as peak and normal periods), and automated generation of re-

quests while defining their arrival rate AR.

ACE is implemented in Eclipse on a Linux VM with 26GB of RAM and 6 vCPUs running

Ubuntu12.04. For all scenarios, simulations are run multiple times to define a confidence

level of 95% based on the t-Table [74].

6.5.1 ACE configuration
In order to generate cloud scenarios in ACE, the user should define the JSON template for

generating the input model. JSON template can be either defined by a user or generated

Chapter 6: ACE: Availability-aware CloudSim Extension 198

HA measures Distribution Distribution metrics
(hours)

MTTF Exponential µ=2500

Tolerance time Exponential µ=10

MTTR Truncated Normal µ=[0.05-3]; σ=[0.016-1]

Table 6.1: Different HA metrics distribution

Scenario metrics Server VM

CPU (cores) 16-32 cores 1-2 core(s)

RAM 25-35 GB 256-1024 MB

Table 6.2: Computing metrics

from the GMF project. Once the input is defined, the user should determine if the requests

are fixed or dynamically generated during the simulation. For this purpose, the user can

define the number of requests (arrival rate AR) arriving simultaneously at the active nodes.

The user should also define the simulation duration SD to run certain scenario. Different

failure and recovery times can be defined. Before starting the simulation, ACE builds the

computational path of a given application, executes the HA-aware placement to generate

VMs deployments, and introduces failures and repair times.

The results are evaluated on a network of 3 DCs, 6 racks, and 70 servers. The MTTF of the

cloud nodes is generated using an exponential distribution, and MTTR time is generated

using truncated normal distribution [75] [76]. Different HA metrics are available online

[54] [77] and [78]. Table 6.1 and Table 6.2 show the different configuration metrics of the

cloud scenario. As for the computing configurations, VMs can be configured in different

instances (small, medium, large, or x-large) [79].

To capture the interdependency and redundancy relations between applications components

(VMs), ACE is evaluated on a real-time 3-tier Web application. The redundancy model of

this application is active/active where the number of active components is changed during

the simulation to capture their impact.

Chapter 6: ACE: Availability-aware CloudSim Extension 199

Figure 6.14: Impact of redundancy models on the number of the served requests for automatic
request generation.

Chapter 6: ACE: Availability-aware CloudSim Extension 200

Figure 6.15: Number of served requests for static request generation and different redundancy
models.

6.5.2 Results
In this section, ACE is evaluated to measure the following:

1. Redundancy impact on request states

The number of applications components per type is changed to measure the impact of

redundancy model on the number of served requests, their response, and waiting times.

Different redundancy models are defined where 2-RED represents 2 active components per

type, 3-RED represents 3 active components per type, and 4-RED represents 4 active com-

ponents per type. The request states are evaluated under different simulation durations SD

and arrival rates AR where SD= x TU (x is simulation time measured in time unit (TU)) and

AR = X req/time (X request arrives at each active node). Fig. 6.14 shows the impact of the

redundancy model on the number of served requests for different SD and AR. It is notice-

able that the number of served requests increases as the number of components increases.

For example, the system can serve 37 requests for 2-RED while 4-RED allows the serving

of 77 requests under same SD=100 TU and AR=10 req/time. Changing the simulation time

allows serving more requests, which increase from 77 to 99,978 for 4-RED.

To measure the impact of redundancy model and recovery policies upon failure injection,

Chapter 6: ACE: Availability-aware CloudSim Extension 201

Figure 6.16: Impact of the redundancy models on the request’s response and waiting times.

Chapter 6: ACE: Availability-aware CloudSim Extension 202

Figure 6.17: Impact of the number of failure injections on the request number for different
redundancy models.

we define a fixed number of requests where AR = 100req/time for SD = 103 TU and AR =

100req/time for SD = 104 TU. The number of successfully completed requests is measured

for redundancy-agnostic and redundancy-aware models as shown in Fig. 6.15. The failure

is injected at the beginning of the simulation. If the components are configured with re-

dundancy model and a recovery policy, all the requests are successfully completed where

3-RED for instance, can serve 3000 requests for AR = 100req/time for SD = 104 TU be-

cause it has 3 active components per type. As for the redundancy-agnostic model, it does

not support any recovery solution and consequently, can only serve 2 requests regardless of

AR and SD.

To measure the impact of the redundancy model on the request response and waiting times

upon failure, we define AR = 10req/time for SD = 102 TU while requests are dynamically

generated as long as a healthy active component(s) are available. In Fig. 6.16, the total

average response and waiting times of the requests are measured. Although a failure is

injected to the system, the response and waiting times do not exceed the allowed response

Chapter 6: ACE: Availability-aware CloudSim Extension 203

and waiting times (500 and 200 milliseconds (ms) respectively) [80]. It is noticeable that

the response and waiting times decrease with the increase in the number of components per

type. In this case and upon a failure, the requests failover, and the load balancer executes

the fair distribution algorithm to distribute the requests of a faulty node to its redundant

with the least queue size. When the number of components per type increases, a wider

request redistribution space is available, and consequently, its response and waiting times

decrease. However, the average response and waiting times during the outage period are

higher compared to the times during the normal period where the outage period represents

the failure injection and failover states. Fig. 6.16 shows these measures. The average re-

sponse and waiting times for the requests of the faulty node(s) represent those times during

the outage states. Although these measures decrease as more components are added to a

type, the response and waiting times of the requests during the outage period might violate

the acceptable times (response of 500 ms and waiting of 200 (ms)).

2. Failure injection impact on request states

The number of failure injection per component type is changed to measure the impact of

failures on the number of served requests, their response, and waiting times. The number

of served requests is evaluated under SD = 104 TU and AR = 100req/time. Fig. 6.17 shows

the impact of failure injection on the number of served requests for the above SD and AR.

As more failures are injected per type, the number of served requests drops. For example,

the requests served drop from 9978 to 7959 for 4-RED. Although a recovery solution is

executed upon failure, the number of requests decreases in case of a faulty system because

the requests response and waiting times increase.

To measure the impact of the failure injection per component type on the request response

and waiting times, we define AR = 10req/time for S D= 102 TU for 2-RED while re-

quests are dynamically generated as long as a healthy active component(s) are available. In

Fig. 6.18, the total average response and waiting times of the requests are measured. It is

noticeable that the total average response and waiting times increase with the increase in

the number of failure injections per type. For example, the response and waiting times for

one failure injection/type are 499.77 and 199.64 ms respectively, which increase to 499.82

and 199.97 ms respectively for 3 failures/type. Although the numbers are close to the ac-

ceptable ones, they do not violate them (response of 500 ms and waiting of 200 (ms)) [80].

Chapter 6: ACE: Availability-aware CloudSim Extension 204

Figure 6.18: Impact of the number of failure injections on the request’s response and waiting times.

Chapter 6: ACE: Availability-aware CloudSim Extension 205

Figure 6.19: Availability of each deployed component.

Figure 6.20: ACE scalability: Number of request processed using ACE for different redundancy
models.

Chapter 6: ACE: Availability-aware CloudSim Extension 206

In this case and upon failures, the load balancer redistributes the requests using a fair distri-

bution. When multiple failures are injected, the number of waiting requests for each node

increases and consequently, causes an increase in the response and waiting times. Scaling

up the system can be a solution as shown above. Although total average response and wait-

ing times do not violate the SLA, the average response and waiting times during outage

period are higher compared to the times during the normal period. Fig. 6.18 shows these

measures. For the 2-RED scenario under study, the average response and waiting times of

the requests of faulty nodes increase from 703.66 and 309.12 to 725.49 and 362.23 ms re-

spectively and thus violate the SLA. As for the average response and waiting times during

normal periods, they are within the acceptable range.

3. Availability of deployed components

The HA-aware placement algorithm is executed to place the components on the servers

while maximizing their availability, which is measured using (1). Fig. 6.19 shows the

availability of the components of the three-tier Web application where each tier consists

of 3 components/type. The availability of different components ranges between three to

four nines. The proposed algorithm prioritizes the component types to ensure that mission-

critical applications are given the priority to be allocated. This results in the change of the

availability nines where high-priority components are placed on the servers that guarantee

the highest HA. Normal-priority components are allocated on the servers that ensure high

HA, but it is not necessary the same as the critical ones. It is necessary also to take into

consideration the difference between MTTF, MTTR, recovery time, and other HA metrics

of different cloud nodes.

4. ACE scalability

Different simulations are performed to measure the number of requests ACE can process

during different SDs for AR = 10req/time. These simulations are executed on 2-RED and

3-RED cases. Fig. 6.20 shows the scalability of ACE. For 2-RED case, ACE can process 37

requests for SD =100 TU to reach 499,987 requests for SD =106 TU. It is expected that this

number increases for 3-RED as shown above. For 3-RED, ACE can process 57 requests

for SD =100 TU to reach 749,983 requests for SD =106 TU. With these experiments, it

is noticeable that ACE can model and simulate multiple real-time cloud scenarios where

thousands of requests are processed.

Chapter 6: ACE: Availability-aware CloudSim Extension 207

Figure 6.21: ACE time complexity for dynamic requests generation.

Chapter 6: ACE: Availability-aware CloudSim Extension 208

Figure 6.22: ACE time complexity for static requests generation.

5. Simulation time complexity

Although ACE can simulate a high number of requests, the time for simulating such cases

on a limited resources environment can be a hiccup. Fig. 6.21 shows the time needed to

finish simulations for different SDs for dynamic AR =10req/time. The simulation time in-

creases with the increase in the SD and the number of components/type. For SD = [100-106

TU], the 2-RED time increases from 1,061 ms to 1,508,504 ms while the 3-RED simula-

tion time increases from 1,107 ms to 3,348,351 ms. As for the 4-RED, the simulation time

reaches 50,578 ms for SD = 105 TU. Fig. 6.22 shows the time needed to finish simulations

for different SDs for fixed requests number. For fixed requests (AR = 1000) for SD = 104

TU, the simulation time increases from 668 ms for the redundancy-agnostic model to 5000

ms for the 4-RED case.

Chapter 6: ACE: Availability-aware CloudSim Extension 209

6.6 Conclusion
Providing a resilient cloud is imperative to underpin enterprises availability and perfor-

mance requirements. Multiple stochastic failures can hinder the functionality of the cloud

and impede the service delivery. It is of great importance to design an approach that does

not only provide HA-aware placements of applications but also assess the cloud elasticity

and provide the necessary HA-based lessons to improve the services availability. Simula-

tion tools are one of the best ways to model the cloud and simulate it in terms of multiple

QoS objectives. With this in mind, we extended CloudSim simulator with ACE to in-

clude HA properties in a sense that failures can be injected and recovered from. To that

end, we proposed a JSON template, GITS, to generate cloud scenarios while keeping the

development complexities behind the scene. GITS does not only model the cloud, but it

captures different HA properties. ACE implements these properties in CloudSim. Once

the simulation starts, ACE generates HA-aware placements of different cloud applications

and builds the application functional chain to capture dependency and redundancy. It also

injects failures, provides failover using redundancy models, and repairs the faulty nodes.

Also, it provides a fair-based load balancing algorithm to distribute the dynamic and static

requests.

210

References

[1] M. Jammal, H. Hawilo, A. Kanso, and A. Shami, “ACE: Availability-aware CloudSim Exten-

sion,” Submitted to IEEE Transactions on Cloud Computing, 2017.

[2] TechRepublic, “The state of IaaS: Growing as cloud adoption continues,”

http://www.techrepublic.com/article/the-state-of-iaas-

growing-as-cloud-adoption-continues/?ftag=TRE9ae7a1a&bhid=

25335435715452818046449410599561, January 31, 2017. [February 15, 2017]

[3] Chargify, “The Future Is XaaS: What you need to know about Everything-as-a-Service,”

https://www.chargify.com/blog/xaas-everything-as-a-service/,

February 7, 2017. [February 19, 2017]

[4] L. Wang, R. Ranjan, J. Chen, and B. Benatallah, “Cloud Computing, Methodology, Systems,

and Applications,” CRC Press, http://www.infosys.tuwien.ac.at/Staff/sd/

papers/Buchbeitrag%20V.%20Emeakaroha.pdf, October 2011.

[5] WHIR Hosting Cloud, “GitLab’s Not Alone: AWS, Google, and Other Clouds Can

Lose Data, Too,” http://www.thewhir.com/web-hosting-news/gitlabs-

not-alone-aws-google-and-other-clouds-can-lose-data-too?

utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+

thewhir+%28theWHIR.com+-+Daily+Web+Hosting+News%2C+Features%

2C+Blogs+and+more%29, February 8, 2017. [February 15, 2017]

[6] ZDNet, “Dropbox sync glitch results in lost data for some subscribers,” http:

//www.zdnet.com/article/dropbox-sync-glitch-results-in-lost-

data-for-some-subscribers/, October 13, 2017. [January 20, 2017]

[7] InformationWeek, “Social Science Site Using Azure Loses Data,” http://www.

informationweek.com/cloud/cloud-storage/social-science-site-

using-azure-loses-data/d/d-id/1252716, May 14, 2014. [December 9, 2016]

http://www.techrepublic.com/article/the-state-of-iaas-growing-as-cloud-adoption-continues/?ftag=TRE9ae7a1a&bhid=25335435715452818046449410599561
http://www.techrepublic.com/article/the-state-of-iaas-growing-as-cloud-adoption-continues/?ftag=TRE9ae7a1a&bhid=25335435715452818046449410599561
http://www.techrepublic.com/article/the-state-of-iaas-growing-as-cloud-adoption-continues/?ftag=TRE9ae7a1a&bhid=25335435715452818046449410599561
https://www.chargify.com/blog/xaas-everything-as-a-service/
http://www.infosys.tuwien.ac.at/Staff/sd/papers/Buchbeitrag%20V.%20Emeakaroha.pdf
http://www.infosys.tuwien.ac.at/Staff/sd/papers/Buchbeitrag%20V.%20Emeakaroha.pdf
http://www.thewhir.com/web-hosting-news/gitlabs-not-alone-aws-google-and-other-clouds-can-lose-data-too?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+thewhir+%28theWHIR.com+-+Daily+Web+Hosting+News%2C+Features%2C+Blogs+and+more%29
http://www.thewhir.com/web-hosting-news/gitlabs-not-alone-aws-google-and-other-clouds-can-lose-data-too?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+thewhir+%28theWHIR.com+-+Daily+Web+Hosting+News%2C+Features%2C+Blogs+and+more%29
http://www.thewhir.com/web-hosting-news/gitlabs-not-alone-aws-google-and-other-clouds-can-lose-data-too?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+thewhir+%28theWHIR.com+-+Daily+Web+Hosting+News%2C+Features%2C+Blogs+and+more%29
http://www.thewhir.com/web-hosting-news/gitlabs-not-alone-aws-google-and-other-clouds-can-lose-data-too?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+thewhir+%28theWHIR.com+-+Daily+Web+Hosting+News%2C+Features%2C+Blogs+and+more%29
http://www.thewhir.com/web-hosting-news/gitlabs-not-alone-aws-google-and-other-clouds-can-lose-data-too?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+thewhir+%28theWHIR.com+-+Daily+Web+Hosting+News%2C+Features%2C+Blogs+and+more%29
http://www.zdnet.com/article/dropbox-sync-glitch-results-in-lost-data-for-some-subscribers/
http://www.zdnet.com/article/dropbox-sync-glitch-results-in-lost-data-for-some-subscribers/
http://www.zdnet.com/article/dropbox-sync-glitch-results-in-lost-data-for-some-subscribers/
http://www.informationweek.com/cloud/cloud-storage/social-science-site-using-azure-loses-data/d/d-id/1252716
http://www.informationweek.com/cloud/cloud-storage/social-science-site-using-azure-loses-data/d/d-id/1252716
http://www.informationweek.com/cloud/cloud-storage/social-science-site-using-azure-loses-data/d/d-id/1252716

Chapter 6: ACE: Availability-aware CloudSim Extension 211

[8] ComputerWorld, “OOPS: Google ”loses” your cloud data (sky falling; film at 11),”

http://www.computerworld.com/article/2973600/cloud-computing/

google-cloud-loses-data-belgium-itbwcw.html, Auguest 20, 2015. [Decem-

ber 9, 2016]

[9] BusinessInsider, “Amazon’s Cloud Crash Disaster Permanently Destroyed Many Customers’

Data,” http://www.businessinsider.com/amazon-lost-data-2011-4,

April 28, 2011. [January 11, 2017]

[10] Lynda Stadtmueller, “Which Cloud Storage Service Delivers the Performance

You Need? Comparing IBM Cloud Object Storage and Amazon S3,” https:

//essextec.com/wp-content/uploads/2016/08/Frost-and-Sullivan-

Report-IBM-Cloud-Object-Storage-vs-Amazon-S3.pdf, July 2016.

[11] H. Hawilo, A. Kanso, and A. Shami, “Towards an Elasticity Framework for Legacy Highly

Available Applications in the Cloud,” IEEE World Congress on Services (SERVICES), pp. 253-

260, July 2015.

[12] H. Hawilo, A. Shami, M. Mirahmadi and R. Asal, “NFV: state of the art, challenges, and

implementation in next generation mobile networks (vEPC),” IEEE Network, vol. 28, no. 6, pp.

18-26, December 2014.

[13] M. Toeroe and F. Tam, “Service Availability: Principles and Practice,” John

Wiley & Sons, http://ca.wiley.com/WileyCDA/WileyTitle/productCd-

1119954088.html, May 2012.

[14] A. Boteanu and C. Dobre, “A Simulation Model For Fault Tolerance Evaluation,” U.P.B. Sci.

Bull, vol. 73, 2011.

[15] B. Wickremasinghe, R. N. Calheiros and R. Buyya, “CloudAnalyst: A CloudSim-Based Vi-

sual Modeller for Analysing Cloud Computing Environments and Applications,” 24th IEEE In-

ternational Conference on Advanced Information Networking and Applications, pp. 446-452,

2010,

[16] S. K. Garg and R. K. Buyya, “NetworkCloudSim: Modelling Parallel Applications in Cloud

Simulations,” Fourth IEEE International Conference on Utility and Cloud Computing, 2011.

http://www.computerworld.com/article/2973600/cloud-computing/google-cloud-loses-data-belgium-itbwcw.html
http://www.computerworld.com/article/2973600/cloud-computing/google-cloud-loses-data-belgium-itbwcw.html
http://www.businessinsider.com/amazon-lost-data-2011-4
https://essextec.com/wp-content/uploads/2016/08/Frost-and-Sullivan-Report-IBM-Cloud-Object-Storage-vs-Amazon-S3.pdf
https://essextec.com/wp-content/uploads/2016/08/Frost-and-Sullivan-Report-IBM-Cloud-Object-Storage-vs-Amazon-S3.pdf
https://essextec.com/wp-content/uploads/2016/08/Frost-and-Sullivan-Report-IBM-Cloud-Object-Storage-vs-Amazon-S3.pdf
http://ca.wiley.com/WileyCDA/WileyTitle/productCd-1119954088.html
http://ca.wiley.com/WileyCDA/WileyTitle/productCd-1119954088.html

Chapter 6: ACE: Availability-aware CloudSim Extension 212

[17] D. Kliazovich, P. Bouvry, Y. Audzevich and S. U. Khan, “GreenCloud: A Packet-Level Sim-

ulator of Energy-Aware Cloud Computing Data Centers,” IEEE Global Telecommunications

Conference GLOBECOM, pp. 1-5, 2010.

[18] S. K. S. Gupta, Rose Robin Gilbert, A. Banerjee, Z. Abbasi, T. Mukherjee and G. Varsamopou-

los, “GDCSim: A tool for analyzing Green Data Center design and resource management tech-

niques,” International Green Computing Conference and Workshops, pp. 1-8, 2011.

[19] A. Zhou, S. Wang, Q. Sun, H. Zou, and F. Yang, “FTCloudSim: A Simulation Tool for Cloud

Service Reliability Enhancement Mechanisms,” Middleware Posters and Demos Track, Decem-

ber 2013.

[20] R. N. Calheiros, M. A.S. Netto, C. A.F. De Rose, and R. Buyya, “EMUSIM: An Integrated

Emulation and Simulation Environment for Modeling, Evaluation, and Validation of Perfor-

mance of Cloud Computing Applications,” http://www.cloudbus.org/cloudsim/

emusim/, 2012.

[21] M. Tighe, G. Keller, M. Bauer and H. Lutfiyya, “DCSim: A data centre simulation tool for

evaluating dynamic virtualized resource management,” 8th international conference on network

and service management (cnsm) and workshop on systems virtualiztion management, pp. 385-

392, 2012.

[22] S. H. Lim, B. Sharma, G. Nam, E. K. Kim and C. R. Das, “MDCSim: A multi-tier data center

simulation, platform,” IEEE International Conference on Cluster Computing and Workshops,

pp. 1-9, 2009.

[23] S. Ostermann, K. Plankensteiner, R. Prodan, and T. Fahringer, “GroudSim: An Event-based

Simulation Framework for Computational Grids and Clouds,” Euro-Par Parallel Processing

Workshops, pp. 305-313, August 31, 2010.

[24] I. Sriram, “SPECI, a simulation tool exploring cloud-scale data centres,” Proceedings of the

1st International Conference on Cloud Computing, December 2009.

[25] F. Fittkau, S. Frey and W. Hasselbring, “CDOSim: Simulating cloud deployment options

for software migration support,” IEEE 6th International Workshop on the Maintenance and

Evolution of Service-Oriented and Cloud-Based Systems, pp. 37-46, 2012.

http://www.cloudbus.org/cloudsim/emusim/
http://www.cloudbus.org/cloudsim/emusim/

Chapter 6: ACE: Availability-aware CloudSim Extension 213

[26] Y. Jararweh, Z. Alshara, M. Jarrah, M. Kharbutli and M.N. Alsaleh, “TeachCloud: A cloud

computing educational toolkit,” International Journal of Cloud Computing, 2013.

[27] P. Ta-Shma, G. Laden, M. Ben-Yehuda, and M. Factor, “Virtual Machine Time Travel Using

Continuous Data Protection and Checkpointing,” Newsletter ACM SIGOPS Operating Systems

Review, pp. 127-134, 2008.

[28] L. Wang, Z. Kalbarczyk, R. K. Iyer, and A. Iyengar, “Checkpointing virtual machines against

transient errors,” 16th International On-Line Testing Symposium (IOLTS), pp. 97-102, July

2010.

[29] S. Malik and F. Huet, “Adaptive Fault Tolerance in Real Time Cloud Computing,” IEEE World

Congress on Services, pp. 280-287, 2011.

[30] B. Cully , G. Lefebvre , D. Meyer , M. Feeley , N. Hutchinson, and A. Warfield, “Remus:

high availability via asynchronous virtual machine replication,” Proceedings of the 5th USENIX

Symposium on Networked Systems Design and Implementation, pp. 161-174, 2008.

[31] J. Nakano, P. Montesinos, K. Gharachorloo and J. Torrellas, “ReViveI/O: efficient handling of

I/O in highly-available rollback-recovery servers,” Twelfth International Symposium on High-

Performance Computer Architecture, pp. 200-211, 2006.

[32] K. Qureshi, A. Rehman and P. Manuel, “Enhanced GridSim architecture with load balancing,”

The Journal of Supercomputing, 2010, pp. 265-275.

[33] F. Yiqiu, W. Fei and G. Junwei, “A Task Scheduling Algorithm Based on Load Balancing in

Cloud Computing,” WISM, vol. 6318, pp. 271-277, 2010.

[34] S. Sadhasivam, N. Nagaveni, R. Jayarani and R. V. Ram, “Design and Implementation of an

efficient Two- level Scheduler for Cloud Computing Environment,” International Conference

on Advances in Recent Technologies in Communication and Computing, vol. 148, pp. 884-886,

2009.

[35] S. C. Wang, K. Q. Yan, W. P. Liao and S. S. Wang, “Towards a Load Balancing in a three-

level cloud computing network,” 3rd IEEE International Conference on Computer Science and

Information Technology, vol. 1, pp. 108-113, July 2010.

Chapter 6: ACE: Availability-aware CloudSim Extension 214

[36] M. Gahlawat and P. Sharma, “Analysis and Performance Assessment of CPU Scheduling Al-

gorithm in CloudSim,” International Journal of Applied Information System, July 2013.

[37] C. S. Pawar and R. B. Wagh, “Priority Based Dynamic Resource Allocation in Cloud Com-

puting,” International Symposium on Cloud and Services Computing, pp. 1-6, 2012.

[38] J. James and B. Verma, “Efficient VM Load Balancin Algorithim For A Cloud Computing

Environment,” In Proceeding of International Journal on Computer Science and Engineering

(IJCSE), September 2012.

[39] M. A. Tawfeek, A. El-Sisi, A. E. Keshk and F. A. Torkey, “Cloud task scheduling based on ant

colony optimization,” 8th International Conference on Computer Engineering & Systems, pp.

64-69, 2013.

[40] H. Jin, X. Shi, W. Qinag, and D. Zou, “DRIC: Dependable Grid Computing Framework,”

Transactions on Information and Systems, 2006.

[41] A. Cox, K. Mohanram, and S. Rixner, “Dependable Unaffordable,” 1st workshop on Archi-

tectural and system support for improving software dependability, 2006.

[42] B. N. Chun and D. E. Culler, “User-Centric Performance Analysis of Market-Based Cluster

Batch Schedulers,” 2nd IEEE/ACM International Symposium on Cluster Computing and the

Grid, pp. 30-30, 2002.

[43] S.K. Garg, R. Buyya, and H.J. Siegel, “Time and cost trade-off management for scheduling

parallel applications on utility grids,” Future Generation Computer Systems, pp. 1344-1355,

2009.

[44] A. Nagavaram et al., “A Cloud-based Dynamic Workflow for Mass Spectrometry Data Analy-

sis,” IEEE Seventh International Conference on eScience, pp. 47-54, 2011.

[45] S. Ostermann, R. Prodan and T. Fahringer, “Extending Grids with cloud resource management

for scientific computing,” 10th IEEE/ACM International Conference on Grid Computing, pp.

42-49, 2009.

[46] S. Pandey, D. Karunamoorthy, and R. Buyya, “Workflow engine for clouds,” Cloud

Computing: Principles and Paradigms, http://www.cloudbus.org/papers/

CloudWorkflow-Chapter2011.pdf, pp. 321-344, 2011.

http://www.cloudbus.org/papers/CloudWorkflow-Chapter2011.pdf
http://www.cloudbus.org/papers/CloudWorkflow-Chapter2011.pdf

Chapter 6: ACE: Availability-aware CloudSim Extension 215

[47] K. Jeffery and B. Neidecker-Lutz, “The Future Of Cloud Computing Opportunities For Euro-

pean Cloud Computing Beyond 2010,” Expert Group Report, http://cordis.europa.

eu/fp7/ict/ssai/docs/executivesummary-forweb_en.pdf, 2012.

[48] D. Newman, S. Kramer, and O. Blanchard, “Overview Of The Seven Core Technologies Driv-

ing Digital Transformation,” https://hosteddocs.ittoolbox.com/the-seven-

core-technologies-driving-digital-transformation.pdf, 2016.

[49] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. De Rose, and R. Buyya, “CloudSim: a toolkit

for modeling and simulation of cloud computing environments and evaluation of resource pro-

visioning algorithms,” Software: Practice and Experience, pp. 23-50, 2011.

[50] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. De Rose, and R. Buyya, “CloudSim: a novel

framework for modeling and simulation of cloud computing infrastructure and services,” Tech-

nical Report of GRIDS Laboratory, The University of Melbourne, Australia, 2009.

[51] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and simulation of scalable cloud com-

puting environments and the CloudSim toolkit: challenges and opportunities,” The Interna-

tional Conference on High Performance Computing and Simulation, pp. 1-11, 2009.

[52] The Cloud Computing and Distributed Systems (CLOUDS) Laboratory, “CloudSim: A

Framework For Modeling And Simulation Of Cloud Computing Infrastructures And Services,”

http://www.cloudbus.org/cloudsim/, 2009. [December 4, 2016]

[53] W. Zhao, Y. Peng, F. Xie and Z. Dai, “Modeling and simulation of cloud computing: A re-

view,” IEEE Asia Pacific Cloud Computing Congress, pp. 20-24, 2012.

[54] C. Cerin et al., “Downtime statistics of current cloud solutions,” http://iwgcr.org/wp-

content/uploads/2013/06/IWGCR-Paris.Ranking-003.2-en.pdf, June 2013.

[55] P.T. Endo et al. “High availability in clouds: systematic review and research challenges,” Jour-

nal of Cloud Computing: Advances, Systems and Applications, 2016.

[56] M. Jammal, A. Kanso, P. Heidari, and A. Shami, “Availability Analysis of Cloud Deployed

Applications,” IEEE International Conference on Cloud Engineering (IC2E), April 2016.

[57] M. Jammal, A. Kanso, P. Heidari, and A. Shami, “A Formal Model for the Availability Anal-

ysis of Cloud Deployed Multi-Tiered Applications,” 3rd IEEE International Symposium on

Software Defined Systems, April 2016.

http://cordis.europa.eu/fp7/ict/ssai/docs/executivesummary-forweb_en.pdf
http://cordis.europa.eu/fp7/ict/ssai/docs/executivesummary-forweb_en.pdf
https://hosteddocs.ittoolbox.com/the-seven-core-technologies-driving-digital-transformation.pdf
https://hosteddocs.ittoolbox.com/the-seven-core-technologies-driving-digital-transformation.pdf
http://www.cloudbus.org/cloudsim/

Chapter 6: ACE: Availability-aware CloudSim Extension 216

[58] M. Jammal, H. Hawilo, A. Kanso, and A. Shami, “Mitigating the Risk of Cloud Services

Downtime Using Live Migration and High Availability-Aware Placement,” IEEE International

Conference on Cloud Computing Technology and Science (CloudCom), December 2016.

[59] K. Bilal et al. “Fault Tolerance in the Cloud,” Encyclopedia of Cloud Computing, http:

//sameekhan.org/pub/B_K_2015_BC_MB.pdf, May 2016.

[60] G.R. Kalanirnika and V.M. Sivagami, “Fault Tolerance in Cloud Using Reactive and Proactive

Techniques,” International Journal of Computer Science and Engineering Communications,

pp. 1159-1164, 2015.

[61] Y. Zhang, Z. Zheng and M. R. Lyu, “BFTCloud: A Byzantine Fault Tolerance Framework for

Voluntary-Resource Cloud Computing,” IEEE 4th International Conference on Cloud Comput-

ing, pp. 444-451, 2011.

[62] S.Y. Ko, I. Hoque, B. Cho, and I. Gupta, “Making cloud intermediate data fault-tolerant,” In

Proceedings of the 1st ACM symposium on Cloud computing, pp. 181-192, 2010.

[63] Q. Zheng, “Improving MapReduce fault tolerance in the cloud,” IEEE International Sympo-

sium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW), pp. 1-6,

2010.

[64] H. S. Pannu, J. Liu and S. Fu, “AAD: Adaptive Anomaly Detection System for Cloud Com-

puting Infrastructures,” IEEE 31st Symposium on Reliable Distributed Systems, pp. 396-397,

2012.

[65] M. Jammal, A. Kanso, and A. Shami, “High Availability-Aware Optimization Digest for Ap-

plications Deployment in Cloud”, IEEE International Conference on Communications (ICC),

pp. 6822-6828, June 2015.

[66] M. Jammal, A. Kanso, and A. Shami, “CHASE: Component High Availability Scheduler

in Cloud Computing Environment,” IEEE International Conference on Cloud Computing

(CLOUD), pp. 477-484, 2015.

[67] E. Shimpy and J. Sidhu, “Different Scheduling Algorithms In Different Cloud Environment,”

International Journal of Advanced Research in Computer and Communication Engineering,

September 2014.

http://sameekhan.org/pub/B_K_2015_BC_MB.pdf
http://sameekhan.org/pub/B_K_2015_BC_MB.pdf

Chapter 6: ACE: Availability-aware CloudSim Extension 217

[68] J. Weinberg, “Job Scheduling on Parallel Systems,” http://cseweb.ucsd.edu/

˜j1weinberg/papers/weinberg06researchExam.pdf, 2005.

[69] A. E. Elsanhouri, M. A.Ahmed, and A. H. Abdullah, “Cloud Applications Versus Web Appli-

cations: A Differential Study,” The First International Conference on Communications, Com-

putation, Networks and Technologies, 2012.

[70] P. Altevogt, W. Denzel, T. Kiss, “Cloud Modeling and Simulations,” http:

//domino.research.ibm.com/library/cyberdig.nsf/papers/

59BB74A8B2BA887B85257C3800462A09, 2013.

[71] DBTA Trends and Applications “DBTA Best Practices, : Moving to a Modern Data Architec-

ture,” http://www.dbta.com/DBTA-Downloads/WhitePapers/DBTA-Best-

Practices-Moving-to-a-Modern-Data-Architecture-5806.aspx, 2017.

[February 1. 2017]

[72] M. Jammal, H. Hawilo, A. Kanso, and A. Shami, “GITS: Generic Input Template for

CloudSim and Cloud Simulators,” Submitted to Elsevier Future Generation Computer Systems,

2017.

[73] Amazon Web Services, “AWS Template Format,” https://s3-us-

west-2.amazonaws.com/cloudformation-templates-us-west-2/

AutoScalingMultiAZWithNotifications.template, September 2010. [March

2016]

[74] T table, “t-table,” http://www.sjsu.edu/faculty/gerstman/StatPrimer/t-

table.pdf, 2007. [December 2016]

[75] Reliability HotWire, “Availability and the Different Ways to Calculate It,” http://www.

weibull.com/hotwire/issue79/relbasics79.htm, September 2007. [September

20, 2016]

[76] EventHelix, “System Reliability and Availability,” http://www.eventhelix.com/

RealtimeMantra/FaultHandling/system_reliability_availability.

htm#.WKz9jVUrKUk, 2014. [September 20, 2016]

http://cseweb.ucsd.edu/~j1weinberg/papers/weinberg06researchExam.pdf
http://cseweb.ucsd.edu/~j1weinberg/papers/weinberg06researchExam.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/59BB74A8B2BA887B85257C3800462A09
http://domino.research.ibm.com/library/cyberdig.nsf/papers/59BB74A8B2BA887B85257C3800462A09
http://domino.research.ibm.com/library/cyberdig.nsf/papers/59BB74A8B2BA887B85257C3800462A09
http://www.dbta.com/DBTA-Downloads/WhitePapers/DBTA-Best-Practices-Moving-to-a-Modern-Data-Architecture-5806.aspx
http://www.dbta.com/DBTA-Downloads/WhitePapers/DBTA-Best-Practices-Moving-to-a-Modern-Data-Architecture-5806.aspx
https://s3-us-west-2.amazonaws.com/cloudformation-templates-us-west-2/AutoScalingMultiAZWithNotifications.template
https://s3-us-west-2.amazonaws.com/cloudformation-templates-us-west-2/AutoScalingMultiAZWithNotifications.template
https://s3-us-west-2.amazonaws.com/cloudformation-templates-us-west-2/AutoScalingMultiAZWithNotifications.template
http://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf
http://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf
http://www.weibull.com/hotwire/issue79/relbasics79.htm
http://www.weibull.com/hotwire/issue79/relbasics79.htm
http://www.eventhelix.com/RealtimeMantra/FaultHandling/system_reliability_availability.htm#.WKz9jVUrKUk
http://www.eventhelix.com/RealtimeMantra/FaultHandling/system_reliability_availability.htm#.WKz9jVUrKUk
http://www.eventhelix.com/RealtimeMantra/FaultHandling/system_reliability_availability.htm#.WKz9jVUrKUk

Chapter 6: ACE: Availability-aware CloudSim Extension 218

[77] The availability digest, “Comparing Clouds with CloudHarmony,” http://www.

availabilitydigest.com/public_articles/1001/cloud_comparisons.

pdf, Januaray 2015. [September 20, 2016]

[78] CloudHarmony, “CloudSquare Service Status,” https://cloudharmony.com/

status-1year, 2017. [February 13, 2017]

[79] Microsoft, “How to: Change the Size of a Windows Azure Virtual Machine,” https:

//msdn.microsoft.com/en-us/library/dn168976(v=nav.70).aspx, 2013.

[September 20, 2016]

[80] InfoQ, “Real-time Data Processing in AWS Cloud,” https://www.infoq.com/

articles/real-time-data-processing-in-aws-cloud, November 2015. [Jan-

uary 20, 2017]

http://www.availabilitydigest.com/public_articles/1001/cloud_comparisons.pdf
http://www.availabilitydigest.com/public_articles/1001/cloud_comparisons.pdf
http://www.availabilitydigest.com/public_articles/1001/cloud_comparisons.pdf
https://cloudharmony.com/status-1year
https://cloudharmony.com/status-1year
https://msdn.microsoft.com/en-us/library/dn168976(v=nav.70).aspx
https://msdn.microsoft.com/en-us/library/dn168976(v=nav.70).aspx
https://www.infoq.com/articles/real-time-data-processing-in-aws-cloud
https://www.infoq.com/articles/real-time-data-processing-in-aws-cloud

219

Chapter 7

Conclusion
Cloud computing and its service models, such as Platform and Software as a Services, have

changed the way the computing resources are allocated to Information and Communica-

tions Technology enterprises and users. The cloud provides pay-as-go models, services,

elasticity, provisioning, energy efficiency, and other features that enable economy of scale

to different cloud providers and users. However, the growing dependency of users on so-

cial media, telecommunication services, mobile applications, banking amenities, and other

cloud services that are expected to be available anywhere and anytime requires a plan that

mitigates inevitable failures and ensures the always-on access to these services. Planned

and unplanned outages can cause failure of many critical applications. However, the need

to deliver increasing levels of availability continues to accelerate as enterprises re-engineer

their solutions to gain competitive advantage. Most often, these new solutions rely on im-

mediate access to critical business data. It is not always the case that a service failure

would result in just an inconvenience, but some outages can cause loss of revenue, loss

of productivity, damaged customer relationships, bad publicity, lawsuits, and, at the worst,

loss of life. If a mission-critical application becomes unavailable, then the enterprise is

placed in jeopardy. With the proliferation of on-demand cloud applications, the cost of

downtime can quickly grow in enterprises that are dependent on their cloud solutions to

provide services. Availability means money in today’s global and competitive business en-

vironment, and many organizations need HA and continuous availability of their services.

This emanates high availability concerns regarding the adoption of cloud. Cloud providers

offer different availability zones with geo-redundancy to protect their infrastructure and

consequently, their tenants against failures and natural disasters. Cloud tenants are encour-

aged to deploy their applications across multiple zones and use elastic load balancing to

distribute the workload. Nevertheless, different zones may have different reliability levels

Chapter 7: Conclusion 220

depending on the hardware equipment, the geo-location, and the energy source powering

the facility. Hence, the ability to design an HA solution is extremely important for both

the cloud tenants and providers that are bound by a service level agreement. The objec-

tive of this thesis is to pave the way for cloud applications to adopt HA-aware solutions

and mitigate the above challenges. This is achieved by investigating different HA-aware

approaches, designing novel HA-oriented cloud scheduling techniques and availability as-

sessment models, and implementing them in real cloud settings.

7.1 Thesis Summary
The summary of each chapter is described as follows.

7.1.1 Chapter 2 summary
This chapter provides an abstract model that separates the cloud provider and cloud users

and ensures their integration through virtual mapping (virtual machine (VM) or container).

It then demonstrates the impact that the placement strategy of cloud-based applications

has on their high availability. It starts by defining a mixed integer linear programming

(MILP) model as an optimal solution for scheduling applications’ components in small-

scale network. Then it follows a more pragmatic approach, where CHASE, component’s

HA-aware scheduler, is proposed. Using CHASE, the availability of applications com-

ponents is attained while considering functionality requirements, applications’ interdepen-

dencies, and redundancies. It also considers different failure scopes and conducts criticality

analysis to give mission-critical components higher scheduling priorities compared to nor-

mal ones. The HA-aware scheduler evaluates component’s availability in terms of its mean

time to failure (MTTF), mean time to repair (MTTR), and recovery time. This schedul-

ing technique implements different patterns and approaches that deploy redundant models

and failover solutions. These practices are achieved through geographically distributed re-

dundant applications’ deployments without violating the interdependency requirements of

application components. This eliminates the single point of failure caused at the level

of the VM, cluster, or cloud. Also, CHASE overcomes the challenges of maintaining

HA-aware application’s deployment and compromises between different functionality and

failover constraints. This paper presents the advantages and shortcomings of CHASE com-

Chapter 7: Conclusion 221

pared to an optimal solution, OpenStack Nova scheduler, high availability-agnostic, and

redundancy-agnostic schedulers. The evaluation results demonstrate that the proposed so-

lution improves the availability of the scheduled components compared to the latter sched-

ulers. CHASE prototype is also defined for runtime scheduling in the OpenStack environ-

ment.

7.1.2 Chapter 3 summary
This chapter defines the different forms of stochastic failures that can happen at the level

of the cloud infrastructure and cloud applications. It then proposes a formal stochastic

model to quantify the expected availability offered by an application deployment. For this

purpose, a Stochastic Colored Petri Net model (SCPN) is designed to capture the stochastic

characteristics of the cloud and decode them into elements of an availability model. The

model captures the elements of the cloud model (DCs, servers, VMs, and containers), their

redundancy schemes, and the impact of cascading failures among them. It then models

the functional chain between the multi-tiered application components to process requests.

Then the proposed SCPN model quantifies the expected availability of a given deployment

and provides HA-aware key points to any cloud scheduling solution. Additionally, the

chapter integrates the SCPN model with a performance-aware scoring system to mitigate

the other cloud challenges, such as energy, cost, and other performance concerns. The

proposed cloud scoring system selects the optimal deployment when multiple eligible HA-

aware solutions are assessed using the SCPN model. The scoring tool is extensible and

consequently, can handle different selections criteria, such as security, portability, and other

norms.

7.1.3 Chapter 4 summary
This chapter proposes a live migration approach to maintain service delivery upon a sud-

den failure, a VM/infrastructure overload, or maintenance. First, it defines different de-

sign considerations to achieve HA-aware applications placement. The latter considers

VMs/applications deployments in geographically distributed data centers and supports ap-

plications interdependency and other HA and performance requirements. Then the de-

ployments are assessed using a formal Petri Net model to improve them in terms of HA.

The proposed placement is then used in the migration approach to find new hosts for the

Chapter 7: Conclusion 222

VMs. The chapter also develops an optimization MILP model that minimizes the migration

downtime based on the VM memory pages and its HA-aware placement.

7.1.4 Chapter 5 summary
This chapter addresses the issues regarding the orchestration of cloud applications among

multiple cloud providers. It then proposes GITS, a generic input template for CloudSim

and other cloud simulators. GITS models cloud provider and user while ensuring their sep-

aration. This partitioning enables the migration of application between different providers

to satisfy the quality of service requirements. The proposed template focuses on modeling

the cloud not only in terms of computational resources but also in terms high availability

(HA) properties associated with the cloud infrastructure and applications. This includes

redundancy models, failure types/rates, recovery policies, and other HA-related metrics.

GITS provides a graphical modeling framework (GMF) interface for visualizing the cloud

model. The latter is then translated into a JavaScript Object Notation (JSON) schema to

ensure cloud scenarios simplicity, readability, and reusability. The JSON format is then

mapped to the CloudSim input model.

7.1.5 Chapter 6 summary
This chapter provides ACE, availability-aware CloudSim extension. ACE provides a graph-

ical modeling project and a JavaScript Object Notation (JSON) template to ensure simplic-

ity, repeatability, and reusability of cloud scenarios. ACE also extends CloudSim to include

static and dynamic generation of requests, failure injection, redundancy and interdepen-

dency interactions (computational path), failover solutions, repair policies, load balancing,

and HA-aware deployments. ACE is evaluated on a three-tier web application to measure

the impact of availability features on applications deployments, request number, response,

and waiting times.

7.2 Thesis Future Work
Although the proposed approaches are proven to maintain HA, there are still some open

cloud challenges that can be integrated with them. As a future work, this thesis can be

extended as follows.

Chapter 7: Conclusion 223

7.2.1 Elasticity and storage mechanisms
In order to fully realize HA in the cloud, efficient resources provisioning, monitoring, and

elasticity mechanisms should be investigated. Different elasticity techniques can be de-

fined in the cloud architecture. This includes defining different horizontal and vertical auto

scaling policies, which can be based on gathering different runtime information, analyzing

them, defining thresholds (i.e., overload, power consumption, cyber-attacks), and reacting

to any objectives violations. In order to support an elastic-aware framework, it is necessary

to associate it with efficient resource provisioning and monitoring mechanisms. Machine

learning models can be used to ensure an automated self-healing system that detects any

sudden change and handles it seamlessly. Additionally, redundancy models study can be

associated with the elastic techniques. This study can provide an intelligent selection and

update on the type of redundancy model to be associated with the new components whether

a scale-up or scale-down policy is triggered.

To implement and evaluate elasticity mechanisms with real cloud scenarios, Chapter 6 can

be extended to include elasticity features where scaling up and down will be implemented

to support dynamic scaling of the interconnected application’s components, overcome fail-

ures, meet performance requirements, and assess the elasticity mechanism. Additionally,

Chapter 5 can be extended to communicate with an HA management framework to auto-

mate the creation HA properties and update them on the fly. Besides, it can be also extended

to include data visualization module that represents simulation results according to prede-

fined policies.

Storage is another aspect that affects the cloud HA. It is necessary to ensure that the cloud-

based applications are associated with a fault-tolerant-aware storage system. For instance,

the storage is sometimes directly associated with the VM. In this case and upon failure of

the VM, the temporary storage will go down and cannot be recovered. For this purpose, an

intelligent architecture should be defined to differentiate between applications states and

determine how these states can be persisted and how the data are extracted and dispatched

to a “non-volatile” storage upon failure of a VM instance.

Chapter 7: Conclusion 224

7.2.2 Multi-objective cloud management system
There are still some concerns regarding the security, interoperability, and energy of the

cloud. These issues add other elements of challenges to the cloud HA. It is necessary to

consider such issues during the design of a HA plan where trade-offs can be made to attain

the level of availability and other concerns needed for a specific application. For example,

in order to integrate the HA objective with energy efficient models, different metrics that

reflect the DC efficiency, DC productivity, and DC performance per energy should be ex-

plored. The energy efficiency model can also be integrated with a prediction model that

can determine the energy consumption in each server based on a statistical workload dis-

tribution and resource utilization. For this purpose, the proposed approaches of Chapter 2

and the Chapter 4 can be extended to support a multi-objectives model (maximize HA and

resource utilization while minimizing carbon footprint). Also, different conditions can be

added to Chapter 3 where the SCPN model will not only assess applications deployment

upon failures but will evaluate other events (i.e. migration between cloud providers and

exceeding power thresholds) impact on the cloud system performance as well.

Chapter 5 and Chapter 6 can be extended to support new performance policies. In Chap-

ter 5, GITS can update the template and its parsers with the new metrics, such as power and

security measures. As for Chapter 6, ACE can include new allocation policies and events

that capture certain performance incidences (i.e. overload).

7.2.3 Container Management Framework
Containers have reshaped the information technology (IT) world through offering a new

lightweight virtualization concept. They offer a new grade in deploying the workload and

migrating their placements due to overlaid, maintenance, or other norms. They have smaller

in size compared to VMs, which facilitates their migration between different cloud models.

However, container management is one of the main challenges facing the container adop-

tion. It is necessary to provide a framework that facilitates building, managing, availability,

and scalability of the containers.

Besides, multiple challenges are still hindering the functionality of the cloud and should

be addressed. They can be summarized as follows:

Chapter 7: Conclusion 225

• The specifications of the cloud abstractions changes with their DCs ontology and the

hierarchy of their resources. So when trying to move to a different cloud, there will

be an incompatibility between the used deployment model and the particulars of the

new IaaS model.

• Stateless cloud applications may not support enterprise requirements.

• Legacy architecture and absence of a standard application program interfaces (APIs)

to support automation policies are another cloud concerns. The absence of cloud-

aware orchestration solutions impedes the deployment of the cloud application in

other vendors due to the inconsistency between APIs, resources, and abstraction

levels of DC.

226

Curriculum Vitae

Name Manar Jammal

Post-secondary 2013-2017 Ph.D.
Education and Software Engineering

Western University
London, Ontario, Canada

2011-2012 M.E.Sc.
Electrical and Computer Engineering
Ecole Doctorale des Sciences et de la Technologie (EDST)
Lebanese University & University of Technology of Compiegne
Beirut, Lebanon & Compiegne, France

2006-2011 B.Eng.
Electrical and Electronic Engineering
Lebanese University
Beirut, Lebanon

Related Work 2013-2016
Experience Teaching Assistance

Western University
London, Ontario, Canada

2013-2017
Research Assistance
Western University
London, Ontario, Canada

2013-2015
Research Assistance
Ericsson Research
Montreal, Canada

2011-2012
Electronic Engineer

Curriculum Vitae 227

Methode Electronics
Lebanon

Honours and Awards Western University Graduate Research Scholarship 2013-2017
Dean’s Honor List 2009-2011

Publications
[P1] A. Kanso, P. Heidari, and M. Jammal,

High availability multi-component cloud application placement
using stochastic availability models,
P48033US1, November 2015.

[P2] A. Kanso, M. Jammal, and A. Shami,
Component High Availability Scheduler,
P44248 US1, October 2014.

[J1] M. Jammal, H.Hawilo, A. Kanso, and A. Shami,
“GITS: Generic Input Template for CloudSim and Cloud Simulators,”
Submitted to Elsevier Future Generation Computer Systems,
2017.

[J2] M. Jammal, H.Hawilo, A. Kanso, and A. Shami,
“ACE: Availability-aware CloudSim Extension,”
Submitted to IEEE Transactions on Cloud Computing,
2017.

[J3] H.Hawilo, M. Jammal, and A. Shami,
“Exploring Microservices as the Architecture of Choice
for Network Function Virtualization Platforms,”
Submitted to IEEE Communications Magazine,
2017.

[J4] M. Jammal, A. Kanso, P. Heidari, and A. Shami,
“Scrutinize High Availability-aware Deployments Using
Stochastic Petri Net Model and Cloud Scoring Selection Tool,”
Submitted to IEEE Transactions on Services Computing,
November 2016.

[J5] M. Jammal, T. Singh, A. Shami, R. Assal, and Y. Li,
“Software Defined Networking: State of the Art
and Research Challenges,”
Computer Networks Journal,

Curriculum Vitae 228

vol. 72, 29 October 2014, pp. 74-98.

[J6] M. Abu Sharkh, M. Jammal, A. Ouda, and A. Shami,
“Resource Allocation In A Network-Based Cloud Computing
Environment: Design Challenges,”
IEEE Communication Magazine,
vol. 51, no. 11, Nov. 2013, pp. 46-52.

[C1] M. Jammal, H. Hawilo, A. Kanso, and A. Shami,
“Mitigating the Risk of Cloud Services Downtime Using
Live Migration and High Availability-Aware Placement,”
IEEE International Conference on Cloud
Computing Technology and Science,
December 2016.

[C2] M. Jammal, A. Kanso, P. Heidari, and A. Shami,
“A Formal Model for the Availability Analysis
of Cloud Deployed Multi-Tiered Applications,”
IEEE International Symposium on Software Defined Systems,
April 2016.

[C3] M. Jammal, A. Kanso, P. Heidari, and A. Shami,
“Availability Analysis of Cloud Deployed Applications,”
IEEE International Conference on Cloud Engineering,
April 2016.

[C4] M. Jammal, A. Kanso, and A. Shami,
“High Availability-Aware Optimization Digest for
Applications Deployment in Cloud,”
IEEE International Conference on Communications (ICC),
June 2015.

[C5] M. Jammal, A. Kanso, and A. Shami,
“CHASE: Component High-Availability Scheduler in
Cloud Computing Environment,”
IEEE International Conference on Cloud Computing,
June 2015.

[C6] H. Sbeity, R. Younes, and M. Jammal,
“Improvement of Markov Chain Processes for
Mathematical Optimization of Cancer Treatment,”
IEEE Conference on Biomedical Engineering and Sciences, 2014.

	MACHS: Mitigating the Achilles Heel of the Cloud through High Availability and Performance-aware Solutions
	Recommended Citation

	Abstract
	Co-Authorship
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Acronyms
	Introduction
	Thesis Outline
	Thesis Contributions
	Chapter 2 contributions
	Chapter 3 contributions
	Chapter 4 contributions
	Chapter 5 contributions
	Chapter 6 contributions

	CHASE: Component High Availability-Aware Scheduler in Cloud Computing Environment
	Introduction
	System Modelling and Schematization
	Cloud infrastructure model
	Cloud application model
	Cloud-Application integration

	Design and Implementation
	Criticality analysis
	Mathematical formulation
	CHASE: Component HA-aware scheduler

	MILP Evaluation
	Availability analysis
	Computational complexity
	OpenStack filter scheduler
	Results

	CHASE Evaluation
	Small-Scale network setup
	Large-Scale network

	Prototype Implementation
	Related Work
	Replication approaches
	Diversified geographical sites and failover approaches

	Conclusion

	Scrutinize High Availability-aware Deployments Using Stochastic Petri Net Model and Cloud Scoring Selection Tool
	Introduction
	Modeling High Availability in Cloud
	Failure types and distributions
	Multi-tier applications in the cloud:
	Stochastic Petri Nets in the cloud:

	Cloud Scoring System
	Motivation:
	Cloud scoring approach:

	Approach
	Cloud model
	SCPN model building blocks
	Transformation of UML object diagram to SCPN model
	Deployment scoring selection system

	Case Study
	SCPN evaluation and results
	Scoring selection system evaluation and results

	Related Work
	Availability analysis using Petri Net models
	Scoring and selection of cloud deployments

	Conclusion

	Mitigating the Risk of Cloud Services Downtime Using Live Migration and High Availability-Aware Placement
	Introduction
	Related Work
	Approach
	HA-aware placement
	Live VM migration

	Case Study
	HA-aware deployments analysis
	Live migration preliminary results

	Conclusion

	GITS: Generic Input Template for CloudSim and Cloud Simulators
	Introduction
	Related Work
	Industry-based cloud orchestration and specifications
	Research-Based cloud orchestration and specifications

	Motivation
	CloudSim simulator
	Component-Based architecture
	Issues and contributions

	GITS Framework
	GITS UML model
	GITS JSON file
	GITS graphical interface
	GITS transformation algorithm

	GITS Testbed and Evaluation
	Conclusion

	ACE: Availability-aware CloudSim Extension
	Introduction
	Related Work
	Cloud simulators
	Scheduling approaches in distributed systems

	Background and Motivation:
	CloudSim simulator
	Outages and fault tolerant approaches
	Scheduling in the cloud
	Cloud model

	ACE Design
	ACE modules
	ACE building blocks

	ACE Evaluation
	ACE configuration
	Results

	Conclusion

	Conclusion
	Thesis Summary
	Chapter 2 summary
	Chapter 3 summary
	Chapter 4 summary
	Chapter 5 summary
	Chapter 6 summary

	Thesis Future Work
	Elasticity and storage mechanisms
	Multi-objective cloud management system
	Container Management Framework

	Curriculum Vitae

