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  Abstract  

Inductive angular position sensors (IAPS) are widely used for high accuracy and low cost 

angular position sensing in harsh automotive environments, such as suspension height sensor 

and throttle body position sensor. These sensors ensure high resolution and long lifetime due 

to their contactless sensing mode and their simple structure. Furthermore, they are suitable for 

wider application areas. For instance, they can be miniaturized to fit into a compact packaging 

space, or be adopted to measure the relative angle of multiple rotating targets for the purposes 

of torque sensing. 

In this work, a detailed SIMULINK model of an IAPS is first proposed in order to study and 

characterize the sensor performance. The model is validated by finite element analysis and 

circuit simulation, which provides a powerful design tool for sensor performance analysis. The 

sensor error introduced by geometry imperfection is thoroughly investigated for two-phase and 

three-phase configurations, and a corresponding correction method to improve the accuracy is 

proposed. A design optimization method based on the response surface methodology is also 

developed and used in the sensor development.  

Three types of sensors are developed to demonstrate the inductive sensor technology. The first 

type is the miniaturized inductive sensor. To compensate for the weak signal strength and the 

reduced quality (Q) factor due to the scaling down effect, a resonant rotor is developed for this 

type of sensor. This sensor is fabricated by using the electrodeposition technique. The 

prototype shows an 8mm diameter sensor can function well at 1.5mm air gap. The second type 

is a steering torque sensor, which is designed to detect the relative torsional angle of a rotating 

torsional shaft. It demonstrates the mutual coupling of multiple inductive sensors. By selecting 

a proper layout and compensation algorithm, the torque sensor can achieve 0.1 degree 

accuracy. The third type is a passive inductive sensor, which is designed to reduce power 

consumption and electromagnetic emissions. 

The realization and excellent performance of these three types of sensors have shown the 

robustness of the inductive sensor technology and its potential applications. The research 

conducted in this dissertation is expected to improve understanding of the performance 
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analysis of IAPS and provide useful guidelines for the design and performance optimization 

of inductive sensors. 

Keyword 

IAPS, electromagnetic coupling, finite element method, SIMULINK modeling, digital signal 

processing, Response surface method optimization, miniaturized inductive sensor, steering 

torque sensor, passive inductive sensor.  
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Chapter 1  

 Introduction 

 Automotive position sensor  

A sensor is generally defined as an input device that provides a usable output in response 

to a specific physical measurand[1]. The measurand might be mechanical, electrical, 

magnetic, optical, chemical, acoustic, or a combination of any two or more of them [2], 

which affects the sensor in a certain way that causes a response represented by the sensor’s 

output. The output of many modern sensors is typically an electrical signal, but 

alternatively, could be a motion, deformation, or other usable type of output. Some 

examples of sensors include a thermocouple pair, which converts a temperature difference 

into an electrical output; a pressure sensor, which converts a fluid pressure into the 

deformation of a diaphragm [3]; a linear variable differential transformer (LVDT), which 

converts a position into an electrical output; and etc. 

Vehicle safety, fuel economy and comfort are benefited substantially from the increasing 

usage of sensor technology, which allows interaction between the external environment 

and the vehicle's electronic control unit (ECU). Another driving force behind the sensor 

market growth is the shift towards self-driving cars, which requires more intelligent data 

processing devices to make autonomous decisions. For each new generation of a car model, 

a growing number of sensors are incorporated into the design. Among those automotive 

sensors, position/displacement sensors are the most widely used devices. The application 

of position/displacement sensors continues to expand, and these sensors are becoming key 

components in every functional unit, ranging from headlight positioning to air 

conditioning,  electronic stability control,  and anti-lock braking systems, to name a few[4].  

A position sensor measures the distance between a constant reference datum and the 

present location of the target. Conversely, a displacement sensor measures the distance 

between the present position of the target and the position recorded previously. In other 

words, position refers to an absolute measurement, while displacement is a relative 

measurement indicating only the changes in the measurand as they occur. 
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The application areas of automotive position sensors are mainly the powertrain, chassis 

and body systems [5]. Powertrain systems include the engine, transmission and all onboard 

diagnostics elements. Chassis systems include the suspension, braking, lightning, steering 

and stability systems. Body systems include the safety of occupants, comfort, information 

services, and in general the rest of systems aimed to fulfill the needs of the vehicle 

occupants [5, 6]. In the powertrain system, crankshaft and camshaft position sensors are 

used for the control of fuel injection and ignition timing, while the gear position sensor is 

applied in electronically controlled gear shifting to detect transmission gear position. In the 

antilock brake system (ABS) and the electronic stability program (ESP), wheel position 

sensor plays a major role in detecting wheel speed [7]. The position sensor is also a key 

element in “drive by wire” systems, active suspension, automatic headlight leveling, as 

well as in wiper, mirror and seat positioning. Another important application of position 

sensors is the detection of steering wheel position for autonomous driving systems. The 

main applications of automotive position sensors are summarized in table 1-1. 

Table 1-1 Main Automotive Application of Position Sensors 

Powertrain 

Engine 

Crankshaft Rotational Motion 

Cam Rotational Motion 

Exhaust Gas Recirculation (EGR) 

Throttle Angle Position 

Transmission 

Gearshift position 

Input/ Output Shaft Speeds 

Transmission Oil Level 

Clutch Pedal Position 

Booster Cylinder Position 

Chassis 

Braking 
Wheel Speed 

Pedal Angle 

Steering 
Steering Wheel Angle for EPS  

Steering Torque (Torsion Angle) for EPS 

Vehicle 
Suspension Height 

Sensor for Headlamp Leveling Control 
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Wiper Position 

Mirror Position 

Body 
Safety Seat Position 

Security Vehicle Tile for Anti-Theft System 

 

With the advent of vehicle electrification, electric motors are gradually replacing the 

conventional mechanical and hydraulic systems [8]. The motor position sensor is another 

major application of position sensors. In brushless DC motors, field orientation control 

(FOC) regulates the commutation of the three phase current based on the rotor position. 

Minimizing the motor torque ripples depends on a smooth phase current commutation, 

which further depends on accurate rotor position information. The motor position sensor is 

essentially a high-speed angular sensor that can operate above 400 rpm with better than 

0.5° accuracy and better than 0.1° resolution. Optical encoders or inductive resolvers are 

typically used for this application. The less expensive magnetic and inductive sensing 

technologies are gradually adopted while still generally meeting the technical requirements 

with lower performance margin [9]. 

1.1.1 Automotive position sensor requirements 

The automotive sensors must satisfy some requirements according to standards and 

regulations in automotive industries.  The accuracy demanded is typically better than 1% 

over the entire measurement and temperature ranges. The temperature range is very wide, 

and the vibration experienced may be large. The environmental conditions are also very 

adverse with regards to electronic interference, humidity, liquids, dust and pollution[10]. 

Table 1-2 summarizes the typical automotive environments of position sensors based on 

OEM’s technical specification. Moreover, due to the high-volume production and strong 

competition among companies, cost is also a major concern. As a result, automotive 

sensors must face a difficult tradeoff among accuracy, robustness, manufacturability, 

interchangeability, and low cost[6]. Those requirements guide us to reach an overall 

optimal sensor solution for the vehicle.  
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Table 1-2 Automotive Application Environment 

Temperature: -40 °C to 150 °C 

Mechanical Shock: Up to 50 g 

Mechanical Vibration: Up to 15g 

Exposure to: Fuels, Brake Fluid Oil, Transmission Fluid, Salt Spray, 

Water, Dirt, Dust. 

EMI: 200 Volts/Meter 

Life Cycle: 18 years 

 Automotive position sensor technology 

Based on the sensing technology, position sensors are classified in six major categories in 

the automotive applications sector, including resistive contacting sensor, Hall effect sensor, 

anisotropic magnetoresistive (AMR) Sensor, Optical Encoder, Integrated Magnetic 

Concentrator (IMC) Hall-Effect Sensor, and Inductive Position Sensor (IPS). 

1.2.1 Resistive contacting sensor  

The resistive contacting sensor is also known as the potentiometric sensor, which consists 

of a conductor and a wiper. The working principle is to utilize the property that the 

resistance of a conductor varies linearly with its length. The conductor is usually a film or 

a screen-printed track. The wiper can be either linearly or angularly displaced by the part 

whose position is to be measured. The use of multiple and redundant wipers and tracks 

provides improved sensor reliability [5]. The resistive contacting sensor is the first position 

sensor introduced to automotive applications due to its simple design and low cost. 

However, it has been gradually replaced by non-contacting sensors due to wearing and 

reliability issues. 
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1.2.2 Hall effect sensor  

In an appropriate magnetic circuit, Hall sensor voltage varies with the angle between the 

flux density acting on the sensor and the bias current applied to the sensor. Typically, two 

Hall sensing elements are mounted in quadrature. The two Hall elements provide output 

signals, with one varying as a sine wave and the other as a cosine wave. The output signal 

is derived from the inverse tangent of the ratio of the quadrature element signals. This 

provides a linear indication of the angular position of the excitation field of the magnet, 

thereby determining the angular position of the shaft [22]. Hall sensors are also used for 

linear position measurements, where magnet “head-on” and “slide-by” movements detect 

linear position [13]. 

1.2.3 Anisotropic Magnetoresistive (AMR) Sensor 

The sensor exhibits changes of resistance as an external magnetic field rotates with respect 

to its sensing-elements. Two sets of four sensing elements are typically used.  One set is 

physically offset from the other by a 45 degrees of angle. This angular offset again produces 

a quadrature 90 degree electrical phase angle difference. The two sets of sensing elements 

are connected in Wheatstone bridge signal-detection IC circuits. Both bridge circuits 

respond to the orientation of the external magnetic field and yield output signals. From 

these signals, the inverse tangent of their ratio gives a linear measurement of the angular 

position of the magnet target. The electrical angle goes through two cycles as the angular 

position of the magnet rotates one revolution. Further detailed information on AMR 

position sensors can be found in [23]. 

1.2.4 Optical Encoder  

For a steering-wheel angle sensor application, a slotted-aperture optical-encoder sensor is 

combined with a gear-reduction-driven potentiometric sensor [24]. The potentiometric 

sensor provides a continuous measurement of the steering-wheel angle over a four-turn 

lock-to-lock turn range with less accuracy than the optical encoder. The encoder, with two 

offset bands of 90 aperture slots each, can measure within 1-degree accuracy, but it cannot 

determine the absolute position of the steering wheel. With the combination of these two 

sensors, the encoder “learns” the true center (or zero) absolute position of the steering 
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wheel by starting with the position indicated by the potentiometer and then refining the 

calibration based on a period of straight-road driving. 

1.2.5 Integrated Magnetic Concentrator (IMC) Hall-Effect Sensor  

This sensor measures angular position using a single bar magnet attached to the rotating 

part whose angle is to be determined. The sensor is mounted on a fixed surface underneath 

the magnet. The sensor combines standard planar Hall effect technology with a unique 

Integrated Magnetic Concentrator(IMC) consists of the following components as shown in 

Figure1-1, this is done by with a detailed description provided for each. 

 

Figure 1-1 IMC Hall-Effect Sensor 

a) A planar high-permeability ferromagnetic layer: IMC is a flat ferromagnetic part 

integrated on the surface of a magnetic sensor in a wafer post-processing step. The 

IMC changes the parallel field directions to perpendicular field directions as the result 

of a boundary condition transition between the air and the high-permeability IMC 

layer. The use of an IMC layer to redirect the magnetic field into a perpendicular 

direction largely eliminates direction variability [13], [14]. Meanwhile, the magnetic 

flux density “seen” by a Hall element placed near an edge of an IMC can be up to 10 

times higher than the flux density far away from the IMC. The effective magnetic 
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resolution of a combination of IMC-Hall element can be 10 times higher than that of 

the Hall element alone.  

b) Hall-effect sensing elements: Hall-effect sensing elements are mounted on the silicon 

substrate, in four quadrant positions, below the IMC layer. Hall sensing elements 

detect the X and Y components of the magnetic field. As the magnet target rotates, 

pairs of Hall-effect sensing elements detect and generate quadrature and signal voltage 

waveforms [14]. 

c) Embedded digital signal processors (DSPs): The signals are in phase quadrature and 

are processed to determine a resolved angle with the inverse tangent function. DSPs 

are embedded on the silicon substrate along with the Hall effect sensing elements. 

Dual-DSP isolated dies are used for redundancy to ensure reliability [15]. 

The IMC rotary position sensor provides the following features: 

—Noncontact, easy-to-install, end-of-shaft mounting. 

—Compact size, small outline package (excluding the magnet). 

—Insensitivity to variations of magnetic field strength, temperature, and air gap. 

—Absolute 360 degree angular position measurement. 

1.2.6 Inductive Position Sensor 

Inductive Position sensor measures angular position using a multi-lobed conductor coil on 

a rotor attached to parts like the throttle plate, accelerator pedal, or chassis-height link bar. 

The multi-lobed coil on the rotor is connected to the throttle plate and is suspended next to 

the receive coils which consist of three or more planar coils intertwined together. The 

receive coils are mounted on a fixed housing. A single-loop excitation coil, also mounted 

on the fixed housing, encircles the receive coils and provides ac-excitation. The excitation 

coil generates a MHz-frequency RF field. The excitation coil’s RF field inductively couples 

(like a transformer) to circumferential portions of the rotor multi-lobed coil, and induces 

current in the rotor’s conductor. 
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Current flowing in the radial portions of the rotor conductor lobes generates a secondary 

magnetic field pattern that rotates with the rotor and inductively couples to the underlying 

receiving coils. Each of the receiving coils couples with the rotor magnetic field and 

inductively generates its own (phase-shifted) voltage waveform as a function of the rotor 

angle. The angle of the measured part (e.g., a throttle plate) is determined via signal 

processing of the magnitudes, signs, and gradients of the individually phase-shifted 

receiving-coil voltages [11], [12]. 

Inductive position sensors offer the following features: 

—Noncontact operation; 

—No magnets are required;  

—Low cost due to printed circuit board (PCB) structure; 

—Allow relaxed assembly alignment tolerances; 

—Design flexibility allows the sensor to be customized into various packaging space. 

Due to their mature state of development and low cost, potentiometric sensors are 

extensively used to measure fuel-float level, accelerator pedal angle, and transmission gear 

position. Due to the harsh environment of the engine and the high number of lifetime dither 

cycles, noncontact Hall sensors are used to measure throttle angle, EGR valve position, 

and suspension height. AMR position sensors are used in the same applications as 

potentiometric and Hall sensors. Hall sensors are also used in seat belt buckles for high-

reliability detection of proper buckle engagement i.e., proper linear positions of latch and 

tongue parts inside the buckle [26]. Since optical sensors are susceptible to contamination 

by dirt/oil, they are often used in applications that can provide environmentally protected 

mounting locations. A good example is the optical-encoder steering-wheel angle sensor 

used in vehicle stability enhancement systems, which is mounted on the steering column 

near the instrument panel. In active suspension systems, the stroke/position of a strut is 

accurately measured over an extended-length by using magnetostrictive-pulse transit-time 

sensors.  Inductive position sensors are used on many different places in a modern car, e.g. 
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accelerator pedal sensors, steering angle position sensors, head lamp position sensors, etc. 

due to their mechanical variability (linear, rotational...), high temperature range, simplicity 

and robustness[11].  

 Objectives 

Due to their outstanding merits, inductive sensors are most suitable for automotive 

applications where cost and flexibility are critical factors. They have been playing an 

important role in the automotive sensor family, and more and more automotive applications 

are switching to inductive sensing technology recently [12-14]. However, inductive 

position sensors are still not used as widely as magnetic position sensor in the automotive 

sector. One reason for the relative scarcity of inductive sensors is that their winding pattern 

makes them relatively big, especially for high accuracy devices that require precise 

winding. Another technical challenge is the designing of the optimal winding pattern and 

the rotor shape. Besides, the analysis of the inductive sensor performance heavily relay on 

Finite element analysis (FEA), which is very time-consuming. 

To tackle these technical challenges, a design methodology for a robust and cost-effective 

inductive position sensor is developed in this work. A mathematic model for the sensor 

system is essential to understand the dominating factors of the sensor performance. 

Meanwhile the relation between the sensor raw signal quality and the sensor error need to 

be understood systematically to improve sensor accuracy. Since the design optimization of 

the inductive position sensor involves numerous design variables and optimization goals, 

an efficient optimization method specific for the inductive position sensor needs to be 

developed.  

The objectives of the present work are multifold:  

(1) the development of lumped mathematic model of inductive position sensor, which will 

be used as analytical tool for inductive sensor design and optimization;  

(2) miniaturizing the sensor design and the development of its fabrication process to 

investigate the potential of scaling-down;  
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(3) the developments of steering torque sensor and its experimental verification to 

demonstrate the inductive position sensor fusion; 

(4) study of a passive inductive position sensor.  

The underlying common theme of these objectives is the use of inductive sensing 

technology. 

 Thesis Outline 

The reminder of this work is organized as follows.  

In section 2 we present the theoretical modeling of inductive position system including the 

electromagnetic structure, the oscillator circuit and the signal processing. The result is 

further verified by FEA and SPICE numerical simulation. A sensor system SIMULINK 

model is developed to present the transient behavior.  

In section 3 we analyze the sensor error introduced by the imperfection of sensor raw 

signals for both two-phase and three-phase configurations. The corresponding correction 

method is also proposed.  

In section 4 we optimize the sensor performance based on the response surface 

methodology. The method allows us to get an optimal design efficiently.  

We develop a miniaturized inductive angular position sensor in section 5, which includes 

the modeling, numerical simulation, microfabrication process development and experiment 

validation.  

We propose a steering torque sensor in section 6, the challenge and the potential the fusion 

of multiple inductive sensors are discussed. 

In section 7 we demonstrate the development of a passive inductive sensor to meet the low 

emission and low power consumption requirement.   
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Chapter 2  

 Theory and Modeling of Inductive Sensor  

 Background 

An inductive angular position sensor (IAPS) typically comprises an electromagnetic 

structure and a support circuit[15, 16], which is commonly used to detect the angular 

position of the target relative to the reference. The electromagnetic structure consists of a 

transmitting coil, a certain number of receiving coils and a conductive rotor, which interact 

with each other through inductive coupling. The circuit provides power to sustain an 

alternating magnetic field, and it also conditions the receiving signal for Analog/Digital 

(A/D) conversion. The digitized signals are then used to calculate the angle, which is 

mapped into the desired output type. The output could be analog, Pulse Width Modulation 

(PWM) or digital format such as Inter-Integrated Circuit (I2C), Single Edge Nibble 

Transmission (SENT) or Serial Peripheral Interface (SPI). 

To optimize the sensor performance for a specific application, it is critical to model the 

sensor system that includes both the electromagnetic structure and circuit. Numerical 

modeling is a popular method to model the IAPS system. The electromagnetic structure 

can be modeled by FEA, and the impedance matrix of the structure is derived after solving 

the electromagnetic field with a proper excitation at the coil terminal. The derived 

impedance matrix is then used in SPICE for circuit simulation. Such method provides good 

insight of the sensor performance from the perspective of both the electromagnetic field 

and the circuit. However, both FEA and SPICE circuity simulations are very time-

consuming, and therefore, they are not practical when a large variation of design 

parameters needs to be investigated for sensor performance optimization. 

In order to minimize the computation effort, a behavior system model of the IAPS sensor 

is developed in this work based on the electromagnetic structure and the circuit. This model 

is first validated by the FEA and the SPICE simulation, and is further used for the sensor’s 

performance analysis and optimization.  
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 Sensor electromagnetic structure configuration 

The minimal configuration of the electromagnetic structure of an IAPS, as shown in Figure 

2-1, consists of a transmitting coil (TX), a conductive rotor indicating the target position, 

and at least two set of receiving coils (RXs). In the two-receiving-coil setup, the RXC coil 

receives a cosine signal of the rotor position and the RXS coil receives a sine signal of the 

rotor position. The rotor position can thus be calculated from the arctangent function of 

these two receiving signals. In some other configurations, three receiving coils are used to 

achieve better sensor performance. The benefit and signal processing of using three 

receiving coils will be discussed later in chapter 3. 

Figure 2-1: IAPS electromagnetic structure top view and isotropic view 

 Sensor Working Principle 

The excitation coil of the IAPS consists of a few concentric circular loops. Figure 2-2 (a) 

and (b) shows the FEM results by ANSYS/HFSS. When the excitation coil is energized by 

an alternating current, an axial symmetric alternating magnetic field is generated at the 

vicinity. Since the receiving coil is interlaced by a clockwise loop and counterclockwise 

loop, as shown in figure 2-2(c), no signal will be induced by such an axial symmetric 

magnetic field as shown in figure 2-2(a). When a conductive rotor (or coupler) is positioned 

at the adjacent position, an eddy current is induced on this target. The eddy current 

generates a secondary magnetic field, which makes the resultant magnetic field no longer 
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axially symmetric as shown in figure 2-2(b). Thus, the receiving coils can pick up signals 

that represent the coupler position. 

(a) (b) (c) 

Figure 2-2: (a) Excitation magnetic field; (b) Magnetic field modulated by eddy 

current; (c) Receiving coil winding. 

Since the cross section of the excitation coil is much smaller than the coil’s length, the coil 

can be treated as filamentary wire. The magnitude of the resultant magnetic field generated 

at location r

 by current I passing through the excitation coil can be computed by using the 

Bio-Savart law[17], as 
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        (2-1) 

where path 
TXC is the center line of the transmitting coil,  xd


 is the differential element of 

the wire in the direction of the current. Since path 
TXC is axially symmetric, the primary 

magnetic field induced by the transmitting coil )( rB p

  is also axially symmetric, as 

demonstrated in Figure 2-2 (a). 

When a conductive rotor loop is exposed to the excitation magnetic field, the induced 

voltage on the loop can be expressed by using Faraday's law of induction, 
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d
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where 
RT is the area enclosed by the rotor profile. Consequently, an eddy current is 

induced on the rotor loop, i.e., 

R

V
I             (2-3) 

where R is the rotor loop resistance. The eddy current of the rotor can further generate a 

secondary magnetic field, which could be expressed as, 
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        (2-4) 

where 
RT

C is the rotor profile path. Since the rotor profile is not axially symmetric, the 

secondary magnetic field induced by the eddy current is not axial symmetric either. The 

total magnetic field is the superimposition of the primary and the secondary magnetic 

fields, i.e., 

)()()( rBrBrB Spt

          (2-5) 

Consequently, the receiving coil picks up a voltage of 


RX

dSB
dt

d
V tRX          (2-6) 

where 
RX

 is the area enclosed by the receiving coil. 

Although FEA can be used to calculate the sensor signal and performance, it is generally 

very time-consuming. In the design stage, a wide design variation including different 

design parameters at different geometrical positions needs to be assessed. An accurate 

equivalent circuit will help us gain more insight on the critical factors of design and speed 

up the optimization procedure.    

Therefore, we propose a new methodology where the IAPS can be modeled as a two-stage 

transformer, as shown in Figure 2-3. The first stage is from the transmitting coil to the 

rotor, while the second one is from the rotor to the receiving coil. The transmitting coil TX 
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can be modeled as an inductor 1L and a resistor 1R  connected in series, and the rotor can 

also be modeled as an inductor 2L  and a resistor 2R  connected in series. The TX and the 

rotor are inductively coupled through the mutual inductance M12. 

 

Figure 2-3 Inductive torque sensor equivalent circuit 

The TX is energized by an oscillator, which is modeled as a nonlinear resistor, as shown 

in Figure 2-3. When an alternating current passes through the TX, an eddy current is 

induced in the rotor through the inductive coupling. The mutual inductive coupling 

between the TX and the rotor can be modeled from the transformer equation and 

Kirchhoff's voltage law (KVL) as,  
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      (2-7) 

where  ti1  and  ti2  are the branch current through the TX and the rotor, respectively;  tv1  

is the voltage across the TX. 

The second stage of the transformer is from the rotor to the receiving coils RXC and RXS, 

with the receiving signals being expressed as, 
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where 13M  and 14M are the mutual inductances between the receiving coils and the TX 

coil, which are independent of the rotor angle since the TX is axially symmetric;  23M  

and  24M are the mutual inductances between the receiving coils and the rotor, and both 

are depend on the rotor angle position.  

When the TX coil is axial symmetrically wound, and the RX coil consists of clockwise and 

counter-clockwise segment interlaced alternatively, the mutual inductance between the TX 

and the RX disappears, i.e., 13M = 14M =0, due to the geometrical symmetricity. Equation 

(2.8) is thus reduced to, 
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Therefore, the rotor angle position can be derived from signals  tv ,3   and  tv ,4  . In 

practice, since the geometric relation between the RX coils and the rotor repeats after a 

maximum angle of 2π, the mutual inductance is a periodic function of the angle. It is 

convenient to design the geometry of the RX coils and the rotor so that their mutual 

inductance is a sinusoidal function of the angle, i.e.,  
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where the pole number pN is defined as the number of the periodic features of the RX and 

the rotor. From equations (2-6) and (2-10), the rotor angle can be derived as,  

    tvtva
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Equation (2-10) shows that the two RX coils have identical geometry, with pN2/ angle 

offset from each other. The advantage of such a configuration is that the sensor accuracy 

only depends on the mutual inductance between the RX and the rotor, which will greatly 

reduce the design complexity. 

 Electrical property 

Equations (2-7) and (2-9) define the sensor signal. In order to solve the system of equations, 

the electrical properties used in the equations need to be solved first. This section provides 

an analytical solution for the electrical properties based on the geometry. Meanwhile, the 

excitation signal strength can be found by solving the governing equations of the oscillator 

circuit. 

2.4.1 Mutual Inductance 

The sensor output relies on the mutual inductances between the rotor and RX coils, which 

is further determined by the geometry of the rotor and the RX coils. It should be noted that 

the RXC is a quadrature electrical degree offset of the RXS; therefore, only one set of RX 

coil needs to be studied.  

 

(a) 

 

(b) 

 

(c) 

Figure 2-4 (a) Rotor at position (b) and (c) clockwise and counter-clockwise winding 

of RX coil respectively. 

Figure 2-4 shows that the receiving coil can be further decomposed into a clockwise 

winding 
1C and a counterclockwise winding

2C . Winding
2C offsets winding

1C  by 
pN
 for 
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p
N  pole design. Therefore the mutual inductance at position  between the rotor and the 

RXC can be computed by using the Neumann formula: 
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where )(
rt

C is the rotor profile path at position . 

Because of the geometrical relation between 
1C and

2C as interpreted above, equation (2-

12) can be further simplified as: 
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Equation (2-13) shows that the sensor output can be fully determined by the double line 

integral between a receiving coil path 
1C  and the path of rotor )(rtC . 

Due to the geometrical periodicity and symmetry, the mutual inductance )(M  is an 

even function with a period of 
pN
2 . It can be expressed in Fourier series as: 
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When the clockwise winding 
1C and the counterclockwise winding

2C are combined 

together, all even terms of the Fourier series are canceled out, and the mutual inductance 

between the rotor and the receiving coil is reduced to: 





 

0
12 ))12cos((2)(

i
pi NiCM         (2-15) 

Equation (2-15) shows that the mutual inductance )(M is not guaranteed to be a 

sinusoidal function of the angular position, which means that the higher order harmonics 
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will introduce error to the sensor output. The RX coil shown in Figure 2-4 is optimal since 

it uses the area most efficiently. The rotor geometry should match with the RX coil to get 

high signal strength and low high order harmonics. There is no analytical solution of the 

corresponding rotor geometry for a given RX geometry, which will be optimized using the 

trial-error method. In the following study three simplest rotor geometries, including 

eccentric circular, sinusoidal and star shape, are investigated. All those three geometries 

can be described by two parameters.  In the case study, 
1R and 

2R for both the RX and the 

rotor are set to 7.5 mm and 15 mm, respectively, while the air gap between the RX and the 

rotor is set to 2 mm.  Figure 2-5 shows that the star shape has the highest mutual inductance 

and the highest harmonics, while the eccentric circle shape has the lowest mutual 

inductance and harmonics. The sinusoidal rotor shape has a good balance on both the 

mutual inductance and the high order harmonics; therefore, this shape is chosen for the 

rotor design. The profile of the sinusoidal shape rotor can be described by: 

 20),cos()()()( 122
1

212
1  pNRRRRR     (2-16) 

where 
1R and 

2R are the max and the min radius of the rotor profile, respectively. 

 

(a) 

 

(b) 
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(c) 

Figure 2-5 (a) Rotor geometry. (b) Normalized harmonics. (c) Mutual inductance. 

2.4.2 Self-inductance 

The self-inductance of a filamentary current loop can be approximated by the mutual-

inductance of two loops that are spatially separated by the geometrical mean distance 

(GMD) of its cross section [18].  

    



C dC xx

xdxd
L

21

210

4 






        (2-17) 

where d is the self GMD. The GMD between two areas 
1S  and 

2S  is defined as:  
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The self GMD of a rectangle of width a and height b is [19]: 
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It can be evaluated by a simplified equation (2.20) within 0.2% accuracy for any a and b 

[19]. 

)(2235.0 bad           (2-20) 
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2.4.3 Resistance 

At high frequency, the skin effect concentrates the current at the surface of the metallic 

wire, which reduces its effective cross section and increases the AC resistance. Figure 2-6 

demonstrates the current density distribution of an 18 mm diameter circular copper wire 

with rectangle cross section of 800 µm by 35 µm at 4 MHz frequency in Maxwell 2D. The 

skin effect makes the current density at the edge of the wire 4 times higher than at the center 

of the wire.  

Figure 2-6 Current distribution by skin effect 

The resistance caused by the skin depth can be approximated as [20] 
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where  0t  and w  are the coil thickness and width, respectively, and  is the skin depth 

expressed by 



f

           (2-22) 

with   and   being the material resistivity and permeability, respectively, and f  being 

the operating frequency.  

The presence of the magnetic fields generated by the nearby conductors can alter the 

current distribution and change the resistance, especially when the space between the 
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conductors is smaller than the conductor width.  This phenomenon is called the proximity 

effect [21]. Figure 2-7 demonstrates the current distribution of 4 adjacent copper wires 

simulated by Maxwell 2D, where the current tends to distribute at the most outside.   

Figure 2-7 Current distribution influenced by proximity effect. 

The additional resistance caused by the proximity effect can be evaluated by [22] 
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where crit is the frequency at which the current crowding become significant and sheetR is 

the metal trace sheet resistance. Therefore, the total AC resistance of the coil by the skin 

effect and the proximity effect can be evaluated by  
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2.4.4 Stray Capacitance 

The IAPS coils have stray capacitance between the turns and the layers. The stray 

capacitance of the coil reduces the Q factor of the inductor and also causes self-resonance, 
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which limits the operating frequency of the sensor.  The stray capacitance of a single layer 

air-core coil is numerically modeled in [23]. For a multilayer coil with aN  layers and tN  

turns per layer, the stray capacitance can be approximated as [24], 
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where bC is the parasitic capacitance between two adjacent turns in the same layer, and mC

is the parasitic capacitance between the two different layers. The parasitic capacitances of 

the tightly wounded coil can be determined as [24], 
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where hrD ri ,,, 0  are the average diameter of coil, wire radius, thickness, and relative 

permittivity of strand insulation and the separation distance between the two layers, 

respectively.  

FEA or an impedance analyzer can be used to find the impedance characteristic and the 

resonance frequency of the structure, from which the parasitic capacitance can be derived. 

However, the simulation results indicate that when the resonance frequency is much higher 

than the sensor operating frequency, the coil behaves as a pure inductor. Therefore, the 

parasitic capacitance can be neglected without introducing much error.  

2.4.5 Validation 

The model proposed is validated by the FEM simulation by using ANSYS Q3D. The FEM 

model is shown in Figure 2-7(a), its converge criteria is set to 0.1% accuracy. In this model, 

the thickness of all coils is 35 µm, and the width of the transmitting coil and receiving coil 

is 0.2 mm.   The outer diameter of the transmitting coil and the receiving coil is 24 mm, 

and the inner diameter of the and receiving coil is 12mm. The result of the model agrees 

very well with the FEM result as demonstrated by Figure 2-7(b & c) and Table 1. It should 
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be noted that our model takes less than 5% computing time of the FEM. Therefore, this 

model will be used in the later analysis of this research. 

 

(a) 

 

(b) 

 

(c) 

Figure 2-8 (a) FEA model. (b) Mutual inductance between rotor and RX1 coil. (c) 

Mutual inductance between rotor and TX coil.  

Table 2-1 Coil self-inductance and resistance comparison between FEM and model. 

 FEA  Model  difference

L1 [µH]  3.163  3.162  ‐0.06% 

R1 [Ohm]  1.415  1.411  ‐0.27% 

L2 [nH]  68.921  68.835  ‐0.12% 

R2 [Ohm]  0.1698  0.170  0.09% 

 Sensor Oscillator Driving Circuit 

The transmitting coil needs to be energized by a resonant oscillator circuit to compensate 

for the Ohmic loss. The resonant oscillator typically consists of a frequency selective 

network or a resonator and a nonlinear amplifier. In an IAPS, the resonator is an LC tank 

circuit, where the TX coil inherently acts as the inductor and capacitor [11, 25]. Due to 

their relatively good phase noise performance, ease of implementation in integrated system, 

and differential operation, cross-coupled inductance–capacitance (LC) oscillators play an 

important role in the high-frequency sensor applications [26-30].  

One implementation of the cross-coupled LC oscillator is a single differential-pair 

oscillator[27] as shown in Figure 2-7(a).  The main advantage of this configuration is that 

the DC level shift enables a large oscillation amplitude [31]; therefore, this implementation 

is adopted when the oscillation amplitude is critical for an enhanced signal strength. The 
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other implementation is a complementary LC-tank oscillator, as shown in Figure 2-7(b), 

which employs both NMOS and PMOS switching transistors. The advantages of the 

complementary LC-tank oscillator includes [32] twice the tank voltage swing for the same 

current consumption, a larger loop gain due to the contribution of both NMOS and PMOS 

trans-conductance, and a controlled voltage swing that is always within the supply rail. 

 

(a)   

(b) 

 

(c) 

Figure 2-9 (a) Single differential LC oscillator; (b) Complementary LC oscillator; (c) 

Cross coupled oscillator equivalent circuit. 

The free-running oscillator is an autonomous system, which can be modeled as a voltage 

controlled nonlinear resistor and an LC tank as in Figure 2-7(c).  When the oscillator is 

working in the current-limit regime the voltage amplitude is proportional to the bias current 

multiplied by the tank parallel losses[33]. The governing equation of the oscillator circuit 

is given as[34] 
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where RLC ,, are the tank capacitance, inductance and series resistance, respectively.  tv  

is the voltage drop cross the capacitor,  ti  is the branch current of the inductor L , S is the 

saturation current of the nonlinear resistor, and nG  is the gain of the nonlinear resistor, 
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which is determined by the transductance of the NMOS and PMOS devices. To understand 

the circuit oscillation startup condition, linear analysis is conducted. Under small signal 

condition, the nonlinear resistor can be linearized as, 

    0)(|tanh 
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Equation (2-28) is reduced to (2.30) in a matrix form as, 

 

 
 
 












































tv

ti

C

G

C

LL

R

tv
dt

d

ti
dt

d

n1

1

        (2-30) 

To ensure the oscillation starts autonmously, the equation system (2-30) must be unstable. 

It can be shown that when the following condition is met, 
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the real part of the eigenvalue of the matrix 
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is positive, and nG is large enough 

to compensate for the Ohmic loss of R . When R
C

L
 , a periodic oscillation with the 

angular frequency given by  equation (2-32) will start up.  

LC

1
0            (2-32)  

The corresponding SIMULINK model of equation (2-24) is demonstrated in Figure 2-9 

(a). The circuit was simulated with the following parameters: HL 2.4 , pFC 470 ,

 6.3R , mAS 1  and 10016.0 nG . With these selected parameters, the LC tank 

has a resonant frequency of 3.58MHz, and the oscillator has an operating voltage of 5.99V 

and an operating current of 63.4mA. 
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A SPICE simulation with the same parameters is run to validate the model, with the result 

in comparison with the analytical solution shown in Figure 2-9 (c). The operating voltage 

of the SPICE simulation is 6.24V. The start-up transient profile of the oscillation voltage 

also deviates slightly. The error source includes the deviation of the current-voltage relation 

of the nonlinear resistor and the neglected parasitic conductance and the capacitance of the 

transistor devices. Based on the comparison, the analytical model is sufficiently accurate 

to analyze the steady state system behavior.  

 

(a) 

 

(b) 

 

(c) 

Figure 2-10 (a) Simulink model. (b) I-V curve of the oscillator. (c) Oscillator 

operating voltage. 

 IAPS Electromagnetic Structure Model 

Based on the previous discussion, when a rotor is added into the system, the governing 

equations of the IAPS electromagnetic structure become 
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In the model, the excitation coil 1L  and the rotor 2L  are coupled through the mutual 

inductance 12M , which is a function of air gap z . For small signal analysis, equation (2-

33) can be linearized in the matrix form, i.e., 
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The analytic solution of the oscillation start up condition is quite difficult. However, for 

any given parameteres, we can check whether the real part of at least one of the eigenvalues 

of the  matrix 
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 is positive. In the design stage, we 

can use an approximated formula: 

1

11

L

CR
kGn            (2-35) 

where k is a safety factor greater than 1. 

The receiving signal 3v  and 4v are generated by the current on 1L  and 2L  through the 

mutual inductance 13M , 23M , 14M  and 24M . It can be expressed by, 
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13M  and 14M are all constants independent of the rotor position, while 23M and 24M  are 

functions of air gap z and rotor angular position  . 

The SIMULINK model of the whole IAPS electromagnetic structure is illustrated in Figure 

2-11.  
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Figure 2-11 IAPS electromagnetic structure model 

 Signal Demodulation 

The receiving signal is a high frequency signal, which needs to be demodulated and 

converted to digital format for further signal processing. One demodulation method is the 

synchronous peak detection, in which signals are sampled at the carrier’s peaks. In [35], a 

pair of quadrature carrier signals were used to demodulate the sensor signals. The signals 

were sampled using zero crossing detection of the 90 degrees phase shifted carrier signal. 

This method is attractive since it is simple and can demodulate the signal with no delay. 

However, the accuracy of this method is prone to the carrier noise.  

The demodulation of this sensor uses the excitation signal 1v  as the synchronization 

reference.  Its circuit comprises a comparator, a multiplier and a low pass filter, as shown 

in Figure 2-12(a).  The low pass filter used here is a second order Butterworth filter with 

the cutoff frequency of 400 KHz, and its Bode plot is demonstrated in Figure 2-11(b). 

Figure 2-11(c) shows that the demodulation of a 20 KHz signal has negligible phase delay.     
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(a) 

 

(b) 

(c) 

Figure 2-12 (a) Demodulation function block. (b) Bode plot of low pass filter. (c) 

Reference signal and demodulated signal.   

 System Model 

 

Figure 2-13 IAPS open loop system model 

The IAPS system model consists of a magnetic structure block (Figure 2-10), a signal 

demodulation block (Figure 2-11(a)) and a signal processing block. The signal-processing 

block calculates the angle from the sine and cosine signals. Figure 2-13 shows the 
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simulation result at a constant 2 mm air gap. The sensor can detect up to a maximum of 

120 degree rotor angle since the output repeats every 120 degrees of the rotor angular 

position. In the first 30 µs sensor the signal strength gradually builds up.  Sensor has low 

resolution during this transition stage, however sensor still has a correct output since the 

ratio of two signals remains correct.  

 

(a) 

 

(b) 

 

(c) 

Figure 2-14 (a) Receiving signal and demodulated signal. (b) Excitation current on 

transmitting coil and eddy current on rotor. (c) Rotor position and sensor output. 

 Signal Strength Feedback 

In operation condition the sensor might be subjected to geometric variation such as the air 

gap change. Such variation can cause the output signal change. Figure 2-14 shows the step 

response of the sensor air gap change. For a constant bias current S  and a constant rotor 

angle, when the air gap changes from 1mm to 2 mm, the excitation current increases due 

to the reduced load, and the eddy current on the rotor drops because of the reduced mutual 

inductance 12M . The receiving signals 3v and 4v drop by half because of the reduced eddy 

current and reduced mutual inductances 23M  and 24M , however, the sensor output only 

changes slightly by 0.1 degrees because 3v and 4v change by the same scale. 
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Figure 2-15 Air gap step response 

The large variation of signal can cause problems during A/D conversion, i.e., too high 

signal strength makes the A/D conversion saturated, while too low signal strength leads to 

a low resolution. To solve this problem, a signal strength feedback close loop is introduced, 

as shown in Figure 2-15(a). A proportional–integral (PI) controller traces the signal 

strength to a target value by adjusting the bias current. Figure 2-15(b) shows that when the 

air gap changes from 1 mm to 2 mm, the bias current is adjusted from 4.4 mA to 8.1 mA 

so that the signal strength remains at 50 mV. The transient time of 40 µs is acceptable for 

the sensor with 2 KHz update rate.     
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(a) 

 
(b) 

Figure 2-16 (a) Signal strength feedback loop; (b) Air gap step response. 

 Conclusion 

A mathematic model of the sensor system is developed in this chapter. The model is first 

simulated in SIMULINK, then validated by FEM and SPICE simulation. The results of the 

SIMULINK simulation agree very well with the FEM simulation. The model can be used 

for design optimization.  

To compensate for the signal strength variation due to geometric variation, a PI control 

close loop is further introduced. The controller can trace the signal strength to a desired 

level by adjusting the bias current. The simulation also shows that the settle time for an air 

gap step response is 40 µs, which is sufficient for the 2KHz update rate of the sensor. 
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Chapter 3  

 IAPS Error Analysis 

Accuracy is one of the key performance requirements for sensors. The output error of the 

IAPS is defined as the difference between the sensor position output and its real position. 

The allowable output error of the IAPS depends on its specific applications. Improving the 

accuracy of angular position sensors has received much attention in the literature [36-40].  

In order to improve the accuracy of IAPS, it is essential to have a good understanding of 

its error sources. This chapter first investigates the output error caused by input signal error 

in two-phase and three-phase sensor configurations. The root causes of input signal error 

from the sensor implementation and sensor assembly are then studied. The final segment 

of this chapter discusses possible methods to improve IAPS accuracy.    

 Two–phase sensor output error 

When the IAPS detects the angle from two input signals, this configuration is defined as  a 

two-phase sensor [38]. In a practical sensor implementation, misalignment of the 

mechanical placement of the sensor board and the magnet can exist. In addition, there is 

part-to-part variation between the sensor devices if two discrete devices are used for 

generating signals with quadrature phase difference. Therefore, the resulting output signal 

from the sensor will contain undesired harmonics, amplitude variation and phase shift. The 

various irregularities cause the sensor output to deviate from the ideal case and thereby 

introduce various errors. In order to analyze the effect of these various signal irregularities 

on sensor accuracy, the errors are categorized as DC offset mismatch, amplitude mismatch, 

harmonics content of sine and cosine signals, and quadrature phase shift error. The sensor 

output error introduced by the signal errors is analyzed in the following part. 

The output of the IAPS for an idea signal can be calculated by: 

),(2tan yxa          (3-1) 

where x and y are sine and cosine signals with c1 amplitude respectively, i.e.,    
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When the sensor signal deviates from the ideal signal, the sensor output becomes: 

),(2tan
~

dyydxxa          (3-3) 

where dx and dy are the errors of the sine and cosine signals, respectively. 

From Taylor’s expansion, the sensor output can be expressed as, 
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Therefore the error of the sensor output can be determined as: 
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          (3-5) 

3.1.1 DC Offset 

The DC offset error in the sine and cosine signals is due to the unbalance between the 

clockwise and count-clockwise winding. The offset error causes the sine/cosine signal to 

have unbalanced positive and negative amplitudes and anomalies in the zero crossing. 

Assuming that the cosine and sine signals have xc0   and yc0  DC biases, respectively, as 

illustrated in Fig. 3-1(a), we have, 
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From equation (3-5), the DC offset in the signals induces sensor output error as,  
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(a) (b) 

Figure 3-1  (a) Signals with DC offset; (b) Sensor output error caused by DC offset 

Fig. 3-1(b) shows the errors caused by the sine and cosine signal DC offset, which have a 

phase difference of 90 degrees and thus cannot be canceled out. The period of the error 

caused by the DC offset is 360 degrees.    

3.1.2 Amplitude Mismatch 

Ideally, both sine and cosine signals should have the same amplitude. Amplitude mismatch 

occurs when the geometry of the sine and cosine receiving coils are not identical. For 

instance, if the sine coil and the cosine coil are located at different PCB layers, the coil 

closer to the rotor will have greater amplitude. If the sine and cosine signals are defined as 

follows, where the cosine signal has higher amplitude than the sine signal by   percentage 

as illustrated in Fig. 3-3(a), 
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the corresponding sensor error can thus be derived from equation (3-5) as, 

  2sin2
1          (3-9) 

 

E
rr

o
r 

[° ]



37 

 

(a) (b) 

Figure 3-2 (a) Signals with amplitude mismatch; (b) Sensor output error caused by 

amplitude mismatch. 

Fig. 3-3(b) demonstrates the error caused by the amplitude mismatch; its period is 180 

degrees. 

3.1.3 Harmonic Error 

The sensor signals contain higher odd order harmonics. In particular, the geometrical 

mismatch and positional eccentricity between the coil and the rotor produce 3rd and 5th 

order harmonics. If the signals contain harmonics, as illustrated in Fig. 3-4(a), i.e.,  
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the corresponding error of the sensor is, 
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In most cases, only the 3rd and the 5th harmonics are significant, which dominate the 

sensor accuracy. 

(a) (b) 

Figure 3-3 (a) Signals with harmonics; (b) Sensor output error caused by 

harmonics. 

Fig. 3-4(b) shows that the errors caused by both 3rd and 5th harmonics have the same 

period of 90 degrees, and therefore, the error will be canceled out when the harmonics 

have the same sign. This feature can be utilized to improve sensor accuracy. 

3.1.4 Quadrature Phase Shift Error 

In ideal cases, the signals should exhibit a quadrature relationship. Due to the imperfect 

coil implementation, there could be a deviation from quadrature which causes additional 

error in the sensor output. The quadrature phase shift error    of two signals is defined 

below, and illustrated in Fig 3-5(a). 
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The sine signal can be expressed in Taylor’s series: 
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The error of the sensor caused by the quadrature phase shift error is thus determined as  
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          (3-15) 

(a) (b) 

Figure 3-4 (a) Signals with quadrature phase shift; (b) Sensor output error caused 

by quadrature phase shift  

Fig. 3-5(b) shows that the output error caused by the quadrature phase shift has a period of 

180 degrees, with the minimal error being zero and maximal error being the same as the 

phase shift. Therefore, the quadrature phase shift can introduce a mean shift of the output. 

 Three–phase Sensor Output Error 

An IAPS can also detect the angle from three input signals whose phases are offset by 120 

electrical degrees from each other [41]. Such a configuration is defined as a three-phase 

sensor. Compared to the previous mentioned two-phase sensor, the three-phase sensor is 

less sensitive to certain input signal errors. However, since the three-phase sensor requires 

more sophisticated signal processing, its circuitry is more complicated. 

In a three-phase IAPS, the three input signals are: 
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The sine and cosine signals can be obtained by the following transformation: 
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After the transformation, the sensor output can be calculated in the same way as the two-

phase sensor. Like the two-phase sensor configuration, the input signal irregularities of the 

three-phase sensor also include the DC offset, the amplitude mismatch, the harmonic error 

and the phase shift. The following part is the error analysis of the three-phase sensor caused 

by input signal irregularities.  

3.2.1 DC offset 

When the three input signals have DC offset uc0  , vc0  and wc0 , respectively, these signals 

can be expressed as, 














w

v

u

ccW

ccV

ccU

03
2

1

03
2

1

01

  )cos(

  )cos(

  )cos(





        (3-18) 

and their corresponding sine and cosine signals are, 
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From equation (3-7), the sensor error can be calculated by: 
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Figure 3-5 Error by signal DC offset in three-phase sensor 

The same signal DC offset introduces less sensor error in the three-phase sensor, shown in 

Fig. 3-6, in comparison to the sensor error of the two-phase sensor, shown in Fig. 3-4(b). 

Furthermore, in most cases, the DC offsets of the three input signals are identical because 

of the geometrical symmetry. Therefore, they can be canceled out after the transformation 

and will not introduce error to the sensor output. 

3.2.2 Amplitude mismatch 

When the three input signals have different amplitudes, they can be expressed by: 
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where v  and w  are the mismatch ratio of signal V and W, respectively. 

Their corresponding sine and cosine signals are determined as: 

      
      










3
2

3
2

13
3

1

3
2

3
2

13
1

1

coscossin

coscoscos

wv

wv

ccy

ccx
    (3-22) 

From equation (3-7), the sensor error can thus be calculated by: 
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The comparison of Fig. 3-2 and 3-6 shows that the signal amplitude mismatch in the 

three-phase sensor can introduce comparable error to that of the two-phase sensor. 

 

Figure 3-6 Error by signal amplitude mismatch in three-phase sensor 

3.2.3 Harmonic error 

When the input signals of the three-phase sensor contain higher order odd harmonics, 

they can be expressed by: 
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Their corresponding sine and cosine signals are: 
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Equation (3-25) shows the 3rd and the 9th harmonics disappear after the transformation. 

The sensor output error caused by the input signal harmonics is then determined as:  
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Figure 3-7 Error by signal harmonics in three-phase sensor 

Fig. 3-8 shows that for the three-phase sensor, the 3rd harmonic does not introduce sensor 

error, while both 5th and 7th harmonics can introduce error with a period of 60 degrees.   

3.2.4 Phase Shift Error 

The input signals of the three-phase sensor with phase shift error can be expressed as: 
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Equation (3-27) can be rewritten in the Taylor’s series, i.e., 
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The corresponding sine and cosine signals are: 
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Based on equation (3-7), the sensor error caused by the phase shift is determined as, 
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2 sinsin        (3-30) 

Figure 3 demonstrates the sensor error caused by different phase shift. It shows that the 

phase shift can introduce a mean shift of the sensor output, which will be canceled out only 

if the receiving coils V and W are symmetric about the receiving coil U. 

 

Figure 3-8 Error by signal phase shift in three-phase sensor 

 Input signal error analysis 

Since only certain specific geometries can generate a perfect sinusoidal signal, the sensor 

input signals generally include errors. The sensor input signal error can come from a variety 

of sources. They can be categorized into two main classes. The first class is the imperfect 

shape of the coil and rotor, and the second class is the deviation of the relative location 

between the sensor coil and the rotor. In this section, the optimal IAPS geometry, including 

the number of poles and the shape of the rotor, is investigated. The impact of the assembly 

tolerance to sensor accuracy is then investigated afterwards.  

3.3.1 Number of poles  

The number of poles has a strong impact on the high order (mainly 3rd and 5th) harmonics 

of the receiving signal, as numerically demonstrated in Figure 3-9.  Since three-phase 

configuration can eliminate the 3rd order harmonics, it has significantly better linearity than 

the corresponding two-phase configuration, as shown in Figure 3-9(e). 



45 

 

(a) (b) 

(c) (d) 

 

(e) 

Figure 3-9 (a-d) the normalized high order harmonics of 2 pole to 5 pole, 

respectively. (e) linearity of two-phase and three-phase configuration. 
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3.3.2 Rotor shape 

 

Figure 3-10 Rotor profile with different 3rd harmonics 

To improve the sensor linearity, the 3rd harmonic is introduced in the profile. The profile 

equation then becomes Equation (3-31). Figure 3-10 is a comparison of the profile with 

different values of the 3rd harmonic coefficient k, in which a positive k makes the tip 

rounder while a negative k makes the tip sharper.  
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Figure 3-11 illustrates the harmonics influenced by rotor geometry. The 3rd harmonics is 

strongly determined by the rotor geometry harmonic coefficient k, while the 5th harmonics 

is insensitive to the rotor geometry. When 04.0k , the 3rd and the 5th harmonics are 

canceled out and the sensor output has the minimum error. 
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(a) 

 
(b) 

Figure 3-11 (a) 3rd and 5th harmonics by different rotor shape harmonics. (b) 

corresponding sensor output error.  

3.3.3 Air gap 

Air gap not only affects the signal strength, but also influences the harmonics. Therefore, 

air gap will eventually affect the accuracy. Fig. 3-12 shows that the sensor error reduces 

when the air gap increases from 1 mm to 3 mm, due to the reduction of higher order 

harmonics. Meanwhile, the three-phase sensor has significantly less error than the two-

phase sensor within the whole range of air gaps considered.  
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(a) 

 

Figure 3-12 (a) Input signal harmonics (b) Sensor error at different air gap 

3.3.4 Concentricity 

In the IAPS assembly, the rotor could be misaligned with the sensor coil due to the 

mechanical tolerance, as shown in Figure 13. Such misalignment can introduce more high 

order harmonics, as shown in Figure 14 (a) and (b), and therefore induce more error to the 

sensor output. Ideally, sensor output should be immune to the mechanical assembly error.  
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Figure 3-13 Rotor misaligned with IAPS coil 

The IAPS output is insensitive to the mechanical misalignment, as demonstrated in Figure 

3-14 (c) and (d). In the two-phase configuration, ±1mm misalignment in both X and Y 

directions only causes 0.06% F.S. error. In the three-phase configuration, such 

misalignment causes virtually no extra error because the effect of the 3rd harmonics is 

eliminated. The superior performance of the IAPS is due to the symmetric geometry design. 
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(c) (d) 

Figure 3-14 (a) & (b) normalized 3rd and 5th harmonics vs. rotor offset of two-phase 

configuration respectively. (c) & (d) sensor output error vs. rotor offset of three-phase 

configuration respectively. 
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Chapter 4  

 IAPS Optimization 

 Introduction 

To meet the sensing performance and cost requirement, the inductive angular position 

sensor (IAPS) needs to be optimized globally due to the nature of the objective functions 

in electromagnetic field. In past literature, global optimizers such as the genetic algorithm 

[42], simulated annealing algorithm [43], tabu search [44], evolutionary and social 

interactions [45], are commonly incorporated into the computer simulation package to 

conduct optimization, which generally requires intensive simulation with multiple 

iterations. Nevertheless, the direct functional relationship between the performance and the 

design parameters is still not clear even with those procedures.  

Alternatively, response surface methodology (RSM) has been widely used for global 

optimizations of electromagnetic devices [13–17]. Compared with the aforementioned 

optimizers, RSM is constructed to determine the functional relationship between the design 

parameters and the performance. The response surface model can be used to predict the 

responses of a series of vectors, which makes the optimization procedure very efficient. In 

addition, RSM can reveal the functional relationship between the performance and the 

design parameters. 

 Response surface methodology 

RSM is an optimization method first introduced by Box and Wilson in the early 1950s [46]. 

It uses a group of mathematical and statistical models to develop the empirical relationship 

between a response of interest denoted by y  and a number of control variables denoted by

kxxx ,,, 21  . In general, such a functional relationship can be approximated by a 

polynomial model [47] expressed as  

  )(xfy


         (4-1) 
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where  Tkxxxx ,,, 21 

 . In general, )(xf


 is a vector function of p elements consisting 

of the powers and cross-products of powers of kxxx ,,, 21  ,   is a coefficient vector of p  

components, and  is a random error having a zero mean.  

In particular, a second order model is commonly adopted for the RSM, i.e., [48]
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This model can be used to establish an approximate relationship between y  and 

kxxx ,,, 21   to predict the response according to the given control variables. Thus, the 

optimum settings of kxxx ,,, 21  for the maximum (or minimum) response over a certain 

region can be determined. 

In order to determine the coefficients i , n series of experiments are conducted first, in 

which the response y  is measured for given control variables. In the optimization 

algorithm, a kn  design matrix denoted by D  is first constructed for the experiments 
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where ijx is the i th setting of the control variable jx . Accordingly, the multi-variable 

response according to this optimization model can be expressed in the matrix form as  

 


Xy           (4-4) 

where   nyyyy ,,, 21 


, representing the measured responses as targeted for 

optimization. X is a pn  matrix whose ith row is   ixf


, with ix


being ith  row of the 

matrix D. The first column of X  is unity. 

The so-called ordinary least-squares estimator of   [49] can be determined as  
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  yXXX  1̂          (4-5) 

The predicted response )(ˆ xy is  

̂)()(ˆ xfxy            (4-6) 

It is very important to choose a proper design in RSM study because the prediction quality 

depends on the design matrix D . The design matrix D  is preferred to be orthogonal, i.e. 

the matrix XX   is diagonal, so that the elements of  ̂  will be uncorrelated. The most 

common designs are the central composite [46] and Box–Behnken design [50]. The central 

composite design (CCD), also known as Box-Wilson design, is widely used for calibrating 

a full quadratic model. There are three types of CCDs—circumscribed, inscribed, and 

faced, as demonstrated by Figure 4-1. Both circumscribed and inscribed CCD designs have 

a circular, spherical, or hyperspherical symmetry and require 5 levels for each factor. In 

other words, an inscribed CCD is a scaled down circumscribed CCD; the difference 

between them is that the circumscribed CCD explores the largest process space while the 

inscribed CCD explores the smallest process space. Faced CCD only requires 3 levels of 

each factor.  

Figure 4-1 central composite design 

Another popular design used in industry was developed by Box and Behnken [50]. It 

consists of a particular subset of the 3k factorial design. Box-Behnken design is shown in 

Figure 4-2. It is economical as it requires only 3 levels (-1 0 1) for each factor.  However, 
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this design is poor in predicting the extreme condition since the corner points are not 

included. 

 

Figure 4-2 Box-Behnken design 

 RSM for IAPS optimization 

The key performance requirements of the IAPS include an optimal linearity, minimal 

power requirement and minimal TX voltage swing. Good linearity of the sensor can assure 

good accuracy and simplifies the signal processing procedure. Low TX voltage swing can 

drop the supply voltage requirement.  IAPS is a complex and multivariate system, and the 

relation between the design variables and the sensor performance is highly nonlinear. 

Accordingly, it is impractical to model the effects of every combination of IAPS design 

factors. Therefore, statistical design of experiments (DoE) methodology is explored to 

efficiently create accurate models for predicting the performance of IAPS, i.e., only a 

specific subset of the full combinations of experiment is adopted to predict the contribution 

of all parameters. To produce accurate parametric models for this complex system, the 

following steps of RSM procedure is conducted: 

1. Identifying the design constraints and the most influential variables to the response, 

including the prescribed and design variables. The experimental cost is expensive 

when the number of variables is large, therefore, DoE is applied to minimize the 

number of experiments.  

2. Designing and conducting a series of experiments to get sufficient measurements 

of the response to a given setting of control variables. 
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3. Developing mathematical models of the response surface with the least square 

surface fittings. 

4. Finding the optimal design parameters that produce a maximum or minimum 

value of the response. 

4.3.1 Design Variables  

Table 4-1 IAPS design parameters 

Parameter Description Value 

txR  Outer radius of transmitting coil 9mm 

txw  Width of transmitting coil TBD 

txN  Turns of transmitting coil TBD 

txs  Spacing between transmitting coil loops 0.2mm 

1rxR  Inner radius of receiving coil TBD 

2rxR  Outer radius of receiving coil 9mm 

13z  Gap between transmitting coil and receiving coil 0.88mm 

23z  Gap between rotor and receiving coil 2mm 

 t Coil thickness 35µm 

1rtR  Rotor inner radius  TBD 

2rtR  Rotor outer radius 9mm 

rtw  Rotor coil width TBD 
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Above are a set of constrained parameters that are imposed by factors associated with the 

IAPS. These parameters usually define the size constraints as limited by packaging space. 

Other factors are related to the fabrication technology, such as the minimum size features 

according to economical mass production. The definition of these parameters is shown in 

Fig. 4-3. Among those parameters, the coil thickness is determined by the PWB 

manufacturing, and the outer diameters of TX, RX coil and Rotor are limited by the 

mechanical packaging space. The air gap between the rotor and RX coil is also constrained 

by the mechanical design. Some parameters and their prescribed values of the sensor are 

listed in table 4-1, while five design parameters are identified to be used for optimization 

of sensor performance, i.e.,  

 width of the transmitting coil txw ,  

 number of turns of the transmitting coil txN ,  

 inner radius of the receiving coil 1rxR ,  

 inner radius of the rotor 1rtR  , 

 the rotor coil width rtw . 
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(a) (b) 

Figure 4-3 Design parameters of (a) sensor coil, (b) rotor 

4.3.2 Experiment setup 

Since a three level full factor design of 5 variables requires 243 parameters, to minimize 

the number of experiments, the faced central composite design (CCD) is used to screen the 

most influential parameters. The experiment configuration is shown in Fig. 4-4. A total of 

28 design variations are first generated at the design variation block, and the complete list 

of all parameters is provided in table 4-2. The corresponding impedance parameters are 

then calculated based on the method introduced in chapter 2, and the linearity of the sensor 

can be calculated at the same time.  The receiving signal strength and the voltage swing of 

the transmitting coil are simulated in the circuit simulation and demodulation block.  In 

this configuration, a PI controller is used to make the receiving signal strength target 

100mV by adjusting the bias current. 
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Figure 4-4 Experiment configuration 

Table 4-2 Design variation and simulation result 

No.  txw
 

(mm) 
txN
 

1rxR
(mm) 

1rtR
 

(mm) 

rtw
 

(mm) 
1v
 

(V) 

bI  
(mA) 

L  
(degree) 

1  0.2  4  4  0.8  2.8  17.94  1.696  0.061 

2  0.2  4  5  0.8  1.8  17.42  1.868  0.101 

3  0.2  4  4  1.6  1.8  13.96  1.356  0.059 

4  0.2  4  5  1.6  2.8  13.06  1.512  0.101 

5  0.2  8  4  0.8  1.8  22.54  1.354  0.059 

6  0.2  8  5  0.8  2.8  22.16  1.49  0.101 

7  0.2  8  4  1.6  2.8  17.74  1.09  0.061 

8  0.2  8  5  1.6  1.8  16.7  1.2  0.101 

9  0.4  4  4  0.8  1.8  14.18  1.876  0.059 

10  0.4  4  5  0.8  2.8  14.74  2.124  0.101 

11  0.4  4  4  1.6  2.8  11.1  1.516  0.061 

12  0.4  4  5  1.6  1.8  11.06  1.722  0.101 

13  0.4  8  4  0.8  2.8  16.62  1.688  0.061 

14  0.4  8  5  0.8  1.8  17.4  1.902  0.101 

15  0.4  8  4  1.6  1.8  12.92  1.354  0.059 

16  0.4  8  5  1.6  2.8  13.06  1.536  0.101 

17  0.2  6  4.5  1.2  2.3  17.2  1.366  0.084 

18  0.4  6  4.5  1.2  2.3  13.52  1.646  0.084 

19  0.3  4  4.5  1.2  2.3  13.48  1.584  0.084 
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20  0.3  8  4.5  1.2  2.3  16.46  1.408  0.084 

21  0.3  6  4.5  0.8  2.3  18  1.658  0.084 

22  0.3  6  4.5  1.6  2.3  13.42  1.322  0.084 

23  0.3  6  4  1.2  2.3  16  1.408  0.059 

24  0.3  6  5  1.2  2.3  15.7  1.56  0.101 

25  0.3  6  4.5  1.2  1.8  15.14  1.458  0.084 

26  0.3  6  4.5  1.2  2.8  15.14  1.46  0.085 

27  0.3  6  4.5  1.2  2.3  15.14  1.458  0.084 

28  0.3  6  4.5  1.2  2.3  15.14  1.458  0.084 

 

4.3.3 Second-order response surface model 

Based on the simulation result, a second-order response surface model with three tasks 

regarding to the bias current bI , TX coil voltage swing 1v  and linearity L can be developed 

using equation (4-5). This model is graphically demonstrated in Fig. 4-5. It shows that the 

bias current bI is positively correlated to the transmitting coil width txw , and the rotor 

inner radius 1rtR , and bI is negatively correlated to the TX coil turn number txN and rotor 

width rtw . The TX coil voltage swing 1v is positively correlated to txN  and negatively 

correlated to txw and rtw , respectively. The linearity L is positively correlated to 1rtR . All 

these three targeting responses are not correlated to 1rxR ; therefore, in the next iteration of 

optimization, 1rxR does not need be included. 
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(b) 

 

(c) 

Figure 4-5 Response surface model of (a) Bias current, (b) TX voltage swing, (c) 

Linearity. 

Based on the previous study, a three-level full factor experiment with regards to txw , txN ,

rtw and 1rtR  is designed. The experiment consists of total 81 variations. Table 4-3 presents 

the chosen factor levels. The coded factors represent a normalization of the factor levels 

such that the actual units and levels are not included in the analysis.  

Table 4-3 Factors range 

factor 
Coded 

factor 

Level  

1iz  0iz  1iz  

txw  1z  0.2mm 0.3mm 0.4mm 

txN  2z  7 8 9 
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rtw  3z  0.8mm 1.2mm 1.6mm 

1rtR  4z  4mm 4.5mm 5mm 

After quadratic regression analysis with data fitting, the resulting parametric models are 

presented in (7) and (8). The model shows a nonlinear relation between the factors and the 

performance since both the quadratic terms and interaction terms are significant. 
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From the simulation results, it is indicated that the linearity is insensitive to the design 

variables and it generally meets the requirement of the application. Therefore, the linearity 

is neglected in further optimizations. The optimization thus has two objectives, i.e. the bias 

current should be as small as possible and the transmitting coil swing voltage should be 

below a certain level, which is 20V for 5V power supply. The Pareto front of the two-

objective optimization is presented in Fig. 4-6. The chosen optimum design is denoted by 

the red circle with the corresponding design parameters being:  
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mmRmmwNmmw rtrttxtx 5.4,6.1,9,2.0 1  . 

 

Figure 4-6 Pareto front of IAPS design 

 Design verification 

To verify the optimization procedure, the design is also checked by FEM and circuit 

simulation in SPICE.  The FEM is run in ANSYS HFSS, as shown in Fig 4-7(a). To save 

computation time, all coils are modeled as copper sheet with 35 µm thickness. A 60 mm x 

60 mm x 60 mm air box with radiation boundary is modeled as the computation domain. 

The solution use first order basis function, its converge criteria is maximum delta energy 

being less than 0.01%.   

In the circuit simulation, the capacitance of the capacitor takes the value of 252pF and the 

bias current takes the value of 1.1mA, which are the same as that adopted in the simulation 

model. The step of simulation is  The simulation results are shown in Table 4-4 for 

comparison. The excitation current and voltage agree very well with the prediction from 

our optimization model. The receiving signal is slightly lower than the prediction due to 

the simplification in the model, in which the major error source is the neglected parasitic 

capacitance of the transmitting coil. 

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

14 15 16 17 18 19 20 21 22 23 24

B
ia
s 
cu
rr
e
n
t 
Ib
 [
m
A
]

TX coil votage swing [V]



63 

 

(a) (b) 

Figure 4-7 (A) ANSYS HFSS FEM model (b) ANSYS Designer SPICE model 

Table 4-4 Simulation result comparison 

 Model SPICE 

Operating frequency  4 MHz 4.025 MHz 

Excitation current 116.9 mA 115.1 mA 

Excitation voltage 18.45 V 18.09 V 

Receiving signal  100.7 mV 95.5 mV 

 Conclusion 

An optimization procedure of the IAPS is developed in this chapter. As an example, an 

outer diameter of 18 mm IAPS is optimized in this chapter by RSM. The transmitting coil 

voltage swing and bias current are the two objectives of the optimization. Design variables 

are first simulated using the model developed in chapter 2 and the Pareto front is derived 

from the simulation result. The optimal design is extracted from the Pareto front, which is 
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further verified by FEM and SPICE simulations. The optimization results agree very well 

with the FEM and circuit simulations, which validates the proposed optimization method. 
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Chapter 5  

 Micro-inductive Sensor 

 Introduction 

Compared to other non-contact angular position sensor technology, such as magnetic 

sensors and optical sensors, IAPS has the advantage of low manufacturing cost and 

immunity to the DC stray magnetic field. The disadvantage of IAPS is its large size, which 

limits its application when the package space is tight. In this chapter, a miniaturized 

inductive angle position sensor is developed to solve this problem. It will reduce the size 

of the inductive position sensor down to the same level as magnetic sensor by using a 

micro-fabrication process. 

This chapter is organized as follows. Section II describes the challenge of scaling down 

and a rotor design optimization to overcome this difficulty.  Section III presents a model 

of the sensor electromagnetic structure. Section IV shows the microfabrication procedure. 

Finally, the experiment results are discussed in the last section.  

 Rotor design optimization  

It is demonstrated in chapter 2 that an inductive position sensor determines the rotor 

position by detecting the magnetic field induced by the eddy current on the coupler. The 

signal strength of the inductive sensor follows Faraday’s law: 

ܸ ൌ െ
డ

డ௧

	
ஊ ∙  (1-5)         ܣ݀

where Σ is the surface bounded by the sensing loop, and B is the magnetic flux density.  

Equation 5-1 shows that when the sensor dimension is scaled down, the integration surface 

area is reduced, leading to a reduction in signal strength accordingly. The sensor needs to 

meet a certain signal/noise ratio to provide a sufficient resolution, however, the signal 

strength limits the minimal dimension of the sensor.  



66 

 

The signal can be enhanced by increasing the operating frequency, the integration area or 

the magnetic field strength. Among those methods, the operating frequency is limited by 

regulation and EMC requirement. The effective integration area can be multiplied by using 

multiple coil loops, which is feasible when higher resolution fabrication technology is 

adopted. However, too many loops of coil can introduce high parasitic capacitance, which 

not only limits the operating frequency but also introduces large output error. Therefore, 

the most promising method to increase the signal strength is to increase the magnetic field 

strength generated by the eddy current. Magnetic resonance coupling is widely used to 

improve the power transfer efficiency in various applications such as implantable 

electronics, which is a promising approach to increase the magnetic field strength. 

 (a) (b) 

Figure 5-1(a) solid rotor FEA model; (b) coil rotor FEA model. 

To find out the most efficient rotor design, 4 diffident rotor configurations are compared 

by numerical simulations. The electromagnetic field simulation is conducted in 

ANSYS/HFSS.  The solution use first order basis function, its converge criteria is 

maximum delta energy being less than 0.01%.   In all these 4 designs, the transmitting coil 

and the receiving coil designs are the same. The transmitting coil comprises 16 loops in 

two layers. In case (a) (solid rotor design), the rotor is a 20 µm thick copper sheet. Its shape 

is an 8.5 mm x 6 mm ellipse with a 6.5 mm x 4mm elliptic hole as shown in Fig. 5-1(a).   

In cases (b) – (d) coil rotor design the rotor consists of a 22 loops of copper coils in 2 layers, 

and the dimension of the ellipse is the same as case (a), with the cross section of the trace 
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being 50 µm x 20 µm, as shown in Fig. 5-1(b). In cases (a) and (b), the rotor coils are 

shorted. In cases (c) and (d), the rotors are connected with a capacitor 2C in series. The tank 

capacitor 1C and the rotor capacitor 2C  are tuned so that the oscillator can operate at 4 MHz 

frequency.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5-2 Magnetic field strength when TX coil is driven by 50mW 4Mhz AC power. 

(a) solid rotor, (b) shorted rotor coil, (c) resonance rotor coil in-phase mode, (d) 

resonance rotor coil out-of-phase mode. 

In the electro-magnetic field simulation, all the transmitting coils are driven by a 50 mW 4 

MHz AC power supply. The magnetic field distribution is shown in Fig. 5-2. In design (c) 

the eddy current is in the same phase as the excitation current; therefore, design (c) has the 

highest magnetic field strength at the rotor position. In the other 3 designs, the eddy current 

is in the opposite phase of the excitation current. Among those designs, design (d) has the 

lowest overall magnetic field strength.  

TX 

Rotor 
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(a) (b) 

Figure 5-3 (a) simulation circuit; (b) tank current vs. rotor current. 

Table 5-1 circuit simulation result of different rotor design 

design 
1C  

(pF) 
2C  

(pF) 

Freq 
(MHz) 1i  

(mA) 
2i  

(mA) 
21 ii 

phase 
1v  

(mV) 
2v  

(mV) 

2
4

2
3 vv   

(mV) 

(a) 450 shorted 4.00 54.0 353.6 opposite 4.8 n/a 98.9 

(b) 440 shorted 3.98 62.0 18.4 opposite 5.6 n/a 125.5 

(c) 296.4 247 3.98 51.6 46.5 same 6.9 7.5 165.7 

(d) 507 591 3.98 36.8 24.3 opposite 2.9 1.6 61.7 

To further understand the signal strength difference of those 4 rotor designs, the FEA model 

is coupled into the circuit simulation in ANSYS/Designer. The simulation circuit model is 

demonstrated in Fig. 5-3(a), with the simulation result being listed in table 5-1. Circuit 

simulation shows that in design (c), the eddy current 2i  is in the same phase as the 

excitation current 1i , which is in agreement with the magnetic field simulation. 

Consequently, design (c) has the highest signal strength, and its tank voltage swing is also 

the highest because the induced voltage from the eddy current is added up. Design (d) has 

the lowest signal strength, and its tank voltage swing is also the lowest because the induced 

voltage from the eddy current is canceled out. The simulation results show that the coil 

rotor design (b) has 27% higher signal strength than the solid rotor, while the resonant coil 
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rotor design (c) has 67% higher signal strength than the solid rotor. Therefore, design (c) 

is chosen for the miniaturized position sensor. 

 Sensor design and modeling 
 

 

Figure 5-4 Sensor configurations 

The micro-inductive position sensor was designed to be compatible with the circuitry of 

the PCB version. The stator comprises a transmitting coil TX and two receiving coils RX1 

and RX2, while the rotor consists of multi-turns elliptic coils. The two receiving coils have 

the same shape but are offset from each other by 45 degrees. Each receiving coil consists 

of two clockwise wounded segments and two counter-clockwise segments. The operating 

frequency is set to 4 MHz. The skin depth of the copper at this frequency is 32.6 µm, in 

order to ensure the efficiency and quality of the fabrication. The transmitting coils are 

designed to be 50 µm wide and 20 µm thick, insulated by a 10 µm polyimide layer. The 

transmitting receiving coil is 40 µm wide and 20 µm thick to guarantee the fabrication 

quality. To enhance the signal strength, the coupler consists of 2 layers of 22 loops of oval-

shaped micro-coil structure in total, and its cross section is the same as the transmitting 

coil.  
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The position sensor can be modeled as a LCR network coupled through mutual inductance, 

as shown in Figure 5-5. L1, R1, L2 and R2 are inductance and resistance of the transmitting 

and rotor coils, respectively. L3 and L4 are inductance of the receiving coils.  Transmitting 

coil induces eddy current on the coupler through the mutual inductance M12, and the eddy 

current further induces sensing signals v3 and v4 through the mutual inductance M23 and 

M24. The transmitting coil Tx is driven by a differential oscillator, which can be modeled 

as a nonlinear resistor. The receiving coils Tx1 and Tx2 are designed in such way that the 

mutual inductance between the transmitting coil and the receiving coil, i.e., M13 and M14 is 

negligible, and thus the receiving signal all comes from the eddy current of the rotor coil. 

For complex geometry, there is no close form analytical solution for self-inductance and 

mutual inductance. The self-inductance L1, L2 and the mutual inductance M12, M23 and M24 

can be evaluated by the method developed in chapter 2 or the FEA method. These electrical 

properties are determined for an air gap of 1.2 mm and listed in Table 5.2. 

L1

C1

L2

C2

Rotor

Tx

L3 L4

v3 v4

M12M23 M24

Rx1 Rx2

I = f(v)  

Figure 5-5 Micro-inductive sensor equivalent circuit 
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Table 5-2 Electrical properties of the coils for numerical simulation 

 

 

Since the sensing coil has high input impedance, the current passing through it is negligible. 

The relation between the current through each coil loop and the voltage across the coil loop 

can be expressed in the following differential equation system from Kirchhoff's Current 

Law (KCL) and Voltage law (KVL),  
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The corresponding SIMULINK model is demonstrated in Figure 5-6. The inputs of the 

model are electrical properties including the inductance, the mutual inductance, the 

resistance, the capacitance and the characteristics of the nonlinear resistor. The outputs of 

the model are the current and the voltage of the electromagnetic structure. Equation 5-2 

looks similar to the equation 2-7. However, since the equation 2-7 has 3 DoF and the system 

always oscillates at one resonance frequency, while the equation 5-2 has 4 DoF, and the 

system could oscillate at any one of two resonance frequency. Thus, the behavior of the 

system is much more complicated than the simple rotor discussed in chapter 2.   

To ensure that the sensor functions properly, sufficient eddy current needs to be induced in 

the rotor so that the signals on the receiving coils can detect are high enough.  Figure 5-

7(a) shows that when the transmitting coil is driven by the circuit with a 5 V power supply 

and a 5mA current sink, the eddy current remains at 110 mA with the air gap ranging from 

Description Name Value Unit 
TX coil resistance 

1R  6.65 Ω 

Rotor resistance 
2R  7.79 Ω 

TX coil inductance 
1L  4.04 µH 

Rotor inductance 
2L  4.88 µH 

Mutual inductance at 0.8mm gap 
12M  1.72 µH 

Mutual inductance at 1.2mm gap 
12M  1.45 µH 
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0.8mm to 1.6 mm. Without the resonance capacitor C2, the eddy current is proportional to 

the coupling coefficient, which will drop from 19.2 mA to 15.5 mA.  Figure 5-7(b) shows 

the receiving signal strength with regard to the air gap changes; for example, when the air 

gap increases from 0.8 mm to 1.6 mm, the signal of the resonance rotor drops by 27%, 

while the shorted rotor drops by 45%. The simulation results conclude that the resonance 

rotor can make eddy current less sensitive to the air gap variation, and enhance the sensing 

of signal strength. Therefore, this sensor can function over a wider air gap range. 

 

Figure 5-6 Simulink model of MIAPS 
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(a) (b) 

Figure 5-7 (a) eddy current; (b) receiving signal 

 Resonance mode of rotor 

It should be noted that designs (c) and (d) in section 5.2 have exactly the same coil design, 

with the only difference between them being the capacitor value. A mismatched pair of 

capacitors can cause the eddy current to be the opposite phase of the excitation current, 

which cancels out the magnetic field strength and reduces the receiving signal strength. 

The simulation shows that the deviations in coil separation and alignment greatly affect the 

gain of the coupling, resulting in significant variations in the sensor receiving signal. In 

particular, frequency splitting occurs when the coils are driven in the over-coupled regime 

[51]. Under these conditions, the link gain shows two peaks at different frequencies, which 

deviate from the tuned resonant frequency. 

To ensure that the sensor always operates optimally, the condition of the resonance mode 

needs to be understood. A small signal linear analysis is conducted to investigate at which 

mode the sensor will operate.  By using the same approximation as equation (2-27), 

Equation (5-2) can be linearized in the matrix form as: 
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Equation (5-3) is a 1st order linear differential equation system, its solution depends on the 

eigenvalues of the coefficient matrix: 
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Table 5-3 Impedance and phase portrait of different configuration 

Configuration Impedance Phase portrait 

 
  7

4,3

7
2,1

22

11

102.0843i  0.0348

102.9097i  0.0389

835.0

2.1













CL

CL

mmgap

Oscillate at 2.9097e7 rad/s 

opposite phase 

 
  7

4,3

7
2,1

22

11

102.0957i  0.0383

102.9197i  0.0354

85.0

2.1













CL

CL

mmgap

Oscillate at 2.0957e7 rad/s in 

phase 
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  7

4,3

7
2,1

22

11

103.0313i  0.0027

102.1888i  0.0710

1

2.1













CL

CL

mmgap

Oscillate at 2.1888e7 rad/s in 

phase 

 
  7

4,3

7
2,1

22

11

101.9859i  0.0294

103.0067i  0.0351

77.0

8.0













CL

CL

mmgap

Oscillate at 3.0067e7 rad/s 

opposite phase 

 
  7

4,3

7
2,1

22

11

101.9942i  0.0314

103.0136i  0.0330

78.0

8.0













CL

CL

mmgap

Oscillate at 1.9942e7 rad/s in 

phase 

 
  7

4,3

7
2,1

22

11

103.1827i  0.0084-

102.1371i  0.0729

1

8.0













CL

CL

mmgap

Oscillate at 2.1371 rad/s in 

phase 

The operation mode is analyzed numerically for 0.8mm and 1.2mm air gap, as illusrated in 

Table 5-3. It can be seen that the system tends to oscillate at the mode where the real part 

of the eigenvalue is larger. The system always oscillates in the same phase when  1
22

11 
CL

CL , 

and there is no correlation between the impedance and the oscillation mode. At 1.2mm air 

gap, the system oscillates in the opposite phase when 835.0
22

11 
CL

CL , while at 0.8mm air gap, 
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the system oscillates in the opposite phase when 77.0
22

11 
CL

CL . It should be noted that the 

coupling coefficient is greater at a smaller air gap, and the system can oscillate in phase 

with more tolerance of the tank frequency mismatch. Based on this finding, the system 

operation region is illustrated in Figure 5-7. For sensor applications, a high coupling 

coefficient can ensure a more robust operation and allow larger component variations.  

 

Figure 5-8 operation region 

 Fabrication 

The cross-section view of the device is shown in Figure 5-9. There are three layers from 

the bottom to the top: the first layer of copper coil, an insulating layer with via holes that 

insulates the first and second layer copper, and the second copper layer.  

 

Figure 5-9 Device cross section 

The 20µm thick copper coil is fabricated by electroplating, while polyimide is used to 

make the insulation layer. The following steps explain the micro fabrication process. 
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5.5.1 Preparation of substrate 

Sensor is built on a 500 µm silicon substrate with a 2 µm-thick silicon dioxide layer.  The 

wafer is immersed in Nanostrip® solution for 3 minutes to remove the organic 

contaminations, and then is rinsed with de-ionized water. 

5.5.2 Seeding layer sputtering 

The seeding layer for electroplating is prepared by sputtering. A 50 nm-thick Titanium 

adhesion layer was RF sputtered in Edwards Auto500 Sputter Deposition System with a 

power of 100W for 15 minutes. Then a 300 nm-thick copper was sputtered using DC 

sputtering with a power of 150W for 15 minutes. The deposition is under the vacuum 

condition of the base pressure of about 5105   bar. 

5.5.3 Micro-mold photolithography 

A 15µm thick of positive photoresist AZ9260 is spin-coated at 1000 rpm. The coating is 

soft-baked on a hotplate. To avoid bubble and delamination of the thick coating, the 

temperature of the hotplate is ramped from the room temperature to 110°C in 10 minutes 

and then is held at 110°C for 3 minutes. The photoresist polymer is cross-linked by 

exposing to UV light with Karl SussMA6 mask aligner. After exposure, a micro-mold is 

developed in AZ400K, followed by a cleaning process using Oxygen plasma RIE.  

5.5.4  First micro-coil layer fabrication 

The micro-coil is fabricated by electroplating in a commercial equipment IKO Classic 

electroplating system. The recipe of the plating bath is: 225 g/L CuSO4, 50 g/L H2SO4, 50 

ppm HCl, 8 ml/L Brightener, and 8 ml/L Carrier. At 53 mA/cm2 current density, a 25µm 

thick copper layer is plated in two hours. Although the copper layer is higher than the 

micro-mold, the excessive part formed a mushroom shape over the micro-mold and no 

short circuit was found.  After electroplating the micro-mold is stripped off in Acetone, the 

copper seeding layer is etched off by the Transene APS-100 copper etchant, and then the 

Ti layer is etched by the Transene TFTN Titanium etchant. 
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5.5.5 Insulating layer fabrication 

A 30µm thick negative tone Polyimide HD4100 is deposited between the first and the 

second copper coils as an insulating layer. To avoid the block of the first layer copper coil, 

Polyimide is initially spread over all patterned copper coil, and then is ramped to spin speed 

of 1500 rpm at an acceleration of 500 rpm/s and held for 50 seconds. The sample is soft-

baked on a hotplate at 90°C for 90 seconds and then ramped to 110°C and held for another 

90 seconds.  The via holes which connect the two copper layers are patterned on the 

Polyimide layer by UV exposure of 300 mJ/cm2 dose using a mask aligner.  3 minutes post 

exposure bake at 100 ºC is performed to increase the adhesion and selectively crosslink the 

exposed parts of Polyimide. The sample is developed in PA-401D for 10 minutes and then 

is rinsed in PA-400R. Afterwards, the sample is cleaned by Oxygen plasma RIE, followed 

by a curing at 250 ºC for 20 minutes to complete the imidization process and remove the 

residual solvents and photoresist. 

5.5.6 Second micro-coil layer fabrication 

Right before the fabrication of the second micro-coil layer, the sample is etched by 10% 

Sulfuric acid to clean the CuO layer built up during the process. The same Ti/Cu bi-layer 

structure is used for the second seeding layer. Ti layer is increased from 50 nm to120 nm 

to compensate for the roughness of the RIE surface. The copper layer remained 300 nm 

thick. The second micro-coil layer is fabricated by the same procedure as the first one. 

Lastly, AZ9260 photoresist is spun on the wafer as a protecting layer. 

The whole process could be summarized below: 
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Figure 5-10 micro coil fabrication process 

 Experiment and discussion 

 

Figure 5-11 probe station for device characterization 

The DC resistance and the inductance of the sample on the wafer are measured to pick up 

the good components through screening on probe station (Figure 5-11) with an LCR meter 

(Gwinstek LCR-821) at 200 KHz. The screened good diced sample is further measured by 

an Agilent 4294A impedance analyzer to check its AC resistance and inductance. It is 

found that the measured inductance matches well with the theoretical prediction, as shown 

in Table 5-4 and Figure 5-12. The measured resistance is higher than the theoretical one, 

which is due to the fact that the resistivity of the electroplated copper is higher than that of 

the bulk copper. 

Table 5-4 DC impedance  

 Average of measurement  FEA 

Inductance Resistance Inductance Resistance 
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Tx coil 3.21uH 6.42 Ohm 3.93uH 6.27Ohm 

Rotor coil 4.92uH 8.09 Ohm 4.74uH 7.38Ohm 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5-12 (a) Tx coil AC resistance; (b) Rotor coil AC resistance; (c) Tx coil AC 

inductance; (d) Rotor coil AC inductance. 

 Sensor assembly test 

The micro-coil device is wire-bonded to a test printed circuit board (PCB) with 35µm gold 

wires for further testing, as shown in Figure 5-13. In the test board an ASIC designed for 

a regular PCB is used to drive the micro-coil.   
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(a) 

 

 

 

 

 

 

 

 

 

(c)  
 

(b) 

Figure 5-13 (a) Sensor assembly; (b) Rotor; (c) Test set up 

 

(a) 

 

(b) 

Figure 5-14 (a) Sensor output transfer function; (b) Sensor linearity at different air 

gap. 

Despite the much smaller dimensions, the sensor functions very well when the air gap 

ranges from 0.5mm to 1.7mm. The sensor linearity error is less than 1.5% of the full 

scale, as demonstrated in Figure 5-13(b). It is thus concluded that this sensor can meet the 

requirements of most automotive applications in terms of accuracy. 
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 Conclusion and future work 

In this chapter we first investigate the scale-down effect of inductive position sensor. A 

scaled-down sensor has low signal strength due to the low Q factor and small area. To 

compensate for the weak signal, a resonant rotor is proposed. The design is first proved by 

numerical simulation using the model developed in chapter 2. To verify the micro-

inductive position sensor concept, a prototype by microfabrication is then developed. The 

inductive position sensor can be scaled down to 8 mm diameter using the micro mold and 

electroplating technique, which is the same size as a magnetic one. The sensor can still 

have the same signal strength level as an inductive sensor based on the PCB technology 

and it functions normally up to 1.6 mm air gap.  The sensor prototype can maintain 

reasonable accuracy over a wide air gap range.  

To commercialize this design, the system in package design is suggested, as demonstrated 

in Figure 5-15. In this design, the micro coil is fabricated on a ferrite substrate, which not 

only reduces cost compared to silicon, but also enhances signal strength and provides a 

magnetic shield for the ASIC and circuitry.  

(a) (b) 

Figure 5-15 (a) System in package design; (b) explosive view of substrate.  
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Chapter 6  

 Steering Torque Sensor 

 Introduction 

6.1.1 Steering torque sensor for electric power steering 

The electric power steering (EPS) system is gradually replacing the traditional hydraulic 

power steering (HPS) system in passenger vehicles to improve fuel efficiency and safety 

and reduce environment impact[52]. In EPS, the amount of steering effort can be 

significantly relieved when an electric motor applies an appropriate assistant torque in the 

same direction. The main merit of EPS over HPS is its improved fuel efficiency. HPS 

accounts for 3-5% in the energy consumption of a car [52], compensating the flow loss and 

mechanical loss of the hydraulic system, while the EPS system only consumes electrical 

energy when mechanical steering is demanded. Meanwhile, EPS also has a more compact 

package and is more environmentally friendly than HPS since it does not require the 

hydraulic components such as pump, hose and hydraulic fluid like HPS. Consequently, 

EPS saves space and causes no environmental hazard by simplifying the system to an 

electric motor, a torque sensor and an Electronic Control Unit (ECU).  

 

Figure 6-1 EPAS schematic arrangement. 
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A typical EPS system consists of four parts: steering mechanism, torque sensor, assist 

motor and controller, as illustrated in Fig. 6-1[53]. When the driver turns the steering 

wheel, the torque sensor detects the column torque. The ECU computes the motor current 

demand by using an assist torque map table, and then regulates the motor current 

accordingly.  

EPS system is a safety critical system [54], which requires a reliable and accurate torque 

sensor as its input. The main function of the steering torque sensor is to precisely measure 

the driver steering torque demand with high resolution and high speed. To meet such 

requirement, various torque sensing technologies have been developed by exploiting the 

structure response to the applied torque. When a torque is applied to a shaft, it results in 

the development of stress and torsion of the shaft, and the stress modifies some of the 

device characteristics. For example, the strain affects the resistance of conductive and 

semiconductor materials, and the magnetization of ferromagnetic materials. In general, 

torque sensors can be classified into two families based on what response parameter is 

being measured [55]. The devices of the first family measure the device characteristic 

change induced by the applied torque, while the devices of the second family measure 

small angles or small displacements resulting from the torsional motion.  

6.1.2 Devices based on material properties changes 

The first family of torque sensor measures the property change due to the deformation of 

the material. Traditionally, strain gauge is an important commercialized device under this 

category. The applied torque is measured through the resistance change in the securely 

attached gauge material.  A specially designed  gauge is positioned on the part to measure 

the strain components [56], and the strain measurement is then processed by the electronic 

unit to get the final torque signal. In the rotating shaft applications, the sensor performance 

is sensitive to the technique of gluing gauges directly on the shaft. Solutions like press-

fitting/welding show good results [57] but are heavy in their implementation. In addition, 

wireless communication between the strain gauges and the receiver has other technical 

difficulties such as the reliability and channel interference issue. Therefore, strain gauges 

are not used for automotive torque sensor application because of these difficulties. 



85 

 

Another family of torque sensor is based on the change in magnetic properties of the shaft 

itself.  The main component of such torque sensor is the magnetic circuit, consisting of a 

rotating shaft and a set of stationary coils. The stress induced by the applied torque will 

change the magnetic permeability of a steel shaft, which means the inductance of the coil 

will change whenever the applied torque varies [58]. Those sensors are noncontact and can 

have a high sensitivity with the appropriate arrangement of the cores [59].  However, such 

sensors are usually heavy because of the cores and coils surrounding the rotating shaft, and 

therefore are not easily implemented for automotive application. Miniaturization of cores 

and flat coil designs for torque sensors with sufficient sensitivity have been reported in the 

literature [60, 61]. One problem with this family of sensors is the hysteresis of the sensor’s 

output signal, which is caused by the hysteresis of the shaft material. Eddy currents in the 

metal shaft also limit their dynamic performance.  

Magnetostrictive amorphous materials have been attracting great interest in the torque 

sensor application in recent years. One design in the literature is to use Chevron shaped 

ribbons of (Fe–Si–B) amorphous material glued directly on the shaft [62], where a 

solenoidal coil enclosing the shaft, energized by an AC current, provides magnetic 

excitation. In order to avoid adhesion problems, a low pressure plasma spray deposition 

technique is used to deposit the magnetostrictive material (Fe–Ni–Cr) layer on the shaft 

[61]. In some other designs, the magnetostrictive material is permanently magnetized to 

eliminate the coil, in which the magnetic field is measured by Hall probes over the ring 

ends.  

6.1.3 Devices based on torsion angle changes 

This type of device measures the relative angle between the two ends of a compliant torsion 

bar linking the input and output shafts. The torsion bar size must be designed properly to 

ensure both safety and sensitivity at the same time. One method is to measure the angular 

position of the two ends of the torsion bar separately, which gives the torsion angle by the 

subtraction of the two positon angles. Thus, the angular position sensors have to be very 

precise in order to accurately measure the torque, as the error is the summation of two 

angular position signals. Another disadvantage of the use of two high precision position 

sensors is that the bandwidth of the sensors must be very high when the device rotates at 
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high speed. On the other hand, the benefit of such design is that it can be easily integrated 

in the existing mechanical structures of the HPS. 

Based on the relative angle measurement method, this family of torque sensors can be 

further classified as optical, capacitive, magnetic and inductive [63]. Numerous optical 

methods have been developed to measure torsion angle. Hazelden [64] proposed a method 

to measure the relative angular movement between the ends of a torsional shaft. Two 

rotating discs are fitted to the shaft, and each disc has a pattern of slots forming two 

concentric tracks of alternating transparent and opaque zones. One track of the slots of the 

two disks is in phase, while the other track of the slots is 180º out of phase. The torque is 

determined by measuring the amount of light transmitted by the varying overlap of the two 

discs. The degree of overlap between the slots on the two discs varies according to the 

amount of twist applied to the torsional bar. Ebi et al. [55] proposed an integrated optical 

non-contact torque measurement microsystem consisting of a glass integrated optical 

interferometer chip. In this system, ball lenses are used for collimation of measurement 

beams onto reflectors embedded in the shaft. A moire fringe method [65] has been 

validated under laboratory setting and shows high resolution. This method develops a series 

of concentric circular fringes using two superimposed circular gratings. These fringes 

move radially by the relative angular displacement of gratings. Modifications of speckle 

patterns [66, 67] also show good results. In general, the optical torque sensors provide good 

quality and high accuracy, but they are costly and difficult to package and integrate due to 

their fragile optical components and the requirement of clean environment, which makes 

it difficult to be adopted in automotive applications.  

The capacitive torque sensor is composed of two capacitive displacement sensors in order 

to measure the twist angle [68]. Differential capacitive sensor for measuring the relative 

angle [69] is noncontact, robust and compact. It has two rotatable electrodes placed 

between two sensor plates. The relative angle between the two rotors and the absolute 

positions of the rotor blades are calculated from the measurement of the capacitive coupling 

between different transmitting stator segments and a single receiving electrode. The 

drawback of this type of torque sensor lies in its high sensitivity to radial and axial 

displacements and high cost.  
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The torsional angle can also be measured magnetically [70, 71]. With this working 

principle, the twist angle between two rotating shafts, which are linked by a torsional bar 

[72], modulates the magnetic circuit. The shafts are subjected to a magnetic field. The 

applied torque introduces a change to the magnetic field, which can be measured by 

magnetic sensors such as the Hall sensor or AMR sensor. The magnetic torque sensors 

developed by Moving Magnet Technologies (MMT) are widely used in the current 

automotive market.   

Inductive measurement of the torsional angle is gaining popularity [12].  This type of 

sensor consists of two electrically isolated sensors that can function independently, which 

separately measures both input shaft and output shaft angles. The ECU then calculates the 

difference between the angles and multiplies it by the torsional stiffness to get the actual 

torque value. Besides the common benefits of inductive sensor such as low cost and 

robustness, the hysteresis of this method is low compared to direct torsion angle 

measurement sensors because the principle itself structurally does not include mechanical 

hysteresis. Secondly, common mode noises such as temperature or vibration effects are 

automatically canceled during difference calculation.    

In spite of these benefits, since inductive torque sensor comprises two inductive sensors in 

a compact space, the two angle sensor could interfere with each other. The receiving signal 

of two angle sensor can cross-talk to each other, i.e. sensor A not only receives the signal 

from its own rotor, but also receives the signal from the rotor of sensor B. Such cross-talk 

can introduce significant error if the sensor is not carefully design.  Furthermore, since the 

two oscillators are inductively coupled together, if the resonance frequency is close but not 

identical, they can produce beating and disrupt sensor function. In this chapter we first 

understand this problem via modeling and numerical simulation, and then validate our 

existing design through the experiments.  

 Design and parameters 

The inductive steering torque sensor can be modeled as two-stage transformer networks, 

as shown in Figure 6-3. The first stage is from the TX coils to the rotor. Eddy current is 

induced in the rotor through the inductive coupling. The filamentary rotor can be modeled 



88 

 

as a lumped resistor and an inductor in series. The inductance and resistance can be 

calculated with the Finite Element Analysis (FEA) method or using the modeling 

developed in Chapter 2. The electrical properties of the coils as determined by both 

methods are listed in Table 6-2, which show good agreement with each other. 

6.2.1 Design 

 

(a) 

 

(b) 

 

 

 

(c) 

Figure 6-2 (a) Steering torque sensor assembly. (a) sensor top view; (b) sensor iso 

view. 

The torque sensor consists of a stationary sensor PCB and two metallic rotors. These two 

rotors are mounted on two shafts, which are connected by a compliant torsional bar as 

demonstrated in Figure 6-2(a). Design parameters, listed in Table 6-1, were chosen to 

accommodate for the sensor in the given space while maintaining a good signal noise ratio. 
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Table 6-1 Design parameters 

6.2.2 ISTS oscillator equivalent circuit  

The equivalent circuit of the oscillator of ISTS can be modeled as a LCR network coupled 

through mutual inductance, as illustrated in Figure 6-3.  The corresponding electrical 

properties can be calculated using the method developed in chapter 2 or by FEA. The 

Description Name Value Unit 
Rotor1 

Thickness 
1Trt  0.1 mm 

Major radius 
1Rrta  19.5 mm 

Minor radius 
1Rrtb  7.97 mm 

Rotor2 
Thickness 

2Trt  0.1 mm 

Major radius 
2Rrta  25.0 mm 

Minor radius 
2Rrtb  15.66 mm 

TX coil 
Inner radius 

1Rtx  21.3 mm 

Outer radius 
2Rtx  26.8 mm 

Turns Ntx  4 n/a 
Trace width Wtx 0.2 mm 
Trace pitch Ptx  0.4 mm 

RX1 coil 
Inner spiral staring radius 

11sRrx  14 mm 

Inner spiral ending radius 
11eRrx  14.6 mm 

Outer spiral staring radius 
21sRrx  18.9 mm 

Outer spiral ending radius 
21eRrx  19.5 mm 

Trace width 
1Wrx  0.15 mm 

RX2 coil 
Inner spiral staring radius 

12sRrx  21.9 mm 

Inner spiral ending radius 
12eRrx  22.5 mm 

Outer spiral staring radius 
22sRrx  24.4 mm 

Outer spiral ending radius 
22eRrx  25 mm 

Trace width 
2Wrx  0.15 mm 
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corresponding values for those properties as determined by both methods are listed in table 

6-2, which shows good agreement. 

 

Figure 6-3 ISTS oscillator equivalent circuit 

Table 6-2 Electrical propertied of the coils 

The corresponding mutual inductance between the TX coils and the rotors at different air 

gaps is presented in Figure 6-4. The mutual inductance between the RX coils and the rotors 

at different air gaps and angles is presented in Figure 6-5, which shows that the signal is 

two orders stronger than the cross-talk. 

Description  Name Model  FEA  Unit 
TX coil resistance 2,1R  2.957 2.949 Ω 

Rotor1 resistance 
3R  88.72 87.77 mΩ 

Rotor2 resistance 
4R  101.90 102.78 mΩ  

TX coil inductance 2,1L  5244.6 5250.2 µH 

Rotor1 inductance 
3L  122.31 123.34 µH 

Rotor2 inductance 
4L  164.08 165.82 µH 

Mutual inductance of TX 
12M  4684.0 4557.3 µH 
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(a) (b) 

 
(c) 

 

Figure 6-4 Mutual inductance (a) TX coil and rotor 1, (b) TX coil and rotor 2, (c) 

Rotor1 and Rotor 2 

 

(a) (b) 
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(c) (d) 

(e) (f) 

(g) (h) 

Figure 6-5 Mutual inductance between the RX coils and rotors at different angle 

and air gap. 
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 Modeling 

When the equivalent circuit and its electrical parameters are determined, the sensor output 

can be simulated in the Simulation Program with Integrated Circuit Emphasis (SPICE). 

However, SPICE is very slow to simulate the transient behavior of the circuit. Moreover, 

SPICE is not capable of simulating sensor dynamics when the sensor electrical parameters 

change with time.  To address this issue, a lumped model is selected for the torque sensor, 

with its performance governed by nonlinear differential equations. These equations can be 

solved by using MATLAB. A SPICE simulation with fixed angle serves as a benchmark 

to validate the modeling. After the modeling is validated, the system dynamic behavior is 

further studied using this model. 

The model can be established from the current and voltage relation of the ISTS derived 

from KCL and KVL, as explained in chapter 2, i.e., 
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  (6-1) 

where the mutual inductance is expressed as jiijij LLkM  , with ijk being the inductive 

coupling coefficient between the inductors iL  and jL . Compared with the governing 

equation of micro-inductive position sensor, equation (6-1) has one more nonlinear resistor, 

which makes beating between two oscillators possible. Equation (6-1) is a system of stiff 

differential equations, which can be numerically solved with MATLAB ODE23S solver. 

Its corresponding SIMULINK model and SPICE model are demonstated in Figure 6-2 (a) 

and (b), respectively. 
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(a) 

 
 
 
 
 
 
 
 

 
(b) 

Figure 6-6 inductively coupled oscillator (a) Simulink model (b)SPICE model. 

Two coupled oscillators have 4 degree of freedom (DoF). Depending on the configuration 

of the capacitor and the coupling coefficient, the two oscillators can oscillate in 4 different 

modes: two oscillators are in opposite phase, same phase, quadrature phase or independent 

phase, as demonstrated in Figure 6-7. It should be noted that mode switching can change 

the operating frequency and the signal strength, which will change the sensor output 

accordingly. In order to ensure sensor accuracy, two oscillators should always operate in 

one specific mode. Therefore, the mode switching condition and the safety margin must be 

identified, which are elaborated in the following section by numerical simulation.  

In phase operation is preferred since the system Q factor is high and the signal strength is 

high. Two oscillators tend to operate at in phase mode when the coupling coefficient is 

high. Therefore two TX coils should be positioned closely to improve the coupling 
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coefficient. FEA and circuit simulation shows that the current layout can ensure in phase 

operation.    

 
(a) 

 
(b) 

 

(c) 

 

(d) 
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Figure 6-7 two oscillator (a) in opposite phase (b) same phase (c) quadrature phase 

(d) independently. 

Since the mutual inductance between the RX and TX coils is neglegible, the receiving 

signals can be expressed as: 
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Figure 6-8 Steering torque sensor system model  
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The overall system model comprises  5 main blocks, as shown in figure 6-8. The TX and 

RX coil block generate the electrical properties of TX and RX coils according to the model 

developed in chapter 2. The oscillator block generates an Eddy current on two rotors from 

the bias current input, which is regulated by the signal strength feedback PI controller. The 

receiving signal is generated by the signal generation block, and it is further demodulated 

and computed by the signal processing block. 

The bias current and signal strength at different air gap is illustrated in Figure 6-9 (a) and 

(b). It shows that receiving signal 2 is stable regardless of the air gap, while receiving signal 

1 is sensitive to the air gap of both rotors. The Figure 6-9 (c) shows only in very narrow 

region both bias currents are in feedback mode, in most region the bias current of the closer 

sensor is zero, where the signal strength is greater than the target value. It should be noted 

that too high signal strength could saturated the analog/digital converter of the signal 

processing circuit and introduce sensor error. Therefore, the rotor air gap needs be well 

controlled to ensure optimal sensor performance.        

(a) (b) 

 

(c) (d) 
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Figure 6-9 (a) Bias current and signal magnitude waveform when z13 = 1.4mm and 

Z24 = 1mm; (b) Bias current and signal magnitude waveform when z13 = 2.0mm and 

Z24 = 1.8mm; (c) Bias current at different rotor air gap combination; (d) signal 

magnitude at different rotor air gap combination. 

 Experiment 

6.4.1 Experiment set 

The design is to determine the torque by measuring the torsion angle of a compliant bar, 

which is further measured by the difference of two rotor angles. The purpose of the test is 

to validate that the torsional angle output has enough accuracy and the fluctuation of the 

output is within a certain range when both rotors are locked together and rotate 360 degrees.  

A test bench is developed to assess the performance of the steering torque sensor, which 

comprises of a mechanical fixture and a data acquisition system, as shown in Figure 6-10.  

The mechanical fixture can operate in two modes: fixed torsion angle mode and fixed rotor 

1 mode.  In the fixed torsion angle mode, the relative angle between the two rotors is fixed, 

and the whole assembly is driven by a step motor. This mode is used to measure the output 

fluctuation with respect to the steering angle. In fixed rotor 1 mode, the small rotor is fixed, 

while only big rotor can be freely rotated by the step motor. This mode is used to measure 

the cross-talk between two sensors. The data acquisition system consists of a 12 bit optical 

encoder detecting the step motor position, a NI DAQ device monitoring the sensor PWM 

output, and Labview software controlling the step motor and recording the data. 
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Figure 6-10 Experiment setup 

6.4.2 Sensor transfer function 

The test is first run in the fixed torsion angle mode. 7 torsion angle positions ranging 

from -8 degrees to 8 degrees, with increment of 2 degrees, are tested. The test result is 

shown in Figure 6-9. The torsion angle is calculated by, 

)360,mod( 21           (6-3)      

where 1  and 2  are angles of the two rotors, respectively.   ranges from -180 degrees 

to 180 degrees. 

The linearity of this design is ±1.2 %, and the sensor error has a period of 360/7 degrees. 

(a) (b) 

Fixture 
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(c) (d) 

Figure 6-9 (a) & (b) output for torsion angle of -8 and 8 degrees, respectively, (c) 

torsion angle output vs. steering angle, (d) torsion angle error. 

6.4.3 Cross-talk between two sensors 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6-10 (a) sensor output 1 when rotor 1 is fixed at different position and rotor 2 

is rotating, (b) output 1 change caused by rotor 2, (c) cross-talk compensation, (d) 

residue cross-talk after compensation. 
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Since the torsion angle is calculated by the difference of two angle sensor outputs, the 

cross-talk between those two angle sensors should be minimized. Otherwise, a 

sophisticated algorithm needs to be developed to compensate for the error caused by the 

cross-talk. In order to measure the cross-talk between the two sensors, rotor 1 is fixed to 

the fixture, and the output 1 from the sensor 1 is monitored while rotor 2 rotates 360 

degrees. Since the fluctuation of output 1 is only affected by the position of rotor 2, it 

represents the cross-talk between two sensors. Figure 6-11(a) and (b) show output 1 and its 

fluctuation when rotor 1 is fixed and rotor 2 rotates by 360 degrees. The data shows that 

the rotor 2 causes output 1 to change by ±0.1%, which is within the acceptable range for 

the ±1% sensor accuracy requirement. The cross-talk presents a regular pattern, which 

means that it is possible to be compensated by the two sensor outputs. By inspection the 

compensation function can be in the form: 

)cos(*)()360,mod( 22211121 baba         (6-4) 

where 1  and 2  are angles of the two rotors, and 1a , 2a , 1b and 2b  are compensation 

coefficients from curve fitting.  

With the compensation shown in Figure 6-10(c), the residual cross-talk is reduced to 

±0.04% (Figure 6-10(d)).  

6.4.4 Angle sensor linearity improvement 

The experiment shows that the cross-talk between two angle sensors is only ±0.15%, which 

means the cross-talk is not the major contributor of torsion angle error. It is thus concluded 

that the nonlinearity of two individual angle sensors is the main error source. The linearity 

of the angle sensor can be improved through rotor shape optimization and a linearizer in 

the signal processing stage.   
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6-11 (a) & (b) Sensor 1 & 2 linearizer look-up table, (c) sensor output after 

linearization, (d) sensor linearity. 

 Conclusion 

An inductive steering torque sensor is developed. A mathematic model of the sensor is 

developed and validated by FEA and SPICE circuit simulations. The design is then 

optimized using the developed model. A prototype is built and tested in the test bench, 

which gives the sensor accuracy of ±1.2% without any compensation. It is found that the 

cross-talk between two angle sensors is negligible, which suggests that the main error 

source of the sensor is the linearity of two individual angle sensors. Based on this finding, 

a piecewise linearizer algorithm is designed to improve the sensor accuracy, resulting in 

the sensor accuracy improvement to ±0.25% after a 17-points linearizer compensation. 
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Chapter 7  

 Passive Inductor-capacitor Sensor 

 Introduction 

Passive inductor-capacitor (LC) sensors are one of the key modules in a number of non-

contact measurement applications [73]. Compared to their active counterpart, the major 

merits of passive sensors include low power consumption and electromagnetic emission.  

One of the simple types of wireless passive sensors is an inductive coupling based inductor-

capacitor resonator. LC passive sensors use a transformer between an external readout coil 

and an inductor that receives power through the inductive coupling, and the readout coil 

detects the changes in the sensor wirelessly. Remote query capability is one of the main 

advantages of LC sensors. Sensor information can be obtained without physical 

connections, and thus LC sensors can be applied in harsh and sealed environments where 

physical access to the sensor is difficult or even impossible. Examples of these applications 

are the sensors on moving parts such as an automobile tire [74], patient health monitoring 

[75], and sensing under harsh environmental conditions [76]. The other advantage of LC 

sensors is their battery-free operation, which minimizes their size and maximizes extended 

continuous usage. The simple structure of LC sensors also achieves low cost. LC sensors 

date back as early as the 1960s, but has seen rapid growth in the past decade due to 

improvements to microelectromechanical systems. The development of Internet of Things 

(IoT) [77] for applications such as implantable sensors and wearable devices [78] further 

attracts attention to the LC passive wireless sensor research field. LC sensors comprise two 

magnetically coupled coils [79]: a sensor coil, which is connected to a capacitive sensor 

and forms an LC tank circuit, and an interrogator coil, which is connected to a measurement 

circuit. The resonance frequency of the tank circuit is a function of change in capacitance 

and inductance of the sensing elements. Most of the existing schemes detect the 

corresponding shift in resonance frequency using appropriate readout electronics and an 

impedance analyzer [80, 81]. Several techniques have been reported to measure the change 

in resonance frequency and produce an output [75, 82]. One of these techniques is to detect 

the resonance frequency and its shift by measuring the Phase-dip [75]. In this method, the 

phase of the impedance seen by the readout circuit is obtained over a wide range of 
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frequencies. From this impedance sweep information, the frequency of the minimum phase 

value is noted as minf ,  which is taken as the resonance frequency rf . It has been reported 

that rf  can deviate from minf depending on the quality factor Q and the coupling factor k 

of the system [83]. Similarly, it has been shown that the phase-dip measurement has a 

strong dependence on k, especially when the coils are in close proximity or when the 

coupling coefficient k is large [84]. The work presented in [81] reports that the maximum 

value of the real part of the impedance that occurs at rf is independent of the value of k. 

Among the methods listed above, the readout system and measurement procedure require 

either excitation at multiple frequencies or a frequency sweep, which is realizable but at 

the cost of increasing measurement time and expensive hardware, e.g. a Voltage Controlled 

Oscillator. Another disadvantage of the frequency sweep approach lies in  the errors 

associated with the transient behavior of the system [85]. Considering the above facts, a 

scheme that can obtain an accurate measurement output at a single frequency while 

minimizing the amount of hardware is desirable. 

Passive inductive position sensors without the excitation coil are demonstrated in this 

chapter. The sensor is made of PCB coil and off-the-shelf integrated circuit components. 

Since the excitation signal is only applied when the sensor is being measured, the emission 

and power consumption can be reduced. A signal processing and error compensation 

algorithm is discussed after analyzing the signal characteristics. 
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 Design and modeling of passive position sensor  

 

Figure 7-1 Inductive angle position sensor design.  

The inductive sensor includes three identical inductors made of wounded copper coils of 

35µm thickness on a 1mm thick two-layer PCB board. The coils are offset 120 degrees 

from each other. The rotor comprises seven eccentric circular-shaped copper loops, as 

shown in Figure 7-1.  

L2
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M2

R2

R0

L1

M1

R1

L3

M3

R3

 

Figure 7-2 Sensor equivalent circuit model 

The sensor can be modeled as a transformer (Figure 7-2). For angle sensing applications, 

the distance between the rotor and the coil is constant, while the coupling between the rotor 
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and the sensing inductor is a function of the rotor angle. In Figure 7-2, iL  and iR  are the ith 

sensing coil’s inductance and series resistance, respectively. iM  is the mutual inductance 

between the rotor 0L  and the ith sensing coil, which is a function of angle θ. These angle 

dependant parameters can be used to measure rotor angle. For simplicity of analysis, since 

the mutual inductances between 1L , 2L and 3L are significantly lower than iM , the mutual 

inductance between the sensing coils is neglected. 

The current and voltage relation of the equivalent circuit can be derived from the 

transformer theory in phasor form: 
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Therefore, the equivalent impedance of the receiving coil is: 
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Defining the quality factor of the rotor coil Q  and the coupling coefficient ik between the 

rotor coil and the ith sensing coil, i.e. 
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The equivalent inductance of the sensing coil is expressed as, 
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Under normal circumstance, i.e. 1Q , the equivalent inductance of the sensing coil can 

be approximated as, 

0
2 )( LkLL iiei           (7-6) 

Due to geometrical symmetry, the following equation is always valid: 

3..1,  iLLi           (7-7) 
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To calculate the angle position, cosine and sine signals are derived by α–β transformation 

[86]: 
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The inductance and the resistance of the sensing coil can be evaluated with the finite 

element method in ANSYS Q3D. Simulation results show when the rotor angle is 0 

degrees, coil L1 is covered by the rotor with the least area, resulting in minimum Eddy 

current induced on rotor and maximum inductance of L1. Conversely, when the rotor angle 

is 180 degrees, coil L1 is covered by the rotor with the most area, resulting in maximum 

Eddy current induced on the rotor and minimum inductance of L1. It also shows that more 

Eddy current is induced as air gap decreases; therefore, the fluctuation of coil inductance 
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from 0 degrees to 180 degrees is higher when the air gap between the coil and the rotor is 

smaller.  

(a) (b) 

Figure 7-3 (a) Equivalent inductance of coil L1 vs. rotor angle; (b) Fourier 

coefficient of inductance, C0 is not shown. 

Based on the numerical simulation result demonstrated in Figure 7-3, the square of 

coupling coefficient )(2
1 k  can be expanded into the following Fourier series: 
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Position angle can then be evaluated by:  
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(a) 

(b) 

Figure 7-4 (a) sine and cosine signal; (b) calculated angle and error 
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Figure 7-4 shows that for smaller air gaps, both sine and cosine signal strength is higher 

but the error is also larger. To understand the error source, the following error analysis is 

conducted: Sine and cosine signals can be expressed by:  
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Substituting equation (7-14) into the equation (3-5), the error of the sensor output is 

determined as 

1

42 )3sin()(~

c

cc  
        (7-15) 

Equation (7-15) shows that the error originates from the 2nd and 4th harmonics of coil 

inductance, while the 3rd harmonic effect is eliminated by the α–β transformation. The 

period of the error is 120 degrees. Equation (7-15) agrees with Figure 7-4(b). Since the 

error shows a regular pattern, it can be further compensated by equation (7-16), where the 

coefficients k and α can be derived by curve fitting. However, since the harmonics are 

different at different air gaps, the compensation coefficients should also change 

accordingly. Thus, the proposed error compensation method only works for a narrow air 

gap range.  

)
~

3sin(*
~ˆ   k        (7-16) 

Table 7-1 Error compensation comparison 

Gap (mm)  k  α(°)  Error w/o compensation 

(°) 

Error after compensation (°)
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2.0  1.15  15  2.29  0.19 

2.5  0.56  8  1.22  0.19 

3.0  ‐0.12  0  0.50  0.40 

Table 7-1 shows that error compensation works well with a small air gap, and the residual 

error comes from the high order harmonics and numerical error. However, with a large air 

gap, the improvement by error compensation is limited since the numerical error dominates. 

 Experiment design 

The inductance of the sensing coil can be evaluated using a LDC1614 Inductance-to-

Digital Converter by Texas Instruments. LDC1614 is composed of 4 front-end resonant 

circuit drivers, followed by a multiplexer that switches through the active channels, 

connecting them to the core that measures and digitizes the sensor frequency sensorf . The 

inductance is evaluated by: 

Cf
L

sensor
2)2(

1


          (7-17) 

The sensor system diagram is shown in Figure 7-5. The Inductance of three sensing coils 

is measured by the LDC1614, and the result is sent to microcontroller through I2C for signal 

processing.  
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Figure 7-5 System diagram 

 Discussion and conclusion 

In this chapter, a passive inductive position with a very simple structure is proposed. Such 

sensor expands the family of inductive position sensor. It can meet the tight power 

consumption and electromagnetic emission requirement, which is very difficult to meet by 

its active counterpart. The sensor performance is modeled analytically and then verified 

numerically. The sensor has good accuracy and is robust to air gap variation. Finally, a 

validation system with off-the-shelf components is proposed.  
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Chapter 8  

 Conclusion and future work 

The goal of this research is to increase the understanding of inductive angular position 

sensor (IAPS) performance and apply this knowledge to advance sensor development and 

function for automotive applications. In pursuit of this goal, the existing base of research 

knowledge is drawn upon to provide a guide for subsequent modeling, optimization and 

conceptualization of new applications. The work presented in this thesis has demonstrated 

and proven the usage of low-cost inductive position sensor for automotive applications. 

Nevertheless, a significant amount of work remains for the commercialization of these 

technologies and the integration of these sensors into existing commercial applications. 

 Conclusion 

Currently, modeling of IAPS is only limited to Finite Element Analysis (FEA), which is 

very time consuming and does not provide much insight of the sensor performance. A 

lumped model is crucial to understand the sensor performance and speed up the design 

optimization procedure. Taking the modeling of inductive angular position sensors as a 

starting point, extensive work has been dedicated to the characterization of IAPS 

performance by a lumped model through Neumann integration and the SIMULINK model. 

This model is further validated by FEA and Simulation Program with Integrated Circuit 

Emphasis (SPICE) simulation. The simulation results show very good agreement (within 

2% of difference). Meanwhile, the proposed model requires significantly less computing 

time than FEA and SPICE simulations, and thus can be used as an efficient means to 

simulate the performance of IAPS.  

The correlation between receiving signal imperfection and sensor output error is 

thoroughly investigated. The raw signal imperfection includes DC offset, amplitude 

mismatch, high order harmonics and quadrature phase shift error. The corresponding errors 

for both two-phase and three-phase configurations are studied and their specific pattern and 

period are presented. The analysis shows that three-phase configuration can effectively 

eliminate the error induced by 3rd order harmonics. However, a three-phase configuration 

is more expensive due to the extra sensing coil and corresponding signal processing circuit. 
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As an alternative, a modified rotor including the 3rd order harmonics shape is proposed to 

cancel out the 3rd order harmonics of the receiving signal. This method is proven to be 

effective and is widely used in other designs presented in this work. The correlation 

between sensor error and mechanical misalignment is further studied. Results obtained 

provide a design guideline of mechanical tolerance to meet a given sensor accuracy 

requirement. 

IAPS optimization using response surface methodology (RSM) in presented. The response 

surface model can be used to predict the responses of a series of design parameters, which 

makes the optimization procedure very efficient. In addition, RSM can reveal the 

functional relationship between performance and design parameters. 

A miniaturized inductive position sensor with 9mm diameter is developed. To overcome 

the weak signal due to the scale-down effect, a resonance rotor is introduced. After the 

concept is proven by numerical simulation, the copper structure is optimized specifically 

for the electrodeposition process and a sequence of microfabrication procedures is 

developed. The electrical properties of the device are characterized and show good 

agreement with the numerical simulation results. Lastly, the device is integrated into the 

sensor system to test sensor functionality. The test shows that the miniaturized inductive 

position sensor has moderate error (1%) over 0.4mm to 1.2mm air gap.      

Chapter 6 presents the development of the steering torque sensor, which measures the 

relative angle of two rotating objects. It demonstrates the fusion of two inductive position 

sensors. The challenge of such design includes the coupling between two oscillators and 

the cross talk between two sensors. It has been found that two inductively coupled 

oscillators can operate at in-phase and out-of-phase mode, and mode switching can 

introduce error in the sensor output. We determine the condition of the oscillation mode 

based on the eigenvalue of the governing equation. Two oscillators can be guaranteed to 

operate in-phase by matching the self-resonance frequency and increasing the inductive 

coupling coefficient. The cross talk between two sensors is minimized by proper layout of 

the coils and is further reduced by a compensation algorithm. The concept is first verified 
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using the model developed in chapter 2, and then validated by a prototype. The experiment 

results show such a design can be accurate to 0.05 degrees.     

Chapter 7 presents the development of a passive angle sensor. Passive inductive position 

sensors without the excitation coil can greatly reduce the power consumption and 

electromagnetic emission, which attracts more and more attention nowadays. 

 Future work 

This thesis is focused on the theoretical modeling and design optimization of IAPS. New 

concepts of IAPS, including sensor miniaturization, sensor fusion and a passive sensor, 

have been proposed. However, the commercialization and integration of these concepts 

still remain a challenge for future work.   

For the miniaturized IAPS, the main challenge lies in system integration. In order to make 

the sensor cost effective, the system-in-package design needs to be adopted. The device 

should be fabricated on a ferrite substrate to further reduce the cost. 

Since the steering torque sensor is a safety critical component, to develop an integrated 

sensor system that can meet the safety requirement remains a challenge. The sensor needs 

to have two independent outputs without interfering with each other, and so the ASIC for 

signal processing should be very carefully designed to meet the strict requirement. 

The passive sensor is a promising direction for IAPS due to its low emission and power 

consumption. However, its signal processing circuit is quite complicated and costly. A cost 

effective reading circuit needs to be developed in the future. 
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