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Abstract 

Interactions between plants and soil are increasingly recognised as drivers of ecosystems 

through dictating ecosystem properties and processes. My thesis explores the linkage 

between aboveground and belowground in Boreal peatlands, where soil (i.e., peat) is partially 

decomposed plant material, thus presenting opportunity for strong plant-soil relationships to 

arise. In an observational study, I show feedbacks between chemical plant traits (e.g., leaf N) 

of the dominant ecosystem engineer (Sphagnum moss or Carex sedge) and peat environment 

drive slow or fast cycles to regulate aboveground plant growth and belowground peat 

properties such as pH, moisture and nutrients, in two contrasting peatland types. In a field 

experiment, I show pure and mixed litters of dominant peatland plants (Sphagnum and 

Carex) decompose more quickly in their site of origin, consistent with a home-field 

advantage. Peatland plant-soil feedbacks shape ecosystem properties and decompositional 

processes, collectively dictating ecosystem function, such as nutrient cycling and carbon 

storage. 

Keywords 

Boreal peatlands, Carex sedge, ecosystem engineering, home-field advantage, litter quality, 

plant ecological strategy, plant functional traits, plant-soil interaction, Sphagnum moss 
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Chapter 1  

1 Introduction 

1.1 Plant-soil interactions 

Plant-soil interactions influence ecosystem properties and processes, collectively driving 

ecosystem functioning. Plants can shape biotic and abiotic soil properties through 

exerting physical, chemical and biological influences on the belowground (soil) 

environment. For instance, approximately 90% of all terrestrial aboveground carbon finds 

its way to the belowground system (Meier & Bowman, 2008) mostly through leaf litter 

inputs, such that the chemical composition of leaf litters are a major driver of soil organic 

matter properties. Differences in the chemical and nutrient status of leaf litter (litter 

quality) can affect soil pH (Finzi et al., 1998) and nutrient availability (Aert et al., 1999), 

which in turn can affect microbial community composition (Wardle et al., 2004; Bezemer 

et al., 2006). Belowground, the structure and activity of the microbial and other soil 

communities ultimately control rates of decomposition and nutrient cycling (Bardgett & 

van der Putten, 2014; Van Nuland et al., 2016). Thus, plant-induced changes to soil 

systems can, in turn, indirectly influence aboveground plant performance (van der Putten 

et al., 2013; 2016); these plant-soil feedbacks can be either positive, creating beneficial 

conditions for certain plant species, or negative, with adverse effects on certain species. 

Most plant-soil feedbacks are reported as negative among different species (van der 

Putten et al., 2013) promoting species co-existence (Bever, 2003). Less prevalent, 

positive feedbacks can promote species dominance (Klironomos, 2002), which is 

particularly evident in plants considered to be ecosystem engineers—dominant organisms 

that create and modify their habitats (sensu Jones et al., 1994). 

There is growing consensus that plant-soil feedbacks are key in shaping ecosystem 

properties (Bardgett et al., 2005; Kardol et al., 2013) such as plant community 

composition (De Deyn et al., 2004; Reinhart et al., 2012), microbial community structure 

(de Vries et al., 2012), and soil properties such as moisture and pH (Ehrenfeld et al., 

2005). Changes in ecosystem properties due to plant-soil feedbacks can have cascading 
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effects on the rates of ecosystem process (Bardgett et al., 2005) such as decomposition 

(Wardle et al., 2012; van der Putten, 2013; Van Nuland et al., 2016), nutrient cycling 

(Jassey et al., 2013), productivity, and succession (De Deyn et al., 2003). However, even 

though a large body of literature points to plant-soil feedbacks as drivers of ecosystem 

properties, a mechanistic understanding of how plant communities affect belowground 

systems is lacking. 

1.2 A trait-based approach to linking plant and soil 

While plant-soil feedbacks present a conceptual framework in which plant-soil 

interactions can be evaluated (van der Putten et al., 2013), linkages between plant and 

soil have been quantified and investigated mechanistically using a plant functional trait 

approach (Baxendale et al., 2014; Kardol et al., 2015). Plant functional traits are heritable 

characteristics that influence plant growth, reproduction or survival (sensu Garnier et al., 

2016) and are increasingly being used as tools to help understand plant community 

structure (Dolédec et al., 1996) and ecosystem functioning at various levels of spatial and 

biological organization (Shipley et al., 2016). Plant functional traits have been linked to 

both soil properties and plant growth, providing a solid platform for studying plant-soil 

feedbacks at a general level (Baxendale et al., 2014). 

Plant traits are typically measured at the individual plant level, but are often realised at 

the community-level. For instance, plant-specific leaf traits may dictate physiological 

processes of nutrient and energy acquisition, which in turn may govern how fast that leaf 

decomposes (Orwin et al., 2010). However, community-weighted means (CWM) of plant 

traits such as leaf nitrogen (N), relative growth rate, or leaf dry matter content can explain 

ecosystem-level variation in processes such as rates of litter decomposition (Garnier et 

al., 2004) and patterns in soil microbial communities (de Vries et al., 2012). Community-

weighted means account for the relative abundance of different species in a community 

and their trait value (Garnier et al., 2004) as suggested by the biomass ratio hypothesis 

(Grime, 1998), which postulates that the most dominant species proportionally have the 

greatest effect on ecosystem function. 
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1.3 Plant life history strategies relate to ecosystem-

level processes 

Variations in plant functional traits reflect adaptations to their physical environment, 

which often include trade-offs among different plant functions and life history strategies 

(Westoby & Wright, 2006; Lavorel et al., 2007; Bardgett et al., 2014; Garnier et al., 

2016). Plant strategy typically represents plant functional characteristics that perform 

well in some environments and poorly in others, but exist roughly along a spectrum of 

competitive, reproductive or resource-management (survival) traits (Grime, 1974; 1977). 

Thus plant strategy exists along a continuum of fast-growing, nutrient-demanding, but 

stress-intolerant species versus slow-growing, nutrient-conserving and stress-tolerant 

species. For instance, competitive ability of plants, such as sedges, have been correlated 

with tall height and fast growth (Keddy et al., 1998) enabling efficient capture and 

utilisation of resources such as light, water, nutrients or space, although these traits are 

not well suited for stressful or disturbed habitats (Grime, 1974). Conversely, plants that 

have traits such as being short in stature, low relative growth rates, and typically long-

lived (Wright et al., 2004), can endure stress such as nutrient limitations, shading and 

drought (Grime, 1974). Mosses are an example of stress-tolerant species that often 

inhabit nutrient-poor environments (Grime, 1990). 

At the individual plant level, differences in traits among species often relate to plant 

strategy. Perhaps most notable are the trade-offs between growth potential and leaf 

construction costs (investment) (Díaz et al., 2016) that relate to a strategy of resource 

acquisition or conservation (Reich, 2014), and dictate carbon (C), nutrient and water 

management of stems, roots and leaves. Resource-acquisitive plant species are typically 

short-lived, tall, fast-growing and possess resource-rich (C, N, P) leaves that are easily 

decomposable (labile) for soil microbes. At the other end of the spectrum resource-

conservers are typically shorter, slower-growing, and long-lived with nutrient-poor 

tissues (Wright et al., 2004; Reich, 2014), creating litter that is hard to decompose or 

break down (recalcitrant) by soil microbes. Species ecological strategy has been 

consistently correlated with litter decomposability, providing insights to plant-soil 
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feedbacks that drive carbon cycling (Cornwell et al., 2008). For instance, de Vries et al. 

(2012) found resource-conservative traits associated with slow growing species to be 

linked to soil fungal-based energy channels reflective of slow nutrient cycling, and 

resource-acquisitive traits aimed at fast growth were linked with bacterial-based energy 

channels and faster nutrient cycling. Therefore, plant strategy can play an important role 

in ecosystem processes. 

1.4 Plant traits and decomposition processes 

Plant leaf and functional trait combinations relating to the resource economics spectrum 

(e.g., growth rates, leaf N, height) are widely used as indicators of litter quality, that 

dictate how readily decomposable plant litter is by soil microbes. Absolute litter quality is 

quantified using physical (e.g., leaf toughness) and chemical (e.g., secondary metabolites) 

traits (Pérez-Harguindeguy et al., 2000), but is also related to plant growth and leaf 

construction that can be governed by environmental nutrient status. 

Traditionally, litter decomposition is regulated by climate (temperature and moisture), 

quality and quantity of plant litter, and type and abundance of the microbial community 

(Couteaux et al., 1995), although the importance of each factor varies with spatial scale 

(García-Palacios et al., 2016). The notions that litter quality (Cornwell et al., 2008) and 

soil microbes (van der Heijden et al., 2008) independently control decomposition rates at 

local scales are challenged by a relatively recent ecological theory called the home-field 

advantage, which posits that plants are more efficiently decomposed (broken down) in 

their native versus a foreign environment due to specific decomposer-litter relationships 

(Hunt et al., 1988; Gholz et al., 2000; Keiser et al., 2014). Microbial adaptation to the 

most prevalent plant litter is a hypothesis proposed to explain decomposition results in a 

number of home-field advantage studies (Vivanco & Austin, 2008; Ayres et al., 2009) 

but fails to corroborate results of others (St. John et al., 2011; Veen et al., 2015), 

highlighting the need for a more comprehensive understanding of decomposition 

dynamics at local scales. 
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1.5 Boreal peatlands as a relevant system 

Growing evidence points to plant-soil linkages as drivers of ecosystem functioning (e.g., 

nutrient cycling) in many systems, yet none other would be more apparent than in Boreal 

peatlands, where plants leave a legacy in partially decomposed plant material as peat. 

Partial decomposition of plant material is due to cool temperatures and waterlogged, 

anoxic and acidic soil conditions compounded by nutrient-poor plant material (Moore et 

al., 2007). Due to the slow decomposition of plants, Boreal peatlands are key players in 

global carbon dynamics storing one-third of the world’s soil C in only 2 to 3% of Earth’s 

land surface (Gorham, 1991). Peatland types (e.g. nutrient-rich, intermediate and poor 

fens to bogs) are classified by gradients of moisture, nutrients and pH, and characteristic 

aboveground and belowground dominant species (Rydin & Jeglum, 2013), making 

Boreal peatlands an ideal system to compare ecosystem states and identify potential 

mechanisms generating and/or explaining ecosystem properties and processes. Moreover, 

Boreal peatland plant communities are expected to shift under climate change conditions 

(Buttler et al., 2015; Dieleman et al., 2015, 2016) underscoring the need for a deeper 

understanding of peatland plant community dynamics and their role in driving plant-soil 

feedbacks. Although a significant research effort has been put forth to study the 

importance of plant community composition for ecosystem processes in peatlands (Ward 

et al., 2009; Buttler et al., 2015; Dieleman et al., 2015; Potvin et al., 2015; Robroek et 

al., 2015; Ward et al., 2015), studying plant-soil interactions and feedbacks from a 

functional trait perspective has not been extensively done, providing a novel opportunity. 

1.6 Thesis rationale and objectives 

To investigate the role of plant-soil feedbacks in driving peatland properties, I studied 

plant communities, plant functional traits, and soil properties across two fen peatlands 

differing in nutrient content, hydrology, and dominant plant functional type to link peat 

properties to plant functional traits in the context of ecosystem engineering (Chapter 2). 

Following, I performed a reciprocal transplant litter decomposition experiment to 

examine how plant-soil feedbacks control ecosystem processes such as decomposition in 

the context of the home-field advantage (Chapter 3). In both chapters I consider the plant 
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strategy framework, specifically the ‘fast-slow’ spectrum indicating litter quality, to study 

plant-soil linkages and gain a mechanistic understanding of plant responses and effects on 

ecosystem-level processes. My specific objectives were to:  

1) Quantify the relationships between peatland plant species abundance, plant 

functional traits and peat variables at two contrasting peatland (fen) sites using 

multivariate ordination techniques in an observational study. 

2) Test for the home-field advantage using two dominant peatland plants (Sphagnum 

moss and Carex sedge) in two peatland types differing in nutrient status in a field 

experiment. 

In the observational study (Chapter 2), I investigated how plant traits are related to 

belowground peat properties in two peatland types differing in nutrient status. I assessed 

aboveground plant community composition (richness and abundance), collected and 

analysed leaves for aboveground plant traits, and collected peat to quantify peat 

environments. I used spectroscopy techniques to identify organochemical compounds in 

the peat, and multivariate ordinations to quantify relationships among species-traits-

environment and to compare compositional similarity. I used plant strategy (litter quality 

and chemistry) to mechanistically explain the engineering of peat conditions by the 

ecosystem engineers: Sphagnum and Carex. In the field experiment (Chapter 3), I 

measured the decomposition rates (mass loss) of two dominant peatland plants to test for 

specific plant-soil relationships known as the home-field advantage. This field 

experiment was performed using pure and mixed plant litters of Sphagnum-moss and 

Carex-sedge. I also measured aboveground (temperature and relative humidity) and 

belowground (pH, moisture, available N, microbial biomass) environmental conditions 

pertinent to decomposition. I used a set of equations that quantifies the home-field 

advantage, allowing me to separate differences in mass loss attributed to litter or site 

quality. I discussed mechanisms to explain the home-field advantage results of pure and 

mixed litters. In Chapter 4, I discussed how results from my studies provided evidence 

for plant-soil feedbacks in dictating peatland properties (fen conditions) and processes 

(decomposition dynamics). I also discussed potential caveats of my work, and concluded 
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by suggesting avenues of further research that would enhance our understanding of plant-

soil feedbacks based on my results. 
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Chapter 2  

2 Boreal peat properties link to plant functional traits of 

ecosystem engineers 

2.1 Introduction 

Understanding the structure and composition of plant communities (Cornwell & Ackerly, 

2009), and identifying mechanisms affecting variation in species distribution 

(Klironomos, 2002), are major goals in community ecology (McGill et al., 2006). Plant 

community composition results from a series of abiotic and biotic filters (Garnier et al., 

2016), where plant strategy (sensu Grime, 1977) is put into a context of physiological 

tolerances and ecological trade-offs (Westoby & Wright, 2006). However, an often 

overlooked mechanism of community structure is the presence of certain organisms 

exerting a strong influence on the distribution of other species and the environment 

through ecosystem engineering. Ecosystem engineers are organisms that directly or 

indirectly influence the flow of resources for other species, and in doing so, modify, 

create and maintain habitats (sensu Jones et al., 1994). While all organisms to some 

degree engineer their environment (Wright & Jones, 2006), some species strongly affect 

community organization and species abundance through environmental feedbacks that 

facilitate their own dominance and govern local scale patterns of species richness (Jones 

et al., 1997). 

Plant ecosystem engineers generally modify their ecosystem by altering local abiotic 

factors, creating strong feedbacks between the aboveground plant community and the 

belowground soil environment that favour their own expansion. In doing so these 

ecosystem engineers can modify many core ecosystem properties, including soil moisture 

and pH, as well as nutrient availability. For instance, fast growing plants with high 

nutrient demands tend to produce nutrient-rich, labile litter that facilitates faster 

decomposition, and increases soil nutrient availability, while slow growing plants with 

low nutrient demands tend to produce nutrient-poor, recalcitrant, litter that facilitates 
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slower nutrient cycling and reduces soil nutrient availability (Reich, 2014). These life 

history trade-offs have more recently been placed within a trait-based approach to 

examining ecosystem engineering (Bouma et al., 2012; Emery & Rudgers, 2014). Plant 

functional traits are any heritable physiological, morphological or phenological 

characteristic that influence fitness through plant growth, reproduction, or survival (sensu 

Garnier et al., 2016). Plant functional traits can be used to understand plant community 

structure (Dolédec et al., 1996), and can predict ecosystem functioning for a wide range 

of environments at various levels of spatial and biological organization (Shipley et al., 

2016). Investigating plant functional traits is seen as a robust method to determine how 

plant composition, and the associated diversity among traits, can reveal underlying 

ecosystem-level processes attributed to ecosystem engineers (Petchey & Gaston, 2002). 

Understanding the role of plant functional traits, and the relationship between 

aboveground vegetation and belowground soil variables, is especially important in Boreal 

peatlands, where Sphagnum moss has long been thought of as an ecosystem engineer 

(van Breeman, 1995). Sphagnum is a key peat-forming bryophyte in Boreal ecosystems. 

Slow growing and producing nutrient-poor litter, Sphagnum mosses facilitate large 

accumulations of peat that are important carbon sinks (van Breemen, 1995). However, 

recent field (Buttler et al., 2015) and laboratory (Dieleman et al., 2015) experiments have 

demonstrated that Sphagnum-dominated peatlands can shift towards sedge-dominated 

communities under future climate change conditions. Graminoid species (including 

sedges of the genus Carex) have not traditionally been considered ecosystem engineers 

(but see Crain & Bertness, 2005); however, the distributions of both Sphagnum and 

Carex species are related to resource gradients (e.g. soil moisture, soil pH, nutrient 

availability) that largely affect the peat accumulation of the dominant peatland plant 

functional type (Rydin & Jeglum, 2013). Thus, both Sphagnum-moss spp. and Carex-

sedge spp. may be considered ecosystem engineers as they are both linked to abiotic 

changes related to the chemical composition of living and dead plant material (Belyea & 

Clymo, 2001; Crain & Bertness, 2005). 

Despite the growing popularity of utilizing plant functional traits in deciphering 

ecosystem engineering, the trait-based approach has not addressed engineering in Boreal 
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peatlands where Sphagnum and Carex traits drive a tug-of-war over peatland moisture, 

pH and nutrients levels that ultimately dictate peat accumulation and therefore carbon 

storage. In a mechanistically-based observational study I quantified vegetation 

community composition, plant functional traits, and peat-soil variables to elucidate 

engineering mechanisms driving plant community structure and carbon storage in two 

contrasting peatland sites differing in resource status and dominant plant growth form. 

Specifically, I use peat spectral organochemical properties and a series of statistical 

ordination techniques to explore the link between plant traits and peat quality, and 

explain how different plants can be linked to ecosystem level processes, such as 

decomposition and nutrient cycling. 

2.2 Materials & Methods 

2.2.1 Study site 

The study was performed in a Boreal peatland complex approximately 40 km southwest 

of White River, Ontario, Canada (48°21’N, 84°20’W) in August 2015. The study sites are 

a nutrient-poor and an intermediate nutrient fen, located 2 km apart, which are a part of a 

long-term research-monitoring project established by the Ontario Ministry of Natural 

Resources and Forestry. For brevity these sites will be hence referred to as the ‘poor fen’ 

and the ‘intermediate fen’, respectively. Maps of the site can be found in Appendix A. 

The region experiences a mean annual temperature of 2.1°C and a mean annual 

precipitation of 980 mm (see McLaughlin &Webster (2010) for a full site description). 

The intermediate fen (10.2 ha) is mostly open, delineated by coniferous forest with two 

main tributaries running along the northern and southwestern edges. The poor fen (4.5 

ha) contains forested and partially treed areas, and is bounded by boreal forest and a 

lentic lake.  

Prior to this study a full vegetation survey had not been performed. However, as 

established here, the intermediate fen area is dominated by Carex sedges (C. oligosperma 

Michx., C. stricta Lam.) and ericaceous shrubs such as sweet gale (Myrica gale L.), and 

leatherleaf (Chamadeaphne calyculata (L.) Moench) with sporadic patches of Sphagnum 
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moss as the main type of bryophyte. The dominant vegetation of the poor fen includes 

Sphagnum moss (S. magellanicum Brid., S. angustifolium (C.E.O. Jensen ex Russow) 

C.E.O. Jensen, and S. fuscum (Schimp.) Klinggr., with lesser amounts of S. centrale 

C.E.O. Jensen, and S. fallax (Klinggr.) Klinggr.). Trees and shrubs at the poor fen include 

black spruce (Picea mariana (Mill.) B.S.P.), tamarack (Larix laricina (Du Roi) K. Koch), 

leatherleaf, and bog Labrador tea (Rhododendron groenlandicum Oeder), with low 

densities of lowbush blueberry (Vaccinium angustifolium Aiton), Canadian blueberry 

(Vaccinium myrtilloides Michx) and sweet gale. Ground cover other than Sphagnum 

includes stiff clubmoss (Lycopodium annotinum L.), small cranberry (Vaccinium 

oxycoccos L.), creeping snowberry (Gaultheria hispidula (L.) Muhl. ex Bigelow), and 

low densities of C. disperma Dewey. 

2.2.2 Sampling design 

Five 1×1 m plots were randomly selected from representative 25×25 m areas in both the 

poor and intermediate fens. Within each site, the minimum distance between plots was 1 

m, and the maximum distance between plots was 20 m. Vegetation surveys were 

performed in each 1×1 m plot to assess species richness as well as each species’ percent 

cover. Plant species were identified in the field using Legasy (1995) and Newmaster et al. 

(1997). Species percent cover was measured using an adapted Braun-Blanquet scale by a 

single observer as recommended by Rochefort et al. (2013). Alongside plant species 

composition, ten aboveground functional trait measurements were made using material 

collected from each species in every 1×1 m plot in accordance with Pérez-Harguindeguy 

et al. (2013). Surface peat samples (20×20×25 cm) were collected alongside plant 

community and trait data from the north-facing side of each plot to assess 19 

environmental variables. 

To quantify functional traits three upper, photosynthetically active leaves were collected 

from each vascular species, while whole moss shoots were collected from Sphagnum 

mosses. Total plant height was also determined in the field at the time of leaf collection. 

The collected leaf and moss samples were then stored in plastic bags and kept cool and 

moist until further processing. In the lab, specific leaf area (SLA), wet and dry leaf 
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weight, leaf thickness index, leaf area, leaf mass per area, as well as leaf C and N content 

were determined. Specific leaf area is defined as the one-sided leaf area (cm2) divided by 

dry weight (g) and was determined by a digitally scanning the three leaves collected from 

each species at each plot and calculating area using the Image J program (v1.49; 

Rasband, 2016). In the cases of mosses, photosynthetically active whole shoots were used 

as the functional analogue of a leaf as done by Bond-Lamberty & Gower (2007). Wet leaf 

weights were obtained before scanning and leaves were subsequently dried for 48 hours 

at 60ºC to calculate the leaf dry matter content (LDMC), which represents the dry weight 

(mg) divided by the wet weight (g). Leaf thickness index was calculated as the inverse of 

SLA × LDMC (Vile et al., 2005). Leaf area and leaf mass were obtained as plant traits 

after calculating SLA, and leaf mass per area (LMA) was calculated as the inverse of 

SLA (Wright et al., 2002). 

Total C and N leaf concentrations were measured for 14 species using a combustion 

autoanalyser (vario MAX CN, Elementar) with glutamic acid as calibrant and birch leaf 

as the quality control. The same dried leaf samples that were used to determine SLA were 

ground using an electric grinder prior to analysis; however, species were pooled by site to 

obtain the minimum 0.2 g material required for analysis. Carbon-to-nitrogen ratios (C:N) 

were calculated using the total C and N values and treated as a separate plant functional 

trait. 

Intact peat monolith samples were collected manually using a key-hole saw, wrapped in 

aluminum foil and kept in a 4 ºC fridge until processed. Litter biomass was determined 

by collecting senesced vegetation from the surface of each peat monolith and weighing it 

after drying (48 h at 60 ºC). A 5×5×5 cm subsample of peat was extracted from the centre 

of each peat monolith for coarse root biomass (>2 mm diameter); roots were washed from 

surrounding peat matrix and oven dried at 60 ºC for 48 h. Gravimetric moisture content 

was determined from another 5×5×5 cm of subsampled peat dried at 60 ºC for 72 h using 

the formula: 

Moisture content (%) = (wet weight – dry weight)/wet weight × 100.  
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The same peat samples were further dried at 105ºC for 24 h before determining organic 

matter (carbon) content via loss-on-ignition (LOI) at 550ºC for 8 h (Chambers et al., 

2011) using the equation: 

Organic matter content (%) = (dry weight105 ºC – dry weight550 ºC) × 100. 

The pH of peat samples was determined using 2 g dry weight equivalent of fresh peat in 

11 mL of distilled water using a calibrated glass probe, after stirring occasionally for one 

hour. The filtrate of the pH sample was used to determine electrical conductance (EC) 

following vacuum filtration using Whatman #42 filters, and measured using a glass 

electrode. Available nutrients (PO4
-3, NO3

- and NH4
+) were extracted from each peat 

sample by shaking 5 g dry weight equivalent of peat in 40 mL of 2 N potassium chloride 

(KCl) to liberate nitrate and ammonium, or 40 mL Bray’s Solution (dilute NH4F in HCl) 

for 1 hour to liberate phosphate, followed by filtration through Whatman GF/A filter 

paper. Available PO4
-3 was analysed using the fluoride colourimetric method, while 

available NH4
+ was measured by the indophenol-blue method and NO3

- was measured by 

the hydrazine method using a Technicon AA3 autoanalyzer. 

Heterotrophic (basal) respiration was determined for 35 g wet weight subsample of peat 

with a Licor multiplexer Infrared Gas Autoanalyzer (IRGA LI-8100A and Multiplexer 

unit LI-8150) in 250 ml Mason jars with approximately 2 cm headspace. The quantified 

CO2 flux values are expressed as mL CO2 / g dry weight / h. Following basal respiration 

measurements, substrate-induced respiration was performed in order to calculate 

microbial biomass. Samples were amended with 10 mg glucose and respiration was 

measured for an additional 12 hours. Microbial biomass (mg CO2-C / g dwt) was 

calculated according to Anderson and Domsch (1978) based on the lowest respiration rate 

(flux-CO2) prior to the commencement of microbial growth: 

 Microbial biomass C = 40.4 × flux-CO2 + 0.37. 

Metabolic quotient (qCO2) was calculated as the basal respiration-to-biomass ratio. In 

doing so I quantified the amount of CO2 produced per unit microbial biomass C as a 

measure of microbial carbon resource use efficiency. 
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To determine decomposition rates of Carex and Sphagnum litters between poor and 

intermediate fen sites, mass loss was measured in the field over one year. Sphagnum and 

Carex litters were collected from both poor and intermediate fen sites and treated as 

separate litter types (2 plant types × 2 sites). Senesced plant material was air dried for two 

weeks, and used to create 40 litterbags containing 1 g dry weight equivalent litter in a 

9×10 cm litterbag with a mesh size of 1 mm. Eight litter bags of each plant type were 

placed on the peat surface of the 1×1 m sample plot (2 subsamples at each corner) (2 

plant types × 2 sites × 5 plots × 8 litterbags = 80 litterbags). Total mass loss (%) was 

calculated after one year. 

Lastly, Fourier transform infrared spectroscopy (FTIR) was performed on a 5 g dry 

weight equivalent subsample of the surface peat to characterise the organic chemical 

functional groups present in the peat. Fourier transform infrared spectroscopy identifies 

chemical compounds in peat through the use of the vibrational characteristics of 

structural chemical bonds (Artz et al., 2008), and can distinguish between carbohydrates, 

lignins, cellulose, fats, lipids and waxes. Generally, it is used as an indicator of organic 

matter quality or decompositional processes and the development of peat organic 

materials (Artz et al., 2008; Broder et al., 2012). Each subsample was extracted from an 

undisturbed section of the sampled peat monolith. Subsamples were freeze-dried and 

ground with an electric grinder prior to analysis. The FTIR spectra of 0.5 g homogenised 

peat sample were recorded using a Tensor 27 series (Bruker Optics Ltd, Milton, Ontario) 

equipped with a Golden Gate ATR sample loading system (Specac Inc., NJ, USA). 

Spectra were acquired by taking the average of 200 scans at 4 cm-1 resolution over the 

wavenumber range of 500-4000 cm-1 (Table 2.1). To compare FTIR spectral differences 

in poor and intermediate fen peat, means and 95% confidence intervals of the absorption 

intensities were calculated for all wavenumbers. To compare decomposability of the 

different peats, humification indices were calculated from FTIR spectral data using ratios 

of absorption intensities of aromatic, aliphatic, carboxylic acid and phenolic moieties to 

polysaccharides, which reflect source plant material and decomposability through the 

relative proportions of complex substances to easily degradable compounds (Broder et 

al., 2012). Each ratio was calculated at the plot level first, and then averaged to obtain a 

site-level humification index.
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Table 2.1 Organochemical spectral properties of poor and intermediate fen peat. 

Mean (± SE) absorbance intensities and assigned absorbance bands for organochemical compounds in poor and intermediate fen peat 

identified using Fourier transform infrared spectroscopy. One-way ANOVA was used to test for differences between site means. 

Wave 
Number 
(cm-1) 

Chemical Intermediate Fen 
Average (± SE) 

Poor Fen Average 
(± SE) F(1,8) P 

720 Long chain alkanes 0.001 (0.0002) 0.0050 (0.0027) 12.2 0.008 
835 Lignin 0.004 (0.0005) 0.0050 (0.0029) 0.651 0.443 
1030 Polysaccharides 0.092 (0.0022) 0.089 (0.0068) 0.639 0.447 
1265 Lignin 0.027 (0.0029) 0.028 (0.0025) 0.122 0.736 
1371 Phenolic (lignin) and aliphatics 0.027 (0.0036) 0.029 (0.0020) 0.351 0.570 
1426 Humic acids (caryboxylate/carboxylic structures) 0.027 (0.0034) 0.024 (0.0020) 0.511 0.495 
1450 Phenolic (lignin) and aliphatics 0.027 (0.0031) 0.020 (0.0019) 3.91 0.083 
1475 Wax 0.020 (0.0024) 0.011 (0.0017) 12.6 0.007 
1515 Lignin-like/phenolic structures 0.033 (0.0034) 0.017 (0.0022) 20.1 0.002 
1550 Proteinaceous compounds 0.033 (0.0041) 0.015 (0.0024) 19.1 0.002 
1650 Aromatics 0.046 (0.0046) 0.029 (0.0029) 14.0 0.006 
1708 Free organic acids 0.022 (0.0021) 0.027 (0.0020) 4.31 0.068 
1720 Carboxylic acids, aromatic esters 0.021 (0.0021) 0.028 (0.0019) 10.8 0.011 
2850 Fats, wax, lipids 0.035 (0.0023) 0.041 (0.0022) 7.27 0.027 
2920 Fats, wax, lipids 0.041 (0.0023) 0.050 (0.0033) 9.53 0.015 
3340 Cellulose 0.054 (0.0019) 0.083 (0.0041) 125.5 <0.000 

Humification indices 
1515/1030 Phenolic index 0.36 (0.045) 0.19 (0.008) 14.74 0.005 
1650/1030 Aromatic index 0.55 (0.066) 0.36 (0.016) 7.82 0.023 
1720/1030 Carboxylic acid index 0.23 (0.026) 0.32 (0.004) 11.47 0.010 
2920/1030 Lipid index 0.46 (0.035) 0.57 (0.028) 5.56 0.046 

Note: significant p-values (p≤0.05) are bolded; N=5. 
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Absorption peaks indicative of structural units in organic matter were used as indicators 

of peat organic matter quality and identified according to Niemeyer et al. (1992). 

2.2.3 Data analyses 

Plant community data were assessed for species richness (S), percent cover as sample 

abundances (N0), Shannon’s entropy (H), Shannon’s diversity index (N1) and Pielou’s 

evenness (J) for each plot using the vegan package in R (version 3.1.2; R Development 

Core Team). Plant trait data were used to calculate functional diversity indices (i.e. 

functional richness, evenness, divergence, dispersion, Rao’s quadratic entropy) using the 

dbFD command in the FD package (Laliberté & Legendre, 2010), to characterise the 

diversity of species traits among sampled plots. See Garnier et al. (2016) for full a 

description of indices used. Community weighted means (CWM) for each trait were also 

calculated for each plot using: 

 CWMtrait = S (pi × xi) 

Where CWMtrait is the CWM for trait x, pi is the percent cover of species i in the 

community, and xi is the trait value for the species i. One-way analysis of variance 

(ANOVA) was used to characterise and quantify the difference in mean values of plant, 

trait and peat-soil variables between these two specific fen sites. For the decomposition 

litterbags, I used a two-way ANOVA to examine the main and interactive effects of 

decomposition rate between poor and intermediate fens sites, as well as between 

Sphagnum and Carex plant litters. These statistical analyses of variables were used to 

quantify the comparisons between the two sites studied. 

To examine how poor and intermediate fen sites were structured with respect to plant 

composition, and the composition of species traits, and peat soil conditions, separate 

Bray-Curtis percent similarity matrices were constructed for plant community 

composition (27 species total), peat-soil variables, and plant species functional trait 

composition using the vegdist function in the vegan package of R. Dissimilarities were 

visualised using the metaMDS function to compute non-metric multidimensional scaling 
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(NMDS) ordination plots, and quantified using the adonis function to perform 

PERMANOVA. Simper analyses were also used to determine the contribution of 

individual species, peat variables or traits to the respective overall Bray-Curtis 

dissimilarity using the sim command in the vegan package (Clarke, 1993). The standard 

use of NMDS is to create a two-dimensional representation of species composition, 

where each data point represents the composition of species at a certain sampling location 

(i.e. plot). Data points that group close together on the NMDS represent plots that are 

more similar in species composition than data points that are further apart. For our peat-

soil and CWM trait values, the NMDS plots were similar, in that each data point 

represented the composition (environmental or trait, respectively) of each plot. However, 

in addition to these ordinations, I performed NMDS with PERMANOVA as described 

above using a trait × species matrix. In this ordination, trait composition uses species 

rather than sites, and the output presented becomes a representation of trait composition 

for each species. Thus data points that cluster close together represent species that have 

similar trait compositions, while data points that are further apart, represent species that 

differ in trait composition. Prior to analysis, species were assigned dominance to fen type 

(binary poor or intermediate fen) based on the total abundance of that species at each site, 

with the criteria of at least 51% overall abundance in one site or another. 

Lastly, I used the co-inertia analysis RLQ (R-mode Linked to Q-mode) to relate 

characteristics of plant traits to the characteristics of the environment (Dolédec et al., 

1996); using three data matrices: species × plot (L), plant trait × species (Q), and 

environmental variables × plot (R). Relative percent cover of the species and their 

associated traits used in RLQ analysis can be found in Appendices B and C, respectively. 

Initial correspondence analysis (CA) was performed on the species × plot data, while 

principle components analysis (PCA) was performed on the plant trait × species, and 

environmental variables × plot data. Subsequently both environmental (R matrix) and 

trait (Q matrix) ordinations were constrained with species (L matrix) scores for the RLQ 

analysis using the dudi.pca command, and RLQ analysis was carried out with the rlq 

command in ade4, a support package for vegan (Dray & Dufour, 2007). 

RLQ is thus performed via a double inertia analysis of two arrays (R and Q) with a link 
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expressed by the contingency table (L), where the rows of L (sites) corresponded to the 

rows of R (sites) and the columns of L (species) corresponded to the rows of Q (species) 

(Dray & Dufour, 2007). Permutation tests (Monte Carlo, n= 999) were performed to test 

whether sites (model 2), species (model 4), and sites and species (model 5) scores could 

be explained by trait-environment relationships using the randtest function. The final 

RLQ product is presented as a three-way plot in which species-trait-environment 

relationships are interpreted by correlating the spatial location of objects in the co-created 

plots. Subsequent fourth-corner analysis was performed to test the strength of the 

pairwise relationships between environmental conditions and plant traits using Dray & 

Legendre’s (2008) two-step approach which combines results of 1000 permutations of 

model 2 and 4 to obtain significance (Sterk et al., 2013). All calculations were completed 

using the ade4 package (Dray & Dufour, 2007). 

2.3 Results 

2.3.1 Comparison of site characteristics 

The average species richness (± SE) was 2.5 times greater in the nutrient poor fen (15.2 ± 

1.2 species/m2) compared to the intermediate nutrient fen site (6.0 ± 1.1 species/m2) (F1,8 

= 36.2, P < 0.001). The sum of percent cover of vegetation for all species at a plot was 

not different between sites (poor = 218.4 ± 18.5%; intermediate = 182.3 ± 20.7%) (F1,8 = 

1.69, P = 0.23). See Appendix D for a summary of plant community diversity descriptors. 

Several peat-soil properties differed between the poor and intermediate fen sites (Table 

2.2); the intermediate fen had characteristically higher pH, root biomass, metabolic 

quotient, and total available N than the poor fen, while the poor fen site had greater 

vegetative biomass, moisture, and organic matter. Electrical conductivity, available 

phosphate, and microbial biomass did not differ between the sites (Table 2.2).  
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Table 2.2 Plot and peat-soil variables of the poor and intermediate fen. 

Summary of peat-soil environmental (plot) conditions (average ± SE) of the nutrient-poor 

and intermediate nutrient fen sites located near White River, Ontario. One-way ANOVA 

was used to test for differences between site means.  

Variable Intermediate Fen 
Average (± SE) 

Poor Fen 
Average (± SE) F(1,8) P 

Vegetation biomass (g) 0.5 (0.2) 5.0 (1.6) 8.18 0.021 
Litter biomass (g) 3.7 (1.8) 2.1 (0.7) 0.72 0.420 

Root biomass (g/cm3) 7.4 (1.6) 2.6 (0.5) 8.96 0.017 
pH (in dH20) 5.4 (0.0) 4.8 (0.1) 64.27 <0.001 
EC (dS/m) 73.2 (6.2) 80.5 (2.9) 1.12 0.320 

Moisture content (%) 87.8 (0.4) 90.1 (0.9) 6.37 0.036 
Organic matter (%) 83.7 (3.6) 97.8 (0.3) 15.00 0.005 
Basal respiration  

(mL CO2/g dry weight/h) 
0.1 (0.0) 0.1 (0.0) 1.99 0.196 

Microbial biomass  

(mg CO2-C/g dry weight) 
3.2 (0.4) 5.0 (0.7) 4.67 0.063 

Metabolic quotient 0.02 (0.0) 0.01 (0.0) 22.40 0.002 
PO4

-3 (mg/L) 1.2 (0.5) 4.4 (1.9) 2.76 0.136 

NO3
- (mg/L)  0.2 (0.1) 0.1 (0.0) 11.00 0.011 

NH4
+ (mg/L)  0.1 (0.1) 0.00 (0.0) 1.69 0.230 

Note: significant p-values (p≤0.05) are bolded; N=5.  
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In terms of decomposability of litters and decomposition rates at each site, I found both 

significant and interactive effects of plant litter type and fen site, where Carex litter lost 

roughly 2.75 times greater mass over one year than Sphagnum litter (F1,36 = 620, P < 

0.001), and the intermediate fen had significantly faster decomposition rates than the poor 

fen (F1,36 = 10.25, P = 0.003), but the site trend was significant only for Carex litter (F1,36 

= 27.804, P < 0.001). Average mass loss for the different litters was as follows: poor fen 

Sphagnum = 24.0% (± 1.3); intermediate fen Sphagnum = 20.6% (± 1.5); poor fen Carex 

= 55.5% (± 2.1); intermediate fen Carex = 69.1% (± 1.4). 

In terms of plant functional trait CWMs, the intermediate fen had 3-fold greater height, 

and 1.5-fold greater leaf dry matter content (LDMC) than the poor fen (Table 2.3). The 

poor fen trended towards having greater specific leaf area (SLA), leaf mass per area 

(LMA), leaf C and C:N content, and had 2-fold greater leaf thickness than the 

intermediate fen (Table 2.3). Considering the functional diversity indices, the 

intermediate fen had significantly greater functional richness and evenness, while the 

poor fen had significantly greater functional divergence and Rao’s quadratic entropy, and 

trended towards having higher functional dispersion (Table 2.4). 

The FTIR spectra varied between the two fen types, but both fens displayed absorption 

bands typical of humic substances (Fig. 2.1, Table 2.1). Peat from the poor fen had a 

significantly greater proportion of cellulose (wave number 3340 cm-1), aliphatic 

structures (2920 cm-1and 2850 cm-1), carboxylic acids (1720 cm-1), and long chain 

alkanes of aromatic structures (720 cm-1). The intermediate fen peat scored higher for 

aromatics (1650 cm-1), lignin-like and phenolic structures (1515 cm-1) and alkyl groups at 

1475 cm-1 representing plant wax. Both polysaccharides (1030 cm-1) and humic acids 

(1426 cm-1), enhancers of decomposition rates and indicators of humification, 

respectively, did not differ between the fens. For the humification indices, the poor fen 

had greater aliphatic lipids and carboxylic acid moieties than the intermediate fen, while 

the intermediate fen had greater aromatic and phenolic index values (Table 2.1). 
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Table 2.3 Plant functional traits of the poor and intermediate fen.  

Community weighted means (average ± SE) of plant functional traits collected from 

vegetation surveys performed at poor and intermediate nutrient fen sites near White River 

Ontario, Canada. One-way ANOVA was used to test for differences between site means. 

Trait Intermediate Fen 
Average (± SE) 

Poor Fen 
Average (± SE) F(1,8) P 

Height (cm) 72.0 (0.79) 21.5 (4.2) 141.30 <0.001 
Leaf area (cm) 10.1 (0.95) 6.7 (1.2) 4.79 0.060 

Leaf mass (g) 0.0890 (0.006) 0.046 (0.002) 39.67 <0.001 
SLA (cm2/g) 128.2 (1.24) 135.8 (19.5) 0.15 0.710 

LMA (g/cm2) 0.008 (0.000) 0.010 (0.001) 2.76 0.135 

LDMC (mg/g) 530.4 (43.0) 331.6 (51.1) 8.85 0.018 
Leaf thickness index 1.56e-5 (1.5e-6) 3.56e-5 (2.4e-6) 48.67 <0.001 
Leaf C (%) 47.9 (0.51) 49.4 (0.89) 2.09 0.186 

Leaf N (%) 1.53 (0.02) 1.45 (0.04) 2.79 0.133 

Leaf C:N 32.7 (0.42) 37.4 (2.3) 4.00 0.080 

SLA= specific leaf area, LDMC= leaf dry matter content, LMA= leaf mass per area. 
Note: significant p-values (p≤0.05) are bolded. 
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Table 2.4 Functional diversity indices of plant functional traits. 

Mean (± SE) functional diversity indices of plant functional traits measured during 

vegetation surveys of a nutrient poor and intermediate nutrient fen sites in central 

Ontario, Canada. One-way ANOVA was used to test for differences between site means. 

Functional Diversity Index Intermediate Fen 
Average (± SE) 

Poor Fen  
Average (± SE) F(1,8) P 

Richness (FRic) 9.4 (1.7) 3.7 (0.8) 8.64 0.019 
Evenness (FEve) 0.9 (0.0) 0.5 (0.1) 24.10 0.001 
Divergence (FDiv) 0.6 (0.1) 0.9 (0.0) 9.23 0.016 
Dispersion (FDis) 1.7 (0.2) 2.4 (0.2) 4.09 0.779 

Rao’s quadratic entropy (Q) 3.7 (0.5) 6.5 (0.9) 7.69 0.024 

FRic = volume of functional space occupied by species in the community 
FEve = regularity of the distribution of trait abundances within functional space 
FDiv = spread of distribution of trait abundances within functional space 
FDis = mean distance of each species and the centroid of all species in the community in 
multidimensional trait space 
Q = sum of distances between species weighted by relative abundance 
Note: significant p-values (p≤0.05) are bolded. 
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Figure 2.1 Organochemical spectral properties of poor and intermediate fen peat.  

Organochemical spectral properties (± 95% confidence intervals) produced by Fourier 

transform infrared (FTIR) spectroscopy of A) intermediate nutrient fen (N=5) and B) 

nutrient-poor fen peat (N=5) collected near White River, Ontario, Canada.  
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Figure 2.2 Compositional similarities of plant communities, peat properties, plot-

level functional traits and species-level functional traits. 

Nonmetric multi-dimensional scaling (NMDS) plots showing compositional similarity of 

A) plant species composition (N=27) B) environmental (peat-soil) variables (N= 19) C) 

community-weighted means (N=10) and D) species functional traits (N=14). The poor 

fen is represented by black squares, the intermediate fen by gray circles, and 95% 

confidence intervals by the ellipses. 
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2.3.2 Compositional similarity of site characteristics 

Plant species community composition was highly dissimilar between poor and 

intermediate fen sites (F1,8 = 9.88, P = 0.001, R2 = 0.553) (Fig. 2.2a). Simper analysis 

identified C. stricta, M. gale, and C. oligosperma as predominant species at the 

intermediate fen, and Sphagnum magellanicum and S. fuscum at the poor fen generating 

67% of the dissimilarity between the two fen plant communities. The peat variables were 

also different between fen sites (F1,8 = 5.99, P = 0.009, R2 = 0.428), although relatively 

more similar than the plant community composition (Fig. 2.2b). The Simper analysis 

determined that 75% of the dissimilarity between the belowground peat conditions was 

cumulatively explained by organic matter content and electrical conductance. 

Examining the functional trait compositions of sampled plots, I also found high 

dissimilarity and a significant difference between fen types (F1,8 = 6.29, P = 0.008, R2 = 

0.440) (Fig. 2.2c). Here, differences in functional trait composition were mainly driven 

by LDMC and plant height (86% dissimilarity explained). However, when considering 

functional trait composition of the species, high similarity of trait composition exists for 

many species found at both fen locations (Fig. 2.2d). For example, the ericoid 

mycorrhizal shrub C. calyculata found in high abundance at the poor fen site and the 

arbuscular mycorrhizal shrub M. gale found in high densities at the intermediate fen are 

grouped closely together (Fig 2.2d). This high overlap of many species found at both 

locations resulted in no significant difference in overall trait composition of plant species 

between fen sites (F1,12 = 3.09, P = 0.105, R2 = 0.205). However, the species with greatest 

dissimilarity in trait composition were Sphagnum spp. dominating at the poor fen and 

Carex spp. dominating at the intermediate fen site. 

2.3.3 Species-trait-environment relationships  

The first axes of the RLQ analysis explained 95.8% of the cross-matrix of species traits 

and environmental variables, separating peat-soil, plant species, and associated plant 

traits of the two fen types (total inertia = 14.39) (Fig. 2.3). The environmental data (R) 

axis 1 explained 46% of the variation and axis 2 explained 21% with pH and moisture, 
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and four organochemical peat properties (aromatics and phenolics vs. carboxylic acids 

and aliphatic lipids) as main drivers separating the intermediate and poor fens (Fig. 2.3a). 

The species data (L) was explained with cumulative 74% variation (axis 1: 46%, axis 2: 

28%), with axis 1 being driven by Carex vs. Sphagnum spp. (Fig. 2.3b). For the results of 

the trait data (Q), axis 1 explained 90% of the trait variation, where height of the 

dominant vegetation was the main driver (Fig. 2.3c).  

Subsequent fourth-corner analysis did not reveal significant pairwise relationships 

between any particular trait and peat-soil property, likely due to large Bonferroni 

correction adjusted p-values to account for multiple comparisons (ter Braak et al., 2012). 

Yet, the Monte Carlo permutations of the variances explained by the RLQ analysis found 

that differences between sites were explained by trait-environmental relationships (P = 

0.007). The model in which both species and sites were combined was also explained by 

trait-environment relationships (P = 0.002), but considering species alone, this model was 

not significant (P = 0.141). 
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Figure 2.3 Species-trait-environment linkages. 

RLQ triplot showing relationships among A) peat-soil conditions, B) plant species, and 

C) plant traits. Links can be made between peat variables, plant traits and species by 

correlating the spatial location of the objects between the plots.  
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2.4 Discussion 

In boreal peatlands, plants leave a legacy in partially decomposed plant material as peat. I 

show that plant traits of two different dominant plant functional types significantly 

explain much of the peat-soil environment, particularly numerous organochemicals that 

are indicators of decomposition dynamics. Using FTIR spectra, a dichotomy in peat 

constituents was observed between the Sphagnum-dominated nutrient poor and the 

Carex-dominated intermediate nutrient fen sites, where the intermediate fen had a larger 

amount of ‘decomposition products’ (e.g., polysaccharides, phenolics) while there was a 

larger proportion of ‘undecomposed materials’ (e.g. wax, cellulose) in the nutrient-poor 

fen site. That said, while differences between the two sites were explained by the RLQ 

relationship between plant traits and peat-soil variables, this trait-mediated environment 

did not explain overall plant species composition at these sites. This suggests that while 

the dominant plant species traits exert influence on their environment, feedbacks from the 

peat environment to plant composition are weak, based off the peat variables I quantified 

in this study. 

Chemical composition of plant litter is important for the rate of litter decomposition and 

nutrient cycling. Chemical traits of leaves, mainly different nutrients (e.g. N) and carbon 

compounds (e.g. polysaccharides, phenolics, carboxyl groups) interact directly or 

indirectly with the biotic and abiotic environment to modulate pH and nutrient levels and 

drive ecosystem engineering in peatlands. Specifically, I found differences in pH, organic 

matter and several organochemical properties of the peat that can be directly related to 

mechanisms underlying peat accumulation (or its inverse, decomposition). It is generally 

agreed that Carex litter decomposes more rapidly than Sphagnum litter due to more 

labile, water-soluble carbon compounds of the respective plant litter (Del Giudice & 

Lindo, 2017). The mass loss data corroborates faster-decomposing Carex, pointing to 

enhanced nutrient cycling and availability as is consistent with higher available nitrogen 

in the intermediate fen peat. However, I observed not just faster decomposition rates in 

the Carex-dominated intermediate fen, but also greater ultilization of organic materials 

within the belowground peat system observed through greater microbial carbon use 

efficiency. Recently, it has also been suggested that faster decomposition in Carex-
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dominated peatlands may be stimulated through priming effects of low molecular weight 

phenolics associated with root exudation (Fenner et al., 2007; Dieleman et al., 2016). The 

high amount of phenolic compounds in peat observed at the intermediate fen site is 

consistent high root biomass in the peat, in addition to laboratory studies that correlated 

high phenolic compound concentrations with vascular plant expansion under 

experimental climate change scenarios in Boreal peatlands (Robroek et al., 2015; 

Dieleman et al., 2016). Similarly, Scheffer et al. (2001) also observed peatland soluble 

phenolics (mg g−1) to be 2–12 times greater in litter of Carex species than that of 

Sphagnum. The observation of high phenolics coincided with high LDMC as a functional 

trait in the RLQ analysis, and as LDMC is considered an indicator of leaf ‘toughness’ is 

likely also linked to the presence of ericaceous shrubs such as sweet gale at the 

intermediate nutrient fen site. At the same time, LDMC is a trait that can be protective 

against wind, which is advantageous for Carex’s relatively tall height. 

While Sphagnum litter is typically nutrient poor (Hoorens et al. 2002), and litter C:N 

ratios are thought to be a predictor of long-term decomposition rates for peatland plants 

(Limpens & Berendse, 2003), only minor differences between community-weighted 

mean C:N ratios were observed in this study. Rather the poor fen site scored higher in 

peat constituents for aliphatic lipids, and carboxylic acid groups that can be attributed to 

the presence of Sphagnum. Sphagnum cells have a strong lipid coating associated with 

their cell walls (van Breemen, 1995) and are composed of polysaccharides possessing 

carboxylic acid groups, which are largely responsible for their acidic nature that 

facilitates an engineering of acidic environments (Eppinga et al., 2009). Compounds such 

as sphagnum acid (p-hydroxy-beta-(carboxymethyl)-cinnamic acid) and other phenolics 

can have a pathogenic effect on bacteria (Hájek et al., 2011) and anti-microbial properties 

(Verhoeven & Liefveld, 1997), leading to reduced decomposition rates (Verhoeven & 

Toth, 1995). However, the observed aliphatic lipids, fats and waxes may not be entirely 

resulting from the dominant Sphagnum. Ericaceous shrubs such as leatherleaf, bog 

rosemary, and bog laurel that were observed at the poor fen site have leaves that are 

covered with thick epicuticular waxes (Jacquemart, 1998), and may contain a 

considerable amount of lipids (Pancost et al. 2002). The high abundance of pH-lowering 
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chemical traits of Sphagnum, coupled with high proportions of cellulose in the FTIR 

spectra, point to relatively slower rates of decomposition at the poor fen, slower nutrient 

cycling, and enhanced C storage. 

Spectroscopic techniques are increasingly being used to not only characterise constituents 

of peat (soil organic matter), but also infer peat forming process and decomposition at the 

micro-scale (Heller et al., 2015). Belowground, the relative abundances of the chemical 

compounds identified by FTIR spectroscopy serve as a strong mechanistic link between 

plant traits (e.g. leaf chemical properties) and ecosystem level processes (e.g. 

decomposition). Through linking organic chemical properties of peat to plant traits that 

derive them, I demonstrate how these species drive ecosystem-level rates of 

decomposition and nutrient cycling. However, it is probable that some ecosystem 

engineering of the different belowground peat environments is generated through 

functional traits of the dominant species not measured in this study. For instance, it has 

long been known that Sphagnum possesses physical (morphological, structural and 

anatomical) traits that contribute to the engineering of wetness, acidic and nutrient levels 

in peatlands. Sphagnum branch and stem morphology mediate water transport upward by 

wicking water through the spaces between leaves, and branches and stem in the upper 

Sphagnum canopy (acrotelm) (Rydin & Jeglum, 2013), but decrease water flow in 

subsurface peat when the finely porous tissue of lower Sphagnum canopy (catotelm) 

collapses leading to decreased hydraulic conductivity, anoxic environments and 

decreased decomposition rates (Belyea & Clymo, 2001). Sphagnum has long been 

purported to acidify peat-soil conditions through acidic polysaccharides within Sphagnum 

cell walls (e.g. uronic acids) (Painter, 1983), which gives Sphagnum its high cation 

exchange capacity and facilitates acidification (Clymo, 1963). Similarly, physical and 

structural traits of Carex are shown to mitigate negative effects of anoxia through litter 

accumulations that reduces water-logging (Crain & Bertness, 2005) and increases pH 

(Eppinga et al., 2009), while forming peat of a different nature. 

Significant differences in overall peat-soil environments, plant species composition, and 

plant functional traits, were driven by the dominant plant species, Sphagnum spp. and 

Carex spp. Despite low similarity of species composition at poor and intermediate fen 
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sites there was significant overlap of trait distribution among species, indicating that the 

same sets of traits are being represented at both fen sites, suggesting that the majority of 

non-dominant species share similar functional trait values between sites. Yet, impacts of 

both Sphagnum and Carex as ecosystem engineers on the plant community become 

apparent when the fen sites are interpreted from functional perspectives, where both 

taxonomically and functionally different plant communities dominated by Carex spp. or 

Sphagnum spp. were associated with differences in peat environments. 

2.5 Conclusion 

Feedbacks in aboveground-belowground systems are increasingly being recognised as 

drivers of ecosystem processes (Wardle et al., 2004; Jassey et al., 2013). In both peatland 

types, aboveground plant traits of the key ecosystem engineer drove properties of the 

belowground peat environment. Understanding Sphagnum and Carex as ecosystem 

engineers of boreal peatlands will enhance our understanding of mechanisms 

underpinning peatland plant community dynamics. As shifts in peatland plant 

communities under future climate change conditions are expected, specifically from 

moss- to sedge-dominated plant communities (Dieleman et al., 2015, 2016), research 

should focus on the mechanistic link between plant traits (e.g. leaf chemical properties) 

and ecosystem level processes (e.g. carbon storage) that govern plant-soil feedbacks, as 

change at the ecosystem level will largely be mediated by key species, such as these 

ecosystem engineers. Belowground peat organochemical constituents between the 

Sphagnum-dominated nutrient poor and the Carex-dominated intermediate nutrient fen 

sites helped reveal differences in decomposition rates, and thus the potential for carbon 

storage. 
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Chapter 3  

3 Home-field decomposition dynamics of Carex and 

Sphagnum pure and mixed litters 

3.1 Introduction 

Decomposition is a key ecosystem process driving carbon (C) and nutrient cycling, with 

leaf litter providing a main source of C to the belowground system (Hättenschwiler et al., 

2005; Meier & Bowman, 2008). Decomposition processes are regulated by the 

interaction among climate, type and abundance of microbial community, and quality and 

quantity of plant litter (Coûteaux et al., 1995; García-Palacios et al., 2016). Each 

regulator is of different importance at various scales; climate is thought to be the 

predominant regulator at global and ecosystem scales (Aerts, 1997; Zhou et al., 2008), 

while plant litter quality is thought to control decomposition at regional scales 

(Cornelissen et al., 1999; Cornwell et al., 2008; García-Palacios et al., 2016). At local 

scales, there is growing recognition of an intimate interaction between plant litter and 

decomposer communities regulating decomposition known as the home-field advantage 

(HFA) (Hunt et al., 1988; Gholz et al., 2000). The home-field advantage theory of 

decomposition suggests that decomposer communities may be adapted to the plant litter 

they encounter most often, resulting in plant litter decomposing more quickly in its place 

of origin (home) versus an alternative location (away), and invoking a positive plant-soil 

feedback (van der Putten et al., 2013). 

The simplicity of the home-field advantage question has prompted many investigations 

yielding inconsistent results (e.g., Ayres et al., 2009; St. John et al., 2011; Perez et al., 

2013), lending to a more complex interaction at play. Several hypotheses have been 

proposed to explain results of home-field advantage experiments. The traditional litter 

quality hypothesis sufficiently explains the results of a number of home-field advantage 

studies (Makkonen et al., 2012; Fanin et al., 2016), while a more conditional hypothesis 

was put forth by Veen et al. (2015) who proposed that home-field advantage is stronger 



 

43 

for recalcitrant litter types or in colder biomes. The home-field advantage has also been 

linked to the functional breadth hypothesis (Keiser et al., 2011, 2014) to suggest that 

microbial communities are constrained by the quality of historical resource inputs. As 

such, microbial communities from recalcitrant litter environments have a wider 

functional capacity and can degrade a wider variety of litter qualities than microbial 

communities from labile litter environments that are functionally narrow in their capacity 

(Strickland et al., 2009a, 2009b). At the root of the functional breadth hypothesis is local 

adaptation of microbial communities, where variations in the local environment act as 

selective pressures conferring differential success of species in their ‘home’ versus 

‘away’ environment (Rúa et al., 2016), resulting in the most common litter decomposing 

more quickly at home. While these different hypotheses can explain idiosyncrasies of 

home-field advantage experiments, a generalised mechanism driving a home-field 

advantage remains to be determined. 

Recent investigations have explored the role of non-additive effects of litter mixtures in 

decomposition in the context of a home-field advantage (Davidson Jewell et al., 2015; 

Chomel et al., 2015; Gao et al., 2016). Litter-mixing effects commonly display non-

additive interactions (Gartner & Cardon, 2004), where synergistic effects are attributed to 

nutrient transfer or improved microclimate, while less common inhibiting effects of 

mixed litter are more enigmatic. Within a home-field advantage context, some studies 

have found evidence for a home-field advantage in mixed litters (Chomel et al., 2015), 

while others have found no home-field advantage (Davidson Jewell et al., 2015) or mixed 

home-field advantage results (Gao et al., 2016), highlighting the need for further research 

in both mixed litter decomposition dynamics and home-field advantage. 

Despite its popularity, the home-field advantage has not been extensively tested in boreal 

peatlands, where the relationships between aboveground and belowground systems drive 

ecosystem function such as C storage and nutrient cycling (Jassey et al., 2013). Boreal 

peatlands are ecosystems where plant growth exceeds decomposition, resulting in plant 

material accumulating as peat, sequestering vast amounts of carbon (Belyea & Clymo, 

2001). Slow decomposition is due to cool and waterlogged soils, and generally poor 

quality plant litter. Boreal peatlands are typically characterised as being moss- or sedge-
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dominated, and distributions of these plant types are related to gradients of peat moisture 

(Jeglum, 1971), pH (Clymo, 1963) and nutrients (Vitt & Chee, 1990), all factors that also 

dictate decomposition processes. Recent field (Buttler et al., 2015) and laboratory 

(Dieleman et al., 2015, 2016) studies have shown that the dominant plant community can 

switch from moss- to sedge-dominated under climate change conditions, yet the 

implications of this for ecosystem functioning, such as C storage, are unclear. As sedges 

are generally more readily decomposed (Scheffer et al., 2001), a plant community switch 

may accelerate decomposition and potentially affect carbon storage. Taken together, there 

is a need to understand factors contributing to decomposition in Boreal peatlands, 

specifically by detecting any specific relationships between plant and decomposers 

governing the rate of decomposition, such as the home-field advantage. 

I performed reciprocal transplant experiments to test for the presence of the home-field 

advantage using two dominant peatland plant types (Sphagnum moss and Carex sedge) 

across two peatlands differing in nutrient status (poor and intermediate fen) for both pure 

and mixed species litterbags. Aboveground (temperature and relative humidity) and 

belowground (microbial biomass, available nitrogen, pH, moisture) environmental 

characteristics pertinent to litter decomposition were measured alongside mass loss of 

litter. I predicted that decomposition patterns would be a function of site and litter quality 

as opposed to a home-field advantage, because higher quality Carex plant litter is 

expected to decompose faster than Sphagnum litter regardless of location, and that 

decomposition would also occur more quickly at the site of higher nutrient availability 

(intermediate fen). 

3.2 Materials & Methods 

3.2.1 Site description 

The litterbag reciprocal transplants were performed in two boreal peatland sites differing 

in nutrient status located 40 km southwest of White River, Ontario, Canada (48º21’N, 

84º20’W). The nutrient-poor and intermediate-nutrient fens (henceforth ‘poor fen’ and 

‘intermediate fen’, respectively) are located approximately 2 km apart, and are a part of a 
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larger peatland complex that comprises a long-term research monitoring project 

established by the Ontario Ministry of Natural Resources and Forestry (see Appendix A 

for site maps). A description of site and plant community composition can be found in 

section 2.2.1. 

In August 2015, intact peat monolith samples were collected manually to 35 cm depth for 

each of five 1×1 m randomly selected plots in both the poor and intermediate fens; 

monoliths were wrapped in aluminum foil and kept in a 4ºC fridge until processed for the 

following peat-soil variables: organic matter (carbon) content via loss-on-ignition, pH, 

and available N (NO3
- and NH4

+) and available P (PO4
-3). Microbial activity, biomass and 

carbon use efficiency (metabolic quotient (qCO2)) were also assessed via heterotrophic 

respiration (mL CO2 / g dry weight / h), substrate induced respiration (SIR) (mg CO2-C / 

g dwt), and as the basal respiration-to-biomass ratio, respectively. 

3.2.2 Litter decomposition experiment 

To test for the home-field advantage of litter decomposition, mass loss was measured in 

the field after one year using Sphagnum and Carex litters collected from both poor and 

intermediate fen sites. Approximately 500 g (wet weight) of Sphagnum dominated by S. 

magellanicum and Carex dominated by C. stricta plant material was collected 

haphazardly across a broad area in both fens in June 2015. Vegetation was air dried in 

separate plastic bins (for each plant and fen type) for two weeks, chopped to smaller 

pieces with scissors and homogenized by hand mixing within the bins once dried. 

Remaining moisture content (%) was calculated gravimetrically for each plant type from 

each site by drying three aliquots at 60ºC for 48 hours. Moisture content was calculated 

as:  

Moisture content = (wet weight – dry weight)/wet weight × 100.  

Initial litter quality for each plant type from both sites was assessed for total carbon (TC), 

total nitrogen (TN) and total sulphur (TS) using 0.2 g ground plant material for TC and 

TN, and 0.3 g ground plant material for TS. Total C and N were determined in ceramic 

crucibles loaded into a VarioMax CN analyser (Elementar Americas Inc., NJ, USA), 
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while TS was analysed using CS-800 autosampler (Eltra Helios, Haan, Germany). Three 

blanks and five calibrants (arginine) were analysed at the start of each run to ensure the 

analytes were within detectable limits, and birch leaf was used at the quality control 

every 20th sample. Subsequent measures of C:N, C:S, and N:S ratios as indicators of plant 

litter quality were calculated from TC, TN, and TS values. 

Air-dried litter was used to create six types of litterbags: poor fen Sphagnum, 

intermediate fen Sphagnum, poor fen Carex, intermediate fen Carex, and mixed 

Sphagnum and Carex litter from each fen site. I used 1 g dry weight equivalent plant litter 

(0.5 g each plant type in the mixed litterbags) to construct 120 litterbags (9×10 cm with 1 

mm mesh). Each litterbag received a unique aluminum tag identifier to recognise 

individual litterbags upon retrieval. In August 2015, five 1×1 m plots were randomly 

selected from a representative 25×25 m section in both the poor and intermediate fens. 

Each plot received two litterbags of each: Sphagnum and Carex litterbags from their 

home site, Sphagnum and Carex litterbags from the ‘away’ site, and mixed litter 

(Sphagnum and Carex) litterbags from both home and away. Litterbags were placed in 

sets of three on the surface at the four corners of each 1×1 m plot. Environmental plot 

conditions (temperature and relative humidity) were tracked throughout the year (August 

2015 to August 2016) with a HOBO data logger (U23 Pro v2, MA, USA). Each of the ten 

plots received one data logger. Data loggers were protected with a weather-proof 

polyethylene cap and placed on the surface in the centre of each plot and measurements 

were tracked every 30 min. Once the data were downloaded, pivot tables were used to 

calculate the average: daily temperature, maximum temperature, minimum temperature 

and relative humidity for each plot. Then, measurements were grouped by month, and site 

means were obtained and plotted to detect monthly average cycles. It should be noted that 

a data logger in the intermediate fen failed to track measurements, thus for the poor fen 

N=5 and intermediate fen N=4.  

Litterbags were collected after one year in August 2016. Any green vegetation that had 

grown through the mesh was picked out at time of collection, and each litterbag was kept 

in a lightly closed paper bag while travelling back to the laboratory. Upon return, litter 

from litterbags was carefully removed with forceps and dried at 60ºC for 48 hours. Once 
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dried, litter was weighed, and mass loss was calculated using the equation:  

Mass	loss	 % = 	)*+,-.	/0	1+..*2	344*4	 , 5)*+,-.	/0	1+..*2	6/7.	8/11*8.+/9	 ,
)*+,-.	/0	1+..*2	344*4	 , 	×	100. 

After drying, litters from mixed litterbags were revisited to determine individual 

contribution of Sphagnum and Carex litters to overall mass loss for each mixed litterbag. 

Sphagnum and Carex litters were separated and weighed, and species-specific mass loss 

was calculated to determine the individual mass loss of each species. 

3.2.3 Statistical analyses 

Initial plant litter nutrient content (TC, TN, TS) and litter quality (C:N, N:S, C:S) were 

evaluated for differences between species, and between collection sites using a factorial 

MANOVA with plant and site as factors in Statistica (version 7.0) (Statistica, 2004). 

Significant differences were evaluated for overall MANOVA effects as well as univariate 

results for each plant litter value. Peat-soil variables were compared using ANOVA. 

Separate full-factorial ANOVA were performed for mass loss of the pure and mixed 

litters using a three-way (plant, site, home/away) and two-way (site, home/away) 

ANOVA, respectively. Individual mass loss of Sphagnum and Carex litters from the 

mixed litterbags was analysed with two-way RM-ANOVA with decomposition location 

(home/away) and fen site as main factors, and plant litter type as a non-independent 

(spatial) repeating factor. Monthly average of temperature and relative humidity were 

calculated for each fen site and analysed by one-way RM-ANOVA with site as main 

factor and monthly average as the repeating factor. Tukey’s post-hoc test was performed 

on all significant results to reveal differences among treatments.  

The home-field advantage was calculated separately for each pure litter type, as well as 

for species-specific litters within mixed litterbags. To quantify the home-field advantage, 

I used a set of calculations provided by Ayers et al. (2009) and used by Veen et al. 

(2015): 

ADHi = HDDi – ADDi – H  
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HDDi = ∑ (DiI – DjI)   

ADDi = ∑ (DiJ – DjJ)   

H = ∑HDDi / (n – 1)   

Where ADHi (additional decomposition at home of species i) is the percent mass loss of 

species i in its home (environment I) relative to away environments; HDDi (home 

decomposition difference of species i) represents mass loss (D) of litter type i at home 

(environment I) relative to other litter types (e.g. j originating from environment J) in 

away environment I; ADDi (away decomposition difference of litter type i) represents the 

difference between mass loss of litter type i in the away environment J and mass loss of 

litter type j in its home environment J; DiI is the mass loss of litter i in environment I, DjI 

is the mass loss of litter j in environment I, DiJ is mass loss of litter i in environment J 

and DjJ is mass loss of litter j in environment J; H is the sum of all HDDi, and n is the 

total number of litter types. These equations account for differences in litter and site 

quality that may lead to absolute differences in mass loss and spurious home-field 

advantage. 

3.3 Results 

3.3.1 Environmental plot conditions 

The average daily temperature (± SE) of the growing season (May to August) was similar 

between the intermediate fen site (13.8 ± 1.6 ºC) and the poor fen (13.8 ± 1.9 ºC) (Fig. 

3.1). Both sites experienced similar temperatures throughout the year, although the poor 

fen site had greater temperature extremes than the intermediate fen, being colder in 

winter and warmer in summer, resulting in a marginally insignificant site by time 

interaction (F11,77 = 1.90, P = 0.051). Relative humidity of both sites was similar during 

the growing season with average (± SE) relative humidity of 77.1% (2.4) in the 

intermediate and 65.3% (2.9) in the poor fen (Fig. 3.1). Statistically, sites did not differ in 

relative humidity; however, during the winter (snow-cover) season relative humidity was 

almost twice as high at the intermediate fen site compared to the poor fen. However, due 
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to the margin of error associated with plot-level and data logger variability, temperature 

and relative humidity results are ultimately inconclusive. 

In the peat-soil environment, the intermediate fen had higher pH (F1,8 = 64.27, P < 0.001; 

intermediate = 5.4 (± 0.0 SE); poor = 4.8 (± 0.1)), and 2 times higher total available N as 

NO3
- (F1,8 = 11.00, P = 0.011; intermediate = 0.2 (± 0.1) mg/l; poor = 0.1 (± 0.0) mg/l) 

than the poor fen, while the poor fen site had 1.2 times greater organic matter (F1,8 = 

15.00, P = 0.005; intermediate = 83.7 (± 3.6) %; poor = 97.8% (± 0.3)%). Microbial 

carbon use efficiency measured as the metabolic quotient (qCO2) as an indicator of the 

amount of CO2 produced per unit microbial biomass C, was low at both sites, but 2-fold 

greater in the intermediate fen (0.02) compared to the poor fen (0.01) (F1,8 = 22.40, P = 

0.002). 

3.3.2 Plant litter quality 

Overall chemical composition of litters was significantly different between sites (Wilks = 

0.036, F6,3 = 13.3, P = 0.029), plant types (Wilks = 0.001, F6,3 = 597, P < 0.001), and had 

a significant site-by-plant type interaction (Wilks = 0.014, F6,3 = 35.2, P = 0.007). Based 

on the univariate results, all plant litters had TC values ranging between 45-47% (Table 

3.1), with TC values being 1-fold greater in the poor fen sites (P < 0.001) (Table 3.2). 

However, this difference was significant only for Sphagnum (interaction P = 0.005). 

Carex had 2-fold greater TN compared to Sphagnum litter (P < 0.001), and both plant 

litters had greater TN at the intermediate fen site (P < 0.001). Total S was also 2-fold 

greater in Carex litters compared to Sphagnum (P < 0.001), and was greater at the 

intermediate fen site (P < 0.001), but this difference was only significant for Carex 

(interaction P = 0.013). For plant litter quality indices, most were significantly different 

between plant types and sites; C:N values were 2 to 3 times greater for Sphagnum than 

Carex litters (P < 0.001), and Sphagnum had 1.5 times greater C:N values at the poor fen 

versus intermediate fen site (site P < 0.001, interaction P < 0.001) but Carex did not 

differ between the sites.  
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Figure 3.1 Temperature and relative humidity of the poor and intermediate fen. 

Average A) temperature and B) relative humidity (± SE) of the intermediate nutrient fen 

(N=4) and nutrient-poor fen plots (N=5) near White River, Ontario. Dashed lines 

represent maximum and minimum daily average temperatures.  
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Table 3.1 Nutrient concentrations (%) of Sphagnum and Carex plant litters. 

Average (± SE) % nutrient contents of Sphagnum and Carex litters of the nutrient-poor 

and intermediate nutrient fen sites located near White River, Ontario. 

Note: Lowercase letters denote Tukey’s significance (p≤0.05) where values followed by 

same letter are not significantly different; N=3.  

Nutrient 
Sphagnum Carex 

Poor Intermediate Poor Intermediate 
Total C % 46.4 (0.13)a  45.2 (0.18)c 46.0 (0.03)ab 45.7 (0.07)b 

Total N % 0.60 (0.02)d 0.88 (0.03)c 1.60 (0.02)b 1.85 (0.04)a 

Total S % 0.07 (0.004)c 0.08 (0.002)c 0.14 (0.001)b 0.16 (0.003)a 

C:N  76.9 (2.14)a 51.5 (2.09)b 28.8 (0.45)c 24.6 (0.53)c 

C:S  689 (38.1)a 593 (18.7)a 332 (2.8)b 278 (5.5)b 

N:S  9.0 (0.62)c 11.5 (0.12)a 11.6 (0.21)a 11.3 (0.20)b 
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Table 3.2 Plant litter nutrient content MANOVA results. 

Univariate results from the MANOVA test of nutrient contents of Sphagnum and Carex 

litters of the nutrient-poor and intermediate nutrient fen sites located near White River, 

Ontario. 

Nutrient 
Variable 

Site Plant Site × Plant 
F1,8 P F1,8 P F1,8 P 

Total C 43.1 < 0.001 0.086 0.777 14.3 0.005 
Total N 75.4 < 0.001 1039 < 0.001 0.101 0.759 

Total S 40.3 < 0.001 859 < 0.001 10.1 0.013 
C:N 91.9 < 0.001 595 < 0.001 47.6 < 0.001 
C:S 12.2 0.008 244 < 0.001 0.965 0.355 

N:S 10.7 0.011 11.5 0.010 15.9 0.004 
Note: Bold values indicate significance (p≤0.05). 
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The C:S values were 2-fold greater for Sphagnum compared to Carex (P < 0.001) and 1.2 

times greater at the poor fen site for both litter types (P = 0.008). Lastly, for N:S values, 

Sphagnum at the poor fen site had the lowest value (interaction P = 0.004), driving a 

significant plant type effect (P = 0.010) and site effect (P = 0.011). 

3.3.3 Litter decomposition and the home-field advantage 

Carex litters lost more mass on average than Sphagnum in both the pure (ANOVA F1,71 = 

1253, P < 0.001) and mixed litter (RM-ANOVA F1,36 = 201.2, P < 0.001) experiments 

regardless of litter origin and destination (Fig. 3.2, Fig. 3.3). In the pure litter experiment, 

Sphagnum had no difference in mass loss whether at home or away at either fen site, 

while Carex decomposed more quickly at home in the intermediate fen than at home in 

the poor fen or away at either site (Fig. 3.2), leading to a significant main effects of 

decomposition location (F1,71 = 15.5, P < 0.001) and site (F1,71 = 12.2, P < 0.001), and a 

significant three way interaction between decomposition location, plant litter type and 

site effect (F1,71 = 12.6, P < 0.001) (Table 3.3). 

For mixed litters, overall mass loss revealed an interaction between decomposition 

location and site (F1,36 = 5.43, P = 0.026) (Fig. 3.3), where litters had greater mass loss at 

home in the intermediate fen, but marginally greater mass loss when placed away at the 

poor fen. When the Sphagnum and Carex litters were analysed for their individual mass 

loss contributions, a similar overall location by site interaction was observed paralleling 

the total decomposition trends (F1,36 = 5.16, P = 0.029), as well as the differences in mass 

loss between Sphagnum and Carex as previously mentioned (F1,36 = 201.2, P < 0.001). 

However, individual Sphagnum and Carex litters also demonstrated a plant-by-site 

interaction where Sphagnum had greater mass loss at the poor fen site, while Carex had 

greater mass loss at the intermediate fen site (F1,36 = 21.2, P < 0.0001), such that the 

overall trend in the mixed litterbags demonstrated that both poor and intermediate fen 

litters decomposed faster at the intermediate fen site (Fig. 3.3).  
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Figure 3.2 Mass loss (%) of Sphagnum and Carex pure litters. 

Mass loss (%) of pure Sphagnum and Carex litters placed in A) home and B) away 

locations. Black and grey symbols indicate litters placed at a nutrient-poor fen or nutrient 

intermediate fen, respectively, near White River, Ontario, Canada. Tukey’s post-hoc 

analysis indicated by lowercase letters, and error bars are standard error, N=10. 
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Figure 3.3 Mass loss (%) of Sphagnum and Carex mixed litters. 

Mass loss (%) of individual Sphagnum and Carex litters from destructively sampled 

mixed litterbags. Black symbols indicate litters placed at a home, and grey symbols away, 

in a peatland complex near White River, Ontario, Canada. Tukey’s post-hoc analysis 

indicated by lowercase letters after performing repeated measures ANOVA, N=10. 
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Table 3.3 Summary of main and interactive effects for mass loss of pure litters. 

Summary of interactive effects of the ANOVA results from mass loss rates of Sphagnum 

and Carex litter in a home-field advantage decomposition experiment performed in a 

peatland complex near White River, Ontario. 

Interactive Effects F P 

Decomposition location × Plant × Site 12.6 0.001 
Decomposition location × Plant 4.90 0.030 
Decomposition location × Site 1.80 0.184 
Plant × Site 19.5 <0.000 
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To calculate the home-field advantage, a series of equations are used to consider and 

compare the decomposition rate of each plant litter in its home site against all other plant 

litters at the home site of the litter of interest, and with other plant litter respective home 

sites (Ayers et al., 2009). The final calculation produces either a positive value 

suggesting a home-field advantage, or a negative value suggesting greater decomposition 

at away sites. Both the intermediate Carex and the poor fen Sphagnum demonstrated 

strong (positive) home-field advantage in pure and mixed litters (Table 3.4). The poor fen 

Carex and intermediate fen Sphagnum had home-field advantage values relatively close 

to zero in pure litter mixtures, but strongly negative home-field advantage values when 

present in mixed litterbags (Table 3.4). Mixing of litters increased the positive home-field 

advantage for poor fen Sphagnum, dramatically decreased the home-field advantage for 

poor fen Carex and intermediate fen Sphagnum, and had no effect on the intermediate fen 

Carex. 

3.4 Discussion 

Decomposition of plant litter is dictated by three main interacting factors: climate 

(temperature and moisture), substrate (litter) quality, and biological components of the 

detrital food web. Consistent with my predictions, Carex with higher quality litter (lower 

C:N) decomposed more quickly than Sphagnum across all sites and situations; however, 

greater mass loss was observed only for Carex litters at the site of higher nutrients 

(intermediate fen). In contrast to my predictions, patterns of decomposition followed a 

home-field advantage framework. For pure litters, a strong positive home-field advantage 

for Carex at the intermediate fen site was observed, and moderately positive home-field 

advantage for Sphagnum at the poor fen site. This was supported in the absolute mass 

loss rates, but elucidated, particularly for Sphagnum, in the set of home-field advantage 

equations provided by Ayres et al. (2009), which helps account for differences in litter 

quality and site. Similar results were observed for mixed litters, yet the positive home-

field advantage was observed only for the dominant plant species of a particular site (i.e. 

Sphagnum from the poor fen and Carex from the intermediate fen).  
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Table 3.4 Home-field advantage of pure and mixed plant litters. 

Home-field advantage (HFA) quantified as additional decomposition at home (ADH) of 

the pure and mixed litter types of Sphagnum and Carex litters of the nutrient-poor and 

intermediate nutrient fen sites located near White River, Ontario. 

Home litter type Pure Mixed Interaction 
Poor fen Sphagnum 12.6 21.19 synergistic 

Poor fen Carex 4.08 -26.18 antagonistic 

Intermediate fen Sphagnum -7.2 -23.41 antagonistic 

Intermediate fen Carex 29.58 28.62 additive 

Interaction summarises the effect of mixed litters on the home-field advantage of a 

species, where synergistic indicates greater home-field advantage when mixed, while 

antagonistic indicates less home-field advantage when mixed and additive means no 

effect. 
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In mixed litters, the positive home-field advantage for Carex from the intermediate fen 

did not benefit from having Sphagnum in the same litterbag, while Sphagnum from the 

poor fen did benefit from having Carex in the same litterbag, as seen by an increase in the 

positive home-field advantage value. In the case where Sphagnum and Carex were not 

the dominant vegetation, no home-field advantage was observed for pure litters, while 

both species displayed strong negative home-field advantage results when in mixed 

litterbags, indicating an antagonistic mixed litter effect. 

The home-field advantage theory invokes plant litters being more readily decomposed by 

the microbial members of the home environment; thus, a home-field advantage occurs 

when there is greater mass loss at home. Home-field advantage experiments have 

revealed that more recalcitrant litter types show stronger home-field advantage 

(Wallenstein et al., 2013; Gergócs & Hufnagel, 2016) consistent with functional breadth 

hypothesis (Keiser et al., 2014; Fanin et al., 2016), while other studies have found litter 

quality to have no effect on the home-field advantage (Veen et al., 2015). While plant 

traits, such as chemistry and toughness (Pérez-Harguindeguy et al., 2000) that dictate 

litter quality are recognised as a main controls of decomposition rates at various spatial 

scales (Cornwell et al., 2008; De Deyn et al., 2008) and may explain up to two-thirds of 

decomposition rates (Cleveland et al., 2014; Fanin et al., 2016), I observed a home-field 

advantage regardless of litter quality for the dominant plant species of its respective site. 

Carbon-to-nitrogen (C:N) ratios are thought to be a predictor of decomposition rates 

where a high C:N ratio has been correlated with low decomposition and vice versa 

(Limpens & Berendse, 2003). Indeed, Carex has a lower C:N ratio and higher overall 

nutrient content than Sphagnum, corroborating the high mass loss rates seen in my and 

other experiments (Scheffer et al., 2001; Del Giudice & Lindo, 2017). In addition, plants 

grown in more nutrient-rich environments tend to have relatively greater mass loss rates 

than their nutrient-poor counterparts, suggesting that peat differences between the sites 

play a role in determining rates of decomposition. Yet this intermediate vs. poor fen 

dichotomy does not explain differences in the home-field advantage, even considering 

differences in microclimate (temperature and relative humidity) that also suggested that 

the intermediate fen should support higher decomposition rates. Taken together, the 
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positive home-field advantage results for the dominant plant species at each site implies a 

microbial component to the story. 

Microbial studies performed previously at the same White River Experimental Peatland 

complex found distinct bacterial communities, but less-different fungal communities that 

had no preferential substrate utilization, which generally discounts the home-field 

advantage theory for this site (Haynes et al., 2015). However, Haynes et al. (2015) also 

show that peatland decomposition dynamics vary temporally with the highest rates of 

decomposition for all plant types (sedge and Sphagnum) occurring at the beginning of the 

growing season, coinciding with high rates of microbial activity. These results alongside 

my field experiment suggest that the functional breadth hypothesis may help explain 

home-field advantage results, and how Sphagnum can decompose more quickly in the 

lower nutrient site, a trend also observed in another peatland decomposition experiment 

(Bragazza et al., 2007). They performed a similar litterbag reciprocal transplant study of 

minerotrophic (high nutrient, groundwater-fed) versus ombrotrophic (nutrient poor, 

precipitation-fed) sites, and found Sphagnum to decompose more quickly at the ‘home’ 

ombrotrophic peatland and graminoids to decompose more quickly at the ‘home’ 

minerotrophic peatland, also suggesting microbial adaptability to habitat-specific 

Sphagnum and graminoid litter chemistry. 

Current distributions of microorganisms are the result of historical factors, including 

dispersal and adaptations to local conditions that change over space and time (Fuhrman, 

2009). Local adaptation is the differential success of species or genotypes in their native 

versus foreign environment arising from selective pressures imposed by biotic or abiotic 

aspects of the local environment (sensu Rúa et al., 2016), and is a potential mechanism 

explaining theories like the home-field advantage. In decomposition studies, Strickland et 

al. (2009a) found that a particular microbial community’s ability to degrade litter was a 

function of resource use history. Similarly, de Vries et al. (2012) has linked resource-

conservation plant traits, such as slow growth and low-nutrient litter, and resource-

acquisition plant traits like fast growth and high-nutrient litter, to fungal versus bacterial-

based energy channels, respectively. This local adaptation and feedback system of ‘slow’ 

versus ‘fast’ microbial communities in poor and intermediate fen sites, respectively, may 



 

61 

explain the home-field advantage seen for both pure Carex and Sphagnum litters. 

However, while resource use history (Strickland et al., 2009a) and functional breadth 

(Keiser et al., 2011) of peatland microbial communities (Bragazza et al., 2007) 

correspond to the home-field advantage results of pure litters, it does not tell the whole 

story when considering litter mixtures. 

Mixed litters exhibited strong home-field advantage effects only for dominant plants of 

the home site (i.e. poor fen Sphagnum and intermediate fen Carex), similar to the pure 

litters treatments. Yet, while poor fen Sphagnum benefitted from having Carex in the 

same bag, the intermediate fen Carex was unaffected by the presence of Sphagnum. 

Further to this, as mentioned above, both litters were negatively affected in mixture when 

placed in their subdominant ‘home’ environment. These patterns can be explained by 

considering the nutrient quality of each litter type. Carex can lose a significant amount of 

its original mass purely from leaching (Del Giudice & Lindo, 2017), providing labile 

sources in dissolved organic carbon for microbes (Scheffer et al., 2001) to fuel 

decomposition of the more recalcitrant Sphagnum (Verhoeven & Toth, 1995) at the 

nutrient poor fen site increasing the home-field advantage phenomenon. Synergistic 

interactions such as these observed for nutrient-poor plants in peatlands (Orwin & Ostle, 

2012) commonly arise from litter mixing (Chapman et al., 2013) and are accelerated by 

litter components with higher N contents (Gartner & Cordon, 2004). However, at the 

same time, Carex from the intermediate home site was unaffected by the addition of 

nutrient poor Sphagnum litter. 

Conversely, negative home-field advantage effects emerged for species considered rare 

or subdominant at home (i.e. Sphagnum at the intermediate fen and Carex at the poor fen) 

supporting the idea that different litter responses can occur for the same plant types in 

different environments (Chomel et al., 2015). Sphagnum litter is notorious for inhibiting 

decomposition through secondary compounds (Verhoeven & Livfield, 1997; Bragazza et 

al., 2007) that may explain antagonistic effects on Carex at the poor fen site, while 

avoidance of Sphagnum in the presence of Carex at the intermediate fen site might 

explain the antagonistic effects of litter mixtures for intermediate fen Sphagnum. On the 

whole, these results align with the trend that decomposition of recalcitrant litter types is 
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accelerated in litter mixtures, while decomposition rates of more rapidly decomposing 

litters are unaffected (Hättenschwiler et al., 2005). Yet, these results highlight the 

differential decomposition patterns of mixed litters and show how conventional single-

litter decomposition hypotheses, such as functional breadth and litter quality, may not be 

applicable to litter mixtures. 

3.5 Conclusion 

While local adaptation of the microbial communities to litter quality, and its ramifications 

(e.g. resulting in greater functional breadth) are a mechanism explaining the home-field 

advantage of pure litters, litter quality does not adequately explain the home-field 

advantage results of the mixed litter, highlighting the need for more home-field 

advantage studies focusing on litter mixtures and to analyse litter types separately. 

Although the decomposer communities at each site were not quantified, this home-field 

advantage experiment provides a mechanistic example of how local litter responds to 

decomposer communities and may act as an important selective force. Accounting for 

absolute mass loss and detangling mass loss data from the home-field advantage sheds 

light on aboveground-belowground linkages, permitting a more mechanistic explanation 

of the home-field advantage. This study is novel because I have two plant types at both 

sites in differing densities, versus a plant type per each environment, and I show that the 

dominant plant type loses more mass on average at home versus an away location. If 

peatland plant communities are to transition to Carex-dominated from Sphagnum-

dominated, I would predict accelerated decomposition rates. However, whether 

alterations in plant communities and decomposition processes will lead to overall 

alterations in carbon cycling will likely be dependent on the nature of the aboveground-

belowground linkage. 
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Chapter 4  

4 Discussion 

4.1 Traits, litter quality, and decomposition 
Physical (e.g. leaf thickness) and chemical (i.e. leaf nutrient concentrations) traits of plant 

material determine litter quality, a key regulator of decomposition rates at local scales 

(Cornwell et al., 2008) affecting carbon storage and sequestration (De Deyn et al., 2008). 

In this thesis I demonstrate how functional traits, in particular chemical attributes, of 

Carex and Sphagnum interact with and shape the peat environment (Chapter 2) and drive 

decomposition rates of their litters (Chapter 3). Specifically, higher nutrient content of 

litters is known to correlate with faster decomposition rates (Xu et al., 2017). Litter 

chemistry analysis revealed that Carex litter is richer in nutrients (greater N and S) than 

Sphagnum litter, resulting in significantly lower C:N ratios, which typically translate to 

better quality litter and thus faster decomposition rates (Limpens & Berendse, 2003).  

Collectively, these results help explain how Carex decomposed more quickly than 

Sphagnum regardless of litter origin or destination, with an average mass loss of 55-70% 

in one year. 

Height and leaf dry matter content, both positively correlated with Carex spp., were 

identified as the main traits driving variation in my RLQ analysis that linked plant 

communities to belowground peat environment variables. While not a direct link to 

decomposition rates, tall height is indicative of a nutrient-acquisitive strategy aimed at 

fast-growth and rapid nutrient uptake, in synchronisation with faster decomposition rates. 

High leaf dry matter content, a measure of toughness, could be a by-product of high 

nitrogen metabolism, typical for sedges in acidic environments (Choo et al., 2002), or 

indicate allocation of resources for structural integrity to protect against wind (Pérez-

Harguindeguy et al., 2013). In contrast to Carex, Sphagnum is short, slow-growing, non-

vascular and has nutrient-poor tissues, which help explain the low mass loss of 20-24% 

observed in the field experiment. However, many of Sphagnum’s unique traits that 

facilitate slow decomposition are difficult to measure, yet are well documented in the 
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literature. For instance, Sphagnum’s thin cell walls, with higher proportions of carboxylic 

acid groups (Painter 1983), facilitates rapid cation exchange (Rydin & Jeglum, 2013) to 

acidify the environment and slow decomposition (Stalheim et al., 2009). Similarly, 

recalcitrant tissue with higher polyphenolic content (Verhoeven & Toth, 1995) and to a 

lesser extent lipids (van Breemen, 1995), also make Sphagnum tissue notoriously difficult 

to decompose. While I did not directly measure these physiochemical properties of 

Sphagnum, these traits became apparent when I examined the peat environment, 

observing specifically low pH and high carboxylic acid and lipid components in peats 

that were correlated with Sphagnum in the RLQ plots. Other antibiotic properties of 

Sphagnum litter include the release of inhibitory compounds that retard microbial activity 

(Verhoeven & Livfield, 1997) such as sphagnan, a pectin-like polymer that binds to 

ammonia rendering it unavailable for microorganisms (Rydin & Jeglum, 2013), which 

could help explain the slowed decomposition of Carex when mixed with Sphagnum in 

the mixed litterbags. 

4.2 Traits, life history strategy and ecosystem-level 
feedbacks 

A common thread between my two data chapters is the link between plant growth 

strategy (nutrient acquisition or conservation) and decomposition rates that can feedback 

to dictate the aboveground plant community and belowground peat properties. Nutrient-

acquisitive or conservative strategies manifest as trait combinations indicative of fast 

growth/decomposition and slow growth/decomposition, respectively (Reich, 2014). 

Sphagnum’s high leaf thickness, short stature and higher C:N ratios (Appendix C) are 

consistent with a nutrient-conservative ecological strategy for plants that are slow-

growing with low nutrient demands, facilitating slow decomposition. Slow 

decomposition and mineralisation of poor quality plant litter is a feedback that acts to 

maintain dominance of nutrient-poor species by effectively reducing the competitive 

ability of nutrient-demanding, fast-growing plants such as Carex (Berendse, 1994; Aerts, 

1999; Dorrepaal et al., 2007). Conversely, the tall height and higher nutrient litter quality 

of Carex is suggestive of a nutrient-acquisitive ecological strategy characteristic of 

wetland sedges, driving fast decomposition to release nutrients and support its own fast 
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growth (Keddy et al., 1998); factors creating a positive feedback to nutrient-availability 

(Dorrepaal et al., 2007). 

Taken together, Carex and Sphagnum occupy different ends of the ‘fast-slow’ plant 

economics spectrum (Reich, 2014), resulting in different nutrient dynamics that feedback 

to ecosystem-level process rates. This aboveground-belowground linkage is apparent in 

the dichotomy of species, traits and peat variables between poor and intermediate fen 

sites as demonstrated in the RLQ analyses of Chapter 2. The intermediate fen site 

possesses ‘fast’ species, traits, and peat environment, indicated by the correlation 

amongst Carex, height and peat properties of higher pH, available N and root biomass. 

Faster decomposition at the intermediate fen is also supported by the greater proportion 

of ‘decomposition products’ in the peat identified by FTIR spectroscopy, such as 

polysaccharides and low molecular weight phenolics, as well as the higher efficiency in 

utilising C by soil microbes (i.e. microbial metabolic quotient) and faster decomposition 

of Carex at the intermediate fen. At the same time, similar plant-soil linkages can also be 

made in the poor fen with Sphagnum mosses as the dominant plant functional group. 

Sphagnum decomposed slowly in both peat environments reflective of slow nutrient 

cycling, and demonstrated correlations with low pH, higher peat moisture and organic 

matter, and the ‘undecomposed materials’ of carboxylic acids, aliphatic lipids, fats and 

wax, and cellulose, which collectively point to slow decomposition rates at the poor fen 

site (Brown et al., 1988). 

4.3  ‘Fast-slow’ cycling and the home-field advantage 
The home-field advantage posits that plants are decomposed more efficiently in their 

home environment. A home-field advantage was observed for the dominant plant at each 

site (i.e. Sphagnum in poor fen, Carex in intermediate fen) for both the pure and mixed 

litters, which has not been documented before. While differences in litter quality and peat 

environments explain absolute mass loss (decomposition rates), they did not fully explain 

the observed home-field advantage, suggesting a microbial decomposer component. 

Unfortunately, a full description of the microbial communities at each site was beyond 

the scope of this thesis. Previous research on the microbial communities at this same 

White River peatland complex and similar peatlands from the Hudson’s Bay lowlands 



 

71 

have found similar rates of microbial activity (CO2 production) across a rich to poor fen 

gradient (Myers et al., 2012), although a follow-up study by Godin et al. (2012) found 

microbial activity was highly variable seasonally across peatland types when comparing 

spring and fall. Preston et al. (2012) found environmental factors to dictate microbial 

activity and community structure, while Haynes et al. (2015) found substrate quality to 

be most important to decomposition rate. Taken together, these results suggest more 

research is needed to connect microbes to decomposition, as it remains hard to gauge 

controls on microbial decomposition and activity given the mixed results of these studies. 

Microbial community structure has been linked to biotic (plant traits) and abiotic (pH, 

organic matter, C, nutrients) factors (e.g. Orwin et al., 2010; de Vries et al., 2012; Legay 

et al., 2016) that fit within a ‘fast-slow’ plant ecological strategy framework. Nutrient-

conservative plant traits leading to low pH and nutrients, and high organic matter 

accumulation have been correlated with fungal-dominated communities and slow nutrient 

cycling, while nutrient-acquisition plant traits leading to high nutrient mineralisation rates 

have been correlated with bacterial-dominated communities (Orwin et al., 2010; de Vries 

et al., 2012). Consistent with this is the increasing importance (Haynes et al., 2015), 

abundance (Orwin et al., 2010) and dominance (Rousk et al., 2010) of fungi in more 

nutrient-poor, acidic peatland types. These results collectively suggest that the ‘fast-slow’ 

spectrum may be a general ecosystem (aboveground species and traits, and belowground 

conditions and communities) property versus just a property of plants. 

While the fast-slow spectrum has been linked to process rates in previous studies (e.g. de 

Vries et al., 2012), it has yet to be fully considered in a home-field advantage context. 

The home-field advantage is suggested to be a result of specialised decomposer-litter 

relationships (Wardle et al., 2004) generated by historical resource inputs (Strickland et 

al., 2009), which over time (Keiser et al., 2011) shape a microbial community’s ability to 

degrade a certain quality of litter (Keiser et al., 2014). Local adaptation of soil microbes 

to dominant plant litter could explain why the dominant plants were decomposed more 

efficiently in their native versus transplanted environments. Through successive rounds 

of growth and decomposition, decomposer communities may be selected for by the most 

prevalent plant litter resulting in corresponding ‘slow’ and ‘fast’ soil microbial 
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communities. Fungi are better suited to decompose more recalcitrant substrates, such as 

Sphagnum, whereas bacteria that dominate in more nutrient-rich peatland types (Myers et 

al., 2012; Haynes et al., 2015) are more competitive for the higher-nutrient, more labile 

substrates such as Carex. The rate at which plant litters are decomposed correspond to the 

respective nutrient demands of Sphagnum and Carex, propagating the plant growth-

decomposition feedback. Although my data cannot determine causal links between 

drivers, microbial adaptation to litter chemistry of most prevalent plant litter has been a 

mechanism explaining similar reciprocal transplant results in other peatland studies (e.g., 

Bragazza et al., 2007). 

4.4 Boreal peatlands as models for ecosystem 
feedbacks 

Plant litter decomposition is a key ecosystem process controlling nutrient cycling and 

availability, regulating plant growth. This feedback between plant decomposition and 

production is especially important in systems with low nutrient input, low plant 

productivity, and even lower decomposition rates, such as peatlands (Dorrepaal et al., 

2007). Boreal peatlands are ideal systems for studying plant-soil feedbacks because the 

soil is literally the aboveground plant material in a partially decomposed state, presenting 

opportunity for strong plant-soil relationships to arise. At the same time, recent field 

(Buttler et al., 2015) and laboratory (Dieleman et al., 2015) studies of warming and 

elevated CO2 conditions suggest a rapid shift in Boreal peatland plant community 

composition. Thus changes in the aboveground plant community are expected to have 

cascading effects on belowground communities and processes. Previous studies have 

shown that plant-environment interactions can drive peatland plant community stability 

(Pedrotti et al., 2014; Dieleman et al., 2015), peat properties (Jassey et al., 2014) and 

processes related to peat accumulation (Belyea & Clymo, 2001) and decomposition 

(Bragazza et al., 2015). Here, I have provided evidence that demonstrates the important 

role of litter quality in plant-soil feedbacks that shape peatland properties (Chapter 2) and 

processes (Chapter 3) for Boreal peatlands through ecosystem engineering and litter 

decomposition, respectively. Other peatland studies (e.g. Malmer et al., 1994; Dorrepaal 

et al., 2007) have found similar positive feedbacks of litter quality that reinforce 
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differences in nutrient availability enhancing conditions for its own growth, especially 

with Sphagnum and the production of nutrient-poor litter. Plant-soil feedbacks are critical 

for maintaining the carbon sequestering function of peatland ecosystems (Jassey et al., 

2013). Although most plant-soil feedbacks are reported as negative (van der Putten et al., 

2013), both ecosystem engineering and the home-field advantage are positive, suggesting 

that Boreal peatland ecosystems are more unique than initially thought. 

4.5 Caveats, limitations and future directions 
In peatlands, strong conceptual links can be made between species traits and 

environmental factors, although quantitative links may be more spurious due to 

problematic measurement of functional traits of contrasting growth forms (graminoid vs. 

bryophyte). For instance, high specific leaf area (SLA = one sided area/dry mass) is 

reflective of nutrient-rich habitats yet were taken from Sphagnum species, mainly due to 

its low density (large aboveground shoots and lightweight material). While analysing 

SLA of Sphagnum in this way is suggested (e.g. Bond-Lamberty & Gower, 2007), it 

poses problems for comparing trait values between highly disparate growth forms. The 

high SLA values of Sphagnum detract from the other traits, statistically masking 

potentially important trait-species-environment relationships. This highlights the need for 

plant growth form specific trait analyses, as moss shoots do not necessarily function like 

leaves of vascular plants (Rice et al., 2008).  

Similarly, while my RLQ trait analysis presented a clear dichotomy between the fen 

species, traits and environments suggestive of ecosystem engineering, the fourth-corner 

analysis revealed the trait-environment relationships to be insignificant. Some of this may 

be statistical, as a significant ‘solution’ is generally easier to reach when more species, 

and fewer traits, are included in RLQ trait analysis (ter Braak et al., 2012). In my 

analysis, the number of species used in RLQ trait analysis was constrained by the number 

of species with leaf C and N data, as these were seen as important plant traits (Chapin, 

2003). The standardised trait protocols provided by Pérez-Harguindeguy et al. (2013) 

indicate that three, photosynthetically active leaves should be collected for each trait 

measured. While this was not a problem for most trait measurements, there was often not 

enough dry material (i.e. 0.3 g dry weight) present for small-leaved plants (e.g. 
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snowberry, low-bush blueberry), needled species (e.g. black spruce and tamarack), or 

mosses (e.g. Sphagnum fuscum) to be included in the C and N analysis. However, while 

including these species might have diversified results of the RLQ analysis, they were not 

necessarily abundant and may not have qualitatively influenced my results. 

While I provide insight into how some functional traits are involved in ecosystem 

engineering and litter decomposition, not all relevant traits of Sphagnum and Carex were 

measurable. For instance, ecosystem engineering is attributable to both physical presence 

(e.g. leaf shadow) and physical activity (e.g. smothering vines) of organisms (Jones et al., 

1994). In my system, Carex’s ability to build tussocks (Crain & Bertness, 2005) and 

Sphagnum’s capacity to build hummocks are likely also primary mechanisms by which 

these plants physically engineer their environment. While it might be difficult to assess 

the capacity of these plants to build structures, the presence or absence of hummocks or 

tussocks within the plots could be used a metric of activity-based ecosystem engineering 

if the study were to be repeated. Another caveat is that while aboveground traits are 

accounted for in my study, belowground traits are under-represented. Root exudates of 

sedge species including low-weight molecular phenolics are a potential priming 

mechanism enhancing decomposition in peatlands (Robroek et al., 2015; Dieleman et al., 

2016), and would have been strong evidence for Carex stimulating faster decomposition 

in the intermediate fen. My analyses of vegetation and root biomass illustrate the trend of 

resource allocation aboveground in the poor fen and belowground in the intermediate fen 

are consistent with other studies (Myers et al., 2012). However, root exudation of 

peatland vascular plants has also been found to have negligible effects on decomposition 

rates in the same White River peatland complex (Basiliko et al., 2012), suggesting more 

explicit tests of root exudates as a priming effect on decomposition are needed. 

A significant limitation for Chapter 3 and my assertion of home-field advantage 

decomposition dynamics is the lack of microbial compositional data and analyses. I did 

not find significant differences in microbial biomass or activity between the sites, 

consistent with other studies performed at this peatland complex (Myers et al., 2012; 

Haynes et al., 2015), yet the microbially-adapted home-field advantage mechanism does 

not necessitate these differences. Determining differences in microbial communities can 
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be performed through relatively simple metrics (e.g. phospholipid fatty acids that 

determine fungal:bacterial ratios) or highly intensive methods (e.g. next generation 

sequencing of species-level identification), neither of which were available for this study, 

and neither of which would prove local adaptation. As such, while I provide evidence for 

a home-field decomposition advantage, mechanisms generating the home-field advantage 

remain somewhat unclear. Measuring local adaptation is typically performed through 

reciprocal transplants (Blanquart et al., 2013) as I have done here, although quantifying 

the microbial community structure of the peat monoliths would have provided more 

solidity to my claims of fungal-based energy channels dominating in the poor fen, and 

bacteria in the intermediate fen, that contribute to driving the slow or fast feedbacks of 

the respective site. Lastly, although poor and intermediate fen Sphagnum had 

significantly different nutrient concentrations, this was not reflected in significantly 

different mass loss rates suggesting that more time might be needed for the effects to be 

realised. However, studies of Sphagnum decomposition have found comparable mass loss 

rates after seven years (Moore & Basiliko, 2006), and different mass loss rates between 

the two Sphagnum types would not necessarily have changed interpretations of the home-

field advantage. 

Overall, I provide evidence for how ecosystem properties of a nutrient poor and 

intermediate nutrient peatland are generated and maintained by key plant ecosystem 

engineers, namely Sphagnum and Carex species that correspondingly drive litter-

environment feedbacks. Given that plant-soil feedbacks grow stronger over time 

(Dorrepaal et al., 2007), future directions should investigate the conditions that could 

destabilise these litter-environment feedbacks to cause a shift between peatland types, 

and which plant traits are most important in facilitating this change. My litter mixture 

results lend support to a synergistic litter dynamic between poor fen Carex and 

Sphagnum, enhancing Sphagnum decomposition (but not vice versa). With changes in 

climate (warming and elevated atmospheric CO2) that induce changes in plant 

community structure from mosses to vascular plants, the presences of more labile litter 

combined with root exudates might ‘prime’ deep peat for accelerated microbial 

decomposition (Robroek et al., 2015; Dieleman et al., 2016) presenting another avenue 

for further research. 
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4.6 Conclusions and significance 
There have been several studies that investigate the role of peatland plant community 

composition under climate change scenarios (e.g. Ward et al., 2009; Potvin et al., 2015; 

Dieleman et al., 2015), yet relatively few provide insight into contemporary peatland 

plant community dynamics. Further, the functional attributes of peatland plants are 

understudied compared to other ecosystems such as grasslands or forests (Garnier et al., 

2004; Conti & Diaz, 2013). Data provided from my research will help fill a knowledge 

gap in the functional attributes of peatland plants. I found that both Sphagnum and Carex 

species are potential ecosystem engineers, generating different peat environments that 

feed back to different rates of decomposition, providing potential insights to carbon 

storage of these two ecosystems. The ability of these peatland plants to transform 

environments through their traits makes the trait-environment linkage in peatlands very 

strong (Rydin & Jeglum, 2013). The expected shift in plant community from moss- to 

sedge-dominated (Dieleman et al., 2015; Robroek et al., 2015) implies changing litter 

inputs to a more labile material, and an associated feedback to enhanced growing 

conditions and nutrient cycling rates (Dorrepaal et al., 2007). As my results show that the 

home-field advantage does not alter absolute mass loss of plant litter, studies should 

focus on whether the shift in belowground microbial community will occur before, after, 

or alongside the shift in dominant plant litter. On that same note, whether a low nutrient 

environment or nutrient-conservative plant type came first (or high nutrient and nutrient-

acquisitive) is a chicken-and-egg relationship requiring further investigation. 
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Appendices 
Appendix A: Maps of Boreal peatland complex near White River, ON.  

Map of A) White River, ON (48°21’N, 84°20’W) and B) relative locations of the intermediate and poor fen.  

  

Maps created by M. Mack, UWO. 
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Appendix B: Summary of relative percent cover (%) of Boreal peatland plant species used in RLQ trait analysis. 

	 Intermediate fen Poor fen 

	
Plot 1 Plot 2 Plot 3 Plot 4 Plot 5 Plot 1 Plot 2 Plot 3 Plot 4 Plot 5 

Andromeda polifolia 0 0 0 0 0 0 25 9 19 50 

Carex disperma 0 0 0 0 0 0.5 0 0.5 0.5 0.5 

Carex oligosperma 0 75 0 0 100 10 0 0 0 0 

Carex stricta 100 75 100 90 0 0 0 0 0 0 

Chamaedaphne calyculata 1 1 25 29 5 55 5 25 5 40 

Kalmia polifolia 0 0 0 0 0 2 5 15 13 10 

Rhododendron groenlandicum 0 0 0 0 0 9 25 8 24 3 

Lycopodium annotinum 0 0 0 0 0 0.5 25 10 16 10 

Mainthemum trifolium 0 0 0 0 0 1 3 0.5 0.5 3 

Myrica gale 51 51 75 37 10 0 0 0 0 0 

Sphagnum angustifolium 0 0 0 0 0 55 24 36 0.5 40 

Sphagnum magellanicum 0 0 0 0 0 45 26 50 1 40 

Carex sp. 0.5 0.5 0 0.5 0 0 0 0 0 0 

Vaccinium angustifolium 0 0 0 0 0 0.5 2 18 27 0 
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Species Height 
(cm) 

Leaf Area 
(cm) 

Leaf 
Mass 
(g) 

LDMC 
(µg/g) 

SLA 
(cm2/g) 

LMA 
(g/cm2) 

Leaf 
Thickness 

Index 
C (%) N (%) C:N 

Andromeda polifolia 43.0 1.634 0.029 470.33 56.59 0.018 0.000038 53.1 1.35 39.4 

Carex disperma 65.0 34.407 0.157 322.46 228.32 0.004 0.000014 44.5 1.50 29.6 

Carex oligosperma 73.0 7.217 0.070 336.97 132.93 0.008 0.000022 45.4 1.41 32.2 

Carex stricta 75.3 17.099 0.134 569.41 129.41 0.008 0.000014 46.4 1.22 38.1 

Chamaedaphne calyculata 56.2 5.040 0.028 436.70 180.45 0.006 0.000013 53.2 1.74 30.7 

Kalmia polifolia 34.2 1.418 0.017 473.33 87.95 0.011 0.000024 51.7 2.05 25.2 

Ledum groenlandicum 45.0 7.163 0.044 605.84 154.88 0.007 0.000013 53.2 1.50 35.4 

Lycopodium annotinum 17.5 7.609 0.068 429.38 125.93 0.010 0.000022 48.9 0.91 57.3 

Mainthemum trifolium 13.9 35.378 0.069 154.06 482.50 0.003 0.000016 48.3 2.93 16.5 

Myrica gale 87.5 6.384 0.043 500.17 188.45 0.006 0.000012 50.9 2.57 20.5 

Sphagnum angustifolium 4.5 10.870 0.028 130.58 397.88 0.003 0.000019 44.0 1.55 28.5 

Sphagnum magellanicum 4.3 16.404 0.049 86.82 362.25 0.003 0.000036 45.0 1.58 28.6 

Carex sp. 51.0 23.176 0.224 393.20 115.45 0.009 0.000022 44.4 0.84 52.7 

Vaccinium angustifolum 31.0 5.994 0.018 336.87 335.11 0.003 0.000009 49.0 1.94 25.3 

Appendix C: Summary of species’ traits used in RLQ trait analysis. 

Note: Leaf thickness index was calculated using the equation LT= (SLA´ LDMC)-1 from Vile et al., (2005). 
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Community Descriptor Intermediate fen  Poor fen  F1,8 P 

Richness (spp./m2) 6.0 (1.1) 15.2 (1.2) 36.2 < 0.001 

Percent cover (%) 182.3 (20.7) 218.4 (18.5) 1.69 0.230 

Shannon Diversity (H) 1.04 (0.11) 1.96 (0.07) 49.5 < 0.001 

Simpson Diversity (N1) 0.57 (0.05) 0.82 (0.01) 22.1 0.001 

Pielou’s Evenness (J) 0.61 (0.08) 0.72 (0.03) 1.83 0.213 

 

Appendix D: Summary of plant community diversity descriptors for poor and intermediate fen plant communities.  

Values are mean (±SE). One-way ANOVA was used to test for differences between site means. 
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