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ABSTRACT 
 

 
Concussions are generating increasing concern due to potential long-term neurological 

consequences. Currently there is no universally recognized diagnostic approach for concussion. I 

hypothesize that a signature temporal response of biomarkers of inflammation in systemic 

circulation will provide an objective diagnosis of concussion and could also be used to track 

patient recovery. The Western University women’s rugby team underwent blood draws at pre-

season and post-season as a baseline evaluation, and players determined to have sustained a 

concussion underwent repeat blood analysis post-concussion. Blood samples were analyzed by 

flow cytometry to profile immune cell populations alongside accepted concussion assessments, 

and complete blood count. Immune profiles demonstrated significant changes in total leukocytes 

and subsets post-concussion compared to baseline. It was demonstrated that we could 

successfully and feasibly recruit and perform a discovery investigation into potential blood 

biomarkers of concussion longitudinally. My study provides new insights for future blood 

biomarker research of concussive injury.  
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CHAPTER 1 – INTRODUCTION 
 
1.1 OVERVIEW 

Traumatic brain injury (TBI) is a massive global healthcare problem currently affecting 

approximately 10 million people annually.1 It is reported that on average 39% of individuals 

sustaining a severe TBI will die of their injury.2 Those that do survive the initial severe trauma 

die 3.2 times faster than the general population, and will likely face long-term physical, 

cognitive, and psychological consequences.2 This is driven by the fact that central nervous 

system (CNS) injuries often fail to fully and or properly recover over time, leading to permanent 

disabilities.3 Still today there are few therapeutic options for people suffering from brain injuries. 

New CNS therapeutics take about 18 years to transition from laboratory bench to patient, with 

8.1 years on average spent on human testing.2 This is troubling as TBI has been predicted by the 

World Health Organization to become the major cause of death and disability worldwide by the 

year 2020.1 This has led some to describe TBI as a field with one of the greatest unmet needs in 

medicine and public health.4 

Brain trauma exists as a spectrum classically defined into three severity groups; severe, 

moderate and mild, based on the Glasgow Coma Scale (GCS), which is a clinical evaluation of 

head trauma. The GCS scores people according to level of consciousness by assessing motor 

responses, verbalization, and eye movement upon stimulation.5 Scores range from 3 to 15 with 

scores <8, 8-12, and >12 representing severe, moderate, and mild injuries respectively.5 Mild 

traumatic brain injury (mTBI) afflicts the greatest number of individuals, with 100 to 300 per 

100 000 seeking medical attention annually worldwide.6 Since many individuals sustaining 

mTBI choose not to seek medical attention, it is estimated that greater than 600 per 100 000 

worldwide sustain an mTBI annually, this would be roughly 42 million people.6,7 This is why the 
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use of the GCS to categorize brain injury patients has received some criticism as it leads people 

to dismiss more mild injuries among other issues.2  

 

1.2 CONCUSSION 

The term concussion has been popularized in sports medicine due to the growing global 

importance of this injury in the context of sports. A concussion is a biomechanically-induced 

alteration in brain function, which can result in deficits to memory and orientation, as well as 

resulting in a potential loss of consciousness.8 Generally, a concussive injury is considered to 

exist under the umbrella of mTBI.9 About 300,000 sports-related concussions occur in the United 

States annually; however, this number has even been suggested to be as high as 3.8 million when 

recreation- and sport-related concussions are taken into account due to inadequate reporting.10 A 

particularly large group at risk for sports-related concussions are young athletes, especially those 

playing contact sports. The second leading cause of TBI for individuals of the age 15 to 24 are 

sports, trailing motor vehicle incidents.11 Sports-related concussions made up approximately 

5.8% of all collegiate sports injures, with contact sports producing the highest numbers.12  

Unlike more severe forms of TBI, most concussion patients recover quickly, requiring 7 

to 10 days of rest for symptoms to dissipate.10 However, long-term disability, such as seizures, 

and emotional and behavioural issues, are seen in about 10% of individuals sustaining a 

concussion.13 The presence of a constellation of symptoms of concussion beyond the acute 

period of injury has been described as Post-Concussion Syndrome, and some individuals may 

experience this for years after insult.14,15 Within the acute recovery period there is a proposed 

window of increased neural vulnerability, and if an individual were to sustain a second head 

trauma in this period the effects can be fatal, this is described as Second Impact Syndrome.16,17 
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While this is a very rare and still a controversial condition, it is especially important to high 

school aged athletes where the predominant number of fatalities are seen.18 It is suggested to be 

the result of loss of auto-regulatory control of intracranial and cerebral perfusion pressure 

resulting in diffuse cerebral swelling.18 

Although a single concussion can have important but limited neurological consequences, 

it is the repetitive nature of these exposures that has largely driven interest in this field. A high 

school football player, according to a study by Broglio et al., can receive as many as 650 to 900 

head impacts over the course of a season.19 Interestingly, sustaining a concussion makes you 

more susceptible to future concussions, both acutely as with Second Impact Syndrome and more 

chronically. In a study of collegiate football players, if a player sustained a concussion they 

became more likely to sustain another concussion that same season than a player who had not 

received a concussion.12 This has led to the effects of concussion to be described of as 

cumulative, with long-term complications associated with multiple concussions.20 Supporting 

this idea, Iverson et al. demonstrated that memory impairment was 7.7 times more likely in 

athletes with multiple concussions than athletes with only a single concussion.20 At some 

currently undefined point, concussion stops being a recoverable mild injury, and develops into a 

chronic neurodegenerative condition.  

Chronic Traumatic Encephalopathy (CTE) is a neurodegenerative disease believed to be 

linked to repetitive concussive as well as sub-concussive trauma.7 While initially considered to 

only affect boxers, the at risk population for CTE has grown substantially to include almost 

every contact sport, and military personal.21 CTE morbidity often resembles Alzheimer’s, 

Parkinson’s, Frontotemporal Dementia, and even Amyotrophic Lateral Sclerosis due to 

accompanying mood, behaviour, cognitive and/or motor deficits.7 CTE is characterized in the 
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brain by the presence of hyperphosphorylated Tau protein as well as aggregated transactive 

response DNA binding protein 43.22 The presence of CTE is often not detectable until long after 

the affected individual is regularly exposed to repeated head impacts, for example after 

retirement in athletes.22 Even then, definitive diagnosis is not usually obtainable until a post-

mortem examination of the brain.22 Therefore, while the initial concussion may be hard to 

prevent, its proper identification and diagnoses can allow for an appropriate treatment and/or a 

preventative re-injury plan to be implemented.  

 

1.3 CURRENT CONCUSSION DIAGNOSTICS  

Across the board, disease identification has become more and more advanced, relying on 

anatomical, physiological, metabolic, immunological, and/or genetic attributes to provide 

accurate diagnoses.2 For TBI however, basic clinical signals makes up the large basis of injury 

classification.2 Severe and moderate TBI diagnosis is relatively straightforward, this is not the 

case for mTBI or concussion. An example of this can be seen using the GCS for concussion, 

with most individuals scoring 14 or 15 on the 15-point scale.23 While this may rule out more 

significant head traumas, it lacks the subtlety to properly assess individuals with concussion. At 

this point in time, there is no universally established non-subjective “gold standard” concussion 

diagnostic, nor any prognostic or therapeutic strategies available clinically.24,25 This leaves 

individuals at enhanced risk of more severe damage from a subsequent head trauma due to 

improper recognition and inadequate recovery time. 

The most popular sideline assessment of sports related concussion is The Sport 

Concussion Assessment Tool – Third Edition (SCAT3). This is a pen and paper concussion 

assessment tool predominantly used to determine any acute effects of concussion.26 It contains a 
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self-reported clinical signs and symptoms section using a graded scale, as well as tests informing 

cognitive dysfunction and physical deficits. While the symptom assessment is effective in that it 

tracks both presence and severity, these symptoms are not unique to concussion and are 

considered relatively common in non-concussed individuals with clinical conditions.26 There are 

often tremendous pressures on athletes, either from coaches, teammates, parents, or the players 

themselves, to return to play, and as a result athletes will under report symptoms and create the 

impression they are recovering faster.9  

In contrast to the pen and paper approach of the SCAT3, computerized 

neuropsychological tests have been developed such as the Immediate Post-Concussion 

Assessment and Cognitive Testing (ImPACT). The ImPACT collects various demographic and 

personal information about the athlete, followed by any symptoms they may have using the same 

7 point grading scale as the SCAT3.23 Lastly, the athlete is assessed using 6 neuropsychological 

tests evaluating attention processing, verbal recognition memory, visual working memory, visual 

processing speed, reaction time, numerical sequencing ability, and learning.23 The effectiveness 

of these neuropsychological concussion tests has been challenged. In a study on collegiate 

football players it was demonstrated that over 25% of ImPACT tests produced invalid results, 

and this was largely due to players “sandbagging” or intentionally performing poorly.27 

Reliability of the ImPACT is further being evaluated by an ongoing independent investigation by 

the Federal Interagency Traumatic Brain Injury Research (FITBIR) Informatics System in 

partnership with the National Institutes of Health.  

Due to the lack of gross pathology in concussion, even conventional computed 

tomography (CT) and anatomical magnetic resonance imaging (MRI) scans cannot detect subtle 

pathology associated with concussion.10,21 However, these tests are still valuable in that they can 



	 6 

rule out more severe injury such as hematoma. Overall, the current reliance on neurological 

examination and neuropsychological evaluation to identify the injury and determine the 

prognosis is subjective and gives no insight into structural or biochemical alterations at play in 

the concussed brain.28 As these tests largely inform return to play decisions it is imperative that 

they be correct and unbiased. So while these are the best we currently have, they are imperfect. It 

is necessary that new more objective clinical concussion measures be developed to help bridge 

this gap.  

 

1.4 BASIC ANATOMY OF THE BRAIN  

To discuss TBI and concussion pathology, first a brief introduction to neuroanatomy and 

function is needed. This information was sourced from the textbook The Human Brain: An 

Introduction To Its Functional Anatomy, 6th edition by John Nolte, unless otherwise cited.29 

There are two principle categories of cells in the brain: neurons and glial cells. Neurons are 

information processing and signalling elements. They use electrical signals to pass information 

within their cellular structure as well as chemical signals, or neurotransmitters, to pass 

information from neuron to neuron. Neurons contain long cylindrical process called axons, along 

which information in the form of electrical signals are passed, and while they have universal 

similarities they occur in a wide variety of shapes and sizes. At times axons are so long they 

contain 99% of the entire neural cell cytoplasm; they are far too large for simple diffusion to 

obtain necessary macromolecules, and instead rely on axonal transportation along microtubules 

to deliver cellular supplies. These long projections are particularly sensitive to damage compared 

to cell bodies. 
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The other principle categories of cells tasked with various supporting roles are the glial 

cells, of which three are highlighted. Oligodendrocytes, whose main role is to provide the 

insulating protective myelin sheaths that wrap axons and allow for faster transmission of 

electrical signals. Astrocytes, which provide key structural support within the brain. It is enlarged 

astrocytic processes that surround the brain vasculature to create the tightly regulated blood brain 

barrier (BBB). Lastly microglia, which are the principle immune surveillance cells of the CNS, 

perform constant inspection of the surrounding brain parenchyma in order to maintain 

homeostasis as well as macrophage-like activities when activated.30 These long-lived cells are 

derived from mesenchymal myeloid lineage progenitor cells, which immigrate to the brain early 

during gestation.31 These cells are essential components of the neuroinflammatory processes and 

are the first line of defence post-TBI.30,32 Upon activation, either by infection or injury, microglia 

respond promptly to changes in the microenvironment producing inflammatory cytokines and 

chemokines, as well as secondary messengers and reactive oxygen species.30,32  

 Since the brain contains such a vast network of highly metabolic cells, but no effective 

way to store oxygen or glucose, it requires a continuous, large supply of oxygenated blood. For 

perspective, the brain accounts for about 25% of the body’s oxygen consumption and uses about 

15% of the normal cardiac output, yet it represents only about 2% of our total body weight. 

Blood vessels are arranged in a dense meshwork within the brain, this is particularly true in the 

grey matter, which is predominated by neuronal cell bodies. Rows of tight junctions connecting 

adjacent cerebral endothelial cells form the selective BBB with assistance from the 

aforementioned astrocytes to separate the nervous system from the rest of the body.    

 

1.5 CONCUSSION MECHANISM AND PATHOPHYSIOLOGY 
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A concussion is caused by either a direct blow to the head or neck, or by a blow 

elsewhere on the body producing an impulsive “whiplash” force transmitted to the head. This 

biomechanical application of acceleration/deceleration and rotational forces induce a non-

uniform distribution of pressure and tissue strain driving the pathological alterations seen in 

concussion.10,32  

TBI pathophysiology is highly dynamic, evolving over time.2 Upon application of 

mechanical force in concussion, axonal projections, which are the links which provide 

communication for neurons in the brain, can undergo membrane rupture.10 TBI is classically 

described as a biphasic injury process; this mechanical damage makes up the primary injury 

phase, happening immediately at the moment of brain trauma. Concussive injury alone has been 

shown not to rupture the BBB.13 The secondary phase of brain trauma, termed secondary injury, 

is the cascade of events set into motion after the initial insult that can persist for months to 

years.33 In concussion, membrane rupture disrupts the ionic gradient by allowing potassium 

unrestricted trafficking to the extracellular space, this is accompanied by the release of the 

neurotransmitter glutamate.10 Excessive glutamate release can drive neurotransmitter 

excitotoxicity, driving tissue injury and dysfunction after trauma. Simultaneously, calcium 

rushes into the cell, and it has been suggested that this disrupts calpain proteolytic activity 

leading to microtubular disorganization, eventually activating pathways causing cell death.10,32 

Disruption of the ionic gradient depolarizes the neuron disturbing electrical signalling and 

inhibiting neuronal function.10 By increasing activity of sodium-potassium pumps on the axonal 

membrane proper ion balance can be returned, however; the energy required to do this can result 

in an “energy crisis”.10 Effects of this energy crisis can be seen in lactate accumulation and a 

decrease in cerebral blood flow.10 Oxygen and glucose delivery will resultantly be decreased and 
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this further drives neuronal dysfunction due to neuronal depolarization, disruption of ionic 

gradients, and release of excitatory amino acids.32 This axonal damage taking place throughout 

the brain has been referred to as diffuse axonal injury (DAI), and is believed to be the main 

structural disorder causing brain dysfunction long-term.14 It has been suggested though that 

concussive acceleration/deceleration forces do not affect neural cells evenly. Greater 

susceptibility for damage has been reported to axons that change direction to accommodate a 

blood vessel, axons at the grey matter white matter interface, or decussate.20 Damaged axons are 

not irreversibly injured, and usually complete axonal separation is only seen in severe TBI.32 It 

was assumed that 1 to 2 weeks was the required time for axonopathy and metabolic stress 

reversal by clinicians as that is when symptoms frequently resolve.34 New evidence though 

suggests that it takes 30 to 45 days for patients physiological parameters to resolve, well beyond 

when symptoms have resolved.34 Current understanding of pathophysiology following 

concussion is largely dictated by what has been observed from animal studies, so further 

validation of these mechanism in humans remains to be established.10 

 

1.6 NEUROINFLAMMATION 

The CNS has classically been considered an immune privileged site, demonstrating 

restricted immune surveillance largely based on the presence of the BBB which maintains 

rigorous permeability control for cell entry.3 However, this theory has been challenged in recent 

years, with studies demonstrating peripheral immune infiltration to the CNS, making the brain a 

dynamic immunocompetent organ.3,32 Even in the absence of pathology in the CNS, research has 

demonstrated extensive communication between glial cells and the immune system.3 

Neuroinflammation is the name given to inflammatory responses within the brain and spinal 
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cord, and is a major participant in the secondary injury cascade.30,32 Due to unique circumstances 

within the CNS, inflammation becomes much more complicated than in the periphery, which led 

to early beliefs that immune response could only be detrimental.3 Neuroinflammation has been 

revealed to play a role in many CNS diseases, from acute to neurodegenerative to some mental 

disorders.35  

An immune response is largely associated with a response to a foreign pathogen, but also 

plays important roles in response to sterile tissue damage, which is the case in any non-

penetrating TBI or closed-head TBI.3 In the case of sterile TBI, tissue damage causes the release 

of damage-associated molecular patterns (DAMPS), which can be a number of molecular entities 

including endogenous proteins, nucleic acids, and metabolites.36 For concussion, this can be the 

result of the applied acceleration and rotational forces on the brain producing diffuse axonal 

tissue injury.30 These DAMPS are recognized by pattern recognition receptors (PRRs), which 

upon binding function to both initiate and amplify an immune response.36 The earliest resulting 

components of this cascading inflammatory response are cytokines such as Interleukin (IL)-1β 

tumour necrosis factor (TNF), and IL-6.3,37 Cytokine release after tissue damage triggers 

upregulation of adhesion molecules, release of chemokines, and the activation of both local glia, 

endothelial cells, and circulating inflammatory cells.37 While microglia are the overarching 

directors of innate and adaptive immune responses in the CNS, several other CNS resident cells 

also have innate inflammatory capabilities.32 Astrocytes can express inflammatory mediators and 

secrete cytokines.37 Even neurons have shown some level of immune modulating activity, 

primarily supressing immune activation and inflammation.37  

Immune cell trafficking to the brain is dependent upon the upregulation of adhesion 

molecules on the endothelium such as E- and P-selectin, intercellular adhesion molecule–1, and 



	 11 

vascular cell adhesion molecule, as well as the release of chemotactic chemokines by local 

inflammatory cells, and also astrocytes and neurons.32,37 Although the BBB is rigid, it also has 

shown evidence of having a dynamic quality, allowing trafficking of immune cells through post-

capillary venules after manipulation by cytokine and chemokine secretion.38 There is dispute 

though that peripheral immune infiltration into the brain occurs mainly through the choroid 

plexus, which is the special tissue layer that helps separate the blood and cerebrospinal fluid 

(CSF) in the brain ventricles, rather than at the focal site of injury.39 The choroid plexus lacks 

endothelial tight junctions and astrocytic glial limitans, it also constitutively expresses adhesion 

molecules and chemokines, an observation which has driven this theory.39 

Inflammation is a normal and essential process, not only providing a defensive 

mechanism against pathogens and insults, but working to repair tissue damage and restore and 

maintain homeostasis.40 This process, irrespective of the trigger or location, involves many cells 

and protein and peptide mediators in circulation.40 The brain of an individual suffering a TBI is 

most often healthy prior to insult, and without vascular or other chronic conditions. Therefore the 

brain’s neuroinflammatory response is believed to be the most universal for biomarker discovery 

in humans compared to other brain diseases as it lacks potential confounding factors.35 

 

1.7 NEUTROPHILS 

The most abundant and earliest arriving peripheral immune cell after most injuries are the 

neutrophils.3,41 While short lived, surviving about 5 days in humans and 12 hours in mice, these 

cells are continuously produced in the bone marrow, released into circulation and eventually 

cleared by macrophages in the bone marrow and liver.3,42 At the site of injury neutrophils have 

numerous functions, and while their involvement in pathogen fighting is well documented, their 
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role in sterile injury response is less well understood.3 After CNS injury, large pools of 

neutrophils can be seen to extravasate into the lesion site as early as 4 hours after injury.3 This is 

believed to occur due to the TBI-induced release of catecholamines and glucocorticoids into 

circulation.41 The catecholamines act to release marginated neutrophils into circulation, while 

glucocorticoids both encourage neutrophil survival and further neutrophil release from stored 

pools in bone marrow.43,44 Neutrophil response peaks in infiltration at about 2 days, and is 

mostly absent by 3 days.3,30,32 Upon arrival at the injury site, neutrophils release various effector 

molecules, which are believed to have deleterious effects on precious neural tissue.3 An example 

of some of the effector molecules released include pro-inflammatory cytokines, proteases, and 

reactive oxygen and nitrogen species.3,32 

 

1.8 MONOCYTES/MACROPHAGES 

Like neutrophils, monocytes are produced in the bone marrow and are released into 

circulation, taking up residency there or within the spleen, from which they can traffic to sites of 

tissue injury.3,45 Representing 5-10% of circulating immune cells, monocytes are a 

heterogeneous population.41 Heterogeneity is largely defined based on the expression of surface 

markers CD14 and CD16 dividing cells into three subsets; classical (CD14++ CD16-), 

intermediate (CD14++ CD16+), and non-classical (CD14+ CD16+).41 These three subsets form an 

interesting relationship, with each cell type distinguished by a unique function and phenotype. 

While not formally proven, gene analysis has placed the intermediate and non-classical 

populations as more closely related compared to the classical group.46 Proportionally, classical 

monocytes are the largest population, representing about 85% of total monocytes.46 They are 

described as having a superior phagocytic capacity, and gene signature indicating wound healing 
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and coagulation properties, responsiveness to stimuli, and anti-apoptosis capabilities.46 

Intermediate monocytes represent about 5% of the monocyte population, and are described as 

having a superior capacity to induce T cell proliferation and activation, likely the result of a gene 

signature reflective of improved antigen processing ability and MHC class II presentation and 

processing ability.46,47 Non-classical monocytes represent about 10% of the monocyte 

population, and demonstrate a unique patrolling behaviour.46 An in vivo analysis demonstrated 

non-classical monocytes crawl along the endothelium, suggesting they constantly exhibit a 

surveillance behaviour for inflammation or damage such that these monocytes can rapidly traffic 

to the site of interest.46,48 CD16+ monocytes, more specifically non-classical, have been 

described as more pro-inflammatory due to their greater capacity to release TNFα and IL-1β, and 

under inflammatory conditions expansion of the CD16+ subset has been observed.46 Alterations 

in responding monocyte subpopulation levels have been identified in conditions such as pre-

eclampsia, chronic systolic heart failure, sepsis, Crohn’s disease, severe asthma, and stroke.49–54 

Monocytes rely on endothelial activation and chemokine gradients to encourage trafficking into 

desired sites.3 Monocyte recruitment is heavily attributed to the release of the chemokine CCL2 

after TBI, but other chemokines may be involved, as there is considerable promiscuity in ligand 

receptor interactions.55 The importance of the CCL2 chemokine was even demonstrated in a rat 

model of TBI with its increased secretion encouraging monocyte recruitment.56After TBI, studies 

have shown increases in circulating monocytes at 24 hours after insult.57 Accumulation of 

monocytes within neural tissue is reported at 36 to 48 hours after insult, and progressively 

increase in numbers over the following weeks.32 Monocytes give rise to tissue resident 

macrophages or dendritic cells upon infiltration into tissue, but they may also retain their 

phenotype.45,58  
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Monocyte-derived macrophages are believed to have a biphasic response, upon activation 

at the injury site they promote inflammation, however over time they are necessary for injury 

resolution by releasing growth factors and promoting angiogenesis.3 Overall, they are far less 

harmful to tissue compared to the earlier arriving neutrophils.59 Challenging the understanding of 

the contribution of haematogenous macrophages contribution to neuroinflammation is the fact 

that they are indistinguishable from activated microglia due to their expression of similar surface 

markers.30  

 

1.9 LYMPHOCYTES  

Overall, the adaptive response to CNS trauma is far less prevalent than the innate 

response, with lymphocyte recruitment and activity in sterile CNS injury still poorly understood. 

After spinal cord injury (SCI), lymphocyte infiltration appears to be delayed, peaking about 42 

days after injury in mice and after several months in humans.30,32  

After severe TBI, a significant decrease in the number of circulating T cells has been 

reported.41 This is true for both CD4 and CD8 T cells, up to 4 days after a severe TBI.41 It has 

been suggested that this could be due to increased serum catecholamine levels encouraging 

lymphocyte retention in lymph nodes.41  

TBI appears to have little influence on B cells. In one study, no significant alteration in B 

cell frequency was noted after severe TBI, however only the first 7 days after trauma were 

investigated.60 This idea may be challenged though, with one study recently demonstrating an 

increase in serum anti-S100B autoantibodies as well as serum S100B protein in individuals 

experiencing repeated subconcussive head insults.61  
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Circulating natural killer (NK) cells have been shown to be reduced for days to weeks 

following TBI, this is true for mild, moderate, and severe levels of injury.60,62 It has been 

suggested this reduction could be the result of glucocorticoid-induced apoptosis of circulating 

NK cells.41 It has also been suggested the reduction is due to NK trafficking to the brain where 

they suppress microglia number and function and thereby controlling amplification of the 

immune response and any additional damage it may cause.62  

 

1.10 BIOMARKERS 

A biomarker, as defined by the National Institutes of Health Biomarkers Definitions 

Working Group, is “a characteristic that is objectively measured and evaluated as an indicator of 

normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic 

intervention.”63 Biomarkers represent a broad category of medical signs that can be functional, 

physiological, biochemical, or almost any measurement demonstrating relationship between a 

hazard and a biological system.63 Essentially they should provide quantifiable biological 

information in an objective manner that is in direct relation to the physical insult taking place. 

Fluid biomarkers of concussion would provide value in the diagnosis of concussion. Currently 

research has focused mainly on fluid biomarkers sourced from CSF and peripheral blood, 

although urine and saliva have also been suggested as alternatives for concussion study.64  

Cerebrospinal fluid is an appealing choice for fluid biomarker analysis for concussion as 

it freely communicates with the interstitial fluid of the brain that bathes the neurons, and 

therefore should most accurately reflect CNS injury.21 Compared to the approximately 4 litres of 

blood in circulation in a human, there is only about 150 to 200 ml of CSF fluid meaning markers 

of interest are far less diluted and should be measurable using standard immunoassay 
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techniques.21,29 What is problematic about CSF is that it is unclear how quickly there is clearance 

of brain metabolites into the newly described glymphatic/lymphatic system of the brain and into 

the blood supply.21 While the CNS lacks a classical lymphatic drainage system, the 

glymphatic/lymphatic system made up of astroglial cells forming perivascular channels, lines the 

dural sinuses and has hallmark lymphatic endothelial characteristics and is capable of carrying 

fluid and immune cells to deep cervical lymph nodes to generate an immune response.65,66 CSF is 

produced at a rate of about ½ L/day, meaning its total brain volume is renewed around 2 to 3 

times per day, therefore biomarker levels could fluctuate vastly depending on time of sampling.29 

Additionally, it is unrealistic and ethically unreasonable to perform a highly invasive lumbar 

puncture for CSF collection on the scale needed to obtain baseline information for non-

concussed healthy individuals.  

Blood-biomarker use in concussion has already started to be intensely investigated. 

Currently the most studied TBI biomarker is S100B, which is a calcium binding protein secreted 

by astrocytes.67 S100B has been used to rule out minor head injury in emergency room situations 

in France as part of a prospective study.68 While S100B is approved for use in certain countries, 

such as Germany, it is currently not approved by the Food and Drug Administration (FDA) for 

use in the USA, nor are any other biomarkers for TBI.16,69 Overall it is an unreliable marker for 

TBI as it can be released in polytrauma situations where head injury is absent, and this marker 

does not appear to readily cross the BBB.67 Alpha-spectrin is another candidate for a blood-

biomarker. In a preliminary study of professional hockey players, researchers discovered an 

increase in the serum concentration of the N-terminal fragment of alpha-spectrin, which is a 

protein related to DAI, in concussed players compared to preseason levels.14 The increase of this 
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protein in blood serum was even shown to correlate with the length of post-concussion 

symptoms.14  

Advantages of a blood-biomarker for concussion are numerous. Blood collection is 

minimally invasive and can be performed on the sideline immediately after injury as well as at 

the clinic. Blood can be analysed both whole and separated into its components for various 

analysis options. Disadvantages of blood as a fluid biomarker include the restriction of relevant 

CNS proteins entering the bloodstream, either at all or in a measurable concentration, due to the 

presence of the BBB.13,21 Additionally, markers of interest may undergo degradation or alteration 

due to proteases in the bloodstream, or clearance by the liver or kidneys, and for this reason the 

half-life of many investigated protein and serum biomarkers of concussion are unknown.13,21 

There is often no normal range for the concentration of most of the soluble markers evaluated.40 

This is not the case though for blood cell levels themselves, in which there are well-established 

normal ranges, with clinical use of some of these markers already in place.40 Therefore, we see 

potential in tracking the leukocyte response post-concussion as a means to identify concussion.  

 

1.11 INFLAMMATION AS A BIOMARKER  

The cascade of immune events that takes place after CNS injury has been distinctly 

described, starting with cell injury and moving through various molecular and cellular stages.3 

Even the resolution of inflammation is an active process with a signature cascade involving 

specific cell types and anti-inflammatory cytokines.40 Using a panel analysis of this cascade of 

inflammatory factors with different temporal profiles, it is conceivable to track someone through 

the initial injury, as well as their progression to recovery and safe return to play. Currently, 

protein and protein fragments have been the focus of fluid biomarker research of CNS injury.21 



	 18 

Inflammation itself has been suggested as a powerful biomarker due to its perceived 

association with the progression of TBI pathologies.16 Due to the apparent commonality of 

immune response mechanisms, it would be feasible to apply these biomarkers for both acute and 

chronic brain injuries.35 However, during an inflammatory response changes in inflammatory 

marker concentrations have little specificity.40 No one marker, or even a small number of 

makers, can define inflammation as a whole, and that is why it is necessary to consider and 

evaluate clusters of markers to determine an inflammatory signature.40 Many markers of 

inflammation are present at readily detectable levels in healthy individuals; it is the dynamic 

nature of these levels that may provide a tangible measurement for indicating ongoing 

inflammation.  

A majority of inflammation research investigates the pro-inflammatory cascade as it 

drives immune amplification and potential tissue damage.40 Considerably less attention has been 

paid to the anti-inflammatory resolution cascade, yet it plays a necessary component in 

preventing chronic long-term inflammation.40 By capturing both pro- and anti-inflammatory 

markers as part of an inflammatory marker panel, it could better determine the period of immune 

propagation and resoloution.35 A more in-depth analysis of leukocytes, investigating surface 

expression of relevant markers has been suggest as an additional biomarker component in 

addition to cell counts and frequencies.40  

 

1.12 FLOW CYTOMETRY  

Flow cytometry is the process of studying individual cells traveling in suspension through 

an image plane, and has been called the most powerful tool for probing immune phenotypes.70 

Flow cytometry allows for the rapid, quantitative analysis of multiple parameters on a single cell 
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in peripheral blood and digested single-cell preparations of tissue.40,70 This opens up the 

possibility to detect and phenotype rare cell subsets amongst complicated biological mixtures 

such as blood, and this could not be performed using bulk assays such as a western blot.70 This is 

important as both cell phenotype and function can be demonstrated by the extent of surface 

marker expression on any given cell.40 An example of this is CD69, which is a transiently 

expressed surface marker believed to demonstrate immune cell activation.70 Flow cytometry has 

clinical value as a diagnostic tool, and can be used to advance understanding of concussion 

pathology and etiology due to its ability to rapidly survey biological fluid.25 For this study flow 

cytometry will be used to track evolving leukocyte populations. 

 

1.13 MOUSE MODELS OF TBI AND RATIONALE FOR THEIR USE 

Currently, concussion research has been largely restricted to humans, while these studies 

have value they do not allow in-depth mechanistic evaluations.71 Animal studies are a necessary 

step in the translational process from laboratory bench to human bedside treatment. Using a 

mouse model can provide validation for rationale as well as predict an outcome we can compare 

with later human studies. If clinical outcomes produce results not predicted by an animal model, 

it can reversely guide modification in future studies of the animal model. Any preparation of 

future therapeutics for TBI, or more specifically concussion, will require rigorous evaluation in 

an animal model, making parallel animal model development an important step for future 

experiments.  

Due to the diffuse nature of the injury associated with mTBI, and the vast diversity of 

clinical outcomes it produces, it is likely that no single animal model of mTBI will completely 

reproduce the spectrum of mechanisms that are associated with the corresponding human 
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injury.72 While sports-related concussion specific animal injury models are being investigated, 

there is no universally accepted model.71 The model of TBI selected for this study is the 

controlled cortical impact (CCI). This technique uses a computer controlled pneumatic piston to 

deliver an impact at a predetermined velocity, depth, and duration of tissue deformation.73 This 

method is advantageous as it allows for a highly reproducible injury that mirrors many of the 

attributes seen in human TBI including neurobehavioural and cognitive impairment, BBB 

disruption, edema, and most importantly inflammation.73,74  

 

1.14 THE lys-EGFP-ki MOUSE  

This study utilizes the lysozyme M-EGFP-knock in (lys-EGFP-ki) transgenic mouse, 

containing the gene for enhanced green fluorescent protein (EGFP) in place of the lysozyme M 

coding sequence. The intact lysozyme M gene promoter faithfully drives and controls expression 

of EGFP in the hematopoietic cell types where Lysozyme M protein is normally expressed. This 

confers EGFP expression to mature hematopoietic granulomyelomonocytic cells, including 

neutrophils, monocytes, and macrophages.75 It is important to state that the lysozyme M gene is 

not essential for mouse viability, and these mice, in addition to being normal in size and fertility, 

have no defects in the hematopoietic system and contain all cells of myeloid lineage.76 In 

previous experiments in the Dekaban laboratory using the lys-EGFP-ki in a SCI model it was 

demonstrated that there is no substantial difference between lys-EGFP-ki and wild-type C57BL/6 

mice in leukocyte subset frequencies or leukocyte response to SCI.75 A comparative in-depth 

analysis of matching leukocyte frequency patterns, and phenotypic changes in surface markers 

presence and amount can be performed in the mouse model of TBI to provide context to changes 

seen in human. This includes mouse monocytes, which are also heterogeneous and can be 
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compared to the heterogeneous monocyte populations seen in humans. There are at least two 

distinct phenotypes of circulating mouse monocytes, and these can be separated by the presence 

of the surface marker Ly6C.77 Ly6C+ monocytes resemble the human classical monocyte 

population, and are rapidly attracted and respond to stimuli.77 Ly6C- monocytes resemble the 

human non-classical population, as they exhibit a similar patrolling function of crawling along 

the endothelium.77 A third intermediate monocyte population has been described in mice, but it is 

beyond the scope of my investigation.45  

 

1.15 SUMMARY AND RATIONALE  

There are a vast number of concussions occurring in sports, and the consequences of each 

concussion compound upon the next, leading to a potential worsening of clinical outcomes for 

the affected individual. What is problematic, though, is that current concussion identification 

methods are imperfect, relying on subjective measures and lacking description with respect to 

structural or biochemical alterations taking place as a consequence of concussion. Without 

adequate injury evaluation and assessment knowledge, individuals are at enhanced risk of more 

severe damage from a subsequent head trauma. The strong desire for a more objective and 

biologically relevant method of concussion identification and prognostic indictor(s) drives the 

current interest in evaluating fluid based biomarkers. It is believed that blood is a suitable 

biofluid for biomarker discovery due to ease of access, processing, and normative data. TBI-

induced peripheral inflammation has been suggested as a useful source of blood-biomarkers for 

concussion identification, as it could provide information on both cause and effect of the 

secondary injury process.25 It is anticipated that the evolving changes of leukocyte populations 
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can act as a biomarker for injury, provide insights into the stage of the ongoing immune 

response, and help determine patient outcome. 

The first stage of this work aims to use a mouse model of TBI as a proof of principle 

investigation into testing for changes in peripheral immune cell populations. Using flow 

cytometry, the cellular responses of neutrophils, monocyte subsets, and lymphocyte subsets was 

evaluated at various points post-TBI in the lys-EGFP-ki mouse. The second stage of this work 

was to perform a pilot study as a way to assess the feasibility of evaluating evolving leukocyte 

populations using basic clinical blood tests as well as by flow cytometry on a cohort of university 

level female rugby players with and without concussions. It was of immense importance to 

perform this investigation with the guidance of a baseline analysis of players to provide a 

framework to objectively determine any changes in players following a concussion. For this 

reason, a preseason assessment was performed on all the players who consented to the study such 

that players could act as their own controls. Clinically approved concussion assessments, the 

SCAT3 and ImPACT, were used alongside our screening panel for inflammation to provide 

contextual clinical measures. 

 

1.16 HYPOTHESIS AND SPECIFIC GOALS 

Hypothesis: 

A signature temporal response of biomarkers of neuroinflammation in systemic 

circulation will provide an objective concussion diagnostic not seen in the pre-concussion 

baseline assessment. This biomarker panel will also track patient recovery.   
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Goals: 

1) To assess the inflammatory response in systemic circulation and in the spleen post-TBI 

using the lys-EGFP-ki mouse. 

2) To assess current clinically used concussion diagnostics, the Sports Concussion 

Assessment Tool 3rd Edition (SCAT3) and Immediate Post-Concussion Assessment and 

Cognitive Test (ImPACT), for effectiveness and sensitivity on their own and in relation 

to potential blood biomarkers. 

3) To investigate evolving blood leukocyte populations longitudinally after concussion, 

using both basic clinical blood assessments and a more in depth cell analysis that 

employed analytical flow cytometry. 

4) To determine alterations of inflammatory protein markers and markers of neurotrauma 

following concussion in peripheral blood plasma.   
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CHAPTER 2 – MATERIALS AND METHODS 

2.1 ETHICS 

2.1.1 Animal ethics 

All animal experiments in this study were approved by the University of Western Ontario 

Animal Use Subcommittee (Protocol 2007-104-12 and Protocol 2016-019), and obey to the 

Canadian Council on Animal Care guidelines. Ethics letters are available in Appendix 1 and 2.  

2.1.2 Human ethics  

This study was approved by the University of Western Ontario’s Health Science 

Research Ethics Board (protocol 102857). All participants were provided letters of information 

and signed letters of informed consent prior to participating in the study at the beginning of each 

season. In keeping with ethical regulations, all players participating in the study have been de-

identified and assigned a number for identification. The ethics letter is available in Appendix 3. 

 

2.2 lys-EGFP-ki MOUSE MODEL OF TBI 

2.2.1 lys-EGFP-ki mice 

Heterozygous lys-EGFP-ki mice were provided by Thomas Graf, from the Albert Einstein 

College of Medicine (Bronx, NY), and were housed in a barrier at the West Valley Animal 

Facility at the University of Western Ontario Animal Care and Veterinary Services (London, 

ON). Homozygous mice were selected for rebreeding to ensure highest EGFP expression, and 

these mice were transferred to the barrier facility at the Robarts Research Institute (London, ON) 

before experimentation. Both male and female lys-EGFP-ki mice were included in 

experimentation, with a minimum age requirement of 10 weeks at time of surgery; no mice over 

17 weeks were used. All mice used in this study are maintained within a barrier facility from 
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birth till time of experimentally induced brain injury, at which time they were housed in a vented 

rack in conventional animal room for the duration of their survival. 

 

2.2.2 Pre-operative treatment 

 lys-EGFP-ki mice were initially anaesthetized using 3 to 4% Isoflurane (Baxter 

Corporation, Mississauga, ON) in oxygen, this was reduced and maintained at 1 to 2% Isoflurane 

during surgery. Mice were placed in a stereotaxic frame with ear bars in place, and the area on 

the back of the neck was shaved and sterilized with 70 % ethanol then 10% povidone-iodine 

(Purdue Pharma, Pickering, ON).  

 

2.2.3 Controlled cortical impact injury 

TBI was experimentally induced by a computer controlled CCI using the Precision 

Systems Instruments TBI device (Lintech, Monrovia, CA, USA) (Figure 1A). The mouse scalp 

was sagittally incised to expose the skull, skin was clipped back, and fascia was cleared from the 

skull surface using tweezers. A 4 mm diameter hole was trephined into the skull at 2.5 mm right 

of the sagittal suture, midway between the lambda and bregma suture, and the skullcap was 

saved. The result of which can be seen in Figure 1B and 1C. A 2 mm metal flat-faced impactor 

tip was used to apply an impact at a velocity of 3.5 m/s, with a depth of 1 mm, and a dwell time 

of 500 ms directly to the center of the exposed dura through the cranial window. This was 

deemed to be a mild TBI in mice.78 An image of the post-impact result can be seen in Figure 1D. 

The bone flap was replaced with Vetbond Tissue Adhesive (3M, St. Paul, MN), and the surgical 

sight was sutured closed with coated vicryl (Johnson & Johnson Medical Ltd, North Ryde, 

NSW).  
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Figure 1. Controlled cortical impact TBI mouse model. The Precision Systems Instruments 
TBI device used to perform the CCI is seen in A. To perform a CCI, a 4mm craniotomy was 
trephined into the mouse skull to the right of the sagittal suture midway between the lambda and 
bregma suture (B and C). After CCI any bleeding is stopped and the skull bone flap is replaced 
and the skin is sutured shut (D). Representative images. 
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2.2.4 Post-operative treatment 

 All TBI mice were administered subcutaneously with Buprenorphine (RB 

Pharmaceuticals Ltd, Berkshire, UK) (0.05 mg/kg), 0.4 – 0.5 ml saline to prevent dehydration, 

and Baytril to prevent infection (Bayer, Toronto, ON) using 28g ½ U-100 insulin syringe 

(Becton Dickinson (BD), Franklin Lakes, NJ), and placed under a heat lamp for recovery and 

observation after surgery for at least 2 to 3 hours before being placed into conventional vented 

cages until sacrifice. Buprenorphine, saline, and Baytril was administered twice daily for 3 days 

post-surgery.  

 

2.2.5 TBI endpoints 

lys-EGFP-ki were euthanized and evaluated for inflammatory response of circulating 

blood leukocytes at 2 hours, 8 hours, 12 hours, 24, hours, 72 hours, 7 days, and 14 days post-

TBI. Groups of 4 or 5 mice including both males and females made up each group. A pool of 5 

uninjured control mice was also included for analysis. Initially one sham injured mouse, 

receiving a craniotomy but no impact, was included in each time point group, but was 

subsequently removed from data analysis due to concerns about confounding results from the 

injury produced by craniotomy.79 At the appropriate time point, mice were euthanized by an 

overdose of Isoflurane. Upon euthanization, spleens were individually removed and temporarily 

placed in 1% Phosphate Buffered Saline (PBS) (Thermo Fischer Scientific, Waltham, MA) on 

ice for processing. Blood samples were obtained intracardially by first injecting 0.01 mL of 1000 

USP units/mL heparin (Sandoz Canada Inc, Boucherville, QC) into the left ventricle, and 

collected in a 1mL 25g 5/8 needle (BD). Blood was transferred to a lithium heparin coated tube 

(BD) and kept at room temperature till processing. An incision was made down the middle from 



	 29 

the lower abdomen up to the top of the chest and a perfusion needle attached to tubing and 

perfusion pump was inserted into the apex of the heart. Intracradial perfusion was performed 

with tissue Roswell Park Memorial Institute Medium (RPMI) media (Thermo Fisher Scientific) 

followed by 4% paraformaldehyde (PFA) (Bio-Shop Canada Inc, Burlington, ON). The brains 

were harvested from each animal. They were cryopreserved in 10% sucrose, 20% sucrose and 

30% sucrose solutions for 48 hours each and stored at 4°C until cryosectioning was performed. 

 

2.2.6 Cryosectioning of mouse brain samples 

Prior to sectioning, the mouse brain was frozen in optimum cutting temperature 

compound (Sakura Finetek, Torrance, CA) and sectioned transversely at 20 µm using Leica 

CM3050S Cryostat (Leica Microsystems, Richmond Hill, ON). Brain tissue was organized in six 

sets of sections, placed onto positively charged slides and stored at 4°C until further analysis. 

Hematoxylin and eosin staining was performed at London Health Sciences Center (London, ON) 

on 20µm brain sections 48 hours post-TBI to examine lymphocyte infiltration to the site of 

injury. 

 

2.2.7 Confocal microscopy 

To obtain representative brain images post-TBI mouse brain slides were selected and 

stained for analysis by confocal microscopy. Tissue slides were washed with 1x PBS, and then 

blocked for 3 to 4 hours with 5% normal goat serum (Jackson ImmunoResearch Laboratories 

Inc., Westgrove, PA) and 0.4% Triton-X (Bio-Shop Canada Inc., Burlington, ON) in PBS. Slides 

were stained overnight at 4°C with rabbit anti-Iba1 (Clone: EPR16588) (Abcam, Cambridge, 

United Kingdom) in block solution. Tissue slides were washed with PBS, and then stained with 
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goat anti-rabbit AF633 (Thermo Fischer Scientific) in PBS. Slides were incubated for 1 hour at 

room temperature. Slides were washed with PBS, and stained overnight at 4°C with rabbit anti-

GFP AF488 (Thermo Fischer Scientific) in block solution. Slides were washed with PBS and 

cover slipped with hard set DAPI mounting media (Vector Laboratories, Burlingame, CA). 

Sections were viewed using Leica TCS SP8 microscope (Leica Microsystems, Richmond Hill, 

ON). Images were analyzed using LAS AF Lite software (Leica).  

 

2.3 HUMAN RUGBY STUDY COHORT AND CLINICAL PROTOCOL 

The University of Western Ontario women’s varsity rugby team was the selected cohort 

for this study and players were followed for four consecutive seasons starting August 2012, 

through to April 2016. Athletes were eligible provided they had not suffered a concussion in the 

last 10 months and were at least 18 years of age. A total of 58 players participated, with some 

competing in multiple seasons of the study. Patient cohort characteristics are summarized in 

Table 1. In the case where a player did complete multiple seasons, each season was counted as a 

separate event, rather than averaged with a previous season. All assessments were performed by 

team physicians and trainers at the Fowler Kennedy Sports Medicine Clinic at the University of 

Western Ontario (London, ON). Players participating in the study underwent a baseline physical 

and cognitive assessment in August prior to the beginning of the collegiate rugby season. This 

assessment included a physical performed by a team physician, SCAT3, ImPACT, and blood 

sample collection. A questionnaire was also completed listing medical history as well as previous 

concussion information. Participants, who suffered a concussion, as diagnosed by the team 

physician, were re-examined within 24-72 hours of the concussion-taking place. This re-

examination included collecting a blood sample. Blood samples were taken again at as close to 1 
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week, 1 month, and 3 months post-concussion as could be achieved. Players diagnosed with 

concussions completed SCAT3 and ImPACT tests at the discretion of the team physician. All 

participating players in the study underwent an end of season baseline examination in 

January/February that included a SCAT3, ImPACT, and blood sample. A timeline of the study is 

outlined in Figure 2. All players also underwent an MRI and MRS scan before and after the 

season and at time of concussion, at 3 months post-concussion but the analysis the MRI/MRS 

data will be reported elsewhere.  

For samples collected from August 2015 to April 2016 a whole blood staining procedure 

for flow cytometry analysis was included for both baseline and post-concussion assessments. A 

fifth season (August 2016 – April 2017) was conducted but data was not included due to time 

constraints.  
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Table 1. Western Women’s Rugby Concussion Study Cohort Characteristics 
Cohort characteristics Combined 2012-2013 

Season 
2013-2014 

Season 
2014 – 2015 

Season 
2015 – 2016 

Season 

Participants, returning 58 25 26(13) 31(21) 14(4) 
Age, mean ± SD (years) 20 ± 1.3 20 ± 1.1 19 ± 1.4 20 ± 1.5 20 ± 1.3 
Height, mean ± SD (cm) 168 ± 6.3 167 ± 6.7 166 ± 5.6 168 ± 6.9 171 ± 4.8 
Weight, mean ± SD (lbs) 151 ± 17.9 153 ± 21.1 149 ± 17.9 149 ± 17.3 158 ± 12.0 

Previous Concussion1 31 13 4 9 5 
Diagnosed Concussion2 203 4 6 5 5 

1 Self reported concussions prior to study entry.  
2 Concussions observed within the time of the study. 
3 11 athletes had 1 concussion, 3 athletes had 2 concussions, 1 athlete had 3 concussions. 
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Figure 2. Timeline of the sample collection for the University of Western Ontario Women’s 
Rugby Concussion Study for non-injured baseline participants and concussed participants. 
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2.4 BLOOD COLLECTION, PROCESSING, AND FLOW CYTOMETRY 

2.4.1 Peripheral blood preperation for flow cytometry from lys-EGFP-ki mouse model 

Anti-mouse CD19, NKp46, CD3ε, CD11c, CD11b, CD45, Ly6G, Ly6C fluorescence 

conjugated antibodies were purchased from BioLegend Inc. (San Diego, CA). Anti-mouse 

CD115 fluorescence conjugated antibody was purchased from eBioscience Inc. (San Diego, CA). 

Anti-mouse F4/80 fluorescence conjugated antibody was purchased from BIO-RAD (Hercules, 

CA). 

From blood samples collected, 100µL aliquots were distributed into fluorescence-

activated cell sorting (FACS) tubes (Falcon, BD). Separate staining panels for myeloid and 

lymphoid lineage cells were performed. For both panels, LIVE/DEAD® Fixable Aqua Dead Cell 

Stain (Thermo Fischer Scientific) was added to FACS tubes in the dark and left to incubate at 

room temperature for 20 minutes. Samples were then incubated with one or more of the 

following fluorescently-labelled antibodies at 4°C for 20 minutes as part of the myeloid panel, 

PE rat anti-mouse anti-F4/80 (Clone: A3-1), PE/Cy7 rat anti-mouse anti-CD115 (Clone: AFS98), 

PerCP/Cy5.5 rat anti-mouse anti-CD19 (Clone: 6D5), PerCP/Cy5.5 rat anti-mouse anti-NKp46 

(Clone: 29A1.4), PerCP hamster anti-mouse anti-CD3ε (Clone: 145-2C11), PE/Dazzle hamster 

anti-mouse anti-CD11c (Clone: N418), AF647 rat anti-mouse/human anti-CD11b (Clone: 

M1/70), AF700 rat anti-mouse anti-CD45 (Clone:30-F11), BV421 rat anti-mouse anti-Ly6G 

(1A8), BV711 rat anti-mouse anti-Ly6C (Clone: HK1.4). Lymphoid panel cells were incubated 

with one or more of the following fluorescently-labelled antibodies at 4°C for 20 minutes, PE rat 

anti-mouse anti-CD19 (Clone: 6D5), APC rat anti-mouse anti-NKp46 (Clone: 29A1.4), AF700 

rat anti-mouse anti-CD45 (Clone: 30-F11), and BV421 hamster anti-mouse anti-CD3ε (Clone: 

145-2C11). Red blood cells (RBC) were lysed using BD Pharm Lyse lysing buffer (BD) and 
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samples were washed with cold Hank’s Balanced Salt Solution (HBSS) (Thermo Fischer 

Scientific) + 0.1% (v/v) bovine serum albumin (BSA) (EMD Millipore, Billerica, MA). Samples 

were spun at 6°C for 5 minutes at 500xg, the supernatant was poured off, another wash with 

HBSS + 0.1% BSA was performed. Samples were then resuspended in 200µL of HBSS + 0.1% 

BSA and 100µL of 4% PFA and stored in the dark at 4°. Before analysis by flow cytometry, 

50µL of CountBright Absolute Counting Beads (Thermo Fischer Scientific) was added to each 

all-positive sample. Cells were analyzed by an LSRII analytical flow cytometer (BD). Electronic 

compensation was performed with UltraComp antibody capture beads (eBioscience Inc.).  

	

2.4.2 lys-EGFP-ki mouse spleen preperation for flow cytometry  

Collected spleens were individually minced in a sterile petri dish. Spleen segments were 

placed on a sterile 70-micron filter (Falcon, BD) and were pushed through into a 50mL tube with 

a sterile 10cc plunger. Spleen cells were spun at 6°C for 5 minutes at 500xg and the supernatant 

was poured off, and cells were resuspended in 4mL incomplete RPMI media. Cells were filtered 

again using a 40-micron filter (Falcon, BD) and collected in a 15mL tube. Spleen cells were spun 

at 6°C for 5 minutes at 500xg and the supernatant was poured off, and cells were resuspended in 

5mL of Ammonium Chloride Lysis buffer (Stemcell Technologies, Vancouver, BC, Canada), to 

remove RBCs, and incubated for 7 minutes at room temperature. The volume was adjusted to 

15ml with PBS, and tubes were spun at 6°C for 5 minutes at 500xg. The supernatant was 

discarded, and cell pellets were resuspended in PBS. Cell suspensions were stained using the 

process listed in 2.4.1 for blood above and analyzed similarly by flow cytometry.	

 

2.4.3 Human blood collection, separation, and processing 
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Fresh blood was collected via venipuncture into two 10mL tubes and one 5mL tube all 

containing ethylenediaminetetraacetic (EDTA), and a 7.5mL serum separation tube (all from 

BD). A small portion of the blood sample collected was sent to the London Health Sciences 

Centre (London, ON) for a haematology profile including a complete blood count (CBC) with a 

white blood cell differential. The remaining player’s blood sample (12 to 20mL) was overlaid 

onto LymphoPrep™ (StemCell Technologies Inc.) gradients, which were centrifuged to separate 

and individually collect the plasma and peripheral blood mononuclear cells (PBMC) from 

remaining blood fraction. The plasma pool collected was aliquoted and frozen at −80°C. The 

PBMC layer was collected and resuspended at 107 cells/mL in 1:1 (v/v) solution of freezing 

media (50% Human AB serum (Thermo Fisher Scientific), 30% incomplete RPMI media and 

20% dimethyl sulfoxide (DMSO) (Bio-Shop Canada Inc.) to RPMI supplemented with 100 

units/ml Penicillin (Thermo Fisher Scientific), 100 µg/ml Streptomycin (Thermo Fisher 

Scientific), 2 mM L-Glutamine (Thermo Fisher Scientific), 10 mM HEPES (Thermo Fisher 

Scientific), and 10% Human AB Serum (Thermo Fisher Scientific). This resuspended sample 

was aliquoted into 2 cryovials (Sarstedt, Newton, MA) and frozen at −80°C in a Mr. Frosty™ 

Freezing Container (Thermo Fisher Scientific) and eventually transferred to liquid nitrogen for 

long-term storage. From the serum collection tube, following blood clotting and centrifugation, 

serum was collected, aliquoted, and frozen at −80°C.    

 

2.4.4 Flow cytometry for collected frozen human samples 

Anti-human CD15, and anti-human CD64 fluorescence conjugated antibodies were 

purchased from Becton Dickinson (BD). Anti-human MDL-1 fluorescence conjugated antibodies 

were purchased from R&D Systems Inc. (R&D, Minneapolis, MN). Anti-human CD3, CD19, 
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CD4, CD8, CD69, CD16, and CD56 fluorescence conjugated antibodies were purchased from 

BioLegend Inc. (San Diego, CA). Anti-human CD14 fluorescence conjugated antibodies were 

purchased from eBioscience Inc. (San Diego, CA).  

Previously frozen PBMCs were removed from liquid nitrogen and thawed quickly in a 

37°C water bath. All steps were done at 4°C unless otherwise specified. Samples were washed 

once with cold HBSS + 0.1% BSA to remove DMSO. Samples were then resuspended in an 

appropriate amount of cold HBSS + 0.1% BSA, and 100µL of each sample was aliquoted into 

5mL polystyrene FACS tubes (BD). Separate staining panels for monocyte and lymphocytes 

were performed. For both panels, LIVE/DEAD® Fixable Aqua Dead Cell Stain (Thermo Fisher) 

was added to FACS tubes in the dark and left to incubate at room temperature for 20 minutes. 

Samples were then incubated with one or more of the following fluorescently-labelled antibodies 

as part of the lymphocyte panel at 4°C for 20 minutes, PerCP mouse anti-human CD4 (Clone: 

RPA-T4), PE mouse anti-human CD19 (Clone: HIB19), APC mouse anti-human CD8 (Clone: 

SK1), APC-Cy7 mouse anti-human CD3 (Clone: SK7), and BV605 mouse anti-human CD56 

(Clone: HCD56). Samples for the monocyte panel were incubated with one or more of the 

following fluorescently-labelled antibodies at 4°C for 20 minutes, FITC mouse anti-human 

CD15 (Clone: HI98), PE mouse anti-human MDL-1 (Clone: 283834), PE-Dazzle mouse anti-

human CD16 (Clone: 3G8), PECy5 mouse anti-human CD69 (Clone: FN50), AF700 mouse anti-

human CD64 (Clone: 10.1), APC-Cy7 mouse anti-human CD3 (Clone: SK7), APC-Cy7 mouse 

anti-human CD19 (Clone: HIB19), eFluor 450 mouse anti-human CD14 (Clone: 61D3). FACS 

tubes were washed with HBSS and 0.1% BSA.  The cells were resuspended in 200µL of HBSS + 

0.1% BSA and 100µL of 4% paraformaldehyde (PFA). Lastly, a 50µL aliquot of CountBright 

Absolute Counting Beads (Thermo Fischer Scientific) was added to obtain absolute cell counts 
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upon acquisition. Cells were analyzed by an LSRII analytical flow cytometer (BD). Electronic 

compensation was performed with UltraComp antibody capture beads (eBioscience).  

 

2.4.5 Flow cytometry for collected whole blood samples 

For the whole blood staining procedure approximately 1ml of the total blood sample 

collected, was needed. 100µL aliquots of blood were distributed into FACS tubes.  Samples were 

then incubated with one or more of the following fluorescently labelled antibodies at 4°C for 20 

minutes, FITC mouse anti-human CD15 (Clone: HI98), PE-Dazzle mouse anti-human CD16 

(Clone: 3G8), PECy5 mouse anti-human CD69 (Clone: FN50), AF700 mouse anti-human CD64 

(Clone: 10.1), APC-Cy7 mouse anti-human CD3 (Clone: SK7), APC-Cy7 mouse anti-human 

CD19 (Clone: HIB19), eFluor 450 mouse anti-human CD14 (Clone: 61D3). To lyse RBCs 2mL 

of 1x BD Pharm Lyse Lysing Buffer (BD) was added to all whole blood tubes. Tubes were 

vortexed quickly and then incubated at room temperature for 12 minutes in the dark. Samples 

were then centrifuged at 500xg for 5 minutes. FACS tubes were washed with HBSS and 0.1% 

BSA. The cells were resuspended in 200μL of HBSS and 0.1% BSA and 100μL of 4% 

paraformaldehyde (PFA). Lastly, a 50μL aliquot of CountBright Absolute Counting Beads 

(Thermo Fischer Scientific) was added. Cells were analyzed by an LSRII analytical flow 

cytometer as before with frozen samples.  

 

2.5 FLOW CYTOMETRY ANALYSIS  

Flow cytometry was run for maximum event collection for all samples. All data was 

analyzed using FlowJo Software Version 9.7.5 (Tree Star Inc., Ashland, Oregon, USA). Upon 

analysis a total event gate was set at 200 000 events for whole blood and spleen samples taken 
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from lys-EGFP-ki mice, as well as whole blood human samples. A total event gate was set at 100 

000 events for frozen PBMC analysis due to reduced cell numbers as resultant from PBMC 

selection and freeze thaw cycle. The absolute cell count was determined using the following 

equation for all situations; 

Absolute Cell Count = (Gated Cell Event Number/Counting Bead Event Number) x 50 000*  

*(Number of beads per 50µL of counting beads added) 

This provided the cell numbers presented.  

 

2.6 IMMUNOASSAYS OF HUMAN PLASMA SAMPLES 

2.6.1 Human cytokine immunoassay 

The Luminex® Human Ultrasensative Cytokine 10-Plex Panel kit was selected and used 

to determine the concentration of human granulocyte macrophage colony stimulating factor 

(GM-CSF), interferon (IFN)-γ, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10 and TNF-α present in 

the plasma. The methods and materials used were specified by the manufacture’s protocol. The 

Luminex® 100 plate reader and IS 2.3 Software was used to analyze the plates (Luminex 

Corporation, Austin, TX, USA), this data acquisition and analysis that yielded the standard curve 

and raw data was performed by the Lawson Health Science Research Institute (London, ON). 

Samples were analyzed in duplicate and an average was taken. 

 

2.6.2 C-Reactive Protein immunoassay 

The Invitrogen Human C-Reactive Protein kit was selected to quantify C-Reactive 

Protein (CRP) in plasma samples. The methods and materials used were specified by the 

manufacture’s protocol. Plates were read on a Thermo Labsystem Multiskan Ascent Microplate 
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Photometer, and data collection and analyses were performed by Ascent Software Version 2.6 

(Thermo Fischer Scientific). Samples were analyzed in duplicate and an average was taken. 

 

2.6.3 G-CSF immunoassay 

The Invitrogen Human granulocyte colony stimulating factor (G-CSF) ELISA kit was 

selected to quantify G-CSF in plasma samples. The methods and materials used were specified 

by the manufacturer’s protocol. Plates were read on a Thermo Labsystem Multiskan Ascent 

Microplate Photometer, and data collection and analyses were performed by Ascent Software 

Version 2.6 (Thermo Fischer Scientific). Samples were analyzed in duplicate and an average was 

taken. 

 

2.6.4 GFAP immunoassay 

The Millipore GFAP ELISA kit was selected to quantify glial fibrillary acidic protein 

(GFAP) in the plasma (Billerica, MA, USA).  The methods and materials used were specified by 

the manufacturer’s protocol.  Plates were read on a Thermo Labsystem Multiskan Ascent 

Microplate Photometer, and data collection and analyses were performed by Ascent Software 

Version 2.6 (Thermo Fischer Scientific). Samples were analyzed in duplicate and an average was 

taken. 

 

2.7 STATISTICAL ANALYSIS.   

All data, except section 3.4, was analyzed using GraphPad Prism 6 (Graphpad Software, 

La Jolla, CA) and expressed as means ± standard deviation. Statistical significance was 

determined using Kruskal–Wallis one-way analysis of variance (ANOVA) followed by a post-
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hoc Dunn’s test. Differences were considered significant if P < 0.05. The differences analysis as 

part of section 3.4 was performed with statistical assistance from Dr. GY Zou and Artem Uvarov 

using SAS 9.4 (SAS Canada, Toronto, ON) and R package statistics (version 1.0.136). A 

Kenward-Roger’s F test was used including a AR(1) first-order autoregression model for 

covariance structure, testing for fixed effects in a linear mixed model. Upper and lower 95% 

confidence intervals were established.   
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CHAPTER 3 – RESULTS  

The results below are presented as follows: Firstly, peripheral leukocytes are compared at 

various time points post-TBI using the lys-EGFP-ki mouse model. Secondly, collected SCAT3 

and ImPACT concussion assessments were analyzed both pre- and post-concussion in a cohort 

of female rugby players. Thirdly, inflammatory measurements of evolving leukocyte populations 

by basic clinical blood tests as well as by analytical flow cytometry were performed on the same 

cohort. Lastly, alterations of inflammatory protein markers and markers of neurotrauma 

following concussion in peripheral blood plasma were evaluated. 

 

3.1 EXAMINATION OF PERIPHERAL GFP+ IMMUNE RESPONSE POST-TBI IN lys-
EGFP-ki MICE 
 
3.1.1 Frequency of circulating blood neutrophils and monocytes 

Using the lys-EGFP-ki mouse model mature cells of hematogenous myelomonocytic 

origin (predominantly neutrophils, monocytes, and macrophages) can be distinguished by the 

presence of EGFP. Further cell discrimination was performed by presence or absence of 

established cell surface markers. Neutrophils have been identified as Ly6G+ F4/80- (Figure 3A), 

while monocytes have been identified as F4/80+ CD115+ Ly6G- (Figure 4A).80 Using the surface 

marker Ly6C, classical and non-classical monocytes can be separated as Ly6C+ and Ly6C- 

respectively.80 A full outline of the gating strategy used for cell selection, including singlet 

discrimination, viability assessment, and negative and positive selection can be seen in Appendix 

4. 

Using the strategy outlined above, the absolute count of blood neutrophils and monocytes 

was compared between uninjured control and post-TBI mice. Neutrophils increased acutely post-

TBI, with a 7.0, 5.9, and 9.0 fold increase compared to control at 2, 8, and 24 hours respectively 
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post-TBI, all these increases were significant (Figure 3B). At 1 and 2 weeks post-TBI the 

neutrophil count had returned to levels comparable to the uninjured control. Relative surface 

expression of the neutrophil marker Ly6G was evaluated by capturing its median fluorescence 

intensity (MFI). MFI was highest for Ly6G at 24 hours post-TBI, where it was 2.7 times higher 

than control (Figure 3C). This increase was not significant though (p=0.0595), and all other time 

points were not substantially changed from control. Evaluation of monocytes demonstrated an 

initial dip in counts for both classical and non-classical monocytes compared to control post-TBI. 

The initial dip in classical monocyte number had recovered by 8 hours post-TBI and was at their 

highest concentration at 72 hours post-TBI with 1.8 times the cell count compared to control 

(Figure 4B). The initial dip in non-classical monocyte numbers lasted much longer, with about 

1/2, 1/4, and 1/3 of the cell counts present at 2, 8, and 24 hours post-TBI compared to control 

cell counts (Figure 4C). However, non-classical monocyte counts recovered 72 hours post-TBI 

where it was at its highest average cell count, and then returned to levels more similar to control 

at 1 and 2 weeks post-TBI.  

To confirm EGFP+ cell infiltration into the brain, representative images were taken of 

mouse brain tissue at the CCI site as well as on the contralateral side of the cortex. A 

hematoxylin and eosin stained section was included for anatomical reference, and a 4x tiled 

image was taken. A clear EGFP+ cell presence was seen at 20x and 63x magnification however; 

no EGFP+ cell presence was seen on the uninjured contralateral side (Figure 5). An Iba1 stain 

(red) was included, which would stain for monocytes/macrophages as well as tissue resident 

microglia, however very little red stain is present in the images taken.81 No quantification was 

performed here, and only one mouse was examined to date.  
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Figure 3. Blood neutrophil counts increased acutely post-TBI in lys-EGFP-ki mouse model. 
Using flow cytometry neutrophils were identified as Ly6G+ F4/80- cells and were then confirmed 
as EGFP+ (A). Representative dot plots are shown. Neutrophil blood counts were significantly 
elevated compared to control at 2, 8, and 24 hours post-TBI (B). Ly6G surface expression on 
neutrophils was evaluated by median fluorescence intensity (MFI), and although it increased at 
24 hours post-TBI this was not significant (C). Both counts and MFI were similar to control 
levels at 72 hours and onward post-TBI. Kruskal–Wallis ANOVA followed by Dunn’s test, * = 
P<0.05. n=4-5 per time point (no replicates).  
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Figure 4. Dynamic blood monocyte response to TBI in lys-EGFP-ki mouse model. Using 
flow cytometry monocytes were identified as F4/80+ Ly6G- CD115+ cells, and subdivided into 
classical and non-classical populations were then confirmed as Ly6C+ and Ly6C- respectively. 
Lastly cells were confirmed for the presence of EGFP (A). Representative dot plots are shown. 
Both classical (B) and non-classical (C) population counts acutely decreased before peaking at 
72 hours post-TBI eventually returning to levels closer to control. None of these changes were 
significant according to Kruskal–Wallis ANOVA followed by Dunn’s test. n=4-5 per time point 
(no replicates). 
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Figure 5. EGFP infiltration into brain post-TBI. Mouse brains post sacrifice were collected 
and processed for hematoxylin and eosin stain and immunohistochemistry, and representative 
images were taken at the 48 hour post-TBI time point. Hematoxylin and eosin stained section 
was included for anatomical reference, and a 4x tiled image was taken. Tissue sections were 
stained for nuclei (DAPI, blue), hematogenous EGFP+ neutrophils and monocyte/macrophages 
(green), and Iba1 (red). EGFP positive cells, identifying either blood borne 
monocytes/macrophages or neutrophils were clearly present at the impact site post-TBI at 20x, 
and 63x magnification, however there was no infiltration into the contralateral side.  
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3.1.2 Frequency of splenic neutrophils and monocytes 

 The spleen provides an important monocyte reservoir, and the leukocyte population 

present within it can inform the state of the systemic inflammatory response to TBI, and 

therefore was considered a valuable organ for analysis.45,82 The neutrophil and monocyte counts 

in the spleen in response to TBI were compared for the lys-EGFP-ki mouse model. The same 

gating strategy and selection markers were used as in the blood analysis above. The splenic 

neutrophil count increased significantly immediately post-TBI compared to control with a 15-

time increase in neutrophils 2 hours post-TBI (Figure 6A). Neutrophils counts were still high at 8 

hours post-TBI, but returned to control levels at 24 hours post-TBI and onward. It is important to 

mention that for the splenic flow cytometry analysis, the 8 hour post-TBI time point has an n=2 

due to spleens lost in processing. Ly6G MFI was evaluated for splenic neutrophils and was 

significantly elevated at 1 week post-TBI compared to control with all other time points showing 

non-significant change (Figure 6B). The splenic monocyte response to TBI was highly dynamic. 

Both classical and non-classical monocyte/macrophages showed similar trends with initial 

increases in cell counts at 2 and 8 hours post-TBI compared to control (Figure 6C and 6D). Cell 

counts dropped below uninjured control for both classical and non-classical at 72 hours post-

TBI, 24% and 23% of control cell counts respectively. At 1 and 2 weeks both classical and non-

classical had returned to values similar to control.  

 Between blood and spleen, there was a clear trend for the neutrophils, with both showing 

acute cell count peaks before returning to control like levels for the later time points. The 

monocyte subsets showed a reciprocal relationship between blood and spleen counts. Increases 

in blood counts for classical and non-classical monocytes in the blood demonstrated no increase 

or even a decrease in that subset in the spleen. This is true for the reverse situation.   
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Figure 6. Comparison of splenic neutrophil and monocyte counts post-TBI compared to 
control in lys-EGFP-ki mouse model. Splenic leukocytes were evaluated via flow cytometry 
and monocytes and neutrophils were gated using the same strategy as for blood. Splenic 
neutrophil counts significantly increased post-TBI and remained elevated at 8 hours post-TBI 
before returning for control-like levels for remaining time points (A). The MFI for Ly6G was 
significantly elevated at 1 week post-TBI, but all other time points were closer to control levels 
(B). Both classical (C) and non-classical (D) monocyte/macrophage counts increased acutely 
post-TBI before decreasing below control levels at 72 hours, both cell counts then recovered to 
control like levels. Kruskal–Wallis ANOVA followed by Dunn’s test, * = P<0.05. n=4-5 (except 
for the 8 hour time point which is n=2) per time point (no replicates).  
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3.2 EXAMINATION OF PERIPHERAL EGFP- IMMUNE RESPONSE POST-TBI IN lys-
EGFP-ki MICE 
 
3.2.1 The circulating lymphocyte response  

 Lymphocytes of the lys-EGFP-ki mouse model do not endogenously express EGFP and 

must be selected for based on specific surface marker presence. The pan surface marker CD19 

identifies B cells. CD3ε is the pan surface marker used to identify T cells. Lastly, NKp46 is the 

marker used for the recognition of NK cells (Figure 7A). A full outline of the gating strategy 

used for cell selection, including singlet discrimination, viability assessment, and negative and 

positive selection can be seen in Appendix 5. 

 Lymphocyte response to TBI is described to be a delayed process occurring long after the 

initial insult.32 This appeared to be true for both B cells and NK cells with cell count peaking at 1 

week post-TBI (Figure 7B and 7D). For B cells, counts increased at 24 and 72 hours post-TBI 

and peaked at 1 week, this significant increase was 4.4 times larger than control population, but 

counts returned to control like levels at 2 weeks. NK cell count increase was almost 3 times 

greater than control, but was not significant (p=0.0914), with all other time points closely 

resembling control. Opposite to the B and NK cells, T cells demonstrated a cyclic response, with 

a significant rise in count at 2 hours post-TBI (Figure 7C). T cells counts dropped and then rose 

over the remaining time points, although not reaching significance.  
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Figure 7. Examination of circulating blood lymphocyte subsets post-TBI in lys-EGFP-ki 
mouse model. Using flow cytometry lymphocyte subsets were identified, this included B cells as 
CD19+, T cells as CD3ε+ and lastly NK cells as NKp46+ (A). Representative dot plots are shown. 
Circulating B cell counts began increasing 24 hours post-TBI peaking at 1 week compared to 
control before counts decreased at 2 weeks post-TBI to control like levels (B). T cell counts 
increased significantly post-TBI immediately after insult (C). T cell counts cycled up and down 
for the remainder of the time points evaluated. Blood NK cells were largely unchanged until they 
increased at 1 week post-TBI, then returning to control like counts at 2 weeks post-TBI. 
Kruskal–Wallis ANOVA followed by Dunn’s test, * = P<0.05. n=4-5 per time point (no 
replicates). 
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3.2.2 The splenic lymphocyte response  

 Next, I compared the count of lymphocytes in the spleen in response to TBI. This was 

done using the same gating strategy and selection markers used as in the blood analysis above. In 

contrast to the blood analysis, B cells in the spleen increased at 2 hours and peaked at 8 hours 

post-TBI with a significant increase 7.3 times greater than control counts. B cell counts remained 

elevated, but were much closer to control level at 24 hours post-TBI onward (Figure 8A). It is 

important to mention that for the splenic flow cytometry analysis, the 8 hour post-TBI time point 

has an n=2 due to spleens lost in processing. The T cell response directly mirrored the B cell 

response, increasing at 2 hours, peaking at 8 hours post-TBI, and returning to control-like levels 

for the remaining time points (Figure 8B). Lastly, the NK cell count initially increased post-TBI 

at 2 and 8 hours post-TBI, briefly dipped to control-like levels and elevated again at 2 weeks 

post-TBI (Figure 8C). The only trend that was seen between the blood and spleen analysis is that 

cell counts either increased or stayed relatively constant compared to control. There didn’t 

appear to be a consistent trend between blood and spleen counts for each subset.  
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Figure 8. Splenic lymphocyte subsets counts were evaluated post-TBI in lys-EGFP-ki mouse 
model. Using flow cytometry lymphocyte subsets were identified using the same strategy 
employed in the blood. Splenic B cell counts increased 2 hours post-TBI peaking at 8 hours 
compared to control before counts decreased to control like levels (A). T cell (B) and NK cell 
(C) counts were largely unchanged although they did both show increases post-TBI compared to 
control. Kruskal–Wallis ANOVA followed by Dunn’s test, * = P<0.05. n=4-5 (except for the 8 
hour time point which is n=2) per time point (no replicates). 
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3.3 EXAMINATION OF APPROVED CLINICAL CONCUSSION ASSESSMENTS 

3.3.1 Self-reported symptoms increase acutely after concussion from SCAT3 

 Over 4 seasons, 230 SCAT3 assessments were collected from participants in the study. It 

is important to note that SCAT3 forms were not always returned complete, and some data was 

lost because of how the test may have been performed at the clinic. There was a significant 

increase in score for the mental concentration (counting Digits Backwards) assessment from 

beginning of season (BS) in the non-concussed group to end of season (ES) in both the non-

concussed and concussion group (Table 2). It must be stated that a score increase on this 

assessment is an indication of a better test performance. Included in the SCAT3 is a 22-symptom 

self-evaluation chart, where symptoms can be graded from 0 to 6. At 24-72 hours post-

concussion, the number of self-reported symptoms was significantly higher compared to both BS 

and ES for the non-concussed group (Figure 9A). The mean number of reported symptoms for 

the non-concussed group at BS and ES were 1.8 and 1.5 respectively, this increased to 10.6 

symptoms out of the possible 22 at 24-72 hours post-concussion. At ~1 week post-concussion, 

symptoms were significantly elevated from the ES non-concussed group. There were no 

significant changes in symptom scores post-concussion at ~1 month and onward compared to the 

non-concussed group, with the mean number of symptoms dropping to 2.3, 0.8, and 1.0 for the 

~1 month, ~3 months, and ES time points in the concussed group. A list of the symptoms 

evaluated by the SCAT3 protocol and the amount they were reported can be seen in Table 3. 

This same pattern was seen for the symptom severity assessment, which totals the 1 to 6 score 

from reported symptoms, in Figure 9B. The mean reported symptom severity for the non-

concussed group at BS and ES was 2.8 and 2.2, and this increased about 10 fold to 20.4 at 24-72 

hours post-concussion. Again, the symptom severity score fell to levels similar to the non-
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concussed group at ~1 month, ~3 months, and ES post-concussion with respective scores of 2.9, 

0.9, and 1.1. A breakdown of the average scores for the remaining SCAT3 assessments 

containing both the non-concussed group as well as post-concussion group can be seen in Table 

2. 
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Table 2. Mean scores of SCAT3 assessments  

1 Bold indicates significantly increased from underlined values. 
Digits Backwards (DB), Months Reversed (MR). 
Values mean ± SD 
 
 
  

Test Non-concussed 
Players Concussion Players 

 BS ES BS ~24-72hrs ~1 Week ~1 Month ~3 Months ES 
Cognitive 

Orientation (n) 
4.97 ± 0.16 

(78) 
4.97 ± 0.17 

(66) 5 ± 0 (10) 4.94 ± 0.25 
(16) 5 ± 0 (12) 4.92 ± 0.29 

(12) 
4.93 ± 0.27 

(14) 5 ± 0 (9) 

Immediate 
Memory (n) 

14.17 ± 1.94 
(78) 

14.78 ± 0.49 
(67) 

14.8 ± 0.42 
(10) 

14.76 ± 0.56 
(17) 

14.92 ± 0.29 
(12) 

14.83 ± 0.39 
(12) 

14.93 ± 0.27 
(14) 

14.78 ± 
0.44 (9) 

Concentration 
(DB)1 (n) 

2.94 ± 0.93 
(78) 

3.43 ± 0.80 
(67) 

3.5 ± 0.71 
(10) 

3.29 ± 0.77 
(17) 

3.58 ± 0.67 
(12) 

3.67 ± 0.65 
(12) 

3.64 ± 0.63 
(14) 

3.89 ± 0.33 
(9) 

Concentration 
(MR) (n) 

0.96 ± 0.20 
(70) 

0.99 ± 0.12 
(67) 1 ± 0 (10) 0.94 ± 0.24 

(17) 1 ± 0 (12) 1 ± 0 (12) 0.91 ± 0.30 
(11) 1 ± 0 (9) 

Balance (n) 2.33 ± 2.25 
(78) 

2.21 ± 2.16 
(67) 

1.56 ± 1.24 
(9) 

2.13 ± 1.96 
(15) 

1.73 ± 1.62 
(11) 

2.23 ± 2.35 
(13) 

1.85 ± 1.77 
(13) 

1.33 ± 1.41 
(9) 

Coordination (n) 1 ± 0 (73) 0.97 ± 0.17 
(67) 1 ± 0 (9) 1 ± 0 (14) 1 ± 0 (10) 1 ± 0 (12) 1 ± 0 (13) 0.89 ± 0.33 

(9) 
Delayed Recall 

(n) 
3.86 ± 1.08 

(74) 
4 ± 1.04 

(66) 
3.8 ± 1.03 

(10) 
3.4 ± 1.30 

(15) 
4.2 ± 1.23 

(10) 
4.33 ± 0.98 

(12) 
4.46 ± 0.88 

(13) 
4.56 ± 0.73 

(9) 



	 63 

Figure 9. Participants diagnosed with a concussion reported significantly higher symptoms 
in the acute stages following injury compared to their own non-injured baseline values and 
the baseline values of non-concussed participants. SCAT3 tests were collected and analyzed 
for all participants in the study. The Symptom Score (A), which is the number of symptoms out 
of a list of 22 the individual reported, and Symptom Severity Score (B), which is how severe 
they reported those symptoms to be, assessments showed significant changes between pre-
concussion baseline and post-concussion scores. The acute post-concussion scores returned back 
to non-concussed baseline levels for participants over the remainder of the study period. 
Beginning of Season (BS) End of season (ES). Kruskal–Wallis ANOVA followed by Dunn’s 
test, * = P<0.05. Non-Concussed Group: BS (n=79) ES (n=66), Concussed Group: BS (n=10), 
24-72 Hours (n=18), ~1 Weeks (n=18), ~1 Month (n=16), ~3 Months (n=14), ES (n=9). 
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Table 3. Frequency of reported symptoms according to SCAT3 	
Symptom 

Baseline-non-concussed 
Concussion 

players 

 BS (n=79) ES (n=67) BS (n=9) ~24-72hrs 
(n=17) 

~1 Week 
(n=19) 

~1 Month 
(n=16) 

~3 Months 
(n=15) ES (n=10) 

Headache 8 7 0 14 14 3 3 1 

Pressure in Head 5 4 0 14 12 3 1 0 

Neck Pain 19 6 5 12 7 4 0 0 

Nausea 1 0 0 3 1 0 0 1 

Dizziness 4 2 0 5 1 1 0 0 

Blurred Vision 4 2 0 2 1 0 1 0 
Balance 

Problems 4 6 0 5 2 0 0 0 

Sensitivity to 
Light 8 1 0 11 7 0 1 0 

Sensitivity to 
Noise 2 1 0 10 7 2 0 0 

Feeling Slowed 
Down 4 6 0 10 7 2 0 0 

Feeling like "in a 
fog" 3 5 0 10 5 2 0 0 

"Don't feel right" 8 2 0 14 9 4 0 1 
Difficulty 

Concentrating 5 6 0 10 7 3 1 0 

Difficulty 
Remembering 4 2 0 6 6 2 0 0 

Fatigue or low 
energy 17 18 1 11 8 7 2 2 

Confusion 1 0 0 2 3 0 0 0 

Drowsiness 6 6 1 10 3 2 2 1 
Trouble Falling 

Asleep 15 11 2 4 2 2 2 2 

More Emotional 8 3 1 7 7 2 0 0 

Irritability 7 4 0 6 8 1 0 1 

Sadness 5 2 0 6 4 0 0 1 
Nervous or 

Anxious 14 4 2 8 1 1 0 0 
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3.3.2 ImPACT assessments lack detectability  

There were 205 ImPACT assessments collected over 4 seasons, and much like the 

SCAT3 there are instances where data is missing due to how the test may have been conducted 

in clinic. From the ImPACT assessments collected, there was a significant increase in the visual 

motor speed composite assessment between BS for the baseline group and ~3 months post-

concussion (Table 4). This increase in score is an indication of better test performance. There 

were no other significant alterations between the non-concussed group and any of the post-

concussion time points. A breakdown of the average scores for the ImPACT assessment can be 

seen in Table 4. 
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Table 4. Mean scores of ImPACT assessments 
Test Non-Concussed Players Concussion Players 

 BS (n=74) ES 
(n=67) BS (n=8) ~24-72hrs 

(n=8) 
~1 Week 
(n=10) 

~1 Month 
(n=16) 

~3 Months 
(n=12) ES (n=10) 

Memory Composite 
(Verbal) 

89.84 ± 
8.41 

93.37 ± 
6.71 

89.88 ± 
10.37 92.38 ±5.45 91 ± 8.33 93 ± 6.99 92.5 ± 5.92 91.2 ± 6.94 

Memory Composite 
(Visual) 

76.03 ± 
13.13 

81.18 ± 
12 

78.63 ± 
12.40 

77.25 ± 
11.40 76 ± 16.41 78.88 ± 

14.34 
80.17 ± 
15.83 82.5 ± 9.29 

Visual Motor Speed 
Composite1 

42.77 ± 
5.91 

44.74 ± 
5.19 

43.44 ± 
6.98 

42.68 ± 
6.97 

41.04 ± 
6.28 

44.92 ± 
5.77 

48.36 ± 
5.35 45.5 ± 5.45 

Reaction Time 
Composite 

0.55 ± 
0.06 

0.53 ± 
0.05 0.57 ± 0.07 0.55 ± 0.04 0.55 ± 0.06 0.53 ± 0.05 0.5 ± 0.05 0.52 ± 0.06 

Impulse Control 
Composite 

6.53 ± 
3.54 

6.13 ± 
3.63 4.38 ± 4.60 5 ± 2.27 6.5 ± 4.25 7.13 ± 4.57 6.25 ± 5.33 6.6 ± 5.76 

Cognitive Efficiency 
Index 

0.43 ± 
0.12 

0.46 ± 
0.11 0.41 ± 0.14 0.47 ± 0.06 0.44 ± 0.12 0.52 ± 0.08 0.48 ± 0.12 0.48 ± 0.12 

Total Symptom Score 4.82 ± 
7.14 

4.42 ± 
6.86 7.75 ± 6.45 9.63 ± 

12.13 4.4 ± 6.64 4.31 ± 5.38 1.42 ± 2.39 2.7 ± 3.68 
1 Bold indicates significantly increased from underlined 
Values mean ± SD 
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3.4 DIFFERENCES EVALUATION OF IMMUNE RESPONSE IN BLOOD SAMPLES 

 Based off the results of my investigation of peripheral inflammatory cell response post-

TBI using the lys-EGFP-ki mouse model it was determined that objective changes in cell counts 

can be determined via flow cytometry. This provided the basis to go ahead with a pilot 

investigation tracking immune cell populations longitudinally in human blood as a biomarker of 

concussion.  

The results in sections 3.4.1 and 3.4.2 were performed with statistical assistance from Dr. 

GY Zou and Artem Uvarov. It was of immense importance to perform a baseline analysis of 

players, as this allows for a personal comparison to determine objective changes in players 

following a concussion. Natural inter-human variability could hide important individual changes 

in the concussed group due to the wide range of values seen. As an example, changes to total 

leukocyte concentration post-concussion, while increasing or decreasing from a players personal 

baseline value level, were often still within the wide range of reported values seen in the non-

concussed baseline population (Figure 10). To attempt to correct for this high degree of variation 

amongst individual players a differences analysis was undertaken, using a player’s BS evaluation 

results, before any injury has occurred, as a set 0 mark to compare against. For the non-

concussed group this is demonstrated as a player’s ES value minus their own individual BS value 

(ES – BS) for each marker tested. For the concussed group, each player’s time point, 24-72 

hours, ~1 week, ~1 month, ~3 months, and ES post-concussion values, was subtracted by that 

individual player’s BS values for each marker tested. In the circumstance where a player did not 

have a baseline before their concussion that season, a previous non-concussed baseline for that 

player from an earlier season was substituted if available. It is anticipated that the individual 

increases or decreases for each marker analyzed could be measured and pooled for each time 
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point and compared to the set 0 of their baseline. Time plots were created for each marker, and 

changes, denoted by Δ then the marker measured, resulting in a 95% confidence interval not 

spanning the 0 mark demonstrates significant alteration from the set 0 baseline (represented by 

the red dotted line at 0). 
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Figure 10. Variability between humans hides important individual alterations. Total blood 
leukocyte concentrations calculated by CBC, and non-concussed player values were averaged for 
beginning (BS) and end of season (ES), represented by the respective black dots at each time 
point, and the standard deviation is the dotted black line above and below. Each colour line 
represents a different concussed player and their completed time points over the course of the 
study. Although changes are occurring for each player, they are hidden within the large natural 
variability seen within players in the non-concussed group.   
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3.4.1 Complete blood count 

In total, 238 haematology profiles containing a CBC with a white blood cell differential 

were collected over 4 seasons, from this 66 non-concussed differences (ES – BS) evaluations 

were performed, and 14, 15, 14, 13 and 9, concussion differences evaluations were performed at 

24-72 hours, ~1 week, ~1 month, ~3 months, and ES post-concussion respectively. Basic clinical 

blood tests were performed and provided a collection of leukocyte cell concentrations, as well as 

important information about RBCs and their characteristics. The total RBC concentration was 

significantly elevated from 0 at all time points post-concussion (Figure 11A). However, the non-

concussed group ES was also significantly elevated from 0. The same pattern was seen for 

haemoglobin (Figure 11B) and hematocrit (Figure 11C), which is the ratio of the total volume of 

RBCs to the total volume of blood in the sample analysed.83 All three of these factors show 

peaks at ~1 week post-concussion, followed by a decrease and then rise in levels to ES, which is 

slightly higher than the ES difference for the non-concussed group. The variable red blood cell 

distribution width (RDW), which is a numerical measure of the size variability of circulating 

erythrocytes, was initially elevated post-concussion, but dropped below the 0 mark on average 

by ES post-concussion, this is opposite to the non-concussed group’s ES difference which was 

significantly higher than 0 (Figure 11D).84 Thrombocytes were significantly elevated from 0 at 

24-72 hours post-concussion, but returned to elevated but not significant levels at ~1 week to ~3 

months post-concussion (Figure 11E). Thrombocytes were significantly elevated again compared 

to 0 for ES for both the concussed and non-concussed group.  

From the leukocyte factors included in the white blood cell differential as part of the 

CBC, a significant elevation in both total leukocytes and neutrophil concentration from 0 was 

seen at ~3 months post-concussion (Figure 12A and B). Although no other post-concussion time 
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points were significantly altered from 0, the non-concussed groups ES was actually significantly 

decreased from 0 for both these factors. The only other significant alterations from 0 were seen 

at ES in the non-concussed group, which was increased at ES for lymphocyte concentration 

(Figure 12C), but decreased at ES for monocytes (Figure 12D). While the concussed group did 

also follow these trends at ES for lymphocytes and monocytes respectively, it did not reach 

significance. All remaining time plots can be seen in Appendix 6. Interestingly, RBC factors 

were consistently above 0 at ES, while leukocyte factors, excluding lymphocytes, were 

consistently below 0 at ES for the non-concussed group.  
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Figure 11. Red blood cells and red blood cell associated factors increase post-concussion. 
From collected CBC, differences evaluations were undertaken to allow more individualistic 
changes to be represented for values. All players collected marker values were subtracted from 
their own baseline vale and a comparison to the set baseline (0) was made. RBCs (A), 
haemoglobin (B), and hematocrit (C), were all significantly elevated from 0 at every time point 
post-concussion with no overlap of the 95% confidence interval with the 0 line. This was also 
true for ES in the non-concussed group. RDW (D) had a significant elevation from 0 for the non-
concussed group at ES, although there were no post-concussion alterations. Thrombocytes 
showed a significant elevation from 0 at 24-72 hours post-concussion for the concussed group 
(E). Thrombocytes were also significantly elevated from 0 at ES for both the concussed and non-
concussed group. Non-Concussed group differences (n=66), Concussion group differences; 24-
72 hours (n=14), ~1 week (n=15), ~1 month (n=14), ~3 months (n=13), and ES (n=9).  
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Figure 12. Dynamic response of blood leukocyte population post-concussion. Using our 
established differences analysis for the leukocyte factors included in the CBC a significant 
elevation in both total leukocytes (A) and neutrophil (B) concentration from 0 was seen at ~3 
months post-concussion. Although no other post-concussion time points were significantly 
altered from 0, the non-concussed groups ES was actually significantly decreased from 0 for 
both these factors. The only other significant alterations from 0 were seen at ES in the non-
concussed group, which was increased at ES for lymphocyte concentration (C), but decreased at 
ES for monocytes (D). Non-Concussed group differences (n=66), Concussion group differences; 
24-72 hours (n=14), ~1 week (n=15), ~1 month (n=14), ~3 months (n=13), and ES (n=9). 
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3.4.2 Frozen PBMC evaluation by flow cytometry  

Over 4 seasons, 146 collected frozen PBMC samples were collected and analyzed, 

including 40 non-concussed differences (ES – BS). For the concussed group; 11, 11, 9, 8 and 7, 

concussion differences evaluations were performed at 24-72 hours, ~1 week, ~1 month, ~3 

months, and ES post-concussion respectively. Two separate analyses were done to investigate 

monocyte and lymphocyte populations. Monocytes were distinguished by the presence of the pan 

surface marker CD14. Subdivision of the monocytes was done using the surface markers CD64 

and CD16, CD64+ CD16-, CD64+ CD16+, and CD64- CD16+, representing classical, 

intermediate, and non-classical subsets respectively (Figure 13C). The surface marker CD69 was 

included as a transient marker of cell activation (Figure 14A). A gating strategy for the monocyte 

analysis can be seen in Appendix 7. With the assistance of counting beads, absolute cell counts 

were obtained and differences were calculated from those counts.  

On analysis of total monocytes (Figure 13A), there was a significant alteration from 0 for 

the concussed group at ES dropping below the 0 mark (Figure 13B). Although the initial 

differences showed increases above 0 at 24-72 hours, ~1 week, ~1 month, ~3 months post-

concussion, the decrease at ES matches the decrease seen for the monocyte count derived from 

the CBC. When comparing monocyte subtypes, this drop appears to be driven by the 

intermediate (Figure 13 E) and non-classical populations (Figure 13F). Both populations showed 

significant decreases from 0 at ES post-concussion, with decreases seen at all time points except 

for ~1 week post-concussion where both had means greater than 0. Corresponding significant 

decreases were seen in the number of CD69+ cells for both intermediate (Figure 14D) and non-

classical monocytes (Figure 14F) at ES in the concussed group with the overall trend mirroring 

the respective subset count. The classical count was also decreased at ES in the concussed group, 



	 79 

however not significantly, but it was elevated above 0 for all prior time points post-concussion 

(Figure 13D). The non-concussed group was consistently just below 0 for each of the 

populations, which matches the decrease seen in this group for the total monocyte count from the 

CBC differential.  

For the lymphocyte evaluation, a separate flow cytometry staining panel was used to 

discriminate subtypes and obtain cell counts. B cells were selected for using the pan surface 

marker CD19, while the pan surface marker CD3 was used to determine T cells (Figure 15A). T 

cells were further separated as either CD4+ or CD8+ to classify those respective subtypes.70 

Lastly, NK cells were distinguished as CD56+ (Figure 15A).70 A full gating strategy is available 

in Appendix 8. From the previous analysis looking at total lymphocyte concentration in the CBC, 

there was an increase from 0 at all time points post-concussion and at ES for the non-concussed 

group. This same pattern was seen for the total lymphocyte differences analysis from frozen 

PBMCs, except the concussed groups ES mean was below 0 (Figure 15B). There was a 

significant increase from 0 for the CD4 T cells in the non-concussed group, which contrast with 

a non-significant decrease from 0 for the ES difference in the post-concussion group (Figure 

15D). At ~1 week post-concussion there was a significant increase from 0 for the concussed 

group in CD8 T cells (Figure 15E). NK cells were also significantly increased at ~1 week post-

concussion (Figure 15F). This was a sharp peak in count compared to the time points before and 

after which both averaged differences below 0. 

  



	 80 

Figure 13. Blood monocyte population decreases at end of season from frozen PBMC flow 
analysis. Frozen PBMC samples were analyzed by flow cytometry to obtain monocyte 
population information. The monocyte fraction was gated on to determine total monocytes 
counts and then evaluated using our differences strategy (A). Representative dot plots are shown. 
Although total monocyte increases were seen immediately post-concussion, there was a 
significant decline from 0 at ES for the concussed group. Upon subdivision of the monocytes 
into CD64+ CD16-, CD64+ CD16+, and CD64- CD16+ subsets, representing classical, 
intermediate, and non-classical subsets respectively counts were obtained and evaluated using 
our differences strategy (C). While classical (D) populations on average were above 0 till ES, 
average intermediate (E) and non-classical (F) counts were below 0, except for at ~1 week post-
concussion. All populations counts averaged below 0 for both concussion and non-concussion 
group with both the intermediate and non-classical significantly below 0. Non-Concussed group 
differences (n=40), Concussion group differences; 24-72 hours (n=11), ~1 week (n=11), ~1 
month (n=9), ~3 months (n=8), and ES (n=7). 
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Figure 14. Monocyte cell counts positive for CD69 surface marker decrease at ES. Transient 
surface marker of cell activation, CD69, was evaluated on monocyte subsets from frozen PBMC 
samples analyzed by flow cytometry for both count and MFI and evaluated using our differences 
strategy (A). Representative histograms are shown. Classical cells positive for CD69 (B) on 
average were above 0 till ES, average intermediate (D) and non-classical (F) counts were below 
0, except for at ~1 week post-concussion. All population counts averaged below 0 for both the 
concussion and non-concussion group with both the intermediate and non-classical significantly 
below 0 in the concussed group. Non-Concussed group differences (n=40), Concussion group 
differences; 24-72 hours (n=11), ~1 week (n=11), ~1 month (n=9), ~3 months (n=8), and ES 
(n=7). 
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Figure 15. Identification of blood lymphocyte subset counts post-concussion. Frozen PBMC 
samples were analyzed by flow cytometry to obtain lymphocyte subset information. The 
lymphocyte fraction was gated on first to determine total counts and then evaluated using our 
differences strategy (A). Representative dot plots shown. Although total lymphocyte increases 
were seen immediately post-concussion, there was a decline by ES, which was opposite to the 
non-concussed group, which increased average counts above 0 (B). CD4 T cell counts 
significantly increased from 0 for the non-concussed group, which contrast with a non-
significant decrease from 0 for the ES difference in the post-concussion group (D). CD8 T cells 
were significantly increased from 0 at ~1 week post-concussion from 0 (E). NK cells were 
significantly increased at ~1 week post-concussion (F). Non-Concussed group differences 
(n=40), Concussion group differences; 24-72 hours (n=11), ~1 week (n=11), ~1 month (n=9), ~3 
months (n=8), and ES (n=7). 
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3.5 EVALUATON OF WHOLE BLOOD FLOW CYTOMETRY IN HUMAN BLOOD 
SAMPLES 
 
3.5.1 Circulating neutrophil response to concussion  

 For the fourth season of the human concussion study a whole blood evaluation by flow 

cytometry was included in addition to the frozen PBMC evaluation done previously. An 

advantage of whole blood flow analysis is neutrophils, which were lost during the PBMC 

purification and storage process, can now be captured and evaluated by flow cytometry. The 

disadvantage of this technique though was it was no longer possible to capture as many players 

at BS since the costs of antibody requirements for flow cytometry would be beyond what was 

available. For this reason, only 10-12 players were selected for baseline analysis and new players 

to the study were a majority of those selected. A whole blood flow baseline will therefore only 

be available if one of the players captured in these reduced selection groups also received a 

concussion in season. This made doing the differences analysis carried out in the human blood 

evaluations above unrealistic.  

Neutrophils were identified with their characteristic high forward and side scatter and 

presence of the surface marker CD16 using flow cytometry (Figure 16A). Using the expression 

of surface marker CD15 neutrophils were subdivided into three groups; low (CD15-), middle 

(CD15+), and high (CD15++) (Figure 16A). A full outline of the gating strategy used for 

neutrophil selection can be seen in Appendix 9. There was no significant alteration in number of 

CD16+ neutrophils post-concussion compared to non-concussed baseline, although there was 

about a 2 times increase in cells at ~3 months post-concussion compared to BS (Figure 16C). 

This aligns with the neutrophil differences analysis from the CBC, which had a significant 

increase in neutrophils from 0 at ~3 months post-concussion. Interestingly, there was an almost 

1.6 times increase in mean cell count from BS to ES for the non-concussed group, which also 
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matched the increase seen at ES in the non-concussed group from the previous haematology 

profile with CBC blood difference analysis. On comparison of the CD15 subsets for the non-

concussed group there was a 4.3, 2.4, and 1.27 fold increase, for the low, middle, and high group 

respectively for counts between BS and ES, demonstrating this increase is a combined effect 

(Figure 17A-C). A significant decrease in the CD15 low count was observed between ES in the 

non-concussed group and ~1 week post-concussion, however this effect may be driven by the 

presence of a couple outliers. There were no significant alterations post-concussion compared to 

the non-concussed group for CD15 MFI for each of the CD15 neutrophil subsets (Figure 17G-I). 

Upon looking at the CD15 subsets positive for the surface marker CD69 (Figure 16B), a 

significant decrease in CD15 high CD69+ cell count was seen between BS and ~1 week post-

concussion. For CD69 MFI, there was a significant increase at ~1 week post-concussion for both 

the middle and high CD15 subgroups, but for the middle this was to the ES in the non-concussed 

group, and for the high group it was against the BS of the non-concussed group (Figure 17K and 

L). This effect too may have been driven by potential outliers and will need to be investigated 

further.  
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Figure 16.	Neutrophil analysis from whole blood samples for concussed and non-concussed 
participants. Using flow cytometry neutrophils were selected as CD16+ cells and then were 
further subdivided into three groups using the expression of surface marker CD15; low (CD15-), 
middle (CD15+), and high (CD15++)(A), lastly surface marker CD69 was used to assess cell 
activation upon each subset (B). Representative dot plots and histograms are shown. Total 
neutrophil counts were relatively unchanged at 24-72 hours, ~1 week, and ~1 month post-
concussion, but increased at ~3 months post-concussion compared to BS (B). There was an 
increase in mean cell counts from BS to ES for the non-concussed group as well. Beginning of 
Season (BS) End of season (ES). None of these differences were significant according to the 
Kruskal–Wallis ANOVA followed by Dunn’s test. Data only for the fourth season, Non-
Concussed Group: BS (n=11) ES (n=9), Concussed Group: 24-72 Hours (n=3), ~1 Weeks (n=5), 
~1 Month (n=3), ~3 Months (n=3), ES (n=1). 
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Figure 17. Neutrophil subset evaluation post-concussion via whole blood flow cytometry. 
The CD15 subsets for the non-concussed group were increased for the low (A), middle (B), and 
high (C) group respectively for counts between BS and ES. A significant decrease in the CD15 
low count was observed between ES in the non-concussed group and ~1 week post-concussion 
(A). A significant decrease in CD15 high CD69+ cell count was seen between BS and ~1 week 
post-concussion (F). For CD69 MFI, there was a significant increase at ~1 week post-concussion 
for the CD15 middle subgroup compared to ES of the non-concussed group (K). The CD15 high 
subgroup was significantly increased at ~1 week post-concussion for CD69 MFI compared to BS 
of the non-concussed group (L). Beginning of Season (BS) End of season (ES). Kruskal–Wallis 
ANOVA followed by Dunn’s test, * = p≤0.05. Data only for the fourth season, Non-Concussed 
Group: BS (n=11) ES (n=9), Concussed Group: 24-72 Hours (n=3), ~1 Weeks (n=5), ~1 Month 
(n=3), ~3 Months (n=3), ES (n=1). 
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3.5.2 Circulating monocyte response to concussion  

 For the assessment of the monocyte subset populations by flow cytometry from fresh 

blood samples, the same gating strategy previously optimized from my monocyte analysis using 

frozen PBMC samples was used (Figure 18A and B). Gating on total monocyte population, there 

was an increase in all post-concussion time points average counts compared to BS of the non-

concussed group, the ES of the non-concussed group was also similarly elevated though (Figure 

18C). However, none of these increases reached significance. Previous monocyte analysis from 

the CBC, the opposite effect was seen, with monocyte concentration differences decreasing at ES 

for both the concussed and non-concussed group. On analysis of the classical monocyte subset, a 

steady increase can be seen from an average of 20 377, 24 400, 28 543, and 35 050 cells, at 24-

72 hours, ~1 week, ~1 month, and ~3 months post-concussion time points respectively compared 

to non-concussed BS which averaged 11 965 cells (Figure 19A). This increase from BS was 

significant at ~3 months post-concussion. This same trend was seen for CD69+ classical 

monocyte count, although none of the changes were significant (Figure 19D). The total 

monocyte count for ES of the non-concussed group was also elevated compared to BS. The 

highest mean cell counts came post-concussion at 24-72 hours and ~1 week for the intermediate 

population, before moving to counts slightly below both BS and ES of the non-concussed group 

(Figure 19B). Again, this trend was seen for the CD69+ intermediate monocytes count (Figure 

19E). The non-classical subset demonstrated little change between the non-concussed group and 

the post-concussion time points (Figure 19C). Although there are no significant alterations 

between the non-concussed and post-concussion group for the CD69 MFI, there was a significant 

decrease in CD69 MFI from BS to ES in the non-concussed group for both the classical (Figure 

19G) and intermediate subsets (Figure 19H). Monocyte subpopulation counts in comparison to 
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one another can be seen in Figure 20 (these proportions are produced from subset values seen in 

Figure 19A-C). While subtypes remained fairly constant both for the concussed and non-

concussed groups, there does appear to be an expansion of the intermediate monocyte population 

at 24-72 hours post-concussion that has returned to a more normal proportion by ~1 week post-

concussion.  
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Figure 18. Circulating blood monocyte population from whole blood flow analysis. Whole 
blood samples were analyzed by flow cytometry to obtain monocyte population information. The 
previously optimized gating strategy for monocytes from my frozen PBMC analysis was used to 
identify monocytes. Subdivision of the monocytes into CD64+ CD16- (classical), CD64+ CD16+ 
(intermediate), and CD64- CD16+ (non-classical) subsets was performed as before (A). Surface 
marker CD69 was used to assess cell activation upon each subset (B). Representative dot plots 
and a histogram are shown. Slight total monocyte count increases were seen post-concussion; 
this was matched by similar increases at ES in the non-concussed group (C). Kruskal–Wallis 
ANOVA followed by Dunn’s test, * = p≤0.05. Data only for the fourth season, Non-Concussed 
Group: BS (n=11) ES (n=9), Concussed Group: 24-72 Hours (n=3), ~1 Weeks (n=5), ~1 Month 
(n=3), ~3 Months (n=3), ES (n=1). 
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Figure 19. Classical monocytes increase chronically post-concussion. Monocyte subset 
counts were obtained and analyzed for whole blood samples via flow cytometry, CD69 surface 
expression was also evaluated by count and MFI. Classical monocytes increased steadily post-
concussion and were significantly greater than counts at BS in the non-concussed group. There 
was a significant decrease in CD69 MFI from BS to ES in the non-concussed group for both the 
classical (G) and intermediate subsets (H). Kruskal–Wallis ANOVA followed by Dunn’s test, * 
= p≤0.05. Data only for the fourth season, Non-Concussed Group: BS (n=11) ES (n=9), 
Concussed Group: 24-72 Hours (n=3), ~1 Weeks (n=5), ~1 Month (n=3), ~3 Months (n=3), ES 
(n=1). 
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Figure 20. Monocyte subset proportional comparison in concussed and non-concussed 
participants. From monocyte subset counts, proportional representation was evaluated. The 
intermediate monocyte subset showed expansion at 24-72 hours post-concussion compared to 
other time points, and quickly reduced to previous levels. No statistical calculation was 
performed. Data only for the fourth season, Non-Concussed Group: BS (n=11) ES (n=9), 
Concussed Group: 24-72 Hours (n=3), ~1 Weeks (n=5), ~1 Month (n=3), ~3 Months (n=3), ES 
(n=1). 
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3.5.3 Pooled lymphocytes response post-concussion  

Although there was no lymphocyte specific panel included in my whole blood analysis, 

some lymphocyte information can be obtained. A pooled collection of CD3 and CD19 surface 

expressing cells were selected for from the lymphocyte fraction and analyzed for absolute cell 

count and surface expression of CD69 (Figure 21A). This allows for a rough assessment of B 

and T cells. The full gating strategy for this analysis can be seen in Appendix 10. From the CD3-

CD19 pooled count, there was a small increase in counts post-concussion compared to BS, 

however the largest increase from BS was the ES for the non-concussed group (Figure 21B). 

Again, this increase at ES in the non-concussed group matches changes seen from the CBC and 

frozen PBMC evaluation. Additionally, when analyzing the number of CD69+ cells, the BS has a 

greater count than ES for the non-concussed group, it was also greater than all the average counts 

for the post-concussion time points (Figure 21C). The CD69 MFI showed no significant 

alterations (Figure 21D).  



	 101 

Figure 21. No signature changes were detected in the lymphocyte population analyzed from 
whole blood following concussion. Whole blood was analyzed by flow cytometry and a gating 
strategy was developed to pool CD3+ and CD19+ lymphocyte cells, and cell activation using 
CD69 (A). A representative dat plot and histogram are shown. There were no significant changes 
between BS or ES compared to post-concussion for total cell populations (B), the CD69+ count 
(C), or the CD69 MFI (D). Kruskal–Wallis ANOVA followed by Dunn’s test. Data only for the 
fourth season, Non-Concussed Group: BS (n=11) ES (n=9), Concussed Group: 24-72 Hours 
(n=3), ~1 Weeks (n=5), ~1 Month (n=3), ~3 Months (n=3), ES (n=1). 
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3.6 EXAMINATION OF ALTERATIONS OF INFLAMMATORY PROTEIN MARKERS 
AND MARKERS OF NEUROTRAUMA FOLLOWING CONCUSSION IN 
PERIPHERAL BLOOD PLASMA 
 

Protein and protein fragments make up the majority of targets for concussion blood 

biomarkers studied to date.21 Using plasma samples collected immunoassays were performed for 

proteins of interest. Due to the number of samples collected and the limited space available on 

immunoassay plates only a subset of players receiving a concussion and their collected time 

points were analyzed. A multiplex immunoassay for GM-CSF, IFN-γ, IL-1β, IL-2, IL-4, IL-5, 

IL-6, IL-8, IL-10 and TNF-α revealed no significant alterations for the concussion participants at 

any time point post-concussion compared to their uninjured baseline (n=7)(Figure 22A). Several 

cytokines included in the assay registered concentrations of around 0 pg/mL. A separate ELISA 

immunoassay was performed for the cytokine G-CSF, which also demonstrated no significant 

alterations between any post-concussion time points compared to pre-injury baseline (n=8) 

(Figure 22B).  

GFAP is an intermediate filament protein expressed almost exclusively in astroglia, and 

has demonstrated signs of upregulation during glial injury and astrogliosis process of brain 

injury.85 GFAP has been considered a valuable marker of study as it is neurotrauma-specific and 

elevated levels have been detected in the serum of patients with TBI.34 My plasma GFAP 

immunoassay did not demonstrate any significant alterations from pre-injury baseline though 

(n=9) (Figure 22C). CRP is a general biomarker of systemic inflammation, increasing in 

instances of infection, trauma, surgery, burns, tissue infarction, advanced cancer, and chronic 

inflammatory conditions.86 CRP has been suggested as a blood biomarker of concussion, and 

may provide additional insights to ongoing inflammatory responses.86An ELISA immunoassay 
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for CRP was performed, however no significant alterations were seen between post-concussion 

measurements and pre injury baseline (n=7) (Figure 22D).  
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Figure 22. No signature changes were detected in any of the plasma biomarkers analyzed 
for the concussed participants compared to their uninjured baseline test. Collected plasma 
samples were assayed for proteins of interest. A luminex immunoassay for cytokines (A) showed 
no significant differences for mTBI injured participants compared to their uninjured baseline 
(n=7), this was also the case for an ELISA immunoassay for G-CSF (B) (n=8). An ELISA 
immunoassay was performed for neurotrauma specific protein GFAP (C) (n=9) and acute phase 
protein CRP (D) (n=7) showed similar inconclusive results with no significant differences 
between concussed participants uninjured baseline and post-concussion results. Kruskal–Wallis 
ANOVA followed by Dunn’s test.  
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CHAPTER 4 – DISCUSSION  

 In this study, I have shown via a proof of principle mouse study that alterations in 

immune cell populations in peripheral circulation can be detected post-mTBI using flow 

cytometry. Expanding from this result, it was demonstrated that it was feasible to successfully 

recruit and perform an evaluation of both approved clinical concussion assessments and a 

discovery evaluation into potential inflammatory blood biomarkers of concussion longitudinally 

in a female athletic cohort. Clinically approved concussion assessments provided valuable 

symptom information post-concussion, but lacked diagnostic effectiveness in other areas. While 

fluid biomarker discovery for CNS injury has focused on protein and protein fragments thus far, 

my protein investigations into plasma based markers of inflammation and neurotrauma were 

inconclusive.21 A cursory analysis of blood profiles from basic clinical haematology profile 

identified interesting changes post-concussion compared to a set baseline, as well as alterations 

in a non-concussed group. A more in-depth immune cell analysis via flow cytometry on frozen 

PBMC and whole blood leukocytes were performed which evaluated immune cell counts as well 

as functional information. This was the first study to my knowledge to use flow cytometry to 

quantify and track leukocyte subset frequencies post-concussion, and provided information for 

further evaluation. 

 

4.1 THE INFLAMMATORY RESPONSE POST-TBI IN lys-EGFP-ki MOUSE MODEL 

I have shown that mTBI in a mouse model initiates an inflammatory response producing 

significant alterations to circulating leukocyte populations. Post-TBI circulating blood neutrophil 

counts were immediately elevated, and remained so for 24 hours post-TBI. As neutrophils are the 

most acute responding cell this fits exactly with what is anticipated in experimental TBI.87 
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Splenic neutrophils peaked 2 hours after TBI and then returned to normal levels. In a similar CCI 

mouse TBI study, splenic neutrophil levels remained unchanged from control at 1 day post-TBI 

and onwards, which aligns exactly with what I have seen, but no comparison can be made to the 

response observed before 24 hours post-TBI as this was their earliest time point.82 Neutrophil 

reservoirs exist in bone marrow, spleen, liver, and lungs, providing a pool of cells to flood into 

circulation when needed in an inflammatory response, this explains the immediate spike in 

neutrophil numbers seen post-TBI.88  

The monocyte response was not as dramatic as anticipated post-TBI, however it still 

showed a dynamic quality. Both Ly6C+ classical and Ly6C- non-classical population counts 

dipped immediately post-TBI, recovering by 8 hours for classical and by 72 hours for non-

classical. Unlike in humans, where monocytes make up 10% of total blood leukocytes, 

monocytes only comprise 4% of total blood leukocytes in mice.89 This considerably smaller 

proportion in mice could result in smaller population shifts in circulation to TBI. In a weight 

drop TBI mouse model using C57BL/6 mice, Schwulst et al. demonstrated a reduction in blood 

monocytes at 1 day post-TBI followed by an increase at 3 days post-TBI, although this increase 

was still below control levels.90 This was true for both Ly6C+ classical and Ly6C- non-classical 

population in their study. While this is directly comparable with the results I observed, the 

authors saw consistent monocyte level depression chronically, which I did not.90 Non-classical 

monocytes, which have a unique patrolling phenotype involving crawling along blood vessel 

walls, have been shown to rapidly infiltrate infected tissue within an hour of infection.89 Potential 

population dips acutely seen in my study post-TBI may be due to extravasation of non-classical 

cells into the injury site in the brain. However, blood monocyte count decreases for both 
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populations were matched with splenic count increases, which may also explain the movement of 

circulating cells.  

In mice, Ly6C+ classical monocytes are found in circulation and at steady state in the 

spleen as a reservoir, however, Ly6C- non-classical monocytes remain predominantly in the 

blood, rolling along the vasculature.58 This was true for my uninjured control mice, as there were 

some non-classical monocytes in the spleen, but it was only about 15% of the amount of classical 

monocytes present. Unlike neutrophils, which have multiple marginated pools of cells, 

monocytes rely only on the spleen for storage; this may explain why we saw inversely 

fluctuating counts of cells between spleen and blood.88,91 

There is little research to compare against for the circulating lymphocyte response post-

TBI in mouse models. B cell infiltration into the brain was seen at 4 to 6 days post-TBI in a rat 

contusion model, while I saw a significant increase in circulating B cells at 7 days post-TBI in 

my study.92 Without further immunohistochemistry of the injured brain tissue though, no 

confirmation can be made as to whether B cell increases were due to or a result of infiltration 

into the brain. T cell levels fluctuated up and down at 1, 3, 7, and 14 days post-TBI in a mouse 

CCI model, while I saw increased counts at 2 and 8 hours post-TBI, there was little change at 1 

day and beyond.82 

No animal model ideally replicates human disease, and this is especially true of TBI. 

While neuroprotective treatment of TBI has been successfully performed in animal models, none 

of these have been successfully translated to humans.71 Few currently established mouse models 

of TBI reach appropriate criteria for properly modeling sports-related concussion.71 While the 

fact that blood leukocyte populations are changing is encouraging for progression into a human 
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blood evaluation of circulating leukocytes post-concussion, direct relation between mouse and 

human studies may be challenging and may require methodological revision.  

 

4.2 EVALUATING CURRENT CLINICAL ASSESSMENTS THE SCAT3 AND ImPACT 

A majority of concussion studies in humans have focused on male participants, leaving 

the growing global population of females in sport largely understudied; yet, females have been 

reported to be at a higher risk for sports-related concussions than males.10,93 While this difference 

may be attributed to hormonal and biomechanical differences between men and women, it is also 

suggested that women tend to be more honest about reporting symptoms and seeking medical 

attention.93 This factor, if true, makes women an incredibly valuable and relevant cohort for 

evaluation in concussion research, as current methods for concussion identification and eventual 

return to work or play rely heavily on self-reporting. Over 4 seasons, there were 20 diagnosed 

concussions in my study population. The symptom evaluation as part of the SCAT3, 

demonstrated the women’s rugby team cohort was honest about reporting symptoms and 

demonstrating that they have a definitive injury and it has a traceable, although subjective, 

recovery path post-concussion.  

Participants with concussion reported significantly higher symptom number and severity 

at 24-72 hours and at ~1 week post-concussion compared to the non-concussed group, but this 

had returned to baseline levels by ~1 month post-concussion and remained there. This matches 

expectations reported in the literature, with 80-90% of individuals with a concussion requiring 7 

to 10 days for symptom resolution.94 It is important to state that this symptom checklist is not 

specific to concussion, resulting in many non-concussed individuals reporting some symptom 

level at baseline.26 Neck pain, at a self-reported severity score from 1 to 6, was the highest 
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reported symptom at pre-season baseline in my study, reported 19 times in participants, followed 

by “fatigue or low energy” and “trouble falling asleep”, with 17 and 15 players reporting, 

respectively. It is conceivable that many of the symptoms listed could easily be driven by daily 

stresses and fatigue of university life with the addition of regular hard physical exertion 

associated with daily team practices and weekly games, which would be anticipated in this 

cohort. Studies attempting to predict which mTBI patients will go on to develop post-concussion 

syndrome using clinical symptoms have shown ineffectiveness, and currently do not influence 

clinical decisions.95 Additionally, there were no deficits observed in any of the other SCAT3 

assessments used between post-concussion and baseline. Both the cognitive portion, and the 

balance evaluation of the SCAT3 have demonstrated poor sensitivity and specificity for detecting 

mTBI in other studies.96 Improved sensitivity and specificity can be seen in the cognitive portion 

of the SCAT3 as long as the test is performed within 12 hours post-concussion, but players did 

not receive their first assessment until 24-72 hours post-concussion, which hinders the 

effectiveness of this section.  

Assessment of the ImPACT computerized concussion assessment was only able to 

demonstrate the improvement in score over time of repeated tests in one of its assessments, but 

no actual deficits in score due to a concussion. ImPACT Applications, Inc, the creators of the 

ImPACT test, suggest that the test be used within 24-72 hours post-concussion to begin an initial 

evaluation of a players concussion status.97 ImPACT assessments in this study were typically 

only performed at 2 weeks or longer post-concussion at the direction of the team physician to 

prevent further exacerbation of player symptoms in the initial period following a concussion. 

This could explain why most test scores did not show significant differences between concussed 

and non-concussed participants as the concussed players were given enough time to recover 
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before their initial post-concussion ImPACT evaluation. The unreliable nature of these tests 

supports the need for better objective, biologically relevant, concussion assessment techniques. 

 

4.3 INVESTIGATION OF BLOOD LEUKOCYTE RESPONSE POST-CONCUSSION 

The blood analysis began simply with a routine haematology profile to obtain a CBC and 

differential, which provided a variety of measures for both red and white blood cell components. 

It is important to say that all but two tests showed blood factors within normal human ranges. 

Two tests as part of the beginning of season baseline had elevated leukocyte and neutrophil 

concentrations in the same player. The differences analysis performed in this study was limited 

by the availability and timing of concussion in my cohort. On several occasions, players were 

either unable to make a post-concussion follow up, or dropped out of the study before all time 

points could be collected. Additionally, some players had acquired a concussion just prior to 

their arrival for their initial BS baseline assessment during pre-season training. These players had 

to be handled differently as they did not have a BS baseline to make a judgment against. When 

studying a unique population such as a group of collegiate athletes, it can be challenging to 

establish population reference intervals that are appropriate for biomarker interpretation. Inter-

individual variation can be considerable for the number of circulating leukocytes as well as 

soluble protein markers.40 Currently, it was felt that it was most valuable to evaluate players 

against their own set baseline for each variable collected for this reason. It is anticipated that 

upon collection of enough data relevant baseline levels can be determined to help analyze players 

in the situation of not having full pre-injury baseline evaluation going forward.  

 From the RBC factors collected as part of the CBC several alterations were observed. 

Total RBC concentrations, based on my differences evaluation, were significantly increased 
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from baseline (set arbitrarily to 0) post-concussion at all time points. This was also true for 

haemoglobin and hematocrit, with the highest mean difference at ~1 week post-concussion. 

Linking this change to head trauma is quite challenging though. In individuals with severe TBI, 

anemia brought on by low haemoglobin levels can lead to greater complications.98 While still 

conflicting, blood transfusions have shown to improve TBI outcome by increasing oxygen 

delivery and brain tissue oxygenation. It is conceivable that increased haemoglobin post-

concussion could be part of a compensatory mechanism, with the addition of functional MRI 

analysis, which relies on the magnetic properties of haemoglobin to make a measurement, this 

could be better evaluated in my study subjects.99 It seems more likely that it is not so much 

concussion causing an increase in RBC post-injury, but rather player circumstances causing a 

decrease in RBC at BS baseline, since the non-concussed groups ES difference is also elevated 

from baseline.  

Thrombocyte levels increased significantly from the set baseline (0) at 24-72 hours post-

concussion, but by ~1 week post-concussion this level had dropped. This acute increase and drop 

may be explained by endothelial damage to brain vasculature.100 In a study by Schwarzmaier et 

al. vascular diameter was seen to increase post-TBI in a CCI mouse model; however, cerebral 

blood flow was decreased in the brain.101 On inspection, a microthrombi had formed on the 

cerebrovascular endothelium containing leukocytes and platelets, and this reduced blood flow. 

While it is possible that circulating thrombocytes may be playing a role in microthrombi 

formation causing a resulting upregulation of thrombocyte formation, this would be very hard to 

prove going forward in a concussion model. In this study, the authors did not measure circulating 

thrombocytes, and no measurements were performed more than 2 hours after insult.101 There 

were also significant increases in thrombocytes from baseline (0) at ES for both the concussed 
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and non-concussed group in my study, which further complicates this understanding. One study 

reported a drop in mean platelet volume after mild head trauma; however, I was unable to see a 

similar result from my blood analysis after concussion.102 

Total leukocyte concentration, as part of the differences analysis from values collected in 

the CBC, showed a significant increase from baseline (0) at ~3 months post-concussion. This 

was also true for neutrophil concentrations, which is logical as they are the most abundant 

leukocyte and any increase in its population will largely drive up total leukocyte count. In a 

study of white blood cell counts from mild, moderate, and severe TBI patients, Rovlias and 

Kotsou noticed a significant increase in white blood cell counts severe TBI compared to mild 

and moderate TBI, but there was no comparison to an uninjured control so no increase in the 

mTBI population could be determined.103 

Although neutrophils could not be analyzed as part of my frozen PBMC evaluation by 

flow cytometry, they were included in my whole blood flow cytometry experiments as part of the 

fourth season of study. Due to its ability to rapidly evaluate immune cells for phenotype and 

function, flow cytometry has been suggested as a valuable tool in advancing the understanding of 

concussion pathology and etiology.25 Whole blood flow cytometry analysis also demonstrated 

the highest neutrophil counts at ~3 months post-concussion, this was only slightly higher than 

the non-concussed groups ES count. This delayed response to concussion is unexpected though 

as neutrophils are one of the most acute responding cells in an inflammatory response. What 

exactly caused this consistently observed delayed response will require much further 

investigation.  

Using neutrophil levels calculated via a haematology profile with CBC of human blood, 

Petrone et al. observed higher than normal neutrophil percentages at 0 to 6 and 24 hours post-
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mTBI, with neutrophils returning to normal ranges by 48 hours post-mTBI.104 From 

histopathological analysis of post-mortem brains, it appears that neutrophils infiltrate only at the 

earliest stages after injury in small numbers.105 My mouse evaluation even showed greatest blood 

neutrophil counts at 2, 8, and 24 hours post-TBI, returning to normal by 72 hours. It is possible 

that I didn’t see acute rises in neutrophil counts post-concussion because the set initial human 

blood draw was too late to properly detect an earlier response. Twenty four to 72 hours was the 

selected initial blood draw as it allowed participants more time to report to clinicians, especially 

if players were traveling back from away games, or had delayed symptom onset after concussion 

and reported late. Future study data may be improved by a more stringent time line of early 

blood collection, sampling both within the first 8 to 24 hours, which should hopefully better 

identify neutrophil responses, as well as 72 hours post-concussion, which may improve 

monocyte response details. This would require a very engaged and responsive cohort that may be 

hard to achieve with university athletes, rather requiring a close evaluation of a professional team 

where players are more closely managed.  

Based on the success in a concurrent concussion study in paediatric boys hockey players, 

CD16+ neutrophils were subdivided based on CD15 expression into low (CD15-), middle 

(CD15+), and high (CD15++) populations. CD15, also known as Lewis X, is a mature human 

neutrophil surface marker, and is believed to play a role in key neutrophil functions such as cell-

cell interactions, phagocytosis, stimulation of degranulation, and respiratory burst, although more 

research is needed.106 An upregualtion of CD15 has been connected to alterations to immune 

function due to interactions with dendritic cells.107 While an increased shift in CD15 surface 

expression was seen 24 to 72 hours post-concession in the paediatric boys’ hockey players (G.A. 

Dekaban, manuscript in preparation), I was unable to detect the same shift on analysis from the 
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rugby cohort. This could be a timing of collection issue, but it also could be a demonstration of 

how results cannot be generalized across very different participant demographics. At this point, 

my sample size for the whole blood flow evaluation is very small, and interpretation may not 

become clear until greater numbers are recruited.  

While monocyte concentrations obtained from haematology profile with a CBC and 

differential did show a change, it was only between beginning and end of season in the baseline 

population. Limited understanding can be gained from the monocyte count as part of the CBC as 

it does not allow separate analysis of monocyte subpopulations as can be performed using flow 

cytometry. From the total monocyte analysis acquired by flow cytometry from my frozen PBMC 

samples, I saw consistency with the haematology profiles collected in that there were population 

decreases from BS to ES in the non-concussed group and a significant decrease in total 

monocytes for the concussed group. From analyzing the monocyte subsets there were significant 

decreases in intermediate, and non-classical monocytes at ES post-concussion compared to 

baseline (0). The absolute monocyte counts did increase post-concussion compared to baseline 

(0), with the highest counts coming for classical and non-classical monocytes at 24-72 hours and 

~1 week post-concussion, while it was the ~1 week and ~1 month time point for intermediate 

monocytes. However, there was no significant change over this time period or the activation of 

those monocytes based on CD69 expression from my frozen PBMC analysis. Analysis of frozen 

PBMC samples was made challenging due to the variable viability of cells after the thawing and 

staining process, this was especially true for monocytes.  

The introduction of a whole blood analysis by flow cytometry removed the viability issue 

in samples. It also allowed for a more instantaneous analysis of samples as opposed to before 

when all frozen PBMC samples from a player were analyzed together after all time points had 
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been collected and frozen down. Although I could not use the differences analysis that had been 

used before due to the reduced number of baselines and therefore reduced odds of a player 

having a baseline post-concussion, I was still able to demonstrate leukocyte population changes 

post-concussion. There was a steady increase in classical monocytes reaching significance at ~3 

months post-concussion. Like the increase in neutrophils at ~3 months post-concussion, this late 

increase is an unexpected result. Unlike with the CBC or frozen PBMC monocyte analysis, the 

ES counts for whole blood monocytes were higher than at BS baseline, but both the classical and 

intermediate subsets had significantly reduced CD69 MFI, suggesting a reduced state of 

activation of those cells, despite being at an increased count. Upon comparison of the subset 

proportions for monocytes there was an expansion of the intermediate subset at 24-72 hours post-

concussion, before returning to levels similar with baseline.  

Circulating monocytes have been reported to increase post-severe TBI, specifically 

classical and intermediate populations, within the first 48 hours.57,108 While aspects of these 

findings do match my results, the magnitude of the injury in this study, being an mTBI, was 

much smaller which may explain the smaller or lack of cell population changes. Currently, there 

is little research on monocyte subsets, and how these individual subsets are involved in either a 

pathogenic or protective role in inflammation in general.46 The expansion of intermediate and 

non-classical monocyte populations has been seen in various inflammatory conditions, often of a 

chronic nature.46,109 In a mouse model of TBI, Ly6C- non-classical monocytes only became the 

predominant blood monocyte population at 60 days post-TBI.90 While purely speculative, 

changes in proportions of monocyte subset populations may only become visible if an individual 

progresses towards a neurodegenerative state much later in life, and not within the time frame of 

this short study in young women. There is scarce research currently evaluating monocyte subset 
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population changes post-TBI, and my concussion analysis is a first in providing such detailed 

peripheral blood cell lineage analysis.41 The combined analysis of these three monocyte 

populations is encouraging for future biomarker panel consideration. 

The lymphocyte response to TBI is the much more poorly understood in comparison to 

the myeloid cells. I observed a significant increase from baseline (0) in total lymphocytes at ES 

for my non-concussed group, with increases in concentration at all time points-post concussion. 

As the mean increases were fairly similar across all time points it appears as if the BS, which 

was compared against, may have been abnormally low. Moving to my frozen PBMC evaluation, 

a significant increase was seen from baseline (0) for the CD4 T cells at ES for the non-concussed 

group, matched with increases at ES in all subsets in the non-concussed group explaining the 

total lymphocyte count seen. The exact opposite effect was seen for the non-concussed group 

with mean differences all below 0, none of which were significant though. The pooled 

CD3+CD19+ lymphocyte as part of the whole blood flow cytometry analysis also demonstrated 

increased counts at ES for the non-concussed group, but the post-concussion time point counts 

were unaltered. In a study by Petrone et al. looking at lymphocyte percentages, as determined 

from CBC, were below the normal range at 0 to 6 and 24 hours post-mTBI, but had recovered to 

normal levels by 48 hours post-mTBI.104  

NK cells had a significant increase at ~1 week post-concussion, which was a steep peak 

compared to the relatively unchanging counts at other post-concussion time points and at ES for 

the non-concussed group. In a study by Kong et al. circulating NK cell % was diminished at 1 

and 3 days post-mTBI, but at 7 days had risen above control levels, matching patterns seen in my 

study.62 When split into CD56DIM and CD56BRIGHT there was a specific depletion seen in the 
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CD56DIM population after TBI, providing an interesting further evaluation for collected NK cells 

in the future of this study.60  

To this point in data evaluation, I have relied on individual statistical assessment of 

separate biomarkers. A more robust machine learning methodology to identify more elaborate 

patterns and changes in inflammatory biomarker will likely provide more fruitful interpretation 

of the data collected.104 This is a direction that will be taken going forward with both the current 

data and any future data collected.  

A potential limitation of this blood analysis is that a natural increase in peripheral 

leukocyte concentration, specifically monocytes and neutrophils, but not lymphocytes, has been 

reported up to 4 hours after exercise in females compared to their pre-exercise values.110 

Exercise additionally can affect various RBC related factors measured by the CBC. Exercise can 

induce increased erythrocyte destruction, which would in turn result in decreased levels for 

erythrocytes, haemoglobin, and hematocrit as is seen at beginning of season.111 This exercise 

effect in the strenuous tryout period during beginning of season baseline testing may have driven 

some of the results I have seen by encouraging lower RBC concentrations and increased 

leukocyte concentrations which all comparisons were then made against. This is an important 

discovery though, as influence of continuous strenuous exercise will be an important element in 

identifying and developing blood-biomarkers of concussion moving forward. An example of this 

can be seen in the measurement of serum levels of S100B, which has been shown to be 

predicative of mild TBI when increased, but can also be elevated strictly due to physical activity 

without head trauma.69,112 Beyond the acute effects of exercise on the immune system, research 

has demonstrated that regular physical activity, reducing visceral fat, stimulates an anti-

inflammatory environment.113,114 In a study on circulating leukocytes it was demonstrated that 
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regular exercises lowered the number of circulating leukocytes and this effect was majorly 

driven by a reduction in neutrophils.115  

Sex differences may also influence blood-biomarker discovery in athletes. Fluctuation of 

circulating leukocyte populations is induced at the menstrual phase and secretary phases of the 

menstrual cycle, with reported increases in total leukocyte count, which was mainly attributable 

to neutrophil percentage.116 This was not controlled for in the current study, and will also be an 

unavoidable factor in blood-biomarker development for concussion identification in female 

athletes. Overall, adult females are reported to mount stronger innate and adaptive immune 

responses compared to males.117 This would suggest that any concussion driven inflammatory 

changes would be more visible in a female cohort compared to males. Further evaluation of 

similar markers of inflammation post-concussion in male and females will be required to 

establish if this holds true. Animal experiments have consistently demonstrated improved 

survival and cognitive function in females post-TBI compared to males, suggesting gonadal 

steroids progesterone and oestrogen may have neuroprotective functions.118 Human studies 

consistently suggest the opposite, with females showing worse outcomes post-TBI compared to 

males, driving a belief that experimentally induced TBI in animal models does not disrupt the 

gonadal hormone stimulating anterior pituitary gland in the CNS, but this is disrupted in human 

TBI leaving females in a state of withdrawal of oestrogen and/or progesterone.118 More work 

will need to be performed in this area.  

It is unclear if using players with a past history of concussion or just general exposure to 

head trauma from collision sports may influence blood biomarkers. Plasma tau levels were 

increased in males who have played a contact sport compared to non-collision sport athletes.119 

Female athletes with a history of past concussions had elevated plasma levels of monocyte 
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chemoattractant protein-1 compared to a healthy control.119 However, recruiting university 

athletes with no history of concussion is also incredibly challenging especially at the university 

level where players have likely been exposed to head impacts throughout their playing career 

from a younger age. Selecting only for individuals with absolutely no history of head trauma 

though would likely reduce participants for enrolment. It could also limit the potential 

understanding of biomarkers evaluated as they are no longer representative of the true population 

they clinically will be applied to.120 Additionally, drug and alcohol abuse and the use of steroids 

that often go unreported can influence study results while also contributing long-term to health 

problems as well as CNS disorders.71 Even supplement use such as branched chain amino acids 

have been demonstrated to influence outcomes post-TBI in a mouse model.121 The effect of co-

existing factors such as these are what make animal models so valuable as these can be 

controlled for.71 

 

4.4 INCONCLUSIVE PROTEIN ALTERATION POST-CONCUSSION 

 As the evaluation of protein biomarkers make up the majority of blood biomarker 

research in concussion, and plasma samples were easily attainable within the framework of this 

study, it was a valuable opportunity to assess important inflammatory and neurotrauma protein 

markers used in the literature. However, I was unable to demonstrate clear changes between 

players’ pre-concussion and post-concussion protein levels. It should be stated though that I only 

investigated a small subset of the total population via protein assay. 

Cytokine evaluation, both by a multiplex immunoassay for various cytokines, and for G-

CSF as a separate ELISA showed no obvious differences between post-concussion samples and 

pre-injury baseline in the subset of players analyzed. Changes in cytokine levels have been 
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successfully seen in both mouse models of mTBI and human models of severe TBI. Using a 

similar multiplex immunoassay for cytokines, Yang et al. showed significant elevation of serum 

IL-6 among other cytokines in a mTBI plus hypoxia mouse model.122 Analyzing the 

hippocampus and cortex after a mild fluid percussion TBI in BALB/c mice, Fenn et al. saw 

transient increases in IL-1β, TNFα, within 4 hours after injury.123 Il-1β has been shown to 

rapidly increase hours after injury in both human and rat TBI studies.33 TNFα levels also have 

shown acute increases in human TBI, peaking between 3 and 8 hours, but are reported to return 

to normal at 24 hours after injury.33 However, little success has been seen in human concussion 

studies. Comparing plasma cytokine levels post-TBI between severe and moderate/mild brain 

injury patients, severely injured patients had significantly higher IL-6 and TNFα from 6 hours to 

2 weeks after injury.57 Looking at a plasma samples from a cohort of athletes with a previous 

history of concussion, although currently healthy, no differences were seen in inflammatory 

markers such as IL-1β, IL-6 and IL-10, between contact and non-contact athletes, and many 

markers measured did not reach the level of detection.119 Improved results may be obtained by 

acquiring more acute blood draws, or through development of a more sensitive assay technique. 

More work will need to be conducted in this area.  

 The acute phase protein CRP has been a widely investigated biomarker of general 

inflammation, therefore it seemed like a relevant marker to investigate after concussion in the 

women’s rugby cohort.124 I was unable to determine any changes though between post-

concussion and pre-concussion values. Increased circulating CRP has been reported to be a result 

of IL-6 release into circulation.40 As I saw no alterations in IL-6 in plasma samples this could 

explain this. Regular exercise has the effect of decreasing circulating IL-6 concentrations; this 

results in subsequently lower CRP levels, which could play a factor in my cohort.125  
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Sources of inflammatory markers, as well as targets of trafficking leukocytes are 

extremely hard to distinguish as blood comes into contact with all tissues and organs and 

represents such a general process in humans.64 Evaluating cranial and non-cranial sources of 

biomarkers may be incredibly challenging and will require the assistance of additional neural 

specific markers. GFAP has been a highly researched potential blood biomarker for TBI as it was 

supposedly neural specific, and immunoreactivity to GFAP has been evaluated as an indicator of 

brain injury in experimental mTBI models.64,126 My assay for GFAP produced no noticeable 

differences in protein levels before and after concussion. Currently, only a few studies have 

focused on GFAP specifically for mTBI. In one study, where plasma GFAP levels were 

assessed, it out performed S100B in predicting the outcome in mTBI. However, the authors still 

considered GFAP to be a weak indicator.64,127 This may be due to the fact that GFAP has been 

found detectable in non-CNS cells such as Schwann cells, chondrocytes, and lymphocytes.128 

This may explain why measurable GFAP levels were detected even before the concussion had 

taken place in some players. In a recent study comparing serum GFAP levels, higher 

concentrations were seen in individuals with orthopaedic injury compared to individuals with 

mTBI.128 Further evaluation of this marker will need to be performed going forward. 

 Blood plasma was used for all immunoassays performed; however, serum is the 

predominantly used biofluid for marker evaluation.64 During the clotting process to obtain serum, 

coagulating cells may release proteins into solution not previously there, while fibrinogen and 

other proteins can be removed from solution. 64 This is important as pro-inflammatory cytokines 

may be released by platelets during clotting, confounding measurements seen in blood before 

clotting.129 It is currently unclear if one is preferable to the other for biomarker detection, 
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although it is clear that uniformity may not be seen in individual markers between the two 

fluids.64  

It is conceivable that it is not a knowledge gap that needs to be bridged to develop a 

better blood-biomarker for concussion, but a technological one. The current limits of detection 

for most standard ELISAs and ELISA-like technologies are around 10 to 100 pg/ml.21 Due to the 

amount of dilution of brain specific proteins in peripheral blood circulation, more sensitive 

detection methods will be required. New ultrasensitive techniques, such as Erenna and Simoa, 

should help bridge this gap by providing femtomolar range detection capabilities.21,130 Additional 

advances in point of care and rapid detection have allowed for sideline readouts of blood-

biomarker data. A recently developed smartphone-enabled optofluidic platform demonstrated 

ability to rapidly detect exosomes containing the concussion biomarker GluR2+ in a murine 

model of concussion.13  

 

4.5 SIGNIFICANCE AND CONCLUSIONS 

In conclusion, my concurrent investigation using a mouse model of mTBI has been 

established and provided the groundwork for determining changes in leukocyte subsets post-TBI 

and provides a framework for contextualizing future blood changes in human studies. Future 

work will be taken to characterize leukocyte infiltration into the brain after injury in this mouse 

model. My human study evaluated a novel method to identify and track concussive injury by 

assessing leukocyte response via flow cytometry. This is the first study to my knowledge that has 

used this approach and included evaluations such as monocyte subsets. The evaluation of 

responding leukocytes was far more successful for identifying changes post-concussion than the 

more commonly used protein immunoassay method I used to investigate inflammatory protein 
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markers as well as GFAP, which came back fully inconclusive. From approved clinical 

concussion assessment, the SCAT3 and ImPACT, valid symptom assessments provided 

important information, but the lack of other useful tests highlights the need for better blood-

biomarker development. 

While a clear signature constellation of biomarkers will still require further work, I have 

made important steps forward to obtaining this goal. The main focus of a pilot investigation is 

not statistical significance, but rather feasibility, and it was demonstrated we could successfully 

recruit and perform blood analysis longitudinally for a large portion of a highly competitive 

athletic team.131 It is likely this study was underpowered due to limitations in recruitment and 

concussion samples obtained. It is important to state that “no evidence of effect” is not “evidence 

of no effect”. Based on the lessons learned throughout this project vast improvement in sample 

collection and procedural techniques were achieved, and new ideas for an improved 

methodology can be implemented to future investigations.  

Advances are being made on multiple fronts for the identification of a marker that more 

accurately identifies concussion. Using head impact telemetry systems, the application of forces, 

both translational and rotational, can be established and have been in various studies in various 

sports as a way to help recognize concussion.71 While the output force values for head impacts 

can be instantaneously recorded and reported, it currently has not been able to predict 

concussion.71 More advanced clinical imaging systems are currently being developed including 

diffusion tensor MRI, which is capable of identifying damage to white matter tracts.64 Yet, 

despite these advances and improvements in MRI techniques, no clinical guidelines currently 

exist for the diagnosis of concussion using MRI.64 Using metabolomics profiling, a signature 

collection of markers were obtained accurately separating concussed from non-concussed 
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samples in a study using adolescent male hockey players, although this was a relatively small 

sample size and may not prove generalizable to a larger population.132 This clearly demonstrates 

that all approaches have limitations, and no one technique is a clear solution for this problem. 

However, in combination my data will help to provide a more comprehensive understanding of 

concussion along with these other metrics that can contribute to the field as a whole.  

The evaluation process for biomarkers is an ever-developing topic, and any selected 

inflammatory markers from this study would be subjected to this process. The Institutes of 

Medicine, now The National Academy of Medicine (Washington, DC), recently laid out some 

general concepts for the evaluation process, providing three steps. The first is analytical 

validation; referring to the limits of detection, reference ranges, and reproducibility of the assay 

used.40,133 Sensitivity and specificity are the quantitative values necessary to determine the 

diagnostic value of a biomarker.17 Sensitivity denotes the number of tests predicted to be positive 

that are actually present, or true positives. Specificity denotes the number of tests predicted to be 

false that are correctly false, or true negatives.17 Second is qualification; referring to the 

relationship of the biomarker and disease state based on available evidence, with data 

demonstrating effects of intervention on biomarker and disease outcome.133 Third is utilization; 

referring to the sufficient support from the last two steps on the specific use designed for this 

biomarker.133  

 It is important to not generalize the results of inflammatory response for all CNS injuries, 

as research has shown the inflammatory response to SCI is far greater than it is in TBI.134 

Increased infiltration of macrophages, neutrophils, T cells, and B cells, along with higher 

activation of astrocytes and microglia has been observed post-SCI compared to TBI.134 This 

could potentially be explained by the fact that the brain is 30-40x larger in mass than the spinal 
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cord, and despite standardizing for injury severity, the amount of damage to intact tissue will be 

greater in the spinal cord.134 Increased permeability of the blood spinal cord barrier compared to 

BBB may also influence this.134  

The growing acknowledgment of concussion as a serious health threat has already started 

to result in noticeable changes in athletes and sport. In a study on professional boxers in the 

United Kingdom and Australia, when analyzed from 1930 to 2003, it was discovered that 

professional careers dropped on average from 19 years to 5 years, and the number of professional 

fights from 336 bouts to 13 bouts.135 Medical oversight has increased dramatically in recent 

years in American football, in addition to rule changes to make the game safer.7 The adoption of 

a concussion protocol is currently a must in almost every sporting profession. The idea that a 

“ding” or “seeing stars” is something to be toughed out with an immediate return to play is all 

but expected to become an out-dated notion. From 1997 to 2008, there was an increase of about 

16% a year in the number of reported concussions in high school athletes in one prospective 

study.136 It is unlikely this is due purely to increase in the number of concussions, but rather an 

increased attention to the injury encouraging players and coaches to properly report this injury. 

As reporting increases, this puts more emphasis on the development of a better diagnostic for 

concussion, which an objective blood-based marker would ideally be able to meet.  

Using a panel of markers that identifies temporally different responding elements within 

the cascade of post-concussion events, a better return to play/work guideline could be put in 

place.64 This should encourage a better understanding of both a player’s concussion history and 

recovery paths, and how it changes over time so as to properly inform clinicians as to how to 

handle concussions on an individual basis. An ability to detect at the earliest stages an athlete 

progressing towards CTE would allow for immediate intervention to be made into that athlete’s 
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life to prevent subsequent exposure as well as provide an opportunity to test new therapeutics 

and therapies.21 It is conceivable that blood biomarkers can develop to a point that this would 

become a possibility. The progressively evolving cascade of the secondary injury may be 

preventable or at least controllable, such that only beneficial elements are permitted. This has 

been described as the therapeutic window.32 A successful biomarker candidate may have value in 

determining the effectiveness of any future concussion therapeutic or treatment.9 A better 

understanding of the peripheral response to concussion may be able to guide future therapeutic 

research. 
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1

Greg Dekaban

From: eSiriusWebServer <esiriusadmin@uwo.ca>
Sent: Tuesday, July 02, 2013 11:13 AM
To: Greg Dekaban
Cc: auspc@uwo.ca; auspc@uwo.ca
Subject: eSirius Notification - Annual Protocol Renewal APPROVED by the AUS 2007-104-12::5

 

2007-104-12::5: 

AUP Number: 2007-104-12 
AUP Title: Experimental Spinal Cord Injury 
 
 
Yearly Renewal Date: 06/01/2013 

The YEARLY RENEWAL to Animal Use Protocol (AUP) 2007-104-12 has been approved, and will 
be approved for one year following the above review date. 

1. This AUP number must be indicated when ordering animals for this project. 
2. Animals for other projects may not be ordered under this AUP number. 
3. Purchases of animals other than through this system must be cleared through the ACVS office. 

Health certificates will be required. 

REQUIREMENTS/COMMENTS 
Please ensure that individual(s) performing procedures on live animals, as described in this protocol, are 
familiar with the contents of this document. 

The holder of this Animal Use Protocol is responsible to ensure that all associated safety components 
(biosafety, radiation safety, general laboratory safety) comply with institutional safety standards and have 
received all necessary approvals. Please consult directly with your institutional safety officers. 

Submitted by: Kinchlea, Will D  
on behalf of the Animal Use Subcommittee  
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Appendix 2. Animal ethics approval 2016-019 letter. 
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1

Greg Dekaban

From: eSiriusWebServer <esiriusadmin@uwo.ca>
Sent: Friday, October 28, 2016 3:41 PM
To: Greg Dekaban
Cc: auspc@uwo.ca; esiriusadmin@uwo.ca
Subject: eSirius Notification - New Animal Use Protocol is APPROVED2016-019::1

 

AUP Number: 2016-019 
PI Name: Dekaban, Gregory A 
AUP Title: Experimental Cns Injury 
 
 
Approval Date: 10/28/2016 

Official Notice of Animal Use Subcommittee (AUS) Approval: Your new Animal Use Protocol (AUP) 
entitled "Experimental Cns Injury 
 
" has been APPROVED by the Animal Use Subcommittee of the University Council on Animal Care. This 
approval, although valid for four years, and is subject to annual Protocol Renewal.2016-019::1 

1. This AUP number must be indicated when ordering animals for this project. 
2. Animals for other projects may not be ordered under this AUP number. 
3. Purchases of animals other than through this system must be cleared through the ACVS office. Health 

certificates will be required. 

The holder of this Animal Use Protocol is responsible to ensure that all associated safety components 
(biosafety, radiation safety, general laboratory safety) comply with institutional safety standards and have 
received all necessary approvals. Please consult directly with your institutional safety officers. 

Submitted by: Copeman, Laura  
on behalf of the Animal Use Subcommittee 
University Council on Animal Care  
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Appendix 3. Human ethics approval HSREB 102857 letter. 
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Appendix 4. Optimized gating strategy used to identify myeloid lineage cells in lys-EGFP-ki 
mouse model by flow cytometry. Blood and spleen samples collected were analyzed by flow 
cytometry, first separating the counting beads from the cell scatter, from which viability, singlets 
were selected. Myeloid cells were selected as CD45+CD11b+, and a dump channel containing 
CD19 CD3ε and NKp46 was used to remove any cells with those surface markers. From there 
neutrophils were selected as Ly6G+EGFP+, classical monocytes as CD115+Ly6C+EGFP+, and 
non-classical monocytes as CD115+Ly6C-EGFP+.  Representative dot plots are shown. 
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Appendix 5. Optimized gating strategy used to identify lymphoid lineage cells in lys-EGFP-
ki mouse model by flow cytometry. Blood and spleen samples collected were analyzed by flow 
cytometry, first separating the counting beads from the cell scatter, then gating on EGFP- cells as 
the lymphocytes will form this group. Singlets, viability, and then CD45+ cells were selected. 
CD19 CD3ε and NKp46 was used to remove any cells with those surface markers. From there B 
cells were selected as CD19+, T cells CD3ε +, and NK cells as NKp46+.  Representative dot plots 
are shown. 
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Appendix 6. Time plots for CBC differences analysis. From collected CBC, differences 
evaluations were undertaken to allow more individualistic changes to be represented for values. 
All players collected marker values were subtracted from their own baseline vale and a 
comparison to the set baseline (0) was made. The plots above are as follows; mean corpuscular 
volume (A), mean platelet volume (B), eosinophils (C), and basophils (D). Non-Concussed 
differences (n=66) Concussion differences; 24-72 hours (n=14), ~1 week (n=15), ~1 month 
(n=14), ~3 months (n=13), and ES (n=9). 
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Appendix 7. Optimized gating strategy used to select the monocyte subset populations, as 
well as determine cell activation using cell surface marker CD69. Frozen PBMC samples 
collected were analyzed by flow cytometry, first separating the counting beads from the cell 
scatter, from which singlets, and viable cells were selected. The monocyte fraction was selected 
and a dump channel containing CD19 CD3 was used to remove any cells with those surface 
markers. From there monocytes were selected as CD14+ then subdivided into CD64+ CD16-

(classical), CD64+ CD16+(intermediate), and CD64- CD16+ (non-classical). Lastly CD69 
expression was obtained for each subset. Representative dot plots and a histogram are shown. 
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Appendix 8. Optimized gating strategy used to select the lymphocyte subset populations. 
Frozen PBMC samples collected were analyzed by flow cytometry, first separating the counting 
beads from the cell scatter, from which singlets, and viabile cells were selected. The lymphocyte 
fraction was selected, from there B cells were selected as CD19+, T cells as CD3+ and further 
subdivided into CD4+ and CD8+ T cells. Lastly, NK cells were selected as CD56+. 
Representative dot plots are shown. 
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 Appendix 9. Optimized gating strategy used to identify neutrophils, subdivided into 
CD15lo, CD15mid, and CD15hi, as well as assess cell activation using CD69 in whole blood 
samples. Whole blood samples collected were analyzed by flow cytometry. First the counting 
beads were selected from the cell scatter, as well as the neutrophil fraction. A dump channel 
containing CD19 CD3 was used to remove any cells with those surface markers. From there 
neutrophils were selected as CD16+ then subdivided into CD15lo, CD15mid, and CD15hi. Lastly 
CD69 expression was obtained for each subset. Representative dot plots and histograms are 
shown. 
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Appendix 10. Whole blood was analyzed by flow cytometry and a gating strategy was 
developed to pool CD3+ and CD19+ lymphocyte cells, and cell activation using CD69. Whole 
blood samples collected were analyzed by flow cytometry. First the counting beads were selected 
from the cell scatter, as well as the lymphocyte fraction. Pooled CD19+ CD3+ cells were selected. 
Lastly CD69 expression was obtained for each subset.  Representative dot plots and a histogram 
are shown. 
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