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ABSTRACT 

 

If eusociality evolved through modification of pre-social mechanisms for regulating 

personal reproduction, then even insects like Drosophila may be vulnerable to latent 

effects of 'queen' pheromone. Here, I test if male fruit flies respond to a eusocial 

queen bee pheromone. I found that male flies were attracted to queen bee 

pheromone, and pheromone-treated males raised the intensity of their courting 

towards conspecific females. These novel observations from Drosophila suggest 

that male flies have the capacity to respond to queen pheromone in a manner that is 

comparable to the native response from male (drone) bees. I therefore optimized a 

nuclear factor of activated T-cell (NFAT) system to label olfactory neurons that are 

putatively responsive to the pro-reproductive pheromone. The NFAT reporter system 

implicates three neurons (Or-49b, Or-56a, Or-98a) that, if shown to function similarly 

in drones, will validate my use of Drosophila to probe otherwise unknown 

mechanisms of social bee communication.  
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Chapter 1 

1 General introduction 

1.1 From pre-social to eusocial breeding systems  

Eusocial insect colonies function as social units in which groups of individuals 

execute specific jobs, to the exclusion of others. The principle division of labour is 

between reproductive and non-reproductive castes (Wilson and Hölldobler 2005). 

Division of reproductive labour is a hallmark of eusocial breeding systems, and in 

some species this division is so pronounced that individuals are effectively 

dependent on one another for survival and even for reproduction (Cervo 2006; 

Seeley 1995). This evolutionary integration of reproductive interests is curious 

because of the reproductive altruism that evolves among the non-reproductive 

castes (Bourke 2014). The evolution of altruism is ultimately explained by inclusive 

fitness theory (Hamilton 1964; Bourke 2011; Marshall 2015), which shows - at least 

mathematically - how reproductive helping can evolve if it is directed towards 

reproducing kin (Gardner et al. 2011). Thus, kinship can align the reproductive 

interests of different castes, resulting in a highly cooperative division of labour 

between sub-fertile helpers and their reproducing relatives. 

At the same time, differences in kinship and reproductive potential among colony 

mates can promote conflict over cooperation, as individuals pit their reproductive 
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interests against one another (Ratnieks et al. 2006). The balance between 

cooperation and conflict within insect societies is dependent on changes to social 

circumstance that may alter the fitness pay-off of one group of individuals versus 

another (Strassmann et al. 2011). For example, starved cells of a social amoeba, 

Dictyostelium discoideum, will come together in large groups in which some cells 

sacrifice themselves to make a stalk that supports in the dispersal of others as 

spores (Kessin 2000). This social tension within colonies is mediated through real-

time communication of differences in kinship and reproductive potential (Bourke 

1999). That is, the ultimate fitness consequences of social living are mediated by 

proximate mechanisms, such as DNA methylation or histone modification, which 

have evolved from pre-social ancestries (Crespi and Choe 1997). For many social 

insects, the main form of communication is pheromones (Le Conte and Hefetz 

2008), though other modes of communication (e.g. vibration, cuticular hydrocarbons, 

etc.) are important (Hunt and Richard 2013; van Zweden and d’Ettorre 2010). 

Pheromones as signals, and the mechanisms that receive them, are therefore likely 

to co-evolve with sociality, and studying these mechanisms may provide insights into 

the social origins of certain insect groups. 

1.2 Apis as a model for identifying genes associated with eusociality 

Eusociality is considered to be the most complex form of sociality and is defined as; 

cooperative care of offspring, a division of labour consisting of reproductive and non-
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reproductive individuals, and an overlap of generations capable of reproduction 

(Crespi and Yanega 1995). This extreme form of social breeding has evolved 

repeatedly among insects, including in termites (Noirot 1990), some species of 

beetles (Kent and Simpson 1992) and aphids (Aoki 1977), as well as occasionally 

among other Arthropods (Duffy and Thiel 2007) and mammals (Clarke and Faulkes 

1997). Among insects the order Hymenoptera is the largest and most well-known 

animal group with eusocial species. Most Hymenoptera are not eusocial, but this 

social system has evolved at least eleven times independently within that order 

(Hughes et al. 2008; Johnson et al. 2013). As such, the genes and pathways that 

influence eusocial traits have been best studied using eusocial species of bees, ants 

and wasps (Yan et al. 2014).  

Honey bee societies do lend themselves well to genomic analysis. Not only are they 

eusocial, but owing to their agricultural importance, are well understood in terms of 

colony structure, and can be manipulated to create social phenotypes of interest 

(e.g., queenright versus queenless colonies, or workers all the same age, etc.). 

Within honey bee colonies the principal form of communication is via queen and 

brood pheromones (Bortolotti and Costa 2014). The queen mandibular pheromone 

(QMP), in particular, is well characterised (Hoover et al. 2003; Strauss et al. 2008; 

Pankiw et al. 2000), and is thought to have evolved to serve multiple fitness-related 

roles (Slessor et al. 2005).  
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First, QMP signals fertility. On mating flights, a virgin queen emits QMP to attract 

male (drone) bees to mate with her (Gary and Marston 1971). This functional role of 

queen pheromone suggests that QMP likely evolved from pre-social fertility signals 

to attract males (Van Oystaeyen et al. 2014; Oi et al. 2015). Second, queen 

mandibular pheromone signals fecundity. Within colonies, mated queens emit QMP 

to signal egg-laying potential (Kocher and Grozinger 2011). Workers respond to this 

evolutionarily honest signal by having their ovaries de-activated and otherwise 

adopting a reproductively altruistic role within the colony (Amdam et al. 2006). This 

latter role for queen pheromone as a social signal has likely co-evolved with 

eusociality itself (Chapuisat 2014; Oi et al. 2015) but may have pre-social 

antecedents, as evidenced by its latent effect on some pre-social taxa (Sannasi 

1969).  

In 2006, the honey bee, Apis mellifera was the first eusocial insect to feature a draft 

genome assembly (Weinstock et al. 2006). Subsequently, high-quality draft 

genomes of ant species (Nygaard et al. 2011; Smith et al. 2011), other bee species 

(Chen et al. 2013; Sadd et al. 2015) and several other eusocial and subsocial 

species have become available in the last few years (Kapheim 2016). These social 

insect genomes have accelerated the field of 'sociogenomics' (Sumner 2014) and, 

for the first time, we have been able to ask: are there common genomic features that 

underpin different instances of social evolution? Thus far comparative studies have 

found that, indeed, common pathways may regulate some eusocial traits, like worker 
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sterility and worker foraging behavior (Toth and Rehan 2016). For example, the 

termite Cryptotermes secundus may use a similar gene network (vitellogenin-like) to 

regulate female egg-laying as does the honey bee (Weil et al. 2007). Additionally, 

genes involved in pathways associated with development and metabolism may 

regulate worker caste differences in separate species of ants (Mikheyev and 

Linksvayer 2015), as well as in Apis (Mutti et al. 2011). Within the genus Apis, 

analysis of microarray studies has suggested that insulin signaling (Mullen et al. 

2014), dopamine (Oxley et al. 2008) and target of rapamycin (TOR; Cardoen et al. 

2011) pathways may be implicated as being functionally associated with honey bee 

division of reproductive labour and worker sterility. 

1.3 The need for a genetically tractable model in sociobiology 

While these types of comparative analyses continue to implicate a growing list of 

candidate genes and pathways that underlie variation in eusocial traits (Toth and 

Rehan 2016), the function of most genes are rarely tested in vivo. This apparent lag 

in functional genetic studies in sociobiology may in part be due to limitations from 

social Hymenoptera as a model system (Camiletti and Thompson 2016). The 

Western honey bee, Apis mellifera may be the most advanced model. Recent 

investment into this species as a partially tractable genetic model has seen the 

development of transgenic bees via germ-line transformation. Schulte et al. (2014) 

showed that a piggyBac-derived cassette can be used to knock-out a target gene by 
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inserting into the coding region and disrupting translation. The transgenic vector was 

stably transmitted into queens (a 20-27% success rate), and subsequently 

incorporated into recombinant offspring (workers). This pioneering technique, 

therefore, offers the prospect of manipulating gene function in vivo.  Utilizing germ-

line targeted transposons like this may soon make it feasible for a fully pliable gene 

expression system within Apis that is comparable to the GAL4/UAS system that has 

long been available for Drosophila (Ben-Shahar 2014). 

Further, direct genome editing technologies like ZFNs (Bibikova et al. 2002), 

TALENs (Joung and Sander 2013) and CRISPR (Cong et al. 2013) are now 

regularly being used to manipulate the genomes of model mice, Drosophila, 

nematodes and Arabidopsis  (Doudna and Charpentier 2014), and may in future 

become feasible for a wider array of non-model species. If so, it may become 

possible to edit the genome of the eusocial honeybee (Reid and O’Brochta 2016). 

An initial study by Kohno et al. (2016) used CRISPR to transform a singular queen 

that produced genome-edited male offspring at a rate of 12.5% that contained the 

specific gene knockout. These technologies, while still in their infancy in social 

insects, could pave the way for future functional analyses of candidate genes 

involved in honeybee social behaviors.  

Despite this progress, manipulation of bee genomes is not yet widely feasible. RNAi 

technology nonetheless provides one practical opportunity to test candidate genes 
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for honeybee social behavior (Amdam et al. 2003). RNAi-gene specific knockdown 

analysis provides a powerful tool to study phenotypic effects associated with gene 

knockdowns but is susceptible to technical failure and non-specific effects 

(Summerton 2007; Jarosch and Moritz 2011; Scott et al. 2013). An alternative 

approach might be to adopt a non-social but genetically tractable model to test basic 

predictions about the molecular mechanisms governing social or non-social 

reproduction (Camiletti and Thompson 2016).  

1.4 Drosophila as a behavioural and neuronal model for Apis  

Despite limits to gene manipulation techniques that are currently applicable for 

eusocial taxa, it may be possible to exploit the most powerful techniques now by 

using a surrogate taxon for which the technology is already optimised. Drosophila is 

not a eusocial organism, but has been shown effective at uncovering conserved 

genetic mechanisms underpinning response to queen pheromone and reproductive 

regulation (Camiletti and Thompson 2016). Within our lab, Camiletti et al. (2013) 

showed that female Drosophila melanogaster exposed to honey bee queen 

mandibular pheromone had smaller ovaries with fewer mature eggs than did 

untreated controls. This response from a pre-social insect is not without precedent 

(Sannasi 1969) but is noteworthy as female flies apparently de-activate their ovaries 

as if they were partially sterile, which mimics the response of the worker bee herself. 
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Camiletti et al. (2014) extended this bee-fly comparison to show that sitter/rover lines 

of Drosophila (Sokolowski 2001) are differentially responsive to QMP, as are the 

nurse/forager sub-castes of honey bee workers (Fussnecker et al. 2011). Sitters 

exposed to queen pheromone respond as nurse-age workers typically do, by de-

activating their ovaries. Rovers, by contrast, were less responsive to the pheromone, 

much like forager-age workers. These results emphasize an interspecific effect of a 

social cue on a phylogenetically distant pre-social taxon.  

Since olfaction is likely to be the initial step in any downstream pheromonal effect 

(Carcaud et al. 2015), Camiletti et al. (2016) screened a majority (75%) of the 60 

olfactory receptors (Or) present in Drosophila, and identified several that partially 

prevented the anti-ovarian response to queen pheromone. From this assay, a short 

candidate list of receptors (Or-49b, Or-56a and Or-98a) was identified that may be 

responsible for the peculiar response of female flies to QMP. Further, the structural 

similarity of candidate olfactory receptor binding domains was compared to the five 

main components of QMP (9-ODA, HOB, HVA and +/- 9-HDA) for ligand-molecule 

binding similarity. Here, each candidate olfactory receptor predicted biological affinity 

as a ligand for different components of queen mandibular pheromone suggesting 

bees themselves may also use several olfactory receptors to perceive and respond 

to QMP.  
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Further evidence for behavioural-genetic homology between Apis and Drosophila 

can be found in studies that apply other bee-derived social signals to this pre-social 

insect to observe a bee-like response. Kamakura (2011), for instance, used 

royalactin, a component of royal jelly (Kamakura 2002), to elicit similar bee-like 

phenotypes in Drosophila. Young fly larvae reared in a royalactin-based medium 

developed faster, developed into larger female flies, and developed larger ovaries. 

Each of these three Drosophila responses to royalactin suggest a degree of 

conservation with honey bee larvae involved in worker-to-queen transitions with 

royal jelly. The effects of these social cues (i.e., royal jelly and QMP) in Drosophila 

are consistent with the hypothesis that social and pre-social species can remain 

functionally conserved with respect to mechanisms that regulate physiological traits.  

These observations raise the question: is it possible that Apis and Drosophila can 

'communicate' via a conserved pheromone-responsive pathway that regulates both 

behaviour and physiology? If so, it may be possible to use the fully tractable fly as a 

model to dissect this response and reveal the specific genes and neural circuits 

involved, even if they are imperfectly conserved (Sokolowski 2010). I believe it is 

possible to further extend these bee-fly comparisons using the vast genetic and 

molecular techniques available for Drosophila with Apis social cues. Fly tools 

currently unavailable for Apis, like GAL4-UAS, can allow for targeted control of gene 

expression (Duffy 2002). This is especially useful to alter the expression of genes 

that are involved in conserved pathways of interest in Apis. Further, Drosophila has 
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a massive collection of RNAi and mutant lines available to help delve further into 

understanding the direct functions of specific genes of interest (Dietzl et al. 2007; 

Johnston 2002). In my analysis, I extended the findings from the above studies and 

further develop Drosophila as a pre-social model in socio-genetic research.  

In-line with earlier work, and consistent with the evolutionary idea that social traits 

are ultimately derived from pre-social Bauplans (Rehan and Toth 2015), I expect the 

Drosophila response to mimic that of bees. Specifically, I predict that male 

Drosophila, as has been seen in females, will behave in a phenotypically similar 

manner as drones when exposed to the queen bee pheromonal cue. Further, I 

predict that flies perceive queen mandibular pheromone through olfaction and use 

olfactory receptor neurons -49b, -56a and -98a to mediate any olfactory response. 

To this end, I adopted a comparative approach to monitor the behavioural and 

neural response of specific strains of Drosophila to honey bee queen mandibular 

pheromone.  

In this thesis, I test two predictions from sociogenomic theory. First, I used a 

behavioural assay to test the response of male flies to honey bee social signalling, 

and compare the observed results to what is expected under a conserved regulatory 

mechanism – drones display attraction and increase mating effort in the presence of 

QMP (Chapter 2). Second, I utilized a neural imaging system to map the olfactory 

neuronal response of flies to the honey bee signal, and identify the specific neurons 
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involved (Chapter 3). This latter study is a guide to future discovery of these 

olfactory neurons within the honey bee itself and potentially other social taxa. 
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Chapter 2  

2 Sexual response of male Drosophila to honey bee queen 

mandibular pheromone: implications for genetic studies of social 

insects 

A version of this chapter has been published in Journal of Comparative Physiology A 

and has been published here with permission (Appendix A). 

Citation: Croft JR, Liu T, Camiletti AL, Simon AF, Thompson GJ. 2017 Sexual 

response of male Drosophila to honey bee queen mandibular pheromone: 

implications for genetic studies of social insects. J Comp Physiol A 203: 143–149.  

2.1 Introduction 

The essence of a eusocial breeding system is a reproductive division of labour, in 

which one or more individuals monopolize reproduction while the remaining majority 

act as reproductively altruistic helpers (Crespi and Yanega 1995). This reproductive 

coordination is predicted from inclusive fitness theory (reviewed in Bourke 2011; 

Marshall 2015), but the precise mechanisms governing social task specialization 

varies among species (Beshers and Fewell 2001). The European honeybee Apis 

mellifera maintains its division of labour through queen and brood pheromones that 

signal queen fecundity to her worker daughters (Le Conte and Hefetz 2008; Kocher 

and Grozinger 2011). Queen mandibular pheromone (QMP) is likely an 

evolutionarily honest signal (Gadagkar 1997; Keller and Nonacs 1993; Oi et al. 

2015; Peso et al. 2015) to which the workers have been indirectly selected to 
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respond by shutting off their ovaries and otherwise adopting reproductively altruistic 

roles within the colony (Butler and Fairey 1963; Hoover et al. 2003; Backx et al. 

2012).  

While this sterility-inducing function of queen pheromone is well understood (Mullen 

and Thompson 2015), it has a broader role within the honeybee society, and the 

function of QMP can vary with social context. For example, QMP can induce worker 

retinue formation, inhibit queen rearing and swarming, and excite congregating 

males (drones) to mate with virgin queens in flight (Slessor et al. 2005; Free 1987). 

In this later context, QMP is a mating attractant to which the males orient, and from 

which they anticipate sex (Gary 1962). As a consequence, a QMP-emitting queen 

may receive sperm from more than a dozen drones on a single mating flight (Tarpy 

and Nielsen 2002). From these observations, it is clear that Apis mellifera queen 

mandibular pheromone can coordinate more than one aspect of reproductive 

behaviour (Brockmann et al. 1998). Like other hymenopteran queen pheromones 

(Van Oystaeyen et al. 2014), QMP may have evolved through modification of fertility 

signals already present in pre-social ancestors (Chapuisat 2014; Peso et al. 2015; 

Oliveira et al. 2015). Unlike other Hymenoptera studied thus far, however, Apis 

mellifera queen mandibular pheromone appears to be relatively derived in its 

blended chemical composition of volatile carboxylic acids (9-ODA, 9-HDA), 

aromatics (HOB, HVA) and other compounds, as opposed to a composition of 
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structurally simple linear or branched alkanes typical of ancestral ants, bees and 

wasps (reviewed in Oi et al. 2015).  

Despite the apparent complexity of QMP there is emerging evidence that the taxon-

specific qualities of this pheromone are nonetheless effective at suppressing 

reproduction via ovary de-activation in un-related insects. Camiletti et al. (2013) 

showed, for the first time, that female fruit flies (Diptera) exposed to a synthetic 

blend of QMP respond in a manner comparable to queenright worker bees. That is, 

they develop smaller ovaries that contain fewer mature eggs, as if they were partially 

sterile. Moreover, this response to ovary-inhibiting pheromone has a genetic 

component: Drosophila sitter flies (forS) are more responsive to the ovary-inhibiting 

pheromone than are rovers (forR), suggesting that the foraging gene may in some 

way mediate this response (Camiletti et al. 2014). These findings are intriguing in 

that they suggest an underlying pheromone-responsive mechanism that is 

genetically variable yet sufficiently preserved in flies and potentially other 

invertebrates (Nayer 1963; Carlisle and Butler 1956; Sannasi 1969). There is, 

therefore, potential to exploit the Drosophila model to uncover conserved genes, 

pathways and neural circuits involved in ovary-suppression and potentially other 

fertility-linked traits (Camiletti and Thompson 2016). 

Motivated by the prospect of harnessing Drosophila gene-finding tools toward 

questions relevant to honeybee behaviour and biology, I seek to test the effect of 
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synthetic QMP on male Drosophila. I postulate that males might show drone-like 

behaviour towards QMP. Specifically, I tested if male Drosophila respond to 

biologically-relevant doses of QMP by orienting themselves towards a source of 

queen bee pheromone – i.e., 'the queen', or if males anticipate sex by increased 

mating effort towards a conspecific female, or both. If so, I infer that the fertility 

signal inherent within Apis mellifera queen mandibular pheromone and the ability to 

perceive it is evolutionarily conserved between species from at least one social and 

one pre-social insect order. I tested both predictions using established Drosophila 

choice and courtship assays, and did so using two control lines and one olfactory 

mutant genotype that I expect to differ in their responsiveness to olfactory cues. 

2.2 Methods 

2.2.1  Fly rearing and pheromone treatment 

I reared all strains of Drosophila melanogaster under standard conditions (25°C, 

60% humidity and a 12 h light: dark cycle) in an insect growth chamber (Caron Inc., 

Marietta, OH) on a standard cornmeal diet as described in Camiletti et al. (2013). I 

used the Oregon-R (Ore-R, Bloomington Stock Center #2376) strain of flies as 

control, for which females have been shown to respond to QMP in a worker-like 

manner (Camiletti et al. 2016). In addition, I included the Orco1 mutant strain in my 

trials, outcrossed 6 times in w1118. Orco1 is homozygous for loss-of-function alleles at 

the major olfactory co-factor Orco locus (formerly Or83b; Larsson et al. 2004) and is 
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accordingly non-responsive to a wide range of olfactory stimuli (Steck et al. 2012). 

For all genotypes – that is, Ore-R, Orco1 and its genetic background control w1118 – I 

synchronized adult emergence by housing (for 24 hrs) a small reproductive 

population (n = 30 males and n = 30 females) in collection cages (60 mm; Diamed, 

Mississauga, Canada) fitted with nutrient (grape juice and agar) plates. I then 

collected and transferred day-old larvae to fresh food vials (28.5 x 95mm, VWR 

International, Radnar, PA) at a density of n = 30 larvae per vial. Finally, I collected 

same-age, same-sex adult virgins at eclosion (within 1 h) and reared males for three 

days until sexually mature. To prepare filter papers prior to treatment, I first warmed 

(50°C in water bath; to render it liquid from a soft wax) and diluted a 500 mg stock of 

synthetic QMP (Contech Ltd, Victoria, Canada) with absolute ethanol into working 

aliquots of ~ 13 Qeq units. For reference, 1 Qeq is roughly the amount produced by 

a single living honey bee queen in 24 h. With bioaccumulation, the pheromone can 

persist in wax, resin and cuticles within a colony at multi-queen equivalent doses 

(Hoover et al. 2003; Naumann et al. 1991). I loaded one full aliquot in a final volume 

of 20 µl onto individual pieces (200 mm2) of filter paper (grade 413; VWR 

International, Radnar PA) that I air dried for five hours to ensure ethanol was fully 

evaporated. For controls, I simply added the equivalent volume of ethanol (no QMP) 

to filter paper. Each trial was conducted between 12:00 PM – 2:00 PM across 

multiple days at 23-25 °C, with even light and humidity above 30%. 
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2.2.2 Testing male attraction to queen pheromone in a T-maze 

assay  

To test if males are attracted to queen pheromone I used a T-maze apparatus (as 

described in Fernandez et al. 2014). Here, I allowed groups (n = 30) of males to 

acclimate on the bench top (2 hrs) before transferring them to the maze chamber. 

The chamber contains left and right 10 cm vials covered with treated or untreated 

filter paper that is enclosed within endcaps. After five minutes I scored their resting 

distribution – first, as a proportion of individuals that had oriented to the left or right 

sides of the chamber, calculated as a preference index (PI; Min et al. 2013; Tully 

and Quinn 1985), and second, as a virtual frequency histogram of individual flies 

within the graded (± 1 cm) chamber, as recorded by digital photographs. In each 

case, I compared the observed distribution of male flies against that expected under 

a null 50:50 (i.e., no preference) scenario. I replicated this assay for six independent 

groups of males (from different breeding stocks), and alternated the left and right 

position of QMP treatment with each trial.  

2.2.3 Testing sex attraction under queen pheromone in a courtship 

arena 

Tom tested if males adjust their courtship of conspecific females upon exposure to 

queen pheromone. Tom scored the courting intensity of individual males using 

Manning's (1960) scheme, which reflects the stereotypical escalation of courtship 

intensity towards females: 1- orientation, 2- tapping, 3- singing, 4- licking, 5- 
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attempted copulation, and 6- successful copulation. In instances where a male did 

not attend to the female, Tom assigned a score of zero. Here, Tom reared Ore-R 

flies as above, except to specifically motivate males towards mating, Tom housed 

them from eclosion as individuals in separate vials. Virgin females were also 

collected at eclosion but all were housed together in single vials. After three days, or 

as courtship is expected to peak (Kosuda 1985), Tom transferred one CO2-

anaesthetized male and female into a Lab-Tek™ tissue culture chamber (20 x 10 

mm; Division Miles Laboratories Inc., Naperville) with filter paper that served as a 

courting arena. After a 10 min habituation period in the chamber, Tom video tracked 

courting behaviour for a continuous 10 mins using Zeiss Zen Pro stereomicroscope 

software (Carl Zeiss Canada Ltd, Toronto), and did so for n = 22 QMP-treated and n 

= 22 control trials.  

From video playback, Tom recorded start and stop times (to the nearest 1s) of each 

behavioural event. This combination of information on frequency and duration of 

specific male behaviours allowed me to estimate four different measures of mating 

effort. First, Tom estimated courtship latency – the time to initiate courtship (O’Dell 

2003). In this case, Tom scored the time to reach a score of '1' (orientation) for the 

first time. Second, Tom estimated overall mating effort – as measured by the 

graphical area under a time-by-intensity profile curve (Equation B.1). Next, Tom 

estimated the courtship index – simply, the proportion of time spent in courtship 

(Siegel and Hall 1979). Finally, Tom estimated the low courtship intensity – the time 
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a male spends courting within the lower tier of intensity scores (1-2), and the high 

courtship intensity – the time a male spends courting within the upper tier of intensity 

scores (4-6). For each of the five measures, both Tom and I tested for differences 

between treated and control male courtship effort using unpaired one-tailed t-tests, 

and applying a Benjamini-Hochberg correction for multiple (i.e., 5) testing (q-value; 

Waite and Campbell 2006).  

2.3 Results 

There is a strong effect of queen bee pheromone on the choice made by male 

Drosophila, as evidenced by their distribution within the T-maze. I found a genotype-

dependent response to pheromone is captured in a significant gene-by-treatment 

interaction effect (from a two-way ANOVA; F2, 30 = 6.47, P = 0.005). Ore-R flies 

consistently orient toward the pheromone, as indicated by a positive PI relative to 

untreated Ore-R controls (mean PI = 0.361 vs. 0.022; t = 5.40, P < 0.001; Figure 

2.1). This effect of pheromone on fly behaviour is dependent on fly genotype; Orco1 

mutants show no preference for QMP and their PI is, therefore, not different from 

zero (one-sample t-test; mean PI = -0.016; t = 0.284, P = 0.783). Finally, white-eyed 

controls behave as Ore-R flies, and are likewise biased in their distribution towards 

the source of pheromone (mean PI = 0.334 vs. 0.039; t = 3.646, P = 0.004). My 

effort to capture the living distribution of individual flies yields results that are 

consistent with the proportional calculation reflected in the PI; Ore-R males orient 
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towards the pheromone, regardless of the actual polarity (left vs. right) of the 

apparatus (z-score = -2.94, P = 0.003; Supplementary Figure B.1). Conversely, 

Orco1 mutants do not deviate from a uniform distribution (z-score = 0.168, P = 0.860) 

and therefore appear indifferent to the pheromone.  

There is a subtle but significant effect of queen pheromone on fly courting behaviour. 

From video-capture trails, Tom reconstructed the behavioural courtship profile of 

each male in the form of a score-by-time ethograph (Figure 2.2a). First, the number 

of males showing non-zero courting scores was not statistically different between 

QMP-treated and control trails (n = 19 vs. 17; 2 = 0.61, P = 0.43). Of the males that 

did court (had a score 1-6), exposure to queen pheromone did not significantly affect 

the mean time to initiate courtship (courtship latency, t = 1.44, d.f. = 34, q = 0.126; 

Figure 2.2b), but did increase the overall mating effort (area under a time-by-

intensity profile curve, t = 2.25, d.f. = 34, q = 0.040; Figure 2.2c). Further, exposure 

to pheromone did not increase the overall proportion of time spent in courtship 

(courtship index, t = 1.00, d.f. = 34, q = 0.162; Figure 2.2d), nor did it affect the 

proportion of time spent by males orienting towards and tapping females (low 

intensity score, t = 1.30, d.f. = 34, q = 0.126; Figure 2.2e). Pheromone-exposed 

males did, however, spend a greater proportion of time licking, attempting to 

copulate, and copulating with females (high intensity score, t = 2.29, d.f. = 34, q = 

0.040; Figure 2.2f), relative to untreated males.  
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Figure 2.1 Mean preference index for male flies as a function of genotype and 

pheromone treatment. A 50:50 distribution (no preference) would yield a PI of zero, 

and a fully biased distribution towards QMP+ would yield a PI of 1. Both the w1118 

and Oregon R genotypes show significant preference for queen pheromone, 

whereas Orco1 mutants, and all untreated flies, showed no preference. Error bars 

show  SEM. 
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Figure 2.2a Typical male courtship profile showing his courtship score (y-axis) for 

each second of the observation period (x-axis). From each focal individual’s profile, 

Tom calculated mating effort in five unique but comparable ways: b Courtship 

latency - the time to initiate courtship (see text for full definitions), c Overall mating 

effort - the area under each individual male’s behavioural courting profile curve, d 

Courtship index – fraction of time courting (1-6) in relation to total time of trial, e Low 

courtship intensity – time spent in lower tier (1-2) of courtship intensity scores, and f 

High courtship intensity – time spent in higher tier (4-6) of courtship intensity score. 

The uncorrected P-values shown for c and f remain significant when adjusted for 

multiple testing (q-value < 0.05 in each case). Otherwise, N.S. = non-significant. 
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2.4 Discussion 

According to social signalling theory, the queen pheromones that coordinate 

reproductive roles within honey bee and other social hymenopteran societies may be 

derived from fertility signals of pre-social taxa (Chapuisat 2014; Peso et al. 2015; 

Oliveira et al. 2015; Oi et al. 2015). My results provide two observations consistent 

with this idea. First, I show that Drosophila melanogaster males are attracted to 

honeybee queen mandibular pheromone. This is evident by orientation of Ore-R 

males toward the source of pheromone within a T-maze chamber. This behaviour 

pattern suggests that male Drosophila, despite their phylogenetic position and pre-

social biology, can respond to a eusocial honey bee fertility signal. I can inhibit this 

response through a loss-of-olfactory-function mutation, which suggests the 

behavioural response is mediated by olfaction. Second, exposure of male flies to 

queen pheromone increases aspects of their reproductive effort towards conspecific 

females. Pheromone-exposed males spent more time courting females at ‘high 

intensity’ (licking, attempting to copulate, and copulating), but QMP did not otherwise 

obviously affect male fly behavior. These two conspicuous behavioral responses 

from Drosophila melanogaster – attraction and mating intensity – to a bee 

pheromone is potentially significant because it mimics the fertility signal’s normal 

effect on male bees. Like drones (Slessor et al. 2005; Free 1987; Brockmann et al. 

2006; Butler and Fairey 1964), male flies are attracted to, and display increased 

intensity to court with, pheromone-emitting queens. This basic comparison between 
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fly and bee behavior to a single pheromone suggests a conserved mechanism for 

sexual signaling between social and pre-social insect orders.  

The preference index is widely applied to T-maze behavioral assays (Min et al. 

2013; Suh et al. 2004; Tully and Quinn 1985) and provides a normalized measure of 

variance in dispersion. In this case, Ore-R flies showed a range in PI-value from 

near zero (untreated control populations) to a PI-value of ~0.35 (pheromone treated 

population). This range is consistent with comparable studies (e.g., Min et al. 2013) 

that score the behavior of small (~20-50 individuals) populations of D. melanogaster 

and indicates a moderate level of attraction that is well above baseline. This 

attraction to pheromone is, however, a function of genotype, as olfactory deficient 

mutants showed unbiased PI-values. This null result for Orco1 mutants is consistent 

with my no-pheromone controls (blank filter paper vs. evaporated ethanol; not 

shown) and with my prediction that flies strongly deficient in function for olfactory 

sensory neurons would not likely detect the pheromone. Given that Orco, by any 

name (Vosshall and Hansson 2011), plays a conserved and essential role in insect 

olfaction (Krieger et al. 2003; Larsson et al. 2004), I reason that the Drosophila 

response to QMP is at least partly dependent on olfaction. Here I follow precedent 

(Camiletti et al. 2013; Camiletti et al. 2016; Camiletti et al. 2014) and use a 

naturalistic blend of synthetic pheromone to induce changes to fly reproductive 

phenotype. Using a multi-component blend that mimics the natural bee pheromone 

presumably has the best potential to capture additive and synergistic effects among 
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the individual pheromone components, as it does in bees (Hoover et al. 2003; 

Slessor et al. 2005; Brockmann et al. 2006). I have not yet tested single components 

of QMP on Drosophila, but I predict that 9-ODA ((2E)-9-oxodecenoic acid) may elicit 

the strongest single-component attraction and aphrodisiacal effect on male flies, as it 

appears to in Apis mellifera drones (Brockmann et al. 2006; Free 1987).  

I here suggest that males, as for females (Camiletti et al. 2016), perceive the 

pheromone through olfactory neurons, but I do not yet know which neurons are 

specifically excited by this or related pheromones, or whether neurons are 

functionally segregated between males and females. Current work suggests that 

neurons associated with olfactory receptors Or-49b, Or-56a and Or-98a may 

specifically be necessary for female detection of QMP (Camiletti et al. 2016). If this 

response is dependent on olfactory neural circuitry then it may be possible to exploit 

a neural map of Drosophila (Chiang et al. 2011) and in vivo calcium imaging 

(Masuyama et al. 2012) to infer a detailed connectome associated with the fly’s 

response to QMP. A first-generation neural map of the aphrodisiac (male) or anti-

ovarian (female) response to queen bee pheromone, even from Drosophila, could 

complement the emerging framework for understanding how honey bees and other 

social animals modulate social information to regulate personal reproduction 

(Robinson et al. 2008; Sokolowski 2010; Hofmann et al. 2014; Thompson and 

Richards 2016).  
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Scoring Drosophila courtship behavior is well established, and includes schemes 

that rank courtship progression and intensity along an ordinal scale (Hall 1994; 

Ruedi and Hughes 2008). I predicted that queen bee pheromone might induce a 

comparable response from male flies as it does from drones – namely to increase 

motivation for sex. I found that male Drosophila can augment aspects of their mating 

effort, but my evidence for an aphrodisiac effect was subtle. Specifically, I found that 

pheromone-exposed males tended to prolong the more ‘intense’ aspects of their 

courting effort towards females – that is, they tend to spend longer courting at higher 

intensities (high intensity mating score) than simply courting for longer (courtship 

index). This subtle yet biologically relevant time-by-intensity effect of pheromone on 

Drosophila courting behaviour would not be apparent if I had used only standard 

mating progression metrics.  

Taken together, the behavioral response of male flies to bee pheromone that I 

observe in this study is striking for two reasons. First, Drosophila would never 

normally be exposed to a bee pheromone, and thus their conspicuous response is 

unlikely to be adaptive, at least not specifically adaptive to Apis mellifera QMP. 

Instead, the response suggests a conserved mechanism that mediates perception of 

information that is functionally conserved between species from distantly related 

eusocial (Hymenoptera) and pre-social (Diptera) orders. Of course it should not be 

overstated that flies could be perceiving QMP as food (HOB is found naturally in 

some plants like Oxalis tuberosa; Pal Bais et al. 2003) and thus this could be 
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mediating their response. Second, social signaling theory suggests that even 

complex social traits ranging from group nesting, foraging and defense, to stark 

divisions in reproductive labour likely evolved as socially-modified versions of 

simple, non-social behaviours (Reaume and Sokolowski 2011). If so, then 

Drosophila may provide a genetically tractable model (Hales et al. 2015) to test for 

conserved genetic, gene regulatory and neural effects on some social traits 

(Camiletti and Thompson 2016).  
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Chapter 3 

3 Mapping neurons that respond to social pheromone: insights from 

a Drosophila model  

3.1 Introduction 

The division of labour typical of eusocial species likely evolved via disruptive 

selection on reproductive versus non-reproductive phases of a pre-social lifecycle 

(Hunt and Amdam 2005). If so, I can expect some homology between reproductive 

cycles of pre-social insects, in which these phases remain as environmentally-

responsive options to a single individual, and eusocial castes, in which 'phases' have 

become more-or-less fixed amongst individuals (Rehan and Toth 2015). One 

expectation from this 'reproductive ground plan' hypothesis (West-Eberhard 1996; 

Graham et al. 2011) is that pre-social and eusocial species may respond similarly to 

environmental cues that regulate reproduction, provided their sensory and 

reproductive systems remain sufficiently conserved (Camiletti and Thompson 2016). 

The idea here is that the co-regulated gene sets of pre-social ancestors have been 

altered during social evolution to direct social divisions in labour (Johnson and 

Linksvayer 2010).  

To predict that an individual eusocial insect might regulate personal reproduction in 

a manner comparable to, say, Drosophila, or some other non-social insect seems 

unlikely, especially given their distant ancestry. However, female honey bees do de-
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active their ovaries in response to nutritional, thermal or other forms of stress, as do 

many insects (Paul and Keshan 2016; Xu et al. 2009; Cui et al. 2008), including 

Drosophila (Neckameyer and Weinstein 2005). This widespread pattern suggests 

that there are some basic features of reproductive regulation that are widely 

conserved among insects. Likewise, female Drosophila can de-active their ovaries in 

response to social cues derived from eusocial bees (Sannasi 1969), and do so in a 

manner that is comparable to a (female) worker bee's normal response to ovary-

inhibiting queen pheromone (Camiletti and Thompson 2016). Given the apparent 

homology in systems governing reproductive regulation, even between these two 

phylogenetically distant (Diptera vs. Hymenoptera) insects, it may be possible to 

exploit the response from Drosophila to queen pheromone, and begin to identify the 

earliest-acting neural receptors that initiate the ovarian response in flies. 

 Camiletti et al. (2013) showed that application of honey bee queen mandibular 

pheromone (QMP) to virgin female flies can induce a worker-like response in the 

form of fewer mature eggs and smaller ovaries, relative to untreated controls. This 

inter-specific response from a pre-social insect to a eusocial pheromone has since 

been observed in male Drosophila that are positively attracted to queen pheromone 

and, like drones, increase their interest in courting conspecific females (Chapter 2). 

To the extent that Drosophila’s response to QMP is comparable to that of Apis, I can 

consider the fly an unconventional but nonetheless genetically tractable model for 

testing certain hypotheses relevant to insect sociobiology.  
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For example, Camiletti et al. (2016) used an RNAi knock-down screen to identify 

several candidate olfactory receptors (Or) that may regulate the observed response 

from flies to QMP. The study implicates Or-49b, Or-56a and Or-98a as being 

responsive to queen pheromone. Each of the three of these receptors map to the 

same tissue type (basiconic sensilla) on the antenna (Figure 3.1). I therefore predict 

that exposure to QMP will stimulate these three neurons. I further predict that 

olfactory receptors that were not implicated by Camiletti et al. (2016) as being queen 

bee pheromone responsive will not be stimulated by QMP.  

In order to test these predictions, I used a nuclear factor of activated T-cell (NFAT) 

system to identify specific olfactory neurons that are stimulated by honey bee queen 

mandibular pheromone. Within this system sustained neural activity initiates calcium 

accumulation. Calcium activates calcineurin that dephosphorylates NFAT, causing 

the chimeric transcription factor mLexA-VP16-NFAT to shuttle into the nucleus. 

Once inside the nucleus, the chimeric transcription factor induces expression of the 

GFP reporter gene, which is under the control of the LexA operator (LexAop; 

Masuyama et al. 2012). Further, this system also takes advantage of the Gal-4/UAS 

system which only allows the chimeric transcription factor to be transcribed in 

specifically chosen tissues (Duffy 2002). This dynamic reporter system has 

previously been used to label neuronal receptors responsible for the perception of 

DEET (Kain et al. 2013), as well as fly cuticular chemical extracts (Masuyama et al. 

2012), among other ecologically relevant chemical stimuli. Based on this 



43 
 

 

precedence, I propose that Drosophila's NFAT system is potentially suitable for 

identifying olfactory receptors responsive to queen pheromone. Here I report my use 

of the NFAT system to test whether Drosophila Or-19a, -49b, -56a, -85a and -98a 

are responsive to QMP. 

 



44 
 

 

Figure 3.1 A reconstructed z-stack confocal micrograph of a fly antenna overlaid with 

the distribution of the three types of sensilla on a fly antenna (modified from Couto et 

al. 2005). The three types are: large basionic sensilla (green), the thin and small 

basionic sensilla (blue), and the trichoid sensilla (red).  Abbreviations: P, proximal; 

D, distal; M, medial; L, lateral 
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3.2 Methods 

3.2.1  Fly rearing 

All strains of Drosophila melanogaster were reared under standard conditions (25°C, 

60% humidity and a 12 h light: dark cycle) on a standard cornmeal diet (as in 

Camiletti et al. 2013) in an insect growth chamber (Caron Inc., Marietta, OH). 

Further all lines (Table 3.1) were acquired from the Bloomington Stock Center 

(Bloomington, IN, USA), with the exception of the NFAT line itself which was 

donated by Dr. Anthony Percival-Smith (Western University, Canada).   

Table 3.1 A summary of the olfactory line genotypes used in the assay. Shown is the 

olfactory receptor (Or) common name and the corresponding the Bloomington Stock 

Center ID (BSC ID) from which the transgenic fly was made. 

          UAS Strain (female)                                                 Gal-4 Strain (male) 

  

Common Name BSC ID 

LexAop-CD8-GFP-2A-CD8-

GFP; UAS-mLexA-VP16-

NFAT, LexAop-CD2-GFP/+  

 

w*; P{10XUAS-

mCD8::GFP}attP2     

(32184) 

Crossed to: elav 

Or-19b 

Or-49b 

Or-56a 

Or-85a 

Or-98a 

8765 

23888 

24614 

9988 

23133 

23142 
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3.2.2  Pheromone treatment  

Prior to treating flies with synthetic queen pheromone (Contech Ltd, Victoria, 

Canada), I first prepared 13 ‘queen equivalent’ (Qeq) doses in 20 µl volumes of 

ethanol (as described in Camiletti et al. 2013). I then warmed (50°C in water bath) 

this volume prior to dispensing it onto filter paper (200 mm2, grade 413; VWR 

International, Radnar PA) that served to deliver pheromone to populations of flies. 

For each trial, I collected virgin male and female flies within two hours of eclosion, 

then maintained them individually (1 fly per vial) for three days in an odour free 

environment. At maturity, I exposed small groups (n = 2-3 same sex individuals) of 

flies for 24 hours (27 °C) to one of two treatments via a custom chamber (see 

Camiletti et al. 2016) in which flies could not touch or eat the QMP but could smell it. 

Because ethanol (solvent) itself can potentially affect fly behaviour and physiology 

(Devineni and Heberlein 2012), I air-dried each filter paper for five hours until the 

ethanol was evaporated. For no-pheromone controls, I just dispensed the equivalent 

volume of ethanol onto the filter paper.  

3.2.3   Neural imaging  

Following exposure, I anaesthetized flies on ice and removed one antenna under a 

cold Dulbecco’s phosphate-buffered saline solution (DPBS). I then fixed (4% PFA, 

30 mins), washed (three times in PBS w/ 0.3% Triton X), and mounted (in glycerol 

solution) antennae on glass slides. I acquired z-stack fluorescent image data from 
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each slide via confocal microscopy (Zeiss LSM 510 confocal microscope and Zen 

Light Edition software) and reconstructed the several images into one for analysis. 

Specifically, I scored the neurons, and regarded the neuron as ‘active’ if it 

fluoresced. I also used IMAGEJ software to standardise the size of each antenna and 

precisely map the area on the antenna that fluoresced, and thus presumably 

contained the neurons of interest. To control for observer bias, I scored images blind 

to the treatment or genotype. 

To gauge significance in degree of neural activity, I visually compared separate 

groups based on the following two criteria: 1) neuronal fluorescence was clearly 

present on the antenna, and 2) the location of fluorescence was the same or 

different between groups. First, I compared QMP-treated neuronal-driven (8765) 

NFAT flies and their untreated controls. Next to infer if specific olfactory receptors 

were activated with the queen pheromone, I compared NFAT flies crossed to 

specific olfactory receptors (Or-19a, -49b, -56a, -85a, -98a) in treated and untreated 

groups. Finally, acting as a positive control, I crossed UAS-GFP flies to the same 

olfactory receptors. This control was visually compared to QMP-treated neuronally 

driven NFAT flies to assess if the olfactory receptors themselves were located in the 

same area as QMP was perceived on the antenna. 

For any olfactory receptor deemed to be involved in the response of QMP in 

Drosophila melanogaster I ran a BlastP search for protein homologs in Apis 
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mellifera. I only accepted matches with expectation values < 0.001 as these can 

reliably be used to infer homology (Pearson 2013). 

3.3 Results 

I found that exposure to QMP showed an increase in expression of GFP in neurons 

of the Drosophila antenna over untreated controls when NFAT was active in all 

olfactory receptors (Figure 3.2). This fluorescence pattern appears concentrated to 

an area adjacent to the arista, and across both the large and small basiconic 

regions. This general fluorescent pattern indicates that my NFAT lines and Gal-

4/UAS driving system were working as expected.  

The Or lines crossed with UAS-GFP were compared to the observed location of 

antennal QMP perception Figure 3.2 where QMP was found to be perceived on the 

antenna. Upon visual inspection I found that olfactory receptors Or-49b (Figure 

3.3F), Or-56a (Figure 3.3G), Or-85a (Figure 3.3J) and Or-98a (Figure 3.3H) all 

fluoresce within the same area QMP was perceived when all olfactory neurons were 

active (Figure 3.2). One olfactory receptor, Or-19b, fluoresced in a separate region 

of the antenna that is away from where QMP is sensed on the antenna (Figure 3.3I).  

Furthermore, when the calcium dependant NFAT system was driven in the specific 

receptors, only Or-49b (Figure 3.3K), Or-56a (Figure 3.3L) and Or-98a (Figure 3.3M) 

displayed antennal fluorescence when exposed to QMP over untreated controls 

(Figure 3.3A-C). This was not the case for the other two olfactory receptors that I 
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tested: Or-19b (Figure 3.3N) and Or-85a (Figure 3.3O) did not fluoresce, and were 

thus not different in this respect to the untreated controls (Figure 3.3D-E).  

From this preliminary analysis Or-49b, Or-56a and Or-98a seem to be the most likely 

candidates as functional QMP receptors in the fly. Using these QMP functional 

receptors, I found strong levels of statistical homology between known Apis protein 

sequences in GenBank with each of the Drosophila olfactory receptors (Table 3.2).  

Table 3.2 The Apis mellifera homologues retrieved for Drosophila melanogaster 

QMP sensing olfactory receptors using BlastP. Only E-values below 0.001 are 

shown. The lower the E-value, the lower probability is of finding a match by chance. 

Coverage denotes only the percentage of the query that aligns with a hit. 

Drosophila OR Apis OR homolog E-value Coverage 

Or-49b AmOr-14 2e-14 64% 

 AmOr-51 1e-4 58% 

 AmOr-78 2e-17 80% 

 AmOr-94 6e-14 85% 

 AmOr-160 2e-5 60% 

Or-56a AmOr-4 2e-8 40% 

 AmOr-78 4e-4 35% 

Or-98a AmOr-160 9e-4 33% 
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Figure 3.2 Reconstructed z-stack confocal micrographs of antenna from neuronal-

driven NFAT Drosophila stimulated with 13 Qeq of QMP or ethanol solvent (0 Qeq). 

The green fluorescent indicates the location of neurons that are activated under 

exposure to QMP.  
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Figure 3.3 Reconstructed z-stack confocal micrographs of antenna from specific 

olfactory driven NFAT Drosophila stimulated with 13 Qeq of QMP or solvent 

(ethanol). Antenna from specific olfactory driven GFP Drosophila act as a positive 

control. White arrows are used to bring attention to areas of GFP. 
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3.4 Discussion 

In this study, I utilized a calcium-dependant nuclear factor of activated T-cell (NFAT) 

system to report specific olfactory receptor neurons that are putatively responsive to 

a bee pheromone. My results are preliminary but implicate three neurons (Or-49b, 

Or-56a and Or-98a) as functional in the perception of QMP, as evidenced by their 

specific fluorescence upon exposure to pheromone. Further, my screen rejected two 

other olfactory receptor neurons (Or-19a and Or-85a) that I included in my screen 

but did not expect to test positive. My combined result is important for two reasons. 

First, the three olfactory receptor neurons that I identified can further be suggested 

as prime candidates for the very neuron homologues used by Apis itself to detect 

queen pheromone. Second, my results continue to promote a potential role for pre-

social Drosophila as a genetically tractable model for socio-genetic research.  

Despite having 350 million years of divergent evolution between them (Kazemian et 

al. 2014), and structurally very different antenna (Chapman 1998), Drosophila and 

Apis may, nonetheless, share some common neural features for the perception of 

social pheromones. In both insects, signal detection is initiated by olfactory receptor 

neurons located within sensilla on the antennae (Sato and Touhara 2009). Odorant 

molecules ligands bind to a structurally compatible receptor, and the signal is carried 

via the antennal nerve to the antennal lobe, the primary olfactory center within the 

insect brain (Sato and Touhara 2009). In this study, I found evidence for a functional 
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role for specific olfactory receptor neurons, which compliments behavioural studies 

that previously suggested a role for olfaction in Drosophila's perception of QMP 

(Chapter 2; Camiletti et al. 2013).  

I further established, for the first time, the utility of the NFAT system within a 

sociobiological framework. As such, I identified QMP-sensitive neurons. I based this 

study of the olfactory receptor neurons by asking two questions. First, did QMP allow 

for fluorescent neurons to be observed anywhere across the antenna? And, second, 

were they observed in the precise region where neuron-active flies displayed QMP 

perception? My analysis demonstrated that queen bee pheromone interacts with 

olfactory receptors adjacent from the arista and located medially on the antenna. I 

expected that Or-49b, Or-56a, Or-85a and Or-98a were all located in this region 

(Couto et al. 2005), and my assay confirmed this prediction. Further, only Or-49b, 

Or-56a and Or-98a were active with QMP, and therefore, my results generally 

support the RNAi-screen of Camiletti et al. (2016) that first implicated these 

receptors in the fly.  

All of the QMP responsive neuronal olfactory receptors found in Drosophila were 

expressed in the thin and small basiconic sensilla. The olfactory receptor neurons 

found within these sensilla respond strongly to food odors such as fruit (de Bruyne et 

al. 2001; Hallem et al. 2004) and mold (Stensmyr et al. 2012). While the individual 

receptors have not been fully characterised, Or-49b is known to be responsive to 
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aromatics and Or-98a is responsive to terpenes, ketones, aromatics, alcohols and 

esters (Hallem and Carlson 2004). Furthermore, Or-98a seems to share a link with 

regulation of sexual receptivity (Sakurai et al. 2013).  

Gaining insight into the precise olfactory receptor neurons that flies use with a social 

pheromone is potentially significant if it helps to identify these neurons in the honey 

bee itself, or other social insects in which reproductive conflict and cooperation is 

mediated through pheromones. To date only one odorant receptor for QMP 

perception in honey bees has been established. AmOr-11 responds specifically to 9-

ODA, the most abundant portion of QMP (Wanner et al. 2007). To guide future Apis 

studies, I did a direct BLASTP of each of the three QMP responsive neuronal 

receptors against the Apis mellifera genome (Amel_4.5). While the coverage varied 

greatly (33 - 85%) in related honey bee olfactory receptors, I only accepted those 

protein sequences with low enough E-values (<0.001) to suggest homology 

(Pearson 2013). I found that Apis olfactory receptors AmOr-4, -14, -51, -78, -94 and 

-160 show homology to the Drosophila olfactory receptors implicated with queen bee 

pheromone response. These predicted AmOr receptors, while different from the 

Camiletti et al. (2016) predicted bee Or’s using genealogical relationship and 

olfactory receptor ligands similarity to components of queen pheromone, suggests 

these receptors can be used as candidates for future functional testing within the 

bee itself. 
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I expect that these olfactory receptors, when knocked-down, could alter various 

behavioural and physiological traits related to honey bee social functions. Further, 

since both workers and drones do respond to, +/- 9-HDA, HOB and HVA, the other 

four major components of QMP (Free 1987), this assay could be expanded to further 

look at the individual components of QMP and understand precisely which olfactory 

receptors flies use to respond to each of these components. 
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Chapter 4 

4 Concluding remarks 

4.1 General discussion 

Evolutionary developmental biology (Evo-Devo) often adopts a comparative 

approach, and thereby, uses phylogenetic information to test how phenotypes have 

diverged or converged over evolutionary time (Laubichler 2007; Carroll et al. 2005; 

Raff 1996). Just as this field has revealed genes that are repeatedly co-opted across 

the tree of life to solve functionally similar problems - e.g. the pax-6 gene for eye 

development (Gehring and Ikeo 1999) - the field of sociobiology may also benefit 

from a comparative approach (Toth and Robinson 2007; West-Eberhard 2003; 

Kapheim et al. 2015). Specifically, we can expect that some of the genes involved in 

reproductive regulation - that is, involved in mediating trade-offs between present 

and future reproduction - in social taxa will be homologous to the genes that 

coordinate similar trade-offs in pre-social and even non-social taxa. The so-called 

ovarian ground plan hypothesis (West-Eberhard 1996; Graham et al. 2011; Rueppell 

et al. 2008) captures this idea. It suggests that the reproductive division of labour 

that is obvious between queen and worker castes of social Hymenoptera (Beekman 

and Ratnieks 2003) evolved through disruptive selection on gene networks that once 

coordinated individual reproduction of solitary female insects (Amdam et al. 2006; 
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West-Eberhard 1996). For example, vitellogenin (Nelson et al. 2007) and insulin 

(Wang et al. 2009) signaling pathways that once regulated transitions between the 

reproductive and non-reproductive phases in pre-social life cycles now appear to 

regulate the differentiation of reproductive and non-reproductive castes. This 

apparent co-option of ancestral pathways from solitary life histories into socially-

coordinated reproduction suggests that there may be widespread homology in the 

mechanisms that regulate reproduction in social and non-social taxa.   

While we do expect some genes and pathways to be conserved between pre-social 

and eusocial taxa, we can also predict a role for new genes and other forms of 

genetic novelty in social evolution (Sumner 2014), and the extent of 'old' versus 'new' 

genes likely varies among social systems and taxa (Johnson and Linksvayer 2010). 

Old genes and pathways can also be regulated in new and novel ways that give rise 

to social traits (Robinson and Ben-Shahar 2002; Berens et al. 2015; Mikheyev and 

Linksvayer 2015). One way to test these ideas is to compare social against pre-

social or non-social taxa for genes and pathways that may function similarly. 

Carpenter bees (Rehan et al. 2014) and paper wasps (West-Eberhard 1996) have 

relatively simply social systems that may help to model the early stages of eusocial 

evolution. For example, comparing behavioural differences in nesting biology of a 

solitary bee species, the sweat bee (Halictidae; Boesi et al. 2009), with that of the 

eusocial honey bee provided insight into the intermediate steps in evolution of from 

solitary to eusocial behaviour. 
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A comparative approach might also be extended to include pre-social species 

outside of Hymenoptera. Recent studies have suggested a role for Drosophila 

melanogaster as a model in social insect biology. Drosophila is an established 

model taxon in evolutionary and behavioural genetics (Powell 1997). This genus of 

fly has some social attributes - for example, it is gregarious in that females can share 

nesting sites (Parsons and Stanley 1981) - but Drosophila lacks cooperative brood 

care or division of reproductive labour, so they cannot be considered social per se 

(Gadagkar 1987). Despite the potential for some species of Drosophila to inform 

theories on pre-social biology, it has not been widely used in a sociobiological 

context (Camiletti and Thompson 2016; Hasselmann 2015). In this thesis, I present 

the view that this model may serve as a useful - if not crude - proxy for testing 

specific ideas on the genes, neurons and behaviours used to regulate reproduction 

within a social environment. Though the reproductive and social biology of fruit flies 

is not obviously comparable to that of social Hymenoptera it may, nonetheless, 

prove to be useful given its pre-social biology, and wide array of behavioral genetic 

tools that are available (Camiletti and Thompson 2016). Using a Drosophila model, 

may, therefore, make it possible to test the behavioural, genetic, and neural 

homologies between pre-social and eusocial taxa. 

In general, the benefits of using Drosophila as a model include their ease of 

laboratory manipulation, their fully sequenced and annotated genome, and the many 

tools available for genetic manipulation (Lin et al. 2014). These well-developed 
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genetic tools – like GAL4-UAS (Duffy 2002) and RNAi (Boutros et al. 2004) - have 

allowed for in-depth studies of specific genes in well-designed assays made 

specifically for Drosophila, including the T-maze (Tully and Quinn 1985) and 

courtship assays (Manning 1960). Outside of studying behaviours, Drosophila can 

be further manipulated to observe the neuronal and sensory systems that underlies 

their response to various stimuli. Both electrophysiology (de Bruyne et al. 2001) and 

the nuclear factor of activated t-cells system (NFAT; Masuyama et al. 2012) have 

been used to pinpoint specific neuronal responses. Utilizing these types of 

techniques for pre-social Drosophila within a social context could assistance in 

identifying the conserved genes and multi-gene networks from which eusociality 

evolved.    

The goal of my thesis was to use Drosophila melanogaster as a behavioural and 

neuronal model to test how conserved is the mechanism through which one species 

of honey bee (Apis mellifera) and one species of fly regulate their reproductive 

behaviour. In Chapter 2 - 'Sexual response of male Drosophila to honey bee queen 

mandibular pheromone: implications for genetic studies of social insects' - I show 

that male fruit flies respond to honey bee queen mandibular pheromone in a manner 

that suggests behavioural homology to drone bees. In Chapter 3 - 'Mapping 

neuronal responses to a social pheromone in a Drosophila model' - I use a neuronal 

imaging technique to map some of the major neurons that flies use to perceive bee 

and possibly other pheromones. Based on the neural stimulus-dependent staining 
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that I used, I present three olfactory receptor neurons - Or-49b, Or-56a and Or-98a - 

as potentially active in flies to the perception of bee pheromone. If Drosophila as a 

pre-social model uses receptors similar to those of the honey bee itself then our best 

candidates yet from the honey bee will be the functional homologues to these three 

genes, which are: AmOr-4, -14, -51, -78, -94 and -160. Finally, in this chapter I 

summarise the results of my two empirical chapters to illustrate the benefits and 

limitations of Drosophila as a model in sociobiology. I also suggest possible 

extensions of the present work to help future research build upon these results and 

bridge the knowledge gap surrounding social discontinuities between pre-social and 

eusocial species.  

4.2 Drosophila as a model for eusocial insects 

While Drosophila do interact with other individuals in the population for mating 

(Villella and Hall 2008) as well as feeding (Wu et al. 2003) they lack the behavioural 

characteristics that define them as truly social in sociobiological terms. Despite not 

having a rich social behavioural repertoire, there is precedence in using Drosophila 

as a model for Apis response to queen pheromone. Sannasi (1969) first found that 

adult female fruit flies had reduced ovary size comparable to that of worker bees 

when exposed to a single component of honeybee queen pheromone (9-ODA). 

Since then work in the Thompson lab has demonstrated that Drosophila females 

exposed to synthetic QMP develop smaller ovaries that contain fewer mature eggs 
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then did untreated controls (Camiletti et al. 2013). QMP also reduces the number of 

adult offspring produced after mating. Additionally, fruit flies polymorphic at the 

foraging locus act differently when exposed to QMP (Camiletti et al. 2014). The 

'rover' genotype was less responsive to QMP and was therefore comparable to 

forager bees where the 'sitter' genotype was more responsive to queen pheromone, 

similar to nurse bees. Last, using RNAi, olfactory receptors -49b, -56a and -98a 

were suggested to be responsible for pheromone perception in the fly itself 

(Camiletti et al. 2016).  

This series of studies raised several questions that I have addressed in this thesis. 

First, while the above studies focused on females, I showed that male Drosophila 

are akin to drones in that they are attracted to pheromone and increase mating effort 

toward conspecific females (Chapter 2). This study used both a dual-choice T-maze 

and courtship assay to discover how QMP influenced male flies. These assays were 

used as they are simple to perform, informative in nature and have well developed 

protocols (Tully and Quinn 1985; Manning 1960). Both behavioural assays have 

been used to study a wide array of odours including ethanol (Lee et al. 2008; 

Schneider et al. 2012), DEET (Lee et al. 2010) and even Drosophila melanogaster 

specific pheromone (11-cis-vaccenyl acetate; Kurtovic et al. 2007; Farhan et al. 

2013) but to my knowledge this is the first eusocial pheromone used in either assay. 

Second, my use of the fluorescent neuronal labeling technique (NFAT) indicated that 

Drosophila likely perceive QMP through stimulation of olfactory neurons located 
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within the basiconic sensilla on the antenna (Chapter 3).  Following the Camiletti et 

al. (2016) study, I further confirmed that Or-49b, Or-56a and Or-98a are likely 

responsible for the perception of QMP in flies as they fluoresced in the presence of 

QMP where Or-19a and Or-85a did not. While this novel NFAT system has been 

used to identify DEET (Kain et al. 2013) and Drosophila cuticular chemical extracts 

sensing neurons (Masuyama et al. 2012) my study shows that it can be used with an 

even wider array of stimuli. Like single-sensillum recordings (de Bruyne et al. 2001), 

which has been the standard for olfactory odor coding in Drosophila, I have further 

demonstrated that this NFAT system may be a useful alternative in any odor based 

olfactory study.  

Thus far, it seems that a pheromone that has evolved a diversity of functions in Apis, 

can elicit a similar range of behaviours in Drosophila. This certainly raises the 

prospect that Drosophila can be used in conjunction with honey bee QMP as a 

model to identify and reconstruct some of the molecular machinery that regulates a 

reproductive division of labour within social insect societies. Continuing to use these 

types of comparative approaches with established model organisms, like Drosophila, 

can be used to support theoretical models like the ground plan hypothesis that serve 

to address the evolutionary origins of social behaviour.  
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4.3 Future experimental strategy 

While the research contained in my thesis has certainly added to comparative 

understanding of how flies respond to queen mandibular pheromone, more can be 

done to develop the fruit fly as a model for Apis. Building on the studies presented 

here could help further drive research in the honey bee itself. First, while we showed 

that male Drosophila akin to drones show significant attraction to queen pheromone 

(Chapter 2), it would be equally interesting to see how female flies respond to QMP 

in a dual choice assay. Would they predictably be repulsed by QMP as we know its 

limits their reproductive potential (Camiletti et al. 2013) or would they act in a 

homologous fashion to retinue workers who show steadfast attraction to the 

pheromone (Free 1987)? Further, I would build on the Camiletti et al. (2014) study 

showing how the two polymorphs of the foraging gene, sitters (forS) and rovers 

(forR), are differentially sensitive to ovary deactivation with queen pheromone much 

like their bee counterparts nurses and foragers. Within the T-maze it would be 

expected that the sitters like young workers would have a higher affinity for QMP 

over the rovers acting as a pseudo-replacement for older forger bees.  

While my NFAT study (Chapter 3) demonstrated that flies likely use Or-49b, Or-56a 

and Or-98a to perceive QMP, this system can certainly be utilized further. The next 

step of this study should further confirm my results through dissecting the brain and 

analyzing the antennal lobe for fluorescence to QMP. It would also be of interest to 
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study higher levels of the brain like mushroom bodies as they may also become 

excited by QMP. If this the case, perhaps the newly emerging connectome of the fly 

brain could provide further insight into a fly's perception of queen pheromone 

(Chiang et al. 2011). Further, an open-access database, named FlyCircuit 

(http://www.flycircuit.tw), has been constructed for online archiving, analysis, and 

visualization of all the collected neurons and could be compared to for any future 

studies. Finally a technique developed by Gonzalez-Bellido and Wardill (2012) 

allows for neuronal imaging within thick invertebrate tissue samples such as a 

Drosophila thorax and abdomen. If this was done using the NFAT system in flies it 

could provide a full neuronal body view of QMP perception in the fly from the primary 

olfactory centers of the antenna, to the brain and across the body - to ovary 

innervation in females for example.  

Queen mandibular pheromone is made up of five major components: 9-oxo-2-

decenoic acid (9-ODA), two enantiomers of 9-hydroxy-2-decenoic acid (9-HDA), 4-

hydroxy-3-methoxyphenylethanol (HVA) and methyl-p-hydrobenzoate (HOB). These 

components work synergistically causing the large-scale behaviour and 

physiological changes seen in Apis mellifera workers and drones. These 

components have been studied with a wide variety of bee behaviours and, therefore, 

are appealing to future comparative assays using the fruit fly. First, 9-ODA is an 

effective attractant over large distances and elicits highly predictable responses in 

flying drones (Gary and Marston 1971). This component could be tested alone with 
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male flies in the same T-maze and courtship arena and again compared to a drone 

response. Further, both enantiomers of 9-HDA and HOB have been shown 

synergize with 9-ODA to increase male attraction at close range (Brockmann et al. 

2006; Loper et al. 1996) which could be further looked into with flies in both 

behavioural assays.  

Within the honey bee the actual receptors responsible for QMP perception have yet 

to be functionally identified. It is widely accepted that 9-ODA is perceived through 

the olfactory receptor AmOr11 (Wanner et al. 2007) but the other components have 

yet to be understood this well. By utilizing the NFAT system with each of the 

individual QMP components I suggest specific olfactory receptors can be teased out 

against each component of QMP. This could add to the rough map I have suggested 

and provide further detail where future honey bee studies could begin. 

4.4 Conclusion    

The end goal of the comparative methods purposed is ultimately to test the genes I 

implicate in the fly on the honey bee itself. While the bee is not fully amenable to 

genetic manipulation as is Drosophila, it is hopeful that future research may allow for 

more direct genetic manipulation. Using the novel and dynamic CRISPR/Cas9 (Hale 

et al. 2012) system may soon allow for specific genomic editing on the genome of 

the honey bee (Ben-Shahar 2014). Further, improved transformation techniques 

should allow for better future integration of RNAi elements, which thus-far have had 
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less than perfect success (Jarosch and Moritz 2011). Using new techniques like 

these should allow comparative studies, like mine, to verify the function of 

homologous genes. 
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Appendix B: Chapter 2 Supplemental Information 

 

 

Figure B.1. Virtual frequency histograms of male flies within T-maze chambers. The 

four plots show the final distribution of flies among ± 1 cm bins for treated (a, c) and 

control (b, d) trails. Orco1 mutants are uniformly distributed (Kolmogorov-Smirnov 

test statistic for uniformity, P > 0.05) and thus show no bias towards either end of the 

T-maze, regardless of QMP. Ore-R flies, by contrast, deviate from a uniform 

distribution in the direction of QMP (K-S test for uniformity, P < 0.001). We 

superimpose a normal curve simply to help visualize departures from centrality. 
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Equation B.1. The formula for the area of a polygon. This equation calculates the 

area under the line for each individual second, subsequently allowing for the 

determination of the absolute sum of the entire graph. 
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Appendix C: Chapter 3 Supplemental Information  

 

 
Figure C.1 All Confocal micrographs of antenna from neuronal-driven NFAT Drosophila stimulated with queen pheromone or 

solvent.  
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Figure C.2 Confocal micrographs of antenna of Or-19b driven NFAT Drosophila stimulated with queen pheromone or solvent. 

A neuronally driven olfactory strain is also included as a positive control. 
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Figure C.3 Confocal micrographs of antenna of Or-49b driven NFAT Drosophila stimulated with queen pheromone or solvent. 

A neuronally driven olfactory strain is also included as a positive control. 
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Figure C.4 Confocal micrographs of antenna of Or-56a driven NFAT Drosophila stimulated with queen pheromone or solvent. 

A neuronally driven olfactory strain is also included as a positive control. 
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Figure C.5 Confocal micrographs of antenna of Or-85a driven NFAT Drosophila stimulated with queen pheromone or solvent. 

A neuronally driven olfactory strain is also included as a positive control. 

 

 

 

 

 

 

 

 

 

 



87 
 

 

 

Figure C.6 Confocal micrographs of antenna of Or-98a driven NFAT Drosophila stimulated with queen pheromone or solvent. 

A neuronally driven olfactory strain is also included as a positive control.
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