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Abstract 

Commonly-applied methods to estimate ground-motion amplification for earthquake 

hazard applications in southern Ontario are highly generalized. Site amplification effects 

have typically been estimated by a parameter that is not well-known in the region, the time-

averaged shear-wave velocity in the top 30 metres of soil; VS30. Moreover, VS30 is not well 

correlated with site amplification in this region. This study develops a model that can better 

estimate ground motions and shaking intensities in southern Ontario based on readily-

available information. The model is based on a site’s peak response frequency (fpeak), which 

can be estimated from depth-to-bedrock. This fpeak-based model estimates ground motions 

differently compared to a VS30-based model, as given by the National Building Code of 

Canada (NBCC). Field surveys show that the estimate of fpeak is stable over a distance of 1 

km. The developed model can be used to estimate site response for building code and 

ShakeMap applications. 
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Chapter 1  

1 Introduction 

1.1 Motivation for this Research 

The amplification of seismic waves in soft, surficial sediment layers is referred to 

as site amplification or site response. This physical phenomenon has been observed 

throughout the world and for many different earthquakes. Its occurrence is due to a 

simple principle related to the conservation of energy: as shear waves from deeper layers 

travel to the surface of the earth, they will enter layers that are typically softer and less 

dense, and as a result, the shear-wave velocity will decrease; thus, the amplitude of the 

waves will increase. Since shear waves refract toward the vertical as they enter softer 

layers of sediment and since their direction of particle motion is perpendicular to the 

direction of propagation, the amplification of these waves occurs primarily in the 

horizontal direction. It is this horizontal shaking that is associated with felt shaking and 

increased damage that is observed during earthquakes (e.g., Trifunac and Todorovska, 

1997).  

 

An excellent illustration of site amplification is the 1985 Michoacan (Mexico 

City) earthquake. The moment magnitude (M) 8.0 earthquake resulted in only moderate 

damage near the epicenter where rock is prominent, but extensive structural damage was 

observed ~350 km away in Mexico City, which is dominated by soft clay sediments 

(Kramer, 1996). Even within Mexico City, strong-motion instruments recorded vastly 

different horizontal ground accelerations, depending on whether the instrument was on 

rock or soft clay. Figure 1-1 shows an example of contrasting horizontal acceleration 

records from two different sites for this earthquake; strong-motion station UNAM was 

situated on basaltic rock, while station SCT was located on soft soil. The record from 

SCT shows much higher ground accelerations. 
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Figure 1-1: Horizontal (east-west) acceleration time histories from two strong 

motion stations in Mexico City during the M8.0 Michoacan earthquake. Station 

UNAM was situated on basaltic rock, while SCT was located on soft soil (from 

Kramer, 1996). 

 While the site amplification example of Mexico City is a fairly extreme one, the 

phenomenon will exist to some extent for any region that is home to varying surficial soil 

types. In this study, the focus is on predicting site response in Canada’s most densely-

populated region: southern Ontario. 

1.2 Seismicity in Southern Ontario 

Southern Ontario is a fairly stable seismic region when compared to active 

regions such as California or Japan. The region does not frequently experience damaging 

earthquakes, as it is located in the middle of the North American Plate. However, small-

to-moderate earthquakes of M3 to 5 (with M ≈ 4.5 being the damage threshold) occur 

frequently throughout the region, with larger events occurring less frequently. Many of 

these earthquakes originate in the Western Quebec Seismic Zone, which extends more 

than 500 km from the Timiskaming region of Quebec, through the Ottawa-Montreal 

corridor, to the Adirondack Highlands of New York (Ma and Eaton, 2007; Basham et al., 

1979). The Southern Great Lakes Seismic Zone is also host to earthquakes of M3 to 5, 

although they occur infrequently here. It has been hypothesized that earthquakes 

occurring in the region below Lake Ontario can be attributed to fluids, which alter the 

pore pressures and stress regime within the rocks (Mereu et al., 2002). Figure 1-2 shows 
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the distribution of earthquakes in southern Ontario during the time period from 1991 to 

2013 (Assatourians et al., 2013). 

 

Figure 1-2: Seismicity in southern Ontario (1991 to 2013). Earthquake symbol sizes 

are scaled by their magnitudes (based on the Nuttli magnitude scale, MN). The 

cluster of events in the northeast corner of the map originate from the Western 

Quebec Seismic Zone (from Assatourians et al., 2013). 

A few notable twenty-first century earthquakes to be felt in the region are the 

2002 M5.0 Au Sable Forks, New York (Atkinson and Sonley, 2003), 2010 M5.0 Val-

des-Bois, Quebec (Atkinson and Assatourians, 2010), and 2013 M4.5 Ladysmith, Quebec 

(Atkinson et al., 2014), earthquakes. Thus, even though southern Ontario has relatively 

low levels of seismic activity, the region still periodically experiences earthquakes that 

are widely felt, and there is the potential for damaging motions. The seismic risk is 
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considered moderate, despite the relatively-low activity levels, due to the region’s high 

population density. Assessments on how seismicity and site amplification impacts the 

region are therefore important. 

1.3 Review of Studies on Site Response Parameters 

 Ground-motion prediction equations (GMPEs) are a common way to describe 

expected earthquake motions, accounting for average earthquake source, path and site 

effects. The site term in the GMPE commonly uses shear-wave velocity in the top 30 

metres of soil (VS30) as the descriptive variable. Denser/stiffer soil materials are 

associated with higher VS30 values. In many applications, VS30 is estimated based on 

correlations with topographic slope (Wald and Allen, 2007). The shortfall with this proxy 

method is that it does not work well in regions like southern Ontario that have subdued 

topographic relief. However, using site-specific studies to obtain more accurate VS30 

values can be an expensive and time-consuming procedure. Moreover, many seismograph 

stations in southern Ontario only have inferred or assumed values of VS30, making the 

degree of correlation between VS30 and site amplification difficult to assess. Using 

alternative approaches to estimate site response in southern Ontario is therefore 

appealing. 

 

Alternative methods for estimating site response include the horizontal-to-vertical 

(H/V) ratio method, which uses spectral ratios of ground motions to estimate a site’s peak 

frequency of response (fpeak), in addition to other parameters, such as a site’s surficial 

geology. The fpeak of a site is typically within a narrow frequency bandwidth, within 

which the H/V ratio is at a maximum; this is related to the site’s subsurface properties 

(e.g., sediment thickness). The benefit of using fpeak as a site response variable is that it is 

relatively easy to obtain and it provides information for sites that are deeper than 30 m. 

Moreover, characterizing shallow sites (< 30 m) can be problematic when using VS30 if 

there is an intrusion of high-velocity bedrock in the top 30 m (e.g., McPherson and Hall, 

2013). 

 

A number of recent studies have examined the use of fpeak as a site response 

parameter in various regions of the world. As an example, in Italy, Di Alessandro et al. 
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(2012) used site periods from H/V spectral ratios as a means for site classification and 

found that the H/V ratio method reduced the standard deviation from GMPEs and better 

captured the long and short period resonance from deep and shallow soil sites, 

respectively. In Japan, Zhao and Xu (2013) and Ghofrani and Atkinson (2014) similarly 

found that fpeak or site period from H/V ratios was a better predictive site variable than 

VS30 for longer period (or deeper) sites. Moreover, larger and more distinct peaks in 

amplification spectra are expected in regions like Japan where there exists a soft sediment 

layer overlying hard bedrock (Class I regions), providing conditions for a strong 

impedance contrast (Aki and Richards, 2002; Ghofrani and Atkinson, 2014). This differs 

from regions like California (Class II), which are characterized by a gradational soil 

profile, resulting in broader amplification spectra, lower spectral peak amplitudes, and 

peaks at lower frequencies. Figure 1-3 shows examples of H/V spectra from Class I and 

II regions. Since southern Ontario is characterized by a range of soil types overlying very 

hard, glaciated bedrock (shear-wave velocity or VS ≈ 2800 m/s; Boore and Joyner, 1997), 

it is expected that H/V spectra in the region will resemble that of Class I regions, such as 

Japan; thus, the argument for fpeak being a more applicable site response variable than 

VS30 likely also applies to southern Ontario. 

 

 

Figure 1-3: Examples of H/V spectra from Class I (left) and Class II (right) regions. 

H/V spectra in Class I regions are typically more distinct and have greater peak 
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amplitudes. Note that the H/V is in base 10 log units. A standard Gaussian curve, 

derived from empirical data from Japan, is superimposed on both plots (from 

Ghofrani and Atkinson, 2014). 

 

1.4 Organization of Work 

In chapter 2, we use H/V spectral ratios from earthquake records in southern 

Ontario in order to characterize site response in the region. We show that site response 

can be modeled using a couple of variables that are readily obtainable: fpeak (determined 

from the H/V ratio or sediment depth) and surficial geology or sediment type. These 

variables are used to create a preliminary model of site amplification that can be used 

with GMPEs for the region, as well as for predicting ground motions or shaking intensity 

on a regional scale. Chapter 2 has been published as Modeling Site Amplification in 

Eastern Canada on a Regional Scale in Seismological Research Letters. 

 

In chapter 3, the site amplification model based on fpeak is compared to one based 

on VS30, as given by the 2015 National Building Code of Canada (NBCC). Earthquakes 

and scenario events are used to estimate ground motions and shaking intensities. It is 

shown that both models generally predict similar felt intensities but show significant 

differences in their predicted amplification of ground motions as a function of frequency. 

The results of this chapter support the use of fpeak as a site response variable for 

estimating amplification effects in southern Ontario. Chapter 3 has been accepted for 

publication as A Model for Estimating Amplification Effects on Seismic Hazards and 

Scenario Ground Motions in Southern Ontario in the Canadian Journal of Civil 

Engineering. 

In chapter 4, we measure the spatial variability of fpeak within 1 km distance of 10 

seismograph stations in southern Ontario. Establishing spatial variability of fpeak is useful 

for assessment of regional site response and its uncertainty: we can estimate site response 

if fpeak is known, and thus it is important to know to what distances the value of fpeak is 

spatially stable. We find that, on average, log10(fpeak) as measured by microtremor survey 

observations is within 0.13 units of the value recorded at the seismograph station (using 
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H/V from earthquake records), for survey sites within 1 km of the station. Chapter 4 has 

been submitted for publication as Assessment of the Spatial Variability of Site Response 

in Southern Ontario in Seismological Research Letters. 

Finally, a summary of all findings is provided in chapter 5, in addition to 

suggestions for future work. 
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Chapter 2  

2 Modeling Site Amplification in Eastern Canada on a 
Regional Scale 

2.1 Introduction 

Eastern North America (ENA) has relatively low levels of seismic activity, but 

earthquakes nevertheless pose a moderate risk due to densely-populated urban centers 

and critical infrastructure. Moreover, sediments in many parts of ENA tend to strongly 

amplify ground motions from moderate earthquakes. A good example of this is the 

moment magnitude (M) 5.0 Val-des-Bois earthquake, which had a felt area of 

approximately 3 million km2 and produced the strongest shaking ever felt in Canada’s 

capital city of Ottawa, more than 60 km away (Atkinson and Assatourians, 2010); the 

shaking in Ottawa was particularly strong on soil sites (Pal and Atkinson, 2012). The 

sediments in ENA are comprised of postglacial sands, clays and tills of variable stiffness 

and thickness, which often overlie very hard glaciated bedrock, providing a sharp contrast 

in shear wave velocity. This produces strong and highly variable site amplification within 

the region. Proper modeling of these amplification effects is critical in the interpretation 

of recorded ground motions and the evaluation of hazard. While this study is focused on 

the region extending from southern Ontario to Quebec, the results also apply to other 

ENA sites which share similar characteristics. 

Horizontal-to-vertical (H/V) component spectral ratios of Fourier amplitude 

spectra and/or response spectra (e.g., pseudo-spectral acceleration, PSA) are known to be 

a measure of site amplification, particularly effective at identifying the predominant site 

frequency (e.g., Nakamura, 1989; Lermo and Chávez-Garcia, 1993; Kawase et al., 2011). 

Horizontal-component shear-wave motions are amplified in near-surface sediment layers, 

whereas amplification on the vertical component is counterbalanced by the ray path 

refracting toward the vertical. Thus, the vertical component amplification may be 

considered negligible relative to that of the horizontal component, so that H/V ratios are a 

good approximation of site amplification. Modeling site amplification is important in the 
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development of ground-motion prediction equations (GMPEs), and for mapping the 

intensity of ground motion (e.g., ShakeMaps; Wald et al., 1999).  

In this study, we use seismograph station and microtremor H/V measurements, 

from southern Ontario and Quebec, to develop a regional-scale model of site 

amplification suitable for use in applications such as ShakeMap. This model consists of 

functions, categorized by sediment class, which capture the average H/V trend of that 

class. The key descriptive variables of these functions are the peak frequency of response 

(fpeak), and to a lesser extent, the overall stiffness (or type) of the deposit. Using digitized 

maps of depth-to-bedrock (sediment thickness) and surficial geology, correlations are 

defined between depth-to-bedrock and fpeak, and surficial geology and peak amplitude of 

response (Apeak). From these correlations, the site amplification functions are developed, 

based on the assumption that H/V ratios act as a proxy for site amplification. We develop 

a set of amplification functions which is applicable to sites whose fpeak is known; e.g., at 

seismograph stations, or locations where microtremor studies have been conducted. A 

second set of functions is introduced to account for sites where fpeak can only be roughly 

estimated due to lack of site-specific information. These functions can then be applied to 

make simple and practical estimates of site response across the region. We emphasize 

that the intent here is to provide a broad-brush regional model, rather than a 

microzonation. 

Ghofrani and Atkinson (2014) compared the effectiveness of using H/V spectral 

ratios as a descriptive variable to model site response with that of the time-averaged 

shear-wave velocity to 30 m (VS30). This evaluation was done using two databases: a 

comprehensive ground-motion database from Japan, and the international NGA-West 2 

database. They concluded that using H/V spectral ratios – instead of VS30 – as a site 

descriptor variable is advantageous since H/V ratios provide a more accurate 

characterization of amplification for deeper sediment deposits, and are more readily 

obtained. Ghofrani and Atkinson (2014) described the H/V characteristics for two types 

of regions. Regions with predominantly-shallow sediment sites (Class I), such as Japan 

and China, display strong H/V spectral ratios with Apeak at intermediate-to-high 
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frequencies (> 2 Hz), while regions with deeper gradational sediment sites (Class II), 

such as California and Italy, have Apeak values at lower frequencies (< 1 Hz).  

In eastern Canada, the use of VS30 as a site response variable is problematic, as it 

is not available in most places and proxies like topographic slope do not work well in this 

region, which has subdued topographic relief. Moreover, VS30 does not convey 

information on the most important variable controlling site amplification in this region, 

which is depth-to-bedrock, or equivalently, peak frequency, as we will show in this 

article.  

2.2 Database Information and the Computation and 
Classification of H/V Curves 

The ground-motion data used in this study are the response spectral amplitudes 

from an online seismograph database for the region (www.seismotoolbox.ca). The 

database includes response spectra for 55 events of M 3.0 to 5.1 recorded on 38 

seismograph stations: 36 in southern Ontario and 2 on the Island of Montreal, during the 

time period of 1996 to 2014. These stations are located throughout the region and rest on 

sites composed of various surficial geologies, with the majority being on bedrock or till. 

The instrument-corrected acceleration time series and 5%-damped PSAs were obtained 

by processing the Standard for the Exchange of Earthquake Data (SEED) waveform files 

through the program ICORRECT (Assatourians and Atkinson, 2008). To ensure adequate 

signal strength, the magnitude-distance limitations suggested by Atkinson (2004) were 

applied. As a result, all records used in this study had a hypocentral distance under 800 

km, while most records were within 400 km. To compute a station’s H/V ratio for a given 

record, the geometric mean of the horizontal-component PSA was divided by the vertical 

component PSA, at frequency points from 0.1 to 20 Hz, spaced in increments of 0.1 

logarithmic units. The station’s average (H/V) spectrum was obtained by log-averaging 

the H/V values for each frequency over all events (i.e., we obtain the mean value of 

log(H/V) as a function of frequency). We note that logarithms throughout this article are 

of base 10.   
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Sediment thickness and surficial geology data for Ontario are compiled by the 

Ontario Geological Survey (OGS) and made available online by the Ministry of Northern 

Development and Mines. These data are available in Keyhole Markup Language format 

for easy viewing in Google Earth. The website also provides an associated cross-section 

viewer (CrossSection.exe) which shows bedrock elevation, ground elevation and 

sediment thickness. These parameters are provided in units of meters, with a site’s 

sediment thickness (depth-to-bedrock) being the difference between the ground and 

bedrock elevations. We queried this database to obtain surficial geology and depth-to-

bedrock information as needed. Since the digitized map of surficial geology shows highly 

localized variability, including several different categories of sediment and bedrock, we 

simplify the mapped surficial sediment materials into four main site classes. In order of 

decreasing stiffness, these classes are: bedrock, till, sand/clay, and very soft organic 

sediment/fill. Furthermore, we assume that the entire sediment column is uniformly that 

given by the surficial geology map. We acknowledge that this is a simplification in areas 

where the surficial unit is not representative of the underlying stratigraphy, and that this 

simplification results in significant uncertainty in the amplification model. 

Most of the 38 seismograph stations used in this study were examined in a 

previous similar study by Kolos (2010), where various sources were consulted for station 

depth-to-bedrock values. In this study, for stations with no depth-to-bedrock information 

available in Kolos (2010), the information from the OGS CrossSection algorithm is used 

to estimate depth. A simple inspection of all sediment sites’ H/V spectra and their depth-

to-bedrock values reveals a strong correlation between the peak frequency of the H/V 

ratio (fpeak) and the depth-to-bedrock (shown later). This is expected because the peak 

frequency of amplification is inversely proportional to the thickness of the amplifying 

layer, with the degree of amplification being dependent on the seismic impedance 

contrast (Aki and Richards, 2002). Figure 2-1 shows a representation of the overall study 

area’s sediment thickness and the locations of the seismograph stations. Note that 

sediments in southern Ontario are intermediate-to-deep in most areas, while the eastern 

parts of the province have thinner sediments, with some deeper pockets.   
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Figure 2-1: Sediment thickness (D) across southern Ontario and the locations of 

seismograph stations used in this study. 

In Ontario, the digitized surficial geology map is used to estimate which of the 

four site classes applies to each station, while in Montreal this information is extracted 

from a dataset of boreholes, provided by the City of Montreal. In the majority of cases, 

the surficial geology is consistent with that expected based on the H/V spectral shape: 

sediments are associated with peaked spectra (with a greater Apeak seen in softer 

sediments), while bedrock is associated with flatter spectra. Where there are 

discrepancies between the surficial geology map and a station’s H/V spectral appearance, 

the spectral shape is used to determine the site class. The latter is deemed to be a better 

indicator since the map sometimes shows boundaries between different geologies in very 

close proximity to a station, and the map resolution is rather poor. After determining the 

surficial geology associated with each station, the H/V spectra are grouped by geological 

category. We follow the approach of Ghofrani and Atkinson (2014) to generalize the H/V 

curve for each site type; we plot all sediment spectra and the amplitude of H/V as a 

function of f/fpeak. This normalizes the spectra in frequency space so that sites with 
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different values of fpeak can be overlaid, allowing an average H/V for the site class to be 

computed. The generic Gaussian-shaped model from Ghofrani and Atkinson (2014) is 

used to describe the average H/V curves for each of the three sediment classes in eastern 

Canada; we simply adjust the coefficients to better match the observed H/V curves. This 

approach is motivated by the similarity in H/V spectral shapes for Japan and eastern 

Canada. Both are regions that are characterized by sediment layers lying on top of much 

harder rock, resulting in a significant velocity contrast and large horizontal ground 

motion amplifications at a predominant site frequency. It should be noted that the eastern 

Canada ground motions used in this study are weak, so sediment non-linearity did not 

need to be considered in the amplification model. In cases where stronger motions are to 

be considered, such as higher-M scenario events, non-linearity is expected to reduce Apeak 

and shift fpeak to lower frequencies. For such events, a non-linear component can be added 

to the model in order to reduce the amplifications (e.g., Seyhan and Stewart, 2014). 

2.3 H/V Characteristics and Correlation between Peak 
Frequency and Depth to Bedrock 

Appendices A and B show the tabulated log(H/V) ratios and the associated 

standard deviations for all 38 seismograph stations, as well as the number of records used 

to calculate these values. Appendix C summarizes the site and H/V characteristics of 

these stations. These characteristics are used to develop the key relationships between 

variables, as shown later. 

 Another source of information on H/V is the results of microtremor surveys, in 

which seismic noise is collected for a brief time and the H/V ratios of the noise samples 

are calculated (Nakamura 1989; Bard 1999). Extensive microtremor studies have been 

conducted in Ottawa/Gatineau and Montreal (e.g., Motazedian and Hunter, pers. comm., 

2015; Rosset and Chouinard, 2009; Chouinard and Rosset, 2012), and the H/V 

information from these studies is used to supplement the H/V spectra from seismographic 

stations. Generally, the H/V spectra obtained from microtremor surveys are consistent 

with those from earthquake studies (e.g., Lermo and Chávez-Garcia, 1993). However the 

H/V spectra from earthquake studies are usually better-behaved and have less variability 

in both Apeak and fpeak, provided that multiple earthquake records (e.g., > 5 recordings) are 
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available to calculate H/V ratios. The use of multiple records, along with the procedures 

recommended in Ghofrani and Atkinson (2014), result in a very stable pick for fpeak. 

The relationship between fpeak and depth-to-bedrock is an inverse relationship, in 

which shallower deposits have higher peak frequencies. The stiffness of the deposit, 

which can be indicated by shear wave velocity, should also play a role in the relationship, 

as described by (Kramer, 1996):   

                                                    fpeak = Vsav/(4D),                                           (2.1) 

where D is depth-to-bedrock (m) and Vsav is the time-averaged shear wave velocity 

(m/s). Equation (2.1) suggests that we should be able to find a shear-wave velocity profile 

that is consistent with the observed relationship between fpeak and D. We consider a few 

trial relationships between shear wave velocity and depth that would achieve consistency 

and be in reasonable agreement with studies of how shear wave velocity increases with 

depth. 

For the city of Montreal, Rosset et al. (2015) compiled Vs measurements for sand 

and clay and modeled the behavior of Vs versus depth (up to 35 m) for these two site 

types. A simple relationship that is intermediate to their Vs versus depth curves for sand 

and clay is given by: 

               Vsav = -0.0058D2 + 2.2401D + 205.5356, 0 < D ≤ 120 m.                 (2.2) 

Similarly, Motazedian et al. (2011) presented a Vsav relation for the city of Ottawa:  

                    Vsav = 0.88D + 123.86, 0 < D ≤ 120 m.                             (2.3) 

The depth ranges presented in Rosset et al. (2015) and Motazedian et al. (2011) are 

extended to enable a comparison of the Vs-depth relations for these two cities (which are 

within the study area) against compiled data. A quick inspection shows that equation 

(2.2), which represents typical velocities for sediments in Montreal, yields much higher 

velocities than equation (2.3), for the Ottawa area. We therefore propose an arbitrary 

velocity-depth profile that is somewhere between the two:  
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 Vsav = 0.2762D + 190.2911, 0 < D ≤ 120 m,                    (2.4a) 

               Vsav = 223.4351 m/s, D > 120 m.                (2.4b) 

The Vsav-depth relationships given by equations (2.2), (2.3) and (2.4) are summarized in 

Figure 2-2, and will be used to help explain the observed relationships between fpeak and 

D. We note that since equations (2.2), (2.3) and (2.4) are derived from sites that are 

primarily of sand/clay, future studies obtaining velocity profiles from different site types 

in the region are suggested in order to better constrain the relationship between fpeak and 

D. Moreover, the velocity-depth profile described by equation (2.4) is proposed 

arbitrarily – i.e., there is no optimization or regression procedure behind its derivation. 

 

Figure 2-2: Average velocity-depth profiles for the study region. The dashed lines 

represent profiles for the cities of Montreal and Ottawa, while the solid black line is 

the profile proposed for the entire region. Note that these profiles are derived 

primarily from sand/clay sites. 
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To consider how we might expect the relationship between fpeak and D to behave, 

we refer to equation (2.1). For each value of D, we calculate a time-averaged layer 

velocity according to the example velocity-depth profiles and find the corresponding 

value of fpeak. Figure 2-3 plots the expected relationship, in comparison to observations 

based on the H/V spectra. We include the fpeak and depth-to-bedrock data from 

seismograph stations (Appendix C), as well as the comparable information from 

microtremor surveys in Montreal and Ottawa/Gatineau. It should be noted that for 

Ottawa/Gatineau, Motazedian and Hunter (pers. comm., 2015) provide data for depth to 

firm ground, wherein the interface can range from compact till to bedrock. Regardless of 

the type of interface, depth to firm ground is treated as depth-to-bedrock and included in 

Figure 2-3. We acknowledge that this contributes to the uncertainty in fpeak and depth. 

 

Figure 2-3: Site peak frequencies plotted as a function of depth to bedrock. Three 

fpeak = Vsav/(4D) relations, based on three average velocity profiles (discussed in 

text), are superimposed. 
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             Using the velocity profile given by equation (2.4), when given D, the error in 

estimating log(fpeak) against all observed data has a standard deviation of 0.2. Thus, if the 

depth-to-bedrock is known, the peak frequency of the site can be inferred to within 

approximately a factor of 1.6. We note that, in practice, additional uncertainty in 

estimating fpeak arises from a number of sources, including the uncertainty in estimating 

depth-to-bedrock itself. These uncertainties are important to consider in the application of 

the results, as discussed later. 

The earthquake and microtremor data follow the same general trends, but the fpeak 

values from seismograph station measurements show larger scatter and are generally 

higher for equivalent depths. Differences exist between sub-regions and datasets that may 

partly explain these discrepancies. For instance, most of the microtremor data were 

collected in the Ottawa area, where soft, low-Vs post-glacial sediments make up 

approximately 65% of the cover (Motazedian et al., 2011). This is in contrast to other 

areas of southern Ontario where most seismograph stations are located. Site conditions 

here are primarily of higher-Vs till, with an underlying stratigraphy that can be complex 

(Hunter, pers. comm., 2015). Another possible explanation for the differences between 

datasets are the different depth-to-bedrock information sources. In particular, it may be 

difficult to extract information on fpeak for deep sites from weak-motion seismographic 

data due to inherent signal-to-noise limitations at low frequencies. This explains why 

most measured fpeak values are in the range of 2 to 10 Hz: it is a result of prevalent site 

conditions and suitable signal-to-noise ratio conditions.  

2.4 Peak Amplitudes of Response, H/V Spectral Shapes 
and Amplification Functions 

In general, peak amplitudes of response are shown to increase as sediment 

stiffness decreases. In Figures 2-4 to 2-6, we show the seismograph station H/V spectra 

for sites on sediment, grouped by their surficial geology. In descending order of stiffness, 

these sediment types are till, sand/clay and very soft organic sediment/fill. Their average 

H/V spectra have Apeak values of 3.0, 5.2 and 9.5, respectively. As sites within each class 

have similar shapes and amplitudes but are characterized by different peak frequencies, 

we describe their shapes using a dimensionless frequency measure normalized by the 
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peak, f/fpeak. This shifts all curves to peak at a value of f/fpeak = 1. In Figure 2-6, it should 

be noted that only one station (TORO) is on soft organic sediment, hence the lone H/V 

spectrum seen in this figure. 

 

Figure 2-4: H/V spectra from 15 seismograph stations on till, plotted by f/fpeak with 

the weighted average H/V curve and till amplification function. The spectra have an 

average Apeak of 3.0. 
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Figure 2-5: H/V spectra from 7 seismograph stations on sand/clay, plotted by f/fpeak 

with weighted average H/V curve and sand/clay amplification function. The spectra 

have an average Apeak of 5.2. 
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Figure 2-6: H/V spectrum for TORO, the only site on very soft sediment/fill, plotted 

by f/fpeak, and the soft organic sediment amplification function. The H/V spectrum 

has an Apeak of 9.5. 

The 15 stations on till have Apeak values between 2.1 and 4.1, while the 7 stations 

on sand/clay have maximum amplitudes between 4.2 and 6.7. The amplification functions 

for the three sediment classes can be represented as two-piece functions of f/fpeak which 

follow the average H/V trend for their respective sediment class. They have a condition 

that the minimum amplification (Amin) = 1 where necessary. The till amplification 

function can be described by 

                                ATill(f/fpeak) = 1.07X + 2.1, f/fpeak < 0.6                                        (2.5a) 

          ATill(f/fpeak) = 1.3exp(-(X/0.17)2) + 1.7, f/fpeak ≥ 0.6,                             (2.5b) 
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where X = log(f/fpeak). Similarly, equation (2.6) describes amplification on sand/clay 

while equation (2.7) describes very soft organic sediment amplification: 

                                    ASand/clay(f/fpeak) = 0.6X + 2.0, f/fpeak < 0.6                                (2.6a)   

                         ASand/clay(f/fpeak) = 3.5exp(-(X/0.15)2) + 1.7, f/fpeak ≥ 0.6,                    (2.6b) 

                               AOrganic(f/fpeak) = 0.6X + 2.0, f/fpeak < 0.6                               (2.7a) 

             AOrganic(f/fpeak) = 7.31exp(-(X/0.15)2) + 1.7, f/fpeak ≥ 0.6,                     (2.7b) 

where, similar to till, X = log(f/fpeak). We note that the function for soft organic sediments 

is not well calibrated as we have only a single station on this site type. 

It is also useful to consider the H/V spectra and amplification profile expected for 

bedrock sites, as these are often used to represent a reference condition in seismological 

and engineering applications. An amplification function for bedrock sites can also be 

used in the same manner as the functions for sites with sediment cover. In Figure 2-7, we 

show the H/V spectra and their average for all bedrock sites in the study region. Note the 

similarity of shapes and amplitudes for these sites, allowing a single robust average H/V 

curve to be defined. 
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Figure 2-7: H/V spectra from 15 seismograph stations on bedrock with the weighted 

average H/V curve and bedrock amplification function. The spectra rise gently with 

increasing frequency. 

 Figure 2-7 shows that the bedrock spectra are relatively flat with a gentle rise as 

frequency increases. To capture the average H/V trend, a three-piece bedrock 

amplification function is used: 

ABedrock(f) = 1, f ≤ 1 Hz                                                 (2.8a) 

      ABedrock(f) = 0.2(log(f)) + 1, 1 Hz < f < 10 Hz                               (2.8b) 

    ABedrock(f) = 1.2, f ≥ 10 Hz.                                           (2.8c) 
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The average bedrock H/V spectral ratio and ABedrock(f) are in good agreement with 

previous studies, as described in Siddiqqi and Atkinson (2002). 

The four amplification functions are plotted together in Figure 2-8. In this plot, 

the sediment amplification functions have their Apeak values normalized to an f/fpeak value 

of 1, but the bedrock function is not normalized (i.e., it is plotted versus frequency in Hz). 

The Apeak values of the till, sand/clay and organic amplification functions are 3.0, 5.2 and 

9.0, respectively. These are slightly larger Apeak values than those seen in the H/V ratios 

for Japan in Ghofrani and Atkinson (2014), possibly due to stronger velocity contrasts at 

the base of the profile in Ontario; however, the overall shapes are similar in ENA and 

Japan. 
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Figure 2-8: Comparison of site amplification functions for different surficial geology 

types. Till, sand/clay and very soft sediment/fill are plotted with respect to 

normalized frequency. 

2.5 Amplification Functions for Sites with Unknown Peak 
Frequencies 

The amplification functions obtained in the previous section were derived from 

ground-motion recordings collected at seismograph sites. We focused on the 

seismographic data due to the stability of the H/V spectra when gathered over multiple 

earthquake recordings. Moreover, it is particularly important to understand site 

amplification at seismographic sites, as this allows us to interpret seismographic data to 

obtain an understanding of the ground-motion field radiated by regional earthquakes. The 



26 

 

amplification functions are applicable for sites where the H/V ratios (or fpeak values) are 

known with confidence. For most locations, however, we have only an estimate of fpeak 

based on other information such as the sediment type and estimated depth-to-bedrock 

(e.g., such as from the OGS sediment thickness map in Ontario). As mentioned 

previously, the estimated depth-to-bedrock contains some uncertainty, and interpolating 

for sites between coordinates for which such information is available introduces more 

uncertainty. Only some of this uncertainty (excluding the component due to interpolation 

between locations) is represented in the standard deviation of equation (2.1), which gives 

fpeak to within a factor of ~1.6. Thus, we can say that our uncertainty in the estimate of 

fpeak for sites without a direct measurement based on H/V is at least a factor of 1.6, and is 

probably closer to a factor of two. A realistic model of site amplification across the 

region for use in ShakeMap or similar applications must account for this uncertainty. 

 If we are uncertain as to the peak frequency of response, it is preferable to assume 

a more generic amplification in which we have smoothed and broadened the peak over a 

range of frequencies, as well as making it gentler in amplitude. This will also help 

account for event-to-event variability in amplification at a site. To develop a smoothed 

broad-peak function, we consider the implications of one standard deviation in the value 

of fpeak (0.2 log units). For each sediment class’s normalized average H/V curve, a Monte 

Carlo simulation is performed to generate 1000 identically-shaped curves, with random 

variability in fpeak within 0.2 log units (assuming a normal distribution in log frequency 

space). The average of these 1000 simulated curves is computed, which generates a curve 

that has a broadened peak. To capture the overall trend of this average curve, we alter the 

parameters of the Gaussian function from Ghofrani and Atkinson (2014). The results for 

this process for the three sediment classes are shown in Figure 2-9 and the equations 

which describe the broad-peaked sediment amplification functions are given by equations 

(2.9) to (2.11). Since bedrock spectra have no peak frequency, the same function given by 

equation (2.8) also applies here.   

                                ATill(f/fpeak) = 1.25X + 2.39, f/fpeak < 0.6                                      (2.9a) 

                     ATill(f/fpeak) = 0.5exp(-(X/0.33)2) + 1.8, f/fpeak ≥ 0.6,                              (2.9b) 
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                           ASand/clay(f/fpeak) = 1.5X + 3.15, f/fpeak < 0.6                                     (2.10a)   

                     ASand/clay(f/fpeak) = 1.5exp(-(X/0.38)2) + 1.8, f/fpeak ≥ 0.6,                      (2.10b) 

                           AOrganic(f/fpeak) = 1.5X + 4.6, f/fpeak < 0.6                                         (2.11a) 

              AOrganic (f/fpeak) = 2.8exp(-(X/0.4)2) + 2.3, f/fpeak ≥ 0.6,                     (2.11b) 

where X = log(f/fpeak), and we impose the condition that Amin = 1.  

 

Figure 2-9: Suggested amplification functions for generic sites with poorly-known 

fpeak, normalized by fpeak. 
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2.6 Comparisons with a Typical Site Response Model Used 
in California 

An interesting aspect of the amplification functions in Figure 2-9 is that, even 

after broadening and dampening the peaks by considering an uncertainty of a factor of 

1.6 in fpeak, the inferred average amplifications on sediments in eastern Canada are still 

much sharper and more pronounced than would be suggested by typical amplification 

functions that are applied in western North America. For example, a typical western site 

amplification model, derived from the NGA-West 2 database using VS30 as the site 

variable, is that given by Seyhan and Stewart (2012). By assuming weak-motion peak 

ground accelerations (PGAs) of 0.02g and a suitable, generic VS30 value for each type of 

deposit, we can compare the site amplification functions for southern Ontario to those of 

Seyhan and Stewart (2012), as shown in Figure 2-10. To make these comparisons, we 

assume nominal values for VS30 of 1000 m/s for till, 300 m/s for sand/clay and 150 m/s 

for soft/organic sediments.  
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Figure 2-10: The three proposed generic sediment amplification functions for 

eastern Canada and the corresponding functions for California (Seyhan and 

Stewart, 2012) assuming nominal values of VS30 of 1000 m/s, 300 m/s and 150 m/s for 

till, sand/clay and soft soil, respectively. Light shades refer to very soft sediment/fill; 

intermediate to sand/clay; dark to till. 

Note that till sites have, on average, high peak frequencies, while sand/clay sites 

have intermediate peak frequencies. Sites in western North America (primarily California 

data) have more subdued amplification profiles, with lower and broader peak frequencies, 

reflecting more gradational sediment profiles. The only sites in eastern Canada which 

could appear to have similar site amplification characteristics to the California functions 

are soft, deep sites with low peak frequencies. By contrast, most sediment profiles in 

eastern Canada are soft to stiff sediments of variable depth overlying much harder rock, 

resulting in a greater seismic impedance contrast. It should be noted that the Seyhan and 
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Stewart (2012) amplification functions were derived without consideration of the depth 

of the deposit; this has the effect of broadening the functions (similar to how the broad-

peaked amplification functions for eastern Canada were derived). The difference seen in 

Apeak between the California functions and the H/V spectra for eastern Canada may be 

due partly to this broadening effect, and partly due to the higher impedance contrast in 

eastern Canada. One may also infer from the low peak frequency of the California 

sediment amplification functions, over all values of VS30, that the California model is 

generally applicable to deep, gradational sites. 

2.7 Summary and Conclusion 

 

 A preliminary site amplification model is developed for eastern Canada based on the 

two predictive variables of fpeak and surficial geology type (bedrock, till, sand/clay, 

very soft organic sediment/fill). The intended use of this model is to predict levels of 

site amplification in a generalized sense, for application onto a real-time ShakeMap 

product for the region. More detailed studies, based on more subsurface geological 

information and velocity measurements in the field, are needed to refine this model. 

 

 The value of fpeak in the site amplification model is a function of depth-to-bedrock. 

Similarly, Apeak is a function of surficial geology, or sediment stiffness. Sites in many 

parts of eastern Canada have pronounced amplification around a peak frequency, due 

to the sharp velocity contrast at the base of the profile. 

 

 For use in ground-motion mapping applications, it is necessary to consider 

uncertainty in the value of fpeak. This uncertainty subdues and broadens the expected 

value of the amplification (by averaging over a range of fpeak). However, the functions 

are still sharper and more pronounced than in classic models for western regions.  

 

 The use of sediment thickness and surficial geology as a way to characterize site 

response in Ontario is convenient since these data are readily available and correlate 

well with fpeak and Apeak, respectively. Moreover, these data exist for a large number 
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of sites in the region, unlike data for VS30, which are scarce and only inferred for 

many seismograph stations. 

 

 H/V spectra in eastern Canada have high values of Apeak; however, these apply to 

linear site amplification for weak-motions. Nonlinearity would be expected to 

dampen these amplifications and shift the peaks to lower frequencies. 
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Chapter 3  

3 A Model for Estimating Amplification Effects on Seismic 
Hazards and Scenario Ground Motions in Southern 
Ontario 

3.1 Introduction 

The intensity of ground shaking that a locality experiences in any particular 

earthquake can vary considerably from site to site. A good example of this phenomenon 

is the moment magnitude (M) 6.9 Loma Prieta earthquake, which occurred in the San 

Francisco Bay area on 19 October 1989. This event produced a Modified Mercalli 

Intensity (MMI; Wood and Neumann, 1931) of VII to VIII in the epicentral region where 

great damage was observed mostly in older structures. However, even higher intensities 

of up to MMI IX were recorded at large distances, 100 km away, in parts of San 

Francisco and Oakland, California (Kramer, 1996), where several buildings, bridges and 

freeways collapsed. A main factor controlling this variability in ground shaking was local 

site conditions: sites on soft, unconsolidated San Francisco Bay mud observed larger 

amplitudes, especially on the horizontal component.  

 Southern Ontario, Canada’s most densely-populated region, is characterized by a 

wide variety of site conditions, resulting in varied responses from site to site during an 

earthquake. Estimating this variability on a large geographical scale presents a challenge, 

especially when relevant site information is scarce. This challenge is addressed on a very 

broad scale in the national seismic hazard maps of the National Building Code of Canada 

(NBCC); the NBCC is updated every 5 years with the most recent version being released 

in 2015 (for an overview, see Humar, 2015). These maps provide 5%-damped horizontal-

component pseudo-spectral acceleration (PSA) having an exceedance probability of 2% 

in 50 years. The PSA values are given for a reference site condition of National 

Earthquake Hazards Reduction Program (NEHRP) class C; this site condition is defined 

as having a time-averaged shear wave velocity in the upper 30 m (VS30) of 360-760 m/s. 

Site amplification factors are provided in the 2015 NBCC to convert these motions to 

those for both firmer and softer sites. The approach and factors were based on empirical 
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site amplification studies in California (e.g., Borcherdt, 1970). This provides useful 

guidance for assessing hazard in a general sense, but contains oversimplifications for 

many types of deposits and may not be applicable for all regions. For example, Dowling 

et al. (2016) evaluated site amplification factors for Victoria and Vancouver on a site-

specific basis, and concluded that the site factors in the 2015 NBCC tended to 

underestimate site response by 25% to 35% depending on the location, period and site 

class.   

 In eastern Canada there are many regions that are characterized by a soft layer 

overlying hard rock, and having a distinct peak site frequency; the response of such sites 

differs significantly from typical California deposits, which are characterized by 

gradational profiles in which stiffness increases gradually with depth. Considerable 

microzonation and site characterization work has been performed in southeastern Ontario 

and southern Quebec (e.g., Motazedian et al., 2011; Chouinard and Rosset, 2012; Nastev 

et al., 2016). Braganza et al. (2016) used these findings, along with site information for 

all of southern Ontario, to develop a regional-scale linear site amplification model. The 

model was derived using geological information on surficial geology and depth-to-

bedrock, in concert with recorded horizontal-to-vertical (H/V) component ratios of PSA 

(5% damped) from earthquake motions, which provide an estimate of site amplification. 

The use of H/V spectral ratios as a proxy for site amplification is a well-known approach 

(e.g., Nakamura, 1989; Lermo and Chávez-García, 1993). The results of Braganza et al. 

(2016) were provided as a site amplification model that is a function of depth-to-bedrock 

and surficial geology. These parameters are used to estimate the site’s peak frequency 

(fpeak) and degree of amplification. The use of fpeak as a site variable is an approach that is 

favoured in many regions (e.g., Zhao et al., 2006). The intended use of this amplification 

model is to aid in the development of ground-motion prediction equations (GMPEs) and 

to accurately estimate ground-motion intensities for applications such as ShakeMaps 

(e.g., Wald et al., 1999; Atkinson et al., 2015). Figure 3-1 shows the linear amplification 

factors derived from the fpeak-based Braganza et al. (2016) model for low (1 Hz) and high 

(10 Hz) frequency ground motions. 
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Figure 3-1: The Braganza et al. (2016) linear amplification model for southern 

Ontario, showing amplification factors for 1 Hz (a) and 10 Hz (b) ground motions. 

Soil nonlinearity may reduce these factors for strong levels of shaking. 

In this study, the findings of Braganza et al. (2016) are expanded upon and the 

amplification model’s applicability is tested on a regional scale. Ground-motion estimates 

and intensities are examined under different amplification models for the following cases: 

 Motions experienced in Ottawa during the M5.0 Val-des-Bois, Quebec earthquake 

 Motions expected in Ottawa for the 2015 NBCC 2% in 50 year reference motions 

 Motions experienced in southern Ontario during the M5.0 Val-des-Bois, Quebec 

earthquake 

 Motions expected in southern Ontario for a postulated M6.0 scenario event 

The differences between amplifications based on fpeak and those based only on stiffness 

(VS30) are demonstrated, and the advantages of using fpeak rather than VS30 in eastern 

Canada are discussed. 

3.2 Derivation of the fpeak-based Amplification Model 

Braganza et al. (2016) used the H/V component ratios of the 5%-damped PSA as 

an indicator variable for site response. In their approach, the site response is estimated 

from the peak frequency of the site and its surficial geology. The model was developed 

using H/V ratios at seismograph stations to estimate site amplification, which were 

correlated with local site conditions. The information on site conditions, including 

surficial geology and overburden thickness (i.e., depth-to-bedrock), is provided by the 
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Ontario Geological Survey (OGS) and can be accessed online 

(www.mndm.gov.on.ca/en/mines-and-minerals/applications/ogsearth). The H/V ratios 

were computed from PSA observations at seismograph sites and processed using the 

ICORRECT software of Assatourians and Atkinson (2008); this software corrects the 

seismographic records for instrument response and calculates the response spectrum. A 

relationship was determined between a site’s depth-to-bedrock and peak frequency (i.e., 

the frequency at which the H/V ratio attains its maximum value). The peak amplitude of 

response (Apeak) was correlated with the type of surficial geology. Surficial geology was 

used as a proxy for stiffness rather than VS30 since reliable information for the latter is not 

available on a regional basis. Standard-shaped amplification curves developed in terms of 

these variables were derived for four generic surficial geologies (bedrock, till, sand/clay, 

and very soft sediment/fill) and for sites where fpeak is unknown. The functions for 

sediment are a function of a site’s fpeak, with the value of Apeak increasing for softer 

sediments (i.e., Apeak increases from till to very soft sediment), as shown in Figure 3-2. 

We note that there is some uncertainty in the estimation of the H/V ratio, and additional 

uncertainty in the estimation of its peak frequency based on the site characteristics; these 

uncertainties were considered in the model development, as discussed by Braganza et al. 

(2016).  

http://www.mndm.gov.on.ca/en/mines-and-minerals/applications/ogsearth
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Figure 3-2: Linear amplification functions for sites with unknown fpeak, normalized 

by fpeak. 

The linear amplification functions of Figure 3-2 are normalized by using the 

dimensionless frequency measure f/fpeak, and can thereby be expressed as: 

                               ATill(f/fpeak) = 1.25X + 2.39, f/fpeak < 0.6,                                    (3.1a) 

                   ATill(f/fpeak) = 0.5exp(-(X/0.33)2) + 1.8, f/fpeak ≥ 0.6,                              (3.1b) 

                                ASand/clay(f/fpeak) = 1.5X + 3.15, f/fpeak < 0.6,                               (3.2a)   

                    ASand/clay(f/fpeak) = 1.5exp(-(X/0.38)2) + 1.8, f/fpeak ≥ 0.6,                       (3.2b) 

                                AOrganic(f/fpeak) = 1.5X + 4.6, f/fpeak < 0.6,                                   (3.3a) 

            AOrganic (f/fpeak) = 2.8exp(-(X/0.4)2) + 2.3, f/fpeak ≥ 0.6,                       (3.3b) 

where X = log(f/fpeak), and a condition is imposed that Amin = 1. Note that logarithms 

throughout this manuscript are of base 10. For bedrock sites (i.e., sites of NEHRP class A 

where VS30 > 1500 m/s), there is no peak frequency and the amplification rises gradually 

at higher frequencies: 



39 

 

                                            ABedrock(f) = 1, f ≤ 1 Hz,                                                  (3.4a) 

                           ABedrock(f) = 0.2(log(f)) + 1, 1 Hz < f < 10 Hz,                                (3.4b) 

           ABedrock(f) = 1.2, f ≥ 10 Hz.                                             (3.4c) 

For the estimation of ground motions and intensity in this study, these generic 

amplification functions are used (in addition to site factors from the 2015 NBCC). The 

value of fpeak is estimated based on depth-to-bedrock information from the OGS or 

microzonation studies via the quarter-wavelength approximation (Kramer, 1996): 

              fpeak = Vsav/4D,     (3.5a) 

where Vsav is the time-averaged shear wave velocity (m/s) and D is the depth-to-bedrock 

(m). Vsav is approximated using the empirical relation developed by Braganza et al. 

(2016): 

                         Vsav = 0.2762D + 190.2911, 0 < D ≤ 120 m,   (3.5b) 

               Vsav = 223.4351  m/s, D > 120 m.              (3.5c) 

The type of surficial geology, used to determine which site amplification function 

(Figure 3-2) is used, is obtained from the OGS information.  

3.3 Methods Used to Estimate Ground Motion and Intensity 

To map ground motions on a regional level, the region of interest is analyzed on a 

grid, calculating at each grid point the ground motions for a reference site condition, then 

multiplying these motions by the amplification terms reflecting the site conditions at that 

point. To map MMI, the motions are converted to felt intensity. In the following, the 

calculations for each of these elements are described.  

3.3.1 Motions for a Reference Site Condition 

The motions at each point, for the reference site condition, are calculated using 

the GMPEs described by Atkinson et al. (2015). They developed an empirically-

calibrated model to provide event-specific GMPEs for southern Ontario, having 
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dependent variables of M, stress drop (∆ ), and hypocentral distance. The reference site 

condition is hard rock, with VS30 = 2000 m/s. For the Val-des-Bois earthquake, the 

recorded PSA data from the event were used to determine that the event is described by 

M = 5.1 and ∆  = 690 bars. The estimated source parameters are in reasonable 

agreement with other studies on this earthquake (e.g., Atkinson and Assatourians, 2010), 

and with the moment tensor value of M = 5.0. The value of stress drop for this event was 

higher than the average value for eastern Canadian events which resulted in relatively-

strong shaking. To consider a larger scenario event, an event of M = 6.0 with a somewhat 

larger stress parameter of ∆ = 830 bars is used; due to the high stress value assumed for 

this scenario, its motions are roughly comparable to median-plus-sigma levels in terms of 

expected strength of shaking for M = 6.0 events (i.e., if we consider that such events 

could have stress drop values in the range from 300 to 900 bars). Figure 3-3 plots the 1 

and 10 Hz attenuation curves for these two considered events, showing the dependence of 

amplitude on distance (for hard rock). The GMPEs from Atkinson et al. (2015) provide 

the median motions for the specified stress drop values, but the adoption of relatively-

high stress drop values implies the motions are biased high (i.e., motions are stronger 

than those for events of the same magnitude having average stress drops). Moreover, 

motions are often higher or lower at specific sites, relative to the median level for the 

event, by about a factor of two, due to the intra-event variability component of GMPEs. 
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Figure 3-3: Attenuation curves for the Val-des-Bois and scenario M6.0 earthquakes 

for PSA at 1 and 10 Hz (a) and expected response spectra for the city of Ottawa for 

the Val-des-Bois and 2% in 50 year motions (b). The response spectrum for the 

M6.0 scenario event at a distance of 20 km is also shown. All curves are for a class A 

(hard rock) reference. 

In addition to evaluating the motions from specific events, the motions specified 

by the 2015 NBCC (i.e., the mean-hazard PSA values given by the uniform hazard 

spectrum [UHS] for Ottawa for 2% in 50 years) are also considered. Figure 3-3 also 

shows the Ottawa UHS in comparison to the response spectrum for the Val-des-Bois 

earthquake at Ottawa (~75 km from the epicenter), and for the M6.0 scenario at ~20 km, 

all for a class A reference site (VS30 = 2000 m/s). Note that the motions for Ottawa’s UHS 

are provided for a class C reference condition in the 2015 NBCC and have been 

converted to class A as described in the next section. The motions for the mean-hazard 

Ottawa UHS, for 2% in 50 years, are much stronger than the M5.0 Val-des-Bois 

earthquake motions in Ottawa, and of similar amplitude to the M6.0 scenario event at a 

distance of approximately 20 km. This is as we would expect, because hazard 

contributions to the Ottawa UHS at the 2% in 50 year level tend to be dominated by 
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motions from moderate-to-large events (M~5.5 to 6.6) at relatively close distances (< 50 

km) (e.g., Pal and Atkinson, 2012). 

3.3.2 Calculation of Site Amplifications Relative to the Reference 
Condition 

Two amplification models – one based on fpeak, and the other based on VS30 

(where the latter is the 2015 NBCC model) – are used to account for the effects of local 

soils on regional ground-motion estimates, in order to compare their implications. The 

2015 NBCC site factors are tabulated for site classes A to E, for a few standard 

ShakeMap frequencies, i.e.,: 0.33, 1, 3.33 and 10 Hz, as well as peak ground velocity 

(PGV) and acceleration (PGA); the factors depend on the expected value of PGA for a 

reference class C (PGAref), in order to account for soil nonlinearity at strong shaking 

levels. For ShakeMap frequencies not listed in the 2015 NBCC, an interpolation in log-

log space is made to estimate factors at neighbouring frequencies. Note that the 2015 

NBCC amplifications are given relative to a value of 1.0 for a class C reference. These 

have been converted to the equivalent values relative to class A (i.e., relative to an 

amplification factor of 1.0 on hard rock sites) by dividing all factors for a given 

frequency by the corresponding factors for class A. Table 3-1 summarizes the 2015 

NBCC site factors used in this study for low levels of shaking (PGAref < 0.1g). These 

linear amplification factors are multiplied by the PSA values for hard rock in order to 

calculate the estimated motions under the VS30-based approach to site classification. By 

contrast, the fpeak-based model of Braganza et al. (2016) calculates the applicable site 

amplification factors based on surficial geology and depth-to-bedrock, as described in the 

preceding section. Note that for the city of Ottawa, site information is provided as a VS30 

class, for which an equivalent surficial geology is assigned in order to compute 

amplifications using the fpeak-based model. Similarly, for southern Ontario, surficial 

geologies are assigned an equivalent VS30 class for the purposes of using the 2015 NBCC 

model. 
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Table 3-1: Normalized 2015 NBCC site factors (class A reference), corresponding to 

ShakeMap parameters. 

Site 

Class 

2015 NBCC Site Factors 

0.33 Hz 1 Hz 3.33 Hz 10 Hz PGV PGA 

A 1.00 1.00 1.00 1.00 1.00 1.00 

B 1.07 1.11 1.13 0.93 1.08 0.97 

C 1.69 1.75 1.58 1.02 1.61 1.11 

D 2.65 2.72 2.11 1.33 2.37 1.43 

E 4.91 4.93 3.10 1.91 3.98 2.01 

 

The linear amplification values described above are for low levels of shaking (< 

0.1g). For stronger shaking, the effect of soil nonlinearity on the amplification needs to 

be considered. For this purpose, the nonlinear component of the site amplification model 

of Seyhan and Stewart (2014) is used. They describe the total amplification effects as the 

sum of linear and nonlinear terms: 

                                                  Fs = ln(Flin) + ln(Fnl),                                                (3.6) 

where Fs is the total site amplification in natural logarithmic units, Flin is the linear 

component of the amplification, and Fnl is the nonlinear component. The Fnl component is 

given as 

                                          ln(Fnl) = f1 + f2 ln((PGAr+f3) / f3),               (3.7) 

where f1, f2 and f3 are model coefficients, with f2 being a function of site period and VS30, 

and PGAr is PGA in units of g, as evaluated using the GMPE given by Boore et al. 

(2014). In this study, equation (3.7) is used to determine Fnl, which is then multiplied by 

the Flin factors from the fpeak and 2015 NBCC models in order to adjust the amplification 
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factors for the effects of soil nonlinearity. Fs is then multiplied by the reference PSA at a 

given frequency to determine the ground acceleration. It should be noted that Seyhan and 

Stewart (2014) did not find significant regional differences in nonlinearity of soils; thus, 

this adjustment is likely reasonable for use with the linear site factors for southern 

Ontario. Moreover, like the Flin term, the Fnl term is applied to all sites and is used for all 

events in this study for the purposes of estimating ground motions and shaking 

intensities. 

3.3.3 Conversion of Ground Motion to Intensity 

To compute estimates of felt intensity that would be experienced for the computed 

motions, the ground-motion-to-intensity conversion equation (GMICE) between PGV 

and MMI as given in Atkinson and Kaka (2007) is used: 

MMI = 4.37 + 1.32(log PGV) + 0.47 - 0.19M + 0.26log(R) for log PGV ≤ 0.48,     (3.8a)                            

MMI = 3.54 + 3.03(log PGV) + 0.47 - 0.19M + 0.26log(R) for log PGV > 0.48,     (3.8b)                            

where R is the fault or hypocentral distance (km). Other GMICE for making intensity 

estimates were also considered, including those of Worden et al. (2012) and Dangkua and 

Cramer (2011). However, at all distances for the Val-des-Bois event, the Worden et al. 

(2012) relationship yielded consistently low estimates compared to Did You Feel It 

reports, while the Dangkua and Cramer (2011) relationship yielded consistently high 

estimates. Thus, the Atkinson and Kaka (2007) GMICE was selected as it appeared to be 

more applicable, at least for this event. 

3.4 Ground Motions and Intensity for the City of Ottawa 

For the city of Ottawa, estimates of median ground-motion amplitudes and MMI 

are made for the Val-des-Bois earthquake, as well as for the 2% in 50 year 2015 NBCC 

spectrum. The site parameters are obtained using information from Motazedian et al. 

(2011), which includes information on depth-to-bedrock and NEHRP class (VS30) across 

the city. This site information is more accurate than that available in most parts of 

Ontario, because it was collected from a comprehensive microzonation study. To 
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calculate amplifications using the fpeak approach, a surficial geology type is assigned 

based on VS30, and the depth-to-bedrock is used to calculate fpeak via equation (3.5). By 

contrast, the 2015 NBCC model uses the NEHRP class based on VS30 as input. 

Panels a) and b) in Figure 3-4 show the estimated horizontal-component 

amplitudes of PSA at 1 and 10 Hz (in log units) for the M5.0 Val-des-Bois earthquake for 

the city of Ottawa, using the fpeak-based model. The differences in predicted amplitudes 

between the 2015 NBCC and fpeak models are also shown in panels c) and d), in log units. 

This earthquake was sufficiently far from Ottawa (> 50 km) that the local site conditions 

are the main factor controlling differences in motions experienced across the city. In 

general, the strongest motions are in the Orléans area, which is approximately 17 km east 

of downtown and is characterized by soft sediments with depths between 30 to 100 m 

that amplify motions strongly (Motazedian et al., 2011). Throughout the city, 1 Hz 

motions are strongest primarily on class E sediments of 30-60 m depth, while 10 Hz 

motions are strong on sediments of shallow to intermediate depth (1-40 m), of varying 

site class. The ground-motion pattern is mostly a consequence of the thickness and 

stiffness of the sediments, as reflected in the fpeak-based model.  
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Figure 3-4: Estimated 1 Hz (a) and 10 Hz (b) log(PSA) for Ottawa for the M5.0 Val-

des-Bois earthquake, using the fpeak-based amplification model. The difference 

between the NBCC and fpeak-based amplification models are shown for 1 Hz (c) and 

10 Hz (d) motions, in log units. The locations of Orléans (discussed in text) and 

downtown Ottawa are indicated. 

Comparing the two amplification models, in most cases they result in similar 

ground-motion amplitudes, to within 10% to 40%. The NBCC model usually predicts 

higher 1 Hz motions with the greatest model differences (up to a factor of 1.8) seen in 

areas of shallow (< 10 m) sediments, generally on NEHRP site class C. For 10 Hz 

motions, by contrast, the fpeak model yields higher estimated ground motions. At this 

higher frequency, the largest differences (up to a factor of 2.5) are observed on similar 

site types (i.e., shallow class C sites). These differences occur because the NBCC model 

usually predicts greater amplifications at low frequencies and less amplification at high 

frequencies, relative to the fpeak-based model. The fpeak-based model is more specific to 

the regional geologic conditions, involving sediment over hard, glaciated bedrock, which 

sets up large amplification near the site’s peak frequency of response. There are 

negligible differences between models for hard rock sites, for which both have 

amplifications near unity.  
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The motions experienced during the Val-des-Bois earthquake are weaker than the 

2% in 50 year motions used for design in Ottawa in the 2015 NBCC. Figure 3-5 shows 

the variability of motions across Ottawa for the 2% in 50 year spectrum for PSA at 1 and 

10 Hz (including the effects of nonlinearity), using the fpeak-based model. As with the 

Val-des-Bois event, the strongest predicted 1 Hz motions are on soft sediments of 

intermediate depth, while the strongest 10 Hz motions for this event are primarily 

associated with stiffer (class C) and shallower sites. Soft sediment effects do not show up 

as strongly, due to the greater effects of nonlinearity at high frequencies. Also note that, 

across events, Flin is constant at a given site while only Fnl changes. Hence, the log(PSA) 

ratio between models remains the same regardless of the event.  

 

Figure 3-5: Estimated 1 Hz (a) and 10 Hz (b) horizontal log(PSA) for Ottawa from 

its 2% in 50 year probability ground motions, using the fpeak-based amplification 

model. 

3.5 Felt Intensity Comparisons for Downtown Ottawa 

Direct comparisons between observed and estimated MMI for the M5.0 Val-des-

Bois earthquake are made for Ottawa using intensity observations available from the 

Geological Survey of Canada (Stephen Halchuk, pers. comm., 2016). Figure 3-6 shows 

the details of the surficial geology and depth-to-bedrock in central Ottawa for which most 

intensity reports are available; Pal and Atkinson (2012) examined reports for the same 

area. Note that sites with greater depth-to-bedrock are associated with softer sediments. 

These deeper, soft sites are those that amplify intermediate-to-long periods.  
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Figure 3-6: Estimated NEHRP site class and depth-to-bedrock from microzonation 

information (Motazedian et al., 2011) for downtown Ottawa and Orléans. Pal and 

Atkinson (2012) examined reported felt intensity for the M5.0 Val-des-Bois 

earthquake for this area. 

 Similar to the method outlined in Pal and Atkinson (2012), the area shown on 

Figure 3-6 is subdivided into a 24 x 18 grid of cells and the MMI for each cell is 

estimated using the event-specific GMPE for the Val-des-Bois earthquake to compute the 

expected PGV within each grid cell for the reference site condition. The PGV is 

amplified using the fpeak-based amplification model (assuming that the PGV is associated 

with a frequency near 1.3 Hz), and then converted to MMI using the empirical relation 

between PGV and MMI (equation 3.8). This enables a comparison between predicted and 

observed intensities within a relatively small area. Within this grid, there are 123 cells 

having a minimum number (n) of 3 intensity reports. Figure 3-7 shows the predicted 
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MMI for the Val-des-Bois earthquake, along with the differences between observed and 

predicted MMI. Note that observed MMI is averaged within each cell for which n ≥ 3. 

 

Figure 3-7: Estimated MMI for the M5.0 Val-des-Bois earthquake, along with 

differences between observed and predicted intensities. 

The average absolute value of the differences between the observed MMI and 

MMI predicted by the fpeak-based model is 0.4 ± 0.3 intensity units. It is interesting to 

note that the NBCC and fpeak models predict MMI to within 0.05 ± 0.05 units of each 

other on average, in spite of larger differences in the frequency content of the predicted 

motions at many sites (thus, a separate figure is not provided for the NBCC model MMI 

values); the reasons for this similarity are discussed in more detail later. There are only 7 

cells for which the discrepancy between observed and predicted intensity exceeds 1 unit; 

in most cases the observations and predictions agree to within 0.5 units. Higher 

intensities are estimated in the Orléans area where softer and deeper sites are more 

prevalent. This is consistent with the intensity reports for this event, although the 
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predicted MMIs tend to be higher than the observations by about 0.5 units in this area. 

Around downtown and to the south, where site conditions are highly variable, the 

differences between observed and predicted MMI values do not appear to be systematic. 

Overall, the agreement between observations and predictions is considered to be 

satisfactory, especially in light of the significant uncertainties in both the observations 

and predictions. Specifically, the observations are limited and suffer from deficiencies in 

the method by which the Geological Survey of Canada codes intensities, which is not 

consistent with standard practice for internet intensity reports (Atkinson et al., 2014). 

Moreover, the predicted MMI values have significant uncertainties from both the 

prediction of the motions in the cells and their conversion to intensity. All these factors 

affect the computed intensity differences in each grid cell. 

3.6 Ground Motion and Intensity Maps for Southern Ontario 

Ground motion and intensity estimates are extended to all of southern Ontario. In 

this case, the site information needed to compute amplification factors is obtained from 

maps of depth-to-bedrock and surficial geology provided by the OGS, interpolated on a 

grid with a spacing of 500 m. On this grid, the 1 and 10 Hz PSA are computed for the 

M5.0 Val-des-Bois earthquake from the event-specific GMPE, and amplified using both 

amplification models. Note that to compute amplifications using the NBCC approach, a 

VS30 class is assigned based on surficial geology. We believe that this simple proxy 

method is appropriate for regional-scale assessments of ground shaking. It is possible to 

assign a VS30 class using other methods, such as the topographic slope proxy, as 

described by Allen and Wald (2007). Using their method, topographic slope 

measurements from elevation data are correlated with VS30 measurements to develop 

coefficients for predicting VS30 in various regional settings (e.g., active tectonic and 

stable continental regions). First-order approximations of VS30 are provided for southern 

Ontario, which show that class D sites dominate the Ottawa area and St. Lawrence 

Valley, and regions southwest of Toronto; particularly the flatter areas around Sarnia, 

London, and Windsor. By contrast, most other areas in the region are characterized by 

stiffer class B and C soils. While this method provides a good first-order estimate of 

amplification (which is part of a larger, continental-scale map), the VS30-surficial geology 
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proxy using geological data from southern Ontario is deemed much more suitable for site 

characterization purposes in this region. 

Figure 3-8 shows the effects of both attenuation and site condition on the 

expected ground motions using the fpeak model. The amplitudes decay with distance from 

the source, but there are pockets of higher and lower motion, especially at 1 Hz, due to 

local site conditions. The predicted motions are in general quite weak, as it was a 

moderate event occurring outside the region.  

 

Figure 3-8: Estimated 1 Hz (a) and 10 Hz (b) horizontal log(PSA) for southern 

Ontario for the M5.0 Val-des-Bois earthquake, using the fpeak-based amplification 

model. 

 It is interesting to repeat the above exercise considering a stronger scenario 

earthquake with higher levels of ground shaking. The selected scenario is an event of 

M6.0 with a relatively-high stress drop (∆ = 830 bars) arbitrarily located in the 

Southern Great Lakes Seismic Zone near Niagara Falls within a band of moderate 

seismicity, as shown in Figure 3-9. Estimates of horizontal log(PSA) are shown, in 

addition to the differences between the motions as computed from the two amplification 

models. Motions are computed only for sites in Ontario, for which compiled digital 

databases on depth-to-bedrock and surficial geology are available. Moreover, note that 

NEHRP classes from the 2015 NBCC model are assigned a surficial geology for the 

purposes of making ground motion estimates on a regional scale.  

Across all of southern Ontario, the differences in predicted log(PSA) between the 

NBCC and fpeak approaches – due entirely to the amplification models – are not large on 
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average (0.01 ± 0.10 for 1 Hz; -0.16 ± 0.10 for 10 Hz PSA). However, the NBCC model 

predicts higher 1 Hz motions by a factor of 1.4 (0.15 log units) in 10% of grid cells, with 

3% of cells having differences that exceed a factor of 2 (0.3 log units); the maximum 

difference is 0.43 log units (factor of 2.7). At 10 Hz, differences in motions are also as 

large as a factor of 2.7, but in this case the higher motions are predicted by the fpeak-based 

model. Figure 3-9 shows an example of a subregion for where these differences can be 

more pronounced, and where nonlinear effects would show up more strongly. For both 1 

and 10 Hz motions, the greatest differences between models occur in areas that contain 

mostly soft sediments of shallow (< 10 m) depths.   

 

Figure 3-9: Estimated 1 Hz (a) and 10 Hz (b) horizontal log(PSA) for a subregion of 

southern Ontario for a scenario M6.0 earthquake, using the fpeak-based 

amplification model. The estimated log(PSA) differences computed from the NBCC 

minus the fpeak-based amplification models are shown for 1 Hz (c) and 10 Hz (d) 

motions. 

On Figure 3-10, the estimated MMI for the Val-des-Bois earthquake across 

Ontario is shown; these values agree well with average intensity values from the USGS 
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(http://earthquake.usgs.gov/earthquakes) for the cities of Windsor (2.3), London (2.9), 

Barrie (3.4), Toronto (3.3), Kingston (3.1) and Ottawa (4.2). The NBCC and fpeak models 

give a similar range in predicted MMI for this event; the average value of the absolute 

MMI differences between the models is 0.1 ± 0.1 intensity units, with the NBCC model 

predicting MMI between 0.2 units less to 0.5 units greater than the fpeak model. The 

reason for these small discrepancies arises from the fact that MMI is estimated from 

PGV, for which the difference in amplification factors between models is very small for 

most sites. In general, Figure 3-10 shows that predicted intensities are highest – around 4 

– in the Ottawa area and St. Lawrence Valleys, where soft clays of intermediate to deep 

depths are predominant. Intensities of 3 to 4 are consistent as epicentral distance 

increases toward the southwest, likely due to the intermediate to deep soils that are more 

prevalent in this region of the province, and which add to amplification effects. Contrast 

this to the region north of Barrie; here, predicted intensities drop below 3 despite closer 

epicentral distances since the area is dominated by outcropping bedrock.  

 

Figure 3-10: Estimated intensity map of southern Ontario for the M5.0 Val-des-Bois 

earthquake using the fpeak-based model. Observed intensities for six cities are 

superimposed for comparison. 
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The small percentage of sites that result in significant differences in predicted 

intensities between models are soft and very shallow (< 3 m), of which there are not 

many. However, these sites are more prevalent in the Niagara Peninsula area along 

western Lake Ontario. Figure 3-11 shows the predicted intensities and model differences 

in this region for the M6.0 scenario earthquake. For this type of event, the motions would 

be felt (MMI 3) to distances of about 500 km, and thus would be felt across all of 

southern Ontario. This scenario provides a better sense of the intensity behaviour in the 

event of a large regional earthquake in a populous region. Figure 3-11 shows that both 

amplification models generally predict similar intensities, with maximum values of about 

7.5 near the epicenter; however, differences in estimated MMI are as large as 1.1 units. 

These anomalies are seen up to 80 km from the epicenter in areas that contain very 

shallow sand/clay and soft organic sediments. In most cases where there are predicted 

intensity differences between models, the NBCC model predicts the higher values since 

MMI is estimated from PGV, a parameter with lower-frequency characteristics.  

 

Figure 3-11: Estimated intensity map of the Niagara Peninsula region of southern 

Ontario for a scenario M6.0 earthquake using the fpeak-based model (a). The 

intensity differences computed from the NBCC and fpeak-based models are also 

shown (b). 

3.7 Summary and Conclusions 

In this study, two amplification models are used – one from the 2015 NBCC and 

the other a model from Braganza et al. (2016), derived from depth-to-bedrock (fpeak) and 

surficial geology – to estimate ground-shaking intensities and low (1 Hz) and high (10 
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Hz) frequency ground motions for regional earthquakes. While the two models generally 

predict similar intensities, they differ in their projections of the relative strength of 

ground motion at low and high frequencies. The differences can be as much as a factor of 

2.7 at both 1 and 10 Hz. In general, the NBCC model – derived from amplification data 

for California sites – predicts higher motions at low frequencies, whereas the fpeak-based 

model predicts higher motions at high frequencies. The latter model is believed to be 

more applicable in Ontario since it was derived from empirical earthquake data in 

southern Ontario, and reflects the dominant site conditions of the region (sediment of 

shallow to intermediate depths overlying hard, glaciated bedrock). 

 Using VS30 in southern Ontario as a parameter to predict site amplification is 

problematic since this information is not reliably available for most sites. Moreover, site 

peak frequency (fpeak) is a more applicable site variable than VS30 for sites in Ontario. It is 

more readily available, and provides information for deeper sites (Hassani and Atkinson, 

2016). The fpeak-based amplification model from Braganza et al. (2016), which uses 

depth-to-bedrock and surficial geology as inputs, provides a robust method for estimating 

regional amplification in southern Ontario. For future building code developments, the 

use of fpeak as a site response variable is recommended, in addition to (or in place of) 

VS30. For assessing site-specific cases, fpeak can be easily approximated in situ via ambient 

noise methods (e.g., Chouinard and Rosset, 2012). 
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Chapter 4  

4 Assessment of the Spatial Variability of Site Response 
in Southern Ontario 

4.1 Introduction 

 Southern Ontario is a region of low-to-moderate seismicity that experiences a few 

felt earthquakes per year. The ground motion distribution from such events is controlled 

by magnitude, distance, and, to a very significant extent, local and regional site effects. 

Horizontal-component earthquake ground motions are amplified because incoming shear 

waves slow down as they travel through softer sediment layers; the net amplification on 

the vertical component is generally observed to be negligible in comparison to that on the 

horizontal component. Amplification from vertical propagation of transverse shear waves 

will occur at the peak frequency (fpeak; or site period, T) related to the average shear wave 

velocity (VSav) and thickness (D) of the soft sediment layer by (Kramer, 1996):  

                                                           fpeak = VSav/4D.                                                    (4.1) 

Therefore, the ratio of the horizontal-to-vertical component motion (H/V) is a good first-

order measure of frequency-dependent site amplification (e.g., Lermo and Chávez-

García, 1993; Atkinson and Cassidy, 2000). Earthquake records in southern Ontario show 

that the H/V ratio varies strongly with frequency, with the peak frequency (fpeak) of 

response being dependent on a site’s depth-to-bedrock, and the peak amplitude (Apeak) 

being dependent on surficial geology (Braganza et al., 2016). Seismographs in 

southeastern Ontario are mostly sited on bedrock, and tend to exhibit fairly flat 

earthquake H/V spectra ((H/V)EQ) compared to records from stations to the west and 

southwest, which are mostly on sediment of varying stiffness and thickness. At soil sites, 

(H/V)EQ commonly exhibits a distinct spectral peak at the site’s predominant frequency, 

which has an inverse relationship with the depth-to-bedrock (or resonator depth), as 

predicted by equation (4.1).  

Correlating H/V spectral properties with site conditions or using H/V spectra as a 

proxy for earthquake site amplification has become common practice, both on large and 
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small scales (e.g., Di Alessandro et al., 2012; Ghofrani and Atkinson, 2014; Chouinard 

and Rosset, 2012). Braganza et al. (2016) correlated fpeak and Apeak of (H/V)EQ spectra in 

southern Ontario with regional information on depth-to-bedrock and surficial geology 

(bedrock, till, sand/clay and very soft sediment) in order to develop a generalized model 

of site amplification for the region. The Braganza et al. (2016) model characterizes the 

overall shape of the H/V spectra for a site in southern Ontario by fpeak and Apeak when 

given a site’s depth-to-bedrock and surficial geology as input variables. For non-bedrock 

sites, for which fpeak is unknown and must be estimated based on depth-to-bedrock, the 

uncertainty in its value is considered by widening the peak by ± 1 standard deviation; see 

Braganza et al. (2016) for more details. The resulting site amplification functions for 

southern Ontario are shown in Figure 4-1. 

 

Figure 4-1: Site amplification functions from Braganza et al. (2016) for sites in 

southern Ontario (fpeak to be determined from regionally mapped depth-to-bedrock 

estimates). The functions for sediment (till, sand/clay and very soft sediment) are 

normalized to a dimensionless f/fpeak value of 1, whereas the function for bedrock is 

a function of frequency (Hz). 
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In this study, we examine the degree of spatial variation of the main site variable 

(fpeak) for regional amplification hazard (microzonation) mapping purposes. To determine 

this variation, we conduct single-instrument ambient noise surveys at varying distances 

up to 1 km from 10 seismograph stations in southern Ontario. Establishing the spatial 

variability of fpeak is important for regional ShakeMap (Wald et al., 1999; Atkinson et al., 

2015) applications, and it capitalizes on available drift thickness (depth-to-bedrock) 

information (compiled by the Ontario Geological Survey [OGS] and made available 

online by the Ministry of Northern Development and Mines at www.mndm.gov.on.ca), 

which is provided on an interpolated grid with a spacing of ~0.5 km. Thus, an estimate of 

the variation one can expect in fpeak up to 1 km away from a site where the variable is 

known or approximated enables us to assess the confidence in applying an interpolated 

site amplification grid to the region for the purposes of estimating and mapping ground 

motions and shaking intensities. We emphasize that the focus of this study is on the 

spatial variation of fpeak in southern Ontario from a statistical viewpoint, and not on the 

underlying causes for these variations (e.g., subsurface geological effects or 

heterogeneities).  

4.2 Microtremor Technique Background 

 The idea of using spectral ratios from ambient noise or microtremor ((H/V)MT) 

recordings to measure fpeak and amplification was popularized by Nakamura (1989); see 

Molnar et al. (2016) for a recent review. Ambient noise is generally assumed to be 

primarily composed of surface waves; in reality, each site will have varying contributions 

of body, surface, and diffracted (scattered) wavefields. The noise is generated across a 

wide frequency spectrum, with natural phenomena (wind, tides, fluctuations in 

atmospheric pressure, etc.) comprising lower (< 1 Hz) frequency content and 

anthropogenic activity (vehicular traffic, machinery) comprising higher (≥ 1 Hz) 

frequency content. While there can be differences between (H/V)EQ and (H/V)MT, the 

microtremor technique yields reliable estimates of the peak frequency of a soil layer, 

particularly in regions where there exists a strong impedance contrast between the 

bedrock and overlying sediment layer (Lermo and Chávez-García, 1994; Bard, 1999). 

The field efficiency and demonstrated reliability of the (H/V)MT technique has led to 
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worldwide applications. The (H/V)MT methodology is expected to be an effective hazard 

mapping tool in southern Ontario, as much of the region is characterized by 

unconsolidated Holocene sediments overlying firm glacial sediments (shear wave 

velocity [VS] ≈ 580 m/s; e.g., Motazedian et al., 2011) or hard bedrock (VS ≈ 2800 m/s; 

Boore and Joyner, 1997), setting up ideal conditions for producing a dominant site 

response peak.  

4.3 Survey Analysis and Methodology 

The 10 seismograph stations surveyed in this study are located throughout 

southern Ontario on sediments of varying type and thickness. In selecting sites to survey, 

our aim was to pick sites with fairly distinct spectral peaks in (H/V)EQ, as well as sites of 

varying sediment conditions. Ease of access was also a consideration. Figure 4-2 shows 

a map of surveyed seismograph stations and their approximate site conditions. 

Information for site conditions (depth-to-bedrock and/or surficial geology) at stations is 

either inferred, measured in previous studies, or is provided by the OGS (Braganza et al., 

2016). 

 

Figure 4-2: The locations and estimated site conditions of the 10 surveyed 

seismograph stations. Stations are on sediments of varying type and thickness. Note 
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that station TORO is located on a small, man-made peninsula south of the city of 

Toronto. 

 The instrument used to record ambient noise at the 10 stations is the MoHo s.r.l. 

Tromino® (Figure 4-3; http://moho.world/en/tromino/), which is an ultra-portable 

instrument with 3 accelerometric channels and a low frequency limit of 0.1 Hz. Record 

processing details are provided in Appendix D. Note that the processing of the (H/V)MT 

time series is based on Fourier spectra (in units of mm/s), whereas (H/V)EQ are from 5%-

damped pseudo-spectral acceleration (PSA, in units of cm/s2). However, the differences 

between spectral ratios based on Fourier and response spectra are minimal, and have 

negligible impact on the determination of fpeak.  

 

Figure 4-3: The MoHo s.r.l. Tromino® used to perform ambient noise surveys in this 

study. 

To measure variations in fpeak as a function of distance, the Tromino® was placed 

at the following distances from each surveyed seismograph station: 0, 40, 80, 160, 500 

and 1000 m. The shorter survey spacing at closer distances should facilitate detection of 
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any very local subsurface features. We conducted the surveys in as straight a line as 

possible to capture any effects of a dipping subsurface interface. However, in some cases, 

this was not logistically possible; obstacles such as lakes, construction sites, fenced areas, 

private property, etc., acted as barriers and/or forced some survey distances to be omitted. 

For additional information on how surveys were carried out and on general Tromino® 

deployment methods, we refer to the guidelines in Molnar et al. (2016). Details on 

methodology for this study are also provided in Appendix D. 

 To ensure a proper analysis of the (H/V)MT of each survey, it is necessary to 

inspect the individual spectral components (i.e., the two horizontal and single vertical 

components). Records are considered to be good if there is a clear divergence between 

the two horizontal components and the vertical component near the predominant site 

frequency, resulting in a clear peak in (H/V)MT. This results in an “eye-shape” appearance 

in the individual spectral components where the vertical component is reduced over a 

narrow frequency bandwidth (Castellaro and Mulargia, 2009). The horizontal-component 

amplitude in this frequency bandwidth increases due to increasing contributions of Love 

waves relative to Rayleigh waves (Castellaro, 2016). If a record shows no clear 

divergence between the vertical and horizontal spectra, resulting in no clear peak in the 

overall (H/V)MT, it is considered to be poor. Factors that can alter the H/V appearance 

and cause poor results are: poor instrument coupling with the ground; environmental 

variables such as rain, wind and other noise contributions; and the type of material on 

which the instrument is placed (e.g., natural versus stiff artificial soil; Castellaro and 

Mulargia, 2009). An example of a poor and good recording is shown in Figure 4-4. 

Regardless of the cause(s) for a poor record, such spectra are excluded from further 

analysis. 
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Figure 4-4: Examples of poor and good ambient noise recordings near station 

ACTO. Individual component spectra for the 0 m survey do not exhibit a distinct 

“eye-shape” divergence between the vertical and horizontal components, resulting 

in a (H/V)MT that is without a clear peak. By contrast, the 40 m survey shows a 

divergence between components at ~8-15 Hz, resulting in a clear spectral peak at 

~13 Hz. 

4.4 (H/V)MT Spectral Shape Types and Variation in fpeak with 
Distance 

 In Figures 4-5 and 4-6, we present examples of sediment sites (stations TORO 

and PKRO) that show consistent single peaks in both their (H/V)EQ and (H/V)MT spectra. 

TORO is believed to be a very soft site, with sediments of ~70 m thickness, while PKRO 

is underlain by sand/clay of ~76 m thickness (Braganza et al. 2016). For these plots, the 

H/V ratios that are output from the ambient noise records have been averaged over the 

same log-spaced frequency bins used for the (H/V)EQ spectra.  



66 

 

 

Figure 4-5: Station TORO's (H/V)EQ (heavy line) and the six (H/V)MT surveys, at 

distances up to 1 km. All surveys show a consistent fpeak of 1.0 Hz. 

 

Figure 4-6: Station PKRO's (H/V)EQ (heavy line) and the six (H/V)MT surveys, at 

distances up to 1 km. An fpeak of 1.6 Hz is seen at distances < 80 m, which decreases 

to 1.3 Hz (0.1 log units) from 160 m to 1 km. 
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Figure 4-5 shows that the fpeak results from (H/V)MT at station TORO are 

consistent with results based on (H/V)EQ: from the station up to 1 km away, the value of 

fpeak is 1.0 Hz. An obvious divergence in the individual component spectra between the 

horizontal and vertical amplitudes is also seen around this frequency. The high Apeak 

value near the station implies a strong impedance contrast at depth. At the furthest 

distances (500 and 1000 m), the spectral peaks start to broaden and reduce in amplitude, 

likely related to changes in subsurface conditions; however, the value of fpeak remains the 

same. In Figure 4-6, we observed that the 1.6 Hz fpeak from (H/V)MT for PKRO is in 

agreement with that from (H/V)EQ for distances up to 80 m. At further distances, the 

(H/V)MT spectra widen and fpeak decreases to 1.3 Hz. The resonator depth appears to be 

relatively stable at PKRO, which results in only a small change in fpeak over a 1 km 

distance. Overall, TORO and PKRO are sites with a similar depth-to-bedrock (estimated 

at 70 and 76 m, respectively) and thus exhibit similar peak frequencies, near 1.0 Hz. The 

peak amplitudes at TORO, a site with inferred soft sediment, are generally higher than 

they are at PKRO, which is a stiffer site. For both sites, the values of fpeak are consistent 

between the earthquake and microtremor surveys, but the Apeak values differ by up to a 

factor of 3 to 4.  

Figures 4-7 and 4-8 show the H/V spectra of stations ELFO and DRWO, both of 

which are on relatively stiff material (till). These spectra exhibit wider peaks in their 

(H/V)EQ, and there is a suggestion of a secondary peak. 



68 

 

 

Figure 4-7: Station ELFO's (H/V)EQ exhibits a fairly broad peak with fpeak at 2.5 Hz, 

followed by a secondary smaller peak at 4.0 Hz. This is reflected in the (H/V)MT, 

which show either double peaks or broad spectra at all survey distances. 
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Figure 4-8: DRWO's (H/V)EQ has an fpeak at 4.0 Hz, but the spectrum is similar in 

H/V ratio between 3.3 Hz to 5.0 Hz. The (H/V)MT show fpeak variations in this entire 

range, with a higher fpeak of 5.0 Hz for the 500 and 1000 m surveys. 

 The (H/V)EQ at ELFO is 2.5 Hz, and (H/V)MT surveys show log(fpeak) to be within 

0.1 units of this value, except for the 1 km survey, which shows a secondary – and 

slightly greater – peak at 5.0 Hz. DRWO’s (H/V)EQ fpeak is at 4.0 Hz, but the H/V ratio is 

similar from 3.3 Hz to 5.0 Hz. The (H/V)MT log(fpeak) values at all distances are 

consistently within ± 0.1 log units of the fpeak from (H/V)EQ. It is also noted that higher 

values of fpeak are associated with shallower sites; DRWO has an estimated depth-to-

bedrock of 22 m, while is it 64 m at ELFO. Lastly, in Figures 4-9 and 4-10 we present 

examples of ambient noise records that show evidence of poor coupling and/or have 

some wind/noise contamination, but from which fpeak can still be discerned.  
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Figure 4-9: (H/V)MT at station BRCO show noise contamination below ~1 Hz, but 

the spectra still show a general agreement in fpeak (2.0 Hz) with that from the 

(H/V)EQ. 
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Figure 4-10: H/V ratios at station ACTO. The 40 and 80 m surveys exhibit a 

log(fpeak) that is within 0.1 units of the fpeak from (H/V)EQ (10.2 Hz), while the 160 m 

survey shows greater variation (0.3 log units higher). 

For station BRCO (Figure 4-9), (H/V)MT show rising amplitudes below ~1 Hz, 

which are likely the result of windy conditions on the day that the measurements were 

taken. The exception is the 0 m record, which was taken from a survey performed 

previously when weather conditions were favorable. At this site, fpeak for all useable 

surveys is either in complete agreement (2.0 Hz) with the (H/V)EQ, or is within 0.1 log 

units. In Figure 4-10, surveys for ACTO at 40 and 80 m show log(fpeak) from (H/V)MT 

and (H/V)EQ that agree to within 0.1 log units, while the 160 m survey has an fpeak that is 

higher by 0.3 log units (20.2 Hz, compared to 10.2 Hz).  

As mentioned previously, the purpose of measuring fpeak as a function of distance 

is to determine the confidence with which we can interpolate fpeak between grid points 

that have a known or estimated value based on depth-to-bedrock, which has been mapped 

on a ~0.5 km spaced grid. In Table 4-1, we summarize the findings of fpeak versus 

distance and tabulate the average of the differences between log(fpeak) from (H/V)EQ and 

log(fpeak) from (H/V)MT, across all surveyed distances. Note that, for a given survey 



72 

 

distance, the average difference is computed as the average of all absolute value 

log(fpeakEQ/fpeakMT). An “N/A” is shown for surveys that are associated with poor 

records. (For H/V spectral ratio plots of stations DRCO, STCO, TYNO and WLVO, 

please see Appendix D). 

Table 4-1: The fpeak values from all (H/V)EQ and (H/V)MT at the 10 stations. The 

average difference between log(fpeakEQ/fpeakMT) is computed as the average of all 

absolute value log(fpeakEQ/fpeakMT). 

 fpeak from (H/V)MT at Survey Distance (Hz) 

Station 

fpeak from 

(H/V)EQ 

(Hz) 

0 m  40 m  80 m  160 m  500 m  1 km  

ACTO 10.2 N/A 12.7 12.7 20.2 N/A N/A 

BRCO 2.0 2.0 N/A 1.6 N/A 2.0 2.0 

DRCO 10.2 10.2 N/A N/A N/A N/A 12.7 

DRWO 4.0 4.0 4.0 3.3 4.0 5.0 5.0 

ELFO 2.5 3.3 3.3 N/A 2.5 2.5 5.0 

PKRO 1.6 1.6 1.6 1.6 1.3 1.3 1.3 

STCO 5.0 4.0 5.0 4.0 4.0 4.0 4.0 

TORO 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

TYNO 4.0 N/A N/A N/A N/A N/A 5.0 

WLVO 15.7 N/A N/A N/A N/A 6.4 6.4 
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Average Difference 

(log units) 
0.03 0.04 0.06 0.08 0.10 0.13 

 

 Table 4-1 shows that, at zero separation distance, fpeak from (H/V)MT generally 

agrees with that of (H/V)EQ, with the average difference being 0.03 log units. This 

difference increases to 0.13 log units for separation distances of 1 km. The results of all 1 

km surveys, in addition to the averaged earthquake H/V at each station, are summarized 

in Figure 4-11.  

 

Figure 4-11: The averaged earthquake H/V ratios at 9 seismograph stations, in 

addition to the ambient noise H/V ratios at 1 km distance from each station. fpeak is 

shown to be in agreement to within 0.13 log units, on average.  

There are a few obvious caveats with the results in Table 4-1; specifically, the sample 

size is small as there are only 10 surveyed stations, with some records that are poor or 

show no fpeak. Moreover, the nature of southern Ontario’s geology as well as logistical 

constraints have the surveys covering a relatively small area (the greater Toronto area and 
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southwestern Ontario), and only one straight-line survey is performed per station. 

Furthermore, because log(fpeak) is a multiplicative measure of deviation in fpeak, it implies 

a multiplicative change in soil depth. We might therefore expect this deviation to be 

greater for shallower sites, since a subsurface dipping interface would impact a factor in 

depth more steeply at such a site than it would for a deeper site. In other words, the factor 

of change in fpeak should ultimately be controlled by the local geology. Regardless of the 

reasons (e.g., local geology) for the change in fpeak, our aim is to use the results of the 

ambient noise records to gain a basic understanding of how the fundamental parameter 

controlling site amplification in this region, fpeak, can be expected to vary as a function of 

distance. 

4.5 Summary and Conclusions 

 In this study, we perform ambient noise surveys at 10 seismograph stations in 

southern Ontario to detect how the site parameter fpeak varies as a function of distance. 

The fpeak from earthquake H/V spectra is compared with that from ambient noise at survey 

distances of 0, 40, 80, 160, 500 and 1000 m from each station. Results show that, on 

average, log(fpeak) is constant to within approximately 0.13 base 10 log units, over 

distances up to 1 km. While this study surveys only 10 stations and is further limited by 

some poor ambient noise recordings that are not useable, it yields a preliminary idea of 

how one can expect fpeak to vary as a function of distance in southern Ontario. This has 

practical applications when it comes to approximating or interpolating this fundamental 

site parameter for regional hazard mapping purposes. The method of mapping fpeak with 

distance can also be applied in regions where the amplification spectra are likely to 

exhibit spectral peaks near the site’s peak frequency (i.e., in regions that are characterized 

by a strong seismic impedance contrast between their soil and bedrock layers, such as 

Japan, Taiwan and China [Ghofrani and Atkinson, 2014]). 

In southern Ontario, there will be additional uncertainty in fpeak when it is 

approximated via an estimated site variable (i.e., depth-to-bedrock). Underlying 

geological structures, heterogeneities and dipping bedrock in some sub-regions could 

cause fpeak to vary more drastically than is typically observed in this study. For these 

reasons, the amplification functions in Braganza et al. (2016), displayed in Figure 4-1, 
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were adjusted (widened by ± 1 std. dev. in estimating fpeak from depth-to-bedrock in 

southern Ontario, or 0.2 log units) to account for some of this uncertainty.   
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Chapter 5  

5 Discussion, Conclusions and Future Work 

5.1 Discussion 

The key parameter in the site amplification model is the site’s peak frequency of 

response, or fpeak, which has an inverse relationship with the site’s depth-to-bedrock. We 

test how well the model estimates fpeak using information from a microzonation study in 

the Greater Toronto Area (GTA). Mihaylov (2011) developed a 3-component data 

acquisition system and used the H/V spectral ratio method (Nogoshi and Igarashi, 1971; 

Nakamura, 1989, 2000) to measure ambient noise and record H/V spectral ratios at 187 

sites across the GTA. From these measurements, fpeak was determined at each of these 

sites and an interpolated map of this site response parameter was produced for the region. 

Figure 5-1 shows this map, in addition to the locations of nearby seismograph stations 

(ACTO, TORO and PKRO) and their values of fpeak (from averaged earthquake H/V 

data). 
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Figure 5-1: Map of the study area (Greater Toronto Area) from Mihaylov (2011), in 

addition to interpolated values of fpeak, determined from ambient noise surveys at 

187 test sites. Nearby seismograph stations (ACTO, TORO and PKRO) and their 

station fpeak values are superimposed. 

 

 The fpeak values at each of these sites can be estimated using equations (2.1) and 

(2.4) from chapter 2 in conjunction with drift thickness data from the Ontario Geological 

Survey (OGS) map, and compared with the measured fpeak from Mihaylov (2011). At 

some test sites, Mihaylov (2011) noted that a more prominent H/V spectral peak was 

apparent at higher frequencies, which was recorded as the dominant frequency, compared 

to lower frequency peaks, which were noted as the fundmental frequency. For the 

comparison done in this study, if both a fundamental and dominant frequency was 

detected in the H/V spectrum, the latter is taken to be the site’s fpeak. The results of the 

measured vs. estimated fpeak comparison are shown in Figure 5-2. 

 

Figure 5-2: Measured fpeak, as determined from a microzonation study in the 

Greater Toronto Area (Mihaylov, 2011) versus estimated fpeak, as determined using 

equations (2.1) and (2.4) in conjunction with drift thickness information from the 

Ontario Geological Survey. 

 



79 

 

 Figure 5-2 shows that there is a systematic bias in measured vs. estimated fpeak, 

where values for the former are consistently higher. There are several possibilities for this 

bias, including: the instrumentation used to measure fpeak, inaccurate drift thickness 

values from the OGS map, or a velocity-depth profile from equation (2.4) that is better 

suited to softer, low-velocity sediments, particularly at greater depths (Braganza et al., 

2016; Motazedian et al., 2011; Rosset et al., 2015). Figure 5-2 also shows that there are 

test sites for which measured fpeak is considerably lower (by > 1 log units) compared to 

the estimated fpeak. In these cases, it is possible that: (i) the test sites do not have the very 

shallow depth-to-bedrock that is indicated by the OGS map; (ii) the measured fpeak is very 

low due to a localized subsurface effect, or (iii) that measured fpeak is in error (too low). 

 In general, the results of this test show that the measured and estimated fpeak are 

within 0.35 log units (or a factor of 2.2), on average. The apparent bias warrants further 

investigation in future work. 

5.2 Summary and Conclusions 

Site amplification, the amplification of seismic waves and ground motions due to  

subsurface effects, is an important phenomenon that strongly influences felt effects and 

damage potential of earthquakes. The aim of this thesis was to develop and test a region-

specific site amplification model for the purposes of estimating and mapping seismic 

hazard in southern Ontario. 

 

 In chapter 2, we develop a regional site amplification model that is based on two 

geological variables that are readily available: depth-to-bedrock, from which peak 

frequency of response (fpeak) is estimated, and surficial geology, which provides an 

estimate of the peak amplitude of response (Apeak). Chapter 3 tests this model against 

another amplification model from the 2015 National Building Code of Canada (NBCC), 

which is based on the traditionally-used site parameter, shear-wave velocity in the top 30 

metres of soil (VS30). The two models predict low and high frequency ground motions 

differently, and based on southern Ontario’s geology, we suggest that the model based on 

fpeak is more applicable. In chapter 4, we test the spatial variability of this important site 
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response parameter (fpeak) for mapping purposes, and find that it is spatially stable to 

within approximately 0.13 base 10 log units, over distances up to 1 km. 

5.3 Future Work 

This is the first comprehensive site amplification model that is specific to 

southern Ontario and which uses the fpeak parameter as a site response variable. Thus, 

further field studies and calibration will be needed in order to further test and refine the 

model. As mentioned in chapter 2, simplifications are made with respect to the region’s 

geology; there will be smaller areas with more complex subsurface features that create 

amplification effects which are not adequately captured by the fpeak-based model in this 

thesis. In chapter 4, a basic idea of the spatial variability of fpeak in the region is gained, 

but as mentioned, more surveys are needed. The apparent bias in fpeak inferred from 

depth-to-bedrock relative to that measured by microtremor surveys in the GTA warrants 

further investigation. Overall, the initial results obtained in this thesis support fpeak as an 

appropriate site response parameter – especially compared to VS30 – in southern Ontario. 

This model can be used in regional ShakeMap applications. Moreover, the model can be 

used as a guide to site-specific amplification factors for building-code applications, by 

measuring the value of fpeak for the site. 
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Appendices 

Appendix A: The log horizontal-to-vertical (H/V) ratios of the 38 seismograph 

stations in eastern Canada. 

 

Station 

No. of 

Records 

Used 

Frequency (Hz) 

f < 

1 

Hz 

f ≥ 

1 

Hz 

0.1 0.2 0.3 0.5 0.8 1 1.6 2 2.5 3.3 5.0 7.9 10.2 15.7 20.2 

ACTO 4 19 0.04 -0.06 0.15 0.11 0.06 0.02 0.14 0.22 0.20 0.25 0.34 0.38 0.50 0.29 0.10 

ALFO 12 31 -0.01 -0.04 0.01 0.06 0.06 0.04 0.04 0.10 0.15 0.12 0.14 0.07 0.09 0.15 0.22 

ALGO 7 25 0.20 0.18 0.26 0.33 0.29 0.38 0.42 0.45 0.52 0.70 0.62 0.28 0.31 0.34 0.36 

BANO 5 30 -0.14 -0.21 -0.01 0.11 0.00 0.04 0.12 0.12 0.07 0.06 0.08 0.28 0.31 0.22 -0.04 

BASO 2 10 -0.02 -0.03 -0.08 -0.03 -0.06 -0.09 0.09 0.10 0.07 0.09 0.07 -0.03 0.00 0.16 0.08 

BMRO 2 9 -0.08 -0.12 -0.08 0.05 0.04 -0.02 -0.15 0.06 0.10 0.13 -0.02 0.06 0.04 0.30 0.11 

BRCO 4 18 0.20 0.18 0.24 0.27 0.28 0.34 0.61 0.69 0.48 0.28 0.29 0.31 0.25 0.24 0.24 

BUKO 5 20 -0.11 -0.12 -0.05 -0.09 0.06 0.04 0.02 -0.01 0.01 0.06 0.06 0.18 0.22 0.25 0.23 

BWLO 2 9 -0.09 -0.16 -0.05 -0.14 -0.01 -0.06 0.06 0.14 0.19 0.17 0.17 0.14 0.17 0.16 0.19 

CLPO 0 2 N/A N/A N/A N/A N/A 0.08 0.08 -0.01 0.03 0.05 -0.11 -0.03 0.02 -0.05 -0.03 

CLWO 3 12 0.20 0.15 0.07 0.20 0.40 0.36 0.26 0.31 0.45 0.43 0.27 0.32 0.31 0.58 0.59 

DELO 3 28 -0.12 -0.14 -0.08 0.12 0.14 0.03 0.03 0.04 0.02 0.05 -0.01 -0.03 -0.04 0.03 0.09 

DRCO 2 7 0.01 -0.08 0.03 0.09 0.09 0.12 0.21 0.08 0.12 0.13 0.21 0.48 0.65 0.40 0.37 

DRWO 3 13 0.15 0.10 0.10 0.26 0.14 0.22 0.27 0.34 0.38 0.52 0.50 0.18 0.13 0.21 0.12 

ELFO 2 5 0.14 0.16 0.22 0.12 0.16 0.19 0.39 0.52 0.60 0.53 0.38 0.37 0.41 0.31 0.37 
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ELGO 2 6 -0.02 -0.07 0.09 0.07 0.23 -0.01 0.06 0.19 0.36 0.26 0.11 -0.07 0.05 0.16 0.21 

HGVO 2 5 -0.10 -0.12 -0.06 -0.13 -0.26 -0.12 0.04 0.15 0.12 0.06 0.05 0.09 0.14 0.27 0.33 

KGNO 7 33 -0.01 -0.09 -0.01 0.12 0.01 0.09 0.13 0.14 0.11 0.09 0.12 0.10 0.14 0.10 0.11 

KLBO 3 17 0.02 0.00 0.02 0.13 0.11 -0.02 -0.02 0.04 0.06 0.03 -0.06 0.07 0.07 0.03 -0.06 

LINO 3 6 -0.08 -0.18 -0.05 -0.10 -0.05 -0.01 0.04 0.08 0.09 0.02 0.07 0.12 0.22 0.37 0.56 

MNT 7 16 -0.04 -0.07 0.03 0.06 0.07 0.12 0.12 0.08 0.04 0.09 0.08 0.05 0.05 0.07 0.08 

MNTQ 6 20 0.04 -0.09 -0.04 0.01 0.07 0.01 0.10 0.08 0.10 0.02 0.00 -0.01 -0.03 -0.08 -0.07 

MPPO 2 11 -0.03 -0.06 -0.05 -0.09 -0.28 -0.06 -0.04 0.03 0.03 -0.09 -0.08 0.00 0.01 0.11 0.08 

ORHO 7 16 0.33 0.31 0.35 0.45 0.75 0.37 0.19 0.17 0.06 0.14 0.09 -0.02 0.04 0.10 0.25 

ORIO 9 21 0.07 0.02 0.02 0.10 0.12 0.05 0.09 0.07 0.10 0.10 0.06 0.08 0.13 0.26 0.27 

OTT 15 33 0.11 0.00 0.07 0.10 0.08 0.13 0.09 0.09 0.06 0.12 0.23 0.28 0.36 0.12 0.41 

PECO 3 20 -0.05 -0.09 0.06 0.07 0.05 0.07 0.10 0.05 0.06 0.02 0.07 0.14 0.15 0.20 0.11 

PEMO 11 28 -0.08 -0.07 0.04 0.06 0.04 0.08 0.11 0.15 0.12 0.13 0.13 0.13 0.18 0.31 0.47 

PKRO 6 25 0.29 0.16 0.19 0.33 0.36 0.45 0.62 0.55 0.34 0.16 0.23 0.26 0.27 0.10 0.11 

PLIO 3 6 -0.01 -0.09 0.10 0.08 -0.11 -0.02 0.03 0.13 0.21 0.20 0.1 0.12 0.06 0.13 0.11 

PLVO 8 25 -0.08 -0.06 -0.08 -0.01 -0.04 0.03 -0.03 -0.03 0.00 0.01 0.03 0.09 0.06 0.16 0.16 

PTCO 0 4 N/A N/A N/A N/A N/A -0.02 0.05 0.08 0.05 0.15 0.14 0.10 0.05 0.21 0.21 

SADO 9 33 -0.12 -0.16 -0.13 -0.01 -0.04 0.00 0.03 -0.01 -0.01 0.02 0.07 0.08 0.09 0.07 0.01 

STCO 4 16 0.10 0.01 0.07 0.05 0.14 0.17 0.10 0.17 0.33 0.53 0.61 0.43 0.31 0.15 0.08 

TOBO 3 13 0.04 0.05 0.10 0.17 0.16 0.06 -0.01 -0.06 0.07 0.15 0.23 0.18 0.21 0.48 0.48 

TORO 1 4 0.56 0.30 0.54 0.52 0.70 0.98 0.19 0.01 0.27 0.35 0.62 0.49 0.33 0.24 0.39 

TYNO 4 16 0.05 -0.05 0.10 0.07 -0.13 0.09 0.24 0.40 0.47 0.67 0.66 0.39 0.27 0.25 0.14 

WLVO 7 26 -0.11 -0.08 -0.09 -0.07 0.08 0.10 0.12 0.11 0.12 0.07 0.05 0.22 0.29 0.52 0.47 
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Appendix B: The standard deviations of the log horizontal-to-vertical (H/V) ratios 

of the 38 seismograph stations in eastern Canada. 

 

Station 

No. of 

Records 

Used 

Frequency (Hz) 

f < 

1 

Hz 

f ≥ 

1 

Hz 

0.1 0.2 0.3 0.5 0.8 1 1.6 2 2.5 3.3 5.0 7.9 10.2 15.7 20.2 

ACTO 4 19 0.088 0.082 0.085 0.162 0.148 0.147 0.152 0.134 0.098 0.067 0.074 0.079 0.082 0.069 0.097 

ALFO 12 31 0.167 0.179 0.151 0.124 0.127 0.133 0.125 0.108 0.106 0.125 0.184 0.151 0.115 0.102 0.122 

ALGO 7 25 0.165 0.203 0.157 0.066 0.107 0.127 0.139 0.130 0.135 0.133 0.126 0.095 0.085 0.101 0.112 

BANO 5 30 0.125 0.153 0.193 0.189 0.116 0.128 0.177 0.140 0.149 0.129 0.124 0.088 0.081 0.075 0.114 

BASO 2 10 0.027 0.107 0.014 0.112 0.037 0.110 0.099 0.094 0.099 0.076 0.112 0.068 0.044 0.091 0.067 

BMRO 2 9 0.017 0.096 0.010 0.058 0.141 0.140 0.142 0.124 0.103 0.077 0.070 0.067 0.049 0.098 0.053 

BRCO 4 18 0.174 0.175 0.168 0.234 0.104 0.093 0.096 0.081 0.071 0.062 0.085 0.061 0.086 0.081 0.060 

BUKO 5 20 0.134 0.129 0.176 0.142 0.129 0.147 0.149 0.110 0.115 0.106 0.070 0.062 0.087 0.087 0.124 

BWLO 2 9 0.019 0.066 0.027 0.018 0.208 0.098 0.120 0.131 0.075 0.133 0.242 0.458 0.279 0.077 0.193 

CLPO 0 2 N/A N/A N/A N/A N/A 0.107 0.057 0.128 0.043 0.076 0.028 0.026 0.145 0.098 0.026 

CLWO 3 12 0.088 0.110 0.023 0.124 0.110 0.149 0.103 0.128 0.064 0.058 0.060 0.088 0.081 0.130 0.136 

DELO 3 28 0.106 0.057 0.191 0.104 0.092 0.124 0.127 0.124 0.121 0.113 0.124 0.098 0.112 0.080 0.098 

DRCO 2 7 0.101 0.039 0.207 0.297 0.270 0.057 0.074 0.097 0.076 0.085 0.103 0.080 0.096 0.152 0.147 

DRWO 3 13 0.229 0.223 0.172 0.243 0.212 0.111 0.095 0.145 0.117 0.066 0.089 0.106 0.083 0.044 0.084 

ELFO 2 5 0.267 0.259 0.302 0.204 0.352 0.115 0.138 0.070 0.087 0.063 0.076 0.080 0.093 0.054 0.107 

ELGO 2 6 0.324 0.134 0.255 0.113 0.014 0.111 0.063 0.064 0.080 0.049 0.042 0.149 0.118 0.043 0.032 
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HGVO 2 5 0.139 0.083 0.072 0.106 0.110 0.164 0.129 0.085 0.094 0.102 0.072 0.071 0.055 0.087 0.158 

KGNO 7 33 0.106 0.169 0.130 0.252 0.222 0.132 0.118 0.119 0.091 0.093 0.127 0.092 0.101 0.078 0.094 

KLBO 3 17 0.170 0.233 0.163 0.196 0.190 0.160 0.144 0.141 0.131 0.071 0.128 0.087 0.066 0.146 0.183 

LINO 3 6 0.092 0.127 0.238 0.260 0.138 0.182 0.213 0.227 0.232 0.163 0.081 0.047 0.117 0.150 0.277 

MNT 7 16 0.214 0.232 0.255 0.210 0.192 0.147 0.188 0.184 0.147 0.137 0.140 0.141 0.107 0.088 N/A 

MNTQ 6 20 0.121 0.064 0.131 0.214 0.211 0.143 0.158 0.133 0.142 0.106 0.106 0.130 0.098 0.151 0.142 

MPPO 2 11 0.001 0.128 0.122 0.144 0.157 0.136 0.176 0.081 0.100 0.172 0.125 0.091 0.103 0.078 0.073 

ORHO 7 16 0.165 0.159 0.164 0.161 0.200 0.094 0.137 0.101 0.155 0.132 0.117 0.150 0.171 0.230 0.203 

ORIO 9 21 0.167 0.159 0.090 0.149 0.189 0.152 0.166 0.127 0.178 0.129 0.108 0.091 0.099 0.101 0.121 

OTT 15 33 0.183 0.128 0.152 0.131 0.131 0.120 0.134 0.147 0.160 0.106 0.136 0.121 0.134 0.110 0.173 

PECO 3 20 0.152 0.112 0.170 0.110 0.149 0.129 0.160 0.153 0.113 0.121 0.146 0.092 0.065 0.071 0.056 

PEMO 11 28 0.109 0.108 0.159 0.199 0.200 0.151 0.140 0.148 0.137 0.123 0.137 0.134 0.110 0.120 0.156 

PKRO 6 25 0.191 0.225 0.193 0.088 0.089 0.110 0.093 0.104 0.119 0.073 0.069 0.062 0.095 0.105 0.098 

PLIO 3 6 0.206 0.198 0.104 0.137 0.037 0.082 0.125 0.159 0.097 0.124 0.079 0.099 0.105 0.122 0.136 

PLVO 8 25 0.138 0.116 0.150 0.140 0.148 0.112 0.104 0.141 0.125 0.111 0.102 0.114 0.091 0.098 0.113 

PTCO 0 4 N/A N/A N/A N/A N/A 0.106 0.098 0.051 0.133 0.058 0.113 0.067 0.040 0.038 0.074 

SADO 9 33 0.143 0.181 0.152 0.151 0.165 0.162 0.176 0.159 0.142 0.132 0.145 0.121 0.137 0.115 0.141 

STCO 4 16 0.193 0.129 0.097 0.077 0.078 0.136 0.122 0.134 0.079 0.089 0.082 0.054 0.104 0.161 0.172 

TOBO 3 13 0.087 0.018 0.120 0.090 0.160 0.184 0.122 0.102 0.099 0.078 0.067 0.069 0.087 0.137 0.097 

TORO 1 4 N/A N/A N/A N/A N/A 0.053 0.107 0.052 0.085 0.087 0.139 0.139 0.058 0.071 0.048 

TYNO 4 16 0.089 0.113 0.133 0.180 0.103 0.138 0.114 0.060 0.082 0.083 0.113 0.115 0.076 0.157 0.213 

WLVO 7 26 0.147 0.125 0.140 0.154 0.209 0.186 0.089 0.119 0.110 0.086 0.090 0.078 0.095 0.103 0.111 
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Appendix C: The 38 stations’ site and horizontal-to-vertical (H/V) spectral 

characteristics 

 

Station 
Spectra 

Type 

fpeak 

(Hz) 

Log Peak 

Amplitude 

Surficial 

Geology 

Depth-to-

bedrock 

(m) 

Depth-to-

bedrock 

Reference 

ACTO Peaked > 10 0.50 Till 20 Kolos (2010) 

ALFO Peaked > 10 0.38 Till 1 
Spectrum 

appearance 

ALGO Peaked 4.0 0.73 Sand/clay 70 Kolos (2010) 

BANO Peaked > 10 0.38 Till 7 
Cross-section 

map (OGS) 

BASO Flat N/A N/A Bedrock 0 
Spectrum 

appearance 

BMRO Rising N/A N/A Bedrock 0 
Spectrum 

appearance 

BRCO Peaked 2 0.69 Sand/clay 54 Kolos (2010) 

BUKO Rising N/A N/A Bedrock 0 Kolos (2010) 

BWLO Peaked 6.4 0.31 Till 1 
Spectrum 

appearance 

CLPO Flat N/A N/A Bedrock 0 Kolos (2010) 

CLWO Peaked > 10 0.59 Till 21 
Cross-section 

map (OGS) 
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DELO Flat N/A N/A Bedrock 0 
Spectrum 

appearance 

DRCO Peaked > 10 0.65 Sand/clay 5 
Cross-section 

map (OGS) 

DRWO Peaked 4.0 0.53 Till 22 
Cross-section 

map (OGS) 

ELFO Peaked 2.5 0.60 Till 64 Kolos (2010) 

ELGO Peaked 2.5 0.36 Till 28 Kolos (2010) 

HGVO Peaked > 10 0.38 Till 1 
Spectrum 

appearance 

KGNO Flat N/A N/A Bedrock 0 
Spectrum 

appearance 

KLBO Flat N/A N/A Bedrock 0 Kolos (2010) 

LINO Peaked > 10 0.73 Sand/clay 5 Kolos (2010) 

MNT Flat N/A N/A Bedrock 0 
Spectrum 

appearance 

MNTQ Flat N/A N/A Bedrock 0 
Spectrum 

appearance 

MPPO Flat N/A N/A Bedrock 0 Kolos (2010) 

ORHO Peaked 0.8 0.75 Sand/clay 52 
Cross-section 

map (OGS) 
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ORIO Peaked > 10 0.41 Till 7 
Cross-section 

map (OGS) 

OTT Peaked > 10 0.41 Till 13 Kolos (2010) 

PECO Rising N/A N/A Bedrock 0 
Spectrum 

appearance 

PEMO Peaked > 10 0.56 Till 24 Kolos (2010) 

PKRO Peaked 1.6 0.62 Sand/clay 76 
Cross-section 

map (OGS) 

PLIO Flat N/A N/A Bedrock 0 
Spectrum 

appearance 

PLVO Rising N/A N/A Bedrock 0 Kolos (2010) 

PTCO Rising N/A N/A Bedrock 0 Kolos (2010) 

SADO Flat N/A N/A Bedrock 0 
Spectrum 

appearance 

STCO Peaked 5.0 0.61 Till 20 Kolos (2010) 

TOBO Peaked > 10 0.55 Till 1 
Spectrum 

appearance 

TORO Peaked 1.0 0.98 
Very soft 

sediment/fill 
70 Kolos (2010) 

TYNO Peaked 4.0 0.83 Sand/clay 31 Kolos (2010) 

WLVO Peaked > 10 0.52 Till 15 Kolos (2010) 
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Appendix D: Tromino deployment and processing methods, and horizontal-to-

vertical (H/V) spectra plots for stations DRCO, STCO, TYNO and WLVO. 

 This appendix outlines the steps involved in deploying the Tromino® and 

processing the recorded data. Additional H/V plots for stations DRCO, STCO, TYNO 

and WLVO are also provided.  

Tromino® Settings, Deployment, Processing and Interpretation of fpeak from Data  

 For all surveys, the high gain velocity channels of the Tromino® are collected at a 

sampling rate of 128 Hz; hence the Nyquist frequency is 64 Hz. Note however that H/V 

plots are only shown up to 50 Hz, and high amplitudes at very high frequencies are 

assumed to be caused by noise. Recorded data are uploaded and processed with the Grilla 

version 6.1 software package. Records are segmented in two-minute time windows and 

noisy windows are filtered. During processing, a 5% cosine tapering is applied, followed 

by a Fourier transform, to output ambient noise H/V spectral ratios as Fourier spectra 

(mm/s). Conversely, the (H/V)EQ are generated by computing the geometric mean of both 

horizontal log(PSA) spectra and dividing this by the vertical log(PSA) spectrum. 

Additional details of the computation of (H/V)EQ are described in Braganza et al. (2016). 

Recording time lengths for each ambient noise survey are between 20 and 40 

minutes, with the time interval increasing for deeper (e.g., ELFO, PKRO) and/or noisier 

sites, as recommended by Molnar et al. (2016). Surveys are performed at 0, 40, 80, 160, 

500 and 1000 m from a seismograph station (with the 0 m survey being performed ~2-3 

m from the seismometer vault). The exceptions are WLVO at 160 m and DRCO between 

40 and 500 m, where private property and other site regulations only allowed for select 

measurements. There are a few instances where a record is quite poor in quality, so it is 

swapped with an earlier survey that was done at the same survey distance, using the same 

instrumentation, at an earlier time for a different study. Specifically, this is done for 

PKRO and BRCO at 0 m, and ELFO at 40 m. Whenever possible, the Tromino® was 

deployed on the same surface ground conditions that the seismograph station rested on. 

When this could not be achieved (i.e., private property, very soft farmland, or deep 

ravines on either side of a public road), the Tromino® was instead deployed on the 
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unpaved shoulder of the road. These instances occurred for surveys: DRWO at 80, 160 

and 500 m, and PKRO at 1000 m.    

(H/V)MT which contained large peak amplitudes at extreme ends of the frequency 

spectrum are considered to be related to high noise conditions. Such records were 

generally consistent with environmental surroundings; e.g., BRCO (see Figure 4-8) 

exhibits high amplitude H/V ratios at lower frequencies and surveys were performed on a 

fairly windy day; station STCO is near a fairly busy highway and thus higher (H/V)MT is 

seen at higher frequencies. Therefore, when determining fpeak from (H/V)MT, anomalous 

Apeak values at very low or high frequencies (e.g., BRCO; PKRO 160 m survey) are not 

considered to be indicative of subsurface features.  

H/V Plots for Stations DRCO, STCO, TYNO and WLVO 

 

H/V spectra at station DRCO. fpeak from (H/V)MT at 0 m is in agreement with the 

fpeak from (H/V)EQ (10.2 Hz); at 1 km, fpeak is 0.1 log units higher. No surveys 

performed at 40, 80, 160 and 500 m due to logistical complications. 
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H/V spectra at station STCO. For all surveys, fpeak from (H/V)MT is in agreement 

with fpeak from (H/V)EQ (5.0 Hz) to within 0.1 log units. 

 

H/V spectra at station TYNO. For the lone good record (survey at 1 km), fpeak from 

(H/V)MT is greater than fpeak from (H/V)EQ (4.0 Hz) by 0.1 log units. 
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H/V spectra at station WLVO. Good records (surveys at 500 and 1000 m) have fpeak 

from (H/V)MT lower than fpeak from (H/V)EQ (12.6 Hz) by 0.4 log units. 
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