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Abstract

In general, all single and multi-view digital images are captured using sensors, where they are often
contaminated with noise, which is an undesired random signal. Such noise can also be produced
during transmission or by lossy image compression. Reducing the noise and enhancing those
images is among the fundamental digital image processing tasks. Improving the performance
of image denoising methods, would greatly contribute to single or multi-view image processing
techniques, e.g. segmentation, computing disparity maps, etc. Patch-based denoising methods
have recently emerged as the state-of-the-art denoising approaches for various additive noise lev-
els. This thesis proposes two patch-based denoising methods for single and multi-view images,
respectively.

A modification to the block matching 3D algorithm is proposed for single image denoising. An
adaptive collaborative thresholding filter is proposed which consists of a classification map and a
set of various thresholding levels and operators. These are exploited when the collaborative hard-
thresholding step is applied. Moreover, the collaborative Wiener filtering is improved by assigning
greater weight when dealing with similar patches.

For the denoising of multi-view images, this thesis proposes algorithms that takes a pair of noisy
images captured from two different directions at the same time (stereoscopic images). The struc-
tural, maximum difference or the singular value decomposition-based similarity metrics is utilized
for identifying locations of similar search windows in the input images. The non-local means
algorithm is adapted for filtering these noisy multi-view images.

The performance of both methods have been evaluated both quantitatively and qualitatively through
a number of experiments using the peak signal-to-noise ratio and the mean structural similarity
measure. Experimental results show that the proposed algorithm for single image denoising out-
performs the original block matching 3D algorithm at various noise levels. Moreover, the proposed
algorithm for multi-view image denoising can effectively reduce noise and assist to estimate more
accurate disparity maps at various noise levels.

i
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Epigraph

“If I can’t picture it, I can’t understand it.”

— Albert Einstein
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Chapter 1

Introduction

Dealing with random noisy pixels in an image is a major challenge for many image processing
applications due to the difficulty of distinguishing noise from true image information. Noise affects
all kinds of images whether they are single or multi-view. It also affects various types of image
areas, such as textured, flat or edge areas. Image denoising techniques, which can estimate the
true image pixels, are broadly grouped into two main approaches: pixel-based filtering and patch-
based filtering. A pixel-based image filtering scheme is mainly a proximity operation used for
manipulating one pixel at a time (pixel-wise). It is based on examining spatial neighbouring pixels
located within a kernel. On the other hand, in patch-based image filtering, the noisy image is
divided into patches, or “blocks”, which are then manipulated separately in order to provide an
estimate of the true pixel values (patch-wise). It is based on similar patches located within a search
window. Unlike pixel-based image filtering, patch-based and algorithms successfully utilizes the
redundancy and the similarity among the various parts of the input image to reconstruct a more
distinct image. The mechanisms of using these two methods are illustrated in Figure 1.1.

1.1 Problem Background

Single and multi-view images are captured using sensors during the data acquisition phase. A
single view image consists of one image; a multi-view image consists of two or more images,
which are generated simultaneously from different camera sources at different locations, and are
focused on one scene. These images are often contaminated with undesirable random noise during
image acquisition, transmission, or by poor image compression.

1



CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.1: Image denoising categories: (a) filtering based on neighbouring pixels located within a kernel
in pixel-based denoising schemes, and (b) filtering based on patches located within a searching window in
patch-based denoising schemes.

Single images are used in diverse image processing applications, such as in object recognition,
segmentation, and object tracking. Noisy single images exert significant influence on the reliabil-
ity of these applications. For insistence, when detecting non-smoothed objects in noisy images,
some algorithms may mistakenly detect disconnected objects due to the presence of noisy pixels.
Figure 1.2 shows the results of an attempt to detect coins using snakes active contours [59]. The
figure reveals that when noise contaminates the targeted objects “coins” they make it more diffi-
cult to produce reliable segmentations. Noise misleads the contours to not fit exactly onto object
boundaries, see Figure 1.2 (d).

Multi-view images have even more sophisticated imaging applications. These applications include
3D stereoscopic film, and the extraction of depth information. The quality of these applications
depends mainly on the image clarity. In support of this, the disparity maps1 of a stereoscopic image
both with and without noise were obtained using the graph-cut algorithm of Boykov et al. [16] in
Figure 1.3. When the stereoscopic image is corrupted by noise, the extracted depth information is
not clear, see Figure 1.3 (d).

The presence of noise in a single and/or a multi-view image has a significantly negative impact
on the results of various image processing applications. Hence, finding effective ways of reducing
noise in digital images is a very worthwhile area of research. Some noise reducing methods utilize
neighbouring pixels in order to estimate a centre pixel [104, 95]; however, such methods fail to

1The human brain process binocular disparity (the difference in image location of an object seen by the left and
right eyes) for extracting depth information from the two-dimensional retinal images. In computer vision, disparity
map represents the difference in coordinates of similar objects within two digital stereoscopic images.
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(a) (b)

(c) (d)

Figure 1.2: Our results of detecting coins using snakes active contours of Kass et al. [59]: (a) noise-free
image, and (b) the result of detecting coins using the noise-free image, (c) noisy image with additive white
Gaussian noise (σ = 20), and (d) the result of detecting coins when noise is present.

(a) (b)

(c) (d)

Figure 1.3: Our results of computing the disparity maps of stereoscopic images using the graph-cut algo-
rithm of Boykov et al. [16]: (a) noise-free image stereoscopic image, (b) disparity maps of the noise-free
stereoscopic image, (c) noisy image with additive white Gaussian noise (σ = 20), and (d) the result of
computing disparity maps when noise is present.
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reduce high levels of noise and retain image details due to high intensity variations. Several recent
research studies employ similar patches to restore a noise-free patch [17, 32, 61, 24]. Such findings
benefit from the redundancy, which appears between patches, but they fail to properly preserve fine
details and smooth flat regions, and are very expensive in terms of time and memory when they are
utilized for multi-view images. Thus, there is a need to develop a new patch-based image denoising
method, which has the ability to preserve fine details and smooth properly flat regions, for single
and multi-view images.

1.2 Problem Statement

The Block matching 3D (BM3D) filtering algorithm of Dabov et al. [24] is a patch-based denoising
method, which depends mainly on the transformation coefficient thresholding procedure. When
transferring a signal into the frequency domain, noise is characterized by low amplitude levels.
The BM3D filtering algorithm uses a fixed thresholding operator to force all of the coefficients
below the threshold to be zeros. This algorithm is considered to be a state-of-the-art denoising
method. Yet this method has several disadvantages, such as that of the difficulties related to the
choosing an optimal thresholding operator. When Marc Lebrun [64] described the influence of
all of the twenty parameters of the BM3D, he concluded that the thresholding operator is one of
the most important parameters of the BM3D because it controls the amount of the coefficient’s
thresholding level of the 3D patches group. Although previous researchers have shown ways of
optimally adjusting the BM3D parameters, they have not shown them bing used as an adaptive
thresholding operator with a textures classification map which considers geometric and luminance
similarity distances. This study will address this classification map, in order to find an effective
way of enhancing single view images.

In the case of multi-view image denoising, various image similarity measures will be addressed;
these include maximum difference, structural similarity [97], and singular value decomposition

similarity [79] measures, in order to identify similar search windows among the multi-view images.
The non-local means (NL-Means) algorithm of Buades et al. [17] will then be adapted for multi-
view image denoising.

The research objective is therefore to investigate whether improving the means of optimizing the
thresholding operator could improve the overall ability of the BM3D method while preserving de-
tail and suppressing noise in single view images. In addition, weight assignment for the Wiener
filtering of BM3D will be addressed, and the effect of the transforms will be investigated. Fi-
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nally, the effectiveness of adapting a NL-Means filtering algorithm using various image similarity
measures for denoising multi-view images will be studied.

1.3 Research Purpose

Evaluating the geometric and luminance similarity distances between neighbouring pixels assist
the pixel-based bilateral filter of Tomasi et al. [95] to optimally adjust the required weights before
averaging pixels. By considering both similarity distances, this pixel-based filter preserves the
desired detail and suppresses more noise. Hence, adapting this idea to the patch-based BM3D
filter when thresholding the 3D group coefficients, we can preserve more detail and can suppress
more noise in a noisy single view image if the differences between flat and textured areas were
considered.

Increasing the number of similar patches before thresholding or averaging improves the effective-
ness of the overall denoising procedure of the patch-based image denoising methods. Thus, instead
of denoising each view separately in a multi-view image, this study extends the search window to
use more reliable patch similarity measures in order to cover the entire spectrum of multi-view im-
ages. The effectiveness of several image similarity measures is examined to identify the location
of similar windows.

1.4 Research Objectives

The objective of this research is to develop effective approaches for denoising single and multi-
view digital images that fulfill the following requirements:

1. Exceed the performance of existing single and multi-view image denoising methods,

(a) quantitatively via:

i. The peak signal-to-noise ratio (PSNR).

ii. The mean structural similarity (MSSIM) of Wang et al. [97].

(b) qualitatively via:

i. The preservation of textures and fine details.

ii. A sharpening of the edges.

5
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2. Extract greater depth of information over what is possible with the existing multi-view image
denoising methods (via disparity maps).

3. Produce a solution with simple computational complexity when denoising multi-view im-
ages (via bounded searching areas).

By meeting these objectives, effective enhanced single or multi-view images would be achieved.

1.5 Research Methodology

In this section, the datasets and the techniques used to check the validity and reliability of this
work are described. Two image databases were used to evaluate the performance of the denoising
methods: a single image database, and a multi-view image database.

The single image dataset contains images obtained from the image database of the University

of Southern California-Signal and Image Processing Institute (USC-SIPI) [1]. The USC-SIPI’s
database has more than 237 images, but this research uses only ten images that were used in the
original BM3D research. This research ensured that the chosen images contain fine details, sharp
edges, grey gradations and pattern repetitions. The fine details of the Lena, Barbara, Man, and
Boats images were helpful in demonstrating how the various methods can preserve the image
clarity; whereas the sharp edges of the House and Cameraman were helpful in demonstrating how
the various methods can preserve the edges. The grey gradations of Hill image provided insight
into the amount of smoothing that has been applied to the images, and the Fingerprint image
assisted in revealing how pattern repetitions were preserved by the various methods.The size of the
single view images varies, e.g., 256 × 256 pixels, or 512 × 512 pixels. And they are all grey-scale
images. That is, they have 8 bits per pixel.

A collection of multi-view images from the stereoscopic database of Middlebury Computer Vi-

sion [3] was used to evaluate the multi-view image denoising methods. Middlebury stereoscopic
database has 71 images, but four multi-view images were used in this work. The images have been
carefully chosen to assist in distinguishing between the qualities of output from the various perfor-
mance methods. The house in Teddy’s image assist in demonstrating how methods preserve sharp
edges. Head and lamp in the Tuskuba’s image help in evaluating how methods smooth properly
homogeneous regions. The grey gradations in the Cones image provided insight into the amount
of smoothing. The texts in the Newspaper images assist in studying the ability to preserving fine
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details. The size of the images varies, e.g., 450× 375 pixels, 434× 383 pixels, or 384× 288 pixels.
And they are all grey-scale images represented as 8 bits per pixel.

The image datasets were corrupted using additive white Gaussian noise (AWGN) with a noise
variance that ranged from 10 to 100 σ. The denoising methods then were employed to estimate the
free of noise (a true image). This thesis exploits full reference similarity measures. The reference
image is assumed to be in existence and free of noise, as compared with the denoised image.

1.6 Thesis Structure

This thesis contains six chapters and three appendices. In Chapter 1, an introduction to image
denoising is introduced. In Chapter 2, the background and the literature review on the subject of
image filtering are explained. In Chapter 3, the empirical results and discussion are produced. In
Chapter 4, the proposed patch-based denoising method for single image denoising is presented
and discussed. In Chapter 5, patch-based denoising methods for multi-view image denoising are
presented and clarified. In Chapter 6, an empirical evaluation and the results of the denoising
methods are provided. In Chapter 7, the conclusions and a perspective on the need for future work
on the subject of developing new patch-based image denoising methods are addressed. Finally,
Appendix A, B, C, and D provide greater results on the denoising methods comparison.
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Chapter 2

Images Denoising: Background and
Literature Review

In this chapter, a general introduction to digital image denoising is presented. This chapter is
divided into five sections. In Section 2.1, the main noise models are presented. In Section 2.2, a
background on single image filtering is introduced. In Section 2.3, a background on multi-view
image filtering is provided. Finally, the image similarity measurements are described in Section
2.5.

2.1 Types of Noise in Digital Images

Noise in digital images could be additive, multiplicative, or a mixture of such errors occurring in
the original signal. Additive noise is an interference added to the signal image pixel. Such noise in
a digital image is generally modelled as

υ(x) = u(x) + n(x)d, x ∈ Ω, (2.1)

where υ(x) is the noisy component of the image, u(x) is the true image, n(x)d is the random additive
noise, and Ω denotes the set of all pixels in the image. In particular, if n(x)d is a Gaussian random
process, the noise is identified as Gaussian noise.

Multiplicative noise, which is also called speckle noise, refers to the interference that is introduced
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into the signal. Multiplicative noise in a digital image is modelled as:

υ(x) = u(x) × n(x)m, x ∈ Ω (2.2)

where υ(x) is the noisy component of the image, u(x) is the true image, n(x)m is the random
multiplicative noise, and Ω denotes the set of all pixels in the image.

The combination of the additive and multiplicative noises is called mixed noise. Mixed noise in a
digital image is modelled as:

υ(x) = n(x)m × u(x) + n(x)d, x ∈ Ω (2.3)

where υ(x) is the noisy component of the image, u(x) is the true image, n(x)d is the random additive
noise, n(x)m is the random multiplicative noise, and Ω denotes the set of all pixels in the image.

Image denoising methods can be categorized into two main groups: single image denoising meth-
ods and multi-view image denoising methods. While one image is processed in a single image
denoising process, multiple images are processed in a multi-view image denoising process.

2.2 Single Image Denoising

2.2.1 Pixel-based Image Filtering

In this subsection, a short background on pixel-based image filtering, which is an operation used
for manipulating one pixel at a time, is provided. Through the filtering process, a revised pixel
value is calculated using coordinates that are equal to the coordinates of the centre of a kernel. The
new pixel value is the result of the filtering process. When the centre of the filter visits each pixel
of the input image, a filtered image is generated. Linear filters then replace each image pixel with
a linear combination of its neighbours. Otherwise, the filter is called a nonlinear filter.

By assuming H(x, y) is a kernel of size m × n with the coordinates (x, y), where m and n are equal
to 2a + 1 and 2b + 1, respectively, and a as well as b are positive integers, I(x, y) is an input image
with size M × N, and û(x, y) is a filtered image with size M × N, the filtering process for the image
is given by the expression:

9
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Figure 2.1: 2D Gaussian distribution with mean (0,0) and σ=1

û (x, y) =
a∑

i=−a

b∑
j=−b

I(x + i, y + j) · H(i, j) (2.4)

2.2.1.1 Low-pass Filtering

Since noise in digital images is considered to be a high frequency component, applying low-pass
filters can eliminate noise in such images. The strength of the filters is related to the kernel sizes
and weights. There are several low-pass filters, e.g., mean, Gaussian and Yaroslavsky filters.

• Mean Filter: A mean filter replaces each pixel value with the average value of itself and its
neighbours. By considering Equation 2.4, the kernel of the mean filtering for an image is
provided in the expression:

H(i, j)Mean =
1

m × n
(2.5)

• Gaussian Filter: A Gaussian filter is similar to the mean filter, but it uses a kernel that
represents the shape of a Gaussian hump. A Gaussian filter could be described as a weighted
average filter of the nearest pixels’ neighbours. Thus, it produces a smoother image than
that produced by a similarly sized mean filter. The definition of the weight is the main issue
to be addressed in averaging an additive noise for denoising. The weight in a Gaussian
filter is defined locally based on the neighbouring pixel’s location. The weights increase
when neighbours are closer to the central pixel’s location. The 2D Gaussian distribution
with mean (0,0) and σ = 1 is provided in Figure 2.1 below. The Gaussian low-pass filter
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H (i, j)Gaussian has the form of Equation 2.6; the weight depends on the geometric distance
between pixels,

H(i, j)Gaussian =
1

√
2πσd

e
−
|i− j|2

2σ2
d (2.6)

where i, j are the coordinates of a pixel (i, j ∈ Ω), σd is the standard deviation of the Gaussian
hump that determines the degree of similarity between spatially close pixels. The ideal
Gaussian filter has the property of having values less than one standard deviation from the
mean represents about 68.3% of the data under the Gaussian hump; two standard deviations
represent about 95.5% of the data, and three standard deviations represent about 99.7% of
the data. The standard deviation of the Gaussian filter controls the degree of smoothing.
The standard deviation value is associated with the kernel size. A high standard deviation
value with a small kernel size makes a Gaussian filter behave more like a mean filter, and
hence it produces more smoothing of the edges. Figure 2.2 shows deploying various standard
deviations (σ) for denoising Lena image contaminated with AWGN. The edges are blurred
when high values are used for the standard deviation with the same kernel size. The plot in
Figure 2.3 illustrates the effect of the Gaussian filters that are used in Figures 2.2(d), (e) and
(f) on preserving edges. The grey values of the columns, which range from 105 to 150 in
row 150 of Lena image, are plotted in order to provide a visualization of the amount of edge
blurring. From the plot, the edges are blurred as the standard deviation value increases.

• Yaroslavsky Filter: With a Yaroslavsky filter [104], the pixels are restored using the weighted
average value of the pixels with similar grey level values within the same spatial neighbour-
hood. This type of filter is an image-dependent filter; hence, the weights cannot be defined
using an image independent kernel. If we have a spatial neighbourhood in a kernel of size
n × m, the Yaroslavsky filter is defined as the formula shown in Equation 2.7,

H(I(x, y), I(i, j))Yaroslavsky =
1

√
2πσr

e
−
|I(x,y)−I(i, j)|2

2σ2
r (2.7)

where I(x, y) and I(i, j) are the grey levels at two positions, and σr is the standard deviation
of the Gaussian hump that determines the degree of similarity between the grey levels.

2.2.1.2 Bilateral Filtering

The basic idea underlying bilateral filter (BF) is to prevent the averaging across edges, while
performing averaging within homogeneous regions [95]. While the weighted average in a Gaussian
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(a) (b) (c)

(d) (e) (f)

Figure 2.2: A Gaussian filter has different sigma values: (a) an original Lena image, (b) an AWGN noisy
image with σ = 20, (c) a denoised image using a 21 × 21 mean filter, (d) a denoised image using a 21 × 21
Gaussian filter σ = 1.66, (e) a denoised image using a 21 × 21 Gaussian filter σ = 3.33, and (f) a denoised
image using a 21 × 21 Gaussian filter σ = 6.66. The third row shows the 2D Gaussian kernels used in the
second row filters.
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Figure 2.3: The effect of the standard deviation values of the Gaussian filters used in Figure 2.2: (a) position
of the columns from 105 to 150 in row 150, and (b) plot of the grey values of the columns.

filter is based on the geometric distance between pixels, the weighted average in a Yaroslavsky filter
is based on the luminance distance between pixels. BF utilizes these two distances, and assigns
higher weight to similar pixels. Hence, the weight of two pixels could be similar if they were to be
spatially located within the same distance from the centre pixel and they would have perceptually
similar values.

Since BF measures the geometric distance similarity using Equation 2.6 and the luminance simi-
larity using Equation 2.7 for computing weights, the BF is shown as:

û(x, y) =
a∑

i=−a

b∑
j=−b

I(x + i, y + j) · H(i, j)Gaussian · H(I(x, y), I(i, j))Yaroslavsky (2.8)

The weight H(I(x, y), I(i, j))Yaroslavsky prevents averaging across edges. The pixels belonging to the
same region are weighted averages, if the grey level difference between the two pixels is small.
Therefore, the BF does not blur the edges. The BF has the ability to average across features that
are located within 2σd from the centred pixel while preserving the fine details. Figure 2.4 shows
the robustness of a BF in preserving the fine details.

The run-time of BF limits its usefulness in real-time. The BF is ineffective in smoothing regions
with high gradients; Figure 2.5 (a) provides an example of such signals. BF fails when there are
not enough pixels to average. For example, presume that the grey level of a local neighbourhood
consists of some narrow ridges separated by narrow valleys as shown in Figure 2.5 (b). As any
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Figure 2.4: Robustness of the BF. The BF preserves the edges and the fine details. The close-up image
shows the preserving of fine detail.
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(a) (b) (c)

Figure 2.5: BF in one-dimensional signals of different local neighbourhood grey levels: (a) area with high
gradient, (b) area with ridges and valleys, and (c) disjoint region. Where S is the geometric distance simi-
larity and R is the luminance similarity range.

non-adaptive spatial filter, Figure 2.5 (c) shows that the BF fails to separate the disjointed regions.
The BF cannot be effectively adapted to filtering out these local features. All of the filters addressed
so far in this subsection (Subsection section 2.2.1) are non-iterative filters, which produces a result
in a single pass. All of the remaining filters are iterative filters.

2.2.1.3 Variational Denoising Methods

The goal of variational denoising methods is to minimize the high level of energy in noisy images.
In order to minimize the high level of energy, regularization in variational denoising permits the se-
lection of the most reasonable solution from a group of several solutions. By assuming υ (x, y) is a
noisy image and E (υ) is the energy that describes the quality of the image, the energy minimization
process to estimate the original image û(x, y) is defined as:

û(x, y) = arg min E (υ) (2.9)

Finding the local minimum of the energy in Equation 2.9 can be achieved by using a gradient
descent optimizer. The gradient descent optimizer is an optimizer that takes a small step toward
the negative direction of the energy gradient (−∇E). The gradient descent is defined as:

û (x, y)t+1 = û (x, y)t + ∆t (−∇E) (2.10)

where û (x, y)t is the current pixel value, û (x, y)t+1 is the new pixel value and ∆t is the step size.
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This optimizer is utilized below in minimizing the heat diffusion and the total variation problems.

• Isotropic Heat Diffusion: A sudden increase in a pixel value indicates a noisy pixel. Thus, the
gradient |∇υ (x, y)| is expected to be high near a noisy pixel. In order to smooth the gradient
values, the isotopic heat diffusion equation could be used as the energy to be minimized.
The heat equation is a parabolic partial differential equation, used to describe the behaviour
of the heat distribution in a region over time. If q(x, y) is a function of two spatial variables
(x, y) and t is the time variable, the heat equation formula is formalized as:

∂q
∂t
− α

(
∂2q
∂x2 +

∂2q
∂y2

)
= 0 (2.11)

where α is a positive constant that controls the amount of the applied diffusion, and
(
∂2q
∂x2 +

∂2q
∂y2

)
is the laplacian operator (4q). The heat equation diffuses equally into all directions. Thus, it
is called an isotopic diffusion equation. For the filtering of a noisy image υ (x, y), Equation
2.11 is used as the energy gradient function ∇E optimized by the gradient descent shown in
Equation 2.10. The heat diffusion energy for the image is discretized as:

∇E = 4υ =
(
∇xxυ (x, y)t + ∇yyυ (x, y)t) (2.12)

where ∇xxυ (x, y)t and ∇yyυ (x, y)t are:

∇xxυ (x, y)t
≈ υ (x + 1, y)t

− 2υ (x, y)t + υ (x − 1, y)t

∇yyυ (x, y)t
≈ υ (x, y + 1)t

− 2υ (x, y)t + υ (x, y − 1)t (2.13)

The heat diffusion imparts more smoothing to the image as the step size or the number of
iterations increases. The minimization process may fail to converge to a local minima when
using large step sizes. It is recommended that the step size be (0 ≤ 4t ≤ 1/4) [83]. Figure 2.6
shows the result of using various steps sizes along with the isotopic heat diffusion for image
filtering. In order to prevent smoothing across edges, a condition is needed to force the heat
equation to be ∂υ

∂t = 0 near boundaries. A total variation (TV) filter uses a data fidelity term
to overcome this problem.

• Total Variation: Rudin et al. [90] introduced the TV regularization for image denoising. The
TV method is an edge-preserving denoising method. The TV method consists of two terms:
a regularization term and a data fidelity term. The regularization term assists in smoothing
flat regions, while the data fidelity term is used as a condition to prevent the smoothing of the
cross-image features. By assuming that υ (x, y) is a noisy image, the original image u (x, y)

could be restored as the solution to the regularization problem
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 2.6: Isotropic heat diffusion filtering: (a) an original Lena image, (b) an AWGN noisy image withσ =
20, (c) a denoised image using heat diffusion (iteration = 30,4t = 0.05), (d) a denoised image using heat
diffusion (iteration = 50,4t = 0.05), (e) a denoised image using heat diffusion (iteration = 100,4t = 0.05),
(f) a denoised image using heat diffusion (iteration = 30,4t = 0.2), (g) a denoised image using heat diffusion
(iteration = 50,4t = 0.2), and (h) a denoised image using heat diffusion (iteration = 100,4t = 0.2).
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arg min
υ

TV (υ)︸ ︷︷ ︸
Regularization Term

+ λ · |u − υ| 2︸        ︷︷        ︸
Data Fidelity Term

(2.14)

where TV (υ) indicates the TV and λ > 0 is a parameter that balances the importance of the
two terms in order to control the degree of filtering. The numerical approximation of the
energy shown in Equation 2.14 is:

∇E =
1
h


 ∇x

+υ (x, y)t√(
∇x
+υ (x, y)t)2

+
(
m

(
∇

y
+υ (x, y)t ,∇

y
−υ (x, y)t))2

 (2.15)

+

 ∇
y
+υ (x, y)t√(

∇
y
+υ (x, y)t)2

+
(
m

(
∇x
+υ (x, y)t ,∇x

−υ (x, y)t))2




−λt (υ (x, y)t
− υ0 (x, y)

)
here, the neighbour differences

(`)
are computed as

∇x
+υ (x, y)t ≈ υ (x + 1, y)t

− υ (x, y)t (2.16)
∇x
−υ (x, y)t ≈ υ (x − 1, y)t

− υ (x, y)t

∇
y
+υ (x, y)t ≈ υ (x, y + 1)t

− υ (x, y)t

∇
y
+υ (x, y)t ≈ υ (x, y − 1)t

− υ (x, y)t

m (·) is computed as

m (A, B) = minmod (A, B) (2.17)

=

( sgn A + sgn B
2

)
min (|A| , |B|)

and λt is defined via
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λt =
h

2σ2

∑
(x,y)

(√(
∇x
+υ (x, y)t)2

+
(
∇

y
+υ (x, y)t)2

)
(2.18)

−

 ∇x
+υ (x, y)0 + ∇x

+υ (x, y)t√(
∇x
+υ (x, y)t)2

+
(
∇

y
+υ (x, y)t)2


−

 ∇
y
+υ (x, y)0 + ∇

y
+k · υ (x, y)t√(

∇x
+υ (x, y)t)2

+
(
∇

y
+υ (x, y)t)2




where σ is the noise estimated variance and h, is the number of neighbours, which is equal
to 4 for the 4-nearest neighbours or to 8 for the 8-nearest neighbours.

For image filtering, the energy function shown in Equation 2.15 is optimized by the gradient
descent shown in Equation 2.10. In order to analyze the energy convergence in the TV
method, two types of convergence are used with the gradient descent optimization in this
thesis. One of the convergences utilizes a fixed number of iterations, while the rest of the
convergences automatically calculates the number of iterations using the the mean square

error as a condition. The automatic convergence stops if the mean square error between
two iterations is less than 0.01, which means there is no visual quality improvement could
be achieved. The results of utilizing the two convergence types for the denoising of Lena
image are shown in Figure 2.7. Figures 2.7 (c), (d), and (e) show that increasing the iteration
numbers imparts more smoothing to the images. Figures 2.7 (f), (g), and (h) show that
textures are blurred when the λ value decreases.

2.2.1.4 Anisotropic Diffusion Filtering

The anisotropic diffusion filter (ADF), introduced by Perona and Malik [83], iteratively blurs the
non-edge regions while keeping the edges and the boundaries sharp. The ADF does not ap-
ply smoothing the same way in different directions; thus, it is called an-iso-tropic method. The
anisotropic diffusion equation for image denoising is defined as

û (x, y)t+1 = div
(
c (x, y, t)

h
υ (x, y)

)
(2.19)

= c (x, y, t)
i
υ (x, y) +

h
c (x, y, t)

h
υ (x, y)
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 2.7: TV method for image denoising: (a) an original Lena image, (b) an AWGN noisy
image with σ = 20, (c) a denoised image using a TV filter (iteration = 50, λ = auto,4t = 0.2),
(d) a denoised image using a TV filter (iteration = auto(127), λ = auto,4t = 0.2), (e) a de-
noised image using a TV filter (iteration = 200, λ = auto,4t = 0.2), (f) a denoised image us-
ing a TV filter (iteration = auto(121), λ = 0.02,4t = 0.2), (g) a denoised image using a TV
filter (iteration = auto(122), λ = 0.03,4t = 0.2), and (h) a denoised image using a TV filter
(iteration = auto(108), λ = 0.04,4t = 0.2).
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where div indicates the divergence operator,
a

is the Laplacian operator,
`

is the gradient operator
and t is a time scale. Equation 2.19 would be reduced to being an isotropic heat diffusion equation,
if c (x, y, t) were to be constant. It is worth mentioning that the smoothing amount is controlled by
the value of c (x, y, t). Perona and Malik attempted to automatically set the c (x, y, t) values to be
close to 0 to prevent any smoothing across boundaries and to be close to 1 in smoothing the interior
regions. Equation 2.19 can be discretized on 4-nearest neighbours as

û (x, y)t+1 = û (x, y)t + λ
[
cN (x, y)t

· ∇x
−υ (x, y)t + cS (x, y)t

· ∇x
+υ (x, y)t

+cE (x, y)t
· ∇

y
+υ (x, y)t + cW (x, y)t

· ∇
y
−υ (x, y)t] (2.20)

where 0 ≤ λ ≤ 1/4 is used for stability, ∇x
−, ∇

x
+, ∇

y
− and ∇y

+ are the neighbour differences computed
as Equation 2.16 , and CN , CS , CE and CW are the conduction coefficients of the four neighbours
for each t iteration at the location (x, y). The conduction coefficients are defined as

CN (x, y)t = g
(
‖ ∇x

−υ (x, y)t
‖
)

CS (x, y)t = g
(
‖ ∇x

+υ (x, y)t
‖
)

CE (x, y)t = g
(
‖ ∇

y
+υ (x, y)t

‖
)

CW (x, y)t = g
(
‖ ∇

y
−υ (x, y)t

‖
) (2.21)

where g (·) function is defined as

g
(h

I
)
= e−

(
‖
`

I‖/K
)2

(2.22)

or

g
(h

I
)
=

1

1 +
(
‖∇I‖

K

)2 (2.23)

where K is a constant that represents the noise standard deviation. g (·) function (Equation 2.22) is
the Taylor approximation of g (·) function (Equation 2.23). Both functions perform similarly. The
plot provided in Figure 2.8 illustrates the performance of the two functions when the inputs were 0-
255. Figure 2.9 shows the effects of the number of iterations on the ADF when used for denoising
an AWGN noisy Lena image. Increasing the number of iterations imparts more smoothing to the
images. Figure 2.10 shows the effect of the parameter k on the ADF; here edges in the image
remain sharp when the k value is low. The effect of the parameter λ on the ADF is shown in Figure
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Figure 2.8: The performance of the g(.) functions (Equation 2.22 and Equation 2.23) of the ADF.

2.11. When the λ value increases, more smoothing is applied to the image.

2.2.2 Patch-based Image Filtering

It is now common practice in image denoising to utilize patch-based models and algorithms in-
stead of pixel-based approaches to produce most promising estimate of the noise-free images.
However, there are advantages and disadvantages to the use of patch-based models and algorithms.
Among the advantages, the smoothing of flat regions is the most important. Redundancy between
patches enable patch-based approaches to properly smooth flat regions. Another advantage is the
preservation of fine image details and sharp edges. Among the disadvantages, the similarity be-
tween patches assists in estimating flat region, and so is averaging, but it is quite time-consuming
to group and compare similar patches. Therefore, each patch could have multiple estimates and
patches are overlapped. Secondly, while it may be that patterns and textures are seemingly clear,
patch-based models and algorithms usually exploit a large number of parameters, which can be
extremely difficult to adjust properly.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.9: The effects of a number of iterations on ADF: (a) an original Lena image, (b) an AWGN
noisy image with σ = 20, (c) a denoised image using ADF (iterations = 50, λ = 0.25, k = 0.03),
(d) a denoised image using ADF (iterations = 100, λ = 0.25, k = 0.03), (e) a denoised im-
age using ADF (iterations = 150, λ = 0.25, k = 0.03), and (f) a denoised image using ADF
(iterations = 200, λ = 0.25, k = 0.03).
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(a) (b)

(c) (d)

(e) (f)

Figure 2.10: The effects of K on ADF: (a) an original Lena image, (b) an AWGN noisy
image with σ = 20, (c) a denoised image using ADF (iterations = 100, λ = 0.25, k = 0.02),
(d) a denoised image using ADF (iterations = 100, λ = 0.25, k = 0.03), (e) a denoised im-
age using ADF (iterations = 100, λ = 0.25, k = 0.04), and (f) a denoised image using ADF
(iterations = 100, λ = 0.25, k = 0.05).
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(a) (b)

(c) (d)

(e) (f)

Figure 2.11: The effects of λ on ADF: (a) an original Lena image, (b) an AWGN noisy
image with σ = 20, (c) a denoised image using ADF (iterations = 100, λ = 0.10, k = 0.03),
(d) a denoised image using ADF (iterations = 100, λ = 0.15, k = 0.03), (e) a denoised im-
age using ADF (iterations = 100, λ = 0.20, k = 0.03), and (f) a denoised image using ADF
(iterations = 100, λ = 0.25, k = 0.03).
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(a) (b)

Figure 2.12: Similarity between patches: (a) NL-Means patches as a raster scan in a search window, and (b)
Patch P3 is more similar to P1 than to Patch 2; hence, P3 will receive a higher weight than the P2 weight.

Regardless, we believe that the advantages of patch-based methods far outweigh their disadvan-
tages, as modern computers are significantly overpowered, and have large memory banks.

2.2.2.1 Averaging Patch-Based: Non-local Means

NL-Means is a patch-based filter proposed by Buades et al. [17] as a modification of the pixel-
wise BF [95, 85, 13, 37, 68, 99]. Like the BF, the NL-Means filter blurs homogeneous areas and
preserves edges. The NL-Means filter divides the input image into sub-images and then filters each
sub-image separately in patch-wise fashion. Each sub-image contains several patches. As in the
BF, similarity is measured based on two measurements: (1) the Euclidean distance between the
centres of the patches, and (2) the luminance distance between the patches. In contrast to the BF,
patches are compared within a searching window instead of with the pixels of its neighbours. Thus,
it is called a non-local method. Patches with similar grey scale levels have larger weights when
they are averaged. Figure 2.12 (a) shows the NL-Means patches and how to find similar patches
in a raster scan search window. Figure 2.12 (b) illustrates that patches with a similar grey scale
level, for example, P1 and P3, should be assigned a higher weight over those assigned to P1 and
P2. Figure 2.13 shows the weight range from 1 (white) to zero (black) for the displayed image; 1
indicates that there are two identical patches, and vice versa. The edges in NL-Means filtering are
preserved regardless of their direction.

The estimated value NL [v]i, for a pixel i, is computed as in Equation 2.24,
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Image Weight Image Weight Image Weight

(a) (b) (c)
Image Weight Image Weight Image Weight

(d) (e) (f)

Figure 2.13: The weights distribution used to estimate the central pixel of each searching window in NL-
Means. The weights range from 1 (white) to zero (black) [17].

NL [v]i =
∑
j∈I

ω(i, j) [v] j (2.24)

where [v]i and [v] j are pixel intensities at location i and j, respectively, and ω(i, j) is a similar-
ity measure between the pixels i and j. The similarity measure of weight satisfies the condition
0 ≤ ω(i, j) ≤ 1 and

∑
j ω(i, j) = 1. The similarity weight depends on the grey scale level’s simi-

larity and the Euclidean distance between vectors N [v]i and N [v] j, where N [v]k denotes a square
neighbourhood of a fixed size and centred at a pixel k. The weights are described as,

ω(i, j) =
1

Z(i)
e−

‖
(
N[v]i

)
−
(
N[v] j

)
‖2

h2 (2.25)

where Z(i) is a normalization factor and h is a filtering parameter set depending on the noise level.

The level of noise determines the size required for the search windows and patches. For a ro-
bust comparison between patches, the size of the patches increases when the noise level is high.
Accordingly, the value of the filtering parameter, h increases as the size of the patch is increased.
Meanwhile, the size of the search windows must be increased in order to find more similar patches.

The NL-Means filter has many modifications. Improving the weight assignment between the
patches improves the performance of the NL-Means method. Hedjam et al. [48] improved the
process of adjusting the weights in the NL-Means by using Markovian clustering. Wu et al.

[101] applied a statistical shrinkage perspective when assigning the weights in NL-Means using
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a James-Stein [56] shrinkage estimator. Lai et al. [63] introduced an improved neighbourhood
pre-classification strategy for optimizing the weight kernels of NL-Means filter. Khan et al. [60]
introduced a variant of the NL-Means scheme by using a thresholding step to reduce the number
of similar patches before the weighted averaging of the patches.

The NL-Means filter exists in the spatial domain. Applying this filter in the frequency domain
would assist in suppressing a noisier signal. Alfredo et al. [38] transferred the patches of the NL-
Means to the frequency domain, and used discrete cosine transform (DWT) with a set threshold
to estimate true patches. Zhong et al. [109] combined the NL-Means with a Lee filter [65] for
SAR images enhancing. Chan et al. [18] incorporated a median filtering operation indirectly in
the NL-Means method for denoising low signal noise ratio (SNR) images. Maruf et al. [75]
projected NL-Means patches into a global feature space before performing a statistical t-test to
reduce the dimensionality of this feature space. Irrera et al. [54] adapted NL-Means for denoising
X-ray images (XNLM), and then applied an additional multiscale contrast enhancement stage in
the frequency domain.

An NL-Means filter could be adapted to improve other image processing applications (e.g. seg-
mentation, recognition, and video denoising). Zhan et al. [105] introduced an extension to the
NL-Means method for ultrasonic speckle reduction. They assigned the patches’ similarity weights
iteratively in a lower dimensional subspace using principal component analysis (PCA). Xu et al.

[103] adapted the NL-Means for microscopy cell images using a frequency transform. Genin et al.

[42] adapted a modified version of the NL-Means filter for detecting small objects by background
suppression. Background pixels were estimated by applying a weighted average depending on the
similarity between the neighbouring pixels. Kim et al. [61] adapted the NL-Means filter for noise
reduction and the enhancement of extremely low-light video. They use a motion adaptive temporal
filter using Gamma correction with adaptive thresholds before using the NL-Means filter. Xu et al.

[102] adapted the idea of patching from the NL-Means for filtering polarimetric synthetic aperture

radar (POL-SAR) images; they used simultaneous sparse coding for the transferring of the patches
into the frequency domain before assigning the weights.

2.2.2.2 Probabilistic Patch-Based Filtering

The probabilistic patch-based filter (PPB) of Deledalle et al. [32], which works in the spatial
domain, is an extension of the NL-Means filter. The PPB approach is one of the few denoising
techniques that can provide a general denoising methodology for various noise models. Thus, it is
more general than the NL-Means, and can be applied where there is either additive noise or multi-
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plicative speckle noise. The PPB filter is a statistically-based similarity scheme that depends on the
distribution model of the noise. The weighted average is used for the Gaussian noise distribution
in the NL-Means, but the PPB filter applies smoothing based on the maximum likelihood estimator

(MLE). The PPB is expressed as a weighted maximum likelihood estimation (WMLE) problem.
The weight is derived from the data by improving the isotropy of the filter - non-iterative PPB

filter (Non-iPPB), and it can be iteratively defined based on the similarity of the patches - iterative

PPB filter (It-PPB).

Weighted Maximum Likelihood Estimator: Using weighted MLE for image denoising is not
a new technique; it was first used for image denoising by Polzehl and Spokoiny [88, 87]. The PPB
filter redefined the weights in terms of a patch-based approach. This form of image denoising is
considered to be an estimation û of the true image u which originates from the noisy image υ. The
images are defined over a discrete regular grid Ω. A pixel value is described as i, and its neighbour
is j at the location (x, y) ∈ Ω. The noise model is considered as being defined by the parametric
noise distribution “likelihood” p(i | θ∗i ), where θ∗i is an unknown space-varying parameter. The
denoising of an image is equivalent to finding the best estimation θ̂i for θ∗i for all of the pixels. The
MLE at each location (x, y) estimates θ̂i from a set S θ∗i of the distributed random variables around
it by

θ̂i

a

= arg max
θi

∑
j∈S θ∗i

log p ( j | θi) (2.26)

a

= arg max
θi

∑
j

δS θ∗i
( j) log p ( j | θi)

δS θ∗i
is an indicator function for S θ∗i (i.e., δS θ∗i

= 1 if j ∈ S θ∗i , or 0 otherwise). The indicator function
has been derived from the data as weights ω(i, j) ≥ 0 in [32, 87, 88], where it is used as the weight
for adaptive pixel-wise filters. However, the indicator function in PPB is used as a weight function
to form the WMLE:

θ̂i

a

= arg max
θi

∑
j

ω(i, j) log p( j | θi) (2.27)

Defining the Weight Between Patches: In Subsection 2.2.2.1 on page 26, the weights in the NL-
Means filter are defined by comparing the similarities of the two patches [v]i and [v] j which are
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centred around the two locations i and j, respectively. A weighted Euclidian distance between the
two patches defines the level of similarity. However, the objective of the PPB filter is to generalize
and extend the idea of the Euclidean distance weight used in the NL-Means filter so that it can be
adapted to non-additive noise models. The weights used in the PPB filtering method are estimated
using the probability of the two patches in a noisy image having the same parameters. By following
the same idea as the weight in the NL-Means filter and assuming equal values for i and j in the two
statically similar patches [v]i and [v] j, the PPB weights would be defined as

ω(i, j)(PPB) , p
(
θ∗[v]i
= θ∗[v] j

| υ
)1/h

(2.28)

where θ∗[v]i
and θ∗[v] j

are the patches extracted from the image θ∗, and h is larger than 0 , which
indicates the size of the patch in PPB. The h acts as σ in the NL-Means algorithm in order to
control the filtering amount. The probability of the similarity of the patches pixels is decomposed
into a product of the probabilities of k neighbours:

∏
k p

(
θ∗i,k = θ

∗
j,k | υi,k, υ j,k

)
.

Iterative (WMLE) Denoising: In order to improve the performance of the PPB algorithm, the
probability of a similarity is estimated iteratively. The weight, at each iteration, is expressed as
the product of two terms: (1) the probability of the similarity between the noisy patches as was
described in Defining the Weight Between Patches’s section on page 29, and (2) the probability of
the similarity derived from the previous iteration. Assume that the previous estimation at t iteration
is θ̂t−1 for θ∗. Then, the formula in Equation 2.28 can be expressed as:

ω(i, j)(It.PPB) , p
(
θ∗[v]i
= θ∗[v] j

| υ, θ̂t−1
)1/h

(2.29)

This is similar to what was achieved in Defining the Weight Between Patches’s section on page 29,
where the probability of the similarity is decomposed into a product of the probabilities of the k

neighbours:
∏

k p
(
θ∗i,k = θ

∗
j,k | υi,k, υ j,k, θ̂

t−1
)
. From the Bayesian framework, the naïve Bayes model

can be fitted with the maximum likelihood concept. The probability is estimated using the prior
probability, and can be presumed to be proportional to the likelihood p

(
υi,k, υ j,k, θ̂

t−1 | θ∗i,k = θ
∗
j,k

)
.

The similarity likelihood is computed using:

p
(
θ∗i,k = θ

∗
j,k | υi,k, υ j,k, θ̂

t−1
)
∝ p

(
υi,k, υ j,k | θ

∗
i,k = θ

∗
j,k

)︸                      ︷︷                      ︸
likelihood

× p
(
θ∗i,k = θ

∗
j,k | θ̂

t−1
)︸                 ︷︷                 ︸

prior

(2.30)
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Figure 2.14: Competing iteratively the weights between the two pixels s and t in the probabilistic patch-
based filter. The PPB Weights Estimator (PPBWE) uses the noisy image and the estimated values from the
previous iteration in order to estimate the weight.

The likelihood term computes the degree of similarity between the patches, and the prior term
compares the two probability distributions from the previous iteration, similar to [87].

The scheme, Figure 2.14, shows the procedure of iteratively competing with the weights in the
PPB algorithm. The procedure for defining the weights is estimated iteratively by the following
methods: (1) the PPB weights estimator (PPBWE) uses the likelihood term and the estimated value
from the previous iteration in order to compute the prior term (Equation 2.30), (2) the WMLE uses
the PPBWE estimation and the noisy image to estimate the new weight (Equation 2.27), and (3)
the PPBWE and the WMLE steps are repeated until there is no difference in the estimations made
in the two steps.

Algorithm Used in the Case of Gaussian Noise: By assuming the AWGN model, the values of
the pixels I of the patch [v]i are distributed based on the Gaussian distribution ℵ

(
u, σ2

)
. Here, u

is the noiseless image and σ the noise variance. The noiseless image u can be estimated by the
weighted average that maximizes the WMLE defined in Equation 2.27:

üi
(WMLE) =

∑
j ω (i, j) I2

j∑
j ω (i, j)

(2.31)

In order to estimate the weighted average ω (i, j), the likelihood and the prior terms are considered.
The likelihood function is discretizing as:

p
(
Ii,k, I j,k | ¨ui,k = ¨u j,k

)︸                     ︷︷                     ︸
likelihood

∝ exp
(
−
| Ii − I j |

2

4σ2

)
(2.32)
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, and the prior term is discretized as:

p
(

¨ui,k = ¨u j,k | üt−1
)︸                 ︷︷                 ︸

prior

∝ exp

− 1
T

| üt−1
i,k − üt−1

j,k |
2

σ2

 (2.33)

By combining the two terms in Equation 2.32 and 2.33, the weight at any iteration is defined as:

ω(i, j)(It.PPB) = exp

−∑
n

1
h
| Ii − I j |

2

4σ2 +
1
T

| üt−1
i,k − üt−1

j,k |
2

σ2

 (2.34)

where n is the number of pixels and T is a constant similar to h in Equation 2.25. When there is no
iteration “posterior term = 0”, the filter performs in a similar way to the NL-Means filter.

A further extend patch log likelihood (EPLL) filter, similar to PPB filter, was proposed recently by
Papyan et al. [82] using a multi-scale prior.

2.2.2.3 Dictionary Learning

Dictionary learning (DL) is used as a replacement for the use of a fixed dictionary to represent
data. Since the seventies, data can be represented by using a fixed dictionary; for instance, Fourier
[15] and Wavelets [45]. Fifteen years ago, Olshausen et al. proposed an approach to learning the
dictionary from a data set in order to optimize the sparsity of the data [80]. The DL or k-means

singular value decomposition (K-SVD) was first adapted to image denoising in 2006 by Aharon et

al. [5]. The DL method finds the best dictionary D = (di)z
i=1 of z atoms di ∈ R

n that sparses the a set
Y =

(
y j

)m

j=1
∈ Rn×m of signals y j ∈ R

m. In order to filter a noisy image, each signal y j is considered
as a patch extracted from a noisy image. The sparse code of signal data y = y j for j = 1, . . . , n is
obtained by minimizing a constrained optimization `0:

min
‖x‖0≤k

=
1
2
‖y − Dx‖2 (2.35)

where k > 0 controls the amount of sparsity, and `0 pseudo-norm is defined by:

‖x‖o = {i : xi , 0} (2.36)
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Figure 2.15: Dictionary learning filtering scheme

In DL, optimization is performed on the dictionary D and the coefficients X =
(
x j

)m

j=1
∈ Rp×m for

j = 1, . . . , n, where the set of coefficients is x j of the data y j. The joint optimization is written as:

arg min
D∈Φ,X∈χk

E(X,D) =
1
2
‖Y − DX‖2 =

1
2

m∑
j=1

∥∥∥y j − Dx j

∥∥∥2
(2.37)

where Φ is the constraint set:

Φ =
{
D ∈ Rn×p : ∀i ‖D., i‖ ≤ 1

}
(2.38)

The sparsity constraint is set on χk , which is the unit normalization of the dictionary columns:

χk =
{
X ∈ Rp×m : ∀i ‖X., i‖0 ≤ k

}
. (2.39)

Peyré et al. [84] proposed using the block-coordinate descent minimization approach used by
Tseng [96] in order to minimize X and D. The scheme in Figure 2.15 shows the steps of the DL
method for denoising images.
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The DL algorithm depends mainly on three steps: (1) patch extraction, (2) sparse coding, and
(3) patch construction. In the first step, the patches are randomly extracted from the whole input
image. In the sparse coding step, the energies of the X and D dictionaries are iteratively minimized.
Patches averaging and reconstruction occur in the patches reconstruction step. The algorithm of
DL is shown in Algorithm 2.1.

Algorithm 2.1 Dictionary learning filtering method

1. Patch Extraction Step:

(a) The mean of each patch is removed from each pixels value.

(b) Patches are sorted based on their energy; the patches with a high level of energy are
kept by thresholding.

(c) Patches are reshaped as columns in order to form Y .

2. Sparse Coding Step:

(a) In the columns each atom is normalized in order to form the initial dictionary D.

(b) The number of the columns is reduced again, before computing the X coefficients.

(c) The X dictionary is initially started with zeros.

(d) The coefficients of dictionary X is updated by: X = T (X − γD′ ((D − X) − Y)). Where
T is the threshold.

(e) The dictionary D is updated again by: D = T (D − γ ((DX − X) − X′)).

(f) K is the number of iterations used to minimize the X and D dictionaries by updating
them iteratively.

(g) Finally, the coefficients of dictionary X are multiplied by dictionary D.

3. Patch Construction Step:

(a) The result of the multiplication is a new array, Y1.

(b) The columns of Y1 are reshaped to form the patches.

(c) Re-inserting the averages into the patches precedes the averaging of the patches to
replace the noisy patch.

The DL method has many modifications. Tian et al. [94] made the DL more sparsely representative
in the case of fewer observation values by proposing an adaptive orthogonal matching pursuit to
adaptively ensure the sample size. Some of the modifications aim to adapt the idea of denoising
based on using DL in other image processing applications. Chen et al. [23] generalized the idea of
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the learning dictionary to explore identity information in multiple frames of videos. They generated
a sparse representation from multiple video frames for face and body part recognition. Fu et

al. [41] proposed an effective model based on DL for hyper-spectral image (HSI) denoising via
considering the issue of sparsity across the spatial-spectral domain, high correlation across spectra,
and non-local self-similarity over space. Kang et al. [58] proposed a feature-based approach for
assessing similarity between images. After extracting feature points from an image, they utilized
DL. They then measured the similarity between images in terms of sparse representation. A novel
self-learning based image decomposition framework was presented by Huang et al. [52]. Their
framework performs unsupervised clustering on the observed dictionary via affinity propagation,
to identify image components with similar context information. The framework can automatically
determine the undesirable random noisy components from true image components directly from
a noisy image. DL algorithm was adapted to filter Chinese character images by Zhenghao et al.

[91]. They divided the image frequency to low and high frequency. While butterworth low-pass
filter was utilized to filter low frequency, DL algorithm was proposed to filter high frequency which
consists of Chinese character structure.

2.2.2.4 Patch-Based PCA

Recently, over-complete dictionaries with sparse representation techniques became very widespread
in image denoising [5, 72, 71]. These methods use over-complete dictionaries derived from enor-
mous image sets or from the noisy image itself. They outperform other denoising techniques due
to their ability to provide an appropriate basis for separating noisy signals from the true image sig-
nals. Despite the fact that over-complete dictionaries are frequently used for image denoising; such
dictionaries are sophisticated and quite expensive in terms of memory usage and time. However,
patch-based principal component analysis (PB-PCA) of Deledalle et al. [22] is a modification of
the dictionaries’ methods.

PB-PCA uses simple orthogonal dictionaries, which are constructed by using PCA. The results of
PB-PCA still do not outperform the over-complete dictionary methods, but PB-PCA shows how
simple orthogonal dictionaries can achieve excellent results with less sophistication. This form of
analysis simply learns the orthogonal dictionaries from the noisy image via PCA. The next step is to
threshold the patches’ coefficients in the dictionaries. This idea is similar to the wavelet denoising
methods used in [36, 20, 21], in which they use either hard-thresholding or soft-thresholding for
zeroing the coefficients. Figure 2.16 shows the extraction of the patches used in the PB-PCA
method from an image and grouping them before computing the PCA.

35



CHAPTER 2. IMAGES DENOISING: BACKGROUND AND LITERATURE REVIEW

Figure 2.16: Extracting patches in the PB-PCA method and grouping them before PCA

When denoising an image with AWGN, the patch model has the following formula:

[v]i = [u]i + zi, i = 1, .., n − 1 (2.40)

where [u]i is the true image patch, zi is the AWGN noise, [v]i is the noisy patch and n is the number
of patches. The patches are overlapped. By assuming [v]i , .., [v]i−1 are a group of patches of size
N × N extracted from the noisy image υ, the covariance matrix is the sum of:

∑
=

1
n

n∑
i=1

[v]i [v]′i − ῡῡ
′ (2.41)

where

ῡ =
1
n

n∑
i=1

[v]i

In PCA, the singular value decomposition (SVD) of the covariance matrix
∑

is processed. More-
over, the eigenvalues g1, · · · , gn−1 of the covariance matrix and the corresponding eigenvectors
G1, · · · ,Gn−1 are calculated. Eigenvectors are called the principal components “axis” of the pro-
cessed data and are used to form an orthogonal basis, Gi is the the ith principal axis of the data.
Due to the orthogonal basis of the principal components, an image patch can be decomposed as
[v]i =

∑n
i=1 〈[v]i | Gi〉Gi. Figure 2.17 (b) and (c) show the first and last 16 principal axes of the all

the patches obtained from the house image shown in Figure 2.17 (a).

By assuming that the true image pixels have a low dimensional subspace, and the noise is spread
in all directions, projecting the axes into the first axis would suppress the noise in the noisy im-
age. Projecting the axes is called coefficient thresholding, and it is done by using an appropriate
shrinkage function. A general formula for estimating a true image is:
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(a) (b) (c)

Figure 2.17: The principal components “axis” of the house image: (a) is the input image, (b) is the first 16
principal axes of the all the patches obtained from the house image, and (c) is the last 16 principal axes of
the all patches obtained from the house image. [22]

Figure 2.18: A comparison between PSNR of the different methods of the projections in PB-PCA for the
House and Cameraman images. The threshold ratio (λ/σ) into the bottom of the x-axis controls the number
of axes kept in the upper x-axis. Here, σ is the noise variation and λ is chosen by cross validation [22]

ˆ[u]i = ῡ +

n∑
i=1

η (〈[v]i − ῡ | Gi〉) Gi (2.42)

where η is the shrinkage function.

The PB-PCA filtering method has been tested with four shrinkage functions: (1) Soft Thresholding
(ST); (2) hard thresholding (HT); (3) keep or kill (KoK), and (4) Wiener filter [100]. Figure 2.18
shows a comparison between the four different projection methods of the PCA basis for the House
and Cameraman images. From Figure 2.18, it can be seen that hard-thresholding with a large
number of axes is the best of the four projection methods. Using a Winer filter as a shrinkage
function for the PCA has been proposed by Zhang et al. and Muresan et al. in [106, 77].
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(a) (b) (c)

Figure 2.19: Variants of collecting a set of patches before PCA process in PB-PCA filtering: (a) Global
PCA, (b) Local PCA, and (c) Hierarchical PCA.

The PB-PCA method has three variants based on how each set of patches is collected from the
input noisy image before the PCA process. In PB-PCA, the three variants for collecting patches
are: globally, locally or hierarchically. Figure 2.19 shows the best means of collecting the patch
sets globally, locally or hierarchically.

Patch-Based Global PCA: In the patch-based global PCA (PGPCA) approach, collecting patches
for a PCA can be done globally from the entire noisy image. This approach has been used by Muti
et al., and Bacchelli et al. [78, 11, 106]. The Bacchelli et al. [11] algorithm uses a linear transfor-
mation, “a wavelet transform”, before computing the PCA in order to achieve better results. The
Zhang et al. [106] algorithm collects patches globally, but it computes the PCA in two stages.
The PGPCA approach is faster than the other local or semi-local approaches, which need time to
divide the image into sub-images before computing the PCA coefficients. In terms of the filtering
quality, the PGPCA approach cannot compete with the other approaches that consider the high
level of redundancy occurring between neighbouring patches. One original basis for the whole
image is utilized in the global PGPCA, which impacts negatively on the denoising process. The
global PGPCA does not identify the rare patches because they do not exert a strong influence on
the total variance. However, an allowance can be made for these limitations by considering the
local redundancy between patches.

Patch-Based Local PCA: In the patch-based local PCA (PLPCA) approach, patches are col-
lected locally in order to overcome the limitations of the global PGPCA approach. The local
collection of patches means that the patches are collected within a small region of interest in the
noisy image. A fixed search window N × N is applied to the whole image. Since the patches are
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overlapped in PLPCA, there will be multiple estimates for a single pixel. Averaging is used to
compute a single pixel’s value.

The advantage of this approach is that the orthonormal basis is adapted only to the sub-image not
to the whole image. However, this approach has two limitations: the overfitting and the fact that
it is time consuming. The overfitting problem is due to the limited number of patches on which to
compute the PCA. PLPCA is extremely time-consuming because the PCA needs to be computed
repeatedly.

Fei et al. [39] collected patches locally, but they improved their approach by using geometric
structure clustering to guarantee that only patches with similar properties were gathered. Pal et

al. [81] considered patch redundancy in order to improve on the global two-stage PCA approach
of Zhang et al. [106]. A sliding window that moves with a step s = Wp−1

2 , where s is the step
size and Wp is the window’s current location was utilized as a modification in order to reduce
the time-consuming element of the PLPCA approach. The computational time is divided by s2

without losing the denoising quality. Zhang et al. [108] proposed using similar patch-based local

PCA filter with an extended step where a Wiener filter is finally applied.

Patch-Based Hierarchical PCA: In the patch-based hierarchical PCA (PHPCA) approach, an
algorithm builds a hierarchical cluster of the patches. Clustering is the task of grouping a set of
patches into the same cluster, i.e., a set. There are different cluster models; each model has several
clustering algorithms. The models include: connectivity models (e.g. hierarchical clustering), and
centroid models (e.g., k-means). The hierarchical clustering is based on the concept of grouping
of patches according to a maximum distance between patches. Patches are represented as a den-
drogram, which is a Greek word meaning a tree diagram that illustrates the arrangement of the
patches. In centroid models, vectors are usually assigned to a number k of fixed clusters. For
more information about the clustering models, readers are referred to Chapter 17 in “Introduction

to Information Retrieval‚” by Manning et al. [74].

The objective of the PHPCA approach is to offer a solution that can provide a balance between the
PGPCA and PLPCA approaches, which is less time-consuming than the local approaches and is
more adaptable to local sub-images. The PHPCA approach uses a geometric partitioning to first
divide the image into four areas, and then it estimates the principal axis for each area. Each area has
its own principal components. This process is repeated until the end of the tree is reached. Several
dictionaries share the first axes. Figure 2.15 shows how an image can be divided into sub-images.
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Figure 2.20: The two steps of BM3D filtering [24]

2.2.2.5 Block Matching 3D Filtering

BM3D filter is the state-of-the-art denoising technique by Dabov et al. [24]. It is based on modified
sparse representation in the transform domain. The BM3D technique first groups the patches into
3D data arrays instead of into 2D arrays, and then it applies a modified sparse representation in the
transform domain. Collaborative filtering is used to deal with the 3D arrays. The BM3D algorithm
depends on two steps: (1) collaborative hard thresholding and (2) the collaborative Wiener filtering.
The two steps allow the BM3D algorithm to suppress more noise and to preserve more details. The
amount of noise is suppressed in the thresholding step, and the details are restored in the second
step. Collaborative hard thresholding has three functions: (1) 3D transformation, (2) shrinkage and
(3) 3D inverse transformation. The patches in the 3D arrays are overlapped, so a weighted average
is used to obtain a single estimation for each pixel. Aggregation is the averaging procedure. A
significant filter is obtained by using the BM3D algorithm. The scheme in Figure 2.20 shows the
two steps of BM3D filtering. Below, the two steps of the BM3D algorithm are described. First,
the collaborative hard thresholding step is explained. Second, the use of the collaborative Wiener
filtering is discussed.

• Step One: Thresholding

Grouping: Similar to the NL-Means, a search window is used here to determine the similarity
between the patches. The search window is used in order to benefit from the high redundancy
among the neighbouring patches. There are several different grouping techniques, and a number
of these techniques have already been discussed. Other useful techniques for grouping could be
considered for patch grouping; such as, vector quantization [43], k-means clustering [70], self-
organizing maps [62] and others [55]. However, grouping in BM3D is based on the similarity
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distance between patches - the “Euclidian distance”. The grouping stage is the first stage in both
of the two steps’ stages in which similar patches are gathered to form 3D arrays. Similarity is
computed according to the similarity distances between the patches. In patches where the similarity
distances are below a fixed threshold are considered to be similar and are grouped into the 3D array.
Before measuring the distance, a coarse pre-filtering is used to linearly transform the patches using
a 2D linear transformation such as: multiple wavelet transforms [89, 33]. The formulation in
Equation 2.43 is used to compute the similarity distance between patches,

Dst
(
[v]i , [v] j

)
=

∥∥∥∥γ2D
(
T 2D

hard ([v]i)
)
− γ2D

(
T 2D

hard

(
[v] j

))∥∥∥∥2

2(
Nhard

1

)2 (2.43)

where [v]i , [v] j are, respectively, the reference patches at i and its neighbours at j , T 2D
hard is the

2D linear transform, γ2D is a hard-thresholding operator equal to λ2D × σ and
(
Nhard

1

)2
is the patch

size N × N. λ2D is defined in Table 2.1 on page 44. σ is the estimated noise standard deviation.
The 2D thresholding operator γ2D makes all coefficients with absolute value less than the thresh-
old (λ2D × σ) equal to zero, and it leaves the other coefficients unchanged. After computing the
Euclidian distance, grouping the similar patches into a 3D array is required. The formulation in
Equation 2.44 is used for gathering similar patches.

3D S hard
i =

{
j ∈ Ω : Dst

(
[v]i , [v] j

)
≤ T hard

match

}
(2.44)

where 3D S hard
i is the constructed 3D array contains similar patches, and T hard

match is the maximum dis-
tance between two similar patches. The maximum grouped patches number is restricted to Nhard

2 .
The next stage is to apply the collaborative filter by: (1) performing a 2D linear transformation
then a 1D linear transformation, (2) shrinkage, and (3) inverting the 1D transformation and the 2D
linear transformation.

Collaborative Filtering: Once the 3D array is built, a collaborative filter is used for suppressing the
noise. A 3D transformation is applied to the 3D array, before the shrinkage of the transforming
coefficients. The 2D transformation in the Grouping stage is applied along both the horizontal and
vertical lines for each patch, and then a third transformation is conducted along the third diminution
of the 3D array for the 3D transformation. The formulation of the collaborative filter is:

3D ûS hard
i
= T 3D−1

hard

(
γ3D

(
T 3D

hard

(
3D S hard

i

)))
(2.45)
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where T 3D
hard is the 3D linear transformation of the first (hard) step, T 3D−1

hard is the inverse of 3D trans-
formation, and γ3D is a hard-thresholding operator equal to λ3D × σ. λ3D is defined in Table 2.1 on
page 44. The 3D thresholding operator γ3D makes all of the coefficients with absolute value less
than the threshold (λ3D × σ) equal to zero.

Aggregation Weights: At this stage, the overlapped patches in the 3D array
(
3D ûS hard

i

)
have multi-

ple estimates for each pixel in the reference patch at a particular location i. A weighted averaging
procedure is required to produce an estimate for each pixel. Weights in BM3D are inversely pro-
portional to the total variance of the patches in the 3D ûS hard

i
array. When the total variance is high,

a small weight is assigned to the patch.

The amount of the additive noise is independent when processing the collaborative filter in Step
One and Step Two. Thus, the total variance is not the same after applying the collaborative filter
in the first and second steps. In Step One, the total variance is computed by σ2 × Nhard

non−zero, where
Nhard

non−zero is the number of non-zero coefficients after the hard-thresholding. The total variance
calculated in Step Two depends on the results of the Wiener filter coefficients; the total variance of
the Wiener filter will be explained on the following page. However, the weights for Step One are
equal to:

ωhard
i =

 1
σ2×Nhard

non−zero
,

1,

if→ Nhard
non−zero ≥ 1

otherwise
(2.46)

• Step Two: Wiener Filter Coefficients

Grouping: Grouping in the second step is in some ways similar to the grouping in the first step; but
here the power spectrums of the first step are grouped, not just the patches from the noisy image.
The same formula is used:

3D S Wiener
i =

 j ∈ Ω :

∥∥∥∥∥ûS hard
[v]i
− ûS hard

[v] j

∥∥∥∥∥2

2(
NWiener

1

)2 ≤ T Wiener
match

 (2.47)

where ûS hard
[v]i

and ûS hard
[v]i

are the estimated sub-images from Step One at locations i and j, respectively.
At this stage there are two groups: (1) a group of similar patches derived from the noisy image and
(2) a group of similar patches derived from the first step.

42



CHAPTER 2. IMAGES DENOISING: BACKGROUND AND LITERATURE REVIEW

Collaborative Filtering: After grouping the patches, a 3D transformation is applied to the 3D array
of the grouped patches. Wiener shrinkage is applied to the transformation coefficients of the 3D
array. The definition of the Wiener shrinkage coefficients of the power spectrum of the first step is
shown in the Equation:

3D WS Wiener
i
=

∣∣∣∣T Wiener
3D

(
3D S Wiener

i

)∣∣∣∣2∣∣∣∣T Wiener
3D

(
3D S Wiener

i

)∣∣∣∣2 + σ2
(2.48)

where T Wiener
3D is the 3D linear transformation and 3D S Wiener

i is the result of Equation 2.47. The final
stage in the collaborative Wiener filtering of the second step is to multiply the Wiener shrinkage
coefficients element-by-element by the 3D transformation coefficients of the noisy image. Here,
the inverse of the 3D transformation is applied. This multiplication and the inverse of the 3D
transformation are shown in the Equation:

3D ûS Wiener
i
= T Wiener−1

3D

(
3D WS Wiener

i
×

(
T Wiener

3D (3D νi)
))

(2.49)

where 3D νi is the 3D transform coefficients of the noisy data.

Aggregation Weights: Adjusting the weights in this step is not like first step, which depends on the
number of non-zero coefficients reached after the hard-thresholding. The weights, here, depend on
the Wiener shrinkage coefficients; the weights are assigned as:

ωWiener
i = σ−2

∥∥∥∥WS Wiener
i

∥∥∥∥−2

2
. (2.50)

The parameters set for the original BM3D are shown in Table 2.1 on the next page, which has the
following parameters:

Nhard
step1: step size for searching the patches inside the search window,

Nhard
step2: step size for moving the search window,

Nhard
Prev.: small search window width for fast BM3D,

βhard: the Kaiser window function one parameter for reducing the borders effect,
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Table 2.1: Parameter set for the original BM3D filter

Step Symbol Description Fast BM3D
Normal BM3D
σ ≤ 40 σ ≥ 40

St
ep

1
(h

ar
d)

pa
ra

m
et

er
s

T 2D
hard 2D transformation 2D-Bior1.5 2D-Bior1.5 2D-DCT

T 3D
hard 3D transformation 1D-Haar 1D-Haar 1D-Haar

Nhard
1 Patch size 8 8 12

Nhard
2 3D array size 16 16 16

Nhard
step1 Patch step size 6 3 4

Nhard
search Window size 25 39 39

Nhard
step2 Window step size 6 1 1

Nhard
Prev. Small searching window 3 - -
βhard Kaiser window parameter 2.0 2.0 2.0
λ2D 2D thresholding operator 0 0 2.0
λ3D 3D thresholding operator 2.7 2.7 2.8

T hard
match Similarity distance 2500 2500 5000

St
ep

2
(W

ie
ne

r)
pa

ra
m

et
er

s T 2D
Wiener 2D transformation 2D-DCT 2D-DCT 2D-DCT

T 3D
Wiener 3D transformation 1D-Haar 1D-Haar 1D-Haar

NWiener
1 Patch size 8 8 11

NWiener
2 3D array size 16 32 32

NWiener
step1 Patch step size 5 3 6

NWiener
search Window size 25 39 39

NWiener
step2 Window step size 5 1 1

NWiener
Prev. Small searching window 2 - -
βWiener Kaiser window parameter 2.0 2.0 2.0
T Wiener

match Similarity distance 400 400 3500

Haar: a Haar transformation, and

Bior1.5: a biorthogonal wavelet.

• Recent Works in BM3D

Inspired by the success of BM3D, many image denoising researchers have proposed a number of
modifications that are designed to improve the performance of BM3D. The BM3D filters has two
filtering steps and more than twenty parameters. Improving the way of adjusting any of the twenty
parameters would improve the output of the BM3D method. Some of the modifications addressed
the collection of similar patches; some of them used the transformation of the 3D grouped patches,
and others focused on the aggregation of the patches before each stage of the BM3D’s two stages.
Suwabe et al. [93] modified the way of collecting similar patches in the BM3D from non-locally
to globally. They proposed using iterative filtering with Chebyshev polynomial approximation
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Table 2.2: All of the BM3D filter modifications. Four main categories based on the modification application
for illustrative purposes.

BM3D Modifications

Year
Grayscale Images Colour Images Video Applications

Name Name Name Name
2007 BM3D-SH2D C-BM3D V-BM3D -

2008
BM3DUPSA1 RI-BM3D - -
BM3DUPSA2 - - -

2009
BM3D-SPCA CC-BM3D CV-BM3D -
BM3D-MAD - - -

2010
AL-BM3D - - -

BM3D-SSBS - - -

2011
BM3D-AD CF-BM3D BM3D-T R-BM3D
BM3D-Hou - - PT-BM3D

BM3D-frames - - -

2012
IDD-BM3D - V-BM4D OC-BM3D
BM3D-DL - - CT-BM3D

2013 - - - BM4D
2014 Fast-BM3D - - -

(CPA) in order to collect the patches from the whole noisy image. Bashar et al. [12] replaced the
fixed hard thresholding scheme by applying a learning-based adaptive hard thresholding scheme
that takes into consideration the context of corresponding blocks. Hasan et al. [47] improved
the Wiener filter of BM3D by maximizing the structural similarity between the patches instead
of using the mean square error. Moreover, they introduced a 3D zigzag thresholding. However,
since 2007, BM3D has been citied in 329 publications based on IEEE; 27 publications out of the
329 are actually considered to be modifications of the original BM3D. For simplicity, the 27 mod-
ifications are categorized based on their applications into four categories and appear in Table 2.2
as follows: (1) grayscale image denoising; (2) colour image denoising; (3) video denoising, and
(4) other applications such as medical image denoising. According to Table 2.2, about half of the
modifications were proposed for the denoising of grayscale images. When denoising colour im-
ages, the authors considered the similarity between the levels of the colour in red, green, and blue
(RGB). For denoising a video, the similarity between the frames is addressed. In this section, the
BM3D for grayscale image modifications are discussed.

BM3D-Hou: The BM3D performance decreases sharply when the standard deviations of the noise
reaches 40. In the BM3D-Hou approach, which is a parameters modification approach, it is argued
that adjusting some of the BM3D parameters would help in resolving this level of performance
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drop [51]. The maximum grouped patches in BM3D are restricted to Nhard
2 = 16 by default. In

the BM3D-Hou approach it is suggested that Nhard
2 should be greater than 16, such as Nhard

2 = 32,
when the noise level is high. Hence, the maximum distance between two similar patches T hard

match

for the thresholds should be large enough to ensure that there are enough patches in the grouped
patches. In the BM3D-Hou approach it is suggested that T hard

match = 25000 instead of T hard
match = 5000

in the original BM3D. Indeed, [64] ran an experiment on the influence of the thresholds of T hard
match

and the results showed that BM3D performs better when T hard
match = 25000 and the standard deviation

of the noise reaches 90 and 100. The BM3D-Hou approach decreases the size of the patches from
Nhard

1 = 12 to Nhard
1 = 8. Where BM3D-Hou used λ2D = 0 instead of λ2D = 2.0, λ2D defines the

thresholding level of the 2D patches in the transform domain during the first filtering stage. The
experimental results of BM3D-Hou show more encouraging results than the BM3D when the noise
standard deviation reaches 40.

BM3D-SH2D and BM3D-SH3D: Many traditional image sharpening techniques exist. Those tech-
niques rely on the filters to boost the image to higher frequencies such as in the histogram-based
methods. Other techniques exploit frequency transformations to improve their efficiency, where the
sharpening is accomplished by exaggerating parts of the transformation spectrum. One of these
techniques is the alpha-rooting [4] technique, where the α-root of the original coefficient’s magni-
tude is taken for a constant that is larger than 1. One of the drawbacks to the sharpening approach
is the exaggeration of the noise components, which exists in some of the images while sharpening.
In order to overcome this problem, BM3D sharpening 2D (BM3D-SH2D) and BM3D Sharpening

3D (BM3D-SH3D) were proposed as a BM3D modification by [25]. This modification permits
the sharpening of edges and reveals the fine details in images while eliminating noise components.
This modification computes the alpha-rooting for the transformed spectrum of the signal as:

TS H =

 sign [t (i)] |t (0)|
∣∣∣∣ t(i)
t(0)

∣∣∣∣ 1
α
,

t (i) ,

if→ t (0) , 0
otherwise

(2.51)

where t (0) is the transformed coefficient of the signal; t (i) is the original signal and α > 1 is
an exponent of the control’s amount of sharpening. While BM3D only performs thresholding
in the first stage, both BM3D-SH2D and BM3D-SH3D apply (Equation 2.51) to the results of
thresholding in the first stage. Utilizing alpha-rooting helps in resolving the problem of exag-
gerating the noise components when thresholding. Figure 2.21 shows where the alpha-rooting is
applied in BM3D-SH2D and BM3D-SH3D. Here, BM3D-SH3D applies alpha-rooting after the
3D transformed spectra, BM3D-SH2D inverses the 1D transform before the application of the

46



CHAPTER 2. IMAGES DENOISING: BACKGROUND AND LITERATURE REVIEW

(a)

(b)

Figure 2.21: BM3D-SH2D and BM3D-SH3D flowcharts: (a) BM3D-SH2D with alpha-rooting performed
on 2D spectra, and (b) BM3D-SH3D with alpha-rooting performed on 3D spectra.

alpha-rooting.

Using weights that are inversely proportional to the total variance aggregates the overlapped patches
in BM3D. Unlike BM3D, BM3D-SH3D uses a different method to estimate the variance as:

var{TS H} '

(
1 −

1
α

)2

|t (0)|−
2
α |t (i)|

2
α σ2 +

1
α2 |t (i)|

2
α−2
|t (0)|

2
α−2 σ2 (2.52)

' ωiσ
2

and the total variance of the 3D group is estimated as:

υ = σ2 +
∑

t(i),0,i>0

ωiσ
2 (2.53)

BM3D-UPSA1: An iterative upsampling algorithm called (BM3D-UPSA1) is proposed to improve
on BM3D by Danielyan et al. [28]. The proposed method produces denoised images with sharp
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Figure 2.22: The iterative up-sampling scheme for BM3D-UPSA1

Figure 2.23: The iterative up-sampling scheme for BM3D-UPSA2

edges and fewer artifacts. Here BM3D-UPSA1 replaces the Winner filter stage in BM3D by ap-
plying an iterative upsampling algorithm; BM3D-UPSA1 works by upsampling the low-resolution
image obtained via the thresholding (BM3D first stage). Figure 2.22 shows the BM3D-UPSA1
scheme. In Figure 2.22, Φ is the result of BM3D first stage is shown, Ti is an orthogonal trans-
form, χ is the shrinkage function, ui is the result of the previous iteration and β is a zero padding
operator. The orthogonal transform consists of a 2D DCT and 1D Haar transform. The iteration
process stops after 30 iterations. A filter size of 8× 8 is used for the first 7 iterations; then the filter
size is reduced to 5 × 5 . The searching window size used is 25 × 25.

BM3D-UPSA2: The BM3D-UPSA2 method of Danielyan et al. [27] is a modification of BM3D-
UPSA1. This method employs the concept of an NL-Means where a non-local patch is gathered in
order to enhance the approximation, to be subsequently embedded in the iteration scheme shown in
Figure 2.22. The flowchart in Figure 2.23 shows how non-local patches are considered iteratively.
The [ũ]hard

i is the neighbour patches from step one. Twenty iterations with a filter size of 8 × 8 are
used in this method, 25 × 25 is the searching window size, 2D DCT transformation and 1D Haar
transformation are used as orthogonal transformations. BM3D-UPSA2 is used for a filtering video
as well. For video denoising, frames are used instead of patches.

BM3D-SSBS: Block matching (BM) in BM3D becomes unreliable when the noise level is high,
where the transformation coefficients will be less sparse than expected. Therefore, the thresholding
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process enforces fine smooth image details and features. The smooth sigmoid shrinkage function

(SSBS) for the BM3D method (BM3D-SSBS) makes the thresholding in BM3D more robust when
BM errors occur due to the high level of noise [86].

The main idea behind thresholding is to split the transformation of the coefficients into signal
and noise. The original BM3D uses hard thresholding to set the low amplitudes to zero. A soft
thresholding not only sets the low amplitudes to zero but also it shrinks the high amplitudes by
the threshold amount, which could be used as a shrinkage function. Because hard thresholding
produces some unpleasant discontinuity, soft thresholding is more preferred. The drawback of the
soft thresholding is the amount of shrinkage of the high amplitudes that could be signal rather than
noise. The BM3D-SSBS function is intended to use smooth sigmoid shrinkage [10] for BM3D in
order to retain the advantages of the soft/hard thresholding-flexible shrinkages. The SSBS function
is defined as:

δt,τ,λ (x) =
sgn (x) (x − t)

1 + e−τ(x|λ) (2.54)

where the δt,τ,λ (x) function is the product of the soft thresholding when used in conjunction with
the sigmoid function; this is why it is called a “smooth” sigmoid shrinkage function. The δt,τ,λ (x)

function has three degrees of freedom “parameters”: t, λ and τ. Here t, which is called the assump-
tion attenuation parameter, controls the amount of shrinkage imposed by the large amplitudes; λ, is
called the thresholding height, and serves as a threshold; τ has a geometric interpretation according
to the t and λ chosen values. Here the τ parameterizes the curvature of the arc of the SSBS function
in the interval (t,λ). In other words, τ controls the amount of shrinkage applied to those coefficients
whose amplitudes fit within the interval (t,λ). When λ’s value is less than t, the function δt,τ,λ (x)

performs as a soft thresholding function. As the λ’s value is very large, δt,τ,λ (x) works as a hard
thresholding function where λ is the height of the threshold.

When the signal is not sparse enough due to the high level of noise, BM3D-SSBS replaces the hard
thresholding using the SSBS function. A simple sparsity measure is used: 1) first, the number of
the coefficients that is greater than a fixed threshold is computed; 2) if the number is large, SSBS
is used, otherwise, hard thresholding is used.

BM3D-SAPCA: As a modification to the BM3D, BM3D with shape-adaptive principal component

analysis (BM3D-SAPCA) was proposed in order to increase the data sparsity [26]. Unlike the
original BM3D, BM3D-SAPCA has only one stage for filtering. Shape-adaptive neighbourhoods
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Figure 2.24: BM3D with shape-adaptive principal component analysis scheme

are used to ensure that more correlated sub-images are gathered instead of using blocks as in
BM3D. Here BM3D-SAPCA applies a fixed search window as the BM3D.

Motived by the success of the local polynomial approximation achieved by using the intersec-

tion of the confidence interval rule (LPA-ICI) image denoising [40], BM3D-SAPCA obtains the
adaptive-shape neighbourhoods by using 8-directional LPA-ICI. After grouping the adaptive-shape
neighbourhoods, a fixed threshold is used to determine whether to apply the PCA or to apply the
collaborative hard thresholding as in the BM3D.

Here BM3D-SAPCA uses the PCA as a part of the 3D transformation. A threshold is used for
the PCA eigenvalues in order to select eigenvectors. The threshold is proportional to the noise
variance. However, utilizing PCA for image denoising has been extensively discussed in Section
2.2.2.4 on page 35. Figure 2.24 shows the BM3D-SAPCA scheme.

2.3 Multi-view Images Denoising

The human visual system (HVS) observes objects through a binocular (two eyes) system, and then
it directly maps different views (images) of the objects into our brain. The views are different
because each eye is observing a slightly different image from a different angle. By comparing the
relative size (binocular disparity) between the two image objects, the depth of the information can
be extracted. Figure 2.25 shows a scene as seen from different eyes (angles).

At present, there are several approaches to extracting depth information by computing the defer-
ence between two images (stereoscopic images). One popular approach can be seen at the cinema
where polarized lights are used to project images from two different angles onto one screen. The
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Figure 2.25: The horopter points are imaged at corresponding areas in the two retinas.

Left Right

Figure 2.26: An example of a stereoscopic image

viewers use glasses where each lens accepts one of the polarized lights, and block the other. One
scene is watched but two different images are received.

Stereoscopic images can also be exploited for image segmentation. The depth of information
extracted from a stereoscopic image can be utilized further for segmenting objects. Boykov et al.

[16] used a graph-cut algorithm for segmenting objects from stereoscopic images. An example of
a stereoscopic image is shown in Figure 2.26.
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2.3.1 Multiple-view Image Denoising Using PCA

Zhang et al. showed that using multi-view images for image denoising has many benefits over
using a single-view image [107]. A noisy pixel in a multi-view image is estimated based on the
corresponding pixels from all of the other images. In addition, they extended the idea of using
patch-based PCA denoising from a single image to multi-view image denoising. In the method,
similar patches are collected locally and globally from the multiple images before applying the
PCA algorithm for filtering.

2.3.2 Maximum a Posteriori-Markov Random Field

Maximum a posteriori-markov random field (MAP-MRF) is utilized by Heo et al. [49] as a model
for energy minimization in order to compute the disparity maps from a multi-view image. They
proposed an algorithm that initially restored intensity differences by adapting an NL-Means algo-
rithm. Then, the dissimilarity of support pixel distributions was calculated, where the mean square

error was utilized to group similar patches.

2.3.3 A Statistical Approach with Adaptive NL-Means

Luo et al. [69] utilized an adaptive NL-Means algorithm with a joint-view distance for multi-view
image denoising. They replaced the fixed number of similar patches with an adaptive one based
on the variance of the collected patches. They exploited the off-the-shelf algorithms of Chan et al.

[19] as a joint-view distance to compute the correspondences (disparity maps).

2.3.4 Discussion

In this section, a short background for the use of multi-view images in denoising is presented.
The multi-view image denoising methods can be improved through applying the approach used
for computing correspondences between image views, and the denoising algorithm. Some of the
methods utilize simple image similarity metrics, and others exploit statistically based methods for
computing image similarity. Some methods adapt NL-Means and others employ PCA as denois-
ing algorithms. Multi-view images improve the performance of the denoising by exploiting the
redundancy of the different views.

52



CHAPTER 2. IMAGES DENOISING: BACKGROUND AND LITERATURE REVIEW

2.4 Additive White Gaussian Noise Estimating

Estimating subjectively the true noise level of an image in real-life situations is a challenge. There-
fore, embedding noise level estimating techniques into image denoising methods is highly needed.
Various techniques of noise estimation were proposed. Noise estimating techniques are grouped
into two main categories: spatial domain techniques, and frequency domain techniques. In this
following subsections, we present the results of evaluating these techniques.

2.4.1 Spatial Domain Estimation Techniques

2.4.1.1 Local Mean and Variance

Estimation based on the local mean and variance [57, 44]: in this technique, we estimated the local
mean and variance in uniform patches as extracted from the entire image as:

u (x, y) =
1

n × n

∑
I (x, y)

x,y∈P

(2.55)

and

σ2 (x, y) =
1

n × n

∑
I (x, y)2

x,y∈P

− u (x, y)2 (2.56)

where P is the local squared patch with size n × n, u (x, y) is local mean, and σ2 (x, y) is the local
variance. All local variance estimates are then averaged. The noise standard deviation equals to
σ = 1

M×N

√∑
σ2 (x, y) . M × N is the input image size. The local mean and variance estimation

technique utilizes locally squared kernel. We tested this technique using various kernel sizes (2×2,
4×4, 12×12, and 32×32), we have found that this technique produces closest estimate to the true
noise level when we applied 12 × 12 kernel size.

2.4.1.2 Sum of the Absolute Values of the Laplacian

Estimation based on sum of the absolute values of the Laplacian [53]: in this estimator, we applied
laplacian mask first, then we computed sum of the absolute values of Laplacian as
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1 -2 1
N = -2 4 -2

1 -2 1

and the standard deviation is computed as

σ =

√
π

2
1

6 (M − 2) (N − 2)

∑
I

|I (x, y) ~ N| . (2.57)

where ~ is the convolution.

2.4.1.3 Simplified Noise-power Spectra Estimating

Simplified method of estimating noise-power spectra [46]: we applied the mask N first in this es-
timator, then we computed its convolution with the noisy image as

0 -0.2500 0
N = -0.2500 1 -0.2500

0 -0.2500 0

and

eps =

√
4
5
× |I (x, y) � N | , (2.58)

the standard deviation is computed as

σ =

√
1

M × N
×

∑
I

eps2. (2.59)
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2.4.2 Frequency Domain Estimation Techniques

2.4.2.1 Wavelet Median Absolute Deviation

The median absolute deviation of the wavelet coefficients [35, 34]: by using this technique, we
estimated the noise variance by computing the median absolute deviation of the wavelet coefficients
at the finer scale as:

σ = medianη
∣∣∣∣T 2DI (x, y)i − mediani

(
T 2DI (x, y)i

)∣∣∣∣ × β (2.60)

where T 2DI (x, y)i is the 2D linear transformation of a pixel located at row i from the noisy image,
mediani the median of values located at row i, medianη is the median of medians of all rows, and
β is a rescaling parameters equals to 1.4826.

2.4.2.2 PCA for Noise Estimating

Noise level estimation based on PCA [110, 66, 67]: in this approach, the standard deviation of
the additive noise is estimated based on the covariance of weak textures patches in the frequency
domain. PCA transformation is deployed as a transform. The covariance of the patches, is calcu-
lated iteratively by utilizing a gradient decent optimization method for finding a local minimum
variance. At each iteration n, the following steps from 1 to 4 are processed:

1. The high textures patches are excluded using a threshold at each iteration. The inverse
gamma cumulative distribution function tunes the level of thresholding as:

τ = σ2
nF−1 (δ, α, β) (2.61)

where σ2
n, which is the variance, is the eigenvector associated to the minimum eigenvalue of

the covariance matrix of the week textures patches of the noisy image at the iteration n, δ is
level of confidence equals to 0.999, α = patch size2

2 , and β = patch size2

2 × tr
(
D
′

h × Dh + D
′

v × Dv

)
where tr is the trace of Dh and Du matrices represent horizontal and vertical derivative oper-
ators, respectively.

2. Computing the covariance matrix of the weak texture patches.

3. Obtaining the variance σ2
n, which is equal to the minimum eigenvalue of the covariance
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matrix of the weak texture patches. The initial σ2 is set to the minimum eigenvalue of the
covariance matrix of the entire noisy patches.

4. Finally, the standard deviationσ of the additive noise equals to the square root of the variance
when reaching the local minimum variance.

2.4.3 Discussion

We contaminated our grey-scale dataset with AWGN, and utilized the noise estimating techniques
presented to estimate the noise level σ . The noise level ranges between 10 to 100 were found.
We used the best parameters that we found for each method, for instance, 5 × 5 patch size was
employed for local mean and variance technique. After running the experiment, we have found
that frequency domains filters outperform the spatial domain filters. Noise level estimation based
on PCA technique of Xinhao et al. [67] have achieved the closest estimate. The chart shown in
Figure 2.27 illustrates the results of the experiment when estimating noise in the Boat image.

2.5 Images Similarity Measures

Evaluating qualitatively, or subjectively, the performance of the various image denoising methods
would vary from person to person. Therefore, it is essential to use quantitative image similarity
measures along with the subjective evaluation in order to compare the quality of the outcomes of
these denoising methods. Image similarity measures produce quantitative values that represent the
degree of matching among images, or patches.

Image similarity measures may vary. Some of them are very sensitive to additive noise, others are
more sensitive to speckle noise, and still others are only sensitive to luminance information. Also
computing image similarity could be either global or local. In global computing, a measure returns
a value that describes the similarity of the whole image. Local similarity measures, on the other
hand, divide the images into blocks before computing the similarity for each block separately.

Akramullah [6] stated that “Human eyes are the most sensitive to luma rather than chroma in-
formation in digitally coloured images”. For this reason, it is preferred to apply image similarity
measures in the luma channel via a colour scheme that separates the intensity of the luma channel
from the chroma channel; for instance, the Y’ channel in the Y’CbCr colour space. However, the
used images in this thesis is a grey-sale images.
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Figure 2.27: Estimating AWGN in the noisy Boat image: Gomez G. [44], Immerkaer, J. [53], Hanson, M.
[46], Donoho, L., and Johnstone M. [35], Liu et al. [66].
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If we assume that u(x, y) is a true image of size M × N with the coordinates (x, y), and that û(x, y)
is the filtered image, a similarity measure could be mathematically represented as

S (u(x, y), û(x, y)). (2.62)

Most of similarity measures S (u(x, y), û(x, y)) are image similarity metrics when they satisfy the
following constraints:

1. Boundedness S (u(x, y), û(x, y)) ≥ 0

2. Symmetry S (u(x, y), û(x, y)) = S (û(x, y), u(x, y))

3. 1Uniques minimum S (u(x, y), û(x, y)) = 0, only if→ u(x, y) = û(x, y)

This section provides insight into some of the image similarity measures.

2.5.1 Mean Square Error

Mean square error (MSE) is one of the simplest and most common similarity measures. The MSE
measure represents the average of the squares of the difference “error” between the referenced and
the filtered images. The higher the value of MSE, the poorer the quality of the denoised image.
The MSE measure is sensitive to the outliers’ pixels. The MSE is given as:

MS E =
1

M × N

M∑
x=1

N∑
y=1

(u (x, y) − û (x, y))2 (2.63)

2.5.2 Peak Signal to Noise Ratio

PSNR is an expression that represents the ratio between the maximum possible value of a signal
and the value of the distorting noise that affects the quality of its representation. The higher the
PSNR’s value, the better the quality of the denoised image. According to Mitchell [76], because
MSE and PSNR are sensitive to outliers’ pixels, the search window size for the local measures
should be at least 20 × 20 in order to increase the number of similar patches. The PSNR is defined
as:

1Some measures use 1 or 100 instead of 0 as an unique maximum when u(x, y) = û(x, y)
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PS NR = 10 log10

(
(2n − 1)2

MS E

)
= 10 log10

2552

MS E
(2.64)

where n is an integer number representing the number of bits per pixel, n = 8 in the case of
grey-scale images.

2.5.3 Normalized Cross-Correlation

A normalized cross-correlation (NCC) estimates the degree to which two images are correlated.
NCC is normalized by the amount of true image energy necessary to give unity as the peak cor-
relation. The NCC measure is sensitive to the outliers’ pixels, but it is more robust to changes
of illumination than MSE and PSNR. The higher the NCC’s value, the higher the quality of the
denoised image. The NCC is defined as:

NCC =
M∑

x=1

N∑
y=1

u (x, y) · û (x, y)
u (x, y)2 (2.65)

2.5.4 Mean Average Error

The mean average error (MAE) represents the average difference between two images. The higher
the value of the MSE, the lower the quality of the denoised image. The MAE is defined as:

MAE =
M∑

x=1

N∑
y=1

|u (x, y) − û (x, y)|
M × N

(2.66)

2.5.5 Structural Content

The structural content (SC) estimates the perceived visual quality of denoised images. The higher
the value of SC, the higher the quality of the denoised image. The SC is given as:

S C =
M∑

x=1

N∑
y=1

u (x, y)2

û (x, y)2 (2.67)
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2.5.6 Maximum Difference

The maximum difference (MD) approximates the maximum difference between the true and the
estimated images. The lower the value of MD, the higher the quality of the denoised image. The
MD is defined as:

MD = max (|u (x, y) − û (x, y)|) (2.68)

2.5.7 Laplacian Mean Square Error

The laplacian mean square error (LMSE) is an image similarity measure calculated based on the
Laplacian value of the true and estimated images. The lower value of LMSE, the better the quality
of the denoised image. LMSE is defined as:

LMS E =
M∑

x=1

N∑
y=1

4 (u (x, y)) − 4 (û (x, y))[
4 (u (x, y))

]2 (2.69)

where the Laplacian operator is denoted as:

4 (u (x, y)) = u (x + 1, y) + u (x − 1, y) + u (x, y + 1) + u (x, y − 1) − 4u (x, y) (2.70)

2.5.8 Normalized Absolute Error

The normalized absolute error (NAE) measures the difference between the true and the estimated
images by the normalized absolute error as:

NAE =
M∑

x=1

N∑
y=1

|u (x, y) − û (x, y)|
u (x, y)

(2.71)

The lower the value of NAE, the higher the quality of the denoised image.
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2.5.9 Mean Structural Similarity

Given the limitations of the previously discussed objective measures, Wang et al. [97] proposed
a more extensive image structural similarity (SSIM) measure that can evaluate image luminance,
contrast, and structural information changes. The luminance component is defined as:

l (u (x, y) , û (x, y)) =
2µu(x,y)µû(x,y) +C1

µ2
u(x,y) + µ

2
û(x,y) +C1

, (2.72)

the contrast component is defined as:

c (u (x, y) , û (x, y)) =
2σu(x,y)σû(x,y) +C2

σ2
u(x,y) + σ

2
û(x,y) +C2

, (2.73)

and the structure component is defined as:

s (u (x, y) , û (x, y)) =
σu(x,y)û(x,y) +C3

σu(x,y) + σû(x,y) +C3
. (2.74)

Where µu(x,y) and µû(x,y) are the means of the true reference image patch and the noisy image patch,
respectively, and σu(x,y) and σû(x,y) are the standard deviations of each image, σu(x,y)û(x,y) represents
the covariance of the two images, and C1, C2, and C3 are the constants used to avoid instability. The
three components are independents. This measure combines the three terms to produce a unique
similarity measure:

S S IM (u, û) = [l (u, û)]α · [c (u, û)]b
· [s (u, û)]γ , (2.75)

where α > 0, α > 0, and α > 0 are the parameters used to adjust the importance of each component.

Since the luminance and contrast can vary across an image, SSIM locally evaluates the luminance,
contrast, and structural changes. It divides the images into patches before assessing each patch by
using the combination:

S S IM (u (x, y) , û (x, y)) =

(
2µu(x,y)µû(x,y) +C1

) (
2σu(x,y)û(x,y) +C2

)(
µ2

u(x,y) + µ
2
û(x,y) +C1

) (
σ2

u(x,y) + σ
2
û(x,y) +C2

) (2.76)
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The MSSIM evaluates an image’s overall quality as:

MS S IM (u (x, y) , û (x, y)) =
1

M × N

M∑
x=1

N∑
y=1

S S IM (u (x, y) , û (x, y)) (2.77)

A study conducted by Horé et al. [50] has revealed that MSSIM is less sensitive to additive noise
than PSNR. The higher the value of MSSIM, the higher the quality of the denoised image.

2.5.10 Discussion

In this section, various image similarity measures were discussed. The review showed that im-
age similarity measures are application-dependent measures; in other words, there is no universal
measure that could be used efficiently for all images processing applications. Image similarity
measures vary: some are simple, e.g., MAE or MSE, and others are complicated like MSSIM.

This thesis investigates the quality of the denoising methods outcomes both quantitatively and
qualitatively, based on the various sensitivities of the measures. This thesis uses full reference
similarity measures. The reference image is assumed to be in existence and free of noise (a true
image), as compared with the denoised image. This thesis employs global image similarity mea-
sures for comparing the true image to the filtered image. In addition, it considers different local
image similarity measures for use in comparing the similarity between patches during the filtering
process. Here the required searching window size for local measures must be at least 20×20 when
using MSE, or PSNR. The final conclusion in our study is based on the use of MSSIM.

2.6 Discretized Wavelet Transforms

There is a variety of transformations in the transform domain that could be used in the transforming
process. One of these transformations, which will be discussed in this section, is the powerful
discretized wavelet transform (DWT). According to Wei et al. [98],“DWT is considered to be a
powerful tool for a diversity of digital signal processing applications”. The DWT is a simplified
version of the continuous wavelet transform (CWT).

CWT provides highly redundant information about the transformed signal, but it requires a massive
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Figure 2.28: Single-level continuous and discrete 1D wavelet transform

amount of resources and computation time. On the other hand, DWT offers acceptable information
about the transformed signal, along with a reduction in resources and computation time. Figure
2.28 shows a single-level continuous and discrete 1D wavelet transform.

Qualities of the wavelet families vary according to several criteria. Understanding the criteria is
essential for choosing an optimal transform for image application. The criteria include:

1. Support quantifying both time and frequency localizations.

2. The symmetry or anti-symmetry. In image processing, symmetry helps in avoiding de-
phasing.

3. Number of vanishing moments for both the scaling or wavelet functions. Wavelets with large
numbers of vanishing moments produce sparse representation for large signal “images”.

4. The regularity of the wavelet. The regularity assists in smoothing the reconstruction image.

5. Orthogonality or bi-orthogonality of the transforms.

Discretized wavelet transform has several families. These families include: Haar, Daubechies,
Symlets, Coiflets, Biorthogonal, Reverse Biorthogonal, and Meyer wavelets. The properties infor-
mation of the wavelet families are explained in Table 2.3.

2.6.1 Haar Wavelet

In 1909, Alfréd Haar [45] presented the first and simplest wavelet basis, which was called a Haar
wavelet. A Haar wavelet is a discontinuous step function, and therefore it is not differentiable. The
Haar wavelet function is similar to the Daubechies db1 function. The wavelet function of Haar is
shown in Figure 2.29.
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Table 2.3: The properties information of the wavelet families. Here * is strictly a positive integer.

Family Short name Examples Order N Symmetry Orthogonal
Haar haar the same as db1 - yes yes

Daubechies db db1, ..., db** N = 1, 2, ... far from yes
Symlets sym sym2, ..., sym** N = 2, 3, ... near from yes
Coiflets coif coif1, ..., coif5 N = 1, ..., 5 near from yes

Biorthogonal bior

bior1.1, ..., bior1.5 N = 1, 3, 5

yes no
bior2.2, ..., bior2.8 N = 2, 4, ..., 8
bior3.1, ..., bior3.9 N = 1, 3, ..., 9

bior4.4, bior5.5
bior6.8 N = 4, 5, 8

RBiorthogonal rbio

rbio1.1, ..., rbio1.5 N = 1, 3, 5

yes no
rbio2.2, ..., rbio2.8 N = 2, 4, ..., 8
rbio3.1, ..., rbio3.9 N = 1, 3, ..., 9

rbio4.4, rbio5.5
rbio6.8 N = 4, 5, 8

Meyer meyr meyr - yes yes
DMeyer dmey dmey - yes yes

Figure 2.29: The wavelet function Ψ of Haar transform
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Figure 2.30: The wavelet functions Ψ of Meyer transform

2.6.2 Meyer Wavelet

Unlike the Haar wavelet, the Meyer wavelet [31] is continuously differentiable, but it does not have
compact support. The Meyer wavelet is an orthogonal wavelet, which is represented by meyer.
Figure 2.30 illustrates the wavelet function.

2.6.3 Daubechies Wavelet

Ingrid Daubechies [30] presented the Daubechies wavelets as modifications to the Haar wavelet.
The Daubechies wavelets, which are supported by orthonormal wavelets, employ more com-
plicated averages and difference operators than the Haar wavelet. dbN presents the name of
Daubechies family wavelets, where N represents the order of the wavelet. Each member of the
family is uniquely identified by its wavelet function. The number of vanishing moments of the
wavelet increases when the order of the wavelet N increases. db1 wavelet is similar to the Haar
wavelet. The wavelet functions of the Daubechies family wavelets are shown in Figure 2.31.

2.6.4 Symlets Wavelet

The symlets wavelets are nearly symmetrical wavelets proposed by Daubechies [29] as a modifica-
tion to the Daubechies wavelets but with an increased symmetry. The symlets wavelets’ properties
are similar to the Daubechies wavelets properties, see the table. symN presents the name of symlets
wavelets family, where N represents the order of the wavelet. Figure 2.32 illustrates the wavelet
functions of the symlets’ wavelets.
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Figure 2.31: The wavelet functions Ψ of Daubechies transform family

Figure 2.32: The wavelet functions Ψ of Symlets transform family
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Figure 2.33: The wavelet functions Ψ of Coiflets transform family

2.6.5 Coiflets Wavelet

Coiflets wavelets are near-symmetric wavelets proposed by Ingrid Daubechies [14]. Unlike the
symlets wavelets, Coiflets wavelets allow a high number of vanishing moments for both the scaling
and the wavelet functions. The Coiflets wavelets are represented by coifN, where N is the number
of vanishing moments for both the wavelet and the scaling functions. The functions of the Coiflets
wavelets family are shown in Figure 2.33.

2.6.6 Biorthogonal and Reverse Biorthogonal Wavelets

Biorthogonal [73] and reverse biorthogonal [92] wavelets are symmetric wavelets. Unlike the
previously mentioned wavelets, this transform is not an orthogonal wavelet. Biorthogonal and
reverse biorthogonal wavelets have two different functions for decomposition and reconstruction;
thus, they are not orthogonal except in the single base. Biorthogonal and reverse biorthogonal
wavelets are represented by biorNr.Nd and rbioNr.Nd, respectively; where Nr is the number of
zeros at pi in the synthesis low pass filter, and Nd is number of zeros at pi in the analysis of a low
pass filter. The functions of biorthogonal wavelets family are shown in 2.34, and the functions of
the reverse biorthogonal wavelets family are shown in Figure 2.35.
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Figure 2.34: The wavelet functions Ψ of Biorthogonal transform family
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Figure 2.35: The wavelet functions Ψ of Reverse Biorthogonal transform family
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2.7 Review Summary

Images are often contaminated with noise during acquisition or transmission or are due to poor
quality image compression. The level of noise may vary from being imperceptible to being very
noticeable. Image denoising techniques produce a new image that is closer to the original noise-
free image. Image denoising methods are categorized into two main groups: single and multi-view
image denoising methods. Single image denoising methods process one image, but multi-view
image denoising methods process multiple images.

The noise within images can be additive, multiplicative, or a mixture. Since this research presents
additive denoising methods, additive denoising methods are explained in greater detail. Addi-
tive denoising techniques are grouped into two main approaches: pixel-based image filtering and
patch-based image filtering. A pixel-based image filtering scheme manipulates one pixel at a time
(pixel-wise) based on its spatially neighbouring pixels. Patch-based image filtering manipulates
patches in order to provide an estimate of the true pixel values based on similar patches located
within a particular search window. Pixel-based image filtering includes low-pass filters, e.g., the
Yaroslavsky filter and BF. Patch-based filters include: NL-Means, the PPB, PB-PCA, DL, and
BM3D filter.

Various image similarity measures were previously discussed. There is no universal measure that
could be used efficiently in all image processing applications. Some image similarity measures are
simple, and others are complicated. Full reference image similarity measures will be used in this
work.
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Images Denoising: Empirical Results and
Discussion

Unlike the mean filter (see the low-pass filters in Subsection 2.2.1.1), the weighted average of
the Gaussian filter assists in gently smoothing noisy images. The weight of this filter is based on
the neighbouring pixel’s locations. Unfortunately, this kind of filter is not suitable for denoising
the edges and the textures due to their high discontinuity nature. The Yaroslavsky filter can only
average pixels with close grey levels. It fails to eliminate high noise levels. The mean, Gaussian,
and Yaroslavsky filters “low-pass filters” have the capability to denoise AWGN, but they fail to
preserve the edges and the fine details. Because the edges have high frequencies, all of the high
frequencies are suppressed by the low-pass filters. Several modifications have been proposed to
overcome this problem through controlling the amount of smoothing when denoising. BF (in
Subsection 2.2.1.2), which is an edge-preserving denoising method, is one of the modifications.
Figure 3.1 shows the effect of applying a BF to preserve the edges, while basic low-pass filters do
not.

Since the heat equation diffuses isotropically, the heat filter (see the variational denoising filters
in Subsection 2.2.1.3) cannot distinguish between noisy pixels and features (i.e., edges). In order
to prevent smoothing across edges, a TV filter uses a condition to set the heat equation ∂υ

∂t = 0 at
near boundaries. Figure 3.2 shows the results of applying isotropic heat diffusion and TV filtering.
Finally, unlike isotropic heat diffusion, ADF (in Subsection 2.2.1.4) does not apply smoothing the
same way in different directions; thus, it is called anisotropic.

The performance of the pixel-based denoising methods (in Section 2.2.2) with the patch-based
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: Low-pass vs. BF: (a) an original Lena image, (b) an AWGN noisy image with σ = 20, (c) a
denoised image using a 21 × 21 mean filter, (d) a denoised image using a 21 × 21 Gaussian filter σd = 3.33,
(e) a denoised image using a 21 × 21 Yaroslavsky filter σs = 0.5, and (f) a denoised image using a 21 × 21,
σd = 3.33 and σr = 0.5 BF. σd controls the space similarity for the blurring strength, and σr controls the
intensity similarity for the edge preserving.
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(a) (b)

(c) (d)

Figure 3.2: Isotropic heat diffusion and TV filtering: (a) an original Lena image, (b) an AWGN noisy image
with σ = 20, (c) a denoised image using heat diffusion (iteration = 50,4t = 0.2), and (d) a denoised image
using a TV filter (iteration = auto(121), λ = 0.02,4t = 0.2).

73



CHAPTER 3. IMAGES DENOISING: EMPIRICAL RESULTS AND DISCUSSION

denoising methods for reducing additive noise at various noise levels have been experimentally
studied. In addition, the issue of time consumption has been addressed.

Four images are used to run this experiment. The images have been chosen carefully to assist in
distinguishing between the methods. The first two of the four images are natural scene images,
Barbara and House; the other two are synthetic images, CurvedBand and Chessboard. The
Chessboard image is a binary image while the other three images are grey-scale images. All four
of the images are shown in Figure 3.3. The fine details in Barbara image helps in demonstrating
how the various methods preserve the image clarity, whereas the sharp edges in the House image
helps in demonstrating how various methods preserve edges. The grey gradations in CurvedBand
image provide insight into the amount of smoothing that has been applied to images. The methods
are also tested with the binary pattern repetitions in the Chessboard image.

The charts in Figure 3.4 show each method performance when σ = 20. By increasing the noise
level, the contrast between methods becomes obvious unlike that seen when the noise level is
low. Here BM3D (see Subsection 2.2.2.5) method achieved better results than were achieved with
the other methods applied to all images. The patch-based denoising methods perform better than
pixel-wise methods.

Figure 3.5 contains charts that illustrate the average execution time aspect for each image. The
K-SVD (see Subsection 2.2.2.3) methods are very time-consuming. They are about ten times more
expensive than any other method. Thus, K-SVD is excluded from the charts to make it easier
to distinguish between methods. The NL-Means (see Subsection 2.2.2.1) comes second after the
K-SVD. Although, the BM3D uses two stages to perform the denoising step, it is the fastest patch-
based method. The time consumed for various values of noise is almost the same, so a high level
of noise does not greatly affect these measurements. It is worth mentioning that the performance
will be addressed in this thesis not complexity.
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(a) (b)

(c) (d)

Figure 3.3: The four images used in the experiment: (a) Barbara image 512 × 512, (b) House image
256 × 256, (c) CurvedBand image 257 × 257, and (d) Chessboard image 256 × 256.

75



CHAPTER 3. IMAGES DENOISING: EMPIRICAL RESULTS AND DISCUSSION

0

0.2

0.4

0.6

0.8

1

N
oisy A

D

Bila
te

ra
l

N
L−M

ea
ns

K
−SV

D

BM
3D

N
on−itP

PB

It−
PPB

PG
PCA

PLPCA

PH
PCA

Barbara Image Results, σ = 20

S
S

IM

0

0.2

0.4

0.6

0.8

1

N
oisy A

D

Bila
te

ra
l

N
L−M

ea
ns

K
−SV

D

BM
3D

N
on−itP

PB

It−
PPB

PG
PCA

PLPCA

PH
PCA

House Image Results, σ = 20

S
S

IM

0

0.2

0.4

0.6

0.8

1

N
oisy A

D

Bila
te

ra
l

N
L−M

ea
ns

K
−SV

D

BM
3D

N
on−itP

PB

It−
PPB

PG
PCA

PLPCA

PH
PCA

CurvedBand Image Results, σ = 20

S
S

IM

0

0.2

0.4

0.6

0.8

1

N
oisy A

D

Bila
te

ra
l

N
L−M

ea
ns

K
−SV

D

BM
3D

N
on−itP

PB

It−
PPB

PG
PCA

PLPCA

PH
PCA

Chessboard Image Results, σ = 20

S
S

IM

Figure 3.4: Charts summarize the performance of the denoising methods for the four images when the noise
level is low (σ = 20). (The same graph is represented in tabular form in Appendix A)
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Figure 3.5: Charts showing the average time consumed in seconds for the various denoising methods ex-
cluding K-SVD. (The same graph is represented in tabular form in Appendix B)
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Chapter 4

A New Patch-based Method for Single
Image Denoising

In the previous chapter, we discussed various single view image denoising methods including the
state-of-the-art patch-based denoising method (BM3D filter) of Dabov et al. [24]. This method
preserves edges and blurs homogeneous areas by exploiting similarities among the various parts of
the input image by using 3D transform-domain collaborative filtering, yet this denoising method
has some performance limitations. This chapter presents a solution for the BM3D filter limitations
and a modified single view image patch-based denoising method.

4.1 Idea of the Proposed Method

We will focus on the limitations of the fixed hard thresholding of the BM3D filter which was cov-
ered previously in Subsection 2.2.2 on page 40. Accordingly, several experiments were established
to study this limitation. Here, we proposed a better solution for this fixed hard thresholding, and
the use of a weighted average for the collaborative Wiener filtering step. The details of our solution
is explained below.

Once a signal in the original BM3D is transferred to the frequency domain, the signal energy will
be concentrated into a small range of coefficients. The signal energy coefficients values are high
compared to the noise energy that is spread over a significant number of coefficients. Therefore, a
threshold is used for the separation of the two energies, where the coefficients are passed through
a threshold in order to remove all of the small coefficients. The original BM3D uses a fixed hard-
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Figure 4.1: Sorting patches based on range weights: Nhard
2 is the maximum number of similar patches.

thresholding operator as a shrinkage function for similar patches with a low luminance distance
(see Subsection 2.2.2 on page 40). The fixed hard-thresholding operator γ3D equals to λ3D × σ.
λ3D = 2.7 when σ < 40, or λ3D = 2.8 when σ ≥ 40. This fixed function blindly suppresses all of
the transformed coefficients against a hard value, which is derived from all of the patches of the
3D array under the threshold, whether the coefficients are noise or not.

In our literature survey, we uncovered a pixel-based BF [95] that outperforms other low-pass filters.
When we studied this filter, we found that geometric and luminance distances between pixels assist
in suppressing random noise and preserve the fine details of noisy images. The idea of our proposed
adaptive threshold is originally derived from this filter. The grouped patches “3D array” will be
sorted based on the luminance distances by using a PSNR similarity measure, and then various
thresholds are utilized based on a textures classification map. Figure 4.1 has a 3D array containing
patches for the thresholding process. Patches with high weights are located at the top close to
the reference patch location. If a patch is spatially located far from to the reference patch, more
enforcement is applied when hard-thresholding the patches’ transforming coefficients.

We ran various experiments to investigate whether using an adaptive thresholding operator that
considers geometric and luminance distances between patches, could outperform the static thresh-
olding operator. In [9], we have found that there was a slightly improvement achieved over using
the fixed hard-thresholding of the original BM3D. Moreover, we extended the experiment by using
various levels of thresholding on denoising two types of dataset images which include: texture
images dataset, and flat images dataset. The datasets are shown in Figure 4.2 and 4.3.

After running the experiments on the images, we noticed that each of the dataset prefers a specific
thresholding level for producing the best denoising results. By comparing our results with the
original BM3D method, we have found that our thresholding levels assist in preserving greater
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(a) (b) (c)

(d) (e) (f)

Figure 4.2: High textures image dataset: (a) 1.2.04.png image 256×256, (b) 1.2.09.png image 256×256,
(c) 1.3.01.png image 256×256, (d) 1.3.03.png image 256×256, (e) 1.3.10.png image 256×256, and (f)
1.5.07.png image 256×256. Dataset was obtained from [1].

(a) (b) (c)

(d) (e) (f)

Figure 4.3: Flat image dataset: (a) Fig0229(b).png image 256×256, (b) Fig1008(c).png im-
age 128×128, (c) Fig0307(a).png image 256×256, (d) Fig0801(c).png image 256×256, (e)
Fig1008(b).png image 128×128, and (f) Fig1056(a).png image 256×256. Dataset was obtained from
[2].
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detail and the smoothing of properly flat regions. Result of the textures and flat regions are shown
in Figure 4.4 and 4.5, respectively.

4.2 The Proposed Method

In this section, a modified block matching 3D filtering algorithm for denoising additive noisy im-
ages is proposed. A noise estimation phase was developed in the event the noise level was not
specified. Figure 4.6 shows the modified filtering algorithm scheme. Elements of the proposed
method are explained below in greater detail.

4.2.1 Adaptive Collaborative Thresholding

The first stage of our modified BM3D has an adaptive collaborative thresholding filter consisting
of a classification map and a set of various thresholding levels and operators. A texture analysis
method is utilized to create the classification map. Because the texture analysis method is a spatial
domain approach, the classification map should be generated before transforming the noisy image.
The classification map will provide a numeric value that represents the homogeneity of each patch.
This value will be used later when choosing a suitable threshold level and operators for the thresh-
olding of the patches group. This thresholding process estimates the true intensity of each patch.
The general scheme for texture analysis and thresholding of this stage is illustrated in Figure 4.7.

4.2.1.1 Texture Analysis and the Classification Map

There are various texture analysis approaches. Some are simple; (e.g., standard deviation), and
others are sophisticated; (e.g., statistical approaches: Laws’ texture energy measures, grey-level co-

occurrence matrix (GLCM)). Our method utilizes the statistical texture analysis approach GLCM.
This approach was chosen over Laws’ measures because it can be applied to various patch sizes.
The GLCM measures texture areas globally, but we adapted it to be a local measure in order to fit
our needs. The patch sizes of GLCM is adjusted according to the input patch size for our modified

block matching 3D filter. GLCM in our method, first applies a BF and then calculates how often
pairs of pixels with specific order Cd (x, y) occur in each patch. Following this, a normalized co-
occurrence matrix Nd is generated as:
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(a) (b)

(c) (d)

(f) (g)

Figure 4.4: Denoising texture image by modified BM3D filter at(σ = 30): (a) original noiseless texture
image, (b) a noise image σ = 30, (c) the denoised image (BM3D), (d) the denoised image (proposed
method), (e) the residual image (f) = (b)-(c), and (f) the residual image (g) = (b)-(d).
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(a) (b)

(c) (d)

(f) (g)

Figure 4.5: Denoising f lat image by modified BM3D filter at(σ = 30): (a) original noiseless f lat image, (b)
a noise image σ = 30, (c) the denoised image (BM3D), (d) the denoised image (proposed method), (e) the
residual image (f) = (b)-(c), and (f) the residual image (g) = (b)-(d).
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Figure 4.6: The two steps of the modified block matching 3D filtering scheme

Figure 4.7: The general scheme for texture analysis and thresholding.
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Nd (x, y) =
Cd (x, y)∑

x,y∈P
Cd (x, y)

(4.1)

The following numeric feature, which represents homogeneity, is obtained from the normalized
co-occurrence matrix of each patch:

Homogeneity =
∑
x,y∈P

Nd (x, y)
1 + |x − y|

, (4.2)

where x, y is the coordinates of each value. The output value of this equation ranges from (1.0 to
0.0). When the output value is close to 1, the patch is closer to a flat region. The homogeneity
equation of each patch builds up the classification map. The classification map assists in distin-
guishing between patches with high structure and flat regions via a threshold value - this threshold
is for texture analysis.

Empirically, we have found that the cut-off value varies based on two factors: the patch size and
the noise level. For clarification, Figure 4.8 shows the effects of the thresholding values on classi-
fication maps. Figure 4.8 (a) shows the best threshold (0.1) when patch size is 2× 2, Figure 4.8 (e)
shows the best threshold (0.2) when patch size is 4× 4, and Figure 4.8 (i) shows the best threshold
(0.3) when patch size is 6 × 6. However, our classification map adjusts the thresholding values
automatically for 8 × 8 or 12 × 12 patch sizes in case of σ < 40 σ ≥ 40, respectively:

In case of 0 < σ < 40 : CMapI(x,y) =

 255,
0,

if→ Homogeneity > 0.25
otherwise

In case of 40 ≤ σ ≤ 100 : CMapI(x,y) =

 255,
0,

if→ Homogeneity > 0.15
otherwise

(4.3)

where CMapI(x,y) is a pixel intensity of the classification map value at the coordinates (x, y). The
thresholds have been chosen empirically.
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(a) 2x2, τ = 0.1 (b) 2x2, τ = 0.2 (c) 2x2, τ = 0.3

(d) 4x4, τ = 0.1 (e) 4x4, τ = 0.2 (f) 4x4, τ = 0.3

(g) 6x6, τ = 0.1 (h) 6x6, τ = 0.2 (i) 6x6, τ = 0.3

Figure 4.8: Classification maps of Cameraman image via various thresholds
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Figure 4.9: The six various thresholding levels: (Column A) 2 levels of thresholding, (Column B) 3 levels
of thresholding, (Column C) 4 levels of thresholding, (Column D) 5 levels of thresholding, (Column E) 8
levels of thresholding, and (Column F) 16 levels of thresholding.

4.2.1.2 Thresholding Levels and Operators

In order to find the best thresholding levels and operators, we setup a battery of tests. This training
stage had six various thresholding levels and operators. The overall thresholding and training
procedure is illustrated in Figure 4.10. The thresholding levels are shown in Figure 4.9, and the
operators values chosen were between (2.0-4.0). The two image datasets (texture images dataset
[1] and flat images dataset [2]) were contaminated by AWGN with various noise levels (10-100)
(σ). Each of the datasets were then denoised by using the various thresholding levels and operators,
in order to find the best threshold. Finally, the best corresponding thresholding levels and operators
for flat (non-structure) and textures (structure) images were recorded.
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Figure 4.10: The overall thresholding and training procedure.
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4.2.2 Modified Wiener Filtering Weights

Finally, we propose modified Wiener filtering. The Wiener shrinkage coefficients of the 3D array
and the 3D transform coefficients of the noisy image are multiplied element-by-element. Before
this process occurs, the Wiener shrinkage coefficients of the 3D array patches must be averaged.
BM3D averages these coefficients arithmetically, but the modified Wiener filter uses weights for
the 3D array patches when averaging; similar patches will also be assigned greater weight. Here
PSNR is utilized as a patch similarity measure for assigning the weights. Finally, the inverse of the
3D transform is applied.

4.3 Tuning Parameters

4.3.1 Noise Range and Estimation

The original block matching 3D filtering algorithm assumes that the true additive noise power
(standard deviation) is known and added as a parameter prior to the denoising procedure. Indeed,
in real-life situations noise is unknown, and only the resulting noisy images exist. Users must sub-
jectively estimate the true noise level in such situations. Incorrect estimation heavily degrades the
result of the denoising algorithms, and it is always a challenge to precisely estimate the true noise
levels of noisy images. Thus, a reliable noise level estimation process is strongly recommended in
denoising algorithms.

In our proposed work, we considered adding a noise level function (NLF) as an initial stage for
estimating noise levels before the actual denoising procedure in order to fit real-life situations.
There exists spatial and frequency noise estimating techniques as perviously discussed. Since
our denoising method is a frequency domain filter, using any of the frequency domain techniques
with the proposed method is not a problem. Moreover, spatial domain estimation techniques can
be applied prior to the transformation of the noisy image in the proposed method. In Section
2.4, some of spatial and frequency noise estimating techniques were deeply studied to choose the
most suitable technique for the proposed method. From our experiments for the noise estimating
techniques (in Subsection 2.4.3), we found that the noise level estimation based on PCA technique
of Xinhao et al. [67] outperforms the other techniques, so we have chosen this technique to be
embedded into our method when the noise level was not provided.
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Table 4.1: Parameter set for our modified BM3D

Step Symbol Description
The Modified BM3D
σ ≤ 40 σ ≥ 40

St
ep

1
(h

ar
d)

pa
ra

m
et

er
s

T 2D
hard 2D transformation 2D-Bior1.3 2D-DCT

T 3D
hard 3D transformation 1D-Haar 1D-Haar

Nhard
1 Patch size 8 12

Nhard
2 3D array size 16 16

Nhard
step1 Patch step size 3 4

Nhard
search Window size 39 39

Nhard
step2 Window step size 1 1

Nhard
Prev. Small searching window - -
βhard Kaiser window parameter 2.0 2.0
λ3D 3D thresholding operator See Appendix C

T hard
match Similarity distance 2500 5000

St
ep

2
(W

ie
ne

r)
pa

ra
m

et
er

s T 2D
Wiener 2D transformation 2D-DCT 2D-DCT

T 3D
Wiener 3D transformation 1D-Haar 1D-Haar

NWiener
1 Patch size 8 11

NWiener
2 3D array size 32 32

NWiener
step1 Patch step size 3 6

NWiener
search Window size 39 39

NWiener
step2 Window step size 1 1

NWiener
Prev. Small searching window - -
βWiener Kaiser window parameter 2.0 2.0
T Wiener

match Similarity distance 400 3500

4.3.2 Parameters

The parameters for our method were set similar to the original BM3D method. However, an
adaptive threshold based on the geometric distance and patch energy (See table in Appendix C on
page 138) replaces the hard-thresholding of the original BM3D (γ3D is a hard-thresholding operator
equal to λ3D × σ. λ3D = 2.7 when σ < 40, or λ3D = 2.8 when σ ≥ 40). The parameters of our
method are shown in Table 4.1.

4.3.3 Transforms Selections

Filtering an image in the frequency domain involves three steps: first, the decomposition of a
signal to obtain the transform coefficients; second, applying a filtering process to transform the
coefficients, and third, reconstructing the coefficients to retrieve the signal.
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Several families of discrete wavelet transforms were, (discussed in Section 2.6), utilized here
in order to demonstrate the effects of the transformation on the filtering process. The various
DWTs were examined for denoising the dataset of single images. The results show that bior1.1,
bior1.3, rbio1.1, and db1 wavelets came in on at the top of other wavelets. Thus, bior1.3 was
chosen to be applied in the proposed method.

The table in Appendix D on page 139 shows the performance of the modified block matching

3D filtering algorithm when denoising Lena image with various wavelet transforms. In order
to investigate subjectively the differences between the various wavelet transforms, the results of
using the wavelets for denoising Lena image at noise levels (σ = 10) and (σ = 30) are illustrated
in Figures 4.11 and 4.12, respectively. Because of the large number of transforms used in this work
(6 wavelet families with 76 wavelet transforms), the figures only show the best transform out of
each wavelet family. The residual errors are shown in the figures as well.

4.4 Discussion

Suppressing more noise and preserving more detail in BM3D is possible when considering an
adaptive hard-thresholding operator with a textures classification map. The weighted average as-
sists in improving the BM3D collaborative Wiener filtering step. Various wavelet transforms can
be utilized for the modified block matching 3D filtering method, but bior1.1, bior1.3, rbio1.1,
and db1 wavelets are the most suitable wavelets. The performance of the modified block matching

3D filtering method will be discussed later in Chapter 6.
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(a) bior1.3 (35.93 db) (b) rbio1.1 (35.92 db) (c) db1 (35.92 db)

(d) sym17 (35.90 db) (e) coif1 (34.94 db) (f) demy (34.73 db)

(g) bior1.3 (h) rbio1.1 (i) db1

(j) sym17 (k) coif1 (l) demy

Figure 4.11: Denoising lena image by modified block matching 3D filter with various wavelets at(σ = 10):
(a) bior1.3, (b) rbio1.1, (c) db1, (d) sym17, (e) coif1, (f) demy, (g),(h),(i),(j),(k), and (l) are residuals.
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(a) bior1.3 (31.23 db) (b) rbio1.1 (31.22 db) (c) db1 (31.22 db)

(d) sym17 (31.20 db) (e) coif3 (30.61 db) (f) demy (30.35 db)

(g) bior1.3 (h) rbio1.1 (i) db1

(j) sym17 (k) coif1 (l) demy

Figure 4.12: Denoising lena image by modified block matching 3D filter with various wavelets at(σ = 30):
(a) bior1.3, (b) rbio1.1, (c) db1, (d) sym17, (e) coif1, (f) demy, (g),(h),(i),(j),(k), and (l) are residuals.
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Chapter 5

New Patch-based Methods for Multi-view
Image Denoising

Redundancy and similarity among the various parts of multi-view images assist in enhancing the
image denoising process. Here efficient patch similarity assessments play a significant role in max-
imizing the number of similar patches in order to reach an estimate of the pixels’ real values. Those
similarity metrics include: the SSIM index, the MD, and the SVD-based similarity assessments.
NL-Means filtering, is a simple and spatial domain patch-based filter, which could be adapted
along with reliable similarity measures in order to produce an effective enhancing approach that
preserves edges and blurs the homogeneous areas. This chapter presents new patch-based image
filtering approaches for additive noise reduction in noisy multi-view images. We assume that both
the multi-view images are contaminated with the same noise levels. In Section 5.1, the adaptation
of a NL-Means filtering algorithm for multi-view image denoising is introduced. In Section 5.2,
a new multi-view image denoising approach based on NL-Means with a SSIM index is discussed.
In Section 5.3, a new approach for denoising a multi-view image using NL-Means along with MD
and SVD-based similarity assessments is presented.

5.1 Non-local Means for Multi-view Image Denoising

In this section, the utilization of Buades et al. [17] patch-based method for stereoscopic image
denoising is presented. The novelty of this method is its use for filtering multi-view images along
with better quality assessment. After extending the search windows of the NL-Means to cover the
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Figure 5.1: Collecting similar patches from a stereoscopic image: the patch with a black border is the
reference patch, and the patches with the white borders are similar patches.

left and right portions of a stereoscopic image, the larger number of patches will provide estimates
of the reference patches. Figure 5.1 shows how the number of similar patches can be increased.

The estimated value NLMeans [vl]k, for each pixel on the left image at location k, is computed as:

NLMeans [vl]k =
∑
j∈I

ω(k, j) [v] j , (5.1)

where [vl]k and [v] j are the pixel intensities of the left image at location k and j, respectively. Here
j could be located in either the left or the right image. And ω(k, j) is a similarity measure between
the pixels of k and j.

The similarity weight measure satisfies the condition 0 ≤ ω(k, j) ≤ 1 and
∑

j ω(k, j) = 1. It
also depends on the grey level similarity and the Euclidean distance between N [vl]k and N [v] j,
where N [vl]k and N [v] j denote the square neighbourhoods of a fixed size, centred at pixel k and j,
respectively. The weights are described as:

ω(k, j) =
1

Z(k)
e−

‖
(
N[vl]k

)
−
(
N[v] j

)
‖2

h2 , (5.2)

where Z(k) is a normalization factor and h is a filtering parameter set depending on the noise level.
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5.2 Non-local Means with Structural Similarity

Patch-based denoising methods achieve better results when there are enough similar patches that
are accurately grouped before starting the denoising process. Thus, choosing an accurate similarity
assessment can improve the results of the whole denoising process. The main contribution of this
section is the use of SSIM with an extended search area, which makes this approach better for use
with similar patches from both the left and right images.

SSIM and NL-Means [7] are further discussed in order to improve the method of extracting depth
information and creating disparity maps of the stereoscopic images. The SSIM is then utilized to
identify the locations of similar patches from within the input images. The NL-Means algorithm
is then adopted to denoise the collected patches originating from the input images.

The use of the algorithm is validated in denoising various stereoscopic images at various noise
levels in the following chapter. The experimental results show that the denoising performance
of the algorithm is better than the original NL-Means and the stereoscopic denoising with MSE
(Stereo-MSE) [49] methods at low noise levels (σ 6 20).

5.2.1 Structural Similarity Index

The SSIM index is a metric used for measuring the similarity between patches. Unlike the tra-
ditional approaches (e.g., PSNR and MSE), SSIM has been proven to be consistent with human
perception. This index takes into consideration image degradation as a perceived change in struc-
tural information, whereas traditional approaches only estimate perceived errors in the image data.
The SSIM assessment’s value of two patches of size n × n is calculated as:

S S IM(N [vl]k ,N [vr]q) =
(2µLµR +C1) (2σLR +C2)(
µ2

L + µ
2
R +C1

) (
σ2

L + σ
2
R +C2

) , (5.3)

where N [vl]k is a reference patch from the left image, N [vr]q is the corresponding patch from the
right image, µL and µR are the means of the reference and its corresponding patches, respectively.
Here σ2

L and σ2
R are the variances of the reference and the corresponding patches, respectively.

And σLR is the covariance between the reference and the corresponding patches. Finally, C1 and
C2 are the constants used to avoid instability.
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left image right image

Figure 5.2: A full search for a row t: at each pixel of row tle f t from the left stereoscopic image, full search
will be employed for the row t from the right image tright.

5.2.2 Full Searching

At each pixel of a row tle f t from the left stereoscopic image, the algorithm employs a full search
for row tright from the right image for identifying a similar search window’s location. Figure 5.2
illustrates the full searching window process between multi-view images before grouping similar
patches.

5.2.3 Algorithm Outline

At each pixel k, a reference patch N [vl]k from the left image is centred at location k and its search
window is obtained. The right image will then be searched, in raster scan fashion, for a similar
patch N [vr]q centred at location q using the structural similarity S S IM

(
N [vl]k ,N [vr]q

)
in order

to identify the location of a similar search window. Similar patches from the two windows will
be grouped and assigned weights ω; higher weights will be assigned to patches with the highest
level of similarity to the reference patch. The true pixel of the left image value is then estimated by
taking the weighted average of the patches of the windows NLMeans [vl]k. The scheme of SSIM
and NL-Means is illustrated in Figure 5.3. The pseudocode of this algorithm is shown in Algorithm
5.1.
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Figure 5.3: A block diagram of the structural similarity assessment with the NL-Means for stereoscopic
image denoising

Algorithm 5.1 Denoising stereoscopic image using structural similarity with NL-Means
Require: stereoscopic image-left and right images as a input
Ensure: images dimensions must be equal

Output: left images
lw← left image width
rw← right image width
for (k = 0; k < lw; k + +) do

N [vl]k ← obtain from the left image patch n × n centred at location k
Wlk ← searching window M × M centred at location k
for (q = 0; q < rw; q + +) do

N [vr]q ← obtain from the right image patch n × n centred at location q
if (S S IM

(
N [vl]k ,N [vr]q

)
> distance) then

distance = S S IM
(
N [vl]k ,N [vr]q

)
j = q

end if
Wr j ← searching window M × M centred at location j

end for
maxP← maximum number of similar patches
mp = 0
while ( mp < maxP) do
ω(k,mp)c assign weights to each patch from windows Wlk and Wr j

NLMeans [vl]k , weighted average patches of Wlk and Wr j

mp + +
end while

end for
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5.3 Non-local Means with Differences Patch Similarity

In the previous work of Section 5.2 [7], the NL-Means method was adapted for filtering stereo-
scopic images in order to improve the applications of multi-view images. Yet, the previous work
failed to achieve encouraging results when denoising the stereoscopic images with high noise lev-
els (σ > 20) because SSIM was utilized. This is due to the fact that when the noise level increases,
SSIM favours those patches with a similar noise pattern not the actual structure of the patches.
However, in this section, a new stereoscopic image denoising algorithm, similar to the previous
approach, is presented.

The algorithm takes a stereoscopic image as an input. Then, either the MD or the SVD-based
(SVD-based) similarity assessments is utilized for obtaining better locations for the similar search-
ing windows in the input images. Next, the NL-Means algorithm is adapted for denoising the
patches within the bounded search areas. A summary of the contributions of this subsection’s
work in comparison to the previous work is as follows:

1. A SVD-based patch similarity metric is employed instead of the SSIM as a visual quality
assessment.

2. A MD patch similarity metric as a quality assessment is employed for multi-view image
denoising.

3. A bounded search method is utilized instead of the full search method.

4. The outputs contain two images: the left and the right.

The experimental results presented in the following chapter show that this algorithm outperforms
both the original NL-Means and our previous approach to stereoscopic image denoising using NL-
Means with structural similarity (S-SSIM). And it helps to create more accurate disparity maps at
the various noise levels.

5.3.1 Patch Similarity Assessments

Generally, patch-based denoising methods rely heavily on accurate patch similarity assessments.
Those similarity assessments measure the similarity between patches based on the apparent dif-
ferences. This section proposes using more suitable similarity metrics including: SVD-based sim-
ilarity and MD assessments. The SVD-based measure utilizes SVD to assist in identifying the

99



CHAPTER 5. NEW PATCH-BASED METHODS FOR MULTI-VIEW IMAGE DENOISING

similarity between the reference patch and other patches. Meanwhile, The MD is used to deter-
mine the similarity between patches by computing the absolute maximum difference between the
patches.

5.3.1.1 SVD-based Similarity Metric in Patch Similarity Assessment

The HVS is sensitive to structural, luminance, and textural changes in images, so these three
changes must be measured in producing an effective visual quality assessment. The structural
image similarity index assesses these changes in the real domain, and the result is an efficient vi-
sual quality assessment. However, this measure is highly unsuitable for measuring noisy images.
As an alternative approach to overcoming the limitations of SSIM, Narwaria et al. presented the
SVD-based image visual quality assessment robust against noise [79]. Indeed, what makes their
assessment tool more effective against noise is that they utilize SVD as a transformation before
measuring the changes. The transformation assists in distinguishing between noise and signals,
when measuring the changes. This SVD-based similarity assessment consists of two stages: in
the first stage, the visual quality features are extracted from the patches and their singular values
are calculated, whereas a machine learning scheme is utilized to identify the most discriminant
features in the second stage. The large value of an SVD-based assessment means that the patch is
of poor quality.

5.3.1.2 Absolute Maximum Difference as a Patch Similarity Assessment

MD assessment computes the absolute maximum difference in order to determine the similarity
between patches. This method is simpler and faster than the SVD-based similarity assessment.
The lower the value of MD, the better the quality of the patch. The lower value of the MD, the
better the quality of the patch. The MD is defined as:

MD = max
(∣∣∣N [vl]k − N [vr]q

∣∣∣) (5.4)

5.3.2 Bounded Searching

At each pixel i of row tle f t from the left stereoscopic image, the algorithm employs a bounded
search

[
i − ρ, i + ρ

]
in row tright from the right image to identify a similar searching window, where
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left image right image

Figure 5.4: Bounded search for a row t: at each pixel i of row tle f t from the left stereoscopic image; the
bounded search

[
i − ρ, i + ρ

]
will be employed for a row t from the right image tright. Theρ adjusts the

searching size.

ρ is an operator that adjusts the search size. Figure 5.4 illustrates the bounded searching process.

5.3.3 Algorithm Outline

At each pixel kle f t and kright, in both the left and right images, there are the reference patches
N [vl]k and N [vr]k centred at location k with their searching windows. Those pixels will be es-
timated based on their weight by averaging the similar patches that are located within the search
windows. Here, grouping similar patches from both of the search windows is the next required
stage. Whereas either the MD or the SVD-based similarity metrics will be utilized in order to find
the best match for the reference patch within a bounded searching area in the right image. After
that, similar patches from the two windows will be grouped, and weights ω will be assigned to
each of the grouped patches. Patches, which are similar to the reference patch, are assigned higher
weights. The weights are assigned as described in Equation 5.2. Patches will be average weighted
in order to estimate the true pixels of the left and right images. The estimated values are computed
as described in Equation 5.1. The algorithm is illustrated in Figure 5.5. The algorithmic steps of
this approach are shown in Algorithm 5.2.
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Algorithm 5.2 Denoising stereoscopic image using MD or SVD-based similarity with NL-Means
Require: stereoscopic image-left and right images as a input
Ensure: images dimensions must be equal

lw,rw← left and right image width
ρ← searching size parameter
for (k = 0; k < lw; k + +) do

N [vl]k ← obtain from the left image patch n × n centred at location k
Wlk ← searching window M × M centred at location k
for (q = k − ρ; q < ρ; q + +) do

N [vr]q ← obtain from the right image patch n × n centred at location q
if (Dist

(
N [vl]k ,N [vr]q

)
< distance) then

distance = Dist
(
N [vl]k ,N [vr]q

)
, j = q

end if
Wr j ← searching window M × M centred at location j

end for
maxP← maximum number of similar patches
mp = 0
while ( mp < maxP) do
ω(k,mp)c assign weights to each patch from windows Wlk and Wr j

NLMeans [vl]k , weighted average patches of Wli and Wrq

mp + +
end while

end for
for (q = 0; q < rw; q + +) do

N [vr]q ← obtain from the left image patch n × n centred at location q
Wrq ← searching window M × M centred at location q
for (k = q − ρ; k < ρ; k + +) do

N [vl]k ← obtain from the right image patch n × n centred at location k
if (Dist

(
N [vr]q ,N [vl]k

)
< distance) then

distance = Dist
(
N [vr]q ,N [vl]k

)
, i = k

end if
Wli ← searching window M × M centred at location i

end for
maxP← maximum number of similar patches
mp = 0
while ( mp < maxP) do
ω(q,mp)c assign weights to each patch from windows Wr j and Wlk

NLMeans [vr]q , weighted average patches of Wrq and Wli

mp + +
end while

end for
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Figure 5.5: A block digram for stereoscopic image denoising using MD or SVD-based similarity assess-
ments with NL-Means
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Chapter 6

Results and Discussion

The objective of this chapter is to experimentally study the performance of the proposed patch-
based methods for single and multi-view image denoising. The methods are evaluated both quan-
titatively and qualitatively. In the quantitative evaluation, this thesis uses full reference similarity
measures - in other words the reference image, which is assumed to be a constant and free of
noise (a true image), is compared with the denoised image. While C++ code is implemented in
the patch-based single image denoising method, MatLab code is also employed in the patch-based
multi-view image denoising methods. The computer processor used is an Intelr CoreT M i7 (2.5
GHz). In Section 6.1, various image similarity measures for evaluating the denoising methods are
addressed. In Section 6.2, the patch-based single image denoising method is evaluated. In Section
6.3, the patch-based multi-view image denoising methods evaluations are considered.

6.1 Image Similarity Measurements

Two image similarity metrics are explored as objective assessments for assessing the overall quality
of the denoised images: (1) the MSSIM, and (2) the PSNR. The poorest result for MSSIM is zero,
and the best result is 1. The higher the PSNR values, the better the results. The mean structural

similarity evaluates images as:

S S IM (u (x, y) , û (x, y)) =

(
2µu(x,y)µû(x,y) +C1

) (
2σu(x,y)û(x,y) +C2

)(
µ2

u(x,y) + µ
2
û(x,y) +C1

) (
σ2

u(x,y) + σ
2
û(x,y) +C2

) , (6.1)
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MS S IM (u (x, y) , û (x, y)) =
1

M × N

M∑
x=1

N∑
y=1

S S IM (u (x, y) , û (x, y)) , (6.2)

where µu(x,y) and µû(x,y) are the mean of the true reference image patch and the noisy image patch,
respectively, σu(x,y) and σû(x,y) are the standard deviations of each image, σu(x,y)û(x,y) represents the
covariance of the two images, and C1, C2, and C3 are the constants used to avoid instability. The
PSNR is defined as:

PS NR = 10 log10

(
(2n − 1)2

MSE

)
(6.3)

where n is an integer number representing the number of bits per pixel, n = 8 in the case of
grey-scale images.

6.2 New Single Image Denoising Evaluation

In this section our modified BM3D filtering method at various noise levels is discussed. The orig-
inal BM3D parameters are used for the modified BM3D filtering method. Ten grey-scale images
were used during this experiment. The images are shown in Figure 6.1. In Subsection 6.2.1 and
Subsection 6.2.2, the methods are evaluated both quantitatively and qualitatively, respectively.

6.2.1 Quantitative Evaluation

The results of the modified BM3D filtering method are shown in Table 6.1, which compares the
performance of that method with that of the original BM3D. In the table, each noise level (σ)

has two rows: the first row shows the results of the original BM3D, and the second row shows
the results of the modified BM3D filtering method. PSNR was utilized as a similarity metric
to objectively assist the deference between the original and denoised images. The higher PSNR
values are highlighted with a bold font. The results are computed by measuring the differences
between the original noise-free images and the denoised ones. From the table, the level of our
method performance is higher than that of the original BM3D at various noise levels.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6.1: Single image dataset: (a) Cameraman image 256× 256, (b) House image 256× 256, (c) Peppers
image 256× 256, (d) Lena image 512× 512, (e) Barbara image 512× 512, (f) Boats image 512× 512, (g)
Fingerprint image 512× 512, (h) Man image 512× 512, (i) Couple image 512× 512, and (j) Hill image
512× 512.

Figure 6.2: The PSNR performance of the single image denoising methods: BM3D, and modified BM3D
when denoising the single images at varies noise levels (σ).
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Table 6.1: The performance of patch-based single image denoising algorithms at various noise levels (σ).
At each noise level (σ): the first row shows the results of using BM3D, and the second row shows the
performance of our method.

σ C.man House
Pep-
pers

Lena
Bar-
bra

Boats F.print Man
Cou-
ple

Hill
Aver-
age

10
33.99 36.48 34.52 35.87 34.78 33.84 32.4 33.93 33.93 33.62 34.34

34.38 36.77 34.94 36.18 35.24 34.11 32.89 34.14 34.18 33.78 34.66

20
30.21 33.6 31.14 33.01 31.59 30.77 28.82 30.59 30.63 30.68 31.10

30.67 33.89 31.52 33.30 31.95 31.03 29.09 30.78 30.90 30.91 31.40

30
28.22 31.96 29.1 31.24 29.6 28.93 26.84 28.87 28.68 29.03 29.25

28.58 32.22 29.45 31.48 29.94 29.16 27.02 29.03 28.92 29.29 29.51

40
26.38 30.57 27.42 29.93 28.14 27.54 25.52 27.6 27.24 27.86 27.82

26.72 30.86 27.73 30.18 28.47 27.73 25.64 27.80 27.47 28.09 28.07

50
25.1 29.37 26.08 28.8 26.81 26.42 24.4 26.62 26.13 26.85 26.66

25.38 29.64 26.40 29.03 27.14 26.58 24.50 26.79 26.33 27.07 26.89

60
23.86 28.15 24.88 27.71 25.58 25.46 23.44 25.73 25.18 25.95 25.59

24.11 28.50 25.25 27.95 25.92 25.57 23.52 25.88 25.35 26.11 25.81

70
22.79 27.01 23.78 26.67 24.44 24.59 22.56 24.87 24.32 25.09 24.61

23.03 27.37 24.20 26.89 24.75 24.67 22.62 25.12 24.49 25.22 24.83

80
21.87 25.94 22.74 25.66 23.36 23.79 21.74 24.05 23.56 24.27 23.70

22.06 26.27 23.20 25.87 23.68 23.92 21.82 24.29 23.72 24.40 23.92

90
21.12 24.93 21.81 24.7 22.35 23.04 20.96 23.26 22.88 23.47 22.85

21.20 25.24 22.28 24.72 22.71 23.18 21.08 23.49 23.02 23.61 23.05

100
20.29 23.92 20.99 23.78 21.45 22.36 20.23 22.52 22.26 22.72 22.05

20.42 24.24 21.37 23.80 21.81 22.49 20.38 22.74 22.37 22.86 22.25

107



CHAPTER 6. RESULTS AND DISCUSSION

6.2.2 Qualitative Evaluation

The evaluation in this section is subjective, where the quality of the denoised images is addressed
via the visual perception. Additive white Gaussian noisy images with the noise levels (σ = 30, 90)

are chosen to perform this evaluation. Fragments of the denoised gray-scale Man and House images
and the corresponding estimates are shown in Figure 6.3 and Figure 6.4, respectively.

The fragment images show that our method outperforms the BM3D method. Homogeneous regions
are smoothed properly by our method; i.e., man’s cheek in the Man image in Figure 6.3 (h). Our
method preserves sharp edges; e.g., the door of the House image in Figure 6.4.

6.2.3 Discussion

Based on the results reported in Section 6.2, it is obvious that the proposed method outperforms the
original BM3D method not only from the quantitative evaluation point of view, but also from the
qualitative evaluation point of view. This is due to the adaptive hard thresholding and the addition
of weights to the 3D array of the collaborative Wiener filtering.

The adaptive hard thresholding controls the level of thresholding based on a textures classification
map. The weighted averaging adjusts the averaging of the 3D array of the collaborative Wiener
filtering based on the patches’ similarity. Therefore, more details of the true signal have been
preserved, and more noise has been suppressed (i.e., preserved the textures and edges as well as
smoothed the flat regions). On the other hand, the original BM3D hard thresholding, thresholds
blindly the transforms coefficients where portions of valuable image details could be missing, and
it retains the normal averaging for the 3D array of the collaborative Wiener filtering. Because
BM3D is presently the state of the art denoising method, we believe that any improvement would
contribute to developing a better denoising method. As this method has two denoising steps and
more than twenty parameters, we improved just one parameter. However, improving all twenty
parameters is needed in order to achieve a greater improvement.

6.3 New Multi-view Image Denoising Evaluation

This section provides an experimental study of the performance of the new patch-based methods
for the multi-view image denoising methods. We used a fixed 5 × 5 patch size and a 9 × 9 search
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.3: The results of denoising the Man image at noise level (σ = 30): (a) noise-free Man image
512× 512, (b) AWGN noisy image (σ = 30), (c) BM3D, (d) our method, and (e), (f), (g) and (h) fragments
images of the first rows
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.4: The results of denoising the House image at noise level (σ = 90): (a) noise-free House image
256× 256, (b) AWGN noisy image (σ = 90), (c) BM3D, (d) our method, and (e), (f), (g) and (h) fragments
images of the first rows
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(a) (b)

(c) (d)

Figure 6.5: Multi-view image dataset: (a) cones images 450× 375, (b) teddy images 450× 375, (c)
tsukuba images 384× 288, and (d) venus images 434× 383.

window size. Full searching was utilized for the S-SSIM method [7], and fixed bounded search-
ing areas were employed with the size (-20, +20) for NL-Means with the MD similarity method
(S-MD) and NL-Means with SVD-based similarity method (S-SVD) [8]. Four stereoscopic images
were used in this experiment. The four images are grey-scale images, and are shown in Figure 6.5.
In Subsection 6.3.1 and Subsection 6.3.2, the methods are evaluated both quantitatively and quali-
tatively, respectively.

6.3.1 Quantitative Evaluation

The experimental results of the proposed methods are shown in Table 6.2, which compares the
performance of the proposed methods (S-SSIM, S-MD and S-SVD) to the original NL-Means
method. A bold font with a wavy under-bar highlights the highest values of SSIM, while the
highest values of PSNR are highlighted with a bold font.

Figure 6.6 shows the results of using the various methods on Tsukuba image at various noise lev-
els. The chart shows that our method is the preferable one (from a MSSIM and PSNR point of
view). Also the methods are preferable when they are used for denoising any of the four stereo-
scopic images at any noise level.
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Table 6.2: The performance of patch-based multi-view image denoising algorithms at various noise levels
(σ).

σ σ = 10 σ = 20 σ = 40 σ = 60

Method SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR

C
on

es

Noisy 0.572 25.06 0.353 21.13 0.165 15.91 0.097 12.91

NL-Means 0.714 26.58 0.593 25.05 0.409 22.59 0.292 20.63

S-SSIM 0.727 26.76 0.630 25.47 0.450 23.12 0.316 21.10

S-MD 0.728 26.79 0.639 25.57 0.491 23.67 0.382 22.24

S-SVD
::::::
0.729 26.83

::::::
0.640 25.59

::::::
0.496 23.73

::::::
0.387 22.31

Te
dd

y

Noisy 0.543 25.68 0.317 21.42 0.147 16.16 0.087 13.19

NL-Means 0.767 27.83 0.636 26.22 0.429 23.4 0.298 21.18

S-SSIM 0.788 28.06 0.679 26.69 0.473 24.07 0.326 21.82

S-MD
::::::
0.796 28.12

::::::
0.710 26.92

::::::
0.547 24.78 0.417 23.10

S-SVD 0.795 28.11 0.709 26.89 0.546 24.78
::::::
0.419 23.14

T
su

ku
ba

Noisy 0.588 25.63 0.367 21.67 0.183 16.79 0.106 13.82

NL-Means 0.787 27.51 0.659 25.83 0.449 23.07 0.327 21.06

S-SSIM 0.817 27.99 0.708 26.47 0.492 23.69 0.349 21.54

S-MD
::::::
0.821 28.02

::::::
0.727 26.58 0.551 24.26

::::::
0.431 22.65

S-SVD
::::::
0.821 28.04 0.724 26.53

::::::
0.552 24.25

::::::
0.431 22.68

V
en

us

Noisy 0.494 24.90 0.285 21.13 0.140 16.23 0.084 13.27

NL-Means 0.748 26.74 0.614 25.44 0.399 22.88 0.280 20.94

S-SSIM 0.767 26.93 0.650 25.81 0.436 23.56 0.300 21.54

S-MD
::::::
0.780 26.98 0.694 25.99 0.519 24.09

::::::
0.394 22.58

S-SVD
::::::
0.780 26.99

::::::
0.695 26.00

::::::
0.525 24.14

::::::
0.394 22.59
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Figure 6.6: The MSSIM performance of the denoising methods: NL-Means, S-SSIM, S-MD, and S-SVD
when denoising the four stereoscopic images at varies noise levels (σ).

6.3.2 Qualitative Evaluation

The methods are visually evaluated in this section. Here AWGN stereoscopic images with (σ = 40)
were chosen in performing this evaluation. Fragments of the four noisy grayscale stereoscopic
images and the corresponding estimates are shown in Figure 6.7. Each column shows the result
of the same denoising method when applied to the dataset images. Figure 6.8 shows the disparity
maps of these denoised images.

The fragment images appearing in Figure 6.7 show that our methods outperform other methods
because our method preserves the sharp edges, e.g., the newspaper edges in venus image. Also the
homogeneous regions are smoothed properly by our method, e.g., the head and lamp in Tsukuba
image.

The fragments of the disparity maps in Figure 6.8 show that our method outperforms other meth-
ods. Our method produces disparity maps with fewer errors, e.g., the head and lamp in the disparity
map of Tsukuba image. The full-sized images of this experiment with the accompanying disparity
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(a) (b) (c) (d) (e) (f)

Figure 6.7: Fragments of the noisy grayscale stereoscopic images: (a) Original images, (b) AWGN images
(σ = 40), (c) NL-Means, (d) S-SSIM, (e) S-MD and (f) S-SVD

(a) (b) (c) (d) (e) (f)

Figure 6.8: Fragments of the disparity map images: (a) Original images, (b) AWGN images (σ = 40), (c)
NL-Means, (d) S-SSIM, (e) S-MD and (f) S-SVD
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(a) (b) (c)

(d) (e) (f)

Figure 6.9: Tsukubamulti-view image denoising results: (a) Original images, (b) AWGN images (σ = 40),
(c) NL-Means, (d) S-SSIM, (e) S-MD and (f) S-SVD

(a) (b) (c)

(d) (e) (f)

Figure 6.10: Tsukuba multi-view image denoising disparity maps: (a) Original image, (b) AWGN image
(σ = 40), (c) NL-Means, (d) S-SSIM, (e) S-MD and (f) S-SVD
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(a) (b) (c)

(d) (e) (f)

Figure 6.11: Conesmulti-view image denoising results: (a) Original image, (b) AWGN image (σ = 40), (c)
NL-Means, (d) S-SSIM, (e) S-MD and (f) S-SVD

(a) (b) (c)

(d) (e) (f)

Figure 6.12: Cones multi-view image denoising disparity maps: (a) Original image, (b) AWGN image
(σ = 40), (c) NL-Means, (d) S-SSIM, (e) S-MD and (f) S-SVD
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(a) (b) (c)

(d) (e) (f)

Figure 6.13: Teddy multi-view images denoising results: (a) Original image, (b) AWGN image (σ = 40),
(c) NL-Means, (d) S-SSIM, (e) S-MD and (f) S-SVD

(a) (b) (c)

(d) (e) (f)

Figure 6.14: Teddy multi-view image denoising disparity maps: (a) Original image, (b) AWGN image
(σ = 40), (c) NL-Means, (d) S-SSIM, (e) S-MD and (f) S-SVD
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(a) (b) (c)

(d) (e) (f)

Figure 6.15: Venus multi-view image denoising results: (a) Original image, (b) AWGN image (σ = 40), (c)
NL-Means, (d) S-SSIM, (e) S-MD and (f) S-SVD

(a) (b) (c)

(d) (e) (f)

Figure 6.16: Venus multi-view image denoising disparity maps: (a) Original image, (b) AWGN image
(σ = 40), (c) NL-Means, (d) S-SSIM, (e) S-MD and (f) S-SVD
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maps are shown in Figures 6.9, 6.10, 6.11, 6.12, 6.13, 6.14, 6.15, and 6.16.

6.3.3 Discussion

The results discussed in this section show that image similarity measures assist greatly in the
performance of multi-view image denoising methods. As was previously mentioned in the review
chapter of this thesis, the quality of the image similarity measures depends on the image processing
applications used.

The SSIM index is one of the best image quality assessment techniques; however, it unfortunately
fails when it is used with noisy images. Indeed, the structural similarity index would favour
comparing similar noise patterns rather than the actual structures of the images. Here S-SVD
overcomes the issue of S-SSIM by using a transformation before measuring the three changes:
the luminance, contrast, and structure. Thus, the results obtained when using the S-MD and the
S-SVD methods are better than those obtained when using the S-SSIM denoising method.

One of the problems associated with multi-view image denoising methods is the long execution
time due to the large number of images to be searched when filtering. Hence, the use of a bounded
searching area is recommended to overcome this disadvantage. In contrast to the S-SSIM filtering
method, the S-MD and the S-SVD filtering methods employ bounded searching areas.
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Chapter 7

Conclusions and Future Work

In this thesis, we started by reviewing the background of the problem in order to establish an
understanding of the context of the denoising problem. Then, a statement of the denoising problem
was provided. Next, the purpose of the research and the motivation behind it was explained.
Before presenting the new patch-based denoising method, a comprehensive review of patch-based
denoising methods was introduced. After that, the experimental results achieved were presented,
as well as a comparison with other denoising methods. This last chapter will conclude this work
based on the experimental observations made during this study, and present recommendations for
further improvements.

7.1 Summary of Contributions

7.1.1 Single Image Denoising

In this work, a new patch-based denoising method for single images was presented. Improving the
thresholding step and adjusting the accuracy of the aggregation stage for the collaborative Wiener
filtering step improved the performance of the state-of-the-art single image denoising method
(BM3D filtering method). Based on a comprehensive quantitative and qualitative evaluation of
the new methods and of the existing ones, we conclude that:

1. A modified BM3D filtering algorithm for denoising noisy images was developed.

2. The modified BM3D filtering algorithm outperforms the original BM3D filtering algorithm
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at various noise levels.

3. Edges were preserved and the homogeneous regions were properly smoothed using the mod-

ified BM3D filtering algorithm.

4. The idea that the pixel-based BF could be adapted successfully to patch-based denoising
methods was confirmed.

5. Utilizing geometric and luminance distances between similar patches assists in producing an
adaptive hard-thresholding operator.

6. The texture analysis approach (GLCM) can be adapted locally for patches; in addition, it can
be utilized for improving original BM3D filtering algorithm.

7. Using adaptive hard thresholding reduces the number of parameters of the original BM3D
by more than twenty parameters.

8. Weighted averaging improves the aggregation stage of the collaborative Wiener filtering step.

9. The proposed method performs better with some wavelet transforms (i.e., bior1.1, bior1.3,
rbio1.1, and db1).

7.1.2 Multi-views Image Denoising

This thesis also presented new patch-based denoising method for reducing noise in multi-view im-
ages. Image similarity measures significantly affect the performance of multi-view image denois-
ing methods. SSIM, MD and SVD-based image similarity measures outperform other denoising
methods at various levels of noise (σ) . Based on extensive experimental results, the following
observations can be made:

1. The NL-Means can be adopted with various image similarity measures to denoise multi-view
images.

2. The SSIM index with the NL-Means for stereoscopic image denoising produced acceptable
results at low levels of noise (σ 6 20), but it failed to properly denoise the image at a high
level of noise (σ > 20).

3. The SSIM index compares noise structure instead of patch structures.

121



CHAPTER 7. CONCLUSIONS AND FUTURE WORK

4. The transform used in SVD-based image similarity measure assists in producing a robust
image similarity measure.

5. A bounded search area assists in speeding up the filtering of multi-view images.

6. Using NL-Means with MD and SVD-based image similarity denoises both left and right
images simultaneously and in a shorter time.

7.2 Future Work

The patch-based denoising approaches introduced in this thesis are modest, efficient and reliable.
However, these approaches might need some further work in order to improve the quality of their
overall output.

Because BM3D is the state of the art denoising method, we believe that any improvement to it
would contribute to developing a better denoising method. It has two denoising steps and more
than twenty parameters; we improved just one parameter in the modified BM3D filtering algorithm.
Improving the twenty parameters is necessary in order to achieve an even greater improvement.
While we improved the performance of BM3D, we believe that more effort is needed in order to
improve the speed of this method. BM3D can be parallelized in order to improve its efficiency.

Our proposed method for multi-view image denoising is based on the use of spatial domain filters.
We believe that using a transform domain for the filtering of such images would improve their
performance. The methods use traditional image similarity measures (e.g. MSE) for assigning the
weights between similar patches. Recently, some new similarity measures have been developed
that compete with the traditional MSE. We believe that using the more modern similarity measures
for assigning weights would help to improve the results of the methods used.
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Appendix A

Performance Results

The performance of the denoising algorithms with various noise levels (σ). The results are obtained
by measuring the differences between the original images and the denoised images. The highest
values of SSIM are highlighted by a

:::::
wavy

:::::::::::
under-bar

:::::
bold font, while the highest values of PSNR

are highlighted with a bold font.

σ σ = 10 σ = 20 σ = 40 σ = 60

Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

B
ar

ba
ra

Im
ag

e

Noisy 24.795 0.7285 19.764 0.5248 16.328 0.3365 14.924 0.2503

Bilateral 19.760 0.7806 19.314 0.7473 15.435 0.4370 12.782 0.1250

NL-Means 25.106 0.9286 21.594 0.8450 17.634 0.6711 15.584 0.5387

K-SVD 27.200 0.9204 23.353 0.8547 19.435 0.7255 17.087 0.6050

BM3D 31.987 0.9287 30.244
:::::::
0.8935 27.021

:::::::
0.8075 24.962

:::::::
0.7399

Non-iPPB 24.241 0.9224 21.527 0.8581 17.631 0.6962 15.645 0.5709

It-PPB 23.524 0.9128 20.750 0.8556 17.926 0.7291 16.273 0.6114

PGPCA 27.744 0.9239 23.873 0.8565 20.591 0.7518 18.636 0.6747

PLPCA 28.884
:::::::
0.9340 25.304 0.8817 21.766 0.7768 19.769 0.7182

PHPCA 28.663 0.9324 25.035 0.8779 21.636 0.7837 19.554 0.7136
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σ σ = 10 σ = 20 σ = 40 σ = 60

Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
H

ou
se

Im
ag

e

Noisy 24.408 0.6177 19.658 0.3979 16.762 0.2431 15.424 0.1805

Bilateral 26.867 0.8680 25.566 0.8004 18.486 0.3089 10.857 0.2504

NL-Means 29.931 0.8836 26.872 0.8056 22.595 0.6400 19.864 0.4920

K-SVD 30.294 0.8950 27.015 0.8285 23.143 0.7372 20.559 0.6374

BM3D 29.861 0.9016 28.380
:::::::
0.8448 26.864

:::::::
0.7952 25.960

:::::::
0.7618

Non-iPPB 29.700 0.8854 27.205 0.8292 23.377 0.7202 20.812 0.6064

It-PPB 29.144 0.8844 26.658 0.8283 23.684 0.7464 21.893 0.6576

PGPCA 30.281 0.8983 27.114 0.8420 23.769 0.7586 21.826 0.7252

PLPCA 30.902
:::::::
0.9031 27.491 0.8404 23.800 0.7326 22.064 0.7139

PHPCA 30.791 0.9012 27.484 0.8412 23.987 0.7573 22.026 0.7212

C
ur

ve
dB

an
d

Im
ag

e

Noisy 19.221 0.5012 15.068 0.2963 11.875 0.1752 10.465 0.1320

Bilateral 34.645 0.9862 30.923 0.8872 21.083 0.2830 15.021 0.0978

NL-Means 37.916 0.9631 32.627 0.8778 27.058 0.6670 23.570 0.5029

K-SVD 35.287 0.9730 31.079 0.9383 26.702 0.8429 24.255 0.7578

BM3D 35.080
:::::::
0.9869 30.407

:::::::
0.9696 26.082

:::::::
0.9339 24.384

:::::::
0.9189

Non-iPPB 37.496 0.9785 34.169 0.9440 29.715 0.8258 25.760 0.6895

It-PPB 36.731 0.9785 33.041 0.9508 29.736 0.8619 27.213 0.7557

PGPCA 33.661 0.9640 29.573 0.9364 26.165 0.8592 24.457 0.8579

PLPCA 34.526 0.9555 30.250 0.9220 26.362 0.7991 24.879 0.8261

PHPCA 34.635 0.9612 30.171 0.9291 26.488 0.8444 24.705 0.8380

C
he

ss
bo

ar
d

Im
ag

e

Noisy 15.513 0.5585 11.341 0.4397 8.139 0.3181 6.742 0.2503

Bilateral 47.898 0.9853 37.586 0.9118 23.162 0.5564 15.662 0.3774

NL-Means 25.050 0.9760 24.319 0.9435 22.771 0.8837 20.794 0.8371

K-SVD 38.509 0.9609 32.666 0.8973 26.796 0.7995 23.076 0.7272

BM3D 42.827
:::::::
0.9898 38.422

:::::::
0.9689 33.357

:::::::
0.9300 28.304

:::::::
0.9033

Non-iPPB 21.668 0.9701 21.442 0.9407 20.398 0.8745 18.887 0.8280

It-PPB 21.073 0.9601 20.676 0.9254 19.554 0.8631 18.216 0.8160

PGPCA 34.036 0.9759 29.664 0.9537 23.812 0.8334 19.584 0.7675

PLPCA 33.467 0.9411 28.836 0.9059 23.285 0.8150 20.276 0.7968

PHPCA 33.408 0.9421 29.288 0.9227 23.893 0.8332 20.220 0.7873
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Appendix B

Execution Time

Execution time in seconds shows the speed of the denoising methods applied to the four images at
various noise levels (σ). The fastest patch-based methods are highlighted by a

::::::
wavy

:::::::::::
under-bar

:::::
bold

::::
font. In both tables, the methods are sorted from the oldest to the most recent.

σ σ = 10 σ = 20 σ = 40 σ = 60 Average
Method per second per second per second per second per second

B
ar

ba
ra

Im
ag

e

AD 0.05 0.05 0.05 0.05 0.05
Bilateral 0.48 0.48 0.48 0.49 0.48

NL-Means 44.13 46.16 43.66 46.58 45.13
K-SVD 1125.85 1163.52 1116.98 1113.34 1129.92
BM3D

::::
3.13

::::
3.16

::::
3.21

::::
3.96

::::
3.37

Non-it PPB 10.26 9.93 10.37 10.16 10.18
It-PPB 32.10 28.60 30.23 28.68 29.90

PGPCA 5.35 5.27 6.79 6.82 6.06
PLPCA 9.42 9.05 15.43 16.99 12.72
PHPCA 7.62 7.57 9.71 9.77 8.67

136



APPENDIX B. EXECUTION TIME

σ σ = 10 σ = 20 σ = 40 σ = 60 Average
Method per second per second per second per second per second

H
ou

se
Im

ag
e

AD 0.05 0.05 0.05 0.05 0.05
Bilateral 0.48 0.48 0.48 0.48 0.48

NL-Means 44.23 45.50 43.76 43.45 44.24
K-SVD 356.09 344.96 338.84 339.82 344.93
BM3D

::::
0.84

::::
0.82

::::
0.80

::::
0.98

::::
0.86

Non-it PPB 10.97 10.02 10.35 10.10 10.36
It-PPB 30.10 29.38 29.16 28.63 29.32

PGPCA 1.32 1.34 1.65 1.65 1.49
PLPCA 2.28 2.28 3.65 3.73 2.99
PHPCA 1.76 1.71 2.15 2.12 1.93

C
ur

ve
dB

an
d

Im
ag

e

AD 0.05 0.05 0.05 0.05 0.05
Bilateral 0.48 0.48 0.49 0.49 0.48

NL-Means 42.84 45.93 43.42 45.83 44.50
K-SVD 349.84 342.92 340.05 341.39 343.55
BM3D

::::
0.32

::::
0.82

::::
0.84

::::
0.99

::::
0.74

Non-it PPB 9.88 9.99 9.95 10.06 9.97
It-PPB 30.66 28.67 28.74 28.66 29.18

PGPCA 1.34 1.39 1.63 1.68 1.51
PLPCA 2.37 2.19 3.84 3.81 3.05
PHPCA 1.75 1.74 2.19 2.13 1.95

C
he

ss
bo

ar
d

Im
ag

e

AD 0.05 0.05 0.05 0.05 0.05
Bilateral 0.47 0.48 0.48 0.47 0.48

NL-Means 42.39 45.58 44.00 42.93 43.73
K-SVD 1161.89 1155.13 1115.27 1112.00 1136.07
BM3D

::::
0.79

::::
0.32

::::
0.30

::::
0.43

::::
0.46

Non-it PPB 13.18 10.33 10.01 10.05 10.89
It-PPB 41.24 37.00 28.81 29.25 34.07

PGPCA 0.79 0.86 1.03 0.98 0.91
PLPCA 1.35 1.36 2.03 2.11 1.71
PHPCA 1.10 1.04 1.32 1.32 1.20
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Appendix C

Thresholding Levels and Operators

The best suggested thresholding levels and operators for structure and non-structure patches

σ Patch Types Thresholding Levels Operators

10
Structure (Column F) 16 levels of thresholding 2.0-3.5

Non-structure (Column F) 16 levels of thresholding 2.6-4.1

20
Structure (Column F) 16 levels of thresholding 2.0-3.5

Non-structure (Column F) 16 levels of thresholding 2.6-4.1

30
Structure (Column E) 8 levels of thresholding 2.2-2.9

Non-structure (Column F) 16 levels of thresholding 2.5-4.0

40
Structure (Column C) 4 levels of thresholding 2.4-2.7

Non-structure (Column F) 16 levels of thresholding 2.5-4.0

50
Structure (Column B) 2 levels of thresholding 2.6-2.7

Non-structure (Column F) 16 levels of thresholding 2.4-3.9

60
Structure (Column B) 2 levels of thresholding 2.6-2.7

Non-structure (Column F) 16 levels of thresholding 2.2-3.7

70
Structure (Column B) 2 levels of thresholding 2.6-2.7

Non-structure (Column F) 16 levels of thresholding 2.1-3.6

80
Structure (Column B) 2 levels of thresholding 2.6-2.7

Non-structure (Column F) 16 levels of thresholding 2.0-3.5

90
Structure (Column B) 2 levels of thresholding 2.6-2.7

Non-structure (Column F) 16 levels of thresholding 2.0-3.5

100
Structure (Column B) 2 levels of thresholding 2.6-2.7

Non-structure (Column F) 16 levels of thresholding 2.0-3.5
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Appendix D

Discrete Wavelet Transforms Performances

The performance of the modified block batching 3D algorithm with various wavelet families when
denoising Lena image

# Trans.
σ = 10 σ = 20 σ = 30

Step1 Step 2 T Step1 Step2 T Step1 Step 2 T

1 bior1.1 35.53 35.92 2.33 32.25 33.01 2.43 30.19 31.22 2.39

2 bior1.3 35.62 35.93 2.37 32.38 33.02 2.47 30.28 31.23 2.43

3 bior1.5 35.50 35.91 2.43 32.33 32.99 2.52 30.23 31.19 2.73

4 bior2.2 35.50 35.91 2.72 32.33 32.99 2.74 30.23 31.19 2.47

5 bior2.4 35.50 35.91 2.43 32.33 32.99 2.93 30.23 31.19 2.48

6 bior2.6 35.50 35.91 2.42 32.33 32.99 2.73 30.23 31.19 2.48

7 bior2.8 35.50 35.91 2.42 32.33 32.99 2.73 30.23 31.19 2.48

8 bior3.1 35.50 35.91 2.43 32.33 32.99 2.72 30.23 31.19 2.47

9 bior3.3 35.50 35.91 2.42 32.33 32.99 2.73 30.23 31.19 2.61

10 bior3.5 35.50 35.91 2.42 32.33 32.99 3.05 30.23 31.19 2.48

11 bior3.7 35.50 35.91 2.42 32.33 32.99 2.45 30.23 31.19 2.49

12 bior3.9 35.50 35.91 2.44 32.33 32.99 2.46 30.23 31.19 2.48

13 bior4.4 35.50 35.91 2.42 32.33 32.99 2.46 30.23 31.19 2.48

14 bior5.5 35.50 35.91 2.42 32.33 32.99 2.46 30.23 31.19 3.07

15 bior6.8 35.50 35.91 2.65 32.33 32.99 2.46 30.23 31.19 2.47

16 coif1 26.22 34.94 2.5 26.07 32.13 2.95 25.87 30.48 2.7

17 coif2 5.59 8.21 2.26 5.57 6.75 1.99 5.57 6.26 2.11

18 coif3 28.93 34.46 2.86 28.58 32.08 2.67 28.04 30.61 2.85
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APPENDIX D. DISCRETE WAVELET TRANSFORMS PERFORMANCES

# Trans.
σ = 10 σ = 20 σ = 30

Step1 Step 2 T Step1 Step2 T Step1 Step 2 T

19 coif4 5.58 8.22 2.49 5.57 6.75 2.17 5.56 6.26 2.26

20 coif5 23.92 33.00 3.23 23.96 30.66 2.91 23.99 29.33 3.58

21 db1 35.53 35.92 2.47 32.25 33.01 2.57 30.19 31.22 2.55

22 db10 5.59 8.22 2.51 5.57 6.74 2.11 5.57 6.25 2.35

23 db11 25.08 34.46 3.27 25.08 31.75 2.74 25.02 30.17 3.18

24 db12 5.59 8.21 2.45 5.57 6.73 2.16 5.56 6.24 2.37

25 db13 23.48 33.30 2.92 23.54 30.68 2.85 23.62 29.26 3.02

26 db14 5.59 8.23 2.41 5.57 6.75 2.23 5.57 6.26 2.32

27 db15 29.08 34.53 2.92 28.63 32.09 2.86 28.06 30.60 3.05

28 db16 5.58 8.22 2.49 5.57 6.74 2.3 5.56 6.25 2.46

29 db17 23.56 32.40 3.06 23.63 30.02 2.99 23.69 28.78 3.18

30 db18 5.58 8.32 2.55 5.57 6.78 2.36 5.56 6.27 2.44

31 db19 29.15 34.72 3.03 28.78 32.24 2.98 28.20 30.71 3.32

32 db2 5.59 8.46 2.03 5.57 6.84 1.87 5.57 6.30 2.01

33 db20 5.58 8.20 2.62 5.57 6.73 2.43 5.56 6.24 2.54

34 db3 23.18 32.67 2.9 23.21 30.14 2.55 23.27 28.82 2.66

35 db4 5.58 8.25 2.25 5.57 6.76 1.92 5.56 6.25 1.86

36 db5 28.59 34.36 2.94 28.21 31.98 2.55 27.75 30.52 2.6

37 db6 5.58 8.14 2.46 5.57 6.73 1.99 5.56 6.25 1.95

38 db7 23.81 32.91 3.09 23.83 30.55 3.35 23.87 29.22 2.83

39 db8 5.59 8.29 2.51 5.57 6.77 2.05 5.56 6.26 2.24

40 db9 24.44 33.80 3.09 24.59 31.32 2.7 24.68 29.88 3.06

41 dct 35.62 35.90 2.75 32.33 32.96 2.38 30.25 31.14 2.34

42 dmey 25.77 34.73 3.33 25.66 31.96 4 25.51 30.35 3.4

43 rbio1.1 35.53 35.92 2.34 32.25 33.01 2.36 30.19 31.22 2.42

44 rbio1.3 34.96 35.89 2.41 31.89 32.95 2.45 29.91 31.15 2.76

45 rbio1.5 34.67 35.86 2.48 31.71 32.91 2.51 29.76 31.11 2.85

46 rbio2.2 34.67 35.86 2.48 31.71 32.91 2.51 29.76 31.11 2.84

47 rbio2.4 34.67 35.86 2.91 31.71 32.91 2.51 29.76 31.11 2.82

48 rbio2.6 34.67 35.86 2.48 31.71 32.91 2.51 29.76 31.11 2.83

49 rbio2.8 34.67 35.86 2.48 31.71 32.91 2.5 29.76 31.11 2.82

50 rbio3.1 34.67 35.86 2.47 31.71 32.91 2.51 29.76 31.11 2.85

51 rbio3.3 34.67 35.86 2.48 31.71 32.91 2.51 29.76 31.11 2.84
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APPENDIX D. DISCRETE WAVELET TRANSFORMS PERFORMANCES

# Trans.
σ = 10 σ = 20 σ = 30

Step1 Step 2 T Step1 Step2 T Step1 Step 2 T

52 rbio3.5 34.67 35.86 2.47 31.71 32.91 2.51 29.76 31.11 2.88

53 rbio3.7 34.67 35.86 2.49 31.71 32.91 2.65 29.76 31.11 3.06

54 rbio3.9 34.67 35.86 2.48 31.71 32.91 2.51 29.76 31.11 2.89

55 rbio4.4 34.67 35.86 2.48 31.71 32.91 2.51 29.76 31.11 2.7

56 rbio5.5 34.67 35.86 2.48 31.71 32.91 2.51 29.76 31.11 3.15

57 rbio6.8 34.67 35.86 2.48 31.71 32.91 2.51 29.76 31.11 2.95

58 sym10 5.58 8.26 2.29 5.57 6.76 2.1 5.56 6.26 2.48

59 sym11 23.19 32.78 2.87 23.17 30.24 2.8 23.22 28.90 2.79

60 sym12 5.58 8.23 2.39 5.57 6.75 2.18 5.56 6.25 2.11

61 sym13 34.27 35.88 2.8 31.68 32.97 2.76 29.87 31.18 2.78

62 sym14 5.58 8.24 2.42 5.57 6.76 2.23 5.56 6.25 2.19

63 sym15 23.19 32.78 3 23.17 30.24 3.17 23.22 28.90 2.91

64 sym16 5.58 8.24 2.49 5.57 6.76 2.3 5.56 6.25 2.24

65 sym17 34.82 35.90 2.95 31.94 32.99 2.88 30.03 31.20 2.9

66 sym18 5.58 8.25 2.55 5.57 6.76 2.36 5.56 6.26 2.3

67 sym19 23.20 32.77 3.13 23.17 30.24 3.05 23.22 28.89 3.04

68 sym2 5.59 8.46 2.04 5.57 6.84 1.86 5.57 6.30 2.2

69 sym20 5.58 8.24 2.61 5.57 6.76 2.67 5.56 6.25 2.36

70 sym3 23.18 32.67 2.62 23.21 30.14 2.55 23.27 28.82 2.68

71 sym4 5.59 8.39 2.1 5.57 6.80 2.12 5.56 6.29 1.87

72 sym5 32.97 35.81 2.53 30.97 32.91 2.5 29.43 31.13 2.53

73 sym6 5.58 8.32 2.16 5.57 6.78 1.99 5.56 6.27 1.93

74 sym7 23.19 32.74 3.21 23.17 30.21 2.68 23.21 28.86 2.68

75 sym8 5.58 8.27 2.23 5.57 6.76 2.06 5.56 6.27 1.98

76 sym9 32.43 35.77 2.67 30.66 32.87 2.64 29.24 31.10 2.65
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