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Abstract 

Leguminous plants thrive under nitrogen-limited soil conditions because of their ability to 

symbiotically interact with nitrogen-fixing bacteria, known as rhizobia. In the presence of 

compatible strains of rhizobia, they develop specialized symbiotic organs, called root 

nodules, which host the bacteria and provide the appropriate conditions for symbiotic 

nitrogen fixation to occur. The plant hormone cytokinin is the key endogenous trigger for the 

inception of root nodule organogenesis. In the model legume Lotus japonicus, analysis of the 

cytokinin receptor gene Lotus histidine kinase 1 (Lhk1) showed that it is required and also 

sufficient for the initiation of nodule organogenesis. However, mutant plants carrying loss-

of-function lhk1alleles still form a limited number of nodules while being hyper-infected by 

their symbiotic partner, Mesorhizobium loti. 

Here, I show that L. japonicus contains a small family of four cytokinin receptor genes, all of 

which respond to M. loti infection. Within the root cortex, LHK1 performs an essential role 

but also works partially redundantly with LHK1A and LHK3 to mediate cell divisions for 

nodule primordium formation. LHK1 is also shown to be critical in maintaining the 

homeostasis of M. loti entry into L. japonicus roots. The LHK1-dependent signaling is 

required to promote the development of infection threads within the root cortex but also to 

stimulate a negative feedback mechanism that restricts subsequent infections at the root 

epidermis. I have proposed and tested a hypothesis whereby the increased cytokinin activity 

in the root epidermis, as mediated by LHK1, enhances ethylene production, which in turn 

inhibits subsequent M. loti infections. My thesis work identifies a family of seven ACS genes 

that mediate ethylene biosynthesis in L. japonicus and shows that ACS1 and ACS2 are 

potential targets of LHK1-dependent regulation during symbiosis. 

The results of this thesis work contribute to the understanding of the molecular mechanisms 

for hormonal, cytokinin-ethylene dependent, regulation of nitrogen-fixing symbiosis. In 

broader terms, this adds to knowledge of the principles that govern the beneficial plant-

microbe interactions while bolstering the long-term goal of exploiting bio-fertilization 

through nutrient acquiring symbioses as a means of mitigating the negative environmental 

impacts associated with the use of industrial fertilizers in agriculture. 
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Chapter 1  

1 General introduction 
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1.1 Access to a usable form of nitrogen changed the world 

The world we live in today has been dramatically shaped by a single discovery made in 

1908, when a German chemist named Fritz Haber filed a patent on the “synthesis of 

ammonia from its elements”, which included dinitrogen (Haber, 2002). Dinitrogen, 

though extremely abundant in the Earth’s atmosphere, represents a chemically and 

biologically inert form, due to the triple bond connecting the two nitrogen atoms. 

Consequently, dinitrogen is unusable for most organisms. Haber’s discovery was later 

industrialized by Carl Bosch. Haber and Bosch were awarded Nobel prizes in 1918 and 

1931, respectively. Today, this technique is known as the Haber-Bosch process, whereby 

atmospheric dinitrogen is reduced in the presence of hydrogen and iron at high pressure 

and high temperature to ammonia, the most usable form of nitrogen (Townsend and 

Howarth, 2010). 

The short- and long-term effects that have resulted from the Haber-Bosch discovery 

cannot be overestimated and may never be fully calculated. Throughout the 20th century, 

this chemical process was used to produce large quantities of nitrogen-based explosives 

that were used in weapons, resulting in the death of 100 - 150 million people in armed 

conflicts (Erisman et al., 2008). On the other hand, billons of people have been fed by an 

abundance of food made possible by nitrogen fertilizers manufactured through the Haber-

Bosch process (Smil, 2002; Smil, 2004; Erisman et al., 2008) (Figure 1.1) The 

dichotomous influences that have resulted from this process recap, to some extent, the 

controversial origin of the Nobel Prize itself. 

Synthetic fertilizers were pillars of the so-called “Green Revolution” of the mid-to late 

20th century (Flavell, 2016). Pioneered by the work of a Nobel Laurate, Norman Borlaug, 

a set of advances and practices dramatically revolutionized the field of agriculture. 

During this period, the combined use of high-yielding cereal varieties and improved 

technologies and irrigation systems, in association with chemical fertilizers and 

agrochemicals significantly increased global agricultural productivity in many regions of 

the world (Evenson and Gollin, 2003). Nitrogen is one of the most growth-limiting 

factors in plants. Consequently, it has been estimated that between 1908 and 2008 the 

number of people supported per hectare of arable land has increased from 1.8 to 4.4   
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Figure 1.1 Trends in human population throughout the twentieth century. 

Of the total world population (blue line), an estimate is made of the number of people 

that would have survived without reactive nitrogen from the Haber-Bosch process (red 

line), also shown as a percentage of the global population (green line). Figure modified 

from Erisman et al. (2008).  
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persons, mostly due to the nitrogen provided through the Haber-Bosch process (Erisman 

et al., 2008). Although it is hard to quantify the precise number of people whose lives 

depend on the fertilizer inputs, the updated estimate is that the existence of approximately 

48% of the current human population was made possible by the availability of synthetic 

nitrogen fertilizers (Erisman et al., 2008) (Figure 1.1). 

Approximately 80% of the reduced nitrogen manufactured through the Haber-Bosch 

process, is consumed in the production of fertilizers (Galloway et al., 2003; Galloway et 

al., 2004). To meet the rapid expansion in the global population, from 3.5 billion to over 

7 billion people in the last 40 years, the amount of synthetic nitrogen fertilizer applied to 

crops worldwide has increased from 12 to almost 100 teragrams (Tg) per year (Mulvaney 

et al., 2009). Such intensive use of the nitrogen fertilizers, however, is not sustainable. It 

has been estimated that for wheat, rice, and maize typically around 66% of the applied 

nitrogen is lost to the environment (Raun and Johnson, 1999). In 2005, it was estimated 

that only approximately 17% of the nitrogen from the Haber-Bosch process was 

consumed by humans in crop, dairy, and meat products (Braun, 2007). A recent study 

suggested that 40% of the unused nitrogen was denitrified back to dinitrogen, which 

constitutes a massive waste of energy (Galloway et al., 2004). The rest of the excess 

nitrogen, however, by escaping into environmental reservoirs, has been of great concern 

(Townsend and Howarth, 2010). For instance, emissions of greenhouse gases such as 

nitric oxide (NO) and nitrous oxide (N2O) to the atmosphere have increased about five-

fold since pre-industrialized time (Galloway et al., 2004). Soluble nitrates, on the other 

hand, can find their way into aquatic systems, especially nitrogen-limited environments, 

resulting in unintentional nutrient-enrichment and hence, stimulating harmful algal 

blooms and creating coastal dead zones (Gruber and Galloway, 2008; Glendining et al., 

2009). Nitrogen pollution has also been considered as one of the top three threats to 

biodiversity around the globe (Rockström et al., 2009; Townsend and Howarth, 2010). 

Furthermore, according to the National Institute of Health, the elevated nitrate 

concentrations in drinking water may contribute to a variety of health issues including 

several cancers and increased risk for Alzheimer’s disease and diabetes (Townsend and 

Howarth, 2010). Although the value for Canada is not known, a report published in 2013 

by the European Commission estimated the total annual cost to the European Union of 
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environmental impacts caused by nitrogen pollution to be between €70 billion and €320 

billion. This raises the possibility that the costs of fertilization might outweigh the 

benefits (http://ec.europa.eu/environment/integration/research/newsalert/pdf/IR6_en.pdf). 

In addition to the environmental and health concerns, the production of nitrogen 

fertilizers is expensive. The Haber-Bosch process consumes approximately 50% of the 

agricultural fossil fuel budget and is projected to reach 2% of global energy consumption 

by 2050 (Glendining et al., 2009). Figure 1.2 shows that nitrogen consumption is 

unbalanced across the planet. While farmers in developed countries of the West, and also 

in China and India, are heavy users of fertilizers, small holder farmers, for instance in 

sub-Saharan Africa, cannot afford fertilizers (Mueller et al., 2012). While the global 

average fertilizer application rate for maize is 134 kg ha-1, in sub-Saharan Africa this rate 

is only around 3-5 kg ha-1 (Foley et al., 2011; Folberth et al., 2013). 

Today, even with intensive agriculture, nearly a billion people suffer from chronic 

malnutrition across the globe. In sub-Saharan Africa in particular, more than 250 million 

people go hungry (Foley et al., 2011; Rogers and Oldroyd, 2014). By the middle of this 

century, it is predicted that the Earth will be home to more than nine billion people. 

Agriculture already faces tremendous pressure to meet the world’s need with more food, 

fiber, and fuels. Nonetheless, population growth and increasing consumption of calorie- 

and meat-intensive diets are expected to roughly double human food demand by 2050 

(Tilman et al., 2011). In the coming decades, a crucial challenge for humanity will be 

meeting food demands without substantial economic and environmental costs. Scientists 

have called for a second “Green Revolution” with emphasis on crops that can use 

nutrients such as nitrogen more efficiently (Zeigler and Mohanty, 2010; Flavell, 2016). 

1.2 Legumes to the rescue for sustainable growth 

Legumes have been grown for 5000 years in the eastern Mediterranean and 

Mesopotamian regions. Since ancient times, farmers have known that legumes such as 

peas, lentils, and clover are important for soil fertility. Practices such as green manuring, 

crop rotation, and intercropping have been known for millennia. Today, the legume 

family is the second most important plant family in terms of global economy (Graham and  

http://ec.europa.eu/environment/integration/research/newsalert/pdf/IR6_en.pdf
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Figure 1.2 Usage of nitrogen fertilization varies widely across the world’s crop land. 

Figure modified from Mueller et al. (2012). 
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Vance, 2003). Legumes are important sources of protein, oils, vitamins, minerals, and 

fiber all around the world. Many species within this family are also valued for food and 

feed consumption as well as being used in dye and timber production, and as ornamentals 

(Graham and Vance, 2003; Szczyglowski and Stougaard, 2008). Importantly, legumes are 

also excellent natural, green fertilizers (Szczyglowski and Stougaard, 2008). In 1888, 

German scientists Hermann Hellriegel and Hermann Wilfarth discovered that legumes 

use atmospheric nitrogen for their growth. Although, they did not know the mechanism, 

they correctly concluded that legumes performed the trick in the “bumps” on their roots 

where bacteria convert atmospheric nitrogen to ammonia. Since that discovery, the 

nitrogen-fixing symbiosis (NFS) has been of great scientific interest. 

Nitrogen-fixing symbioses, including plant-cyanobacteria symbiosis and root nodule 

symbiosis (RNS), have evolved independently at least ten times in land plants (Delaux et 

al., 2015a). RNS is restricted to several, but not all, species belonging to four orders of 

flowering plants in the Rosid I clade, namely, Fabales, Cucurbitales, Fagales, and Rosales 

(Sprent, 2007). The vast majority of these plants belong to a single Leguminosae family 

(Fabaceae) in the Fabales order (Doyle, 2011). 

Legumes have evolved the ability to form endosymbiotic relationships with nitrogen-

fixing soil bacteria, commonly known as rhizobia (Sprent, 2007; Werner et al., 2014). As 

a result of this association, the leguminous plants develop a novel root derived organ, 

called the root nodule (Oldroyd and Downie, 2008). Nodules host nitrogen-fixing 

rhizobial bacteria intracellularly, providing an environment conducive for the bacterially-

encoded nitrogenase to carry out the reduction of dinitrogen to ammonia (Doyle, 2011). 

This association provides plants, on average, with fixed nitrogen that is estimated to be 

equivalent to approximately 120 Kg/ha-1 (Salvagiotti et al., 2008), thus allowing legumes 

to thrive in nitrogen-limited conditions. 

1.3 Nutrient acquisition through root endosymbioses 

Cooperation is essential to the biology of plants. The driving force behind the symbiotic 

associations between plants and their microorganism counterparts is the reciprocal need 
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for specific nutrients (Figure 1.3). The most elaborate form of beneficial interaction is the 

root nodule endosymbiotic relationship. 

RNS is initiated by a molecular dialogue between legumes and rhizobia. In response to 

the flavonoids released by plants, their compatible microsymbionts synthesize 

lipochitooligosaccharides called Nodulation or Nod Factors (NF). In the model legumes 

Lotus japonicus and Medicago truncatula (Szczyglowski and Stougaard, 2008), as well 

as in other legumes such as soybeans, peas, and clover, perception of NFs by the host 

plant triggers a cellular signaling cascade which prepares the host plant for rhizobial 

accommodation (Madsen et al., 2010). In response to NF perception, two genetically-

coordinated programs are initiated by the host plant; First the epidermal program initiates 

curling of the plant root hair to entrap rhizobia. Bacteria replicate inside the root hair and 

invagination of the plasma membrane results in the formation of infection threads (ITs) 

(Madsen et al., 2010). ITs are plant plasma membrane-derived conduits that extend 

inward from the tip of the root hair to direct rhizobia into the root cortex, the site of 

nodule initiation (Held et al., 2010). Second, concomitant to IT formation, the signaling 

cascade activates the cortical program, triggering cell divisions for initiation of nodule 

primordia (NP) formation. Nodules are specialized root organs that provide a suitable, 

oxygen-limited environment for the enzymatic function of the bacterial nitrogenase 

(Murray, 2011). Once ITs pass the epidermis, they ramify within the root cortex (Figure 

1.4 A). Finally, the rhizobia are released from the ITs into the cortical cells, while 

remaining surrounded by a plant-derived membrane. In these organelle-like structures, 

called symbiosomes, rhizobia reduce atmospheric dinitrogen to ammonium (Suzaki et al., 

2015). RNS constitutes a tremendous evolutionary innovation, which allows the host 

plant to access the atmospheric nitrogen at the expense of photosynthetic carbon which is 

supplied to the bacteria (Figure 1.3). 

Evolved more than 450 million years ago, the symbiotic interaction between plants and 

members of the ancient phylum of fungi, Glomeromycota, is thought to be a vital 

contributor to the colonization of the terrestrial environment by plants (Kistner and 

Parniske, 2002; Parniske, 2008; Held et al., 2010; Delaux et al., 2015b). This arbuscular 

mycorrhizal symbiosis (AMS) provides water and nutrients, such as phosphate and 
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Figure 1.3 Plants engage in intracellular symbioses with beneficial bacteria and fungi. 

Rhizobia and arbuscular mycorrhizal fungi release Nod and Myc factors in response to plant flavonoid and strigolactone signals, 

respectively. This leads to establishment of root nodule (RNS) and arbuscular mycorrhiza (AMS) symbioses. Nodules and arbuscules 

are formed as a result of these associations, respectively. Photosynthetic carbon is provided to both bacterial and fungal partners in 

return for nitrogen and phosphorus, respectively. Figure by Mandana Miri.  
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Figure 1.4 Rhizobial and mycorrhizal colonization. 

(A) In response to flavonoids released by the plant root, rhizobia produce Nodulation factors (Nod factors) that are recognized by the 

plant. Rhizobia gain entry into the plant root through root hair cells. In response to Nod factors, the root hair curls around bacteria 

attached at the surface. Infection threads are invaginations of the plant cell that are initiated at the site of root hair curls and allow 

invasion of the rhizobia into the root tissue. Pre-infection threads (cytoplasmic bridges) are formed in the activated root cortex in 

advance, to guide the path of the infection thread growth. Nodule primordia are initiated in the subtending root cortex below the site of 

bacterial infection. The infection thread grows towards the nodule primordium, ramifies and releases rhizobia into the cells. 

(B) Strigolactones released by the plant root promote spore germination and hyphal branching in arbuscular mycorrhizal fungi (AMF). 

AMF produce mycorrhizal factors (Myc factors) which activate the plant symbiosis signaling pathway. AMF form the hyphopodium, 

a penetration apparatus that allows fungal hyphae to grow into the root epidermal cell. The route of hyphal invasion in the root cortical 

region is predicted by a pre-penetration apparatus (similar to pre-infection threads describe dabove). The fungus colonizes the plant 

root cortex through intercellular hyphal growth. Arbuscules, highly branched hyphae, are formed in the inner root cortical cells from 

the intercellular hyphae. 

Figure modified from Oldroyd (2013). 
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nitrogen, to the host plant. In return, it has been estimated that, approximately 20% of the 

plant photosynthesis-derived carbon is consumed by arbuscular mycorrhiza fungi (AMF) 

(Parniske, 2008) (Figure 1.3). AMS is probably the most widespread terrestrial 

symbiosis, formed by 70-90% of land plant species (Parniske, 2008). It has been 

hypothesized that species which are unable to interact with AMF, for instance, those in 

the Brassicaceae and Chenopodiaceae, have independently lost this ability (Delaux et al., 

2013b). 

Several molecular and genetic observations indicate that RNS, which is a relatively 

recent evolutionary innovation (around 60 million years ago), has evolved in part from a 

pre-existing pathway that regulates the more ancient AMS (Duc et al., 1989; Kistner et 

al., 2005; Markmann and Parniske, 2009; Delaux et al., 2015a). Similar to RNS, the host 

plant and the free-living organism communicate by chemical exchange during AMS 

(Parniske, 2008). Strigolactones released by the plant root are perceived by AMF in the 

rhizosphere, triggering spore germination and hyphal branching (Akiyama et al., 2005; 

Besserer et al., 2006). AMF produce mycorrhizal (Myc) factors (Maillet et al., 2011; 

Genre et al., 2013) which activate the symbiosis signaling pathway in the root. This 

association results in the formation of tree-shaped subcellular structures, called 

arbuscules, which similar to rhizobia, are accommodated by the host plant intracellularly. 

Nutrient exchange between the plant and fungal partners happens through these 

arbuscules (Figure 1.4 B) (Oldroyd, 2013). 

1.4 The symbiosis signaling pathways in legumes 

As mentioned above, molecular dialogue between the host plant and its compatible 

symbiotic partners leads to production of Myc and Nod factors by AMF and rhizobia, 

respectively. The perception of structurally-similar Myc or Nod factors (Maillet et al., 

2011) activates an ancient signaling pathway called the common symbiotic signaling 

(SYM) pathway (Figure 1.5). Over the past two decades, thanks to various mutant 

analyses, tremendous advances have been made in our understanding of the genetic 

elements of the SYM pathway, especially in model legumes such as L. japonicus and M. 

truncatula.
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Figure 1.5 Symbiotic signaling pathway. 

In L. japonicus, Nod factor is recognized by the Nod factor receptors NFR1 and NFR5, embedded in the plasma membrane. This 

perception leads to the activation of SymRK, which is proposed to associate with as-yet-unknown mycorrhizal factor (Myc factor) 

receptors. Activation of these receptor complexes leads to the formation of a secondary messenger which initiates calcium spiking, 

driven by proteins in the nuclear envelope. Calcium spiking is dependent on three nuclear pore proteins, NENA, NUP85, and 

NUP133, the cation channels CASTOR and POLLUX, as well as the calcium pump MCA8 and calcium channels. Calcium spiking is 

perceived by the binding of calcium and calmodulin (CaM) to CCaMK. The activation of CCaMK results in the phosphorylation of 

CYCLOPS. Recently discovered DELLA proteins bridge the CCaMK/CYCLOPS complex to factors Nodulation Signaling Pathway 2 

(NSP2). In the nitrogen-fixing symbiosis pathway, the transcription 1 (NSP1) and NSP2 are required and associate with the promoters 

of several plant genes that regulate RNS, such as NIN, ERN1, and ERN2. For mycorrhizal signaling, the same signaling complex is 

required, but NSP1 is replaced with Required for Arbuscular Mycorrhization 1 (RAM1) to drive expression of mycorrhiza-specific 

genes, such as RAM2. Independent of Common Signaling Genes (CSG), the NIN, NSP1, and NSP2 transcriptional regulators, are also 

required for infection thread (IT) formation. Additionally, the formation, maintenance, and progression of ITs require NAP1, PIR1, 

and ARPC1 genes that encode proteins of the SCAR/WAVE/ARPC1/2 complex which activates actin rearrangement. CERBERUS, an 

E3 ubiquitin ligase has been recently shown to be essential for both symbiotic fungal and rhizobial infection. Components with dual 

function in nodulation and mycorrhizal signaling are shown in yellow. Nitrogen fixation-specific components are shown in red, while 

mycorrhizal signaling-specific components are shown in blue. Figure Mandana Miri. 
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NFs are perceived by a LysM-receptor kinase, located at the plasma membrane (Madsen 

et al., 2003). In L. japonicus, NFs produced by the compatible rhizobia, Mesorhizobium 

loti, are perceived by Nod Factor Receptor 1 (NFR1) and NFR5 which function in a non-

redundant manner (Radutoiu et al., 2003; Broghammer et al., 2012). Lipochito-

oligosaccharides produced by AMF (Maillet et al., 2011) are also perceived by LysM 

receptor-like kinases and recently it has been shown that NFR1 but not NFR5 is 

necessary for the recognition of AMF and the activation of the symbiosis signaling 

pathway (Zhang et al., 2015). There are at least 15 genes with dual function in both RNS 

and AMS, which are thus named the Common Symbiosis Genes (CSG) (Figure 1.5). 

Nod/Myc factor perception induces a signal transduction pathway that activates the 

leucine rich-repeat, plasma membrane-bound Symbiosis Receptor Kinase (SymRK) 

(Endre et al., 2002; Stracke et al., 2002; Kosuta et al., 2011). Activation of this receptor 

complex leads to secondary signals that initiate perinuclear calcium oscillation, called 

calcium spiking, which constitutes the main outcome of the common SYM pathway 

(Wais et al., 2000; Walker and Downie, 2000). Three components of the nuclear pore, 

named NUP85, NUP133, and NENA (Kanamori et al., 2006; Saito et al., 2007; Groth et 

al., 2010), and two cation channels, CASTOR and POLLUX (Imaizumi-Anraku et al., 

2005), are known to be essential for calcium spiking in the nucleus. Very recently, 

nuclear-localized calcium channels called cyclic nucleotide-gated channels (CNGCs) 

were shown to interact with POLLUX (MtDMI1) and to be required for nuclear calcium 

oscillations and subsequently the common SYM pathway in M. truncatula (Charpentier 

et al., 2016). Downstream from the calcium spiking, changes in calcium concentration are 

perceived by Calcium and Calmodulin-dependent receptor Kinase (CCaMK) (Lévy et al., 

2004; Mitra et al., 2004; Tirichine et al., 2006). CCaMK associates with and subsequently 

phosphorylates CYCLOPS (Yano et al., 2008). It has been recently shown that in M. 

truncatula, DELLA proteins promote the formation of the CCaMK/CYCLOPS complex 

(Jin et al., 2016) and like CCaMK and CYCLOPS, are components of common symbiosis 

pathway (Yu et al., 2014; Jin et al., 2016). Whether DELLA proteins have similar 

function in L. japonicus has yet to be determined. 



17 

 

The CCaMK/CYCLOPS complex activates the symbiotic-specific effectors. Several 

nuclear-associated transcriptional regulators including two GRAS family proteins, 

Nodulation Signaling Pathway1 (NSP1) and NSP2, and Nodule INception (NIN) are 

required for IT formation as well as nodule organogenesis (Schauser et al., 1999; Kaló et 

al., 2005; Smit et al., 2005; Heckmann et al., 2006). NSP1 and NSP2 form a hetero-

complex that associates with the promoter of Nod factor-inducible genes, such as 

ENOD11 and ERN1 (Hirsch et al., 2009). Interestingly, it has been recently shown that 

NSP1, NSP2, and NIN which were originally thought to be nodulation-specific, are also 

required for AMS (Liu et al., 2011; Maillet et al., 2011; Delaux et al., 2013a; Nagae et 

al., 2014; Guillotin et al., 2016). 

Identification of several plant mutants has revealed that the epidermal and cortical 

programs for IT and nodule formation, respectively, can be uncoupled (Kosuta et al., 

2011). In fact, there are several genes which are required specifically for bacterial entry 

inside the host root (Held et al., 2010). For instance, components associated with 

modification of plant cell cytoskeleton, including NAP1, PIR1, and ARPC1, have been 

shown to be required for the bacterial entry but not for AMS (Yokota et al., 2009; 

Miyahara et al., 2010; Hossain et al., 2012). This highlights a clear distinction between 

the two symbiotic mechanisms (Held et al., 2010). 

1.5 Ubiquitous hormones function uniquely in nitrogen-fixing 

symbiosis 

Several plant hormones have been reported to positively or negatively regulate RNS. 

These hormones might function at different stages during nodulation. Like any other 

plant developmental process, nodulation is modulated by interactions among multiple 

hormones. 

Since their discovery in the 1950s, cytokinins have been shown to be involved in many 

plant growth and developmental processes throughout a plant's life, including seed 

development and germination, stem cell control in root and shoot, vascular 

differentiation, chloroplast development, root and shoot growth and branching, leaf 
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senescence, stress tolerance, interactions with pathogens, circadian rhythms and 

nodulation (Hwang et al., 2012). 

Cytokinins act as important positive regulators of nodule organogenesis in roots. Early 

evidence dates back to 1994 when Cooper and Long demonstrated that cytokinins can 

partially mimic some of the morphological effects of NF (Cooper and Long, 1994). They 

showed that engineering the cytokinin trans-zeatin secreting system into a Nod- (unable 

to produce NF) strain of Sinorhizobium meliloti led to formation of un-colonized nodule-

like structures on Medicago sativa roots (Cooper and Long, 1994). Indeed, it has been 

shown that exogenous cytokinins trigger cortical cell divisions and formation of nodule-

like structures on roots of several legumes in a manner similar to rhizobia and NF (Bauer 

et al., 1996; Fang and Hirsch, 1998; Mathesius et al., 2000; Heckmann et al., 2011). 

Several genetic studies have highlighted the importance of cytokinin perception in nodule 

formation, including loss-of-function mutations or reduced histidine kinase cytokinin 

receptor gene expression in LjLhk1 and MtCre1 which result in defective nodulation in L 

japonicus and M. truncatula, respectively (Gonzalez-Rizzo et al., 2006; Murray et al., 

2007; Plet et al., 2011). Furthermore, the Spontaneous nodule formation 2 (snf2) gain-of-

function mutation in the L. japonicus Histidine Kinase 1 (LHK1) cytokinin receptor 

confers hypersensitivity to cytokinin and is sufficient to induce cell division and nodule 

primordia formation in the absence of rhizobia (Tirichine et al., 2007). 

Cytokinin perception and signaling is mediated by a multistep His-to-Asp phosphorelay 

pathway similar to the bacterial two-component system (Figure 1.6) (To and Kieber, 2008; 

Hwang et al., 2012; Spichal, 2012; Keshishian and Rashotte, 2015). Perception of 

cytokinins by hybrid histidine kinase cytokinin receptors triggers kinase activity. The 

cytokinin receptors auto-phosphorylate and transfer the signal via phosphorelay to histidine 

phosphor-transfer proteins (HPTs), which in turn, transfer the signal to a set of response 

regulators (RRs), proteins localized in the nucleus. Based on their sequence similarities, 

domain structure and transcriptional response to cytokinin, RRs are classified into two 

distinct subtypes: type-A and type-B. The type-A RRs are comprised of a receiver domain
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Figure 1.6 Cytokinin signal transduction pathway. 

In the cytokinin signal transduction pathway, hybrid histidine protein kinases (HKs), which are located at the plasma membrane and 

endoplasmatic reticulum, serve as cytokinin receptors. Histidine phosphotransfer proteins (HPTs) then transmit the signal from HKs to 

nuclear response regulators (RRs), which can either activate (type-B) or repress (type-A) transcription. Type-B RRs act directly to 

modulate gene expression of the effectors. There are four major steps in cytokinin signaling; HK sensing and signaling, HPT nuclear 

translocation, RR transcription activation, and a negative feedback loop through cytokinin-inducible RR gene products. Upon 

perception of cytokinin by the cyclases/histidine kinases associated sensory extracellular (CHASE) domain, HKs autophosphorylate 

on a conserved histidine (H) residue within the catalytic kinase domain. The phosphoryl group is then transferred to a conserved 

aspartic acid (D) residue in the C-terminal receiver domain. The phosphate group is through HPTs to RRs located within the nucleus. 

Figure by Mandana Miri. 
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and a short carboxyl terminus and their transcription is rapidly elevated in response to 

exogenous cytokinin; these are considered to be primary response genes and negative-

feedback regulators. Type-B RRs, in addition to the receiver domain, have a carboxyl-

terminal output domain that includes both a DNA-binding domain and a transcriptional 

activation domain. Type-B RRs are post-transcriptionally regulated by cytokinin. Activated 

type-B RRs mediate the majority of the transcriptional responses to cytokinin including the 

regulation of the type-A RRs. The activated type-A RRs act as repressors that mediate a 

negative feedback loop (To and Kieber, 2008; Hwang et al., 2012; Spichal, 2012; 

Keshishian and Rashotte, 2015). 

The available data strongly suggest that recruitment of the cytokinin signaling pathway has 

been essential during the evolution of nitrogen-fixing RNS (Frugier et al., 2008). 

Downstream of cytokinin perception, RRs are activated during nodulation (Lohar et al., 

2004; Breakspear et al., 2014). Localization of the GUS-fused Arabidopsis response 

regulator 5 (ARR5) in transgenic L. japonicus roots revealed a rapid cytokinin response 

after rhizobial inoculation in dividing cortical cells at different stages of nodule formation 

(Lohar et al., 2004). Similarly, using the endogenous MtRR4 primary cytokinin response 

gene, Plet et al. showed activation of the cytokinin signaling pathway during nodulation 

in dividing cortical cells (Plet et al., 2011). In M. truncatula it has been shown that the 

expression of both MtRR4 (type-A) and MtRR1 (type-B) are induced in response to 

rhizobial infection and that upregulation depends on several components of the SYM 

pathway (Gonzalez-Rizzo et al., 2006; Ariel et al., 2012). Two additional type-A cytokinin 

RRs, namely MtRR9 and MtRR11 are induced by NF treatment in M. truncatula (Op den 

Camp et al., 2011). Furthermore, constitutive expression of MtRR9 triggered the 

development of nodule primordia-like structures in M. truncatula and L. japonicus (Op 

den Camp et al., 2011). These findings collectively indicate that cytokinin signaling is 

essential, and also sufficient, for nodule organogenesis in roots. 

The plant hormone ethylene, on the other contrary, is known as a negative regulator of 

both rhizobial infection and nodule formation. Exogenous ethylene or its precursor, 1-

aminocyclopropane-1-carboxylic acid (ACC), reduces nodule formation (Grobbelaar et 
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al., 1971; Goodlass and Smith, 1979; Lee and LaRue, 1992; Penmetsa and Cook, 1997; 

Nukui et al., 2000; Lohar et al., 2009). Conversely, inhibitors of ethylene biosynthesis or 

perception, such as aminoethoxyvinylglycine (AVG) and silver ions, respectively, were 

shown to increase nodule number in several leguminous species, including M. sativa, 

Pisum sativum, and L. japonicus (Fearn and Larue, 1991; Guinel and LaRue, 1992; 

Penmetsa and Cook, 1997; Caba et al., 1998; Nukui et al., 2000; Oldroyd et al., 2001). 

Ethylene is perceived by a family of membrane-bound receptors which act as negative 

regulators of the ethylene signaling pathway (Ju and Chang, 2012). These ethylene 

receptors control the activity of the Ethylene INsensitive2 (EIN2) protein, which is a 

positive regulator and one of the central components of the ethylene signaling 

transduction pathway (Lin et al., 2009; Ju and Chang, 2012). A pioneering study in M. 

truncatula showed that the Mtein2 mutant, named sickle, is ethylene insensitive and is 

hyperinfected by S. meliloti, its nitrogen-fixing micro-symbiont (Penmetsa and Cook, 

1997). In contrast to M. truncatula, plants that form determinate nodules, such as L. 

japonicus, soybeans and common beans, contain two copies of the EIN2 gene (Miyata et 

al., 2013; Weller et al., 2015). In L. japonicus, simultaneous suppression of both LjEIN2-

1 and LjEIN2-2 through an RNAi approach, leads to higher ethylene insensitivity and an 

increased number of nodules (Miyata et al., 2013). Similarly, overexpression of dominant 

negative forms of melon (Cm-ERS1/H70A) or Arabidopsis (etr1-1) ethylene receptors in 

L. japonicus leads to ethylene insensitivity, resulting in enhanced M. loti infection and 

increased nodule number (Nukui et al., 2004; Lohar et al., 2009). These results confirm 

the important role of ethylene and ethylene signaling in the regulation of nitrogen-fixing 

symbiosis regardless of the type of nodules (determinate or indeterminate) formed. This 

is also consistent with the observation made 20 years ago in P. sativum, that ethylene has 

a role in providing the positional information for nodule primordia to be formed across 

the root proto-xylem poles (Heidstra et al., 1997). Collectively, these observations 

demonstrate the importance of ethylene in the regulation of rhizobial infection and nodule 

formation in legumes. 
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1.6 Research goals and objectives 

Inspired by the mutually beneficial relationships between legumes and rhizobia, multiple 

novel biotechnological approaches are being exploited toward the ultimate goal of 

developing nitrogen-fixing cereal crops (Beatty and Good, 2011; Oldroyd and Dixon, 

2014; Rogers and Oldroyd, 2014). Should this prove successful, the nitrogen-fixing 

cereal will have tremendous potential towards food sovereignty without further 

undermining the integrity of the Earth’s environmental systems. Therefore, the overall 

objective of this thesis has been to obtain further knowledge and understanding of 

RNS, with the prospect of extending this useful process to non-legume crops. 

Although cytokinin is clearly one of the key endogenous signals during RNS, many 

questions remain unanswered. Comprehensive understanding of cytokinin signaling and its 

downstream effects during symbiosis is being considered here as an essential step in the 

rational consideration of extending RNS to non-legume crops. In the model legume L. 

japonicus, analysis of the Lhk1 cytokinin receptor gene showed that LHK1 is required 

and also sufficient for the initiation of nodule organogenesis in a timely manner (Murray 

et al., 2007; Tirichine et al., 2007). Nonetheless, mutant plants carrying the loss-of-

function lhk1-1 allele still form a limited number of nodules while being hyper-infected 

by their symbiotic partner (Murray et al., 2007). To account for these observations, I 

followed a central hypothesis that other cytokinin receptors function in a partially 

redundant manner with LHK1 to mediate nodule formation. Furthermore, as lhk-1 

mutants show an aberrant rhizobial infection phenotype, this raises the possibility that 

cytokinin promotes not only nodule formation but also participates in the regulation of 

rhizobial infection. As such, the role of cytokinin during rhizobial entry into the root was 

also explored by my thesis research. Here, I have followed the hypothesis that the 

ethylene level was altered in the lhk1-1 cytokinin receptor mutant, leading to excessive 

infection rates. Given the unique phenotype of the lhk1-1 mutant, (hyperinfection in the 

initial absence of nodule formation (Murray et al., 2007)), understanding the underlying 

mechanisms could potentially bridge the gap between rhizobial infection in the epidermis 

and nodule organogenesis in the cortex. Given the above, the specific, detailed objectives 

of my thesis work were as follows: 
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1) To further assess the redundant role of cytokinin receptors during nodule primordia 

formation in the model legume L. japonicus. 

2) To analyze the response of cytokinin receptors to cytokinin and rhizobial infection. 

3) To assess the role of bacterial entry into roots in generating signaling for nodule 

primordia formation. 

4) To evaluate whether a non-legume, Arabidopsis cytokinin receptor can 

functionally replace LHK1 during nodulation. 

5) To investigate how cytokinin might regulate rhizobial infection. 

6) To study whether cytokinin-ethylene crosstalk is involved in limiting rhizobial 

infection. 
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2.1 Contributions made by Mandana Miri 

 

▪ Analyzed the symbiotic phenotype for single and double lhk mutant (Figure 2.7) 

▪ Identified insertional LORE1 mutant alleles and performed the symbiotic 

phenotype analysis (Figure 2.8) 

▪ Studied the transcriptional response of cytokinin receptors in response to ectopic 

cytokinin in L. japonicus wild-type and lhk1-1 roots (Figure 2.10) 

▪ Studied the transcriptional response of cytokinin receptors to rhizobial inoculation 

at several time points in L. japonicus wild-type and lhk1-1 roots (Figure 2.15) 

▪ Studied the necessity of bacterial entry inside the root cortex for nodule formation 

in lhk1-1 by performing the phenotypic analyses of lhk1-1 arpc1-1 and lhk1-1 

symRK-14 mutants (Figure 2.16) 

▪ Performed the symbiotic and non-symbiotic phenotypic analyses of the lhk1-1 

lhk1a-1 lhk3-1 cytokinin receptor triple mutant (Figure 2.17) 

▪ Performed the hairy root transformation experiments (Figure 2.18 and Figure 

2.19) 
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This chapter shows that in Lotus japonicus, the LHK1 cytokinin receptor performs an 

essential function but also works partially redundantly with LHK1A and LHK3 to 

mediate nodule primordium formation within the root cortex. LHK1 is also expressed in 

the root epidermis, where it likely participates in signaling to restrict rhizobial infection. 

2.2 Introduction 

Cytokinins are a group of adenine-based phytohormones which are involved in many 

developmental and growth processes, including nodulation (Amasino, 2005; Frugier et 

al., 2008). In the majority of legume-Rhizobium systems that have been analyzed, the 

main stimulus which initiates nodule formation comes from compatible bacteria in the 

form of chemically decorated lipochitinoligosaccharide molecules, known as nodulation 

or Nod factors (NFs) (Lerouge et al., 1990; Bek et al., 2010). Perception of NFs by the 

host plant LysM motif kinase receptors (Madsen et al., 2003; Radutoiu et al., 2003) 

activates cascades of intracellular responses including calcium spiking (Wais et al., 2000; 

Walker and Downie, 2000; Sieberer et al., 2012). The changes in calcium concentration 

are perceived by calcium and calmodulin-dependent receptor kinase (CCaMK) (Hayashi 

et al., 2010; Singh and Parniske, 2012). This leads to activation of downstream effectors 

for rhizobial infection and nodule formation. 

A growing body of evidence indicates that cytokinin signaling, activated downstream of 

NF perception and CCaMK, is one of the key endogenous effectors of nodulation 

(Frugier et al., 2008). An elegant study by Cooper and Long demonstrated that the 

cytokinin trans-zeatin synthesis and secretion system engineered into Sinorhizobium 

meliloti functionally replaced NF in its ability to incite nodule primordia formation in 

Medicago sativa (Cooper and Long, 1994). A similar effect can be obtained without 

bacteria by external application of a small amount of cytokinin to legume roots, including 

Lotus japonicus (Bauer et al., 1996; Heckmann et al., 2011). 

To date, no direct evidence exists to support the involvement of bacterially-produced 

cytokinin in nodule formation. To the contrary, the identification of spontaneous nodule 

formation phenotypes in tetraploid alfalfa (M. sativa) (Truchet et al., 1989) and in 
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mutants of diploid L. japonicus (Tirichine et al., 2006) indicates the presence of an 

inherent plant signaling process for nodule formation. 

Current data are most consistent with a model where the NF-dependent activation of 

CCaMK leads to local accumulation of cytokinin which, in turn, stimulates root cortical 

cell divisions for nodule primordium formation (Frugier et al., 2008). Such an 

interpretation is in agreement with the observation that L. japonicus plants carrying the 

spontaneous nodule formation 1 (snf1) (Gleason et al., 2006), gain-of-function allele of 

CCaMK do not produce spontaneous nodules in the absence of the functional L. 

japonicus histidine kinase 1 (LHK1) cytokinin receptor (Madsen et al., 2010). 

Conversely, the L. japonicus snf2, gain-of-function allele of Lhk1, induces spontaneous 

nodule formation independent of CCaMK, supporting an epistatic relationship, where 

Lhk1 acts downstream from CCaMK (Tirichine et al., 2007). 

Functional analyses of loss-of-function and gain-of-function alleles of LHK1 defined this 

cytokinin receptor as being required and also sufficient for nodule organogenesis in L. 

japonicus (Murray et al., 2007; Tirichine et al., 2007; Heckmann et al., 2011). Unlike the 

M. truncatula cre1 mutant, the L. japonicus mutant carrying a loss-of function lhk1-1 

allele, formerly known as hit1, (Murray et al., 2007) is hyperinfected by Mesorhizobium 

loti, with infection threads (ITs) heavily present in segments of the root epidermis and 

cortex in the initial absence of nodule organogenesis (Murray et al., 2007). lhk1-1 

develops a limited number of nodules at a later time-point upon inoculation by M. loti 

(Murray et al., 2007), suggesting the presence of an LHK1-independent signaling 

mechanism for nodule formation. We have, therefore, tested a hypothesis that other 

cytokinin receptors function in at least a partially redundant manner with LHK1 to 

mediate nodule organogenesis in L. japonicus. Our data demonstrate that LHK1 exerts a 

unique function in the root epidermis but works partially redundantly with LHK1A and 

LHK3 within the root cortex to mediate nodule formation.  
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2.3 Results 

2.3.1 The L. japonicus cytokinin receptor gene family comprises at 

least four members 

A search of the L. japonicus genome and cDNA sequences resulted in the prediction of a 

small family of four Lotus histidine kinase (Lhk) cytokinin receptor genes, including the 

previously described Lhk1 and Lhk2 (Murray et al., 2007). Based on the clustering pattern 

of the corresponding LHK proteins with Arabidopsis thaliana cytokinin receptors, the 

Lhk2 gene was renamed as Lhk1A, while the two putative cytokinin receptors genes 

described in this study were named Lhk2 and Lhk3. The corresponding L. japonicus 

proteins are referred to as LHK1, LHK1A, LHK2, and LHK3 (Figure 2.1). 

Full-length transcripts were obtained for three Lhk mRNAs (i.e. Lhk1A, Lhk2, and Lhk3) 

and these were used to decipher the corresponding gene structures. Like Lhk1, the Lhk3 

gene has 11 exons while 12 and 14 exons are predicted for the Lhk1A and Lhk2 genes, 

respectively. The length of the predicted open reading frames was found to be 2991 bp, 

3654 bp, and 2958 bp for Lhk1A, Lhk2, and Lhk3, respectively which reflect the 

corresponding proteins of 997, 1218, and 986 amino acids. 

2.3.2 LHK proteins contain domains characteristic of known 

cytokinin receptors 

To test the prediction that, like LHK1, the LHK1A, LHK2 and LHK3 proteins constitute 

bona fide cytokinin receptors, their amino acid sequences were analyzed. Subsequently, 

functional assays in heterologous yeast and Escherichia coli systems were performed (see 

Section 2.3.5). 

The identity and similarity of LHK protein sequences within the predicted L. japonicus 

cytokinin receptor family and to representatives from A. thaliana are summarized in 

Table 2.1. Briefly, LHK1 and LHK1A are the most similar, sharing 80% identity at the 

amino acid level. Conservation between these two proteins and the Arabidopsis AHK4 

cytokinin receptor is also high at 68 and 69%, respectively. In contrast, LHK1 and 

LHK1A share only ~50% identity with LHK2 and LHK3. Amino acid sequence 

conservation is greater between LHK2 and LHK3 and also to their presumed orthologues 
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Figure 2.1 The L. japonicus LHK protein family. 

This unrooted relationship tree is based on an amino acid alignment of full-length 

sequences from L. japonicus (LHK1, LHK1A [formerly LHK2; (Murray et al., 2007)], 

LHK2, and LHK3) and Arabidopsis (AHK4, AHK2, and AHK3). Protein sequences were 

aligned with Clustal Omega using the default settings, and the MEGA 6.0.5 phylogeny 

tool was used to portray the relationships between proteins. The numbers represent a 

measure of support where 100 represents maximal support. The LHK3 variant 1 protein 

(Figure 2.5) was used for the alignment.  
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from A. thaliana (AHK2 and AHK3, respectively) than between these two proteins and 

LHK1 or LHK1A (Table 2.1). 

The N-terminal portions of all four LHKs contain a predicted cyclase/histidine kinase 

associated sensory extracellular (CHASE) domain (Heyl et al., 2012), which is highly-

conserved within the LHK family and also between LHKs and CHASE domains of other 

known cytokinin receptors, such as Arabidopsis AHK4 (Figure 2.2). 

As expected, the predicted cytosolic portion of the LHK proteins contains the highly 

conserved kinase domain (Hwang et al., 2012) with the canonical H, N, G1, F, and G2 

consensus motifs and a highly conserved histidine (H) residue (Figure 2.3). 

Downstream, a C-terminal receiver or output domain is also present in all predicted LHK 

receptors. This domain is known to participate in the phosphotransfer from the kinase 

domain to downstream signaling elements, such as histidine phosphotransfer (HPT) 

proteins (Ferreira and Kieber, 2005). The functional receiver domain carries three 

characteristic motifs named the DD, D, and K motifs for their conserved amino-acid 

residues (Ueguchi et al., 2001). All of these conserved motifs are present in the predicted 

LHK receptors, including an absolutely invariant aspartic acid residue in the D motif 

(Figure 2.4). 

2.3.3 The Lhk3 transcript undergoes altenative splicing 

A survey of L. japonicus gene atlas data (http://ljgea.noble.org/v2/) (Verdier et al., 2013), 

shows that the Lhk transcripts are present in all organs analyzed, including roots, stems, 

leaves and nodules. Two variants of the Lhk3 mRNA (variant 1 and 2) were identified 

through 5’-RACE experiments (Figure 2.5). These variants differ in length, with Lhk3 

mRNA variant no. 2 being longer by 228 bp in comparison with variant no. 1. Transcript-

specific primers were designed against each predicted Lhk3 mRNA variant and the 

presence of both mRNA species was confirmed via RT-PCR of L. japonicus nodule total 

RNA (Figure 2.5B).  

http://ljgea.noble.org/v2/


42 

 

Table 2.1 Amino acid conservation among L. japonicus LHK proteins and with their 

presumed Arabidopsis counterparts. 

 

Name Length Name Length Identity 

(%) 

Similarity 

(%) 

LHK1 993 LHK1A 997 80 86 

LHK1 993 LHK2 128 52 67 

LHK1 993 LHK3 986 49 66 

LHK1 993 AHK4 1057 68 78 

LHK1A 997 LHK2 1218 53 68 

LHK1A 997 LHK3 986 51 68 

LHK1A 997 AHK4 1057 69 79 

LHK2 1218 LHK3 986 54 69 

LHK2 1218 AHK2 1176 59 71 

LHK3 986 AHK3 1036 68 80 
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Figure 2.2 Amino acid sequence alignment to protein regions containing the CHASE 

domain, as predicated for L. japonicus LHKs and Arabidopsis AHK4. 

The alignment was created using CLUSTALW2 and analyzed by the BoxShade software. 

A threshold of ≥80% conservation was used. Green shading indicates identical residues, 

whereas yellow indicates conservative substitutions. Asterisks denote conserved amino-

acid positions corresponding to the Arabidopsis AHK4 receptor residues W244, T301, 

F304, R305 and T3017, all shown to be important for cytokinin binding (Heyl et al., 

2007). 
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Figure 2.3 Amino acid sequence alignment of the protein kinase domain, as 

predicted for L. japonicus LHK proteins and compared to Arabidopsis AHK4. 

The conserved H, N, G1, F, and G2 box motifs are indicated. An asterisk denotes the 

presence of a conserved histidine (H) residue required for the phosphorelay. Boxed and 

highlighted R and G residues correspond to position of lhk3-1 and lhk2-5 mutations, 

respectively (see Section 2.3.4). The alignment was created as before (see Figure 2.2).  
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Figure 2.4 Amino acid sequence alignment of the receiver domains, as predicted for 

L. japonicus LHK proteins and Arabidopsis AHK4. 

The conserved DD, D, and K motifs are indicated. An asterisk denotes the presence of 

conserved aspartic acid (D) residue required for the phosphorelay. The alignment was 

created as before (see Figure 2.2). 
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Figure 2.5 Alternative splicing of Lhk3.  

(A) Alternative splicing at the intron 1/exon 2 junction of the Lhk3 locus results in the 

production of two Lhk3 splice variants (named Lhk3 - Splice variant #1 and Lhk3 - Splice 

variant #2, differing by 228 bp (green box).  

(B) RT-PCR and transcript-specific primers were used to detect and sequence the two 

splice variants from L. japonicus nodule RNA. 
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2.3.4 Identification of cytokinin receptor mutant alleles 

The Targeted Induced Localized Lesions IN Genomes (TILLING) approach was 

employed to identify mutations in the Lhk1A, Lhk2, and Lhk3 loci. A 1 kb region within 

the highly-conserved kinase domain was targeted. Several L. japonicus lines carrying 

single nucleotide substitutions were identified in the Lhk1A, Lhk2, and Lhk3 genes (Table 

2.2). For Lhk1A, a mutant line carrying the G4439 to A transition (named lhk1a-1) was 

chosen for detailed analyses as this was predicted to change a tryptophan residue in the 

kinase domain to a premature stop codon (W565 to STOP; Table 2.2). For the Lhk2 and 

Lhk3 loci, mutant lines carrying the lhk2-5 and lhk3-1 alleles were selected as the 

corresponding mutations were predicted to change invariant residues within the 

conserved G1 (Gly605 to Arg) and N (Arg561 to Gln) box motifs of the kinase domain, 

respectively (see Figure 2.3). The original TILLING lines were back-crossed to wild-type 

L. japonicus Gifu and homozygote lhk1a-1, lhk2-5, and lhk3-1 single mutant individuals 

were selected from among segregating F2 populations. Their progeny were used in 

subsequent analyses. 

2.3.5 Lhk1A and Lhk3 encode functional cytokinin receptors 

2.3.5.1 Lhk1A confers cytokinin-responsive growth to the sln1Δ 

mutant of Saccharomyces cerevisiae 

Wild-type and mutant alleles were used in parallel to functionally evaluate different 

LHKs in the sln1Δ mutant of S. cerevisiae (Maeda et al., 1994). This yeast strain was 

previously used to demonstrate the cytokinin-responsive function of the LHK1 receptor 

and the deleterious nature of the lhk1-1 mutation (Murray et al., 2007). 

Like Lhk1, the wild-type Lhk1A cDNA restored the viability of the sln1Δ strain in a 

cytokinin-dependent fashion. In contrast, the lhk1a-1 cDNA failed to do so, 

demonstrating the deleterious nature of the lhk1a-1 mutation (Figure 2.6A). 

Repeated attempts to perform a similar functional study with Lhk2 and the two variants of 

the Lhk3 cDNA have failed due to an apparent toxicity of these cDNAs in the yeast cells. 

Therefore, an alternative approach based on an E. coli two-component phosphorelay 

assay (Yamada et al., 2001; Tirichine et al., 2007) was used.  
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Table 2.2 A list of lhk1a, lhk2, and lhk3 mutant alleles as identified by a TILLING 

approach. 

DNA: nucleotide changes are listed; Amino acid: predicted amino-acid changes are 

listed. Adenine in the predicted ATG initiation codon was set as 1 for defining the 

position of a given mutation in DNA. Similarly, a predicted initiating methionine residue 

was set as 1 to calculate the position of any given amino acid change. 
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Plant line 

Number 

Mutant allele Mutation change 

(DNA) 

Mutation change 

(Amino acid) 

SL761-1 lhk1a-1 G4439 - A W565 - STOP 

SL1481-1 lhk1a-2 C4808 - T L689 - F 

SL3496-1 lhk1a-3 C4808 - T L689 - F 

SL4275-1 lhk1a-4 G4725 - A G661 - E 

SL5603-1 lhk1a-5 G4929 - A S729 - N 

SL4559-1 lhk1a-6 C4388 - T H549 - T 

SL871-1 lhk1a-7 G3934 - A None - Intronic 

SL1169-1 lhk1a-8 C4504 - T None - synonomous 

SL3064-1 lhk1a-9 C4031 - T None - Intronic 

SL4389-1 lhk1a-10 G4933 - A None - synonomous 

SL4340-1 lhk2-1 G5499 - A A517 - T 

SL4236-1 lhk2-2 G5532 - A D528 - N 

SL404-1 lhk2-3 G5547 - A E533 - K 

SL577-1 lhk2-4 G5551 - A G534 - D 

SL965-1 lhk2-5 G5769 - A G605 - R 

SL1482-1 lhk2-6 G5817 - A A621 - T 

SL2025-1 lhk2-7 G5836 - A R627 - Q 

SL5335-1 lhk2-8 G5899 - A G648 - E 

SL80-1 lhk2-9 G5908 - A G651 - E 

SL390-1 lhk2-10 G6051 - A D699 - N 

SL1428-1 lhk2-11 C5645 - T None - synonomous 

SL1535-1 lhk2-12 C5248 - T None - Intronic 

SL314-1 lhk2-13 C5335 - T None - synonomous 

SL6570-1 lhk2-14 C5691 - T None - synonomous 

SL5401-1 lhk2-15 G5260 - A None - Intronic 

SL201-1 lhk3-1 G4558 -  A R561 - Q 

SL577-1 lhk3-2 G5219 -  A V596 - I 

SL1972-1 lhk3-3 G6057 -  A S875 - N 

SL780-1 lhk3-4 C4782 - T None - Intronic 

SL1767-1 lhk3-5 G4973 - A None - Intronic 
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2.3.5.2 Lhk3 confers cytokinin-responsiveness to the sensor-negative 

SRC122 E. coli mutant strain 

The introduction of a functional histidine kinase receptor and an appropriate ligand to the 

SRC122 E. coli strain results in activation of the cps::LacZ reporter fusion (Yamada et 

al., 2001). Application of cytokinin to the SRC122 E. coli strain carrying wild-type 

copies of either of the two splice variants of Lhk3 cDNA significantly induced the β-

galactosidase activity above the control level of the untreated samples, thus confirming 

their cytokinin-responsive function (Figure 2.6B and 2.6C). The lhk3-1 mutation 

completely abolished the cytokinin responsiveness, irrespective of the cDNA variant 

used, which indicates that the lhk3-1 mutant form is non-functional (Figure 2.6D and 

2.6E). 

When transformed into SRC122, the Lhk2 cDNA-containing replicon was highly 

unstable such that no intact receptor sequence could be recovered. This outcome was not 

entirely unexpected given the reports on similar problems with the A. thaliana AHK2 

gene (Yamada et al., 2001). Thus, the LHK2 receptor remains functionally undefined by 

this work and is considered here after as a presumed cytokinin receptor. 

2.3.6 Single and double mutants of lhk1a-1, lhk2-5, and lhk3-1 do 

not affect nodule formation 

Early events that characterize the epidermal program for symbiosis, such as the formation 

of bacterial microcolonies trapped within curled root hairs and subsequent development 

of ITs, were evaluated 7 days after inoculation (DAI) with a M. loti strain carrying the 

hemA::LacZ reporter gene fusion. Unlike the hyperinfected root phenotype of lhk1-1 

(Murray et al., 2007), lhk1a-1, lhk2-5, and lhk3-1 single mutants displayed a wild-type 

number of infection events (Figure 2.7A). Furthermore, the numbers of nodule primordia 

and nodules were at wild-type levels in lhk1a-1 and lhk3-1 single mutants (Figure 2.7B). 

The lhk2-5 mutant formed slightly but significantly fewer nodules than wild-type (Figure 

2.7B). However, this is likely an indirect effect, as the overall growth of the lhk2 mutant, 

including root elongation (Figure 2.9B), was also significantly affected. Under the same 

growth conditions, lhk1-1 formed a strongly reduced number of nodules, confirming the   



51 

 

 

  



52 

 

Figure 2.6 Lhk1A and Lhk3 encode functional cytokinin receptors. 

(A) In the absence of galactose (-GAL), the wild-type Lhk1A cDNA confers cytokinin 

(Trans-Z and BA)-dependent growth of the sln1Δ mutant of S. cerevisiae. The lhk1a-1 

mutant cDNA is unable to do so. +GAL, 2% Gal supplement; Trans-Z, trans-zeatin; Cis-

Z, cis-zeatin; BA, 6-benzylaminopurine; NAA, 1-naphthaleneacetic acid. 

(B) to (E) Wild-type ([B] and [C]) and lhk3-1 mutant ([D] and [E]) cDNAs 

corresponding to the two Lhk3 mRNA variants (variants 1 and 2) were cloned into the 

pSTV28 expression vector and transformed into the sensor-negative E. coli SRC122 

strain. The Lhk1 cDNA was used as a positive control for the experiments shown in (B) 

and (C). Upon application of BA, a noticeable increase in the β-galactosidase reporter 

activity (blue color) can be observed in the presence of Lhk1 and both wild-type variants 

of Lhk3 cDNA ([B] and [D]). Quantification of the β-galactosidase activity as driven by 

different Lhk cDNAs in the presence or absence of BA is shown in (C) and (E). SRC122 

is the sensor-negative E. coli strain used as a negative control. The lhk3-1 mutation 

abolishes the cytokinin-responsive function of the LHK3 receptor ([D] and [E]). The 

wild-type Lhk3 variant 2 was used as a positive control in (D) and (E). In all cases, values 

represent means ± 95% confidence interval (n = 3). Asterisks denote significant 

differences (Student’s t test, P < 0.05). 
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previous data (Murray et al., 2007). All double receptor mutants also had wild-type or 

close to wild-type (in the case of plants carrying the lhk2-5 allele; see above) nodulation 

phenotypes, except for those carrying the lhk1-1 allele, where a greatly reduced number 

of nodules was apparent (Figure 2.7B). 

2.3.7 Insertional and single-nucleotide substitution mutant alleles of 

the cytokinin receptor genes share the symbiotic phenotype 

As described above, lhk1-1, lhk1a-1 and lhk3-1 mutations generate non-functional 

cytokinin receptors (Section 2.3.5). Nevertheless, whether these alleles and also lhk2-5, 

which could not be tested in heterologous systems due to toxicity/instability of the cDNA, 

behave as nulls in planta remained uncertain. Fortunately, the L. japonicus retrotransposon 

(LORE1) has been introduced as a mutational tool (Madsen et al., 2005; Fukai et al., 2010; 

Fukai et al., 2012; Urbański et al., 2012). LORE1 is a stable, long terminal repeat (LTR) 

germline-specific retro-transposon that amplifies in the L. japonicus genome by a copy-

and-paste mechanism (Malolepszy et al., 2016). The insertion of the 5.041 kb long LORE1 

sequence in the coding region introduces multiple premature, translational stop codons 

(Urbański et al., 2012). It had been previously shown that the activity of LORE1 leads to 

gene inactivation and generation of null mutant alleles (Madsen et al., 2005). A large 

LORE1 insertion population is publicly available (http://users-mb.au.dk/pmgrp/). By 

screening this population candidate lines carrying LORE1 insertions in exons of Lhk1, 

Lhk1a, Lhk2 and Lhk3 were identified. These alleles were designated as lhk1-4, lhk1a-12, 

lhk1a-13, lhk2-17, lhk2-18, lhk3-6 and lhk3-7 (Figure 2.8A). The progeny of the plants 

homozygous for these LORE1 containing alleles were tested for their symbiotic phenotype 

21 DAI with M. loti alongside the selected TILLING mutant lines (Figure 2.8B). 

As shown in Figure 2.8B, nodulation was significantly reduced in lhk1-1 and lhk1-4 

while it remained unaffected in all other mutant lines tested, which confirms the data 

obtained with the selected lhk TILLING mutants (Figure 2.7B and Figure 2.8B). 

Therefore, the substitution mutation alleles were used for further analysis of the role of 

LHK cytokinin receptors in nodulation.  

http://users-mb.au.dk/pmgrp/
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Figure 2.7 Bacterial infection and nodule formation are mostly unaffected by lhk1a-

1, lhk2-5, and lhk3-1 mutations. 

(A) The number of microcolonies and infection threads was scored in lhk single mutants 

at 7 DAI with the M. loti strain tagged with the hemA::LacZ reporter and this was 

compared to the L. japonicus wild-type control. In all cases, values reported are the mean 

± 95% CI (confidence interval) (n = 10). 

(B) Nodule and nodule primordia formation in lhk1-1, lhk1a-1, lhk2-5, and lhk3-1 single 

and the corresponding double mutants were scored 21 DAI. In all cases, values reported 

represent the mean ± 95% CI (n = 29-50). An asterisk denotes significant differences 

between the mutant and wild-type control (Student's t-Test, P<0.05).  
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Figure 2.8 Nodulation phenotypes are similar in the mutant plants carrying either 

retrotransposon or single nucleotide substitution alleles of Lhk cytokinin receptor 

genes. 

(A) The intron-exon structures of the Lhk1, Lhk1a, Lhk2, and Lhk3 genes are shown. 

Boxes represent predicted exons while lines denote 5' and 3' UTRs and introns. lhk1-4, 

lhk1a-12, lhk1a-13, lhk2-17, lhk2-18, lhk3-6, and lhk3-7 denote mutant alleles carrying 

the L. japonicus LORE1 retrotransposon insertion at the indicated positions. 

(B) Number of nodulation events in different lhk1, lhk1a, lhk2, and lhk3 mutant lines was 

scored 21 DAI. In all cases, values reported represent the mean ± 95% SE (n = 20). An 

asterisk denotes significant differences between the mutant and wild-type control 

(Student's t-Test, P<0.05).  
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2.3.8 LHK1 is the main sensor of exogenous cytokinin 

In wild-type L. japonicus plants, root elongation is significantly inhibited by external 

application of cytokinin (Murray et al., 2007). Deleterious mutations in the Lhk1 receptor 

gene, such as lhk1-1, render mutant roots insensitive to exogenous 6-benzylaminopurine 

(BA) up to 1 x 10-7 M (Murray et al., 2007). This indicates that in addition to its 

significant role during nodule organogenesis, the LHK1 receptor mediates root responses 

to external signals, such as cytokinin. To analyze whether other L. japonicus cytokinin 

receptors partake in this physiological response, all L. japonicus lhk mutant lines, 

including lhk1-1, were subjected to the root elongation assay in the presence or absence 

of BA. In contrast to lhk1-1, which was insensitive to external cytokinin, lhk1a-1, lhk2-5, 

and lhk3-1 mutants responded to the exogenous BA by reducing root growth in a manner 

similar to the wild-type L. japonicus (Figure 2.9A). It is worth noting here that the growth 

of untreated lhk1-1, lhk1a-1, and lhk3-1 mutant roots was not significantly different from 

wild type. The root length of lhk2-5, however, was slightly yet significantly affected 

(Figure 2.9B). 

To further understand the unique role of LHK1 during the response of L. japonicus roots 

to ectopic cytokinin, we quantified steady state levels of the Lhk1 mRNA upon 

application of 50 nM BA. The four remaining cytokinin receptor mRNAs, including two 

variants of Lhk3, were also included in this analysis. The level of the Lhk1 mRNA was 

strongly and significantly up-regulated within 6 hours of BA treatment and this increase 

was further enhanced at 12 hours (Figure 2.10 A and B). In contrast, the steady-state 

levels of the Lhk1A, Lhk2, and both variants of Lhk3 mRNA were significantly up-

regulated only after a prolonged, 12 hour treatment with BA (Figure 2.10B). Importantly, 

this increase in levels of Lhk1A, Lhk2, and Lhk3 mRNAs in response to BA was not 

observed in lhk1-1 roots (Figure 2.10C and 2.10D), while the lhk1-1 mRNA still 

responded by a slight but significant increase after 12 hours of the BA treatment (Figure 

2.10D).  
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Figure 2.9 Responses of the L. japonicus wild-type and lhk mutant roots to 

exogenous cytokinin and root growth. 

(A) Plants were grown on the surface of agar plates in the dark, in the presence of 

increasing concentrations of cytokinin (BA). The root length was measured 7 days after 

sowing. The relative root length is given, where the length of control roots that were 

grown in the absence of BA was set as 100%. BA: 6-benzylaminopurine. 

(B) The average length of control, untreated roots for given genotypes are shown. Values 

in panels (A) and (B) represent the mean ±95% CI (n ≥ 10). An asterisk denotes 

significant difference with the wild-type value (Student's t-Test, P<0.05).  
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Figure 2.10 Ectopic cytokinin increases the steady state level of cytokinin receptor 

mRNAs. 

The relative steady state levels of Lhk1, Lhk1A, Lhk2, and Lhk3 transcripts in untreated 

(H2O) and cytokinin-treated (BA) L. japonicus roots are given. Values (means ± SE of 

three biological replicates) for L. japonicus wild-type ([A] and [B]) and lhk1-1 mutant 

([C] and [D]) roots that were incubated in the absence or presence of 50 nM BA for 6 h 

([A] and [C]) and 12 h ([B] and [D]) are shown. Asterisks denote significant differences 

between the corresponding untreated control and BA-treated samples (Student's t-Test, 

P<0.05). 
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2.3.9 The transcriptional output of cytokinin signaling during 

nodule formation 

The results described above have suggested a unique role for the LHK1 receptor in 

mediating nodule organogenesis and also in root responses to exogenous cytokinin. To 

explore this further, stable L. japonicus transgenic lines carrying the cytokinin two-

component-output sensor (TCS)::GUS reporter (Müller and Sheen, 2008) or one of the 

four Lhk promoters transcriptionally fused to the GUS reporter gene (Lhkpro::GUS) were 

analyzed to map their expression domains. 

Following M. loti inoculation, the TCS-mediated GUS activity was initially detectable in 

the sub-epidermal and the second and third cortical cell layers, with the latter two 

showing most of the activity (Figure 2.11A and 2.11B). At this early stage in nodule 

development, GUS staining was observed only intermittently in the root epidermis and if 

present, it was weak. At a slightly later developmental stage, GUS staining was present in 

cell layers encompassing the entire region from the root epidermis to pericycle (Figure 

2.11C and 2.11D), and continued to intensify across all cell layers that were actively 

engaged in nodule formation and also in the associated epidermis, including root hairs 

(Figure 2.11E and 2.11F). GUS activity was present in most cells of young nodules that 

had just emerged from the root epidermis (Figure 2.11G), but it was undetectable in fully 

mature nodules, except for a weak activity in the nodule parenchyma and vascular 

bundles (Figure 2.11H). 

In comparison, during lateral root development, the TCS-driven GUS activity maxima 

were associated with a subset of proliferating cells at the base of developing primordia 

(Figure 2.11I) and, later on, also with the root apex (Figure 2.11J), consistent with the 

previous report (Lohar et al., 2004). In mature roots, GUS staining was mostly confined 

to the root apex and the root transition zone but was much weaker within the root 

proximal meristem (Figure 2.11K).  
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Figure 2.11 Cytokinin responses during nodule and root development. 

The TCS::GUS cytokinin output reporter activities are depicted (blue color) as associated 

with various stages of developing nodules ([A] to [H]), lateral roots ([I] and [J]), and the 

apical region of the main root (K). All images represent specimens collected at 7 or 14 

DAI with M. loti. (A), (C), (E), and (K) represent whole mounts, and the other panels 

show 35 μm sections. VB, vascular bundles.  
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2.3.10 Expression of Lhk1, Lhk1A, Lhk2, and Lhk3 in uninoculated L. 

japonicus roots 

Lhk1pro::GUS plants showed strong histochemical staining along the entire roots (Figure 

2.12), including the root apex and a portion that is defined as a susceptible zone for M. 

loti infection which spans the region positioned between 2-5 mm above the root tip 

(Figure 2.12C). Longitudinal sectioning of several independent samples of Lhk1pro::GUS 

roots that were stained at room temperature showed GUS activity in all root cell layers, 

including the root epidermis; however GUS staining was much weaker or entirely absent 

from cells of the proximal meristem (Figure 2.12B) and in root cells located in a more 

proximal part of the root, above the root transition zone. 

None of the other three Lhk promoters paralleled the activity of the Lhk1 promoter. As 

driven by the Lhk1A promoter, GUS activity was only barely detectable in root cap cells 

(Figure 2.12D) and in pericycle cells associated with lateral root emergence (see Figure 

2.14D), but not within the susceptible zone (Figure 2.12E). Lhk2 was active in the root 

vasculature (Figure 2.12G) but GUS staining was undetectable in the root tip region 

(Figure 2.12F), including the susceptible zone. Finally, Lhk3 was active in the proximal 

root meristem (Figure 2.12H) but its activity was undetectable in the meristem proper or 

the main root vasculature (Figure 2.12H and 2.12I). 

2.3.11 Activity of the Lhk1 promoter during nodule formation 

In order to monitor the activity of the Lhk1 promoter during nodule development, the 

temperature under which GUS staining was performed was reduced from 37°C to room 

temperature. This decreased the overall intensity of root staining, making it possible to 

detect the GUS activity maxima. 

At early stages of nodule primordium formation, where only very limited cortical cell 

divisions are present, GUS activity was detectable in a few sub-epidermal cells and the 

second and third cortical layers (Figure 2.13A and 2.13B). GUS staining was also 

detectable, albeit rather weakly and intermittently, in the associated root epidermis. With 

the advancement of cell divisions, the intensity of GUS staining increased across all cell 

layers and was now clearly detectable in the root epidermis, including root hairs (Figure 
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Figure 2.12 Activities of Lhk1, Lhk1A, Lhk2 and Lhk3 promoters in uninoculated L. 

japonicus roots. 

Whole mounts (A, C, E, G and I) and 35 µm thick longitudinal sections (B, D, F and H) 

are shown. Lhk1pro::GUS activity in L. japonicus root (A), root apical region (B) and a 

root segment within a zone susceptible to M. loti infection approx. 2-5 mm above the root 

tip (C). Activities of Lhk1Apro::GUS (D and E), Lhk2pro::GUS (F and G) and 

Lhk3pro::GUS (H and I) reporter constructs in the corresponding apical and root 

susceptible zones. All images represent specimens collected at 7 or 14 days after sowing. 
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2.13C and 2.13D). This pattern of GUS staining persisted to the point of nodule 

emergence from the root epidermis (Figure 2.13E). In mature nodules, however, GUS 

activity was restricted to the nodule parenchyma and nodule vasculature, but was 

undetectable in centrally-located infected cells (Figure 2.13F). 

In comparison to nodules, GUS activity associated with lateral root development was 

observed in a discrete region of the root pericycle and was associated with all cells of the 

developing primordium (Figure 2.13G) before localizing to the apex in the emerging 

lateral root (Figure 2.13H). In fully-emerged, growing lateral roots, the pattern of the 

Lhk1-dependent GUS activity was identical to the main root, showing strong staining 

within the meristematic region but also in other parts of the root (Figure 2.13I). 

2.3.12 The Lhk1A and Lhk3 promoters show partially overlapping 

activities with Lhk1 during nodule primordia formation 

As observed for Lhk1, the activities of Lhk1A and Lhk3 promoters were clearly induced 

upon rhizobial infection (Figure 2.14). GUS staining was specifically associated with 

dividing cortical cells of young nodule primordia but was absent from surrounding root 

cortical cells (Figure 2.14A, 2.14B and 2.14I). GUS activity could not be detected in the 

epidermal cells associated with the developing nodule primordium, even at later stages. 

Mature nodules showed GUS staining in the parenchyma and vasculature (Figure 2.14C) 

or only in the vasculature (Figure 2.14J and 2.14K) for Lhk1A and Lhk3, respectively. 

Both promoters rendered rather different GUS activity profiles during lateral root 

development, with Lhk1A conferring a barely detectable histochemical signal in 

subtending pericycle cells (Figure 2.14D) and Lhk3pro::GUS plants showing rather strong 

GUS staining along the root vasculature and within the proximal meristem (Figure 

2.14L). 

Similar to uninoculated plants, the Lhk2pro::GUS reporter construct showed activity in the 

vasculature of roots and also nodules, but not in dividing cortical cells of nodule 

primordia or emerging nodules (Figure 2.14E, 2.14F and 2.14G). Transverse sections of 

roots showed specific localization of the Lhk2pro-driven GUS activity in the pericycle 

cells that were positioned opposite root protoxylem poles (Figure 2.14H).  
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Figure 2.13 Activity of the Lhk1 promoter during nodule and lateral root 

development. 

Whole mounts ([A] and [I]) and 35-μm-thick root/nodule sections ([B] to [H]) are shown. 

(A) to (F) Lhk1pro::GUS reporter activity (blue color) associated with the progressive 

stages in nodule development. Note that (B) shows a transverse section through a root 

region where nodule primordium formation has been initiated. (D) depicts the presence of 

GUS activity in the associated root hair. (G) to (I) Lhk1pro::GUS activity during lateral 

root formation. (I) depicts the apical portion of a fully emerged lateral root. All images 

represent specimens collected at 7 or 14 DAI with M. loti. VB, vascular bundles.  
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2.3.13 All four Lhk promoters respond to M. loti inoculation 

To support the histochemical data, the steady-state level of Lhk1, Lhk1A, Lhk2, and Lhk3 

transcripts was quantified in uninoculated control roots and roots collected 2, 3 and 7 

days after inoculation with M. loti. In uninoculated wild-type L. japonicus roots, the level 

of the Lhk1 mRNA was the highest and that of Lhk1A was the lowest (approx. 13-33 

times lower than the Lhk1 mRNA depending on the specific time point), while steady-

state levels of Lhk2 and Lhk3 mRNA were intermediate (Figure 2.15). Consistent with 

the histochemical observations, the steady-state levels of Lhk1, Lhk1A and Lhk3 

transcripts were elevated upon inoculation. Quantitative PCR results also revealed that 

the steady-state level of the Lhk2 transcript was also up-regulated upon M. loti infection 

(Figure 2.15). 

Significant changes were observed in the lhk1-1 mutant. The steady-state level of Lhk1 

mRNA was markedly lower than in wild-type roots, regardless of whether inoculated or 

uninoculated root samples were analyzed. Lhk1 remained responsive to M. loti 

inoculation; however, at 2 and 3 DAI, its mRNA reached only approximately 50% of the 

levels in corresponding wild-type roots (Figure 2.15). Both Lhk2 and Lhk3 were rendered 

unresponsive to the infection but the level of the Lhk2 mRNA in uninoculated lhk1-1 

roots was elevated in comparison to wild-type roots. As in wild-type, the Lhk1A mRNA 

remained a relatively minor component and was still able to respond to M. loti infection 

(Figure 2.15). 

2.3.14 Bacterial entry inside the root cortex is required for nodule 

formation in lhk1-1 

Previously, it was shown that initial colonization of the root cortex by M. loti occurs in 

lhk1-1 without concomitant nodule primordia formation, but that a few nodules are 

eventually formed (Murray et al., 2007). We have, therefore, tested the hypothesis that a 

prior colonization of the root cortex by M. loti is required for the nodule primordium 

inception in the lhk1-1 mutant. In the absence of functional LHK1, this was presumed to 

be mediated by bacterial signaling from within the root cortex through a partially redundant   
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Figure 2.14 Activities of the Lhk1A, Lhk2 and Lhk3 promoters during nodule and 

lateral root development. 

A-D Lhk1Apro::GUS reporter activity (blue) associated with nodule (A-C) and lateral root 

(D) development. 

E-H Lhk2pro::GUS reporter activity associated with nodule (E-G) and lateral root (H) 

development; note the specific GUS staining in root pericycle cells positioned opposite 

protoxylem poles (arrows in H). 

I-L Lhk3pro::GUS reporter activity associated with nodule (I-K) and lateral root (L) 

development. Panel (L) represents a whole mount image while the remaining panels 

depict 35 µm sections. 

All images represent specimens collected at 7 or 14 DAI with M. loti.  
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Figure 2.15 All four Lhks respond to M. loti inoculation. 

The relative steady-state levels of all four Lhk transcripts in uninoculated roots and roots 

for the same age harvested, 9, 10 and 14 days after sowing are given. Note that plants 

were inoculated with M. loti 7 days after sowing such that each of the time points (i.e. 9, 

10 and 14) reflect the measurement at 2, 3 and 7 DAI, respectively, for the inoculated 

samples. Average values for three biological replicates ± SE are given. Asterisks denote 

significant differences between the corresponding inoculated and uninoculated samples 

(Student’s t test, P < 0.05). 
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function of LHK1A and LHK3. Two previously characterized L. japonicus mutations, 

namely symRK-14 (Kosuta et al., 2011) and arpc1-1 (Hossain et al., 2012), which abort 

root hair-dependent bacterial entry inside the root while leaving the nodule organogenesis 

intact or even enhanced, were used to test this hypothesis. We reasoned that if bacterial 

entry is indeed needed to form nodules in the lhk1-1 background, combining these 

mutations with lhk1-1 should prevent infection of the root cortex, resulting in a non-

nodulating (Nod-) phenotype. In agreement with this prediction, both symRK-14 and 

arpc1-1 mutations almost entirely aborted bacterial entry inside lhk1-1 roots when 

examined 21 and 35 DAI. While all three single mutants, lhk1-1, symRK-14 and arpc1-1 

formed nodules and nodule primordia, the lhk1-1 symRK-14 and lhk1-1 arpc1-1 double 

mutants did not develop any nodules when analyzed 21 DAI with M. loti. This was also 

the case for the 35 DAI time point, except for lhk1-1 symRK-14, where one nodule-like 

structure was found among 15 roots analyzed (Figure 2.16). 

2.3.15 The lhk1-1 lhk1a-1 lhk3-1 cytokinin receptor triple mutant 

does not form nodules 

We additionally tested the hypothesis that the LHK1, LHK1A and LHK3 receptors work 

partially redundantly to mediate nodule formation by constructing and then analyzing the 

phenotype of the triple mutant line that combined mutations in these cytokinin receptors 

genes. 

Although viable and relatively healthy, the growth of the lhk1-1 lhk1a-1 lhk3-1 triple 

mutant was significantly affected compared to wild-type L. japonicus. The average shoot 

and root mass of uninoculated triple mutant plants grown in the presence of potassium 

nitrate was only approximately half of the corresponding wild-type values when analyzed 

28 days after sowing (Figure 2.17A and 2.17B). The length of the main root remained 

wild-type (Figure 2.17C), but the number of lateral and higher order roots was at least 5 

times lower in the triple mutant (Figure 2.17D). When analyzed 7 DAI with M. loti, the 

triple mutant formed significantly more infection threads than wild-type L. japonicus 

Gifu of the same age (Figure 2.17E), but no nodule primordia or nodules were present in 

the mutant roots (Figure 2.17F and G). As overall growth of the triple mutant is slower,   
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Figure 2.16 Signaling from within the root cortex. 

The combined scores of nodule primordia and nodules (nodulation events) are given for 

lhk1-1 arpc1-1 (A) and lhk1-1 symRK-14 (B) double mutants and the corresponding 

single mutant lines. In all cases, values reported represent the mean ± SE (n = 10-15). 

The nodulation phenotypes were evaluated 21 and 35 days after infection with M. loti.  
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Figure 2.17 The lhk1-1 lhk1a-1 lhk3-1 triple mutant does not form nodules. 

(A) to (D) Shoot (A) and root (B) masses, as well as the root length (C) and the number 

of lateral and higher order roots (D), were scored in 28-day-old uninoculated L. japonicus 

(Gifu) wild-type and lhk1-1 lhk1a-1 lhk3-1 triple receptor mutant plants grown in the 

presence of KNO3. (E) and (F) Scores of infection threads (E) and nodulation events (i.e., 

nodule primordia and nodules) (F) are given for the L. japonicus wild type (Gifu) and the 

triple receptor mutant. All values reported represent means ± 95% confidence interval (n 

= 10 to 35) as measured 28 d after sowing ([A] to [D]) or 7 DAI with M. loti ([E] and [F]) 

for nodulation counts. Asterisks denote significant differences (Student’s t test, P < 0.05). 

(G) Phenotypes of the wild type and the triple mutant are shown 21 DAI.  



71 

 

we additionally tested its nodulation phenotype at 21 and 35 DAI. While wild-type L. 

japonicus formed on average 9 ± 0.74 (n = 32) and 24 ± 3.55 (n = 20) fully developed 

nodules, respectively, the triple mutant (n = 19-35) did not develop any nodules or nodule 

primordia (Figure 2.17F). 

2.3.16 Other receptors can substitute for LHK1 during nodule 

formation 

Given the prominent role of LHK1, we asked whether other cytokinin receptors can 

substitute for its essential function in mediating nodule organogenesis. One important 

aspect of this was to test whether a non-legume cytokinin receptor could function in the 

nodulation pathway. If confirmed, this would indicate that the ability to respond to 

rhizobial signalling and or ectopic cytokinin by inciting nodule formation is not due to 

neo-functionalization of cytokinin receptors in legumes. 

Hairy roots induced on lhk1-1 mutant shoots via Agrobacterium rhizogenes-mediated 

transformation exaggerate the mutant nodulation phenotype, which results in a non-

nodulating (Nod-) or almost Nod- phenotype (Murray et al., 2007). It has been previously 

demonstrated that nodulation can be restored to hairy roots formed on lhk1-1 shoots by 

expressing the wild-type Lhk1 gene (Murray et al., 2007). A similar complementation 

result was obtained in this study with the Lhk1 cDNA expressed under the control of a 

constitutive CaMV 35S promoter (Figure 2.18). Nodulation was also restored to lhk1-1 

hairy roots by expressing either of the two Lhk3 cDNA variants; however, Lhk1A and 

Lhk2 cDNAs failed to complement the lhk1-1 mutant phenotype (Figure 2.18). We then 

tested whether the Arabidopsis AHK4 gene, including its own promoter and terminator, 

could restore nodule formation to lhk1-1 transgenic hairy roots and indeed, this was the 

case (Figure 2.19). 
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Figure 2.18 Lhk3 functionally replaces Lhk1. 

The five Lhk cDNAs (Lhk1, Lhk1A, Lhk2, Lhk3v1 and Lhk3v2) were expressed under the 

control of CaMV 35S promoter in the lhk1-1 mutant background via A. rhizogenes-

mediated hairy root transformation. 

(A) Representative images of transgenic hairy roots are shown at 21 DAI with M. loti. 

(B) Quantitative data for plants used and nodule frequency obtained are given. For Lhk2, 

only 3 plants were scored due to an apparent suppression of hairy root formation. In all 

cases, values represent the mean ± 95% CI.  
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Figure 2.19 Arabidopsis cytokinin receptor can mediate nodule organogenesis. 

(A) Nodulation phenotypes of hairy roots formed on wild-type and lhk1-1 mutant shoots 

after transformation with the A. rhizogenes strain AR12 containing empty vector 

(+vector), the entire Lhk1gene, including 5’ and 3’ UTRs (+Lhk1), or a vector containing 

the Arabidopsis AHK4 gene, including its cognate promoter and terminator (+AHK4) (see 

Methods). 

(B) The nodulation phenotypes were scored 21 DAI with M. loti. Numbers of plants and 

nodules in each transformation category are given. Wild-type L. japonicus ecotype Gifu 

transformed with A. rhizogenes AR12 was used as a positive control. In all cases, values 

represent the mean ± 95% CI.  
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2.4 Discussion 

We show that L. japonicus contains a small family of four cytokinin receptor genes, 

including Lhk2 that encodes a presumed cytokinin receptor, which all respond to M. loti 

infection. While further highlighting the prominent role of LHK1 (Murray et al., 2007; 

Tirichine et al., 2007; Heckmann et al., 2011), our data also demonstrate the involvement 

of other cytokinin receptors during L. japonicus nodule formation. We showed that only 

Lhk1 is expressed in the root epidermis but it is also essential within the root cortex, 

where it mediates cell divisions for nodule primordia formation in a partially redundant 

manner with Lhk1A and Lhk3. Lhk2 is not expressed in the root cortex and is unlikely, 

therefore, to be involved in the stimulation of cortical cell divisions, as mediated by 

LHK1, LHK1A, and LHK3. Consistent with this, the presence of Lhk2 is not sufficient to 

induce nodule primordia formation in the lhk1-1 lhk1a-1 lhk3-1 triple mutant. 

2.4.1 Arabidopsis AHK4 mediates nodule organogenesis 

The loss-of-function allele, lhk1-1, had roots that were insensitive to growth inhibition by 

applied cytokinin; none of the mutations in other cytokinin receptor genes had this effect. 

In this respect, LHK1 resembles its closest homolog in Arabidopsis, AHK4, which is the 

main sensor of external cytokinin in that species (Inoue et al., 2001; Nishimura et al., 

2004). The similarity in the function of the two genes extends to their promoters, both of 

which are active almost ubiquitously in roots (Nishimura et al., 2004). We show, 

however, that Lhk1 is less active in the L. japonicus root proximal meristem. Unlike 

Lhk1, expression of Lhk2 and Lhk3 in L. japonicus uninoculated roots was detectable 

only in the vasculature and the proximal meristem, respectively. This is different from the 

expression patterns described for their presumed Arabidopsis counterparts, AHK2 and 

AHK3 (Nishimura et al., 2004). 

Our data show that AHK4, a cytokinin receptor gene from a non-legume species which 

does not form nodular symbiosis with rhizobia, can functionally substitute for Lhk1 in 

mediating nodule organogenesis in L. japonicus upon M. loti infection. Lhk3 also rescued 

the lhk1-1 nodulation defect in hairy root experiments but this effect could not be 

achieved with Lhk1A or Lhk2 cDNAs. The lack of complementation by Lhk1A, which is 
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the closest L. japonicus homolog of Lhk1, is puzzling and may reflect a need for 

additional regulatory sequences, beyond the cDNA used herein. Regardless, the ability of 

AHK4 to complement nodulation suggests that the evolution of signaling for nodule 

primordia formation involved recruitment of a cytokinin receptor that has not been 

subjected to major, legume-specific modifications (Szczyglowski and Amyot, 2003). 

Consequently, the specificity of cytokinin signaling during nodule formation must be 

exerted downstream from the cytokinin perception. We cannot, however, rule out the 

possibility that the capacity for nodule formation is orchestrated by other cues that 

provide a unique legume-specific context to cytokinin signaling. 

2.4.2 Unique properties of Lhk1 

A distinct role for LHK1 is supported by several additional observations. Lhk1, but not 

other Lhk promoters, directs GUS activity to the root epidermis. External application of 

cytokinin to L. japonicus roots induced an increase in the steady-state level of the Lhk1 

mRNA within the first three hours, a response not mimicked by other Lhk mRNAs. This 

increase appears to be largely the consequence of an auto-regulatory mechanism, because 

it necessitates a functional copy of the Lhk1 gene (Figure 2.10). The steady-state level of 

Lhk1 mRNA was lower in untreated lhk1-1 mutant roots as compared to wild-type roots, 

which further supports the existence of an inherent auto-regulatory feed-back mechanism. 

Upregulation of Lhk1A, Lhk2 and Lhk3 mRNA levels after a prolonged, 12-hour 

treatment with BA was also Lhk1-dependent. The level of Lhk1 mRNA in the lhk1-1 

mutant roots was still somewhat increased under these conditions (i.e. 12 hours/50 nM 

BA) (Figure 2.10D), perhaps due to effects of other cytokinin receptors. 

When grown in soil in the presence or absence of M. loti, the existence of a regulatory 

relationship between different cytokinin receptors was also discernible. The steady-state 

level of Lhk1 was significantly diminished in the lhk1-1 mutant. Lhk2 and Lhk3 genes 

became unresponsive to, while the Lhk1 mRNA was elevated by, M. loti infection, 

although its level remained at or below that of the uninoculated wild-type roots (Figure 

2.15). 
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Taken together, these data demonstrate the prominent role of LHK1 during the perception 

and response of L. japonicus roots to both applied cytokinin and M. loti infection. They 

also suggest some degree of regulatory capacity, where LHK1 appears to exert a 

dominant role over its own expression but also over those of other cytokinin receptors. 

The underlying mechanism is unknown; nevertheless, given the rather distinct expression 

domains for Lhk genes, a functional link might be required to maintain homeostasis 

during root development. 

2.4.3 LHK1 mediates signaling without bacterial entry into roots 

Unlike wild-type L. japonicus, the lhk1-1 mutant is unable to form nodules upon 

application of BA (Heckmann et al., 2011), but it does so in response to M. loti 

inoculation, albeit with noticeable delay and significant reduction in nodule number (see 

also (Murray et al., 2007). Thus, bacterial infection must be exerting an effect beyond 

what is being mimicked by ectopic cytokinin. 

Consistent with this prediction, we show that formation of lhk1-1 nodules is prevented by 

blocking bacterial entry inside roots with either symRK-14 or arpc1-1 mutations (Figure 

2.16). This is unlike in L. japonicus plants carrying the wild-type Lhk1 gene, where 

empty or initially empty nodules readily develop in the presence of various mutations that 

affect infections (Karas et al., 2005; Yokota et al., 2009; Groth et al., 2010), including 

symRK-14 and arpc1-1 (Kosuta et al., 2011; Hossain et al., 2012). 

The simplest explanation for these observations is to assume that LHK1 participates, 

either directly or indirectly, in transducing a signal from the root epidermis to the 

subtending root cortex, regardless of whether the initial stimulus is ectopic cytokinin or 

M. loti NF. In the lhk1-1 mutant, applied cytokinin would, therefore, be expected to fail 

in inducing nodule formation, which indeed is the case (Heckmann et al., 2011). Bacterial 

infection, however, could bypass the epidermis and initiate signaling for cell divisions 

from within the root cortex via redundantly acting LHK1A and/or LHK3 receptors. 

Although we cannot entirely rule out this explanation, our histochemical data point to a 

more complex signaling circuit during the response to bacterial infection. 
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2.4.4 LHK1, the master of symbiotic events  

It has been shown that the induction of nodule primordia organogenesis in L. japonicus is 

regulated by a cytokinin-dependent mechanism that operates in the root cortex 

(Heckmann et al., 2011). Consistent with this, M. loti infection-dependent cytokinin 

signaling (as monitored by the TCS::GUS histochemical activity) was initially localized 

to the second and/or third cortical layers. This is where cell divisions for nodule 

primordia formation are first initiated in L. japonicus (van Spronsen et al., 2001). This 

expression pattern was paralleled, at least to some extent, by GUS activity driven by the 

Lhk1 promoter, which also peaked initially within the middle cortex, although by default 

the Lhk1 promoter is also active in the root epidermis. 

A similar, inner cortex-localized primary cytokinin response was documented in M. 

truncatula roots responding to S. melilloti infection (Plet et al., 2011). It is therefore 

likely that another NF-dependent mechanism generates a cell non-autonomous signaling 

event that originates in the root epidermis and is rapidly translocated to incite the initial 

peak accumulation of bioactive cytokinin in the inner cortex. This could explain why a 

much longer time is needed to induce nodule formation in L. japonicus upon external 

application of cytokinin than upon bacterial infection (Heckmann et al., 2011). 

We postulate that the initial cytokinin burst, as perceived by LHK1 within the root cortex, 

leads to an LHK1-dependent auto-stimulation (Figure 2.20A). This is manifested by a 

local increase in the level of the Lhk1 mRNA. Our results show that in addition to Lhk1, 

the activities of Lhk1A, Lhk2 and Lhk3 promoters are also enhanced by M. loti infection. 

We have interpreted these events as leading to a local increase in cell sensitivity to 

cytokinin, a mechanism that is primarily reliant on LHK1 and by which a sufficient 

threshold is reached to initiate first cortical cell divisions for nodule primordia formation. 

In the absence of functional LHK1, cell divisions for nodule primordia formation are 

initiated only upon bacterial entry (see also (Murray et al., 2007)) and we show that the 

presence of Lhk1A or Lhk3 is critical in this context (Figure 2.20B). Lack of functional 

LHK1 leads to significantly reduced levels of Lhk1, which could explain why the   
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Figure 2.20 Working models for LHK1-dependent and LHK1-independent signaling 

for L. japonicus nodule formation. 

(A) In wild-type L. japonicus, M. loti infection generates a presumed cell non-

autonomous signaling event (dotted blue arrow), which triggers the accumulation of 

bioactive cytokinin and the subsequent stimulation of cortical cell divisions for nodule 

primordium formation prior to bacterial entry into the root. A feedback loop is induced 

downstream from advancing cell divisions, which results in the accumulation of 

cytokinin in the root epidermis; this is presumed to locally block subsequent infections 

(IT) in an LHK1-dependent manner. 

(B) In the lhk1-1 mutant, bacterial entry and accumulation inside the root are required for 

the initiation of cortical cell divisions (leading to late cell divisions). Lack of the LHK1-

dependent feedback loop results in the hyperinfection of root epidermis and cortex. The 

“U-turn” arrows in (A) denote autostimulation of LHK1 expression. Ectopic cytokinin 

can be perceived either at the plasma membrane or upon movement inside the cell by the 

endoplasmic reticulum-localized cytokinin receptors (Wulfetange et al., 2011). 

“Positional information” refers to as yet undefined spatial information that dictates the 

position of the first cortical cell division for nodule primordium formation. NFR, 

nodulation factor receptor complex. For further details, see text.  
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threshold required for the stimulation of cortical cell divisions is not reached during the 

initial bacterial signaling, prior to their entry within the root cortex. Following heavy 

colonization of lhk1-1 roots by M. loti, direct perception of NF within the root cortex 

might contribute to overcoming this limitation, which eventually leads to cell divisions 

(Figure 2.20B). 

The evidence for NF perception in the root cortex was provided in the context of 

transcellular cortical infection threads, as formed by the L. japonicus nfr1 nfr5 snf1 

symrk-3 quadruple mutant (Madsen et al., 2010). The same mechanism likely accounts 

for delayed nodulation in the lhk1-1 mutant. In many legumes, rhizobia can bypass the 

root epidermis, entering the root by a crack-entry mechanism (Sprent and James, 2007). It 

has been shown that a crack-entry like mechanism also operates in L. japonicus (Karas et 

al., 2005; Madsen et al., 2010; Kosuta et al., 2011) and signaling for nodule formation 

from within the root cortex in lhk1-1 likely reflects this latent ability. 

Rapid expansion and/or intensification of the cytokinin signaling in the root epidermis, 

including root hairs, was clearly observable early on, following some initial advancement 

in nodule primordia formation. This was true for the cytokinin response as well as the 

activity of the Lhk1 promoter. Unlike M. truncatula cre1 (Gonzalez-Rizzo et al., 2006), 

the lhk1-1 mutant is hyperinfected by M. loti (Murray et al., 2007). Hence, LHK1, in 

addition to being the master of cortical events, may also prove to be the master of 

epidermal infections. In subsequent chapters, we consider the hypothesis that the 

increased cytokinin activity as mediated by LHK1 in the root epidermis prevents 

hyperinfection of L. japonicus roots by restricting subsequent infection events. 
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2.5 Experimental Procedures 

2.5.1 Plant growth conditions 

Seeds of wild-type Gifu and mutant Lotus japonicus plants were scarified lightly with 

sand paper and surface-sterilized following the previously established methods 

(Szczyglowski et al., 1998). Briefly, seeds were washed using the solution of 70% (v/v) 

ethanol and 0.1% (W/V) sodium dodecyl sulfate (SDS) for 1 minute, followed by a 

solution containing 20% bleach and 0.1% SDS for 1 minute. Sterilized seeds were rinsed 

at least 10 times with sterile Milli-Q water and allowed to imbibe overnight. Imbibed 

seeds were left to germinate on Petri plates containing sterilized Whatman filter paper 

moistened with sterilized Milli-Q water. Plates were sealed with parafilm and placed 

under continuous light at 23 ºC for a period of 7 days. 

To assess the extent of root growth of the various genotypes, the previously established 

protocol was followed (Wopereis et al., 2000). Briefly, two day-old seedlings were 

transferred to vertical plates containing ½ B5 with minimal organics, 2.5 mM 2-(N-

morpholino) ethanesulfonic acid (MES), 4.5% sucrose, and 0.8% phytagel. Roots were 

allowed to elongate for 7 days at room temperature in total darkness. Root elongation was 

scored and averaged for 10-20 roots per genotype. Where appropriate, cytokinin (6-

benzylaminopurine, BA) was added (10-8, 10-7, 10-6, and 10-5 M). 

For studying the response of L. japonicus wild-type and lhk1-1 plants to exogenous 

cytokinin, 10 day-old sand-vermiculate grown plants were transferred to beakers 

containing either sterile water or 50 nM BA, and incubated at room temperature with 

constant aeration. Roots were collected 6 and 12 hours post treatment and used for total 

RNA extraction as described (Murray et al., 2007). 

2.5.2 Assessment of symbiotic phenotypes 

Under sterile conditions, seven-day-old seedlings were transplanted into pots containing a 

6:1 mixture of vermiculite and sand soaked with 1X B and D nutrient solution 

(Broughton and Dilworth, 1971), supplemented with 0.5 mM KNO3, under the standard 

growth condition of 18 hours light at 23 ºC and 6 hours dark at 18 ºC with 80% humidity. 
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After seven days, the seedlings were inoculated with either the wild-type M. loti strain 

NZP 2355 or M. loti containing the hemA::LacZ reporter cassette for visualization of 

bacterial infection (Wopereis et al., 2000). For histochemical analysis of β-galactosidase 

reporter gene activity, roots were fixed, stained, and cleared (Wopereis et al., 2000) at 

different time points as stated for each experiment. 

2.5.3 Alternative splicing at the Lhk3 locus 

Primers were designed for PCR-based detection and expression-based studies of the two, 

alternative splice variants produced by the Lhk3 locus (named Lhk3 variant #1 and 

variant #2). For the comparative analysis of these two alternatively-spliced transcripts, 

5’-end products were amplified from cDNA templates using a common reverse primer 

and a transcript-specific, forward primer (Table 2.3). The PCR cycling program was as 

follows: 5 min at 94 ºC, followed by 30 cycles of 94 ºC 30sec, 58 ºC 30sec, 68 ºC 1min, 

followed by a 7min at 68 ºC. 

2.5.4 The Lhk mutants 

The lhk1-1 mutant has been described (Murray et al., 2007). Targeted Induced Localized 

Lesions IN Genomes (TILLING) was utilized for the identification of mutant alleles at 

the Lhk1A, Lhk2, and Lhk3 loci. Briefly, TILLING is a mutagenesis technique which uses 

a chemical mutagen such as ethyl methanesulfonate (EMS) with a sensitive DNA 

screening-technique that identifies single base mutations (Perry et al., 2009). The primers 

used to generate amplicons for TILLING are listed in the Table 2.3. All selected 

TILLING mutant lines were back-crossed once to wild-type L. japonicus Gifu before 

extensive phenotypic analyses were conducted. To genotype plants carrying point 

mutations in lhk alleles, combinations of sequence analysis, cleavage amplification 

polymorphisms (CAPS), and derived CAPS (dCAPS) markers were used. The primers 

used for genotyping were listed in the Table 2.3. 

Double mutants were developed by genetic crosses between primary homozygous single 

mutants for each of the two loci being analyzed. The F1 plants were allowed to self-

fertilize and produce F2 segregating populations, from which the homozygous lhk double 

https://en.wikipedia.org/wiki/Ethyl_methanesulfonate
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mutants were selected. The F3 progenies from confirmed, homozygous double mutants 

were utilized for phenotypic evaluation. 

The lhk1-1 lhk1a-1 lhk3-1 cytokinin receptor triple mutant was selected from the F2 

population of cross between homozygous lhk1-1 lhk3-1 and lhk1-1 lhk1a-1. For the 

analysis of non-symbiotic phenotypes in uninoculated plants, including shoot and root 

mass, root length, and lateral root number, seven-day-old wild-type and triple mutant 

seedlings were transferred to pots containing a mixture of vermiculite and coarse sand 

and were supplemented with Hoagland’s nutrient solution containing 6mM KNO3 

(Hoagland and Arnon, 1950). Plants were harvested and analyzed 28 days after sowing. 

The symbiotic phenotype of the triple mutant was assessed as described above. 

The additional alleles called lhk1-4 (line no. 30016353), lhk1a-12 (line no. 30006025), 

lhk1a-13 (line no. 30007419), lhk2-17 (line no. 30008546), lhk2-18 (line no. 30006521), 

lhk3-6 and lhk3-7 were identified from the L. japonicus LORE1 retrotransposon mutant 

resource (https://lotus.au.dk/).The R3 generation seeds (3rd generation of tissue culture 

regenerated plants) carrying LORE1 insertions were received from Lotus Base. R3 is a 

segregation population. Therefore, seeds of the LORE1 insertion lines for each allele were 

sown and the seedlings were subjected to PCR-based genotyping using the gene and 

LORE1 specific primers, following the procedure (Urbański et al., 2012). The primers used 

for genotyping are listed in the Table 2.3. 

2.5.5 Cytokinin-responsive assay in S. cerevisiae 

All Lhk cDNAs were directionally cloned into the multi-cloning site of a yeast expression 

vector (P415CYC; Mumberg et al. 1995). The previously analyzed Lhk1 cDNA was used 

as a positive control (Murray et al., 2007). Resultant constructs were transformed into the 

sln1Δ mutant of S. cerevisiae (kind gift from Tatsuo Kakimoto, Osaka University, Japan) 

and analyzed for response to treatments with different plant hormones, including 6-

benzylaminopurine (BA), trans-zeatin (tZ), cis-zeatin (cZ) and the non-specific ligand, 1-

naphthaleneacetic acid (NAA) as described (Murray et al., 2007). Putative loss-of-

function mutant cDNAs were also analyzed using this assay. 

https://lotus.au.dk/
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2.5.6 Cytokinin-responsive assay in E. coli 

The mutant and wild-type Lhk cDNAs were cloned into the E. coli expression vector 

pSTV28 (Tirichine et al., 2007). The resultant constructs were transformed into the 

sensor-negative E. coli SRC122 strain (kind gift from Dr. Takafumi Yamashino; Japan). 

Following transformation, colonies were grown on LB plates or in liquid LB medium 

containing 40 mM sodium phosphate buffer and 20 mM glucose, with or without the 

addition of 200 μM BA. For analysis of β-galactosidase activity, a standard assay was 

used as described (Tirichine et al., 2007). 

2.5.7 Stable transgenic lines and GUS staining  

To develop promoter-GUS fusions for Lhk1, Lhk1A, Lhk2, and Lhk3, approximately 4 kb 

promoter fragments were first amplified and cloned into the pKGWFS7,0 destination 

vector (GUS and GFP reporters) using the GatewayTM technology (Invitrogen). 

A synthetic, cytokinin two-component-output sensor (TCS) was used to follow the 

presence of bioactive cytokinin. TCS harbours the concatemerized B-type Arabidopsis 

response regulator (ARR)-binding motifs and a minimal 35S promoter, followed by the 

TMV-omega sequence, as described (Müller and Sheen 2008). The TCS promoter was 

amplified from the TCS min35S-ΩeGFP ER vector (pCB302; kind gift from Dr. Jen 

Sheen) and was cloned into the pKGWFS7,0 destination vector using the GatewayTM 

technology (Invitrogen). The list of the primers used is under localization analysis in 

Table 2.3. 

After validation of the insert by sequencing, the corresponding vectors were transferred 

to Agrobacterium tumefaciens LBA4404. Standard transformation protocols (Lombari et 

al., 2005) were used to regenerate fully transgenic plants from hypocotyl segments of 

wild-type (ecotype ‘Gifu’) L. japonicus plants. At least seven independent transgenic 

plants were used for analyses of promoter expression. 

Detection of the GUS reporter activity was routinely conducted using a staining solution 

which contained 0.1M potassium phosphate buffer, 5 mM EDTA, 0.5 mM potassium 

ferric- and ferrous-cyanides, and 0.5 mg/ml 5-bromo-4-chloro-3-indolyl glucuronide 
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cyclohexylammonium salt (X-GLUC; Fermentas). All tissues were vacuum-infiltrated for 

15 min, stained overnight at room temperature or 37⁰C and cleared, as described 

previously (Wopereis et al., 2000). 

2.5.8 Quantitative real-time RT-PCR assay 

Total RNA was extracted using an RNeasy Plant Mini Kit (Qiagen) and was treated with 

DNase I. The concentration and purity of RNA was determined by measuring absorbance 

at 260/280 nm. cDNA was prepared from 1 µg of total RNA using the High Capacity 

cDNA Synthesis Kit (Applied Biosystems) with random primers. Negative control 

reactions to which no reverse transcriptase was added (-RT) were included for each RNA 

sample. Quantitative RT-PCR reactions were performed in triplicate (i.e. three biological 

and three technical replicates) on a CFX-96 Real-Time PCR Detection System (BioRad) 

using PerfeCTa SYBR Green FastMix (Quanta Biosciences). Five reference genes, 

including UBC (ubiquitin-conjugating enzyme), PP2A (protein phosphatase 2A), TB2C 

(tubulin beta chain), ATP-S (ATP synthase), and PubQ (ubiquitin) were used to 

normalize results as previously described (Tirichine et al. 2007). Primer sequences used 

for the real time qPCR expression analyses can be found in Table 2.3. 

2.5.9 Complementation of the lhk1-1 nodulation defect  

For hairy root complementation, the binary vector BIN19 containing the entire 

Arabidopsis Histidine Kinase 4 (AHK4) gene, including its cognate promoter and 

terminator regions was used (kind gift from Dr. Chiharu Ueguchi, Nagoya University, 

Japan). 

To overexpress different Lhk mRNA in the lhk1-1 mutant background, Lhk cDNAs were 

cloned into the pEarleyGate100 destination vector using the GatewayTM technology and 

subsequently transformed into A. rhizogenes strain AR1193. Standard A. rhizogenes-

mediated transformation procedures were followed to induce the formation of hairy roots 

on lhk1-1 mutant shoots (Petit et al., 1987). The chimeric plants witch developed hairy 

roots were transferred to soil and at least 10 independent plants per genotype were 

assessed for presence of nodules 21 DAI with M. loti. 



86 

 

2.5.10 Microscopy and image analysis 

All microscopic observations were performed on a Nikon SMZ1500 (Nikon, Japan) 

dissecting or Zeiss Axioskop 2 (Zeiss, Germany) compound light microscope.  Both 

microscopes were integrated with a Nikon DXM1200 digital camera using the ACT1 

media software (Nikon).  All images captured were taken in a TIFF format at a resolution 

of 3840 X 3072. Longitudinal and cross-sections of root and/or nodule segments were 

generated by embedding specimens in 3% (w/v) agar blocks and sectioning to 35 μm 

thickness using a Leica VT 1000S vibratome (Leica Microsystems Inc., USA). 

2.5.11 Statistical analyses 

In all cases, means were calculated from data ranges containing no fewer than 10 plants 

per genotype or per treatment. Pair-wise comparisons were made using a Student’s t-Test 

assuming unequal variance. 

2.5.12 Phylogenetic analysis 

All sequence alignments were generated in Clustal Omega 

(http://www.ebi.ac.uk/Tools/msa/clustalo/) using default settings. The Maximum 

Likelihood method of the MEGA 6.0.5 package 

(http://www.megasoftware.net/mega.php) and branch support test from 1000 bootstrap 

repetitions were used. 

2.5.13 Computer analyses 

Databases were searched with standard protein BLAST (http://www.ncbi.nlm.nih.gov/), 

which also predicts putative conserved domains. 

2.5.14 Accession numbers 

Sequence data from this article can be found in the GenBank/EMBL libraries under the 

following accession numbers: Lhk1 (ABI48271); Lhk1A (DQ848998; former Lhk2, see 

Murray et al., 2007); Lhk2 (KJ361851) and Lhk3 (KJ361852); AHK4 (NP_565277.1); 

AHK2 (NP_568532.1); and AHK3 (NP_564276.1).  

http://www.ebi.ac.uk/Tools/msa/clustalo/
http://www.megasoftware.net/mega.php
http://www.ncbi.nlm.nih.gov/
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Table 2.3 Full primer sequences used in this study. 

 

Name of primers Primer sequence (5’-3’) 

Alternative splicing at the Lhk3 locus 

Lhk3 variant #1-FWD CTTATATGAAGGGTGGTTTTGG 

Lhk3 variant #2-FWD GGTTGGTTACTGTTGTGGATGA 

Lhk3 common-REV CTTTCCAGAAAGCACGTCAAC 

Generate amplicon for TILLING experiment 

LHK1A-FWD TGTCCATGCTTCGAGCCCAATGAGTCC 

LHK1A-REV AAACCCACCCAGAATGGAAAATATGTC 

LHK2-FWD ACAGTTGGCTGTTTATGCATCT 

LHK2-REV TTTTTAGGCAGCGCTCTAATGCCAATG 

LHK3-FWD TGATGTACGGGCAATTCTGGATGATGT 

LHK3-REV GCTTACCCATCCATTTCTGGCATTTGA 

Genotyping for the point mutations in lhk alleles 

lhk1-1-CAPS-BccI-FWD CCTTTGATGTTGAGTCCCTTGT 

lhk1-1-CAPS-BccI-REV CTGCTGATAATTGATAAACCACTGA 

lhk1a-1-Seq-FWD CTCACAAGGGACTTGCTGATT 

lhk1a-1-Seq-REV AAACCCACCCAGAATGGAAAATATGTC 

lhk2-5-Seq-FWD GCGATCCTAAACGATTCCGGCAAATAA 

lhk2-5-Seq-REV TTTTAGGCAGCGCTCTAATGCCAATG 

lhk3-1-dCAPS-SalI-FWD TAATAGGTGATCCAGGAAGGTGTC 

lhk3-1-dCAPS-SalI-REV GGTGCATGCCTATAAGGAAAGA 

Genotyping for LORE1 insertional lhk alleles 

lhk1-4-30016353-FWD GCAAGTGGATTGCACAACATTGCCC 

lhk1-4-30016353-REV GCAGCTTTGCCACTTGCTGCACAT 

lhk1a-12-30006025-FWD TTTGTCCACAATTCCGCAACGCAG 

lhk1a-12-30006025-REV GCAGCCCAGTGAATTTGCTGCTGA 

lhk1a-13-30007419-FWD CGGAATTGTGGACAAATGCGGGTC 

lhk1a-13-30007419-REV GCTTTCCCAGTGGCCCTAGCCCTT 

lhk2-17-30008546-FWD TTGAGAACCAGCATGGGTGGACAA 

lhk2-17-30008546-REV TTGATGTTGGTAAGTGAGGCACCCA 

lhk2-18-30006521-FWD CCAGATGCAACAGTGGAGCAGCGT 

lhk2-18-30006521-REV CCAAGGGTGTGGAGGCCTTTGCTT 

lhk3-6-30000134-FWD TGTCAGAACAGCGCAGGACAGTGG 

lhk3-6-30000134-REV GAATCCCTCCCAGCTCTTGCGGAT 

lhk3-7-30011166 -FWD CCACGGATGCGTTCTATCATGTCAGC 

lhk3-7-30011166 -REV AAACCTGCCACACTTTGGGCCTGA 

LORE1-specifc-P2  CCATGGCGGTTCCGTGAATCTTAGG 

Localization analysis 

LHK1-Promoter-GW-FWD AAAAAGCAGGCTCAGGCTTTCTCAGGAGAG

GTT 

LHK1-Promoter-GW-REV AGAAAGCTGGGTTTTTCTCTGGTGGGTTGAT
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TG 

LHK1A-Promoter-FWD AAAAAGCAGGCTTAGCGATGAAGGAGACAA

ACCT 

LHK1A-Promoter-REV AGAAAGCTGGGTCGTGAAACTGCTACTGGT

CTTG 

LHK2-Promoter-FWD AAAAAGCAGGCTATGAAGTAACATGCACGA

CGAT 

LHK2-Promoter-REV AGAAAGCTGGGTATGAAGTAACATGCACGA

CGAT 

LHK3-Promoter-FWD AAAAAGCAGGCTACATATTCACACCAGGTC

ACCA 

LHK3-Promoter-REV AGAAAGCTGGGTGCTGTCTTATCCACCCAAT

AGC 

TCS-FWD GGGGACAAGTTTGTACAAAAAAGCAGGCTG

AAGCTTATGCTAGCAAAATCT 

TCS-REV GGGGACCACTTTGTACAAGAAAGCTGGGTT

GTTATATCTCCTTGGATCGAT 

qRT-PCR expression analysis 

Lhk1-qPCR-FWD GTGCTTAAATTGTGGGATGGA 

Lhk1-qPCR-REV ATTGATGCTGGGAGAAGTTGA 

Lhk1A-qPCR-FWD TCAAAGCCATTTGAGGAACAG 

Lhk1A-qPCR-REV GCATAGTTTACCTGCAACATCTG 

Lhk2-qPCR-FWD ATGGATGGCTACGTGTCAAAG 

Lhk2-qPCR-REV GCATACGTTGTTGATTGAATGC 

Lhk3-variant 1-qPCR-FWD CTTATATGAAGGGTGGTTTTGG 

Lhk3-variant 1-qPCR-REV TTGTCTCTTCACTCCCTTGGA 

Lhk3-variant 2-qPCR-FWD TCAGCTGCAATTCACAAACTC 

Lhk3-variant 2-qPCR-REV ACAACCCAGCAACATAGCACT 

UBC-FWD ATGTGCATTTTAAGACAGGG 

UBC-REV GAACGTAGAAGATTGCCTGAA 

PP2A-FWD GTAAATGCGTCTAAAGATAGGGTCC 

PP2A-REV ACTAGACTGTAGTGCTTGAGAGGC 

TB2C-FWD GCTCACCACCCCAAGCTTTGG 

TB2C-REV TGTCAATGGAGCAAACCCAACC 

ATP-S-FWD AACACCACTCTCGATCATTTCTCTG 

ATP-S-REV CAATGTCGCCAAGGCCCATGGTG 

PUB-FWD ATGCAGATCTTTTGTGAAGAC 

PUBQ-REV ACCACCACGGAAGACGGAG 
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In this chapter, it is postulated that cytokinin participates in orchestrating the signaling 

events that promote rhizobial colonization of the root cortex and limit the extent of 

subsequent infection at the root epidermis, thus maintaining homeostasis of the symbiotic 

interaction. Accordingly, it is shown that plant mutants with defects in cytokinin 

receptors display aberrant rhizobial infection phenotypes. 

3.1 Introduction 

The perception of nodulation factors (NF) by the host plant LysM motif receptor kinase 

complex (Broghammer et al., 2012) initiates a range of primary cellular responses, 

including the root hair tip-localized calcium influx and calcium spiking (Morieri et al., 

2013). Acting as a secondary messenger, the NF-induced calcium evolutions facilitate 

links with intrinsic plant developmental pathways. This is achieved, at least in part, 

through the regulation of calcium and calmodulin-dependent receptor kinase (CCaMK) 

(Lévy et al., 2004; Liao et al., 2012; Miller et al., 2013). The resultant signaling outputs 

lead to activation of several transcription regulators, including the NODULE 

INCEPTION activator Nin (Schauser et al., 1999). These and other regulators partake in 

the transcriptional reprograming (Suzaki and Kawaguchi, 2014) that mediates the 

infection thread (IT)-dependent entrance of rhizobia inside the root (Fournier et al., 2015) 

and also stimulates a subset of susceptible cells to form a nodule primordium within the 

subtending root cortex (Oldroyd et al., 2011; Suzaki et al., 2015). 

Artificial activation of several components that participate in the symbiotic signaling, 

including NF receptors, CCaMK or CYCLOPS, induces the formation of empty nodules 

independent of Rhizobium and/or NF (Gleason et al., 2006; Tirichine et al., 2007; Ried et 

al., 2014; Saha et al., 2014; Singh et al., 2014). Ectopic cytokinin is also sufficient to 

stimulate nodule structure formation on at least some leguminous roots (Cooper and 

Long, 1994; Heckmann et al., 2011). It has become clear that cytokinin signaling, 

induced downstream from the NF perception and CCaMK, represents one of the key 

endogenous effectors of nodule differentiation (Cooper and Long, 1994; Gonzalez-Rizzo 

et al., 2006; Murray et al., 2007; Tirichine et al., 2007; Frugier et al., 2008; Madsen et al., 

2010; Heckmann et al., 2011; Plet et al., 2011; Held et al., 2014). In Lotus japonicus, this 

process is mediated by the Lotus Histidine Kinase 1 (LHK1) cytokinin receptor with a 
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partially redundant involvement of LHK1A and LHK3 (see Chapter 2), requiring several 

cytokinin-regulated effectors, including NIN and Nodulation Signaling Pathway 2 

(NSP2) (Schauser et al., 1999; Murray et al., 2007; Tirichine et al., 2007; Held et al., 

2010; Heckmann et al., 2011; Soyano et al., 2014). 

Current data also implicate cytokinin in the regulation of root colonization by rhizobia, 

but the underlying mechanism remains unclear. In this work, I further consider the 

aberrant infection phenotype of L. japonicus cytokinin receptor mutants and propose a 

conceptual model for the cytokinin-dependent regulation of Mesorhizobium loti infection 

in L. japonicus. 
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3.2 Results and discussion 

3.2.1 Cytokinin is not essential during epidermal infection thread 

formation 

In both lhk1-1 and the lhk1-1 lhk1a-1 lhk3-1 triple receptor mutant, defects in nodule 

formation are accompanied by hyperinfection of the root epidermis by M. loti (Figure 3.1 

and Figure 3.2) (Murray et al., 2007; Held et al., 2014). This implies that cytokinin 

signaling, as mediated by LHK1 and possibly other cytokinin receptors, is not only 

essential for nodule structure formation but also partakes, directly or indirectly, in 

establishing homeostasis of the symbiotic infection. Neither of the lhk1a-1 and lhk3-1 

single mutants nor the corresponding lhk1a-1 lhk3-1 double mutant are hyperinfected by 

M. loti (Held et al., 2014), which indicates that in L. japonicus, LHK1 is not only 

required but is also sufficient to restrict the epidermal infection thread formation events. 

In most legumes, including L. japonicus and Medicago truncatula, the primary mode of 

rhizobial entry inside the root is by root hair epidermal infection threads (eIT) (Fournier 

et al., 2015). Only a small proportion of eITs will enter the subtending nodule 

primordium (Penmetsa and Cook, 1997), becoming persistent, cortical ITs (cITs). These 

deliver rhizobia into the cytosol of the nodule cells, where they are subjected to 

differentiation into bacteroides, which are the symbiotic form of rhizobia that reside with 

the plant cells and fix atmospheric nitrogen to ammonia (Kereszt et al., 2011). 

Mounting evidence points to different requirements for plant functions that support eIT 

and cIT formation (Karas et al., 2005; Groth et al., 2010; Madsen et al., 2010; Kosuta et 

al., 2011; Hayashi et al., 2014). Mutant plants, such as L. japonicus symrk-14 and nena, 

are specifically impaired in epidermal responses to M. loti infection, including calcium 

spiking and Nin gene expression. While defective in eIT formation, they develop normal 

cortical infection threads (Groth et al., 2010; Kosuta et al., 2011). Furthermore, activation 

of CCaMK by calcium/calmodulin is reported to be critical only for eIT formation 

(Hayashi et al., 2014). 

It has been known that the transcription factor Nin is essential during remodeling of the 

root hair infection chamber, which leads to eIT initiation (Fournier et al., 2015). The   
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Figure 3.1 The L. japonicus LHK1 cytokinin receptor regulates both nodulation and 

infection thread formation. 

The lhk1-1 mutant forms a low number of nodules but is hyperinfected by M. loti. The 

scores of nodulation events (combination of nodules and nodule primordia) (A) and 

infection threads (B) are given for wild type and the lhk1-1 mutant. In all cases, values 

reported represent the mean ± SE (n = 10). The phenotypes were evaluated 10 days after 

inoculation (DAI) with M. loti.  
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Figure 3.2 The L. japonicus lhk1-1 single and lhk1-1 lhk1a-1 lhk3-1 triple cytokinin 

receptor mutants are hyperinfected by M. loti at the root epidermis. 

(A) An image of a wild-type L. japonicus epidermal infection thread (eIT) that traverses a 

root hair and enters the root cortex to become a cortical infection thread (cIT). The cIT 

ramifies within the subtending nodule primordium (NP). Images showing abundant eITs 

on the root surface of the lhk1-1 single (B) and lhk1-1 lhk1a-1 lhk3-1 triple (D) cytokinin 

receptor mutants. (C) The lhk1-1 mutant is able to form sporadic cITs. (E) Close-up of a 

single eIT that successfully traverses the root hair of the triple cytokinin mutant but 

bulges (arrowhead) at the bottom of the cell, unable to enter the root cortex. 
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rhizobial infection rapidly induces Nin expression within the root epidermis (Nin-

epidermis) and also in the subtending root cortex (Nin-cortex), but these cellular 

responses can be genetically uncoupled (Kosuta et al., 2011). While ectopic cytokinin 

fails to mimic this epidermal response, it does, like bacterial infection, induce the Nin-

cortex expression (Heckmann et al., 2011). Consistent with the presence of eITs in the 

lhk1-1 mutant (Figure 3.1A and Figure 3.2B), activation of the Nin-epidermis upon M. 

loti inoculation is LHK1-independent (Figure 3.3). Together with the apparent lack of 

detectable cytokinin activity in the L. japonicus root epidermis in the earliest stages 

following M. loti infection (Held et al., 2014) (see Figure 2.11), this further supports the 

notion that cytokinin is not essential during epidermal infection thread formation. 

Recent data on the M. truncatula root hair “infectome” highlight the requirement for 

auxin signaling to initiate eIT formation (Breakspear et al., 2014). The Mtcre1-1 mutant, 

carrying a deleterious lesion in the presumed M. truncatula orthologue of the L. 

japonicus Lhk1 locus, is similarly capable of initiating eITs (Plet et al., 2011), indicating 

that the MtCRE1-dependent cytokinin signaling is also nonessential in this process. 

I propose that in epidermal cells responding to NF, active repression of cytokinin 

signaling by auxin-dependent mechanisms (Chandler and Werr, 2015) is required for eIT 

formation. Indeed, expression of type-A response regulators, which negatively regulate 

cytokinin signaling, is rapidly upregulated by NF application and/or rhizobial infection 

(Op den Camp et al., 2011; Breakspear et al., 2014; Liu et al., 2015) and presumably that 

this response is auxin-dependent in the root epidermis. 

3.2.2 Infection of the root cortex requires cytokinin signaling 

In L. japonicus, three cytokinin receptors, LHK1, LHK1A, and LHK3, have no apparent 

role during the initial eIT formation (Figure 3.2), but in their absence, in the lhk1-1 lhk1a-

1 lhk3-1 triple receptor mutant, cITs do not develop (Figure 3.2D and 3.2E). Among the 

four cytokinin receptor genes that are present in the L. japonicus genome only the Lhk1 

promoter has detectable activity in the root epidermis (See Figure 2.13) (Held et al., 

2014). Given that lhk1-1 forms an abundance of eITs (Figure 3.1A), the competency to 

carry out eIT formation must be LHK1-independent. 
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Figure 3.3 Expression of the Nodule Inception::β-Glucuronidase (Nin::GUS) 

reporter in the root epidermis upon M. loti inoculation. 

Segments of L. japonicus wild-type and lhk1-1 mutant roots from transgenic plants 

expressing the GUS reporter gene (blue color) under the control of the L. japonicus Nin 

promoter are shown. The roots were stained for GUS activity 48 hours after inoculation 

with M. loti. 
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Although delayed, cITs are formed in inoculated lhk1-1 roots (Figure 3.2C) (Murray et 

al., 2007; Held et al., 2014). This indicates that LHK1 is not absolutely required for cIT 

formation. The presence of cITs in lhk1-1 is associated with cortical cell divisions which 

give rise to a low nodule number phenotype (Figure 3.1B) (Murray et al., 2007). I have 

shown that this nodulation phenotype reflects partially redundant function of LHK1 with 

LHK1A and LHK3 within the L. japonicus root cortex (see Chapter 2) (Held et al., 

2014). The ability of lhk1-1 to sustain the cIT development is likely also due to partially 

overlapping function of these receptors in the root cortex. Consistent with this notion, the 

lhk1-1 lhk1a-1 lhk3-1 triple receptor mutant, although hyperinfected at the root 

epidermis, does not develop cITs (Figure 3.2D and 3.2E). This phenotype highlights the 

essential role of the cytokinin receptor-dependent signaling in controlling the 

colonization of the root cortex by M. loti. This is supported by the phenotype of the L. 

japonicus daphne mutant, which carries a cytokinin-insensitive allele of Nin. Like the 

lhk1-1 lhk1a-1 lhk3-1 triple receptor mutant, daphne is hyperinfected by M. loti at the 

root epidermis (which confirms that the cytokinin regulation of Nin is not required for 

eIT formation), lacks cITs and does not form nodules (Suzaki et al., 2015). The Mtcre1-1 

mutant does not initially form cITs either (Gonzalez-Rizzo et al., 2006; Plet et al., 2011). 

Thus, cytokinin might be the primary, plant endogenous signal that conditions cortical 

cells for upcoming rhizobial infections. 

Cytokinin induces Nin gene expression in the L. japonicus root cortex (Heckmann et al., 

2011), which must depend on at least one of the three cytokinin receptors. A similar 

symbiotic defect in the triple receptor and daphne mutants is congruent with this notion. 

This further suggests that signaling events which promote the development of cITs and 

stimulate the negative feedback mechanism to restrict subsequent eIT formation, both 

originate within the activated L. japonicus root cortex and require the cytokinin-induced 

Nin-cortex gene expression (Held et al., 2014; Yoro et al., 2014). Interestingly, ethylene-

responsive factors have been suggested as potential candidates for the NIN-dependent 

regulation (Yoro et al., 2014). 

The role of cytokinin in promoting cIT formation is indirect and likely relates to its 

propensity for reprograming a subset of root cortical cells toward symbiotic functions in 
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legumes (Oldroyd et al., 2009). At which point downstream from the cytokinin and Nin-

cortex activation the competency of root cortical cells for rhizobial infection is reached 

and what exactly this entails remains uncertain. However, the ability to control the cell 

cycle machinery and the formation of associated pre-infection threads, hypothesized to be 

the result of the modified cell division process, appear to be critical to reaching the 

infection-permissive stage in the root cortex (Yang et al., 1994). Basic cellular functions 

such as the cell-cycle switch protein CCS52A (Kondorosi and Kondorosi, 2004) and 

components of the L. japonicus topoisomerase VI, complex (Sasaki et al., 2014; Yoon et 

al., 2014) have been highlighted as important and are among those likely targeted by 

cytokinin (Jain et al., 2006; Takahashi et al., 2013). Incidentally, in M. truncatula, 

changes in expression of cell-cycle genes accompany the eIT formation (Breakspear et 

al., 2014). This could mean that although the primary hormonal response to the NF 

perception is root cell-layer specific, with presumed high auxin/low cytokinin activity in 

the epidermis and high cytokinin/low auxin in the cortex, reaching the stage that is 

permissive for rhizobial infection involves common, downstream alterations to the 

cellular apparatus. 

3.2.2.1 Mutation in the predicted M. truncatula orthologue of Lhk1 

does not lead to hyperinfection 

Unlike lhk1-1, the Mtcre1-1 mutant is not hyperinfected by Sinorhizobium meliloti, a 

natural microsymbiont of M. truncatula (Figure 3.4) (Gonzalez-Rizzo et al., 2006; Plet et 

al., 2011). This indicates that either MtCRE1 does not participate in a mechanism that 

restricts subsequent eIT formation or it functions in a redundant manner with other 

cytokinin receptors to carry out this process. When grown in soil, Mtcre1-1 recovers a 

nearly wild type nodulation phenotype three weeks after inoculation (Figure 3.4B), 

suggesting the existence of a partially redundant function(s) or presence of an 

independent mechanism. Additional studies are needed to fully comprehend the 

importance of these apparent, species-specific differences. Lotus and Medicago have 

dissimilar nodule development programs (determinate versus indeterminate, 

respectively), which must reflect differences in relevant hormonal signals. This is also 

likely to be consequential for the regulation of rhizobial infection in these two species. 
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Figure 3.4 Infection thread number and nodulation in the M. truncatula cre1-1 

mutant. 

The number of infection threads at 7 DAI (A) and nodulation events (combination of 

nodules and nodule primordia) at 7 and 21 DAI (B) were scored in M. truncatula wild-

type and Mtcre1-1 mutant plants. In all cases, values reported represent the mean ± SE (n 

= 10). An asterisk denotes significant differences between the mutant and the wild-type 

control (Student's t-Test, P<0.05). 
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3.2.3 Cytokinin-ethylene crosstalk limits subsequent epidermal 

infections 

When applied to roots, cytokinin stimulates ethylene production, which in turn limits root 

elongation (Dugardeyn and Van Der Straeten, 2008). Ethylene is a potent inhibitor of 

early responses to NF and was shown to dynamically regulate infection and nodule 

formation events by inhibiting or modulating the epidermal calcium influx and calcium 

spiking in a concentration-dependent manner (Heidstra et al., 1997; Oldroyd and Downie, 

2006; Morieri et al., 2013). 

We have postulated that upon M. loti infection, symbiotic cytokinin induces ethylene 

production. In L. japonicus, this effect would primarily be LHK1-dependent and is 

presumed here to represent a locally operating mechanism that restricts subsequent 

infection events at the root epidermis (Figure 3.5). This could explain why the lhk1-1 

mutant is hyperinfected by M. loti (Murray et al., 2007; Held et al., 2014). 

Using the two component-output sensor (TCS)::GUS reporter (Müller and Sheen, 2008), 

we showed that two successive peaks of cytokinin activity follow root inoculation by M. 

loti (Held et al., 2014) (See Figure 2.11). The first peak is detectable in a discreet region 

within the root cortex, where cell divisions for nodule primordia formation are initiated. 

The second peak occurs only after the initial cell divisions create a microscopically 

visible nodule primordium (i.e. a distinct region of cell divisions) within the root cortex. 

In L. japonicus, this stage is marked by enhanced TCS::GUS reporter gene activity, which 

extends to include root hairs and is accompanied by increased activity of the Lhk1 

promoter (See Figure 2.11) (Held et al., 2014). Whether the onset of the second cytokinin 

peak relates in any way to the systemic autoregulation of nodulation (AON) which 

operates to limit subsequent nodule formation via a shoot-to-root cytokinin transport 

(Soyano et al., 2014; Wang et al., 2014) remains unknown. The extent of M. loti infection 

in lhk1-1 roots appears to be further enhanced in the presence of the har1-1 mutation 

which blocks functioning of AON (Wopereis et al., 2000; Murray et al., 2007). It is, 

therefore, likely that these two mechanisms work in conjunction to establish the 

homeostasis of the infected root, with cytokinin playing a significant role in both of these 

events.  
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Figure 3.5 A conceptual model for cytokinin-dependent regulation of M. loti 

infection in L. japonicus. 

The M. loti infection and perception of NF by the NF receptor complex (NFR) generate a 

presumed cell non-autonomous signaling event (the blue arrow that crosses an 

epidermis/cortex boundary), triggering the first cytokinin activity peak within the root 

cortex (Cytokinin I). As perceived by LHK cytokinin receptors and in a NIN-cortex 

(NIN) dependent manner, the permissive conditions for cIT formation are generated. The 

same signaling events contribute to a negative feedback-loop, which leads to the second 

cytokinin activity peak that includes root epidermis (Cytokinin II); this is presumed to 

locally block subsequent eIT. Cytokinin might increase the level of ethylene production 

in a LHK1-dependent manner by enhancing the steady-state level of mRNA encoding 1-

aminocyclopropane-1-carboxylic acid synthase (ACS) transcripts and/or by increasing 

the stability of the type-2 ACS proteins, preventing their degradation via a ubiquitin-

proteasome pathway. Ethylene blocks calcium signaling, which is required for eIT 

formation. The “u-turn” arrows denote auto-activation of the LHK1 gene expression, 

which is alleged to increase sensitivity of cells to cytokinin. Positive and negative 

regulatory actions are indicated by broken green lines with arrows and bars, respectively. 
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It is possible that both of the cytokinin activity peaks, as induced by M. loti infection, 

contribute to increased ethylene synthesis within roots. We favor a model wherein the 

second, more extensive burst of cytokinin activity delineates a mechanism that restricts 

subsequent infection events at the root epidermis (Figure 3.5). This negative feedback is 

presumed here to involve the cytokinin-dependent up-regulation of the ACS enzyme 

activity in infected roots. ACSs mediate the first committed step in the ethylene 

biosynthetic pathway and are regulated by many cues, including cytokinin (Hansen et al., 

2009). Cytokinin exerts this function at both transcriptional and post-transcriptional 

levels (Argueso et al., 2007; Hansen et al., 2009), with the latter conferring increased 

stability of type-2 ACSs (Hansen et al., 2009) (see Chapter 4 for details). 

Our working model incorporates a simple hypothesis, wherein the second cytokinin peak 

contributes to a significant, local increase in ACS activity and, consequently, ethylene 

production. The ethylene level, in turn, reaches a threshold that is necessary to block the 

NF-dependent calcium signaling, thus impairing initiation of new and progression of 

already initiated eITs (Figure 3.5). The late arrival of the cytokinin activity in the root 

epidermis following the primary M. loti infection (Held et al., 2014) might be of 

particular relevance to this regulatory process. Cytokinin rapidly increases the steady-

state level of the Lhk1 mRNA, which may also dictate the magnitude of ethylene 

production. These distinctive attributes of Lhk1 might, therefore, account for its central 

role in local signaling for restriction of eIT formation (Held et al., 2014). 

Recently, evidence was provided that in M. truncatula the majority of transcriptional 

changes that occur in roots within the first three hours after NF application are cytokinin 

and MtCRE1 receptor-dependent (van Zeijl et al., 2015). This work revealed also the 

presence of regulatory feedback loops, including a cytokinin-ethylene crosstalk, which 

was postulated to inhibit NF-dependent signaling and restrict further nodule primordia 

formation events. Although not investigated, the same work hints at the possibility of a 

similar cytokinin-ethylene crosstalk partaking in the LHK1-dependent regulation of M. 

loti infection in L. japonicus. 
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3.2.4 Concluding remarks 

Further understanding of the fundamental mechanisms should clarify the modus operandi 

during colonization of roots by rhizobia, but cytokinin signaling clearly emerges as an 

important mediator of infection thread-dependent infection. Interestingly, a NF- and 

infection thread-independent mode of cortical cell colonization was described for 

Aeschynomene indica (Indian vetch) Bradyrhizobium sp. strain ORS285 symbiosis 

(Giraud et al., 2007; Bonaldi et al., 2011). This direct symbiotic infection, considered to 

be more ancient, has been shown to require an intact purine biosynthesis pathway (Giraud 

et al., 2007), from which cytokinin is derived. This suggests that cytokinin or its 

precursors might have been consequential during the evolution of predisposition for 

endosymbiotic entry of bacteria into the root. However, similar to NF-dependent 

infection, the available data do not support the notion that bacterial (Bradyrhizobium 

ORS285)-derived cytokinins are essential for NF-independent mode of root colonization 

in Aeschynomene plants (Podleáková et al., 2013). 
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3.3 Experimental Procedures 

3.3.1 Plant growth conditions 

Seeds of L. japonicus wild-type Gifu, the lhk1-1 mutant (Murray et al., 2007) and the 

lhk1-1 lhk1a-1 lhk3-1 mutant (Held et al., 2014) were sterilized and grown as described 

in Section 2.5.1. 

Seeds of M. truncatula wild-type A17 and Mtcre1-1 (kind gift from Dr. Florian Frugier, 

Institute of Plant Sciences Paris-Saclay) were scarified lightly with sand paper, surface-

sterilized using sulfuric acid for five minutes, followed by five rinses with sterile Milli-Q 

water, and incubation in 30% bleach solution for 10 minutes. Sterilized seeds were rinsed 

at least 10 times with sterile Milli-Q water and allowed to imbibe overnight. Imbibed 

seeds were left to germinate on Petri plates containing sterilized Whatmann filter paper 

moistened with sterilized Milli-Q water. Plates were sealed with parafilm and placed 

under continuous light at 23 ºC for a period of two days. 

3.3.2 Assessment of symbiotic phenotypes 

Under sterile conditions, seven day old seedlings were transplanted into pots containing a 

6:1 mixture of vermiculite and sand soaked with 1X B and D nutrient solution 

(Broughton and Dilworth, 1971), supplemented with 0.5 mM KNO3, under the standard 

growth condition of 18 hours light at 23 ºC and 6 hours dark at 18 ºC with 80% humidity. 

Seven days after sowing, the L. japonicus and M. truncatula seedlings were inoculated 

with a strain of either M. loti or S. meliloti, respectively, carrying the hemA::LacZ 

reporter cassette for visualization of bacterial infection. Pots containing 15 plants were 

inoculated with 10 ml of an aqueous suspension (OD600: 0.8) of the rhizobial bacteria 

(Wopereis et al., 2000). For histochemical analysis of β-galactosidase reporter gene 

activity, roots were fixed, stained, and cleared (Wopereis et al., 2000) at different time 

points as stated for each experiment. 

3.3.3 NIN::GUS epidermal staining  

Sterilized, imbibed seeds were kept upside down on petri plates with filter paper for two 

days in dark. The seedlings were transferred to vertical plates containing ¼ B and D 
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nutrient solution (Broughton and Dilworth, 1971) with 0.8% agar. Seedlings were sown 

onto a pre-soaked filter paper that had been placed over the media, to avoid penetration of 

the roots into the agar. The filter papers were soaked in sterile Milli-Q water. Five 

germinated seedlings were placed on each plate and roots were covered with another wet 

filter paper. Vertical plates were kept in boxes such that the shoots were kept under 

continuous light while the roots were protected from light. After two days on the plates, 

each root was inoculated with 20 µl of M. loti. Plates were kept for another 24 hours 

under continuous light before roots were stained for GUS activity. 

Detection of the GUS reporter activity was conducted using a staining solution which 

contained 0.1M potassium phosphate buffer, 5 mM EDTA, 0.5 mM potassium ferric- and 

ferrous-cyanides, and 0.5 mg/ml 5-bromo-4-chloro-3-indolyl glucuronide 

cyclohexylammonium salt (X-GLUC; Fermentas). Roots were gently placed on Fahraeus 

slides and stained with 1 ml of GUS staining solution per slide. Slides were placed into 

large plates containing a few drops of water and incubated at 37 ºC. Stained roots were 

cleared, as described previously (Wopereis et al., 2000). 
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In this chapter, it is shown that in Lotus japonicus, the ACS1 and ACS2 ethylene 

biosynthesis genes are likely to function redundantly to regulate the extent of rhizobial 

infection in an LHK1-dependent manner. I also demonstrate that ETO1/EOLs proteins 

work redundantly in fine-tuning the rhizobially-induced ethylene production, thus 

contributing to the homeostasis of the symbiotic infection. 

4.1 Introduction 

Ethylene (C2H4) has been recognized as a plant growth regulator since the turn of the last 

century (Crocker and Knight, 1908; Knight et al., 1910). As a signaling molecule, it is an 

important gaseous phytohormone that has long been known to play important roles in a 

diverse array of developmental processes, including seed germination, seedling growth, 

leaf and flower senescence and abscission, fruit ripening, and the response to a wide 

variety of biotic and abiotic stresses (Light et al., 2016). 

The biosynthetic capacity for ethylene is nearly ubiquitous throughout the plant body, but 

ethylene production is stringently regulated (Argueso et al., 2007). This permits the 

maintenance of low ethylene levels through a regulatory network which is highly 

dynamic and allows for rapid and dramatic increases in ethylene levels in response to 

both endogenous cues and varying external conditions including light, temperature, and 

presence of pathogens or microsymbionts (Chae and Kieber, 2005; De Paepe and Van 

Der Straeten, 2005). 

The biosynthesis of ethylene occurs through a relatively simple metabolic pathway 

(Figure 4.1) that has been extensively studied and well-documented in several plant 

species (Yang and Hoffman, 1984; Argueso et al., 2007; Lin et al., 2009). In short, 

ethylene is derived from the amino acid methionine and is produced in the following 

three enzymatic steps: (1) conversion of methionine to S-adenosyl methionine (SAM) by 

SAM synthetase (SAMS); (2) conversion of SAM to 1-aminocyclopropane-1-carboxylic 

acid (ACC) by ACC synthase (ACS); and lastly, (3) conversion of ACC to ethylene by 

ACC oxidase (ACO). The conversion of SAM to ACC by ACS is the first committed, 

and generally the rate-limiting step in the ethylene biosynthesis during vegetative growth 

(Adams and Yang, 1979). The level of ACS activity closely parallels the level of ethylene  
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Figure 4.1 Ethylene biosynthesis pathway. 

Ethylene is produced in three steps from methionine (see the text for details). The 

enzymes catalyzing each step are shown in red above the arrows. Several inputs, 

including plant hormone cytokinins can regulate the enzymes (mostly ACS) involved in 

ethylene biosynthesis via either transcriptional or post-transcriptional mechanisms. Based 

on their C-terminal amino acid sequence motifs, ACS proteins are classified in three 

subfamilies; type-1, type-2, and type-3. Consensus sites for CDPK and MAPK sites are 

shown as red and green, respectively. Type-2 ACS proteins contain the TOE sequence 

which is required for interaction with ETO1/EOLs. Type-2 ACSs are stabilized by 

cytokinin and are ubiquitinated and targeted for degradation by ETO1/EOLs. Modified 

from (Lyzenga and Stone, 2012). 

MET, methionine; SAM, S-adenosyl-methionine; ACC, 1-aminocyclopropane-1-

carboxylic acid; SAMS, SAM synthetase; ACO, ACC oxidase; TOE, Target of ETO1.  
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production in most plant tissues (Yang and Hoffman, 1984). In Arabidopsis thaliana 

seedlings, increasing ACS protein levels drives ethylene synthesis to a high degree (Chae 

et al., 2003; Joo et al., 2008; Christians et al., 2009). In fact, it has been well-established 

that the regulation of ethylene biosynthesis by internal signals (e.g. hormones) or in 

response to environmental factors, is mostly mediated through modulating ACS activity 

(Chae et al., 2003; Argueso et al., 2007; Joo et al., 2008; Christians et al., 2009; Zdarska 

et al., 2015). 

ACS is encoded by a multi-gene family in all plant species examined thus far (Bleecker 

and Kende, 2000). In A. thaliana, this family consists of nine members (ACS1, ACS2, 

ACS4-9 and ACS11), of which eight (ACS2, ACS4-9 and ACS11) have ACS activities 

as homodimers, while ACS1 forms a non-functional homodimer (Yamagami et al., 2003; 

Tsuchisaka and Theologis, 2004). The sequence of the catalytic core is highly conserved, 

but C-terminal regions of ACS proteins are divergent. Based on the composition of the C-

terminal regions, the ACS proteins are divided into three subfamilies (Yamagami et al., 

2003) (Figure 4.1). Type-1 ACS proteins have the longest C-terminus with a single, 

putative calcium-dependent protein kinase (CDPK) phosphorylation site and three 

mitogen-activated protein kinase (MAPK) phosphorylation sites. Type-2 ACS proteins 

have an intermediate length C-terminus containing a single putative CDPK 

phosphorylation site, while type-3 ACS proteins have a very short C-terminus and no 

predicted kinase phosphorylation sites (Tatsuki and Mori, 2001; Liu and Zhang, 2004; 

Sebastià et al., 2004; Chae and Kieber, 2005; Yoshida et al., 2005). 

Studies have shown that ACSs are regulated by many biotic and abiotic cues, 

transcriptionally and post-translationally, including proteasome-mediated degradation 

(Chae et al., 2003; Liu and Zhang, 2004; Wang et al., 2004; Skottke et al., 2011). The 

highly variable C-terminal regions of the proteins serve as targets for post-translational 

regulation (Chae et al., 2003; Yoshida et al., 2005; Hansen et al., 2009). The underlying 

mechanisms for regulation of different ACSs, however, are complex and diverse. For 

instance, in A. thaliana phosphorylation of the type-1 AtACS2 and AtACS6 proteins by 

stress-responsive MAPKs (MPK3 and MPK6) results in increased ethylene synthesis 

through protein stabilization (Liu and Zhang, 2004; Joo et al., 2008; Han et al., 2010). 



121 

 

Similarly, in wounded tomato (Lycopersicon esculentum) tissues, the CDPK-mediated 

phosphorylation of LeACS2, a type-1 ACS, stabilizes the enzyme leading to increased 

ACS activity and ACC content (Tatsuki and Mori, 2001; Kamiyoshihara et al., 2010). 

Conversely, un-phosphorylated type-1 isozymes are rapidly turned over via a 26S 

proteasome-dependent pathway (Joo et al., 2008). 

The CDPK motif of type-2 ACS proteins can also be phosphorylated (Sebastià et al., 

2004), but this seems to have a negative effect (Tan and Xue, 2014). Protein phosphatase 

2A, which regulates the reversible de-phosphorylation of ACS proteins, positively 

regulates type-2 ACSs (AtACS5 and AtACS9) while negatively regulating type-1 ACSs 

(AtACS2 and AtACS6) (Skottke et al., 2011). Also, the phosphatase inhibitor 

cantharidin, by increasing the phosphorylation status of AtACS5, results in increased 

degradation (Skottke et al., 2011). 

Members of the type-2 ACS protein family are specifically targeted by Ethylene Over-

Producer1 (ETO1) protein for ubiquitination and rapid degradation via the 26S 

proteasome pathway (Lin et al., 2009) (Figure 4.1). It has been shown that in A. thaliana, 

ETO1 and its two paralogs, ETO1-like (EOL1) and EOL2, work redundantly to target 

type-2 ACSs (AtACS5 and AtACS9) for degradation (Christians et al., 2009). ETO1, 

EOL1, and EOL2 are Broad complex/Tramtrack/Bric-a-brac (BTB)-domain containing 

proteins. The BTB domain functions as a substrate-recruiting component of a cullin 

(CUL) 3a/b based E3 ligase complex (Gingerich et al., 2005; Lyzenga and Stone, 2012). 

ETO1 and EOLs target a C-terminal sequence specific to type-2 ACS proteins called 

Target of ETO1 (TOE) (Yoshida et al., 2006; Christians et al., 2009). Dominant 

mutations within the TOE sequence (eto2, and eto3 in AtACS5 and AtACS9, 

respectively) eliminate the recognition by ETO1/EOLs, thus increasing the stability of 

ACS proteins, and resulting in ethylene over production (Chae et al., 2003; Hansen et al., 

2009). It has also been shown that a phosphor-binding protein called 14-3-3 positively 

regulates ethylene production by direct interactions with the ACS and ETO1/EOL 

proteins. These interactions stabilize the type-2 ACS proteins (for instance, AtACS5), 

while destabilizing the ETO/EOLs, contributing to increased ethylene production (Yoon 

and Kieber, 2013). Recently, Casein Kinase1 (CK1) was shown to promote the 
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phosphorylation of AtACS5, thereby increasing its interaction with ETO1, and leading to 

its degradation (Tan and Xue, 2014). 

It has been known for decades that cytokinins play an important role in modulating 

ethylene levels (Vogel et al., 1998). Exogenous cytokinin, for example, induces ethylene 

production and thus triggers the characteristic, ethylene-related “triple response” 

(thickening and shortening of the hypocotyl with a pronounced apical hook) in dark-

grown Arabidopsis seedlings (Cary et al., 1995; Vogel et al., 1998). One of the 

mechanisms involved is a cytokinin-dependent increase in stability of AtACS5 and 

AtACS9 proteins (Chae et al., 2003; Hansen et al., 2009). This effect requires cytokinin 

signaling components, including cytokinin receptors, histidine phosphotransfer proteins, 

and response regulators (Hansen et al., 2009). In addition to ACS proteins, proteomic 

analysis showed that cytokinin treatment specifically induces the levels of other two 

ethylene biosynthetic enzymes, SAMS and ACO, in Arabidopsis root but not shoot 

tissues (Zdarska et al., 2013). 

In the context of symbiosis, ethylene has been shown to have an important role as a 

negative regulator of both rhizobial infection and nodule formation. A pioneering study 

in Medicago truncatula showed that the Mtein2 mutant, named sickle, is ethylene 

insensitive and is hyperinfected by Sinorhizobium meliloti, its nitrogen-fixing 

microsymbiont (Penmetsa and Cook, 1997; Penmetsa et al., 2008). Interestingly, 

deleterious mutations in the L. japonicus cytokinin receptor LHK1 gene, such as lhk1-1, 

were also shown to result in an excessive number of infection thread formation events 

(Murray et al., 2007). Consequently, we sought to determine whether a crosstalk between 

cytokinin and ethylene regulates the number of infection threads in L. japonicus. 

In this study, we followed a simple hypothesis that the hyperinfection phenotype of the 

lhk1-1 mutant is due at least in part to an altered ethylene level in this cytokinin 

perception mutant. The focus of this research, therefore, was mainly on ACS(s) and 

ETO1/EOLs and their possible involvement in the cytokinin-dependent regulation of 

infection thread formation during L. japonicus-Mesorhizobium loti symbiosis. 
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4.2 Results 

4.2.1 LHK1 cytokinin receptor regulates the number of infection 

threads 

The results presented in Chapters 2 and 3 highlight the importance of the LHK1 cytokinin 

receptor in regulating at least two key aspects of the symbiotic interaction between L. 

japonicus and M. loti, namely the initiation of nodule primordia and the restriction of root 

colonization by the microsymbiont. 

Given the availability of both loss- (lhk1-1) and gain-of-function (snf2) alleles of LHK1, the 

role of this cytokinin receptor during the infection process was further evaluated by 

comparing the number of epidermal infection threads that formed in wild type and the 

mutants, 7 days after inoculation (DAI) with M. loti (Figure 4.2). If, as predicted by our 

model (Figure 3.5), cytokinin indeed restricts epidermal infection events in an LHK1-

dependent manner, this should be reflected by contrasting phenotypes of the two mutants. 

Confirming pervious observations (Murray et al., 2007), the lhk1-1 mutant was 

hyperinfected by M. loti, forming almost five times more infection threads compared to 

the wild-type control. By contrast, in the snf2 mutant, where LHK1 is constitutively 

activated by a gain-of-function mutation in the cytokinin-binding (CHASE) domain 

(Tirichine et al., 2007), the number of infection threads was decreased approximately 25-

fold compared to wild type (Figure 4.2). Together, these results convincingly demonstrate 

the essential role of the LHK1 cytokinin receptor in restricting the extent of M. loti 

epidermal infections in L. japonicus. 

4.2.2 Cytokinin and ethylene regulate the number of infection 

threads in L. japonicus 

We have shown that LHK1 is the main sensor of exogenous cytokinin in L. japonicus 

(Chapter 2, Section 2.3.8). When applied to roots, cytokinin induces ethylene production 

which in turn limits root elongation in several plants (Dugardeyn and Van Der Straeten, 

2008), including L. japonicus (Wopereis et al., 2000). In order to directly demonstrate the 

roles of cytokinin and ethylene in the regulation of epidermal infection thread formation,   
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Figure 4.2 LHK1 regulates the number of infection threads. 

The number of epidermal infection threads was scored in the lhk1-1 and snf2 mutants at 7 

DAI with an M. loti strain tagged with the hemA::LacZ reporter and this was compared to 

the L. japonicus wild-type control. In all cases, values represent mean ± standard error 

(SE) (n = 10). Statistical grouping is indicated by the same lower case letter (one-way 

ANOVA, p< 0.05). 
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wild type and lhk1-1 were exposed to the synthetic cytokinin, 6-benzylaminopurine (BA) 

and the ethylene precursor, ACC. 

As shown in Figure 4.3, both wild-type and lhk1-1 roots had decreased root lengths in the 

presence of either BA or ACC. At 5 × 10-8 M BA, the length of wild-type roots was 

reduced by approximately 80%, compared to the untreated control samples, while lhk1-1 

root length decreased by approximately 30%, demonstrating that lhk1-1 is much less 

perceptive/sensitive to exogenous cytokinin than wild type. Similarly, the lhk1-1 roots 

showed less sensitivity to 5 × 10-8 M ACC compared to wild type, perhaps reflecting a 

lower endogenous level of ethylene in the mutant (see below in Figure 4.14). Consistent 

with the latter, treatment with aminoethoxyvinylglycine (AVG), a known inhibitor of 

ethylene biosynthesis (Yu et al., 1979), significantly increased the relative wild-type root 

length (Figure 4.3), while having no (12 days) or a significantly less pronounced effect 

(16 days) on the lhk1-1 root growth (Figure 4.3). 

In the same roots, the number of epidermal infection threads was determined in the 

presence of BA or ACC and compared with untreated roots at 10 DAI (Figure 4.4). The 

number of epidermal infection threads formed in the presence of the given concentrations 

of BA and ACC was significantly reduced in comparison to untreated samples. However, 

the effect of the BA treatment in reducing the number of infection threads in lhk1-1 is 

less dramatic compared to wild type. The impact of AVG was evaluated only in wild type 

and resulted in a significant increase in the number infection threads (Figure 4.5). Taken 

together, these observations are consistent with important roles for cytokinin and ethylene 

in the regulation of infection thread formation. The underlying mechanism was therefore 

investigated. 

4.2.3 L. japonicus genome contains a family of at least seven ACSs 

As the rate-limiting step in ethylene biosynthesis in plants is generally mediated by ACSs 

(Argueso et al., 2007), and it was predicted that ACSs are subjected to LHK1-dependent 

regulation during symbiosis (Figure 3.5), ACSs were targeted for detailed analyses. 

Using the Basic Local Alignment Search Tool (BLAST) server and available protein 

sequences of the nine A. thaliana ACSs as queries, at least seven genes predicted to encode   
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Figure 4.3 Effect of exogenous cytokinin (BA), ethylene precursor (ACC), and 

ethylene biosynthesis inhibitor (AVG) on root elongation in L. japonicus wild type 

and the lhk1-1 mutant. 

Plant seedlings were grown on the surface of agar plates under continuous light, in the 

presence of the given concentrations of BA, ACC, or AVG. Plants were inoculated with 

M. loti two days after sowing. The root length was measured 12 days (A) and 16 days (B) 

after sowing. The relative root length is given, where the length of the control, untreated 

roots (0) was set as 100%. Asterisks indicate significant differences between the wild 

type and lhk1-1 samples (Student's t-Test, P<0.05). BA: 6-benzylaminopurine, ACC: 1-

aminocyclopropane-1-carboxylic acid, AVG: aminoethoxyvinylglycine.  
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Figure 4.4 Effect of exogenous application of BA and ACC on the number of 

infection threads in wild type and the lhk1-1 mutant. 

The number of epidermal infection threads was scored and calculated in relation to the 

root length (i.e. per centimetre of the root length) in wild type (A) and lhk1-1 (B) at 10 

DAI with M. loti and compared to the untreated, control samples. Plant growth conditions 

were as described in the legend to Figure 4.3. In all cases, values reported are the mean 

+/- SE (n = 10). Statistical grouping is indicated by the same lower case letter (one-way 

ANOVA, p< 0.05). BA: 6-benzylaminopurine, ACC: 1-aminocyclopropane-1-carboxylic 

acid.  
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Figure 4.5 Effect of AVG on infection thread formation in wild-type roots. 

The number of epidermal infection threads was scored 10 DAI with M. loti and 

calculated per centimetre of the wild-type root length, in the absence (control) or 

presence of 1 × 10-7 M of AVG. Values reported are the mean +/- SE (n = 10). Plant 

growth conditions are as described in the legend to Figure 4.3. Asterisk indicates a 

significant difference between the untreated control and AVG-treated samples (Student's 

t-Test, P<0.05). AVG: aminoethoxyvinylglycine. 
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ACS proteins were identified in the L. japonicus genome (Figure 4.6A). These genes 

were positioned onto the L. japonicus genetic map using the available genomic sequence 

information (Sato et al., 2008) and their corresponding full-length transcripts were 

obtained from the L. japonicus genome assembly website 

(http://www.kazusa.or.jp/lotus/). Using the online tool Spidey (Wheelan et al., 2001), the 

intron-exon structures for each of the seven genes were predicted (Figure 4.6B). Not 

surprisingly, the length and number of exons were more conserved within each of the 

three L. japonicus ACS subfamilies (Figure 4.6B). 

4.2.4 L. japonicus ACS proteins contain known conserved domains 

of 1-aminocyclopropane-1-carboxylate synthase 

A list of the predicted L. japonicus ACS proteins (LjACSs) and their counter parts in A. 

thaliana (AtACSs), including the length of amino acid sequences and the predicted 

molecular masses (http://web.expasy.org/compute_pi/) is provided in Table 4.1. The ACS 

proteins of these two species are quite similar in size, ranging between about 49.7 to 

around 55.5 kDa (Table 4.1). Pairwise amino acid sequence comparisons between L. 

japonicus and A. thaliana ACSs show identity values ranging from 49.46 to 91.70% 

(Table 4.2). 

The LjACS proteins contain seven strongly conserved regions (BOXES1-7) (Yamagami 

et al., 2003). The 12 conserved amino acid residues, known to be important for catalysis 

and structure of ACSs, are also predicted to be invariably present in LjACS proteins 

(Figure 4.7) (Mehta and Christen, 1994; McCarthy et al., 2001; Jakubowicz, 2002). 

Alignment of LjACSs with AtACSs (Figure 4.8) partitioned these proteins into three 

subfamilies. Although ACS proteins all share a highly conserved catalytic core, the C-

terminal region is divergent (Lin et al., 2009) (Figure 4.9). 

4.2.5 Do any of the ACS genes respond to M. loti infection? 

Different subsets of ACS genes are expressed in response to various developmental, 

environmental and hormonal factors (Lin et al., 2009). To understand the possible 

involvement of cytokinin-ethylene crosstalk in restricting the extent of infection thread   

http://www.kazusa.or.jp/lotus/
http://web.expasy.org/compute_pi/
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Figure 4.6 Chromosomal location and predicated intron-exon structure of L. 

japonicus ACS genes. 

(A) The locations of seven predicted ACS loci on the six (I – VI) L. japonicus 

chromosomes are shown, according to version 3.0 of the L. japonicus genome annotation 

(http://www.kazusa.or.jp/lotus/). 

(B) The predicted intron-exon structure of LjACS genes is shown. Boxes represent 

predicted exons while lines denote 5' and 3' UTRs and introns. Members of the ACS 

family fall within three sub-families named type-1, type-2, and type-3. For more 

information see Figure 4.9.  

http://www.kazusa.or.jp/lotus/
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Table 4.1 Amino acid lengths and the predicted molecular mass of L. japonicus and 

A. thaliana ACS proteins. 

 

aa: amino acid, Da: Dalton 
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Table 4.2 Pairwise comparisons of the predicted ACS gene and protein sequences from L. japonicus and A. thaliana. 

 

Nucleotide (top triangle, highlighted in red) and amino acid (bottom triangle, highlighted in blue) sequence conservation (%) among 

candidate ACSs. Nucleotide sequences of the coding regions for each gene and the corresponding protein sequences were acquired 

from either the L. japonicus (http://www.kazusa.or.jp/lotus/) or A. thaliana (https://www.arabidopsis.org/index.jsp) genome resources. 

Alignment of sequence and percentage identities calculations were performed by Clustal Omega 

(http://www.ebi.ac.uk/Tools/msa/clustalo/). 

http://www.kazusa.or.jp/lotus/
https://www.arabidopsis.org/index.jsp
http://www.ebi.ac.uk/Tools/msa/clustalo/
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Figure 4.7 Amino acid sequence alignment of seven predicted LjACS proteins. 

The open circles and red color indicate the 12 invariant amino acids conserved among ACSs (Yamagami et al., 2003). The seven 

highly conserved domains of ACSs (Boxes 1-7) are marked by yellow. The alignments were generated by Clustal Omega using 

default settings (http://www.ebi.ac.uk/Tools/msa/clustalo/). 

http://www.ebi.ac.uk/Tools/msa/clustalo/
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Figure 4.8 Phylogeny of ACS proteins. 

An unrooted relationship tree was constructed based on amino acid alignment of 

predicted, full-length ACS sequences from A. thaliana and L. japonicus. The following 

are the gene IDs for sequences used: A. thaliana: AtACS1 (AT3G61510); AtACS2 

(AT1G01480); AtACS4 (AT2G22810); AtACS5 (AT5G65800); AtACS6 (AT4G11280); 

AtACS7 (AT4G26200); AtACS8 (AT4G37770); AtACS9 (AT3G49700); AtACS11 

(AT4G08040) and L. japonicus: LjACS1 (Lj2g3v1982940.1); LjACS2 

(Lj4g3v0706600.1); LjACS3(Lj1g3v2766570.1); LjACS4 (Lj4g3v2990130.1); LjACS5 

(Lj2g3v2051190.1); LjACS6 (Lj4g3v3017360.1 ); LjACS7(Lj2g3v0909590.1). Protein 

sequences were aligned using the default settings of the software MEGA version 6 and 

the Neighbor-Joining method with 1000 bootstrap repetition was utilized to portray the 

relationships between proteins.  
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Figure 4.9 Predicted sub-families of L. japonicus ACSs along with their corresponding A. thaliana counterparts. 

ACS proteins fall into three subfamilies: type-1, type-2, and type-3. The protein sequence of the catalytic core (blue box on the 

schematics) is conserved. The highly conserved region of BOX7 is shown in yellow on the schematics. An alignment of C-terminus 

residues of the members belonging to each type is presented below the schematics. 

(A) Type-1 ACS proteins have the longest C-terminus with a single putative CDPK phosphorylation site (red box) and three MAPK 

phosphorylation sites (green box). The conserved serine residue which is a phosphorylation target for CDPK is highlighted in red 

(Sebastià et al., 2004). The three conserved serine residues that are presumably targets for MAPK are marked in green (Liu and 

Zhang, 2004). The known CDPK phosphorylation motifs in A. thaliana are highlighted in gray (Sebastià et al., 2004). 

(B) Type-2 ACS proteins have intermediate length C-termini, containing a single putative CDPK phosphorylation site. The conserved 

serine residue which is a phosphorylation target for CDPK is highlighted in red. 

(C) Type-3 ACS proteins have very short C-termini and no predicted kinase phosphorylation sites. 
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formation, a possible role for ACSs in the negative regulation of rhizobia infection was 

investigated. Three selection criteria were initially applied to determine which L. japonicus 

ACSs might play a major role. Following the model presented in Figure 3.5, a candidate 

ACS involved in the regulation of M. loti infection, would be expected to be (1) 

responsive to M. loti infection, (2) responsive to cytokinin, and (3) regulated in an LHK1 

receptor-dependent manner. 

In order to determine whether any of the ACSs respond to rhizobial infection 

transcriptionally, the steady state levels of all seven ACS transcripts were quantified in 

uninoculated control roots and the corresponding roots collected 2, 3, 4, 5, 6, and 7 DAI 

with M. loti (Figure 4.10), using quantitative real-time PCR (qRT-PCR). Among seven 

ACSs, only ACS2 transcript levels consistently responded to M. loti inoculation. Except 

for 2 DAI, the ACS2 transcript level was significantly increased above the corresponding 

control samples at all time points analyzed. The steady state level of the ACS2 mRNA 

was elevated almost five- and nine-fold in response to M. loti inoculation as early as 3 

and 4 DAI, respectively (Figure 4.10). 

4.2.6 Does cytokinin regulate ACSs in an LHK1-dependent manner 

L. japonicus? 

In order to ascertain which of the ACSs might be regulated by cytokinin, wild-type L. 

japonicus roots were ectopically exposed to 50 nM BA for 3, 6, and 12 hours and the 

steady state levels of ACS mRNAs were determined (Figure 4.11). The transcript level of 

Lhk1 was also quantified as a positive control. Consistently across all time points 

analyzed, three of the seven ACS genes, namely ACS1, ACS2, and ACS6 responded to the 

ectopic cytokinin. The steady levels of their mRNAs were significantly increased above 

the control, untreated roots as early as 3 hours after cytokinin treatment (Figure 4.11A). 

To determine whether this response is LHK1-dependent, a comparable experiment was 

performed using lhk1-1 mutant roots (Figure 4.12). The level of ACS transcripts did not 

significantly change upon cytokinin application in the lhk1-1 roots indicating that the 

observed upregulation of ACS1, ACS2, and ACS6 transcripts is indeed LHK1-dependent 

(Figure 4.12). 
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Figure 4.10 Quantification of L. japonicus ACS transcripts in wild-type roots. 

The relative steady state levels of ACS mRNAs (A-G) were quantified at 2, 3, 4, 5, 6, and 7 DAI with M. loti and in the corresponding 

uninoculated control roots of the same age. Plants were inoculated with M. loti 7 days after sowing. Average values for three 

biological replicates ± SE are given. Asterisks denote significant differences between the corresponding inoculated and uninoculated 

samples (Student’s t test, P < 0.05). For each transcript, the expression values were normalized to the level of 9-day-old uninoculated 

samples (corresponding to the 2 DAI samples). 
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Figure 4.11 Effect of ectopic cytokinin on the steady state level of the mRNA of 

ACSs in wild-type L. japonicus roots. 

The relative steady state levels of ACS1, ACS2, ACS3, ACS4, ACS5, ACS6, ACS7, and 

LHK1 transcripts in untreated (H2O) and cytokinin-treated (50 nM BA) L. japonicus wild 

type roots are given. Values represent mean ± SE for three biological replicates for roots 

that were incubated in the absence or presence of 50 nM BA for 3 hours (A), 6 hours (B), 

and 12 hours (C). The steady state level of LHK1 transcript serves as a positive control as 

it is known to be increased upon cytokinin treatment. Asterisks denote significant 

differences between the corresponding untreated and BA-treated samples (Student's t-

Test, P<0.05). BA: 6-benzylaminopurine.  
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Figure 4.12 Effect of ectopic cytokinin on the steady state level of the mRNA of 

ACSs in the lhk-1 mutant roots. 

The relative steady state levels of ACS1, ACS2, ACS3, ACS4, ACS5, ACS6, ACS7, and 

LHK1 transcripts in untreated (H2O) and cytokinin-treated (50 nM BA) L. japonicus lhk-

1 roots are given. Values represent means ± SE for three biological replicates for 6 hours 

(A) and 12 hours (B) of incubation time. The steady state level of the LHK1 transcript 

was measured as a control as it is expected to be increased only 12 hours after cytokinin 

treatment. Asterisks denote significant differences between the corresponding untreated 

control and BA-treated samples (Student's t-Test, P<0.05). BA: 6-benzylaminopurine.  
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Subsequent quantification in M. loti infected wild-type and lhk1-1 mutant roots, 3 and 7 

DAI, showed that the relative steady-state levels of ACS1 and ACS2 but not ACS6 

transcripts were significantly lower in lhk1-1 compared to the corresponding wild-type 

samples. This observation indicated that in infected roots of lhk1-1, the activity of these 

two ACSs, both belonging to the type-2 ACS subfamily, is likely to be diminished 

(Figure 4.13). 

4.2.7 Cytokinin and M. loti induce ethylene production in an LHK1-

dependent manner 

Based on the obtained results, it was reasoned that ACS2 and possibly also ACS1 might 

participate in the negative regulation of M. loti infection. In order to confirm whether the 

observed changes in levels of the ACS transcripts are correlated with ethylene production, 

its emissions were measured in wild-type L. japonicus in response to ectopic cytokinin or 

M. loti infection and compared to lhk1-1 (Figure 4.14). 

The ectopic cytokinin significantly enhanced ethylene levels in both wild-type and the 

lhk1-1 mutant, albeit to a much lesser extent in the mutant. Similarly, inoculation of roots 

with M. loti also led to a significant increase in the ethylene levels in both wild-type and 

lhk1-1 seedlings. However, the direct comparison of the relative ethylene emission levels 

in wild-type and lhk1-1 seedlings revealed that a significantly lower level of ethylene was 

produced by the mutant (Figure 4.14). 

4.2.8 In search of null alleles of ACS1 and ACS2 genes 

Different reverse genetic approaches were employed to further understand the relevance 

of the ACS genes, particularly ACS1 and ACS2 in regulating M. loti infection. Firstly, by 

screening a population of L. japonicus LORE1 retrotransposon insertion lines 

(http://users-mb.au.dk/pmgrp/) (Fukai et al., 2012; Urbański et al., 2012), exonic 

insertions, predicted to generate null alleles, were identified in ACS1, ACS4, ACS5, 

ACS6, and ACS7 loci but not in ACS2 and ACS3 (Figure 4.15). LORE1 is a stable, long 

terminal repeat (LTR) retrotransposon that amplifies in the L. japonicus genome by a 

copy-and-paste mechanism (Malolepszy et al., 2016). The insertion of the 5.041 kb long 

LORE1 sequence in the coding region introduces multiple premature, translational stop codons   

http://users-mb.au.dk/pmgrp/
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Figure 4.13 Relative expression levels of ACS1, ACS2, and ACS6 in infected wild-

type and lhk1-1 roots. 

The relative steady-state levels of ACS1 (A), ACS2 (B), and ACS6 (C) mRNAs were 

determined in wild-type and lhk1-1 root samples, 3 and 7 DAI with M. loti. Values 

represent mean ± SE for three biological replicates. Asterisks denote significant 

differences between the corresponding wild-type and lhk1-1 samples (Student’s t test, P < 

0.05).  
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Figure 4.14 Measurement of ethylene emission. 

Ethylene production was measured in wild-type and lhk1-1 seedlings 24 hours post 

treatment with 10 µM BA (CK) or M. loti inoculation and compared to control samples. 

Values represent mean ± SE for ten biological replicates. The ethylene levels were 

normalized in relation to control wild-type samples. Black asterisks denote significant 

differences between the treatment and its corresponding control and colored asterisks 

denote significant differences between wildtype and lhk1-1 treatments (Student’s t test, P 

< 0.05).  
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Figure 4.15 LORE1 insertions in the L. japonicus ACS genes. 

The predicted intron-exon structures of the L. japonicus ACS genes are shown with 

positions of LORE1 insertions indicated. Red boxes represent predicted exons while lines 

denote 5' and 3' UTRs and introns. The green boxes represent the 5.041 kb long L. 

japonicus retrotransposon1 (LORE1) sequence (not to scale). Lower cases letters with 

number denote corresponding mutant allele names.  



146 

 

(Urbański et al., 2012). It has been previously shown that the activity of LORE1 can lead 

to gene inactivation and generation of null mutant alleles (Madsen et al., 2005). As the 

entire LORE1 sequence remains within the transcripts, we considered these insertional 

ACS alleles (Figure 4.15) as strong loss-of-function alleles. 

As the search for LORE1 insertional mutations in the ACS2 locus failed, the Targeted 

Induced Localized Lesions IN Genomes (TILLING) approach (Perry et al., 2009) was 

employed to look for an informative ACS2 mutant. The entire ACS2 locus (1440 bp) was 

targeted in two separate TILLING attempts. 12 L. japonicus lines carrying single 

nucleotide substitutions within the ACS2 locus were identified (Table 4.3). The exact 

positions of the predicted amino acids changes resulting from these mutations are shown 

in Figure 4.16A. 

Several nonsynonymous mutations were identified, however, none of them were 

predicted to result in a premature stop codon or affect either of the two splice sites. 

Furthermore, no mutations were found in any of the 12 evolutionarily conserved ACS 

amino acid residues (Figure 4.16A). Therefore, it was deemed unlikely that any of these 

mutations would have a deleterious effect on the ACS2 activity. Consistent with this 

prediction, L. japonicus mutant lines, each carrying one of the three selected acs 

TILLING mutant alleles (acs2-7, acs2-8, and acs2-10) showed the wild-type symbiotic 

phenotype, including the number of epidermal infection threads (Figure 4.16B). 

Given the possibility of redundant or partially redundant function of ACS2, which could 

mask any phenotypic effects, the work with the ACS2 TILLING lines was not continued. 

Instead, a more targeted approach, using clustered regularly interspaced short 

palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology was 

initiated. Briefly, using the CRISPR-P web tool (http://cbi.hzau.edu.cn/cgi-bin/CRISPR), 

three LjACS2-highly specific single-guide RNAs (sgRNAs), with the lowest prediction 

for the off-target effects, were designed to target the 5’end of LjACS2 (Figure 4.17A). 

The binary Cas9 vectors containing one of the sgRNAs under the M. truncatula U6 

promoter (Figure 4.17B), were introduced to hypocotyl segments of wild-type L. 

japonicus via an A. tumefaciens-mediated transformation. 96 individual T0 stable L. 

http://cbi.hzau.edu.cn/cgi-bin/CRISPR
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Table 4.3 A list of acs2 mutant alleles identified by a TILLING approach. 

 

Plant line number acs2 

mutant 

allele 

Nucleotide 

Change * 

Amino acid 

substitution + 

Type of amino acid 

change 

SL6609-1 acs2-1 G64 - A G22 - R Polar-Basic 

SL4778-1 acs2-2 G166 -A E56 -K Acidic-Basic 

SL1688-1 acs2-3 C725 - T T206 -I Polar-Nonpolar 

SL5650-1 acs2-4 G778 - A G224 - E Polar-Acidic 

SL4345-1 acs2-5 G802 - A E232 - K Acidic-Basic 

SL1568-1 acs2-6 G898 - A D264 -N Acidic-Polar 

JI8910-1 acs2-6 G898 - A D264 - N Acidic-Polar 

SL4616-1 acs2-7 C949 - T L281 - F Nonpolar-Nonpolar 

SL0518-1 acs2-8 C998 - T S297 - F Polar-Nonpolar 

SL5911-1 acs2-9 C1019 - A S304 - Y Polar-Polar 

SL4685-1 acs2-10 C1028 - T T307 - I Polar-Nonpolar 

JI7203-1 acs2-11 C1075 - T L323 - F Nonpolar-Nonpolar 

JI9049-1 acs2-12 G14602 - A R451 - K Basic-Basic 

* DNA:  nucleotide changes are listed; + Amino acid:  predicted amino acid changes are listed.  

Adenine in the predicted ATG initiation codon and the initiating methionine were set as 1 for defining the positions of the mutations 

on the DNA and amino acid levels, respectively.  
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Figure 4.16 ACS2 mutant alleles as identified by TILLING approach. 

(A) The positions of predicted amino acid changes identified through the TILLING approach are marked (arrows) and shown in green. 

Note that the open circles and red color indicate the 12 invariant amino acids conserved among ACS proteins. The seven conserved 

domains of ACS proteins are marked by yellow boxes. Lower case letter names with number denote corresponding mutant allele 

names. 

(B) The infection threads were scored in the selected acs2 TILLING mutant lines at 7 DAI with an M. loti strain tagged with the 

hemA::LacZ reporter and this was compared to the L. japonicus wild-type control. In all cases, values reported are the mean ± SE (n = 

10). No significant differences between the mutant and wild-type control were identified (Student's t-Test, P<0.05). 
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Figure 4.17 cas9 targeting the ACS2 in L. japonicus transgenic plants. 

(A) Schematic showing the three GN20GG target motifs (green lines) on the LjACS2 

predicted intron-exon structure. 

(B) A schematic of construct(s) used to target LjACS2 using CRISPR/Cas9 system. 

(C) The leaves of the transgenic plants were genotyped for the presence of the Cas9 

transgene using a PCR-based method and Cas9 specific primers. 96 different transgenic 

plants were tested. The PCR results for transgenic plants 1 to 6 are shown, alongside the 

p201G vector (https://www.addgene.org/59176/) as the positive control. 

KANr, kanamycin resistance; LB, T-DNA left border; HYGr, hygromycin resistance; 

MtU6.6, M. truncatula U6.6 polymerase III promotor; sgRNA, single guide RNA, 

2X35S, constitutive promotor; hCas9, human codon optimized Cas9, nos: terminator; 

RB, T- DNA right border; M; 1KB plus DNA ladder Marker; p201G: Positive control 

(p201G vector); NEG, Negative control  

https://www.addgene.org/59176/
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japonicus transgenic lines (Figure 4.17C) were regenerated and selected for custom-

amplicon sequencing to determine the genetic modification at the ACS2 locus. It has yet 

to be determined if this genome editing approach has successfully resulted in any 

deleterious mutations at the ACS2 locus. 

4.2.9 ACS1 participates in the negative regulation of infection 

thread formation in L. japonicus 

The availability of L. japonicus lines carrying acs1-1 and acs1-2 mutant alleles (Figure 

4.15), prompted follow-up experiments. Homozygous acs1-1 and acs1-2 lines, in addition 

to the wild-type control, were tested for their symbiotic phenotypes. While nodule number 

was unchanged (Figure 4.18A), the number of infection threads was significantly increased 

in both acs1 allelic mutant lines, reaching almost twice the number in wild-type roots 

(Figure 4.18B). Nonetheless, this number was still significantly lower than that of hyper-

infected lhk1-1, where at least five times more infection threads were formed in 

comparison to wild type (Figure 4.2). This observation indicated that it is unlikely for 

ACS1 to be the only player in the regulatory mechanism that limits M. loti infection, thus 

emphasizing the need for further research into the role of the ACS2 locus. 

4.2.10 Characterization of ACS1 and ACS2 promoter expression 

profiles in transgenic L. japonicus roots 

If ACS1 and ACS2 indeed partake during regulation of M. loti infection, this should be 

reflected by the activity of their promoters. It is expected that they should be active in 

association with nodule development. Therefore, binary vectors carrying the ACS1 and 

ACS2 promoters fused to the GUS/GFP reporter genes were developed (Figure 4.19A) 

and transgenic hairy roots formed via the Agrobacterium rhizogenes-mediated 

transformation of wild-type L. japonicus shoots were stained for β-glucuronidase reporter 

gene activity. 

When examined 10 DAI with M. loti, expression profiles of ACS1 and ACS2 were found 

to be nearly identical (Figure 4.19B). At an early stage, both promoters were active in 

dividing cortical cells of nodule primordia. With further advancement in nodule 

development, the activity of the promoters expanded to all dividing cells. In young nodules,  
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Figure 4.18 acs1-1 and acs1-2 have no impact on nodule number but show an 

increased level of epidermal infection. 

The number of nodulation events (combination of nodules and nodule primordia) (A) and 

epidermal infection threads (B) were scored in acs1 mutants at 7 DAI with the M. loti 

strain tagged with the hemA::LacZ reporter and this was compared to the L. japonicus 

wild-type control. In all cases, values reported are mean ± SE (n = 10). An asterisk 

denotes significant differences between the mutants and the wild-type control (Student's 

t-Test, P<0.05). 
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Figure 4.19 Localization of proACS1::GUS and proACS2::GUS reporter gene 

activities in L. japonicus transgenic hairy roots after M. loti inoculation. 

(A) Schematics of constructs used to localize the ACS1 and ACS2 promoter activities. 

(B) Histochemical detection of LjACS1 and LjACS2 promoter activities at different stages 

of nodule development. Transgenic hairy roots were stained for β-glucuronidase reporter 

gene activity at 10 DAI with M. loti. Arrows point to root hair showing GUS activity. 

Spec/Spr, Spectinomycin and Spectinomycin resistance; LB, T-DNA left border; Kanr, 

kanamycin resistance; GUS, β-glucoronidase; GFP, green fluorescence protein; t35S: 

terminator of CaMV; RB, T-DNA right border; NP, nodule primordium; VB, vascular 

bundle.  
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the GUS activity was apparent in most cells including the root epidermis and root hairs. 

4.2.11 ACS1 and ACS2 might be regulated post-transcriptionally by 

ETO1 family proteins 

Both LjACS1 and LjACS2 belong to the type-2 ACS subfamily (See Figure 4.9). 

Although not studied in L. japonicus, in several plant organisms tested type-2 ACS 

proteins are ubiquitinated by ETO1/EOL proteins, which promotes their degradation by a 

proteasome-dependent pathway (Lyzenga and Stone, 2012). 

Both LjACS1 and LjACS2 contain the signature TOE sequence (WVF, RLS, and the 

R/D/E-rich region), at the C-terminal end which makes them potential targets of 

ETO1/EOLs (Figure 4.20A). Consequently, the potential role of L. japonicus ETO1/EOL 

proteins during rhizobial infection was studied. 

4.2.11.1 L. japonicus genome contains a family of at least three 

ETO1/EOLs 

At least three ETO1/EOL genes were predicted to be present in the L. japonicus genome 

by performing a homology search using the A. thaliana AtETO1, AtEOL1, and AtEOL2 

sequences (Figure 4.20B). Based on the overall amino acid sequence homology (Figure 

4.21), and the clustering pattern with the corresponding A. thaliana proteins (Figure 

4.20B), the three L. japonicus ETO1/EOLs were named LjETO1, LjEOL1, and LjEOL2. 

Using available L. japonicus genome sequence information (Sato et al., 2008), LjETO1 

and LjEOL1 loci were positioned at the upper arms of chromosome 1 and 5, respectively. 

LjEOL2 was located at the lower arm of chromosome 2. 

Full-length transcripts for the three ETO1/EOLS were obtained from the L. japonicus 

genome assembly website (http://www.kazusa.or.jp/lotus/). Using Spidey (Wheelan et al., 

2001), the intron-exon structures for each of the loci were predicted (Figure 4.20C). 

LjETO1 and LjEOL2 both contain four exons, while LjEOL1 has five exons. The lengths 

of the predicted open reading frames were found to be 2874, 2661, and 2739 bp for 

LjETO1, LjEOL1, and LjEOL2, respectively. These reflect corresponding proteins of 957, 

886, and 912 amino acids in length. 

http://www.kazusa.or.jp/lotus/
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Figure 4.20 L. japonicus type-2 ACSs contain the TOE sequence and L. japonicus genome contains a family of at least three 

ETO1/EOLs. 

(A) An alignment of C-terminal amino acid sequences of type-2 ACS from A. thaliana and L. japonicus. WVF (blue), RLS (red), and 

the R/D/E-rich region (green) are collectively known as TOE (Target of ETO) sequence. The RLS motif, which is common to both 

type-1 and type-2 ACSs, is shown in red. The conserved serine residue, which is a phosphorylation target for CDPK, is marked by a 

star. The conserved BOX7 is shown in yellow. 

(B) An unrooted relationship tree based on an amino acid alignment of predicted, full-length ETO1/EOL sequences from A. thaliana 

and L. japonicus. The following are the gene IDs for sequences used: A. thaliana: AtETO1 (AT3G51770); AtEOL1 (AT4G02680); 

AtEOL2 (AT5G58550) and L. japonicus: LjETO1 (Lj1g3v2372430.1); LjEOL1 (Lj5g3v1003910.1); LjEOL2 (Lj2g3v2314890.2). 

Protein sequences were aligned using the default settings of the software MEGA version 6 and the Neighbor-Joining method with 

1000 bootstrap repetition was utilized to portray the relationships between proteins. 

(C) Predicted intron-exon structure of the L. japonicus ETO1/EOL genes is shown. Boxes represent predicted exons while lines denote 

5' and 3' UTRs and introns. 
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Figure 4.21 Alignment of LjEOL1, LjEOL2, and LjETO1with their A. thaliana counterparts. 

Predicted structural motifs of ETO1/EOL family members including the BTB domain (red box), the six TPR motifs (blue boxes), and 

the CC motif (green box), are indicated based on the predication made for A. thaliana ETO1/EOLs (Wang et al., 2004; Yoshida et al., 

2006). The alignments were generated using Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/). 

 

http://www.ebi.ac.uk/Tools/msa/clustalo/
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4.2.11.2 L. japonicus ETO1/EOL proteins contain domains 

characteristic of E3 ubiquitin ligase complex members 

ETO1 and the other EOL proteins are constituents of the E3 ubiquitin ligase complex 

(Lyzenga and Stone, 2012). A. thaliana ETO1/EOLs contain a BTB domain in the N-

terminus, and six Tetratricopeptide Repeat (TPR) motifs and a Coiled-Coil (CC) 

structural motif in the C-terminus (Wang et al., 2004). The BTB, TPR and CC motifs are 

involved in protein-protein interactions (Lupas, 1996; Collins et al., 2001; D'Andrea and 

Regan, 2003). It has been suggested that the BTB domain in ETO1/EOLs is essential for 

interaction with CUL3 proteins, which are also constituents of the E3 ubiquitin ligase 

complex. In L. japonicus ETO1/EOLs, as in every plant species examined thus far, the 

arrangement of TPR and CC motifs is highly conserved (Figure 4.21). It has been 

suggested that TPRs are required for the specific interaction with type-2 ACS target 

proteins (Yoshida et al., 2006). The strong similarity of LjETO1, LjEOL1, and LjEOL2 

proteins to their A. thaliana counterparts strongly suggests that they are involved in the 

regulation of ethylene biosynthesis in L. japonicus. 

4.2.11.3 M. loti infection downregulates the EOL2 transcript 

In A. thaliana it has been shown that cytokinin increases the stability of AtACS5 and 

AtACS9 (type-2) by preventing their degradation by an ETO1/EOLs-dependent 

mechanism (Chae et al., 2003; Hansen et al., 2009). However, whether cytokinin 

regulates the ETO1/EOL activities is currently unknown. 

The steady state levels of ETO1, EOL1, and EOL2 transcripts were unchanged in L. 

japonicus wild-type roots upon 6 hour cytokinin treatment (Figure 4.22A). Interestingly, 

however, the relative normalized level of the EOL2 mRNA was downregulated upon M. 

loti inoculation at all of the time points tested (Figure 4.22B). Importantly, our recent 

RNAseq data confirmed the qPCR results by showing that the level of ACS2 and EOL2 

transcripts are significantly up- and down-regulated, respectively, in wild-type roots at 4 

DAI with M. loti (Figure 4.23). It is plausible that the upregulation of the ACS2 transcript 

and simultaneous downregulation of EOL2 might contribute together to the increased   
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Figure 4.22 The transcript levels of LjETO1, LjEOL1, and LjEOL2 in response to 

cytokinin and M. loti inoculation. 

(A) The relative steady state levels of LjETO1, LjEOL1, LjEOL2, and LHK1 mRNAs in 

untreated (H2O) and cytokinin-treated (BA) L. japonicus wild-type roots are given. 

Values represent mean ± SE of three biological replicates for roots that were incubated in 

the absence or presence of 50 nM BA for 6 hours. The steady state level of LHK1 was 

measured and used as a positive control. Asterisks denote significant differences between 

the corresponding untreated control and BA-treated samples (Student's t-Test, P<0.05). 

BA: 6-benzylaminopurine. 

(B) The relative normalized expression levels of EOL2 mRNA in L. japonicus wild type 

roots at 3, 4, 5, 6, 7 DAI are given. Values represent means of the expression levels for 

three biological replicates from inoculated samples minus corresponding values of 

control, uninoculated samples. Bars represent standard errors.  
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Figure 4.23 A heat map representing the expression patterns of L. japonicus ACSs 

and ETO1/EOLs genes in an RNA-seq experiment. 

The average of log10 (FPKM+1) values are shown for normalized transcript levels of 

LjACSs and LjETO/EOLs in wild-type control, uninoculated samples and roots harvested 

4 DAI with M. loti. Values are the mean of three independent biological replicates, which 

were grown and sequenced separately. Genes marked with blue asterisk showed 

statistically significantly changes in transcript levels upon inoculation with M. loti (FDR 

≤0.001), The vertical axis dendrogram organizes genes according to co-expression. 

FPKM; fragments per kilobase of transcript per million mapped reads, FDR; False 

discovery rate 
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level of ethylene production upon M. loti infection (See Figure 4.14) which limits 

subsequent infection events. 

4.2.11.4 Plants carrying loss-of-function alleles in ETO1, EOL1, and 

EOL2 form fewer infection threads than wild type 

The quantitative real time PCR and RNAseq results pointed to a possible involvement of 

EOL2 in the regulation of ethylene level in response to M. loti inoculation. Exonic 

LORE1 insertions lines for ETO1, EOL1, and EOL2 were identified (Figure 4.24A). 

Interestingly, they displayed a shortened hypocotyl length phenotype, possibly reflecting 

an increased endogenous ethylene level (Figure 4.24B). When tested for their symbiotic 

phenotype 7 DAI with M. loti, eto1-1, eol1-1, and eol2-3 formed slightly yet significantly 

fewer infection threads compared to the L. japonicus wild-type control (Figure 4.24C). 
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Figure 4.24 LORE1 insertional mutations in LjETO1, LjEOL1, and LjEOL2. 

(A) The predicted intron-exon structures of the LjETO1/EOL genes with the position of 

LORE1 insertion indicated. Red boxes represent predicted exons while lines denote 5' and 

3' UTRs and introns. The green boxes represent the 5.041 kb long L. japonicus 

retrotransposon1 (LORE1) sequence. Lower case letter names with number denote 

corresponding mutant alleles. 

(B) Hypocotyl length of 6-day-old etiolated seedlings of eto1-1, eol1-1, and eol2-4 mutants 

were measured and compared to wild type. In all cases, values reported are mean ± SE (n ≥ 

40). An asterisk denotes significant differences between the mutant and wild-type control 

(Student's t-Test, P<0.05). 

(C) The number of infection threads was scored in eto1/eol mutants at 7 DAI with the M. 

loti strain tagged with the hemA::LacZ reporter and this was compared to the L. japonicus 

wild-type control. In all cases, values reported are mean ± SE (n = 10). An asterisk denotes 

significant differences between the mutant and wild-type control (Student's t-Test, P<0.05).  
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4.3 Discussion 

That lhk1-1 is hyperinfected by M. loti has been known for almost a decade (Murray et 

al., 2007). The underlying mechanism, however, has not been investigated. As cytokinin 

and ethylene both negatively regulate the extent of rhizobial infection in legume roots 

(Penmetsa and Cook, 1997; Murray et al., 2007) (See also Chapter 3), we have tested a 

hypothesis that a molecular crosstalk between these two plant hormones partakes in 

establishing this homeostatic mechanism. In this chapter, we described the identification 

and characterization of the L. japonicus ACS gene family, encoding a group of 

isoenzymes that mediate the rate-limiting step in ethylene biosynthesis. The obtained data 

suggest that while operating in an LHK1-dependent manner, the L. japonicus type-2 ACS 

proteins, ACS1 and ACS2 contribute to the regulation of M. loti infection. Furthermore, 

the three members of the L. japonicus ETO1/EOLs family, which are the negative 

regulators of type-2 ACS proteins, also emerged as likely participants in this regulation. 

We have proposed a model in which combined effects of ACS1/ACS2 and ETO1/EOLs 

contribute during the regulation of ethylene and hence, M. loti-induced infection thread 

formation. 

4.3.1 Cytokinin negatively regulates rhizobial infection 

Compared to wild type, the loss- and gain-of-function alleles of LHK1, namely lhk1-1 

(Murray et al., 2007) and snf2 (Tirichine et al., 2007), show hyperinfection and low 

infection phenotypes, respectively (Figure 4.2). This provides genetic evidence that the 

innate rates of cytokinin perception and the resulting cytokinin signaling are important 

regulators of infection thread (IT) formation. Importantly, while having a strongly 

negative effect on the ability of L. japonicus to initiate ITs, snf2 has a relatively minor 

impact on the overall plant growth, hence it has been considered as a weak, gain-of-

function allele (Tirichine et al., 2007). Together, this indicates that IT formation is highly 

sensitive to cytokinin levels. Indeed, at 50 nM concentration, ectopic cytokinin 

dramatically reduced the IT formation. This effect was apparent in both L. japonicus wild 

type and lhk1-1 (Figure 4.3 and 4.4). We showed (see Chapter 2, Section 2.3.8) that 

LHK1 is the main sensor of exogenous cytokinin in L. japonicus (Held et al., 2014). 

However, when exposed to ectopic cytokinin for a longer time (e.g. for 12 and 16 days), 
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lhk1-1 was able to respond by reducing the root length and the number of ITs. This is 

likely due to the presence of other, partially redundantly functioning cytokinin receptors 

within the root cortex (see Figure 2.20) (Held et al., 2014). Nonetheless, this response 

was very limited in comparison to wild type (Figure 4.3 and 4.4). Taken together, the 

genetic and physiological observations are in agreement with our model (Figure 3.5), 

showing that cytokinin is indeed involved in the mechanism that locally restricts the 

number of ITs and in L. japonicus this process is primarily LHK1-dependent (Miri et al., 

2016). 

4.3.2 lhk1-1 is ACC-sensitive 

Ethylene is known to be a potent inhibitor of early responses to Nodulation factor (NF) 

and was shown to dynamically regulate infection and nodule formation events by 

inhibiting or modulating the epidermal calcium spiking in a concentration-dependent 

manner (Oldroyd et al., 2001; Oldroyd and Downie, 2006; Morieri et al., 2013). 

Furthermore, it has been shown that IT formation is inhibited by ACC but stimulated by 

AVG (Oldroyd et al., 2001). Also, ethylene insensitive M. truncatula and L. japonicus 

mutants (Penmetsa and Cook, 1997; Nukui et al., 2000; Lohar et al., 2009) show a 

significantly higher number of ITs, indicating that endogenous ethylene acts to limit this 

process. In agreement with these results, ACC significantly reduced the number of ITs in 

both the L. japonicus wild-type and lhk1-1 (Figure 4.4). This was expected, as lhk1-1 has 

no known defects in the ethylene perception mechanism. However, the amount of 

ethylene emitted by lhk1-1 roots was found to be significantly lower than in wild type 

and this was further accentuated in the cytokinin-treated or M. loti-inoculated roots 

(Figure 4.14). This observation indicates that in addition to its role in mediating the 

ethylene production in response to M. loti inoculation or presence of exogenous 

cytokinin, LHK1 is also required to maintain the endogenous ethylene level. Consistent 

with the diminished endogenous level of ethylene, compared to wild type the growth of 

lhk1-1 roots was less sensitive to the inhibitory and stimulatory effect of ACC and AVG, 

respectively (Figure 4.3). 

The ability of lhk1-1 to respond to M. loti inoculation by increasing ethylene level 

indicates that ethylene production can proceed during the symbiotic interaction 
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independent from LHK1, although to a much lesser extent (Figure 4.14). This ethylene 

level is likely insufficient to block the subsequent infection events, thus resulting in 

hyperinfection. Interestingly, the ethylene insensitive Mtskl mutant was shown to exhibit 

reduced sensitivity to cytokinin in the root elongation assay (Penmetsa et al., 2008), 

highlighting the existence of feedback mechanisms. Furthermore, Reid et al showed that 

the reduced number of ITs formed in the cytokinin oxidase/dehydrogenase3 (ckx3) 

mutants due to elevated cytokinin levels could be rescued by AVG treatment (Reid et al., 

2016). Taken together, these observations further support our model (Figure 4.5) for the 

cytokinin-stimulated, ethylene-dependent inhibition of M. loti infection. 

4.3.3 ACS2 might participate in negative regulation of rhizobial 

infection 

The lower level of ethylene in the lhk1-1 mutant roots could be, at least in part, due to 

defect in cytokinin-dependent ethylene biosynthesis. Here, we show that LjACS2 is the 

only member of the L. japonicus ACS gene family that responds to both ectopic cytokinin 

and M. loti inoculation by increasing the steady state level of its mRNA. Importantly, this 

response is LHK1-dependent (Figure 4.10, Figure 4.11, Figure 4.12 and Figure 4.13). 

Meeting the three operational criteria makes ACS2 a viable candidate in the postulated 

cytokinin-ethylene crosstalk which negatively regulates M. loti infection at the root 

epidermis. Such an interpretation is supported by additional observations, including the L. 

japonicus Gene Atlas data (http://ljgea.noble.org/v2/) (Verdier et al., 2013) and our 

recent RNAseq experiment (Figure 4.23) which both show that the ACS2 but not the 

other ACS transcript levels are upregulated 3 and 4 DAI with M. loti, respectively. 

Furthermore, the transcript level of the LjACS2 counterparts in M. truncatula have also 

been shown to be increased upon S. meliloti inoculation or NF application in an 

MtCRE1- and MtEIN2- dependent manner (Larrainzar et al., 2015; van Zeijl et al., 2015). 

Other studies have shown that expression of LjACO2 and MtACOs, which mediate the 

final step in ethylene biosynthesis, are also upregulated early on upon rhizobial 

inoculation (Miyata et al., 2013; Larrainzar et al., 2015). Collectively, these data confirm 

that de novo ethylene production occurs early on during symbiotic interaction and imply 

http://ljgea.noble.org/v2/
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an important role for ACS2 in mediating the cytokinin-dependent inhibition of 

subsequent IT formation events in L. japonicus. 

Attempts to identify a deleterious mutation at the ASC2 locus through either insertional or 

chemical mutagenesis schemes have not been successful (Figure 4.15 and Figure 4.16). 

This has effectively precluded direct testing of the ACS2 role during M. loti infection of 

L. japonicus roots. Since obtaining an asc2 mutant is crucial, a CRISPR/Cas9 system 

(Jacobs et al., 2015) was deployed to introduce site-specific double-stranded DNA breaks 

at the ACS2 locus (Figure 4.17). An imprecise cellular repair mechanism is known to 

generate random insertion and/or deletion of sequences at the breakage sites, typically 

leading to frameshift mutations that result in knock-out alleles (Belhaj et al., 2013). The 

offspring of the fully transgenic plants carrying the ACS2-targeted CRISPR/Cas9 

constructs will have to be analyzed to determine whether any deleterious mutations at the 

ACS2 locus were obtained through this process. If ACS2 indeed plays a major role in the 

cytokinin-dependent regulation of epidermal infections, the corresponding mutant plants 

would be expected to develop significantly more ITs than wild type. 

4.3.4 acs1 mutants form more infection threads 

Even though no significant differences could be observed in the steady state levels of the 

ACS1 mRNA upon M. loti infection, it was still possible to consider that ACS1 might 

work at least partially redundantly with ACS2 to inhibit the excessive infection. ACS1 

and ACS2 both belong to the type-2 subfamily and they also share more than 85% 

similarity at the amino acid sequence level (Table 4.2). Furthermore, like ACS2, ACS1 

responded to ectopic cytokinin and its transcript level was lower in the lhk1-1 mutant 

(Figure 4.11 and Figure 4.13). Consistent with the prediction, L. japonicus plants carrying 

one of the two independent LORE1 insertion acs1 alleles exhibited significantly increased 

levels of M. loti infection (Figure 4.18). Thus, ACS1 must be involved in the regulation of 

rhizobial infection, but the mechanism by which the gene expression is regulated during 

symbiosis remains unclear. Arabidopsis type-2 ACSs are known to be regulated by 

cytokinin primarily on a post-translational level (Hansen et al., 2009). It is, therefore, 

intriguing to think that rhizobially-induced cytokinin can also increase the stability of the 

ACS1 and ACS2 proteins, thus contributing to a local ethylene production that regulates 
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the extent of IT formation events. Whether indeed the stability of ACS1 and ASC2 is 

altered in lhk1-1 remains to be determined. 

Notably, the number of ITs formed by acs1 mutants, although almost doubled compared to 

wild type, was not even close to the level of hyperinfection seen in lhk1-1 (Figure 4.18B). 

This observation is consistent with the prediction that ACS1 might not be the only player in 

this context. Therefore, determining whether an acs1 acs2 double mutant would be as 

hyperinfected as lhk-1 is important. However, given the fact that cytokinins also partake in 

suppressing subsequent nodulation events as part of the systemic autoregulation of 

nodulation (AON) mechanism (Sasaki et al., 2014; Soyano et al., 2014), it is tempting to 

speculate that they might also contribute to systemically-mediated restriction of IT 

formation. This effect would be in addition to their local role, as mediated through ACSs. If 

this is indeed the case, then acs1 acs2 would be expected to form more ITs than the 

corresponding single mutants but it would still not be as hyperinfected by M. loti as lhk1-1. 

4.3.5 eto1/eol mutants form less infection threads 

This study suggests that three members of the ETO1/EOL protein family are likely to 

play a role in fine-tuning M. loti infection. The L. japonicus mutant plants, each carrying 

a LORE1 insertion allele in one of these three loci showed a slightly but significantly lower 

number of ITs compared to wild type (Figure 4.24). This phenotype suggests that by 

overproducing ethylene the eto1/eols insertion mutants might contribute to the enhanced 

negative regulation of M. loti infection, potentially by affecting the degradation rate of 

type-2 ACS proteins. Importantly in this context, the steady-state level of the EOL2 

mRNA was significantly downregulated upon M. loti infection (Figure 4.22 and Figure 

4.23), showing that the expression of this gene is symbiotically regulated. 

Our results suggested that L. japonicus ETO1, EOL1, and EOL2 might function 

redundantly and their activity might be curtailed by M. loti infection, contributing to 

increased stability of ACSs and thus ethylene production, which limits subsequent 

infections (Figure 4.14). Consequently, a triple eto1 eol1 eol2 mutant would be expected 

to have a low infection phenotype. If symbiotically-induced cytokinin negatively 

regulates the activity of ETO1/EOLs in an LHK1-dependent manner, then combining 
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eto1/eols mutant alleles with lhk1-1 should result in the reversion or partial reversion of 

the lhk1-1 hyperinfected phenotype. 

4.3.6 ACS1/2 expression profiles follow the cytokinin output activity 

Expression patterns of ACS1 and ACS2 after rhizobial infection (Figure 4.19) are 

reminiscent of the expression of both the Lhk1 cytokinin receptor promotor (Figure 2.13) 

and the cytokinin two- component output sensor (TCS)::GUS reporter (Figure 2.11) (Held 

et al., 2014). In all cases, the GUS reporter activity was initially associated with the 

dividing cells of a developing nodule primordium. These profiles are consistent with the 

notion that ACS1 and ACS2 are regulated by cytokinin and LHK1 as their spatial and 

temporal expression patterns are similar. They suggest, however, that in contrast to the 

model presented (Figure 3.5), the increased ACS(s) activity is not restricted to the root 

epidermis. It is more likely that both of cytokinin activity peaks, in the root cortex and the 

root epidermis, can contribute to the total ACS activity. 

Interestingly, comparing the output of cytokinin signaling upon rhizobial inoculation in 

L. japonicus and M. truncatula revealed a remarkable difference (Held et al., 2014; 

Jardinaud et al., 2016). While in L. japonicus, the first peak of cytokinin activity is 

detectable within dividing cortical cells (Figure 2.11) (Held et al., 2014), in M. truncatula 

this is located in the root epidermis (Jardinaud et al., 2016). Importantly, the 

histochemical staining also showed only a weak signal associated with MtCRE1in root 

hair only after prolonged staining (Jardinaud et al., 2016), which is also in striking 

contrast with the strong expression of LHK1 promotor in the epidermis (Figure 2.13) 

(Held et al., 2014). These differences could be reflective of determinate and 

indeterminate nodulation in L. japonicus and M. truncatula, respectively, possibly also 

explaining the lack of hyperinfection in the Mtcre1 mutants (Plet et al., 2011). 

Taken together, ACS1 and ACS2 have emerged as the likely mediators of the cytokinin- 

ethylene crosstalk that regulate M. loti infection in L. japonicus (Figure 4.25). As 

dependent on M. loti infection and LHK1, the increased level of ACS2 mRNA and the 

possible enhanced stability of ACS1 and ACS2 are likely to contribute to increased ethylene   
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Figure 4.25 A working model for cytokinin-ethylene crosstalk in regulation of M. loti 

infection in L. japonicus. 

Perception of M. loti-produced NF leads to accumulation of cytokinins (CK), which are 

perceived by cytokinin receptors, with the main function performed by LHK1. The auto-

phosphorylation of LHK1 and the resulting activation of type-B response regulators 

(RRs) presumably lead to increased local ethylene production. Several cytokinin-

dependent mechanisms appear to contribute to this effect, including the increased level of 

the ACS2 mRNA and diminished ACS1 and ACS2 degradation via ubiquitination. 

ETO1/EOLs, CUL3, and RBX1 constitute a ubiquitin ligase (E3) protein complex. The 

ubiquitin moiety is transferred from the ubiquitin conjugating enzyme (E2) to 

phosphorylated ACS1 and ACS2. As a result, the enzymatic activities of ACS1 and 

ACS2 are inhibited and the proteins are targeted for proteasome-dependent degradation. 

M. loti infection also diminishes the level of the EOL2 mRNA, apparently through a 

cytokinin-independent mechanism. A local increase in ethylene levels blocks calcium 

(Ca2+) signaling, which is required for infection thread formation. NF; Nod factors, Ub; 

Ubiquitin, E2; ubiquitin conjugating enzyme.  
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production, which in turn locally restricts the subsequent infection events. Furthermore, 

downregulation of the EOL2 mRNA level through a cytokinin-independent mechanism 

may also contribute to fine-tuning the ethylene production in response to M. loti 

infection. Unravelling the unique molecular mechanisms required for cytokinin-ethylene 

regulation of homeostasis of IT formation during the L. japonicus-M. loti interaction, can 

shed new light on how these ubiquitous hormonal signals have been co-opted during root 

nodule symbiosis. 
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4.4 Experimental Procedures 

4.4.1 Plant growth conditions 

Seeds of L. japonicus wild-type Gifu, the lhk1-1 mutant (Murray et al., 2007), the snf2 

mutant (Tirichine et al., 2007), and other mutant plants described in this study were 

sterilized and grown as described in Section 2.5.1. 

To assess the effect of various pharmacological treatments on the extent of root growth 

and infection thread formation, a modified version of the previously established protocol 

was followed (Wopereis et al., 2000; Heckmann et al., 2011). Briefly, sterilized seeds 

were sown onto plates containing 0.8% phytagel (Sigma) and the plates kept up-side 

down in the dark for one day. The seedlings were transferred to vertical plates containing 

¼ B and D nutrient solution (Broughton and Dilworth, 1971) with 1.4% agar 

supplemented with BA, ACC, or AVG at the stated concentrations where appropriate. 

Seedlings were transferred onto a pre-soaked filter paper that had been placed over the 

media, to avoid penetration of the roots into the agar. The filter papers were soaked in 

sterile Milli-Q water that was supplemented with the required concentrations of 

chemicals where appropriate. Five plants were placed on each plate and roots were 

covered with another wet filter paper. Vertical plates were kept in boxes such that shoots 

were kept under continuous light while the roots were protected from light. After two 

days on the plates, each root was inoculated with 50 µl of 1:100 diluted M. loti (OD600: 

1). Root elongation and number of infection threads were measured at 10 and 14 DAI. An 

average was determined for 10 roots per genotype and treatment. 

For studying the response of L. japonicus wild-type and lhk1-1 plants to exogenous 

cytokinin, 10 day-old sand-vermiculate grown plants were transferred to beakers 

containing either sterile water or 50 nM BA and incubated at room temperature with 

constant aeration. Roots were collected 3, 6, and 12 hours post-treatment and used for 

total RNA extraction as described (Murray et al., 2007). 
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4.4.2 Assessment of symbiotic phenotypes 

In order to visualize the infection threads and nodulation events in L. japonicus wild-type 

and mutant roots at various time points, the plants were inoculated with M. loti containing 

the hemA::LacZ reporter cassette following the procedure in Section 2.5.2. The infected 

roots were harvested at various time points post-inoculation, fixed and stained for β-

galactosidase activity as previously described (Wopereis et al., 2000). The localization of 

M. loti was surveyed based on the resulting blue color, and compared between different 

genotypes. The number of infection threads and nodulation events were counted on at 

least ten plants. 

4.4.3 Quantitative real-time RT-PCR Assay 

To quantify the expression level of ACS and ETO1/EOLs transcripts in wild-type and the 

lhk1-1 mutants, the RNA extraction, cDNA synthesis and real time quantitative PCR was 

performed as described in Section 2.5.8. Primer sequences used for the real time qPCR 

expression analyses can be found in Table 4.4. 

4.4.4 The ACS and ETO1/EOL mutants 

The LORE1 insertional mutation alleles called acs1-1 (line no. 30095707), acs1-2 (line 

no. 30060922), acs4-1 (line no. 30080738), acs5-1 (line no. 30061816), acs5-2 (line no. 

30059173), acs5-3 (line no. 30068546), acs6-1 (line no. 30050224), acs6-2 (line no. 

30102320), acs7-1 (line no. 30016417), acs7-2 (line no. 30052863), acs7-3 (line no. 

30053765), eto1-1 (line no. 30014908), eto1-2 (line no. 30033695), eto1-3 (line no. 

30005551), eto1-4 (line no. 30009833), eto1-5 (line no. 30050811), eol1-1 (line no. 

30056422), eol2-1 (line no. 30005967), eol2-2 (line no. 30020456), eol2-3 (line no. 

30008182), eol2-4 (line no. 30049321), eol2-5 (line no. 30008858), and eol2-6 (line no. 

30008689) were identified from the L. japonicus LORE1 retrotransposon mutant resource 

(https://lotus.au.dk/). The R3 generation seeds (3rd generation of tissue culture regenerated 

plants) carrying LORE1 insertions were received from Lotus Base. R3 is a segregating 

population. Therefore, seeds of the LORE1 insertion lines for each allele were sown and 

the seedlings were subjected to PCR-based genotyping using gene and LORE1 specific 

https://lotus.au.dk/
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primers, following an established procedure (Urbański et al., 2012). The primers used for 

genotyping were listed in Table 4.4. 

Also, the TILLING approach (Perry et al., 2009) was utilized for the identification of 

mutant alleles at the LjACS2 locus. In two attempts, two sets of primers were used to 

generate amplicons for TILLING which are listed in Table 4.4. To genotype plants 

carrying various point mutations in ACS2 allele, combinations of sequence analysis, 

cleavage amplification polymorphisms (CAPS), and derived CAPS (dCAPS) markers 

were used. The primers used for genotyping are listed in Table 4.4. 

4.4.5 Targeted LjACS2 modification using CRISPR/Cas9 system 

Three highly specific-LjACS2 targeted nucleic acid sequences (GN20GG), namely 

sgRNA-A, sgRNA-B, and sgRNA-C were designed using CRISPR-P web tool 

(http://cbi.hzau.edu.cn/cgi-bin/CRISPR). Using an Inverse PCR reaction with two 41-bp 

primers (see Table 4.4), followed by an In-Fusion® (Clontech) reaction, the three targeted 

sequences were cloned individually into the pUC gRNA shuttle vector 

(https://www.addgene.org/47024/). After validation of the inserts by Sanger sequencing, 

sgRNAS under M. truncatula U6.6 promoter were cut using the meganuclease I-PpoI 

(Promega) and ligated into the p201H Cas9 binary vector 

https://www.addgene.org/59176/. After confirmation of the insert by sequencing and 

restriction enzyme digest, the corresponding vectors were transferred to Agrobacterium 

tumefaciens LBA4404 using electroporation. Standard transformation protocols (Lombari 

et al., 2005) were used to regenerate fully transgenic plants from hypocotyl segments of 

wild-type (ecotype ‘Gifu’) and acs1-2 L. japonicus plants. 96 independent transgenic 

plants were tested for the presence of the transgene using PCR and Cas9-specifc primers 

(see Table 4.4) and then used to evaluate the possibility of any genetic modification in the 

LjACS2 locus using custom-amplicon sequencing following an established method 

(Jacobs et al., 2015). 

4.4.6 Gene expression analysis using GUS histochemical assay 

To develop the gene expression localization constructs, the 3 kb LjACS1, LjACS2, 

LjETO1, LjEOL1, and LjEOL2 promoter fragments were PCR amplified. The promotor 

http://cbi.hzau.edu.cn/cgi-bin/CRISPR
https://www.addgene.org/47024/
https://www.addgene.org/59176/
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fragments were defined from position -1 to -3000 in the corresponding genomic 

sequences, where -1 denotes the first base upstream from the predicted ATG initiation 

codon. The sequences of the primers used can be found in Table 4.4. The promotor 

fragments were recombined into the pKGWFS7 destination vector containing a 

GFP/GUS reporter fusion (https://gateway.psb.ugent.be/search) using the GatewayTM 

technology (Invitrogen) and all constructs were confirmed by sequencing. After 

validation by sequencing, the corresponding vectors were transferred to both A. 

rhizogenes strains AR10 and AR1193. Standard transformation protocols were employed 

to generate non-transgenic L. japonicus shoots with hairy-roots expressing the binary 

constructs (Murray et al., 2007). At least ten independent hairy root systems were 

carefully inspected to define the expression patterns. The standard staining procedure for 

histochemical analysis of β- glucuronidase reporter gene activity was followed such that 

roots were fixed, stained, and cleared as described in Section 2.5.7 (Wopereis et al., 

2000). 

4.4.7 Ethylene measurement using gas chromatography 

Wild-type Gifu and lhk1-1 seeds were sterilized and plated on sterilized filter paper 

moistened with sterile water for three days. Seedlings were transferred to 5 mL glass 

vials (two seedlings / vial) which were sealed for three days. Seedling were exposed to 

BA (10 nM) in combination with AVG (1 M), or M. loti where appropriate. Ethylene 

accumulation over 24 hours was measured using an ETD-300 laser-based detection 

system (SensorSense) (Mohd-Radzman et al., 2016). Measurements were conducted in 

sampling mode with a flow rate of 2.5 L/min and a 6 min sample period. Ten samples 

were used for each treatment. The greater sensitivity of the laser-based system (Cristescu 

et al., 2013) enabled measurements to be made from individual seedlings, in contrast to 

other equipment types, which require pooled samples to generate detectable signals. 

4.4.8 Ethylene “triple response” assay 

Wild-type Gifu and mutant seeds were sterilized, germinated and transferred to plates 

containing ½ strength Gamborg’s B5 medium (Sigma) and 0.8% phytagel. The seedlings 

were incubated in the dark for six days at 24 ºC. Hypocotyl measurement was performed 

https://gateway.psb.ugent.be/search
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under a Nikon SMZ25 stereomicroscope (Nikon) using NIS Elements imaging software 

(Nikon). 

4.4.9 RNA sequencing 

L. japonicus wild-type Gifu root samples were scarified, germinated, and grown as 

described in Section 4.4.1. Root samples were harvested 4 DAI with M. loti and from 

their uninoculated counterparts. Three independent biological replicates per treatment 

were collected. Total RNA was extracted using Total RNA Purification Kit (Norgen 

Biotek) and RNA library was constructed and sequenced on an Illumina Hi-Seq 2500 

using paired-end reads at the Center for Applied Genomics (Sick Kids Hospital, Toronto, 

Canada). Briefly, the quality of total RNA samples was checked on an Agilent 

Bioanalyzer 2100 RNA Nano chip following manufacturer’s instructions (Agilent 

Technologies). RNA library preparation was performed following the NEBNext Ultra 

Directional Library Preparation protocol (New England Biolabs); 400 ng of total RNA 

was used as the input material and enriched for poly-A mRNA, fragmented into the 200-

300-bases range for 4 minutes at 94°C and converted to double stranded cDNA, end-

repaired and adenylated at the 3’ to create an overhang A to allow for ligation of Illumina 

adapters with an overhang T; library fragments were amplified under the following 

conditions: initial denaturation at 98 ºC for 10 seconds, followed by 15 cycles of 98 ºC 

for 10 seconds, 60 ºC for 30 seconds and 72 ºC for 30 seconds, and finally an extension 

step for 5 minutes at 72 ºC; at the amplification step, each sample was amplified with 

different barcoded adapters to allow for multiplex sequencing. Libraries were pooled in 

equimolar quantities and paired-end sequenced on 2 lanes of a High Throughput Run 

Mode flowcell with the V4 sequencing chemistry on an Illumina HiSeq 2500 platform 

following Illumina’s recommended protocol to generate paired-end reads of 126-bases in 

length. 

4.4.10 Microscopy and image analysis 

All microscopic observations were performed on a Nikon SMZ25 (Nikon, Japan) 

dissecting or Zeiss Axioskop 2 compound (Zeiss, Germany) light microscope. Both 

microscopes were integrated with a Nikon digital camera using the Nikon NIS Elements 
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imaging software (Nikon). All images captured were taken in a TIFF format at a 

resolution of 3840 x 3072. 

4.4.11 Statistical analysis 

All statistical analyses were performed using Microsoft Excel spread sheet software. Pair-

wise comparisons were made using a Student’s t-Test assuming unequal variance or the 

significant differences between sample means were calculated using the one-way analysis 

of variance (ANOVA) where appropriate.  
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Table 4.4 Full primer sequences used in this study. 

 

Name of primers Primer sequence (5’-3’) 

qRT-PCR expression analysis 

LjACS1-qPCR-FWD AGCCTGGTCATGATGGAAGC 

LjACS1-qPCR-REV ACCGATTTGGCTGTAACTCCA 

LjACS2-qPCR-FWD GCAGTGCTAAGAGGAACGGT 

LjACS2-qPCR-REV ACCAAAAATACCGGGGAGGC 

LjACS3-qPCR-FWD CAACCTTTGTGAGTGTCGCC 

LjACS3-qPCR-REV CCTGGAAGCCCCATGTCTTT 

LjACS4-qPCR-FWD CACCTATGCCACAGTCACCT 

LjACS4-qPCR-REV TCCAGCAGCAGCCATGTAAT 

LjACS5-qPCR-FWD GGTGGTTCAGGGTGTGCTAT 

LjACS5-qPCR-REV CTCACAAACGCACGCATTCT 

LjACS6-qPCR-FWD TGCTGGGTGGAAAGCCTATG 

LjACS6-qPCR-REV CTCAGCGTGCTCTTCCAAGT 

LjACS7-qPCR-FWD TCCAAATGGGGTTGGCAGAG 

LjACS7-qPCR-REV CCATGTGGATGCCTCAGAGT 

LjETO1-qPCR-FWD TGACCCTAGCCATGCTGAGA 

LjETO1-qPCR-REV TACTGGGTGGTTTGGCGTAA 

LjEOL1-qPCR-FWD GGAAGATCTGGAGACGGTGAC 

LjEOL1-qPCR-REV GCGCACCTAATACATCCCCC 

LjEOL2-qPCR-FWD CGAGCAGCGTTTTACGAGTC 

LjEOL2-qPCR-REV TCACGTTGCACTCGATTGGT 

Lhk1-qPCR-FWD GTGCTTAAATTGTGGGATGGA 

Lhk1-qPCR-REV ATTGATGCTGGGAGAAGTTGA 

UBC-FWD ATGTGCATTTTAAGACAGGG 

UBC-REV GAACGTAGAAGATTGCCTGAA 

PP2A-FWD GTAAATGCGTCTAAAGATAGGGTCC 

PP2A-REV ACTAGACTGTAGTGCTTGAGAGGC 

TB2C-FWD GCTCACCACCCCAAGCTTTGG 

TB2C-REV TGTCAATGGAGCAAACCCAACC 

ATP-S-FWD AACACCACTCTCGATCATTTCTCTG 

ATP-S-REV CAATGTCGCCAAGGCCCATGGTG 

PUBQ-FWD ATGCAGATCTTTTGTGAAGAC 

PUBQ-REV ACCACCACGGAAGACGGAG 

Genotyping for LORE1 insertional alleles 

eto1-1-30014908-FWD GCCGGAAGAATCTAGGATCCGGCA 

eto1-1-30014908-REV TCTCATCCTCCACCACCACCACCA 

eto1-2-30033695-FWD TGCCTCAACAGCAGCCTCAAACCA 



180 

 

eto1-2-30033695-REV GATGGCCTCGCTTTCGAGACCCTTT 

eto1-3-30005551-FWD CGGCTTGCTTGCAGGTGTTTCTGA 

eto1-3-30005551-REV CCTCCAGCAAAGAAACAGCCCGGT 

eto1-4-30009833-FWD AGTGTGCGGTGAGTGGTTGGCAGA 

eto1-4-30009833-REV TGGGCGGAGGATTTCAACCAAGTG 

eto1-5-30050811-FWD CACTTGGTTGAAATCCTCCGCCCA 

eto1-5-30050811-REV TCCACACAGGATATGATAGCACCAACTGA 

eol1-1-30056422-FWD TGAGGATTGCTTGAACATCGCGGA 

eol1-1-30056422-REV TGTTCCCGGCTGCTTGAGTGACAA 

eol2-1-30005967-FWD TTTCTCTTCCTTGCAAAGTGCACACA 

eol2-1-30005967-REV GGGCAGCACTCAAGCCTGCGATAC 

eol2-2-30020456-FWD CAATGCGTGGCCTGAAGGTCAGTG 

eol2-2-30020456-REV CCCACAAGCTCGTCCTCCCTCCTC 

eol2-3-30008182-FWD GCAGGCTCTTTGCAGGCTCATTCTC 

eol2-3-30008182-REV GCTGGGTGGATGTACCAGGAGCGT 

eol2-4-30049321-FWD TCCGGATTGCCTAGAATTGCGAGC 

eol2-4-30049321-REV CCGCAATTGCAGTTGTTTTGACCG 

eol2-5-30008858-FWD GCCTTGAGAGATGTTCGCGCATTG 

eol2-5-30008858-REV GACCGCAGCCGCAATTTAAAACCC 

eol2-6-30008689-FWD TCCGGATTGCCTAGAATTGCGAGC 

eol2-6-30008689-REV CCGCAATTGCAGTTGTTTTGACCG 

acs1-1-30095707-FWD TGCAGGCTTGTTCTGCTGGGTTGA 

acs1-1-30095707-REV GCTCACACTTCACATCCAAATGGACCG 

acs1-2-30060922-FWD TGCCTAGTGGGTTCGATGGGTTCG 

acs1-2-30060922-REV TGTCATTTGCTTGCAGCTCTCTTTCG 

acs4-1-30080738-FWD ATGATTGCCATGAGTTGCGATGCG 

acs4-1-30080738-REV CCAGGGAACCCCATGTCCTTTGAA 

acs5-1-30061816-FWD TCCTTCAGGAGTGCAAATGGATGCC 

acs5-1-30061816-REV CGCGCGCTCAACTCTGAAAATCAA 

acs5-2-30059173-FWD GCGGCCAAAATGGAGAACCATTGC 

acs5-2-30059173-REV TCATGGATTGCCTGAGTTCAGAGAAGTGA 

acs5-3-30068546-FWD CAAAGGACATGGGGTTCCCTGGCT 

acs5-3-30068546-REV CAAGTGGTGGCTTTAACAAGTGCTGGC 

acs6-1-30050224-FWD TCAACATCGCAGTGCACAAAAACAA 

acs6-1-30050224-REV TGGTGCCAACTCTGAAACCTGGAA 

acs6-2-30102320-FWD TGAGGTGGAGAACTGGGGTGAACA 

acs6-2-30102320-REV TCCAATTCCCCTTCCCTTGTTGGC 

acs7-1-30016417-FWD TGGACAACATGGAAGCCAACAAGTGC 

acs7-1-30016417-REV TGGAACTTGAAAGCGCGTAGCAGA 

acs7-2-30052863-FWD CCCGCAAATACAAAGAGGCCGAGC 
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acs7-2-30052863-REV CAAAATGGCCACAACCATTTGGAA 

acs7-3-30053765-FWD CCCGCAAATACAAAGAGGCCGAGC 

acs7-3-30053765-REV CAAAATGGCCACAACCATTTGGAA 

LORE1-specific-P2  CCATGGCGGTTCCGTGAATCTTAGG 

Generate amplicon for TILLING experiment 

ACS2-FWD1 TGAAGTGGAGAACTGGAGTGGAGATTG 

ACS2-REV2 TTTTCATGGGCTACTCCACCAAAAATACC 

LjACS2-FWD3 GATGTGATAAATGGTAAGAGGAGAGAG 

LjACS2-REV3 TGCATTTTATAAATTGAACTTACCCTGG 

Genotyping for the point mutations in ACS2 

ACS2-Seq-FWD-1 TTCTGCAATACCATGTGGCCT 

ACS2-Seq-FWD-2 TAGTCTCTCCAAAGACTTGGGTTT 

ACS2-Seq-REV-1 GCTTCAGTGACTTGGAAGTTGTT 

ACS2-Seq-REV-2 ACATCCACATGGGCAGAGTG 

acs2-5-EcoRV-FWD CTAAAAACTGTCCCGGAGTAGATAT 

acs2-5-BcoRV-REV TCCAAGTCACTGAAGCAGCA 

acs2-7-HinfI-FWD GGGACAGAGTTCATGTTGTCTAGAGT 

acs2-7-HinfI-REV AGCATTCTCTGTCGTCGCTT 

acs2-8-XhoI-FWD TTTCCGCGTAGGCGCCATCTACC 

acs2-8-XhoI-REV GGCTTTTTGCAATCCTGAAA 

acs2-10-MboI-FWD ACGATGTTGTGTCTGCAGCGA 

acs2-10-MboI-REV GGCTTTTTGCAATCCTGAAA 

LjACS2CRSISPR/Cas9 

ACS2_GuideA_FWD GAACCCCGCTGCATCGGTTTTAGAGCTAG

AAATAGCAAGTT 

ACS2_GuideA_REV GATGCAGCGGGGTTCAAGCAAGCCTACT

GGTTCGCTTGAAG 

ACS2_GuideB_FWD CGGGGTTCAAGCGTGAGTTTTAGAGCTAG

AAATAGCAAGTT 

ACS2_GuideB_REV CACGCTTGAACCCCGCTGCAAGCCTACTG

GTTCGCTTGAAG 

ACS2_GuideC_FWD AGAACCCCGATGCAGCGTTTTAGAGCTAG

AAATAGCAAGTT 

ACS2_GuideC_REV CTGCATCGGGGTTCTTCTCAAGCCTACTG

GTTCGCTTGAAG 

ACS2-Cas9-FWD ACATCAATCGGCTCTCCGAC 

ACS2-Cas9-REV TTGGTGATCTGGCGTGTCTC 

Localization analysis 

ACS1-Promoter-D-FWD CACCAATTTTTCTCCGTACATGAAGCA  

ACS1-Promoter-D-REV TTTCGTTTTCTTTTTTGTGTGGTGGG 

ACS2-Promoter-D-FWD CACCGGTGGCTTTCAACTCACATGC 

ACS2-Promoter-D-REV ATTTTTTGTGGAATGCTAACTTGTACG 
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ACS6-Promoter-D-FWD CACCCATGACTTTCAGTGCTTTCTAGC  

ACS6-Promoter-D-REV CAAAAGCTTACTCTTGCCAA 

ETO1-Promoter-D-FWD CACCTCCAACCGTTGCAGAAAATCA  

ETO1-Promoter-D-REV CGAGGTGATCATGTTGTGCTGC 

EOL1-Promoter-D-FWD CACCCGACGGCTGAAGAAAGGAGA  

EOL1-Promoter-D-REV GGGGCATAACAGACGAAACAAG 

EOL2-Promoter-D-FWD CACCGAAAAATTTGCGATCACGGCA  

EOL2-Promoter-D-REV AGCATCCCTATAAAGTAAGCCGA 
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Chapter 5  

5 General conclusions and perspectives 
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5.1 General conclusions and perspectives 

To meet the demands for a global population that is predicted to reach nine billion people 

by 2050, sustainable and secure food production is a must (Tilman et al., 2011). Nitrogen 

availability is one of the major limiting factors to crop growth (Mueller et al., 2012). 

Synthetic nitrogen fertilizer, which has boosted crop yield, is a double-edged sword with 

substantial economic and environmental costs (Erisman et al., 2008). While profligate use 

of synthetic fertilizers across the developed world has severely impacted the integrity of 

the environment (Foley et al., 2011), too little or no access to fertilizers for smallholder 

farmers in developing nations in North Africa, the Middle East, and Sub-Saharan Africa 

has contributed to the cycle of poverty, and even political instability (Lagi et al., 2011; 

Tittonell and Giller, 2013). 

There is a growing interest in increasing the contribution of biological nitrogen fixation 

to enhance crop productivity and food security while minimizing the associated 

environmental footprints (Charpentier and Oldroyd, 2010; Philippot et al., 2013; Rogers 

and Oldroyd, 2014; Mus et al., 2016). One of the most evolved nitrogen-fixing systems is 

the root nodule symbiosis (RNS) which is the result of the mutualistic associations 

between nitrogen-fixing bacteria, commonly referred to as rhizobia, and selected groups 

of plants within the Eurosid clade of angiosperms, most notably legumes (Sprent, 2007). 

This interaction enables the plants to tap into the otherwise unavailable pool of 

atmospheric nitrogen, thus limiting the need for synthetic nitrogen fertilizers in legumes 

(Graham and Vance, 2003). It has been estimated that approximately 40 to 60 million 

metric tons of atmospheric nitrogen is fixed annually by agriculturally-important 

legumes, which is equivalent to industrial fertilizer valued at 10 billion US dollars 

(Graham and Vance, 2003). 

Engineering cereals with the ability to fix atmospheric nitrogen could circumvent the 

economic and environmental concerns associated with the overuse of synthetic fertilizers, 

while contributing to food sovereignty around the globe. Two major approaches are 

currently being explored towards the development of so-called self-fertilizing crops 

(Beatty and Good, 2011; Oldroyd and Dixon, 2014; Rogers and Oldroyd, 2014). One 

objective focuses on developing RNS in cereal crops. An alternative approach is to 
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directly engineer the expression of a nitrogenase enzyme, which reduces gaseous nitrogen 

to ammonia, into the organelles of plant cells. Although extremely attractive, the latter 

approach poses remarkable challenges, owing to the highly complex nature of the 

nitrogenase which requires the coordinated expression of at least 16 genes (Seefeldt et al., 

2009). Additionally, nitrogenase activity, while being oxygen sensitive, is dependent on 

high levels of ATP. Therefore, finding a subcellular compartment that is suitable for 

nitrogenase activity in plant cells might be difficult. It is worth noting that the ability to 

fix atmospheric nitrogen is limited to only certain bacteria and archaea (Dos Santos et al., 

2012) and no eukaryotes have evolved this capacity (Seefeldt et al., 2009). Consequently, 

direct transfer of nitrogenase to eukaryotic cells might face fundamental barriers (Rogers 

and Oldroyd, 2014). 

Conferring a Rhizobium-legume type of symbiosis to non-legumes, however, while also 

highly challenging and unlikely to be implemented in the short term, seems feasible, 

considering legumes as the living prototypes for self-fertilizing crops. The Rhizobium-

legume symbiosis results in novel specialized organs, called nodules, which 

accommodate the bacteria while providing a suitable, oxygen-limited environment for 

fixing nitrogen. It is thought that this evolutionary innovation, estimated to have evolved 

around 60 million years ago (MYA), recruited mechanisms pertinent to the already long-

established and ancient (ca. 450 MYA) ability of plants to accommodate another group of 

intracellular endophytes, namely arbuscular mycorrhizal (AM) fungi (Kistner and 

Parniske, 2002; Markmann and Parniske, 2009). The signaling pathway that supports AM 

symbiosis is functionally conserved not only in legumes, but also in cereals, as at least 

some of its components from rice were shown to be able to rescue the nodulation and AM 

phenotypes of legume mutants (Banba et al., 2008; Gutjahr et al., 2008). Interestingly, 

unlike RNS, which occurs only in a restricted number of genera, AM symbiosis (AMS) is 

almost ubiquitous, and is found in the majority of extant plant species (Doyle, 2011). 

This implies that mimicking RNS in non-legume crops might be possible by tweaking the 

ubiquitous mechanism for AM symbiosis. The overall research objective of my thesis, 

therefore, has been to contribute to our understanding of the mechanisms governing the 

development of RNS in legumes. 
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The signaling pathway for root nodule development is divided into two diverse yet 

synchronized events: rhizobial infection (epidermal program) and nodule organogenesis 

(cortical program) (Figure 1.5). The available data strongly suggest that several plant 

hormonal pathways have been hijacked from the pre-existing mechanisms during the 

evolution of nitrogen-fixing root nodule symbiosis. In this research thesis, I have 

attempted to further dissect the involvement of two important phytohormones, cytokinin 

and ethylene, in the regulation of nodulation and rhizobial infection. Analysis of the 

Lotus histidine kinase 1 (Lhk1) cytokinin receptor gene showed that LHK1 is required 

and also sufficient for the initiation of nodule organogenesis (Murray et al., 2007; 

Tirichine et al., 2007). Nonetheless, mutant plants carrying the loss-of-function lhk1-1 

allele still form a limited number of nodules while being hyper-infected by their 

symbiotic partner (Murray et al., 2007). The unique and somewhat paradoxical phenotype 

of the lhk1-1 mutant provided great insight into the regulatory mechanisms for nodule 

organogenesis within the root cortex and rhizobial infection at the root epidermis (see 

Chapters 2, 3, and 4). 

Several studies indicated that cytokinins have a positive role in nodule organogenesis 

(Cooper and Long, 1994; Frugier et al., 2008; Heckmann et al., 2011). Chapter 2 of this 

thesis detailed the key function of cytokinin receptors in nodule structure formation by 

showing that Lotus japonicus contains a small family of four cytokinin receptor genes, 

namely Lhk1, Lhk1A, Lhk2 and Lhk3, which all respond to Mesorhizobium loti. 

Phenotypic analysis of the single and double mutants revealed that unlike lhk1-1, 

deleterious mutations in Lhk1A, Lhk2, and Lhk3 do not affect nodulation phenotype. 

Expression analyses and histochemical data, on the other hand, showed that Lhk1, Lhk1A, 

and Lhk3 are expressed during early stages of nodule formation, suggesting specific and 

also partially redundant functions of these receptors in this process. I also showed that all 

four Lhk genes respond to rhizobial inoculation and also to an ectopic cytokinin 

application in wild-type roots but fail to do so in lhk1-1, indicating the unique role of 

LHK1 in these processes. When lhk1-1 was combined with mutations that specifically 

block bacterial entry to the roots but leave the nodule formation intact, the resulting 

double mutant plants did not form nodules, showing that in the absence of LHK1, 

bacterial entry inside the root cortex is required for nodule formation. Importantly,  



194 

 

 

 

Figure 5.1 A proposed model for participation of cytokinin receptor and ethylene 

biosynthesis genes in regulation of nodule and infection thread formation. 
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unlike lhk1-1, triple mutant plants carrying deleterious mutations in Lhk1, Lhk1A, and 

Lhk3 cytokinin receptor genes do not form nodules but remain hyperinfected by rhizobia, 

indicating a pivotal role of these cytokinin receptors in nodule structure formation. Based 

on these observations, I proposed a model for cytokinin receptor-dependent signaling for 

root nodule symbiosis. In this model, LHK1 exerts a unique function in the root 

epidermis but works partially redundantly with LHK1A and LHK3 in the cortex to 

mediate nodule formation (See Figure 2.20). The data presented in Chapter 2 of this 

thesis are in agreement with the current notion that plant production of cytokinins is a 

positive regulator of symbiosis in roots. Recently, it has been shown that a non-

nodulating rhizobial strain is able to produce cytokinins in a manner similar to the 

nodulating rhizobia, indicating that rhizobially-derived cytokinins are not involved or 

may not be sufficient to trigger nodulation (Kisiala et al., 2013). Instead, rhizobially-

produced nodulation factors (NFs) trigger a rapid accumulation of plant-derived 

cytokinins in roots of both L. japonicus and Medicago truncatula (van Zeijl et al., 2015; 

Reid et al., 2016). In fact, most transcriptional changes that occur in roots in response to 

NF application in M. truncatula, depend on MtCRE1, a homolog of LHK1 (van Zeijl et 

al., 2015). 

Several recent studies have shown that the initial cellular response to NF signaling 

involves changes to the cytokinin homeostasis by de novo biosynthesis, activation, 

relocation and degradation of cytokinins (Chen et al., 2014; Mortier et al., 2014; van Zeijl 

et al., 2015; Reid et al., 2016). Thus the available pool of bioactive cytokinins directs 

nodule organogenesis in roots. These findings collectively indicate that cytokinin 

biosynthesis and the resulting signaling are essential and also sufficient for nodule 

organogenesis in legume roots.  

Given that an external application of cytokinin and the constitutive activation of the 

LHK1 cytokinin receptor can both induce spontaneous nodule formation (Tirichine et al., 

2007; Heckmann et al., 2011), and that timely nodule formation is prevented by lhk1 

mutations (Murray et al., 2007; Held et al., 2014), it was tempting to speculate that there 

might be a specific twist to the functioning of cytokinin receptors in legumes. However, 

using the Arabidopsis AHK4 cytokinin receptor gene, I was able to demonstrate that this 

non-legume cytokinin receptor is able to functionally substitute for LHK1 during nodule 



196 

 

formation (see Figure 2.19). This observation indicates that the ability to control 

nodulation is unlikely to be determined by unique properties of L. japonicus cytokinin 

receptor. However, the same Arabidopsis receptor only partially rescued the defective 

nodulation phenotype of the M. truncatula Mtcre1 mutant (Boivin et al., 2016). Whether 

this is related to different modes of nodule development in these two legume species is 

currently unknown but further insight will be important to fully comprehend various 

challenges as associated with the possibility of engineering nodule organogenesis in non-

legumes. 

The role of cytokinin as the endogenous plant inducer of nodule formation has now been 

firmly established. The involvement of cytokinin in mediating rhizobial entry into roots, 

however, has been overlooked. My data indicated that in L. japonicus, cytokinin 

receptors had no apparent function during the initial epidermal infection thread formation 

events. Nonetheless, in their absence, in the lhk1-1 lhk1a-1 lhk3-1 triple receptor mutant, 

cortical infection threads did not develop (Miri et al., 2016) (see Chapter 3). Thus, 

cytokinin might be the primary, plant endogenous signal that conditions cortical cells for 

upcoming rhizobial infections. Arguably, cytokinin signaling must have been crucial 

during the evolution of plant cell predisposition for rhizobia colonization. Interestingly, I 

showed that the cytokinin-dependent signaling events which promote the development of 

infection threads in the cortex also appear to stimulate the negative feedback mechanism 

in the root epidermis which presumably functions through the ethylene biosynthesis 

pathway to restrict subsequent infection thread formation events (Chapter 3 and 4). 

Although the hyperinfection phenotype of lhk1-1 is reminiscent of those 

mutant/transgenic plants with ethylene insensitivity (Penmetsa and Cook, 1997; Nukui et 

al., 2004; Lohar et al., 2009), the mechanism by which ethylene is regulated during 

symbiosis remained obscure. Results presented in Chapter 4 showed that in lhk1-1 the 

root growth and infection thread formation remained sensitive to ethylene precursor but 

the mutant produced less ethylene. This made it likely that the hyperinfection phenotype 

of lhk1-1 is due, at least in part, to the altered ethylene level (Chapter 4). Consequently, I 

argued that upon M. loti infection, the increased cytokinin levels enhance the activity of 

ACS, the rate-limiting enzyme in ethylene biosynthesis pathway. This is presumed to 
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elevate the ethylene level, which in turn inhibits bacterial infection. My work suggests 

that two candidate type-2 ethylene biosynthesis genes, ACS1 and ACS2, are likely to 

function redundantly to regulate the extent of rhizobial infection in an LHK1-dependent 

manner. In parallel, ETO1/EOLs proteins might also work redundantly in fine-tuning the 

rhizobially-induced ethylene production. 

While a symbiotic relationship is generally beneficial to both partners, maintaining 

homeostasis is vital for the host plant as the nitrogen-fixation process is strongly energy-

dependent. Therefore, understanding the mechanisms that govern the tight regulation of 

nodulation and infection thread formation is a requirement for the rational consideration 

of transferring RNS into cereals. In order to recapitulate nitrogen-fixing symbiosis in 

cereals four major steps need to be engineered; rhizobial recognition, nodule formation, 

rhizobial accommodation, and provision of an environment suitable for nitrogenase to 

reduce nitrogen (Rogers and Oldroyd, 2014). My thesis research has helped to further 

understanding of how two ubiquitous plant hormones, which are involved in many 

physiological processes, contribute to the regulation of RNS in legumes. 

Nodule structures and the mechanisms by which plants are colonized by rhizobia are 

quite diverse. Nodules can vary from a simple swelling of roots or stems (due to limited 

cell divisions) to highly advanced structures like those formed in L. japonicus and M. 

truncatula (Sprent et al., 2013). Invasion of the root by rhizobia can occur by either a root 

hair-dependent mechanism that requires infection thread formation, as in L. japonicus, or 

a root hair-independent mechanism such as crack entry (Held et al., 2010). The root hair-

independent mechanism is considered the more primitive form and is known to operate in 

about 25% of all legume genera (Sprent, 2007). Interestingly, even in legumes such as L. 

japonicus that support the more advanced route of rhizobial invasion, the crack entry 

process is still operable (Karas et al., 2005). Regardless of the type of nodules formed or 

the routes of rhizobial invasion, from the most basic to the most highly evolved, the host 

plant benefits from its close association with nitrogen-fixing bacteria. Clearly, the more 

intimate, endosymbiotic associations are more reliable in delivering fixed nitrogen to the 

plants. 
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Although the efficiency of the symbiotic nitrogen-fixation in a model legume such as L. 

japonicus can be the blueprint for transferring RNS to non-legumes, the first step in this 

challenging endeavor would be to demonstrate the ability to advance this process in 

cereals, regardless of the efficiency (Beatty and Good, 2011; Rogers and Oldroyd, 2014). 

Given the complexity of the processes involved, implementation of a more primitive 

association of cereals with nitrogen-fixing bacteria might be more feasible. Even a small 

increase in the amount of available nitrogen would be truly advantageous for subsistence 

farmers in developing countries (Tilman et al., 2011). This would also contribute to 

minimizing the existing yield gap, hence, contributing to global food security. Reaching a 

level of fixed nitrogen in cereals to a point that it could substitute for the intensive use of 

fertilizers in the developed countries will probably require stepwise improvement in the 

efficiency of nitrogen fixation. Achieving a scientific solution for the nitrogen dilemma 

will without doubt be extremely rewarding for mankind and the planet, but requires long-

term commitment to research.  
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