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Abstract 

Currently, the design of wall cladding and components are based on provisions provided 

in building codes, such as ASCE 7 for the United States. These codes provide pressure 

coefficients based on the tributary area, position on the building and the building category. For 

ASCE 7, low-rise and high-rise buildings are separated by an artificial boundary at 60 ft. (18.2 

m). The reasoning for this artificial boundary is unclear. This work investigates the wall pressure 

coefficients for various buildings, based on aspect ratios, motivated by the large differences in 

design pressure coefficients for low-rise and high-rise buildings. 

For this study, a systematic wind tunnel study was performed examining a square plan 

building with different aspect (i.e., height-to-width ratio) ratios. The wind profile and turbulence 

intensities were examined to determine the model-scale appropriate for the multiple building 

heights. Once the model-scale was selected, height configurations of low-rise (H/W<1) and high-

rise (H/W>1) buildings were tested. A statistical analysis was performed on these pressure 

coefficients and these values were converted to GCp (gust factored pressure coefficients) values, 

as a function of (full-scale) area. The pressure coefficients were compared to studies found in the 

literature to ensure the reliability of the data. Pressure patterns were observed and the impact of 

the wind directions was analyzed. Cladding element position and pressure coefficients were 

compared for the different buildings. The pressure coefficients were compared to ASCE 7. 

This study concluded that the aspect ratio affected the length of the wall separation 

bubble, with smaller aspect ratios having more compressed separation bubbles. For positive 

pressure coefficients, low-rise buildings have different zones of pressure while high-rise 

buildings are more uniform. For negative pressure (i.e., suction) coefficients, the patterns 

continually vary with the different aspect ratios. The study showed that there were some aspects 

of ASCE 7 that were not in good agreement with the data. 

Keywords: Low-Rise Buildings, High-Rise Buildings, Walls, Pressure Coefficients, Wind 

Tunnel 
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Chapter 1 Introduction 

1.1 Background and Literature Review 

1.1.1 Preface 

There have been many developments in wind engineering as a practice over the last 

several decades. Experimental wind simulations have developed significantly over this time 

period. Wind tunnel approaches have advanced; there are now laboratories that can replicate 

non-synoptic winds such as tornadoes (Natarajan and Hangan, 2010). Wind engineering has 

become multi-disciplinary, involving the fields of statistics, meteorology, fluid mechanics and 

structural dynamics (Holmes, 2015). The wind forces on structures can often be determined 

using the velocity pressure, the drag coefficient and local pressures. The responses of a structure 

can be summarized by the Davenport Chain, described by five links: the climate factor, exposure 

factor, aerodynamic shape, influence factor and dynamic amplification factor (Davenport, 2002). 

Buildings have long been an interest of wind engineering. Early studies of low-rise 

buildings can be dated back to the late 1800s by Baker (1895). High-rise buildings have been 

studied in wind engineering with famous examples such as the World Trade Center and the CN 

Tower (Davenport, 2002). Many different building scenarios have been tested in wind tunnels to 

determine possible wind effects. The design of these buildings is important and many new 

buildings are being built every year. Estimations are that billions of dollars will be invested in 

infrastructure over the next several years in Canada alone (Globe and Mail, 2016). Companies 

are not only building more buildings, but push the limits of design including building taller and 

skinnier buildings (Higgins, 2015). 
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With all this infrastructure in place, there are the risks associated with these structures 

due to wind hazard. Cladding and components receive wind forces directly and are often one of 

the first failures in intense wind events. Failures of cladding and components cause additional 

problems, such as wind-borne debris, internal water damage, structural damage and internal 

pressure forces. As a result, the proper design of cladding and components for wind is important 

as small losses can turn into much larger losses and these details influence overall resilience of a 

structure in a given wind event. 

The focus of this thesis is to examine the wind loads on wall cladding and components 

for low- and high-rise buildings. This work will aim to characterize different wind loading 

characteristics based on several different geometric factors. 

 

1.1.2 Pressure Coefficients and Wind Characteristics 

A pressure coefficient is a dimensionless value that describes relative pressures. For 

structural engineering, pressure coefficients are used to describe the aerodynamic effects on a 

structure. Additionally, aerodynamic effects can be tested in model-scale using wind tunnels. A 

pressure coefficient is defined as: 

 𝐶𝑝 =
(𝑝−𝑝0)

0.5𝜌𝑈𝐻
2  (1-1) 

where Cp is the pressure coefficient, p is the recorded pressure, po is the static pressure of the 

atmosphere, ρ is the density of air and UH is the wind speed, for the wall pressure coefficient, UH 

was taken at the roof height. In building codes, pressure coefficients are used to determine the 

pressures that will be applied to tributary areas. 
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Pressure coefficients primarily characterize the geometry of the building, although they 

do depend on turbulence (i.e. terrain). To determine the wind loading on a structure, other factors 

affect the magnitude of these forces. When examining a structure, the wind climate that the 

structure is placed in affects the potential loading. This ranges from the expected wind speeds to 

the terrain roughness coefficients surrounding the area, referred to as exposure. These 

characteristics are used to determine the wind loads on a structure. 

 

1.1.3 Literature Review 

The pressure coefficients of walls have been investigated in many studies. Past studies 

have examined low-rise and high-rise buildings; however these studies often did not study both 

types of buildings. Larger scale tests have been performed such as the Silsoe Cube (e.g., Castro 

and Robins, 1977), testing at a larger scale, and full-scale tests for low-rise buildings (Kopp et 

al., 2012). The cube, H/W=1, where H is the building height and W is the side length, has been 

studied on multiple occasions due to its simple geometry (e.g., Uematsu and Isyumov, 1999). 

Wall pressure coefficient studies vary in tap densities used for measurements. Most of these 

studies have not been focused on analysis of pressure coefficient for codification purposes, 

instead examining different phenomena that may occur on a building’s walls. Some of these 

studies have used computational fluid dynamics to assist or replicate results determined 

experimentally. Table 1-1 lists some of the published papers concerning wall cladding pressure 

coefficients. This table indicates the number of pressure taps used for the study, the H/W ratios 

examined and the building category observed (low-rise, high-rise or cube-like). 
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Table 1-1: Papers only concerned with wall pressure coefficients, listed by aspect ratio. 

Authors H/W Building 

Category 

Number of 

Taps 

Comments 

Tielmann et al. 

(1997) 

0.30 Low 23 Turbulence intensity for 

replicating full-scale wind 

loads 

Tielmann et al. 

(1998) 

0.30 Low 50 Parameters for wind tunnel 

study of low-rise buildings 

Uematsu and 

Isyumov (1999) 

0.30 Low 30 Examination of peak factors 

Tamura et al. 

(2001) 

0.25 Low 416 Peak factors and pressure 

distributions 

Zisis and 

Stathopoulos 

(2009) 

0.33 Low 38 Full scale testing of pressure 

coefficients 

Gavanski et al. 

(2014) 

0.20 Low 366 Area averaging used to 

compare code values 

Castro and Robins 

(1977) 

1.00 Cube 45 Effects of turbulent and 

smooth flow 

Richardson et al. 

(1997) 

1.00 Cube 77 Reliability of wind tunnel 

tests and the effects of 

varying parameters 

Hölscher et al. 

(1998) 

1.00 Cube 189 Comparing multiple wind 

tunnels 

Richards et al. 

(2007) 

1.00 Cube 88 Re-examination of the 

Silsoe cube 

Irtaza et al. (2012) 1.00 Cube 61 Sheet cladding on cube 

building 

Kim et al. (2012) 1.00 Cube 25 Low rise building study, 

focus on neighbouring 

effects 

Ramponi et al. 

(2014) 

1.00 Cube 60 Other factors affecting 

pressure coefficients 

Maruta et al. 

(1988) 

3.00 High 202 Effects on glass cladding  

Lin et al. (2005) 3.00-

4.00 

High 120 Characteristics of wind 

forces acting on tall 

buildings 

Zhang and Gu 

(2008) 

6.00 High 100 Staggered arrangement 

effects 

Dagnew et al. 

(2009) 

4.00 High 150 Comparison between 

numerical modeling and 

wind tunnel 
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Cóstola et al 

(2009) 

2.10 High 30 Complexity of wind tunnel 

studies and the variation 

between different wind 

tunnels 

Kim et al. (2011) 4.00 High 252 Interference effects on local 

peak pressures between two 

buildings 

Hui et al. (2012) 4.00 High 252 Mutual interference effects 

between two high-rise 

building models with 

different shapes on local 

pressure coefficients 

Hui et al. (2013) 4.00 High 252 Pressure and flow field 

investigation of interference 

effects on external pressures 

between high-rise buildings 

 

 

1.1.3.1 Studies on Low-Rise Buildings 

Most of the buildings in the world are low-rise buildings. Low-rise buildings are 

generally defined to be lower than wide. Stathopoulos et al. (1979) performed tests on low-rise 

buildings to determine the pressure coefficients for walls and roofs. The study examined the 

codification approach along with the magnitudes of pressure coefficients. Observations were 

made for many different factors affecting pressure coefficients on low-rise buildings such as 

dynamic loads, terrain roughness, scale and local wind effects. Uematsu and Isyumov (1999) 

studied peak effects for determination of pressure coefficients for design purposes. Wind tunnel 

data collected in the study showed different characteristics compared to the current provisions. 

This study showed that the current code provisions need to be updated, such as the current 

approach of evaluating design wind loads for cladding. Tamura et al. (2001) examined peak wind 

effects on members in low-rise buildings systems, for various loading combinations. One 
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observation from this study was that higher tap resolution would allow for better understanding 

of peak effects. 

In recent years, the focus has shifted from determining wind pressure coefficients to other 

external effects that influence pressure coefficients. Some studies have focused on the 

aerodynamic effects that buildings may have on surrounding buildings. Tests have been 

performed regarding the neighbourhood effects on wall pressure coefficients (Kim et al., 2012) 

and the results on the pressure coefficients from different groupings of low-rise buildings 

(Hussain and Lee, 1980). Many studies have focused on the roof of low-rise buildings, as 

opposed to examining the walls, because of the significant financial losses associated with roof 

failures (Lee and Rosowksy, 2005). 

Studies have been performed to examine what factors are necessary for proper replication 

of wind forces at model-scale. Tieleman et al. (Tieleman et al., 1997 and Tieleman et al., 1998) 

observed parts of the wind profile that affect pressure coefficients. The fluctuations (rms) and 

peak pressure coefficients are replicated by properly duplicating the turbulence intensities 

(Tieleman et al., 1997). This is especially important when observing the corners of the building, 

as incorrect replication of the turbulence intensities will have a greater effect on this location of 

the building since the corners of the building often have the largest pressure coefficients. The 

study examined additional parameters such as the replications of small- and large-scale 

turbulence and integral scales (Tielemann et al., 1998). A study performed by Zisis and 

Stathopoulos (2000) evaluated the replication of such parameters by comparing the wind data 

collected from a full-scale test and a model test at 1:200. Gavanski and Uematsu (2014) 

examined various building parameters and found that some of the current code provisions may 

be too low for low-rise buildings. The study involved area averaging to determine the pressure 
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coefficients across the walls. Comparisons were made to ASCE 7-10, with suction coefficients in 

the code being found to be too high for larger tributary areas and too low for smaller tributary 

areas. The positive pressure coefficients were found to be relatively uniform across the walls, 

implying that zoning would only be needed for the suction coefficients. 

 

1.1.3.2 Cube-Shaped Buildings 

Cube-shaped buildings are a special case because, with H/W=1, aerodynamically they are 

a transition between low-rise and high-rise buildings. The aerodynamics are different for H/W 

greater and lower than 1 (as will be seen). For higher aspect ratios (H/W), the flow tends to go 

more around the sides of the building, whereas for lower aspect ratios the flow tends to go over 

the top of the building. Cubes have been extensively studied; Hölscher et al. (1998) established 

that wind tunnels could duplicate results if the flow parameters and model geometries are 

carefully taken into account, similar to the studies by Tieleman et al. described earlier. 

Castro and Robins (1977) analyzed the effects from smooth and turbulent flows, on the 

spatial variations of the pressures. Richards et al. (2007) compared results from the full-scale 

Silsoe cube to wind tunnel tests. This study found that matching the turbulence spectra is 

required in addition to matching the mean wind speed profile for proper full-scale results, since 

the turbulence spectra have a significant effect on the observed peak pressure coefficients. Irtaza 

et al. (2012) did further comparisons with the Silsoe cube and wind tunnel tests, re-testing the 

model with a focus in the sheet-clad scaffolds. This helped to further validate the use of wind 

tunnels to determine pressure coefficients. 
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Ramponi et al. (2014) studied different external effects that affect the pressure 

coefficients on the model. Richardson et al. (1997) used the cube case to determine the reliability 

of wind tunnels and observed that various parameters such as the scale factors, wind profiles and 

tapping position are required for proper analysis. 

 

1.1.3.3 High-Rise Buildings 

The number of high-rise buildings has increased for many large cities. These structures 

are pushing past previous records, with buildings being built taller and with thinner aspect ratios. 

Due to their general size, it is difficult to do full-scale testing of such structures. For design, these 

buildings are often tested in wind tunnels while studies using computer models are emerging. 

There have been many academic studies of wind effects on high-rise buildings. High-rise 

buildings often focus on different phenomena. These include effects such as instantaneous peak 

pressure coefficients (Maruat et al., 1998), staggered arrangement effects (Zhang and Gu, 2008), 

interference effects (Kim et al., 2011 and Hui et al. 2013) and neighbouring effects (Hui et al. 

2012). Zhang and Gu used a similar tap position at different heights along the building and made 

comparisons of the pressure coefficients at different positions. The effects of future building on 

existing buildings was studied by Irwin et al. (1998) for cladding pressures. Lin et al. (2005) 

studied the wind characteristics of several wind tunnel models. The study found that the side 

ratio, the aspect ratio and elevations affected local wind force coefficients, spectra and span wise 

cross correlation. 

Cóstola et al. (2009) used computation fluid dynamic simulations to observe the different 

results from different wind tunnels, attempting to realize the complexity of wind tunnel 
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simulations. Cóstola et al. study focused on the different factors (building geometry, 

exposure/sheltering, wind speed and direction) that influence wind pressure coefficients that 

should be replicated for proper comparisons. Cóstola et al. used collected primary pressure 

coefficient data as well as for pressure coefficients from external sources on identical building 

configurations. 

 

1.1.3.4 Overview of Literature 

The literature gives several different considerations for testing and analysis. These studies 

did not study pressure coefficients for code purposes, primarily focused on different phenomena 

for low-rise to high-rise buildings. Many of these studies used relatively low numbers of pressure 

taps. In fact, many studies used single taps to determine pressure coefficients for tributary areas 

(Kumar et al., 2000). Table 1-1 showed a wide range in the densities of pressure taps used. These 

different studies illustrated the validity of using wind tunnels for analyzing pressure coefficients 

on structures. There were multiple different parameters that should be taken into consideration 

for proper simulations such as turbulence, terrain roughness, scale factors, etc. There have been a 

wide range of aspect ratios studied. It is advantageous for the current study that there are 

multiple past studies that can be used for validation and comparison with the current data. 

 

1.1.4 Building Codes: Past and Present ASCE 7 

For wind design, many countries have their own set of provisions. For the purpose of this 

study, the ASCE (American Society of Civil Engineers) standard will be used. This is because 

ASCE has a larger global impact and many building codes around the world, such as Canada’s 
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National Building Code of Canada (NBCC), are influenced by it, to some extent. Mehta et al. 

(2010) observed the evolution of the wind portions of ASCE 7 and the effects of the changes. In 

general, the wind portions continue to have similar design philosophies for all ASCE editions, 

while taking into account new information. 

In ASCE 7-10, the pressure coefficient, GCp, values are given for cladding and 

component design. The GCp values are used to determine the pressure using the formula: 

 𝑃𝐴𝑆𝐶𝐸 = (𝐺𝐶𝑝𝐹)
1

2
𝜌𝑈10𝑚 𝑜𝑐,3 sec 𝑔𝑢𝑠𝑡

2 𝑘𝑧𝑡𝑘𝑑𝑘ℎ𝐼 (1-2) 

where PASCE is the design pressure, GCPF is the peak pressure coefficient, 𝜌 is the density of air, 

𝑉10𝑚 𝑜𝑐,3 𝑠𝑒𝑐 𝑔𝑢𝑠𝑡 
2  is the 3-sec gust velocity at a reference height of 10 m for an open terrain, kzt is 

the terrain factor, kd is the directionality factor, kh is the velocity pressure exposure factor and I is 

the importance factor. The other factors; wind velocity, terrain coefficient, directionality factor, 

exposure factor and importance, can be grouped together as: 

 𝑞𝑧 =
1

2
𝜌𝑈10𝑚 𝑜𝑐,3 sec 𝑔𝑢𝑠𝑡

2 𝑘𝑧𝑡𝑘𝑑𝑘ℎ𝐼 (1-3) 

which represents the design wind speed at the roof height of the building. 

The first versions of ASCE 7 were developed in the late 1980s from the earlier ANSI 

predecessors. Throughout the iterations of this standard, there have been multiple changes in 

both the zones to which the pressures are applied and the magnitude of the pressures. This work 

will only examine the provisions related to the design of walls and ignore the provisions for 

design of cladding and components of roofs. The current study focuses on the walls, while there 

have been many studies performed observing the pressure coefficients for various roof shapes. 

One of the constants throughout these iterations is the formula used to determine the cladding 
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coefficients, presented above. Other similarities between the different iterations are the 

separation of low-rise and high-rise buildings, boundary at 18.3 m, reduction due to roof angle 

and the edge zone length size characteristic. Positive pressure coefficients do not have different 

zones for all iterations.  

ASCE 7-88 (1988) was one of the earlier provisions involving cladding and components. 

The zoning requirements for low-rise and high-rise buildings were different in this version. 

Figure 1-1 shows the zoning used. The low-rise zoning has remained consistent for all iterations 

of ASCE 7, while the high-rise zoning changed after ASCE 7-88. 

 

 

Figure 1-1: Zoning for ASCE 7-88 (1988) with low-rise on the left and high-rise on the right. The zones for the low-

rise are a length of 10% of building width and high-rise zones are a length of 5% of building width. 
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For the zoning of zones 4 through 7 shown in Figure 1-1, the width of the zone is given 

as a parameter a. This parameter is determined the lower of 10% of the shorter horizontal 

dimension or 40% of the height for low-rise buildings and 5% of the least horizontal dimension 

for high-rise buildings. The minimum a can be is 4% of the least horizontal dimension or 3 ft. 

(0.91m).  

Figure 1-2 shows the pressure coefficients for low-rise and high-rise buildings in ASCE 

7-88. The negative pressure coefficients (i.e., suctions) decrease in magnitude for zones further 

from the building edges. There are significant drops in pressure coefficient with the interior zone 

being less than half of the most exterior zone for high-rise buildings. 

 

 

Figure 1-2: Pressure coefficients for ASCE 7-88 (1988) for walls of low-rise and high-rise buildings. This shows the 

pressure coefficients for positive and negative pressure coefficients based on the size of the cladding and 

component. The zones are given in Figure 1-1. 
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ASCE 7-95 (1995) changed the zoning for high-rise buildings, changing the zoning from 

three zones in high-rise buildings to just two. The reasoning for this change is unclear in the code 

provisions. Figure 1-3 shows the new zoning for high-rise buildings, which is still used for the 

current iteration of ASCE 7. ASCE 7-95 (1995) changed the edge zone width to the same 

requirements as low-rise building with a increasing to 10% of minimum width opposed to the 

previous 5%. The zones are now vertical, no longer differentiating zoning for edges along the 

roof of the building. The naming convention of the zones was changed to be similar to the low-

rise building. 

 

 

Figure 1-3: Zoning for high-rise building from ASCE 7-95 to present. 
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In addition, in ASCE 7-95 the pressure coefficients were decreased in magnitude. The 

positive pressure coefficients for low-rise buildings and high-rise buildings are much closer in 

value. Values for the negative pressure coefficients were all decreased significantly through the 

elimination of zone 7, but also changes in the role of area. Wall edges still have higher negative 

pressure coefficients. For high-rise buildings, the design pressure coefficients decrease for areas 

larger than 1.86 m2, as opposed to 9.29 m2 in ASCE 7-88. The values presented in Figure 1-4 

would be used for all subsequent ASCE 7 provisions (i.e., for the years 1995, 1998, 2002, 2005 

and 2010). 

 

 

Figure 1-4: Pressure coefficients for ASCE 7-95 (1995) for walls of low-rise and high-rise buildings. This shows the 

pressure coefficients for positive and negative pressure coefficients based on the size of the cladding and 

component. The zones are given in Figure 1-1 for low-rise and Figure 1-3 for high-rise. This figure has remained 

unchanged for later iterations of the ASCE 7 building provisions. 
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The definition of high-rise and low-rise buildings have been constant for all building 

codes, with a somewhat artificial boundary at 18.3 m. By the provision’s definition, buildings 

over 18.3 m are considered high-rise buildings while buildings 18.3 m and less are considered to 

be low-rise buildings. Aerodynamically, buildings that have a height which is less than the least 

horizontal plan dimensions are “low-rise” as the flows travel over the top of the buildings, 

whereas buildings with height greater than the plan dimensions are “high-rise”, with flows 

travelling around the sides of the building. The negative pressure coefficients between the two 

sets of buildings may differ up to 35% between low- and high-rise buildings, as can be seen in 

Figure 1-4. This causes abrupt changes in the design of cladding and components for buildings 

around the (artificial) boundary. 

 

1.2 Objectives 

The purpose of this investigation is to systematically analyze wall pressure coefficients 

for buildings from low-rise to high-rise in shape. The hypothesis motivating this work is that the 

current building code does not adequately represent the aerodynamics because the categorization 

of buildings as low-rise or high-rise using an artificial boundary may not reflect the physics of 

the situation. The existing model may be oversimplifying the problem and a systematic study 

may fill the knowledge gaps. Pressure coefficients have been found to be different in some cases 

(Gavanski and Uematsu, 2014) and the zoning of cladding elements has changed over time in the 

ASCE 7 provision. A study using many different configurations will achieve a better 

understanding of building shape effects of rectangular shaped buildings. With the database of 

pressure coefficients, the analysis can give insight into the behaviour of wind on these bluff 
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bodies. Analysis will be performed for different aspect ratios to determine the effects on both the 

magnitude of pressure coefficients and the spatial patterns (i.e., zones). Ideally, these findings 

can help formulate recommendations for modified codification, if needed. Due to the high 

resolution of data, the data set allows for a unique level of detail, which can be used for a variety 

of purposes. 

 

1.3 General Approach 

Experimental tests will be conducted in a wind tunnel to measure pressure coefficients.  

The set of tests for this study will differ from previous approaches having a much higher density 

of pressure taps as can be seen in Table 1-1, at least 960 pressure taps for low-rise buildings and 

up to up to 9600 for high-rise buildings. The larger number of pressure taps provides a higher 

resolution and minimizes the chance of missing certain pressure patterns. Single tap pressures 

were used for cladding pressure coefficients in most of the literature, Gavanski and Uematsu 

(2014) being the notable exception, which oversimplifies the pressure coefficient on larger 

cladding components, this test will use area averaged pressure coefficient for tributary areas. 

However, the current tests differ from Gavanski and Uematsu since it involves additional 

building shapes. The large number of pressure coefficients allow for observing pressure 

gradients, which is a critical parameter for wind loads on multi-layer wall cladding systems. 

The high resolution approach provides much more pressure coefficient information. An 

example of the high resolution is for the cube, where the present wind tunnel model will use 

3840 pressure taps (4 configurations of 960 taps each). Most full-scale testing using the Silsoe 

cube had between 40-80 pressure taps. On a high-rise building, the number of pressure taps 
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being used is 1-4 orders of magnitude higher (Maruta et al., 1998) than what is presently being 

used, as described in the literature review. In all cases, this study’s model uses a much larger 

number of pressure taps than comparable models from Table 1-1. This allows for area averaging 

to be used in the study which can be described with the equation: 

 𝐶𝑝 = ∑ ∑ 𝐶𝑝𝑖𝑗
𝑎𝑖𝑗

𝐴

𝑛
𝑗=1

𝑚
𝑖=1  (1-4) 

where m and n are the number of taps in the area of interest, A, with aij the tributary area of each 

tap. These dimensions will be marked by the number of pressure taps in the given area, where m 

and n are the vertical and horizontal number of taps, respectively. 

The building model has increased flexibility since it can be altered between low-rise and 

high-rise configurations. This allows for a single model to be used for all tests to examine 

multiple, different, height configurations and allows for data collection at various heights on the 

building. This aspect is not commonly used and is another unique aspect of the model. Similar to 

the categorization of building configurations in Table 1-1, the H/W ratios were used to compare 

the buildings. This categorization is seen in Figure 1-5. Of the studies listed in Table 1-1, it is 

common that each study focused on only one of the building categories. This study aims to 

connect the low-rise and high-rise buildings better than previously performed studies and should 

provide correlation between the two types of buildings. A full description of this model can be 

found in Chapter 2. 

1.4 Scope of Project 

The scope of this thesis is to analyze and collect wind tunnel data. Analysis will be 

completed and patterns will be observed. This study also focuses on interpreting the pressure 
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coefficients for select building configurations as well as making comparisons with the current 

ASCE 7-10 (2010) provisions. The analysis will involve examination of the pressure coefficient 

data and trends between different building configurations. This information will help to refine 

the current provisions and provide insight into the spatial variations of pressure coefficients on 

rectangular buildings. 

 

 

Figure 1-5: Three building shapes depicting the three categories based on H/W ratios. 

 

 

1.5 Overview of Thesis 

In this thesis, an experimental study will be presented. Chapter 2 deals with the 

experimental set-up and methodology. The scaling of the model and wind simulation will be 
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described along with details of the method of analysis. Chapter 3 will discuss the analysis of the 

pressure coefficient data. The reliability of the data will be analyzed. Conclusions and 

recommendations will be discussed in Chapter 4.  
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Chapter 2 Methodology and Analysis Procedure 

2.1 Geometry of the Building Model 

A single model was used for all testing at the Boundary Layer Wind Tunnel Laboratory 

located on the campus of the University of Western Ontario. This model was built by University 

Machine Services of the University of Western Ontario. Figure 2-1 shows the model in the wind 

tunnel at the highest height configuration. This model consisted of a rectangular prism with one 

open side filled with ten removable panels, a roof and an open bottom. As seen in the figure, 

there are ten removable panels to fill out the open side of the prism. The bottom of the model 

was open to accommodate the instrumentation required to perform the testing. This model had a 

square plan, with dimensions of 32.0 cm by 32.0 cm. 

 

 

Figure 2-1: Picture of wind tunnel model at tallest H/W configuration with the pressure tap panel 3rd from the 

bottom. 
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Figure 2-2: Elevation of the building model used displaying the ten panels and the bottom line shows the floor 

(ground plane). The dimensions shown indicate the side length and panel lengths. The figure shows the units in mm 

inside the square brackets and inches. 

 

Figure 2-2 shows an elevation view of the model. In the current height configuration, the 

building nine panels above the ground plane. One of the panels would contain the 

instrumentation as the instrumented panel, and the remaining eight panels above the ground 

plane would be “dummy” panels, containing no instrumentation to finish the wall. The height of 

the model could be changed by moving the model upwards or downwards through the floor of 

the wind tunnel. Table 2-1 describes the different heights used and the corresponding H/W ratios. 

The different height configurations are separated into three categories: the H/W ratios above 1 

were all considered high-rise buildings; H/W=1.08 was considered to be close to a cube; the 

remaining buildings (H/W<1) were all considered low-rise buildings.  
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Table 2-1: Configuration heights and H/W ratios. 

H (model 

scale: cm) 

Number 

of Panels 

H/W 

8.9 1 0.28 

16.67 2 0.52 

25.72 3 0.8 

34.61 4 1.08 

42.23 5 1.32 

53.18 6 1.66 

58.74 7 1.83 

67.31 8 2.1 

75.4 9 2.35 

82.87 10 2.58 

 

Figure 2-3 shows the instrumented panel. This panel contained a total of 960 pressure 

taps. These taps were arranged in 16 rows by 60 columns, as seen in Figure 2-3. A total of 60 

scanners were needed for testing, each scanner being responsible for 16 pressure taps. The tap 

layout was done so that each scanner would be used for one column of pressure taps, the tap 

layout is described in Appendix A. 

Since the experimentation needed such a large amount of instrumentation, only one panel 

could be instrumented. To measure pressure coefficients at different positions on the building, 

the ten panels could be used interchangeably by screwing them in and out to change the order of 

panel. In Figure 2-1, the instrumented panel is the third panel from the bottom, to measure at a 

different position on the building the instrumented panel would be moved to a different position 

and another set of tests would be performed. 
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Figure 2-3: Drawing of the high resolution of pressure taps on instrumented panel used on the wind tunnel building 

model. Square brackets indicate mm dimensions, other dimensions are in inches. 

 

A total of 55 different tests could be conducted, ten different height configurations with 

the pressure tap panel at any panel position on the building. Figure 2-4 illustrates the model in 

one particular height configuration. In this figure, the pressure tap panel is located at the top of 

the building and there are four “dummy” panels above the floor of the wind tunnel. This 

resembles the H/W ratio of 1.32 described in Table 2-1. In this height configuration, the pressure 

tap panel could be placed at any of the five positions above the wind tunnel floor. To create 

different heights, the model was raised and lowered through the floor of the wind tunnel. This 

process was done by adjusting a series of washers and nuts to the appropriate heights. 

Additionally, spacers were used to add stiffness to taller models and placed at the bottom of the 

model, below the wind tunnel floor. As seen in Figure 2-4 , panels are below the wind tunnel, 

subtracting from the full height of the model. For each panel position, a separate test was 

performed, i.e., for H/W=2.58 the model was tested ten times, with the instrumented panel at 
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each height, or H/W=1.08, four trials in the wind tunnel would have to be run for all positions on 

the building. 

 

 

Figure 2-4: Wind tunnel model in configuration of a 5 panel tall building with the pressure tap panel at the top of 

the building. This yields a H/W ratio of 1.32. 

 

2.2 Wind Tunnel Test Parameters 

For the testing an open terrain was used as it would yield higher pressure coefficients 

than rougher terrains, providing better pressure coefficients for code purposes. Time series data 

of the wind profile was taken of the terrain and provided following testing. This data collection 

was performed by C. Wu and A. Fahad at Boundary Layer Wind Tunnel Laboratory. This time 

series data was used to determine the turbulence intensity, the mean wind profile and the power 

spectrum. 

The testing parameters were the same as the studies conducted in Ho et al. (2005). The 

pressure tubing was flat to about 200 Hz. The pressure data were taken at 500 samples per 
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second for 100 seconds for every wind angle. The time for each wind angle was chosen to obtain 

adequate data for extreme value analysis and the sampling rate was chosen to correspond with 

the power spectrum data. These data collection parameters yielded 50,000 pressure coefficients 

for each individual pressure tap at each angle. Wind directions were taken in 10 degree 

increments over the interval from 0 to 180 degrees, resulting in 19 different wind angles being 

tested. Data were only taken from 0 to 180 degrees due to the symmetry of the model. 

 

 

Figure 2-5: Photograph of the wind tunnel with the model inside facing a 180 degree angle. This image shows the 

exposure used in the background. This terrain configuration involved the barriers, block heights, scattered nuts and 

spires. The model is set in a 6 panel high configuration (H/W = 1.66). 
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Figure 2-6: Wind tunnel model with 0o, 90o and 180o indicated on the figure. During testing, the turn table rotated 

so the wind would be coming from the indicated direction. 

 

The Pitot-static tubes were set up at a standard height of 147 cm. The Pitot static tubes 

were set at this height since it was at the gradient height of the wind profile. Pitot static tubes are 

usually set at the roof height of the building model, however for this study, the roof height 

changes for different height configurations. The wind profile measurements would be used to 

normalize the pressure coefficients to the roof height. The wind tunnel reference velocity at 147 

cm was set at roughly 13.7 m/s for all tests to be consistent with wind tunnel practice. These 

conditions were identical (within measurement uncertainty) for all configurations tested. Testing 

was performed twice and parameters were duplicated for both sets of tests, with repeated runs for 

a few configurations. During testing, a limited number of pressure taps malfunctioned; less than 

1% of the total number of pressure taps. In these cases, the surrounding pressure taps were used 

to estimate the time series of the failed pressure taps. Due to the large density of pressure taps in 

the model, this method was deemed satisfactory.  
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Table 2-2 summarizes the tests performed. These two sets of tests were conducted 

months apart, with the first set of tests examining some of the cases and the second set of testing 

used to fill out the matrix. In total, 35 different cases were tested with 14 repeated runs. For six 

of the H/W ratios, all panel positions were tested with the instrumented panel. 

 

Table 2-2: Height configurations and positions tested and corresponding set that the testing was 

performed. 

Configuration Tests Carried Out 

Set 1 

 

Set 2 

 

H/W=2.58 

H=82.87 cm 

10 Panel 

1st Panel (Top of Building) Tested Retested 

2nd Panel Tested Retested 

3rd Panel  Tested 

4th Panel Tested Retested 

5th Panel  Tested 

6th Panel  Tested 

7th Panel  Tested 

8th Panel Tested Retested 

9th Panel  Tested 

10th Panel (Bottom of 

Building) 

 Tested 

H/W=2.35 

H=75.40 cm 

9 Panel 

1st Panel (Top of Building) Tested  

2nd Panel   

3rd Panel   

4th Panel   

5th Panel   

6th Panel   

7th Panel   

8th Panel   

9th Panel (Bottom of Building)   

H/W=2.10 

H=67.31 cm 

8 Panel 

1st Panel (Top of Building) Tested  

2nd Panel Tested  

3rd Panel   

4th Panel   

5th Panel   

6th Panel   

7th Panel   
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8th Panel (Bottom of Building)   

H/W=1.83 

H=58.74 cm 

7 Panel 

1st Panel (Top of Building) Tested Retested 

2nd Panel  Tested 

3rd Panel  Tested 

4th Panel Tested Retested 

5th Panel  Tested 

6th Panel  Tested 

7th Panel (Bottom of Building)  Tested 

H/W=1.66 

H=53.18 cm 

6 Panel 

1st Panel (Top of Building) Tested  

2nd Panel Tested  

3rd Panel   

4th Panel   

5th Panel   

6th Panel (Bottom of Building)   

H/W=1.32 

H=42.23 cm 

5 Panel 

1st Panel (Top of Building) Tested  

2nd Panel Tested  

3rd Panel   

4th Panel Tested  

5th Panel (Bottom of Building)   

H/W=1.08 

H=34.61 cm 

4 Panel 

1st Panel (Top of Building) Tested Retested 

2nd Panel Tested Retested 

3rd Panel  Tested 

4th Panel (Bottom of Building) Tested Retested 

H/W=0.80 

H=25.72 cm 

3 Panel 

1st Panel (Top of Building) Tested Retested 

2nd Panel Tested Retested 

3rd Panel (Bottom of Building)  Tested 

H/W=0.52 

H=16.67 cm 

2 Panel 

1st Panel (Top of Building) Tested Retested 

2nd Panel (Bottom of Building) Tested Retested 

H/W=0.28 

H=8.90 cm 

1 Panel 

1st Panel Tested Retested 

Totals 22 27  

13 new cases 14 

retested 
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2.3 Scaling 

In wind tunnel experimentation, the flow field and the buildings must be scaled properly 

for appropriate results. These must be at the same scale since, without the two matching, 

problems arise in the interpretation of the data. The scaling of the flow field will be discussed 

first. 

The flow fields for experimentation are used to mimic existing terrain conditions. 

Important characteristics of flow fields include the ratios of wind speeds throughout the height, 

the eddies and the fluctuations. For wind tunnel testing, the turbulence intensities, mean wind 

profile and spectral densities are compared to expected full-scale values. These parameters must 

be taken in the proper ratios to simulate the terrain correctly. Relationships between the target 

full-scale and model-scale velocities, time and length are considered. For this analysis, the 

scaling will replicate Engineering Sciences Data Unit (ESDU) models for terrain roughness. 

One of the difficulties of this experimentation is the use of a single model and terrain 

configuration. The same terrain is to be used for multiple different building heights and ideally a 

single length ratio can be used for all configurations. This complicates the scaling as often times, 

the requirements of scaling low-rise (Tieleman et al., 2003) and high-rise buildings (Dalgliesh, 

1975) tend to be different. Low-rise and high-rise buildings follow different parameters for 

simulation, such as the characteristic lengths used; the height for low-rise buildings and the 

width for high-rise buildings. As a result, there are different governing aerodynamics for 

different height configurations in the testing. The objective of the scaling was to determine an 

appropriate scale that could be used for all model heights. For the testing, many of the buildings 

were considered high-rise buildings. For the purpose of this work, a high-rise building scaling 

method was used. 
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2.3.1 Definitions 

The mean velocity is the time-averaged velocity at a point. The mean wind speed is 

represented by 𝑢̅. The standard deviation can be determined from a time series using: 

 𝜎 = √∑
(𝑢−𝑢)2

𝑛
𝑛
𝑖=1  (2-1) 

This standard deviation is for the fluctuations in the along wind direction. From the standard 

deviation of the time series, the turbulence intensity can be determined as: 

  𝐼𝑢 =
𝜎

𝑢
 (2-2) 

The integral length scale is related to the size of the eddies. The integral length scale 

measures the amount that a time series is correlated with itself and the time that a particle is 

influenced by a previous position. The autocorrelation can be used to the integral time scale, Lt: 

 𝐿𝑡 = ∫ 𝜌𝑢𝑢(𝜏)𝑑𝜏
∞

0
 (2-3) 

The longitudinal integral length scale, Lx, is determined using the integral time scale: 

  𝐿𝑥 = 𝑢̅𝐿𝑡 (2-4) 

assuming Taylor’s hypothesis of frozen turbulence. 
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2.3.2 Scaling Method 

For the scaling, the roughness length, z0, and target full scale height, zfs, could be chosen. 

The roughness length was determined from the turbulence intensity and wind profile. The height 

was determined from the scale. For the wind profile, ESDU (1974, 1985) documents were used 

to simulate the terrain. This process yields target wind speeds and turbulence intensities for full-

scale. This study utilized ESDU 74030 (1974) and 85020 (1985). ESDU 74 uses a log-law fit 

(Oke, 1987) to match the wind speed and the turbulence intensity. ESDU 85 uses a von Kármán 

spectrum to match the power spectral density.  

The measured mean wind speed and turbulence intensity were compared to the 

theoretical values from ESDU. The fit from the wind profile would yield the roughness length, 

z0. Additionally, a power law fit was used to fit the data. For the mean wind profile, a power law 

was first used to fit the data. Since the test was intended to model an open terrain, the power law 

exponent, α, should be within 0.08 – 0.22 (estimation used for open water to open country 

terrain). The power law takes the form of: 

 
𝑈

𝑈𝑟
= (

𝑧

𝑧𝑟
)

𝛼

 (2-5) 

where Ur is the velocity at the reference height and zr is the reference height. For this fit, the 

reference height was considered to be the largest roof height. To determine α, the power law was 

used to match the experimental mean wind speeds. This α was compared for the different roof 

heights needed throughout experimentation. Ideally, a single α value could be used for all of the 

height configurations. Figure 2-7 shows the power law fit used, using the height of the tallest 

height configuration as H. To make this comparison dimensionless, the velocity was plotted as a 
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ratio of the velocity at the particular height with the normalizing velocity (the velocity at the roof 

height of the building), U/UH. 

To determine if the power law fit was a good fit for the given data, a least squares fitting 

was performed. This method was performed analytically, using the α with the least deviations, 

resulting in an α of 0.10. This is within the range of expected values for an open terrain 

condition, albeit at the smoother end of the range. 

The log-law given in ESDU 85 (ESDU 85020, 1985) is in the form: 

 
𝑈𝑧

𝑈10
=

ln(
𝑧

𝑧0
)

ln(
10

𝑧0
) 

+ 86.25𝑓𝑜𝑧 (2-6) 

The second term of the equation (i.e., 86.25𝑓𝑜𝑧) is negligible as it is the Coriolis 

parameter defined as: 

 𝑓𝑜 = 2𝜔 sin 𝜙 (2-7) 

For the purpose of the analysis, 𝜙 was set as 45o and the Coriolis parameter was found to be 1.03 

x 10-4. This value is orders of magnitude below the first term and will not affect the Kz value. 

With the value of Uz/U10 the velocities could be compared similar to the power law fit. This can 

be performed by dividing the Uz/U10 for one height by the Uz/U10 of the reference or normalizing 

height. 

The turbulence intensity was determined using ESDU 85020 (1985) which refers to 

ESDU 83045 (1983) for simulation of this characteristic. ESDU 83045 (1983) determines the 

turbulence intensity as the product of several ratios: 

 𝐼𝑢 =
𝜎𝑢𝑥

𝜎𝑢

𝜎𝑢

𝑢∗

𝑢∗

𝑈𝑧

𝑈𝑧

𝑈𝑧𝑥
 (2-8) 
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where Iu is the turbulence intensity, σu is the standard deviation of the streamwise wind, σux is the 

local standard deviation of the streamwise wind, 𝑢∗ is the friction velocity, UZ is the wind speed 

at the height and Uzx is the local wind speed at the height. These ratios can be simplified to give 

the expression in ESDU 85020: 

 𝐼𝑢 =
𝜎𝑢

𝑢∗

𝑢∗

𝑈𝑧
 (2-9) 

Thus, the turbulence intensity depends on the ratio of the standard deviations to the friction 

velocity and the friction velocity to the reference wind velocity. ESDU 85 gives the equations for 

determining these ratios, which are empirically determined. The first ratio can be determined as: 

 
𝜎𝑢

𝑢∗
=

(7.5𝜂[0.538+0.09 ln(
𝑧

𝑧0
)]

𝑝
)

1+0.156 ln(
𝑢∗

𝑓𝑜𝑧0
)

 (2-10) 

and the second term is given as: 

 
𝑈𝑧

𝑢∗
= 2.5 [ln (

𝑧

𝑧0
) +

34.5𝑓𝑜𝑧

𝑢∗
] (2-11) 

In Equation 2-10, η and p are defined as: 

 𝜂 = 1 −
6𝑓𝑜𝑧

𝑢∗
 (2-12) 

 𝑝 = 𝜂16 (2-13) 

The friction velocity is a function of the roughness length given as: 

 𝑢∗ =
𝑈10,𝑚𝑜𝑑𝑒𝑙

2.5∙ln
10

𝑧0

 (2-14) 
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From these equations, the roughness length is the only parameter that is not known. This 

roughness length can be used for Equations 2-6 to 2-14. These fits from ESDU 85 will be used to 

compare the turbulence intensities and mean profiles measured. 

 

 

Figure 2-7: Wind profile for a building of H/W ratio of 2.58. Displaying turbulence intensity and mean wind speeds. 

 

A high-rise scaling was used to determine the roughness length and the tallest H/W 

configuration was observed. The mean wind velocity fit is similar to the power law fit. The 

turbulence intensity and mean wind speeds are in good agreement throughout the building 

height. There is some scatter towards the bottom of the wind profile, which would only impact 

the shortest height configuration, with underestimation of turbulence intensities at this height. 
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The model-scale power spectral density was also observed. Figure 2-8 shows the power 

spectral density. Using ESDU 74031 (ESDU, 1974) the integral length scale could be 

determined.  

 

 

Figure 2-8: Power spectral density for high-rise building at a model-scale height of 0.67m. 

 

For perfect simulation, the turbulence intensity, Iu and power spectral density. 𝑓𝑆𝑢𝑢/𝑈2̅̅ ̅̅  , 

should be matched between model- and full-scale. The power spectral density is a function of the 

turbulence intensity, which is a function of roughness length. From ESDU 74031, the integral 

length scale is given as a function of the height and roughness length: 

 𝐿𝑥 =
25𝑧0.35

𝑧0
0.063  (2-15) 
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The von Kármán spectrum can be determined by: 

 
𝑓𝑆𝑢𝑢

𝜎2
=

4(
𝑓𝐿𝑥

𝑈̅
)

[1+70.8(
𝑓𝐿𝑥

𝑈̅
)

2
]

5
6

 (2-16) 

where f is the frequency, Suu is the power spectrum, σ is the standard deviation and Lx is the 

integral length scale. The maximum values from Figure 2-8 and yielded values of 
𝑓𝑆𝑢𝑢

𝜎2
= 0.271 

and 
𝑓𝐿𝑥

𝑈̅
= 0.145, which can be substituted into Equation 2-16. The maximum Suu was chosen for 

the matching and a perfect matching was assumed. Equation 2-16 can be transformed using the 

turbulence intensity becoming: 

 
𝑓𝑆𝑢𝑢

𝑈̅2 =
4(

𝑓𝐿𝑥
𝑈̅

)𝐼𝑢
2

[1+70.8(
𝑓𝐿𝑥

𝑈̅
)]

5
6

 (2-17) 

At the chosen point, Equation 2-17 yields: 

 
𝑓𝑆𝑢𝑢

𝑈̅2 = 0.271𝐼𝑢
2 (2-18) 

At  

 
𝑓𝐿𝑥

𝑈̅
= 0.145 ,

𝑓𝑊

𝑈̅
= 0.145

𝑊

𝐿𝑥
 (2-19) 

For perfect fitting, the following relationships should hold: 

(𝐼𝑢)𝑓𝑠 = (𝐼𝑢)𝑚𝑠 

(
𝐿𝑥

𝑊
)

𝑓𝑠
= (

𝐿𝑥

𝑊
)

𝑚𝑠
 

𝜆𝐿 =
(𝐿𝑥)𝑚𝑠

(𝐿𝑥)𝑓𝑠
=

𝑊𝑚𝑠

𝑊𝑓𝑠
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 (2-20) 

These conditions scale the model- and full-scale turbulence intensities, integral length scale and 

building width. For scaling high-rise buildings, the width is used as the characteristic length 

opposed to the height of the building. Using Equation 2-15 and dividing both sides by the 

building height: 

 (
𝐿𝑥

𝐻
)

𝑚𝑠
=

25

𝑧0
0.063𝐻0.65

 (2-21) 

Using the relationship for model-scale and full-scale: 

 𝐻𝑓𝑠 = [
25

𝑧0
0.063(

𝐿𝑥
𝐻

)
𝑚𝑠

]

1

0.65

 (2-22) 

The full-scale height has not been previously set in this equation. The z0 was determined to be 

0.012 m for approximately 15% turbulence intensity, model-scale, integral length scale, 

Lx=0.9047, and model-scale height, Hms=0.67. Using Equation 2-22, the full-scale height is 

Hfs=136.78. λL =204 or to one significant figure 200 for the length scale. 

 

2.4 Data 

The pressure coefficients, Cp = (p-po)/(0.5 𝜌 VH
2), are presented relative to the roof 

height mean wind speed, VH. These pressure coefficients were obtained as a time series, so 

statistical analyses had to be performed, as described in this section. 
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2.4.1 Area Averaging 

An area averaging analysis was carried out. By giving equal weight (because of the tap 

layout) to all of the pressure taps, the following equation was used: 

 𝐶𝑝 = ∑ ∑ 𝐶𝑝𝑖𝑗

𝑎𝑖𝑗

𝐴

𝑛
𝑗=1

𝑚
𝑖=1  (2-23) 

In ASCE 7-10, there are different tributary areas for differently sized cladding elements, so to 

replicate this pattern, different areas were examined. For the analysis, the cases can contain 

overlapping and non-overlapping areas as two separate possibilities. For the purpose of the 

investigation, cladding sizes were defined by the number of pressure taps involved in particular 

sizes. All areas used were in square patterns of 1x1, 2x2, 4x4, 8x8 and 16x16 taps. Table 2-3 

shows the full-scale tributary areas for these tap arrangements. Only for 8x8 and 16x16 tap areas 

with overlapping arrangements were used. This process was used on the time series, for example 

the 4x4 would involve a group of 16 pressure taps in a square and take an average of the pressure 

coefficient for every point in the time series. This new time series would represent the pressure 

coefficients for the particular area. The use of this method is significant because only Gavanski 

and Uematsu (2014) have used area averaging in their studies to determine pressure coefficients 

on walls. However, it should be noted that the first systematic area-averaging appears to have 

been conducted by Kopp et al. (2005). With these time series, the extreme value analysis could 

be performed. 
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Table 2-3: Full-scale areas used in the analysis, assuming a length scale of 1:200. 

Tap Arrangement Full-Scale Size (m2) 

1 x1 1.12 

2 x2 4.48 

4 x4 17.90 

8 x8 71.62 

16 x16 286.46 

 

2.4.2 Extreme Value Analysis 

Due to the turbulence in the wind, pressure fluctuations occur with large, intermittent 

values. Thus, an extreme value analysis is required to determine appropriate peaks in the 

pressure data (e.g., Gavanski et al., 2016). For the extreme value distribution the Lieblein Best 

Linear Unbiased Estimator (BLUE) method (Lieblein, 1974) was chosen to analyze the data. 

This method is an estimator for the Gumbel method. Although other statistical methods could be 

used, Lieblein BLUE is often used in wind engineering and was chosen to stay consistent with 

the industry. 

For the Lieblein BLUE method, the data set was divided into ten equal subsets of data. 

These sets contained 10 seconds of wind tunnel testing time. The maximum and minimum values 

were taken from each of these subsets. The maxima (or minima) are sorted from lowest to great 

(or greatest to lowest). Then, the following equations can be applied to determine a distribution: 

  𝑢𝑛
′ = ∑ 𝑎𝑖 ∙ 𝑥𝑖

10
𝑖=1  (2-24) 

  𝑏𝑛
′ = ∑ 𝑏𝑖 ∙ 𝑥𝑖

10
𝑖=1  (2-25) 

where u’n and b’n are the slope and intercept when examining the distribution linearly. The 

factors ai and bi are given in Table 2-4. 



40 

 

 

Table 2-4: Factors used for Lieblein BLUE. 

ai bi 

.222867 -.347830 

.1623088 -.091158 

.133845 -.019210 

.112868 .022179 

.095636 .048671 

.080618 .066064 

.066988 .077021 

.054193 .082771 

.041748 .083552 

.028929 .077940 

 

Rearranging the distribution into its original form, the equation is: 

  𝑃𝑟𝑜𝑏{𝑋 ≤ 𝑥} = 𝑒−𝑒−(𝑥−𝑢𝑛
′ )/𝑏𝑛

′

 (2-26) 

With the distribution, the 78th percentile was used (Gavanski et al., 2016). This process was 

performed at every wind angle and every pressure tap for all time series including the area 

averages. 
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2.4.3 Conversion Factor for ASCE 7 

The peak pressure coefficients need to be adjusted into the form used in ASCE 7-10. As 

described in St. Pierre et al. (2005), additional factors are needed to interpret wind tunnel data to 

the code formulation. In St. Pierre et al. (2005) it was determined that: 

 𝐺𝐶𝑃𝐹 = 𝐹𝑊𝑇𝐶𝑃 (2-25) 

where FWT was a factor to convert the wind tunnel test data to full scale, where CP was the value 

from the wind tunnel testing. This parameter, FWT, is obtained via: 

 𝐹𝑊𝑇 = (
𝑉ℎ,𝑧0,𝑚𝑒𝑎𝑛 ℎ𝑜𝑢𝑟𝑙𝑦

𝑉10𝑚,𝑧0=0.03,3 𝑠𝑒𝑐 𝑔𝑢𝑠𝑡
)

2

=

(
𝑉10𝑚,𝑧0=0.03,𝑚𝑒𝑎𝑛 ℎ𝑜𝑢𝑟𝑙𝑦

𝑉10𝑚,𝑧0=0.03,3 𝑠𝑒𝑐 𝑔𝑢𝑠𝑡
)

2

(
𝑉10𝑚,𝑧0,3 𝑠𝑒𝑐 𝑔𝑢𝑠𝑡

𝑉10𝑚,𝑧0=0.03,3 𝑠𝑒𝑐 𝑔𝑢𝑠𝑡
)

2

(
𝑉ℎ,𝑧0,𝑚𝑒𝑎𝑛 ℎ𝑜𝑢𝑟𝑙𝑦

𝑉10𝑚,𝑧0,𝑚𝑒𝑎𝑛 ℎ𝑜𝑢𝑟𝑙𝑦
)

2

 (2-26) 

These parameters can be summarized as the change from mean-hourly to 3-second gust speeds, 

the change in roughness and the change in reference heights used. The first parameter to account 

for was the different reference roof heights used throughout the experiment before applying the 

FWT factors. The code pressure coefficients are based on the roof height and gust wind speed. 

From the wind profile taken, the different roof height wind speeds were used to normalize the 

pressure coefficient values. To convert the wind-tunnel data to the ASCE 7 formulation, three 

factors were considered for the 3-second gust, the full-scale 10 m height and the roughness 

change. The 3-second gust was accounted for by using the "Durst Curve" (ASCE 7-10, 2010). 

 

 



42 

 

Table 2-5: Velocity conversion factors for all height configurations 

H/W Ratio Velocity Conversion 

Factors 

0.28 0.5167 

0.52 0.6271 

0.80 0.6812 

1.08 0.7099 

1.32 0.7237 

1.66 0.7695 

1.83 0.8264 

2.10 0.8397 

2.35 0.8614 

2.58 0.8614 

 

Using the wind profile generated, the model-scale to full-scale reference heights could be used to 

factor the pressure coefficients to account for the difference in reference heights. To convert the 

wind profile to the necessary reference height, a factor was needed to change values from model-

scale to full-scale. This was used to determine at which height 10 m was on the tested profile. 

The scale used for the analysis was a 1/200 length scale. Since open country terrain was used for 

the testing, the terrain parameter was considered to be 1 for the analysis. These factors generate 

the value of FWT that St. Pierre et al. (2005) described. With these factors considered, the wind 

tunnel data can be compared to the values found in the current code. Table 2-5 shows the 

velocity conversion factors using Equation 2-26 for the various height configurations. 
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Chapter 3 Analysis of Wall Pressure Coefficients 

3.1 Reliability of Data 

3.1.1 Comparisons between Measured Test Results 

The data from the two independent sets of tests were compared. Overall, there is good 

agreement between the two sets of tests as can be seen in Figure 3-1 and Figure 3-2 showing the 

peak positive values and peak negative values, respectively, of the pressure coefficients. The 

figures are similar, in terms of the magnitudes and patterns displayed. Note in Figure 3-1 and 

Figure 3-2 and throughout this chapter, figures will have z/H on the vertical axis and x/w on the 

horizontal axis. 

 

 

Figure 3-1: Maximum pressure coefficient values, GCp, for H/W = 1.83, enveloped over the measured wind 

directions, for two separate and independent tests, (a) Set 1, (b) Set 2. 
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Figure 3-2: Minimum pressure coefficient values, GCp, for H/W = 1.83, enveloped over the measured wind 

directions, for two separate and independent tests, (a) Set 1, (b) Set 2. 

 

There are some differences in the patterns; however, the shapes are relatively similar. The 

main difference between the sets of data are the high suction zones towards the top of the 

building with the second set of tests having a larger zones with higher magnitudes. 

Additionally, mean pressure coefficients are compared at every wind direction. Figure 

3-3 shows the results for three locations, in the left corner, the middle, and the right edge of the 

panel (as viewed in Figure 3-1 & Figure 3-2). The figure shows that these pressure taps are in 

good agreement between the two sets of data, within the measurement uncertainty (GCp of 0.1 

(Quiroga, 2005). Further comparison figures can be found in Appendix C. 
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Figure 3-3: Individual pressure tap comparison for H/W=2.58 with the panel at the top most position. The 

comparison shows Set 1 in red and Set 2 in blue for three different pressure tap locations. The location is indicated 

by the tap position indicated in Chapter 2. 

 

3.1.2 Comparisons with External Data Sets 

Existing data from the literature were compared to the current data. Due to the wide 

availability of data, the cube case was the primary subject for comparisons, including full-scale 

from the Silsoe cube. The external cases used were Castro and Robins (1977), Hölscher et al. 

(1998), Richards et al. (2007), and Cóstola et al. (2009). 

Figure 3-4 shows the convention used by Castro and Robins (1977) to illustrate the data. 

Using this convention, the data were compared for wind directions of 0o to 180o. As shown, the 

windward side of the building is from 0 to 1 and represented by line A and the leeward side of 

the building is from 2 to 3 represented by line C. The data used for comparison were taken along 

the centreline of the building (i.e., the cube). 
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Figure 3-4: Adaptation Castro and Robins (1977), the convention used for their test of the Silsoe Cube with the wind 

direction indicated by the arrow. For the comparison, 0 to 1 will be represented by line A going upwards along the 

height and 2 to 3 will be represented by line C going downwards along the height. 

 

Figure 3-5 shows the data along the windward and leeward faces of the cube. The 

positive values in Figure 3-5 (a) are in good agreement. There are some higher pressure 

coefficients towards the bottom of the building for Set 2, but this data matches the patterns in the 

literature. The pressure coefficients are of the same magnitude and exhibit the same patterns. All 

data sets have low pressures near the top of the wall, with higher pressures over the lower 70-

80% of the building height, with a decrease at around 20-30% of the building height. There are 

greater differences in the data for the negative pressure coefficients; however the current data are 

in good agreement with the published wind tunnel data. The pattern on the leeward wall is of 

relatively similar magnitude over the full height, although the full-scale field data for the Silsoe 
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Cube has some differences. Overall, the data set shows good agreement with the data in 

literature, within the measurement certainty, which are about ΔCp of 0.1 for mean values. 

 

a)  

b)  

Figure 3-5: a) Comparison of mean pressure coefficients along the windward wall taken for a wind direction of 0o. 

The vertical coordinate system is with 0 at the bottom of the wall and 1 at the top of the wall, following the 

nomenclature of Castro & Robins (1977). b) Comparison of mean pressure coefficients along the windward wall 

taken at a wind direction of 180o. The lengths are taken with 3 at the bottom of the wall and 2 at the top of the wall, 

following the nomenclature of Castro & Robins. 
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3.2 Pressure Distributions 

3.2.1 Peak Pressure Coefficients 

As discussed in the previous chapter, peak pressure coefficients were found for all wind 

directions. Figure 3-6 shows the enveloped (non-mirrored) pressure coefficients for a low-rise 

(H/W=0.28) and high-rise (H/W=2.58) building. Comparing these two buildings, there are many 

differences. The magnitude of the pressure coefficients (which are plotted on the same scale in 

Figure 3-6) vary, with the high-rise building having higher values over the majority of the 

building. While the high-rise building is more uniform, the low-rise building has lower pressures 

at the bottom to the middle of the building. However, there are also some similarities, for 

example the low pressures near the roof edges of the buildings and lower pressures on the right 

side of each building (for the wind directions examined). 

The negative peak pressure coefficients are shown in Figure 3-7. The patterns of the 

negative peak pressure coefficients differ more significantly between the low-rise and high-rise 

buildings than the positive pressure coefficients. The negative pressure coefficients are larger in 

magnitude for the high-rise building, with suction coefficients up to about -4.0 while the low-rise 

building has highest suction coefficients around -1.5. There are differences between the patterns 

of pressure coefficients on the buildings too, although both buildings have highest suctions at the 

upper left corner of the building. The low-rise building has lower magnitude suctions over most 

of the building, with relatively higher suctions occurring on the windward edge and along the top 

edge of the building. Further analysis into the causes of these higher suction zones will be 

discussed in Section 3.2.2. 
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Figure 3-6: Peak positive pressure coefficients for low-rise building (a) and high-rise building (b). 

 

 

Figure 3-7: Peak negative pressure coefficients for low-rise building (a) and high-rise building (b). 
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3.2.2 Wind Direction Effects 

To further examine the pressure coefficient patterns, the patterns for the wind directions 

were examined. The wind direction is defined, as discussed in Chapter 2, and shown in Figure 

3-8. The wind directions causing the extreme pressure coefficients were observed. The pressure 

distributions for the wind directions were used to predict the wind patterns affecting the building. 

 

 

Figure 3-8: Wind direction definition based on the wind flow of the wind tunnel. The initial position of the pressure 

tap panel faces the wind flow and rotates with the turn table. The presented configuration is of a wind direction of 

90o. 

 

Figure 3-9 shows the wind directions for positive pressure coefficients of a low-rise and 

high-rise building. The wind directions causing the highest pressures (or suctions) were 

considered the worst wind directions. These two buildings have similar distributions of the wind 

directions throughout the building. The wind directions varied from 0 to 50o for the largest 

pressures. The worst wind directions generally followed the pattern with 0o on the leeward (right 

on the figure) side of the building. For pressures at locations near the windward edge, oblique 
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wind directions controlled, usually in the range of 10 -30o. The exception to this is at the top of 

the wall, where wind directions are at 40 – 50o. 

 

 

Figure 3-9: Distribution of the critical wind directions causing highest positive pressures for H/W=0.28 (a) and 

H/W=2.58 (b). The colour legend is for the wind directions. 

 

Figure 3-10 and Figure 3-11 show the critical wind directions for low-rise and high-rise 

buildings, respectively. As seen in Figure 3-7, there are differences in the behaviours of suctions 

on low-rise and high-rise buildings. Similarly, the critical wind directions are different on low-

rise and high-rise buildings. The majority of critical wind directions were from 90-180o, however 

there were some between 60-80o. The aspect ratio clearly affects the distribution of critical wind 

directions, with the two low-rise buildings showing differences in the wind direction patterns. 
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Figure 3-10: Distribution of angles causing the worst suction pressure coefficients for low-rise of H/W=0.28 (a) and 

H/W=0.56 (b). The colour axis is for the different wind directions. 

 

Figure 3-10 provides the low-rise building critical wind directions. Comparing to Figure 

3-7, the low-rise building has highest suctions within 10-20% away on the leading edge. These 

occur for wind angles between 70-100o. For the lower suctions spanning the right half of the 

building, corresponds with the wind direction of 110-120o. The critical wind directions of 160o 

correspond with relatively small suctions values and, when mirroring the pressure coefficients 

for design, will disappear. The difference between the two low-rise buildings is likely a result of 

the change to the separation bubble as the H/W ratio increases, consistent with the aspect ratio 

effects observed by Akon and Kopp (2016) for roofs. Lower wind directions are governing for a 

larger portion of the higher aspect ratio, as the separation bubble is larger for the taller building. 

Figure 3-11 shows the high-rise building critical wind directions. From Figure 3-7, the 

highest suctions were on the right side of the building, the top left corner and left bottom corner. 
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The high suction at the bottom of the building is likely caused by a separation bubble at the 

bottom of the building. The 70-90o wind directions are critical for roughly 65-70% of the 

building width. The lower suction zone in Figure 3-7 (70-90% of the building width) is 

associated with the wind direction of 120o. This is due to a change in the separation bubble 

thickness. 

 

 

Figure 3-11: Distribution of angles causing the worst suction pressure coefficients for high-rise of H/W=1.2 (a) and 

H/W=2.58 (b). The colour axis is for the different wind directions. 

 

To examine the changes in separation bubbles, the pressure coefficients for buildings at 

wind directions of 90o and 120o were examined. Figure 3-12 shows the pressure coefficients for 

the H/W=0.28 building at these angles. The pressure coefficients for 90o are higher at the leading 

edge. The separation bubble extends to about 20% of the building width, if the distribution 

identified by Akon & Kopp (2016) holds for walls. In comparison, at 120o the separation bubble 
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extends further, as one might expect for the increased angle of attack. However the pressure 

coefficients on the building are lower at the edge, but extend further along the wall, where larger 

values are observed for 120o. There are also differences along the height of the building and at 

the top of the wall which may be due to the flow over the roof. 

 

 

Figure 3-12: Pressure coefficients for low-rise building (H/W=0.28) at wind directions of 90o (a) and 120o (b). 

 

The pressure coefficients for the high-rise (H/W=2.58) building for wind directions of 

90o and 120o can be seen in Figure 3-13. For 90o, the magnitudes of the suctions are larger on 

both the windward wall and the leeward wall. There is a lower suction zone towards the top of 

the leeward wall. There is a higher suction zone towards the bottom of the building. In 

comparison, the 120o wind direction has lower magnitudes throughout the building. The high 
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suction zone on the leeward wall has decreased in magnitude and does not extend as far up the 

height of the building. Most of the building is the same magnitude, with low suctions between -1 

and -0.5. The separation bubble has increased in size, to around 70-80% of building width for a 

wind direction of 120o, and there may be reattachment on the wall. 

 

 

Figure 3-13: Pressure coefficients for high-rise building (H/W=2.58) at wind directions of 90o (left) and 120o 

(right). 

 

Comparing Figure 3-12 and Figure 3-13, the aspect ratio of the building clearly affects 

the length of the separation bubble, with a larger aspect ratio resulting in a larger separation 

bubble. The separation bubble effects increase the suctions towards the top of the building for the 

low-rise building while the high-rise building has increased suctions towards the bottom of the 
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building. The low-rise building does not have the same effects on the leeward edge as the high-

rise building. 

 

3.2.3 Mirroring the Pressure Coefficients and Normalizing 

Due to the symmetry of the model, the enveloped peak pressure coefficients were 

mirrored on both sides. During testing, only 180o were tested, 360o degrees would result in 

symmetric distributions. This was performed for all areas examined. Additionally, the building 

dimensions were normalized by the building height so that the pressure distributions are easier to 

compare. Figure 3-14 shows the positive pressure coefficients for the six building aspect ratios. 

From these figures, similarities in the pattern are observed for the different buildings. For 

example, all buildings have lower pressures at the top of the building, with the highest pressure 

coefficients directly beneath these on the walls. 

Examining the low-rise buildings, H/W<1 (Figure 3-14 (a)-(c)), the mirrored pressure 

contours all have similarities. There are lower pressures along the top edge of the building. The 

largest pressure values are all around the same z/H: 0.5-0.9 for H/W=0.28, 0.4-0.95 for 

H/W=0.52 and 0.3-0.95 for H/W=0.8. There is a region of lower pressures towards the bottom of 

the building. This region is larger than the pressures at the top of the wall. This region is similar 

among the different H/W ratio, below z/H of 0.5 for H/W=0.28, 0.4 for H/W=0.52 and 0.3 for 

H/W=0.80. 

The high-rise buildings (Figure 3-14 (e)-(f)) are more uniform throughout the whole 

building. There are still lower pressures at the top of the wall and towards the bottom of the 

building. Figure 3-14 (d) is the cube case and is a transition between the low-rise and high-rise 
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patterns. The lower pressure zone towards the bottom of the building decreases further and the 

magnitude of pressure values increases further. 

These lower pressures near the bottom of the building are likely caused by horseshoe 

vortices. This flow pattern may be occurring on the windward wall. This characteristic is most 

prominent on the low-rise building cases. As the H/W ratio increases, the vortex structure 

changes and this horseshoe pattern begins to disappear. For the high-rise buildings, there are no 

lower pressure zones found near the bottom of the building and the flow likely just moves around 

the building without a strong horseshoe vortex. 

Figure 3-15 shows the negative pressure coefficients for the six building configurations. 

The magnitude of the suctions increases as the H/W ratio increases. H/W ratio of 0.28 has the 

lowest suctions with higher suctions towards the edges of the building. At H/W=0.52 and 

H/W=0.80, a pattern begins to emerge. The suctions start to increase along the edges, with the 

biggest increases occurring at the corners. At H/W=0.80, the suctions along the top of the wall 

begin to increase. At H/W=1.08, a high suction zone begins to develop at the bottom of the wall. 

For the high-rise buildings, H/W=1.83 and H/W=2.58, the highest suctions are near the bottom 

edge with high suction values along the other edges. At the tallest height configuration, 

H/W=2.58, this pattern is even more prominent with suctions up to three times larger than those 

at H/W=0.28. 

Examining these figures, there are differences in the patterns for low-rise and high-rise 

buildings, which implies different zones would be appropriate. For zoning, considering the 

effects of the size of cladding should also be examined. Figure 3-16 and Figure 3-17 show the 

positive and negative pressure coefficients respectively, of H/W=2.58 for various cladding areas.   
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a)  b)  

c)  d)  

e)  f)  

Figure 3-14:  Positive pressure coefficients for cladding size of 4.48 m2 for a) H/W=0.28 b) H/W=0.52 c) H/W=0.80 

d) H/W=1.08 e) H/W=1.83 and f) H/W=2.58. 
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a)  b)  

c)  d)  

e)  f)  

Figure 3-15: Negative pressure coefficients for cladding size of 4.48 m2 for a) H/W=0.28 b) H/W=0.52 c) 

H/W=0.80 d) H/W=1.08 e) H/W=1.83 and f) H/W=2.58. 
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a)  b)  

c)  d)  

e)  

Figure 3-16: Positive pressure coefficients for H/W=2.58 a) 1.12 m2 cladding size b) 4.48 m2 cladding size c) 17.90 

m2 cladding size d) 71.62 m2 cladding size e) 286.47 m2 cladding size. 
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a)  b)  

c)  d)  

e)  

Figure 3-17: Negative pressure coefficients for H/W=2.58 a) 1.12 m2 cladding size b) 4.48 m2 cladding size c) 17.90 

m2 cladding size d) 71.62 m2 cladding size e) 286.47 m2 cladding size. 
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For all of the different cladding sizes, the patterns are similar. The increase in cladding size 

smooths the patterns previously observed in Figure 3-15. For the configuration shown, 

H/W=2.58, the maximum pressure decreases from 1.56 for tributary area of 1.1 m2 to 1.43 for 

tributary area of 286.5 m2 and the maximum suctions decrease from -3.85 for tributary area of 

1.1 m2 to -2.47 for tributary area of 286.5 m2. 

 

3.3 Cumulative Distribution Functions 

Cumulative distribution functions were used on the data to try and examine the enveloped 

pressure coefficients in a more statistical manner with respect to the zoning. In this section, the 

cumulative distribution functions will be shown for the whole building and cumulative 

distribution functions of different tributary areas will be discussed following that. 

 

3.3.1 Distributions for Different Aspect Ratios 

From the pressure coefficient patterns shown earlier, it is clear that the different height 

configurations have different ranges and distributions of pressure coefficient values. Figure 3-18 

shows the positive pressure coefficient cumulative distribution functions for a tributary area of 

4.5 m2. The positive pressure coefficients are larger for the taller buildings. The two high-rise 

building cases, H/W=1.83 and H/W=2.58, are similar in magnitude and distribution. The low-rise 

buildings have a larger spread in the magnitudes of the pressure coefficients, H/W=0.28 peaks 

around 1.2, while H/W=0.80 peaks around 1.4. The spread of the pressure coefficient values 

increases as the aspect ratio decreases, with the lowest aspect ratio having a wider spread in 

values. The steep distribution shows that there may not be a need for different zones for positive 
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pressure coefficients. The lower pressure coefficients, seen in Figure 3-18, are at the top of the 

wall and are all within a small percentile of the distribution. 

 

 

Figure 3-18: Cumulative distribution functions at different H/W ratios for cladding size 4.48 m2 for positive 

pressure coefficients. 

 

The cumulative distribution functions for the negative pressure coefficients are shown in 

Figure 3-19. For these distribution functions, the distribution of pressure coefficients is more 

spread out. Due to this larger spread of values, different zones may be beneficial based on the 

cumulative distribution function. The low-rise buildings and high-rise buildings have different 

magnitudes. There are significant differences between buildings of the same category, comparing 

pressure coefficients of equal percentiles between height configurations show some large 

differences. At the 90th percentile for the two high-rise buildings, there is a difference of roughly 

10%. 
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Figure 3-19: Cumulative distribution functions at different H/W ratios for cladding size 4.48 m2 for negative 

pressure coefficients. Zoomed in view of 0.9 to 1.0. 

 

3.3.2 Comparing Different Tributary Areas 

Figure 3-20 and Figure 3-21 show the cumulative distribution functions for different 

tributary areas. Figure 3-20 (a) and (b) show the low-rise building positive pressure coefficients 

and negative pressure coefficients respectively. Figure 3-21 (a) and (b) show the high-rise 

building positive pressure coefficients and negative pressure coefficients respectively. 

For the positive pressure coefficients in Figure 3-20 (a), tributary areas from 1.12-17.90 

m2 are the same for most percentiles. At the larger tributary areas, 71.62 and 286.46 m2, there are 

larger decreases in GCp with 286.5 m2 having much lower values above the 45th percentile. The 

negative pressure coefficients have larger differences around the 80th percentile. The extreme 
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values for 71.6 m2 are lower compared to 1.1-17.9 m2. The 286.5 m2 is significantly lower than 

the distribution for 71.6 m2. 

 

a)  

b)  

Figure 3-20: Cumulative distribution function for the different cladding sizes of H/W=0.52 for a) positive and b) 

negative pressure coefficients. 
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a)  

b)  

Figure 3-21: Cumulative distribution function for the different cladding sizes of H/W=2.58 for a) positive and b) 

negative pressure coefficients. 

 

The positive pressure coefficients in Figure 3-21 (a) show similar distributions for 

cladding sizes 1.1-71.6 m2. The distribution for 286.5 m2 is lower than the other distributions by 

approximately 0.1 between the 10th and 20th percentile and above the 90th percentile. Between the 
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20th and 90th percentile this difference is lower. The negative pressure coefficients in Figure 3-21 

(b) have large differences at the 98th percentile. The difference in suctions is largest at these high 

percentiles and decreases at lower percentiles. 

From examining the cumulative distribution functions, the percentile affects the 

difference in GCp values. For the highest percentiles, there are larger differences in the GCp 

values. For some percentiles, most of the cladding sizes can use the same GCp value. This 

impacts the negative pressure coefficients more, positive pressure coefficients have similar 

distributions for most of the cladding sizes. The decrease in positive pressure coefficients occurs 

at large areas, with 1.1-17.9 m2 having similar distributions before decreasing in magnitude at 

71.6 m2. High-rise buildings have larger differences in GCp for the higher percentiles whereas 

low-rise buildings are more similar for different tributary areas. 

 

3.4 Pressure Coefficients vs Position 

3.4.1 Comparison of Vertical Position on Building 

To determine where zones might be appropriate, the effects of position on cladding 

elements were observed. Figure 3-16 and Figure 3-17 showed that the position along the height 

of the building affected the pressure coefficients. Figure 3-22 shows the pressure coefficients for 

H/W=2.58, using the most extreme pressure coefficients shown previously in Figure 3-16 and 

Figure 3-17. The positive pressure coefficients are uniform throughout the building excluding the 

top of the wall. At the top of the wall there is a decrease in the pressure coefficients. 
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There is more scatter for the negative pressure coefficients throughout the height of the 

building. Figure 3-22 (b) shows that there may be some difficulties in determining zones for the 

negative pressure coefficients. There are peaks in the suction values at both the top of the 

building and the bottom of the building. These peak values are around -3.0 to -3.4 and are at z/H 

below 0.4 and above 0.9. These regions also have some pressure coefficient values between -2.0 

and -2.5. When comparing the lower suction region, z/H of 0.4 to 0.9, the suctions are generally 

between -2.0 and -2.5. This makes it difficult to determine an appropriate height to draw this 

distinction. 

 

a) b)  

Figure 3-22: Pressure coefficients for H/W=2.58 comparing the pressure coefficients of cladding size 4.48 m2 along 

the height of the building for a) positive pressures b) suctions. 

 

3.4.2 Comparisons of Horizontal Position on Building 

The effects of the position away from the wall edges were observed. The most extreme 

pressure coefficients for the cube are shown in Figure 3-23. This plot shows all the pressure 
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coefficient values for H/W=1.08 for a tributary area of 4.48 m2. The positive pressure 

coefficients are relatively constant for all distances away from the wall edge. The negative 

pressure coefficients show higher suction values at the edge of the wall, however this is a small 

decreasing trend. The suction coefficients from the outer edge to the centre decrease by roughly 

0.5. 

 

a) b)  

Figure 3-23: Pressure coefficients for H/W=1.08 comparing the pressure coefficients of cladding size 4.48 m2 along 

the width of the building for a) positive pressures b) suctions. 

 

Figure 3-24 shows the negative pressure coefficient figures for other height 

configurations. Figure 3-24 (a) show a low-rise building and Figure 3-24 (b) shows a high-rise 

building. The low-rise building shows a decrease in pressure coefficient for more inner cladding 

elements. The worst suctions and average pressure coefficients generally decrease as the 

cladding elements are position more inward. From Figure 3-15 (b), this was seen with all the 

highest suction values at the sides of the building. There are some higher suction values at the 

top center of the wall, however these values increase along the top towards the corners. The 
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suction values from the edge to the center decrease by roughly 0.5. The high-rise building shows 

less of a trend. There is still some decrease when observing the horizontal position along the 

wall, however the pressure coefficients values are generally all in the same range, independent of 

horizontal position. From Figure 3-15 (f), the high negative pressure coefficients (-2.5 to -4.0) 

are spread throughout the width of the building. 

 

a) b)  

Figure 3-24: Negative pressure coefficients for cladding size 4.48 m2 along the width of the building a) H/W=0.52 

and b) H/W=2.58. 

 

There are no trends observed between positive pressure coefficients and their position 

along the height of the building. The negative pressure coefficients show a trend of decreasing 

towards the center of the building. This is more prominent for low-rise buildings, with decreases 

in the worst values and average values around 0.5. For the high-rise building, there are some 

decreases in suction coefficients, however the suction coefficients are generally not affected by 

their horizontal position. For zoning purposes, zones with respect to horizontal position would 
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not be necessary. There may be some need for horizontal zoning for negative pressure 

coefficients for low-rise buildings, high-rise buildings do not appear to require this same zoning. 

 

3.4.3 Comparisons of Position Away from Edges 

The pressure coefficients with respect to their position away from all edges of the 

building is shown in Figure 3-25. This uses an approach similar to ASCE 7-88, seen in Figure 

1-1. This comparison considered the distance away from the edge of the wall and the top of the 

wall. The positive pressure coefficients are constant throughout the building. The lower pressure 

coefficients were observed previously in Figure 3-22 along the top of the wall. The negative 

pressure coefficients show a decreasing trend away from the edges, with about a 10% drop after 

the 6th cladding element or at x/w=0.10. 

 

a) b)  

Figure 3-25: Pressure coefficients for H/W=1.08 comparing the pressure coefficients of cladding size 4.48 m2 

compared by the distance away from the edge of the wall for a) positive pressures b) suctions. 
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Figure 1-1 used the distance from edges for high-rise buildings. Figure 3-26 shows the 

effect that the position away from edges has on the two high-rise building cases. There is no 

significant decreasing trend observed for the pressure coefficients. These figures imply that 

Figure 1-1’s zoning for high-rise building was not appropriate to differentiate the suction zones. 

 

a) b)   

Figure 3-26 Negative pressure coefficients for cladding size 4.48 m2 along the width of the building a) H/W=1.83 

and b) H/W=2.58. 

 

 

 

Figure 3-27 shows the negative pressure coefficients with respect to distance away from 

the edges for low-rise buildings. These figures show that zoning using distance away from edges 

may be better suited for low-rise buildings. There is a decreasing trend in the pressure 

coefficients away from edges. Using the distance away from the edge only works for the low-rise 

suction zones, in all other cases there are no observed trends. 
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a) b)  

Figure 3-27 Negative pressure coefficients for cladding size 4.48 m2 along the width of the building a) H/W=0.52 

and b) H/W=0.28. 

 

 

3.5 Current ASCE Building Code Comparison 

The current study results were compared with the ASCE 7-10 (2010) provisions. 

Comparisons could be made for both the low-rise and high-rise data. These comparisons used the 

current zoning, although some of the current zoning provision patterns are not in good agreement 

with the data collected. 

Figure 3-28 shows the data for high-rise buildings. The positive and negative values are 

all underestimated, with the lowest observed extreme values for smaller cladding areas being the 

closest to the current code provisions. With the two different observed height configurations, 

there are some magnitude differences between the pressure coefficient magnitudes. Overall, with 

the observed data, there is not good agreement between the magnitudes of the suctions and 

pressure values. 
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Figure 3-28: Comparison between the code and collected pressure coefficient values for high-rise buildings. The 

code values are from ASCE 7-10. 

 

Figure 3-29 shows the comparison for low-rise buildings. The low-rise building data are 

closer in magnitude with the code values than the high-rise building data. The data still shows 

that the higher H/W ratios tend to have higher magnitude of pressure coefficient values. The 

negative pressure coefficient values are in good agreement for the lowest building tested. Figure 

3-30 and Figure 3-31 show the comparison of the two lowest building configurations, with the 

current configuration being well suited for H/W=0.28 but not as well suited for H/W=0.52. From 

the observed data, the decrease in the pressure coefficient for larger cladding elements is not as 

dramatic as the current code provisions suggest. The exterior zone pressure coefficients for larger 

cladding elements are similar, in many cases lower, than their interior zone counterparts as 

suggested in the current ASCE 7 code provisions. 
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Figure 3-29: Comparison between the code and collected pressure coefficient values for low-rise buildings. The 

code values are from ASCE 7-10. 

 

 

Figure 3-30: Comparison of the code provisions and observed data for H/W=0.28. The code values are from ASCE 

7-10. 
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Figure 3-31: Comparison of the code provisions and observed data for H/W=0.52. The code values are from ASCE 

7-10. 

 

 

Figure 3-32: Code comparison for high- and low-rise compared with the cube configuration (H/W=1.08). The code 

values are from ASCE 7-10. 
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Figure 3-32 shows the comparison for the cube (H/W~1). The positive pressures are 

better for smaller cladding sizes but underestimated for larger tributary areas. The high-rise 

provisions are better for this building configuration, the low-rise provisions only estimate and 

lower pressure coefficient values for the exterior zone. The interior zone provisions 

underestimate the observed data. Overall, neither of the two provisions are well suited to the 

observed data. 

The low-rise data can also be compared to Gavanski and Uematsu (2014). Their study 

compared the negative pressure coefficients for ASCE 7 zone 4 and 5, as well as the positive 

pressure coefficients. Figure 3-33 shows the comparison of the positive pressure coefficients. 

The peaks from Gavanski and Uematsu’s data is higher for smaller tributary areas, while for 

larger tributary areas the current study has larger values. These peaks decrease more in Gavanski 

and Uematsu’s study and are relatively constant in the current study. Both sets of data are higher 

than the ASCE 7-10.  

Figure 3-34 shows a comparison of the interior zones. The magnitude of the maximum 

suctions is similar between Gavanski and Uematsu and the current study. In Gavanski and 

Uematsu’s study, the pressure coefficients do not decrease until 4 m2. The decrease is larger in 

their study; the suctions at 1 m2 are less than -2 and at 100 m2 are around -1. The current study 

has similar pressure coefficients for smaller areas but the pressure coefficients at tributary areas 

>80 m2 are not in good agreement, with the current study having pressure coefficients around -

1.5. 
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Figure 3-33: Comparison of positive pressure coefficients for low-rise buildings between ASCE 7, Gavanski and 

Uematsu (2014) and the current study (H/W=0.28, H/W=0.58, H/W=0.80). 

 

 

Figure 3-34 Comparison of interior zone negative pressure coefficients for low-rise buildings between ASCE 7 

(Zone 4), Gavanski and Uematsu (2014) and the current study (H/W=0.28, H/W=0.58, H/W=0.80). 
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Figure 3-35 shows the comparison of the low-rise buildings to the edge zone. These 

pressure coefficients are in better agreement than the positive pressure coefficients and Zone 4. 

The peaks of the current study are higher than Gavanski and Uematsu’s data. There are still 

higher peaks in the current study, however the lower edge zone values are similar to their 

Gavanski and Uematsu’s data. 

 

 

Figure 3-35: Comparison of edge zone negative pressure coefficients for low-rise buildings between ASCE 7 (Zone 

5), Gavanski and Uematsu (2014) and the current study (H/W=0.28, 0.58, 0.80). 

 

Figure 3-36 shows the same comparison as Figure 3-35 with only the data for H/W=0.28. 

This height configuration is similar in magnitude for the larger tributary areas. The peaks for 

smaller tributary areas are higher for Gavanski and Uematsu’s data than the current data set. The 

largest tributary area of the current study follows the trend of Gavanki and Uematsu’s pressure 

coefficients. 
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Figure 3-36: Comparison of edge zone negative pressure coefficients for low-rise buildings between ASCE 7 (Zone 

5), Gavanski and Uematsu (2014) and H/W=0.28. 

 

From these comparisons, similar conclusions can be made as Gavanski and Uematsu 

(2014) such as lower pressure coefficients for larger tributary areas and the differences in 

observed pressure coefficients and ASCE 7-10. The pressure coefficients observed for lower 

tributary areas were higher than the provisions in ASCE 7-10. In Gavanski and Uematsu (2014), 

the pressure coefficients for larger tributary areas were found to be overestimated in ASCE 7-10. 

The current study observes overestimations for H/W=0.28 but at larger aspect ratios, these values 

are found to be underestimated. 
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3.6 Implications 

From the data, there are some differences between the current results and ASCE 7-10. 

For design purposes, improvements can be made to the existing provisions. Some of the 

information in the current code provisions was supported in the findings. The negative pressure 

coefficients were found to be larger for the taller buildings. The positive pressure coefficients are 

uniform and unaffected by position on the building. There are decreases at larger cladding sizes 

and the exterior and interior pressure coefficients for these larger cladding sizes converge. 

From the pressure patterns on the building, the behaviours of the flow fields around low-

rise and high-rise buildings are quite different. The flow around the building may be better 

characterized by the aspect ratio of the building than estimating based on building height. These 

flow patterns show a continuously changing pattern from low-rise to high-rise buildings. This 

shows that the artificial boundary may not be the most effective way in determining building 

categorization and cladding zoning. The high suction values are caused by flow affects that 

behave differently for different aspect ratios. With the two high-rise building cases analyzed, the 

pressure zones are more developed in the taller H/W ratio. These results may mean the aspect 

ratio should be considered when categorizing a building. 

For determining pressure coefficient values, the percentile chosen for design affects the 

magnitude of the pressure coefficient value. When comparing the pressure coefficients for 

different sizes of cladding, the largest differences are at higher percentiles. For lower percentiles, 

two cladding sizes may be designed to similar pressure coefficients. When comparing buildings 

of different height configurations, the pressure distributions were similar but at different 

magnitudes. 
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The current zones may not be the most efficient at determining the current design 

pressure coefficient values. The positive pressure coefficients have shown to be unaffected by 

position on the building, excluding the top of the wall which yields lower pressure coefficient 

values. The low-rise building negative pressure coefficients may be better zoned by using the 

distance away from all edges, the roof and sides of the building. The distances of such zones 

would depend on the percentiles chosen and the allowance for the overdesign of more interior 

cladding elements. The high-rise building pressure coefficients are more difficult to zone. Most 

of the higher suction zones are towards the bottom of the wall, the sides of the wall and the top 

of the building. The lower suction values are around the z/H of 0.4 to 0.9. From Figure 3-17 (e) 

and (f), there are higher suction regions identified. Characterizing and zoning these regions may 

result in zones that include the top corners of the building, the sides of the building and the 

bottom of the building. 
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Chapter 4  Conclusion and Recommendations 

4.1 Conclusions 

The immediate aim of this study was to extend the current knowledge regarding the wind 

loading on walls of buildings with different aspect ratios. The motivation of this work was 

determining if the artificial boundary between low-rise and building heights at 60 ft. properly 

represent the physics or if a continuous trend could be determined. Additionally, the data provide 

a database of pressure coefficients for square planned buildings. These results may help refine 

the current wind load provisions and fill in some gaps in knowledge. 

The study used a flexible model that allowed multiple building configurations to be 

studied. A scaling method was investigated that could be used for all building configurations. 

The reliability of the wind tunnel data was determined by comparing the collected data to data in 

the literature. The flow patterns on the building were identified based on the pressure patterns. 

Using area-averaging, pressure coefficients for tributary areas were determined. The Lieblein 

BLUE method was used to determine statistics related to the pressure coefficient values. 

The following conclusions can be made: 

 The wall aspect ratio affects the length of the separation bubble on the walls of the 

building. Many of the extreme suctions resulted from the flow separations for wind 

directions between 90o and 120o. These patterns are compressed spatially for smaller 

H/W ratios. 

 For positive pressure coefficients, the lower magnitudes are found at the top of the 

building. For the low-rise buildings, there are zones of different pressure values; (i) 

there is a zone of higher pressure from the mid-height of the wall to the upper part of 
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the wall, with (ii) a lower pressure zone towards the bottom of the wall. The lengths 

of these zones differ, depending on the aspect ratio. For high-rise buildings, the 

pressures are more uniform over the full height of the building. 

 For the suction coefficients, a continuously varying pattern was observed. The 

magnitudes of pressure coefficients are lower for the lower height configurations. 

Edge zones begin to develop as the aspect ratio (i.e., height) is increased at the wall 

edges and top. For high-rise buildings, strong suctions develop near the bottom edge 

of the building. 

 Low-rise building suction coefficients are better differentiated by the distance away 

from all edges. The positive pressure coefficients may not require zoning, the 

pressure patterns are mostly uniform excluding the top of the building. The top of the 

building has a lower pressure coefficient. High-rise building are harder to zone with 

the highest suctions occurring at the top corners, the sides and bottom of the building. 

The size of these zones vary with aspect ratio, making them difficult to determine 

The results show that there are some differences between the current code provisions and 

the observed data set. The current provisions use the height of the building as the parameter to 

set the pressure coefficients. Building aspect ratio may be a more effective parameter, this study 

examined the effects of the aspect ratio and its influence on the pressure patterns.  
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4.2 Recommendations 

This study examined ten different height configurations. Although these height 

configurations examined low-rise and high-rise buildings, only building configurations were of a 

square plan. For a more thorough investigation, building configurations of rectangular plan 

should be investigated. Different plan shapes may affect the flow on some of the walls, causing 

different pressure coefficient magnitudes and patterns. 

From the data, flow field patterns were observed. Further work could determine the 

mechanisms causing the change in separation bubbles for the different building configurations. 

Examination using particle image velocimetry (PIV) could be used to determine how the wind 

flows around the building. This analysis may help determine what factors affect the separation 

bubble thickness and intensity. These factors could be useful in determining the zones for code 

purposes.  
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Appendices 

Appendix A 

 

Figure A1: Excerpt from wind tunnel log. Depicts the naming convention of individual pressure 

taps on the pressure tap panel. 

 

 

Figure A2: Description of the terrain simulation and the placement of various blocks and obstacles 

to create the desired terrain. Excerpt taking from wind tunnel log.  
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Appendix B 

 

Figure B1: Excerpt from wind tunnel log displaying the data logs taken for the wind tunnel tests 
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Appendix C 

 

 

Figure C1: Comparison along the leeward side of H/W=2.58 building. Data are along the height of 

the building from bottom to the top. The figure compares the peak pressure coefficient values from 

all wind directions. 

 

 

Figure C2: Comparison along the leeward side of H/W=0.80 building. Data are along the height of 

the building from bottom to the top. The figure compares the peak pressure coefficient values from 

all wind directions.  
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