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Abstract 

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by amyloid 

plaques that are comprised of aggregated amyloid- peptides. These toxic proteins 

promote mitochondrial dysfunction and neuronal cell death. A shift in metabolism away 

from oxidative phosphorylation and toward aerobic glycolysis, with the concomitant 

production of lactate, affords neurons a survival advantage against amyloid- toxicity. 

Recent evidence now suggests that aerobic glycolysis in the brain plays a critical role in 

supporting synaptic plasticity, learning, and memory. However, the role of aerobic 

glycolysis and lactate metabolism in AD-mediated cognitive decline is unknown. My 

objective was to test the hypotheses that aerobic glycolysis is upregulated in neurons to 

mediate amyloid- resistance and promote memory processes in vivo using the APP/PS1 

mouse model of AD. Cerebral lactate levels within the frontal cortex of control mice 

were found to decline with age, whereas lactate levels remained unaltered in APP/PS1 

mice. An age-dependent decline in levels of key aerobic glycolysis enzymes and an 

increase in lactate transporter expression were detected in control mice. Increased 

expression of lactate-producing enzymes correlated with improved memory performance 

in control mice, yet the opposite effect was detected in APP/PS1 mice. To determine if 

aerobic glycolysis plays a role in mediating spatial memory processes, mice were injected 

with dichloroacetate, an inhibitor of pyruvate dehydrogenase kinase. Dichloroacetate 

caused a reduction in conversion of pyruvate to lactate in the brain and a decline in 

phosphorylation of pyruvate dehydrogenase, the target of dichloroacetate, yet there was 

no significant effect on memory.  In agreement with previous observations, a correlation 

analysis of cortical extracts revealed that increased phosphorylation of pyruvate 

dehydrogenase correlated with better spatial memory in control mice. These observations 

indicate that production of lactate, via aerobic glycolysis, is beneficial for memory 

function during normal aging, yet is not explicitly required for spatial memory tasks. In 

addition, elevated lactate levels in APP/PS1 mice indicate perturbed lactate processing, a 

factor that may contribute to memory impairment in AD. Collectively, this research 

demonstrates several novel observations that will lead to a better understanding of 

cerebral lactate metabolism in the AD brain and aid in the development of metabolic 

strategies to treat this devastating disease.  
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Chapter 1  

1 Literature review 

The motivation for this work comes primarily from two research questions that I aim to 

answer: does lactate metabolism in the brain mediate resistance to amyloid- plaques, 

and does lactate metabolism in the brain contribute to memory? This literature review 

will provide background information on three main areas of research that all converge in 

this thesis: (1) Alzheimer’s disease, (2) the link between cerebral metabolism and 

Alzheimer’s disease, and (3) the link between cerebral metabolism and memory. First, I 

provide a background of the underlying causes of Alzheimer’s disease and the current 

state of Alzheimer’s disease research, which is shifting toward early diagnosis and 

prevention. Second, I introduce the link between Alzheimer’s disease and glucose 

metabolism, as well as the metabolic phenotype of aerobic glycolysis and associated 

lactate metabolism that is central to this work. I also introduce relevant components of 

the metabolic pathways involved in aerobic glycolysis because they are integral to several 

experiments performed. Third, I review neuron and astrocyte metabolic coupling and the 

role of lactate in memory. Finally, I provide the rationale for the questions driving this 

research, as well as the specific aims of this work, and the central hypotheses.  

1.1 Alzheimer’s disease 

Alzheimer’s disease (AD) is a progressive and irreversible neurodegenerative disease that 

affects the elderly and is the most common form of dementia worldwide. AD represents a 

considerable challenge to the Canadian health care system due to its high prevalence in 

the population (564,000 Canadians in 2016, or 1.5% of the population), rising incidence 

(projected 937,000 Canadians in 2032, or 2.8% of the population), and high cost of care 

for individuals with dementia ($10.4 billion in annual cost to Canadians in 2016)
1
. There 

are two different types of AD: early-onset (familial) and late-onset (sporadic). Familial 

AD affects less than 1% of all cases of AD and is directly caused by a genetic mutation 

resulting in the development of AD before the age of 65, sometimes as early as 30
2,3

. The 

vast majority of AD patients have the sporadic version, in which the exact cause is 

unknown although several risk factors have been identified including age, genetics, diet, 
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and lifestyle
4
. Diagnosis of dementia is based on a physician’s evaluation of cognitive 

tests and criteria given in the Diagnostic and Statistical Manual of Mental Disorders, 

Fourth Edition (DSM-IV), yet an individual with AD will progress through different 

stages of the disease as cognitive and functional abilities decline. Symptoms of AD 

commonly begin with mild cognitive impairment (MCI) characterized by confusion or 

loss of memory that disrupts daily life and eventually leads to loss of executive functions 

including speaking, swallowing, and walking. As the disease progresses, more 

pronounced dementia arises leading to physical complications, such as immobility and 

malnutrition, which can increase the risk of other serious complications, including 

pneumonia, ultimately leading to death of the individual
5
. The median survival time of 

individuals with AD depends on age and is approximately 8 years from diagnosis to death 

for individuals over 65 years of age, and less than 4 years for individuals aged over 90 

years
6
.   

1.1.1 Causes of Alzheimer’s disease 

AD was first characterized in 1906 by Alois Alzheimer after post-mortem analysis of a 

55 year old woman with pre-senile dementia revealed the presence of dense protein 

deposits in both the intracellular and extracellular regions of the brain
7
. The intracellular 

deposits, commonly known as neurofibrillary tangles (NFTs), are composed of 

aggregates of the microtubule-associating protein tau (tubulin-associated unit), that arise 

from abnormal hyperphosphorylation
8–10

. The extracellular deposits are known as 

amyloid plaques and are primarily comprised of an aggregated peptide called the 

amyloid- peptide (A) derived from the proteolytic cleavage of the amyloid precursor 

protein (APP)
11,12

. These two distinct pathologies, amyloid plaques and neurofibrillary 

tangles, have formed the neuropathological criteria for post-mortem diagnosis of AD
13

. 

The etiology of AD has evolved over the past 100 years and has now been attributed to 

the accumulation of several different pathological features in the brain that collectively 

lead to neurodegeneration and dementia. Researchers have attempted to understand the 

causes of AD by focusing on the specific mechanisms that lead to AD pathology in order 

to design effective interventions for the prevention, attenuation, or reversal of disease 

progression.  
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Tau Protein 

In 1986, a link between tau and neurodegenerative diseases was established with the 

extraction and subsequent identification of hyperphosphorylated tau as the primary 

component of NFTs in the AD brain
8–10,14

. The tau protein, also known as the 

microtubule-associating protein tau (MAPT), is one member of a family of microtubule-

associating proteins, including MAP1(A/B) and MAP2, that are functionally redundant 

and widely expressed, especially in the central nervous system
15

. The tau protein 

functions to promote assembly and organization of microtubules, which are important for 

growth of axons and dendrites in neurons
16

. Tau is regulated by  phosphorylation; the 

degree of which can lead to a conformational change that impairs its ability to promote 

microtubule assembly
17,18

. Mutations in the tau gene MAPT cause Frontotemporal 

dementia and Parkinsonism linked to chromosome 17 (FTDP-17), a neurogenerative 

disease known as a “taupathy”
19–21

. While hyperphosphorylation of tau and accumulation 

of NFTs are common in taupathies, they lack the characteristic amyloid plaques of AD, 

suggesting that NFTs alone cannot cause AD. In addition, no mutations in MAPT have 

been found associated with familial AD, suggesting that A is the initiator of AD 

pathogenesis
22

. Human genetic and biomarker studies have suggested A deposition 

precedes tau hyperphosphorylation and that neurofibrillary tangles are a late-stage 

pathology correlating more closely with symptom severity in AD patients than amyloid 

plaques
23–26

. A recent study using transgenic mice expressing a human tau repeat domain 

demonstrated that amyloid plaques are necessary but not sufficient for the conversion of 

wild-type to pathological tau, suggesting that a second risk determinant (risk 

alleles/factors) is required to drive the pathological conversion of tau
27

.    

Amyloid precursor protein processing to generate amyloid- peptides 

The most prevalent theory for the root cause of AD is the amyloid cascade hypothesis, 

which posits that AD arises from the abnormal deposition, or improper clearance, of A 

in the brain
28

. This was largely supported by the discovery that all of the familial versions 

of AD are caused by mutations within the APP gene itself or within genes that directly 

affect APP processing in favor of A production
29

. In contrast, a mutation in APP that 
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results in a reduction of A was found to be protective against AD and age-related 

cognitive decline
30

. The discovery of the APP gene was made possible by the 

identification of the amino acid sequence of the A peptide isolated from the AD 

brain
11,31

 and was subsequently used to clone the APP gene and map the location to 

chromosome 21
32

. Consistent with this discovery, individuals with trisomy 21 (Down 

syndrome) develop dementia at an early age and display plaques and tangles consistent 

with AD pathology
33

.  

APP is one member of a family of single-pass transmembrane proteins that includes the 

amyloid precursor-like proteins (APLP1 and APLP2) in mammals, all of which are 

highly homologous and functionally redundant
34

. APP and APLP2 are ubiquitously 

expressed but APLP1 expression is restricted to the nervous system
35

. The biological 

function of the APP is still unclear although several studies have suggested that APP 

participates in cell adhesion, neurite outgrowth, synaptogenesis, and neuron survival
36–39

. 

Knockout mice individually lacking APP, APLP1, or APLP2 are viable and fertile with a 

small growth deficit, minor behavioural phenotypes, and a reduced number of synaptic 

vesicles at presynaptic terminals
40–42

. Mice lacking both APP and APLP2, or APLP1 and 

APLP2, display perinatal lethality
41

. Yet mice lacking APP and APLP1 are viable and 

fertile, indicating a key physiological role for APLP2
41

. Despite the functional 

redundancy of the APP family, APP itself is the only member that generates the 

amyloidogenic peptide, due to sequence differences at the internal A cleavage site
43

. 

APP is highly expressed in neurons and is processed in the Golgi apparatus and 

transported in vesicles down the axon where it collects at the cell surface of the 

synapse
44

. APP undergoes proteolytic processing in two distinct pathways: 

amyloidogenic and non-amyloidogenic
45

 (Figure 1).  
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Figure 1. Schematic of amyloid precursor protein processing 

APP is a transmembrane protein that is cleaved in two distinct 

pathways: non-amyloidogenic (left) or amyloidogenic (right). Cleavage 

by the -secretase followed by the -secretase generates the non-

amyloidogenic P3 fragment. In contrast, cleavage by the -secretase 

followed by the -secretase results in the generation of the 

amyloidogenic A peptide, which can subsequently form oligomers and 

fibrils that are neurotoxic. 
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In the non-amyloidogenic pathway, APP is first cleaved by the -secretase to release the 

extracellular secreted -APP (sAPP) ectodomain. APP is then cleaved by the -

secretase, which generates the non-amyloidogenic extracellular P3 fragment and the APP 

intracellular domain (AICD) C-terminal fragment . In the amyloidogenic pathway, APP 

is first cleaved by the -site APP-cleaving enzyme 1 (BACE1), which produces the 

extracellular secreted -APP cleavage product (sAPP). Subsequent cleavage of APP by 

the -secretase then generates the intracellular AICD fragment and releases the 

extracellular A (pathogenic) fragment. The -secretase cuts at one of several different 

sites to produce A peptides of varying sizes with A(1-40) and A(1-42) being most 

common. Presenilin 1 (PSEN1) and presenilin 2 (PSEN2) are homologous proteins that 

form the active site of the -secretase complex. Autosomal  dominant mutations have 

been identified in both PSEN1 and PSEN2 that favor the cleavage of A(1-42) in familial 

AD
46–48

. The A1-42) peptide in particular is hydrophobic and highly prone to undergo 

self-aggregation forming insoluble fibers leading to the development of amyloid 

plaques
49,50

. Until recently there was no known biological function of the A peptides, 

but a recent study reported that injection of Salmonella typhimurium in a mouse model of 

severe amyloid pathology accelerated amyloid plaque deposition which co-localized to 

invading bacteria and prevented their attachment to host cells, suggesting that A might 

play a role in antimicrobial defense
51

. A is actively metabolized and cleared in the 

normal brain, however individuals with AD have increased production or reduced 

clearance which leads to an age-dependent accumulation of A and deposition of plaque 

in the brain
52,53

.  

Apolipoprotein E 

Aside from the characteristic plaques and tangles of AD pathology, several genetic and 

environmental risk-factors have been shown to be directly associated with AD onset. The 

most prominent genetic risk factor for sporadic AD is the 4 polymorphism in the 

apolipoprotein E (APOE) gene, which increases the risk of AD 5- to 15-fold depending 
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on the allelic dosage
54–56

. The prevalence of the 4 allele in AD patients is greater than 

50%, while individuals homozygous for 4 have a 95% chance of developing AD by the 

age of 80 years old
57

. Although the epidemiological link between APOE-4 and AD is 

well established, the mechanism by which 4 is a risk factor for AD remains largely 

unclear. APOE is a 34 kDa lipid binding protein that transports cholesterol and 

triglycerides throughout the body by binding to cell surface lipoprotein receptors
58

. In 

humans, there are three different APOE isoforms (2, 3, and 4), which differ from each 

other by a single amino acid affecting lipid association and receptor binding
59,60

. The 4 

allele is the only variant that increases risk of AD, while the 2 allele is associated with 

protection against AD and the 3 allele has no correlation with AD
55,61

. The link between 

APOE and AD is likely through clearance mechanisms of A. APOE is a chaperone 

molecule that binds directly with amyloid plaques
54

. The 3 isoform binds to A with 

higher affinity and clears more efficiently than 4
62

. Accordingly, APOE-3 mice 

displayed fewer amyloid plaques than 4 mice
63,64

. AD patients with APOE-4 display 

increased plaque load in both sporadic and familial variants, as well as in subjects with 

amyloid load but are cognitively normal 
65–67

. Interestingly, the 4 iosoform has also been 

implicated as a transcription factor that promotes the activation of genes associated with 

programmed cell death, microtubule disassembly, synaptic function, and insulin 

resistance
68

. It is also a known risk factor for other neurodegenerative diseases including 

cerebral amyloid angiopathy (CAA), taupathies, Parkinson’s disease, and multiple 

sclerosis, suggesting it plays a general role in susceptibility to neurodegeneration
69–72

. 

Age 

The single greatest risk factor for AD is age. Epidemiological evidence suggests that 

beyond the age of 60 the incidence of sporadic AD rises exponentially with the risk 

doubling every 5 years after 65
73–75

. Even in individuals afflicted with familial AD, the 

disease rarely develops before the age of 45, suggesting significant A accumulation or 

age-associated brain changes are necessary before the onset of cognitive decline
2,3

. The 

aging process itself carries an inherent risk of cognitive dysfunction. Normal aging is 

associated with reductions in gross brain volume
76–79

, accelerated atrophy in the 
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hippocampus and cortex
76,80–82

, and disruption of episodic memory
83,84

. In fact, 

significant A accumulation also occurs in cognitively normal elderly individuals and 

may simply be a part of normal aging
85–87

. These features of the aging brain make it 

difficult to tease apart the relative contributions of aging and AD-pathology to cognitive 

decline
88

, which has led to a new proposed diagnostic criteria for AD that incorporates 

the use of biomarkers showing underlying pathogenesis
89–92

. The link between aging and 

AD likely involves the progressive accumulation of A either through over production in 

familial AD or through reduced ability to clear A in sporadic AD
52,93,94

. Evidence in 

support of this model comes from preclinical investigation using multi-modal imaging 

strategies to demonstrate that abnormal A biomarkers are the earliest indicators of AD
95

. 

Yet at some point a pathological threshold of A accumulation is reached which triggers 

a cascade of downstream processes that mediates neurodegeneration
96,97

.       

1.1.2 Toward Alzheimer’s disease prevention 

Since 2002, there have been over 400 clinical trials for AD therapeutics with an overall 

failure rate of 99.6%
98

. Current FDA-approved treatment options for AD patients are 

limited to acetylcholinesterase inhibitors for mild-to-moderate dementia and the N-

methyl-D-aspartate (NMDA)-receptor antagonist Memantine for moderate to severe 

dementia
99–103

. These therapies reduce the severity of symptoms for AD patients but do 

not alter the course of the disease progression. In fact, there are currently no FDA-

approved therapies that prevent or reverse cognitive decline in AD
104

. A growing 

consensus has emerged that the problem with failed clinical trials may not be related to 

the strategy of targeting AD pathology, or even the animal models for testing pre-clinical 

candidate drugs, but that the therapies are applied to human patients too late to alter the 

course of sustained brain damage
105,106

. In recent years a large initiative toward 

prevention of AD has been undertaken, in which the goal is to discover the earliest 

reliable biomarker for probable AD in order to implement therapeutic or lifestyle 

interventions for at-risk individuals before the onset of neurodegeneration and 

dementia
107

. In 2005, the Alzheimer’s Disease Neuroimaging Initiative (ADNI) was 

launched with the goal of tracking the progression of AD and establishing criteria for 

early diagnosis
108,109

. In 2008 an international partnership called the Dominantly 
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Inherited Alzheimer’s Network (DIAN) was initiated to develop a database of AD 

individuals carrying familial mutations while their non-carrier siblings act as genetically 

similar controls
110

. The goal is to determine a temporal sequencing of preclinical AD 

biomarkers in order to identify the most ideal therapeutic window for treatment of at-risk 

AD patients. More recently an initiative called the Alzheimer’s Prevention Initiative 

(API) was started with the goal of evaluating the extent to which AD-modifying 

treatments predict clinical benefit in at-risk individuals
111,112

. Despite the fact that all 

individuals registered with the DIAN carry autosomal dominant mutations for AD, the 

pathological phenotype of familial AD is largely similar to sporadic AD, which has 

prompted some to suggest that they are the same disease just with an age delay in 

sporadic individuals
113,114

. Another reason why subjects with autosomal dominant AD 

mutations are recruited for these clinical trials is because defining preclinical AD in 

sporadic individuals is difficult even when significant A is detected in the brain by 

positron emission tomography (PET) and in the cerebrospinal fluid (CSF) by ELISA 

analysis
115–117

. 

These neuroimaging initiatives use a variety of techniques to measure pathological 

changes in the brain, of which the two most reliable biomarkers of AD pathophysiology 

are measurements of the CSF and PET imaging. The CSF can be used to detect 

alterations in A and tau as a reflection of physiological changes to amyloid plaques and 

neurofibrillary tangles occurring in the brain. Reductions in A(1-42) and increased 

phosphorylated-tau or total tau in the CSF correlate well with late-stage 

neurodegeneration and cognitive decline
115,118–121

. PET scans are a useful imaging 

technique to measure a wide variety of parameters depending on the radio-labelled tracer 

used in the analysis. The two most commonly used tracers are the 
11

C-labeled Pittsburgh 

compound B (PiB) that binds with high specificity and high affinity to fibrillar-A found 

predominantly in amyloid plaques
122

, and the 
18

F-fluorodeoxyglucose (FDG) compound 

that is an analog of glucose used to measure glucose metabolism in the brain
123,124

. 

Biomarker research from the ADNI and DIAN programs provided a clear picture of 

preclinical AD progression that begins with A accumulation in the brain and follows in 

a sequence of cerebral inflammation, oxidative stress, synaptic loss, regional 
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hypometabolism, tau pathology accumulation, and finally atrophy, neurodegeneration, 

and dementia
125–132

. These studies also identified an interesting phenomenon in AD 

pathogenesis: A accumulation begins decades before clinical diagnosis of AD-dementia. 

PiB-PET scans suggest that deposition of amyloid plaque can begin 20 to 30 years before 

the onset of cognitive decline, while reductions of A(1-42) in CSF are present up to 25 

years before symptom onset
25,131,133,134

. Pathological changes in CSF tau were detected up 

to 15 years before the onset of clinical symptoms, while individuals with both abnormal 

A and tau CSF biomarkers were associated with a more rapid progression to a clinical 

state
25,133,135–137

. Cerebral hypometabolism and impaired episodic memory also occurred 

10 years before expected symptom onset, suggesting that neurodegeneration precedes 

clinical diagnosis by up to a decade
25

.    

Non-demented individuals with Alzheimer’s disease neuropathology 

Although A accumulation and tau hyperphosphorylation have been consistent 

pathological features of AD, the presence of these biomarkers is also observed in 

cognitively normal elderly people
138

. This group of individuals, which have been called 

non-demented individuals with AD neuropathology (NDANs), were first discovered in 

1968 after autopsy of cognitively normal individuals found 8 of 28 brains to have 

amyloid plaque deposition and neurofibrillary tangles similar to AD patients
139

. Since 

then it has been established that approximately 30-50% of the elderly (aged 57 to 102) 

are cognitively normal yet have A and tau pathology indistinguishable from AD patients 

of the same age
140–143,85,144–148

. In fact, the distribution of amyloid plaques and NFTs 

matches the pattern in AD patients and the sequence of pathological events is the same as 

AD irrespective of cognitive status
149–151

. However, it is currently unclear if all 

cognitively normal individuals with AD biomarkers will eventually develop AD-related 

dementia. Some have argued that NDAN individuals are in the preclinical stages of AD 

and will eventually progress to AD with increased age
152–156

, while others suggest that 

AD pathology may be a normal part of the aging process
157

. Several studies have shown 

that CSF A(1-42) and tau can predict cognitive decline in healthy individuals with a mean 

follow up of at least 3 years
158–160

. One study demonstrated that NDAN individuals 
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meeting criteria for intermediate likelihood or high likelihood of AD displayed subtle 

deficits in episodic memory after adjusting for age, sex, and education
161

. Yet, another 

study found that measures of cognition did not correlate with any of the measured AD 

biomarkers within cognitively normal individuals
162

. In addition, some longitudinal 

studies showed only about 20% of individuals positive for AD biomarkers will progress 

from cognitively normal to MCI or AD-related dementia with a mean follow-up of 2.8 

years
25,131

. Due to an estimated lag time of 15 to 20 years between the appearance of AD 

biomarkers and onset of cognitive impairment, it is still unknown if all individuals 

positive for AD biomarkers will progress to AD. However, it is clear that certain 

environmental and lifestyle factors can either increase or reduce the risk of developing 

AD-related dementia in cognitively normal individuals.  

Epidemiological evidence suggests that several different environmental factors can 

reduce or increase the risk of developing dementia
163

. The dementia risk reducing factors 

include: higher education, aerobic exercise, cognitive training, social engagement, and 

healthy diet; while the dementia risk increasing factors include: smoking, diabetes, 

obesity, hypertension, traumatic brain injury, depression, and sleep disturbances
163

. 

Collectively these findings suggest that certain adjustable lifestyle choices can impact the 

healthy aging of the brain despite the presence of neuropathology and has led to the 

argument that a greater emphasis should be placed on preventative measures to treat AD 

in at-risk individuals
164

. While it is clear that environmental factors can alter the risk of 

developing dementia, the biological mechanisms underlying this effect are still unknown. 

The association between lifestyle effects and progression of AD pathology has been 

inconsistent. It has been shown that physical activity and cognitive engagement can 

reduce A and tau pathology in middle-aged at-risk individuals
165–167

, yet this finding 

was not replicated in a follow up study
168

. In addition, these observations do not explain 

how some individuals can tolerate AD neuropathology and remain cognitively normal. 

One prevalent theory that explains the discrepancy between neuropathological changes 

and their clinical expression is called “cognitive reserve”, which refers to the capacity of 

the brain to tolerate pathological insult
169

. The proposed mechanism involves both 

passive and active models
170

. The passive model simply refers to an anatomical 
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difference in brain size with increased neuron count and a higher threshold for AD 

pathology or neurodegeneration. The active model refers to the adaptive use of 

underlying neurological networks to compensate for neuropathology and localized insult. 

Taken together, individuals with higher cognitive reserve will tolerate an overall higher 

burden of AD pathology before succumbing to cognitive impairment
171,172

. In fact, 

cognitive decline is delayed in individuals with higher reserve
173–175

, yet progresses more 

rapidly than lower reserve individuals once a pathological threshold is reached
173,176–179

. 

Several studies have shown associations between higher cognitive reserve and structural 

changes in the brain, including neurogenesis, synaptic density, synaptic protein 

expression, neuronal density, dendritic complexity, and neuronal hypertrophy
180–186

. Yet, 

a causal mechanism underlying cognitive reserve and maintenance of brain function in 

the presence of AD pathology has yet to be demonstrated.  

1.2 Glucose metabolism and Alzheimer’s disease 

A progressive decline in brain glucose metabolism, called cerebral hypometabolism, is a 

common feature of AD that correlates temporally with symptom severity and has high 

predictive value for onset of dementia
153,187–191

. Current estimates suggest that cerebral 

glucose metabolism is 20-25% lower in the AD brain
192

. Cerebral hypometabolism has 

been traditionally perceived as a result of decreased energy demand due to synaptic 

dysfunction and neuronal loss at later stages of the disease
193

. However, there is a 

growing consensus that impaired glucose metabolism precedes clinical symptoms in AD 

and may serve as a preclinical biomarker
153,188,190,191,194–196

. Impaired glucose metabolism 

is likely due to mitochondrial dysfunction, which is directly caused by A interference 

with mitochondrial enzymes. The A peptide has been shown to progressively 

accumulate in the mitochondria of CNS neurons in both AD patients and AD transgenic 

mice prior to amyloid plaque deposition and cognitive deficits
197–200

. In addition, 

embryonic neurons derived from the hippocampus of triple-transgenic AD female mice 

displayed reduced mitochondrial respiration and increased glycolysis, suggesting that 

mitochondrial dysfunction occurs early in AD pathogenesis
199

. Defects in mitochondrial 

metabolism are also well documented in the human AD brain
201

.  
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Amyloid- and the mitochondrion 

The mitochondrion is a vital organelle responsible for producing the majority of cellular 

ATP and regulating cell survival. Several in vitro and in vivo studies have directly linked 

A exposure to mitochondrial dysfunction including the  inhibition of respiratory chain 

complexes, reduced membrane potential and ATP levels, and increased reactive oxygen 

species (ROS) production, as well as mitochondrial swelling and depolarization leading 

to the induction of apoptosis
202–211

. Consistent with the targeted production of A in 

synaptic terminals, A preferentially accumulates in synaptic mitochondria and likely 

contributes to early synaptic dysfunction in AD
212

. Certain soluble species of oligomeric 

A are amphipathic in nature and have the ability to permeabilize lipid bilayers thereby 

passively entering the mitochondria
213–216

. APP also contains a mitochondrial targeting 

signal and can be actively imported into the mitochondria by the translocase of the outer 

membrane (TOM) machinery
217,218

. Once inside the mitochondria, A directly binds to 

and impairs the activity of the pyruvate dehydrogenase (PDH) complex, which is 

responsible for converting pyruvate to acetyl-coenzyme A (acetyl-CoA) and is the first 

committed step for pyruvate to oxidative phosphorylation in the mitochondria
204

. Aalso 

impairs activity of proteins in the tricarboxylic acid (TCA) cycle and the electron 

transport chain (ETC), including the -ketoglutarate dehydrogenase complex (-

KGDHC) and cytochrome oxidase (COX)
204,219

. Reduced activity and expression of these 

enzymes in the AD brain has been well documented
220–222

. This diminished enzyme 

activity leads to a reduction in oxygen consumption rate and ATP production, suggesting 

a direct link between defective mitochondrial and preclinical hypometabolism in AD
209

.  

Defective mitochondria can produce high levels of ROS, which can lead to a state of 

oxidative stress and is a common feature of AD. Under normal circumstances, 

physiological levels of ROS function as important redox-dependent signaling molecules 

that regulate cellular growth and homeostasis
223

. The ETC of the mitochondria is the 

main source of cellular ROS via the reduction of oxygen to the superoxide free radical 

anion and subsequent conversion to hydrogen peroxide by superoxide dismutase
224

.  An 

overproduction of ROS or a decline in antioxidant response can lead to oxidative damage 
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and ultimately cell death. The AD brain displays several markers of oxidative damage to 

biomacromolecules including proteins, nucleic acids and lipids
225,226

.  In vitro work has 

demonstrated a dose-dependent effect between A and mitochondrial-derived oxidative 

stress and neuronal toxicity
227,228

. Synergistic effects between A and tau have been 

observed in the mitochondria of triple-transgenic AD mice leading to reduced ATP 

production and an increase in oxidative stress
229

. Moreover, mitochondrial-derived 

oxidative stress has been shown to potentiate A formation and suggests a feed-forward 

mechanism in AD pathogenesis
230

.  This has led to the oxidative stress hypothesis of AD, 

which posits that the generation of oxygen free radicals from the mitochondria participate 

in the cascade of events that lead to neuronal death in AD
231

. 

Cerebral hypermetabolism in Alzheimer’s disease 

In contrast to cerebral hypometabolism in AD, the exact opposite effect (cerebral 

hypermetabolism) has also been observed in the AD brain at very early stages of the 

disease. This may represent an early compensatory mechanism in response to A 

accumulation and mitochondrial dysfunction. A recent PET study of autosomal dominant 

AD mutation carriers revealed regionally higher glucose uptake ~25 years before the 

estimated age of onset
232

.  PET imaging of cognitively normal people at risk for AD 

revealed area-specific increases in both Aβ deposition and glucose metabolism in 

individuals before MCI
233

. Although reduced glucose metabolism was observed 5 to 10 

years before the estimated age of onset in many cortical areas with Aβ deposition, a 

divergent pattern was observed subcortically; the caudate and pallidum did not show 

either metabolic decline or atrophy, despite markedly elevated PiB uptake
232

.  APP/PS1 

transgenic-AD mice display an age-dependent increase in glucose uptake in the 

hippocampus and cortex that precedes cognitive impairment and correlates spatially with 

amyloid plaque deposition
234

. In addition to these observations, the same enzymes that 

were shown to be inhibited by A at later stages of the disease, COX and -KGDHC, can 

also be up-regulated before the appearance of amyloid plaques in the APP(Tg2576) mouse 

model of AD
235

.  
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Cerebral hypermetabolism in the preclinical AD brain may be accounted for by the 

compensatory up-regulation of glycolytic machinery in response to mitochondrial 

damage. Glycolysis is the metabolic pathway in the cytosol that breaks down glucose to 

pyruvate with the concomitant production of ATP and NADH. The specific activity of 

the glycolytic rate-limiting enzymes phosphofructokinase-1 (PFK), hexokinase (HK), and 

pyruvate kinase (PK) were found to be increased in the frontal and temporal cortex of AD 

patients
236–238

. Increased activity was also found for lactate dehydrogenase (LDH), the 

enzyme responsible for the production of lactate as the end-product of glycolysis
238

. 

Embryonic neurons derived from the triple-transgenic AD mouse hippocampus displayed 

reduced mitochondrial respiration but increased rates of glycolysis
199

. In addition, recent 

evidence has revealed that nerve cells can be made to be resistant to A toxicity by 

undergoing a metabolic shift toward enhanced glycolysis and reduced oxidative 

phosphorylation in the mitochondria
239,240

. Thus, glycolytic metabolism may be elevated 

in certain regions of the brain as a compensatory mechanism in response to A 

accumulation and mitochondrial dysfunction.  Loss of this protective mechanism may 

render certain areas of the brain susceptible to A-induced neurotoxicity.   

1.2.1 Aerobic glycolysis and amyloid- resistance 

Under normal conditions, the majority of glucose consumed by the cell is oxidized to 

carbon dioxide and water in the mitochondria to yield large amounts of ATP to support 

cellular functions. Glycolysis can be up-regulated in a state of low oxygen (hypoxia) or 

mitochondrial dysfunction in order to compensate for energy demand with the production 

of lactic acid (lactate) as an end-product
241,242

. However, a characteristic feature of 

rapidly proliferating cells is the extensive reliance on glycolysis for energy needs, even 

under normoxic conditions. In cancer cells, this type of metabolism is known as the 

Warburg effect in recognition of its discovery by Otto Warburg
243

. The reliance on 

glycolysis in the presence of oxygen is commonly referred to as “aerobic glycolysis” and 

is a characteristic feature of cancer cells and stem cells
244

. It is now understood that 

aerobic glycolysis occurs in many different cell types including: endothelial cells, skeletal 

muscle, vascular smooth muscle, monocytes and leukocytes of the immune system, as 

well as astrocytes and neurons of the brain
245–252

. The relative contribution of glycolysis 
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to ATP production highly depends on the cell type, growth environment, and phase of 

cell cycle. Through precise measurements of oxygen consumption and lactate production 

rates, it has been estimated that glycolysis can account for between 0.94% to 65% of total 

ATP produced in the cell with an average of approximately 17% in most tissues
253

. 

Interestingly, aerobic glycolysis has been estimated to account for up to 85% of ATP 

produced in endothelial cells despite their direct contact with oxygenated blood
251

.  

A high glycolytic rate has several advantages for energy-demanding cells. First, despite 

its low efficiency at producing energy (2 ATP per glucose) compared to oxidative 

phosphorylation in the mitochondria (34 ATP per glucose), glycolysis can generate ATP 

at a faster rate when the supply of glucose is abundant
254

. This feature has obvious 

benefits for cellular processes that have a rapid energy demand, such as in maintaining 

resting membrane potential via the ATP-dependent Na
+
/K

+
-ATPase pump. For neurons, 

the Na
+
/K

+
-ATPase pump can account for up to 50% of total expended energy

255
. 

Second, proliferating cells require metabolites to support the biosynthetic requirements of 

mitosis and glycolytic intermediates can provide the carbon building blocks for the de 

novo synthesis of nucleotides, lipids, and non-essential amino acids
256,257

. In addition to 

glycolysis in the cytosol, the supply of acetyl-CoA and glutamine to the TCA cycle 

within mitochondria drives the production of metabolites that can be siphoned off to the 

cytosol and participate in the anabolic metabolism of amino acids and lipids
257

.  Finally, 

the conversion of pyruvate to lactate produces NAD
+
, which is an important cofactor for 

continued glycolytic flux and biosynthesis of nucleotides and amino acids, in addition to 

maintaining the NAD
+
/NADH redox balance of the cytosol

258,259
. These metabolic 

pathways will be described in greater detail in later sections. Thus, when glucose is not 

rate-limiting, aerobic glycolysis provides several advantages to the cell and may persist 

as the predominant metabolic phenotype despite the presence of oxygen.  

Our lab has previously demonstrated that nerve cells selected for resistance to A toxicity 

undergo metabolic reprogramming and shift toward aerobic glycolysis through the 

stabilization of the transcription factor hypoxia-inducible factor 1 (HIF-1) and up-

regulation of pyruvate dehydrogenase kinase-1 (PDK1) and lactate dehydrogenase-A 

(LDHA)
260

. Over-expression of either PDK1 or LDHA enzymes in nerve cell lines 
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represses mitochondrial respiration and confers resistance to A and other neurotoxins, 

whereas chemical or genetic inhibition of these enzymes results in re-sensitization of 

resistant lines to A toxicity
239,240

.  Moreover, mitochondrial-derived ROS, which are 

closely associated with A toxicity, are markedly diminished in resistant relative to 

sensitive cells. By repressing mitochondrial respiration, A-resistant cells are less likely 

to produce ROS and are more resistant to mitochondrial depolarization; two events 

tightly linked to induction of apoptosis
261

. In support of this discovery, a recent 

multimodal PET imaging study has revealed a strong correlation between the spatial 

distribution of elevated aerobic glycolysis in healthy resting individuals and A 

deposition in the brains of both healthy individuals and AD patients
262

. In contrast, brain 

regions that rely primarily on oxidative phosphorylation for energy needs displayed little 

amyloid burden. The observation that A deposition in the AD brain closely matches the 

spatial pattern of elevated aerobic glycolysis in both the healthy and AD brain suggests 

that aerobic glycolysis may arise as a mechanism to counter the toxic effects of A in the 

AD brain.  

1.2.2 Cerebral glucose metabolism 

Glucose is nearly the sole fuel source of the human brain
263

. The metabolism of glucose 

in the brain is a complex process integrating several different cell types and competing 

biochemical pathways in order to sustain the energy needs of neuronal activation. Here I 

describe each step of glucose metabolism as it relates to aerobic glycolysis, the shuttling 

of metabolites between astrocytes and neurons, as well as any connections to AD 

pathophysiology. Considering the tight connection between aerobic glycolysis and 

proliferation, many of the properties of glycolytic enzymes and regulators were 

characterized in cancer cells. The first rate-limiting step in cerebral glucose metabolism is 

the facilitated transport of glucose across the blood brain barrier. This is mediated by the 

glucose transporter (GLUT)-family of integral membrane proteins of which there are 14 

members in humans, each with different affinities for glucose and related sugars
264

. 

GLUT-1 is primarily expressed in astrocytes and the capillary endothelium that form the 

blood-brain barrier
265

. Astrocytes are generally believed to act as an intermediary cell 

between glucose uptake from the blood and delivery to neurons, yet current models 
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suggest that glucose can also diffuse from endothelial cells through the basal lamina and 

interstitial fluid (ISF) to neurons where it is directly imported via GLUT-3
266–268

. GLUT-

1 and GLUT-3 expression is decreased in the AD brain which correlates spatially with 

cerebral hypometabolism
269–272

. GLUT-1 expression can also be up-regulated by HIF-1 

in response to hypoxia
273–275

. Once glucose is taken into the cell it is irreversibly 

phosphorylated by HK1 to form glucose-6-phosphate (glucose-6P), which traps it in the 

cell by adding a negative charge to prevent it from diffusing back through the 

membrane
276

. Glucose-6P is the precursor to three main metabolic pathways: glycolysis, 

the pentose phosphate pathway (PPP), and glycogenesis (Figure 2).  
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Figure 2. Schematic representation of cerebral glucose metabolism 

Glucose enters cells via glucose transporters and is phosphorylated by 

hexokinase to produce glucose-6-phosphate (Glucose-6P). In 

astrocytes, glucose-6P can be reversibly converted to glycogen by 

glycogen phosphorylase. Glucose-6P can also enter the pentose 

phosphate pathway (PPP) to generate two molecules of NADPH and 

Ribose-5-phosphate for the biosynthesis of nucleotides, fatty acids, and 

amino acids. Glucose-6P is further metabolized in the cytosol through 

glycolysis giving rise to two molecules of pyruvate, ATP, and NADH. 

Pyruvate is further processed in the mitochondria through the 

tricarboxylic acid (TCA) cycle to produce NADH which fuels oxidative 

phosphorylation thereby generating ATP and CO2 while consuming 

oxygen. The complete oxidation of glucose produces far larger amounts 

of energy in the form of ATP in the mitochondria (34 ATP) compared 

to glycolysis (2 ATP). During aerobic glycolysis pyruvate is reduced to 

lactate by lactate dehydrogenase which is subsequently released in the 

extracellular space.  
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The pentose phosphate pathway 

The main fate of glucose-6P is to continue through the glycolytic pathway to generate 

pyruvate, NADH, and ATP, but it can also be funnelled into the PPP depending on the 

redox and energy status of the cell. The PPP is a metabolic branch that runs parallel to 

glycolysis and is primarily responsible for generating reducing equivalents in NADPH 

and biosynthetic precursors for growing or dividing cells. The first committed step to the 

PPP is catalyzed by the enzyme glucose 6-phosphate dehydrogenase (G6PDH), which 

oxidizes glucose-6P to 6-phosphogluconolactone while reducing NADP
+
 to NADPH

277
. 

G6PDH is strongly inhibited by NADPH, while NADP
+
 is a cofactor for its proper 

conformation, thus the cytosolic ratio of NADP
+
/NADPH is the main modulator of 

G6PDH and entry to the PPP
278,279

. The NADP
+
/NADPH ratio is also a redox sensor. 

NADPH is a necessary cofactor for the reduction of glutathione (GSH) molecules, which 

are the primary reducing agents for the cell. Consequently, the PPP is upregulated in 

response to oxidative stress in order to replenish depleted glutathione levels
280,281

. The 

PPP is also important for the synthesis of nucleotides and fatty acids. Ribose-5-phosphate 

(R5P), an intermediate metabolite of the PPP, is the requisite building block for 

nucleotides, while NADPH is a necessary reducing agent for the synthesis of nucleotides, 

fatty acids, and amino acids
257

. Therefore, the PPP is also up-regulated in highly 

proliferating cells, including cancer cells, in order to meet the increased demands for 

synthesis of biological building blocks
282

. 

Glycogenesis 

In astrocytes, glucose-6P can also be converted to glycogen, a polymer composed of 

glucose residues that serves as a fuel reserve of the brain
283

. The prominent role of 

glycogen storage in astrocytes is to act as an energy buffer in times of glucose 

deprivation or high glucose consumption
284–287

. Yet, in recent years it has been 

hypothesized that the storage and mobilization of astrocytic glycogen serves to enhance 

the availability of glucose for neuronal metabolism
286,288–291

. Neuronal activation can 

trigger glycogen breakdown in astrocytes by as much as 20%
292

, while decreased 

neuronal activity during anesthesia is accompanied by an increase in glycogen storage by 
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up to 85%
293

. Recent evidence also points to a direct association between glycogen 

mobilization and functional memory through synthesis of glutamate in astrocytes
294,295

. In 

addition, glycogen-derived lactate has also been shown to contribute to memory 

processing via shuttling between astrocytes and neurons
296

. However, the role of lactate 

in brain energy metabolism is still unresolved. Another study has suggested that glycogen 

mobilization in astrocytes functions primarily to preserve glucose supply for neurons, 

rather than provide neurons with glycogen-derived lactate
297

. Thus, glycogen storage and 

metabolic coupling between astrocytes and neurons are important for proper metabolic 

homeostasis during neuronal activity or in cases of severe energy crisis. 

Glycolysis 

The final rate-limiting step in glycolysis is the conversion of phosphoenolpyruvate (PEP) 

and ADP into pyruvate and ATP. This is catalyzed by the enzyme pyruvate kinase (PK), 

of which there are four isoforms (M1, M2, L, and R).  The L and R isoforms of PK are 

exclusively expressed in liver and red blood cells, respectively, while PKM1 and PKM2 

are expressed in most adult tissues and arise from alternative splicing of the same M-gene 

under regulation of the oncogene C-MYC
298,299

. The PKM1 isoform assembles as a 

constitutively active tetramer for rapid substrate turnover
300

.  In contrast, PKM2 is among 

the most tightly regulated enzymes of the glycolytic pathway and is important for 

controlling levels of ATP and glycolytic intermediates in the cell.  PKM2 can exist as a 

tetramer (high activity), or as a dimer (low activity). The dimeric form of PKM2 is 

characterized by low affinity for PEP which results in accumulation of glycolytic 

intermediates and increased flux through the PPP
301

. The ratio of PKM2/PKM1 is an 

indication of the metabolic phenotype of the cell, whereby high levels of PKM2 promote 

aerobic glycolysis and high levels of PKM1 promote oxidative phosphorylation
299

. 

Consistent with this observation, cancer cells preferentially splice the M2 isoform over 

M1 through the action of C-MYC in order to promote aerobic glycolysis and 

proliferation
302

. Replacing PKM2 expression with PKM1 effectively inhibited the growth 

of xenograft tumors by impairing nucleotide production and promoting cell cycle 

arrest
303,304

. PKM2 is also sensitive to oxidative stress as it can be inhibited by cysteine 



22 

 

oxidation to divert more glucose-6P toward the PPP to generate NADPH as an 

antioxidant response
305

.  

As the end product of glycolysis, pyruvate has two major fates: conversion to acetyl-CoA 

in order to fuel oxidative phosphorylation in the mitochondria, or conversion to lactate to 

regenerate NAD
+
 in the cytosol. The breakdown of pyruvate in the mitochondria occurs 

over a series of successive reactions in the citric acid cycle that ultimately produces 

NADH and FADH2 as reducing equivalents to drive the proton gradient necessary for 

oxidative phosphorylation and ATP production. The first committed step in this process 

is the irreversible decarboxylation and acetylation of pyruvate to acetyl-CoA with the 

concomitant reduction of NAD
+
 to NADH. This is catalyzed by PDH, which is a 

ubiquitously expressed protein complex composed of four sub-complex proteins (E1, E2, 

E3, and the E3 binding protein)
306

. The PDH complex serves as a critical link between 

glycolysis and the citric acid cycle, and thus its activity is highly regulated at the 

transcriptional and post-translational levels. For example, during starvation, the genes of 

the PDH complex are repressed in the liver in order to reduce pyruvate metabolism and 

maintain glucose levels in the blood stream
307

. In addition, the products of the PDH 

reaction, acetyl-CoA, NADH, and ATP, can exhibit direct feedback inhibition when their 

concentrations are sufficiently elevated in the mitochondria
308,309

. Yet, the principal mode 

of PDH regulation is reversible phosphorylation. The E1 subunit of the PDH complex 

forms the active site for the oxidative decarboxylation of pyruvate and contains three 

target serine residues (at positions Serine-232, -293, and -300) that are susceptible for 

post-translational modification by phosphorylation
310

. Phosphorylation of any serine is 

sufficient to completely inhibit the activity of the PDH complex, which allows for the 

rapid and reversible regulation of pyruvate metabolism or to maintain energy 

homeostasis
311

.  

Pyruvate dehydrogenase kinase 

Pyruvate dehydrogenase kinase (PDK) phosphorylates the regulatory serine residues of 

PDH, while the pyruvate dehydrogenase phosphatase (PDP) removes the phosphate 

groups. There are four isoforms of PDK (PDK1-4), each with unique and overlapping 
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tissue expression. PDK1 and PDK2 are expressed ubiquitously while predominantly in 

the heart and nervous system, respectively. PDK3 is found only in heart and skeletal 

muscle, and PDK4 is expressed in the kidneys, brain, liver, heart and skeletal muscle
312

. 

The PDK isoforms also have different specificity to the PDH-E1 serine residues. All 

PDK isoforms are able to phosphorylate Serine-232 and Serine-293, while only PDK1 

can phosphorylate all three sites
313

. The PDK enzymes are themselves tightly regulated at 

the transcriptional and post-translational levels. All PDK isoforms are allosterically 

activated by high levels of acetyl-CoA, NADH, and ATP (the opposite effect occurs with 

the PDH complex), and are inhibited by the mitochondrial accumulation of pyruvate, 

NAD
+
, and ADP

314
. The expression of PDK2 and PDK4 are upregulated in the heart, 

liver, and kidneys during starvation, yet this trend is not observed in the brain
315,316

. More 

recently a growing body of evidence links the expression of PDK1 to cancer cells through 

transcriptional activation by HIF-1 as a means of reducing mitochondrial metabolism 

and preventing ROS production
317–319

. Less is known about the role of pyruvate 

metabolism in aging or AD. One study has shown that aged rats display a reduction in the 

expression of PDK1 and PDK2 in the brain
320

. Alzheimer’s patients also typically show a 

reduction in PDH activity, and increased pyruvate levels in the cerebrospinal fluid may 

be a potential biomarker of AD
321,322

. 

Lactate dehydrogenase 

Pyruvate that is not imported into the mitochondria can be converted to lactate in the 

cytosol. Lactate dehydrogenase (LDH) is the enzyme complex that catalyzes the 

reversible conversion of pyruvate to lactate with the concomitant oxidation of NADH to 

NAD
+
. LDH is a ubiquitously expressed tetramer composed of two different subunits, 

LDHA and LDHB, which can assemble into five different combinations (LDH-1 through 

LDH-5) depending on the relative expression levels of each subunit in the cytosol
323,324

. 

LDH-1 is comprised entirely of LDHB subunits while LDH-5 is comprised entirely of 

LDHA subunits. LDHA favors the forward reaction of pyruvate and NADH to lactate and 

NAD
+
, while LDHB favors the reverse reaction of lactate and NAD

+
 back to pyruvate 

and NADH. The LDHA gene promoter contains two hypoxia response elements, the 

essential binding sites of HIF-1, which implicates a role of LDHA in cellular response to 
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hypoxia and oxidative stress
325

. LDHA is also commonly over-expressed in many 

tumours and is a promising target for cancer therapy
326,327

. Previous evidence has 

suggested that neurons exclusively express LDHB, while astrocytes can express both 

LDHA and LDHB
328

. However, a more recent report has demonstrated that primary 

cultures of rat neurons and astrocytes both preferentially express LDHA, yet are capable 

of expressing all isofoms of LDH
329

. In addition, LDHB expression was higher in freshly 

isolated synaptic terminals, which implicates that lactate conversion to pyruvate in 

neurons is specific to synapses
329

. A recent study using a mouse model of advanced aging 

demonstrated a progressive shift toward higher LDHA/LDHB ratio resulting in higher 

cortical lactate levels with age
330

. Yet, it has been suggested that the observed elevation 

in lactate is unlikely to be caused by a shift in the isoform ratio of LDH due to the near 

steady-state conditions of the reaction
331

. The age-dependent change in LDH expression 

and its effect on cerebral lactate metabolism and AD remains to be elucidated. 

Hypoxia-inducible factor 

Cellular metabolism is a complex process regulated by many intrinsic and extrinsic 

factors. Shifts in metabolic states occur naturally in order to meet the energy demands of 

active cellular processes while responding to a dynamic environment and changing 

nutrient availability. Hypoxia inducible factor-1 (HIF-1) is the master transcriptional 

regulator of anaerobic respiration and also plays a key role in promoting aerobic 

glycolysis. HIF-1 is a heterodimeric transcription factor comprised of two subunits that 

are constitutively expressed: a stable  subunit, and an  subunit that is highly regulated 

by changing oxygen levels
332

.  Under normal oxygen conditions, HIF-1 is hydroxylated 

by prolyl hydroxylases and targeted for ubiquitin-mediated degradation
333

.  Under 

hypoxic conditions, HIF-1 is stabilized and translocates to the nucleus where it 

dimerizes with HIF-1 and induces expression of genes regulated by hypoxic response 

elements
334

. These genes include glucose transporters GLUT-1 and GLUT-3, as well as 

glycolytic enzymes and regulators LDHA, and PDK1
335

.  HIF-1 activation represents a 

well-characterized mechanism by which the cell can quickly respond to hypoxic 

environments by up-regulating glycolysis and inhibiting mitochondrial respiration in 
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order to meet cellular energy demands.  However, even when oxygen is abundant, HIF-1 

can be stabilized and transcriptionally active during periods of rapid proliferation and 

increased metabolic demand. HIF-1 expression can be elevated under normoxic 

conditions through the PI3K/Akt/mTOR pathway, which results in transcriptional up-

regulation of PKM2 and promotes cell proliferation
336

.  Expression of HIF-1 is induced 

by the glycolytic intermediates pyruvate, lactate and NAD
+
, in addition to other TCA 

cycle metabolites
319,335

. This feed-forward mechanism perpetuates HIF-1 activity and 

contributes to prolonged aerobic glycolysis commonly associated with proliferating cells. 

HIF-1 is over-expressed in many human cancers and loss of HIF-1 dramatically slows 

tumor growth in nude mice
337–340

.  HIF-1α activation promotes several cellular responses 

that are beneficial for a growing tumor, including vascular remodelling, increased 

glucose uptake, oxidative stress response, and cell survival.  As such, it also directly 

opposes known deleterious effects of AD pathophysiology, including reduced cerebral 

blood flow, impaired glucose uptake and metabolism, increased oxidative stress, and 

uncontrolled cell death
341

. A has also been shown to decrease HIF-1 expression in 

activated astrocytes resulting in a reduced rate of glycolysis
342

. In addition, nerve cell 

lines and primary cortical neurons can be made resistant to A toxicity by activating HIF-

1 resulting in enhanced glycolysis
260

.   

1.3 Cerebral metabolism and memory 

The brain is a very energetically demanding organ. Despite being 2% of the total body 

weight, the human brain accounts for approximately 20% of basal metabolism in healthy 

adults
343,344

. An updated account of ATP consumed in the cerebral cortex predicts that 

most of the energy is directed at the maintenance of post-synaptic receptors, which 

includes the energy used to reverse glutamate-evoked Na
+
 and Ca

2+
 fluxes

255
.  The 

remaining energy is directed at pumping Na
+
 ions out of neurons for the maintenance of 

resting membrane potentials and the generation of action potentials, while only a small 

fraction of total energy consumed is used for neurotransmitter recycling
255,345

. Current 

estimates suggest that approximately 10-12% of the total glucose consumed by the 

resting brain is in excess of oxygen consumption, suggesting a role for non-oxidative 

(glycolytic) metabolism
346–351

. Different regions of the resting brain also display different 
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levels of glycolytic metabolism. Aerobic glycolysis accounts for nearly 25% of glucose 

consumed in two distinct cortical systems: the default mode network (DMN) and areas of 

the frontal and parietal cortex
351

. The DMN is defined as the region of the brain that 

shows high levels of activity when no explicit task is performed, while the frontal and 

parietal cortex are associated with task control processes
352–355

. In contrast to these brain 

regions displaying higher levels of aerobic glycolysis, the cerebellum relies almost 

entirely on oxidative phosphorylation for energy needs. These observations could be 

explained by the ratio of neurons to astrocytes in each brain region. The cerebral cortex 

contains only about 19% of the brains’ total neurons and 72% of non-neuronal cells, 

while the cerebellum contains approximately 80% of the brains’ neurons and only 19% of 

non-neuronal cells, which supports the hypothesis that neurons preferentially exhibit a 

phenotype of oxidative metabolism
356

.  

Cerebral activation and aerobic glycolysis 

The brain must also rapidly respond to changing energy demand and supply, as reflected 

by task-dependent cerebral activation, changes in localized blood flow, and glucose 

utilization
357

. It was traditionally perceived that most of the energy needed for brain 

function is derived by the complete oxidation of glucose to carbon dioxide and water. 

Therefore, it was postulated that blood-flow increases accompanied by cerebral activation 

must be related to an increased demand for oxygen
358

. However, several early 

observations during cerebral activation suggested regional cerebral blood flow (rCBF) 

and cerebral metabolic rate of glucose (CMRglc) increase in excess oxygen 

consumption
346,359,360

. In fact, there is a very close correlation between rCBF and 

CMRglc, but not between rCBF and oxygen consumption
346,361,362

.  It is now known that 

during cerebral activation, aerobic glycolysis is quickly up-regulated and can account for 

up to 40% of the glucose consumed by activated regions
361,363

. A recent multimodal PET 

analysis identified high rates of aerobic glycolysis in cortical regions of the adult brain 

known to participate in cognitive control networks
351

. Local aerobic glycolysis can also 

persist for up to 40 minutes following activation despite the return of physiological 

conditions back to baseline
349

. Correspondingly, it is well documented that there is an 

increase in local brain lactate efflux during cerebral activation
363–368

. Yet, this lactate 
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efflux accounts for only about 50% of the excess glucose consumed by glycolysis and 

suggests that some of the lactate is also recycled as a fuel source.  

Recent work has provided a potential mechanism between rCBF and glycolytic 

metabolism through changes to the lactate/pyruvate ratio and the cytosolic NADH/NAD
+
 

ratio. Experiments in support of this hypothesis are based on lactate and pyruvate 

injections, whereby the intravenous injection of lactate augmented rCBF in response to 

visual stimulus, while the injection of pyruvate attenuated this response
369–371

. The 

NADH/NAD
+
 ratio is a sensor of the redox state of the cell that increases when NADH is 

produced by glycolysis and the citric acid cycle at a faster rate than can be used by the 

mitochondria to synthesize ATP. The excess electrons from NADH can be transferred to 

oxygen by NADPH oxidase (NOX) to generate superoxide, which elevates cytosolic Ca
2+

 

levels and activates nitric oxide production by nitric oxide synthase (NOS)
372,373

.  Nitric 

oxide is a signaling molecule in endothelial cells that causes cerebral vasodilation and 

increases local blood flow
374

. Lactate has also been shown to directly promote the ability 

of astrocytes to induce vasodilation through accumulation of  prostaglandin E2 (PGE2), a 

well characterized vasodilating agent
375

. The induction of rCBF serves to remove excess 

lactate and promotes the delivery of glucose and oxygen to activated tissues. Taken 

altogether, under resting conditions, glucose is almost entirely oxidized to carbon dioxide 

to generate large amounts of ATP. Cerebral activation triggers the up-regulation of 

aerobic glycolysis to rapidly synthesize ATP with the concomitant production of lactate 

as an end product. The rapid increase in glycolysis raises the NADH/NAD
+
 ratio and 

promotes an increase in rCBF. The increased blood flow serves to remove the excess 

lactate and promotes the delivery of glucose and oxygen to activated tissues in order to 

sustain metabolic flux. 

1.3.1 Neuron-astrocyte metabolic coupling 

The question of how glucose is utilized by the different cell types of the brain, namely 

neurons and astrocytes, has been extensively investigated yet remains to be fully 

characterized. Astrocytes are the most common non-neuronal cell in the brain and play a 

key role in cerebral homeostasis, including neurotransmitter recycling, ion and water 

regulation, defense against oxidative stress, and synapse formation and remodeling
376

. 
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Despite the general assumption that the human brain contains about 100 billion neurons 

and ten-times as many astrocytes, it was recently calculated that the human brain contains 

approximately equal numbers of neurons and astrocytes with a total of 86.1 ± 8.1 billion 

neurons and 84.6 ± 9.8 billion astrocytes
356

. While neurons traditionally account for the 

majority of energy consumed in the brain, astrocytes are thought to regulate the energy 

supply from the blood stream to neurons in a process called “metabolic coupling”.  

The astrocyte-neuron lactate shuttle hypothesis 

In 1994, a seminal discovery by Pellerin and Magistretti identified glutamate as the 

molecular trigger for glucose uptake and up-regulation of aerobic glycolysis in response 

to brain activation
377

. Glutamate is the principal excitatory neurotransmitter of the central 

nervous system, accounting for well over 80% of all synaptic activity in the human 

brain
378

. In response to axon depolarization, glutamate is released into the synapse from 

the pre-synaptic terminal and propagates the action potential in the post-synaptic neuron 

by binding to specific ionotropic and metabotropic receptors
379

. Glutamate is then quickly 

removed by glutamate transport 1 (GLT-1), located on astrocytes and neurons, in order to 

terminate signal propagation and prevent excitotoxicity. Glutamate transport is coupled 

with the import of three Na
+
 ions into the cell, which leads to the activation of the Na

+
/K

+
 

-ATPase to restore the osmotic balance
380

. This is an energetically demanding process 

that increases ATP consumption and triggers an increase in glucose uptake to compensate 

for energy demand. Pellerin and Magistretti observed an increase in glucose uptake and 

lactate released by primary mouse cortical astrocytes in response to glutamate 

stimulation
377

. It is proposed that the increased lactate production implicates aerobic 

glycolysis in astrocytes as the key mechanism coupling neuronal activity to glucose 

utilization. The discovery led to the long-standing hypothesis called the astrocyte-neuron 

lactate shuttle hypothesis (ANLSH). The ANLSH posits that astrocytes can rapidly 

mobilize glucose from either glycogen stores, or directly from cerebral blood vessels, and 

process it through glycolysis to generate lactate which is exported and subsequently used 

as a fuel source for oxidative phosphorylation in the mitochondria of neurons (Figure 

3)
377,381–383

.  
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Figure 3. The astrocyte-neuron lactate shuttle model 

The astrocyte-neuron lactate shuttle model proposes that astrocytes 

readily take up glucose from cerebral blood vessels, via glucose 

transporters (GLUT-1) and process it at a high capacity, by aerobic 

glycolysis, to produce lactate by lactate dehydrogenase A (LDHA) 

which is released into the extracellular space via monocarboxylate 

transporters 1 or 4 (MCT1/4). Extracellular lactate is then taken up by 

neurons (via MCT2) and converted to pyruvate by LDHB, which enters 

the TCA cycle followed by oxidative phosphorylation in the 

mitochondria. Lactate may also be transported and oxidized in the 

mitochondria through an unknown process. Recent studies suggest that 

extracellular lactate may also bind GPR81 (a G-protein coupled 

receptor) on neurons and trigger a phosphorylation of ERK and possibly 

activate downstream signaling events, including phosphorylation of the 

cAMP-binding protein (CREB), that may affect memory. In addition, 

astrocytes remove the excitatory neurotransmitter glutamate from 

synapses via glutamate transporters (GLT-1) and convert it to glutamine 

as part of a recycling of the neurotransmitter. In doing so, glutamate 

triggers a cascade of molecular events leading to an enhancement of 

glucose utilization by astrocytes. Astrocytes can also breakdown 

glycogen for entry into glycolysis. Neurons also have the capacity to 

fully oxidize glucose following uptake by the neuron-specific glucose 

transporter (GLUT-3).  
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Monocarboxylate transporters 

The shuttling of lactate and other monocarboxylates, including pyruvate and ketone 

bodies, is dependent on the proton-linked monocarboxylate transporter (MCT) family of 

transmembrane proteins
384

. There are a total of 14 members of MCT, yet only four 

isoforms are well-characterized (MCT1 to MCT4), each with different tissue-specific 

expression patterns and substrate specificity. Among the three MCTs that are known to 

be expressed in the brain, MCT2 is almost exclusively expressed in neurons, while 

MCT4 is almost exclusively expressed in astrocytes, and MCT1 is expressed in 

astrocytes, oligodendrocytes, and endothelial cells of cerebral blood vessels
385–390

. In 

addition to neurons, MCT2 has also been observed specifically in the foot processes of 

astrocytes and has a ten-fold higher affinity for substrates than MCT1 and MCT4, 

suggesting it is particularly suited to lactate import
391,392

. The transport of lactate via 

MCTs is dependent on H
+
 co-transport and thus movement of lactate is pH-sensitive, 

whereby lactate transport is enhanced at low pH on the H
+
 binding side or high pH on the 

opposite side
393

. In this manner, the export of lactate out of the cell is regulated by the 

redox potential and is enhanced by a high glycolytic rate
394

. The transport of lactate is 

also freely reversible with a trans-acceleration effect, which means that shuttling is 

accelerated if the lactate concentration is increased on the opposite side
395

. Given the 

tissue-specific expression and the kinetic characteristics of each, the distribution of MCTs 

in the brain supports the ANLSH whereby astrocytes are a lactate ‘source’ and neurons 

are a lactate ‘sink’
396,397

. The low lactate-affinity of MCT1 and MCT4 in astrocytes 

would ensure that lactate is exported to continue a high glycolytic rate and prevent lactate 

accumulation inside the cell. In contrast, the high lactate-affinity of MCT2 in neurons 

would ensure a high degree of lactate import and consumption.  

Support for the astrocyte-neuron lactate shuttle hypothesis 

Several lines of evidence support the ANLSH. First, from an anatomical standpoint, 

astrocytes are positioned in such a manner to support the coupling between glucose 

supply from blood vessels and energetic demand in neurons. Astrocytes project 

specialized processes called perivascular end-feet to surround cerebral blood vessels in 
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order to form the blood-brain-barrier and express GLUT-1 at the surface to promote 

glucose import into the brain
398,399

. In parallel, astrocytes have perisynaptic end-feet that 

enclose synaptic clefts in order to recycle glutamate released from neurons
400–402

. 

Therefore, astrocytes are positioned to respond to synaptic activity and supply glucose to 

neurons from the blood stream. Astrocytes and neurons also display markedly different 

metabolic phenotypes. Astrocytes typically present a high glycolytic rate and release 

lactate in the extracellular space
403–408

. The glycolytic phenotype of astrocytes may be 

maintained through either the low expression of PDH, or a high degree of the 

phosphorylation-mediated inactivation of PDH, in order to promote the conversion of 

pyruvate to lactate
409,410

. In contrast to astrocytes, neurons sustain a high rate of oxidative 

metabolism and even prefer lactate as a fuel source over glucose when both are 

present
403,405,411–416

. Further, neurons have a reduced capacity to perform glycolysis due 

to the constant proteasomal degradation of the enzyme 6-phosphofructose-2-

kinase/fructose-2,6-bisphosphatase-3 (PFKFB3), which is an activator of the rate-limiting 

glycolytic enzyme PFK
407

. In contrast, astrocytes express high levels of PFKFB3
407

. In 

addition, the LDH isoforms display differential cell-type specific expression in the 

hippocampus and occipital cortex of post-mortem tissues: neurons exclusively express 

with LDHB, while astrocytes express both LDHA and LDHB isoforms
328

. Thus the 

enrichment of LDHB in neurons favors lactate metabolism as a fuel source, while 

astrocytes are capable of both lactate metabolism and production. Perhaps the most 

convincing evidence in support of the ANLSH comes from in vivo studies using 
13

C-

labeling of lactate and nuclear magnetic resonance (NMR) spectroscopy. These 

experiments demonstrated that lactate is almost exclusively metabolized by neurons and 

that lactate produced by glycolysis in astrocytes serves as a substrate for neurons
413,417–

419
.  In addition to these observations, it has been demonstrated that a decline in neuronal 

synaptic transmission arising from glucose deprivation could be rescued by exogenous 

delivery of glucose or lactate specifically to astrocytes
267

. This effect was abolished in the 

presence of an MCT inhibitor, which indicates a role in metabolic trafficking of pyruvate 

or lactate in astrocytic networks to sustain neuronal activity
267

.   
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Controversy regarding astrocytic versus neuronal aerobic glycolysis 

The role of lactate as an intermediate metabolite shuttled between astrocytes and neurons 

to meet active energy requirements of the brain is still highly debated
266,420–425

. The 

ANLSH posits that neurons preferentially consume lactate over glucose as a fuel source, 

which is provided by astrocytes following activation-induced glycolytic metabolism. Yet, 

both cell types are capable of consuming glucose as a fuel source and producing lactate in 

vitro under various conditions
425–427

. Astrocytes also have a considerable capacity to 

perform oxidative metabolism and rely on their mitochondria for approximately 75% of 

total ATP produced
428

. In fact, it was estimated that astrocytes exhibit no preferential 

utilization of either glycolysis or oxidative phosphorylation to support the Na
+
/K

+
 

ATPase pump
428,429

. Neurons also have a high capacity for glycolysis and it has been 

suggested from several studies using isolated synaptosomes from the adult brain that 

neuronal glycolysis increases in response to cerebral activation
430–433

. Several lines of 

evidence also suggest that lactate is not a major fuel source during normal brain 

activation, yet can be used as peripheral supply from the blood when glucose availability 

is inadequate such as during physical exercise
434–438

. Some researchers have argued that 

glycogen mobilization in astrocytes may simply help to offset the energy requirements of 

neurons, thereby reducing astrocytic utilization of blood-borne glucose and increasing 

glucose availability for activated neurons
297,439

. Interestingly, alternative theories have 

been proposed counter to the ANLSH called the neuron-to-astrocyte lactate shuttle. The 

authors used concentration and kinetic parameters of GLUT-1 and MCTs in endothelial 

cells, astrocytes, and neurons, to simulate neuronal uptake of glucose during activation 

and release of lactate to be taken up by astrocytes
266,440

. This model was further supported 

by in vivo functional magnetic resonance spectroscopy (fMRS) to demonstrate that 

neurons, not astrocytes, are the primary source of glucose uptake and lactate 

production
424

. Yet, regardless of the direction of lactate flow during cerebral activation, 

these authors suggested that the overall contribution of lactate to glucose metabolism is 

so small that it should be considered negligible
441

. Taken altogether, cerebral activation 

triggers an up-regulation of aerobic glycolysis in affected brain regions with the 
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associated production of lactate, yet the role of lactate as an intermediate metabolite 

shuttled between astrocytes and neurons remains a contentious issue. 

1.3.2 The role of lactate in memory 

Memory is a complex cognitive process regulated by several different cellular and 

molecular signaling cascades in the brain working together to encode and retrieve 

information. Memory is often described as a process that can divided into three distinct 

stages: acquisition, consolidation, and retrieval. Memory acquisition (encoding) is the 

process by which an animal learns the association between a cause and effect in a given 

context, while memory consolidation (storage) involves the stabilization of the 

association into a long-term memory trace, and retrieval (recall) is the process by which a 

memory trace is accessed to modulate future behaviour
442

. A large body of literature 

implicates the role of different brain regions in these sequential processes: in general, 

memory acquisition involves synaptic changes in the hippocampus, while memory 

consolidation involves the transfer of information from the hippocampus to the frontal 

and temporal cortex where it is stored for long-term retention, and memory retrieval links 

neural connections between the hippocampus and cortex to elicit a recall of 

information
443–447

. The specific transfer of information between two neurons was 

originally proposed to involve cellular changes such that the repeated and persistent 

activity of one neuron induces a lasting increase in efficiency of firing the other 

neuron
448

. This mechanism is now commonly referred to as synaptic plasticity, which 

describes the ability of synapses to change their strength over time in response to changes 

in their activity
449

. The molecular changes occurring at the synapse that strengthen or 

weaken the connection are referred to as long-term potentiation (LTP) and long-term 

depression (LTD), respectively. While short-term changes at the synapse involve post-

translational modifications, changes associated with consolidation or stabilization of 

long-term memory requires changes in gene expression and new protein synthesis
450

. The 

role of LTP in the hippocampus associated with memory formation has been examined 

extensively and reviewed in great detail
451–455

. On a molecular level, long-term LTP 

begins with the depolarization of the post-synaptic site through the -amino-3-hydroxy-

5-methyl-4-isoxazolepropionate (AMPA) receptor and the coincident binding of 
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glutamate to the NMDA receptor, which stimulates an influx of Ca
2+

 into the cell and 

triggers a signaling cascade that activates Ca
2+

-dependent protein kinases. This ultimately 

leads to activation of the transcription factor cAMP-response element binding protein 

(CREB), which promotes gene expression of proteins that remodel the actin cytoskeleton 

and are required for long-term LTP and memory consolidation
456–458

. Several studies 

have demonstrated that genetic loss of CREB impaired long-term memory formation
459–

461
.  

A growing body of evidence suggests that lactate participates in LTP and memory 

formation. Inhibitory avoidance training in rats caused an increase in activated CREB and 

its downstream targets, ARC and COFILIN. This effect was completely blocked with 

administration of 1,4-dideoxy-1,4-imino-D-arabinitol (DAB), which blocks glycogen 

breakdown, and led to impaired memory formation
462

. Exogenous lactate can rescue 

CREB activation back to a level comparable to vehicle-injected rats, although glucose 

was not tested.  A recent meta-analysis of whole-genome microarray data revealed a 

strong correlation between aerobic glycolysis and changes in gene expression associated 

with synapse formation and neurite growth in the adult brain
463

. This observation may be 

explained by results from a recent study showing that lactate can potentiate NMDA 

signaling and promote the expression of synaptic plasticity-related genes downstream of 

CREB by raising the cytosolic NADH/NAD
+
 ratio in cultured neurons and in vivo in the 

mouse sensory-motor cortex
464

. This is in agreement with previous studies showing 

redox-dependent regulation of the NMDA receptor
465,466

. Lactate has also been 

implicated as a receptor-mediated signaling molecule independent of metabolic 

coupling
467

. Lactate was identified as a natural ligand of a G protein-coupled receptor 81 

(GPR81), also known as hydroxycarboxylic receptor 1 (HCA1)
468

. This receptor is 

expressed on post-synaptic terminals of excitatory synapses as well as the perivascular 

astrocytic processes and endothelial cells that comprise the blood-brain barrier, although 

it is expressed at 100-fold levels in adipose tissues where it plays a prominent role 

inhibiting lipolysis
468–471

. Activation of GPR81 causes an inhibition in adenylyl cyclase 

activity resulting in a decline in cAMP levels, which in turn reduces calcium-spiking 

activity in cortical neurons
471,472

. The ability of lactate to suppress neuronal activity has 
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been observed previously in hippocampal slices, yet a direct role for GPR81 in synaptic 

plasticity and memory has yet to be discovered
473

. 

Perhaps the most convincing evidence that implicates a role of lactate in memory 

processes is directly through metabolic coupling and fuel delivery. Given that aerobic 

glycolysis is quickly up-regulated in active regions of the brain and cognitive tasks are 

energetically demanding processes, lactate production and transport may simply comprise 

a system of energy delivery to brain regions participating in memory processes. The first 

evidence of this emerged from experiments demonstrating that glycogen is mobilized 

from astrocytes in neonatal chicks following training in a taste-aversion task
474,475

. 

Administration of DAB or 2-deoxyglucose (2DG), which impaired glycogen breakdown 

and glycolysis respectively, impaired memory performance
476,477

. Supplementation with 

lactate was sufficient to rescue memory in the presence of DAB or 2DG, while glucose 

was able to rescue memory from DAB but not 2DG. These observations suggested that 

mobilization of glycogen and glycolysis both play a key role in memory formation. A 

similar study demonstrated that IA training in rats caused an increase in extracellular 

lactate in the hippocampus that was completely blocked with DAB
462

. Administration of 

DAB had no effect on short-term memory (tested after an hour) but blocked long-term 

memory (tested after 24 hours) that was rescued with exogenous lactate
462

. The authors 

also demonstrated that knock down of MCT1, MCT2, or MCT4 expression impaired 

memory that was rescued with administration of lactate following disruption of MCT1 or 

MCT4 (astrocytic) but not MCT2 (neuronal) expression. Pharmacological blockage of 

MCT2 with -cyano-4-hydroxycinnamate (4-CIN) also caused an inhibition of spatial 

working memory formation in rats that could not be rescued with lactate or glucose 

administration
296

.These results have been confirmed by independent groups using a 

cocaine-induced model of conditioned responses
478

. Ultimately, these studies 

demonstrating lactate production through glycogen breakdown in astrocytes and 

subsequent transport to neurons plays a key role in memory formation
479

. However, it 

remains to be discovered how neuronal activation, aerobic glycolysis, and lactate 

shuttling varies during aging and in AD and contributes to cognitive decline under 

physiological conditions.  
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1.4 Research questions 

Aerobic glycolysis and glycogen breakdown both play a central role in long-term 

memory formation through the production of lactate in astrocytes and subsequent 

transport to neurons. Lactate may act as a redox-mediated signaling molecule to directly 

promote the expression of synaptic plasticity genes or bind directly to a receptor to elicit 

downstream signaling cascades that regulate neuronal activity. Aerobic glycolysis is up-

regulated in activated regions of the brain to quickly support the energy demands of firing 

neurons and promote the de novo synthesis of biosynthetic building blocks for synaptic 

remodeling. Aerobic glycolysis also shares a close spatial distribution to amyloid 

deposition in AD patients and confers a survival advantage to neurons in culture when 

exposed to A. However, the changes in aerobic glycolysis that occur with age and the 

role of lactate production and transport in memory decline associated with Alzheimer’s 

disease have yet to be investigated. Furthermore, the transgenic-AD mouse line used in 

this study, APPswe/PS1ΔE9, develops memory loss with age, yet does not exhibit extensive 

neuron loss consistent with atrophy in the human AD brain
480

. This has remained a 

contentious issue for decades and has given rise to several research questions that I aim to 

answer including:  

 

1. Does aerobic glycolysis mediate resistance to A in vivo? 

2. Does aerobic glycolysis play a role in memory performance during both normal 

aging and under the conditions of high A deposition? 
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1.5 Hypothesis 

I hypothesize that neurons upregulate aerobic glycolysis in response to A deposition to 

promote A resistance in vivo. Furthermore, I hypothesize that aerobic glycolysis 

contributes to memory processes in both normal aging and under conditions of high A 

deposition.   

1.6 Specific aims 

In order to test the hypothesis that neurons upregulate aerobic glycolysis in response to 

A deposition, a mouse model of cerebral amyloid pathology, APP/PS1, and control 

littermates will be treated with DCA (an inhibitor of PDK1) in the drinking water over 

the course of age. I predict that APP/PS1 mice treated with DCA will undergo 

neurodegeneration and succumb to memory decline at an earlier age than untreated 

APP/PS1 mice. In order to test the hypothesis that aerobic glycolysis contributes to 

memory, a standard memory test will be used to compare the spatial memory 

performance of control mice and APP/PS1 mice to the expression of aerobic glycolysis 

enzymes measured by Western blot analysis. This will determine if a correlation between 

aerobic glycolysis enzyme expression and memory exists during normal and pathological 

conditions. In addition, the effect of chemical inhibition of aerobic glycolysis on memory 

in control and APP/PS1 mice will be assessed. I predict that the expression of aerobic 

glycolysis enzymes in the brain will correlate with memory performance in both control 

and APP/PS1 mice. Moreover, inhibition of aerobic glycolysis will have a more adverse 

effect on memory in APP/PS1 mice due to the reliance of this metabolism to preserve 

neuronal function under pathological conditions. 
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Chapter 2  

2 Materials and Methods 

2.1 Animals 

Male APPswe/PS1ΔE9 mice
481

 were maintained on a C57BL/6J background (Charles River 

Laboratories International, Inc.) and will henceforth be referred to as APP/PS1 mice. 

Age-matched male C57BL/6J littermates were used as controls and will henceforth be 

referred to as control mice. All animals were housed in groups of up to 3 animals per 

cage under a 12 hour light/dark cycle with ad libitum access to water and the Mouse Diet 

5015 breeder chow base diet (LabDiet). A single red, transparent plastic house was 

placed in each cage with cotton nesting material and corn cob bedding and that was 

changed weekly. Animals were weaned at 3 weeks of age and ear punches were used for 

identification and PCR-based genotyping. All animal procedures were conducted in 

compliance with the Canadian Council of Animal Care (CCAC) guidelines with 

approved animal protocol from the Institutional Animal Care and Use Committees at the 

University of Western Ontario (protocol number 2011-079). 

2.2 
1
H-Magnetic resonance spectroscopy 

Animals were anesthetized starting with 3.5% isoflurane and then reduced to 2% 

combined with 30% oxygen. Mice were scanned using a 9.4 T small animal MRI scanner 

equipped with a 30 mm millipede volume radiofrequency coil (Agilent, Palo Alto, CA, 

USA). T2-weighted images were acquired using a 2-dimensional fast spin echo (FSE) 

pulse sequence with parameters: repetition time (TR)/echo time (TE) = 4000/10 ms, echo 

train length (ETL) = 4, effective TE = 40 ms, field of view (FOV) = 19.2 x 19.2 mm
2
, 

matrix size = 128 x 128, slice thickness= 0.5 mm, 25 slices, 4 averages. Based on the T2-

image, a voxel (2 x 4 x 3 mm
3
) was localized to the frontal cortex for magnetic resonance 

spectroscopy using a LASER pulse sequence with the following parameters:  

TR/TE = 4000/270 ms, 384 averages for the metabolite spectrum with water suppressed. 

An unsuppressed water spectrum (8 averages) was also acquired and a QUECC 

correction was applied. Metabolite levels were measured by fitting spectra using fitMAN 
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software incorporated into a graphical user interface written in the IDL (Version 5.4, 

Research Systems Inc.) programming language
482

.  

2.3 In vivo microdialysis and interstitial fluid lactate 
measurements 

In vivo microdialysis was performed as previously described
483

.  Briefly, guide cannulae 

(BR-style, Bioanalytical Systems, West Lafayette, IN, USA) were stereotaxically 

implanted into the hippocampus and secured into place with dental cement.  Twenty-four 

hours post-cannulation, mice were transferred to Raturn sampling cages (Bioanalytical 

Systems) and microdialysis probes (2 mm; 38 kDa molecular weight cut-off; BR-style, 

Bioanalytical Systems) were inserted into the guide cannula, connected to a syringe pump 

and infused with artificial cerebrospinal fluid (aCSF; 1.3 mM CaCl2, 1.2 mM MgSO4, 3 

mM KCl, 0.4 mM KH2PO4, 25 mM NaHCO3 and 122 mM NaCl; pH 7.35) at a flow rate 

of 1 µl/minute.  Following an 8-hour habituation period, hippocampal ISF was collected 

in hourly fractions and lactate measurements using a lactate oxidase method were 

quantified for each hour using the YSI 2900 analyzer (YSI Incorporated, Yellow Springs, 

OH, USA) per the manufacturer’s instructions.   

2.4 SDS-PAGE and Western blot analysis of brain extracts 

Mice were euthanized by cervical dislocation and then immediately perfused with PBS, 

pH 7.4 ± 0.1. The frontal cortex and hippocampus of the right hemisphere were removed 

and snap frozen in dry ice. Tissues were homogenized by hand using a pestle in an 

extraction buffer containing 50 mM Tris pH 7.5, 2% SDS, 100 mM EDTA, protease 

inhibitors: 2 mM leupeptin, 0.1 mM pepstatin A, and 1 mM PMSF, and the phosphatase 

inhibitor 0.5 mM sodium orthovanadate. Protein extracts were separated by 10% SDS-

PAGE, and electroblotted onto PVDF membrane (Bio-Rad, Hercules, CA, USA). 

Membranes were probed with the following antibodies: PDK1 (Enzo, Farmingdale, NY, 

USA), PDH-E1 (pSer
232

) (Millipore, Darmstadt, Germany), PDH-E1 (pSer
293

) 

(Millipore), PDH-E1 (AbCam, Cambridge, UK), LDHA (Cell Signaling, Danvers, MA, 

USA), LDHB (AbCam), PKM2 (Cell Signaling), PKM1 (Cell Signaling), MCT2 

(Millipore), MCT4 (Millipore) and -actin (Cell Signaling), followed by incubation with 
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an appropriate horseradish peroxidase-conjugated secondary antibody (Bio-Rad). The 

blots were developed using Pierce ECL western blotting substrate (Thermo Fisher 

Scientific, Waltham, MA, USA) and visualized with a Bio-Rad Molecular Imager 

(ChemiDoc XRS, Bio-Rad). Densitometric analysis was performed using Quantity One 

software (Bio-Rad).  

2.5 The Morris water maze 

Spatial learning and memory was assessed as previously described
484

 using the Morris 

water maze (MWM) with the following specifications: A white circular tank with 

diameter 48" and height 30" (San Diego Instruments, San Diego, CA, USA) was filled 

with water and maintained at a temperature of 26 ± 1 ºC using a 300 W submersible 

aquarium heater (Aqueon, Franklin, WI, USA) that was removed immediately before 

mice were brought into the testing room. Spatial visual cues in the form of different 

shaped cardboard pictures were placed on the walls surrounding the water tank, including 

a white diamond at the North position, a blue cross at the North-East, a yellow triangle at 

the South-East, a green circle at the South, a pink heart at the South-West, and a red 

square at the North-West (Figure 4). Visual data were collected using a HD Pro Webcam 

C920 (Logitech, Romanel-sur-Morges, Switzerland) and analyzed by the video tracking 

software ANY-maze v4.98 (Stoelting Company, Wood Dale, IL, USA). A circular, clear 

plastic platform (diameter 10.16 cm) was submerged 1 cm below the surface of the water. 

The platform was positioned in the correct quadrant according to virtual tracer lines 

generated by the ANY-maze software with a radial grid from the center spaced at 45 

degrees as well as a square grid spaced to the edge of the water line and a concentric grid 

spaced to the edge of the square. The platform was positioned in the tank in the correct 

quadrant with its center at the intersection of the radial and concentric lines.  
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Figure 4: Configuration of the Morris water maze.   

(Top) Virtual tracer lines in red outline the edge of the water level and 

the division of the tank into four quadrants, as well as the platform in 

the South-East quadrant. Virtual tracer lines in black outlining the 

positioning of the platform using a radial grid from the center spaced 

at 45 degrees as well as a square grid spaced to the edge of the water 

line and a concentric grid spaced to the edge of the square. 

Representative images are shown of cardboard pictures placed on the 

walls surrounding the water tank, including a white diamond at the 

North position, a blue cross at the North-East, a tallow triangle at the 

South-East, a green circle at the South, a pink heart at the South-West, 

and a red square at the North-West. Scale bar in the bottom right is 30 

cm. (Bottom) Photograph taken of the MWM with a mouse swimming 

and platform located in the South-East quadrant. 
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Before the first training day, mice were acclimatized to the experimental room and water 

tank. For mice naïve to the MWM, the acclimatization period lasted three consecutive 

days: on the first day, mice spent 30 minutes in the experimental room in their native 

cages; on the second day, mice spent 30 minutes in the experimental room in their native 

cages followed by 15 seconds on the platform located in the center of the tank and 

allowed 90 seconds to swim to the platform if they jumped off, or guided to the platform 

if they did not find it within 90 seconds; on the third day, mice spent 30 minutes in the 

experimental room in their native cages followed by 15 seconds on the platform located 

in the center of the tank, then followed by a release into the water at the North release 

point of the tank and allowed 90 seconds to find the platform, or guided to the platform if 

they did not find it in 90 seconds. For mice that were not naïve to the MWM, an 

acclimatization period of one day was performed consisting of 30 minutes spent in the 

experimental room in their native cages followed by 15 seconds spent on the platform 

located in the center of the tank, then followed by a release into the water at the North 

release point of the tank and allowed 90 seconds to find the platform, or guided to the 

platform if they did not find it in 90 seconds. For all subsequent training days mice were 

first acclimatized to the experimental room for 30 minutes before the beginning of the 

first trial. 

Mice were then trained for 4 consecutive days with 4 trials per day to find the location of 

the platform submerged in the correct quadrant. The release point of the first trial 

corresponded to the cardinal directions (North, East, South, and West) rotating with each 

training day (Table 1). For each of the 4 trials in one day, mice were released into the 

water with a clockwise rotation of release placements for each trial that day. A trial lasted 

until the mouse found the platform or until 90 seconds had elapsed, at which point the 

mouse was gently guided to the platform. The mouse was then placed for 15 seconds on 

the platform before it was removed and briefly dried in paper towel before placing it back 

in its cage. An inter-trial interval (ITI) of 10 minutes was used to ensure consistency of 

timing between trials for each mouse.  
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Table 1: Release point schedule for mice training in the Morris water maze 

Training Day 

Release Point (4 per day) 

Trial 1 Trial 2 Trial 3 Trial 4 

1 N E S W 

2 E S W N 

3 S W N E 

4 W N E S 

Probe Center 

 

On the fifth day, mice were exposed to a probe trial in which the platform was removed 

and the mouse was released in the center of the tank and given 60 seconds to attempt to 

find the missing platform. After swimming in the probe trial, the mouse was then 

removed from the tank and briefly dried in paper towel before placing it back into its 

cage. A flag trial was then performed in which the platform was placed back into the 

water in the opposite quadrant that originally held the platform and a small red plastic 

pole was inserted into the platform so it was sticking out of the water. The mouse was 

released in the center of the tank and given 90 seconds to find the location of the 

platform. A trial lasted until the mouse found the platform or until 90 seconds had 

elapsed, at which point it was gently guided to the platform. The mouse was then given 

15 seconds on the platform before it was removed and briefly dried in paper towel before 

placing it back into its cage.  

Mice were disqualified from the data analysis of the MWM according to criteria that they 

did not appear to be using visual spatial strategies to actively search for the platform, or 

they appeared  unable or unmotivated to escape
485

. This behavior could occur in the 

following ways: (1) the mouse frequently swims around the edge of the pool in an 

attempt to climb up the wall of the tank and does not make a clear attempt to find the 
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platform; (2) the mouse frequently stops swimming and floats on the surface of the water 

for long periods of time. If the mouse attempted to climb up the wall of the tank and 

continued to swim on the edge of the pool, the timer continued until the end of the trial. If 

at any point the mouse stopped swimming and floated in the water, the timer was paused 

until it started swimming again and continued until the end of the trial. A mouse was 

disqualified from analysis if it failed to demonstrate active searching behavior on 

consecutive training days or on the probe trial. If a mouse was disqualified from analysis 

it was removed from all training days as well as the probe and flag trials for that 

particular training phase. 

For acute exposure to chemical inhibitors of aerobic glycolysis, the location of the 

platform was moved to different quadrants between each set of chemical treatments 

(Table 2). The platform was located in the south-east quadrant for the 1
st
 training phase 

(Vehicle), the north-west quadrant for the 2
nd

 training phase (Isosafrol), the north-east 

quadrant for the 3
rd

 training phase (DCA), and the south-west quadrant for the 4
th

 training 

phase (Saline). During the probe trial, mice were injected intraperitoneally with the 

specified treatment (vehicle, Isosafrol, DCA, or saline) 30 minutes prior to the start of the 

probe trial. 

Table 2: Treatment schedule for mice in memory testing with Isosafrol and 

dichloroacetate 

Training Phase Age (months) Treatment Platform Location 

1 12-13 Vehicle SE 

2 13-14 Isosafrol NW 

3 14-16 DCA NE 

4 16-17 Saline SW 

Euthanization 17-18 Saline or DCA  
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2.6 Preparation of mouse brain soluble and insoluble 

amyloid--extracts and ELISA 

Mouse brain tissue from the frontal cortex was extracted in a 50 mM Tris pH 7.5, 2% 

SDS buffer with a protease inhibitor cocktail containing AEBSF (Millipore), then 

sonicated briefly and centrifuged at 100,000 × g for 1 hour at 4ºC. The supernatant was 

collected as the soluble A fraction and initially diluted in cold Reaction buffer BSAT-

DPBS (Dulbecco’s phosphate buffered saline at pH7.4 containing 5% BSA and 0.03% 

Tween-20), then diluted as necessary for ELISA analysis. To analyze the insoluble A 

fraction, the pellet was dissolved in 70% formic acid and sonicated briefly before 

centrifugation at 100,000 × g for 1 hour at 4 ºC. The supernatant was neutralized by 1 M 

Tris phosphate buffer, pH 11, and then initially diluted in cold BSAT-DPBS, followed by 

dilution as necessary for the ELISA. ELISAs for A40 and A42 (Thermo Fisher 

Scientific) were performed according to standard protocol and measured at 450 nm using 

an Infinite M1000 microplate reader (TECAN, Männedolf, Switzerland).  

2.7 Cryo-immunohistochemistry and confocal microscopy 

Left hemi-brains were fixed in 4% paraformaldehyde at 4 ºC overnight, then incubated in 

30% sucrose at 4 ºC for 48 hours, and snap frozen in freezing microtome cassettes 

containing Tissue-Tek
®
 O.C.T. compound (Sakura Finetek USA Inc., Torrance, CA, 

USA). Brain tissues were sectioned on a serial sagittal plane using a CM350 Cryostat 

(Leica, Wetzlar, Germany) at a thickness of 30 m and free-floating brain slices were 

stored in 25 % glycerol in PBS at 4 ºC for up to three weeks. Sections were washed in 

PBS, then permeabilized using PBST (PBS and 0.1 % Triton X-100), and blocked 

overnight at 4 ºC in 10% goat serum in PBST. Sections were incubated in primary 

antibody solutions at a 1:100 dilution in PBST + 1% BSA overnight at 4 ºC: PDK1 

(Enzo), LDHA (Cell Signaling), GFAP (AbCam), and TUJ1 (AbCam). Sections were 

washed in PBS and incubated in secondary antibodies: AlexaFluor
®
 488 and AlexaFluor

®
 

647 (Thermo Fisher Scientific) at a 1:1000 dilution in PBST + 1% BSA for 1 hour at 

room temperature then washed with PBS and mounted with ProLong
®
 Gold reagent with 

DAPI (Thermo Fisher Scientific) on Superfrost slides (Fisher Scientific, Waltham, MA, 
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USA). For staining of A plaques, sections were dehydrated with 80% ethanol then 

incubated in 0.01%Thioflavin S (Sigma, St. Louis, MO, USA) for 15 min at room 

temperature, followed by rehydration in PBS and mounting with ProLong
®

 Gold antifade 

reagent without DAPI (Thermo Fisher Scientific) on Superfrost slides (Fisher Scientific). 

2.8 Dichloroacetate 

Dichloroacetate (DCA) is an analog of acetic acid in which two of the hydrogens of the 

methyl group are replaced by chlorine atoms. Humans have a long history of exposure to 

DCA through chlorinated drinking water with an average daily consumption at 

approximately 4 mg/kg
486

. DCA has been used as a metabolic treatment in laboratory 

animals since 1973
487

 and in humans since 1980
488

. DCA is a selective inhibitor of PDK, 

thereby preventing the phosphorylation of PDH and promoting the active form
489

.  

2.9 Isosafrol 

Isosafrol is an analog of stiripentol, an inhibitor of cytochrome P450, which has been 

used for the treatment of severe myoclonic epilepsy in infancy (SMEI), a rare congenital 

form of epilepsy called Dravet syndrome
490

. Isosafrol lacks the hydroxyl group and 

tertiary-butyl group of stiripentol. It was recently discovered that isosafrol is a potent 

inhibitor of LDHA and strongly prevented pyruvate-to-lactate conversion in vitro
491

.   

2.10 Chronic exposure to dichloroacetate through oral 
administration in drinking water 

DCA (Sigma) was orally administered to mice at a daily dose of 200 mg/kg (pH 7.4 ± 

0.1) by changing the drinking immediately water after weaning (3 weeks of age), based 

on an average daily water consumption of 5mL per mouse. Mice were weighed twice 

weekly and the average weight of mice in each cage was used to calculate the amount of 

DCA to add to drinking water of each bottle per cage. Drinking water was replaced twice 

per week with freshly prepared DCA. 
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2.11 Acute exposure to Isosafrol and dichloroacetate 
through intraperitoneal injection 

The chemical inhibitor of LDH, Isosafrol (Sigma) was prepared fresh the day of injection 

at a concentration of 15mg/mL in a sterile solution of 1% Carboxymethylcellulose 

(CMC) (Sigma) in 0.9% NaCl (saline). Mice were weighed and then injected 

intraperitoneally with the correct volume of Isosafrol solution for a dosage of 300 mg/kg 

(1 mL for a 50 mg animal). The vehicle injection was a sterile solution of 1% CMC 

(Sigma) in saline. Mice were weighed and then injected intraperitoneally with the correct 

volume of vehicle assuming a dosage of 300 mg/kg of Isosafrol from a 15 mg/mL 

concentration. DCA (Sigma), was prepared fresh the day of injection at a concentration 

of 10 mg/mL in a sterile solution of saline and neutralized to pH 7.4 ± 0.1 with NaOH. 

Mice were weighed and then injected intraperitoneally with the correct volume of DCA 

solution for a dosage of 200 mg/kg (1 mL for a 50 mg animal). For saline injections, mice 

were weighed and injected intraperitoneally with the correct volume of sterile saline 

assuming a dosage of 200 mg/kg of DCA from a 10 mg/mL solution.  

2.12 Preparation of mouse brain extracts and LDHA/LDHB 
enzyme activity assay 

Mice were injected intraperitoneally with vehicle (1% CMC) or Isosafrol (300 mg/kg) 

and euthanized 30 minutes later by cervical dislocation. The hippocampus was dissected 

and snap frozen in dry ice. Tissues were homogenized in PPB buffer (100 mM Potassium 

Phosphate Buffer, pH 7.0 ± 0.1, with 0.1% Triton X-100 (Sigma), 2 mM EDTA, 2 mM 

leupeptin, 0.1 mM pepstatin A, 1 mM PMSF, and 0.5 mM sodium orthovanadate). 

Protein extracts were added to a standard reaction formula for either LDHA (pyruvate to 

lactate) or LDHB (lactate to pyruvate). The LDHA reaction formula included 30 mM 

sodium pyruvate (Sigma), 0.192 mM NADH (Sigma), and approximately 3 g of protein 

extract in 500 mM PPB, pH 7.4 ± 0.1 for a total volume of 50 L in a single well of a 

Nunc™ Black Polystyrene 96-well plate (Thermo Fisher Scientific). The LDHB reaction 

formula included 90 mM sodium lactate (Sigma), 1.287 mM NAD
+
 (Sigma), 218.4 M 

Hydrazine (Sigma), and approximately 3 g of protein extract in a buffer containing 0.5 

M Glycine and 2.5 mM EDTA, pH 9.5 ± 0.1 for a total volume of 50 L in a single well 
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of a Nunc™ Black Polystyrene 96-well plate (Thermo Fisher Scientific). The rate of 

NADH consumption or production (LDHA and LDHB reactions, respectively) was 

determined by measuring NADH fluorescence at excitation/emission of 340/460 nm 

using a Infinite M1000 microplate reader (TECAN) at 20 second intervals for 5 minutes. 

Concentration of NADH was determined at each time point by comparing each 

fluorescence value to a NADH fluorescence standard curve. One Unit of enzyme is 

defined as the amount of enzyme that catalyzes conversion of 1μmol of substrate per 

minute. A line-of-best-fit was modeled from a linear regression analysis and enzyme 

activity was expressed in Units per mg of protein, calculated using the slope 

(ΔNADH(μM)/min) of the reaction and the volume of the reaction (50 L) according to 

the following equation: 

                                                   

2.13 Hyperpolarized 
13

C-pyruvate magnetic resonance 
spectroscopy 

Images were acquired using a GE MR750 3.0T MRI (GE, Fairfield, CT, USA). A 

custom-built dual-tuned 
13

C-
1
H solenoid radiofrequency coil was used as and 

1
H and 

13
C 

images were inherently registered. A hyperpolarized [1-
13

C]-pyruvate buffered solution 

was prepared using a dynamic nuclear polarizer, Hypersense (Oxford Instruments, 

Abingdon, UK). The solution had a final concentration of 150 mM pyruvate with pH 7.4 

at 37 °C and with ~10% polarization at 3 T with T1 of ~60 seconds. The imaging session 

consisted of fast imaging employing steady-state acquisition (FIESTA) imaging and 

hyperpolarized 
13

C-MRS imaging. FIESTA images were acquired with the following 

imaging parameters: 30 x 30 mm field of view (FOV), 0.2 mm isotropic in-plane 

resolution, 0.4 mm slice thickness, repetition time (TR) = 10.3 ms, echo time (TE) = 5.2 

ms, bandwidth = 12.58 Hz, and phase cycling = 8. For hyperpolarized 
13

C-MRS imaging, 

a ~0.3 ml bolus of the hyperpolarized [1-
13

C]-pyruvate buffered solution was injected via 

a tail vein catheter. 15 seconds after the injection, 2D
 13

C-spectra were acquired using 

free induction decay chemical shift imaging (FID-CSI) with the following parameters: 30 

x 30 mm FOV, 2.5 mm isotropic in-plane resolution, slice thickness = 10~15 mm, TR = 

80 ms, spectral width = 5000 Hz and number of points = 256. DCA was freshly prepared 
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at a concentration of 40 mg/mL in sterile saline and neutralized to pH 7.4 ± 0.1 using 

NaOH. Mice were given 30 minutes to recover following hyperpolarized 
13

C-pyruvate 

injection before injection of DCA at 200 mg/kg via tail vein catheter. Mice were then 

given another 30 minutes to recover and another bolus of hyperpolarized 
13

C-pyruvate 

was injected and mice were scanned again as previously described. 

2.14 Statistical analysis 

Two-way ANOVA and Tukey’s post hoc comparisons were used for the following 

analyses: the difference between the genotypes over the course of aging for lactate levels 

deduced by 
1
H-MRS analysis, the difference between genotypes over the course of aging 

for band density derived from western blot analysis, as well as the levels of soluble and 

insoluble A(1-40) and A(1-42) from cortical extracts of APP/PS1 mice. A Bonferroni 

correction for multiple comparisons was used to adjust the significance value for western 

blot analysis. A two-way ANOVA with repeated measures was used to analyze the 

difference between genotypes for the latency to find the platform over the course of 

training days in the MWM. A Welch’s T-test was used to evaluate the difference between 

genotypes for individual measures of the MWM: total distance traveled, percent time 

spent in the correct quadrant, and latency to find the flag platform. A multiple linear 

regression model and ANCOVA was used to analyze the difference between genotypes 

for correlation of memory performance in the MWM and the relative band density by 

western blot analysis, in addition to the correlation of soluble and insoluble A levels 

with the relative band density by western blot analysis. A one-way ANOVA with 

repeated measures was used to analyze the difference between genotypes for each 

training phase of injected chemicals Isosafrol and DCA. Two-way ANOVA and Tukey’s 

post hoc comparisons were used to analyze the difference between the genotypes and 

chemical treatments on memory performance with the MWM. A Welch’s t-test with a 

Bonferroni correction for multiple comparisons was used to analyze the difference 

between saline- and DCA-injected control mice on band densitometry from western blot 

analysis. A Welch’s paired t-test was used to evaluate the difference between lactate-to-

pyruvate ratios for 
13

C-pyruvate MRS measurements of before and after DCA injection. 

A Welch’s t-test with a Bonferroni correction for multiple comparisons was used to 
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evaluate the difference between control mice injected saline and DCA for measures of 

memory performance in the MWM. A multiple linear regression model was used to 

analyze the difference between saline- and DCA-injected mice for the correlation of 

memory performance in the MWM and relative band density by western blot. Statistical 

evaluation was performed with Microsoft Excel 2007, RStudio v0.99.891, and GraphPad 

Prism v6.01. 
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Chapter 3  

3 Results 

3.1 Examination of lactate levels in the frontal cortex and 
hippocampus of APP/PS1 mice over the course of age 

To examine changes to brain lactate levels over the course of normal aging, in vivo 
1
H-

magnetic resonance spectroscopy (
1
H-MRS) was performed on the frontal cortex and 

hippocampus of control and APP/PS1 mice (Figure 5A). Lactate was identified as a peak 

at 1.33 ppm (Figure 5B) and quantified as a ratio to the metabolite, N-acetylaspartate 

(NAA). Lactate was measured at 3, 6, 9, and 12 months of age in the frontal cortex 

(Figure 6A). A two-way ANOVA (age × genotype) was performed, which revealed a 

significant effect of age (F(3,47) = 4.200, p = 0.010), and genotype (F(3,47) = 4.575, p = 

0.037). A Tukey’s post hoc comparison test determined that cortical lactate levels 

progressively declined starting at 9 months of age (p = 0.008) to 12 months of age (p = 

0.002).  In contrast, lactate levels did not significantly change for APP/PS1 mice 

throughout the course of aging.  In order to ensure that the standard reference metabolite 

did not change over the course of age, NAA was measured as a ratio to creatine at 3, 6, 9, 

and 12 months of age in the frontal cortex (Figure 6B). A two-way ANOVA (age × 

genotype) was performed, which revealed no significant effect for age (F(3,48) = 2.561, 

p = 0.066) or genotype (F(3,48) = 0.082, p = 0.776), which indicated that NAA levels did 

not change and was suitable as a reference metabolite for measuring lactate over the 

course of aging. In addition to the frontal cortex, lactate levels in the hippocampus of 

control and APP/PS1 mice  was assessed by 
1
H-MRS and expressed as a ratio to NAA at 

6 and 12 months of age (Figure 7A). A two-way ANOVA (age × genotype) was 

performed and revealed no significant effect of genotype on lactate levels in the 

hippocampus for age (F(1,54) = 3.863, p = 0.055) or genotype (F(1,54) = 0.349, p = 

0.557). The same analysis for levels of NAA/creatine (Figure 7B) revealed no significant 

effect of treatment for age (F(1,54) = 3.323, p = 0.074) or genotype (F(1,54) = 0.005, p = 

0.941), which indicated that NAA was a good reference metabolite for measuring lactate 

over the course of aging.  
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Figure 5: Representation of lactate levels in the frontal cortex and 

hippocampus of APP/PS1 mice measured by 
1
H-magnetic 

resonance spectroscopy.  

(A) Volume of interest in frontal cerebral cortex (left) and 

hippocampus (right) in the coronal plane. (B) Representative spectrum 

showing the raw data (red line) obtained from the frontal cortex of a 

6-month-old APP/PS1 mouse, the fitted result (green line), and the 

residual line (blue line), which is the difference between the fit and the 

spectrum. Cho, choline; Cr, creatine; Lac, lactate (highlighted by 

vertical red lines between 1.2 and 1.4 ppm); NAA, N-acetylaspartate.   
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Figure 6. Lactate levels remain unaltered in APP/PS1 mice from 3 

to 12 months of age, but decline in aged control mice.  

(A) 
1
H-MRS spectra were quantified and average lactate levels in the 

frontal cortex from 3 to 12 months of age were expressed as a ratio to 

total NAA for control mice and APP/PS1 mice. (B) Quantification of 

average NAA levels in the frontal cortex expressed as a ratio to total 

creatine for control mice and APP/PS1 mice. Data are shown as mean 

+ SEM, **p < 0.01, n = 5 and 12, respectively, for control and 

APP/PS1 mice at ages 3 - 9 months; n = 4 and 3, respectively, for 

control and APP/PS1 mice at age 12 months.  
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Figure 7. Lactate levels remain constant in the hippocampus over 

the course of age in both control and APP/PS1 mice.  

(A) 
1
H-MRS spectra were quantified and average lactate levels in the 

hippocampus at 6 and 12 months of age were expressed as a ratio to 

total NAA for control mice and APP/PS1 mice. (B) Quantification of 

average NAA levels in the frontal cortex expressed as a ratio to total 

creatine for control mice and APP/PS1 mice. Data are shown as mean 

+ SEM, n = 16 and 11, respectively, for control and APP/PS1 mice.  
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To rule out the possibility that the anesthetic isoflurane might influence brain metabolism 

during MRS analysis, in vivo microdialysis was performed in awake, freely moving mice 

to assess lactate levels in the hippocampal ISF (Figure 8). A one-way ANOVA followed 

by a Tukey’s post-hoc test revealed a significant age-dependent rise in lactate levels in 

APP/PS1 mice from 3 to 18 months of age (F(2,84) = 20.53, p < 0.001). Furthermore, 

hippocampal ISF lactate levels were significantly elevated in APP/PS1 mice at 12 months 

of age compared with control mice as determined by a two-way ANOVA (age × 

genotype) followed by a Bonferroni’s post-hoc test (F(1,75) = 5.870, p < 0.05). These 

observations reveal an age-dependent elevation in lactate levels within the cortex and 

hippocampal ISF of APP/PS1 mice compared with control mice.  

 

Figure 8. Interstitial lactate levels in the hippocampus are elevated 

in older APP/PS1 mice.  

Hippocampal ISF lactate levels in APP/PS1 mice are significantly 

elevated at 12 and 18 months of age compared with 3-month-old mice 

(left). A significant difference in hippocampal ISF lactate levels 

between control and APP/PS1 mice was detected at 12 months of age 

(right). *p < 0.05, **p < 0.01, ***p < 0.001. Data are shown as mean 

+ SEM. 
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3.2 Age-dependent changes in expression of lactate 
metabolism and transporting proteins in the frontal 
cortex and hippocampus of APP/PS1 mice 

To explore the mechanism by which lactate levels can change in the brain with age, I 

next examined the expression of proteins responsible for lactate metabolism and transport 

(Figure 9). Protein extracts from the frontal cortex of control and APP/PS1 mice 

euthanized at 6 and 12 months of age were resolved by SDS-PAGE and then 

immunoblotted using the antibodies indicated (Figure 10). The band density was 

quantified using -actin as a loading control and measurements were expressed as a ratio 

of density relative to control mice at 6 months of age (Figure 11). A two-way ANOVA 

(age × genotype) with a Bonferroni correction for multiple comparisons ( = 0.00625) 

revealed a significant age-dependent decline for proteins involved in lactate metabolism, 

including the following: PDK1 (F(1,12) = 39.677, p <0.001), LDHA (F(1,12) = 24.008, p 

< 0.001), and PKM1 (F(1,12) = 22.118, p < 0.001). An age-dependent decline was 

observed in several markers of aerobic glycolysis markers, including PDH-p/PDH 

(F(1,12) = 9.006, p = 0.011), LDHB (F(1,12) = 4.720, p = 0.050), and PKM2 (F(1,12) = 

7.168, p = 0.020), yet these did not reach the threshold set by the Bonferroni correction 

( = 0.00625). In contrast, expression of the lactate transporters was elevated with age: 

MCT2 (F(1,12) = 5.590, p = 0.036) and MCT4 (F(1,12) = 38.685, p < 0.001). A 

significant effect of genotype was found for PDK1 (F(1,12) = 9.718, p = 0.009), LDHB 

(F(1,12) = 7.960, p = 0.015), PKM1 (F(1,12) = 5.083, p = 0.044), and MCT4 (F(1,12) = 

6.237, p = 0.028). In addition, a significant interaction between age and genotype was 

found for PDK1 (F(1,12) = 13.417, p = 0.003) and PKM1 (F(1,12) = 5.181, p = 0.042).  
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Figure 9. Proposed metabolic pathway of lactate metabolism and 

transport in the brain.  

Glucose is broken down via glycolysis into phosphoenol pyruvate 

(PEP). PEP is then converted to pyruvate via pyruvate kinase M2 

(PKM2) or pyruvate kinase M1 (PKM1). Pyruvate can be metabolized 

to acetyl-CoA and used as a substrate for oxidative phosphorylation in 

the mitochondria, or converted to lactate as a by-product of aerobic 

glycolysis. Pyruvate dehydrogenase kinase 1 (PDK1) phosphorylates 

and inhibits the pyruvate dehydrogenase complex (PDH), which is 

responsible for converting pyruvate to acetyl-CoA. Lactate 

dehydrogenase A (LDHA) converts pyruvate to lactate primarily in 

astrocytes, while lactate dehydrogenase B (LDHB) catalyzes the 

reverse reaction of lactate to pyruvate mainly within neurons. 

Monocarboxylate transporter 4 (MCT4) and monocarboxylate 

transporter 2 (MCT2) are involved in shuttling lactate between 

astrocytes and neurons, respectively. 
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Figure 10. Age-dependent decline in expression of aerobic 

glycolysis proteins in the frontal cortex.  

Western blot analysis of mouse frontal cortex extracts from 6-month-

old and 12-month-old control mice and APP/PS1 mice using indicated 

antibodies as markers of aerobic glycolysis and lactate metabolism. 

The upper -Actin panel was used as a loading control for all 

indicated proteins above this panel whereas the lower -Actin panel 

was used as loading control for MCT2 and MCT4 protein levels. n = 4 

for each set of control mice and APP/PS1 mice at 6 and 12 months of 

age.  
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Figure 11. Age-dependent decline in expression of aerobic 

glycolysis proteins in the frontal cortex: Band densitometry 

analysis. 

Quantification of band densitometry for western blots of extracts from 

the frontal cortex of 6-month-old and 12-month-old control mice and 

APP/PS1 mice probed with the indicated antibodies. Relative band 

density was calculated relative to -actin. Data are shown as mean ± 

SEM, *p < 0.05, **p < 0.01, ***p < 0.001, n = 4 for each set of 

control mice and APP/PS1 mice at 6 and 12 months old.  
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Western blot analysis was also performed using extracts from the hippocampus of control 

and APP/PS1 mice euthanized at 6 and 12 months of age (Figure 12). Band densitometry 

measurements of proteins involved in lactate metabolism and transport were measured 

relative to -actin and a two-way ANOVA (age × genotype) with a Bonferroni correction 

for multiple comparisons ( = 0.00625) (Figure 13). This analysis revealed a significant 

age-dependent decline in markers of lactate metabolism, including the following: PDH-

p/PDH (F(1,19) = 23.106, p < 0.001), LDHA (F(1,19) = 28.244, p < 0.001), and PKM1 

(F(1,19) = 20.912, p < 0.001). Interestingly, in contrast to the measurements in the frontal 

cortex, there was an age-dependent increase in expression of certain lactate metabolism 

enzymes in the hippocampus including LDHB (F(1,19) = 19.496, p < 0.001) and PKM2 

(F(1,19) = 13.746, p = 0.002). In contrast to expression patterns in the cortex, a decrease 

in the lactate transport protein MCT4 (F(1,19) = 17.068, p < 0.001) was found in the 

hippocampus of both control and APP/PS1 mice with age. These data indicated that there 

is an age-dependent change in proteins involved in lactate metabolism and transport in 

the hippocampus that is distinct from that of the frontal cortex.  
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Figure 12. Differential expression of aerobic glycolysis proteins in 

the hippocampus with age. 

Western blot analysis of mouse hippocampal extracts from 6-month-

old and 12-month-old control mice and APP/PS1 mice probed with 

the indicated antibodies. n = 6 for each set of control mice and 

APP/PS1 mice at 6 and 12 months old.  
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Figure 13. Differential expression of aerobic glycolysis proteins in 

the hippocampus with age: Band densitometry analysis. 

Quantification of band densitometry for western blots of extracts from 

the hippocampus of 6-month-old and 12-month-old control mice and 

APP/PS1 mice probed with the indicated antibodies. Relative band 

density was calculated relative to -actin. Data are shown as mean ± 

SEM, *p < 0.05, **p < 0.01, ***p < 0.001, n = 6 for each set of 

control mice and APP/PS1 mice at 6 and 12 months old.  
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3.3 Correlation analysis of aerobic glycolysis enzyme 

expression in the frontal cortex and amyloid- dynamics 

Considering that a tight spatial correlation exists between A deposition and areas of 

high aerobic glycolysis in both the resting normal brain, it has been suggested that 

aerobic glycolysis may contribute to A processing
262

. In order to determine if aerobic 

glycolysis influences the production of A or if the deposition of A influences the 

expression of aerobic glycolysis enzymes, soluble and insoluble fractions of A were 

extracted from the frontal cortex of APP/PS1 mice at 12 months of age. The levels of 

unique A species, A(1-40) and A(1-42), were quantified by ELISA selective for A 

peptides with C-termini ending at residue 40 or 42, respectively. The average amount of 

A in each brain extract was calculated as a ratio to total protein and a two-way ANOVA 

was performed (fraction × A species). This analysis revealed a significant interaction 

between the type of fraction and A species suggesting that the burden of amyloid in the 

frontal cortex exists predominantly as insoluble A(1-42) (F(1,20) = 22.00, p < 0.001) 

(Figure 14). A multiple linear regression was then performed for relative band density of 

aerobic glycolysis enzymes and amount of A(1-40) or A(1-42) in either soluble or 

insoluble fractions (Figure 15). This analysis revealed no correlation between levels of 

soluble A(1-40) and A(1-42) with expression of aerobic glycolysis proteins: LDHA/LDHB 

(R
2
 = 0.418, p = 0.125), PDK1 (R

2
 = 0.269, p = 0.513), PDH-p/PDH (R

2
 = 0.352, p = 

0.220), and PKM2/PKM1 (R
2
 = 0.512, p = 0.055). The same analysis was performed for 

relative band density with insoluble A species and revealed no significant correlation 

with expression of aerobic glycolysis enzymes: LDHA/LDHB (R
2
 = 0.779, p = 0.075), 

PDK1 (R
2
 = 0.765, p = 0.564), PDH-p/PDH (R

2
 = 0.755, p = 0.896), or PKM/PKM1 (R

2
 

= 0.808, p = 0.419). These data suggested that expression of aerobic glycolysis enzymes 

likely has no influence on the tendency of A peptides to form insoluble species.  
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Figure 14. Soluble and insoluble A(1-40) and A(1-42) in the frontal 

cortex of APP/PS1 mice at 12 months old.  

Levels of A(1-40) and A(1-42) were quantified with ELISA using 

extracts from the frontal cortex of APP/PS1 mice at 12 months old in 

both soluble and insoluble fractions. Amount of A was expressed as 

a ratio to the total amount of protein as measured by Lowry assay. 

Data are shown as individual animals with mean as horizontal line, 

***p < 0.001, n = 6 mice.  
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Figure 15. Deposition of A in APP/PS1 mice does not correlate 

with expression of aerobic glycolysis enzymes. 

Levels of A(1-40) and A(1-42) in both soluble (left) and insoluble 

(right) cortical extracts from APP/PS1 mice at 12 months old were 

correlated with expression of aerobic glycolysis enzymes: the ratio of 

LDHA/LDHAB, PDK1, the ratio of phosphorylated-PDH/PDH, and 

the ratio of PKM2/PKM1. n = 6 mice. No significant associations 

were detected. 
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3.4 Determining the cell-specific localization of aerobic 
glycolysis enzyme expression in control and APP/PS1 
mice 

To identify which cell types are expressing the enzymes responsible for aerobic 

glycolysis, frozen brain sections from control and APP/PS1 mice at 12 months of age 

were immunostained using antibodies specific for PDK1 and LDHA and co-stained with 

glial fibrillary acidic protein (GFAP) antibodies for reactive astrocytes and Class III -

Tubulin (TUJ1) for neurons. The sections were also stained with Thioflavin S (ThioS), 

which stains amyloid plaques. Within the frontal cortex of control mice, PDK1 and 

LDHA were exclusively expressed in the soma of TUJ1+ neurons (Figure 16). Within the 

frontal cortex of APP/PS1 mice, the expression of PDK1 and LDHA were observed 

primarily in the soma of TUJ1+ neurons and also in GFAP+ reactive astrocytes 

surrounding amyloid plaques. The same staining pattern was observed within the dentate 

gyrus of the hippocampus: PDK1 and LDHA expression was limited to the soma of 

TUJ1+ neurons in control mice and expression also observed in GFAP+ reactive 

astrocytes surrounding amyloid plaques in APP/PS1 mice (Figure 17). These 

observations indicate that PDK1 and LDHA are expressed primarily in the cell bodies of 

neurons, suggesting that this cell type is also capable of producing lactate through aerobic 

glycolysis. 
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Figure 16. PDK1 and LDHA are expressed in neurons of the 

frontal cortex of control and APP/PS1 mice and astrocytes co-

localized to A plaques of APP/PS1 mice. 

Fluorescence micrographs of the frontal cortex in control mice (top) 

and APP/PS1 mice (bottom) at 12 months old. Thioflavin S was used 

to visualize A plaque deposits (blue), while immunofluorescence 

was used to colocalize expression of PDK1 (red) and LDHA (red) 

with markers for astrocytes (GFAP +, green) and neurons (TUJ1 +, 

green). Merged images indicate that PDK1 and LDHA are primarily 

expressed in the soma of neurons in control mice and also in reactive 

astrocytes surrounding A plaques of APP/PS1 mice (bottom).  White 

arrows indicate co-localized expression of PDK1 and LDHA in 

cortical GFAP + cells in APP/PS1 mice. Scale bar, 100 m.  
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Figure 17. PDK1 and LDHA are expressed in both neurons and 

astrocytes co-localized to A plaques in the dentate gyrus of the 

hippocampus.  

Fluorescence micrographs of the dentate gyrus of the hippocampus in 

control mice (top) and APP/PS1 mice (bottom) at 12 months old. 

Thioflavin S was used to visualize A plaque deposits (blue), while 

immunofluorescence was used to colocalize expression of PDK1 (red) 

and LDHA (red) with markers for astrocytes (GFAP +, green) and 

neurons (TUJ1 +, green). Merged images indicate that PDK1 and 

LDHA are primarily expressed in the soma of neurons in control mice 

and also in reactive astrocytes surrounding A plaques of APP/PS1 

mice (bottom).  White arrows indicate co-localized expression of 

PDK1 and LDHA in cortical GFAP + cells in APP/PS1 mice. Scale 

bar, 100 m.  
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3.5 Determining the age of onset for visual-spatial memory 
deficit in APP/PS1 mice 

The MWM was used as a test of visual-spatial learning and memory at 12 months of age. 

Control mice and APP/PS1 mice were evaluated on their ability to learn the location of a 

hidden platform in the North-West quadrant of the water tank over the course of 4 

training days with 4 trials per day (Figure 18A). The latency time to find the platform 

was measured as an average of the 4 trials for each mouse and a two-way ANOVA with 

repeated measures (training day × genotype) was performed. This analysis revealed a 

significant effect of training day on the ability of mice to find the platform (F(3,72) = 

20.08, p < 0.001), but there was no significant effect with genotype (F(3,72) = 2.709, p = 

0.1128), or the interaction between training day and genotype (F(3,72) = 0.114, p = 

0.952). This analysis revealed that there is no difference between control mice and 

APP/PS1 mice in their ability to learn the location of the hidden platform during training. 

On the fifth day of testing, the hidden platform was removed and a probe trial was 

performed in which mice were allowed to swim for 60 seconds. The swim path of each 

mouse was used to compile a heat map representation of swimming behavior of each 

group of control and APP/PS1 mice during the probe trial (Figure 18B). The total 

distance covered during the probe trial was measured in order to determine if genotype 

had an effect on the physical ability of mice to swim in the tank of water (Figure 18C). A 

Welch’s t-test revealed no significant effect on total distance covered (t(21) = 1.516, p = 

1.445). The ability of mice to remember the location of the platform was assessed as the 

percent time spent in the correct quadrant (Figure 18D). A Welch’s t-test revealed a 

significant effect between genotypes (t(21) = 2.688, p = 0.007), which indicated that 

APP/PS1 mice have worse memory performance than control mice at 12 months of age. 

After the probe trial, a flag trial was performed to assess the ability of mice to use a 

visual cue to find the platform. Mice were allowed to swim in the tank for 90 seconds and 

the latency to find the flag-marked platform was recorded (Figure 18E). A Welch’s t-test 

revealed no significant effect between genotypes (t(22) = 1.301, p = 0.207), which 

indicated that both control mice and APP/PS1 mice were able to use the flag as a visual 

cue to determine the location of the hidden platform.  
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Figure 18. APP/PS1 mice have impaired visual-spatial memory at 

12 months of age.  

Memory performance in control mice and APP/PS1 mice at 12 months 

of age was assessed using the Morris water maze. (A) Mice were 

trained for 4 consecutive days to find the location of a hidden platform 

in the NW quadrant and the latency to escape was recorded. On day 5 

a probe trial was performed in which the platform was removed and 

mice were allowed to swim for 60 seconds (B-E). (B) The swim path 

for each group of mice was recorded and compiled into heat map 

representations. Measurements were taken for the total distance 

traveled (C) and the percentage of time spent in the correct quadrant 

(D). Immediately after the probe trial, a flag trial was performed to 

assess the ability of mice to use visual cues to find the platform. The 

platform was placed back in to the tank in the opposite quadrant and 

the latency to find the flag was recorded (E). Data shown are mean ± 

SEM, **p < 0.01, n = 12 and 11 for control and APP/PS1 mice, 

respectively.  
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3.6 Correlation analysis of aerobic glycolysis enzyme 
expression and memory performance in APP/PS1 mice 
at 12 months of age 

To determine whether aerobic glycolysis in the frontal cortex affects memory, the 

expression of aerobic glycolysis enzymes in the frontal cortex was compared with 

individual performances in the MWM at 12 months of age (Figure 19). A one-way 

ANCOVA was conducted on the linear regression of relative band density and percent 

time spent in the correct quadrant, controlling for genotype. This analysis revealed that 

genotype was a significant covariate for the enzymes involved in lactate production: 

LDHA (F(1,9) = 12.467, p = 0.008), PDH-p/PDH (F(1,9) = 5.588, p = 0.046), and 

PKM2/PKM1 (F(1,9) = 7.119, p = 0.028). This suggests that higher expression of these 

proteins correlates with better memory performance in control mice and worse 

performance in APP/PS1 mice. Genotype was not a significant covariate for the linear 

regression of LDHB expression on memory performance (F(1,9) = 2.161, p = 0.180). 

These data suggest that metabolism toward lactate production in the frontal cortex may 

be beneficial for memory processes in control mice and may in fact be detrimental to 

APP/PS1 mice. 
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Figure 19. Inverse relationship between expression of aerobic 

glycolysis enzymes in the frontal cortex and memory performance 

in APP/PS1 mice. 

Memory performance in the Morris water maze, as measured by 

percent time spent in the correct quadrant during the probe trial, was 

correlated with the expression of aerobic glycolysis enzymes in the 

frontal cortex of both control mice and APP/PS1 mice at 12 months of 

age. Higher expression of enzymes involved in lactate production, 

including LDHA, the ratio of PKM2/PKM1, and the ratio of 

phosphorylated-PDH/PDH, correlated with better memory 

performance in control mice, but not for APP/PS1 mice. Higher 

expression of LDHB, the enzyme that catalyzes the reverse reaction of 

LDHA, correlated with decreased memory performance for control 

mice, but an increase in memory performance for APP/PS1 mice. *p < 

0.05, **p < 0.01, n = 6 for each group of control and APP/PS1 mice. 

 



80 

 

A similar analysis examining the relationship between expression of aerobic glycolysis 

enzymes and memory was performed on extracts from the hippocampus (Figure 20). A 

one-way ANCOVA was conducted on the linear regression of relative band density and 

percent time spent in the correct quadrant, controlling for genotype. This analysis 

revealed that genotype was not a significant covariate for any of the markers of lactate 

metabolism: LDHA (R
2
 = 0.374, p = 0.073), LDHB (R

2
 = 0.148, p = 0.738), PDH-p/PDH 

(R
2
 = 0.141, p = 0.416), and PKM2/PKM1 (R

2
 = 0.168, p = 0.737). Altogether, these data 

indicate that aerobic glycolysis in the frontal cortex, and the concomitant production of 

lactate, may play a key role in memory processes. In contrast, the role of lactate 

metabolism in the hippocampus is less clearly defined. 
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Figure 20. Correlation analysis between expression of aerobic 

glycolysis enzymes in the hippocampus and memory performance 

in APP/PS1 mice. 

Memory performance in the Morris water maze, as measured by 

percent time spent in the correct quadrant during the probe trial, was 

correlated with the expression of aerobic glycolysis enzymes in the 

hippocampus of both control mice and APP/PS1 mice at 12 months 

old. n = 6 for each group of control mice and APP/PS1 mice. No 

significant interactions were detected. 
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3.7 Examining the effect of chronic oral administration of 
dichloroacetate on memory at 12 months of age 

Dichloroacetate (DCA) is a chemical inhibitor of PDK and is used in the treatment of 

congenital lactic acidosis
492

. DCA-mediated inhibition of PDK results in increased PDH 

activity and more glycolytic flux through the mitochondria with a concomitant decrease 

in lactate production
239

. Animal and clinical experiments indicate that a single oral dose 

of DCA has excellent bioavailability and can induce a lactate-lowering effect within 30 

minutes of administration
492

. In order to determine if DCA caused an effect on the 

memory performance, mice were exposed to 200 mg/kg of DCA in the drinking water 

from the time of weaning to 12 months of age when they were memory tested with the 

MWM. During the training phase of the MWM, mice were tasked with finding the 

location of a hidden platform in one of the quadrants of the tank. Mice were given 4 trials 

a day over 4 consecutive training days and the average time required to find the platform 

for each day was recorded (Figure 21A). A two-factor repeated measures ANOVA 

(genotype x treatment) was performed and revealed no significant interaction between 

genotype, treatment, and training day (F(3,123) = 0.106, p = 0.370). This indicated that 

the DCA in the drinking water did not have a preferential effect on one genotype over 

another in their ability to learn the location of the platform over the course of four 

training days. There was no effect from the interaction between treatment and training 

day (F(3,123) = 0.038, p = 0.999), indicating that DCA had no effect on mice of either 

genotype to learn the location of the platform. There was also no effect between genotype 

and training day (F(3,123) = 1.046, p = 0.375), indicating that control mice did not learn 

the location of the platform any faster than APP/PS1 mice. This analysis did reveal a 

significant effect from training day (F(3,123) = 35.743, p < 0.001), demonstrating that all 

mice from both genotypes and treatments found the platform faster over the course of 

four training days. In addition, there was a significant effect from genotype (F(1,41) = 

8.258, p = 0.006), suggesting that APP/PS1 mice took longer to find the platform on 

average for each training day regardless of DCA treatment. This indicated that the 

APP/PS1 mice have an impaired ability to learn the location of the platform at 12 months 

of age.  
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During the probe trial, the platform was removed from the tank and the mice were given 

60 seconds to swim and attempt to find the platform. The swimming path of the animals 

was recorded along with the time spent in the correct quadrant and the total distance 

covered during the swim. In order to visualize the memory performance of each group of 

mice, a heat map analysis was constructed that compiles the swimming path of each 

mouse into a collective representation of areas covered by the swimming group (Figure 

21B). The percentage of time spent in the correct quadrant was recorded during the probe 

trial as a measure of memory performance (Figure 21C). A two-way ANOVA (genotype 

× treatment) revealed a significant effect of genotype on memory performance (F(1,37) = 

10.63, p = 0.002), while there was no effect from DCA treatment (F(1,37) = 0.103, p = 

0.751) or interaction between genotype and treatment (F(1,37) = 0.028, p = 0.867). This 

indicated that chronic DCA treatment had no effect on memory performance for either 

genotype. The total distance covered during the probe trial was measured to evaluate the 

physical ability of mice to swim in the MWM (Figure 21D) and a two-way ANOVA 

(genotype × treatment) was performed. This analysis revealed no significant difference 

between genotypes (F(1,37) = 1.330, p = 0.256) or DCA treatment (F(1,37) = 0.085, p = 

0.772). These results suggest that the chronic treatment of DCA in the drinking water at 

200 mg/kg had no effect on the memory performance of either control or APP/PS1 mice 

at 12 months of age. Further, the only variable contributing to a difference in memory at 

this age was genotype of the animals. 
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Figure 21. Chronic exposure to dichloroacetate does not affect 

memory performance at 12 months of age.  

Memory performance of 12-month-old control mice and APP/PS1 

mice provided either normal water or DCA-water (200 mg/kg) was 

assessed by the Morris water maze. (A) Mice were trained for 4 

consecutive days (4 trials per day) to find the location of a hidden 

platform in the NW quadrant and the latency to escape was recorded. 

On day 5 a probe trial was performed in which the platform was 

removed and mice were allowed to swim for 60 seconds (B-D). (B) 

The swim path for each group of mice was recorded and compiled into 

heat map representations. Measurements were taken for the percentage 

of time spent in the correct quadrant (C) and the total distance traveled 

(D). The dashed horizontal line at 25% represents the amount of time 

spent in the correct quadrant by random chance. Data shown are mean 

± SEM, **p < 0.01, n = 12 and 11 for control and APP/PS1 mice 

provided normal water, respectively, and n = 10 and 9 for control and 

APP/PS1 mice provided DCA water, respectively. 
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3.8 Determining the effect of chronic oral dichloroacetate 
administration on PDH phosphorylation in the brain 

Although short-term oral administration of DCA has been shown to diminish cortical 

lactate levels
493

, the effect of chronic oral DCA administration on PDH phosphorylation 

and metabolism in the brain has never been examined.  The expression of aerobic 

glycolysis enzymes was examined at 12 months of age by western blot analysis in the 

frontal cortex of control mice provided either normal water or DCA-water (Figure 22). 

Band densitometry analysis was then performed (Figure 23) and a Welch’s t-test 

(treatment) revealed no significant effect on the ratio of phosphorylated-PDH to total 

PDH (t(12) = 0.204, p = 0.842), or the protein expression of PDK1 (t(12) = 1.042), p = 

0.327), LDHA (t(12) = 1.480, p = 0.167), LDHB (t(12) = 1.020, p = 0.3348, PKM2 (t(12) 

= 2.081, p = 0.060), or PKM1 (t(12) = 0.211, p = 0.837). These observations collectively 

suggest that chronic exposure to 200 mg/kg of DCA in the drinking water had no effect 

on the phosphorylation level of PDH or the expression of lactate metabolism enzymes at 

12 months of age.  
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Figure 22. Chronic exposure to dichloroacetate in the drinking 

water does not affect phosphorylation levels of PDH or expression 

of aerobic glycolysis enzymes in the frontal cortex of control mice.  

Western blot analysis of extracts from the frontal cortex of 12 month 

old control mice drinking either normal water or DCA water (200 

mg/kg) using indicated antibodies as markers of aerobic glycolysis 

and lactate metabolism. n = 6 and 8, respectively, for control mice 

with normal water and DCA water.  
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Figure 23. Chronic exposure to dichloroacetate in the drinking 

water does not affect phosphorylation levels of PDH or expression 

of aerobic glycolysis enzymes in the frontal cortex of control mice: 

Band densitometry analysis.  

Quantification of band densitometry for western blots of extracts from 

the frontal cortex of 12 month old control mice drinking either normal 

water or DCA water (200 mg/kg) using indicated antibodies as 

markers of aerobic glycolysis and lactate metabolism. Relative band 

density was calculated relative to -actin. Data are shown as mean ± 

SEM, n = 6 and 8, respectively, for control mice with normal water 

and DCA water.  
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3.9 Determining the effect of acute dichloroacetate injection 
on PDH phosphorylation in the brain 

Due to the inability of chronic oral administration of DCA to inhibit PDH 

phosphorylation, alternative strategies were considered to deliver chemical inhibitors. I 

decided to perform an acute injection of both Isosafrol and DCA. Isosafrol is a specific 

inhibitor of LDHA that has been shown to cross the blood-brain barrier and prevent 

chemically induced seizures in mice
491

. To determine if acute exposure to DCA had an 

effect on brain metabolism, the expression of aerobic glycolysis enzymes was examined 

at 17 - 18 months of age by western blot analysis in the frontal cortex of control mice 

injected with either saline or DCA (200 mg/kg) 30 minutes before euthanization (Figure 

24A). Band densitometry analysis was then performed and expressed as standardized 

ratio to saline-injected mice relative to -actin (Figure 24B). A Welch’s t-test revealed a 

significant effect on the ratio of phosphorylated-PDH to total PDH at Serine-232 (t(10) = 

9.083, p < 0.001) and Serine-293 (t(10) = 16.261, p < 0.001) in DCA-injected mice 

compared to saline-injected mice. This analysis also revealed a significant effect of 

treatment on PDK1 levels (t(10) = 2.837), p = 0.018). These data indicated that 

intraperitoneal injection of DCA at 200mg/kg inhibited phosphorylation of PDH in the 

frontal cortex. In addition, extracts from the hippocampus of mice injected 

intraperitoneally with either vehicle or Isosafrol were tested for LDHA or LDHB activity 

with a fluorescence-based enzyme activity assay (Figure 24C). A decrease in LDHA 

activity was observed in the hippocampus of mice injected with Isosafrol (14.31 ± 1.340 

Units/mg) as compared to mice injected with vehicle (21.23 ± 4.712 Units/mg). A 

Welch’s t-test revealed that this difference was not significant (p = 0.09). Injection of 

Isosafrol caused no difference in LDHB activity (p = 0.405). These findings demonstrate 

that both DCA and Isosafrol affect their protein targets in the brains of mice within 30 

minutes of injection.  
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Figure 24. Acute exposure to dichloroacetate decreases 

phosphorylation of PDH and Isosafrol may alter enzyme activity in 

the frontal cortex.  

(A) Western blot analysis of frontal cortex extracts from 18-month-old 

control mice euthanized 30 minutes after intraperitoneal injection with 

either saline or DCA (200 mg/kg). Levels of phosphorylated-PDH at 

Serine-232 or Serine-293, total PDH, and PDK1 were measured using 

indicated antibodies. (B) Quantification of band densitometry for western 

blots of extracts. Relative band density was calculated relative to -actin.  

n = 6 for each set of saline- and DCA-injected mice. (C) Isosafrol 

decreases LDHA, but not LDHB activity in the frontal cortex. Mice 

injected intraperitoneally with either vehicle or Isosafrol (300 mg/kg). 

After 30 minutes mice were sacrificed, perfused with PBS and brains were 

snap frozen. Hippocampal extracts were analyzed for LDHA and LDHB 

activity. n = 1 mouse with 6 technical repeats. Data are shown as mean ± 

SEM, *p < 0.05, ***p < 0.001. 
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3.10 Examining the effect of acute Isosafrol and 
dichloroacetate injection on memory performance  

A single cohort of control mice and APP/PS1 mice were assessed using the MWM over 

the course of 12 to 18 months of age
 
in four consecutive training and probe trial 

experiments. The location of the platform was moved after each exposure so the mice had 

to re-learn the location at each training session. All mice were injected with the treatment 

on the day of the probe trial, 30 minutes before entering the pool. The treatments for each 

probe trial were as follows: (1) the vehicle of Isosafrol (1% carboxymethylcellulose) with 

platform location South-East, (2) Isosafrol (300 mg/kg) with platform location North-

West, (3) DCA (200 mg/kg) with platform location North-East, and (4) the vehicle of 

DCA (saline) with platform location South-West. During the training phase, the mice 

were given 4 trials a day over 4 consecutive days to find the location of the hidden 

platform and the average latency time for each day was recorded (Figure 25). A one-way 

ANOVA with repeated measures (genotype x training day) revealed a significant delay in 

the latency time for APP/PS1 mice to find the platform for the first three training sessions 

compared to control mice: Vehicle (F(1,23) = 12.920, p = 0.002), Isosafrol (F(1,22) = 

21.100, p < 0.001), and DCA (F(1,21) = 5.631, p = 0.0273). However, there was no 

significant difference in latency times between control and APP/PS1 mice in the fourth 

training session: Saline (F(1,16) = 2.185, p = 0.159). This analysis indicated that the 

APP/PS1 mice were slower at learning to find the platform than the control mice during 

the first three training periods, yet by the fourth training session they performed equally 

to control mice. These data suggest that APP/PS1 mice at an age of up to 18 months are 

capable of learning the location of the platform just as well as control mice following 

repeated training.  
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Figure 25. Overview of training program in the Morris water 

maze for mice treated with Isosafrol and dichloroacetate.  

The effect of metabolic inhibitors on memory performance in control 

mice and APP/PS1 mice starting at 12 months of age was repeatedly 

tested using the Morris water maze. Mice were given four training 

trials a day to find the location of a hidden platform in one quadrant of 

the water tank (position indicated on bottom left of each training 

phase). On the fifth day, the platform was removed from the tank and 

a probe trial was performed 30 minutes after intraperitoneal injection 

of the indicated treatment (indicated by syringe). Mice were given a 

two week recovery period between training phases and the location of 

the platform changed for each treatment. Data shown are mean ± 

SEM, asterisks indicate a significant difference between genotype for 

a particular training phase as determined by a two-way ANOVA with 

repeated measures, *p < 0.05, **p < 0.01, ***p < 0.001, n = 17 and 8, 

respectively, for control mice and APP/PS1 mice for vehicle phase, n 

= 16 and 8, respectively, for control mice and APP/PS1 mice for 

Isosafrol phase, n = 15 and 8, respectively, for control mice and 

APP/PS1 mice for DCA phase, and n = 13 and 5, respectively, for 

control mice and APP/PS1 mice for saline phase. 
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The memory performance of each mouse on the probe trial was then compared over the 

course of treatments to determine if there was an observable effect from acute exposure 

to Isosafrol or DCA. The ability of mice to remember the location of the platform was 

measured as the percent time spent in the correct quadrant (Figure 26A). A two-way 

ANOVA analysis (genotype × treatment) of the time spent in the correct quadrant 

revealed a significant effect associated with genotype (F(1,81) = 4.280, p = 0.042), and 

treatment (F(3,81) = 5.651, p = 0.001), as well as the interaction between genotype and 

treatment (F(3,81) = 3.453, p = 0.021). In order to compare the memory of control mice 

over the course of different treatments, a Tukey’s post-hoc test was performed and 

revealed no significant difference between vehicle and Isosafrol treatment (p = 0.236), 

but there was a significant difference between vehicle and DCA treatment (p < 0.001), as 

well as the difference between DCA and saline treatment (p = 0.004). This analysis 

revealed no significant difference in memory for control mice between vehicle and saline 

treatments (p = 0.999), which indicated that these mice are just as capable of 

remembering the location of the platform at an older age than when they started the first 

training session. Interestingly, the APP/PS1 mice exhibited better memory (43.9% ± 

5.4%) than the control mice (37.8% ± 2.0%) with the DCA treatment, although this 

difference was not significant (p = 0.698). This analysis also revealed that memory 

performance in APP/PS1 mice were unaffected by acute exposure to metabolic inhibitors 

of aerobic glycolysis. The total distance covered during the probe trial was measured in 

order to determine if genotype or treatment had an effect on the physical ability of mice 

to swim in the tank of water (Figure 26B). A two-way ANOVA (genotype × treatment) 

revealed no significant effect of genotype (F(1,81) = 0.004, p = 0.952) or treatment 

(F(3,81) = 1.606, p = 0.195), or the interaction between genotype and treatment (F(3,81) 

= 2.213, p = 0.093) on swimming distance. Thus, neither the genotype nor chemical 

treatment had any effect on locomotor activity in mice. Altogether, these data collected 

from the MWM suggested that acute exposure to chemical inhibitors of aerobic 

glycolysis had a significant effect on the memory performance of control mice, yet had 

no effect on APP/PS1 mice. Further, acute exposure to DCA appeared to exert a more 

pronounced effect on memory processes than Isosafrol in control mice.  
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Figure 26. Acute exposure to dichloroacetate impairs memory 

performance in control mice.  

The Morris water maze was used to evaluate memory performance, as 

measured during a 60 second probe trial by the percent time spent in the 

quadrant that contained the hidden platform during training (A). Mice 

were exposed to the probe trial 30 minutes after intraperitoneal injection 

of the indicated treatment. Horizontal dotted line at 25% represents the 

percent of time spent in the correct quadrant by random chance. Control 

mice injected with DCA (200 mg/kg) performed significantly worse 

than when injected with vehicle or saline. (B) Total distance covered 

during the probe trial was used as a measure of locomotor ability. Data 

shown are mean ± SEM, asterisks indicate a significant difference 

between treatments as determined by a two-way ANOVA followed by 

Tukey’s post-hoc test, **p < 0.01, ***p < 0.001, n = 17 and 8, 

respectively, for control mice and APP/PS1 mice for vehicle phase, n = 

16 and 8, respectively, for control mice and APP/PS1 mice for Isosafrol 

phase, n = 15 and 8, respectively, for control mice and APP/PS1 mice 

for DCA phase, and n = 13 and 5, respectively, for control mice and 

APP/PS1 mice for saline phase. 
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3.11 Replicating the effect of acute dichloroacetate injection 
on memory performance in control mice 

In the initial study, we attempted to determine the effect of the aerobic glycolysis 

inhibitors Isosafrol and DCA on memory performance using a single group of mice with 

repeated memory testing under different treatment conditions. This experimental design 

introduces the confounding factor of repeated testing, which could influence the outcome 

of successive memory tests. Previous studies have shown that repeated memory testing 

influence the successive behavior outcome on the MWM
494

. Thus, it was important to test 

the effect of aerobic glycolysis inhibitors on mice that had no previous exposure to any 

agent. Considering that DCA had a more pronounced effect on memory performance in 

the MWM than Isosafrol (Figure 26), DCA was selected as a single experimental 

treatment with saline as a negative control.  

A new group of 20 control mice aged 9-months was randomly divided into saline and 

DCA treatment groups. The mice were given 2 weeks to acclimatize to their environment 

before beginning memory testing as described above with the platform located in the 

south-west quadrant. The latency to find the location of the platform during the training 

phase was recorded and a two-way ANOVA with repeated measures (training day × 

treatment) was performed (Figure 27A). This analysis revealed no significant effect on 

memory by DCA treatment (F(1,17) = 0.525, p = 0.478), or the interaction between 

treatment and training day (F(3,51) = 0.880, p = 0.458), which suggested that there was 

no difference in the ability of the two treatment groups to learn the location of the 

platform during training. On the fifth day of training, the platform was removed and the 

mice were injected intraperitoneally with either saline or DCA (200 mg/kg) 30 minutes 

before entering the pool for a probe trial. The swimming path of each mouse was 

recorded and a heat map representation of swimming behaviour was constructed for the 

two treatment groups (Figure 27B). The total distance covered during the probe trial was 

recorded (Figure 27C), and a Welch’s t-test revealed no significant effect of DCA 

treatment on total distance covered (t(18) = 0.805, p = 0.4331). Several different 

measures of memory performance were collected during the probe trial and a Welch’s t-

test with a Bonferroni correction for multiple comparisons ( < 0.01) was performed to 
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determine if there was a difference between the two treatment groups. There was no 

significant effect on the following measures of memory performance: (Figure 27D) the 

percent of time spent in the correct quadrant (t(18) = 0.516, p = 0.307), (Figure 27E) the 

number of entries to the platform location (t(18) = 0.766, p = 0.227), and (Figure 27F) the 

latency to the first entry to the platform location (t(18) = 1.322, p = 0.102). The latency to 

the first entry to the platform location during the probe trial was then compared to the 

average latency of each mouse to find the platform during the last day of training (Figure 

27G). This analysis was performed to determine if there was an effect of DCA exposure 

on the ability of mice to continue learning the location of the platform. On average, mice 

injected with saline before the probe trial crossed the boundary of the platform 4.88 ± 

1.09 seconds faster than the average of their previous attempts on the last day of training. 

In contrast, mice injected with DCA before the probe trial crossed the boundary of the 

platform on average 0.16 ± 1.96 seconds slower than the average of their previous 

attempts on the last day of training. A Welch’s t-test was performed on the difference in 

latency to the platform between the probe trial and the final day of training. This analysis 

revealed a potential effect (t(18) = 2.241, p = 0.021), yet it did not reach the threshold 

determined by the Bonferroni correction for multiple comparisons (a = 0.01). Although 

this result should be interpreted with caution, it suggested that DCA may have had an 

effect on the ability of mice to continue learning the location of the hidden platform. 

After the probe trial, the platform was placed back into the tank in the opposite quadrant 

and a red flag was attached to the platform as a visual cue of its location. Mice were 

allowed to swim in the tank for 90 seconds and the latency to find the flag-marked 

platform was recorded (Figure 27H). A Welch’s t-test revealed no significant effect (t(18) 

= 0.158, p = 0.438), which indicated that the ability of mice to use the flag as a visual cue 

to determine the location of the hidden platform was not compromised by DCA 

treatment. Altogether, these data suggested that acute exposure to DCA did not have an 

observable effect on the memory performance of mice, yet may impair the ability of mice 

to continue learning the location of the platform.  
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Figure 27. Acute exposure to dichloroacetate does not alter spatial 

memory performance in naïve mice. 

Naïve control mice were intraperitoneal injected with saline or DCA 

(200 mg/kg) at 9 months of age followed by memory assessment using 

the Morris water maze. (A) Mice were trained for 4 consecutive days (4 

trials per day) to find the location of a hidden platform in the SW 

quadrant and the latency to escape was recorded. On day 5 a probe trial 

was performed in which the platform was removed and mice were 

allowed to swim for 60 seconds (B-H). (B) The swim path for each 

group of mice was recorded and compiled into heat map 

representations. Measurements were taken for the total distance traveled 

(C), the percentage of time spent in the correct quadrant (D), the 

number of times crossing the boundary of the platform (E), the latency 

to the first platform entry (F), and the difference in latency between the 

average of training day 4 and the first platform entry during the probe 

trial (G). Immediately after the probe trial, a flag trial was performed to 

assess the ability of mice to use visual cues to find the platform. The 

platform was placed back in to the tank in the opposite quadrant and the 

latency to find the flag was recorded (H). Data shown are mean ± SEM, 

*p < 0.05, n = 9 and 10 for saline and DCA treatments, respectively.  
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3.12 Assessing the efficacy of acute dichloroacetate injection 
to reduce the conversion of pyruvate to lactate in the 
brain 

In order to determine if DCA injection had a metabolic effect on the brain, mice were 

scanned with a 3T-MRI after injection with hyperpolarized 
13

C-pyruvate (Figure 28A). 

Hyperpolarized 
13

C-pyruvate MRS measures the kinetic conversion of pyruvate to lactate 

in vivo. 
13

C-substrates can be highly magnetized (hyperpolarized) by dynamic nuclear 

polarization (DNP) in vitro and then used as injectable agents to probe in vivo 

metabolism
495

. This hyperpolarization technique provides signal-to-noise enhancements 

on the order of 10,000-fold over non-hyperpolarized 
13

C-imaging methods
495

.  In 

addition, the metabolic rate of conversion of pyruvate to lactate in the brain can be 

measured over the course of ~1 minute following injection of hyperpolarized 
13

C-

pyruvate. Mice were injected with 
13

C-pyruvate and its conversion to lactate was 

measured 30 minutes before and 30 minutes after injection of DCA (200 mg/kg) using an 

intravenous tail-vein catheter and the ratio of lactate-to-pyruvate peaks was quantified as 

an indication of pyruvate breakdown to lactate in the mouse brain (Figure 28B). This 

analysis revealed that the ratio of lactate-to-pyruvate peaks was reduced from 0.104 ± 

0.013 before DCA exposure to 0.056 ± 0.196 after DCA exposure (Figure 28C). 

However, due to variability in the conversion rate, a paired Welch’s t-test revealed that 

there was no significant difference between before and after DCA injections (t(4) = 

2.010, p = 0.069). These data indicate that DCA may reduce the conversion of pyruvate-

to-lactate in the brain, although there was variability in the degree to which DCA 

interfered with this conversion and additional mice need to be tested.   
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Figure 28. Hyperpolarized 
13

C-pyruvate magnetic resonance 

spectroscopy revealed a potential decrease in conversion of 

pyruvate to lactate in DCA-injected mice. 

Control mice at 9 months old were injected with a 0.3 mL bolus of 

hyperpolarized [1-
13

C]-pyruvate via tail vein catheter and the 

conversion of pyruvate-to-lactate was measured using free induction 

chemical shift imaging (FID-CSI). (A) 
1
H-MRI image of the brain in 

the coronal field overlaid with voxels of 13C-pyruvate spectra (yellow). 

(B) Conversion of pyruvate-to-lactate was measured as a ratio of the 

observed lactate peak to pyruvate peak. A pyruvate hydrate peak was 

also recorded. 30 minutes after the first 
13

C-pyruvate injection was 

measured (before), DCA (200 mg/kg) was injected using the tail vein 

catheter followed by a 30 minute recovery time, after which another 

injection of 
13

C-pyruvate was performed (after). The difference in the 

ratio of lactate-to-pyruvate peaks from before DCA injection (blue line) 

and after (red dashed line) was used to evaluate the effect of DCA on 

pyruvate conversion to lactate in the brain. (C) The ratio of lactate-to-

pyruvate peaks was measured following hyperpolarized 
13

C-pyruvate 

injection before and after DCA (200 mg/kg) exposure in control mice at 

9 months old. Data shown are mean ± SEM, p = 0.068, as calculated by 

paired Welch’s t-test, n = 5 mice. 
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3.13 Replicating the effect of acute dichloroacetate injection 
on PDH phosphorylation in the brain 

In order to evaluate the physiological effect of DCA injection on the brain of affected 

mice, mice were euthanized 30 minutes after injection of saline or DCA. Brain extracts 

from the frontal cortex were analyzed by western blotting using antibodies targeting key 

proteins involved in lactate metabolism and transport (Figure 29). The band density was 

quantified using -Actin as a loading control and a Welch’s t-test was performed with a 

Bonferroni correction for multiple comparisons ( = 0.00625) to determine the difference 

between saline- and DCA-injected mice (Figure 30). This analysis revealed a significant 

effect for the phosphorylation level of PDH (t(14) = 8.198, p < 0.001), which indicated 

that phosphorylation levels were reduced in DCA-injected mice. A significant effect was 

also revealed for the expression of PDK1 (t(14) = 3.362, p = 0.005), indicating an 

increase in expression in DCA-injected mice. There was no effect on the expression of 

the following enzymes: LDHA (t(14) = 1.647, p = 0.122), LDHB (t(14) = 0.966, p = 

0.350), PKM2 (t(14) = 1.680, p = 0.115), and PKM1 (t(14) = 0.321, p = 0.753).  This 

analysis also revealed a significant effect for the expression of the astrocyte-specific 

lactate transporting protein: MCT4 (t(14) = 3.468, p = 0.004). Mice injected with DCA 

had lower expression of MCT4 than saline-injected mice. There was no effect for 

expression of the neuron-specific MCT2 (t(14) = 0.636, p = 0.535). These observations 

indicated that the injection of DCA caused a significant decline in phosphorylation levels 

of PDH in the frontal cortex, and may also influence expression of PDK1 and the lactate 

transporter protein, MCT4.  
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Figure 29. Acute exposure to dichloroacetate reduces 

phosphorylation levels of PDH in the frontal cortex.  

Western blot analysis was performed on extracts from the frontal cortex 

of control mice intraperitoneal injected with either saline or DCA (200 

mg/kg) 30 minutes prior to euthanization. Indicated antibodies were 

used to detect proteins involved in aerobic glycolysis and lactate 

metabolism. n = 10 and 9, respectively, for saline- and DCA-injected 

mice.  
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Figure 30. Acute exposure to dichloroacetate reduces 

phosphorylation levels of PDH in the frontal cortex: Band 

densitometry analysis. 

Quantification of band densitometry for western blots of extracts from 

the frontal cortex of control mice injected with saline or DCA (200 

mg/kg) 30 minutes prior to euthanization. Indicated antibodies were 

used as markers of aerobic glycolysis and lactate metabolism. Relative 

band density was calculated relative to -actin. A significant decline in 

phosphorylation levels of PDH was measured following DCA injection. 

Data are shown as mean + SEM, *p < 0.05, **p < 0.01, ***p < 0.001, n 

= 10 and 9, respectively, for saline- and DCA-injected mice.  
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Extracts from the hippocampus were also analyzed by western blotting with antibodies 

for lactate metabolism and transport (Figure 31). Band densitometry analysis was 

performed using -actin as a loading control and a Welch’s t-test with a Bonferroni 

correction for multiple comparisons ( = 0.00625) was used to evaluate the effect of 

DCA injection (Figure 32). This analysis revealed a significant effect for the 

phosphorylation levels of PDH (t(14) = 4.493, p < 0.001), which indicated that 

phosphorylation of PDH was reduced in DCA-injected mice. This analysis also revealed 

a potential effect for the expression of LDHA (t(14) = 2.249, p = 0.041) and the neuron-

specific lactate transporter MCT2 (t(14) = 2.276, p = 0.039), yet these did not reach the 

threshold determined by the Bonferroni correction for multiple comparisons.  There were 

no other significant effects for any of the following lactate metabolism or transporting 

proteins: PDK1 (t(14) = 0.910, p = 0.379), LDHB (t(14) = 1.790, p = 0.095), PKM2 

(t(14) = 2.002, p = 0.065), PKM1 (t(14) = 0.524, p = 0.609), or the astrocyte-specific 

lactate transporter MCT4 (t(14) = 1.373, p = 0.191). Altogether, these analyses indicated 

that injection of DCA caused a reduction in phosphorylation of PDH in the frontal cortex 

and hippocampus of affected mice.  
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Figure 31. Acute exposure to dichloroacetate reduces 

phosphorylation levels of PDH in the hippocampus.  

Western blot analysis was performed on extracts from the hippocampus 

of control mice intraperitoneal injected with either saline or DCA (200 

mg/kg) 30 minutes prior to euthanization. Indicated antibodies were 

used to detect proteins involved in aerobic glycolysis and lactate 

metabolism. n = 10 and 9, respectively, for saline- and DCA-injected 

mice.  
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Figure 32. Acute exposure to dichloroacetate reduces 

phosphorylation levels of PDH in the hippocampus: Band 

densitometry analysis. 

Quantification of band densitometry for western blots of extracts from 

the hippocampus of control mice injected with saline or DCA (200 

mg/kg) 30 minutes prior to euthanization. Indicated antibodies were 

used as markers of aerobic glycolysis and lactate metabolism. Relative 

band density was calculated relative to -actin. A significant decline in 

phosphorylation levels of PDH was measured following DCA injection. 

Data are shown as mean + SEM, *p < 0.05, ***p < 0.001, n = 10 and 9, 

respectively, for saline- and DCA-injected mice.  
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3.14 Replicating the correlation analysis of PDH 
phosphorylation and memory performance in control 
mice 

Considering that there was an inverse correlation between expression of aerobic 

glycolysis enzymes in the frontal cortex and memory performance of control mice and 

APP/PS1 mice (Figure 19), the expression of these same proteins was compared to 

memory performance of saline-injected and DCA-injected mice. Band densitometry 

measurements in the frontal cortex were correlated to the individual measures of percent 

time spent in the correct quadrant during the MWM probe trial and a multiple linear 

regression model (relative band density x treatment) was performed (Figure 33). This 

analysis revealed a significant positive correlation for the level of phosphorylation of 

PDH in saline-injected mice (R
2
 = 0.7443, p = 0.006), which indicated that mice with 

higher phosphorylation levels performed better in the memory task. There was no 

correlation for phosphorylated-PDH in DCA-injected mice (R
2
 = 0.049, p = 0.600). A 

correlation was also detected in saline-injected mice for the expression of PKM1 (R
2
 = 

0.528, p = 0.041), indicating that mice with higher PKM1 performed better in memory 

testing. This analysis also revealed a significant correlation in DCA-injected mice for 

expression of the astrocyte-specific lactate transporter MCT4 (R
2
 = 0.746, p = 0.012), yet 

there was no correlation for MCT4 expression in saline-injected mice (R
2
 = 0.004, p = 

0.883). A one-way ANCOVA was conducted on the linear regression of relative band 

density and percent time spent in the correct quadrant, controlling for treatment. This 

analysis revealed that DCA treatment was not a significant covariate for any of the 

measured proteins. The memory performance of mice injected with saline or DCA was 

also correlated with the expression of lactate metabolism and transport enzymes in the 

hippocampus. The same analysis was performed on relative band densitometry and 

percent time spent in the correct quadrant for saline- and DCA-injected mice (Figure 34). 

A multiple linear regression model (relative band density x treatment) was then 

performed and revealed only one significant correlation for expression of PKM1 (R
2
 = 

0.625, p = 0.020) in saline-injected mice. This analysis suggested that mice with higher 

expression of PKM1 in the hippocampus performed worse on the memory task. 

Interestingly, this is opposite to the trend observed in the frontal cortex.  
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Figure 33. Memory performance correlates with phosphorylation of 

PDH in saline-injected mice and MCT4 expression in 

dichloroacetate-injected mice within the frontal cortex.  

Band densitometry measurements using indicated antibodies in the 

frontal cortex were compared with memory performance of control 

mice injected with saline (open diamond) and DCA (closed diamond) in 

the Morris water maze probe trial as a measure of percent time spent in 

the correct quadrant. Lines-of-best-fit are overlaid for saline-injected 

mice (solid) and DCA-injected mice (dashed). A significant positive 

correlation was observed for phosphorylated-PDH in saline-injected 

mice and also for MCT4 in DCA-injected mice. Horizontal dotted line 

at 25% represents the probability of spending the same amount of time 

in the correct quadrant by chance. n = 8 for each group of saline- and 

DCA-injected mice. 
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Figure 34. Correlations of memory performance with band 

densitometry in the hippocampus.  

Band densitometry measurements using indicated antibodies in the 

hippocampus were compared with memory performance of control 

mice injected with saline (open diamond) and DCA (closed diamond) in 

the Morris water maze probe trial as a measure of percent time spent in 

the correct quadrant. Lines-of-best-fit are overlaid for saline-injected 

mice (solid) and DCA-injected mice (dashed). Horizontal dotted line at 

25% represents the probability of spending the same amount of time in 

the correct quadrant by chance. n = 8 for each group of saline- and 

DCA-injected mice. 
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In order to further validate the correlation between phosphorylation of PDH in the frontal 

cortex and memory performance in saline-injected mice, the relative band density was 

correlated to several other measures of memory performance in the MWM (Figure 35). A 

multiple linear regression (relative band density x treatment) was performed on the 

number of platform entries with phosphorylation of PDH and revealed a significant 

positive correlation for saline-injected mice (R
2
 = 0.546, p = 0.036). This correlation was 

not observed for DCA-injected mice (R
2
 = 0.003, p = 0.900). This indicated that saline-

injected mice with higher phosphorylation of PDH crossed the platform boundary more 

often. A one-way ANCOVA was conducted on the linear regression of relative band 

density and number of platform entries, controlling for treatment. This analysis revealed 

that DCA treatment was not a significant covariate. The latency to the first entry of the 

platform boundary was then compared to phosphorylation of PDH using an exponential 

decay equation. This analysis revealed a strong correlation (R
2
 = 0.967), which suggested 

that saline-injected mice with higher phosphorylation of PDH were able to find the 

platform boundary faster. This correlation was not observed in DCA-injected mice (R
2
 = 

0.227). Finally, the difference in latency to the first platform entry between the probe trial 

and the final training day was correlated to phosphorylation of PDH using a multiple 

linear regression (relative band density x treatment). This analysis revealed no correlation 

for saline-injected mice (R
2
 = 0.324, p = 0.182) and no correlation for DCA-injected mice 

(R
2
 = 0.057, p = 0.570). Altogether, these data indicate that phosphorylation level of PDH 

in the frontal cortex was positively correlated to several measures of memory 

performance in the MWM.  
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Figure 35. Phosphorylation of PDH correlates with memory 

performance in control mice. 

Band densitometry measurements of phosphorylated PDH in the frontal 

cortex of control mice injected with either saline (open diamond) or 

DCA (closed diamond) were compared with memory performance in 

the Morris water maze probe trial for measures of (A) percent time 

spent in the correct quadrant, (B) number of platform entries, (C) 

latency to the first platform entry, and (D) the difference in time 

between average latency to find the platform on training day 4 and the 

latency to the first entry of the platform on the probe trial. Lines-of-

best-fit are overlaid for saline-injected mice (solid) and DCA-injected 

mice (dashed). Levels of phosphorylated PDH in control mice correlate 

with all measures of memory performance. n = 9 and 10 for saline and 

DCA treatments, respectively.  
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Chapter 4  

4 Discussion 

This work produced several novel observations, which gave rise to some conclusions that 

need to be addressed.  This chapter is split into two main categories of discussion: 

examining the temporal and spatial expression of aerobic glycolysis enzymes and lactate 

levels, and examining the relationship between cerebral aerobic glycolysis and memory 

performance. Each conclusion is addressed independently by interpreting the results and 

determining how they fit into the context of the greater research field.  

4.1 Examining the temporal and spatial expression of 
aerobic glycolysis enzymes and lactate levels 

4.1.1 Cerebral lactate levels decline with age 

Lactate production, consumption, and transport between astrocytes and neurons has been 

examined extensively
425

, yet little emphasis has been placed on examining changes in this 

metabolism with age. In vivo 
1
H-MRS is a powerful tool to detect metabolic signatures of 

different brain regions non-invasively over the course of normal aging. In this study, 
1
H-

MRS was used to measure lactate in the frontal cortex and hippocampus of control mice 

and APP/PS1 mice from 3 to 12 months of age. This analysis revealed a decline in lactate 

levels from 6 to 12 months of age in the frontal cortex of control mice (Figure 6), 

whereas the hippocampus revealed no significant decline in lactate levels between 6 and 

12 months of age (Figure 7). Consistent with this finding, a 
1
H-MRS longitudinal study 

of metabolites in healthy C57BL/6 mice between 3 and 24 months of age also revealed a 

progressive decline in lactate levels in the cortex but not hippocampus
496

. However, in 

contrast to our findings, a study using 
1
H-MRS reported that cortical lactate levels 

increased with age in a mitochondrial DNA mutator mouse model of advanced aging
330

. 

However, it is not clear if brain metabolism in mutant advanced-aging mice is an accurate 

reflection of brain metabolism that occurs during normal aging. Collectively, these 

observations suggest that a decline in glycolytic metabolism occurs with advanced age in 

the frontal cortex, whereas the hippocampus appears to be less affected.  
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Examination of lactate levels by 
1
H-MRS revealed a decline in the frontal cortex of aged 

control mice and no change in APP/PS1 mice. In addition, there was found to be no 

significant change with age or genotype in the hippocampus. Maintained lactate in the 

frontal cortex of aged APP/PS1 mice could be attributed to an increase in regional 

glucose uptake and glycolytic metabolism. An increase in glucose uptake in the cortex 

and hippocampus, as measured by 
18

F-FDG-PET, was reported in 12-month-old APP/PS1 

mice when compared to control animals
234

. The authors ruled out the contribution of 

cerebral blood flow by demonstrating that cerebral perfusion is reduced in APP/PS1 mice 

at this age. A similar study measured an increase in glucose utilization in the frontal 

cortex and hippocampus of APP/PS1 mice at 3.5 and 5 months of age, which correlated 

with improved performance in the MWM
497

. Increased glucose uptake has also been 

measured using 
18

F-FDG-PET in the cortex, hippocampus, and striatum of 7- and 9-

month old APP(Tg2576) mice
498

, in 12-month old PDAPPV717F mice
499,500

, in 16-month-old 

APP(Tg2576)/PS1M146L mice
501

and in 12-month-old 5xFAD mice
502

. However, a decline in 

glucose uptake has also been measured by 
18

F-FDG-PET in several animal models of 

AD, including 18-month-old 3xTG mice
503

. Hypometabolism is a common pathological 

feature of AD indicating a reduction in neuronal energy demand from loss of synaptic 

activity at later stages of the disease, yet inconsistencies in glucose uptake measurements 

using 
18

F-FDG-PET have been noted in AD animal models
504

. Different states of glucose 

uptake have been reported, even among the same transgenic strains, including APP(Tg2576) 

mice
498,505

 and 5xFAD mice
502,506

. However, in APP/PS1 mice, only increases in glucose 

uptake have been measured at 3.5, 5, and 12 months of age
234,497

.   

The majority of 
1
H-MRS studies of AD in rodent models do not report lactate 

measurements
507–509

. This is because the lactate peak is largely obscured by lipid signals 

with similar resonance frequencies and is difficult to measure
510,511

. In many cases, brain 

extracts from post-mortem tissue are analyzed instead of in vivo longitudinal 

measurements over the course of age. A 
1
H-MRS metabolomics study of extracted brain 

samples revealed an elevation in lactate levels in the hippocampus and frontal cortex of 

the TgCRND8 mice compared to controls at both 2-3 months of age and 12-13 months of 

age
512

. However, a recent high-throughput metabolomics study on 6-month-old APP/PS1 

mice using ultra performance liquid chromatography followed by gas chromatograph 
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mass spectrometry measured a decline in lactate, creatine, and NAA in the hippocampus 

and cortex compared to controls
513

. These observations highlight the need for consistency 

in measuring metabolites, including lactate, across animal models of AD to reliably 

evaluate the age-associated changes in brain metabolism. The concentration of 

metabolites detected by 
1
H-MRS can be quantified using an unsuppressed water signal 

from the same volume of interest as an internal reference
496

, yet in this study lactate was 

measured using NAA as a reference metabolite and has been previously reported
514

. 

Second only to the neurotransmitter glutamate, NAA is the most abundant metabolite in 

the brain and is mainly produced in neurons where it is shuttled to oligodendrotyes and is 

used for myelin production
515

. In order to determine if NAA levels change with age, 

NAA in the frontal cortex and hippocampus was quantified as a ratio to total creatine, 

which is frequently used as a reference metabolite in 
1
H-MRS studies

508,514
. We found 

that the ratio of NAA to creatine in both the frontal cortex and hippocampus did not 

change over the course of age in control mice or APP/PS1 mice (Figure 5 and Figure 6), 

which is consistent with the findings of other groups
496,507–509

. Therefore, NAA was a 

suitable metabolite to standardize lactate measurements over the course of aging.  

Although we did not detect a difference in hippocampal lactate levels using 
1
H-MRS 

analysis, we did observe an increase in hippocampal ISF lactate levels using 

microdialysis analysis in awake mice (Figure 8).  The discrepancies in measured lactate 

levels using the two methods may be due to the low level of sensitivity for the detection 

of lactate by 
1
H-MRS and the small size of the hippocampus.  In contrast, microdialysis 

has higher detection capabilities for lactate and was performed in awake mice.  The use 

of isoflurane anesthetic during 
1
H-MRS analysis may have influenced lactate levels in the 

hippocampus and obscured genotype-specific differences
516

.  These findings underscore 

the need to develop more sensitive and non-invasive techniques for measuring lactate 

levels in vivo. 

4.1.2 The expression of lactate metabolism and transport proteins 
declines with age in both control mice and APP/PS1 mice 

Maintained lactate levels in the APP/PS1 brain is indicative of higher levels of aerobic 

glycolysis and resembles the metabolic profile of the Warburg effect in cancer cells
243

. It 
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has been previously demonstrated that nerve cells selected for resistance to A toxicity 

up-regulate aerobic glycolysis as a protective mechanism
239

. Chemical or genetic 

disruption to key aerobic glycolysis enzymes PDK1 or LDHA resulted in re-sensitization 

of resistant lines, while over-expression of PDK1 or LDHA conferred resistance to A 

and other neurotoxins in naïve lines
240

. Elevated lactate in the frontal cortex and 

hippocampus of APP/PS1 mice at this age may indicate the up-regulation of glucose 

uptake or a metabolic shift from oxidative phosphorylation to aerobic glycolysis as a 

protective resistance to A toxicity. Nerve cell lines and primary cortical neurons that are 

resistant to Atoxicity had enhanced glucose consumption, increased activity of 

glycolytic enzymes including HK, glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH), and PK, and increased flux through the PPP
260

. The A-induced changes to 

metabolism were found to be due to activation of the transcription factor HIF-1, which 

regulates cellular responses to low oxygen by up-regulating glycolytic metabolism, 

including enzymes PDK and LDHA. It was anticipated that western blot analysis of brain 

extracts would reveal an increase in aerobic glycolysis enzyme expression in APP/PS1 

mice compared to control mice at the same age. A two-way ANOVA identified an 

increase in expression of PDK1 at 6 months of age in the frontal cortex of APP/PS1 mice 

when compared to controls, indicating a possible up-regulation of aerobic glycolysis. 

However, these mice also had an increase in PKM1 (non-glycolytic isozyme) and no 

significant difference in expression of LDHA, PKM2, or the phosphorylation levels of 

PDH (Figure 11). These observations indicate a lack of collective up-regulation of 

enzymes involved in aerobic glycolysis in APP/PS1 mice. Interestingly, this analysis 

revealed a significant age-dependent decline in all proteins involved in glucose 

metabolism for both control and APP/PS1 mice from 6 to 12 months of age indicating a 

general decline in glucose metabolism with age. The cerebral CMRglc can be estimated 

using 
18

F-FDG PET imaging as a marker of glucose uptake and metabolism. Several 

studies have demonstrated that CMRglc declines significantly in older individuals in 

several brain regions  including the parietal, temporal, and frontal cortex, with the 

greatest reduction observed in the frontal cortex
517–520

. Furthermore, the metabolism of 

ketones, the brains’ major alternative fuel source, can be measured using 
11

C-AcAc PET 

as a marker of cerebral metabolic rate of acetoacetate (CMRa). In contrast to CMRglc, 



120 

 

the CMRa does not decline with age in the same brain regions
521

. It has been suggested 

that the decline in CMRglc may be due to brain atrophy and lower cortical thickness in 

cognitively normal individuals
519,522

, yet even after correction for partial volume effects, 

the same trends in CMRglc and CMRa were observed
523

. These studies suggest that a 

general decline in cerebral glucose uptake and metabolism occurs with age that may not 

be adequately compensated by the metabolism of ketones as an alternative fuel source, 

and is consistent with the age-dependent decline in expression of glycolytic enzymes 

observed in the frontal cortex of both control and APP/PS1 mice in this study.  

If we assume that glucose influx and metabolism is elevated in aged APP/PS1 mice, then 

an increase in lactate levels measured by 
1
H-MRS in the frontal cortex of 9-12-month-old 

APP/PS1 mice supports the hypothesis that aerobic glycolysis is up-regulated in neurons 

in order to promote A resistance. Yet, given a general decline in expression of 

glycolytic enzymes with age in both control and APP/PS1 mice, an alternate explanation 

may be that lactate efflux from the brain is diminished in APP/PS1 mice. Western blot 

analysis of brain extracts revealed an age-dependent increase in expression of the lactate 

transporters: MCT2 (neuronal-specific) and MCT4 (astrocyte-specific), in the frontal 

cortex of control mice, but not in APP/PS1 mice. At 12 months of age, the expression of 

MCT4 was found to be significantly elevated in the frontal cortex of control mice 

compared to APP/PS1 mice (Figure 11). This indicates that lactate transport may be 

compromised in APP/PS1 mice. During neuronal activation, a high energy demand is 

placed on astrocytes, which need to rapidly clear glutamate from the synapse and 

necessitating aerobic glycolysis for rapid energy production. As a result, the majority of 

lactate released from astrocytes is beyond the metabolic need of activated neurons, and 

thus is expelled from the brain
524

. There is substantial evidence that suggests astrocytes in 

the AD brain become “reactive”  or “activated” in response to inflammatory cytokines 

produced by microglia, including Interleukin-1 (IL-1) and IL-6
525,526

. Reactive astrocytes 

change their phenotype by interweaving themselves within amyloid plaques and up-

regulating expression of several marker proteins including GFAP and the S100 calcium-

binding protein B (S100)
527,528

. Yet it was recently discovered in APP/PS1 mice that 

reactive astrocytes do not migrate to plaques; instead they respond to plaque-induced 
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injury by changing phenotype and function
529

. Consequently, reactive astrocytes may 

provide less support to neurons because they are functionally different and can no longer 

fulfill their normal roles
530,531

. The data presented here suggest that a decline in glycolytic 

metabolism occurs in the cortex during normal aging while a concurrent increase in MCT 

expression arises as a possible compensatory response to maintain neuronal activity. In 

contrast, while a decline in glycolytic metabolism occurs in the APP/PS1 brain, no 

increase in MCT expression was detected. Thus, in the absence of enhanced lactate 

transport, lactate may accumulate either within reactive astrocytes or in the extracellular 

space.  

4.1.3 The interaction between the frontal cortex and the 
hippocampus 

In this study, both the frontal cortex and the hippocampus were examined in parallel as 

both these brain regions play key roles in memory. It is understood that the hippocampus 

and the frontal cortex both participate in memory consolidation and retrieval. Many of the 

pioneering studies investigating the involvement of specific brain regions in memory 

come from lesion studies in humans. The most famous of these cases being the patient 

H.M., who had most of his medial temporal lobe (which includes the hippocampus) 

bilaterally removed in an attempt to cure his epilepsy. Following surgery, H.M. 

developed severe anterograde amnesia, meaning he could not develop any new memories 

or consolidate newly acquired memories
532

. This evidence strongly implicated the 

hippocampus as the central mediator of episodic memory formation and has encouraged 

decades of research detailing the interaction of the hippocampus with other brain regions 

to support memory consolidation and retrieval
533

. In a similar study of brain lesions using 

paired-associate learning tasks, in which two lists of cue words are paired with different 

response words, patients with damage to the frontal cortex have difficulty with the 

second-list learning
534

. This suggests that the frontal cortex is responsible for control of 

memory associations as part of a memory-filtering mechanism. Several studies using 

animal models have shown that damage to the frontal cortex impairs the ability of the 

brain to alter behaviour in response to stimuli with different emotional significance
535

, 

learn the association of different perceptual stimuli with a food reward
536

, or to switch 
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between memory associations of odor or place stimuli
537

. These studies demonstrate that 

the frontal cortex is involved in memory consolidation and retrieval by associating 

incoming stimuli with a context of familiar experiences within related memories. The 

association between hippocampus and frontal cortex is best understood using the railroad 

metaphor in which the hippocampus is responsible for placing new railroad tracks 

(memory formation), while the frontal cortex is responsible for flexibly switching 

between tracks that have already been laid (memory association)
538,539

.   

The frontal cortex and hippocampus also have dramatically different metabolic profiles. 

The regional distribution of aerobic glycolysis can be measured using multimodal PET by 

comparing the cerebral metabolic rate for oxygen (CMRO2) using [
15

O-H2O] and 

CMRglc using [
18

F-FDG]. Aerobic glycolysis is estimated as the oxygen-glucose index 

(OGI), which compares the molar ratio of oxygen-to-glucose. An OGI of 6 indicates that 

all glucose is converted to carbon dioxide and water, and an OGI of less than 6 indicates 

that non-oxidative glucose metabolism (aerobic glycolysis) is occurring. In a recent study 

measuring the OGI from different brain regions of normal young adults at rest, aerobic 

glycolysis was found to be elevated in the DMN and in areas of the frontal and parietal 

cortex, while the cerebellum and the hippocampus had reduced aerobic glycolysis relative 

to the brain average
351

. In a follow up study, the authors demonstrated that the brain 

regions with high aerobic glycolysis in young healthy adults strongly correlated with the 

regions of high A deposition, as measured by PET using [
11

C-PiB] retention
540

. Yet, the 

age-associated metabolic changes in the frontal cortex and hippocampus of the AD brain 

have yet to be investigated. In this study, 
1
H-MRS analysis of the hippocampus revealed 

that lactate levels decline with age for both control mice and APP/PS1 mice, although not 

significantly, and there was no difference between control mice and APP/PS1 mice. In 

contrast, microdialysis sampling revealed elevated extracellular lactate in the 

hippocampus of aged APP/PS1 mice compared to controls. These data suggest that either 

aerobic glycolysis declines with age in the hippocampus, or lactate export increases, and 

is counter to the hypothesis that aerobic glycolysis is promoted in neurons in response to 

A deposition.  
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Western blot analysis of brain extracts from the hippocampus revealed a significant 

change in expression of aerobic glycolysis enzymes from 6 to 12 months in both control 

and APP/PS1 mice. A two-way ANOVA revealed a significant age-dependent decline in 

phosphorylated PDH levels, LHDA and PKM1 expression, along with an increase in 

expression of LDHB and PKM2 (Figure 13). The decline in phosphorylated PDH levels 

suggests an increase in PDH activity, while a decline in LDHA and an increase in LDHB 

suggest an increase in lactate oxidation with age. This analysis also revealed a significant 

interaction between age and genotype for PDK1 and LDHB, indicating that PDK1 

increases in control mice and decreases in APP/PS1 mice with age, while LDHB 

expression increases in control mice and does not change in APP/PS1 mice with age. 

These changes indicate a shift in metabolism toward oxidative phosphorylation in both 

control and APP/PS1 mice. The age-dependent decline in PKM2 and increase in PKM1 is 

unexpected since expression of PKM2 is closely associated with aerobic glycolysis in 

cancer cells
301,336,541,542

. Expression of PKM2 is induced by insulin signaling and mTOR 

activation
336

, as well as epidermal growth factor receptor (EGFR) activation
543

. Elevated 

PKM2 expression is also found in adult stem cells while PKM1 is expressed in 

differentiated cells of the brain
544,545

. Western blot expression analysis of the lactate 

transporters MCT2 (neuron-specific) and MCT4 (astrocyte-specific) in the hippocampus 

revealed an age-dependent decline in MCT4 for both control and APP/PS1 mice, but no 

difference in age or genotype for MCT2. These findings suggest that lactate efflux may 

decline within hippocampal astrocytes with a concomitant metabolic shift toward 

oxidative phosphorylation with age. Further investigation is warranted to discern how 

expression of aerobic glycolysis enzymes is regulated over the course of age and in 

different regions of the AD brain.  

The 
1
H-MRS analysis of cerebral lactate levels was complemented by microdialysis 

measurements of hippocampal ISF of control and APP/PS1 mice performed by Macauley 

and colleagues. This analysis revealed an age-dependent increase in ISF lactate for 

APP/PS1 mice from 3 to 18 months of age, as well as a significant increase at 12 months 

of age compared to control mice (Figure 8). These results appear counter to the unaltered 

hippocampal lactate levels in APP/PS1 mice as measured by 
1
H-MRS (Figure 7), as well 

as the age-dependent decline in expression of aerobic glycolysis enzymes and lactate 
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transporters in the hippocampus as measured by western blot analysis (Figure 13). One 

important distinction between these experiments is the physiological condition of the 

animal. During in vivo microdialysis sampling of ISF lactate, mice are awake and freely 

moving, while 
1
H-MRS measurements of lactate was performed under isoflurane 

anesthesia. Isoflurane has been shown to influence brain metabolism
516

. In addition, in 

vivo 
1
H-MRS has a low level of sensitivity for the detection of lactate, a limitation that is 

further compounded by the small size of the hippocampus.  

It is well established that aerobic glycolysis is upregulated during neuronal activation 

with a concomitant increase in ISF lactate concentration
346,349,361,363,377,546

. The age-

dependent increase in hippocampal ISF lactate concentrations in APP/PS1 mice may be 

indicative of an increased capacity to perform aerobic glycolysis during neuronal 

activation, which is supportive of my hypothesis that neurons upregulate aerobic 

glycolysis in response to A deposition. Moreover, MCT2 expression levels did not 

decline with age, suggesting that neuronal-generated lactate may be exported at a higher 

level in APP/PS1 mice relative to control aged mice.  These findings underscore the need 

to develop more sensitive and non-invasive techniques for measuring lactate levels in 

vivo.   

4.1.4 Aerobic glycolysis does not influence amyloid- processing  

The interplay between A production and glycolytic metabolism may occur through 

neuronal activity. Regional ISF measurements using in vivo microdialysis in APP(Tg2576) 

transgenic mice at 3 months of age demonstrated that neuronal activity increases ISF A 

and lactate concentrations
547

. The acute injection of glucose increases hippocampal ISF 

lactate concentration, A levels, and neuronal activity in both 3-month-old and 18-month 

old APP/PS1
93,483,548

. Interestingly, 
1
H-MRS measurements of lactate levels in the frontal 

cortex of 24-month-old PS2APP mice correlated significantly with higher plaque 

levels
514

. Neuronal activation may also promote A production through altered APP 

processing. In a study that used primary neuronal cultures harvested from APP(Tg2576) 

embryos, neuronal activation was found to promote A production while neuronal 

inhibition decreased A production by mediating the interaction between APP and 
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PS1
549

. In a similar study, activation of the NMDA receptor increased the production and 

secretion of A by shifting APP processing from the -secretase to the -secretase
550

. 

Perhaps the most compelling evidence linking neuronal activation to aerobic glycolysis 

and A production comes from PET imaging.  The  regional distribution of aerobic 

glycolysis in the resting human brain is predominantly in the DMN, a region that 

correlates spatially with deposition of A in the AD brain
540

. The authors suggest this 

may be due to a persistent level of neuronal activity in the DMN when individuals are not 

engaged in specific goal-directed behaviours
352,551,552

. The DMN is also active during 

light sleep
553,554

 and persists in deep sleep yet connectivity between frontal and posterior 

regions is lost during this time
555

.  ISF lactate and A levels exhibit diurnal fluctuation 

that are co-regulated and consistent with neuronal activity during sleep/wake cycles in 

both normal mice and APP/PS1 mice; A production increases during wakefulness and 

decreases with sleep
547,556–558

. Furthermore, A plaque formation can interrupt the normal 

sleep-wake cycle of 9-month-old APP/PS1 mice resulting in increased wakefulness and 

decreased sleep in a feed-forward loop that promotes A production
557

. This is consistent 

with diurnal fluctuations in CSF A levels and disrupted sleep-wake cycles observed in 

humans
556,559–561

. These observations indicate a possible feed-forward mechanism 

between regional neuronal activity and increases in glucose uptake, aerobic glycolysis, 

and A production, but it is currently unknown if aerobic glycolysis promotes A 

production or whether it is merely a consequence of neuronal activity. 

In order to measure A dynamics in the APP/PS1 mouse brain, an ELISA was performed 

on extracts from the frontal cortex of 12 month-old mice. The relative concentrations of 

A(1-40) and A(1-42) were measured as a ratio to total protein in either soluble or insoluble 

fractions from the frontal cortex of APP/PS1 mice. This analysis revealed that the 

majority of A in the brains of these mice was insoluble A(1-42)  (Figure 14). This finding 

is in agreement with the genetic elements of APP/PS1 mice: the Swedish mutation 

(K670N:M671L) in APP increases production and secretion of both A(1-40) and A(1-

42)
562–566

, while expression of PSEN1 lacking exon 9 (ΔE9) shifts the cleavage of APP to 

favor A(1-42) over A(1-40)
96

. The levels of A in APP/PS1 mice have been examined 

extensively and the majority of A burden in the brain is consistently the A(1-42) species 
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in insoluble (plaque) fractions
96,481,567–570

. Interestingly, the levels of soluble A(1-40) and 

A(1-42) in the cortex and hippocampus both correlate negatively with measures of spatial 

learning and memory in the MWM, but not insoluble A(1-40) and A(1-42)
570

. In order to 

test the hypothesis that aerobic glycolysis influences A production, the levels of soluble 

and insoluble A(1-40) and A(1-42) were correlated with the expression of aerobic 

glycolysis enzymes in the frontal cortex (Figure 15). There were significant relationships 

detected for levels of soluble A(1-40) and A(1-42) with PDK1, LDHA/LDHB, PDH-

p/PDH, or PKM2/PKM1. In addition, there were no significant interactions between 

levels of insoluble A(1-40) and A(1-42) with expression of any of the aerobic glycolysis 

enzymes investigated. This analysis indicates that aerobic glycolysis in the frontal cortex 

does not influence the production of A or the cleavage of APP to favor A(1-40) or A(1-

42). Further studies using neuronal cell culture models evaluating the effect of altered 

aerobic glycolysis enzyme expression on A dynamics would help elucidate the interplay 

between these two processes. 

4.1.5 Aerobic glycolysis enzymes are expressed primarily in 
neurons and reactive astrocytes surrounding plaques 

The cell-specific spatial expression of enzymes responsible for aerobic glycolysis and 

lactate production in the mouse brain has not previously been investigated. Several lines 

of evidence support distinct metabolic phenotypes between neurons (mainly oxidative) 

and astrocytes (mainly glycolytic)
378

. Measurements of cerebral lactate by 
1
H-MRS or 

western blot analysis of protein extracts do not distinguish between these two 

predominant cell types. To identify which cell types are expressing the enzymes 

responsible for aerobic glycolysis, frozen brain sections from control and APP/PS1 mice 

at 12 months of age were immunostained using antibodies specific for PDK1 and LDHA 

and co-stained with antibodies for astrocytes (GFAP) and neurons (TUJ1). Within the 

frontal cortex and hippocampus of control mice, PDK1 and LDHA expression was 

localized primarily to the soma of TUJ1+ neurons (Figure 16 and Figure 17). This 

observation demonstrates that neurons are capable of using aerobic glycolysis in both 

control mice and APP/PS1 mice. In support of this observation, LDHA has been found to 

be expressed in the cytosol of rat primary cortical neurons and astrocytes, while LDHB 
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expression was prevalent in synaptosomes
329

. In contrast, previous studies have found 

neurons exclusively immunoreactive with LDHB antibodies, while astrocytes were 

immunoreactive with both LDHA and LDHB antibodies in the human hippocampus and 

occipital cortex
328,409

. In a similar study of primary astrocyte and neuron cultures from 

chick embryos, astrocytes were found to predominantly express LDHA and neurons were 

found to predominantly express LDHB
571

. Interestingly, in this study PDK1 and LDHA 

were also expressed in GFAP+ reactive astrocytes surrounding amyloid plaques in the 

frontal cortex and hippocampus of APP/PS1 mice. It was surprising to find an absence of 

PDK1 or LDHA expression in astrocytes of control mice. The GFAP antibody used for 

this experiment may not have been sensitive enough to visualize astrocytes in control 

mice and future experiments should make use of an antibody that reliably stains native 

astrocytes. However, if PDK1 and LDHA were expressed in astrocytes of the control 

mouse brain then fluorescence signal would have labeled these cells red in the merged 

confocal image, and this was not detected. The expression of PDK1 and LDHA in 

reactive astrocytes, but not in native astrocytes, may indicate that these cells up-regulate 

aerobic glycolysis as a consequence of disease pathogenesis. A similar staining pattern 

has been characterized in TgCRND8 mice at 12 months of age showing co-

immunostaining of reactive astrocytes with PFKFB3 expression, a main regulator of 

glycolysis
572

. Up-regulation of aerobic glycolysis in reactive astrocytes may be 

responsible for the increase in lactate observed in the frontal cortex of APP/PS1 at 9 and 

12 months of age. Further investigation is warranted to test if reactive astrocytes display 

metabolic reprogramming toward aerobic glycolysis. Collectively these observations 

indicate that PDK1 and LDHA are expressed primarily in the cell bodies of neurons, yet 

both cell types may be capable of producing lactate through aerobic glycolysis.  

4.2 Examining the relationship between cerebral aerobic 
glycolysis and memory performance 

4.2.1 Expression of aerobic glycolysis enzymes in the frontal 
cortex correlates with memory performance 

Previous work has demonstrated that both the hippocampus and the frontal cortex are 

involved in spatial memory retrieval using the MWM
573–576

. More recently, it was 
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demonstrated that lesions to the frontal cortex impaired memory in a partial-cue 

environment, showing that an interaction between the frontal cortex and hippocampus 

was required for pattern completion during memory retrieval
577

. However, it has yet to be 

determined if aerobic glycolysis in the frontal cortex or hippocampus plays a role in 

spatial memory recall. In order to test the hypothesis that aerobic glycolysis contributes to 

memory processes, a correlation analysis was performed comparing expression of aerobic 

glycolysis proteins in extracts from the frontal cortex and hippocampus at 12 months of 

age (Figure 19 and Figure 20). A multiple linear regression model was then fit on the 

percentage of time spent in the correct quadrant during the probe trial. This analysis 

revealed a significant interaction with memory for enzymes involved in lactate 

production including LDHA, the ratio of phosphorylated PDH to total PDH, and the ratio 

of PKM2 to PKM1, suggesting that higher expression, or phosphorylation, of these 

proteins correlates with better memory performance in control mice and worse 

performance in APP/PS1 mice. These observations support the hypothesis that aerobic 

glycolysis contributes to memory processes in control mice, but not in APP/PS1 mice. It 

stands to reason that if neuronal activity is linked to a focal elevation of aerobic 

glycolysis and lactate efflux
578

, then a higher expression of aerobic glycolysis would 

enhance neuronal activation.  

It is currently unknown why higher aerobic glycolysis may be detrimental to memory in 

the AD brain. In the context of AD in humans, elevated lactate levels correlate negatively 

with memory performance. Increased lactate within the precuneus/posterior cingulate of 

individuals with MCI is associated with poorer memory performance
579

. AD patients also 

show a significant increase in CSF lactate levels compared with age-matched non-

demented individuals or patients with vascular dementia
580,581

. In addition, intravenous 

lactate infusion does not improve semantic memory in AD patients
582

. These findings 

suggest that perturbed lactate metabolism may be involved in the pathophysiological 

processes in AD. One possible explanation may be that enhanced aerobic glycolysis and 

neuronal activation promote A deposition leading to interference with synaptic 

transmission and memory processes
570

. However, the ELISA analysis of soluble and 

insoluble levels of A(1-40) and A(1-42) demonstrated no such relationship in the frontal 
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cortex (Figure 15). The same multiple linear regression analysis in the hippocampus 

revealed no significant interaction between relative band intensity and genotype on 

percent time spent in the correct quadrant for any of the markers of aerobic glycolysis 

(Figure 20). This finding suggests that aerobic glycolysis may play a role in memory 

processes in the frontal cortex but not the hippocampus.  

4.2.2 Chronic oral administration of dichloroacetate does not affect 
memory at 12 months of age 

The behaviour of APP/PS1 mice is well characterized but the age of cognitive decline 

varies between laboratories and husbandry conditions. In the MWM, impairment in 

spatial memory has been reported as early as 3.5 months of age
583

 and 6 months of age
584

, 

yet 8-14 months of age is the most commonly reported age for onset of spatial memory 

impairment in APP/PS1 mice when using the MWM
97,569,570,585,586

. In order to test the two 

central hypotheses, that neurons upregulate aerobic glycolysis to promote A resistance, 

and aerobic glycolysis contributes to memory processes, a chemical inhibitor of aerobic 

glycolysis, DCA, was orally administered to control and APP/PS1 mice at a dose of 200 

mg/kg per day via drinking water, beginning at the age of weaning. It was anticipated that 

APP/PS1 mice exposed to DCA would lose a protective resistance mechanism and 

succumb to neurodegeneration at an earlier age than APP/PS1 mice exposed to normal 

drinking water. Spatial learning and memory was assessed using the MWM at 12 months 

of age (Figure 18). The ability of mice to learn the location of the platform was measured 

as the change in latency time required to find the platform over the course of 4 training 

days. APP/PS1 mice showed a delay in finding the platform on each training day 

compared to control mice. This is in agreement with similar studies demonstrating a 

spatial learning impairment at this age
97,584

, yet disagrees with one report showing no 

difference between genotypes
585

. Interestingly, a study using the visual platform water 

maze demonstrated that APP/PS1 mice have a significant increase in thigmotaxis, or 

tendency to cling to or follow the wall instead of actively search for the platform, and 

also demonstrated more excessive floating in the pool than control mice
587

. This indicates 

that stress may be a confounding factor for spatial memory performance for these mice. 

In order to account for this possibility, mice that displayed excessive thigmotaxis or 
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floating in either genotype were eliminated from analysis in both the training phase and 

probe trials.  

On day 5 a probe trial was performed in which the platform was removed and mice were 

tested on their ability to remember the location of the platform, as measured by the 

percent time spent in the correct quadrant. A two-way ANOVA revealed that APP/PS1 

mice have a significant decrease in the percent time spent in the correct quadrant, 

regardless of DCA exposure. There was no effect from treatment or the interaction 

between genotype and treatment, suggesting that DCA had no effect on the ability of 

mice of either genotype to remember the location of the platform. This indicated that 

either chronic exposure to DCA had no physiological effect on the brain, or that aerobic 

glycolysis did not participate in A resistance and memory performance. As a measure of 

physical ability to perform the task, the total distance covered during the probe trial was 

measured and a two-factor ANOVA was performed. This analysis revealed no significant 

effect from genotype or treatment, or the interaction between genotype and treatment, 

indicating that all mice swam a comparable distance. This suggests that impairment in 

memory performance of APP/PS1 mice is reflective of impaired spatial memory and not 

altered physical ability. It also demonstrates that chronic oral exposure to DCA does not 

have a negative consequence to physical ability.  

4.2.3 Chronic oral administration of dichloroacetate does not have 
a physiological effect on the brain at 12 months of age 

The effect of DCA exposure has been well documented in humans due to its ability to 

reduce lactate levels in patients with congenital forms of MELAS (mitochondrial 

myopathy, encephalopathy, lactic acidosis, and stroke-like episodes)
588

 and preclinical 

evidence that it might be beneficial in cancer 
589

. Acute administration of DCA at 35-50 

mg/kg increases PDH activity by 3-6 fold and reduces lactate levels by more than 60% in 

muscle tissue
590,591

. It has been estimated that the maximal reduction in circulating lactate 

levels is achieved at an acute dose of DCA at 100 mg/kg, yet a dose-dependent reduction 

in lactate continues beyond 200 mg/kg
493

. In order to confirm the physiological effect of 

DCA, brain extracts were harvested at 12 months of age from the frontal cortex of control 

mice exposed to chronic DCA and compared to mice that were provided normal drinking 
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water. DCA is a specific inhibitor of PDK, the kinase that phosphorylates and inhibits the 

PDH complex
489,592

. It was expected that mice exposed to DCA would have a decline in 

PDH phosphorylation levels when compared to mice that were provided normal drinking 

water. However, this analysis revealed that there was no difference in PDH 

phosphorylation between these two groups (Figure 23). In addition, there was no 

difference in expression levels of any other marker of aerobic glycolysis between the two 

treatment groups. This indicates that chronic exposure to DCA at an oral dose of 

200mg/kg daily since the age of weaning does not have a physiological effect on the 

mouse at 12 months of age.  

Despite several studies demonstrating the effectiveness of acute DCA exposure activating 

PDH and lowering lactate levels, the physiological effect of chronic DCA exposure is 

less clear. In one study of four MELAS patients, chronic oral exposure to DCA at a daily 

dose of 25 mg/kg appeared to maintain lower serum lactate levels, yet there was no 

change in CSF lactate levels over a course of 5 years
593

. In a larger study of 30 MELAS 

patients given a chronic daily DCA dose of 25 mg/kg, there was no significant difference 

between DCA and placebo groups in 
1
H-MRS estimation of cerebral lactate, CSF lactate, 

or venous lactate, over the course of 24 months
594

. In addition, all 15 of the patients 

randomly assigned to DCA had to prematurely discontinue the study due to side effects 

from peripheral nerve toxicity. DCA is cleared more efficiently from plasma after an 

initial acute dose than after 6 months of 25 mg/kg daily exposure
595

. Moreover, older 

subjects aged 14 – 33.9 years were less efficient at clearing DCA from plasma than 

younger subjects aged 2.2 – 7.1 years after 6 months of 25 mg/kg daily exposure
595

. This 

finding has also been recapitulated in rats, demonstrating an age-associated effect on 

DCA plasma clearance after chronic exposure for 6 months at 25 mg/kg daily
596

. These 

studies demonstrate a lack of knowledge on the physiological effect between acute and 

chronic DCA exposure. In this study, one control mouse and 3 APP/PS1 mice were 

euthanized after approximately 5 months of 200 mg/kg daily oral DCA exposure due to 

tissue damage to the ends of their tails and hind feet. All other mice appeared to tolerate 

DCA well up to 12 months of age. During the probe trial of the MWM, there was no 

significant effect of DCA treatment on the total distance covered, suggesting that there 

was no physical impairment due to DCA exposure on the ability of these mice to swim. 
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In summary, these observations indicate that chronic oral administration of DCA at 200 

mg/kg daily for 12 months has no discernible effect on lactate levels or phosphorylation 

levels of PDH in the frontal cortex. This suggests that chronic oral DCA administration 

may be unsuitable for the long-term modulation of aerobic glycolysis in the brain.  

4.2.4 Acute inhibition of aerobic glycolysis impairs memory 

In order to further test the hypothesis that aerobic glycolysis contributes to memory 

processes, the chemicals DCA and Isosafrol were used to inhibit the activity of PDK and 

LDHA, respectively. Instead of a chronic exposure to these chemicals, an acute 

intraperitoneal injection was used to deliver the treatment 30 minutes before entering the 

MWM on the probe trial. The ability of these agents to target their intended protein in the 

CNS after a single intraperitoneal injection was confirmed by western blot and enzyme 

activity analysis (Figure 24). A single cohort of control mice and APP/PS1 mice starting 

at 12 months of age was selected for this experiment and all mice were injected with the 

same treatment at each of the probe trials (Figure 25). Mice were trained to learn the 

location of the platform over the course of 4 training days and the latency to find the 

platform was recorded for each training phase.  This analysis revealed a significant 

difference in latency time to find the platform between genotypes for the vehicle phase, 

Isosafrol phase, and the DCA phase, but not the final saline phase of training. This 

suggests that APP/PS1 mice may show an improvement in memory over the course of 

repeated memory testing. However, the pre-exposure to the test agents might also have 

had a differential effect on memory in the APP/PS1 mice. Future studies using naïve 

APP/PS1 mice would help resolve this issue.  

The difference between genotypes for latency to find the platform in the first three phases 

may be accounted by the tendency of APP/PS1 to display thigmotaxis and excessive 

floating as a stress response
587

. This behaviour was observed in some of the APP/PS1 

mice over the course of the experiment and these mice were removed from analysis if the 

behaviour persisted across consecutive training days (Table A2). However, these mice 

were allowed to swim in subsequent training phases and were included in analysis if they 

did not display excessive stress behaviour. Interestingly, there was no difference in 

latency to find the platform during training between control mice and APP/PS1 mice for 
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the final training phase indicating that these mice are capable of spatial learning at 18 

months of age given repeated testing. This analysis also showed no overt toxicity from 

acute injection of Isosafrol or DCA given that all mice were able to recover 2 weeks after 

chemical administration and perform just as well during the next training phase.  

At each individual phase of the experiment, the chemical treatment of vehicle, Isosafrol, 

DCA, or saline, was given to the mice 30 minutes before entering the probe trial. This 

time point was chosen due to previous reports showing a physiological effect on the brain 

at this time for both Isosafrol at 300 mg/kg
491

 and DCA at 200 mg/kg
493

. During each 

probe trial, the percent time spent in the correct quadrant was recorded as a measure of 

memory and the total distance covered was recorded as a measure of physical ability to 

swim in the water tank (Figure 26). A two-way ANOVA revealed a significant effect of 

genotype and treatment, as well as an interaction between genotype and treatment. When 

compared to the initial injection of the vehicle (1% Carboxymethylcellulose), Isosafrol 

had no effect on the ability of control mice or APP/PS1 mice to remember the location of 

the platform. In contrast, DCA administration had a significant effect on control mice, yet 

had no effect on APP/PS1 mice, when compared to either the first injection with vehicle 

or the last injection with saline. The same analysis was performed on the total distance 

travelled during the probe trial and this revealed no significant effect from genotype or 

treatment, suggesting that all mice were equally capable of physically performing the 

memory task. These observations suggest that DCA may influence memory for control 

mice and support the hypothesis that aerobic glycolysis contributes to memory processes. 

These results also complement the earlier correlation analysis, which demonstrated an 

inverse relationship between expression of aerobic glycolysis enzymes in the frontal 

cortex and memory performance in control mice and APP/PS1 mice. There appeared to 

be no effect from chemical administration in APP/PS1 mice, indicating that aerobic 

glycolysis may not contribute to memory recall in these mice. 

4.2.5 Acute injection of dichloroacetate has a physiological effect 
on the brain 

Considering that chronic exposure through drinking water did not exhibit a physiological 

response in the brains of affected mice at 12 months of age, it was important to determine 
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if acute injection of DCA had a measurable effect. Western blot analysis was performed 

on extracts from the frontal cortex of control mice euthanized after injection of either 

saline or DCA at 200 mg/kg (Figure 24A). This analysis revealed that mice injected with 

DCA had a significantly lower ratio of phosphorylated PDH to total PDH. This suggests 

that acute DCA exposure resulted in a physiological response in the brains of affected 

animals and is in agreement with other reports showing DCA causes a decline of 

phosphorylated PDH levels in mouse liver extracts
597

, and isolated mitochondria from the 

mouse brain
598

. Intraperitoneal injection of DCA has also been shown to increase PDH 

activity in the brain
599,600

, yet to the best of my knowledge this is the first report of DCA 

intraperitoneal injection demonstrating a reduction in phosphorylation levels of PDH in 

the brain. The relative band density of PDK1 was also measured to determine if there was 

any difference in the levels of the target of DCA. A significant decrease in PDK1 

expression was detected in animals injected with DCA compared to saline. It is unclear if 

a 30 minute exposure to DCA is long enough to induce changes in transcription and 

translation, but long-term exposure to DCA has been shown to reduce PDK4 expression 

through the Forkhead box protein O1 (FOXO1) transcription factor
601

. In addition to the 

direct chemical inhibition of PDK, DCA exposure may also promote a decline in PDK1 

expression further potentiating the decrease in PDH phosphorylation and promoting 

oxidative phosphorylation.  Altogether, these results demonstrate that an acute injection 

of DCA causes an observable reduction in phosphorylation levels of PDH in the frontal 

cortex of affected mice.  

4.2.6 The inhibition of memory performance from acute injection of 
dichloroacetate is not reproducible 

One of the main goals of scientific experimentation is to ensure that the outcomes are 

reproducible. In animal behaviour experiments, there may be several confounding 

variables that influence the outcome of a particular test. One possible confounding factor 

is repeated testing, in which a previous experience influences the outcome of subsequent 

tasks. Animals that have been exposed to a behavioural test often perform differently than 

naïve animals
494

, although the relative influence of repeated testing depends on the 

specific test being administered
602

, the strain of the animal
603

, and time interval between 
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behavioural tests
604

. One study using C57BL/6J and 129S2/Sv strains in the MWM 

reported that mice who had previously experienced the test did not perform any 

differently than naïve mice during training or during the probe trial
605

. Another study 

using C57BL/6J and NMRI strains showed that training at 2 months of age did not 

improve performance in the MWM at 10 months of age compared to naïve mice, and also 

did not affect from their performance when they were tested again at 18 months of age
606

. 

A similar study using C57BL/6J and NMRI strains showed that training at 2 months of 

age improved performance at 6 and 10 months of age in NMRI mice when compared to 

naïve mice, but this effect was not observed in C57BL/6J mice who showed no difference 

to naïve mice
603

. However, in the case of this study the time interval between training 

was approximately 2 weeks, and it is unclear if previous experiences changed the 

outcome of subsequent trials with a different chemical treatment. Another confounding 

variable that may have influenced the outcome of these tests is age. Control mice and 

APP/PS1 mice started the first training phase at approximately 12 months of age and 

finished the last probe trial at approximately 16 months of age. It is unclear if aging 

negatively affected mice at later experimental phases. In an attempt to address these 

confounding variables and determine if repeated trials or age had an influence on 

subsequent outcomes, a saline injection phase was performed as the final treatment 

(Figure 26). This analysis revealed no difference between either control mice or APP/PS1 

mice injected with saline at the very end of the study or vehicle at the very beginning of 

the study. Although these results need to be taken with caution, they suggest that these 

confounding variables did not impair the ability of these mice to perform during the final 

probe trial.  

In order to further test the hypothesis that aerobic glycolysis contributes to memory 

processes, a new experiment was conducted where each of the previous confounding 

variables was removed. DCA was selected as the treatment instead of Isosafrol because 

control mice showed a greater impairment in memory from DCA injection than Isosafrol 

treatment in the previous study. The latency time required to find the platform was 

recorded over the course of four training days and a one-way repeated measure ANOVA 

revealed no difference between mice assigned to saline or DCA treatments (Figure 27). 

This indicated that there was no inherent difference in the ability of mice from either 
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treatment group to learn the location of the hidden platform. Several measures of 

performance were recorded during the probe trial including the total distance traveled, the 

percent time spent in the correct quadrant, the number of platform entries, the latency to 

the first platform entry, and the difference in latency to the platform between the probe 

trial and the average of the final training day (Figure 27). Mice injected with DCA 

travelled the same total distance as mice injected with saline, suggesting that DCA had no 

effect on the ability of mice to swim in the tank. Mice injected with DCA spent the same 

percent of time in the correct quadrant as mice injected with saline, and crossed the 

boundary of the platform the same number of times. These measures suggest that there 

was no significant difference in memory performance between saline and DCA-injected 

mice at 9 months of age. The latency to the first platform entry was also recorded and 

there was no difference between DCA-injected mice and saline-injected mice. In contrast, 

the difference between the latency to find the platform boundary during the probe trial 

and the average latency to find the platform on training day 4 revealed that saline mice 

found the platform boundary faster than their previous average time (-4.88 ± 1.09 

seconds), while the DCA mice did not find the platform any faster than their previous 

average time (0.16 ± 1.96 seconds). There was a considerable difference between these 

two groups (p = 0.042), yet it did not reach the significance threshold set by the 

Bonferroni correction for multiple comparisons ( < 0.01). This finding should be 

interpreted with caution, but suggests that DCA may cause a delay in memory recall and 

could have had an effect on the ability of mice to continue to learn the location of 

platform. Future experiments should examine the effect of DCA injection before each 

training day in order to determine if DCA impairs learning ability in these mice. 

Moreover, the previous study was performed with mice at 12 months of age. The effect 

of DCA on mice at different ages should also be considered. 

Following the probe trial, a flag trial was performed where the platform was placed back 

into the tank in the opposite quadrant and a red flag was attached as a visual cue. The 

latency to find the platform during this trial found no difference between DCA-injected 

mice and saline-injected mice, suggesting that DCA did not interfere with the ability of 

mice to use visual cues to find the platform. Altogether, these data indicate that acute 
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exposure to DCA does not impair memory performance in naïve mice, which is counter 

to the previous study showing a significant decline in memory performance of DCA-

injected mice. However, there was indication that learning might be compromised by 

DCA exposure. Further studies using different ages of mice and repeated injection 

strategies will be required to formally determine the effect of DCA-mediated inhibition of 

aerobic glycolysis on learning and memory. 

4.2.7 Acute injection of dichloroacetate may reduce conversion of 
pyruvate to lactate in the brain 

Recent advances in MRI technology have enabled the monitoring of brain metabolism 

non-invasively with the use of hyperpolarized 
13

C-labelled metabolites coupled with 

MRS. Injection of hyperpolarized 
13

C-pyruvate generates pyruvate and lactate peaks that 

are linearly proportional to their concentration, and thus can be used to quantify the 

conversion of pyruvate-to-lactate in the brain
607

. Considering that acute exposure to DCA 

had no effect on memory performance of naïve mice, DCA was tested for a physiological 

response on the brain using hyperpolarized 
13

C-pyruvate MRS. The target of DCA is 

PDK, which phosphorylates and inhibits the PDH complex resulting in higher activity 

and a drop in brain lactate levels
600

. In order to measure the conversion of pyruvate to 

lactate in the brain, 9-month-old naïve mice (n = 5) were injected via tail vein with 
13

C-

pyruvate and the resulting peaks of pyruvate and lactate were measured 30 minutes 

before and 30 minutes after tail vein injection of  DCA (200 mg/kg). The whole brain 

was imaged by 
1
H-MRI and individual 

13
C-pyruvate spectra were overlaid to a coronal 

field of view (Figure 28). The average of all spectra for each individual mouse was 

calculated for both before and after DCA injection and the average of all mice in the 

experiment was then compiled. This analysis revealed a decline in the ratio of lactate-to-

pyruvate from before (0.10 ± 0.01) to after (0.06 ± 0.02) DCA injection (Figure 28). A 

paired Welch’s t-test revealed that this difference was not statistically significant (p = 

0.07), however, only five mice were analyzed and there was considerable variability in 

lactate levels detected using this scanning technique. Further 
13

C-pyruvate MRS 

experiments should be completed to improve the sample size and increase the power of 
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the analysis in order to conclusively determine that DCA causes a decline in brain lactate 

production.   

4.2.8 Acute injection of dichloroacetate causes a decline in 
phosphorylated PDH levels in the brain 

To determine if DCA injection in these mice caused a change in phosphorylation levels 

of PDH, mice were euthanized 30 minutes after intraperitoneal injection with either 

saline or DCA (200 mg/kg) and brain extracts from the frontal cortex and hippocampus 

were examined by western blotting (Figure 30 and Figure 32). This analysis revealed that 

DCA caused a significant reduction in levels of phosphorylated PDH to total PDH in both 

the frontal cortex and the hippocampus, indicating that DCA caused a physiological 

response in the affected animals. This analysis also revealed a significant increase in 

PDK1 expression and a significant decrease in MCT4 expression in the frontal cortex of 

DCA-injected mice.  There was no significant difference between saline- and DCA-

injected mice for any of the proteins investigated in the hippocampus. A decrease in 

expression of LDHA and MCT2 was noted but these differences did not pass the 

significance threshold as determined by the Bonferroni correction for multiple 

comparisons. Altogether, these results confirm the previous observations that DCA 

injection causes a decline in levels of phosphorylated PDH in the frontal cortex and 

hippocampus of affected mice.   

4.2.9 The correlation between the expression of aerobic glycolysis 
enzymes in the frontal cortex and memory performance is 
reproducible 

In order to further examine the relationship between aerobic glycolysis and memory, the 

percent time spent in the correct quadrant during the probe trial of the MWM was 

correlated to the band density from western blots of aerobic glycolysis and lactate 

transporter proteins in the frontal cortex and hippocampus of saline- and DCA-injected 

mice (Figure 33 and Figure 34). A multiple linear regression revealed that the ratio of 

phosphorylated PDH to total PDH in the frontal cortex positively correlated with memory 

performance for saline-injected mice. This suggests that mice with higher 

phosphorylation of PDH in the frontal cortex performed better on the memory task than 
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mice with lower phosphorylation of PDH. It is intriguing that DCA-injected mice had a 

significant reduction in levels of phosphorylated-PDH and yet this did not confer 

impairment in memory performance. This suggests that compensatory responses may 

have been activated to maintain energetic demand during memory testing despite the drop 

in PDH phosphorylation. A significant positive correlation was also observed between 

memory performance and the expression of the astrocyte-specific lactate transporter, 

MCT4, in the frontal cortex of DCA-injected mice. This indicates that mice with higher 

MCT4 expression performed better on the memory test than mice with lower expression. 

Previous reports have demonstrated that inhibition of MCT4 leads to amnesia, which can 

be rescued by lactate but not equicaloric glucose, yet the inhibition of MCT2 leads to 

amnesia that cannot be rescued by lactate or glucose
462

. Assuming that DCA caused a 

decline in lactate levels by inhibiting PDK and thus reducing phosphorylation of PDH, an 

increase in lactate transport may have arisen to maintain neuronal activity. The positive 

correlation between memory performance and levels of phosphorylated-PDH in the 

frontal cortex is consistent with previous observations in control mice (Figure 19). 

However, these mice also displayed a positive correlation for lactate-producing enzymes 

LDHA and PKM2/PKM1, suggesting a relationship between lactate production and 

improved memory. This collective trend is absent from saline-injected mice in this 

analysis, which showed no correlation for LDHA, LDHB, PKM2, or PKM1. In 

agreement with previous observations, there were no significant correlations between 

memory and expression of aerobic glycolysis proteins or lactate transporters in the 

hippocampus. These results indicate that aerobic glycolysis in the frontal cortex may play 

a more fundamental role than it does in the hippocampus.  

It is also possible that aerobic glycolysis does not contribute to memory processes. Mice 

injected with DCA did not exhibit impaired memory despite a decline in levels of 

phosphorylated-PDH in both the frontal cortex and hippocampus. In addition, memory 

performance did not correlate with expression of any marker of aerobic glycolysis other 

than phosphorylation of PDH. However, earlier results from the correlation analysis of 

control and APP/PS1 mice demonstrated a clear positive correlation between memory 

and expression of lactate producing enzymes whereas the opposite effect was observed 

for the lactate consuming enzyme (Figure 19). Furthermore, a significant decline in 
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memory performance was measured from DCA-injected control mice when compared to 

vehicle-injected and saline-injected control mice (Figure 26). These observations 

highlight the need to reproduce experiments and test the hypothesis under different 

conditions. In order to further examine the relationship between memory and aerobic 

glycolysis, each measure of memory performance from the MWM was correlated to 

levels of phosphorylated PDH in the frontal cortex of saline- and DCA-injected mice 

(Figure 35). As previously demonstrated, a multiple linear regression revealed a 

significant correlation between levels of phosphorylated PDH and percent time spent in 

the correct quadrant.  
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Chapter 5  

5 Conclusions 

There are two main conclusions that can be drawn from this work: (1) the deposition of 

A in the AD brain perturbs lactate metabolism as indicated by the maintained lactate 

levels with age in the frontal cortex of APP/PS1 mice, which interferes with memory 

processes normally beneficial to the healthy aging brain, and (2) aerobic glycolysis plays 

a role in spatial memory as demonstrated by the correlation analysis between protein 

expression and memory performance, yet is not explicitly required for proper memory 

function. There are several strengths and limitations to this study that are addressed in 

this chapter, as well as future directions for further addressing these emergent hypotheses.  

5.1 Thesis summary 

Alzheimer’s disease is a neurodegenerative disorder characterized by the accumulation of 

intracellular amyloid plaques and extracellular neurofibrillary tangles. The amyloid 

plaques are comprised of aggregated A peptides that cause mitochondrial dysfunction 

and neuronal death. Nerve cells can become resistant to A-toxicity by up-regulating 

aerobic glycolysis, a metabolic phenotype that predominantly uses glycolysis for energy 

production despite the availability of oxygen. Yet, it is currently unknown if neurons are 

capable of escaping A-mediated toxicity by up-regulating aerobic glycolysis in vivo, and 

whether aerobic glycolysis contributes to memory. The studies outlined in this 

dissertation tested the hypotheses that neurons upregulate aerobic glycolysis to promote 

A resistance, and that aerobic glycolysis contributes to memory processes. In vivo 
1
H-

MRS revealed an age-dependent decline in lactate levels within the frontal cortex of 

control mice, whereas lactate levels remained unaltered in APP/PS1 mice from 3 to 12 

months of age. In the hippocampus, lactate levels declined with age for both genotypes, 

but sampling of ISF found elevated levels of lactate in APP/PS1 mice. An age-dependent 

decline in levels of aerobic glycolysis enzymes in both control mice and APP/PS1 mice 

was detected along with a concomitant increase in lactate transporter expression in 

control mice. Immunofluorescence microscopy revealed the expression of aerobic 
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glycolysis enzymes PDK1 and LDHA primarily in neurons within the frontal cortex and 

hippocampus, and also in activated astrocytes in APP/PS1 mice. These findings suggest 

that aerobic glycolysis plays an important role in memory in control mice but may be 

detrimental in AD mice.  

In order to test the hypothesis that aerobic glycolysis contributes to memory processes, a 

single cohort of mice were injected with an acute dose of Isosafrol, an inhibitor of 

LDHA, and also DCA, an inhibitor of PDK, in consecutive independent trials 

immediately before entering the MWM. Control mice exposed to DCA performed worse 

in the memory task compared to vehicle or saline injections, while APP/PS1 mice were 

unaffected. A second experiment was performed to confirm these observations using two 

independent groups of randomly assigned naïve control mice. In this case, mice injected 

with DCA were found to have similar memory performance to mice injected with saline.  

In vivo hyperpolarized 
13

C-pyruvate MRS was used to validate the effectiveness of DCA 

by demonstrating a reduction in conversion of pyruvate to lactate in the brain. Western 

blots from extracts of the frontal cortex and hippocampus of DCA-injected mice revealed 

a significant decline in phosphorylation of PDH. In support of previous findings, 

phosphorylation of PDH correlated with better memory performance in saline-injected 

mice. These observations support the hypothesis that aerobic glycolysis contributes to 

memory, yet is likely not the only contributing factor. Together, this evidence indicates 

that production of lactate, via aerobic glycolysis, is beneficial for memory function 

during normal aging. A deposition may perturb lactate processing and contribute to 

cognitive decline in AD.  

5.2 Strengths and limitations of the study 

5.2.1 Disparity between human patients and the APP/PS1 mouse 
model of Alzheimer’s disease  

Transgenic mouse models of AD offer a unique opportunity to examine pathogenic 

mechanisms and test novel therapeutics. However, given the high failure rate of clinical 

trials, several questions have arisen about the validity of using laboratory animals to 

model a complex age-related neurodegenerative disease in humans
608,609

. All transgenic 
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mouse models of AD carry autosomal dominant mutations identified from early-onset 

variants of the disease in humans, yet this accounts for less than 1% of all AD cases, 

while the vast majority of AD cases are sporadic in nature and arise as a consequence of 

age and genetic or lifestyle risk factors
610

. This means that these animals are good models 

of a small subset of AD patients, but do not accurately represent the pathophysiological 

changes associated with sporadic AD in the general public. In addition, most transgenic 

mouse models only recapitulate amyloid accumulation, yet fail to develop other 

pathological hallmarks including neurofibrillary tangles and neuronal loss
611

. Transgenic 

mice that do carry mutations driving both amyloid plaques and neurofibrillary tangles 

develop neurodegeneration and early cognitive deficits in a supra-physiological 

manner
612

. These models are efficient for experimental purposes because of the rapid 

onset of pathology and early cognitive decline, yet the progression of pathophysiology in 

humans with sporadic AD occurs over the course of decades and this cannot be 

accurately recapitulated in experimental models. 

All of my experiments were performed using the APP/PS1 mouse model of AD. These 

mice carry the Swedish mutation (K670N:M671L) in the APP gene that results in 

increased production and secretion of the A peptide
562–566

, while expression of PSEN1 

lacking exon 9 (ΔE9) shifts the cleavage of APP to favor A(1-42) over A(1-40)
96

. I chose 

this model for several reasons: (1) the resistance mechanism in immortalized nerve 

cultures was identified in A toxicity independent of tau pathology
260

; (2) these mice 

develop cognitive impairment between 8 and 14 months of age
481

, which is suitable for 

the purposes of finishing experiments within a doctoral timeline; and (3) these mice do 

not develop neurodegeneration at the age of cognitive impairment
613

, suggesting that a 

resistance mechanism to A may exist in order to facilitate neuron survival despite the 

widespread accumulation of plaque at this age. Yet, if these mice do not experience 

neurodegeneration, then why do they develop cognitive impairment? It was recently 

discovered that APP/PS1 mice have impaired synaptic rewiring of cholinergic 

interneurons in the hippocampus that is required for fear-conditioned learning
614

. In 

addition, hippocampal pyramidal cells of APP/PS1 mice have early deficits in long-term 

potentiation (LTP) that are independent of altered dendritic spine morphology
615

. These 
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studies highlight a key disparity between these mice and human AD patients, where 

cognitive decline is highly correlated with neurofibrillary tangles and neuron loss
616–619

. 

The results of this dissertation suggest that memory deficit in APP/PS1 mice may also lie 

in altered lactate metabolism, although further experiments are needed to confirm this 

hypothesis. 

5.2.2 Protein expression may not reflect enzyme activity 

Western blot analysis of protein expression levels and phosphorylation of PDH may not 

accurately reflect enzyme activity or the direction of metabolic pathways. A recent 
1
H-

MRS study demonstrated that brain lactate levels increase with age and this is 

characterized by a shift in the ratio of LDH isozyme expression of high LDHA and low 

LDHB
330

. This change in the ratio of LDHA to LDHB has also been described in 

different tissues of the rat, including brain, in response to hypoxia
620

. However, 

considering that the equilibrium constant is the same for all isozymes, because it is the 

same reaction being catalyzed, it can be assumed that the LDH reaction is a near-

equilibrium reaction and steady state conditions apply. This means that the isozyme 

pattern cannot have an influence on the equilibrium lactate concentration
331

. If non-steady 

state conditions apply, such as a rapid glycolytic flux or lactate export from the cell, then 

the isozyme pattern may influence lactate concentration. In support of the expression 

analysis of LDH isozyme pattern, Ross and colleagues also performed LDH activity 

assays and demonstrated a significant increase in LDH activity in the direction of the 

reaction from pyruvate to lactate
330

. In this dissertation, the ratio of LDHA to LDHB was 

measured using western blot analysis from brain extracts, yet the activity of this reaction 

was not measured and it was assumed that a shift in the ratio of LDHA/LDHB would 

translate to a change in the direction of the pyruvate to lactate reaction.  

By the same measure, it was assumed that a change in the level of PDH phosphorylation 

was an indication of the activity of the enzyme, yet this is not always the case. Purified 

PDH from bovine kidney mitochondria could be inactivated in a dose-dependent manner 

by incubating the reaction mixture in ATP independent of PDH kinases or 

phosphatases
592

. The regulation of PDH by phosphorylation is also site-specific. In an 

elegant study by Korotchikina and Patel, the three phosphorylation sites of mammalian 
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PDH were mutated from Serine to Alanine either individually or in combination. The 

activity of these PDH mutants demonstrated little decline in activity for mutations in 2 of 

the 3 phosphorylation sites, yet a 50-70% decline in activity of the mutant at Serine-

293
621

. One study using human mitochondria from muscle found that the phosphorylation 

of PDH at two independent sites, Serine-293 and Serine-300, were negatively correlated 

with PDH activity using an exponential model (R
2
 = 0.43 and 0.46, respectively), yet this 

accounts for only 43% and 46% of the variation in PDH activity suggesting alternate 

regulatory mechanisms may be present
622

. Furthermore, elevated phosphorylation of 

PDH did not compromise the regulation of PDH activity during exercise. Dynamic 

changes to the concentrations of substrates (pyruvate, NAD
+
, CoA) or products (acetyl-

CoA, CO2, NADH) may also influence the activity of PDH independent of the PDH 

kinases or phosphatates
623

. Considering that the acute exposure to DCA reduced 

phosphorylation levels of PDH at both sites Serine-232 and Serine-293 in the brains of 

affected mice (Figure 24), it was assumed that PDH activity was increased. However, this 

was not measured and it is possible that the change in phosphorylation level was not 

reflective of activity. If phosphorylation does not accurately reflect PDH activity, it is 

possible that DCA failed to inhibit memory performance because PDH activity was 

maintained following DCA exposure. Future experiments should measure activity of 

PDH from these samples to confirm that DCA exposure affects the activity of the enzyme 

in vivo.  

Western blot analysis of protein expression and phosphorylation of PDH were correlated 

to memory performance in the MWM. Interestingly, the expression of lactate-producing 

enzymes in the frontal cortex correlated with better memory whereas expression of 

LDHB correlated with worse memory in control mice. In addition, saline-injected mice 

showed a positive correlation between phosphorylation of PDH in the frontal cortex and 

memory. Correlations of gene expression in the brain and behavioural changes have 

previously been described
624–627

, indicating a relevant relationship between expression of 

certain proteins in the brain and behavioural phenotype. It was assumed that the protein 

levels from brain extracts of euthanized mice were reflective of actual protein expression 

during the memory test. However, it is currently unknown how stable these expression 

patterns are during stressful conditions of memory testing or over the course of time. 
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Several different factors are known to influence gene expression of glycolytic enzymes, 

including physical exercise
628

, hypoxia
629

, glucose availability
630

, circadian rhythm
631

, 

and neuronal activation
632

. Protein phosphorylation is an especially labile regulatory 

mechanism that changes rapidly in response to cellular environment
633

. In terms of 

metabolic signaling, phosphorylation is especially sensitive to changes in nutrient 

availability and energetic status of the cell considering that ATP is the donor of 

phosphate groups
634

. Phosphorylation of PDH can occur as quickly as 2 minutes in 

response to glucose stimulation in pancreatic -cells
635

. In response to hypoxia, PDH 

phosphorylation occurs within 30 minutes, while transcriptional upregulation of HIF-1 

target genes occurs after 4-6 hours
636

. Given that protein expression and phosphorylation 

is constantly changing in response to a dynamic cellular environment, future experiments 

should aim to euthanize mice immediately following memory testing to ensure accurate 

correlations are made. 

5.2.3 Off-target effects and increased variability with chemical 
modulation from Isosafrol and dichloroacetate  

In order to modulate the activity of key aerobic glycolysis enzymes, the chemicals DCA 

and Isosafrol were used to inhibit the aerobic glycolysis enzymes PDK and LDHA, 

respectively. Chemical modulation is a simple, effective, and inexpensive way to test the 

effect of target molecules on a biological system. Chemical modulation is used 

extensively in vitro in part due to the simplicity of the cell culture system, yet there are 

certain challenges associated with in vivo biological systems. The single largest limitation 

discovered in this work was the loss of effect in chronic exposure to DCA. Thus the 

ability to test the hypothesis that aerobic glycolysis is upregulated in neurons to promote 

A resistance, could not be properly investigated. Other main limitations of chemical 

modulation in laboratory animals are potential off-target effects and variable 

bioavailability and clearance of these agents.  

Despite several studies demonstrating the high affinity of DCA for PDK
599

 and Isosafrol 

for LDHA
491

, these chemicals have several additional off-target effects. DCA is 

transported across the plasma membrane by the MCT family of transporters that are also 

responsible for shuttling lactate, pyruvate, and ketone bodies
637

. This means that DCA 
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could interfere with transport of metabolites within the brain and across the blood-brain 

barrier by directly competing with these substrates. The primary site of DCA metabolism 

is the liver, where it is dehalogenated to glyoxylate in a reaction that requires glutathione 

and eventually converted to glycine, oxalate, and CO2
637,638

. Yet, a minority of DCA may 

also undergo reductive dechlorination to monochloracetate, which is highly neurotoxic
596

. 

Peripheral neuropathy is a common side effect of DCA in humans
595

 and laboratory 

animals
639

. This likely occurs via reduction in expression of myelin-related proteins in 

Schwann cells
640

. Over the course of this dissertation, several mice had to be euthanized 

after months of chronic exposure to DCA due to tissue damage to the ends of their tails 

and hindfeet. While all other mice appeared to tolerate DCA during the course of 

exposure, and there was no observable effect of DCA on the ability of mice to swim in 

the MWM, it was assumed that nerve toxicity did not have an effect on cerebral lactate 

metabolism. Isosafrol has a shorter history than DCA and so less is known about its 

pharmacology or pharmacotoxicology. Oral administration of isosafrol in rats resulted in 

89% of the dose excreted in urine after 72 hours suggesting it has less bioavailability than 

DCA
641

. Isosafrol is an analog of stiripentol, which indirectly inhibits cytochrome P450 

enzymes
642

 and may affect detoxification reactions in the liver or synthesis of hormones, 

cholesterol, or vitamin D
643

.  

Chemical modulation also introduces a source of individual variability between animals 

of the same treatment. The mode of delivery of chronic DCA exposure was oral 

administration in the drinking water. The dosage of DCA was calculated based on an 

average weight of all animals in the same cage and an assumed daily consumption of 5 

mL per animal. Given that animals in the same cage had different weights and likely 

consumed different amounts of water, the specific dose of each animal would have been 

slightly different. Precise dosages of DCA and Isosafrol were achieved by intraperitoneal 

injection. The dose of each injection was calculated by weight of each individual animal, 

which was more accurate than oral administration, yet there were likely subtle differences 

in the site of injection of each animal that introduced variability in biological 

measurements. In addition, mice that were injected with DCA or Isosafrol were memory 

tested or euthanized 30 minutes after delivery, yet the half-life of the drug is dependent 

on its detoxification in the liver or clearance in the kidney and would be slightly different 
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for each animal. For these reasons, the introduction of chemicals to a biological system as 

a means to study the effect of inhibiting an enzyme introduces addition sources of 

variability between individuals within a treatment group.  

5.3 Future directions 

Due to technical limitations of chemical-induced inhibition of enzymes, future work 

should be aimed at using more reliable and robust methods of modifying the expression 

or activity of these enzymes in order to reduce off-target effects and limit additional 

sources of variation. Genetic manipulation allows precise temporal and spatial control 

over expression of gene targets. This gives researchers the tools for examining the 

biological consequence of altered expression within a given age of an animal’s lifespan 

and within specific tissues of interest.  

Future projects will be aimed at over-expressing or knocking-out LDHA in either neurons 

or astrocytes and testing the behavioural outcome at an appropriate age. In addition, 

crossing these mice to a mouse model of AD would greatly help towards identifying the 

role of LDHA expression, and associated lactate production, on AD progression. Some of 

this work has already been accomplished. In consultation with Christopher Pin and the 

London Regional Transgenic and Gene Targeting Facility (LRTGT), I created a new 

transgenic mouse line over-expressing mouse LDHA with a C-terminal HA tag. Founder 

mice for this transgenic line are currently in our colony. The Ldha gene was cloned into 

the pTRE-Tight (Clontech) tetracycline-inducible expression vector, which contains a 

minimal CMV promoter (PminCMVΔ) immediately downstream of a tetracycline response 

element (TREmod) consisting of seven direct repeats of a 36 bp sequence containing the 

19 bp tetracycline operator sequence (tet-O). In order to test the efficiency of expression 

in response to tetracycline, the mLDHA-HA-pTight construct was transfected into HeLa 

cells that stably express the reverse tetracycline transactivator (rtTA). The HeLa-rtTA 

cells were kindly provided by Dr. Nina Jones of Guelph University. A dose-dependent 

increase in mLDHA-HA protein level was found with a 24 hour exposure to tetracycline 

as determined by western blot analysis of cell lysates using anti-HA antibodies (Figure 

A1B). The mLDHA-HA-pTight construct was then digested with the Xho1 restriction 

enzyme to isolate the fragment containing the Ptight promoter and the mLDHA-HA gene 
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with a polyadenylation tail. This fragment was used for pronuclear injection into 

fertilized embryos for the creation of a novel transgenic mouse at the LRTGT facility. 

Tail samples from weaned pups were tested for the presence of the mLDHA-HA 

transgene using primers within the Ptight promoter and the first exon of the LDHA gene. 

This analysis identified two female mice positive for the mLDHA-HA transgene. These 

founders were bred to male C57BL/6J mice and the litters were tested for the presence of 

the transgene using ear punch tissue from weaning. One of the founder females produced 

a single female pup that was positive for mLDHA-HA, indicating that the transgene was 

within the germline and could be passed through breeding (Figure A1C).  

This mLDHA-HA transgenic mouse line will be crossed to mice containing the reverse 

tetracycline transactivator (rtTA) under control of the neuron-specific CaMKII  

promoter in order to drive expression of mLDHA-HA specifically in neurons in response 

to oral administration of doxycycline
644

. In order to drive expression in astrocytes, tet-O-

mLDHA-HA transgenic mice will be crossed to mice containing the rtTA element under 

control of the astrocyte-specific Gfap promoter
645,646

. In a preliminary experiment to 

confirm the tight inducible expression of the mLDHA-HA construct, 1-month-old mice 

that express either the mLDHA-HA alone or rtTA alone, or mice expressing both 

mLDHA-HA and rtTA will be switched to a doxycycline chow for a time course of 2 

weeks and then euthanized. Western blot analysis using HA-specific monoclonal 

antibodies will be used to confirm the expression of the mLDHA-HA construct in double 

transgenic mice alone. A sub-cohort of double transgenic mice will be treated with 

doxycycline for 2 weeks and removed from doxycycline for 2 weeks to demonstrate that 

removal of doxycycline after induction can suppress expression of the transgene. Once 

the regulation of transgene expression has been confirmed, double-transgenic mice will 

be allowed to age to 12 months and exposed to doxycycline chow for 2 weeks that will 

activate mLDHA-HA expression in either neurons or astrocytes.   

In order to knock-out LDHA expression in either neurons or astrocytes, an alternate 

approach will be taken. Transgenic mice containing loxP sites flanking exon 2 in the 

Ldha alleles (LDHA
fl/fl

) will be crossed to mice containing Cre-recombinase under 

control of the tet-O promoter (tet-O-Cre)
647

. The LDHA
fl/fl

 mouse line is commercially 
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available and has successfully been used to conditionally knockout the Ldha gene only in 

bone marrow stem cells
648

. These double-transgenic mice will be crossed to mice 

containing the tetracycline-transactivator (tTA) cassette under control of the CaMKII 

promoter to drive expression in neurons
649

 or the Gfap promoter to drive expression in 

astrocytes
650

. The tTA element will repress expression of Cre in the presence of 

doxycycline and activate Cre when doxycycline is removed. Considering that complete 

knockout of LDHA is embryonic lethal
651

, pregnant mothers will be put on doxycycline 

chow to prevent the expression of Cre during gestation and neonatal development in 

triple-transgenic mice. In a preliminary experiment to confirm the absence of LDHA 

expression, 1-month-old triple-transgenic mice will be switched from a doxycycline 

chow to a normal chow for a time course of 2 weeks and then euthanized. Western blot 

analysis of brain extracts using LDHA-specific antibodies will be used to determine the 

expression of LDHA protein relative to double-transgenic mice that lack the tet-O-Cre 

cassette. A sub-cohort of triple transgenic mice will be switched to normal food for 2 

weeks and then back to doxycycline for 2 weeks to demonstrate that removal of 

doxycycline induces a permanent excision of the floxed Ldha gene. Once the regulation 

of the transgenic elements have been established, triple-transgenic mice will be 

maintained on doxycycline until 12 months of age and switched to normal chow to 

remove LDHA expression in either neurons or astrocytes. 

These genetic mouse lines allow for convenient temporal and spatial control over 

expression of LDHA response to doxycycline chow. Transgenic mice that are either not 

exposed to doxycycline chow (for over-expression line) or exposed to doxycycline chow 

(for knock-out line) can be conveniently used as littermate controls. The behaviour of 

LDHA over-expression mice or LDHA knock-out mice will be evaluated using several 

different memory tests, including the MWM, the Barnes maze
652

, and the novel object 

recognition test
653

. In order to assess stress and anxiety of these animals, the open-field 

test
654

, the elevated plus maze
655

, and the light-dark exploration test
656

 will be used. All of 

these behavioural tests are available to our laboratory. The amount of lactate will be 

measured in vivo using 
1
H-MRS examining different brain regions including the frontal 

cortex, the hippocampus, and the cerebellum. Mice will be euthanized and brain tissue 



151 

 

harvested for western blot analysis of the frontal cortex, the hippocampus, and the 

cerebellum, in order to confirm the expression of the mLDHA-HA construct using HA-

specific antibodies or the deletion of LDHA using LDHA-specific antibodies. The tissue-

specific expression or knock-out of LDHA in neurons or astrocytes will be evaluated 

using cryo-immunofluorescence microscopy with TUJ1 antibodies to target neurons and 

GFAP antibodies to target astrocytes with co-immunostaining using HA-specific 

antibodies and LDHA-specific antibodies. It is predicted that mice over-expressing 

mLDHA-HA in neurons or astrocytes will display higher levels of cerebral lactate and 

have enhanced memory performance. In contrast, mice that lack LDHA expression will 

display decreased levels of cerebral lactate and will have memory deficits. These results 

will offer robust evidence to accept or reject the hypothesis that aerobic glycolysis 

contributes to memory processes. Any differences between the genetic manipulations of 

LDHA in neurons or astrocytes will indicate a functionally distinct role of aerobic 

glycolysis in these two different cell types.  

In order to test the hypothesis that aerobic glycolysis promotes A resistance in AD, 

double-transgenic LDHA over-expression mice and triple-transgenic LDHA knock-out 

mice will each be crossed to the 5xTg mouse line. These mice contain 5 different 

mutations targeting the A pathway: APPKM670/671NL (Swedish), APPI716V (Florida), 

APPV7171 (London), PSEN1M146L, and PSENL286V. This mouse model of AD has several 

benefits over the APP/PS1 mouse line; including deficits in spatial learning that occur at 

4-5 months of age and apparent neurodegeneration at 9-12 months of age
657

. Considering 

that these mice exhibit dramatic rises in A(1-42) levels beginning at 1.5 months of age, 

the induction of LDHA over-expression or knock-out will be initialized immediately after 

weaning. These mice will be monitored over the course of age and behavioural testing 

will be administered at 4 months of age. The progression of amyloid pathology will be 

examined over the course of aging by euthanizing mice at regular intervals of age. Brain 

cryo-sections will be stained with Thioflavin S to visualize amyloid plaques via 

immunofluorescence, while cerebral levels of A(1-40) and A(1-42) will be measured using 

ELISAs. Synaptic dysfunction and neurodegeneration will be evaluated by western blot 

analysis measuring levels of syntaxin and post-synaptic density protein 95 (PSD-95), 
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both synaptic markers, and p25 as a marker for the neurodegeneration pathway
657

. It is 

anticipated that over-expression of LDHA in neurons or astrocytes will maintain neuron 

survival in 5xTg mice at 9 months of age, while the opposite trend is expected with 

LDHA knock-out mice. These experiments will provide sufficient evidence to accept or 

reject the hypothesis that aerobic glycolysis promotes Aresistance in AD. 

 

5.4 Concluding remarks 

A number of significant and novel findings were realized in this study. First, lactate 

levels in the frontal cortex decline with age, yet are maintained in APP/SP1 mice. A 

significant correlation exists between expression of lactate producing enzymes and 

memory performance in control mice, but not in APP/PS1 mice. These findings suggest 

that lactate production plays a beneficial role in memory in the healthy aging brain but 

might contribute to memory decline in the AD brain. Second, expression of PDK1 and 

LDHA, two central regulators of aerobic glycolysis was found primarily in the soma of 

neurons, but also in reactive astrocytes surrounding amyloid plaques. These observations 

indicate that neurons can also generate lactate, and that reactive astrocytes may play a 

role in the elevated lactate levels detected in the AD brain. Finally, chemical inhibition of 

aerobic glycolysis appeared to inhibit learning in mice whereas it had little to no effect on 

spatial memory. Thus, aerobic glycolysis may play a more prominent role in different 

regions of the brain affecting other cognitive processes and behaviours independent of 

memory.  Each of these observations need to be examined further in order to provide a 

more complete mechanistic overview of cerebral lactate metabolism in the healthy brain 

and its role in memory. This work will also lead to a better understanding of how aerobic 

glycolysis and cerebral A interact in the AD brain and could lead to the development of 

novel metabolic strategies to treat this devastating disease. 
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Appendix A: Supplementary Figures and Tables 

 

Figure A1. Creation of novel transgenic mouse line containing 

mLDHA-HA-pTight expression cassette.  

(A) Western blot analysis of cell lysates probed using HA- and 

GAPDH-antibodies showing tetracycline-inducible expression of 

mLDHA-HA in HeLa-rtTA cells. (B) PCR-based genotyping of ear 

punch from litter of female founder mouse #849 with positive pup #6 

demonstrating germline transmission of the mLDHA-HA-pTight 

transgene.  
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Table A2. List of mice removed from analysis due to stress effects in a particular 

training phase.  

Mice could be removed from analysis if they display behaviour that clearly demonstrates 

no attempt to actively search for the platform during the training phase. The number of 

control mice and APP/PS1 mice out of the total for each training phase is displayed. 

 

 

 Number of mice removed from analysis due to stress 

Training Phase Control APP/PS1 

Vehicle 0 / 17 3 / 11 

Isosafrol 0 / 16 1 / 9 

DCA 0 / 15 1 / 9 

Saline 0 / 13 1 / 7 
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