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ABSTRACT 

The management of fine oil sands tailings, known as mature fine tailings (MFT), is a major 

challenge for the oil industry in the Northern Alberta, Canada. Dewatering and consolidation of 

MFT are slow and time consuming due to high water content and low permeability of MFT. The 

electrokinetic (EK) dewatering treatment has shown to be effective on oil sands tailings based on 

the results of previous researches. Therefore, this thesis is focusing on experimental and numerical 

studies of EK dewatering of oil sands tailings.  The thesis includes three parts, i.e., EK dewatering 

of oil sands tailings and kaolinite slurry, EK and chemical (quicklime and Portland cement) 

combined treatment, and development of a one-dimensional large strain EK consolidation model. 

In the first part, the EK dewatering experiments are designed and executed on oil sands tailings 

and slurries of kaolinite, which is the major clay mineral in the Alberta oil sands tailings, with 

vertically installed electrodes. The analyses are carried to obtain the regression equations of the 

dewatering trends for the results of oil sands tailings and kaolinite slurries, including the water 

drainage, water/solid content, energy consumptions, etc. The effects of applied voltage gradient 

and initial water content on EK dewatering are studied via the regression equations. The material 

saturation, especially at the anode, is found to be the key factor controlling the water flow 

generated by electrokinetics. Once the degree of saturation of the material at the anode drops below 

80%, the most efficient stage for EK dewatering will end. 

The effects of EK and chemical combined treatment of MFT are evaluated in the 2nd part in this 

research. The addition of quicklime or Portland cement minimizes the difference of water content 

and undrained shear strength of MFT between the anode and cathode, whereas it also reduces EK 

induced water flow. It is concluded that EK and chemical combined treatment of MFT may be 

beneficial at a low chemical dosage (1% quicklime or cement). 

In the 3rd part of this study, a one-dimensional large strain EK consolidation model (LSEK-1D) is 

developed for oil sands tailings. The model predictions are in consistency with the experimental 

results in terms of the final settlements and consolidation times. Moreover, the effects of sample 

initial heights and applied current densities on consolidation times are evaluated via the model. 

The results indicate that the consolidation times of oil sands tailings are shorter than those based 
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on the conventional small strain consolidation theory, and the application of EK combined with 

surcharge pressure can significantly reduce the consolidation time of oil sands tailings.  

 

 

 

 

 

Keywords: Electrokinetics (EK), Electroosmosis (EO), Dewatering, Consolidation, Oil sands 
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Gs: specific gravity 

h: total head (m) 

hz: elevation head (m) 

H0: initial height of the sample (m)  

Hdr: initial drainage path (m) 

H-S model: the Helmholtz and Smoluchowski model 

i: current density (A/m2) 

ic: applied current density (A/m2) 

is: streaming current (A/m2) 

I: electrical current (A) 

jrel: flux of water relative to the moving solid phase 

k: the intrinsic permeability (m2) 

ke: coefficient of electroosmotic permeability (m2/sV) 
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ki: electroosmotic transport coefficient (m3/Ah) 

kh: hydraulic conductivity (m/s) 

Km: relative permittivity of free solvent 

L: the length of the sample in the EK cell (m) 

LEE: Low Energy Extraction process 

LL: liquid limit (%) 

LSEK-1D: the one dimensional large strain EK consolidation model 

mv: the coefficient of volume compressibility (kPa) 

MFT: mature fine oil sands tailings 

MFT-A: samples of mature fine tailings used in this study 

MH: elastic silt 

n: porosity of the soil, n=e/(1+e) 

NST: non-segregating tailings 

pext: the constant gas pressure immediately above the deposit (kPa) 

P: power consumption per unit volume of bulk tailings (kW/m3)  

Pm: the maximum power consumptions per unit volume of bulk tailings (kW/m3) 

PL: plastic limit (%) 

PVD: prefabricated vertical drain 

qe: the water discharge rate by electroosmosis (m3/h) 

qeo: the EO flow velocity (m/s) 
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R: the gas constant (8.314 J/(mol∙K)) 

REV: the representative elementary volume 

sc: solid content, which has a relationship between water content, described as: s = 1/(1 + w) (wt%) 

s: location presented in material coordinate system 

S: the settlement of the sample (m) 

Sd: the degree of saturation (%) 

Smax: is the maximum consolidation settlement (m) 

Su: undrained shear strength (kPa) 

t: time (hour) 

t50: characteristic time obtained trough experiments, when normalized water drainage, Vw/V0=Dv/2 

(hour) 

T: the absolute temperature (K) 

Tend: characteristic time when EK induced water flow stops (hours) 

Ttran: characteristic time when the rate of EK induced water flow changes (hours) 

Tv: dimensionless time factor 

u: pore-water pressure (kPa) 

ueo:  EK induced excess pore water pressure (kPa) 

uex: the excess pore water pressure (kPa) 

uhyrd: the hydrostatic pore water pressure (kPa) 

U: electrical voltage (potential) (V) 
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Uav: average degree of consolidation (%) 

USCS: Unite Soil Classification System 

ve: the average velocity of liquid phase relative to that of the moving solid phase (m2/sV) 

vs: solid phase velocity (m/s) 

vw: pore water flow velocity (m/s) 

V0: initial volume of tailings slurry (mL) 

Vw: volume of water discharge (mL) 

Vw/V0: Normalized EK water drainage (%) 

w: water content, w = mass of water/mass of solid (wt%) 

w0: initial water content of tailings (wt%)  

wf: the lowest of normalized water content at anode the EK can reach 

w(t): water content at any treatment time (wt%) 

w(t)/w0: normalized water content (%) 

W: energy consumption per unit volume of bulk tailings slurry (kWh/m3) 

Win: the weight of water inflow 

Wm: maximum energy consumption per unit volume of bulk tailings slurry (kWh/m3) 

Wout: the weight of water outflow 

x: the distance to the cathode (m) 

x/L: the normalized distance to the cathode 

z: location presented in Eulerian coordinate system in one dimension 
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α: the mechanical response of the soil skeleton 

γw: the unit weight of water (9.8 kN/m3) 

γs: the unit weight of soil solid (kN/m3) 

Γ: electrical conductance (S) 

ε: the permittivity of the pore fluid (C/V∙m) 

ε0: permittivity of vacuum (8.854×1-12 F/m) 

ζ: the zeta potential of soil (V) 

κ: material electrical conductivity (S/m) 

κ0: initial material electrical conductivity (S/m) 

κ-1: the electrical double layer thickness (m) 

λP: reduction rate of power consumptions (hour-1) 

λsu: empirical coefficient for regression equation of undrained shear strength (hour-1) 

λw: reduction rate of normalized water content (hour-1) 

µ: the liquid phase viscosity (kg/(s·m)) 

ξ: location presented in Lagrangian coordinate system in one dimension 

ρb: the bulk density of the soil (kg/m3) 

ρw: the density of water (1×103 kg/m3) 

σ: normal stress (kPa) 

σ’: effective stress (kPa) 

ψ: porewater pressure (kPa) 
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Chapter 1 Introduction 

1.1. Background 

The oil sands industry in Canada has been developing for over 40 years and are expected to grow 

in the future. During this process, many concerns, such as the geotechnical risk, local groundwater 

contamination, and greenhouse gas emission have been raised on tailings (Sobkowicz 2012, Small 

et al. 2015).  Oil sands tailings, the by-products after oil sands processing, are mixtures of sand, 

silt, clay, water, residual bitumen and other hydrocarbons. The current tailings management is 

focusing on several aspects, i.e., production, storage, and reclamation of fluid fine tailings 

(Sobkowicz 2012).  One of challenges in the tailings management is to accelerate the dewatering 

rate and minimize fluid fine tailings (FFT).  The existing tailings require many large tailings ponds 

for storage, and must be consolidated in order to reclaim the land occupied by these tailings ponds. 

A major challenge for the dewatering and consolidation treatment is to deal with the mature fine 

tailings (MFT), which typically have the solid content of about 30% and naturally remain in a very 

stable condition.  

Electrokinetics (EK) is one of the potential technologies that can be used to accelerate the 

dewatering of the tailings. EK has been applied in geotechnical and environmental engineering for 

years, such as improving the soft ground (Casagrande 1959, 1983, Fetzer 1967, Shang 1997, 

Rittirong and Shang 2005) and dewatering the waste slurry (Tuan et al. 2012). A preliminary study 

on the feasibility of EK dewatering on oil sands mature fine tailings has been carried out (Guo and 

Shang 2014). The one-dimensional bench scale dewatering tests were carried out with horizontally 

installed electrodes. The results indicate that EK can significantly accelerate the dewatering rate 

of MFT. This study is the continuation of the previous study (Guo and Shang 2014), focusing on 

experimental and theoretical aspects of electrokinetic dewatering on oil sands tailings and kaolinite 

slurries. 

1.2. Research objectives 

The goals of this research are to study the EK dewatering of oil sands tailings and kaolinite slurries 

via vertically installed electrodes, and to develop a large strain one-dimensional model for EK 
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consolidation of oil sands tailings and other highly compressible geomaterials. The specific 

objectives of the study include: 

1) Design experiments to study the EK dewatering effects on oil sands tailings via the 

vertically installed electrodes to simulate field applications in tailings ponds. 

2) Study the general trends of EK dewatering on oil sands tailings as well as on kaolinite 

slurries, including the water drainage, solid content, applied voltage and current, energy 

consumptions, etc., via data regressions of experimental results.  

3) Study the mechanism of EK flow as related to the degree of saturation of oil sand tailings 

and kaolinite slurries. 

4) Investigate the combined effects of EK and chemical stabilization (quicklime and Portland 

cement) on MFT. 

5) Develop a one-dimensional large strain EK consolidation model and verify and validate 

the model via the experimental results of EK dewatering on oil sands tailings.  

1.3. Thesis outline  

The thesis contains seven chapters. The contents present in each chapter are summarized as follows: 

• Chapter 1: Introduce the background of the research, research objectives, thesis outline 

and original contributions of the study.  

• Chapter 2: Present a literature review, including the basic knowledge of oil sands and 

associated tailings management technologies, and fundamentals of electrokinetics.  

• Chapter 3: Describe the experimental study of EK dewatering on oil sands tailings via the 

vertically installed electrodes and conduct data analysis via regression. An in-depth 

discussion of EK flow as affected by the material saturation is presented. 
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• Chapter 4: Describe the experimental study on kaolinite slurry. The effects of voltage 

gradient on energy consumption are analyzed via data regression. The effects of kaolinite 

sample saturation on EK induced water flow are analyzed. 

• Chapter 5: Study the combined treatments of EK and chemical stabilization (quicklime 

and Portland cement) on oil sands tailings. The analysis is focusing on changes in water 

content and undrained shears strength. 

• Chapter 6: Develop a one dimensional large strain EK consolidation model (LSEK-1D), 

and validate the model with the data obtained from EK dewatering experiments on oil sands 

tailings in terms of final settlement and consolidation time. The effects of the initial sample 

height and applied current density on the EK consolidation time are analyzed via the LSEK-

1D model. 

• Chapter 7: Summarize the key aspects, draw conclusions, and make recommendations for 

future research. 

Chapters 3, 4, 5 and 6 are presented in the format of manuscripts. The topics are different but 

related to each other and prepared for publication. Hence there might be overlaps in the 

introduction and experimental sections in these chapters.   

1.4. Original contributions  

The original contributions of this study are: 

• Experimental study of the EK dewatering on oil sands tailings and kaolinite slurry via 

vertically installed electrodes to simulate the field conditions. 

• A data processing technique involving normalization and regression to obtain 

mathematical equations for the general trends of EK dewatering process. 

• Identification of the limiting factor, i.e. the degree of saturation, quantitatively for EK flow 

in oil sands tailings and kaolinite slurries.  
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• Evaluation and interpretation of the combined effects of EK treatment and chemical 

stabilization (quicklime and Portland cement) on oil sands tailings. 

• Development of a one dimensional large strain EK consolidation model (LSEK-1D) for oil 

sands tailings, and verification and validation of the model with experimental data on oil 

sands tailings in the first time. 
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Chapter 2 Literature review 

2.1. Management of oil sands tailings 

Oil sands, which are unconventional petroleum reserves, are partially consolidated sandstone or 

loose sand deposits of bitumen. Compared with conventional oil, bitumen has high density and 

viscosity. Enormous capacity of oil sands, 2100 billion barrels of oil, has been estimated 

(Demaison et al. 1977, Shaw et al. 1996). Oil sands deposits are found around the world, including 

Canada, Venezuela, USA, Trinidad, Madagascar, Albania, Russia and Romania (Shaw et al. 1996, 

Chalaturnyk et al. 2002).  Canada has the third largest reserves of crude oil, among which 165 

billion barrels are in oil sands (AER 2016, CAPP 2016). Surface mining (Fig. 2.1) and in-situ 

extraction (Fig. 2.2) are two main methods used for oil recovery (CAPP 2016). The surface mining 

is used to recover shallow oil sands deposits (typically less than 75 meters below the ground 

surface) (Charpentier et al. 2009, ADOE 2016). For deeper deposits, bitumen is pumped to surface 

after being heated or diluted in-situ (Charpentier et al. 2009, ADOE 2016).  

Older facilities (such as Suncor and Syncrude Base mines) use the Clark hot water extraction 

(CHWE) process to separate bitumen from the ore obtained in surface mining (Sobkowicz. 2012). 

In the process, oil sands are dispersed with water, steam, and caustic (NaOH) (Mikula et al. 1996).  

Therefore, extraction of the bitumen generates large amount of liquid wastes. It is estimated that 

to produce one barrel of synthetic crude oil, about 2 tonnes of ore are needed and about 1.8 tonnes 

of solid waste and 2 m3 wastewater are generated (Mikula et al. 1996). A simplified illustration of 

oil sands mining and bitumen extraction operations processes is shown in Fig. 2.3. More recently, 

the Low Energy Extraction (LEE) process developed by Syncurde has been used in newer facilities 

(Sobkowicz 2012).  

It was reported that the Alberta oil sands industry produced 1.184 million barrels per day in 2008 

(Giesy et al. 2010) and about 2.3 million barrels per day in 2014 (ADOE 2016, AER 2016). Among 

these, 56% of crude oil are produced by surface mining in 2008 and reduced to 47% in 2014 

(ADOE 2016).  Enormous amounts of tailings have been produced due to surface mining of oil 

sands. Small et al. (2015) reported that tailings ponds occupied about 176 km2. A net cumulative 

footprint, including dykes, berms, beaches, and in-pit ponds, is about 220 km2 in the Lower 
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Athabasca Region (GOA 2015). Thus, nowadays the management of oil sands tailings has become 

one of the major challenges in the oil sands industry.  

2.1.1. Oil sands tailings characteristics 

Tailings are the by-products after mining processing. Oil sands tailings are discharged in the form 

of slurry, which is a mixture of water, sand, silt, clay and residual bitumen. The discharged tailings 

slurry contains about 55 wt% solid, which consists 82wt% sand, 17wt% fines (smaller than 44 µm) 

and 1wt% residual bitumen, which is transported and deposited in tailings ponds via pipelines 

(Chalaturnyk et al. 2002). The coarse sized particles segregate from fines, and form the dike. The 

remaining fines run off into the tailings ponds, accumulate and settle with time. The solid content 

of these fines quickly reaches to 20 wt% and further to 30 wt% after a few years (Chalaturnyk et 

al. 2002). These fine tailings are called mature fine tailings (MFT), which have a stable structure 

and will remain fluid state for decades (Kasperki 1992). It is estimated that it will take thousands 

of years to reach full consolidation if untreated (Mikula et al. 1996).  

The mineralogy governs both hydraulic and mechanical behaviors of MFT. In the McMurray 

Formation, quartz sand is the major component of Athabasca oil sands (Shaw et al. 1996).   The 

dominant clay minerals in this formation are kaolinite and illite with traces of smectities, chloride, 

vermiculite and mixed-layer clays (Mossop 1980, Mikula et al. 1996, Chalaturnyk et al. 2002, 

Mikula et al. 1996, Kaminsky 2008, Guo and Shang 2014, Bourgès-Gastaud et al. 2017).  

A brief summary of the MFT properties is listed in Table 2.1, cited from different sources. The 

average solid content of MFT is about 33%, corresponding to the water content of 203% and void 

ratio of 5, reported by BGC Engineering Inc. (2010). The specific gravities range from about 2.3 

to 2.6, as seen in Table 2.1. The liquid limit is from 40% to 70% and the plastic limit is 10% to 

20% (BGC Engineering Inc. 2010). It is noted that the water content is 3 to 5 times over the liquid 

limit, indicating that the MFT is in the liquid state and has a virtually zero shear strength. The 

residual bitumen content ranges from 1 to 7 wt% by total mass and the particle size of MFT is 

varied from case to case, as seen in Table 2.1. The hydraulic conductivity reported by BGC 

Engineering Inc. (2010) is in the range of 1×10-6 to 1×10-9 m/s. The measured hydraulic 

conductivities of oil sands tailings (Jeeravipoolvarn et al. 2009, Guo and Shang 2014) are within 
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this range. Since the MFT is stable in nature (Mikula et al. 1996, BGC Engineering Inc. 2010), the 

consolidation is very slow in tailings ponds.  

2.1.2. Technologies of oil sands tailings management 

Two fundamental factors affect the selection of the tailings management technology, i.e., the cost 

required to meet the performance criteria, as well as the objective and the risks associated with 

the selected methods (COSIA 2012). 

COSIA (2012) reported four types of disposal method for oil sands tailings and some of the 

current process methods used to release water from fine tailings.  

• Thin layered, fines-dominated deposits: The tailings are discharged into disposal site in 

thin layers (thin lifts), which are typically 100-500 mm thick, after initial dewatering via 

chemical or mechanical treatment. Further dewatering of tailings depends on natural 

process of atmospheric evaporation and free-thaw cycles.  

• Deep, fines-dominated deposits: After initial dewatering via mainly polymer flocculation, 

the tailings are discharged continuously into a deep disposal sites, and further dewatering 

is primarily attributed to self-weight consolidation. 

• Fines-enriched sand deposits: Composite tailings (CT) or non-segregating tailings (NST) 

are formed by mixing fine tailings with coarse materials and flocculants or coagulants. The 

materials usually have higher hydraulic conductivity and lower compressibility than fine 

tailings. Further dewatering relies on self-weight consolidation. 

• Water capped fines deposits: In this method, the MFT is placed in a completed mine pit 

and capped with water. Then a natural lake system can be established once the quality of 

water reaches the environmental criteria. 

BCG Engineering Inc. (2010) presented a detailed review of current technologies for oil sands 

tailings management. The technologies were classified into five categories: 
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• Physical/Mechanical Processes: The physical/mechanical processes include thermal, 

electrical treatment, prefabricated vertical drain (PVD) and other mechanical forces 

(pressure, centrifuge, vacuum filtration) to accelerate the dewatering of MFT.  

Filtration and centrifugation are mature and commercialized technologies to dewater 

tailings in the mining industry (Sobkowicz 2012). Some researches were performed in last 

decades by using filtration (Xu et al. 2008, Zhang 2010, Wang et al. 2010, Alamgir et al. 

2012, Wang et al. 2014), and centrifuge (Mikula et al. 2009, Rima 2013, Azam and Rima 

2014, Sorta 2015) on oil sands tailings. An Experimental study on using PVD to dewater 

oil sands tailings was reported by Yao (2016). Electrokinetic dewatering researches on oil 

sands tailings were reported by (Guo and Shang 2014, Zhang 2016, Bourgès-Gastaud et al. 

2017). 

• Natural Process: In this method, the dewatering of oil sands tailings relies on the natural 

process, such as self-weight consolidation (Jeeravipoolvarn et al. 2009, Jeeravipoolvarn 

2010), atmospheric evaporation (Yao 2016) and free-thaw cycles (Proskin et al. 2010, 

2012). 

• Chemical/Biological treatment: In chemical treatment, flocculants or coagulants are used 

to modify the surface properties of tailings particles, thus leading to flocculation and 

coagulation of MFT and reduction in water content. Biological treatment involves using 

bacterial action to densify MFT. Many researches are carried out by using flocculants or 

coagulants to improve the thickening and dewatering of oil sands tailings (Pourrezaei and 

El-Din 2008, Sworska and Laskowski 2000, Beier et al. 2103, Farkish and Fall 2014, Islam 

and Shang 2017). 

• Mixtures/Co-disposal: Fine tailings are mixed with other soil or waste materials of coarse 

sizes, to increase the density and hydraulic conductivity of tailings. Composite tailings (CT) 

or non-segregating tailings (NST) mentioned above are the typical products. Flocculants 

or coagulants are also added during mixing.  

• Permanent Storage: Tailings are water capped in a completed mine pit to form a lake 

connecting to local hydrological system or back filled into underground mine caverns. 
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Sobkowicz (2012) reported the ongoing technology development of oil sands tailings. In this report, 

developments of the technologies for tailings management are summarized in terms of tailings 

technology suites. The technology suite means a series of technologies involved in the entire 

tailings plan for a specific mine site (Sobkowicz 2012). The technologies associated with its 

development stages are classified into six categories (as seen in Appendix A in Sobkowicz 2012): 

• Mining 

• Extraction and Bitumen recovery 

• Tailings processing  

• Deposition 

• Water treatment 

• Reclamation 

Some of the technologies are used in other mining industries, but less than half of the technologies 

mentioned in the report are currently mature and commercialized for oil sands (Sobkowicz 2012). 

2.2. Electrokinetics 

Electrokinetics (EK) dewatering of MFT is studied in this research. EK has been applied in 

geotechnical engineering to consolidate soft clays since 1950s (Casagrande 1949, Bjerrum et al. 

1967, Fetzer 1967, Chappell and Burton 1975, Wade 1976, Lo et al. 1991 Bergado et al. 2000, 

Chew et al. 2004, Rittirong et al. 2008, Jones et al. 2011). More recently, electrokinetics has been 

studied to dewater mine tailings (Fourie et al. 2007, Fourie and Jones 2010) and oil sands tailings 

(Guo and Shang 2014, EKS 2014, 2016, Bourgès-Gastaud et al. 2017).  

2.2.1. Fundamentals of electrokinetics 

Electrokinetics (EK) consists of mainly three phenomena, as seen in Fig. 2.4: 



Page | 11  

 

• Electroosmosis (EO): Electroosmosis refers to the movement of the pore fluid under the 

DC electric field in a stationary porous media, such as clay, slurry, tailings, etc. 

• Electrophoresis: Electrophoresis is the movement of a colloidal particle with charged 

surfaces in a stationary fluid under an electric force (Smoluchowski 1924, Masliyah and 

Bhattacharjee 2006). 

• Electromigration: Electromigration refers to the movement of dissolved ions under an 

electrical force. 

For soils, the clay surfaces are negatively charged due to isomorphous substitution. The silicon 

(Si4+) in the clay crystal structure is substituted by lower valence ion (such as Al3+, Mg2+), resulting 

in a net negative charge in the surface. In the soil-water-electrolyte system, the electrical double 

layer is formed because the negatively charged clay particle surface attracts the cations and repulse 

anions. The ion distributions at the charged clay particle surface are described via the theory of 

electrical double layer, i.e., a fixed inner layer (Stern-layer) and a diffusive outer layer (Gouy-

layer). The widely used Gouy-Chapman-Stern double layer model, is illustrated in Fig. 2.5 (Shang 

et al. 1994, Mitchell and Soga 2005, Masliyah and Bhattacharjee 2006). The electrical double layer 

thickness (κ-1) (m) is defined as (Shang et al. 1994, Mitchell and Soga 2005, Masliyah and 

Bhattacharjee 2006): 

𝜅 = √
2𝑐0𝑒2𝐹2

𝜀0𝐾𝑚𝑅𝑇
 

(2.1) 

where c0 is the molar concentration of electrolyte (mol/m3), e is valence, F is Faraday constant 

(96487 C/mol), ε0 is permittivity of vacuum (8.854×1-12 F/m), Km is relative permittivity of free 

solvent, R is gas constant (8.314 J/(mol∙K)), and T is absolute temperature (K). 

A quantitative determination of the potential distribution in the Gouy-Chapman-Stern double layer 

model was given by Shang et al. (1994). 
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The presence of electrical double layer is essential for the EO flow in the soils. The Helmholtz and 

Smoluchowski (H-S) model is widely used to describe the electroosmosis in soil. Based on the 

theory, the liquid-filled capillary in soil is treated as an electrical condenser with the negative 

charges on the surface of particles and counterchanges concentrated in a layer in the liquid closed 

to the particle surface, as seen in Fig. 2.6 (Mitchell and Soga 2005). The moved layer of 

counterions is assumed to drag the water through the capillary via plug flow under the electric 

field. This water flow is known as EO water flow. A comparison between hydraulic flow and EO 

flow is shown in Fig. 2.6 (Mitchell and Soga 2005). The fluid flow due to electroosmosis is 

expressed in an empirical relationship by analogy with Darcy’s law (Casagrande 1949, Mitchell 

and Soga 2005): 

𝑞𝑒𝑜 = 𝑘𝑒𝐸 

(2.2) 

where qeo is the EO flow velocity (m/s), E is the voltage gradient (V/m), and ke is the coefficient 

of electroosmotic permeability (m2/s∙V), which can be expressed as below according to the H-S 

model (Mitchell and Soga 2005): 

𝑘𝑒 =
𝜁𝜀

𝜇
𝑛 

(2.3) 

where, ζ (V) is the zeta potential of soil, ε (C/V∙m) is the permittivity of the pore fluid, n is the 

porosity of the porous medium and μ (N∙s/m2) is the viscosity of the pore fluid. 

Eq. 2.3 cannot be used to estimate the coefficient of electroosmotic permeability, ke, directly, since 

the H-S model does not consider the soil capillary tortuosity (Shang 1997). Therefore, the 

coefficient of electroosmotic permeability, ke, must be measured through experiments 

(Mohamedelhassan and Shang 2001, Mohamedelhassan and Shang 2003, Guo and Shang 2014).  

The zeta potential, ζ, is the potential measured at the shear surface between the fixed Stern layer 

and diffusive Gouy layer, as seen in Fig. 2.5. It is usually measured in experiments and used to 

characterize the surface potential of the clay particles. Shang (1997) reported the linear relationship 



Page | 13  

 

between the coefficient of electroosmotic permeability, ke, and the zeta potential of natural clay. 

Thus, the measurement of the zeta potential can be used as a quick method to evaluate the 

feasibility of EK treatment on soils. 

The main factors, which affect the electroosmotic flow in soils, include the soil zeta potential, 

porewater salinity and pH, which have been discussed extensively in the literature, e.g. Iwata et al. 

(2013), Malekzadeh et al. (2016). 

2.2.2. EK consolidation and model 

Electroosmosis consolidation has been studied extensively via laboratory and field works for over 

five decades (Casagrande 1959, 1983, Bjerrum et al. 1967, Esrig and Gemeinhardt 1967, Esrig 

1968, Fetzer 1967, Lockhart and Hart 1988, Lo and Ho 1991, Chew et al. 2004, Fourie et al. 2007). 

However, in the oil sands industry, this technology is not widely accepted and still remains at the 

stage of research (Sobkowicz 2012). 

The modeling of electroosmotic dewatering and consolidation is very important for the prediction 

of consolidation time and dewatering effect. Esrig (1968) proposed the theory of excess pore water 

pressure generated due to EK via superposition of the fluid flow generated by both electrical field 

and hydraulic gradient, expressed as: 

  

𝑢𝑒𝑜 =
𝑘𝑒
𝑘ℎ
𝛾𝑤𝑈(𝑧) 

(2.4) 

where ueo is the excess pore water pressure generated due to electroosmosis (kPa), ke (m
2/sV) is 

coefficient of electroosmotic permeability, kh is the hydraulic conductivity (m/s), γw is the unit 

weight of water (kN/m3), U(z) is the electrical potential at position z from the cathode (V). 

Based on the same principle of Terzaghi’s consolidation theory, the one-dimensional EK 

consolidation model was introduced by Esrig (1968): 
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ue(z, t) =
ke
kh
[−γ

w
U(z) +

2

π2
γ
w
∑

(−1)n

(n +
1
2)
2
sin
(n +

1
2)πz

L
∗ exp [−(n +

1

2
)2π2TV]

∞

n=0

] 

(2.5) 

where γw is the unit weight of water (kN/m3), z is the location from the cathode (m), Tv is 

dimensionless time factor defined as: 

TV =
cVt

H2
 

(2.6) 

where Cv is the coefficient of consolidation (m2/s), t is the time (s), and H is the length of the 

drainage path (m). 

The Esrig’s work has been extended by many researchers.  Wan and Mitchell (1976) proposed an 

analytical solution for electroosmosis combined with direct loading in one-dimensional condition. 

Lewis and Humpheson (1973) applied the finite element method to analyze the electroosmosis 

consolidation. Shang (1998a, b) introduced a two-dimensional EO consolidation model and 

presented an analytical solution. Rittriong and Shang (2008) applied the finite differential method 

to solve two dimensional EO consolidation. Yuan et al. (2012) proposed a finite element model 

for multi-dimensional domain. Later Yuan et al. (2013) used the finite element method coupled 

with modified Cam Clay model to simulate the nonlinear behavior of clay during electroosmotic 

consolidation. Su and Wang (2003) proposed a 2-D electroosmotic consolidation model in the 

horizontal plane. Hu and Wu (2014) proposed a 3-D mathematical model based on Biot’s multi-

dimensional consolidation theory.  

The models mentioned above are developed based on the small strain consolidation theory with a 

constant consolidation coefficient, i.e., a constant hydraulic conductivity. However, the small 

strain theory encounters difficulties when dealing with extra soft materials, such as marine clay, 

sewage slurry, mature fine tailings. A consolidation theory based on the large strain analysis was 

firstly proposed by Gibson et al. (1967). A close form solution was derived under the assumption 

of a constant large strain coefficient of consolidation, CF. The numerical solution was given by 
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considering the linear relationship between the void ratio and CF. Since then many researches have 

carried out studies on large strain consolidation of geomaterials (Monte and Krizek 1976, Gibson 

et al. 1981, Lee and Sills 1981, Been and Sills 1981, Cargill 1986, Xie and Leo 2004, Bo et al. 

2010, 2011, Ito and Azam 2013).  

Feldkamp and Belhomme (1990) developed an EK consolidation theory by considering large strain 

deformation based on the Gibson (1967) theory. More recently, Hu et al. (2012) proposed an EK 

consolidation model via nonlinear variation of soil parameters. Yuan and Hicks (2013) used the 

finite element method to simulate the large strain electroosmotic consolidation, which predicts 

faster pore water pressure development and smaller finial settlements. Yuan and Hicks (2016) 

extend the large strain electroosmotic consolidation model by coupling with the modified Cam 

Clay model and verified with the cases reported by Bjerrum et al. (1967), Feldkamp and Belhomme 

(1990), Mohamedelhassan and Shang (2002).  

Two practical approaches, pointed out by Krizek and Somogyi (1984), can be used to improve the 

accuracy of the model, i.e., modify the model or improve material property relationships. Material 

property relationships for many model analyses involve empirical estimations. This will increase 

the discrepancies between the model prediction and observation. Therefore, in this thesis, a large 

strain EK consolidation model for oil sands tailings is developed, with consideration of 

nonlinearity of the oil sand tailings behavior, such as the hydraulic conductivity, stress-strain 

relationship, coefficient of electroosmotic permeability and tailings electrical conductivity.  
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Table 2.1 Summary of properties of oil sands tailings 

 

Properties  
BGC Engineering 

Inc (2010) 

Jeeravipoolvarn et 

al. (2009) 

Farkish 

(2013), 

Farkish and 

Fall (2014) 

Guo (2012) 

Guo and 

Shang (2014) 

Yao 

(2016) 

Javan 

Roshtkhari 

(2016) 

Alam and 

Shang 

(2017) 

Water content, w (wt%) 203 227 156 171 213 124 158 

Solid content, s (wt%) 33 30 39 37 32 45 39 

Void ratio, e 5 5.2 3.8 4.39 4.9 - 4.26 

Specific gravity, Gs - 2.28 2.45 2.51 2.30 - 2.58 

Atterberg 

limit 

Liquid 

limit, LL 

(%) 

40-75 - 51.2 51.6 48-61 68 54.4 

 

Plastic 

limit, PL 

(%) 

10-20 - 37.2 29.1 26-29 31 36.0 

 

Plastic 

index, PI 

(%) 

- - 14 22.5 22-33 37 18.4 

Hydraulic conductivity, 

kh (m/s) 
1×10-6~1×10-9 1.8×10-9e3.824 - 

1.81×10-9 

(e=2.03) 
  - 

Organic content (wt% by 

total mass) 
- 3.1 - 

5.4 

(14.7% by 

dry mass) 

1-2 7.4 

5.4 

(17.9% by 

dry mass) 

Grain size  

Sand - 11.0 4 0 0-7 28 0 

Silt - 
89.0 

77 80 43-55 
72 

81 

Clay - 19 20 45-50 19 

D10 (µm) - - - 0.85 - - 1.09 

D30 (µm) - - - - 0.8 - - 

D50 (µm) - - - 7.15 2.2 - 8.03 

D60 (µm) - - - - 4.8 - - 

D90 (µm) - - - 27.9 - - 26.86 
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Figure 2.1 A simple illustration of the surface mining of oil sands (CAPP 2016) 
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Figure 2.2 A simple illustration of the in site mining of oil sands (CAPP 2016) 
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Figure 2.3 A flow chart for the simplified illustration of oil sands mining and bitumen 

extraction operations (GOA 2015) 
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Figure 2.4 Electrokinetic transport phenomena in a single capillary of soil (Cameselle et al. 

2013) 
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Figure 2.5 The Gouy-Chapman-Stern model for double layer theory presented in Guo 

(2012)  
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Figure 2.6 Comparison between electroosmotic flow and hydraulic flow in a capillary 

presented in Guo (2012)   
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Chapter 3 Electrokinetic dewatering of oil sands tailings: data 

regression and saturation analysis 

3.1. Introduction 

Electrokinetics (EK) is a promising soil improvement method.  Laboratory studies and field 

applications of EK treatment on soft clays, mine tailings and waste slurry have been 

reported since 1950s (Casagrande 1949, 1959, 1983; Mohamedelhassan and Shang 2001, 

Micic et al. 2001, 2002, Chew et al. 2004, Shang et al. 2004, Fourie et al. 2007, Glendinning 

et al. 2007, Fourier and Jones 2010, Jones et al. 2011, Lee and Shang 2013, Guo and Shang 

2014).  The effects such as reducing soil water content and increasing undrained shear 

strength, have been studied on different types of soils (Bjerrum et al. 1967, Lo et al. 1991a, 

1991b, Micic et al. 2002, Rittirong et al. 2008, Guo and Shang 2014). In 1960s, Bejerrum 

et al. (1967) applied the EK to stabilize quick clay on an excavation site near Oslo, Norway. 

Later the EK field tests on a soft sensitive Champlain clay in Ottawa valley, Canada, were 

reported by Lo et al. (1991a, 1991b). More recently Micic et al. (2001, 2002) reported a 

lab experimental study on electrokinetic strengthening soft marine clay recovered from the 

southeast coast of Korean Peninsulas. Field applications of EK for soil improvement is 

reviewed by Rittirong and Shang (2005). 

Mohamedelhassan and Shang (2001) proposed an experimental device to measure the 

coefficient of electroosmotic permeability, ke (m
2/sV), based on the vertical installed 

electrodes. Other essential soil parameters, such as the hydraulic conductivity, kh (m/s), 

material electrical conductivity, κ (S/m), and voltage distribution, can also be measured on 

the device. The dimensionally stable anode (DSA) has been used in lab experiments for 

electrokinetic tests due to its advantages such as corrosion resistance and small voltage loss 

(Guo and Shang 2014, Liu and Shang 2014, Chien et al. 2014, Ou et al. 2015). In recent 

years the electrokinetic vertical drains (EVD) and electrokinetic geosynthetics (EKG) have 

been developed and studied in lab tests and field trials (Bergado et al. 2000, Glendinning 

et al. 2005a, 2005b, 2007, Jones et al. 2008, 2011, Rittirong et al. 2008, Shang 2011).  The 

applications of EK dewatering on other geo materials such as mine tailings and sewage 
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sludge are also reported (Raats et al. 2002, Yang et al. 2005, Fourie et al. 2007, Glendinning 

et al. 2007, Jone et al. 2011, Guo and Shang 2014, Iwata 2013).   

An important consideration for EK applications is the cost.  The electrokinetic treatment is 

considered cost efficient for soft silt clay or soft clayey silt with relatively low hydraulic 

conductivities. Grey and Mitchell (1967) suggested using electroosmotic transport 

coefficient, ki (m3/Ah), to calculate the power consumption per unit volume of water 

discharge, which is expressed as: 

𝑃

𝑞𝑒
=
𝑈

𝑘𝑖
×10−3                                                      (3.1)  

where P is the power consumption (kW); qe is the water discharge rate by electroosmosis 

(m3/h), U is the electrical potential (V), ki is electroosmotic transport coefficient (m3/Ah), 

which can be calculated from the coefficient of electroosmotic permeability, ke, and 

material electrical conductivity, κ: 

𝑘𝑖 =
𝑘𝑒
𝜅
                                                             (3.2)    

The coefficient of electroosmotic permeability, ke (m2/sV), varies within a relatively 

narrow range, about 5×10-9 in average for most type of clays (Casagrande 1949, Grey and 

Mitchell 1967, Mitchell and Soga 2005). 

However, it should be noted that during an electrokinetic dewatering process, the soil 

properties, including the coefficient of electroosmotic permeability, ke, and electrical 

conductivity, κ, change with time, thus ki is not a constant. 

It is well understood that during an electrokinetic treatment, soil parameters, such as the 

water content, shear strength, and electrical conductivity will change with treatment time. 

The voltage gradient, current density and treatment time are the most important parameters 

for electrokinetic treatment, as they are closely related to the total energy consumption and 

finial dewatering effects. The water is driven from anode and discharged at cathode during 

EK dewatering. In the previous study of EK dewatering on oil sands tailings, it is found 

that once the water content of soil at anode reached to a certain point, the water discharge 
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would stop, which is mainly attributed to the fact that soil become unsaturated with 

significantly reduced hydraulic conductivity and increased electrical resistance (Guo and 

Shang 2014). In many laboratory studies (Esmaeily et al. 2006, Shang 1997) and field 

applications (Bjerrum et al. 1967, Lo et al. 1991a), it was also found that the water contents 

of the soils reduced and the electrical resistances of soils increased significantly at the 

anode, thus increasing energy consumption. However, there is limited information about 

quantitative analysis of the saturation status of the materials during EK treatment in the 

literature. Therefore, the saturation status of soils, especially near the anode, which is 

considered as the reason for the reduction of efficiency for EK dewatering treatment, need 

to be studied in detail.  

The study is conducted on mature fine oil sand tailings (MFT), which are the fine fraction 

of oil sands tailings after separation and segregation. MFT contains significant fraction of 

clay minerals, including kaolinite (40–70 wt%), illite (28–45 wt%) and traces of 

montmorillonite (Chalaturnyk et al. 2002). Because of the high clay content and fine 

particle size the MFT has low hydraulic conductivity, which leads to slow consolidation. 

Due to the high water content (low solid content) and slow consolidation, the tailings 

without treatments would remain at a liquid state for decades. The previous study (Guo and 

Shang 2014) has shown the EK treatment can dewater MFT effectively. It was observed 

that the EK dewatering tests resulted in significant reductions in water content and 

consolidation time and increases in overall undrained shear strength of fine oil sands 

tailings.  

In this study, the laboratory experiments are designed to simulate the conditions of EK 

field treatment with vertical installed electrodes. The effects of voltage gradient and 

treatment time on the material properties, such as the water content, and material electrical 

conductivity, are studied, since it is necessary and important for efficient application of EK. 

A data processing method is proposed, which involves normalization and regression. The 

degree of saturation in tailings during the EK treatment is analyzed to understand its effects 

on EK dewatering. Moreover, the effective treatment period, which is an important design 

parameter for large scale applications of EK technology, is analyzed in relation to the 

development of unsaturation in oil sands tailings. 
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3.2. Experiments 

3.2.1. Properties of oil sands tailings 

The oil sands tailings used in this study are recovered from the tailings pond, courtesy of 

Syncrude Canada (MFT-A). The properties of oil sands tailings have been studied by Guo 

and Shang (2014) and Islam and Shang (2017). The characteristics of MFT-A are 

summarized in Table 3.1. MFT-A has the initial solid content* (the mass ratio of solids/bulk 

tailings) from 27% to 40%, which is equivalent to the water content (the mass ratio of 

water/dry solids) 260% to 140%.  

3.2.2. EK dewatering tests 

The EK dewatering tests are designed to simulate the field application of EK treatment 

with vertically installed electrodes. All tests are conducted under the voltage-control 

method, i.e., the voltage is kept constant during the experiments.  

The EK dewatering cell, which is modified from Liu and Shang (2014), is used in this 

research. The apparatus consists of a plexiglass tank with the dimensions of 350×100×250 

mm (length × width × height), as shown in Fig. 3.1. Two vertical electrode plates are 

installed on the right and left sides of the tank with a spacing of 295 mm. The electrodes 

are covered with filter papers and geotextiles to prevent the leakage of tailings particles. 

The MFT-A sample is placed in EK dewatering cell between two vertical electrodes. A 

horizontal flow is generated by EK under this electrode configuration. The top surface of 

the tailings sample is set as a free boundary, which allows the free settlement during the 

EK treatment. The DSA (dimensionally stable anode, Ti/IrOx mesh) and stainless steel 

(SS316) mesh cathode are used as the anode and cathode, respectively. There are two 

drainage holes at the left and right edges of the tank for water collection. The water 

discharge is through the drainage holes connected via a plastic tube to a graduated cylinder 

for measurement.  

                                                 
* Solid content, sc, has a relationship with the water content, w, sc = 1/ (1 + w) (wt%) 
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The conditions of EK dewatering tests are summarized in Table 3.2. The initial water 

content was measured, following ASTM D2216-10 (ASTM 2010), and recorded before 

each test. The original tailings slurry without any pre-treatment was poured into the tank. 

The initial height of the sample was measured to calculate the initial volume of the sample. 

Then a DC current was applied for EK dewatering treatment.  The polarity of the electrodes 

remained the same during each test. The first variable studied in the tests was the voltage 

gradients, which were set at 50 V/m and 100 V/m. The DC current and water drainage were 

recorded in real time during treatment. There was no surcharge loading on the tailings 

sample. The EK dewatering cell was sealed by plastic wrap to prevent evaporation. The 

settlement of tailings was measured by a ruler attached on the front panel of the EK 

dewatering tank and used for saturation analysis. The second variable investigated in this 

study is the treatment time. The tailings underwent the EK treatment for a pre-determined 

time. Then the tailings samples were taken at the anode, center and cathode sides to 

measure water contents (ASTM D2216-10; ASTM 2010). The details of sampling, 

including numbers of samples and sampling time, are summarized in Table 3.3. As seen in 

Table 3.3, 2 to 3 samples were taken in 5 tests in the first 25 hours. To avoid disturbance, 

small amount of sample was collected by using a syringe at the anode, center and cathode, 

respectively, since the tailings remained nearly in a liquid state in the first 25 hours. 

Afterwards samples were taken at the end of the tests without any disturbance.  

3.3. Results and regression analysis 

3.3.1. Water drainage during EK dewatering tests 

Table 3.4 presents a summary of results of EK dewatering tests. Since the initial volume 

of tailings slurry was slightly different for each test, the water collected during a test was 

normalized and plotted in terms of Vw/V0 for comparison, in which Vw is the volume of 

water discharge, and V0 is the initial volume of tailings slurry. Figs. 3.2 and 3.3 present the 

water drainage under the voltage gradients of 50 V/m and 100 V/m, respectively. It is clear 

that the voltage gradient of 100 V/m generated a higher rate of water discharge than that of 

the voltage gradient of 50 V/m at the beginning of the tests. However, the total volumes of 

water discharge under both voltage gradients of 50V/m and 100V/m were nearly identical 
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at the end of tests. The regression analysis of the water discharge under the voltage gradient 

of 50V/m and 100V/m is carried out and the results are shown in Fig. 3.4. The EK water 

discharge at different treatment time under 50V/m and 100V/m can be represented in 

following equations: 

Under 50V/m 

𝑉𝑤
𝑉0
⁄ =

0.740 𝑡

130.0 + 𝑡
                         𝑅2 = 0.970                      (3.3) 

Under 100V/m 

 

𝑉𝑤
𝑉0
⁄ =

0.695 𝑡

62.2 + 𝑡
                         𝑅2 = 0.963                      (3.4) 

 

where Vw /V0 is the volumetric ratio of water discharge to the initial tailings slurry, t is the 

treatment time in hours. 

The general trend for water drainage after EK dewatering treatment can be expressed as: 

𝑉𝑤
𝑉0
⁄ =

𝐷𝑣 𝑡

𝑡50 + 𝑡
=

𝐷𝑣
𝑡50
𝑡
+ 1

                                                        (3.5) 

where Dv and t50 are parameters obtained through experiments. Dv represents the maximum 

reduction of volume for EK dewatering when time approaches infinity. According to Eq. 

3.5, Vw/V0 = Dv when time t approaches infinity, and at time t = t50, Vw/V0=Dv /2, hence t50 

represents the time to reach 50% of the volume reduction (Dv /2). The maximum water 

drainage from an EK treatment can be expressed as: 

𝑉𝑤 = 𝐷𝑣𝑉0 (𝑡 → ∞)                                                          (3.6) 
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3.3.2. Water content changes during EK dewatering tests 

The post-treatment water content of soil is a function of the location to cathode, which has 

been observed in many researches in laboratory experiments (Lo et al. 1991b, Guo and 

Shang 2014) and field tests (Bjerrum et al. 1967, Lo et al. 1991a).  

In this study, the tailings samples in the testing tank were divided into three sections, i.e., 

near anode, at center and near cathode because the sample condition was different with the 

locations. Figs. 3.5 and 3.6 show the water contents of MFT-A versus time at the vicinity 

of anode (Figs. 3.5a; 3.6a), center (Figs. 3.5b; 3.6b), and cathode (Figs. 3.5c; 3.6c) after 

EK dewatering tests under the voltage gradients of 50V/m and 100V/m, respectively. In 

Fig. 3.7, the results were normalized against the initial water content of the sample, w(t)/w0, 

in which w(t) is the water content after EK dewatering testing at any treatment time t, and 

w0 is the initial water content of MFT-A samples. Fig. 3.7a shows the normalized water 

content changes at the vicinity of the anode. The water content of sample at the anode 

reduced quickly at the beginning of the EK dewatering tests. After time passed t50, defined 

in Eq. 3.5, the normalized water contents, w(t)/w0, approached to a plateau at the anode, 

about 20 ~ 30%, corresponding to the solid content of 60%~70%, under both 50V/m and 

100V/m. Further treatment did not reduce the water content of sample at the anode 

significantly. In the center of the sample, the normalized water content, w(t)/w0 remained 

at about 60%~70% (45%~50% in solid content), as shown in Fig. 3.7b until the end of EK 

test. In contrast, as shown in Fig. 3.7c, the sample water content at the cathode remained 

almost constant during the entire treatment period. The similar results, i.e., relatively 

constant water content at the cathode after EK treatment, have been reported on sensitive 

clays by Bjerrum et al. (1967) and Lo et al. (1991a). 

The reduction of water content with time at the anode and center locations yields an 

exponential decay, which can be expressed as: 

Under a voltage gradient of 50V/m: 

At the anode 
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𝑤(𝑡)
𝑤0⁄ = 0.230 + 0.790𝑒−0.0169𝑡              𝑅2 = 0.930               (3.7) 

At the center 

𝑤(𝑡)
𝑤0⁄ = 𝑒−0.004𝑡                    𝑅2 = 0.872                         (3.8) 

Under the voltage gradient of 100 V/m: 

At the anode 

𝑤(𝑡)
𝑤0⁄ = 0.198 + 0.801𝑒−0.0391𝑡             𝑅2 = 0.984                (3.9) 

At the center 

𝑤(𝑡)
𝑤0⁄ = 𝑒−0.006𝑡                    𝑅2 = 0.879                       (3.10) 

The general regression equation for at the anode can be expressed as: 

𝑤(𝑡)
𝑤0⁄ = 𝑤𝑓 + 𝐷𝑤𝑒

−𝜆𝑤𝑡                                                       (3.11) 

where wf, Dw and λw (hour-1) are empirical parameters. wf  represents the lowest normalized 

water content after the EK dewatering treatment when the treatment time, t, approaches to 

infinity. Dw represents the maximum reduction in water content (wf +Dw ≈1), and λw 

represents the rate of dewatering.  

The reason for the exponential decay of the water content is because the rate of water 

content reduction reduced linearly with the decrease in water content.  

3.3.3. Power consumption 

The power consumption of EK treatment is directly related to the cost. The electrical 

conductivity is the key parameter to estimate the power consumption. The electrical 

conductivity of MFT, κ (S/m), was calculated through the applied voltage gradient, E, (V/m) 

and current density, j, (A/m2) during EK treatment. The current density and electrical 
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conductivity, κ, are plotted in Fig. 3.8. It can be seen that the MFT-A has an initial electrical 

conductivity of 0.17 S/m. The regression analysis for the electrical conductivity under 

voltage gradients of 50V/m and 100V/m are shown in Fig. 3.8a and 3.8b, respectively. The 

regression equations are expressed as follows: 

Under 50 V/m 

𝜅 = 0.17𝑒−0.01𝑡                   𝑅2 = 0.902                      (3.12) 

Under 100 V/m 

𝜅 = 0.17𝑒−0.019𝑡                𝑅2 = 0.904                      (3.13) 

The power consumption (P, W/m3) is defined as the power consumption per unit volume 

of MFT at the initial water content:  

𝑃 =
Γ𝑈2

𝑣𝑖
                                                                 (3.14) 

where U is the voltage (V), Γ is the electrical conductance (Γ =I/U) (S), and vi is the initial 

volume of the sample (m3). The results of power consumptions versus time are shown in 

Fig. 3.9. 

An exponential decay function was fitted to interpolate the power consumption with time 

during EK dewatering tests. The experimental data and regression curves are plotted in Fig. 

3.10, and expressed in the following equations: 

Under 50 V/m 

P(𝑘𝑊/𝑚3) = 0.392𝑒−0.0113𝑡    𝑅2 = 0.904                     (3.15)   

Under 100 V/m 

P(𝑘𝑊/𝑚3 ) = 1.612𝑒−0.0192𝑡   𝑅2 = 0.871                   (3.16)   

where t is time in hours. 



42 | P a g e  

 

The energy consumptions under voltage gradients of 100 and 50 V/m can be estimated by 

integrating the power consumption equation over time:  

For 50V/m  

W (𝑘𝑊ℎ/𝑚3 ) = 34.7(1 − 𝑒−0.0113𝑡)                                    (3.17) 

For 100V/m  

W(𝑘𝑊ℎ/𝑚3)   = 84.0(1 − 𝑒−0.0192𝑡)                                   (3.18) 

The general equations for power consumption, P (kW/m3), and energy consumption, W 

(kWh), can be expressed as follows: 

P(𝑘𝑊 𝑚3⁄ ) = 𝑃𝑚𝑒
−𝜆𝑃𝑡 = 𝐸2κ0𝑒

−𝜆𝑃𝑡                                      (3.19) 

W(𝑘𝑊ℎ/𝑚3) =
𝐸2κ0
𝜆𝑃

(1 − 𝑒−𝜆𝑃𝑡)                                              (3.20) 

where Pm (kW/m3) is the maximum power consumptions at the beginning of the treatment 

(Pm= E2κ0), E is the voltage gradient, κ0 is the initial material electrical conductivity, and 

λP (hour-1) is the rate of power consumption decay. According to Eq. 3.19, it is noted that 

the power requirement for EK treatment reduces with time.  In the meantime, Eq. 3.20 

shows the maximum energy consumption in the EK treatment is  
𝐸2κ0

𝜆𝑃
 when time 

approaches infinity. 

3.4. Discussion 

Based on the experiment results, the flow rate of EK drainage changed with time (Fig. 3.4). 

During the treatment, the water content of tailings reduced more rapidly at the anode, as 

shown in Fig. 3.7a. The electrical conductivity also reduced, as seen in Fig. 3.8. Under a 

constant voltage gradient, this led to reduced current, hence reduced dewatering effect. 

Similar observations were reported in EK tests on clays (Lo et al. 1991a, Bjerrum et al. 

1967). It has been recognized that during EK dewatering geo-materials became unsaturated 

(Guo and Shang 2014, Shang 1997).  In order to quantitatively investigate this effect, the 
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degrees of saturation, Sd (%), of MFT samples in the EK cell at different time intervals are 

plotted in Figs. 3.11 and 3.12, together with the results of water discharge for 50V/m and 

100V/m, respectively. In the figures, x is the distance to the cathode, and the horizontal 

axis is the normalized distance, i.e., x/L, in which L is the length of the EK cell.    

As observed in Fig. 3.4, for voltage gradients of 50V/m and 100 V/m respectively, the 

water discharge can be broadly divided into three stages, i.e., 1). Linear flow, indicated by 

the time from the beginning of the EK treatment (T0) to Ttran, which is the time when flow 

rate changes and become nonlinear.  Ttran marks the beginning of the transitional flow stage; 

2). Transitional flow, marked by the time period from Ttran to Tend, where Tend is the time 

when the flow stops; and 3). End of flow, indicated by the treatment time after Tend. In the 

linear flow stage, the EK dewatering maintained at a constant flow rate, as seen in Figs. 

3.11a and 3.12a, for 50V/m and 100V/m respectively. The transitional stage is observed 

through the slowdown of flow rate after a certain period time of treatment, Ttran, as seen in 

the Figs. 3.11a and 3.12a, where the results of water discharge become non-linear. Finally, 

the water discharge stops, marked the end of dewatering process, at time Tend, indicated 

with the water discharge approaching to a plateau. 

As shown in Fig. 3.11, under the voltage gradient of 50 V/m, the degree of saturation, Sd, 

of the sample at the anode (x/L = 0.9) remained nearly 100% in the first 25 hours, and at 

this stage the flow of water discharge was in the linear flow stage. When treatment time 

passed 25 hours and reached to 50 hours, the degree of saturation, Sd, at the anode (x/L = 

0.9) reduced quickly from 100% to 80%. During this time period the flow is still in the 

linear flow stage as seen in Fig. 3.11a. Once the time passed 50 hours, the degree of 

saturation, Sd, at the anode (x/L=0.9) reduced significantly. The time, Ttran, when the degree 

of saturation, Sd, at the anode (x/L=0.9) reached to 80%, marks the start of the transitional 

flow stage as seen in Fig. 3.11a. After 125 hours (around t50), the degree of saturation, Sd, 

at the anode (x/L=0.9) reached about 40% and remained constant for the rest of treatment. 

At this time the flow was still within the transitional stage as seen in Fig. 3.11a.  

Meanwhile, at the center (x/L=0.5) of the EK cell, it was observed from Fig. 3.11b that the 

degree of saturation, Sd, remained 100% in the first 25 hours then reduced slowly. After 
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125 hours, the degree of saturation, Sd, quickly reduced to below 80%, then the EK flow 

ended. According to the Fig. 3.11a, the Tend is about 200 hours. At the cathode (x/L=0), it 

can be clearly seen from Fig. 3.11b that the sample remained saturated over the entire 

treatment period.   

The similar observation is found in Fig. 3.12 for EK dewatering tests under 100V/m. At 

the anode (x/L=0.9), the sample remained saturated 100% under EK treatment for 5 hours 

and shortly dropped below 80% after 25 hours, corresponding to time Ttran. Compared to 

the test under the voltage gradient of 50 V/m, the higher voltage generates much rapid 

reduction of saturation at the anode (x/L=0.9), resulting in a shorter period of the linear 

flow stage (about 30 hours) compared to 50 hours for the test under the voltage gradient of 

50V/m. The degree of saturation, Sd, at anode (x/L=0.9), as seen in Fig. 3.12b, significantly 

reduced to about 40% during the period for transitional flow stage from 30 hours to 125 

hours, as seen in Fig. 3.12a. A much shorter duration of transitional flow stage was 

observed under voltage gradient of 100V/m, compared to those for 50 V/m. When the 

degree of saturation, Sd, reached to 80% at center (x/L=0.5), the flow stopped, as seen in 

Fig. 3.12. In contrast, the degree of saturation, Sd, remained saturated during the entire 

treatment period. Figure 3.13a shows the original tailings status at the beginning of the test, 

while Figs. 3.13b and 3.13c show the tailings conditions during and after the treatment, 

respectively.  

The above results of voltage gradient of 50 and 100 V/m can be concluded that: 

1.The linear flow regime lasted from commencing the treatment until the degree of 

saturation, Sd, at anode (x/L=0.9) reduced to 80%.  

2.The flow stopped when the degree of saturation, Sd, at the center of tailings sample 

(x/L=0.5) reduced to 80%.  

This process is summarized as: 

 𝑇0𝑆𝑑=100% 

𝐿𝑖𝑛𝑒𝑎𝑟 𝑓𝑙𝑜𝑤 
𝑠𝑡𝑎𝑔𝑒 

→         𝑇𝑡𝑟𝑎𝑛 𝑆𝑑<80% 
𝑎𝑡 𝑎𝑛𝑜𝑑𝑒 (𝑥/𝐿=0.9)

𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑓𝑙𝑜𝑤 
𝑠𝑡𝑎𝑔𝑒

→              𝑇𝑒𝑛𝑑 𝑆𝑑<80% 
𝑎𝑡 𝑐𝑒𝑛𝑡𝑒𝑟(𝑥/𝐿=0.5)

𝐸𝑛𝑑 𝑓𝑙𝑜𝑤 
𝑠𝑡𝑎𝑔𝑒
→       𝐸𝑛𝑑 
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The reductions of tailings water content and electrical conductivity were observed in the 

tests. In the linear flow stage, both the water content at anode (Fig. 3.7a) and electrical 

conductivity (Fig. 3.8) decreased linearly until the transitional flow stage, Ttran., was 

reached.  Then during transitional flow stage their reduction paces slowed down, which are 

indicated by the change of slope of results in Figs. 3.7a and 3.8. Finally, in the end flow 

stage (t = Tend), the normalized water content at the anode reached to a plateau about 30%, 

and electrical conductivity reduced to 0.02 S/m.  

The degrees of saturation are plotted along with time in Fig. 3.14 for samples at anode, 

center and cathode respectively, under voltage gradients of 50V/m and 100V/m. Based on 

Fig. 3.14, it can be noted that the characteristic time t50 (defined in Eq. 3.5 and shown in 

Fig. 3.4) is the time when degree of saturation of the sample at anode (x/l=0.9) reduced to 

40%. It should be noted that the characteristic times, t50, Ttran, Tend, were obtained through 

the test results under this testing configuration and not normalized. Further studies are 

needed on scaling effects. 

Overall, EK dewatering flow is nonlinear with treatment time and will stop after certain 

treatment time. The change of EK discharge rate is primarily governed by the saturation 

status of sample. For MFT-A, when degree of saturation, Sd=80% at anode (x/L=0.9) was 

observed, the EK flow changed from linear to nonlinear and entered into transitional flow 

stage. When the degree of saturation, Sd, of the sample at center (x/L=0.5) dropped to 80% 

the EK flow reached a stop. It should be noted that this transform is independent to the 

applied voltage gradient. Therefore, for MFT-A, the Sd=80% at center (x/L=0.5) could 

serve as a indicator of the end of treatment. As results, the EK dewatering treatment may 

be terminated when the treatment time reached Tend. The degree of saturation in tailings 

sample governs the transition of EK flow stages. Thus, it can serve as a guideline for large 

scale applications to determine the effective treatment time.  

3.5. Conclusion 

In this study, an experimental study on EK dewatering was carried on fine oil sands tailings 

(MFT-A).  The vertical installed electrodes were used to generate the horizontal water flow. 

Data were collected and regression analyses were carried on the EK water drainage, tailings 
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water content, material electrical conductivity, and power consumption of EK treatment. 

The saturation of the sample was studied as a function of the distance to electrodes. It is 

observed that the EK induced water flow can be classified in three stages, i.e., 1) the linear 

flow, 2) the transitional flow, and 3) the end flow. It is identified that the rate of EK water 

was controlled by the saturation status of the sample. 

This study has led to the following conclusions: 

• The water content distribution of oil sands tailings after EK treatment is non-

uniform.  The water content of tailings sample reduced significantly at the anode, 

whereas it remains at the nearly constant at the vicinity of cathode. The changes in 

water content during the EK treatment at anode and center can be expressed via 

exponential decay functions.  

• The relationship between the power consumption and treatment time can be 

expressed via an exponential decay function.  

• The EK induced water flow can be further classified in three stages, i.e., 1) the 

linear flow, 2) the transitional flow, and 3) the end flow.  The linear flow stage 

lasted from beginning of the treatment until the degree of saturation, Sd, reached 

80% at the anode (x/L=0.9). When the degree of saturation, Sd, at the center 

(x/L=0.5), reduced to 80%, the EK flow reached a stop. Therefore, the degree of 

saturation of tailings sample may serve as a guideline for large scale application to 

determine the effective treatment time. 

• The times of the linear flow stage and transitional flow stage are identified as Ttran 

and Tend, respectively. These characteristic times may also be used as a guidance 

for EK treatment with further study on the scaling effects. 
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Table 3.1 Tailings Properties (Guo and Shang 2014) 

Properties Oil sands tailings 

Specific gravity, Gs 2.51 
Hydraulic conductivity, kh (m/s) (at e = 2.03) 1.81×10-9 

Atterberg limits Plastic limit, PL (%) 29.1 

Liquid limit, LL (%) 51.6 

Plasticity index, PI (%) 22.5 

Carbonate content (%) <1 

Grain size D10 (μm) 0.85 

D50 (μm) 7.15 

D90 (μm) 27.9 

Sand (%) 0.00 

Silt (%) 80.00 

Clay (%) 20.00 

Pore water pH 
 

8.88 

Pore water electrical conductivity (mS/cm) 3.59 

 

 

 

Table 3.2 EK dewatering tests conditions 

Conditions  

Tests No. EKD-0-50-series EKD-0-100-series 
Voltage gradient (V/m) 

(V/m 

50 100 

Surcharge (kPa) 0 

Tailings sample size (cm) Recorded Height(H0)× 29.5 (length) × 10 (width) 

Water Discharge (mL) Recorded 

Current (A) Recorded 

Electrodes SS316 mesh cathode , Ti/IrOx mesh anode 
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Table 3.3 Summary of sampling for water content measurement 

Test No. Voltage gradient (V/m)  Numbers of sampling Time of sampling (hours) 

EKD-0-50-50a 50 4 5; 10; 20; 50 

EKD-0-50-50b 4 5; 10; 20; 50 

EKD-0-50-51 1 51 

EKD-0-50-70 1 70 

EKD-0-50-100a 1 100 

EKD-0-50-100b 1 100 

EKD-0-50-125a 1 125 

EKD-0-50-125b 1 125 

EKD-0-50-156 3 5;25.2;156 

EKD-0-50-168 3 5;25.2;168 

EKD-0-50-170 1 170 

EKD-0-50-245 1 245 

EKD-0-100-24 100 1 24 

EKD-0-100-50a 1 50 

EKD-0-100-50b 1 50 

EKD-0-100-70 1 70 

EKD-0-100-100 1 100 

EKD-0-100-122 3 5;25;122 

EKD-0-100-125 1 125 

EKD-0-100-165 1 165 
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Table 3.4 Summarized EK dewatering results 

Test No. Voltage 

gradient 

(V/m) 

Testing duration 

(hours) 

H0 

(cm) 

Vw/V0 

(%) 

Total 

Water 

Discharge 

(mL) 

EKD-0-50-50a 

50 

50 10 25.46 751 

EKD-0-50-50b 50 10 19.42 573 

EKD-0-50-51 51 10.5 15.40 477 

EKD-0-50-70 70 10.8 27.72 883 

EKD-0-50-100a 100 10.5 30.81 909 

EKD-0-50-100b 100 10.5 29.93 927 

EKD-0-50-125a 125 10.4 35.17 1079 

EKD-0-50-125b 125 11.8 33.50 1166 

EKD-0-50-156 156 10 38.71 1142 

EKD-0-50-168 168 11.5 33.37 1132 

EKD-0-50-170 170 19.5 41.63 2395 

EKD-0-50-245 245 20.5 49.19 2975 

EKD-0-100-24 

100 

24 10.5 20.15 468 

EKD-0-100-50a 50 11 22.90 743 

EKD-0-100-50b 50 11.5 34.52 1171 

EKD-0-100-70 70 11 37.35 1212 

EKD-0-100-100 100 9.9 36.40 1063 

EKD-0-100-122 122 12.9 45.30 1724 

EKD-0-100-125 125 10.5 42.52 1317 

EKD-0-100-165 165 21 49.39 3059 
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Figure 3.1 Schematic diagram of an EK dewatering cell with vertical installed 

electrodes 
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Figure 3.2 Water discharge with time under a voltage gradient of 50V/m 
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Figure 3.3 Water discharge with time under a voltage gradient of 100V/m 
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Figure 3.4 Regression trend of water discharge for voltage gradient of 50V/m and 

100V/m 
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Figure 3.5 Water content changes with the time during EK dewatering tests under a 

voltage gradient of 50V/m (a) sample at anode, (b) sample at the center, and (c) 

sample at the cathode 
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Figure 3.6 Water content changes with the time during EK dewatering tests under a 

voltage gradient of 100V/m (a) sample at anode, (b) sample at the center, and (c) 

sample at the cathode 

 

 

 

 



59 | P a g e  

 

 

 

 

Figure 3.7 Normalized water content, w(t)/w0 with the time during EK dewatering 

tests (a) sample at anode, (b) sample at the center, and (c) sample at the cathode 
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Figure 3.8 Recorded current density and material electrical conductivity during EK 

dewatering tests, (a) for voltage gradient of 50V/m, (b) for voltage gradient of 

100V/m 
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Figure 3.9 Power consumptions calculated from EK dewatering tests 
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Figure 3.10 Regression analysis of power consumptions for EK dewatering tests 
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Figure 3.11 The analysis of (a). EK dewatering flow stages, and (b). degree of 

saturation through the Oil sands tailings for 50V/m 
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Figure 3.12 The analysis of (a). EK dewatering flow stages, and (b). degree of 

saturation through the Oil sands tailings for 100V/m 
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Figure 3.13 Photos for oil sands tailings (a) at the beginning of the treatment, (b) 

during the treatment, and (c) at the end of the treatment  

 

Figure 3.14 Saturation analysis for 50V and 100 V plotted with time 
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Chapter 4 Experimental study and regression analysis on 

electrokinetic dewatering of kaolinite slurry 

4.1. Introduction 

Dewatering and consolidation of highly compressible geo-materials are challenges facing 

geotechnical engineers and mining industry. Electrokinetics (EK) is a promising 

dewatering method on a wide variety of materials, such as soft clay, mine tailings, and 

wastewater sludge (Casagrande 1949, 1959, Bjerrum et al. 1967, Sunderland 1987, Lo et 

al. 1991a, b, Raats et al. 2002, Glendinning et al. 2005, Fourie et al. 2007, Rittriong et al. 

2008, Guo and Shang 2014).  In Chapter 3, a regression analysis was carried out on 

experimental results of EK dewatering of oil sands tailings. The reason for this study is to 

verify the proposed method on more commonly encountered geomaterials. Kaolinite is a 

clay mineral commonly existing in soft clays and mine tailings. Therefore, the first 

objective of this study is to find the regression equations of EK dewatering on the kaolinite 

slurry at well controlled conditions.   

The degree of saturation of the samples was analyzed in Chapter 3 to study the influencing 

factors governing the EK dewatering process. Thus, the second objective in this study is to 

assess the effects of sample saturation on EK treatment of kaolinite slurry.  

Historically, attempts have been made to improve the performance and reduce the energy 

cost of EK dewatering, such as polarity reversal (Bergado et al. 2000, Lo et al. 1991b) and 

intermittent current (Micic et al. 2001, Mohamedelhassan and Shang 2001). The energy 

consumption is closely related to the applied voltage gradient and current density. A wide 

range of voltage gradients used for EK treatment are reported in the literature (Lo et al. 

1991a, b, Micic et al. 2001, Fourie et al. 2007). Mitchell and Soga (2005) suggested that a 

reasonable spacing (2-3 m) and voltage (50V-150V) are required to generate a significant 

negative pore water pressure. Thus, the corresponding voltage gradient suggested by 

Mitchell and Soga (2005) is from 15-75V/m. A high voltage gradient may reduce the 

treatment time but lead to high energy cost. So, the third objective of this study is to analyze 

the effects of voltage gradients and initial water contents of kaolinite slurry on EK water 
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drainage and energy consumption, which is especially important for the application of EK 

dewatering treatment. 

Kaolinite is a common clay mineral. EK dewatering on kaolinite containing geomaterials 

has been found very effective (Lockhard 1983a, b, Fourie et al. 2007, Guo and Shang 2014).  

This study is focusing on EK dewatering of kaolinite slurry to enhance the understanding 

for EK dewatering of geo-materials containing kaolinite, such as oil sands tailings. 

The EK dewatering tests in this research are carried out in a laboratory setting, and the 

results are analyzed via data regression. The general trends of water contents, power 

consumptions, and treatment time under different electrical potentials are established. The 

effects of voltage gradient on EK water drainage and energy consumption are analyzed via 

the regression trends obtained in this study. The degree of saturation of the kaolinite 

samples at the anode is analyzed, relating with the EK generated water flow. The influence 

of the initial water content of the kaolinite slurry in the EK dewatering process is also 

investigated. 

4.2. Experiments 

4.2.1. Design consideration 

The experiments were carried out in two categories in an electrokinetic dewatering cell 

with vertically installed electrodes. The variables in tests series include the voltage gradient, 

initial water content of kaolinite slurry, and treatment time. The voltage-controlled method 

was used in the experiments, i.e. the voltage gradient is kept constant during a test while 

the current is recorded as a function of time. The electrical conductivity of the sample, κ, 

and power consumptions, P, were calculated in real time. In the first category of 

experiments (KV), four series of tests with the voltage gradients of 25V/m (KV-25), 50V/m 

(KV-50), 75V/m (KV-75), and 100 V/m (KV-100) were conducted on kaolinite slurry with 

a water content 100% (50% in solid content2) to evaluate the influence of voltage gradients 

on EK dewatering. In the second category of experiments (KW), two series of tests were 

                                                 
2 Solid content, sc, has a relationship with water content, w, as: sc=1/(1+w) (wt%) 
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carried out, using kaolinite slurry with two initial water contents, i.e. 100% (50% in solid 

content) (KW-100 series, which is the same as KV-50 series) and 150% (40% in solid 

content) (KW-150 series) under a constant voltage gradient of 50V/m. In each series, tests 

were terminated after pre-determined durations to study the effect of treatment time. Table 

4.1 summarizes the testing conditions of all tests in both categories. 

4.2.2. Experimental apparatus 

The EK dewatering cell used in this study was introduced in Chapter 3 (Fig. 4.1). The 

experimental system consists of an EK dewatering cell, a DC power supply, and a 

graduated cylinder to collect and measure water drainage from dewatering process. The 

EK dewatering cell consists of a Plexiglas tank (35 cm L × 10 cm W × 25 cm H), and two 

electrodes. The anode is made of a dimensionally stable anode (DSA) mesh (expended 

titanium coated with iridium oxide) and the cathode is made of a woven wire stainless steel 

mesh (SS316). Electrodes are covered with geotextile fabric to prevent the leakage of the 

slurry solids. The system is sealed during a dewatering test to avoid water evaporation. 

4.2.3. Sample preparation and testing procedure 

Basic properties of kaolinite slurry are listed in Table 4.2. To prepare a test, about 3 kg 

dried pulverized kaolinite powder (EPK Kaolin from Edgar Minerals, Inc.) and tap water 

were added into a bucket and well mixed with an electric mixer to achieve a target water 

content. Then the EK dewatering cell was assembled and well-mixed kaolinite slurry was 

poured into the cell for the EK dewatering test. A DC power supply was connected to 

electrodes to generate a target voltage gradient cross the cell and maintained throughout 

the test. There was no surcharge applied on top of the cell during the experiment. Water 

was discharged into a graduated cylinder via two plastic tubes at the bottom of the cell.  

The initial water content of sample was measured prior to each test, following ASTM 

D2166-10 (ASTM 2010a). The original height of the sample in the cell was measured to 

calculate the initial volume. The electric current and water drainage were recorded in real 

time during the test. After a predetermined treatment time, the power was terminated, and 

the finial solid (water) content, undrained shear strength, and Atterberg limits (ASTM 
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D4318-10e1; ASTM 2010b) were measured at the anode, center and cathode sides, 

respectively.  

4.3. Results and Analysis 

4.3.1. Water drainage  

A summary of dewatering results is presented in Table 4.3. For comparison, the water 

drainage was normalized to the initial sample volume, i.e., Vw/V0, the ratio of water 

discharge to the initial volume of slurry. The results of water discharge are presented in 

Figs. 4.2 and 4.3 for KV series and KW series of tests, respectively. It is observed that 

water drained quickly at the beginning of an EK dewatering test, and slowed down 

gradually and finally reached a stop at certain treatment time. For example, in test KV-100, 

the water discharged quickly in the first 50 hours with an almost constant flow rate, then 

the flow rate reduced and approached zero after 150 hours. The similar results were 

recorded in KV-75 tests. For tests KV-50 (KW-100), KV-25 and KW-150, the constant 

flow was also observed in the initial stage, whereas the stop of the EK drainage was not 

observed because the treatment time was not long enough. The normalized results, which 

indicate the volume reduction due to EK dewatering, were about 25%~30% for KV series 

tests and 40% for KW-150 test. 

As discussed in Chapter 3, the relationship between the normalized water drainage of oil 

sands tailings and EK treatment time can be expressed as (Eq. 3.5 in Chapter 3):   

𝑉𝑤
𝑉0
⁄ =

𝐷𝑣𝑡

𝑡50 + 𝑡
                                                          (4.1)  

where Dv and t50 are parameters obtained through experiments. Dv represents the maximum 

reduction of sample volume due to EK dewatering when time approaches infinity, and t50 

is the time (hours) to reach 50% volume reduction (Dv/2) by EK dewatering. The 

parameters Dv, and t50 for KV series and KW series of tests are summarized in Table 4.4. 

It is noted that at the same initial water content, for example w0=100%, parameter Dv, 

which represents the maximum dewatering effect, is similar under different voltage 
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gradients, i.e. it varies from 0.34 to 0.38 under voltage gradients from 25 to 100 V/m, as 

seen in Fig. 4.4. On the other hand, when the initial water content increased to 150%, the 

maximum water drainage increased as well (Fig. 4.3), indicated by Dv = 0.53 for KW-150 

series and 0.34 for KW-100 series. From Figs. 4.3 and 4.4, the values of parameter t50 for 

KW series of tests are similar, i.e., 61.9 hours for KW-150 and 67.4 hours for KW-100. It 

should be noted that the voltage gradient for these tests was 50V/m.  

It is also noted that the high voltage gradient will lead to fast water drainage and low value 

of t50. In comparison, t50 =36.3 hours for 100V/m, whereas t50 =216.3 hours for 25V/m. 

This means that the high voltage will shorten the time of EK drainage. 

According study in Chapter 3, the average water content for oil sands tailings is about 

200%, thus leading to higher maximum water discharge, Dv (about 0.7) than those for 

kaolinite slurry, as seen in Fig. 4.4. Similar with kaolinite slurry, the low value of t50 was 

obtained at high voltage gradient for oil sands tailings. But at the same voltage gradient, 

the t50 for oil sands tailings is higher than it for kaolinite slurry. For example, at voltage 

gradient of 100V/m, the t50 for oil sands tailings was 62.2 hours, which is higher than t50 

(36.3 hours) in KV-100 tests. The possible reasons for the difference are due to the 

differences in mineral composition and pore water chemistry between oil sands tailings 

and kaolinite slurry.   

It is concluded that during an EK dewatering test the initial water content of samples affects 

the maximum water discharge, and the voltage gradient governs the duration required to 

achieve the max water drainage. 

4.3.2. Water content 

During an EK dewatering test, water is driven by electric current from anode and 

discharged at the cathode. Thus, the water content at the anode reduced quickly with time.  

For different types of geomaterials, the water content of the sample at the cathode can be 

lower than or remain the same as the initial value. This phenomenon has been recognized 

in both theoretical development and experimental data (Guo and Shang 2014, Shang 1997, 

Bjerrum et al. 1967; Lo et al. 1991a). As discussed in Chapter 3, the changes in water 
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content of the sample at the anode during an EK dewatering test were expressed via an 

exponential decay function (Eq. 3.11 in Chapter 3): 

𝑤(𝑡)
𝑤0⁄ = 𝑤𝑓 + 𝐷𝑤𝑒

−𝜆𝑤𝑡                                                            (4.2)  

where w(t)/w0 is the normalized water content, in which w(t) is the water content of the 

sample after dewatering time, t, w0 is the initial water content of the sample; wf, Dw, and λw 

are empirical parameters obtained from experiments. wf represents the lowest normalized 

water content after EK dewatering treatment when the treatment time, t, approaches to 

infinity; Dw represents the maximum reduction in water content (wf +Dw ≈1); and λw 

represents the rate of dewatering. 

For all tests in the KV series with the sample initial water content of 100%, the normalized 

water contents, w(t)/w0, versus treatment time at the anode are plotted in Fig. 4.5 with data 

regression equations. The values of wf, Dw, and λw are listed in Table 4.5 for KV series tests. 

It is noted that the proposed regression equation (Eq.4.2) fits well with the results of sample 

water content at the anode, as shown in Fig. 4.5.  As shown higher voltage gradients lead 

to more rapid dewatering at the anode. Under 100V/m, the water content at the anode 

approached to a plateau shortly after 50 hours, whereas under the voltage gradient of 25 

V/m, the rate of water content reduction was constant over 170 hours. The water content 

changes at center and vicinity of cathode are plotted in Fig. A1.1 and A1.2 in Appendix 1. 

The results indicate that the changes of normalized water content of the sample at the center 

and cathode are less than that at the anode. 

For KW-150 test series, Fig. 4.6 presents the water content reduction of the samples at the 

anode with the initial water content of 150%. The regression equation for the water content 

in KW-150 test series is shown in the figure, and the fitted values of parameters, Dw, wf, 

and λw, are also listed in Table 4.5. The results of the water contents of the samples at the 

center and cathode are plotted in Fig. A1.3 in Appendix 1. 

Fig. 4.7 plots the reduction rate, λw, at different voltage gradients, E for the samples with 

the same initial water content of 100%. From Fig. 4.7, it is noted that the change of 
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reduction rate, λw, is nearly linear with the applied voltage gradient. The higher initial water 

content will lead to more rapid reduction in the water content at anode. On the other hand, 

it is noted that under the same voltage gradient of 50V/m, the value of λw for KW-150 test 

series with the initial water content of 150% is 0.017 (Table 4.5), which is slightly higher 

than λw = 0.014 from KW-100 test series with the initial water content of 100%. 

4.3.3. Power consumptions 

The power consumption is a key parameter in the EK design. Under a constant applied 

voltage gradient, the power consumption is closely related to the electrical conductivity of 

the sample.  The current density reduces with the decrease in the electrical conductivity of 

the sample, thus leading to a reduction in dewatering efficiency. The Power consumptions 

of all lab tests are calculated according to the current density, j(A/m2), and the voltage 

gradient, E(V/m), recorded during experiments. Current densities, j(A/m2), and calculated 

electrical conductivities, κ (S/m), are shown in Figs. A1.4 and A1.5 in Appendix 1 for KV 

series and KW series, respectively. Power consumptions and accumulated energy 

consumptions under different voltage gradient (in KV series tests) are shown in Fig. 4.8.  

For KW series of tests, which have the initial water contents of 100% and 150%, power 

consumptions and accumulated energy consumptions are calculated and presented in Fig. 

4.9. As discussed in Chapter 3, the relationship between power consumptions per unit 

volume at the specific initial water content and treatment time can be expressed via an 

exponential function (Eq. 3.19 in Chapter 3): 

  P(𝑘𝑊 𝑚3⁄ ) = 𝑃𝑚𝑒
−𝜆𝑃𝑡                                         (4.3)     

where Pm is the maximum power consumptions (kW/m3). The values of parameters Pm and 

λp are listed in Table 4.6 for KV and KW series of tests. 

According to results in Figs. 4.8 and 4.9, the proposed regression equation (Eq. 3.19) 

presented in Chapter 3 can also describe the power consumption reduction for kaolinite 

slurry during EK dewatering treatment. Hence Eq. 4.3 is used for the analysis of EK 

dewatering efficiency in a later section.  
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4.3.4. Undrained shear strength and Atterberg limits 

During a dewatering process of geomaterials, the water content will decrease and the shear 

strength increase. A comparison of the undrained shear strength of kaolinite samples at the 

vicinities of anode and cathode for KV and KW series of tests is plotted in Figs. 4.10a and 

4.10b, respectively. It is observed that the undrained shear strength of the sample at the 

anode increases exponentially with time during the EK treatment period. As observed from 

the figure, the exponential increases in undrained shear strength of kaolinite sample at the 

anode with time can be expressed by the following regression equation: 

𝑆𝑢 = 𝐶𝑠𝑢𝑒
𝜆𝑠𝑢𝑡                                                                    (4.4)  

where Su is the undrained shear strength (kPa), Csu, and λsu are empirical coefficients 

obtained through experiments, and t is the treatment time (hours). The values of parameters 

Csu, and λsu for KV and KW series tests are listed in Table 4.7.  

As shown in Fig. 4.10a, the increase in the undrained shear strength of the sample at the 

anode is most significant, from virtually 0 to 15 kPa, under the voltage gradient of 100V/m 

in KV-100 series of tests. In KV-25 series, the voltage gradient is the lowest in the KV test 

category, i.e., 25 V/m, the shear strength increase is minimum, i.e., from virtually 0 kPa to 

3.5 kPa. The undrained shear strength of the sample at the vicinity of cathode remains 

below 2 kPa.  

Under the voltage gradient of 50V/m, the samples with the initial water content of 100% 

(KW-100 series) had higher undrained shear strength at the anode than those in KW-150 

series (initial water content of 150%) during the same treatment period, as seen in Fig. 

4.10b. After 175 hours treatment, the undrain shear strength of the sample at the anode is 

about 4.5 kPa and 1 kPa for tests KW-100 and KW-150, respectively. The undrained shear 

strength of the sample at the cathode remained less than 1 kPa for both KW-100 and KW-

150 series.  

The undrained shear strength of the sample is also plotted against the water content for KV 

and KW series tests, as seen in Figs. 4.11. The relationship between undrained shear 
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strength and water content (Su-w line) of the kaolinite is generated according to the results 

by Rassat et al. (2003) and expressed as: 

𝑆𝑢 = 108.52𝑒
−6.761𝑤                                                         (4.5)  

where Su is the undrained shear strength (kPa), and w is the water content (%). As shown 

in Fig.4.11a, at the voltage gradient of 100 V/m (KV-100 series tests), the points moved 

above the Su-w line, indicating that the sample at the anode had significant EK strength 

gain under the same water content. As seen in the figure, all data from KV-25 series tests 

are located near the Su-w line, meaning that no EK strengthening effect under the voltage 

gradient of 25V/m (KV-25 series tests). As observed, the EK strengthening effect increases 

with the increase in the applied voltage gradient in the range of 50 to 100 V/m. 

On the other hand, the data near the cathode in KV series are all along the Su-w line, as 

seen in Fig.4.11b, indicating no EK strengthening effect occurred at the cathode. Hence it 

is concluded that the undrained shear strength of the sample at the cathode is only 

dependent of the water content. 

For EK treatments with different initial water contents, as seen in Fig. 4.11a, samples at 

the anode had strength gains in both KW-100 an KW-150 series tests. On the other hand, 

the sample at the cathode did not show any EK strengthening effect in the KW series tests, 

as seen in Fig. 4.11b. The difference between the undrained shear strength of the samples 

in KW-150 and KW-100 tests is mainly attributed to the difference in water content. As 

shown in Fig. 4.11, the water content of the kaolinite samples was about 60-80% for KW-

100 and 75-90% for KW-150, respectively, after EK dewatering. 

The increase in the undrained shear strength of soils has been observed after EK treatment 

in many researches (Bjerrum et al. 1967, Lo and Ho 1991, Lo et al. 1991b, Abiera et al. 

1999, Bergado et al. 2000). Historical research has found that the undrained shear strength 

of the soil can be estimated via empirical correlation based on the liquidity index (Wroth 

and Wood 1978, Budhu 2005).  

The liquidity indices of the sample after EK treatment are listed in Table 4.8. In KV series 

tests, the liquidity index has an initial value of 2 and 3.5 with the initial water content of 
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100% and 150%. It can be found that, generally, the liquidity indices of the sample are 

lower at the vicinity of anode than center and cathode after EK treatment, indicating that 

the undrained shear strength of the sample is higher closed to the anode than center and 

cathode. This trend is coincident with the undrained shear strength results after EK 

treatment. For example, in KV-100 series test, the liquidity indices of kaolinite samples 

were 0.8~0.3 after 50~175 hours treatment at the anode, and significant reduced with the 

increase in treatment time. Whereas, they were about 1.2~0.7 and 1.0~0.8 at the center and 

cathode, respectively, and remained almost constant after 75 hours treatment. Similar 

results were found in KV-75, KV-50 and KV-25 tests. It is also found that the liquidity 

index decreased with the increase in applied voltage gradient within the same treatment 

period. For instance, as seen in Table 4.8, after 175 hours treatment, the liquidity index of 

the sample was 0.3 at voltage gradient of 100V/m and 0.7 at the voltage gradient of 50V/m. 

For the high initial water content (150% in KW-150 tests), after EK treatment, the liquidity 

indices of the sample were 2.1~1.3 (50~175 hours treatment), which is higher than those 

(1.7-0.7) obtained in KW-100 tests (100% initial water content). 

The EK strengthening effects are mainly attributed to water content reduction due to EK 

induced consolidation and soils hardening by electrochemical reaction at electrodes 

(Rittrong et al. 2008). The electrochemical reaction at electrodes altered the soil behavior 

primarily reflected by a change in Atterberg limits. Both the reduction of water content and 

increase in Atterberg limits induce a reduction of liquidity index and increase the undrained 

shear strength. Hence the Atterberg limits were analyzed to examine the effects of 

electrochemical reaction on kaolinite samples. 

The raw data of the Atterberg limits of the sample at the vicinities of anode, center and 

cathode are plotted with treatment time in Figs. 4.5, A1.1 and A1.2. From Fig. 4.5, a slight 

increase of the liquid limit was noted near the anode, and the plastic limit was unchanged. 

Under the voltage gradient 100 V/m, the sample showed more significant increase in the 

liquid limit than those under low voltage gradients. The Atterberg limits of post-treated 

samples are also plotted in the Casagrande plasticity chart, as shown in Fig. 4.12. The 

plastic limit for untreated kaolinite was 32.4%, and the liquid limit was 65.8% and the point 

for untreated kaolinite is located on the A-line. It is observed that the points for the EK 
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treated kaolinite samples at the center and cathode after treatment are close to untreated 

samples, indicating that the Atterberg limits of the sample did not have significant change 

during the treatment period. This can be also observed from Figs. A1.1 and A1.2 in 

Appendix 1. On the other hand, the results at the anode shift above the A-line, indicating 

an increase in the plasticity of the samples. The same observation has been reported on oil 

sands tailings (Guo and Shang 2014).  

In summary, for kaolinite slurry at the anode, the EK strengthening effects are attributed 

to both reduction in water content and the increase in plasticity due to electrochemical 

reactions. On the other hand, the EK treatment has minor effects on plasticity of the sample 

at the center and cathode. Thus, it is concluded that the increase in the undrained shear 

strength is primarily attributed to the reduction of water content due to EK dewatering. 

Some studies (Micic et al. 2001, Shang et al. 2004, Mohamedelhassan et al. 2005, Rittrong 

et al. 2008) found that the undrained shear strength increased at the cathode in carbonate 

rich geomaterials, due to amorphous cementation. 

4.3.5. Degree of saturation 

The saturation of kaolinite samples was analyzed after EK dewatering tests. As discussed 

in Chapter 3, the change of saturation has a key effect on the EK dewatering process. The 

EK generated water drainage can be classified in three stages (Chapter 3, Section 3.4), i.e.,  

1). The Linear flow stage, marked from the beginning of experiments until Ttran, which is 

the time when the flow rate of EK drainage starts to change and become non-linear;  

2). The Transitional flow stage, indicated by the time from Ttran to Tend, which is the time 

when the flow rate approaches to zero; and  

3). The End of flow stage, when the treatment time passes Tend.  

The transition of the flow stage is related to the degree of saturation of the sample, 

particularly at the anode. The samples saturation at the anode are plotted versus treatment 

time, as shown in Fig. 4.13. The EK water drainage associated with the flow stages are also 

plotted in these figures. The characteristic times, i.e., Ttran, Tend and t50, and corresponding 
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degree of saturation, S, at the anode obtained in this study are summarized in Table 4.9. It 

should be noted that the characteristic times obtained in this study were not normalized, 

thus they are only valid for the experimental configuration described in this study. A further 

study is necessary for the scaling effects. 

Under the voltage gradient of 100 V/m, as seen in Fig. 4.13(a), the degree of saturation of 

the sample at the anode is plotted with the EK water drainage. As seen the linear flow stage 

(0 to Ttran,) lasted about 30 hours. Then the EK drainage entered the transitional flow stage 

from 30 hours (Ttran) to 105 hours (Tend), then the water flow stopped. A regression trend 

line of the degree of saturation, Sd, of the sample at the anode is also shown in Fig. 4.13(a). 

It can be seen that the time for the beginning of transitional stage, Ttran, marked when the 

degree of saturation, Sd of the sample at the anode reduced to about 78%, and the time at 

flow rate approaches to zero, Tend, is reached when the sample saturation at the anode 

reduced to about 60%, in KV-100 series of tests.   

Similar results were obtained from results of KV-75 series of tests under the voltage 

gradient of 75V/m, as seen in Fig. 4.13(b), which shows that the water discharge is linear 

between 0 and 50 hours, i.e.  Ttran = 50 hours. In KV-75 series of tests, the transitional flow 

stage began when the degree of saturation, Sd, of the sample at the anode (x/L=0.9) reduced 

to about 76%, and lasted 125 hours (Tend).  At Tend, the time when the EK flow completed 

stopped, the saturation at the anode was about 59%. 

As seen from Figs. 4.13(c) to 4.13(e), the Ttran, which is the time when the flow rate of EK 

drainage started to change and become non-linear, was about 50, 150, and 60 hours for 

KV-50 (KW-100), KV-25, and KW-150 tests series, respectively. The corresponding 

degrees of saturation of the sample were 83%, 83% and 87% at the anode. However, the 

treatment time was not long enough to find the Tend for KV-50 (KW-100), KV-25, and 

KW-150 tests series. The degree of saturation, Sd, of the sample at the anode was about 70% 

in KV-50 series of tests at the end of treatment (175 hours). It is 77% for KV-25 tests at 

350 hours, and 74% for KW-150 series at 175 hours.  

It is concluded that when the degree of saturation, Sd, of the kaolinite slurry sample at the 

anode decreases to about 82%, the EK flow changes from the linear flow stage to 
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transitional flow stage, and when the sample saturation at the anode reaches to about 60%, 

the EK flow stops. 

In Chapter 3 for oil sands tailings, it was found that the linear flow stage lasted from 

commencing the treatment until the degree of saturation, Sd, at anode reduced to 80%, 

which is similar with the results for kaolinite slurry.  

4.3.6.  Effects of voltage gradient and initial water content on energy 

consumptions  

The treatment time and voltage gradient are key parameters for EK dewatering. A high 

voltage gradient leads to a shorter treatment time, and vice versa. So, the effects of voltage 

gradient and initial water content on energy consumptions were analyzed in this study by 

using the characteristic times obtained under these experimental conditions.  

Fig. 4.14 shows Ttran, (the time of beginning of transitional stage), and Tend (the time for 

the ending of EK drainage), are related to voltage gradients for kaolinite slurry (w=100%). 

When the voltage gradient, E, was under 50V/m, an increase in the voltage gradient 

significantly shortened the time to reach zero flow, Tend. However, when the voltage 

gradient was higher than 50V/m, further increase in the voltage gradient had a limited effect 

on reducing the treatment time.  

The energy consumption for EK treatment is affected by both voltage gradient and 

treatment time, and it can be calculated by integrating the power consumption equation (Eq. 

4.4) to time, t, (Chapter 3) and expressed: 

W(𝑘𝑊ℎ 𝑚3⁄ ) = 𝑊𝑚(1 − 𝑒
−𝜆𝑃𝑡)×10−3                           (4.6) 

where Wm is the maximum energy consumption, which is calculated as 
𝑃𝑚

𝜆𝑃
, and listed in 

Table 4.6 for KV and KW series tests. The Wm obtained in this study ranged from 2.5 to 

13.8 kWh/m3 at the voltage gradient from 25 to 100 V/m.   

It is clear that the energy consumption, W is related to the reduction rate of the power 

consumption, λp, and the maximum power consumption, Pm. λp is linearly increased with 
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the voltage gradient, as shown in Fig. 4.15. On the other hand, Pm increases with the voltage 

gradient, E, in a quadratic function, and is related to κ0, which is the initial electrical 

conductivity of the kaolinite sample (κ0= 0.027 S/m) (Eq. 3.19) as shown in Fig. 4.15. The 

accumulated energy consumptions at real time are plotted in Figs. 4.8 and 4.9. Energy 

consumptions under different voltage gradients are compared in three ways, i.e., 1) the 

maximum energy consumption under a specific voltage gradient, 2) the energy 

consumption at Ttran, i.e., the end of the linear flow stage, and 3) the energy consumption 

at the same post-treated water content for different voltage gradients. 

Firstly, the maximum power consumptions at different voltage gradients are plotted in Fig. 

4.16. It is noted that the maximum energy consumption, Wm, is proportional to the square 

of voltage gradients. The maximum energy consumption in KV-100 series of tests is about 

14 kWh/m3, which is 7 times higher than that under the voltage gradient of 25V/m, i.e., 2 

kWh/m3, whereas Wm under 100V/m is about twice higher than that under 50V/m. 

EK dewatering treatment is most effective in the linear flow stage, i.e., when Ttran reaches, 

the flow rate of EK drainage starts to change and become non-linear with time.  The energy 

consumption at Ttran under different voltage gradients is analyzed and plotted in Fig. 4.16. 

A quadratic relationship is found between the energy consumption, W at Ttran, and the 

voltage gradient, E. It is noted that when the voltage gradient increased from 50V/m to 

100V/m, the corresponding Ttran was reduced from 50 hours to 30 hours (Fig. 4.14), and 

the energy consumption is increased from 2.2 to 5.5kWh/m3 (Fig. 4.16). When the voltage 

gradient increased from 25V/m to 50V/m, the Ttran was significantly reduced from 150 to 

50 hours, as seen in Fig. 4.14. Meanwhile, the power consumption was increased from 1.1 

to 2.2 kWh/m3 according to Fig. 4.16.  

To better understand the EK dewatering performance associated with energy consumptions, 

the average water content of the sample is plotted versus energy consumptions at the same 

time for KV and KW series in Figs. 4.17a and 4.17b, respectively. The average water 

content is calculated based on the volume reduction of the sample via the regression 

equation of normalized water drainage, Vw/V0 (%) (Eq. 4.1). The dotted lines are the 

trajectories of data for the water content-energy consumptions along with the time for KV 
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and KW series tests during the treatment. The points are the data of the water content-

energy consumptions at the characteristic times, i.e., t50, Ttran, and Tend.  

As shown from the experimental results, under the experimental condition described in this 

study, the energy required to reach a certain average water content of the sample can be 

found through the trajectory lines for different applied voltage gradient. From Fig. 4.17a, 

at each characteristic time, the average water contents of the samples were within a similar 

level. For example, at Ttran, the average water contents of the samples for KV series tests 

were about 80%. At characteristic times of t50 and Tend the water contents were about 75% 

and 60%, respectively. To reach any certain water content, it is recognized that the 

treatment under higher voltage gradient (for example KV-100) will required more energy 

than those under lower voltage gradient (KV-75, 50 and 25), as seen in Fig. 4.17a. In 

contrast, the high voltage gradient reduced the treatment time. As seen in Fig. 4.14, the 

characteristic time, Ttran for KV-100 is about 30 hours, but for KV-25 is about 150 hours 

under the current testing configuration.  

For the treatment with different initial water content, as seen from Fig. 4.9, the power 

consumption for KW-150 series was less than KW-100. The energy consumptions for two 

series of tests at Ttran, calculated according to Eq. 4.6, were 2.2 and 2.1 kWh/m3 with the 

initial water content of 100% and 150%, respectively. However, the water contents of the 

sample at Ttran were different for KW-100 and KW-150 series tests. The average water 

content of the sample was about 80% for KW-100 tests and 100% for KW-150 tests. 

According to Fig. 4.17b, more energy is required for the samples with higher initial water 

content (w0=150%) to reach the same final water content as those with low initial water 

content (w0=100%). For example, at characteristic time of Tend (165 hours), which is the 

time when EK flow stops, the average water content of the sample for KW-150 tests (77%) 

was similar to the water content of the sample in KW-100 tests (80%) at Ttran (50 hours). 

Therefore, to achieve the same final water content, the sample with high initial water 

content needs longer treatment time, thus leading to more energy consumptions.  
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Overall, the results show that it is important to consider for both voltage gradient and 

treatment time in the design of EK dewatering, depending on factors such as target final 

water content, scale of the sample, and project time requirement, etc. 

4.4. Conclusion 

EK dewatering tests on kaolinite slurry under different voltage gradients and initial water 

contents were performed and analyzed by using the proposed regression model for oil sands 

tailings described in Chapter 3. The regression equations obtained from data on oil sands 

tailings were verified on kaolinite slurry. The degrees of saturation of samples at the anode 

were analyzed in the EK dewatering process. A detailed analysis of energy consumption 

under different voltage gradients and treatment time was carried out under the experiment 

condition described in this research.  The following conclusions are made based on the 

results of experiments: 

• The regression model developed for oil sands tailings is applicable for EK 

dewatering of kaolinite-tap water slurry. 

• The initial water content of kaolinite slurry governs the maximum water discharge, 

while the voltage gradient controls the rate of dewatering. 

• The liquid limit of the kaolinite sample at the anode increased due to EK treatment, 

but the plastic limit was unchanged. The higher voltage gradient (100V/m) induced 

more rapid change in the liquid limit compared with the lower voltage gradient 

(25V/m). 

• The undrained shear strength of the sample at the anode increased exponentially 

within the treatment period, and the EK strengthening effect is more significant at 

higher voltage gradient and longer treatment time.  

• The EK strengthening effect at the anode is attributed to water content reduction 

due to EK induced consolidation and material hardening by electrochemical 

reaction, whereas the EK strengthening effect at the cathode is primarily due to EK 

dewatering for the kaolinite slurry. 

• EK induced water flow in the kaolinite slurry can be expressed via the regression 

equation and further classified into three stages, i.e., 1) the linear flow, 2) the 
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transitional flow, and 3) the end of flow. The linear flow stage lasted from the 

beginning of the treatment until the degree of saturation, Sd, reached 82% at the 

anode. When the degree of saturation, Sd, at the anode, reduced to 60%, the EK 

flow reached a stop. 

• With the same initial water content and experimental configuration, the treatment 

under high voltage gradient needs more energy but less treatment time than those 

with low voltage gradient to reach the same post-treated water content. 

• Under the same applied voltage gradient and experimental configuration, the 

treatment with high initial water content needs longer time and more energy to 

reach the same final water content than those with low initial water content. 

 



82 | P a g e  

 

Reference 

Abiera, H. O., Miura, N., Bergado, D. T., and Nomura, T. (1999). Effects of using electro-

conductive PVD in the consolidation of reconstituted Ariake clay. Geotechnical 

Engineering, 30, No. 2, 67-83. 

ASTM (2010a). D2166-10: Standard test methods for laboratory determination of water 

(moisture) content of soil and rock by mass. ASTM International, West 

Conshohocken, PA, 2010, https://doi.org/10.1520/D2216-10 

ASTM (2010b). D4318-10e1: Standard test methods for liquid limit, plastic limit, and 

plasticity index of soils, ASTM International, West Conshohocken, PA, 2010, 

https://doi.org/10.1520/D4318 

Bergado, D. T., Balasubramaniam, A. S., Patawaran, M. A. B., and Kwunpreuk, W. (2000). 

Electroosmotic consolidation of soft Bangkok clay with prefabricated vertical 

drains. Ground Improvement, 4, No.4, 153-163. 

Bjerrum, L., Moum, J., and Eide, O. (1967). Application of electroosmosis to a foundation 

problem in a Norwegian quick clay. Géotechnique, 17, No.3, 214–235. 

Budhu, M. (2005). Soil mechanics and foundations, 2nd edn. Wiley, Hoboken, New Jersey, 

USA. 

Casagrande, L. (1949). Electroosmosis in soil. Géotechnique, 1, No.3,159–177. 

Casagrande, L. (1959). Review of past and current work on electroosmotic stabilization of 

soils. In Harvard Soil Mechanics Series, 45, Harvard University Cambridge, 

Massachusetts, USA (reprinted November 1959 with a supplement of June 1957). 

Fourie, A. B., Johns, D. G., and Jones, C. F. (2007). Dewatering of mine tailings using 

electrokinetic geosynthetics. Canadian Geotechnical Journal, 44, No.2, 160-172. 

Glendinning, S., Lamont-Black, J., and Jones, C. J. (2007). Treatment of sewage sludge 

using electrokinetic geosynthetics. Journal of Hazardous Materials, 139, No.3, 491-

499. 

https://doi.org/10.1520/D2216-10


83 | P a g e  

 

Guo, Y. and Shang, J.Q. (2014) A study on electrokinetic dewatering of oil sands tailings. 

Environmental Geotechnics, 1, No.2, 121-134. 

Lo, K.Y., and Ho, K.S., (1991). The effects of electroosmotic field treatment on the soil 

properties of a soft sensitive clay. Canadian Geotechnical Journal, 28, No.6, 763-

770. 

Lo, K. Y., Ho, K. S., and Inculet, I. I. (1991a). Field test of electroosmotic strengthening 

of soft sensitive clay. Canadian Geotechnical Journal, 28, No.1, 74-83. 

Lo, K. Y., Inculet, I. I., and Ho, K. S. (1991b). Electroosmotic strengthening of soft 

sensitive clays. Canadian Geotechnical Journal, 28, No.1, 62-73. 

Lockhart, N.C. (1983a). Electroosmotic dewatering of clays. I. Influence of voltage. 

Colloids and Surfaces, 6, No.3, 229-238. 

Lockhart, N.C., (1983b). Electro-osmotic dewatering of fine tailings from mineral 

processing. International journal of mineral processing, 10, No.2, 131-140. 

Micic, S., Shang, J. Q., Lo, K. Y., Lee, Y. N., and Lee, S. W. (2001). Electrokinetic 

strengthening of a marine sediment using intermittent current. Canadian 

Geotechnical Journal, 38, No.2, 287-302. 

Mitchell, J.K., and Soga K. (2005). Fundamental of soil behavior, 3rd edn. Wiley, Hoboken, 

New Jersey, USA. 

Mohamedelhassan, E., and Shang, J. Q. (2001). Effects of electrode materials and current 

intermittence in electroosmosis. Proceedings of the Institution of Civil Engineers-

Ground Improvement, 5, No.1, 3-11. 

Mohamedelhassan, E., Shang, J. Q., Ismail, M. A., and Randolph, M. F. (2005). 

Electrochemical cementation of calcareous sand for offshore foundations. 

International Journal of Offshore and Polar Engineering, 15, No. 01, 71-79. 



84 | P a g e  

 

Raats, M. H. M., Van Diemen, A. J. G., Laven, J., and Stein, H. N. (2002). Full scale 

electrokinetic dewatering of waste sludge. Colloids and Surfaces A: 

Physicochemical and Engineering Aspects, 210, No.2, 231-241. 

Rassat, S. D., Bagaasen, L. M., Mahoney, L. A., Russell, R. L., Caldwell, D. D., and 

Mendoza, D. P. (2003). Physical and liquid chemical simulant formulations for 

transuranic wastes in Hanford Single-Shell Tanks. PNNL-14333, National 

Technical Information Service, US Dept. of Commerce, Springfield, VA p. iv. 

Rittirong, A., Douglas, R. S., Shang, J. Q., and Lee, E. C. (2008). Electrokinetic 

improvement of soft clay using electrical vertical drains. Geosynthetics 

International, 15, No.5, 369-381. 

Shang, J. Q. (1997). Electrokinetic sedimentation: a theoretical and experimental study. 

Canadian Geotechnical Journal, 34, No. 2, 305-314. 

Shang, J. Q., Mohamedelhassan, E., and Ismail, M. (2004). Electrochemical cementation 

of offshore calcareous soil. Canadian geotechnical journal, 41, No. 5, 877-893. 

Sunderland, J.G.  (1987). Electrokinetic dewatering and thickening. II. Thickening of ball 

clay. Journal of applied electrochemistry, 17, No.5, 1048-1056. 

Wroth, C. P., and Wood, D. M. (1978). The correlation of index properties with some basic 

engineering properties of soils. Canadian Geotechnical Journal, 15, No. 2, 137-145. 

 

 

 



85 | P a g e  

 

Table 4.1 EK dewatering tests conditions 

Conditions  

Categories. KV KW 

Series KV-100 KV-75 KV-50 KV-25 KW-100 KW-150 

Voltage gradient (V/m) 

(V/m 

100 75 50 25 50 

Initial water content 

(%) 

100 100 150 

Surcharge (kPa) 0 

Sample size (cm) Recorded Height(H0) × 29.5 (length) × 10 (width) 

Water Discharge (mL) Recorded 

Current (A) Recorded 

Electrodes SS316 mesh cathode, Ti/IrOx mesh anode 

 

 

 

 

 

 

Table 4.2 Kaolinite properties 

 

 

 

 

 

 

 

 

 

 

 

 

 

Properties Kaolinite slurry 

Water content (%) 100% or 150% 

Specific gravity, Gs 2.65 

Plastic limit (%) 32.4 

Liquid limit (%) 65.8 

Plasticity index (%) 33.4 

Liquidity index 2.0 or 3.5 

Pore fluid Tap water 

Water electrical conductivity (µS/cm) 200-350 
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Table 4.3 Summary of the EK dewatering tests for kaolinite slurry 

Series Test No. 

Initial 

water 

content  

(%) 

Voltage 

gradient 

(V/m) 

Testing 

time  

(hours) 

H0 

(cm) 

Vw/V0 

(%) 

Vw 

(mL) 

KV-100 

EKD-kt-0-100-50 

100 100 

50 12.5 25.0 923 

EKD-kt-0-100-75 75 12.5 28.5 1049 

EKD-kt-0-100-100 100 12.5 29.9 1102 

EKD-kt-0-100-125 125 11.8 29.8 1038 

EKD-kt-0-100-150 150 12.0 30.3 1074 

EKD-kt-0-100-175 175 12.0 30.9 1093 

KV-75 

EKD-kt-0-75-25 

100 75 

25 9.0 12.2 323 

EKD-kt-0-75-75 75 11.5 24.5 830 

EKD-kt-0-75-125 125 10.5 27.8 862 

EKD-kt-0-75-175 175 8.6 27.6 700 

KV-50  

(KW-100) 

EKD-kt-0-50-25 

100 50 

25 10.5 7.8 241 

EKD-kt-0-50-50 50 11.7 15.3 527 

EKD-kt-0-50-75 75 10.8 17.5 556 

EKD-kt-0-50-100 100 12.5 20.3 749 

EKD-kt-0-50-125 125 11.5 21.2 720 

EKD-kt-0-50-150 150 9.0 22.6 601 

EKD-kt-0-50-175 175 8.5 24.3 609 

KV-25 

EKD-kt-0-25-25 

100 25 

25 9.0 3.6 94 

EKD-kt-0-25-50 50 11.5 6.8 229 

EKD-kt-0-25-75 75 11.2 9.1 301 

EKD-kt-0-25-100 100 10.2 12.2 368 

EKD-kt-0-25-125 125 11.2 14.8 490 

EKD-kt-0-25-150 150 11.0 15.7 509 

EKD-kt-0-25-175 175 11.8 18.0 627 

EKD-kt-0-25-350 350 10.1 22.5 670 

KW-150 

EKD-kt-0-50-50-150 

150 50 

50 12.0 24.8 876 

EKD-kt-0-50-75-150 75 12.2 30.7 1105 

EKD-kt-0-50-100-150 100 11.5 33.5 1137 

EKD-kt-0-50-125-150 125 12.5 33.5 1237 

EKD-kt-0-50-150-150 150 11 38.2 1239 

EKD-kt-0-50-175-150 175 10 38.9 1149 
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Table 4.4 Summary of the parameters for the regression equation of normalized 

water drainage 

Test No. Dv t50 R2 Regression Equation 

KV-100 0.387 36.3 0.989 𝑉𝑤
𝑉0
⁄ =

0.387𝑡

36.3 + 𝑡
     (𝑇4.1) 

KV-75 0.381 51.2 0.987 𝑉𝑤
𝑉0
⁄ =

0.381𝑡

51.2 + 𝑡
     (𝑇4.2) 

KV-50(KW-100) 0.336 67.4 0.995 𝑉𝑤
𝑉0
⁄ =

0.336𝑡

67.4 + 𝑡
     (𝑇4.3) 

KV-25 0.385 216.3 0.994 𝑉𝑤
𝑉0
⁄ =

0.385𝑡

216.3 + 𝑡
     (𝑇4.4) 

KW-150 0.534 61.9 0.995 𝑉𝑤
𝑉0
⁄ =

0.534𝑡

61.9 + 𝑡
     (𝑇4.5) 

 

 

 

 

 

 

 

 

 

 

Table 4.5 Summary of the parameters for the regression equation of normalized 

water content at the anode 

Test No. Wf Dw λw R2 Regression Equation 

KV-100 0.495 0.507 0.0297 0.986 
𝑤𝑡
𝑤0⁄ = 0.495 + 0.507𝑒−0.0297𝑡      (𝑇4.6) 

KV-75 0.506 0.490 0.0181 0.998 
𝑤𝑡
𝑤0⁄ = 0.506 + 0.490𝑒−0.0181𝑡      (𝑇4.7) 

KV-50(KW-100) 0.660 0.405 0.0142 0.970 
𝑤𝑡
𝑤0⁄ = 0.603 + 0.405𝑒−0.0142𝑡      (𝑇4.8) 

KV-25 0.495 0.514 0.0040 0.994 
𝑤𝑡
𝑤0⁄ = 0.495 + 0.514𝑒−0.0040𝑡      (𝑇4.9) 

KW-150 0.503 0.497 0.0170 0.989 
𝑤𝑡
𝑤0⁄ = 0.503 + 0.497𝑒−0.0170𝑡      (𝑇4.10) 
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Table 4.6 Summary of the parameters for the regression equation of power 

consumptions and energy consumptions 

Test No. Pm Wm λp R2 Regression Equation 

KV-100 233.1 13.8 0.0169 0.930 𝑃 (𝑊
𝑚3⁄ ) = 233.1𝑒−0.0169𝑡      (𝑇4.11) 

𝑊(𝑘𝑊ℎ
𝑚3⁄ ) = 13.8(1

− 𝑒−0.0169𝑡)     (𝑇4.12) 

KV-75 106.9 7.9 0.0136 0.983 𝑃 (𝑊
𝑚3⁄ ) = 106.9𝑒−0.0136𝑡      (𝑇4.13) 

𝑊(𝑘𝑊ℎ
𝑚3⁄ ) = 7.9(1 − 𝑒−0.0136𝑡)     (𝑇4.14) 

KV-50(KW-

100) 

54.6 6.1 0.0089 0.913 𝑃 (𝑊
𝑚3⁄ ) = 54.6𝑒−0.0089𝑡      (𝑇4.15) 

𝑊(𝑘𝑊ℎ
𝑚3⁄ ) = 6.1(1 − 𝑒−0.0089𝑡)     (𝑇4.16) 

KV-25 10.1 2.5 0.0041 0.818 𝑃 (𝑊
𝑚3⁄ ) = 10.1𝑒−0.0041𝑡      (𝑇4.17) 

𝑊(𝑘𝑊ℎ
𝑚3⁄ ) = 2.5(1 − 𝑒−0.0041𝑡)     (𝑇4.18) 

KW-150 48.4 4.4 0.0111 0.946 𝑃 (𝑊
𝑚3⁄ ) = 48.4𝑒−0.0111𝑡      (𝑇4.19) 

𝑊(𝑘𝑊ℎ
𝑚3⁄ ) = 4.4(1 − 𝑒−0.0111𝑡)     (𝑇4.20) 

 

 

 

Table 4.7 Summary  of the parameters for the regression equation of undrained shear 

strength 

Test No. CSu λsu R2 Regression Equation 

KV-100 1.205 0.0154 0.906 𝑆𝑢(𝑘𝑃𝑎) = 1.205𝑒
−0.0154𝑡      (𝑇4.21) 

KV-75 0.540 0.0186 0.940 𝑆𝑢(𝑘𝑃𝑎) = 0.540𝑒
−0.0186𝑡      (𝑇4.22) 

KV-50(KW-100) 0.261 0.0160 0.902 𝑆𝑢(𝑘𝑃𝑎) = 0.261𝑒
−0.0160𝑡      (𝑇4.23) 

KV-25 0.095 0.0109 0.948 𝑆𝑢(𝑘𝑃𝑎) = 0.095𝑒
−0.0109𝑡      (𝑇4.24) 

KW-150 0.044 0.0193 0.967 𝑆𝑢(𝑘𝑃𝑎) = 0.0435𝑒
−0.0193𝑡      (𝑇4.25) 
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Table 4.8 Summary  of liquidity indices of the kaolinite samples after EK treatment 

Test series Test No. 

Voltage 

gradient 

(V/m) 

Treatment 

time 

(hours) 

Liquidity index 

Anode Center Cathode 

KV-100 

EKD-kt-0-100-50 

100 

50 0.8 1.2 0.9 

EKD-kt-0-100-75 75 0.5 0.9 1.0 

EKD-kt-0-100-100 100 0.5 0.7 1.0 

EKD-kt-0-100-125 125 0.6 0.8 1.0 

EKD-kt-0-100-150 150 0.4 0.8 0.8 

EKD-kt-0-100-175 175 0.3 0.9 1.0 

KV-75 

EKD-kt-0-75-25 

75 

25 1.2 1.9 1.7 

EKD-kt-0-75-75 75 0.8 1.3 1.2 

EKD-kt-0-75-125 125 0.6 1.3 1.0 

EKD-kt-0-75-175 175 0.5 1.4 1.2 

KV-50 

(KW-100) 

 

EKD-kt-0-50-25 

50 

25 1.7 2.1 1.9 

EKD-kt-0-50-50 50 1.2 1.8 1.7 

EKD-kt-0-50-75 75 1.1 1.7 1.4 

EKD-kt-0-50-100 100 1.0 1.4 1.2 

EKD-kt-0-50-125 125 1.0 1.2 1.2 

EKD-kt-0-50-150 150 0.8 1.1 1.3 

EKD-kt-0-50-175 175 0.7 0.9 1.2 

KV-25 

EKD-kt-0-25-25 

25 

25 1.9 2.2 2.1 

EKD-kt-0-25-50 50 1.7 2.1 1.8 

EKD-kt-0-25-75 75 1.6 1.9 1.8 

EKD-kt-0-25-100 100 1.5 1.8 1.6 

EKD-kt-0-25-125 125 1.4 1.6 1.5 

EKD-kt-0-25-150 150 1.3 1.5 1.4 

EKD-kt-0-25-175 175 1.1 1.4 1.3 

EKD-kt-0-25-350 350 0.7 1.0 1.5 

KW-150 

EKD-kt-0-50-50-150 

50 

50 2.1 3.3 1.9 

EKD-kt-0-50-75-150 75 1.6 2.4 1.8 

EKD-kt-0-50-100-150 100 1.6 2.1 1.7 

EKD-kt-0-50-125-150 125 1.6 1.6 1.8 

EKD-kt-0-50-150-150 150 1.2 1.4 1.5 

EKD-kt-0-50-175-150 175 1.3 1.7 1.9 
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Table 4.9 Summary of characteristic times and water content at the anode 

 Characteristic Times Degree of Saturation at the anode 

Test No. t50 Ttran Tend Sd (t=Ttran) Sd(t=Tend) 

KV-100 36.3 30 105 78.0% 62.4% 

KV-75 51.2 50 125 76.2% 59.0% 

KV-50 

(KW-100) 

67.4 50 - 82.7% - 

KV-25 216.3 150 - 83.4% - 

KW-150 61.9 60 - 87.4% - 

Average - - - 81.5% 60.7% 

“*”, the value is estimated. 

“-“, the value is not available. 
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Figure 4.1 Schematic diagram of an EK dewatering cell with vertical installed 

electrodes 
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Figure 4.2 Normalized water drainage, Vw/V0 of Kaolinite slurry for KV series tests 

(a) KV-100; (b) KV-75; (c) KV-50; (d) KV-25. 
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Figure 4.3 Normalized water drainage, Vw/V0 of Kaolinite slurry for KW series tests 

 
Figure 4.4 Water drainage parameters, t50 and Dv versus voltage gradient, E 
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Figure 4.5 Normalized water content, w(t)/w0, of the kaolinite sample at anode for 

KV series tests (a) KV-100; (b) KV-75; (c) KV-50; (d) KV-25. 
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Figure 4.6 Water content reduction of Kaolinite slurry at (a) anode, (b) center, and 

(c) cathode for test series of KW-150 

 

 
Figure 4.7 Relationship between water content reduction rate, λw, and voltage 

gradient, E 
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Figure 4.8 Power consumption and accumulated energy consumptions of Kaolinite 

slurry for KV series tests (a) KV-100; (b) KV-75; (c) KV-50; (d) KV-25 
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Figure 4.9 Power consumption and accumulated energy consumptions of Kaolinite 

slurry for KW series tests 
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Figure 4.10 Undrained shear strength, Su versus time for (a) KV series tests, and (b) 

KW series tests 
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Figure 4.11 Undrained shear strength of the sample at (a) the anode and (b) the 

cathode plotted against water content for KV series tests 
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Figure 4.12 Casagrande Plasticity chart 
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Figure 4.13 The degrees of saturation of the kaolinite at the anode versus time in (a) 

KV-100, (b) KV-75, (c)KV-50(KW-100), (d) KV-25, and (e) KW-150 
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Figure 4.14 Characteristic time Ttran and Tend vs. voltage gradients, E 

 

 

Figure 4.15 Power consumption reduction rate, λp and the maximum power 
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Figure 4.16 Maximum energy consumption, Wm and energy consumption at Ttran 

versus voltage gradient, E (V/m) 
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Figure 4.17 Trajectories of average water content, w (%) versus energy 

consumptions, W (kWh/m3) of the sample in (a) KV series tests, and (b) KW series 

tests 
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Chapter 5 Electrokinetic and chemical treatment of mature fine tailings 

(MFT) from oil sands processing: dewatering and strengthening 

5.1. Introduction 

Oil sands deposits in Alberta are the third-largest crude oil reserve in the world. With the oil sands 

industry development and expansion, large amounts of tailings, which mainly consist of a mixture 

of residual bitumen, water, quartz sands and clays, are produced during bitumen recovery from oil 

sands and discharged into surface tailings ponds. The accumulated oil sands tailings end up 

occupying about 176 km2 of tailings ponds across the Athabasca oil sands region (Small et al. 

2015). Due to environmental issues, such as disturbance of landscape, greenhouse gas emission, 

ground water contamination, etc., there is a demand to reduce the total amount of tailings and 

reclaim existing tailings ponds. Mature fine tailings (MFT) or fluid fine tailings (FFT) are formed 

in tailings ponds after separating from coarse particles and long term sedimentation. MFT, which 

contain about 70% water and 30% silt and clay size solids, is a major challenge facing oil sands 

industry because of the difficulty of the consolidation by nature (BGC Engineering 2010). 

Researches have been devoted to find an effective method to treat oil sands tailings, including 

coagulation and flocculation (Pourrezaei and El-Din 2008, Sworska and Laskowski 2000, Beier et 

al. 2103, Islam and Shang 2017), centrifugation (Rima 2013, Sorta 2015), filtration (Xu et al. 2008, 

Wang et al. 2010), electrokinetics (Guo and Shang 2014, Zhang 2016) etc., but not every 

technology is commercialized and considered reliable at this stage (Wang et al. 2014).  

Electrokinetics (EK) is one of the dewatering techniques for oil sands tailings treatment. It has 

been studied and used in geotechnical engineering field to treat the soft clays (Casagrande 1959, 

Bergado et al. 2000, Chew et al. 2004a), marine sediments (Micic et al. 2001, 2002), sensitive 

clays (Bjerrum et al. 1967, Lo et al. 1991a, 1991b), mine tailings (Fourie et al. 2007, Fourie and 

Jones, 2010), etc., for many years. Some researches of electrokinetic dewatering (or 

electrofiltration) have been conducted to dewater oil sands mature fine tailings (MFT) and reported 

by Guo and Shang (2014), Zhang (2016) and in Chapter 3. During EK dewatering process, the 

water in oil sands tailings is driven by DC current from the anode and discharged at the cathode. 

The research performed by Guo and Shang (2014) indicated that EK can accelerate dewatering 
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rate and improve oil sands tailings. In Chapter 3, the results of EK dewatering tests indicate that 

EK generated up to 50% volume reduction of oil sands mature fine tailings (MFT). Through these 

studies, it has been shown that EK can significantly reduce water contents of tailings samples at 

the anode, but had minor effects at the cathode (Guo and Shang 2014, and Chapter 3).  It has also 

been found that during the EK dewatering, once an unsaturation zone of the sample is generated 

at the anode, EK dewatering process would stop, thus the dewatering effects is limited at the center 

and cathode (Guo and Shang 2014, Chapter 3). Therefore, further research and development are 

needed to improve the properties of tailings at the cathode.  

Chemical stabilization has been used in geotechnical engineering to strengthen soft soils since 

early 1960s (Mitchell and Hooper 1961, Mitchell 1976, Saitoh et al. 1985, Hausmann 1990, Bell 

1979, 1996, Lorenzo and Bergado, 2004). Cement and lime are two commonly used chemical 

additives in ground improvement. Hydration reactions, which occur immediately when cement or 

lime is in contact with soil water, control the early strength gain.  The secondary reactions, i.e., 

soil-cement or soil-lime reactions, are slower and may continue for months (Hausmann 1990). In 

a recent study by Liu and Shang (2013) the combined electrokienetic and chemical treatment were 

used to strengthen a marine sediment, in which significant strengthening and shorter treatment 

time were observed in the experiments. 

In this study, the electrokinetic and chemical stabilization are applied on oil sands mature fine 

tailings (MFT) to evaluate their combined dewatering and strengthening effects. The chemical 

additives used in this research are quicklime (Carmeuse Lime (Canada) ltd.) and Portland cement 

(Type HS, Lafarge Canada Inc.). The post treatment evaluation includes the Atterberg limits, 

undrained shear strength, water content, pH and electrical conductivity of pore water, and zeta 

potential of tailings particles. The results are compared between chemical treated MFT and original 

MFT.  The effects of chemical additives on EK dewatering are assessed from the comparison 

between EK combined chemical treatment and EK treatment alone.  

5.2. Experiments 

The bulk MFT slurry with the natural water content of 165% in average was recovered from Fort 

McMurray, AB, and used in this study. The geotechnical properties of oil sands tailings are 
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summarized in Table 5.1 (Guo and Shang 2014). Two series of experiments, i.e., 1). Chemical 

treatment and 2). EK treatment, were carried out in this research. In the first series of study, 

quicklime and cement were used as the chemical additives, which were mixed with oil sands 

tailings (MFT-A) at different mixing ratios (mass ratio of bulk MFT to dry chemical). The water 

content and Atterberg limits of MFT samples after mixing were measured. In the second series of 

study, EK dewatering tests were carried out on chemical added MFT to assess the combined effects 

on oil sands tailings. The detailed experimental design is shown in Table 5.2. 

5.2.1. Experimental apparatus 

Plastic cylindrical molds were used in the first step of study, as seen in Fig. 5.1. It has an inner 

diameter of 50 mm and height of 100 mm. An air tight cap was placed on top of the mold during 

the curing period to prevent evaporation.    

The EK dewatering cell, as shown in Fig. 5.2, was used to carry out dewatering tests. The cell has 

been used in the study presented in Chapter 3 and in previous studies (Mohamedelhasand and 

Shang 2002, Liu and Shang 2014). The device has a plexiglass tank with dimensions of 

350×100×250 mm (Length ×Width × Height). The electrodes are placed at right and left side in 

the tank. The distance between the anode and cathode is 295 mm. The anode is made of IrOx coated 

Titanium mesh, and a stainless-steel S.S. 316 is used as the cathode. The sample is placed between 

the electrodes. The initial height of the sample was measured before each test. The surcharge load 

is placed via a loading plate on the top of the sample. The water drainage from both anode and 

cathode sides is collected and measured via a graduated cylinder.  

5.2.2. Quicklime and Portland cement treatment  

Quicklime (Carmeuse Lime (Canada) Ltd.) and Portland cement (Type HS, Lafarge Canada Inc.) 

were added to bulk oil sands tailings slurry at different mixing ratios, defined as the ratio of the 

mass of bulk tailings to the dry mass of chemical additives. The water content of oil sands tailings 

was measured before the tests. In this study, the mixing ratios of quicklime and MFT (MFT: QL) 

were 9.5:0.5, 9:1, 8.5:1.5, and 8:2, corresponding to the quicklime content of 5%, 10%, 15%, and 

20%. The mixing ratios of Portland cement treated MFT were 9.9:0.1, 9.5:0.5, and 9:1, which are 

1%, 5% and 10% in terms of cement content.  
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Chemical additives were pulverized prior to mixing with tailings. The chemical and tailings were 

stirred thoroughly in a mixer, transferred into nine molds, and cured in the capped molds under the 

room temperature for 0, 7, 14 and 28 days, with the triplicate for each curing time. The water 

content (ASTM D2166-10; ASTM 2010a) and Atterberg limits (ASTM D4318-10e1; ASTM 

2010b) after the specific curing period were measured.  

5.2.3. EK cell tests 

The mixtures of MFT and chemicals (quicklime or cement) at the mixing ratios 9:1 (10% chemical 

content) and 9.9:0.1 (1% chemical content) were selected for EK cell tests. The samples were 

mixed thoroughly in a mixer and then poured into two EK dewatering cells (Fig. 5.2).  A geotextile 

sheet was placed on top of the sample as the top drainage. The electrodes were covered with filter 

papers and geotextiles for filtration and separation. A surcharge loading was added gradually to 

reach 5 kPa in 48 hours and sustained during the EK cell test. In one cell, a DC current was applied 

under a voltage gradient of 50V/m for 120 hours after 48 hours consolidation under 5 kPa 

surcharge. The volume of water drainage, voltage, and current were recorded during the testing 

period. The second EK cell was used as a control without application of DC current. The total 

volume of water drainage, undrained shear strength and water content were measured after 7 days 

on samples in both cells. The undrained shear strength was measured via a laboratory vane shear 

tester. The vane shear tester has the smallest division on the dial of 1 kPa and visual interpretation 

of about 0.25 kPa. The EK cell test conditions were summarized in Table 5.3. 

5.3. Results and Discussion 

5.3.1. Chemical treatment of oil sands tailings 

5.3.1.1. Water content and mixing ratio 

Results of water content of chemical treated MFT are summarized in Table 5.4. The original MFT 

sample has an average water content of 165% (38% in solid content). Fig. 5.3 shows the average 

water content of the chemical treated MFT sample at different curing time. It is noted that the 

water content of MFT reduced immediately after adding quicklime or cement (0 day) due to 

hydration reactions, and then remained nearly constant for the rest of curing period. According to 
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Fig. 5.3a, for the quicklime content of 5%, 10%, 15% and 20%, the average water contents of 

quicklime treated MFT were 142%, 119%, 83% and 68%, respectively, corresponding to a solid 

content of 41%, 46%, 55%, and 60%. For cement treated MFT samples, the average water contents 

were 155%, 135% and 114%, for the cement content of 1%, 5% and 10%, respectively, as seen in 

Fig. 5.3b and Table 5.4. The corresponding solid contents were 39%, 43% and 47%. The average 

water contents of chemical treated tailings are plotted against the percentage of chemical additives 

in Fig. 5.4. The post-treatment water content of the sample is proportional to the percentage of 

chemical additives. The cement treated MFT samples had slightly lower water contents than those 

treated with quicklime. For example, the post-treatment water content of MFT sample with 5% of 

cement (the mixing ratio of 9.5:0.5) was 142%, while the water content of quicklime treated MFT 

sample was 135% at the same mixing ratio. For mixing ratio of 9:1 (10% of chemical additives in 

bulk sample), the water content of treated MFT were 114% and 119% for cement and quicklime, 

respectively. 

5.3.1.2. Atterberg limits 

The Atterberg limits of chemical treated samples were measured at each curing time and are listed 

in Table 5.5 and plotted in Figs. 5.5 and 5.6 for quicklime or cement treated MFT, respectively.  

The original MFT has the liquid limit of 51.6% and the plastic limit of 29.1%. From Fig. 5.5 it is 

noted that both liquid limit and plastic limit of MFT were increased after adding quicklime. The 

plastic limit of quicklime treated MFT samples increased to about 50% in average. The increase 

in the plastic limit of MFT is not significantly affected by quicklime content from 5% to 20%, and 

curing time, as seen in Fig.5.5. In contrast, the increase in the liquid limit of quicklime treated 

MFT is related to both the mixing ratio and curing time. For example, at the highest mixing ratio 

of 8:2 (20% quicklime content) in this study, the liquid limit of quicklime treated MFT at 7 days 

was 84.9% and further increased to 93% after 28 days curing (Fig. 5.5a). In contrast, the liquid 

limit was 98.4% at 7 days and increased to 111.6% after curing for 28 days for the 5% quicklime 

treated MFT sample (Fig. 5.5d). It is noted that the more significant increase in liquid limit was 

observed at lower quicklime content. 

Fig. 5.6 presents the changes of the Atterberg limits of cement treated MFT. The plastic limit of 

treated MFT increased with the increase of mixing ratio and curing time. At the lowest mixing 
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ratio of 9.9:0.1, the plastic limit of cement treated MFT was 24% at 7 days and slightly rose to 28% 

after 14 days curing (Fig. 5.6 c). At the mixing ratio of 9:1, the plastic limit of treated MFT was 

40% at 7 days, and further increased to 56% at 28 days (Fig. 5.6a). The results of liquid limit of 

treated MFT shows the similar trend. The liquid limits of treated MFT were 90.3%, 104.9%, and 

114.3% at 7 days at cement content of 1%, 5%, and 10% and 9:1, respectively, and further 

increased to 100.8%, 125.7% and 122.0% after 14 days.  

In general, both the liquid limit and the plastic limit increased after adding quicklime or cement.  

Specifically, for quicklime treated MFT, the increase of plastic limit was not significantly affected 

by mixing ratio and curing time, and the increase of the liquid limit was more at lower quicklime 

content. For cement treated MFT, both plastic and liquid limits increased with the increase in the 

mixing ratio and curing time. 

In conclusion, for the treatment of cement or quicklime only, the post-treated water content of the 

sample is proportional to the percentage of chemical additives. For cement treated MFT samples, 

the water contents were observed lower than those treated with quicklime at the same mixing ratio. 

The Atterberg limits of the sample increased after adding the chemical additives. For quicklime 

treated MFT, the increase in plastic limit was not affected by percentage of quicklime and curing 

time, but the more significant increase in liquid limit was observed at the lower percentage of 

quicklime. In contrast, both plastic and liquid limit increased with the increase in the cement 

percentage and curing time, for cement treated MFT samples. 

5.3.2. EK combined with chemical treatment 

Figs. 5.7 and 5.8 present the results of EK dewatering tests of MFT with quicklime or cement 

added, respectively. The volume of water drainage during EK treatment for quicklime or cement 

treated MFT are plotted in Figs. 5.7a and 5.8a. For a better comparison, the normalized water 

drainage, Vw/V0, where Vw is the volume of water drainage and V0 is the initial volume of bulk 

sample, is presented in Figs. 5.7b and 5.8b. The normalized water drainage also indicates the 

volume reduction of the sample due to dewatering. The results of EK combined with chemical 

additives are compared with those obtained in two controlled experiments, including chemical 

treated MFT dewatering under a surcharge of 5 kPa and the treatment of EK alone on untreated 

MFT, to reveal the effects of chemical additives on EK dewatering.   
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The total water drainage for chemical treated MFT under the consolidation of 5 kPa surcharge only 

was measured at the end of 7 days for the first control tests (C-QL and C-CM series tests). In the 

second control test (EK-0-50-125) with EK dewatering only, there was no surcharge loading on 

top to the sample.  

The dewatering results for quicklime treated MFT sample are shown in Fig. 5.7 for the mixing 

ratio of 9:1 (10% quicklime) and 9.9:0.1 (1% quicklime). As shown in Fig. 5.7a, at the high 

quicklime content (10% quicklime), the volume of water drainage was 70 ml after 7 days 

consolidation under 5 kPa surcharge alone in the first control test (Test: C-QL-5-0-10). The 

normalized water drainage, Vw/V0, which reflects the volume reduction of the sample due to 

dewatering, was 1.8%, as seen in Fig. 5.7b. With the combined treatment of EK and quicklime, 

the volume of water drainage reached 93ml, corresponding to the normalized volume change, 

Vw/V0, of 2.34% (Test: EK+QL-5-50-10). For the sample with low quicklime content (1%), the 

water drainage was larger than those with high quicklime content (10%). The volume of water 

drainage was 104ml after 5kPa consolidation in the first control test (Test: C-QL-5-0-1), and it 

was 257ml observed in EK combined treatment (Test: EK+QL-5-50-1). The corresponding 

normalized water drainage, Vw/V0, was 4.2% and 10.25% in the test with 5 kPa consolidation only 

and EK treatment, respectively. On the other hand, the largest volume reduction, i.e., 30%, of the 

MFT sample was observed in the second controlled test (Test: EK-0-50-125), i.e., the EK 

dewatering on original MFT without adding chemicals (0% quicklime).  

Similar results were observed in dewatering tests of cement treated MFT. Fig. 5.8 shows results 

of EK dewatering on MFT samples with cement added.  As shown in Fig. 5.8a, at the high cement 

content (10% cement), the water drainage under 5 kPa surcharge was 334ml, corresponding to the 

normalized water drainage of 9.9% (Test: C-CM-5-0-10), as seen in Fig. 5.8b.  Based on Fig. 5.8b, 

EK dewatering flow was completely eliminated after adding 10% cement into MFT. The 

normalized water drainage obtained in EK dewatering was 9.9% (Test: EK+CM-5-50-10), the 

same as was obtained in the control test. Similar with the experiments on quicklime treated MFT, 

at the lower cement content (1%), EK treatment generated more water drainage. As seen in Fig. 

5.8b, the normalized water drainage was 9.3% (354ml in Test: C-CM-5-0-1), and it increased to 

about 25% (1428ml) in the EK combined treatment (EK+CM-5-50-1). On the other hand, EK 

treatment alone (Test: EK-0-50-125) can achieve more volume reduction (about 30%) in 125 hours. 
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As evidenced from experiments, the quicklime or cement reduced the EK generated water flow in 

MFT samples, thus reduced dewatering effects. The EK flow is inversely related to the chemical 

dosage.  

Above observations can be further verified from water contents of MFT after tests. Table 5.6 

summarizes the water contents of MFT samples after the EK dewatering tests. When the chemical 

content (10% chemical additives) was high, the water contents at the end of controlled test were 

114% and 96% for quicklime or cement treated MFT sample, respectively. After EK dewatering 

tests, the water contents were similar or even higher than those without EK treatment. As seen in 

Table 5.6, the water contents were 112% and 114% at the anode and cathode, respectively, for 

quicklime treated MFT samples. The corresponding water content reductions of the sample due to 

EK are 1.8% at the anode and 0% closed to the cathode. Similarly, for the cement treated MFT, 

the water contents were 99% and 101% at the vicinity of anode and cathode, respectively. 

Compared with the water content obtained in control tests, the water content reductions of the 

cement treated sample due to EK are -2.7% and -4.7% at the anode and cathode, respectively. The 

results indicate that the EK dewatering effect had been eliminated by adding high percentage of 

chemical additives.  

The EK treatment had better effect at low chemical content (1% chemical additives) in terms of 

water content reduction. The water contents obtained in control tests were 136% and 129% for 

quicklime and cement treated MFT, respectively, as seen in Table 5.6. With the EK treatment, the 

water contents of the sample decreased to 121% and 124% at the anode and cathode, respectively, 

after adding quicklime, from the original water content of 154%. For the cement treated MFT 

sample, the water content was 88% at the anode and 116% at the cathode with the EK treatment. 

On the other hand, without chemical added, the final water content of MFT after EK dewatering 

test reached 50% at the anode and 171% at the cathode. It is concluded that EK treatment alone 

can significantly reduce the water content of the sample at the anode but have minor effects on the 

sample at the cathode for oil sands tailings.  

The results of MFT water content after dewatering treatment are plotted in Fig. 5.9. A significant 

difference of MFT water content between the anode and cathode side was observed in test EK-0-

50-125, which is the EK treatment on original MFT under 50V/m without surcharge and chemical 
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additives. The water content of treated MFT at the anode was 50%, while the water content of 

MFT at the cathode was 171%, which is over three times of its liquid limit (51.6%).  However, the 

water content of treated MFT was almost the same at the anode and cathode after tests with 

chemical additives of quicklime or cement. For example, the water contents of the sample at the 

anode and cathode were 99% and 101% in Test: EK+CM-5-50-10, 121% and 124% in Test: 

EK+QL-5-50-1, and 112% and 114% in Test: EK+QL-5-50-10. When the dosage of cement was 

low, i.e., in EK+CM-5-50-1 (1% cement), a difference in water content of MFT at the anode and 

cathode was still observed (88% and 116% at the anode and cathode, respectively) but not as 

significant as in the EK dewatering test with original MFT (EK-0-50-125). After EK treatment on 

original MFT, the sample at the cathode remained slurry and cannot sustain any load on top due 

to the high water content of 171%.  The tailings at the cathode, therefore, need further treatment 

to reduce the water content. The difference of water content reduced by adding a low percentage 

of chemical. Then the sample can sustain a surcharge loading of 5 kPa without inducing any failure, 

although the final water content was not as low as 50% observed at the anode in EK treatment with 

original MFT (EK-0-50-125).  

Based on the results, it can be noticed that the EK treatment alone has a significant dewatering 

effects at the anode and no effect at the vicinity of the cathode for oil sands tailings. The water 

content of MFT without chemical additives after EK treatment had a significant difference between 

the vicinity of anode and cathode. With the chemical treatment, MFT had more uniform water 

content distribution from the anode to cathode. But, generally, the chemical treatment with 

quicklime or cement reduced the EK dewatering flow. Also from these results, it is noted that the 

high chemical percentage leads to the low volume reduction of MFT after dewatering tests.  

It is also known that the chemical treatment with quicklime or cement will generate the 

cementation, which contributes to the strength increase, in MFT. Therefore, the results of the 

undrained shear strength will be discussed in the next section for the samples after EK combined 

with chemical treatment. 

5.3.3. Undrained shear strength and plasticity 

5.3.3.1. Undrained shear strength 
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The undrained shear strength of treated MFT sample was measured via a laboratory vane shear 

tester after dewatering tests and the results are listed in Table 5.7.  

For quicklime treated MFT, the undrained shear strength of the sample increased to 1.5 kPa and 2 

kPa at the quicklime content of 10% and 1%, after 7 days consolidation in controlled experiment. 

After the EK treatment, the undrained shear strength of the sample slightly increased to 2.5 kPa at 

the anode and 2 kPa at the cathode at high quicklime content (10% quicklime in Test: EK+QL-5-

50-10). For the lower quicklime dosage (1% quicklime in Test: EK+QL-5-50-1), a higher 

undrained shear strength was observed after EK treatment. The undrained shear strength of the 

sample reached 3.5 kPa at the vicinity of anode and 2.25 kPa at the cathode.  

At the high chemical content (10%), the cement treated MFT sample (Test: C-CM-5-0-10) 

achieved higher strength than quicklime treated sample (Test: C-QL-5-0-10). After 7days 

consolidation, the undrained shear strength of the sample in Test: C-CM-5-0-10 was 5 kPa. With 

the EK treatment, the undrained shear strength increased to 9.25 kPa at the anode and 7.5 kPa at 

the cathode (10% in EK+CM-5-50-10).  On the other hand, at low cement content (1%), the cement 

treated MFT reached 1 kPa after 7 days.  After the EK treatment at the low cement content (1% in 

EK+CM-5-50-1), the undrained shear strength increased significantly from 1kPa to 7 kPa at the 

anode, and slightly from 1kPa to 1.25kPa at the cathode. 

In conclusion, the shear strength gain of cement treated MFT is more significant than quicklime 

treated MFT. EK treatment can further increase the shear strength of chemical treated MFT 

samples, mainly by dewatering, at low chemical dosage. 

The results of undrained shear strength of quicklime or cement treated MFT are plotted in Fig. 

5.10, with the relationship between undrained shear strength and water content (Su-w line). As 

shown the chemical treated MFT samples are located above the trend line, which represents the 

relationship between the water content and shear strength of original MFT samples. This indicates 

that, at the same water content, the chemical treatment generated strength gain. After chemical 

treatment, the sample had a shear strength over 1 kPa at the water contents ranged from 110% to 

140%, with a low dosage of chemical, as seen in the results of control tests C-QL-5-0-1 and C-

CM-5-0-1. The strength of samples after EK combined with chemical treatment further increased, 

compared with the control samples. Based on Fig. 5.10, the quicklime treated MFT had the shear 
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strength about 2-4 kPa, not significantly affected by the dosage of quicklime. On the other hand, 

the undrained shear strength of the cement treated samples was strongly affected by the cement 

dosage. It can be seen that the undrained shear strength was 5 kPa in control test (C-CM-0-10) and 

further increased to about 7.5 to 9 kPa with EK treatment at the high cement content of 10%. In 

contrast at low cement content of 1%, the undrained shear strength was 1 kPa in the control test 

and further increased to 1 to 7 kPa after EK treatment. 

The sample after EK treatment alone had a significant undrained shear strength gain, up to 50 kPa 

at the anode. At the cathode, the shear strength of samples remained virtually zero after EK 

treatment. Compared with chemical treated samples, the EK treatment on original tailings without 

adding chemical generated more significant differences in undrained shear strength of samples 

between the anode and cathode than those with chemical additives. 

Based on the results in Section 5.3.2 and 5.3.3, it is concluded that the EK treatment alone will 

reduce the water content and increase the undrained shear strength of MFT sample only at the 

anode. In the treatment at low chemical dosage combined with EK, the strengthening effects are 

attributed to both chemical grouting and EK dewatering. At the high chemical dosage, the 

strengthening effects are dominant by chemical grouting and the effect of EK dewatering is 

negligible. It is also observed that between quicklime and Portland cement, low cement dosage 

plus EK treatment is more effective, which generated higher undrained shear strength. The 

advantage of low cement dosage is to enhance strength gain at the cathode and reduce the 

difference of water content and shear strength between anode and cathode. Thus, it may be a good 

approach for EK strengthening and dewatering of MFT by adding small percentage of chemical at 

the cathode.  

5.3.3.2. Plasticity  

The results of Atterberg limits of the treated tailings are plotted in the Casagrande plasticity chart, 

as seen in Fig. 5.11. The point of original tailings is just slightly below the A-line, classifying the 

original tailings as an elastic silt (MH) in the Unite Soil Classification System (USCS). After 

treatment, the liquid limit of all samples increased. For the cement treated MFT samples, the points 

moved above the A-line (CH), indicating the increase in plasticity. For the quicklime treated MFT 

samples, all points shifted below the A-line (MH), indicating a decrease in plasticity. As seen in 
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Table 5.5, the quicklime induced more increase in plastic limit and less increase in liquid limit of 

MFT sample than cement. Therefore, the plasticity of cement treated MFT is observed higher than 

those treated with quicklime.  

5.3.4. Porewater chemistry and particle zeta potential 

The porewater pH and electrical conductivity (EC) of chemical treated MFT were measured after 

7 days consolidation in controlled tests for both high (10%) and low (1%) chemical content. The 

results are shown in Fig. 5.12. The pH and EC of original MFT porewater were 8.8 and 3.59 mS/cm. 

The pH and EC were increased with the chemical dosage. The quicklime induced more increase 

in pH and EC than cement. For example, at chemical content 10% the pH and EC of the porewater 

were 12.8 and 32.4 mS/cm for quicklime, whereas for cement treated MFT the pH and EC of the 

porewater were 10.6 and 9.3 mS/cm, which is much lower than quicklime treated MFT. On the 

other hand, at the low chemical content (1%), the pH and EC were 9.5 and 5 mS/cm for quicklime 

treated MFT, and 9.3 and 4.1mS/cm for cement treated MFT. The increase of pH and EC after 

adding quicklime or cement is due to the hydration reaction of cement or quicklime, which 

produces calcium hydroxide, Ca(OH)2. The hydration reaction of quicklime is governed by 

CaO (s)  +  H2O (l) ⇌  Ca(OH)2 (aq) (ΔHr  =  −63.7 kJ/mol of CaO) 

(5.1) 

The hydration reaction of the cement can produce the calcium hydroxide up to 25% of the its 

weight, which is less than that produced by quicklime (Hausmann 1990). Thus, at the same dosage, 

the quicklime generates more calcium hydroxide, which leads to higher porewater pH and EC. 

At high pH condition, the clay particles in MFT tend to form a dispersed structure (Mitchell and 

Soga 2005). However, Wang and Siu (2006) found that at the high pH the degree of kaolinite 

particle flocculation increases with increases in the ionic strength because the double layers are 

compressed at the particle surfaces and van der Waals attraction leads to particle coagulation. The 

high degree of flocculation of kaolinite indicates strong interparticle attractive forces, and therefore, 

leads to a high measured liquid limit (LL) (Wang and Siu 2006). The zeta potential of the 

suspended chemical treated MFT samples was measured at various pH, and the results are plotted 
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in Figs. 5.13 and 5.14 for quicklime or cement treated MFT, respectively. The results of zeta 

potential of original MFT were reported by Guo and Shang (2014), and are also plotted in the 

figures. As shown the zeta potential of the MFT sample reduced after adding quicklime or cement, 

indicating that the double layer of the MFT particle was compressed due to the increase in 

porewater EC after adding quicklime or cement. The reduction in zeta potential is associated with 

the increase in pore water EC. It is noticed that MFT sample with 10% quicklime had the highest 

porewater EC (32.4 mS/cm), and the most significant reduction in the zeta potential, as seen in Fig. 

5.13. At the low chemical dosage (C-QL-5-0-1 and C-CM-5-0-10), the EC increased from 3.59 

mS/cm to 4.1mS/cm and 5 mS/cm for 1% cement and quicklime, respectively. The zeta potentials 

measured for the sample with low chemical percentage moved to above the trend line of original 

MFT, as seen in Figs. 5.13 and 5.14.  

Thus, the mechanism proposed by Wang and Siu (2006) could be one of the reasons for the 

increase in the liquid limit of quicklime or cement treated MFT, which contains significant 

percentage of kaolinite. The Locat et al. (1996) suggested that another possible reason for the 

increase in soil plasticity is the development of the soil microstructure, which can retain porewater, 

along with the cementation of large flocs.  Chew et al. (2004b) also suggested that the increase in 

the liquid limit is due to water trapped within intra-aggregate pores. 

On the other hand, the EK flow in soil is closely related to the zeta potential (Mitchell and Soga, 

2005). After adding quicklime or cement, the reduction of zeta potential of MFT sample indicates 

that the EK generated water flow will be reduced. This is consistent with the experimental data 

reported in section 5.3.2. 

5.4. Conclusion 

In this study, two chemical additives, i.e., cement and lime, were added to mature fine tailings 

(MFT) from oil sand processing, then EK treatment was carried out. Combined effects of chemical 

and electrokinetic treatment were assessed via the water content, undrained shear strength, 

plasticity, porewater pH and EC, and zeta potential of MFT particles after treatment. The 

conclusions based on the results of the experiments and data analysis are shown as follows: 



119 | P a g e  

 

1. The water content of MFT reduced immediately after mixing with quicklime or cement, 

due to hydration reaction. The post-treatment water content of MFT samples reduced 

linearly with the increase in the chemical dosage. 

2. Both liquid and plastic limits increased after quicklime or cement treatment. The plastic 

limit of quicklime treated MFT was not significantly influenced by the mixing ratio and 

curing time. More significant increase in liquid limit was observed at lower quicklime 

content (1%). For cement treated MFT samples, both plastic and liquid limit increased with 

an increase in the mixing ratio and curing time. 

3. The Portland cement is more effective in generating strength gain than quicklime.  

4. The addition of quicklime or cement reduced the EK induced water flow, hence reduced 

dewatering effects.  EK flow completely stopped at high chemical dosage (10%).  

5. The low chemical dosage (1% cement or quicklime) combined with EK treatment is 

beneficial for the strength gain of MFT and can significantly reduce the difference in both 

water content and undrained shear strength of the MFT samples between the anode and the 

cathode by EK treatment alone.  

6. The porewater pH and EC of MFT sample were increased by adding quicklime or cement. 

Cement treated MFT had lower porewater pH and EC than those treated with quicklime. 

7. The zeta potential of MFT reduced, which is attributed to compression of electrical double 

layer of MFT particles by adding quicklime or cement. The reduction in zeta potential is 

consistent with the reduction in EK dewatering effects. 

8. The Atterberg limits increased after adding quicklime or cement, which can be attributed 

to the increase in particle flocculation, aggregation and cementation of particles into large 

size clusters, and the water trapped within intra-aggregate pores. 

 

 



120 | P a g e  

 

References 

ASTM (2010a). D2166-10: Standard test methods for laboratory determination of water (moisture) 

content of soil and rock by mass. ASTM International, West Conshohocken, PA, 2010, 

https://doi.org/10.1520/D2216-10 

ASTM (2010b). D4318-10e1: Standard test methods for liquid limit, plastic limit, and plasticity 

index of soils, ASTM International, West Conshohocken, PA, 2010, 

https://doi.org/10.1520/D4318 

Beier, N., Wilson, W., Dunmola, A., and Sego, D. (2013). Impact of flocculation-based dewatering 

on the shear strength of oil sands fine tailings. Canadian Geotechnical Journal, 50, No. 9, 

1001-1007. 

Bell, F. G. (1979). Stabilization and treatment of clay soil with lime: basic principle. Ground 

Engineering Journal, 12, 112-118. 

Bell, F. G. (1996). Lime stabilization of clay minerals and soils. Engineering geology, 42, No. 4, 

223-237. 

Bergado, D. T., Balasubramaniam, A. S., Patawaran, M. A. B., and Kwunpreuk, W. (2000). 

Electroosmotic consolidation of soft Bangkok clay with prefabricated vertical drains. 

Ground Improvement, 4, No.4, 153-163. 

BGC Engineering Inc. (2010). Oil sands tailings technology review. Oil sands research and 

information network, University of Alberta, School of Energy and the Environment, 

Edmonton, Alberta. OSRIN Report No. TR-1.  

Bjerrum, L., Moum, J., and Eide, O. (1967). Application of electroosmosis to a foundation problem 

in a Norwegian quick clay. Géotechnique, 17, No.3, 214–235. 

Casagrande, L. (1959). Review of past and current work on electroosmotic stabilization of soils. 

In Harvard Soil Mechanics Series, 45, Harvard University Cambridge, Massachusetts, 

USA (reprinted November 1959 with a supplement of June 1957). 



121 | P a g e  

 

Chew, S. H., Karunaratne, G. P., Kuma, V. M., Lim, L. H., Toh, M. L., and Hee, A. M. (2004a). 

A field trial for soft clay consolidation using electric vertical drains. Geotextiles and 

Geomembranes, 22, No.1, 17-35. 

Chew, S. H., Kamruzzaman, A. H. M., and Lee, F. H. (2004b). Physicochemical and engineering 

behavior of cement treated clays. Journal of geotechnical and geoenvironmental 

engineering, 130, No.7, 696-706. 

Fourie, A. B., and Jones, C. J. F. P. (2010). Improved estimates of power consumption during 

dewatering of mine tailings using electrokinetic geosynthetics (EKGs). Geotextiles and 

Geomembranes, 28, No.2, 181-190. 

Fourie, A. B., Johns, D. G., and Jones, C. F. (2007). Dewatering of mine tailings using 

electrokinetic geosynthetics. Canadian Geotechnical Journal, 44, No.2, 160-172. 

Guo, Y. and Shang, J.Q. (2014). A study on electrokinetic dewatering of oil sands tailings. 

Environmental Geotechnics, 1, No.2, 121-134. 

Hausmann, M. R. (1990). Engineering principles of ground modification. McGraw-Hill. 

Islam, S., and Shang, J. Q. (2017). Electrokinetic thickening of mature fine oil sands tailings. 

Environmental Geotechnics, 4, No. 1, 40-55. 

Liu, P., and Shang, J. Q. (2014). Improvement of marine sediment by combined electrokinetic and 

chemical treatment. International Journal of Offshore and Polar Engineering, 24, No.3, 

232-240. 

Lo, K. Y., Ho, K. S., and Inculet, I. I. (1991a). Field test of electroosmotic strengthening of soft 

sensitive clay. Canadian Geotechnical Journal, 28, No.1, 74-83. 

Lo, K. Y., Inculet, I. I., and Ho, K. S. (1991b). Electroosmotic strengthening of soft sensitive clays. 

Canadian Geotechnical Journal, 28, No.1, 62-73. 

Locat, J., Trembaly, H., and Leroueil, S. (1996). Mechanical and hydraulic behaviour of a soft 

inorganic clay treated with lime. Canadian geotechnical journal, 33, No.4, 654-669. 



122 | P a g e  

 

Lorenzo, G. A., and Bergado, D. T. (2004). Fundamental parameters of cement-admixed clay-new 

approach. Journal of geotechnical and geoenvironmental engineering, 130, No.10, 1042-

1050. 

Micic, S., Shang, J. Q., Lo, K. Y., Lee, Y. N., and Lee, S. W. (2001). Electrokinetic strengthening 

of a marine sediment using intermittent current. Canadian Geotechnical Journal, 38, No.2, 

287-302. 

Micic, S., Shang, J. Q., and Lo, K. Y. (2002). Electrokinetic strengthening of marine clay adjacent 

to offshore foundations. International Journal of Offshore and Polar Engineering, 12, No.1, 

64-73. 

Mitchell, J.K. (1976). The properties of cement-stabilized soils. Proc. Residential Workshop on 

Materials and Methods for Low Cost Road, Rail and Reclamation Works, Leura, Australia, 

365-404. 

Mitchell, J. K., and Hooper, D. R. (1961). Influence of time between mixing and compaction on 

properties of a lime-stabilized expansive clay. Highway Research Board Bulletin, (304), 

HRB, National Research Council, Washington, DC, USA, 14-31. 

Mitchell, J.K., and Soga K. (2005). Fundamental of soil behaviour, 3rd edn. Wiley, Hoboken, New 

Jersey, USA. 

Mohamedelhassan, E, and Shang, JQ (2002). Feasibility assessment of electro-osmotic 

consolidation on marine sediment. Ground Improvement, 6, No 4, 145–152. 

Pourrezaei, P., and El-Din, M.G. (2008). Coagulation-flocculation pre-treatment of oil sands 

process affected water. 1st International oil sands tailings conference (IOSTC), Edmonton, 

Alberta, Canada. 

Rima, U. S. (2013). Characterization and centrifuge dewatering of oil sands fine tailings. M.ASc. 

Thesis, University of Regina. 

Saitoh, S., Suzuki, Y., and Shirai, K. (1985). Hardening of soil improved by deep mixing method. 

Proceedings of 11th ICSMFE, San Francisco, August 12-16, 1985, 3,1748-1748. 



123 | P a g e  

 

Small, C. C., Cho, S., Hashisho, Z., and Ulrich, A. C. (2015). Emissions from oil sands tailings 

ponds: Review of tailings pond parameters and emission estimates. Journal of Petroleum 

Science and Engineering, 127, 490-501. 

Sorta, A. R. (2015). Centrifugal modelling of oil sands tailings consolidation, Ph.D. thesis, 

University of Alberta. 

Sworska, A., Laskowski, J. S., and Cymerman, G. (2000). Flocculation of the Syncrude fine 

tailings: Part I. Effect of pH, polymer dosage and Mg2+ and Ca2+ cations. International 

journal of mineral processing, 60, No.2, 143-152. 

Wang, C., Harbottle, D., Liu, Q., and Xu, Z. (2014). Current state of fine mineral tailings treatment: 

a critical review on theory and practice. Minerals Engineering, 58, 113-131. 

Wang, X. T., Feng, X., Xu, Z., and Masliyah, J. H. (2010). Polymer aids for settling and filtration 

of oil sands tailings. The Canadian Journal of Chemical Engineering, 88, No. 3, 403-410. 

Wang, Y. H., and Siu, W. K. (2006). Structure characteristics and mechanical properties of 

kaolinite soils. I. Surface charges and structural characterizations. Canadian Geotechnical 

Journal, 43, No.6, 587-600. 

Xu, Y., Dabros, T., and Kan, J. (2008). Filterability of oil sands tailings. Process Safety and 

Environmental Protection, 86, No. 4, 268-276. 

Zhang, R. (2016). Electrokinetics and vacuum combined dewatering of oil sand tailings, M.Esc. 

thesis, The University of Western Ontario. 



124 | P a g e  

 

Table 5.1 Oil sands tailings properties (Guo and Shang 2014) 

Properties Oil sands tailings 

Water content (%) (as received) 171.3% 

Specific gravity, Gs 2.51 

Void ratio (as received) 4.39 

Dry density(Mg/m3) 0.47 

Hydraulic conductivity (m/s) (at e = 2.03) 1.81×10-9 

Atterberg limits Plastic limit, PL (%) 29.1 

Liquid limit, LL (%) 51.6 

Plasticity index, PI  22.5 

Organic matter (%) 14.7 

Carbonate content (%) <1 

Grain size D10 (μm) 0.85 

D50 (μm) 7.15 

D90 (μm) 27.9 

Sand (%) 0.00 

Silt (%) 80.00 

Clay (%) 20.00 

Pore water pH 8.8 

Pore water EC: mS/cm  3.59 
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Table 5.2 Experimental design chart 

MMFT / MChemical
* 10:0 9.9:0.1 9.5:0.5 9:1 8.5:1.5 8:2 

Quicklime  

(QL) 
Curing time 

0 days - - QL-5-0 QL-10-0 QL-15-0 QL-20-0 

7 days - - QL-5-7 QL-10-7 QL-15-7 QL-20-7 

14 days - - QL-5-14 QL-10-14 QL-15-14 QL-20-14 

28 days - - QL-5-28 QL-10-28 QL-15-28 QL-20-28 

Cement  

(CM) 
Curing time 

7 days - CM-1-7 CM-5-7 CM-10-7 - - 

14 days - CM-1-14 CM-5-14 CM-10-14 - - 

28 days - CM-1-28 CM-5-28 CM-10-28 - - 

EK 

EK + QL - EK+QL-5-50-1 - EK+QL-5-50-10 - - 

EK+CM - EK+CM-5-50-1 - EK+CM-5-50-10 - - 

EK EK-0-50-125 - - - - - 

Control QL - C-QL-5-0-1 - C-QL-5-0-10 - - 

Control CM - C-CM-5-0-1 - C-CM-5-0-10 - - 

* MMFT / MChemical: mass ratio of bulk MFT to dry chemical additives 
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Table 5.3 Test conditions for electrokinetic dewatering 

 Electrokinetic test  Control test 

MMFT/Mchemical 9:1 and 9.9:0.1 
Voltage gradient 50V/m 0 
Drainage path Horizontal 

Electrodes  Vertical 
Surcharge loading Gradually applied to 5 kPa in the 1st 48 hours and kept during 

testing period 
EK treatment time, hr 120 0 

Total treatment time, hr 168 (7 days) 
Water content anode and cathode center 

Undrained shear strength anode and cathode center 

 

 

 

 

Table 5.4 Summary of the water content test results after quicklime treated 

  Water content (%) Solid content (%) 

Quicklime 

MMFT / 

MQL 

9.5:0.5 9:1 8.5:1.5 8:2 9.5:0.5 9:1 8.5:1.5 8:2 

0 days 140.6 109.3 95.3 75.7 41.6 47.8 51.2 56.9 

7 days 150.2 129.4 77.7 66.2 40.0 43.6 56.3 60.2 

14 days 134.4 121.3 80.1 66.1 42.7 45.2 55.5 60.2 

28 days 144.3 115.6 79.8 65.4 40.9 46.4 55.6 60.5 

Average 142.4 118.9 83.2 68.4 41.3 45.7 54.7 59.4 

Cement 

MMFT / 

MCM 

9.9:0.1 9.5:0.5 9:1 - 9.9:0.1 9.5:0.5 9:1 - 

0 days 156.3 145.5 123.4 - 39.0 40.7 44.8 - 

7 days 157.7 134.7 111.9 - 38.8 42.6 47.2 - 

14 days 153.8 133.9 109.4 - 39.4 42.8 47.8 - 

28 days 153.9 126.6 110.4 - 39.4 44.1 47.5 - 

Average 155.4 135.2 113.8  39.2 42.6 46.8  
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Table 5.5 Summary of the Atterberg limits of the sample after chemical treatment 

 Atterberg limit 

Quicklime 

MMFT / MQL 9.5:0.5 9:1 8.5:1.5 8:2 

7days 

 

 

PL (%) 44.1 47.9 50.1 48.5 

LL (%) 98.4 92.3 89.7 84.9 

PI (%) 54.3 44.4 39.6 36.4 

14days 

 

 

PL (%) 50.2 54.4 51.1 55.5 

LL (%) 102.7 104.5 95.1 89.2 

PI (%) 52.5 50.1 44 33.7 

28days 

 

 

PL (%) 55.5 44.2 57.3 56.6 

LL (%) 111.6 109.2 102.9 93 

PI (%) 56.1 65 45.6 36.4 

Cement 

MMFT / MCM 9.9:0.1 9.5:0.5 9:1 - 

7days 

 

 

PL (%) 24.0 35.1 40.0 - 

LL (%) 90.3 104.9 114.3 - 

PI (%) 66.3 69.8 74.3 - 

14days 

 

 

PL (%) 28.0 36.5 51.8 - 

LL (%) 100.8 125.7 122.0 - 

PI (%) 72.9 89.2 70.2 - 

28days 

 

 

PL (%) 27.9 44.4 56.0 - 

LL (%) 95.6 123.6 114.5 - 

PI (%) 67.7 79.2 58.5 - 
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Table 5.6 Summary of the water content test results after EK treatment 

Test No.  Water content Water content reduction due to 

EK (%)* 

 Initial Anode Cathode After mixing Controlled Anode Cathode 

EK+QL-5-50-1 154% 121% 124% 149% 136% 11.0% 8.8% 

C-QL-5-0-1 - - - - 136% - - 

EK+QL-5-50-10 187% 112% 114% 127% 114% 1.8% 0% 

C-QL-5-0-10 - - - - 114% - - 

EK+CM-5-50-1 168% 88% 116% 159% 129% 31.4% 10.0% 

C-CM-5-0-1 - - - - 129% - - 

EK+CM-5-50-10 164% 99% 100.5% 124% 96% -2.7% -4.7% 

C-CM-5-0-10 - - - - 96% - - 

EK-0-50-125 169% 50% 171% 169% 93% 46.6% -83.7% 

*Water content reduction due to EK(%) = ((wcontrol-wEK)/wControl)×100%, where wcontrol is the water content at the end of 

controlled test, and the wEK is the water content after EK dewatering. 
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Table 5.7 Undrained Shear strength of the sample after EK treatment 

  Su (kPa) 

  
EK Controlled 

Undisturbed Undisturbed 

EK+QL-5-50-10 
Anode 2.5 

1.5 
Cathode 2 

EK+QL-5-50-1 
Anode 3.5 

2 
Cathode 2.25 

EK+CM-5-50-10 
Anode 9.25 

5 
Cathode 7.5 

EK+CM-5-50-1 
Anode 7 

1 
Cathode 1.25 
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Figure 5.1 plastic cylindrical mold used in quicklime treatment 

 

Figure 5.2 Electrokinetic dewatering cell (Dimension in mm) (Liu and Shang 2014) 
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Figure 5.3 Water content of (a) quicklime and (b) cement treated MFT versus curing time 
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Figure 5.4 Post-treatment water content versus percentage of chemical additives 
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Figure 5.5 Water content and Atterberg limits of quicklime treated MFT at different 

curing time under the mixing ratio (a) 8:2, (b) 8.5:1.5, (c) 9:1, and (d) 9.5:0.5 
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Figure 5.6Water content and Atterberg limits of cement treated MFT at different curing 

time under the mixing ratio (a) 9:1, (b) 9.5:0.5, and (c) 9.9:0.1 
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Figure 5.7 EK dewatering results of quicklime treated MFT in terms of (a) water drainage 

(ml) and (b) normalized water drainage, Vw/V0 (%) 
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Figure 5.8 EK dewatering results of cement treated MFT in terms of (a) water drainage 

(ml) and (b) normalized water drainage, Vw/V0 (%) 
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Figure 5.9 Comparison of water content of MFT samples after EK dewatering tests 

 

Figure 5.10 Undrained shear strength versus water content of post treated MFT  
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Figure 5.11 Plasticity of chemical treated MFT in Casagrande plasticity chart 

 

Figure 5.12 Porewater pH and EC of MFT after adding quicklime or cement 
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Figure 5.13 Zeta potential of MFT versus pH after adding quicklime  

 

 

Figure 5.14 Zeta potential of MFT versus pH after adding cement 
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Chapter 6 One-dimensional large strain electroosmotic 

consolidation model 

6.1. Introduction 

When a saturated clay layer, such as fills, foundations, embankments, etc, is subjected to 

an extra loading, an excess pore water pressure is generated. The excess pore water pressure 

dissipates slowly, resulting in decrease of soil void ratio and settlement. Terzaghi (1943) 

first developed one-dimensional consolidation theory, and Biot (1941) proposed the 

general three-dimensional consolidation theory. In Terzaghi’s theory, the governing 

equation for one-dimensional consolidation is shown as (Das 2008, Mitchell and Soga 

2005): 

𝜕𝑢

𝜕𝑡
=

𝑘ℎ
𝛾𝑤𝑚𝑣

𝜕2𝑢

𝜕𝑧2
= 𝐶𝑣

𝜕2𝑢

𝜕𝑧2
 

(6.1) 

where ∂u/∂t is the time derivative of excess pore-water pressure;  

∂u/∂z is the spatial derivative of excess-water pressure;  

Cv [L
2T-1] is the coefficient of consolidation, 𝐶𝑣 =

𝑘ℎ

𝛾𝑤𝑚𝑣
;  

kh [LT-1] is the hydraulic conductivity;  

γw [9.8 kN/m3, ML-2T-2] is the unit weight of water;  

mv [M
-1LT2] is the coefficient of volume compressibility, 𝑚𝑣 =

𝑎𝑣

1+𝑒
;  

av [M
-1LT2] is the coefficient of compressibility;  

e [-] is the void ratio.  



141 | P a g e  

 

The Terzaghi’s consolidation theory is based on the small strain theory (or infinitesimal 

strain theory). The deformation of clay layer is assumed to be much smaller than any 

relevant dimensions of soil stratum. Hence the coefficient of consolidation, Cv, is assumed 

to be unchanged with deformation.   

Small strain consolidation theory is sufficient to predict the clay consolidation behavior, 

both magnitude and rate of the settlement, in most geotechnical engineering applications, 

such as shallow foundations, embankment, compacted fills, etc. However, the theory has 

encountered difficulties on extremely soft materials, such as marine sediments, fine mine 

tailings, sewage slurry, etc. Thus, the large strain consolidation theory has been developed 

(Jeeravipoolvarn 2010, Cargill 1982, Somogyi 1980, Lee and Sills 1980, Bartholomeausem 

et al. 2002). 

Gibson et al. (1967) first derived the governing equation for one-dimensional large strain 

consolidation. They considered a configuration, in which the same soil particles are 

encapsulated in the boundaries of element; and an element of soil skeleton of unit cross-

sectional area is normal to the pore fluid flow. This is known as Lagrangian point of view 

in continuum mechanics.  

6.1.1. Coordinate systems 

There are two mathematical approaches for continuum mechanics: Lagrangian and 

Eulerian forms.  

The Eulerian coordinate system is the most commonly used in small-strain theory. The 

coordinates are defined in space with an origin fixed in space. On the other hand, 

coordinates in the Lagrangian system, which are commonly used in large-strain analysis 

for the convenience, are defined in solid material with an origin fixed in the material. The 

deformation of solid material can be described in the Eulerian (or spatial) coordinate 

system, e.g., the Cartesian coordinate with three axes of x1, x2, x3; or the Lagrangian 

coordinate system with three axes of ξ1, ξ2, ξ3, which is defined in and deformed with the 

material, as shown in Fig.6.1.  
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In a 1-D coordinate system, the body ABCD is shown in Fig. 6.2. The ABCD is also called 

the representative elementary volume (REV), i.e., the smallest volume which can represent 

the behaviour of entire material. There are two coordinate systems, i.e. the Eulerian 

coordinate system with z-axis, and the Lagrangian coordinate system with ξ-axis. Under 

one-dimensional condition, the volume of body ABCD deforms in the vertical direction, 

and the planes AB and CD are normal to the direction of deformation. In both coordinate 

systems, t is time, which is independent of the coordinate system selection. At the initial 

time t = t0, the positions of AB and CD are represented by (z1, t0) and (z2, t0) in the Eulerian 

coordinate system, respectively. The positions of AB and CD expressed in the Lagrangian 

coordinate system are (ξ1, t0) and (ξ2, t0), respectively. At time t = t’, body ABCD has 

deformed as seen in Fig. 6.2(b). Thus, the new position for plane AB in the Eulerian 

coordinate is (z1’, t’), and for plane CD is (z2’, t’). On the other hand, since the Lagrangian 

coordinate system is defined in the body of ABCD, the coordinate system will deform with 

the body. Thus, in the Lagrangian coordinate system, the positions of AB and CD after 

deformation remain unchanged and are expressed as (ξ1, t’) and (ξ2, t’) respectively.  

6.1.2. Gibson’s Theory 

A detailed review of Gibson’s theory (Gibson et al. 1967) is described in following sections. 

6.1.2.1. Coordinate systems selection and relationship 

For the configuration of Gibson’s theory, the coordinate systems are shown in Fig. 6.3. Fig. 

6.3(a) shows the Lagrangian coordinate system (ξ, t) and Eulerian coordinate system (z, t) 

at time t=0. Fig. 6.3(b) shows the Eulerian coordinate system (z, t) at an arbitrary time t=t. 

For the soil element ABCD, according to the phase relationship, the total volume of soil 

matrix is 1+e, in which the volume for soil solid is represented by 1, and e, the void ratio, 

is the volume of void. For a saturated clay, the void ratio, e, represents the volume of the 

pore water. The volume of bulk soil decreases during consolidation process because of net 

outflow of pore fluid.  

Since the total volume of soil solids is always the constant during the consolidation, for 

convenience, the third coordinate system, i.e., material coordinates (s, t), where the 
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coordinate element always encapsulating the same amount of soil solid, is chosen to 

simplify the derivation of the governing equation in Gibson’s derivation. The material 

coordinate system is shown in Fig. 6.3 (c). In the material coordinate system, (s, t), ds is 

the height of element, which is constant and independent of time. 

During the consolidation process, the thickness of ABCD, dz, in the Eulerian coordinate, 

z, will reduce with the time, t. On the other hand, the thickness represented in the 

Lagrangian coordinate system will remain the same, dξ. Therefore, in the Lagrangian 

coordinate, ξ and t are independent variables. The position of any point in the clay layer 

can be written as (ξ, t).  

The relationship between the Lagrangian and Eulerian coordinate systems in the derivation 

of Gibson’s theory can be found through the phase relationship. For the configuration 

shown in Fig. 6.3, a datum is set at the bottom of the clay layer. As seen in Fig. 6.3(a), in 

the Lagrangian coordinate system (ξ) at the initial time, t=0, a body representing a soil 

layer has a height of ξ0. The representative elementary volume (REV hereafter) ABCD has 

a thickness of dξ and location of (ξ, t=0). According to the soil phase relationship shown 

in Fig. 6.4, the thickness dξ has a relationship with the initial void ratio, e0:   

𝑑𝜉 = (1 + 𝑒0)𝑑𝑠 

(6.2) 

In the Eulerian coordinate system, the REV (ABCD) has an initial thickness of dzt=0, and 

location z0, (t=0). So the thickness of dzt=0 also has a relationship with the initial void ratio, 

e0, of the REV, which is presented as:  

𝑑𝑧𝑡=0 = (1 + 𝑒0)𝑑𝑠 

(6.3) 

At an arbitrary time, the thickness of REV (ABCD) in the Lagrangian coordinate remains 

the same. However, since the soil layer is deformed (or consolidated), the thickness and 
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location of the REV at time t has changed in the Eulerian system. As a result, the thickness 

dzt=t can be written as: 

𝑑𝑧𝑡=𝑡 = (1 + 𝑒𝑡)𝑑𝑠 

(6.4) 

where et is the void ratio of the REV at time t. 

Combining Eq. 6.3 and 6.4, the thickness dz at any arbitrary time t, can be expressed as: 

𝑑𝑧 = (1 + 𝑒)𝑑𝑠 

(6.5) 

where e is the void ratio of the REV at time t.  

From Eq.6.2 and 6.5:  

𝑑𝜉

𝑑𝑧
=
1 + 𝑒0
1 + 𝑒

 

(6.6) 

Under one-dimensional condition, ds represents the volume of the soil solids in REV 

(ABCD).  Based on the phase relationship the relationship among dz and ds, and dξ and ds 

can be written as: 

𝑑𝑧

𝑑𝑠
= 1 + 𝑒 

(6.7) 

𝑑𝜉

𝑑𝑠
= 1 + 𝑒0 

(6.8) 
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According to Fig. 6.3(c), the location coordinate, s, in the material coordinate system is 

obtained by integration of dξ from datum plane to ξ, based on Eq. 6.8, i.e.:  

𝑠 = ∫
𝑑𝜉

1 + 𝑒𝜉
𝑡=0

𝜉

0

 

(6.9) 

where s is the location coordinate of ABCD in the material coordinate system, ξ is the 

location coordinate represented in the Lagrangian coordinate system, eξ
t=0 is the soil void 

ratio of any arbitrary location, ξ, at initial time, t=0. 

Similarly, the location coordinate of REV (ABCD) in the Eulerian coordinate system can 

be obtained through integration of ds in Eq. 6.7:  

𝑧 = ∫ (1 + 𝑒𝑠
𝑡)𝑑𝑠

𝑠

0

 

(6.10) 

where z is the location coordinate of REV (ABCD) in the Eulerian coordinate system, es
t 

is the soil void ratio of any location in the material coordinate system at time, t.  

6.1.2.2. Assumptions in Gibson’s theory 

In order to understand Gibson’s theory for one-dimensional large strain consolidation, the 

assumptions made by Gibson et al. (1967), are summarized as follows: 

1. The soil is saturated during the consolidation process; 

2. The soil matrix consists of incompressible fluid and soil particles 

3. Darcy’s law is valid, which is incorporated in the theory in a form that the relative 

velocity of soil skeleton and pore fluid are related to the excess pore water pressure gradient. 

4. The hydraulic conductivity, kh is a function of void ratio, e, kh=kh(e) 
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5. The void ratio, e, and the effective stress, σ’, on the soil matrix have an explicit 

relationship represented by σ’= σ’ (e). 

6.1.2.3. Force equilibrium of REV 

Considering the REV ABCD, as seen in Fig. 6.2, the vertical equilibrium of element is 

shown in Fig. 6.5. Assuming the REV is only subjected to gravity, then at equilibrium:   

𝑑𝜎

𝑑𝑧
+ 𝐹𝑤 = 0 

(6.11) 

where σ is the normal stress [ML-1T-2] (kPa), and Fw is the body force per unit volume 

(self-weight) [ML-2T-2], which can be expressed by the classic phase relationship in soil 

mechanics:    

𝐹𝑤 =
𝑒𝛾𝑤 + 𝛾𝑠
1 + 𝑒

 

(6.12) 

where γw is the unit weight of water, kN/m3, γs is the unit weight of soil solid, kN/m3. 

Substituting Eq. 6.12 into Eq. 6.11:   

𝑑𝜎

𝑑𝑧
+
𝑒𝛾𝑤 + 𝛾𝑠
1 + 𝑒

= 0 

(6.13) 

Multiplying dz/dξ for both sides of Eq. 6.13 to transfer the Eulerian coordinate system to 

the Lagrangian coordinate system:  

𝑑𝜎

𝑑𝜉
+ (

𝑒𝛾𝑤
1 + 𝑒

+
𝛾𝑠
1 + 𝑒

)
𝑑𝑧

𝑑𝜉
= 0 

(6.14)    
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In Eq. 6.14, the term 
𝛾𝑤

1+𝑒
  refers to the weight changes in the fluid phase, and the term 

𝛾𝑠

1+𝑒
 

refers to the weight changes of the solid phase. 

6.1.2.4. Fluid continuity 

During consolidation, the pore water is squeezed out from the soil matrix at a velocity vw. 

The large strain consolidation theory allows the movement of soil particles relative to the 

fluid phase. The solid phase velocity is written as vs, (vs = dz/dt).  As shown in Fig. 6.6, 

the weight of water inflow into the REV (ABCD) is  

𝑊𝑖𝑛 = 𝑛(𝑣𝑤 − 𝑣𝑠)𝛾𝑤 

(6.15) 

where Win is the weight of water inflow into REV, n is the porosity of the REV, vw-vs is 

the relative velocity of the water flow (m/s), γw is the unit weight of water.  

Similarly, the weight of water outflow is  

𝑊𝑜𝑢𝑡 = 𝑛(𝑣𝑤 − 𝑣𝑠)𝛾𝑤 +
𝑑

𝑑𝑧
𝑛(𝑣𝑤 − 𝑣𝑠)𝛾𝑤𝑑𝑧 

(6.16) 

where Wout is the weight of water outflow from REV (ABCD).  

Subtracting Eq. 6.15 from Eq.6.16, the net weight change of water in the REV (ABCD) is 

∆𝑊 = 𝑊𝑖𝑛 −𝑊𝑜𝑢𝑡 = −
𝑑

𝑑𝑧
𝑛(𝑣𝑤 − 𝑣𝑠)𝛾𝑤𝑑𝑧 

(6.17) 

Since the net weight change of water is equal to the rate of weight change in the void: 

−
𝑑

𝑑𝑧
𝑛(𝑣𝑤 − 𝑣𝑠)𝛾𝑤𝑑𝑧 =

𝜕

𝜕𝑡
(𝑒𝛾𝑤) 
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(6.18) 

where eγw is the weight change of the pore volume, since soil is saturated.  

Multiplying both sides of Eq.6.18 by dz/dξ to convert the equation from the Eulerian 

coordinate system to the Lagrangian coordinate system: 

𝑑

𝑑𝜉
𝑛(𝑣𝑤 − 𝑣𝑠) +

𝜕

𝜕𝑡
(
𝑒

1 + 𝑒
 
𝑑𝑧

𝑑𝜉
) = 0 

(6.19) 

where n is the porosity of the REV, vw-vs is the relative velocity of the water flow, e is the 

void ratio of the REV. 

The Darcy’s law is incorporated in a form of the relative velocity of soil skeleton and pore 

fluid, which is related to the hydraulic gradient, i.e.,  

𝑛(𝑣𝑤 − 𝑣𝑠) = −𝑘ℎ
𝜕ℎ

𝜕𝑧
 

(6.20) 

where kh is the hydraulic conductivity [LT-1] (m/s) of the REV, h is the total head (m), [L] 

of REV (ABCD), which can be expressed in terms of excess pore water pressure:  

ℎ =
𝑢𝑒𝑥
𝛾𝑤
+ ℎ𝑧 

(6.21) 

where uex is the excess pore water pressure (kPa) and hz is elevation head, which is a 

constant. 

Eq. 6.20 can be expressed in terms of excess pore water pressure by substituting Eq. 6.21 

into Eq. 6.20:  
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𝑛(𝑣𝑤 − 𝑣𝑠) = −
𝑘ℎ
𝛾𝑤

𝑑𝑢𝑒𝑥
𝑑𝑧

 

(6.22) 

Converting the above equation from the Eulerian coordinate system to the Lagrangian 

coordinate system: 

𝑛(𝑣𝑤 − 𝑣𝑠)
𝑑𝑧

𝑑𝜉
= −

𝑘ℎ
𝛾𝑤

𝑑𝑢𝑒𝑥
𝑑𝑧

𝑑𝑧

𝑑𝜉
 

(6.23) 

Substituting Eq. 6.6 into Eq. 6.23:  

𝑛(𝑣𝑤 − 𝑣𝑠) = −
1 + 𝑒0
1 + 𝑒

𝑘ℎ
𝛾𝑤

𝑑𝑢𝑒𝑥
𝑑𝜉

 

(6.24) 

Substituting Eq. 6.24 into Eq. 6.19: 

𝑑

𝑑𝜉
(−
1 + 𝑒0
1 + 𝑒

𝑘ℎ
𝛾𝑤

𝑑𝑢𝑒𝑥
𝑑𝜉

) +
𝜕

𝜕𝑡
(
𝑒

1 + 𝑒
 
𝑑𝑧

𝑑𝜉
) = 0 

(6.25) 

According to the Terzaghi’s effective stress law:  

𝜎 = 𝜎′ + 𝑢 

(6.26) 

where u is the pore water pressure (kPa), which consists of two parts: 

𝑢 = 𝑢𝑒𝑥 + 𝑢ℎ𝑦𝑑 

(6.27) 
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where uex is the excess pore water pressure (kPa) due to the external loading, and uhyd is 

the hydrostatic water pressure (kPa). 

Combining Eqs. 6.26 and 6.27, the excess pore water pressure uex can be written as: 

𝑢𝑒𝑥 = 𝜎 − 𝜎
′ − 𝑢ℎ𝑦𝑑 

(6.28) 

Hence, 

𝑑𝑢𝑒𝑥
𝑑𝜉

=
𝑑𝜎

𝑑𝜉
−
𝑑𝜎′

𝑑𝜉
−
𝑑𝑢ℎ𝑦𝑑

𝑑𝜉
 

(6.29) 

Since the hydrostatic pore water pressure is a function of depth:  

𝑑𝑢ℎ𝑦𝑑

𝑑𝜉
=
𝑑𝑢ℎ𝑦𝑑

𝑑𝑧

𝑑𝑧

𝑑𝜉
= −

𝑑(𝛾𝑤𝑧)

𝑑𝑧
 
𝑑𝑧

𝑑𝜉
= −𝛾𝑤

𝑑𝑧

𝑑𝜉
 

(6.30) 

The negative sign is taken because the direction of coordinate is opposite to that of  gravity. 

Substituting Eq. 6.30 into Eq. 6.29: 

𝑑𝑢𝑒𝑥
𝑑𝜉

=
𝑑𝜎

𝑑𝜉
−
𝑑𝜎′

𝑑𝜉
+ 𝛾𝑤

𝑑𝑧

𝑑𝜉
 

(6.31) 

Substituting Eq. 6.14 into Eq. 6.31:  

𝑑𝑢𝑒𝑥
𝑑𝜉

= −
𝑒𝛾𝑤 + 𝛾𝑠
1 + 𝑒

𝑑𝑧

𝑑𝜉
−
𝑑𝜎′

𝑑𝜉
+ 𝛾𝑤

𝑑𝑧

𝑑𝜉
 

(6.32) 
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Substituting Eq. 6.32 into Eq. 6.25: 

𝑑

𝑑𝜉
[−
1 + 𝑒0
1 + 𝑒

𝑘ℎ
𝛾𝑤
(−
𝑒𝛾𝑤 + 𝛾𝑠
1 + 𝑒

𝑑𝑧

𝑑𝜉
−
𝑑𝜎′

𝑑𝜉
+ 𝛾𝑤

𝑑𝑧

𝑑𝜉
)] +

𝜕

𝜕𝑡
(
𝑒

1 + 𝑒
 
𝑑𝑧

𝑑𝜉
) = 0 

(6.33)   

Rearranging Eq. 6.33: 

𝑑

𝑑𝜉
[
1 + 𝑒0
(1 + 𝑒)2

𝑒𝛾𝑤 + 𝛾𝑠
𝛾𝑤

𝑘ℎ
𝑑𝑧

𝑑𝜉
+
1 + 𝑒0
1 + 𝑒

𝑘ℎ
𝛾𝑤

𝑑𝜎′

𝑑𝜉
−
1 + 𝑒0
1 + 𝑒

𝑘ℎ
𝑑𝑧

𝑑𝜉
] +

𝜕

𝜕𝑡
(
𝑒

1 + 𝑒
 
𝑑𝑧

𝑑𝜉
) = 0 

(6.34)   

Substituting Eq. 6.6 into Eq. 6.34: 

1

𝛾𝑤

𝑑

𝑑𝜉
[
𝛾𝑠 − 𝛾𝑤
1 + 𝑒

𝑘ℎ +
1 + 𝑒0
1 + 𝑒

𝑘ℎ
𝑑𝜎′

𝑑𝜉
] +

1

1 + 𝑒0

𝜕𝑒

𝜕𝑡
= 0 

(6.35) 

Equation 6.35 is the one-dimensional governing equation for Gibson’s theory in the 

Lagrangian coordinate system. 

To take advantage of the material coordinate system, Eq. 6.35 can be converted from the 

Lagrangian coordinate system to the material coordinate system via Eq. 6.8:  

1

𝛾𝑤

𝑑

𝑑𝑠
[
𝛾𝑠 − 𝛾𝑤
1 + 𝑒

𝑘ℎ +
1

1 + 𝑒
𝑘ℎ
𝑑𝜎′

𝑑𝑠
] +

𝜕𝑒

𝜕𝑡
= 0 

(6.36) 

It has been assumed that the hydraulic conductivity and effective stress on the soil matrix 

are expressed as functions of the void ratio, i.e. kh(e), and σ’(e). Hence Eq.6.36 can be 

written as: 
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(
𝛾𝑠
𝛾𝑤
− 1)

𝑑

𝑑𝑒
[
𝑘ℎ(𝑒)

1 + 𝑒
]
𝜕𝑒

𝜕𝑠
+
1

𝛾𝑤

𝑑

𝑑𝑒
[
𝑘ℎ(𝑒)

1 + 𝑒
(
𝑑𝜎′

𝑑𝑒

𝜕𝑒

𝜕𝑠
)]
𝜕𝑒

𝜕𝑠
+
𝜕𝑒

𝜕𝑡
= 0 

(6.37) 

In Eq. 6.37, the first term attributed to self-weight consolidation and the second term to 

surcharge pressure.  

As mentioned before, the coefficient of consolidation, Cv, of soils is assumed to be constant 

in Terzaghi’s consolidation theory because of small strain. Gibson’s theory (Eq. 6.37) 

releases the restrictions and allows for non-linearity of material properties by using the 

relations between the hydraulic conductivity and void ratio, as well as between the stress 

and strain (σ’-e). Thus, the soil behavior changes during consolidation are accounted for in 

solving Eq. 6.37 numerically.  

6.1.3. One-dimensional electrokinetic consolidation theory (Feldkamp and 

Belhomme, 1990)  

Feldkamp and Belhomme (1990) proposed one-dimensional large strain electrokinetic 

consolidation theory. In the derivation, a flux of water relative to the moving solid phase 

is generated by both the pore water pressure and a DC electric field (Feldkamp and 

Belhomme 1990).  The flux is written as: 

𝑗𝑟𝑒𝑙 = −
𝑘

𝜇

𝜕𝜓

𝜕𝑧
± 𝑛𝑣𝑒𝐸𝑧 

(6.38) 

where k is the intrinsic permeability [L2] (m2), µ is the liquid phase viscosity [M1L-1T-1] 

(kg/(s·m)), ψ is porewater pressure [ML-1T-2] (kPa), Ez is the macroscopic electric field 

intensity [M1L1T-3I-1] (V/m), n is the volume fraction of water (the porosity of the soil), ve 

is the average velocity of liquid phase relative to that of the moving solid phase [M-1T-2I-1] 

(m2/sV) (Feldkamp and Belhomme 1990).  

The porewater pressure is calculated as:  
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𝜓 = 𝑢𝑒𝑥 + 𝑢ℎ𝑦𝑑 = 𝑢𝑒𝑥 + 𝜌𝑤𝑔𝑧 

(6.39) 

where uex is excess pore water pressure (kPa), uhyd is hydrostatic pressure, ρw is the density 

of water [ML-3] (kg/m3), z is the location (m) with the axis oriented vertically upward, g is 

the acceleration of gravity (m/s2).  

In the derivation by Feldkamp and Belhomme (1990), the effective stress is expressed as: 

𝜎′ = 𝑝𝑒𝑥𝑡 + 𝜎 − 𝑢 

(6.40) 

where pext is the constant gas pressure immediately above the deposit (kPa), σ is the total 

overburden stress at location z, and expressed as: 

𝜎 = ∫ 𝜌𝑏(𝑧)𝑔𝑑𝑧
𝐿

𝑧

  

(6.41) 

where L is the thickness of deposit (m), which is related to the time, ρb(z) is the bulk density 

of the soil (kg/m3), which depends on the location z.  Substituting Eq. 6.39 and 6.40 into 

Eq. 6.38, the flux of water relative to the moving solid phase is expressed as: 

𝑗𝑟𝑒𝑙 = −
𝑘

𝜇
[(𝜌𝑏 − 𝜌𝑤)𝑔 +

𝜕𝜎′

𝜕𝑧
] ±

𝑒

(1 + 𝑒)
𝑣𝑒𝐸𝑧 

(6.42) 

where the porosity, n, is expressed in terms of void ratio, e, as 𝑛 =
𝑒

1+𝑒
  

Similar to Eq. 6.18, in the derivation by Feldkamp and Belhomme (1990), a conservation 

equation is expressed in the material coordinates (s, t): 
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𝜕𝑒

𝜕𝑡
= −

𝜕𝑗𝑟𝑒𝑙
𝜕𝑠

 

(6.43) 

Substituting Eqs. 6.5 and 6.42 into Eq. 6.43, along with the assumption of negligible 

consolidation under self-weight (Feldkamp and Belhomme 1990), the governing equation 

for EK consolidation is expressed as: 

−
𝜕𝑒

𝜕𝑡
=
1

𝜇

𝜕

𝜕𝑠
(
𝑑𝜎′

𝜕𝑠

𝑘

1 + 𝑒
) −

𝜕

𝜕𝑠
(
𝑒

1 + 𝑒
𝑣𝑒𝐸𝑧) 

(6.44)  

Based on the stress-strain (σ’-e) relation during consolidation:  

𝑑𝜎′

𝜕𝑠
=
𝑑𝜎′

𝜕𝑒

𝜕𝑒

𝜕𝑠
 

(6.45) 

Defining α(e), which is the mechanical response of the soil skeleton:  

𝛼(𝑒) = −
1

1 + 𝑒

𝑑𝑒

𝑑𝜎′
 

(6.46) 

Instead using the voltage gradient, Feldkamp and Belhomme (1990) used the current 

density in the derivation: 

𝑖 = 𝑖𝑠 + 𝜅𝐸𝑧 

(6.47) 

where i is the current density [IL-2] (A/m2), κ is the electrical conductivity of soil [M-1L-

2T3I3] (S/m), is is the streaming current and can be neglected (Feldkamp and Belhomme 
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1990). Substituting Eq. 6.44 to 6.47, the governing equation for EK consolidation can be 

written as: 

𝜕𝑒

𝜕𝑡
=
1

𝜇

𝜕

𝜕𝑠
(

𝑘(𝑒)

𝛼(𝑒)(1 + 𝑒)2
𝜕𝑒

𝜕𝑠
) − 𝑖

𝜕

𝜕𝑠
(
𝑒

1 + 𝑒

𝑣𝑒(𝑒)

𝜅(𝑒)
) 

(6.48)   

On the right side of Eq 6.48, the first term is the contribution from the external loading and 

second term represents electroosmotic consolidation. 

In the Feldkamp and Belhomme (1990) theory, a parameter ve , which is the average 

velocity of liquid phase relative to the moving solid phase, is used in governing equation 

(Eq. 6.48).  However, the coefficient of electroosmotic permeability, ke, (m
2/sV) [M-1T-2I-

1], is more widely used than ve (Mitchell and Soga 2005). The coefficient of electroosmotic 

permeability, ke, is equal to n*ve, which presents in Eq. 6.38. The coefficient of 

electroosmotic permeability, ke, can be directly measured via experiments (Mitchell and 

Soga 2005, Mohamedelhassan and Shang 2001, Mohamedelhassan and Shang 2003, Guo 

and Shang 2014). In this study, therefore, ke is used for all calculations and modelling.     

6.1.4. Esrig (1968) theory for EK generated excess porewater pressure 

Esrig (1968) presented a theory for EK induced excess pore water pressure. The theory has 

been widely used in many applications and consolidation theories to predict the pore water 

pressure generated via EK (Shang 1998, Michell and Soga 2005, Shang 2011, Jones et al. 

2011, Malekzadeh et al. 2016).  

The Esrig (1968) theory for EK induced excess porewater pressure assumed the fluid flow 

generated via an electrical field and hydraulic gradient can be superimposed to obtain the 

total flow. Therefore, the total flow through an incompressible soil mass under one-

dimensional condition can be expressed as follows (Esrig 1968): 

𝜕𝑣𝑒𝑜
𝜕𝑥

+
𝜕𝑣ℎ
𝜕𝑥

= 0 
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(6.49) 

where veo is the velocity of water flow due to electroosmosis and vh is the velocity of flow 

due to any excess porewater pressure gradient, and they can be determined as:  

𝑣𝑒𝑜 = 𝑘𝑒
𝜕𝑈

𝜕𝑥
 

(6.50) 

𝑣ℎ =
𝑘ℎ
𝛾𝑤

𝜕𝑢

𝜕𝑥
 

(6.51) 

in which ke is the coefficient of electroosmotic permeability (m2/sV), 
𝜕𝑈

𝜕𝑥
 is the voltage 

gradient (V/m), kh is the hydraulic conductivity, and γw is the unit weight of water (9.8 

kN/m3). 

Substituting Eq. 6.50 and 6.51 into Eq. 6.49:  

𝑘𝑒
𝜕2𝑈

𝜕𝑥2
+
𝑘ℎ
𝛾𝑤

𝜕2𝑢

𝜕𝑥2
= 0 

(6.52) 

Rearranging Eq. 6.52: 

𝑘𝑒𝛾𝑤
𝑘ℎ

𝜕2𝑈

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑥2
= 0 

(6.53) 

Introducing a dummy variable η: 

η =
𝑘𝑒𝛾𝑤
𝑘ℎ

𝑈 + 𝑢 
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(6.54) 

Thus, Eq. 6.52 is in form of Laplace’ equation in one-dimensional system: 

𝜕2𝜂

𝜕𝑥2
= 0 

(6.55) 

Integrating Eq. 6.55 once: 

𝜕𝜂

𝜕𝑥
= 𝐶1 

(6.56) 

Integrating above equation once more: 

𝜂 = 𝑥𝐶1 + 𝐶2 

(6.57) 

where C1 and C2 are the constants, which can be solved via boundary conditions. 

For the closed anode and open cathode with free access to water, the boundary conditions 

are (Esrig 1968):  

A. Cathode: x=0, U=0, u=0, and therefore η =0 

B. Anode: x=L, the velocity of flow is zero so that 
𝜕𝜂

𝜕𝑥
= 0 

Therefore, C2=0 and C1=0 is calculated by substituting boundary conditions A and B into 

Eq. 6.56 and 6.57. Thus, η =0 is obtained, and Eq. 6.54 becomes: 

η =
𝑘𝑒𝛾𝑤
𝑘ℎ

𝑈 + 𝑢 = 0 

(6.58) 
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Hence, at the condition of closed anode and open cathode, the excess porewater pressure 

due to EK is expressed as: 

𝑢𝑒𝑜 = −
𝑘𝑒𝛾𝑤
𝑘ℎ

𝑈(𝑧) 

(6.59) 

where U(z) is the voltage at the location at distance x from the cathode. 

In this study, an EK consolidation model is developed for oil sands, based on Gibson’s 

large strain consolidation theory coupled with Esirg (1968) theory on EK generated excess 

pore water pressure. The consolidation by material self-weight is also considered in the 

model.  

6.2. One-dimensional large strain EK consolidation model 

6.2.1. Governing equation 

The one-dimensional large strain EK consolidation model (LSEK-1D) is derived based on 

the Gibson’s theory and Esrig (1968) theory. 

Esrig (1968) expressed that the excess pore water pressure at time, t, approaching to infinity 

generated by electroosmosis is represented by Eq. 6.59 for closed anode and open cathode 

condition. 

The derivation in this study involves several assumptions, which are listed as follows 

1. Soil is saturated. 

2. Soil is homogenous and isotropic. 

3. Incompressible fluid and soil particles. 

4. The hydraulic flow is described by: 𝑞ℎ = 𝑘ℎ
𝜕𝐻

𝜕𝑧
. 
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5. The effect of electroosmosis is expressed by the excess pore water pressure at time 

approaching to infinity, Eq. 6.59. Although the equation represents the condition of time 

approaching infinity, Lo et al. (1991) have found from experiments that the pore water 

pressure approached equilibrium as early as about 100 minutes after the electrical field was 

applied. Thus, it is assumed that the time for the electroosmotic excess pore water pressure 

satisfying Eq. 6.59 is much shorter than the time of consolidation.  

6. The maximum porewater pressure generated by EK cannot exceed the atmosphere 

pressure due to the possible cavitation of water in soil pores.  

7. The hydraulic conductivity kh is a function of void ratio, i.e., kh=kh(e). 

8. The soil void ratio, e, is a function of the effective stress, σ’: e = e(σ’). 

9. The effect of electrophoresis is negligible during EK consolidation. 

The coordinate systems used for this study are Eulerian, Lagrangian and material 

coordinate system, the same as those in the Gibson’s theory.  

For the force equilibrium and fluid continuity, Eqs. 6.14 and 6.25 are presented again for 

convenience of discussion:   

𝑑𝜎

𝑑𝜉
+ (

𝑒𝛾𝑤
1 + 𝑒

+
𝛾𝑠
1 + 𝑒

)
𝑑𝑧

𝑑𝜉
= 0      

(6.14) 

𝑑

𝑑𝜉
(−
1 + 𝑒0
1 + 𝑒

𝑘ℎ
𝛾𝑤

𝑑𝑢𝑒𝑥
𝑑𝜉

) +
𝜕

𝜕𝑡
(
𝑒

𝑑𝜉
) = 0  

(6.25) 

The excess pore water pressure generated by EK, uex, for top closed anode and bottom open 

cathode condition, is  

𝑢𝑒𝑥 = 𝜎 − 𝜎
′ − 𝑢ℎ𝑦𝑑 + 𝑢𝑒𝑜  
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(6.60) 

Substituting Eq. 6.59 into Eq. 6.60, the differential form for uex is expressed as: 

𝑑𝑢𝑒𝑥
𝑑𝜉

=
𝑑𝜎

𝑑𝜉
−
𝑑𝜎′

𝑑𝜉
+ 𝛾𝑤

𝑑𝑧

𝑑𝜉
−
𝑘𝑒
𝑘ℎ
𝛾𝑤
𝑑𝑈(𝑧)

𝑑𝑧

𝑑𝑧

𝑑𝜉
  

(6.61) 

where 
𝑑𝑈(𝑧)

𝑑𝑧
 is applied voltage gradient, E (V/m). 

Substituting Eq.6.14 into Eq.6.61: 

𝑑𝑢𝑒𝑥
𝑑𝜉

= −
𝑒𝛾𝑤 + 𝛾𝑠
1 + 𝑒

𝑑𝑧

𝑑𝜉
−
𝑑𝜎′

𝑑𝜉
+ 𝛾𝑤

𝑑𝑧

𝑑𝜉
−
𝑘𝑒
𝑘ℎ
𝛾𝑤𝐸

𝑑𝑧

𝑑𝜉
 

(6.62)  

Substituting Eq. 6.62 into Eq. 6.25: 

𝑑

𝑑𝜉
[−
1 + 𝑒0
1 + 𝑒

𝑘ℎ
𝛾𝑤
(−
𝑒𝛾𝑤 + 𝛾𝑠
1 + 𝑒

𝑑𝑧

𝑑𝜉
−
𝑑𝜎′

𝑑𝜉
+ 𝛾𝑤

𝑑𝑧

𝑑𝜉
−
𝑘𝑒
𝑘ℎ
𝛾𝑤𝐸

𝑑𝑧

𝑑𝜉
 )] +

𝜕

𝜕𝑡
(
𝑒

1 + 𝑒
 
𝑑𝑧

𝑑𝜉
) = 0 

(6.63)  

Simplifying above equation by the same procedure discussed in previous section for the 

derivation of the Gibson’s theory, one may obtain the governing equation for one-

dimensional large strain electroosmotic consolidation in the Lagrangian coordinate system: 

1

𝛾𝑤

𝑑

𝑑𝜉
[
𝛾𝑠 − 𝛾𝑤
1 + 𝑒

𝑘ℎ +
1 + 𝑒0
1 + 𝑒

𝑘ℎ
𝑑𝜎′

𝑑𝜉
+
1 + 𝑒0
1 + 𝑒

𝑘𝑒𝛾𝑤𝐸
𝑑𝑧

𝑑𝜉
] +

1

1 + 𝑒0

𝜕𝑒

𝜕𝑡
= 0 

(6.64) 

To further simply above equation, the material coordinate system can be used via 

substituting Eq.6.6 and 6.8 into Eq. 6.64:  
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1

𝛾𝑤

𝑑

𝑑𝑠
[
𝛾𝑠 − 𝛾𝑤
1 + 𝑒

𝑘ℎ +
1

1 + 𝑒
𝑘ℎ
𝑑𝜎′

𝑑𝑠
+ 𝑘𝑒𝛾𝑤𝐸] +

𝜕𝑒

𝜕𝑡
= 0 

(6.65) 

Eq. 6.65 is rearranged: 

(
𝛾𝑠
𝛾𝑤
− 1)

𝑑

𝑑𝑒
[
𝑘ℎ(𝑒)

1 + 𝑒
]
𝜕𝑒

𝜕𝑠
+
1

𝛾𝑤

𝑑

𝑑𝑒
[
𝑘ℎ(𝑒)

1 + 𝑒
(
𝑑𝜎′

𝑑𝑒

𝜕𝑒

𝜕𝑠
)]
𝜕𝑒

𝜕𝑠
+
𝑑

𝑑𝑒
(𝑘𝑒𝐸)

𝜕𝑒

𝜕𝑠
+
𝜕𝑒

𝜕𝑡
= 0 

(6.66) 

In the process of one-dimensional electrokinetic consolidation, if the current control 

method is used, the current density is kept constant. Eq. 6.66 can be written in terms of the 

current density, i, via the relationship between the current density, i, and voltage gradient, 

E: 

𝑖 = 𝜅(𝑒)𝐸 

(6.67) 

where κ(e) is the electrical conductivity of soil, which is a function of void ratio, e. 

Substituting Eq. 6.67 to Eq. 6.66: 

(
𝛾𝑠
𝛾𝑤
− 1)

𝑑

𝑑𝑒
[
𝑘ℎ(𝑒)

1 + 𝑒
]
𝜕𝑒

𝜕𝑠
+
1

𝛾𝑤

𝑑

𝑑𝑒
[
𝑘ℎ(𝑒)

1 + 𝑒
(
𝑑𝜎′

𝑑𝑒

𝜕𝑒

𝜕𝑠
)]
𝜕𝑒

𝜕𝑠
+ 𝑖

𝑑

𝑑𝑒
[
𝑘𝑒
𝜅(𝑒)

]
𝜕𝑒

𝜕𝑠
+
𝜕𝑒

𝜕𝑡
= 0 

(6.68) 

Eq. 6.68 is the governing equation for one-dimensional large strain consolidation model of 

EK (LSEK-1D) under a constant current density. The model can incorporate surcharge 

loading and be solved numerically with specifically defined initial and boundary conditions.   

6.2.2. Initial and boundary conditions 

One initial condition and two boundary conditions are essential to solve Eq. 6.68, which 

are discussed below.  
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6.2.2.1. Initial condition 

The initial void ratio distribution in the sample depends on the initial status of MFT. Two 

conditions for the void ratio distribution of MFT are the uniform distribution and 

distribution after self-weight consolidation. In the first condition, the void ratio of MFT is 

constant in the system. This condition is applicable shortly after deposition of MFT. This 

condition is adapted in the experiments and modeling in this study. The second condition 

is encountered long after deposition of MFT, in this case the void ratio of MFT decreases 

with depth.  

6.2.2.2. Boundary conditions 

Two boundary conditions are adapted in experiments and modeling, i.e., a free-drainage 

boundary and an impermeable boundary. 

The free-drainage boundary is at the cathode, where the excess pore water pressure is 

atmosphere pressure. The void ratio, e, at the free-drainage boundary is calculated based 

on the effective stress, σ’, at the boundary, generated by the surcharge pressure. The 

impermeable boundary is at the anode. Since there is no seepage flow:  

𝑣𝑤 − 𝑣𝑠 = 0 

(6.69) 

 Substituting Eq.6.69 to Eq.6.24: 

𝑑𝑢𝑒𝑥
𝑑𝜉

= 0 

(6.70) 

Substituting Eq. 6.70 into Eq. 6.62: 

−
𝑒𝛾𝑤 + 𝛾𝑠
1 + 𝑒

𝑑𝑧

𝑑𝜉
−
𝑑𝜎′

𝑑𝜉
+ 𝛾𝑤

𝑑𝑧

𝑑𝜉
−
𝑘𝑒
𝑘ℎ
𝛾𝑤
𝜕𝑈

𝜕𝜉
= 0 
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(6.71) 

Substituting Eq.6.6 to 6.8 to Eq. 6.71, then 

𝑑𝜎′

𝑑𝑠
+ (𝛾𝑠 − 𝛾𝑤) +

𝑘𝑒
𝑘ℎ
𝛾𝑤
𝜕𝑈

𝜕𝑠
= 0 

(6.72) 

Reorganize Eq. 6.72 by multiplying 
𝑑𝑒

𝑑𝜎′
 on both sides: 

𝑑𝑒

𝑑𝑠
+
(𝛾𝑠 − 𝛾𝑤) +

𝑘𝑒
𝑘ℎ
𝛾𝑤
𝜕𝑈
𝜕𝑠

𝑑𝜎′

𝑑𝑒

= 0 

(6.73) 

Eq. 6.73 is the boundary condition for the impermeable boundary at the anode. 

6.2.2.3. Settlement 

The settlement of the tailing sample at any time, t, in Eulerian coordinate system can be 

calculated via the following equation: 

𝑆(𝑡) = 𝐻0 −∫ [1 + 𝑒(𝑠, 𝑡)]𝑑𝑠
𝑆

0

 

(6.74) 

where H0 is the initial height of the sample in Eulerian coordinate system, S is the sample 

height in material coordinate system, e(s,t), is the sample void ratio at location, s, and time, 

t, in material coordinate system, and ds is the thickness of the layer in material coordinate 

system.  

6.2.3. Experimental results for model verification 



164 | P a g e  

 

The model was verified and validated via experimental results on oil sands tailings, 

including the consolidation tests under 5 kPa alone and EK tests combined with 5kPa 

surcharge (DW tests). The experiments were carried in 1-D condition with the horizontally 

installed electrodes and reported in a M.Esc thesis by Guo (2012). The anode and cathode 

were placed at the top and bottom, respectively. The detailed experiments were described 

by Guo (2012) and Guo and Shang (2014). The conditions for modeling analysis are 

summarized in Table 6.1. 

6.2.3.1. Boundary consideration and initial condition 

In the first part of analysis, the oil sands tailings were consolidated via 5 kPa surcharge 

under two-way drainage.  

In the second part of analysis, a surcharge pressure and EK were applied simultaneously. 

The configuration of the experiments is closed anode and open cathode, and water was 

driven from anode and drained from the cathode. Thus, the boundary conditions are the 

impermeable boundary at anode and free drainage boundary at the cathode. 

As discussed before the initial condition is that the MFT has a constant void ratio of 4.3 

(corresponding to a water content of 170% and solid content of 37%). 

6.2.3.2. Constitutive relationship of void ratio and hydraulic 

conductivity 

To solve Eq. 6.68, two relationships, i.e., void ratio-effective stress (e-σ’), and void ratio-

hydraulic conductivity (e-kh), are essential for the consolidation under surcharge. In 

addition, two constitutive relationships are needed for EK consolidaiton, i.e., void ratio-

coefficient of electroosmotic permeability (e-ke), and void ratio- electrical conductivity (e-

κ).  

The constitutive relationships for e-σ’ and e-kh have been reported by many researchers 

(Somogyi 1980, Suthaker 1995, Berilgen et al. 2006, Jeeravipoolvarn et at. 2008, and Bo 

et al. 2011). One of the commonly used relationships is presented in the forms of (Fox 

2000, Jeeravipoolvarn et at. 2008, Ito and Azam 2013): 
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𝑒 = 𝐴𝜎′
𝐵

 

(6.75) 

𝑘ℎ = 𝐶𝑒
𝐷 

(6.76) 

where A, B, C, and D are parameters determined through experiments. 

The Hydraulic conductivity of tailings has a wide range, depending on the void ratio. 

Jeeravipoolvarn (2010) measured the hydraulic conductivity of three types of oil sands 

tailings at different void ratio and reported piecewise regression relationships. It was also 

reported that the hydraulic conductivity of oil sand tailings was similar when the void ratio 

below about 3. 

For oil sands tailings (MFT-A) studied in this research, the hydraulic conductivity kh was 

measured at the void ratios from 0.9 to 3. It was noted that the measured hydraulic 

conductivity is consistent to the regression relationship by Jeeravipoolvarn (2010). In order 

to predict the relationship between hydraulic conductivity and void ratio (from 0.5 to 5) of 

oil sands tailings, the following equation is used by considering both experimental results 

from this analysis and data from Jeeravipoolvarn (2010), as seen in Fig. 6.7: 

𝑘ℎ = 6.00×10
−11𝑒3.91 

(6.77) 

The relationship between the void ratio and effective stress is expressed based on the 

oedometer test on oil sands tailings, as seen in Fig. 6.8: 

𝑒 = 2.40𝜎′
−0.193

 

(6.78)  

Constitutive relationships for e-ke and e-κ are obtained through regression of experiment 

data during EK dewatering tests, as seen in Figs. 6.9 and 6.10, and expressed as: 
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𝑘𝑒 = 0.00160 (
𝑒

1 + 𝑒
)
18.4

 

(6.79) 

𝜅 = 0.689 (
𝑒

1 + 𝑒
)
7.21

 

(6.80) 

6.2.3.3. Model solution and verification 

The finite difference method was selected to solve the large strain consolidation (Eq. 6.68). 

The detailed finite difference scheme is shown in Appendix 2 and the corresponding 

MATLAB code in Appendix 3.  

Firstly, the model was verified and validated with the consolidation experiment under a 

surcharge of 5 kPa without applying EK treatment to ensure the model converging with 

Gibson’s large strain consolidation theory. The input parameters are summarized in Table 

6.2. For comparison, the normalized water discharge, Vw/V0, and normalized sample height, 

Ht/H0, were used, where Vw is the volume of water discharge, V0 is the initial volume of 

sample, Ht is the height of the sample at consolidation time, t, H0 is the initial height of the 

sample. The initial void ratio of 4.3 and average height of sample of 11 cm reported by 

Guo and Shang (2014) were used in the analysis. Fig. 6.11 shows the experimental results 

and model prediction during consolidation of oil sands tailings (MFT-A). It shows that the 

model is in agreement with experimental results in terms of the consolidation rate under 

the 5 kPa surcharge from 0 to 100 hours. At the end of consolidation (about 300 hours), 

the model slightly overestimated the total settlement, i.e. the normalized height, Ht/H0(%), 

obtained through experiments was 54.1% (5.1 cm settlement) at 425 hours, while it was 

51.3% (5.4 cm settlement) from model prediction. The difference between the model 

prediction and experimental result is 2.8%. In comparison with the experimental results, 

both the consolidation rate and final vertical strain were well predicted in the LSEK model 

under surcharge loading 
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In the 2nd step of validation, the experimental results reported by Guo and Shang (2014) 

were used to validate the proposed LSEK-1D model. The electrical current densities used 

in the analysis were 15 A/m2, 10A/m2 and 5A/m2. The initial void ratio of 4.3 and average 

height of sample of 11 cm were used in the analysis. The input parameters of the model are 

listed in Table 6.3. 

Figs. 6.12 to 6.14 show the model prediction and the experimental results for tests DW10, 

DW15 and DW5 respectively, reported by Guo and Shang (2014). It is observed that, from 

0 to 25 hours, the experimental results are above the solid line, which are calculated through 

the model, as seen in Fig. 6.12(a). This indicates at the beginning of the test the rate of EK 

consolidation (1.5%/hr) is lower in the model prediction than those from experiments 

(2.3%/hour) at the current density of 10A/m2.  On the other hand, the model is in agreement 

with experimental results in terms of the final settlement, as shown in Fig. 6.12(b). The 

final settlement is 5.5 cm (Ht/H0=51.4%), as calculated through the model, and 5.4 cm 

(Ht/H0=50.7%), as observed in test DW10. The difference between the model prediction 

and experimental result is 0.7%. It is also noted that the rate of consolidation from model 

analysis reduces after about 25 hours, which is consistent with the experimental result. 

Similar results are found on the test at current density of 15A/m2. A slightly lower EK 

consolidation rate is observed in first 10 hours, as seen in Fig. 6.13(a), i.e., the strain rates 

due to EK consolidation are 2.2%/hour from model prediction and 3.0% from experimental 

result. The final settlement was 5.4 cm (Ht/H0=50.9%) from test DW15 and 5.3 cm 

(Ht/H0=51.5%) from model prediction, as shown in Fig. 6.13(b). The difference between 

the model prediction and experimental result is 0.6%. The model predicted that the 

settlement rate reduces after 25 hours, which is consistent with the experiment result. 

For the current density of 5 A/m2, the model is in excellent agreement on the consolidation 

rate from 0 to about 20 hours. Then the consolidation rate reduces from 25 to 50 hours, 

which again is consistent with experimental results. On the other hand, the final settlement 

predicted from the model was 5.4 cm (Ht/H0=51.2%), which is higher than that obtained in 

the experiments, i.e. 3.5 cm (Ht/H0=67.8%). The difference between the model prediction 

and experimental result is 16.6%.  
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In conclusion, the LSEK-1D model is in consistence with experimental results from EK 

consolidation tests at current density of 10 A/m2 and 15 A/m2. For the experiment at current 

density of 5 A/m2, the model predicted higher settlement than the experimental observation. 

The overall performance of LSEK-1D model has shown to be satisfactory in predicting the 

rate and magnitude of settlement based on laboratory test results. 

6.2.4. Discussion 

6.2.4.1. Effects of initial height on consolidation time 

In the Terzaghi’s consolidation theory, the consolidation time is proportional to Hdr
2, where 

Hdr is the drainage path. With the large strain consideration, the drainage path decreases 

with time, leading to expedite the rate of consolidation (Gibson et al. 1981, Fox and Berles 

1997, Fox and Pu 2012). Bromwell (1984) suggested that the consolidation time is 

proportional to Hdr
1.3 instead of Hdr

2 in the large strain analysis. In this analysis, the effects 

of initial drainage path on the LSEK-1D model performance are examined under conditions 

of surcharge alone and EK combined with surcharge loading.  

In the first scenario of consolidation under surcharge alone, the drainage path is half of the 

sample height, H0, because of two-way drainage from the top and bottom of the sample. 

An initial sample void ratio of 4 and a surcharge of 5 kPa were used in the analysis. The 

input parameters are listed in Table 6.4. Figs. 6.15 and 6.16 show the average degree of 

consolidation of the sample versus time at different initial height. The average degree of 

consolidation is calculated as:  

𝑈𝑎𝑣 =
𝑆(𝑡)

𝑆𝑚𝑎𝑥
 

(6.81) 

where S(t) is the settlement at consolidation time, t, and Smax is the maximum consolidation 

settlement.   
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As seen in Fig. 6.15, the time to reach the end of consolidation is over 300 hours (12.5 

days) and 6000 hours (250 days) for the samples with initial heights of 0.1 and 0.5 m, 

respectively. Once the initial height increased to 2 m, the model predicted that the time to 

reach the end of the consolidation is over 2000 days (5.5 years) as seen in Fig. 6.16. The 

consolidation times at 30%, 50%, 70% and 90% consolidation is plotted with the initial 

drainage path in Fig. 6.17. It is shown that the consolidation time is proportional to Hdr
1.84 

in average for oil sands tailings. Compared with the Terzaghi’s consolidation theory, the 

large strain consolidation theory predicted a slightly higher rate of consolidation.  

For consolidation under EK combined with surcharge, the drainage path is the height of 

the sample (one way drainage) because water is driven from anode and discharged at the 

cathode. An initial void ratio 4, current density 10A/m2 and surcharge of 5 kPa were used 

in the study. The detailed input parameters are summarized in Table 6.5. Fig. 6.18 shows 

the average degree of consolidation versus treatment time for EK combined with surcharge 

treatment. As shown in the figure, EK accelerated consolidation, which completed in about 

100 hours (4.2 days) for 0.1m thick sample, which is three times faster than that only under 

5 kPa alone. In the model prediction, for a sample with the initial height of 0.5 m, the time 

to complete consolidation is about 500 hours (21 days), which is over 10 times faster than 

the surcharge alone (250 days). 

For better understanding of the influence of drainage path on EK consolidation, the 

consolidation times at 30%, 50%, 70% and 90% degrees of consolidation are plotted with 

the initial drainage path in Fig. 6.19. It can be seen that the time of EK consolidation is 

proportional to Hdr
1.12 (in average). Based on the small strain EK consolidation theory, the 

consolidation time is proportional to Hdr
2 (Wang and Mitchell 1967, Mitchell and Soga 

2005). The LSEK-1D model developed in this study has shown that consolidation is much 

faster, considering nonlinearity of tailings properties, i.e., hydraulic conductivity, kh, 

effective stress, σ’, coefficient of electroosmotic permeability, ke, and electrical 

conductivity, κ.  
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In conclusion, the application of EK can significantly reduce the consolidation time of oil 

sands tailings. The consolidation time is proportional to Hdr
1.12 for EK accelerated 

consolidation, compared to Hdr
1.84 under surcharge alone. 

6.2.4.2. Effect of applied current density on EK consolidation time 

The effect of applied current density on consolidation time as predicted in LSEK-1D model 

is analyzed similar to Section 6.2.4.1, the analysis used an initial void ratio 4, initial height 

of 15 cm and a surcharge of 5 kPa. The input parameters are summarized in Table 6.6. Fig. 

6.20 shows the predicted water drainage and sample height change under current densities 

from 5 A/m2 to 20 A/m2. The average degrees of EK consolidation are plotted versus time 

in Fig. 6.21. The predicted times to complete consolidation were over 500 hours (21 days) 

for 5A/m2 and 90 hours (3.75 days) for 20 A/m2, for 15 cm thick tailings. The consolidation 

times at 30%, 50%, 70% and 90% degrees of consolidation are plotted with current density 

in Fig. 6.22. It is noticed that the time for EK consolidation is proportional to ic
-0.94 in 

average, where ic is current density (A/m2). The results indicate that the high current density 

can shorten the treatment time, which has been observed in experiments. On the other hand, 

it should be recognized that electrochemical reactions at electrodes, as well as heating, are 

not considered in the LSEK-1D.  Heating is more severe at higher current density, which 

reduces the efficiency of EK consolidation and dewatering.  

6.3. Conclusion 

In this study, a one-dimensional large strain EK consolidation model (LSEK-1D) is 

established via combining the Gibson (1967) large strain consolidation theory and Esrig 

(1968) EK excess pore water pressure theory. The governing equation was solved via finite 

difference method in MATLAB code. The following conclusions are drawn from the 

analysis: 

1. The LSEK-1D model was assessed on experimental results on oil sands tailings, 

and a good consistency has been found between the model prediction and 

laboratory experimental results.  
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• For the consolidation under surcharge only 

The LSEK-1D model predicted the total settlement of 5.4 cm (Ht/H0=51.3%), while 

the settlement obtained in experiment was 5.1 cm (Ht/H0=54.1%) for the sample 

with the initial height of 11cm. The LSEKS-1D for surcharge alone is in agreement 

with the experiment data for both consolidation time and final settlement.  

• For consolidation under EK combined with surcharge 

Generally, the LSEK-1D model is in consistence with experimental results for 

consolidation of MFT under EK combined with 5 kPa surcharge. The model 

predicted a slightly smaller EK consolidation rate at the beginning of EK treatment, 

whereas is in  agreement on final consolidation settlement.  

2. The LSEK-1D model predicted that the consolidation time is proportional to Hdr
1.84, 

where Hdr is initial drainage path, for oil sands tailings under surcharge alone. With 

EK treatment, the consolidation time of oil sands tailings is proportional to Hdr
1.12, 

based on the LSEK-1D model.  

3. The model predicted that the consolidation time is proportional to ic
-0.94 in average, 

where ic is current density (A/m2). 
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Table 6.1 The conditions for the large strain consolidation model of oil sands tailings 

Conditions Consolidation under surcharge EK consolidation 

Surcharge (kPa) 5 kPa 5 kPa 

Applied current 

density (A/m2) 
0 5 to 20 

Drainage condition Two-way drainage 
One way drainage 

(from anode to cathode) 

Boundary condition 
Free drainage condition at both the 

top and bottom 

Impervious drainage condition 

at the anode 

Free drainage condition at the 

Cathode 

Initial condition Uniform distributed void ratio 

 

 

 

 

 

Table 6.2 Input parameters for model verification of 5 kPa surcharge consolidation 

Parameters  

Unit weight of soil solid, γs (kN/m3) 25.1 

Unit weight of water, γw (kN/m3) 9.81 

Initial height of sample, H0 (m) 0.11 

Surcharge loading, Ps (kPa) 5 

Initial void ratio, e0 4.3 

Current density, ic (A/m2) 0 

 

 

 

 

 

 

 

 



177 | P a g e  

 

Table 6.3 Input parameters for model verification of EK combined with 5 kPa 

surcharge consolidation 

Parameters  

Unit weight of soil solid, γs (kN/m3) 25.1 

Unit weight of water, γw (kN/m3) 9.81 

Initial height of sample, H0 (m) 0.11 

Surcharge loading, Ps (kPa) 5 

Initial void ratio, e0 4.3 

Current density, ic (A/m2) 10 and 15 

 

 

 

 

 

 

Table 6.4 Input parameters for analysis of initial height effects on large strain 

consolidation with surcharge alone 

Parameters  

Unit weight of soil solid, γs (kN/m3) 25.1 

Unit weight of water, γw (kN/m3) 9.81 

Initial height of sample, H0 (m) 0.1; 0.2; 0.3; 0.4; 0.5; 0.75; 1.0; 1.25; 1.5; 2.0 

Surcharge loading, Ps (kPa) 5 

Initial void ratio, e0 4.0 

Current density, ic (A/m2) 0 
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Table 6.5 Input parameters for analysis of initial height effects on large strain 

consolidation with EK combined with surcharge loading 

Parameters  

Unit weight of soil solid, γs (kN/m3) 25.1 

Unit weight of water, γw (kN/m3) 9.81 

Initial height of sample, H0 (m) 0.1; 0.25; 0.5; 1.0; 2.0 

Surcharge loading, Ps (kPa) 5 

Initial void ratio, e0 4.0 

Current density, ic (A/m2) 10 

 

 

 

 

 

 

 

Table 6.6 Input parameters for analysis of effects of applied current density on large 

strain consolidation with EK combined with surcharge loading 

Parameters  

Unit weight of soil solid, γs (kN/m3) 25.1 

Unit weight of water, γw (kN/m3) 9.81 

Initial height of sample, H0 (m) 0.15 

Surcharge loading, Ps (kPa) 5 

Initial void ratio, e0 4.0 

Current density, ic (A/m2) 5; 10; 15; 20 
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Figure 6.1Deformation of Lagrangian and Eulerian coordinate systems 

 

 

 

 

Figure 6.2 The deformation of body ABCD from t0 to t’ in the Eulerian (spatial) and 

Lagrangian coordinate systems 
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Figure 6.3 Coordinate system used in Gibson's theory (a) the Eulerian and 

Lagrangian coordinate system at initial time; (b) the Eulerian coordinate system at 

an arbitrary time, t; (c) the material coordinate system defined in Gibson’s theory 
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Figure 6.4 Soil phase volume relationship for REV ABCD 

 

 

Figure 6.5 Force Equilibrium for REV 

 

 

 

 

Figure 6.6 Fluid Continuity of REV ABCD 
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Figure 6.7 Relation between hydraulic conductivity and void ratio (kh-e) for oil 

sands tailings 
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Figure 6.8 Relation between effective stress and void ratio (σ’-e) for oil sands 

tailings 

 

Figure 6.9 Relation between coefficient of electroosmotic permeability and porosity 

(ke-n) for oil sands tailings calculated based on (Guo and Shang 2014) 
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Figure 6.10 Relation between electrical conductivity and porosity (ke-n) for oil sands 

tailings calculated based on (Guo and Shang 2014) 
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Figure 6.11 Experimental results and LSEK-1D model prediction of tailings 

consolidation under 5 kPa surcharge alone 
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Figure 6.12 Experimental results and LSEK-1D model prediction of tailings consolidation under EK (with current density of 

10A/m2) combined with 5 kPa surcharge alone in terms of (a) Normalized water drainage, Vw/V0 (%); (b) Normalized height 

change, Ht/H0 (%) 
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Figure 6.13 Experimental results and LSEK-1D model prediction of tailings consolidation under EK (with current density of 

15A/m2) combined with 5 kPa surcharge alone in terms of (a) Normalized water drainage, Vw/V0 (%); (b) Normalized height 

change, Ht/H0 (%) 
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Figure 6.14 Experimental results and LSEK-1D model prediction of tailings consolidation under EK (with current density of 

5A/m2) combined with 5 kPa surcharge alone in terms of (a) Normalized water drainage, Vw/V0 (%); (b) Normalized height 

change, Ht/H0 (%) 
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Figure 6.15 LSEK-1D model predicted average degree of consolidation of the sample with the initial height from 0.1 to 0.5m 

under 5 kPa surcharge consolidation 
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Figure 6.16 LSEK-1D model predicted average degree of consolidation of the sample with the initial height from 0.75 to 2m 

under 5 kPa surcharge consolidation
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Figure 6.17 Drainage path versus consolation time under 5 kPa surcharge alone 

obtained in LSEK-1D model 
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Figure 6.18 LSEK-1D model predicted average degree of consolidation of the sample with the initial height from 0.1 to 2m 

under EK (at current density of 10A/m2) combined with 5 kPa surcharge consolidation
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Figure 6.19 Drainage path versus consolation time under EK (at current density of 10A/m2) 

combined with 5 kPa surcharge consolidation obtained in LSEK-1D model 
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Figure 6.20 LSEK-1D model prediction of tailings consolidation under EK 

combined with 5 kPa surcharge alone in terms of (a) Normalized water drainage, 

Vw/V0 (%); (b) Normalized height change, Ht/H0 (%) with the current density from 

5A/m2 to 20A/m2 
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Figure 6.21 LSEK-1D model predicted average degree of consolidation of the sample under EK (at current density from 

5A/m2 to 20A/m2) combined with 5 kPa surcharge consolidation 

 

 



196 | P a g e  

 

 

Figure 6.22 Current density versus consolation time under EK (at current density 

from 5A/m2 to 20A/m2) combined with 5 kPa surcharge consolidation obtained in 

LSEK-1D 
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Chapter 7 Summary, conclusions and recommendations 

7.1. Summary 

In this thesis, experiments were designed to study EK dewatering of oil sands tailings and 

kaolinite slurry with vertically installed electrodes. The data analysis method, involving 

normalization and regression, was used to find the general trends of EK dewatering. It was 

identified that the material saturation is the key controlling factor for termination of the EK 

flow, which was verified via experiments on oil sands tailings and kaolinite slurries. The 

combined treatment of EK and chemical stabilization using quicklime and Portland cement 

was studied via changes in the water content, undrained shear strength, plasticity, 

porewater pH and EC, and zeta potential. The combined treatment of EK and quicklime 

and Portland cement significantly reduced the property difference of the sample between 

the anode and the cathode, whereas the EK dewatering effects was minimized by addition 

of chemicals. Finally, a one dimensional large strain EK consolidation model (LSEK-1D) 

was developed and assessed via the experimental data of EK treatment on oil sands tailings. 

The model predicted results are in agreement with those from experiments. The LSEK-1D 

model is proven to be valid for both surcharge loading alone and EK treatment combined 

with surcharge loading.  

The results in this thesis help for a better understanding of the EK dewatering on oil sands 

tailings. Even though the regression equations obtained from this research cannot be used 

directly for field application, the data analysis method and general forms of the regression 

equations are useful for future works. For the field application, the degrees of saturation of 

the tailings especially at the anode can served as a guideline to determine the most efficient 

stage for EK dewatering process. The development of LSEK-1D model for oil sands 

tailings is necessary and important for field applications to predict the consolidation and 

dewatering time. The chemical stabilization may apply only at the weak zone closed to the 

cathode to receive the benefits for both EK and chemical stabilization.  

7.2. Conclusions 

The main conclusions in this thesis are highlighted and listed below: 
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• After normalization, the changes in properties over the time for oil sands tailings 

and kaolinite, including EK water flow, water content, material electrical 

conductivity, and power consumptions, can be expressed via regression equations 

obtained in this study for EK dewatering process. 

• Non-uniform water content distributions were found after EK treatment of oil sands 

tailings. The water content of MFT sample reduced significantly at the anode and 

remained unchanged at the vicinity of cathode. 

• The effects of applied voltage gradient and initial water content on EK induced 

water flow were studied quantitatively by using the regression equations. It was 

found that the maximum water discharge is governed by the initial water content of 

kaolinite slurry governs, whereas the voltage gradient controls the rate of 

dewatering. 

• The water flow generated by EK can be classified in three stages, i.e., 1) the linear 

flow, 2) the transitional flow, and 3) the end flow, and the EK dewatering is most 

efficient in the linear flow stage. It is identified that the flow rate was controlled by 

the saturation status of the sample. The linear flow stage lasted from beginning of 

the treatment until the material saturation reached 80% at the anode for both oil 

sands tailings and kaolinite. Hence the degree of saturation of tailings may serve as 

a guideline in large scale applications to estimate effective treatment time.  

• With the same initial water content and experimental configuration, the treatment 

under high voltage gradient needs more energy but less treatment time than those 

with low voltage gradient to reach the same post-treated water content. At the 

meantime, there are significant strengthening effects for the sample at the anode 

after the treatment under the high voltage gradient. 

• For the chemical treatment on oil sands mature fine tailings, the water content of 

MFT reduced immediately after mixing with quicklime and cement, due to 

hydration reaction. The post-treatment water content of MFT samples reduced 

linearly with the increase in the chemical dosage. 
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• For the combined treatment of EK and chemical stabilization, the addition of 

quicklime and cement reduced the EK flow, hence reduced dewatering effects. The 

EK flow completely stopped at the chemical dosage of 10%. In contrast, at a low 

chemical dosage (1% cement or quicklime), the EK treatment is beneficial for the 

strength gain of MFT and can significantly reduce the property differences of the 

sample between the anode and cathode, such as the water content and undrained 

shear strength. In general, Portland cement is more effective in generating strength 

gain than quicklime.  

• A one dimensional large strain EK consolidation model (LSEK-1D) was developed 

and verified for oil sands tailings, and validated with the experimental data on oil 

sands tailings in the first time.  

• The LSEK-1D model predicted that the consolidation time is proportional to Hdr
1.84, 

in which Hdr is the initial drainage path for oil sands tailings under surcharge alone. 

The EK consolidation time of oil sands tailings is proportional to Hdr
1.12, based on 

the LSEK-1D model, indicating that EK can significantly accelerate consolidation. 

7.3. Limitations of the research 

Some of the limitations for the research in this thesis are listed as follows: 

• Ideally, the electric field, which was generated via two parallel plates, was 

considered to be uniform. However, the boundary effects of the experimental 

apparatus on the electric field were not considered and studied. The electric field is 

expected to be weak closed to the wall of the EK dewatering cell and strong at the 

center. The difference in electric field will affect the distributions of the tailings 

properties, such as final water content, after the treatment. 

• Compared with other methods in geotechnical engineering, such as unconfined 

compression test and triaxial test, the laboratory vane shear tester for the strength 

measurement is not very precise, especially at low undrained shear strength. But 

due to the difficulties for MFT sample preparation, the vane shear test is the most 

convenient method to assess the strength of the tailings sample. 
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• In the regression analysis, the time is not normalized. The scale effects need to be 

studied for normalization of the dewatering time. 

7.4. Recommendations for further research 

Base on the experiments and modelling analysis presented in this thesis, the 

recommendations for the further studies are listed as follows: 

• Carry out large scale tests on EK dewatering on oil sands tailings to find the scale 

effects on EK dewatering. 

•  Study the effects of residual bitumen and other hydrocarbons on MFT for better 

understanding the behavior of oil sands tailings. 

• Develop a 2D large strain model for EK consolidation to facilitate the design of in-

situ applications. 

• Establish a database of oil sands tailings properties for validation of the EK large 

strain consolidation model. 
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Appendix 1 Supplementary figures 

 
Figure A1. 1 Normalized water content, w(t)/w0, of the kaolinite sample at center for 

KV series tests (a) KV-100; (b) KV-75; (c) KV-50; (d) KV-25. 
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Figure A1. 2 Normalized water content, w(t)/w0, of the kaolinite sample at cathode 

for KV series tests (a) KV-100; (b) KV-75; (c) KV-50; (d) KV-25. 
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Figure A1. 3 Normalized water content, w(t)/w0, of the kaolinite sample at (a) center 

and (b) cathode for KW-150 tests 
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Figure A1. 4 Current density and material conductivity vs time of Kaolinite slurry 

for KV series tests (a) KV-100; (b) KV-75; (c) KV-50; (d) KV-25. 
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Figure A1. 5 Current density and material conductivity vs time of Kaolinite slurry 

for KW series test 
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Appendix 2 Finite difference scheme 
Finite difference method was selected used to solve the one dimensional large strain 

consolidation problem of oil sands tailings via MATLAB.   

In order to solve the governing equation, rewrite Eq. 6.68 in the form of 

(
𝛾𝑠
𝛾𝑤
− 1)

𝑑

𝑑𝑒
𝑓
𝜕𝑒

𝜕𝑠
+
1

𝛾𝑤

𝑑

𝑑𝑒
[𝑓 ∙ 𝑑𝑠𝑖𝑔𝑚𝑎

𝜕𝑒

𝜕𝑠
]
𝜕𝑒

𝜕𝑠
+ 𝑖

𝑑

𝑑𝑒
[
𝑘𝑒
𝜅(𝑒)

]
𝜕𝑒

𝜕𝑠
+
𝜕𝑒

𝜕𝑡
= 0 

(6.82) 

where, 

𝑓 =
𝑘ℎ(𝑒)

1 + 𝑒
 

(6.83) 

𝑑𝑠𝑖𝑔𝑚𝑎 =
𝑑𝜎′

𝑑𝑒
 

(6.84) 

 

Expanding second and third term in Eq. 6.82,  

(
𝛾𝑠
𝛾𝑤
− 1)𝑑𝑓

𝜕𝑒

𝜕𝑠
+
1

𝛾𝑤
[𝑑𝑓 ∙ 𝑑𝑠𝑖𝑔𝑚𝑎 + 𝑑𝑠𝑖𝑔𝑚𝑎2 ∙ 𝑓] (

𝜕𝑒

𝜕𝑠
)
2

+
1

𝛾𝑤
∙ 𝑓 ∙ 𝑑𝑠𝑖𝑔𝑚𝑎

𝜕2𝑒

𝜕𝑠2

+ 𝑖 (
𝑑𝑘𝑒

𝜅
+ 𝑘𝑒 ∙ 𝑑𝑘𝑎𝑝𝑝𝑎)

𝜕𝑒

𝜕𝑠
+
𝜕𝑒

𝜕𝑡
= 0 

(6.85) 

 

where 
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𝑑𝑓 =
𝑑𝑓

𝑑𝑒
=
𝑑

𝑑𝑒
[
𝑘ℎ(𝑒)

1 + 𝑒
] 

(6.86) 

𝑑𝑠𝑖𝑔𝑚𝑎2 =
𝑑

𝑑𝑒
(𝑑𝑠𝑖𝑔𝑚𝑎) =

𝑑2𝜎′

𝑑𝑒2
 

(6.87) 

𝑑𝑘𝑒 =
𝑑𝑘𝑒

𝑑𝑒
 

(6.88) 

𝑑𝑘𝑎𝑝𝑝𝑎 =
𝑑

𝑑𝑒
(
1

𝜅
) 

(6.89) 

Simplify Eq. 6.85, 

𝐴(𝑒)
𝜕𝑒

𝜕𝑠
+ 𝐵(𝑒) (

𝜕𝑒

𝜕𝑠
)
2

+ 𝑏(𝑒)
𝜕2𝑒

𝜕𝑠2
+ 𝐶(𝑒)

𝜕𝑒

𝜕𝑠
= −

𝜕𝑒

𝜕𝑡
 

(6.90) 

where, 

𝐴(𝑒) = (
𝛾𝑠
𝛾𝑤
− 1)𝑑𝑓 

(6.91) 

𝐵(𝑒) =
1

𝛾𝑤
[𝑑𝑓 ∙ 𝑑𝑠𝑖𝑔𝑚𝑎 + 𝑑𝑠𝑖𝑔𝑚𝑎2 ∙ 𝑓] 

(6.92) 
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𝑏(𝑒) =
1

𝛾𝑤
∙ 𝑓 ∙ 𝑑𝑠𝑖𝑔𝑚𝑎 

(6.93) 

𝐶(𝑒) = 𝑖 (
𝑑𝑘𝑒

𝜅
+ 𝑘𝑒 ∙ 𝑑𝑘𝑎𝑝𝑝𝑎) 

(6.94) 

Rearrange Eq. 6.90, 

𝐴𝐶(𝑒)
𝜕𝑒

𝜕𝑠
+ 𝐵(𝑒) (

𝜕𝑒

𝜕𝑠
)
2

+ 𝑏(𝑒)
𝜕2𝑒

𝜕𝑠2
= −

𝜕𝑒

𝜕𝑡
 

(6.95) 

where, 

𝐴𝐶(𝑒) = 𝐴(𝑒) + 𝐶(𝑒) 

(6.96) 

To solve Eq. 6.95, the explicit convection (centered difference) with implicit diffusion 

method was used. The difference form of the governing equation (Eq. 6.95) is written as: 

𝐴𝐶(𝑒𝑛,𝑗)
𝑒𝑛,𝑗+1 − 𝑒𝑛,𝑗−1

2ℎ
+ 𝐵(𝑒𝑛,𝑗) (

𝑒𝑛,𝑗+1 − 𝑒𝑛,𝑗−1

2ℎ
)
2

+ 𝑏(𝑒𝑛+1,𝑗)
𝑒𝑛+1,𝑗+1 − 2𝑒𝑛+1,𝑗 + 𝑒𝑛,𝑗−1

ℎ2
= −

𝑒𝑛+1,𝑗 − 𝑒𝑛,𝑗

Δ𝑡
       

(6.97) 

where  

𝑛 − 𝑖𝑛𝑑𝑒𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑔𝑟𝑖𝑑 

𝑗 − 𝑖𝑛𝑑𝑒𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑎𝑐𝑒 𝑔𝑟𝑖𝑑 
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ℎ − 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 𝑖𝑛 𝑠𝑝𝑎𝑐𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛  

Δ𝑡 − 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 𝑖𝑛 𝑡𝑖𝑚𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

𝑒𝑛,𝑗 − 𝑣𝑜𝑖𝑑 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑀𝐹𝑇 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑛 𝑎𝑛𝑑 𝑠𝑝𝑎𝑐𝑒 𝑗  

The matrix form of Eq. 6.97 is written as: 

Δ𝑡

2ℎ

[
 
 
 
 
 
𝐴𝐶(𝑒𝑛,1) 0 0 0 0

0 𝐴𝐶(𝑒𝑛,2) 0 0 0

⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 𝐴𝐶(𝑒𝑛,𝑗−1) 0

0 0 0 0 𝐴𝐶(𝑒𝑛,𝑗)]
 
 
 
 
 

[
 
 
 
 
−1 0 1 0 ⋯ ⋯ 0
0 −1 0 1 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ −1 0 1 0
0 ⋯ ⋯ 0 −1 0 1]

 
 
 
 

[
 
 
 
 
 
 
𝑒𝑐𝑏
𝑒𝑛,1
𝑒𝑛,2
⋮

𝑒𝑛,𝑗−1
𝑒𝑛,𝑗
𝑒𝑎𝑏 ]

 
 
 
 
 
 

+

Δ𝑡

4ℎ2

[
 
 
 
 
 
𝐵(𝑒𝑛,1) 0 0 0 0

0 𝐵(𝑒𝑛,2) 0 0 0

⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 𝐵(𝑒𝑛,𝑗−1) 0

0 0 0 0 𝐵(𝑒𝑛,𝑗)]
 
 
 
 
 

[
 
 
 
 
𝑒𝑐𝑏 − 𝑒𝑛,2 0 0 0 0

0 𝑒𝑛,1 − 𝑒𝑛,3 0 0 0

⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 𝑒𝑛,𝑗−2 − 𝑒𝑛,𝑗 0

0 0 0 0 𝑒𝑛,𝑗−1 − 𝑒𝑛,𝑎𝑏]
 
 
 
 

[
 
 
 
 
𝑒𝑐𝑏 − 𝑒𝑛,2
𝑒𝑛,1 − 𝑒𝑛,3

⋮
𝑒𝑛,𝑗−2 − 𝑒𝑛,𝑗
𝑒𝑛,𝑗−1 − 𝑒𝑎𝑏 ]

 
 
 
 

+

Δ𝑡

ℎ2

[
 
 
 
 
 
b(e𝑛,1) 0 0 0 0

0 b(e𝑛,2) 0 0 0

⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 b(en,j−1) 0

0 0 0 0 b(e𝑛,j)]
 
 
 
 
 

[
 
 
 
 
1 −2 1 0 ⋯ ⋯ 0
0 1 −2 1 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 1 −2 1 0
0 ⋯ ⋯ 0 1 −2 1]

 
 
 
 

[
 
 
 
 
 
 
𝑒𝑐𝑏
𝑒𝑛+1,1
𝑒𝑛+1,2
⋮

𝑒𝑛+1,𝑗−1
𝑒𝑛+1,𝑗
𝑒𝑎𝑏 ]

 
 
 
 
 
 

=

−

[
 
 
 
 
𝑒𝑛+1,1 − 𝑒𝑛,1
𝑒𝑛+1,2 − 𝑒𝑛,2

⋮
𝑒𝑛+1,𝑗−1 − 𝑒𝑛,𝑗−1
𝑒𝑛+1,𝑗 − 𝑒𝑛,𝑗 ]

 
 
 
 

                         

(6.98) 

Rewrite Eq. 6.98, 

0.5𝑟 ∗ 𝐴𝐶𝑜𝑒𝑓𝑀 ∗𝐷𝐷𝑚𝑎𝑡𝑟𝑖𝑥 ∗𝑊2+0.25 ∗ 𝑅 ∗𝐵𝐶𝑜𝑒𝑓𝑀 ∗ 𝑑𝑖𝑎𝑔(𝐷𝐷𝑚𝑎𝑡𝑟𝑖𝑥 ∗𝑊2)

∗ 𝐷𝐷𝑀𝑎𝑡𝑖𝑥 ∗𝑊2+𝑅 ∗ 𝑏𝐶𝑜𝑒𝑓𝑀 ∗𝐾 ∗ 𝐸𝑛+1+𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑡𝑒𝑟𝑚

= −(𝐸𝑛+1−𝐸𝑛) 

(6.99) 

where, 
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𝑟 =
Δ𝑡

ℎ
 

(6.100) 

𝑅 =
Δ𝑡

ℎ2
 

(6.101) 

𝐴𝐶𝑜𝑒𝑓𝑀 =

[
 
 
 
 
𝐴𝐶(𝑒𝑛,1) 0 0 0 0

0 𝐴𝐶(𝑒𝑛,2) 0 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 𝐴𝐶(𝑒𝑛,𝑗−1) 0

0 0 0 0 𝐴𝐶(𝑒𝑛,𝑗)]
 
 
 
 

 

(6.102) 

𝐵𝐶𝑜𝑒𝑓𝑀 =

[
 
 
 
 
 
𝐵(𝑒𝑛,1) 0 0 0 0

0 𝐵(𝑒𝑛,2) 0 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 𝐵(𝑒𝑛,𝑗−1) 0

0 0 0 0 𝐵(𝑒𝑛,𝑗)]
 
 
 
 
 

 

(6.103) 

𝑏𝐶𝑜𝑒𝑓𝑀 =

[
 
 
 
 
b(e𝑛,1) 0 0 0 0

0 b(e𝑛,2) 0 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 b(en,j−1) 0

0 0 0 0 b(e𝑛,j)]
 
 
 
 

 

(6.104) 

𝑑𝑖𝑎𝑔(𝐷𝐷𝑚𝑎𝑡𝑟𝑖𝑥 ∗ 𝑊2) =

[
 
 
 
 
𝑒𝑐𝑏 − 𝑒𝑛,2 0 0 0 0

0 𝑒𝑛,1 − 𝑒𝑛,3 0 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 𝑒𝑛,𝑗−2 − 𝑒𝑛,𝑗 0

0 0 0 0 𝑒𝑛,𝑗−1 − 𝑒𝑛,𝑎𝑏]
 
 
 
 

 

(6.105) 
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𝐷𝐷𝑚𝑎𝑡𝑟𝑖𝑥 ∗ 𝑊2 =

[
 
 
 
 
𝑒𝑐𝑏 − 𝑒𝑛,2
𝑒𝑛,1 − 𝑒𝑛,3

⋮

𝑒𝑛,𝑗−2 − 𝑒𝑛,𝑗
𝑒𝑛,𝑗−1 − 𝑒𝑎𝑏]

 
 
 
 

 

(6.106) 

𝐷𝐷𝑚𝑎𝑡𝑟𝑖𝑥 =

[
 
 
 
 
−1 0 1 0 ⋯ ⋯ 0

0 −1 0 1 ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ −1 0 1 0

0 ⋯ ⋯ 0 −1 0 1]
 
 
 
 

 

(6.107) 

𝐾 =

[
 
 
 
 
−2 1 0 ⋯ ⋯

1 −2 1 ⋱ ⋱

⋱ ⋱ ⋱ ⋱ ⋱

⋱ ⋱ 1 −2 1

⋯ ⋯ 0 1 −2]
 
 
 
 

 

(6.108) 

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑡𝑒𝑟𝑚 =
Δ𝑡

ℎ2

[
 
 
 
 
b(e𝑛,1) 0 0 0 0

0 b(e𝑛,2) 0 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 b(en,j−1) 0

0 0 0 0 b(e𝑛,j)]
 
 
 
 

[
 
 
 
 
𝑒𝑐𝑏
0

⋮

0

𝑒𝑎𝑏]
 
 
 
 

 

(6.109) 

𝑊2 =

[
 
 
 
 
 
 
𝑒𝑐𝑏
𝑒𝑛,1
𝑒𝑛,2
⋮

𝑒𝑛,𝑗−1
𝑒𝑛,𝑗
𝑒𝑎𝑏 ]

 
 
 
 
 
 

 

(6.120) 
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𝐸𝑛 =

[
 
 
 
 
𝑒𝑛,1
𝑒𝑛,2
⋮

𝑒𝑛,𝑗−1
𝑒𝑛,𝑗 ]
 
 
 
 

 

(6.121) 

𝐸𝑛+1 =

[
 
 
 
 
𝑒𝑛+1,1
𝑒𝑛+1,2
⋮

𝑒𝑛+1,𝑗−1
𝑒𝑛+1,𝑗 ]

 
 
 
 

 

(6.122) 

Rearrange Eq. 6.99, 

(𝐼 + 𝐷𝑖𝑓𝑓𝑢𝑡𝑒𝑟𝑚)𝐸𝑛+1 = 𝐸𝑛 − 𝐴𝐶𝑡𝑒𝑟𝑚 − 𝐵𝑡𝑒𝑟𝑚 − 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑡𝑒𝑟𝑚 

(6.123) 

where,  

𝐼 = 𝑗×𝑗 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 

𝐴𝐶𝑡𝑒𝑟𝑚 = 0.5𝑟 ∗ 𝐴𝐶𝑜𝑒𝑓𝑀 ∗ 𝐷𝐷𝑚𝑎𝑡𝑟𝑖𝑥 ∗ 𝑊2 

𝐵𝑡𝑒𝑟𝑚 = 0.25 ∗ 𝑅 ∗ 𝐵𝐶𝑜𝑒𝑓𝑀 ∗ 𝑑𝑖𝑎𝑔(𝐷𝐷𝑚𝑎𝑡𝑟𝑖𝑥 ∗ 𝑊2) ∗ 𝐷𝐷𝑀𝑎𝑡𝑖𝑥 ∗ 𝑊2 

𝐷𝑖𝑓𝑓𝑢𝑡𝑒𝑟𝑚 = (𝑅 ∗ 𝑏𝐶𝑜𝑒𝑓𝑀 ∗ 𝐾) 

Then the void ratio at the new time interval, n+1, can be solved via MATLAB.  
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Appendix 3 MATLAB code example 

Appendix 3.1 Large strain consolidation for 5 kPa surcharge 

Materials: oil sands tailings (MFT-A) 

clear 

clc 

Configuration of tailings 

H0=0.11; % initial height of tailings (unit m) 

e0=4.0; %initial void ratio of tailings 

surcharge=5; %surcharge pressure (unit kPa) 

gammas=25.1; %unit weight (kN/m^3) of MFT-A solid 

gammaw=9.81; %unit weight (kN/m^3) of water 

Definition of variables 

s0=1/(1+e0)*H0; % initial height in material coordinate 

j=250; % grid in s-direction; 

dels=s0/(j+2); %thickness of each layer 

t=450; % time in hours 

delt=0.1; %time interval 

n=t/delt; % grid in time-space n time steps 

 

r=delt/dels; % r coefficient 

R=delt/dels^2; % R coefficient 

e=zeros(j,n); % void Ratio matrix with size of j by n 

e(:,1)=e0; % initial value of void ratio defined as e0 

 

I=sparse(eye(j)); % Define an identity matrix with js '1' in its diagonal 

K=sparse(toeplitz([-2 1 zeros(1, j-2)])); % Generate a 1-D 2 order difference 

matix 

D=sparse(-diag(ones(j-1,1),-1)+diag(ones(j-1,1),1)); % Generate a 1-D 1 order 

difference matix 

feo=zeros(1,n); % feo matix in boundary term 

Aboundary=zeros(1,n); % Boundary matrix at anode in boundary term 

Cboundary=zeros(1,n); % Boundary matrix at Cathode in boundary term 

ACterm=zeros(size(e)); % generate matrix for convection term 

Bterm=zeros(size(e)); % generate matrix for square of 1st order difference 

Diffuterm=zeros(size(e)); % generate matrix for diffusion term 

H=zeros(1,n); % generate a vector for height changes 
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S=zeros(1,n); % generate a vector for settlement changes 

T=zeros(1,n); % generate a vector for plotting time 

sigmaeff=zeros(1,n); % generate a vector for effective stress 

KAb=[zeros(1,j-1) 1]'; % anode boundary matrix 

KCb=[1 zeros(1,j-1)]'; % cathode boundary matrix 

KDmatrix=[KCb K KAb]; % 2nd order difference matrix with boundary value 

DDmatrix=[-KCb D KAb]; % 1st order difference matrix with boundary value 

A=zeros(size(e)); % Coefficient matrix 

b=zeros(size(e)); % Coefficient matrix 

B=zeros(size(e)); % Coefficient matrix 

W1=zeros(j+1,n); % generate a vector for void ratio with cathode boundary 

W2=zeros(j+2,n); % generate a vector for void ratio with two side boundary 

Function of parameters 

Hydraulic conductivity-void ratio function  

chydrau=6*10^-11*3600; % coefficient ch1 (m/h) 

ahydrau=3.9055; % coefficient a1 

kh= @(e) chydrau*e.^ahydrau; % function of kh(e) 

dkh=@(e) ahydrau*chydrau*e.^(ahydrau-1); % 1st derivative of kh(e) to e 

f=@(e) (chydrau*e.^ahydrau)./(e + 1); % function of f=kh=@((e)/(e+1) 

df= @(e) chydrau*ahydrau*e.^(ahydrau-1)./(1+e)-

(chydrau*e.^ahydrau)./((1+e).^2);  % 1st derivative of f(e) to e 

Effetive stress (sigma)-void ratio function 

csigma=2.403; 

asigma=-1/0.193; 

sigma= @(e) (e./csigma).^asigma; 

dsigma= @(e) (asigma.*(e./csigma).^asigma)./e; 

dsigma2= @(e) (asigma^2.*(e./csigma).^asigma)./e.^2-

(asigma2.*(e./csigma).^asigma)./e.^2; 

Time loop for differential equation in time space grid 

for l=1:n 

 

   % Boundary condition for free top 

   sigmaboundaryA=surcharge;  

   Aboundary(l)=csigma*sigmaboundaryA^(1/asigma); 

   AB=[zeros(1,j-1) Aboundary(l)]'; 

 

   % Boundary condition for free bottom 
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   sigmaboundaryC=surcharge+H0/(1+e0)*(e0*gammaw+gammas);  

   Cboundary(l)=csigma*sigmaboundaryC^(1/asigma); 

   CB=[Cboundary(l) zeros(1,j-1)]'; 

   W1(:,l)=[Cboundary(l) e(:,l)']'; 

   W2(:,l)=[Cboundary(l) e(:,l)' Aboundary(l)]'; 

   % Term A-convection term for hydraulic flow 

   A(:,l)=(2.51-1)*df(e(:,l)); 

   ACoefM=diag(A(:,l)); 

   % Term b&B-diffusion term of flow 

   b(:,l)=(1/gammaw)*f(e(:,l)).*dsigma(e(:,l)); 

   B(:,l)=(1/gammaw)*(df(e(:,l)).*dsigma(e(:,l))+f(e(:,l)).*dsigma2(e(:,l))); 

   BCoefM=diag(B(:,l)); 

   bCoefM=diag(b(:,l)); 

   % Coefficient matrix for differential equation 

   ACterm(:,l)=0.5*r*(ACoefM)*(DDmatrix*W2(:,l)); 

   Bterm(:,l)=0.25*R*(BCoefM)*(diag(DDmatrix*W2(:,l))*(DDmatrix*W2(:,l))); 

   Diffuterm(:,l)=R*(bCoefM)*(KDmatrix*W2(:,l)); 

   Boundaryterm=R*bCoefM*(AB+CB); 

   % Backward in time-Centered in space 

   Newtimeterm=I+R*(bCoefM)*K; 

   Oldtimeterm=-ACterm(:,l)-Bterm(:,l)+e(:,l)-Boundaryterm; 

   e(:,l+1)=(Newtimeterm)\(Oldtimeterm);  

   % Settlement and Height changes 

   T(l)=l*delt; 

   H(l)=dels*sum(W2(:,l))+(j+2)*dels; 

   S(l)=H0-H(l); 

 

end 

Plot the results 

Height=H./H0; 

Verti=S./H0; 

plot(T, Height); 

axis([0 inf 0 1.2]); 

xlabel('Time (hours)','FontName','Times New Roman','FontSize',12); 

ylabel('Normalized height, H_t/H_0 (%)','FontName','Times New 

Roman','FontSize',12); 

hold on 
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Appendix 3.2 Large strain consolidation for EK combined with 5kPa 

surcharge 

Materials: oil sands tailings (MFT-A) 

clear 

clc 

Configuration of tailings 

H0=0.11; % initial height of tailings (unit m) 

e0=4.3; %initial void ratio of tailings 

surcharge=5; %surcharge pressure (unit kPa) 

gammas=25.1; %unit weight (kN/m^3) of MFT-A solid 

gammaw=9.81; %unit weight (kN/m^3) of water 

ic=15; %current density (unit A/m^2) 

Definition of variables 

s0=1/(1+e0)*H0; % initial height in material coordinate 

j=150; % grid in s-direction; 

dels=s0/(j+1); %thickness of each layer 

t=1000; % time in hours 

delt=0.1; %time interval 

n=t/delt; % grid in time-space n time steps 

 

r=delt/dels; % r coefficient 

R=delt/dels^2; % R coefficient 

e=zeros(j,n); % void Ratio matrix with size of j by n 

e(:,1)=e0; % initial value of void ratio defined as e0 

 

I=sparse(eye(j)); % Define an identity matrix with js '1' in its diagonal 

K=sparse(toeplitz([-2 1 zeros(1, j-2)])); % Generate a 1-D 2 order difference 

matix 

D=sparse(-diag(ones(j-1,1),-1)+diag(ones(j-1,1),1)); % Generate a 1-D 1 order 

difference matix 

 

feo=zeros(1,n); % feo matrix in boundary term 

Aboundarydelta=zeros(1,n); % Aboundarydelta matrix (anode side) in boundary 

term 

Aboundary=zeros(1,n); % Boundary matrix at anode in boundary term 

Cboundary=zeros(1,n); % Boundary matrix at Cathode in boundary term 
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Aterm=zeros(size(e)); % generate matrix for convection term 

Bterm=zeros(size(e)); % generate matrix for square of 1st order difference 

Diffuterm=zeros(size(e)); % generate matrix for diffusion term 

H=zeros(1,n); % generate a vector for height changes 

S=zeros(1,n); % generate a vector for settlement changes 

T=zeros(1,n); % generate a vector for plotting time 

sigmaeff=zeros(1,n); % generate a vector for effective stress 

KAb=[zeros(1,j-1) 1]'; % anode boundary matrix 

KCb=[1 zeros(1,j-1)]'; % cathode boundary matrix 

KDmatrix=[KCb K KAb]; % 2nd order difference matrix with boundary value 

DDmatrix=[-KCb D KAb]; % 1st order difference matrix with boundary value 

A=zeros(size(e)); % Coefficient matrix 

b=zeros(size(e)); % Coefficient matrix 

B=zeros(size(e)); % Coefficient matrix 

f2=zeros(size(e)); % Coefficient matrix 

c=zeros(size(e)); % Coefficient matrix 

C=zeros(size(e)); % Coefficient matrix 

W1=zeros(j+1,n); % generate a vector for void ratio with cathode boundary 

W2=zeros(j+2,n); % generate a vector for void ratio with two side boundary 

Function of parameters 

Hydraulic conductivity-void ratio function 

chydrau=6*10^-11*3600; % coefficient ch1 (m/h) 

ahydrau=4.1947; % coefficient a1 

kh= @(e) chydrau*e.^ahydrau; % function of kh(e) 

dkh=@(e) ahydrau*chydrau*e.^(ahydrau-1); % 1st derivative of kh(e) to e 

f=@(e) (chydrau*e.^ahydrau)./(e+1); % function of f=kh=@((e)/(e+1) 

df= @(e) chydrau*ahydrau*e.^(ahydrau-1)./(1+e)-(chydrau*e.^ahydrau)./((1+e).^2);  % 1st 

derivative of f(e) to e 

Electrical conductivity-void ratio function 

ck1=0.6888; 

ck2=7.2075; 

kappa=@(e) ck1.*(e./(1+e)).^ck2; 

dkappa=@(e) -ck2/ck1.*(1-e./(1+e))./(e.*(e./(1+e)).^ck2); 

Coefficient of electroosmotic-void ratio function 

ake3=18.441; 

ke0=0.0016; 

ke=@(e) ke0.*(e./(1+e)).^ake3; 
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dke=@(e) ke0.*(ake3.*((e./(1+e)).^ake3).*(1./(1+e)-e./(1+e).^2).*(1+e))./e; 

Effective stress (sigma)-void ratio function 

csigma2= 2.403;%1.9803; 

asigma2= -1/0.193;%-1/0.147; 

sigma= @(e) (e./csigma2).^asigma2; 

dsigma= @(e) (asigma2.*(e./csigma2).^asigma2)./e; 

dsigma2= @(e) (asigma2^2.*(e./csigma2).^asigma2)./e.^2-

(asigma2.*(e./csigma2).^asigma2)./e.^2; 

desigma= @(sigma) csigma2*(1/asigma2)*sigma.^(1/asigma2-1); 

Time loop for differential equation in time space grid 

for l=1:n 

 

   feo(l)=gammaw*ic*ke(e(j,l))/(kh(e(j,l))*kappa(e(j,l))); 

   Aboundarydelta(l)=(-gammas+gammaw-feo(l)*(1+e(j,l)))*desigma(sigma(e(j,l))); 

   Aboundary(l)=e(j-1,l)-2*dels*Aboundarydelta(l);  

   AB=[zeros(1,j-1) Aboundary(l)]';  

 

   % Boundary condition for free bottom 

 

   sigmaboundaryC=surcharge+H0/(1+e0)*(e0*gammaw+gammas);  

   Cboundary(l)=csigma2*sigmaboundaryC^(1/asigma2); 

   CB=[Cboundary(l) zeros(1,j-1)]'; 

   W1(:,l)=[Cboundary(l) e(:,l)']'; 

   W2(:,l)=[Cboundary(l) e(:,l)' Aboundary(l)]'; 

   % Term A-convection term for hydraulic flow 

   A(:,l)=(2.51-0.981)*df(e(:,l)); 

   ACoefM=diag(A(:,l)); 

   % Term b&B-diffusion term of flow 

   b(:,l)=(1/gammaw)*f(e(:,l)).*dsigma(e(:,l)); 

   B(:,l)=(1/gammaw)*(df(e(:,l)).*dsigma(e(:,l))+f(e(:,l)).*dsigma2(e(:,l))); 

   BCoefM=diag(B(:,l)); 

   bCoefM=diag(b(:,l)); 

   % Term C-electroosmotic convection term 

   f2(:,l)=ic.*(((ke(e(:,l)))).*dkappa(e(:,l))+dke(e(:,l))./kappa(e(:,l))); 

   C(:,l)=f2(:,l); 

   CCoefM=diag(C(:,l)); 

   % Coefficient matrix for differential equation 

   Aterm(:,l)=0.5*r*(ACoefM+CCoefM)*(DDmatrix*W2(:,l)); 

   Bterm(:,l)=0.25*R*(BCoefM)*(diag(DDmatrix*W2(:,l))*(DDmatrix*W2(:,l))); 
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   Diffuterm(:,l)=R*(bCoefM)*(KDmatrix*W2(:,l)); 

   Boundaryterm=R*bCoefM*(AB+CB); 

 

   % Backward in time-Centered in space 

   Newtimeterm=I+R*(bCoefM)*K; 

   Oldtimeterm=-Aterm(:,l)-Bterm(:,l)+e(:,l)-Boundaryterm; 

   e(:,l+1)=(Newtimeterm)\(Oldtimeterm);  

 

   % Settlement and Height changes 

   T(l)=l*delt; 

   H(l)=dels*sum(W1(:,l))+(j+1)*dels; 

   S(l)=H0-H(l); 

end 

Plot the results 

Height=H./H0; 

Verti=S./H0; 

subplot(2,1,1); 

plot(T, Verti,'-r'); 

axis([0 inf 0 1.2]); 

xlabel('Time (hours)','FontName','Times New Roman','FontSize',12); 

ylabel('Normalized water drainage, V_w/V_0 (%)','FontName','Times New 

Roman','FontSize',12); 

str1={'(a)'}; 

text(-15,1.4,str1,'FontName','Times New Roman','FontSize',12) 

hold on; 

subplot(2,1,2); 

plot(T, Height,'-b'); 

axis([0 inf 0 1.2]); 

xlabel('Time (hours)','FontName','Times New Roman','FontSize',12); 

ylabel('Normalized height, H_t/H_0 (%)','FontName','Times New 

Roman','FontSize',12); 

str2={'(b)'}; 

text(-15,1.4,str2,'FontName','Times New Roman','FontSize',14) 

hold on; 

 

 

Published with MATLAB® R2016a 
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