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Abstract 

Ischemic heart disease is the leading cause of death, and reperfusion which can restore blood 

flow is the primary therapy. However, reperfusion can induce further damage to 

cardiomyocytes, a condition described as ischemia-reperfusion (I/R) injury. I/R is now 

recognized as a combination determining the final myocardial infarction size. Although 

the mechanisms underlying I/R-induced cardiac injury remain incompletely understood, 

emerging evidence suggests that intracellular Ca2+ mishandling during I/R plays a key role in 

cell death. Junctophilin-2 (JPH2) is a junctional membrane-binding structural protein. It 

mechanically maintains the fixed distance between the T-tubule and the sarcoplasmic 

reticulum (SR), thus allowing the proper Ca2+ -induced Ca2+ release for stable excitation-

contraction coupling. Down-regulation of JPH2 has been observed in diseased hearts and is 

related to cardiac dysfunction and T-tubule remodeling. In this study, we show that the 

protein levels of JPH2 are down-regulated in cardiomyocytes following 

hypoxia/reoxygenation (H/R), a condition simulating I/R. Up-regulation of JPH2 protects 

cardiomyocytes against H/R-induced apoptotic cell death. Furthermore, we reveal that up-

regulation of JPH2 reduces ryanodine receptor-2 (RyR2)-mediated SR Ca2+ leak and inhibits 

calcium-dependent calpain activation in H/R-stimulated cardiomyocytes. Lastly, up-

regulation of JPH2 prevents endoplasmic reticulum stress in response to H/R. In summary, 

we demonstrate for the first time that JPH2 prevents H/R-induced apoptosis by blocking Ca2+ 

leakage via RyR2 in cardiomyocytes. Thus, up-regulating JPH2 may represent a new 

therapeutic strategy to treat ischemic heart disease. 
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Chapter 1  

1 Introduction 

1.1 Myocardial ischemia/reperfusion injury 

Cardiovascular disease (CVD) is the leading cause of death globally. It kills more than 

17.3 million people per year, and the number is predicted to climb to 23.6 million by 

2030 [1]. In Canada, 1.6 million people are suffering from CVD, and more than 66,000 

Canadians die from it each year, nearly one death every seven minutes [2]. Ischemic heart 

disease (IHD), also known as coronary artery disease (CAD), is the most common and 

deadly type of CVD, accounting for 46% of cardiovascular deaths in men and 38% in 

women [3]. 

Most IHDs are related to coronary atherosclerosis, a formation of plaque involving 

intense inflammatory and immunological developments on the artery wall [4]. A 

narrowed coronary artery cuts down the blood flow to supply myocardial oxygen and 

nutrients, which decreases ATP generation and causes myocardial injury [5]. The most 

severe manifestation is when the atherosclerotic plaque ruptures and completely occludes 

the coronary artery, a condition called myocardial infarction [6]. A short period after 

oxygen deprivation (ischemia), anaerobic glycolysis engages and substitutes oxidative 

phosphorylation as the significant source of ATP production to maintain the basic energy 

demand in the myocardium [7]. Cardiac contraction is abated to reduce energy demand in 

the same way as the ATP-consuming biosynthetic processes including gluconeogenesis 

and lipid and protein synthesis. However, if the ischemic event continues, the glycolytic 

pathway is unable to remedy ATP depletion and insufficient to maintain the minimal 

cellular metabolism [8]. The entire cardiomyocyte becomes swollen due to the influx of 

sodium and water caused by the failure of the ATP sodium pump, leading to cytoskeleton 

dispersion, a dilated endoplasmic reticulum, and the formation of "blebs" at the cell 

surface [9]. Even at this point, the cellular derangement is still repairable if the hypoxia 

can be reversed. If ischemia duration further extends, intensely disturbed intracellular 

ions, especially impairment of Ca2+ homeostasis, activates membrane-bond endogenous 
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phospholipase and consequently accelerates the degradation of membrane phospholipids 

[10]. As a result, plasma and organelle membranes are dysfunctional. Once the cells lose 

the permeability barrier, the cellular damage becomes irreversible, and necrosis ensues 

[11]. Accordingly, the crucial step to rescue the myocardium from lethal cell injury is to 

remove the ischemic condition when the damage remains reversible. Studies of 

reperfusion were initiated 40 years ago by Marko et al. [12] and Ginks et al. [13], and it 

has been proven that therapies to restore blood flow in ischemic myocardium salvage 

reversibly injured cardiomyocytes from necrosis. Since then, reperfusion strategies like 

thrombolysis, intervention, and bypass surgery have been widely incorporated into 

clinical practice during the last three decades [14]. This therapy limits the extent of 

infarct size, preserves the cardiac contraction function, and prevents the onset of heart 

failure, which all ultimately lead to a significant reduction in the acute mortality after 

myocardial infarction [15]. However, as a result of a decrease in mortality rate for acute 

myocardial infarction due to improved reperfusion therapies, there is an increase in the 

incidence of heart failure after myocardial infarction [16]. Post-myocardial infarction 

heart failure is now the most rapidly rising cardiovascular condition to affect the lives of 

Canadians. Over 500,000 Canadians are afflicted with heart failure, and up to 50% of 

them die within five years of diagnosis [17]. Thus, myocardial infarction and subsequent 

heart failure is a tremendous personal struggle for Canadians and a significant financial 

burden for our health care system [18]. 

In fact, studies have shown that reperfusion itself induces further disruptions and 

additional injuries secondary to the ischemic damage, a condition described as 

“ischemia/reperfusion (I/R) injury” [19]. I/R injury not only reduces the benefits of blood 

flow restoration but also converts a population of cardiomyocytes from reversible to 

irreversible injury [4, 5]. The four most recognized forms of I/R injury include 

arrhythmia, myocardial stunning, microvascular obstruction, and lethal myocardial injury 

[20]. Paradoxically, although reperfusion could damage the myocardium, which may 

cause heart failure later, until now, there has been no better solution than this strategy to 

rescue the severe acute ischemic heart from a total dysfunction. Therefore, the clinical 

research has shifted from solely ischemic damage to I/R injury together as the important 

combination contributing to the final myocardial infarct size [21]. 
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For many years, necrosis was the predominant form of I/R-induced cell death [22]. This 

random, uncontrolled sudden cell death happens to those already-damaged ischemic cells 

in the initial minutes after reperfusion in response to the overwhelming stress [23]. 

Recent studies have revealed that apoptosis is not only involved in the I/R injury but also 

has a significant contribution to the IR injury [24]. Unlike necrosis, this programmed, 

energy-consuming form of cell death happens to those peripheral ischemic cells that 

suffer lower damage comparing to the central ischemic cells and survive the initial 

minutes of reperfusion [25]. These cells can be rescued since apoptotic progression 

requires time and can be regulated. Therefore, prevention of late apoptosis in prolonged 

reperfusion has attracted more attention as a therapeutic strategy to reduce IR injury after 

myocardial infarction [8, 25, 26]. Although the mechanisms of I/R-induced cell death 

(necrosis and apoptosis) have not been completely understood, ample evidence suggests 

that calcium overload and altered calcium handling is one of the major mediators 

initiating disruption and lethal cell injury.  

1.2 Ca2+ mediated cell death in ischemia-reperfusion 

1.2.1 Ca2+: a universal second messenger 

In the long-time river of evolution, the selection of Ca2+ as the universal carrier of signals 

had been the hallmark of the transition from the unicellular to the multicellular life form 

[27, 28]. The exchange of intercellular signals allows a higher level of functional 

interplay and coordination among the cells of the organisms other than just the 

competition of nutrients [27]. However, extracellular-secreted signal molecules are 

complex and mostly act as a first messenger that binds to the receptors on the target cell 

membrane and may not cross it. Thus, it requires the second messenger to interact and 

transmit the signals within the cell [29]. The Ca2+, given its chemical properties, is one of 

the perfect molecules to accommodate the binding signals. Unlike other active-site metals 

that directly participate in the enzyme catalysis, Ca2+ is an allosteric metal and binds to 

the sites that are different from the active site [30]. This character makes Ca2+ a better 

modulator to enzyme proteins since it has the capacity not only to activate but also to 

inhibit them [31]. Moreover, Ca2+ can also be controlled tightly, based on its 

characteristics: binding it reversibly, with particular concentration and appropriate 
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affinity to cellular proteins [32]. For these reasons, Ca2+ has been selected as a universal 

intracellular messenger that regulates numerous general biological processes to all cells, 

such as gene transcription, metabolic pathways, differentiation, and cell growth or death. 

It also regulates other cell-specific processes like neural regulation and muscle 

contraction [33]. 

1.2.2 Ca2+ signaling in cardiomyocytes 

Normal cardiac function and myofilament contraction rely on Ca2+ signaling which 

transfers the depolarizing current to the contractile force of each sarcomere [34]. In every 

cardiac cycle, a depolarizing action potential is derived from the sinoatrial (SA) node. 

This current spreads through the right to the left atrium and pauses for a 0.1-s period (in 

humans) when arriving the atrioventricular (AV) node, to complete the atrial systole. 

After the short stop, the depolarization spreads through the Purkinje fibers to the left right 

ventricular separately to finish the whole cardiac contraction cycle [35]. When 

depolarizing action current reaches the T-tubules, it triggers the L-type Ca2+ channels 

(LTCCs) to release small flows of Ca2+ (Con < 10 μM, or “sparklet”) into the gap called 

dyad cleft between the cell membrane and the sarcoplasmic reticulum(SR)/endoplasmic 

reticulum(ER) [36]. The "sparklet Ca2+" induces the opening of ryanodine receptors 

2(RyR2) which is plasmalemma-situated on the SR. It consequently mobilizes a large 

Ca2+ flow (Con >100 μM) releasing into the dyad cleft as known as "Ca2+ spark", a 

phenomena described as “Ca2+-induced Ca2+ release (CICR) or Ca2+ coupling” [37].  

During a single action potential, thousands of RyR2 sites are simultaneously activated by 

their corresponding L-type VOCCs provided "Ca2+sparklet" in dyad cleft. This process 

produces an average global Ca2+ increase of 500 nM to ~1 μM [38]. This amount of Ca2+ 

subsequently engages the Ca2+-binding component, troponin (TnC), which is sensitive 

over that range. It triggers the filaments shorting to provide the contractile force for 

pumping blood [39]. In the end, these unique junctional membrane complexes (JMCs) 

successfully transport an action current to create a synchronic sarcomere contraction of 

each article and ventricle. After triggering the contractile units, Ca2+ dissociates from the 

TnC and rapidly removes from the cytosol to prepare for the next round of CICR [40]. 

The efflux of dissociated Ca2+ is mainly taken back to the SR by sarco/endoplasmic 
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reticulum Ca2+ ATPase (SERCA2a) pump [41] and goes through extrusion by the cell 

membrane Na+/Ca2+ exchanger (NCX) [42]. 

 

Figure 1: Ca2+ cycling in cardiomyocyte, cited from[43] 

1.2.3 Ca2+ homeostasis in cardiomyocytes 

Considering Ca2+ is imperative in the excitation-contraction (EC) coupling of each 

cardiomyocyte, it is of utmost importance to maintain a low intracellular diastole Ca2+ 

concentration, which guarantees a simultaneous sarcomere contraction in the next cardiac 

beating cycle [27]. Besides, the Ca2+ carrying signals modulate the enzyme process and 

other essential biochemical activities through its precisely controlled elevation in the 

cytosol and subcellular compartments [30]. So, after the transit elevation demanded by 

the contraction, Ca2+ concentration should return to the low/intermediate nM range. A 

protracted Ca2+ increase can trigger abnormal activities that the cells cannot tolerate [44]. 

In cytosol, the concentration of free Ca2+ is normally maintained to be as low as at 100 to 

200 nM. SR luminal Ca2+ is one of the main sources, and it can raise the cytosol Ca2+ 

concentration to over 100 μM during the CICR, as mentioned above [37]. Extracellular 

Ca2+ is another important source, in which the Ca2+ concentration fixed at 3mM, with 
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approximately half being ionized [45]. The luminal SR deposit ensured the fast reaction 

of mobilizable Ca2+, which contributes to the sarcomere contraction, along with the high-

concentration extracellular pool that creates a large gradient and electrochemical force on 

Ca2+ to entering the cell conveniently as a second messenger and modulator [39]. The 

transport of Ca2+ across membranes is precisely controlled by a set of different 

components in cardiomyocytes, including channels (L-type Ca2+ channels and RyR2 

receptors), ATPases (sarco/endoplasmic reticulum Ca2+ ATPase), and exchangers 

(Na+/Ca2+ exchanger), all of which are directly engaged in the process of CICR [34]. 

Other components, such as store-operated Ca2+ entry channels (SOCEs), inositol-(1,4,5)-

trisphosphate receptors (InsP3R), and plasma membrane Ca2+ ATPase (PMCA) also 

participate in cytosol Ca2+ regulation and stabilization [46]. Furthermore, Ca2+ -binding 

proteins are another crucial system maintaining intracellular Ca2+ homeostasis. Some of 

them are pure buffering proteins, like calsequestrin, which are contained in SR and 

determine the calcium storage [47]. Calsequestrin also coordinates with RyR2 for 

regulating Ca2+ release during the process of EC coupling [48]. Others named Ca2+ 

sensors, like calmodulin (CaM), not only regulate the Ca2+ concentration but also process 

and decode the Ca2+ signal. CaM mediates the action of cyclic ADP-ribose (cADPR), 

which acts as an endogenous regulator of CICR in cardiomyocytes [49]. Using 

immunoblot assays, Lee, Aarhus, and Graeff (1995) found that CaM was responsible for 

conferring the sea urchins eggs an increased sensitivity to cADPR, thus playing a critical 

role in calcium homeostasis [50]. 

Thanks to this strong adjusting and buffering system, Ca2+ is tightly regulated in 

cardiomyocytes. However, under some conditions of overwhelming stress and 

pathogenesis, Ca2+ could lose its homeostasis, and the most common situation is the 

cytosol could not maintain the low basal concentration [51]. The first impact of the Ca2+ 

dysregulation would be the contraction process. Termination of CICR is largely 

dependent on the depletion of calcium. Thus, if Ca2+ is not removed, CICR will remain at 

peak levels, and cardiac relaxation will not be achieved [52]. Apart from being a cellular 

powerhouse, mitochondrial ability to handle elevated cytosolic Ca2+ is critical to cellular 

processes and survival [53]. However, the excessive influx of Ca2+ could impair the ATP 

synthesis and production [54]. Endoplasmic reticulum (ER) is the major Ca2+ storage and 
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is sensitive to the Ca2+ environment changes [55]. An altered Ca2+ level would render the 

ER incapable of supporting cellular functions, such as assembly and folding proteins 

[56]. The impairment of calcium regulation would also induce over-activation of some 

enzymes or proteases, such as calpain, which causes further disruption and damage to the 

cells [57]. A disturbance in calcium homeostasis is, therefore, important in pathological 

development. 

1.2.4 Ca2+ overload after ischemia/reperfusion 

When ischemia occurs, intracellular PH declines progressively due to increased H+ that is 

released by anaerobic glycolysis. The increased H+ activates the primary extrusion 

mechanisms of the Na+/H+-exchanger (NHE) and the Na+-HCO3 cotransporters [58]. The 

fast Na+ influx and the inhibited Na+/K+-ATPase, because of the insufficient ATP 

production, both contribute to the cytosolic Na+ overload [59]. After the rise of Na+, the 

Na+/Ca2+ exchanger (NCX) is converted into its reverse mode, which extrudes the Na+ 

but brings in the Ca2+ [60]. The low ATP concentration also impaired the sarcoplasmic 

reticulum Ca2+-ATPase (SERCA), which further develops the intracellular Ca2+ 

substantial accumulation and overload [61] [Figure 2]. At the onset of reperfusion, 

extracellular H+ is quickly removed by the restored blood flow [62]. The accelerated H+ 

efflux, through the reactivated NHE and Na+-HCO3 cotransporters, corrects the 

intracellular pH but also aggregates Na+ overload and the consequent Ca2+ overload [59]. 

The exacerbated Ca2+ overload causes lethal cell injury, mainly through hypercontraction, 

calpain-mediated proteolysis, and mitochondrial permeability transition [63]. These 

injuries have been demonstrated to cause necrotic cell death shortly after the reperfusion 

in cardiomyocytes close to the ischemic artery. However, the mechanism of late apoptotic 

cell death in surviving cardiomyocytes remains incompletely understood. These 

cardiomyocytes stay farther from the ischemic artery and suffer minor Ca2+ dysregulation 

[59, 62, 64]. The reason why they still undergo apoptosis later after I/R requires further 

investigation.  
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Figure 2: Ca2+ overload after ischemia, cited from [65] 

 

1.3 Junctophilin-2 

1.3.1 The biophysiology of JPH2  

In the year 2000, junctophilin (JPH) was first discovered in rabbit skeletal muscle and 

defined as a crucial member of junctional membrane complexes (JMCs) [66]. Four 

different isoforms are found in the JPH family (JPH 1-4), in which JPH1 is mainly 

expressed in skeletal muscle, and JPH3 and JPH4 are widely expressed in the neurons 

and brain [67, 68]. Junctophilin-2 (JPH2) is the predominant cardiac isoforms. It is 

encoded by the JPH2 gene, which incorporates five coding exons at 20q13.12 [69]. The 

GO annotations associated with the JPH2 gene consist of phosphatidylinositol-4 and 

phosphatidylinositol-3-phosphate binding, as well as 5-bisphosphate binding [70]. 

Substitute splicing has been experienced at this locus and two variations coding different 

isoforms are defined [71]. In human cardiomyocytes, the JPH2 gene encodes a 74kDa 

protein JPH2 with 696 amino acids [72]. It has eight times repeated MORN motifs (14 

amino acid residues) in the N-terminal domain, which binds to the plasma membrane or 
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sarcolemma (T-tubules). At the opposite side, its C-terminal transmembrane segment 

spans the SR/ER membrane. In a putative α-helical region (∼100 amino acids residues) 

forms the structural body basis for this bridging protein [66, 68, 70]. 

1.3.1.1 Role of JPH2 in JMCs construction  

Junctional membrane complexes (JMCs), as mentioned above, were first observed in the 

mid-'50s by Porter and Palade [73]. They are found in all kinds of excitable cells [74, 75]. 

This unique channel's cross-talk structure is necessary for E-C coupling [52, 76]. It has 

been demonstrated that JPH2 is the key anchoring molecule, which mechanically 

maintains the fixed distance between the T-tubule and sarcoplasmic reticulum (SR) [43, 

77]. The importance of JPH2 for JMCs in hearts was first discovered by Takeshima et al. 

in JPH2 knockout mice, which exhibited a defective coupling area with randomly 

irregular Ca2+ transients. Due to the contractile disability, these mice were embryonically 

lethal at E10.5 [66]. Wehrens's group, using inducible cardiac-specific JPH2 knockdown 

mice, confirmed the reduction of JMCs and further demonstrated a causal link between 

loss of JPH2 and defective CICR within JMCs. They crossed shJPH2 mice with α-

myosin heavy chain (αMHC)-MerCreMer (MCM) mice to ensure cardiac-specific 

shRNA expression. MCM-shJPH2 mice with impaired EC coupling also developed acute 

contractile and heart failure [78]. Together, these studies show that JPH2 is an essential 

component that reinforces the structural stability of the JMCs formation, ensuring the 

CICR for stable EC coupling. 

1.3.1.2 Role of JPH2 in T-tubule development  

Transverse tubules (T-tubules) are physical extensions of the surface sarcolemma, which 

invaginate deep into the interior ventricular myocytes and along with the Z-line [79]. It 

transports the depolarizing current to Ca2+ signals via L-type Ca2+ channels (LTCCs), 

which initiate the process of CICR and excite the cardiomyocytes for contraction [80]. In 

neonatal mammalian cardiomyocytes, T-tubules are absent, and the EC coupling was 

conducted by direct Ca2+ influx through promoted sodium-calcium exchanger (NCX) at 

the periphery of the cell [81]. During the early postnatal stage, the development of the T-

tubule network is one of the hallmarks of myocytes maturation, and JPH2 plays a critical 
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role in this process [82]. Studies from Chen et al. [83] and Reynolds et al. [84] both 

demonstrated that cardiac-specific silencing of JPH2 significantly reduced T-tubule 

organization in the heart during the postnatal stage. In contrast, overexpression of JPH2 

accelerated T-tubule maturation by postnatal day 8 [84]. It is highly likely that JPH2 can 

anchor the invaginating sarcolemma to the SR, thereby triggering the development of 

mature T-tubules, which allows full EC-coupling for maximized contraction capacity. 

1.3.1.3 Role of JPH2 in RyR2 stabilization  

Ryanodine receptor 2 (RyR2) is a crucial component of JMCs in cardiomyocytes. It acts 

as the major SR/ER-stored calcium release channel, which directly participates in CICR, 

in charge of SR Ca2+ mobilization for myofilament contraction [76]. Emerging evidence 

suggests that JPH2 has a functional regulatory role in RyR2 stability in addition to the 

JMC structural integrity. Immunoprecipitation targeting RyR2 from mouse heart tissues 

"pulled down" JPH2, suggesting a potential direct interaction between RyR2 and JPH2 

[85]. Recent super-resolution imaging studies of immunofluorescence staining on rat 

ventricle tissues confirmed a strong molecular-scale co-localization between JPH2 and 

RyR2, indicating a direct interaction between them [86, 87]. Studies on adult-onset JPH2 

knockdown mice showed abnormal Ca2+ release through RyR2 and decreased EC-

coupling gain, supporting a regulatory role of JPH2 in RyR2 [88]. Furthermore, Calcium 

imaging and single channel RyR2 recording studies in ventricular-isolated 

cardiomyocytes from JPH2 knockdown mice indicated that JPH2 was a negative 

regulator of RyR2-gating. The loss of JPH2 resulted in aberrant Ca2+ leakage from 

SR/ER through RyR2 [89] [Figure 3]. These data strongly support a new role of JPH2 in 

regulating RyR2 function in cardiomyocytes. However, its pathophysiological 

significance remains to be determined in the heart.  
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Figure 3: Ca2+ leakage through RyR2, cited from [77] 

 

1.3.2 JPH2 and heart diseases 

1.3.2.1 Mutations of JPH2 associated with hypertrophic 
cardiomyopathy 

Hypertrophic cardiomyopathy (HCM) is a cross-age genetic disorder which enlarges a 

portion of myocardium without external stimulations [90]. It is the leading cause of 

sudden cardiac death of young athlete and mostly asymptomatic beforehand [91, 92]. The 

study from Matsuoka's group on murine genetic models first implicated JPH2 

dysregulation to HCM and dilated cardiomyopathy [93]. This finding was supported by a 

clinical study where down-regulated JPH2 was observed in surgically resected 

myocardium from human HCM patients [94]. This study also looked into whether loss of 

JPH2 was sufficient to initiate the myocardial hypertrophy. JPH2 acute suppression in 

HL-1 cells increased the cellular size and induced hypertrophic process with up-

expression of several transcriptional markers such as atrial natriuretic factor, brain 

natriuretic factor, myosin heavy chain, and skeletal actin. The JPH2 expression silencing 

also reduced the transient amplitude and altered Ca2+ homeostasis [94]. Based on these 

findings, several studies have been conducted to identify whether JPH2 gene mutation 

contributes to the HCM. Three unique mutations JPH2-T141H, S101R, and S165F were 

first identified from 388 North American HCM referral patients [95]. These probands, 

which had the clear echocardiogram and other diagnosed evidence, were distinct from the 
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mutated genes in sarcomere that were traditionally associated with HCM development. 

Furthermore, the study demonstrated that JPH2-T141H, S101R, and S165F mutations 

were sufficient to induce hypertrophic remodeling in cardiac immortalized cells, along 

with ablated CICR amplitude and disrupted cellular ultrastructure [95]. Additionally, two 

genetic variants JPH2-R436C and G505S have been found in a limited cohort of Japanese 

patients with HCM [96]. However, further studies are required to provide in vitro or in 

vivo evidence to support the pathogenicity of these variants, for the reason that the case 

group was small and the specificity was questioned of these two variants to HCM [96, 

97]. Recently, another JPH2 gene missense mutation annotated as E169K was uncovered 

from an Italian cohort of 203 diagnosed HCM referrals [88]. This mutation was also 

identified to be associated with the development of atrial fibrillation(AF) in a small 

family of HCM probands [88]. Subsequent study on Pseudo-knockin (PKI) mouse 

models expressing E169K mutant, which localized to the structural α-helical domain of 

JPH2, showed a reduced RyR2-JPH2 binding area with increased RyR2-mediated SR 

Ca2+ leak. This alteration disrupted the JMC's stabilization, leading to aberrant 

spontaneous Ca2+ waves and enlarged spark frequency, which as a consequence has a 

higher incidence of induced AF in the mice cardiomyocytes [88]. These results suggest 

that defective JPH2 may be implicated in the development of HCM and disturbance of 

Ca2+ homeostasis in cardiomyocytes.    

1.3.2.2 Role of JPH2 in T-tubule remodeling in failing hearts 

Heart failure refers to the physiological state when cardiac output is no longer sufficient 

to keep up with the required demands of systemic metabolism. This end dysfunction 

stage could be progressively developed from cardiomyopathy, cardiac stress, or other 

chronic factors [98]. It has been demonstrated that severe reduction of myocardial 

contractility attributed to impaired Ca2+ handling is the key characteristic during the 

progression of heart failure and leads to the final cardiac death [99, 100]. 

Many studies have observed T-tubule remodeling, including T-tubule reduction, 

disorganization, and dilation, from different heart failure animal models and human 

patients with heart failure [101-103]. These studies provided compelling evidence that T-

tubule structural remodeling is the key pathological alteration during the progression of 
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many forms of cardiac disease towards heart failure [104, 105]. There is a direct link 

between T-tubule remodeling and dysfunction of SR Ca2+ release [106-108]. Due to the 

structural disorganization of the T-tubule system, the propagation of the action potential 

from the cell surface to T-tubule network experiences some disturbance [109, 110]. Also, 

the structural disorganization state causes T-tubule remodeling to change the distribution 

and organization of the ion carriers resulting in alteration of the shape and the duration of 

action potentials [111-113]. 

As previously mentioned, JPH2 mechanically maintains the structural integrity of T-

tubule/SR coupling and plays an important role in T-tubule development [43, 82]. 

Emerging evidence from recent studies suggest that down-regulation or mislocalization 

of JPH2 contributes to T-tubule remodeling in failing heats. In a transgenic mouse model 

of Gαq-dependent heart failure, JPH2 was cleavage by activated calpain and resulted in 

T-tubule disruption with defect Ca2+ transient. The treatment of calpain inhibitor or 

turning off Gαq prevented calpain-dependent proteolysis of JPH2, and more importantly 

reversed the t-tubule remodeling and the development of heart failure [114]. Moreover, in 

a murine model of pressure overload-induced hypotrophy, the transportation of a kinesin-

driven microtubule densification took part in JPH2 mislocalization, which correlated with 

T-tubule remodeling and led to heart failure [115]. On the other hand, in a transgenic 

mice model, cardiac-specific JPH2 overexpression did not alter the baseline cardiac 

function, but strengthened the T-tubules/junctional SR-coupled dyads, which protected 

the cardiomyocytes from pressure-overload induced T-tubule remodeling and heart 

failure development [116]. This effect was also confirmed by the AAV9-JPH2 mediated 

gene therapy in the transverse aortic constriction (TAC) mouse model. Enhanced JPH2 

ameliorated T-tubule structural disruption and prevented SR Ca2+ leak, which improved 

the contractility of the failing hearts [117]. 

1.4 ER stress and ischemia/reperfusion injury  

The ER/sarcoplasmic reticulum is an organelle involved in many cell functions, including 

the folding of protein molecules, the transport of synthesized proteins to the Golgi 

apparatus, and lipid metabolisms, etc. [118]. ER/sarcoplasmic reticulum is also a major 

storage site of Ca2+  in cells, and can contribute to cellular activities through Ca2+  
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signaling [119]. Ca2+  concentrations within ER/sarcoplasmic reticulum are regulated by 

RyR2 and IP3 receptors which release Ca2+ from the ER/sarcoplasmic reticulum to the 

cytosol, and the sarco/endoplasmic reticulum Ca2+ transport ATPase, which transfers 

Ca2+ from the cytosol to the ER/sarcoplasmic reticulum [120]. 

Ca2+ homeostasis helps maintain normal ER function [121]. Depletion of ER Ca2+ impairs 

the processing and folding of newly synthesized proteins and thus, induces accumulation 

of unfolded proteins, leading to ER stress [122]. This stress triggers the unfolded protein 

response (UPR) which activates ER transmembrane sensors to initiate the adaptive 

responses [123]. The three well-described ER transmembrane sensors include protein 

kinase-like ER kinase (PERK), inositol-requiring kinase 1 (IRE1), and activating 

transcription factor 6 (ATF6) [124, 125]. Activation of the PERK pathway results in 

phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), global translation 

attenuation, and subsequent translation of the transcription factor ATF4 [126, 127]. IRE1 

activation leads to JNK1/2 activation and transcriptional induction and splicing of XBP-1 

[128, 129]. Proteolysis of ATF6 facilitates its nuclear translocation and subsequent 

transcriptional action [130, 131]. In concert, these pathways lead to the induction of 

genes including chaperones GRP78 and GRP94, XBP1 and CHOP. If ER stress is 

prolonged or overwhelming, however, it can induce cell death mainly through the 

activation of JNK1/2, CHOP and caspase-12 pathways [132]. Many studies have reported 

the activation of ER stress in the ischemic heart [56, 125]. However, the role of ER stress 

in the ischemic myocardium is complex and controversial. Either ischemia or 

ischemia/reperfusion can potentially induce the adaptive and pro-apoptotic pathways of 

UPR. 

Martindale et al. have demonstrated the activation of the ATF6 branch of ER stress and 

its protective effect in the heart against I/R injury [133]. In their study, transgenic mice 

with tamoxifen-activated ATF6 exhibit better myocardium recovery from ex vivo I/R, 

compared to the non-tamoxifen-treated mice hearts. They also found that the acute 

activation of ATF6 in cardiomyocytes significantly reduced necrosis and apoptosis, along 

with increased cytoprotective ER-resident chaperones, including GRP78 and GRP94 

[133].The cardioprotective role of the ATF6 arm was supported by another study where 
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the inhibition of ATF6 in mice using 4-(2-aminoethyl) benzenesulfonyl fluoride further 

developed cardiac remodeling in ischemic heart and cause higher mortality rate [134]. 

Another effector of the UPR that preserves the myocardium against ischemic injury is the 

transcription factor X-box binding protein-1 (XBP1). Thuerauf et al., in their study using 

rat neonatal cultured cardiomyocytes, showed that hypoxia increased XBP1 mRNA 

splicing, as well as the expression of other UPR markers [135]. They infected the cells 

with a recombinant adenovirus encoding dominant-negative XBP1 and then subjected it 

to hypoxia/reoxygenation. Inhibition of XBP1 sharply increased H/R-induced apoptosis, 

demonstrating the cardioprotective role of the XBP1 arm against I/R injury [135]. 

Furthermore, GRP94, which is one of the cytoprotective chaperones, is up-regulated by 

XBP1 during ER stress [136, 137]. Overexpression of GRP94 in cultured H9c2 

cardiomyocytes significantly reduced the necrosis caused by calcium overload or 

simulated ischemia, indicating that the XBP1-inducible proteins may contribute to the 

protective effect [138]. 

On the other hand, the pro-apoptotic effect of ER stress has also been demonstrated in the 

ischemic heart. Terai et al. showed that hypoxia induced CHOP expression and the 

cleavage of caspase-12 in neonatal rat cardiomyocytes [139]. In their study, they found a 

significantly reduced apoptosis rate after the inhibition of these two ER stress-specific 

apoptotic pathways by the small interfering RNA (siRNA) technique. Thus, ER-initiated 

apoptotic signaling is involved in cell death after a hypoxic insult [139]. Furthermore, 

Tao et al. reported the ER stress-dependent apoptosis in vivo rat I/R model, as evidenced 

by increased CHOP, caspase-12, and JNK activation [140]. Modification of ER stress by 

apelin infusion, which significantly attenuated the activation of all the three pro-apoptotic 

pathways, successfully reduced the caspase-3 activity (apoptosis marker) and the final 

infarct size after reperfusion [140]. In addition, the p53-upregulated modulator of 

apoptosis (PUMA), which is a pro-apoptotic member of the Bcl2 family, has been 

implicated in ER stress-dependent cardiomyocyte apoptosis. Nickson et al. reported that 

the pharmacological stressor-induced ER stress promoted the expression of PUMA in 

neonatal cardiomyocytes and increased apoptosis [141]. In Langendorff-perfused isolated 

mice hearts, the targeted deletion of PUMA improved cardiac function and protects 

cardiomyocytes from cell death during I/R periods [142]. 
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The mechanisms of I/R-induced pro-apoptotic ER stress remain unclear, especially when 

oxygen and nutrients are restored after reperfusion. Disrupted intracellular Ca2+ 

homeostasis may play a fundamental role in it. Emerging evidence suggested that not 

only the depletion of Ca2+ in ER but also the concomitant Ca2+ elevation in cytosol 

contributes to the activation of pro-apoptotic ER stress events [123, 143]. Thus, the 

correction of I/R-induced aberrant Ca2+ release from SR/ER may prevent pro-survival ER 

stress shifting into pro-apoptotic. ER stress may represent an important therapeutic target 

for I/R injury and ischemic heart diseases. 

1.5 Calpain/calpastatin system in ischemic heart  

Calpains belong to a family of Ca2+-dependent cysteine proteases. Fifteen isoforms have 

been reported in mammals. Among them, calpain-1 (µ-form) and calpain-2 (m-form) are 

ubiquitously expressed in the cytoplasm, and other calpain family members have more 

limited tissue distribution [144]. Calpain-1 and calpain-2 are heterodimers, differing in 

their Ca2+ requirement for activation (~50 µM for calpain-1 and ~1000 µM for calpain-2) 

[145]. They consist of a distinct large 80-kDa catalytic subunit encoded by the genes 

capn1 and capn2, respectively, and a common small 28-kDa regulatory subunit encoded 

by capn4, also known as capns1 [146]. The small subunit is indispensable for calpain-1 

and calpain-2 assembly and activation [147]. Thus, deletion of capn4 functionally knocks 

out calpain-1 and calpain-2 [148]. Both calpain-1 and calpain-2 are tightly regulated by 

the intracellular free Ca2+ [149]. They are also controlled by its endogenous inhibitor 

calpastatin. Calpastatin specifically inhibits calpain-1 and calpain-2, but not other 

cysteine proteases [150]. 

Accumulative evidence has suggested that calpain activation plays a critical role in 

ischemic heart diseases. The proteolytic activity of calpain during I/R targets α-fodrin, 

which is a crucial component to the formation of a membrane's cytoskeleton [151]. 

Evidence indicated that the degradation of α-fodrin increased the fragility of the 

sarcolemma [152, 153]. In cultured cardiomyocytes, the activation of calpain cleaved 

fodrin into two fragments of 150 and 145 kDa [154]. Immunohistochemical studies 

further confirmed this proteolysis that occurred at the sarcolemma and the intercalated 

discs following I/R in rat hearts [155]. In vivo administration of calpain inhibitor-1 in 15-
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minute global ischemia and 60-minute reperfusion rat hearts successfully suppressed the 

degradation of α-fodrin and prevented I/R-induced contractile dysfunction [156]. In 

another rat model with transient coronary occlusion, the intravenous infusion of calpain 

inhibitor-3 (MDL-28170) during the first minute of reperfusion preserved α-fodrin 

degradation and reduced the final infarct size by 32% [157]. It has been implied that the 

degradation of this membrane's backbone could lead to disruptions on ion channels [158]. 

L-type Ca2+ channels (LTCC) are the indispensable membrane's signal transporters that 

conduct excitation-contraction coupling in cardiomyocytes [36]. Decreased activities of 

LTCC have been reported upon the disturbance of cytoskeletal proteins [155]. Calpain 

inhibitor-3 counteracted the proteolysis of LTCC in I/R-injured cardiomyocytes [159]. 

Moreover, a novel calpain inhibitor, SNJ-1945, has been shown to prevent I/R-induced α-

fodrin degradation and restore the total Ca2+ handling in excitation-contraction coupling 

[160]. These together indicated a possible regulating role of α-fodrin to the basal activity 

of LTCC. Another ion channel that was affected by the degradation of α-fodrin is 

Na+/K+-ATPase. It has been demonstrated that Na+/K+-ATPase binds to the fodrin-based 

membrane cytoskeleton through the sarcolemmal protein ankyrin [161]. An in-vitro study 

on isolated cardiomyocytes from rats identified the calpain activation that proteolyzed 

both α-fodrin and ankyrin at the beginning of reperfusion. The α-subunit of the Na+/K+-

ATPase was found to be detached from its membrane anchorage, which resulted in the 

failure interaction of this channel [162]. The loss of the Na+-pump compromises the 

normalization of cytosolic Na+ concentration at the onset of reperfusion and results in the 

further disruption of Ca2+ homeostasis [163]. Inhibition of calpain with MDL-28170 

during reperfusion increased Na+/K+-ATPase activity and improved contractile recovery 

[162]. 

On the other hand, I/R-induced calpain proteolysis also disrupts Ca2+ handling by directly 

targeting key Ca2+ channels [164]. SERCA2a is an essential Ca2+-ATPase that reuptakes 

Ca2+ from cytosol to the lumen of SR/ER [48]. Its dysregulation impairs SR-mediated 

cardiac contractile function [165]. I/R-induced calpain activation has been demonstrated 

to degrade SERCA 2a and the SERCA regulatory protein PLB in perfused rat hearts 

[164]. Calpain inhibition with calpain inhibitor-3 (MDL-28170) during I/R attenuated the 

degradation of both proteins and improved the cardiac contractility [166]. This was 
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supported by another study on langedorff-perfused rat hearts, which were subjected to I/R 

in the presence and absence of calpain inhibitor: leupeptin. The presented data suggested 

that I/R-induced calpain activation was not only responsible for the degradation of 

SERCA2a but also for the cleavage of raynodine receptor-2 (RyR2), the major Ca2+ 

release channel on SR. Treatment with leupeptin recovered SR function and regulation, 

which was consistent with improved cardiac contraction after I/R [167]. 

Furthermore, the damage of mitochondria during I/R has also been associated with 

calpain activation. In a model of Langendorff-perfused isolated rabbit hearts, Sonata et al 

using the skinned fiber technique, observed decreased state 3 reparation rate (a parameter 

of mitochondrial function) after global ischemia and reperfusion [168]. Reduced state 3 

respiration reflects the impairment of all complex I in the electron transport chain (ETC) 

[169]. They showed that calpain inhibition (BSF 409425) significantly improved state 3 

reparation, so for the first time, it involved calpain activation in I/R-caused mitochondrial 

injuries [168]. This was also supported by [170]. Treatment with either calpain inhibitor 

BSF 409425 or A-705239 also attenuated mitochondrial leak-respiration and state 4 

respiration, which provided evidence that calpain inhibition could prevent the inner 

mitochondrial membrane from becoming permeable [168, 170]. Thus, the proteolytic 

activity of calpain can function as a cytolytic initiator for the mitochondrial permeability 

transition during I/R. 

In addition to cytosol, calpains and their endogenous inhibitor, calpastatin, have also been 

reported that present in mitochondria [171]. It is believed that I/R-induced intracellular 

Ca2+ overload forced excessive Ca2+ influx into the mitochondria and triggered the 

activation of mitochondrial calpains [172]. One of the most serious consequences of the 

activation of mitochondrial calpain is the cleavage and release of the apoptosis inducing 

factor (AIF) [173]. AIF is a mitochondrial antioxidant that is mostly located within the 

mitochondrial intermembrane space [174]. It has been demonstrated that AIF could be 

released into cytosol to induce caspase-independent apoptotic cell death under stress 

circumstances [175]. However, before release from mitochndria, it requires the cleavage 

of its anchored site on the inner membrane [176]. Qun Chen et al. first identified that μ-

calpain presented in isolated and purified cardiac mitochondria. In this study, global I/R 
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on Langendorff-perfused mouse hearts triggered the activation of mito-μ-calpain and 

decreased AIF content in the isolated mitochondria [177]. Calpain inhibitor MDL-28170 

preserved the AIF content within mitochondria, indicating the required role of mito-μ-

calpain in AIF cleavage. Calpain inhibition also decreased myocardial injury during I/R, 

as reflected by the decreased LDH release when compared to untreated hearts [177]. 

Thus, they provided evidence that mitochondrial μ-calpain contributed to I/R injury in 

cardiomyocytes by its proteolytic effect on AIF. 

Recently, we discovered a novel pathway linking calpain activation to I/R-induced lethal 

injury in cardiomyocytes that involved the induction of ER stress and subsequent JNK1/2 

activation [178]. Indeed, we found that ER stress and apoptosis could be directly induced 

by only up-regulation of calpain-1 in cultured cardiomyocytes, indicating the correlation 

between them. Inhibition of calpain-1 prevented the induction of ER stress, and JNK1/2 

activation in hypoxia/reoxygenation (H/R) stimulated cardiomyocytes [178]. Importantly, 

it was also demonstrated that ER stress/JNK1/2 signaling mediates apoptosis in 

cardiomyocytes following H/R. Inhibition of ER stress protected cardiomyocytes against 

H/R- or calpain-1-induced apoptotic cell death [178]. In vivo, transgenic mice with 

overexpression of calpastatin (Tg-CAST) significantly attenuated ER stress and 

phosphorylated JNK1/2 after I/R, confirming the important role of calpain activation in 

ER stress-mediated apoptosis [178]. Thus, calpains have become attractive targets for the 

development of synthetic inhibitors for therapy to reduce I/R injury and ischemic heart 

disease.  

1.6 Rationale 

Myocardial infarction (MI) is a fatal ischemic heart disease and a leading cause of death 

in Canada [2]. Reperfusion remains the primary and effective therapy. However, 

reperfusion can induce damage to the ischemic myocardium, a condition described as 

ischemia/reperfusion (I/R) injury, which contributes to heart failure post MI [4, 19]. Over 

500,000 Canadians are afflicted with heart failure, and up to 50% of them die within five 

years of diagnosis [18]. Unfortunately, effectively limiting myocardial I/R injury remains 

a major challenge and is in urgent need for further investigation. 
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Our lab has recently demonstrated an important role for calpain activation in myocardial 

I/R injury and MI [178]. We further reported that calpain cleaved and down-regulated 

junctophilin-2 (JPH2) protein in hearts following I/R [179]. These findings raise an 

intriguing question: does decreased JPH2 contribute to myocardial I/R injury? 

JPH2 plays a role in modulating the gating of RyR2 Ca2+ channel, preventing aberrant 

Ca2+ release via RyR2 in cardiomyocytes and thus, ensuring appropriate Ca2+ 

homeostasis [89, 180]. Importantly, Ca2+ homeostasis is disrupted in cardiomyocytes 

during I/R [59, 62]. It is known that perturbation of Ca2+ homeostasis results in the 

activation of downstream Ca2+ signaling, in particular calpain activation [151, 181]. Our 

lab reported that calpain activation induces ER stress in cardiomyocytes [178]. ER stress 

has been demonstrated to contribute to apoptosis in cardiomyocytes under stress [55, 

132]. Thus, we reason that decreased JPH2 promotes cardiomyocyte I/R injury. 

Understanding the role of JPH2 in myocardial I/R injury is clinically relevant because the 

protein levels of JPH2 are reduced in human diseased hearts [77, 94]. Thus, this study 

will help to identify therapeutic targets which may inform a future clinical trial of 

pharmacological approaches in patients with ischemic heart disease, with the goal of 

improved clinical outcomes in human ischemic heart disease. 

1.7  Hypothesis 

I/R induces down-regulation of JPH2 in cardiomyocytes. Decreased JPH2 promotes 

RyR2 dysfunction and perturbation of Ca2+ homeostasis, which triggers calpain 

activation and ER stress, leading to apoptosis in cardiomyocytes. Up-regulation of JPH2 

prevents Ca2+ dysregulation and protects cardiomyocytes from apoptosis following I/R. 
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Chapter 2  

2 Materials and Methods 

2.1 Cell culture 

H9c2 cells were purchased from the American Type Culture Collection (ATCC)，and 

were employed within 10 generations for this study. H9c2 is a subclone of the original 

clonal cell line derived from embryonic BD1X rat heart tissue. The cells were grown in a 

culture flask at 37 °C in a 5% CO2 humidified incubator, and maintained in Dulbecco's 

modified Eagle's medium (DMEM, Invitrogen, Chicago, IL, USA) which was 

supplemented with 10% heat-inactivated fetal bovine serum (FBS), penicillin 100 IU/mL, 

and streptomycin 10 µg/mL (Invitrogen, Chicago, IL, USA). Cultured H9c2 cells were 

split every three days. To passage the H9c2 cells, media was aspirated; cells were washed 

with D-Hank's solution (NaCl, KCl, KH2PO4, NaHCO3, D-glucose, phenol red), and 

incubated with 0.25% Trypsin (Gibco, Life Technologies Burlington, ON, Canada) at 

room temperature for 20 to 30 seconds. Fresh culture media was added to terminate the 

trypsinization process, and cells were divided and re-plated as required. 

2.2 Neonatal mouse cardiomyocyte isolation 

Primary cardiomyocytes were isolated from neonatal mice born within 2 days. Briefly, 

after sterilizing using 70% ethanol, the neonatal mice's hearts were harvested and placed 

into D-Hank's solution (50 mL tube). Each heart was cut into 4–5 pieces using a surgical 

blade, and washed using D-Hank's solution. The heart pieces were then subjected to the 

following 3 rounds of digestion: (1) Heart tissues were incubated with 2 mL Liberase 

Blendzyme(10μg/mL) in a water bath at 37°C for 10 min. After stirring 3-5 times, the 

supernatant was discarded; (2) The tissues were incubated with 4 mL of fresh Liberase 

Blendzyme solution at 37°C. During the incubation, the minced hearts were gently 

swirled in every 5 minutes. After 15 minutes, the supernatant was collected and stored in 

DMEM containing 10% FBS (Invitrogen, Chicago, IL, USA); (3) Four mL of fresh 

Liberase Blendzyme solution were added into the heart tissues. The digestion was 

followed as described in (2). The supernatants from (2) and (3) were pooled and 
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centrifuged at 200g for 5 min. The resulting cell pellets were re-suspended in DMEM 

containing 10% FBS. Next, the suspended cells were subjected to pre-plating in a culture 

dish containing 6 mL of DMEM containing10% FBS at 37°C for 120 min. The pre-

plating allowed fibroblasts to adhere to the culture plate. After fibroblast adherence, 

cardiomyocytes were collected, and the cell number was counted. The cardiomyocytes 

were then seeded into a culture plate which has been already paved with 1% gelatin for 

120 min in an incubator. Finally, the plate containing cardiomyocytes was placed in a 

CO2 incubator at 37°C. After 18 hours, the cardiomyocytes were subjected to various 

experiments. 

2.3 Adenoviral infection 

Cultured H9c2 cells or primary neonatal mice cardiomyocytes were infected with 

recombinant adenoviral vectors containing human JPH2 (Ad-JPH2) or beta-gal (Ad-gal) 

as a control at a multiplicity of infection (MOI) of 100 plaque forming units per cell (100 

PFU/cell). These adenoviral vectors were purchased from Vector Biolabs (USA). The 

adenoviral vectors were prepared in DMEN with 2% FBS and added to the cells in half 

the volume of cultural medium. After incubation for 2 h, the full volume of culture 

medium was supplied. All experiments were implemented after 24 h of adenoviral 

infection. 

2.4 Hypoxia/reoxygenation (H/R) 

For the induction of hypoxia, cardiomyocytes were placed in the plates, and the culture 

medium was reduced to half volume. Next, cardiomyocytes were placed in a sealed bag 

containing GENbag anaer (bioMérieux) at 37 °C for 24 h. A indicator (bioMérieux) was 

used to monitor hypoxia. Inside the bag containing the GENbag anaer, the O2 

concentration was rapidly reduced close to zero within 30 min. This experimental 

condition perfectly mimics the initial period of ischemia. Reoxygenation was achieved by 

replacing culture media with fresh one and returning the cells to normal culture 

conditions. 
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2.5 Sodium dodecyl sulphate-polyacrylamide gel 
electrophoresis (SDS-PAGE) and western blot analysis 

Cells were lysed in a lysis buffer containing 1% Triton-X-100, 0.5 mM EDTA, 15 mM 

NaCl, and 2 mM Tris base (Invitrogen, Chicago, IL, USA). The cell lysates were then 

collected and centrifuged at 10,000g at 4°Cfor 10 min. After that, the supernatant was 

transferred into a clean tube, and the protein concentration was determined by the 

Bradford assay. The gel casting apparatus was assembled first with 1.5 mm spacers, and 

was tested for leaks to implement the SDS-PAGE. A concentration of 10% or 12% of 

separating gel was then prepared, depending on the size of the target protein in the 

sample [Table 1, For a 10mL separating gel]. 

Table 1:Composition of separating gel 

Acrylamide percentage 12% 15% 

H2O 3.2 mL 2.2 mL 

Acrylamide/Bis-acrylamide 

(30%/0.8% w/v) 

4 mL 5 mL 

1.5M Tris(pH=8.8) 2.6 mL 2.6 mL 

10% (w/v) SDS 0.1 mL 0.1 mL 

10% (w/v) ammonium 

persulfate (AP) 

100 μL 100 μL 

TEMED 10 μL 10 μL 

 

The mixture was then immediately transferred to the casting apparatus, with a water 

overlay to avoid the air interference. After the separating gel was solidified in 15-20 

minutes, the stacking gel was made [Table 2, For a 5 mL stacking gel] and filled on top 

of the separating gel. A clean 10 wells comb was inserted to make sure that no residual 

bubbles were in the wells. 
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Table 2: Composition of stacking gel 

 

 

 

 

 

 

 

 

 

 

A total of 50 μg proteins from sample lysates were mixed with the loading buffer [Table 

3, for a 10 mL Laemmli buffer 6X] (the volume ratio of 5:1). The sample mixtures were 

boiled at 95°C for 5 min and loaded into wells using gel loading tips. The gel assembly 

was taken out of the casting and put into the gel tank. Running buffer (0.025 M Tris base, 

0.192 M Glycine, 0.1 % SDS) was then poured into the tank until above the top of the gel 

(~800 mL). 

Table 3: Composition of loading buffer 

 

 

 

 

 

 

H2O 2.975 mL 

0.5 M Tris-HCl, pH 6.8 1.25 mL 

10% (w/v) SDS 0.05 mL 

Acrylamide/Bis-acrylamide 

(30%/0.8% w/v) 
0.67 mL 

10% (w/v) ammonium 

persulfate (AP) 
0.05 mL 

TEMED 0.005 mL 

ddH2O 2.10 mL 

0.5 M Tris-HCl, pH 6.8 1.20 mL 

SDS 1.20 g 

Bromophenol blue 6.00 g 

Glycerol 4.70 mL 

DTT 0.93 g 
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Next, the electrophoresis assembly was connected to the power supply set at 15mA, 

200V, and 24W for about 1 hour or until the running front reached the end of the gel. 

After electrophoresis, proteins were separated and transferred to a polyvinyl difluoride 

(PVDF) membrane as follows:  First, the PVDF membrane and the transfer cassette 

equipment was immersed in transfer buffer (20% v/v methanol, 0.19 M glycine, and 0.05 

M Tris);  Next, the cassettes were assembled in a layer of blotting paper, a sponge, PVDF 

membrane, electrophoresed gel, blotting paper, and a sponge; The cassette was then 

placed in the tank filled with transfer buffer at 30V in the fridge (4°C) for overnight.  

In the next day, PVDF membranes were taken out from the cassette and kept with 5% 

non-fat milk in tris-buffered saline containing Tween 20 (TBST) at room temperature for 

one hour. This step was to block the non-specific binding sites. Following this, primary 

antibodies were diluted with 5% BSA (5ml), and applied to the membranes in a clean 

tube. The tube was then set on a rocking table and subjected to 4°C for overnight. After 

being incubated with primary antibodies, PVDF membranes were washed three times 

with TBST, with 10 minutes for each time. The membranes were then incubated with 

secondary antibodies in 5% non-fat milk at room temperature for one hour. Following 

incubation, the washing step was repeated again in TBST for three times, with10 minutes 

each time. Finally, the membranes were immersed in ECL reagent for one minute. The 

signals were visualized using an enhanced chemiluminescence-detection system. 

2.6 Caspase-3 activity measurement 

Activated caspase-3 in cardiomyocytes was measured using a caspase-3 activity assay kit 

according to the manufacturer's protocol (BIOMOL Research Laboratories). Lysis buffer 

containing 50 mM HEPES (pH 7.4), 0.1% CHAPS, 5 mM DTT, 0.1 mM EDTA and 

0.1% NP-40 (Invitrogen, Chicago, IL, USA) was added to cardiomyocytes. Cell lysates 

were collected and centrifuged at 10,000g at 4°C for 10 minutes. Then, the supernatant 

was transferred into a clean tube, and the protein concentration was determined by the 

Bradford assay. A total of 50μg protein was incubated with caspase-3 substrate Ac-

DEVD-AMC or Ac-DEVD-AMC in the presence or absence of inhibitor AC-DEVD-

CHO diluted in assay buffer at 37°C for 2 hours. The assay buffer contained 50 mM 

HEPES (pH 7.4), 0.1% CHAPS,10 mM DTT, 1 mM EDTA,10 mM NaCl, and 10% 
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Glycerol. Caspase-3 targeted chromophore AMC and cleaved it from the peptide 

substrate's C-terminus. The fluorescence intensity of cleaved AMC was quantified by a 

fluorescent spectrophotometer with excitation 355 nm/emission 460 nm. 

2.7 Cellular DNA fragmentation 

DNA fragmentation was measured using a Cellular DNA Fragmentation ELISA kit 

(Roche Applied Science, Canada) according the manufacturer’s instructions.H9c2 cells 

were pre-labeled with BrdU. After various treatments, cells were lysed and cell lysates 

were collected. After centrifuged at 250 g at 4 °C for 10 min, the supernatant was 

transferred to a clean tube, and the protein concentration was determined by the Bradford 

assay. A 96-well microplate was pre-coated with anti-DNA antibody at 4°C for 

overnight. The following day, incubation buffer was added to each sample well. The plate 

was left at room temperature for 30 minutes. After three washes of the pre-coated 

microplate with the washing buffer, samples were added into the microplate and stranded 

for 90 minutes at room temperature. This step allowed the BrdU-labeled DNA fragments 

to bind to the immobilized anti-DNA antibody. Next, the samples in the microplate were 

washed twice. For the third wash, the microplate with washing buffer was placed in a 

microwave for 5 minutes, followed by 10 minutes at -20 °C. BrdU-labeled DNA 

fragments were denatured and fixed on the bottom of the microplate in this step. In the 

next step, second-antibody anti-BrdU-peroxidase diluted in washing buffer was placed 

into each sample well of the microplate and stranded at room temperature for 90 minutes. 

Finally, 100 μL TMB substrate was added to each well, and the fluorescence intensity of 

peroxidase bound in the immune complex was determined by a fluorescent 

spectrophotometer with excitation of 355 nm/emission of 450 nm. Results were 

expressed as fold increases over control. 

2.8 Calpain activity 

Cells were lysed in a lysis buffer containing 20 mM Tris-HCL (pH 7.6),150 mM NaCl, 

and 1% Triton X-100 (Invitrogen, Chicago, IL, USA). Cell lysates were then subjected to 

sanitation on ice for 10 seconds and centrifuged at 11,000g at 4°C for 10 min. The 

supernatant was transferred into a clean tube, and the protein concentration was 
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determined by the Bradford assay. A total of 30μg proteins were incubated with a 

fluorescence substrate N-succinyl-LLVY-AMC (Cedarlane Laboratories) diluted in 

reaction buffer (63 mM imidazole–HCl, pH 7.3, 10 mM β-mercaptoethanol, 1 mM 

EDTA, and 10 mM EGTA) with or without calcium chloride at 37 C ° for 2 h. The 

fluorescence intensity of cleaved AMC was quantified with a multilabel reader 

(excitation, 360 nm; emission, 460 nm), and calpain activity was determined as the 

difference between calcium-dependent and calcium-independent fluorescence. 

2.9 Single cell calcium photometry and SR leak 

Cells were plated on the surface of a 35 mm glass coverslip within each well of a 24-well 

plate. On the experiment day, cells were loaded with 2μM fura-2 AM (Invitrogen, 

Chicago, IL, USA) at 37 °C in a 5% CO2 humidified incubator for 40 min. Cells were 

then washed twice and replaced with 500μL normal Tyrode (NT, 140 mM NaCl,4 mM 

KCl, 2 mM CaCl2, 1 mM MgCl2, 10 mM glucose, and 5 mM HEPES, pH 7.4) and stood 

at 37 °C for additional 10 min. For the experiment, the glass coverslip with attached cells 

was placed in a perfusion chamber. 1mL of extracellular buffer NT was provided to the 

chamber. Fluorescence intensity at 510 nm was measured with alternating 345 nm and 

380 nm excitation (Ratio F345/380), by a Deltascan monochrometer system (Photon 

Technology International, London, ON). Only one cell was tested from each coverslip. 

After a steady state of the ratio intensity, SERCA inhibitor 10 μM cyclopiazonic acid 

(CPA) was slowly added to the bath by a pipette (close but not inserted into the surface of 

the medium). The increased intracellular Ca2+ was measured and taken to analyze the SR 

leak. For the negative control, RyR2 inhibitor 3μM tetracaine (Invitrogen, Chicago, IL, 

USA) was administrated with NT before testing. 

2.10 Statistical Analysis 

All data were presented as mean ± standard deviation (SD). Results were analyzed by 

two-way ANOVA followed by the Newman-Keuls test for multi-group comparisons. A 

student ‘s T-test was adopted for comparison between 2 groups. The value P < 0.05 was 

considered statistically significant. 
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Chapter 3  

3 Results 

3.1 Establishment of an in vitro model of 
Hypoxia/Reoxygenation injury 

The in vitro experimental model of hypoxia/reoxygenation (H/R) in cultured 

cardiomyocytes has been widely used to mimic in vivo ischemia/reperfusion in the heart 

[182]. The H/R was induced as described in Method chapter. To confirm the hypoxic 

conditions, we added 300 μL of culture media to each well in 24-well plate and measured 

O2 concentration in culture media at different time points after hypoxia. This volume of 

culture media was chosen because the same volume of culture media was used for cell 

culture during H/R. As shown in Table 4, the O2 concentration was dramatically reduced 

by up to 50% within 30 min and by greater than 80% after 6 hours. It is important to 

mention that the actual O2 concentration was lower after hypoxia because the culture 

media was exposed to normal air for a while before O2 measurement. This result verifies 

the hypoxic conditions in culture media. 

Table 4: O2 concentration in different time points after hypoxia 
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We next determined whether this H/R condition was sufficient to induce apoptosis in 

cardiomyocytes. To do this, we seeded H9c2 cells into 24-well plates. Twenty-four hours 

later, we exposed the cells to a hypoxic condition for 24 hours followed by reoxygenation 

for additional 24 hours. H9c2 cells were then assayed for caspase-3 activity, which is the 

most frequently activated death protease in the execution phase of apoptosis. H/R 

significantly increased the level of caspase-3 activity by one fold compared to the control 

group under normoxic condition (N/R group) [Figure 4A]. Apoptosis was further 

analyzed by measuring DNA fragmentation, which is also a biological hallmark of 

apoptosis. Similarly, H/R increased DNA fragmentation by one fold in comparison to the 

N/R group [Figure 4B]. These results demonstrate that H/R induces apoptosis in H9c2 

cells, indicative of cell injury. Taken together, we successfully establish an in vitro model 

of H/R-induced injury in cardiomyocytes, which was employed for the following studies.  
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Figure 4: Assessments of apoptosis on H9c2 cells following H/R 

H9c2 cells were subjected to 24h hypoxia, followed by 24h reoxygenation. Apoptosis 

was assessed by (A) measuring caspase-3 activity, and (B) DNA fragmentation. Data are 

normalized to control and expressed as means ± SD from at least 3 different experiments. 

*p <0.05 analyzed by unpaired student’s T-test. 
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3.2 H/R down-regulated JPH2 protein expression in 
cardiomyocytes 

JPH2 is down-regulated in diseased hearts [77, 117]. We determined whether H/R 

decreased JPH2 protein expression in cardiomyocytes. At different time points after 

reoxygenation, we examined the protein levels of JPH2 by western blot analysis. Our 

result showed that the protein levels of JPH2 were reduced after hypoxia and further 

decreased during early reoxygenation within 3 hours. The protein levels of JPH2 were 

increased a little after 3 hours during reoxygenation but remained lower than those before 

H/R [Figure 5]. In contrast, the protein levels of GAPDH were not changed after H/R. 

This data demonstrates that H/R induces down-regulation of JPH2 protein in 

cardiomyocytes. 
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Figure 5: Time course of JPH2 protein expression following H/R in H9c2 cells 

H9c2 cells were subjected to hypoxia for 24h, and were analyzed for JPH2 and GAPDH 

protein expression at different time points after reoxygenation. (A) A western blot for 

JPH2 and GAPDH protein expression from 1 experiment (not replicated). (B) 

Quantification of JPH2 protein expression relative to GAPDH. 
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3.3 Adenoviral vector mediated up-regulation of JPH2 
expression in heart cells 

To up-regulate JPH2 protein expression in cardiomyocytes, we infected H9c2 cells with 

adenoviral vectors containing human JPH2 gene (Ad-JPH2) or beta-gal (Ad-gal) as a 

control at a multiplicity of infection (MOI) of 100 plague forming units (PFU) per cell. 

Twenty-four hour after adenoviral infection, western blot analysis was performed to 

determine the protein levels of JPH2 and GAPDH [Figure 6]. The protein levels of JPH2 

increased significantly in Ad-JPH2 infected H9c2 cells, compared to Ad-gal group. These 

results indicate that infection with Ad-JPH2 induces up-regulation of JPH2 protein 

expression in H9c2 cells.  
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Figure 6: JPH2 protein expression in Ad-JPH2 infected H9c2 cells 

H9c2 cells were infected with Ad-JPH2 or Ad-gal. (A) A representative western blot for 

JPH2 and GAPDH from three different experiments. (B) Quantification of JPH2 protein 

expression relative to GAPDH. Data are mean ± SD from 3 different experiments. 

*P < 0.05 analyzed by unpaired student’s T-test. 
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3.4 Up-regulation of JPH2 prevented apoptosis 
induced by H/R 

To determine the role of JPH2 in H/R-induced apoptosis, we infected H9c2 cells with 

Ad-JPH2 or Ad-gal as a control. Twenty-four hours later, the cells were subjected into 

H/R or N/R. After 24 hours reoxygenation, apoptosis was determined by measuring 

caspase-3 activity and DNA fragmentation. As shown in Figure 7, H/R significantly 

increased caspase-3 activity and DNA fragmentation, indicative of apoptotic cell death. 

This effect of H/R on apoptosis was prevented by infection with Ad-JPH2. These results 

demonstrate that up-regulation of JPH2 protects cardiomyocytes against H/R-induced 

apoptosis. 

 

 

 

 

 

 

 

 

 

 

 

 

 



36 

 

 

Figure 7: Effect of JPH2 up-regulation on apoptosis in H9c2 cells after H/R 

H9c2 cells were infected with Ad-JPH2 or Ad-gal, and then subjected to H/R. Apoptosis 

was assessed by measuring caspase-3 activity (A) and DNA fragmentation(B). Data are 

mean ± SD from 3 different experiments. *P < 0.05 and #P < 0.05 analyzed by two-way 

ANOVA followed by the Newman-Keuls test. 
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3.5 JPH2 regulated RyR2-mediated aberrant Ca2+ 

release from SR in H/R-stimulated cardiomyocytes. 

SR Ca2+ leak has been implicated in ischemic heart disease [100, 180]. Recent studies 

suggested that JPH2 is a negative regulator of RyR2 gating [86, 89]. We investigated 

whether JPH2 regulated aberrant Ca2+ release from SR via RyR2. Sarcoplasmic reticulum 

calcium-ATPase (SERCA) is a major cytosolic Ca2+efflux channel that reuptakes Ca2+ to 

SR/ER. Its inhibition disrupted the dynamic balance of Ca2+ cycling, leading to 

temporary Ca2+ accumulation in cytosol. In the H9c2 cells under N/R, intracellular Ca2+ 

level gradually increased after inhibition of SERCA by cyclopiazonic acid (CPA,10uM) 

[Figure 8]. However, compared to N/R, H/R enhanced intracellular Ca2+ level in cytosol 

after incubation with CPA. This result suggests that H/R may promote Ca2+ release from 

SR. To confirm this, we blocked RyR2 with its antagonist tetracaine (3uM) in H9c2 cells 

and then added CPA. As shown in Figure 8, the rising Ca2+ in H/R-stimulated H9c2 cells 

was prevented and the levels were even lower than that in N/R group, supporting that the 

CPA-induced Ca2+ cytosolic Ca2+ influx is from SR via RyR2. This result also eliminated 

the possibility that extracellular Ca2+ or Ca2+ stored in other organelle like mitochondria 

got involved in the CPA-stimulated intracellular Ca2+ inflow. Taken together, these 

results indicate that H/R impairs RyR2 function and subsequently induces aberrant Ca2+ 

release from SR. 
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Figure 8: Measurement of SR Ca2+ release in H9c2 cells following H/R 

After 24h hypoxia followed by 24h reoxygenation, H9c2 cells were loaded with Fura-2 

AM (2μM) and shifted in normal Tyrode(NT) medium. Intracellular Ca2+ changes were 

assessed by Delta Scan digital fluorescence photometry. (A) Representative Fura-2 ratio 

illustrating cytosolic Ca2+ changes after administration of CPA in three different samples, 

which are normoxia, H/R and tetracaine pretreated H/R. (B) Quantification of increased 

Ca2+ ratio in cytosol after administration of CPA. Data are means ± SD of 11-16 cells for 

each condition from more than three independent preparations, *p < 0.05 and **p<0.05 

analyzed by two-way ANOVA followed by the Newman-Keuls test. 
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To determine whether JPH2 regulated H/R-induced aberrant SR Ca2+ release via RyR2, 

we infected H9c2 cells with Ad-JPH2 or Ad-gal as a control. Twenty-four hours after 

adenoviral infection, the cells were subjected into H/R. CPA-stimulated Ca2+ elevation 

was measured thereafter. Infection with Ad-JPH2 prevented RyR2-mediated abnormal 

Ca2+ efflux from SR [Figure 9]. Thus, up-regulation of JPH2 normalizes Ca2+ regulation 

in cardiomyocytes. 
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Figure 9: Effects of JPH2 up-regulation on aberrant SR Ca2+ release in H9c2 cells 

following H/R 

H9c2 cells were infected with Ad-JPH2 or Ad-gal, and then subjected to a 24-hour 

hypoxia followed by a 24-hour reoxygenation. Cells were then loaded with Fura-2 AM (2 

μM) and shifted in normal Tyrode(NT) medium. (A) Representative Fura-2 ratio 

illustrating cytosolic Ca2+changes after administration of CPA in H/R group. (B) 

Quantification of increased Ca2+ ratio in cytosol after administration of CPA in H/R 

group. Data are means ± SD from at least three independent preparations with 10-14 cells 

for each condition. *p < 0.05 analyzed by unpaired student’s T-test. 
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3.6 Blockage of RyR2 reduced apoptosis induced by 
H/R 

To determine whether aberrant Ca2+release via RyR2 played a role in apoptosis after H/R, 

we incubated H9c2 cells with dantrolene (100 μM), an antagonist of RyR2 which inhibits 

Ca2+ release form SR via RyR2 or vehicle, and performed H/R on these cells. Apoptosis 

was assessed by measuring caspase-3 activity. Consistently, H/R induced apoptosis in 

H9c2 cells, which was significantly reduced by dantrolene [Figure 10]. This result 

suggests that RyR2-mediated aberrant SR Ca2+ release contributes to H/R-induced 

apoptosis. 
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Figure 10: Effect of dantrolene on apoptosis in H9c2 cells following H/R 

H9c2 cells was pretreated with dantrolene (100 μM) for 30 minutes prior subjecting to 

H/R. Apoptosis was assessed by measuring caspase-3 activity. Data are mean ± SD from 

3 different experiments. *P < 0.05 and #P < 0.05 analyzed by two-way ANOVA followed 

by the Newman-Keuls test. 
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3.7 Up-regulation of JPH2 prevented calpain 
activation in H/R-stimulated cardiomyocytes. 

Dysregulation of Ca2+ induces calpain activation, which has been implicated in ischemic 

heart diseases [57, 181]. Since H/R induced aberrant Ca2+ leak from SR, we measured 

calpain activity in H/R-stimulated cardiomyocytes. H/R led to an increase in cleaved 

fragment of α-spectrin (140kDa) after reoxygenation in a time-dependent manner [Figure 

11], indicative of calpain activation as active calpain cleaves α-spectrin and releases a 

140KDa fragment. 
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Figure 11: Measurement of calpain activation in H9c2 cells following H/R 

H9c2 cells were subjected to hypoxia for 24h, and were collected separately in different 

time point after reoxygenation. A western blot for the cleavage of α-spectrin (140 kDa) 

from one experiment (not replicated) indicates calpain activation. 
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To further confirm the activation of calpain in H/R-stimulated cardiomyocytes, we 

measured its enzymatic activity. Consistently, calpain enzymatic activity was increased 

after H/R. Notably, upregulation of JPH2 by infection with Ad-JPH2 prevented calpain 

activation in H9c2 cells after H/R [Figure 12]. 
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Figure 12: Effects of JPH2 up-regulation on calpain activation in H9c2 cells 

following H/R 

H9c2 cells were infected with Ad-JPH2 or Ad-gal and then were subjected to a 24-hour 

hypoxia followed by a 24-hour reoxygenation. Calpain enzymatic activity was then 

measured in H9c2 cells. Data are mean ± SD from 3 different experiments. *P < 0.05 and 

#P < 0.05 analyzed by two-way ANOVA followed by the Newman-Keuls test. 
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3.8 Up-regulation of JPH2 attenuated ER stress in 
H/R-stimulated cardiomyocytes. 

It has been well demonstrated that ER-stress promotes apoptosis and H/R induces ER 

stress in cardiomyocyets [132, 143, 178]. Having shown that JPH2 prevented apoptosis 

induced by H/R in cardiomyocytes, we hypothesized that JPH2 inhibited H/R-induced 

ER stress. To examine this hypothesis, we infected neonatal cardiomyocytes with Ad-

JPH2 or Ad-gal and then performed H/R in these cells. H/R significantly increased the 

protein levels of GRP78, CHOP, and phosphorylated JNK1/2, indicative of ER stress. 

Upregulation of JPH2 by infection with Ad-JPH2 reduced their levels (CHOP and 

phosphorylated JNK1/2) in H/R-stimulated cardiomyocytes [Figure 13]. These results 

support our hypothesis that JPH2 inhibits ER stress induced by H/R. 
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Figure 13: Effect of JPH2 over-expression on ER stress in primary neonatal 

cardiomyocytes following H/R 

Neonatal cardiomyocytes were infected with Ad-JPH2 or Ad-gal, and then subjected to a 

24-hour hypoxia followed by a 24-hour reoxygenation. Representative western blots for 

ER stress markers from two different experiments.  

 

 

 

 

 

 



51 

 

Chapter 4  

4 Discussion, Limitation & Future direction 

4.1 Discussion 

The major finding of this study is that JPH2 prevents H/R-induced apoptosis in 

cardiomyocytes. The anti-apoptotic role of JPH2 is associated with decreased Ca2+ 

leakage through RyR2 and inhibition of calpain activation, leading to prevention of ER 

stress in H/R-stimulated cardiomyocytes. To the best of our knowledge, this is the first 

report to demonstrate that JPH2 protects cardiomyocytes against H/R-induced apoptosis. 

4.1.1 JPH2 downregulation and its contribution to apoptosis in H/R 
injury 

Down-regulation of JPH2 protein has been reported in various human heart diseases 

including hypotrophy, dilated cardiomyopathy and heart failure [77, 88, 95, 96], as well 

as in rodent models of heart diseases [93, 114, 115]. Several mechanisms have been 

demonstrated to contribute to the dysregulation of JPH2 in hearts under stress. First, early 

studies showed that upregulation of miR-24 was correlated with down-regulation of JPH2 

protein in human diseased hearts and mouse heart tissues of pressure overload-induced 

cardiac hypertrophy [183]. Importantly, inhibition of miR-24 restored the protein levels 

of JPH2 in pressure over-load-induced mouse hearts, suggesting that miR-24 may target 

and repress JPH2 protein expression [183]. Indeed, there is a putative binding site in 3’-

untranslational region of JPH2 mRNA for miR-24 and mutation of this putative binding 

site abrogated the inhibitory role of miR-24 in JPH2 expression [183]. Second, activation 

of calpain was reported to contribute to a reduction in JPH2 protein in cardiomyocytes 

following I/R and in ischemic hearts [184]. Incubation with calpain inhibitors increased 

the protein levels of JPH2 in cardiomyocytes following I/R. Further study identified 

R565T as the primary cleavage site of calpain-1 on the C-terminal of JPH2 [185]. Third, 

the functional defect of JPH2 has also been suggested. Several mutation regions in the 

gene encoding JPH2 have been affirmatively associated with the myocardial diseases 

heretofore, including S101R, Y141H, and S165F in hypertrophic cardiomyopathy (HCM) 
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[95], E169K in atrial arrhythmias [88], together with newly founded G505S and R436C  

[96], and  [186].  

The present study showed that H/R decreased the protein levels of JPH2 in 

cardiomyocytes. This result is consistent with previous reports. However, it remains 

unknown what causes the down-regulation of JPH2 in H/R-stimulated cardiomyocytes. 

Our data showed that H/R induced calpain activation in cardiomyocytes. Thus, it is 

possible that calpain activation may cleave JPH2 protein, leading to a reduction in JPH2 

protein following H/R. Whether miR-24 plays a role in JPH2 expression in our system 

requires future investigations. 

Although decreased JPH2 protein plays an important role in t-tubule remodeling in 

diseased hearts [114, 115, 117], an important finding of the present study is that JPH2 

protects cardiomyocytes against H/R-induced apoptotic cell death. Several lines of 

evidence support this conclusion. First, decreased JPH2 protein was correlated with 

apoptosis in H/R-stimulated cardiomyocytes. Second, restoration of JPH2 protein 

inhibited caspase-3 activation and DNA fragmentation induced by H/R. Third, up-

regulation of JPH2 prevented H/R-induced ER stress in cardiomyocytes. These data 

strongly support that decreased JPH2 contributes to H/R-induced cell death in 

cardiomyocytes. Given that apoptosis is implicated in myocardial injury and the 

development of heart failure following I/R, up-regulation of JPH2 may be a new 

approach to reduce I/R injury in hearts. 

4.1.2 Decreased JPH2 increases aberrant SR Ca2+ release via RyR2, 
which contributes to H/R injury 

In addition to the important role of JPH2 in T-tubule system, recent studies have 

suggested that JPH2 might also have a regulatory role in RyR2 channel stability [85, 88, 

89, 180]. However, whether JPH2 modulates RyR2-mediated aberrant SR Ca2+ leakage 

during I/R remains unclear. In the present study, we show that H/R induces aberrant SR 

Ca2+ release via RyR2 in cardiomyocytes, which agrees with previous report [187]. We 

further demonstrate that up-regulation of JPH2 reduces H/R-induced aberrant SR Ca2+ 

release via RyR2 in cardiomyocytes. This result argues that JPH2 may stabilize RyR2 
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and reduce Ca2+ leak through RyR2.  Increased cytosol Ca2+ has been implicated in 

apoptosis in cardiomyocytes through multiple mechanisms including Ca2+/calmodulin 

[188, 189], calcineurin [190, 191] and calpain [57, 181]. Thus, it is highly possible that 

JPH2 prevents H/R-induced apoptosis in cardiomyocytes by stabilizing RyR2 and 

inhibiting Ca2+ leak through RyR2. In support of this view, we further showed that 

inhibition of RyR2 remarkably attenuated apoptosis and up-regulation of JPH2 prevented 

calpain activation in H/R-stimulated cardiomyocytes. 

4.1.3 Up-regulation of JPH2 prevents Calpain activation in H/R-
stimulated cardiomyocytes 

Calpain activation has been implicated in myocardial I/R injury [181, 192, 193]. 

Specifically, pharmacological and genetic inhibition of calpain reduces myocardial I/R 

injury in a global I/R model of isolated whole hearts and in vivo myocardial I/R animal 

models [156, 160, 166, 168, 170, 194]. Our recent study further demonstrated that calpain 

activation induces ER stress, which contributes to apoptosis in H/R-stimulated 

cardiomyocytes [178]. These studies provide strong evidence in support of the role of 

calpain in myocardial I/R injury. It is well known that elevation of intracellular Ca2+ 

induces calpain activation [144]. In the present study, we report that H/R increased Ca2+ 

release from SR via RyR2 and calpain activation in cardiomyocytes.  Thus, it is possible 

that increased Ca2+ release from SR via RyR2 may result in elevation of intracellular Ca2+ 

concentration, which leads to calpain activation. In fact, our previous studies have 

demonstrated that blocking RyR2 channel prevents calpain activation in cardiomyocytes 

under septic and diabetic conditions as well as in response to norepinephrine [195-197]. 

Since up-regulation of JPH2 prevented Ca2+ release from SR via RyR2 in H/R-stimulated 

cardiomyocytes, we show that up-regulation of JPH2 decreased calpain activity. Thus, it 

is likely that JPH2 prevents H/R-induced calpain activation by inhibiting Ca2+ release 

from SR via RyR2 in cardiomyocytes.    

Interestingly, our recent study revealed that calpain targeted and cleaved JPH2 in 

ischemic hearts [179]. This raises an intriguing possibility that active calpain can 

commence a positive feedback loop that potentiates Ca2+ dysregulation through JPH2 
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cleavage, increased intracellular Ca2+ and calpain activation, leading to lethal cell injury 

following I/R.  

4.1.4 Up-regulation of JPH2 attenuates the induction of ER stress 

The sarcoplasmic reticulum(SR) collaborates with membrane T-tubules and is 

responsible for sarcomere contraction through Ca2+-induced Ca2+ release (CICR) [37, 48]. 

In contrast, perinuclear endoplasmic reticulum (ER) in cardiomyocytes supports basic 

cellular functions such as protein synthesis, folding, post-translational modification and 

stress responses [198]. Many studies have implicated ER stress-initiated apoptosis in 

ischemic heart injury [56, 133, 135, 138-142]. In our previous study, we reported that ER 

stress induced apoptosis through JNK activation in H/R-stimulated cardiomyocytes [178]. 

In the present study, we found that up-regulation of JPH2 significantly reduced ER stress 

responses and prevented JNK1/2 activation in H/R-stimulated cardiomyocytes. 

Moreover, inhibition of RyR2 prevented ER stress and reduced apoptosis in H/R-

stimulated cardiomyocytes. Thus, we argue that JPH2 inhibits H/R-induced ER stress by 

preventing RyR2-mediated Ca2+ leakage in cardiomyocytes. 

However, it is currently unknown how aberrant Ca2+ leakage via RyR2 contributes to ER 

stress in response to H/R. Our recent study demonstrated that calpain activation induced 

ER stress in cardiomyocytes and inhibition of calpain activation prevented H/R-induced 

ER stress [178]. Calpain has been shown to target and cleave Ca2+ regulatory proteins in 

SR. For example, calpain activation cleaves SERCA and RyR2 subunits, leading to 

depletion of Ca2+ in SR, which contributes to ER stress [122, 164-166]. Calpain may also 

activate caspase-12 [199, 200]. Interestingly, we show that up-regulation of JPH2 

inhibited calpain activation in H/R-stimulated cardiomyocytes. Thus, inhibition of 

calpain activation may be a possible mechanism by which JPH2 prevents ER stress in 

H/R-induced cardiomyocytes.   

In this study, we demonstrate a novel mechanism associating JPH2 to H/R-induced cell 

death. JPH2-RyR2 impairment acts as the main source of persistent Ca2+ dysregulation in 

the cardiomyocytes, which subsequently initiates a series of cellular alteration and 

ultimately leads to apoptosis. Since Ca2+ dysregulation is not exclusive to I/R injury, this 
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pattern is highly possibly involved in other kinds of cardiomyopathies, which require 

further investigation. Furthermore, the junctophilin family exists in all types of excitable 

cells and have been associated with different cell types of diseases. For instance, 

junctophilin-1 is mainly expressed in skeletal muscles and has been involved in eccentric 

contraction and prolonged muscle contraction when it loses its function [201, 

202]. Though JPH3 and JPH4 distribute slightly differently in neural sites of the brain 

[203], studies have shown that their disruptions contribute to Huntington's disease-like 2 

[204]. Based on the similarity of JMCs organized by junctophilin subtypes, the other 

members of junctophilins may also serve as regulators of their matched Ryanodine 

receptors. Therefore, other junctophilin family members (JPH1, JPH3 and JPH4) may 

provide similar protective roles other types of excitable cells. 

4.1.5 Concluding remarks 

This thesis demonstrates that H/R induces JPH2 down-regulation and increases Ca2+ 

leakage from SR through RyR2, which consequently promotes calpain activation, leading 

to ER stress and apoptosis in cardiomyocytes. Thus, upregulation of JPH2 stabilizes 

RyR2 and reduces calpain activation by preventing the persistent aberrant Ca2+ release 

from SR, therefore protecting cardiomyocytes from ER stress and lethal cell injury in 

response to H/R. This study reveals a novel role of JPH2 in inhibiting apoptosis induced 

by H/R in cardiomyocytes and suggests that up-regulating JPH2 may be a potential 

therapeutic approach to reduce I/R-induced heart injury. 
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Figure 14: Summary of the findings 

 

4.2 Limitations and future direction 

Although H9c2 cells are originally derived from embryonic BDIX rat heart tissue sharing 

plenty biological similarities to cardiomyocytes and have been widely used for cardiac 

stress studies, this cell line lacks some morphological and electronic characteristics 

compared to the freshly isolated rat cardiomyocytes [205]. One of the differences is that 

H9c2 cells are absent of spontaneous or inducible beating. So, when it came to the Ca2+ 

leakage experiment, we could not test whether the aberrant Ca2+ release alters the Ca2+ 

transients during the contraction process. Thus, for further investigations, we will conduct 

H/R and measure Ca2+ transients on isolated rodent adult cardiomyocytes with observable 

spontaneous contraction. 

Another limitation in Ca2+ leakage experiment is about the administration of caffeine. 

Caffeine is known to mobilize store Ca2+ drastically efflux from SR, which chalks up to 

its ability to reduce the release threshold of the RyR2 channel [206]. Caffeine has been 
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used to measure SR content [207]. Unfortunately, we have not yet been able to stimulate 

Ca2+ efflux in the H9c2 with caffeine. 

Na+/Ca2+ estranger(NCX) is a major cytosolic Ca2+ extrusion channel in cardiomyocytes, 

and its dysfunction has been demonstrated to contribute to Ca2+ overload in I/R injury 

[60]. Recent studies suggest that JPH2 may also co-localize with NCX and regulates its 

activity [89]. In our future study, we will investigate whether NCX dysfunction is 

involved in the JPH2-mediated Ca2+ dysregulation of I/R injury. 

As mentioned before, caspase-12 correlates with calpain-mediated ER stress and JNK 

activation, but it has not been studied in I/R-stimulated cardiomyocytes. Thus, to clarify 

how calpain mediates ER stress, especially the pro-apoptotic JNK activation, we will 

examine caspase-12 in our future study. 

In the future, we will extend to determine the protective role of JPH2 up-regulation in 

I/R-induced heart injury in vivo by using transgenic animals. Mechanistically, we will 

investigate the molecular mechanisms by which JPH2 protects RyR2 function in 

cardiomyocytes following I/R.   
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