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Abstract

Manual palpation of tissue is frequently used in open surgery, e.g., for localization of tumors

and buried vessels and for tissue characterization. The overall objective of this work is to ex-

plore how tissue palpation can be performed in Robot-Assisted Minimally Invasive Surgery

(RAMIS) using laparoscopic instruments conventionally used in RAMIS. This thesis presents

a framework where a surgical tool is moved teleoperatively in a manner analogous to the repet-

itive pressing motion of a finger during manual palpation. We interpret the changes in pa-

rameters due to this motion such as the applied force and the resulting indentation depth to

accurately determine the variation in tissue stiffness. This approach requires the sensorization

of the laparoscopic tool for force sensing. In our work, we have used a da Vinci R© needle driver

which has been sensorized in our lab at CSTAR for force sensing using Fiber Bragg Grating

(FBG). A computer vision algorithm has been developed for 3D surgical tool-tip tracking using

the da Vinci R©’s stereo endoscope. This enables us to measure changes in surface indentation

resulting from pressing the needle driver on the tissue. The proposed palpation framework is

based on the hypothesis that the indentation depth is inversely proportional to the tissue stiff-

ness when a constant pressing force is applied. This was validated in a telemanipulated setup

using the da Vinci R© surgical system with a phantom in which artificial tumors were embedded

to represent areas of different stiffnesses. The region with high stiffness representing tumor

and region with low stiffness representing healthy tissue showed an average indentation depth

change of 5.19 mm and 10.09 mm respectively while maintaining a maximum force of 8N dur-

ing robot-assisted palpation. These indentation depth variations were then distinguished using

i



the k-means clustering algorithm to classify groups of low and high stiffnesses. The results

were presented in a colour-coded map. The unique feature of this framework is its use of a

conventional laparoscopic tool and minimal re-design of the existing da Vinci R© surgical setup.

Additional work includes a vision-based algorithm for tracking the motion of the tissue surface

such as that of the lung resulting from respiratory and cardiac motion. The extracted motion

information was analyzed to characterize the lung tissue stiffness based on the lateral strain

variations as the surface inflates and deflates.
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Chapter 1

Introduction

According to the world cancer report, lung cancer is one of the most commonly diagnosed

cancers among both men and women [1]. Lung cancer is categorized as either Non-Small

Cell Lung Cancer (NSCLC) or Small-Cell Lung Cancer (SCLC). SCLC can spread quickly to

other parts of the body. It is important to contain the growth of cancer by either removing,

ablating or annihilating the cancerous cells. Otherwise it can spread to other parts of the body

which can eventually lead to death. Lung cancer is diagnosed using preoperative imaging such

as Computed Tomography (CT). The treatment for the lung cancer depends upon the type of

cancer, size, and spread of cancer. There are several ways to treat lung cancer that include

surgery, radiation therapy, chemotherapy, cryogenic treatment, and brachytherapy. The patient

may receive a combination of treatments or a single treatment depending on the severity of

the spread of cancer. Surgical options are preferable for early stage cancer that has not spread

to other parts of the body. Chemotherapy is considered a preferred solution for the last stage

due to high severity and metastasis. Chemotherapy uses drugs and targeted molecular agents

to kill cancerous cells. Radiation therapy uses high-energy radiation to shrink cancerous cells

and can be differentiated into two techniques: External Beam Radiation Therapy (EBRT) and

Brachytherapy. EBRT is the preferred solution if the tumor is present in a very difficult location

that is unreachable or too complicated to reach through surgery. Also, if a patient is physically

1
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weak or unable to withstand the trauma of surgery, this serves as an effective therapy. Since

EBRT focuses radiation from outside the body, it is necessary to compensate for the motion

of tumors due to breathing so as to minimize the harm from the radiation to the surrounding

non-malignant tissue. Therefore, various measures are taken to map the tumor location pre-

cisely, and the radiation beams are then targeted from an appropriate angle to cover the tumor

accurately [2]. Brachytherapy is a new variation of radiation therapy where radioactive seeds

or pellets are directly inserted into cancerous cells using hollow needles. Surgical resection

is the primary treatment method for patients suffering from early stage NSLC. The resection

involves removing cancerous tissue along with a section of healthy tissue to prevent the spread

of cancer. Video Assisted Thoracoscopic Surgery (VATS) is a minimally invasive surgical re-

section performed on lung cancer with visual feedback from a miniaturized endoscope called

a thoracoscope [3]. The target lung to be excised is completely deflated at the beginning of

surgery to perform excision. Surgeons can use real-time visual feedback and intraoperative

Ultrasound (US) for localizing the tumor that has shifted in position due to lung deflation and

motion of the heart and the contralateral lung as the patient lies in a lateral recumbent position.

The tumorous region along with a margin of healthy tissue is excised, and the excised tumor

is sealed in a bag for removal from the keyhole port [4]. VATS is used as a stand-alone pro-

cedure or in combination with other procedures for treating lung cancer. Intraoperative US is

not very reliable due to the presence of some air in the alveoli that interferes with the reflected

US signals [5]. Therefore, it is essential to develop an assistive framework that can help the

surgeons to localize the tumors in absence of the ability of the surgeons to touch the lung with

their hands. The framework to be developed should also be able to compensate for the shift in

tumor location due to the motion of the deflated lung acquired from the contralateral lung and

the heart.



1.1. MOTIVATION 3

1.1 Motivation

In Open Surgical Procedures (OSP) such as thoracotomy [6], prostatectomy [7], the surgeons

usually use the fingers to press on the tissue surface with a light pressure for physical diagnosis.

Apart from tissue texture assessment, manual palpation also assists in the detection of anatom-

ical landmarks and other abnormal lumps. Over the last few decades, most of the conventional

OSPs have moved towards Minimally Invasive Surgery (MIS) due to numerous benefits such

as faster healing, less scarring and reduced pain. In MIS, small incisions (5-12mm) are made

for passing the surgical tools and an endoscopic camera into the patient’s body. These instru-

ments provide surgeons distorted kinaesthetic force feedback due to the friction between the

tool and the trocar port and also due to the deformation of the tissue surface. Although MIS is

relatively more beneficial, it requires an intensive learning curve and training [8] to adjust to

the inverted hand-eye coordination, lack of depth perception due to a limited 2D laparoscopic

view and corrupted force feedback from the tools [9] [10]. The shortcoming associated with

laparoscopic procedure such as reduced Degrees of Freedom (DOF) from the rigid tools makes

it difficult to maneuver the tool to perform suturing and ligation tasks. Also, poor hand-eye

coordination due to 2D display was countered with the advent of RAMIS [11]. RAMIS em-

ploys the master-slave design that enables the surgeon to remotely maneuver the tools within

the patient’s body. The surgeon’s action on the master side is mimicked by a robotic arm

using teleoperative communication. The motion can be amplified or stabilized depending on

the application. The intuitive user interface, highly immersive 3D vision and various DOF

of the tool with no inversion makes RAMIS a preferred choice. It has been used in a large

number of surgical procedures, e.g, see [12–15]. Although the current technology for RAMIS

provides several benefits such as better ergonomics, 3D immersive surgical view, dexterity,

reduced trauma and speedy recovery for patients, it does not provide the surgeons a sense of

touch. Manual palpation enables the surgeons to determine various tissue properties such as

shape, size, temperature, orientation and stiffness. The perceived signal after contact with a
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surface during OSP is a combination of the input signals from various neuro-receptors. The

information obtained from manual palpation can be considered as a combination of multiple

inputs. To replicate a similar perception in RAMIS, the framework should be able to analyze

multisensory data along with the mechanical haptic information at the master side. Current

robot-assisted systems such as the da Vinci R© do not have integrated haptic sensing [16]. Also,

specifically in minimally invasive thoracic surgery, the target lung is deflated during the proce-

dure for accurate resection. It results in a shift in the location of the tumor as interpreted from

the preoperative CT scans. So, it is important for a thoracic surgeon to obtain an intraoperative

feedback for the tumor localization. In the next section, we review the state-of-the-art intraop-

erative tumor localization techniques in the literature to provide an overview of the progress in

this field in the context of the proposed work.

1.2 Literature Review

In order to develop a list of challenges and propose solutions for addressing them, we have

reviewed the pertinent literature and techniques. Here, we present a literature survey of re-

cent techniques based on their ability to localize tumors intraoperatively and characterize tis-

sue surface properties. The techniques proposed in the literature can be broadly categorized

as force-based sensing, tactile-based sensing, aspiration devices and intraoperative medical

imaging-based visualization techniques. An ideal tumor localization device should possess the

following properties

1. It should be small enough to pass through a small incision, a trocar port of diameter 5mm

to 12mm [17].

2. It should be compatible with the current setup of RAMIS to ease integration and reduce

any additional cost of re-design.

3. It should possess fast sensing speed to analyze the stiffness in minimal time.
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4. It should be sterilizable or disposable.

5. It should provide accurate repeatable results.

1.2.1 Medical Imaging Techniques

Preoperative imaging technologies such as CT, MRI and US are used for physical diagnosis

and tumor identification prior to a surgical procedure. The location of the tumor obtained

preoperatively needs to be registered to the intraoperative setup accounting for the changes in

viewpoint, orientation, imaging data-type and the change due to tissue deformation. Non-rigid

registration of preoperative and intraoperative images due to deflation of the lung during the

VATS procedure can be very time-consuming and cannot compensate for real-time motions

due to breathing and respiration [18–20]. Deformable tissue models have been developed from

preoperative image data using interpolation in [20], and using nonlinear finite-element model

in [21]. Preoperative imaging provides high definition multidimensional imaging data whereas

intraoperative imaging modalities are often not of comparable quality. US is the most favored

intraoperative imaging modality as it is safe, portable and compatible with metals. US uses

high frequency (1 − 10MHz) sound waves to view tissue for diagnosis, guidance, and therapy.

Radiologists are trained to manipulate US transducers, and read and analyze the data displayed

on the screen. Though most of the procedures still use conventional 2D US imaging, there

have been several development in 3D US imaging with significant advancement in computing

and rendering power. The US probe is inserted through one of the minimally invasive ports

into the thoracic cavity for localizing a tumor. US is sensitive to the amount of air present in

the lung alveoli even after the lung has been deflated. Therefore, the image acquired using US

has artifacts and needs enhancement for tumor localization [22]. Also to improve the survival

rates, it may be helpful to localize tumors that are less than 50mm in size, and it is tough to

localize tumors of smaller size with US. To summarize, US is not the best option for tumor

localization intraoperatively during VATS.
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1.2.2 Aspiration Devices

These are devices that do not compare the relative stiffness of the sampled points but measure

the Young’s Modulus of the soft tissue aspired or sucked by the pipette device. The approach

works on determining the slope of the stress-strain (Young’s modulus) linear variation. The

tissue sample is considered to be isotropic and homogenous. This procedure is deemed to be

very accurate and hence it is used during a biopsy for diagnosing the presence of a tumor [23].

The basic implementation works by decreasing the pressure by sucking air out of a pipette.

Because of this pressure change, there is a change in the level of soft tissue sucked in the

pipette. In [24], a light sterilizable aspiration device was developed for in-vivo estimation of

tissue stiffness. The basic mechanism is the same where the pressure is decreased to measure

the rise in the tissue being aspirated. Figure 1.1 shows the mechanism for sensing the rise in

the tissue surface. It is achieved by generating a mirrored profile of the tissue surface and then

using a recording camera to evaluate the change in depth. The procedure is reliable and has

been performed on human liver [25], kidney and spleen [26] and also has been used for ex-vivo

prostate cancer diagnosis [27]. In [23], the effects of parameters such as friction between the

tissue pipette boundary, the thickness of the pipette, the diameter of the pipette and inhomo-

geneity of tissue were studied using numerical simulations. Although this process is reliable

and measures the absolute Young’s modulus for characterization, it is very time consuming to

aspirate and release multiple points intraoperatively. Also, its fabrication and implementation

are dependent on multiple features such as axial orientation of the pipette during the experi-

ment, the thickness and diameter of the pipette wall [23] .
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Figure 1.1: Aspiration device designed in [24] where ∆p corresponds to the aspiration pressure
change and the rise in the tissue level depicted from a mirrored profile with the use of a vision-
based analysis [24].

1.2.3 Probing devices.

1.2.3.1 Force-sensorized indentation probing devices

Commercially available sensors are accurate but they are not small enough to be compatible for

use in RAMIS. NANO 17 (ATI Industrial Automation Inc., USA) is the smallest commercial

sensor, and its diameter is 17mm and therefore, it is not viable for force sensing in RAMIS

since the diameter of the trocar port is 5-12 mm. In [28], a hollow strain gauge sensor is placed

on the tip of the probe for the force sensing during an arthroscopic surgical procedure. In

[29–31], multiple FBG sensors are used to develop a sensorized da Vinci probe for force sens-

ing. FBG sensors work on the variation of the refractive index and the wavelength to determine

the force. Unlike strain gauges, FBG sensors are resistant to temperature change and can be
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used for a prolonged time.

McCreery et al. [32] designed an experiment with a vertical probe on which was mounted

a commercial Gamma Sensor (ATI Industrial Automation Inc., USA) at the proximal end for

obtaining the kinaesthetic feedback to localize a tumor within an ex-vivo porcine lung as de-

picted in Figure 1.2. A Mitsubishi PA10-7C robotic arm was programmed to move down in

pre-specified increments to a fixed depth, and the force response was recorded at that depth for

sampled points. It was the first probing experiment, designed to examine the tissue response

by varying parameters such as indentation depth and force applied at variable and constant tool

velocity. The design can be directly replicated in RAMIS, and also the work provided a statis-

tical validation that kinaesthetic feedback at controlled depths can characterize tissue stiffness.
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Figure 1.2: Mitsubishi PA10-7C robotic arm performing a probing experiment on sampled
points on an ex-vivo porcine lung [32].

In [33], an augmented reality and haptic interface is presented that uses a master-slave pro-

totype setup for robot-assisted palpation. Figure 1.3 shows the experimental testbed design

with a stereo camera for 3D point cloud data construction for a visual overlay. It also contains

a slave manipulator that works as probing device with an attached commercial NANO-sensor
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for force sensing. This work establishes that force sensing and depth sensing together can

be used for the characterization of a tissue surface. Yamamoto et al. [33] also evaluated the

performance of contact models in characterizing tissue property in a similar surgical scenario

and reported that the Hunt and Crossley (HC) model best characterizes tissue property by es-

timating the stiffness and the damping parameters [34]. This work serves as a prototype but

it is not designed to be implemented during RAMIS due to the size of the commercial sensor

which is too large for a trocar port in RAMIS. Also, the probing arm is a two-arm manipulator

which makes it easier to perform position sensing. In an actual RAMIS procedure using the

da Vinci R© master-slave teleoperation robot, involves a stereo endoscope with a small baseline

variable focus and 18 joints between the manipulator and the base.

Figure 1.3: A color-coded stiffness map shown in (a) obtained from position sensing and force
sensing using a master-slave hardware prototype testbed constructed in (b) [33].

Figure 1.4 shows the design of a portable Tissue Resonator Indenter Device (TRID) that

can measure local mechanical properties of soft tissue [35]. The system is designed with two

known spring constants, masses, and an indenter tip. The underlying principle is that the device

when comes in contact with a surface will show a shift in its natural frequency and increase in

the damping ratios. The system uses a linear Kelvin-Voigt (KV) contact dynamics model for
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estimating static and dynamic stiffnesses as the probe is pressed on the surface. The probe is

not miniaturized to be compatible with MIS, and also its accuracy is dependent on the orienta-

tion at which probe is pressed on the surface.

Figure 1.4: An indentation device that measures tissue stiffness based on shift in resonance-
frequency [35].

In [36], a multi-axis device with four linear indenters connected to springs with different

spring constants is designed that produces a varied displacement on interaction with different

surfaces. The device has an installed USB camera that enables measurement of the move-

ment of the indenters as it is pressed on the surface, using image processing to characterize

the surface. Figure 1.5 shows the device design and indentation technique. The tool design

and mechanism are independent of the orientation with which the surface is pressed. Even the

sensing range and resolution of stiffness identification are modifiable, and the design is suitable

for diagnosis based on external palpation. The miniaturized version of this tool can be mounted

on an endoscopic camera to assist in tissue stiffness characterization during RAMIS.
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Figure 1.5: A multi-axis stiffness sensing probe pressing on a surface oriented at an angle for
mechanical property estimation of the surface [36].

1.2.3.2 Rolling indention probing devices

Another procedure that is different from uni-axial compression is the rolling indentation tech-

nique.This technique is analogous to the lateral movement of a finger over a surface. This

technique is based on the hypothesis that normal forces will vary for different materials if the

indentation depth is kept the same while rolling the tool over the surface. One such work is

described in [37] where a rolling indentation probe is designed that can measure the indenta-

tion depth and the tissue reaction force at a different orientation. The designed probe shown

in Figure 1.6 is not miniaturized to be compatible with MIS but the prototype can construct a

stiffness map of the surface as shown in the figure. The arrangement of the fiber force sensor

on the tool enables only the measurement of the axial forces. Therefore, the probe was kept

perpendicular to the surface for tissue characterization.
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Figure 1.6: Rolling indentation probe design and its motion as it glides over the surface while
maintaining the same depth (a) and (b) shows the stiffness map [37].

McKinley et al. [38] designed a disposable haptic palpation probe shown in Figure 1.7. It

is based on the principle of probe tip deflection mapping as the spherical probe tip is moved

over the surface in an autonomous mode. The designed disposable probe of size 15mm×10mm

is mounted on the tip of an 8mm diameter da Vinci R© needle driver tool. The probe uses a Hall

effect sensor that measures the change in electrical potential produced by the magnetic flux.

This flux change is encoded as the tip displacement while the tool glides over the surface at

a speed of (0.5 − 21)mm/s. The deflection of the probe tip attached to a spring with a fixed

spring constant determines the force profile along the path. The autonomous palpation routine

is designed to maintain a constant indentation depth for the set of experiments so that the force

profile can characterize the points. The designed probe is miniaturized but still cannot pass

through the trocar. Also, the autonomous setup glides the tool along the phantom while main-

taining a constant depth. Such a gliding motion at fixed depth is difficult to perform through a

trocar with a fixed RCM. The magnetic flux from the surroundings may reduce or enhance the

field that the Hall probe detects, hence rendering the results inaccurate.
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Figure 1.7: Palpation probe mounted at the tip of a da Vinci R© needle driver designed to sense
the deflection of the tip as the tool moves over the phantom maintaining the same depth [38].

.

1.2.3.3 Tactile sensing.

A tactile sensor provides one or more of the sensing functions available through the human

sense of touch such as shape, stiffness, temperature, vibration and normal forces [39]. Tactile

sensing is actively used in service robots, surgical procedures, rehabilitation, food processing

and robotic automation but in this section, we only discuss the work and advancement related

to surgical procedures. In our application, we will consider a tactile sensor to be made up of

an array of multiple discrete sensing elements that determine the normal forces or pressure

applied during a physical contact. This information is translated into a digital image P(x, y) for

the pressure surface map visualization and interpretation. Tactile sensing allows surgeons to

analyze a region entirely instead of a point as in the case of force-sensorized probing devices.

The sensing technologies employed in designing a tactile sensor are capacitive, piezoresistive,

thermosensitive, inductive, piezoelectric, magnetic, elastomeric and optical [39]. The trans-

duction technique is dependent on a parameter that is modulated which should ideally generate

a high sensing response and a good spatial resolution. Pressure Profile Systems, Inc. and

Tekscan, Inc. produce commercial tactile sensors that show a pressure distribution map over

a tissue surface. In a capacitive tactile sensor, the variation in capacitance is indicative of the
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pressure. Similarly, parameters such as change in resistance, magnetic coupling, current fluc-

tuation and a shift in resonant frequency are studied for different transduction techniques. The

tactile sensor is a layered structure designed with a sensing layer, an electronic layer, a pro-

tective layer and a support layer. The sensing elements are connected via wires in case of an

electrical component or manufactured as thin pressure sensing films. The ideal properties of

a tactile sensor that is designed to be small enough to be compatible with RAMIS are: high

sensing range, sterilizable or disposable and also it should show a good resistance to changes

in temperature and humidity. The probes in the literature for use in MIS can be broadly cate-

gorized as grasping probes, non-grasping probes and those based on catheter tip sensing.

Schostek et al. [40] designed a laparoscopic grasper with a substrate material that had 32

spherical electrodes on top of it and a layer of conductive polymer. The change in the contact

area between the conductive layer and the electrode due to the application of pressure results

in a change in the resistance at that electrode. This resistance change results in a change in

electrical current from the electrodes across a constant potential difference. Figure 1.8 shows

the design of the laparoscopic grasper and the fabrication layer structure of the designed tac-

tile sensor. This designed grasper is cost efficient, disposable and is able to withstand a high

grasping force. Cohn et al. [41] constructed a laparoscopic tactile device that resembles the

structure of a hand with fingers enabled for tactile sensing using a strain sensor array.
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Figure 1.8: Schematic of the grasping tactile sensor design and the digital image display for
the pressure map [40].

Trejos et al. [42] developed a Tactile Sensing Instrument (TSI) that used an industrial Tac-

tArray sensor from Pressure Profile Systems for pressure sensing as the tool is pressed on the

surface. This research demonstrated that robot-assisted palpation results in the application of

less force and higher accuracy in localizing tumors when compared to manual palpation. Bilat-

eral control is the most basic method used to combine direct force feedback into robot-assisted

surgery [43] . Talasaz et al. [44] proposed an integration of force feedback with tactile sensing

by implementing a hybrid impedance control method to improve tumor localization. Tactile

sensors suffer from long-term loading issues, and this can result in inaccuracies in sensor out-

put over time. Tactile sensors also result in inaccuracies in the presence of tissue motion and

change in surface properties due to the presence of fluids and blood during a procedure. Naidu

et al. [45] designed a three DOF, miniaturized, inexpensive, sterilizable tactile sensor that can

measure contact pressure with 1kPa resolution. The instrument designed is a hybrid of two

different sensing modalities, i.e., US sensing on one side and tactile sensing on the other side

of the tool. It can be easily switched between US sensing and tactile sensing during MIS pal-

pation, hence increasing the reliability and accuracy of tumor localization. We conclude that

incorporating multi-modality sensing in these techniques can result in higher confidence in tu-
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mor localization.

Intraoperative imaging, kinaesthetic feedback, and tactile sensing are the categories of feed-

back that can be made available to surgeons during RAMIS. Visual feedback from an intraop-

erative imaging modality such as the US is distorted due to the presence of air in the alveoli

of a lung, and hence cannot be used by itself to localize tumors accurately. We have reviewed

state-of-the-art probing techniques for intraoperative tumor localization, their design princi-

ples, limitations, functioning and integration challenges in current surgical setups. Most of

the work in the literature is in the development phase where the proposed design is not small

enough for use in RAMIS. A few RAMIS compatible probes that are suggested in the literature

depend on a rolling indentation mechanism in which a gliding motion is performed at a fixed

depth. It is challenging to perform such a motion at a fixed depth through a small port and a

fixed RCM. Therefore, we can conclude from our extensive literature review that the palpation

procedure should mimic manual palpation and the probe design should be RAMIS compatible.

Since we are working with the da Vinci R© surgical system, the probe should have a functionality

similar to that of a da Vinci R© endowrist tool, i.e., it should have 7 DOF and should also ex-

hibit properties such as motion scaling, tremor reduction, and intuitive finger tip-control. The

major limitations for the probing devices are their speed of sensing and their accuracy. There-

fore, if the framework is accompanied by a probabilistic model which can highlight the region

that is more likely to contain a tumor, it can significantly improve the computational time and

confidence in tumor localization.

1.3 Contributions

The main contributions of this thesis are related to the design and development of a teleoper-

ated framework that mimics the manual palpation in a master-slave experimental setup. The

framework combines the sensing capabilities of an FBG sensorized da Vinci R© tool and a vision-

based depth sensing of a tool-tip using a miniaturized da Vinci R© stereo endoscope.
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We developed a vision-based tool-tip tracking algorithm that can assist a surgeon during a

robot-assisted palpation in determining the 3D position of the tool-tip as it is moved teleop-

eratively. The 3D tracking algorithm is designed to work and adapt with minimal upfront

information of the initial parameters, and later the algorithm adapts on-the-fly to the scale and

rotation changes in the tool-tip template as the tool moves closer or farther from the camera or

rotates during robot-assisted palpation.

The framework design works on the principle of decoding the stiffness property based on the

variation in indentation depth as the force-sensorized tool presses on the phantom surface min-

imally invasively. The user has a continuous force-feedback through a visual cue while ma-

neuvering the tool-tip teleoperatively that enables him to press on the phantom surface with the

same amount of force for a set of sampled points. This feature eliminates the variability associ-

ated with pressing hard or pressing softly that can generate inconsistent stiffness comparisons.

We validated that with a constant amount of pressing force the indentation depth is sufficient

to characterize tissue stiffness.

The analysis is followed by the segmentation of points with lower relative stiffness using the

unsupervised K-means clustering algorithm. One of the major highlights of the framework is

its ease of integration in the current robot-assisted minimally invasive surgical setup because

the vision-based tracking is implemented using the inbuilt da Vinci R© stereo endoscope, and

a force-sensorized endowrist da Vinci R© tool is used for palpation which is commonly used in

surgical tasks such as suturing. This ensures a minimal redesign for the current robotic surgical

setup, and the tool being a standard da Vinci R© tool is small enough to pass through a conven-

tional trocar.

We also developed a vision-based algorithm for lung surface tracking that incorporates the

presence of a distinctive patterned biological marker on a lung surface, and the quasi-periodic

nature of its motion. An actual surgical scene would involve lung tissue surface that has some

motion even after it has been deflated. This quasi-periodic motion results from the motion

of the contralateral lung and the heart. The integration of surface tracking with the framework
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presented in Chapter 2, will enable us to compute the indentation relative to the surface motion.

Also, the repetitive pressing motion can be performed either at the rising part of the breathing

cycle or at the falling part of the breathing cycle to eliminate the source of variability in the

results due to the presence of motion in the palpated lung surface. Another significant con-

tribution from tracking the lung surface is that we were able to validate the hypothesis that a

tumorous surface will stretch less than non-tumorous tissue surface due to a continuous change

in the volume of the lung. This hypothesis can be extensively used to develop a probabilistic

model that can characterize tissue stiffness based on the inherent motion of the lung surface.

The development of this probabilistic model and its integration in the framework developed in

Chapter 2 will make this work a suitable candidate for testing it in an in-vivo robot-assisted

palpation setup.

1.4 Thesis Overview

In this Section, we present a brief overview of the four chapters of the thesis. The first chap-

ter illustrates the challenges associated with RAMIS and state-of-the-art solutions suggested

in the literature. It provides an overview of the various mechanisms developed over time and

their functionalities. In Chapter 2 and Chapter 3, we present the major work of this thesis, i.e.,

robot-assisted palpation and motion tracking of a lung surface to characterize tissue stiffness.

The last chapter summarizes the thesis work with concluding remarks and possible future work.

1.4.1 Introduction

This chapter contains the introduction and the motivation behind pursuing this research work.

We briefly discuss the current scenario of lung cancer treatments and several benefits, chal-

lenges introduced due to the advent of RAMIS. To address one such significant challenge, i.e.,
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the lack of a sense of touch, we present a review of the existent solutions proposed in the liter-

ature, their advantages and limitations. Based on the analysis of these works, we inferred the

preferred characteristics of a robot-assisted palpation framework design and developed these

further in subsequent chapters. This chapter also presents the thesis outline containing the

novel contributions of this thesis and an overview of the entire thesis.

1.4.2 Tissue Stiffness Characterization Based on Robot-Assisted

Palpation

This chapter presents the theory and design principle behind the framework that can charac-

terize the stiffness of a set of points palpated teleoperatively. The principle behind the robot-

assisted palpation is to analyze the parameters that vary while pressing on a tissue surface such

as force and indentation depth. The combined analysis of these parameters depends on the

synchronized acquisition of force and digital visual stereo data. Therefore, in this chapter we

discuss the system architecture explaining the interfacing of data acquisition devices and the

software implementation and the Graphical User Interface (GUI) design. We have used an

FBG sensorized da Vinci R© tool with a resolution of 0.05N for force sensing as the tool presses

on the phantom surface. For the purpose of measurement of tissue indentation depth, we have

designed a computer vision-based 3D tracking algorithm utilizing the data from da Vinci R©’s

stereo endoscope. We show that the depth can characterize the stiffness while controlling the

amount of force applied by a force-sensorized tool. We also present a segmentation approach

using the K-means clustering algorithm for color coding the points with lower stiffness. The

chapter concludes by presenting the results of a validation experiment followed by remarks on

the performance of the robot-assisted palpation framework.
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1.4.3 Tissue Stiffness Characterization Based on Lung Surface Tracking

In this chapter, a vision-based tracking method for computing the 2D motion of multiple dis-

tinctive landmarks on the surface of a lung is presented. In Chapter 2, we propose a framework

that can be easily integrated into the current da Vinci R© surgical setup. The framework’s design

principle and the working mechanism are dependent on evaluating the indentation depth while

pressing on the tissue surface. In an actual surgical procedure, the target lung acquires motion

from the contralateral lung and the heart. Therefore, to make the framework compatible with

surgical procedure, we need to extend its capability to track the tissue surface motion as well

as the tool-tip motion as it presses on the tissue surface in a telemanipulated manner. The

motion of a deflated lung surface is quasi-periodic in nature because it is acquired from the

low-frequency periodic motion of the contralateral lung and the high frequency periodic mo-

tion of the heart. Therefore, the motion signal for the lung surface is modeled as a truncated

Fourier series with unknown amplitudes and a defined bandwidth corresponding to the motion

of the contralateral lung and the heart. We used a Kalman filter for the adaptive computation

of unknown weights and the prediction of the motion in the next frame. The prediction results

in more accurate initialization and determination of the search space, and hence improves the

robustness and speed of our tracking algorithm. The designed algorithm is implemented on

videos obtained from an in-vivo VATS. The quasi-periodic change in the lung’s volume is in-

dicative of a lateral strain on its surface. We measured this strain variation by sampling pairs

of templates along a scan line and measuring the relative motion of those templates using the

tracking algorithm. An in-vivo VATS video of a lung surface with a tumor was used to validate

the hypothesis that the lateral strain variation on a malignant surface is damped relative to the

strain variation for points sampled on the non-malignant surface. This hypothesis has the po-

tential to be formulated as a probabilistic model for detecting the region with tumor.
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1.4.4 Conclusions and Future Work

This chapter summarizes all the work presented in the thesis and proposes various extensions

to the current framework as possible future work, the major future work being the integration

of the work presented in Chapters 2 and 3 and validation of the outcome.



Chapter 2

Tissue Stiffness Characterization Based on

Robot-Assisted Palpation

2.1 Introduction

This chapter presents an approach for analyzing tissue stiffness property by the integration of

force sensing using a RAMIS-compatible da Vinci R© tool which is sensorized for force sensing

using FBG sensors [29] and vision-based tool-tip tracking using a da Vinci R© stereo endoscope

manipulator (SEM). The framework design works on the same principle as manual palpation

where a finger presses on the tissue surface for assessment and the mechanoreceptors present

on the fingertips enables the surgeon to sense tissue texture and also assist in characterizing any

abnormal lump’s presence [46]. The characterizing parameters for tissue stiffness estimation

are indentation depth, rate of depth change and force applied. The FBG sensorized da Vinci R©

needle driver tool provides the real-time force feedback to the surgeon during a tool-tissue

interaction. This functionality can be employed to reduce a variable force application while

palpating the sampled points and also to avoid the application of damaging force on delicate

tissue surface. Since, we can control the amount of force applied while pressing on tissue,

23



2.1. INTRODUCTION 24

we show that the indentation depth variation alone is sufficient to characterize tissue stiffness.

An experiment is designed to mimic the finger’s pressing motion using a teleoperated force

sensorized tool that repetitively presses on a phantom surface. The proposed framework studies

the tool-tissue interaction at a set of sampled points on a phantom by analyzing the depth

change upon indentation while maintaining a constant force.

This framework is designed as a pipeline as shown in Figure 2.1. It consists of three stages:

data acquisition, data abstraction, and data interpretation. The pipeline’s first element performs

a synchronized data acquisition of left frame, right frame and force values. In section 2.2, we

explain the first element, i.e. data acquisition which is a system integration step that combines

the architecture and buffering rates of various devices with data acquisition software design.

The major challenge in this stage is synchronization of the acquired data from hardware with

accurate real-time computations. Therefore, this section gives a detailed description of all

hardware used, and its deployment as well as the software implementation of threading tech-

niques and the design of the user interface for data acquisition. These acquired values are then

processed to determine the location of the tool-tip in the world coordinates as robot-assisted

teleoperated palpation is conducted. To be able to differentiate the depth change at points with

different stiffnesses, we need an algorithm that computes the depth change of the tool while

pressing to sub-millimeter accuracy. The aim of pipeline’s second element is to design an ac-

curate, robust and tool agnostic localization method. In Section 2.3 we discuss the second step

of the pipeline, i.e., data abstraction. In this Section, we present a detailed explanation of the

vision-based algorithm designed to localize the da Vinci R© tool-tip to a subpixel accuracy as

it presses on the phantom. It also contains the design and results of a validation experiment

performed to report the accuracy in depth measurement. In Section 2.4 we present the de-

scription of experimental setup to perform robot-assisted palpation telemanipulatively using a

master-slave robotic setup. Pipeline’s final element involves data interpretation and grouping

techniques to analyze the points that respond differently. In Section 2.5, the final element of

pipeline, i.e., data interpretation step that describes the machine learning algorithm used for
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data characterization. This whole framework can serve as an assistive probabilistic model that

determines the points that behave differently. After multiple iterations, the points are classified

into two groups, differentiated based on their stiffnesses. In Section 2.6, we present the results

obtained from the validation experiment and the conclusions.

Figure 2.1: Overall framework pipeline.

2.2 Data Acquisition

2.2.1 System Integration

This experiment relies on the integration of various devices such as the robotic platform, the

classic da Vinci R© running under the daVinci R© Reseach Kit (dVRK) which is used to create

motions analogous to the pressing motion of a fingertip during manual palpation. Also, a FBG

sensorized da Vinci R© instrument is used to which are attached four FBG sensors arranged in

a pattern for lateral force sensing [29]. An optical interrogator (Micron Optics; Atlanta, US)

is used for data buffering and encoding wavelength shifts for all four FBG sensors. For the

purpose of simultaneous digital data acquisition from the stereo camera we have used a pair

of external frame grabber manufactured by Epiphan, Ottawa, Canada. Figure 2.2 shows the

hardware architecture and the flow of data during the experiment. This section focuses on data

flow, device integration, and data acquisition.
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Figure 2.2: Deployment Diagram.

2.2.1.1 Hardware Architecture

Robot-assisted teleoperated surgical procedures performed using the da Vinci R© surgical robot

(Intuitive Surgical, Sunnyvale, CA) mainly depend on the feedback obtained from stereo vision

for navigation, surgical resection, and other vision-based operations. As we have discussed in

the previous chapter, although MIS procedures have helped surgeons attain higher degrees

of freedom, precision, and accessibility, they have removed the sense of touch. daVinci R© is

a master-slave robotic system consisting of a Master Console (MC) and a Patient Side Cart

(PSC) that enables surgeons to perform surgical operations teleoperatively. The MC design

consists of a pair of Master Tool Manipulators (MTM), a stereoscopic head rest and a set of

foot-controlled switches (clutch, camera control, camera focus, etc.). MTM allows surgeons to

control the patient side robotic arms while getting continuous visual feedback from a binocular

head rest that provides a 3D view of the surgical site. This ergonomically designed console
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allows a surgeon to manipulate the tools with high dexterity and with appropriate scaling and

control. On the PSC are mounted three Patient Side Manipulators (PSM) that consist of the

left and the right robotic arms and a SEM. The SEM is a thin tubular streo endoscope with two

optical channels connected to a pair of cameras. It also contains a circular light source at its

circumference. It provides continuous visual feedback to the surgeon at the head rest display

while the PSM mimics the surgeon’s motion. The separation between the two cameras gives an

immersive 3D view of the operation site enabling the surgeon to analyze the tool’s orientation

and navigation. Figures 2.3 and 2.5 obtained from [47] show the components of MC and PSC

respectively. Figure 2.4 shows the binocular view displayed on the head rest to the surgeon for

an immersive 3D view and the MTM design and its manipulation with finger’s motion.
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Figure 2.3: Components of the da Vinci R© MC [47].
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(a) Binocular head rest on MC [47].

(b) Master tool manipulator [47].

Figure 2.4: (a) Binocular head rest update the surgeon with visual feedback while manipu-
lating; (b) MTM to maneuver the robotic arms on PSC with appropriate scaling and control
[47].
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Figure 2.5: Components of the da Vinci R© PSC [47].

2.2.1.1.1 Digital Visual Data Acquisition Hardware Forward kinematics can localize the

tool tip of the end effector by retrieving the value from the encoders at the joints, but the

value obtained by these encoders may have an error which accumulates when the forward

kinematics are computed relating the base to the end-effector. Therefore, the value obtained

from the kinematics calculation could have a high error as reported in [34]. Therefore, for

proper evaluation, it is necessary to localize the tool-tip in the field of view of the camera

using vision-based tool tracking. The frame grabber used for the purpose of acquiring the
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digital visual signal from the left and right camera is Epiphan DVI2USB (Epiphan Systems,

Ottawa, Canada). Epiphan is a self-powered external frame grabber that captures the high-

resolution digital visual data at 60 Hz. As shown in Figure 2.2, input to the left monitor is

split into two copies using a video splitter, so the same input is passed to the left screen of

the binocular head rest and the computer system for processing. The right eye, on the other

hand, is directly input to the computer system for processing. The processed right frame data

containing superimposed force value at that instant is input to the right screen of the binocular

head rest. Till now we have discussed the flow of digital visual data during the experiment

and now we present the details of acquired digital visual data and its rectification process. We

use the SEM on PSC for data acquisition from the actual surgical site, this stereo endoscopic

camera has a resolution of 640 × 480 and a sampling rate of 30 Hz. The surgical scene is first

captured using the SEM and this captured data requires correction for radial and tangential

distortion and also stereo rectification. Stereo rectification is the process in which a stereo

image-pair is rotated onto the same plane for correct triangulation of the localized tool-tip in

both frames; this results in accurate depth estimation. We explain the procedure used for stereo

calibration of the SEM in detail in the next paragraph.

Stereo Calibration and Coordinate Transformation The SEM has multiple focus set-

tings which can be altered using the +/−(G3) foot controlled focus switches on the MC. The

focus of the SEM can also be externally controlled using a pair of switches present on the

Vision Cart (VC) that changes the focus in and out of SEM. The variability in focus creates a

problem while conducting the experiment as a change in focus also changes the field of view,

lens radial, and tangential distortion parameters as well as the principal point. The problem

associated with focus change and calibration parameters variability can be resolved by cre-

ating a data-set of parameters at all eight discrete focus settings as suggested in this work

[48]. Therefore, the calibration parameters corresponding to the instantaneous value of focus

setting can be retrieved during the experiment. But for the purpose of consistency and com-
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putational efficiency, instead of creating a separate data-set, we have kept the focus setting

constant throughout the experimental procedure. The SEM is calibrated using the standard

stereo camera calibration techniques illustrated in [49]. The explanation for the 3D stereo cali-

bration and the transformation equations are adopted from [50]. The stereo calibration process

involves empirically determining intrinsic, extrinsic and distortion parameters of each camera

separately as well as finding the transformation matrix of one camera’s positioning relative

to the other camera. The relative orientation of both cameras should remain constant during

the experiment and since the SEM is a rigid endoscope with a fixed baseline between the two

cameras, this constraint is satisfied. Stereo calibration involves the use of a calibration grid

to compute the radial, tangential distortion and spatial transformation parameter, so we have

used a flat 7× 5 chessboard for this purpose as it is easy to determine the corner position using

OpenCV library functions [50]. First, each camera is separately calibrated using the OpenCV

function (cv::calibrateCamera) for the computation of intrinsic and extrinsic parameters from

multiple non-planar views of chessboard spanning the whole working space. The transforma-

tion from 3D space to image space and radial and tangential distortion correction is defined

using the Equations (2.1) and (2.2) respectively.

s


xi

yi

1


=


fx 0 cx

0 fy cy

0 0 1

︸        ︷︷        ︸
Intrinsic parameters


R11 R12 R13 T1

R21 R22 R23 T2

R31 R32 R33 T3

︸                    ︷︷                    ︸
Extrinsic parameters



X

Y

Z

1


(2.1)

x̃

ỹ
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Figure 2.6 shows the stereo vision setup illustrating the 3D point’s projection on the left and

right camera planes. The spatial position of left and right cameras in 3D world coordinates can



2.2. DATA ACQUISITION 33

be computed using the OpenCV function (cv::stereoCalibrate). The rotation R and translation

T matrices corresponding to the whole stereo system can be computed in terms of Rl, Tl and

Rr,Tr using Equation 2.4. The algorithm developed by Zhang et al. [49] uses a closed-form

solution that is followed by nonlinear refinement using the Levenberg-Marquardt algorithm for

the computation of the transformation parameters.

Figure 2.6: Typical stereo vision setup with two cameras and acquired images for the same
scene. 3D point (X,Y,Z) is represented as (xl, yl) and (xr, yr) in stereo images.
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Stereo rectification means to align both left and right images onto a common plane as illustrated

in Figure 2.6 with the dotted rectified image pair moved onto the same plane so as that the
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epipolar lines are parallel to the horizontal axis. Triangulation of the two corresponding points

in a pair of stereo rectified image results in depth estimation of the point. After the images are

corrected to remove the presence of radial and tangential distortion, the image can be remapped

onto a common plane using a linear transformation. A direct mapping from the left image

coordinate frame to the right image coordinate frame can be expressed using the fundamental

matrix F. The matrix that relates the shift in the corresponding points to the depth is denoted

by Q. These computed calibration parameters are later used in Section 2.3.1.3 for distortion

correction and stereo rectification of the acquired stereo images.

2.2.1.1.2 Optical Force Sensing Hardware FBG sensors are well suited for use in MIS

instruments due to their high sensitivity, bio-compatibility and miniaturized size. We have

used an FBG-sensorized da Vinci R©, large needle grasper instrument that has been developed

at Canadian Surgical Technologies, and Advanced Robotics (CSTAR) lab for lateral force es-

timation during RAMIS [29]. The sensorized tool has high resolution and sensitivity, and is

designed to measure tool-tissue interaction force during RAMIS. The configurational design

of the four FBG sensors mounted on a daVinci R© needle driver, are explained in [29]. The

wavelength shift for all four FBG sensors attached to the sensorized tool is encoded into lateral

force value based on a mathematical force-strain model. The sensors are placed in such a man-

ner that they enable location agnostic force measurements while compensating for axial and

torsional disturbances. The developed tool has a force sensing resolution of 0.05N at 1KHz,

it is because of this fine resolution that we have chosen force as the variable whose maximum

value is controlled during the experiment. The superimposed force values are fed to the user’s

right screen on the head rest while performing the experiment in real-time. This real-time force

feedback helps the user in pressing the sampled points with the same maximum force applied

on all the sampled points. Later, in this chapter, we show that if the maximum force applied

to each point can be controlled, then the maximum depth change becomes the characterizing

parameter to indicate the stiffness variation. We have also used a commercial force-torque sen-
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sor (Gamma F/T, ATI, North Carolina, US) for validating the best orientation of the tool while

palpating for lateral force estimation.

Figure 2.7: (a) FBG sensorized tool with four FBG sensors for lateral force sensing [29]. (b)
Micron Optic’s optical interrogator with four channels for the four FBG sensors.

2.2.1.2 Software Framework

The most challenging aspect of data acquisition from various hardware devices is to correlate

the data with respect to time. Error in this can result in inaccuracies in all computational tasks

performed later on this data. The timer is a periodic digital signal that controls the point in

time where the next acquisition cycle starts. To completely understand the acquisition and

synchronization process, it is essential to know the architecture and data buffering mechanism

of the devices. The data acquisition mainly addresses the process of capturing synchronized

data. The data flow and hardware connections are shown in Figure 2.2. For the purpose of data

acquisition, synchronization, and processing of the right frame, we have used the Qt Library for

its efficient threading implementation and support for OpenGL for easier GUI design. The GUI

is devised in a simple manner with control tabs such as “ Start Capturing”, “Stop Capturing”

and also a split screen for left and right camera eye output. Figure 2.8 shows a snapshot of the

GUI illustrating the design and control tabs.
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Figure 2.8: Graphical User Interface.

Figure 2.9 shows the flowchart for the data acquisition software. The main challenge is

acquisition and synchronization of the left and right digital data from their respective frame

grabbers. As mentioned, Qt has inbuilt functions for the active thread and mutex implemen-

tation to manage the access to shared resource among contending threads. We have used two

threads for left and right digital data acquire and used a mutex for serialization of these video

acquire threads. As soon as the GUI is initialized, a pair of acquisition threads and the timer

are constructed. The GUI initialization is the main thread that constructs the timer and the

two acquisition threads and after this process threads are present in the memory. When the

user clicks the control tab “Start Capturing”, the thread initialization method is called, and the

threads are ready for execution. As soon as the GUI is initialized, the GUI thread is initial-

ized that evoke the video threads. Both video acquisition threads wait until their state is set to

“running” state to begin a new acquisition. The whole process is repeatedly interrupted by the

timer after every 30ms to trigger a new video capture thread because a new frame is available

in the Epiphan buffer after every 30ms. This process runs until the user clicks the control tab

“Stop Capturing” to terminate the acquisition process. The flowchart for the execution of the

video capture thread is shown in Figure 2.10.
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Figure 2.9: Software acquisition flowchart explaining the time-line of the function execution.
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The video acquisition threads are present in initialized, ready, running, waiting, blocked

and terminated states. Figure 2.11 shows the various states of video capture threads and it

also gives a description of an action executed for the transfer from one state to another. These

state transitions occur due to mutex locking and unlocking. Mutexes are used in serializing

thread executions in case they access any global resource. Figure 2.11 shows different states

of the thread and all the mutexes used in our implementation for synchronization and conflict

resolution while accessing common resources in the memory.

Figure 2.10: Flowchart of the run method of the video acquisition thread.
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Figure 2.11: Video thread state diagram explaining the thread states and their interconnections.

2.3 Data Abstraction

Data Abstraction is the second component in the experiment’s pipeline after data acquisition

from various hardware devices. Abstraction is the process of reduction of the obtained data

into a simplified form eliminating all non-essential information. In our experiment, abstrac-

tion corresponds to the extraction of the 3D location of the da Vinci R© needle driver from the

obtained stereo frames. The depth change in the tool’s position while pressing the phantom is

an essential feature for stiffness analysis. In section 2.3.1.3, we explain the da Vinci R© tool-tip

tracking algorithm for depth computation from the series of stereo frames acquired over the

period of the experiment.
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2.3.1 Articulated Surgical Tool Tracking Algorithm

MIS requires an additional training and skill set due to limited force feedback, reduced access

and less guidance than conventional open surgical procedures [51]. Over the times, as the con-

ventional operation procedures which were highly invasive in nature have shifted to MIS, it

has become important to localize the tool in 3D space so as to accurately determine its relative

positioning from other instruments and the organ. Surgical tool tracking improves awareness

of the operational environment thus enhancing surgical planning, assessment, and interaction.

The surgeon’s interaction with the operational environment relies on visual feedback obtained

from an endoscope camera. Therefore, MIS and RAMIS require training with a suitable metric

for performance assessment. The development of such objective metrics depends on the surgi-

cal task as well as parameters such as completion time and tool’s motion etc. The tool’s motion

analysis involves an objective evaluation of its trajectory, velocity, as well as its deviation from

the pre-planned path derived from pre-operative imaging and surgical planning [52] [53]. The

research by Cotin et al. [52] shows that tool-tip motion can result in a meaningful analysis of

laparoscopic skills. Therefore, tool-tip localization can prove beneficial in the determination of

these parameters for surgical skills assessment. The real-time feedback of the position of the

tool can also assist in determining the distance of the instrument from tissues and organs. So,

it is critical to localize the tool-tip for proper implementation of surgical planning, collision

avoidance, and skills assessment. In our work, we have used tool-tip tracking to analyze the

depth change of the tool as it presses on the phantom for tissue stiffness characterization.

2.3.1.1 Surgical Tool Tracking Methods

There are various works in the literature corresponding to tool-tip localization during MIS.

The preferred characteristics of tool-tip tracking techniques are marker-less, real-time, and

wireless communication. The review of methods used for tracking in MIS by Chmarra et al.

[54] broadly classifies these systems into mechanical, acoustic, electromagnetic, ultrasonic and
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vision-based techniques.

Mechanical tracking relies on kinematics and gimbal mechanism for the localization of

a tool in 3D space about the base. Many systems in the past deployed mechanical tracking

due to their highly accurate localization of the end effector. Earlier tracking devices used in

operating rooms were mostly mechanical digitizers which had encoders at every joint such as

the articulated socket joint assembly endoscopic tool mentioned in [55] [56]. These digitizers

were highly accurate and reliable but were ruled out as they could not track multiple objects.

Also, they were relatively slow, bulky and interfered with the surgical field.

Electromagnetic tracking consists of an electromagnetic field generator, a sensor, and an

interpreter to decode the recorded signal from the sensors. It contains three coils arranged

in a right-handed coordinate system that generates an electromagnetic field at a frequency of

8 − 14 kHz [57]. This induced voltage, which is proportional to magnetic flux, tracks the

position of the sensor. Northern Digital Inc. and Ascension technologies have introduced

miniaturized electromagnetic tracking sensors that enable multiple sensor-based localization

in an electromagnetic field. This is advantageous as it does not suffer from the limitation of

line of sight that is present in vision-based tracking but its accuracy is not comparable to that

of optical tracking. This technique may result in an inconsistent computation in the presence

of metals due to distortion of the magnetic field.

Ultrasonic-based tracking applies segmentation to an image obtained from the US to dif-

ferentiate background from surgical tools. As the tool moves, segmentation is achieved either

using prior knowledge of the tool’s shape or some image processing algorithm identifying

a particular shape, color or texture. There are various image processing methods used for

segmentation one being the use of the Hough Transform [58]. The ultrasonic-based track-

ing method is relatively more advantageous as it does not need any calibration, line of sight

maintenance or correction for field distortion.

Vision-based tracking algorithms are broadly categorized as marker-based and marker-less

tracking systems that are designed to identify a particular color, texture, pattern, wavelength or
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shape. Active tracking corresponds to a presence of an attached physical marker on the tool that

emits infrared light such as an LED for easier detection. Active markers are robust in nature

with a high range of angular visibility for long distances. Passive markers, on the other hand,

are retro-reflectors that reflect the incoming infrared light into a narrow range of angles that is

easily identifiable. Northern Digital Inc. and Advanced Real Time Tracking commercially pro-

duce these markers that either emit or reflect light and are used for detection and localization

of an object in 3D. Other commercially available optical markers from Claronav Technology

have a specifically designed black and white pattern passive markers that reflect visible light

and are detected by Micron Tracker’s stereo camera and software. This technique uses image

processing and computer vision-based technique for 3D object localization and has been used

in research work for tool-tip tracking in image-guided procedures. Figure 2.12 shows one such

application with markers on the tool and head skull phantom for registration and efficient navi-

gation [59]. Other works in the literature based on marker detection are bar-code based design

markers [60], alternating strips based markers for depth estimation [61] and colored markers

designed such that it is different from the background color [62]. Attaching a physical marker

with an identifiable texture, pattern or color is computationally less expensive to localize and

more robust due to the presence of a salient feature, but it is not a feasible solution for surgical

procedures due to the risk of losing the marker inside the body during MIS.Though marker-

based vision tracking is computationally less expensive and robust due to the presence of a

salient feature, it is not practical to use it in MIS.

Marker-less tracking harnesses features such as texture, color, gradient change, and the

prior knowledge of the shape of the tool. Previous work in tool-tip detection involves the

use of template matching [63] [64] to recognize the pre-determined tool template in all the

re-occurring frames. Another work on da Vinci R© tool-tip localization by Reiter et al. uses

multiple features such as position, hue, saturation, gradient, and orientation combination in a

covariance region descriptor matrix [65]. These feature descriptors are often combined with

learning algorithm for robust tool detection. One such work that involves offline learning is
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based on the Haar classifier which is trained using a template data set that contains the tool’s

picture in various orientations and scales [66]. Pezzementi et al. designed an offline based

learning procedure where manually labeled pictures are used for training the classifier, which

is later used in segmenting the tool shaft, metallic tip and background [67]. Therefore, it is more

practical and safer to use marker-less tracking that uses computer vision, image processing and

learning for localization.

Some systems combine electromagnetic tracking with optical tracking to resolve the prob-

lem of line of sight and other inaccuracies for better localization [68]. These hybrid system

designs are much more accurate than the standalone use of other mentioned techniques, but

they are not cost effective in general.

Figure 2.12: Head-mounted navigational system developed using micron trackers for use in
neurosurgery [59].

To sum up, in this section, we discussed various surgical tool tracking methods developed

over the decade, and their advantages and limitations. Our framework is designed for use in

RAMIS palpation, so its design should be wireless and markerless. Also, we have SEM that

can be utilized for 3D localization of tool-tip. Therefore, we have used a vision-based image
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processing algorithm for tool-tip localization in 3D that we explain in detail in section 2.3.1.3.

2.3.1.2 Markerless Vision-Based Tracking Algorithms

Real-time computation, illumination variation, occlusions, scale and rotation changes in the

feature detection are some major bottlenecks addressed during the development of tracking al-

gorithms. Essentially all these tracking algorithms are an amalgamation of the following three

processes: Inter-Frame Motion Estimation (IFME), Feature Localization (FL), and learning.

IFME means to compute the shift in feature position as it makes a transition from one frame

to another. Many algorithms detecting IFME use temporal coherency for shift detection. It is

an estimation problem where translation, scale change, rotation, and deformation of the feature

is predicted in the next frame based on knowledge of these parameters in the previous frame.

Either these trackers search and localize the feature by searching in the vicinity of the previous

feature position or they register the change in state (scale, rotation, deformation) of the defined

parametric model. Several trackers are suggested in the literature such as Lucas-Kanade [69],

mean shift computation [70], etc. Detection can be defined as localizing a feature based on

visual information in the search space. Feature-based detection depends on the salient feature

extraction from an image sequence for the computation of motion parameters. Detection can

be defined as the localization of object of interest using features such as histograms [71], the

gradient [72] or a combination of multiple features in the spatial domain [65]. These features

are matched in the recurrent frame using some similarity metric to localize the point in the

search space in the next frame. In case of large inter-frame distance where optical coherency

is not present, we use feature-based descriptors such as SIFT [73], SURF [74], BRISK [75],

etc. The problem associated with the use of these feature based descriptors is that they rely on

the presence of a stable feature and they are time-consuming in nature due to the dense map-

ping, and outlier rejection computation. These descriptors are mostly used for initialization

as they give better localization in the initial frame. Some algorithms incorporate learning in

the tracking algorithm for a robust detection. These learning algorithms can be classified as
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offline and online learning. The offline learning as the name says is performed offline. Before

tracking, an offline classifier is trained on a data-set of templates to learn the salient feature

for accurate detection during the tracking. In [66] offline based learning is used for da Vinci R©

tool-tip localization and in [76] random forests are used to learn the changes in feature.

2.3.1.3 3D da Vinci R© tool-tip localization algorithm

2.3.1.3.1 Purpose In the coming paragraphs, we present an algorithm capable of detecting

3D location of the da Vinci R© instrument. Template based matching is a simple and an effi-

cient tracking algorithm that detects a known template’s presence in the image. This tracking

method is conceptualized based on the degree of similarity between a template and the base

image. The goal of this algorithm is to find the occurrence of the template in the search im-

age by computing a pixel-wise similarity match. The similarity metric is designed to evaluate

the image patch that has the best match corresponding to the template image. The design of

the similarity metric is dependent on the parameters such as insensitivity to noise and lumi-

nance change, computationally effectiveness. Normalized Mean Square Error (NMSE), Mean

Absolute Difference (MAD), Normalized Cross Correlation (NCC), and Hausdorff Distance

(HD) are some common similarity metrics used for matching. The problem associated with

the application of template matching for localization is that the template continuously changes

in scale and orientation. The template undergoes scale changes as the tool moves closer and

farther from the camera. Also, it is not possible to maintain the same orientation throughout

the experiment. Therefore, the template at any instance is a scaled and rotated version of the

initially selected template. If a fixed initial template is used throughout the analysis, then it

may result in a faster detection but will suffer from inaccuracies. If the template is updated

at each iteration, then it is more robust to appearance change, but it will result in template

drifting, where the template drifts from the area of interest over the progression of the tracking

algorithm. Every time we iteratively update the template corresponding to the current tem-

plate obtained from the search space, the inaccuracies keep on accumulating, and the tracking
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is no longer robust over the period of tracking. Therefore, we need to accurately register the

changes in scale, rotation, and translation as the tool moves during the experiment. Translation,

rotation, and scaling all have their components in the frequency domain. So, we continuously

register the original template with the updated template to account for the inaccuracies gen-

erated due to motion. The updated template is a warped image obtained from original image

accounting for rotation and scale changes. We have used gradient based template matching for

tool-tip detection with a constant update of the template for scale and rotation changes. Before

we proceed, we explain the symbols used while explaining the algorithm. The subscripts l and

r denote left and right images acquired from SEM.

I(x, y, t) denotes the grayscale brightness value at a location (x, y) in an image that was acquired

at time t.

T (x, y, t0) denotes the grayscale brightness value at a location (x, y) in template image obtained

initially at time t0.

T (x, y, t) denotes the grayscale brightness value at a location (x, y) in a template image obtained

at time t.

5x f (x, y, t) denotes the spatial gradient of the image I(x, y, t) in the x direction at location (x, y)

and time t.

5y f (x, y, t) denotes the spatial gradient of the image I(x, y, t) in the y direction at location (x, y)

and time t.

2.3.1.3.2 Initialization The user manually selects the template’s position in the initial left

frame in the GUI shown in Figure 2.8 with a mouse click. The template obtained from the left

image is searched in the right image until convergence using the Matching Method described

in the section 2.3.1.3.4. These captured templates are stored as a reference template pair in

the memory that is updated throughout the experiment for changes in orientation and scale.

The iterative template update for scale and rotation changes has eliminated the overhead of

generating a database of the templates at various viewpoints and states.
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2.3.1.3.3 Template Update The reference template is not a robust descriptor and therefore,

we continuously update the template image for change in scale and orientation. In literature

template based matching for articulated tool-tip localization in surgical domain has been used

in [63] [77] [78]. These algorithms use a database of templates at various probable orientations

and scales. A brute force algorithm is applied to compute the similarity match for each tem-

plate and the one with the best similarity score is chosen as the correct match. This approach

is computationally very intensive and less robust in nature. Other approaches in the literature

involve kinematics fusion with the tracking algorithm to compute yaw and pitch of the tool

at each iteration. This fusion enables the construction of a rotated and scaled template at ev-

ery iteration for similarity computation [78]. We have extracted scale and orientation changes

by studying the shift in the frequency domain of the log-polar transformed reference and the

current template image. It can be inferred from Fourier shift theorem, two images that are

translated copies of each other in the spatial domain shows a similar phase difference in their

frequency domain [79]. The templates obtained from the row-aligned, rectified stereo images

are theoretically a translated copy of each other. We phase correlated the left and the right

template images to obtain the apparent disparity. In an ideal scenario with zero calibration

RMSE, the Relation 2.5 would hold between a pair of rectified stereo images at any time in-

stant t. Equations 2.6, 2.7, 2.8 show the Fourier transforms of the template image. The pair is

registered for translation using the NCC metric to compute the disparity .

Tl(x, y, t) = Tr(x+∆x, y, t) (2.5)

Let the Fourier transforms of the left template image and the right template images be T̃l(ωx, ωy)

and T̃r(ωx, ωy) respectively; let the relation between the Fourier transforms of these images be

as follows

F {Tr(x, y)} = T̃l(ωx, ωy)e jωx∆x (2.6)
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The NCC of the Fourier transforms of both images can be written as 2.7. The translation pa-

rameter ∆x can be obtained by evaluating the maximum value of this similarity metric. This

value will correspond to the best match among the two translated copies.

ÑCC(ωx, ωy) ,
T̃l(ωx, ωy)T̃r

∗(ωx, ωy)

|T̃l(ωx, ωy)||T̃r
∗(ωx, ωy)|

(2.7)

∆x = arg max
x,y

F −1{ÑCC(ωx, ωy)} (2.8)

The Fourier-Mellin transformation is used to register images with misalignment due to transla-

tion, scaling and rotation [80–82]. Figure 2.13 shows the cartesian coordinate transformation

to the log-polar domain. The polar domain transformation is defined in such a way that its axes

denote the radial distance and the angle of a point from the center of the transformation.The

rotations in Cartesian domain are manifested in the polar domain as translation. To be able to

deduce scale and rotation changes, we have used the log- polar transformation where scale and

rotation change become separable. Figure 2.13 shows the pixel transformation from Cartesian

domain to polar domain and the template image transformation from Cartesian to the log-polar

domain. The current template image is essentially a rotated and scaled replica of the original

template image can be mathematically denoted as Equations 2.9 and 2.10 for the stereo image

pair. Therefore, the current template and reference template are a translated copies of each

other in polar domain. The DC component of the Fourier transform of this image pair, is re-

lated by rotation and scaling components [82]. The current template and the reference template

are transformed into the log-polar domain using bi-linear interpolation and then phase corre-

lated in the Fourier domain to estimate rotation and scale change. The translation in x and y

coordinates in the log-polar domain corresponds to scale and rotation change respectively. We

obtained parameters (s,θ) by phase correlating reference template with the current template in

the log-polar domain. The updated template as shown in Figure 2.14 is obtained by warping

the reference template with the obtained transformation matrix to compensate for scale and

rotation changes. This update significantly reduces the template drift due to the accumulation
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of incorrect estimation of inter-frame motion.

Tl(x, y, t) = Tlo(sl ∗ x∗cos(θl)+ sl ∗y∗sin(θl)+∆x,−sl ∗ x∗sin(θl)+ sl ∗y∗cos(θl)+∆y, to) (2.9)

Tr(x, y, t) = Tro(sr∗x∗cos(θr)+sr∗y∗sin(θr)+∆x,−sr∗x∗sin(θr)+sr∗y∗cos(θr)+∆y, to) (2.10)

Figure 2.13: Figures demonstrating conversion from Cartesian coordinates (A) to polar domain
(B) and conversion of the current template in Cartesian domain (C) to log-polar domain (D).

Figure 2.14: Updated template obtained by warping the reference template for changes in
orientation and scale.

2.3.1.3.4 Matching Method After the template is updated for rotation and scaling changes,

this section presents the matching method used to locate the updated template’s presence in the
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search space. The matching method compares characteristic features of the template image

against the search image using NCC to find the best match with maximum similarity metric

value. We have not used binarization of images as it require a threshold value for the construc-

tion of a binary image. This threshold is not a constant, and is dependent on scene illumination

and motion. Therefore, a binary edge map is not a very robust feature. We have chosen gradient

information as the characteristic feature descriptor in the spatial domain as it depicts the direc-

tional change in image intensity. Gradient descriptors are insensitive to illumination change

and work well for texture-less object detection. We have used an orientation magnitude image

convoluted with a 2D Gaussian for template-based matching. The template and search image

orientation magnitude and Gaussian convoluted images are computed using the Equation 2.11

and the Equation 2.12 respectively. The best match from these processed images is calculated

using Equation 2.13. Figure 2.15 shows the process of finding the updated template image

presence in the search space.

∥∥∥5 f
∥∥∥ =

√
(5x f (x, y, t))2 + (5y f (x, y, t))2 (2.11)

Ori(x, y, t) = G ∗
∥∥∥5 f

∥∥∥ (2.12)

εm( ˜OriB(x, y, t), ˜OriT (x, y, t)) , arg max
x,y

˜OriB(x, y, t) ˜OriT (x, y, t)

| ˜Orib(x, y, t)|| ˜OriT (x, y, t)|
(2.13)
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Figure 2.15: Iterative search for a template image in the search space image using NCC.

2.3.1.3.5 SubPixel Localization Image is quantized in terms of discrete entity known as

pixel and the matching method returns the pixel location that indicates the best match. The

maximum of the correlated surface has a resolution of a pixel, but that location might not be

the exact position where the best match occurs. Many applications, such as ours require an ac-

curacy of a sub-pixel to determine the depth change in sub-millimeter for a precise evaluation.

Sub-pixel determination involves computing the matching results better than a pixel accuracy.

Generally, in the literature, two preferred approaches are used. One where the correlation sur-

face is mapped to a higher resolution using interpolation algorithms and the second where a

continuous analytic function is optimally fitted to the correlation surface function around the

peak to obtain a sub-pixel accuracy. There are various functions such as bi-cubic interpolation,

Gaussian fitting, orthogonal one-dimensional paraboloid pair fitting are used in the literature

for the continuous fitting of the discrete correlation function. The NCC surface obtained from

a pixel-based similarity score resembles a bell-shaped curve around the peak. Therefore for

our purpose, we have used a least-squares regression method to obtain the quadratic function

coefficients defined in [83]. Gleason et al. [83] defined a deterministic solution in their work by

fitting a one-dimensional parabola through the peak and neighboring points. The NCC surface

is expressed as a parabola with six unknown coefficients as shown in Equation 2.14; the nine
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known points on the surface are used in modeling the parabola.

NCC(u, v) = au2 + bv2 + cuv + du + ev + f (2.14)

The above equation with six unknown coefficients and nine known correlation points is an

overdetermined system which is computed using least-square linear regression. After the co-

efficients are obtained, the maximum value of the parabola is calculated in terms of the coeffi-

cients. These results given in [83] are shown in Equations 2.15, 2.16. These are closed-form

solutions that avoid iterative re-computation for fast and efficient subpixel localization.

xls =
2db − ce
c2 − 4ab

(2.15)

yls =
2ae − dc
c2 − 4ab

(2.16)

2.3.1.3.6 Extension to 3D Localization Depth computation is a very well researched prob-

lem of detecting stereo correspondence in the stereo images in computer vision. We have al-

ready discussed in detail the algorithm for tool-tip localization. The same algorithm is used for

localizing the tool in the left and the right frame. The pair of rectified images is row aligned, so

the shift along the column of corresponding points on the left and the right frames gives rise to

the perception of depth. The process of backtracking the 3D point after localizing correspond-

ing pixels in the left and the right images is known as triangulation. The geometric setup and

positioning of the rectified image pair can be understood from the Figure 2.6. Equation 2.17

defines the relation between depth, disparity, focus and baseline:

ztool =
f b

disparity
(2.17)

The focus value for each camera and the baseline is estimated from stereo calibration,
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and it remains constant throughout the experiment. The apparent disparity obtained by phase

correlating the stereo template images and that observed after the localization of the tool-tip in

stereo frames are fused together using Kalman filtering with equal weights in the measurement

equation to obtain a better estimate of the predicted disparity. The resolution of the computed

depth is dependent on the accuracy of the calculation of disparity as defined in Equation 2.18

[84].

∆z =
z2∆d

f b
(2.18)

The disparity computation accuracy is dependent on the localization algorithm and the

stereo calibration accuracy. The error in depth measurement increases quadratically with the

increasing depth. SEM also has a short baseline as it is designed to pass through a trocar

port during RAMIS. A short baseline is not a good fit for long range sensing and also depth

accuracy computation degrades with increasing depth. It is because of these reasons we kept

the SEM close to the phantom while performing the experiment. In the results and discussion,

we present the color-coded map onto a small region of the phantom because the area of focus

while performing the experiment is a small subsection of the entire section.

Depth computation accuracy validation We designed an experimental setup as shown

in Figure 2.16 using a linear stage (Zaber Technologies Inc., Canada) motion for depth compu-

tation accuracy validation. The linear stage is commonly used for cycling applications where

it is actuated to move in a particular waveform with defined amplitude, frequency and a total

distance of travel. We used the triangular wave generation script from Zaber Technologies to

actuate the linear stage in a triangular waveform with an amplitude of 16mm. Figures 2.17, 2.18

show that the depth computed from the camera follows the same variation as the linear stage’s

displacement with a resolution of 0.5mm. Figure 2.18 shows a fitted linear function of depth

measurement and linear stage displacement with a slope of approximately unity indicating the

accuracy of the depth validation experiment.
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Figure 2.16: Experimental setup for depth validation using linear stage motion.

Figure 2.17: Experimental validation showing camera measurements following linear stage
sinusoidal displacement with an amplitude of 16mm.
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Figure 2.18: Validation of da Vinci R© stereo camera depth tracking showing a linear best fit for
depth measurement from camera with respect to linear stage displacement.

2.3.1.4 Tracking Algorithm Description

Figure 2.19: Left and right frame tool-tip localization



2.3. DATA ABSTRACTION 56

Algorithm 1 Tool-tip localization algorithm
Input: Il ,Ir, calibrationparam

Output: xtool, ytool, ztool

1: Initialization
Îl, Îr ← stereoRemap(Il, Ir, calibrationparam)
xclick, yclick ← userIntialization()
Tlo,Tro, Blo, Bro ← computeS earchParameters(Îl, Îr,xclick,yclick)

2: while i 5 num f rames do
Îl, Îr ← stereoRemap(Il, Ir, calibrationparam)
Tl,Tr,Ωl,Ωr ← computeS earchParameters(Îl, Îr, xl, yl, xr, yr)
θl, sl ← logPolarTrans f orm(Tlo,Tl)
θr, sr ← logPolarTrans f orm(Tro,Tr)

disparityapparent ← phaseCorrelation(Tl,Tr)
Tl,Tr ← warp(Tlo, θl, sl,Tro, θr, sr)
x̂l, ŷl, x̂r, ŷr ← matchMethod(Tl,Ωl,Tr,Ωr)
x̂ls, ŷls, x̂rs, ŷrs ← subPixelLocalization(x̂l, ŷl, x̂r, ŷr)
disparityobserved = x̂l − x̂r

disparitypredicted, xl, xr ← kalmanFilter(disparityapparent, disparityobserved, x̂l, x̂r)
xtool, ytool, ztool ← 3DLocalization(disparitypredicted,Q)

i = i + 1
3: end while
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2.4 Experimental Setup

Figure 2.20: Experimental setup on the patient side showing the PSM, the FBG-sensorized
tool, phantom, SEM and the optical interrogator.

The stiffness of a tumor is generally higher than that of healthy tissue and can be easily dif-

ferentiated during an OSP by manual palpation. The hypothesis of this experiment is that the

two different materials will show different compression when pressed with the same amount

of force. This behavior is the tissue’s characteristic property and has been tested to determine

elastic and plastic properties during uni-axial compression tests in [85]. In this framework de-

sign, we intend to develop a mechanism similar to a finger’s pressing motion during manual

palpation. A master-slave teleoperation system, i.e. the da Vinci R©, is used to generate repeti-

tive pressing motions by moving the MTM to manipulate the patient-side robotic arm. Figure

2.21 shows the experimental setup on the PSC with a phantom and the FBG force-sensorized

da Vinci R© tool. The force-sensorized tool is used for sensing lateral forces while a point is

compressed to study the change in depth. The user has a continuous feedback of the amount of

lateral force exerted while pressing on the phantom. The vision-based tool tracking explained
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in Section 2.3.1.3 is used for depth sensing as the robotic arm mimics the user’s motions.

Figure 2.21 shows different orientations of the sensorized da Vinci R© tool as it presses on the

phantom. As shown in the figure, orientation A results in a higher angle between the phantom

plane and the palpation plane. However, orientation B where the tool is arranged in a horizontal

manner, results in a good alignment between the planes with minimal rotation. Orientation B

maintains an impact along the normal axis and also results in efficient lateral force sensing. We

have used orientation B for our experimental system design. Figure 2.22 depicts force sensing

in orientation B for eight sampled points using the FBG force-sensorized tool and the commer-

cial Gamma ATI force sensor placed underneath the phantom for validating the force estimated

using the tool in orientation B.

Figure 2.21: Probable orientations for palpating the surface during RAMIS.



2.5. DATA INTERPRETATION 59

Figure 2.22: Force validation plot showing the forces measured by the FBG-sensorized tool
and Gamma ATI force sensor in orientation B.

2.5 Data Interpretation

2.5.1 Sampled Point Stiffness Computation

Precise contact dynamics modeling of tool-phantom interactions can provide an estimation of

conservative and non-conservative force parameters. Various localized continuous deformation

models accurately estimate the contact and damping forces between a rigid sphere like object

and a deforming plane as a combination of springs. KV is one such (linear) model that estab-

lishes a relation between the force and compression as a parallel connection of linear springs

[86]. HC is another contact dynamics (non-linear) model that even takes into account the en-

ergy loss during contact [87]. Yamamoto et al. [34] compared seven contact models for best
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tool-tissue interaction estimation. They computed that HC is the best model for delineating

hard inclusion from soft surrounding material based on a parameter K estimated from the HC

model. Lateral forces computed from the FBG-sensorized tool are equivalent to a reaction

force applied to the phantom’s surface. The HC contact model is defined in Equation 2.19

where K is the stiffness, λ is the damping factor, n is dependent on the local geometry around

the contact surface.

F(t) = Kxn(t)︸ ︷︷ ︸
Non-linear elastic force component

+ λxn(t)ẋ(t)︸     ︷︷     ︸
Non-linear viscous force component

(2.19)

Yamamoto et al. [34] used K (stiffness) as an estimator for differentiation visualization. Instead

of K we characterize the tissue stiffness based on the maximum indentation depth attained on

pressing the sampled point with the same force. We used the nonlinear grey-box model script

(Matlab) for unknown coefficients estimation from the lateral force, depth and depth rate. The

non-linear grey box model estimates the unknown coefficients from known data points based

on the differential state equation of the HC model. In the Table 2.1 we present the parameters

estimated from the HC model and maximum indentation depth obtained by pressing on the

sampled points. We have highlighted the points in Region A (stiffer) in red and points in

Region B (softer) in blue for differentiation.

Table 2.1: HC parameters and maximum depth obtained for eight sampled points.

PointIndex n λ K dmax

1 0.823 0.6674 -3.7492 4.0506mm

2 0.9533 1.825 -3.0671 3.7203 mm

3 0.9620 0.5996 -2.4827 4.6906 mm

4 2.5071 0.0002 -0.0494 8.3410 mm

5 1.1942 0.0680 -0.8429 7.5510 mm

6 1.5673 -0.0018 -0.2319 10.614mm

7 1.4549 0.0092 -0.3649 9.8145 mm

8 1.6655 0.0315 -0.3729 7.7777 mm
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We have presented the HC parameters and maximum depth in the above table to show

that depth can characterize the difference in stiffnesses. The estimation of HC parameters

for tissue property characterization is computationally expensive and may increase the error

if the nonlinear grey box model is not able to estimate the coefficients accurately from the

data obtained. Our work has simplified the process from multiple parameter estimations to

a single parameter analysis. Now, when unsupervised clustering algorithms are applied for

data evaluation instead of a multidimensional analysis on the parameters, the computations are

done only on maximum depth variation. When a similar amount of force is applied to different

materials, the compressive reaction i.e. the indentation is indicative of its stiffness.

2.5.2 Clustering Technique

Clustering approaches are broadly classified into parametric and non-parametric based clus-

tering. The choice of the clustering algorithm is dependent on the type of data, application,

and computational cost. Clustering refers to assigning the data into groups based on similarity

of data points depending on common characteristic parameters. The K-means is a parametric

hard partitioning clustering approach that divides the data into groups where the number of

groups are known a priori. The basic K-means functioning is defined in Algorithm 2. The

initial centroids are randomly placed to divide the data point into k clusters with k centroids.

After every iteration, the data points are re-assigned to a class based on their distance from

the nearest centroid. After reassigning the point by evaluating Euclidean distances, the new

centroid position for each of the k clusters is computed. This whole recursive task is performed

until the convergence condition is satisfied, i.e, the position of the k centroids stops varying.

The run time of the K-means algorithm is dependent on these four parameters: the number of

clusters (nc) , the number of iterations (ni), the number of data points (nd) and the dimension

of the data points (d).
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Algorithm 2 Basic K-means Algorithm
Input: Data points, Number of clusters (k)
Output: k clusters

Initialization Select K initial cluster centroid C1,C2...Ck

2: while (convergenceCondition! = True) do
Form clusters by labeling every point to the closest centroid.

Recompute the centroid for each class by averaging the data points in respective class.
4: end while

The K-means algorithm produces tighter clusters with small distances within the group and

a large separation of groups from each other. The K-means algorithm is computationally more

effective than other hierarchical clustering algorithms and also easier to implement. But it also

suffers from a major drawback that the user has to decide the number of groups a priori. It

is very sensitive to noisy perturbations and also being a greedy algorithm, it can converge to

a local optimum. Therefore this clustering approach is dependent on the initialization of the

centroid; hence different initializations can result in different partitions due to convergence at

local minima rather than a global optimum.

Algorithm 3 Clustering algorithm for stiffer area segmentation.
Input: Maximum depth change for sampled points, Number of clusters (k = 2)
Output: Maximal area spanned by stiffer region color coded (IcolorCoded)

Initialization Select K initial cluster centroid C1,C2

(CA,CB)← KMeans(dmaxi, 2)
dMeanA =

∑
i∈CA

dMaxi/nA

dMeanB =
∑

j∈CB

dMax j/nB

if dMeanA < dMeanb then
CA = True;

else
CB = True;

3: end if
xmin, xmax = (min

i∈CA
xi,max

i∈CA
xi)

ymin, ymax = (min
i∈CA

yi,max
i∈CA

yi)

IcolorCoded = MaximalAreaS pan(xmin, ymin, xmax, ymax)

Algorithm 3 shows the computation of the area spanning the cluster points that show less

compression. After the K-means algorithm has segregated the sampled points into two clusters,
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we compute the group with the minimum mean compression to label it as the stiffer region.

Then for that group, we compute the maximal area spanned by the group on the image and

segment that cluster to highlight the stiffer region.

2.6 Results and Discussion

The proposed procedure is a 3-stage process, and we have already discussed synchronized data

acquisition, data abstraction and data interpretation in Sections 2.2, 2.3, 2.5 respectively. In this

section, we conclude this chapter’s work by presenting the results obtained from the interaction

of the FBG-sensorized tool and the phantom in a manner similar to the finger’s pressing motion

during manual palpation. We give a detailed description of the results, experimental verification

and possible future enhancements for the framework presented in this chapter.

As, mentioned previously, the accuracy of depth measurement decreases quadratically, so

the SEM is placed close to the phantom for accurate measurements. Figure 2.23 shows the

top view of the phantom section captured from the da Vinci R©’s SEM. The labeled phantom’s

section shown in Figure 2.23 depicts the boundary separating the stiffer surface (Region A)

from the soft surface (Region B). The phantom model shown in Figure 2.23 is prepared from

Ecoflex0030 with a silicone thinner for making Region B. The different colors of Region A

and Region B are also indicative of different materials used while preparing the phantom. The

experimental setup and the motion of the tool-tip are shown in Figure 2.20, 2.21 respectively.

The user palpates four points in Region A and five points in Region B while getting real-time

force and video feedback on the stereoscopic head rest. In this experiment, the user has tried to

maintain a maximum force of 8N for each palpated point. The force feedback enables the user

to stop when a force of 8N is applied on each point. There is some variability in controlling

the maximum force applied; the error usually ranges within ±1N. While palpating point 8,

the user has applied higher force than the chosen empirical value and while palpating point 9,

the user has applied lesser force than 8N. The results are dependent on the control and action
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of the user while performing the experiment. The chosen maximum force value of 8N is an

empirical selection, and we have conducted the experiments at 10N as well. Figure 2.24 shows

the change in force and depth as points are palpated with a maximum force of 8N. Since the

user tries to push only up to 8N, the maximum depth change is indicative of the nature of the

region. The strength of a material (modulus of elasticity) is defined as the ratio of stress to

strain as given by Equation 2.20. The stiffness of an object is the extent of the resistance to

deformation when a force applied. In this experiment since the user controls the maximum

force applied to the point, the change in deformation is indicative of the material property as

shown in Figure 2.24 where there is a difference in depth change for Region A and Region B.

Region A being stiffer shows less change in depth than Region B.

E =
σ

ε
(2.20)

Figure 2.23: Section of the phantom outlining Region A and Region B captured from the da
Vinci’s R© SEM.
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Figure 2.24: Variation in depth and force while palpating the points minimally invasively using
the MTM to manipulate the PSM.

Figure 2.25 shows a plot of depth change versus the force applied to all 9 points palpated

in Region A and Region B. There is a clear separating plane that distinguishes Region A from

Region B after an application of a force of 4N. This limit is dependent on the material prop-

erty, and it can be deduced from this plot that property of the material in Region A can be

differentiated from that of the material in Region B when the applied force is above 4N, where

the deformation change is able to characterize the points. Figure 2.26 also shows a change in

depth versus force graph when the tool is removed from the surface point after the application

of the maximum force. This plot is sparse in nature as the tool was removed quickly after the

maximum force was applied. The rate at which the points were pressed was relatively slower

then when the force was released. These points are also well separated into groups for Regions

A and B. These plots indicate that the K-means clustering algorithm would be able to partition

these feature vectors accurately.
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Figure 2.25: Depth change versus applied force plot while pressing the tool-tip on the phantom
during RAMIS

Figure 2.26: Depth change versus applied force while releasing the tool-tip from phantom
during RAMIS

We conducted the same experiment on the phantom shown in Figure 2.27. This phantom

was dyed with a brown color while it was prepared so that the user has no visual cue from color
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difference about the phantom property while performing the experiment. The same experiment

was performed and fourteen points were palpated teleoperatively. The K-means clustering

resulted in the color-coded image shown in Figure 2.28. The figure shows the original boundary

on the section of the phantom depicted in black color and the boundary estimated from the

framework in red.

Figure 2.27: (a) Phantom designed for a blind test of the framework. (b) Image of the section
of the phantom palpated, captured from da Vinci R©’s SEM.

Figure 2.28: The original tumor boundary and the tumor boundary computed using the frame-
work for a palpated section of the phantom.
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We presented an algorithm for color coding the areas of higher stiffness in Section 2.5.2.

The performance of the algorithm was evaluated on a phantom with a single continuum stiffer

area. This algorithm could show variable performance if there are tumors present in small

discrete lumps or in arbitrary shapes and also could give a false detection in the absence of a

tumor. All four cases are enlisted in the Figure 2.29 and show the performance of the algorithm

in these test scenarios. In the case of a spherical or arbitrarily shaped tumor, the algorithm can

be used to provide a maximal spanning boundary that will include some portion of healthy

tissue as the algorithm is not designed to closely fit to the tumor boundary. In the presence

of multiple small tumors, the algorithm could define a boundary that spans all of the tumors

including the non malignant regions between the tumors. The K-means clustering algorithm

works with prior knowledge about the number of clusters. We chose this number to be two

for identifying regions with high and low stiffnesses. In the absence of a tumor in the palpated

region, K-means clustering will still attempt to differentiate the region into two groups. In such

cases, the use of preoperative imaging data can reduce or eliminate the occurrence of false

positives. Such data can help to determine the number of tumors as well as to better identify

regions where they may be located. These regions can be palpated further using the framework

proposed in this chapter to determine the maximal area spanned by each tumor. Information

about the number of tumors from pre-operative imaging can be used to decide on the number

of clusters.
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Figure 2.29: Theoretical performance of the framework on varied test case scenario.

2.7 Conclusions

This chapter presented a framework for delineation of the hard object from soft material us-

ing a color-coded map. A da Vinci R© needle driver sensorized with thin FBG sensors for force

sensing was used, with an SEM for vision-based tracking. This design makes the framework

a suitable candidate for integration in an actual surgical scenario without any major modifica-

tions to the existing procedure. This framework does not require any additional tool or extra

trocar port. The framework though can still be improved to present a fitted boundary that de-

forms exactly to define the palpated points. A segmentation approach with an active contour

model such as snakes [88] needs to be integrated with the existent framework for arbitrarily

shaped tumor boundary recognition. We also propose to semi-automate this whole procedure

to control the rate at which the tool presses onto the point for much more accurate results elim-
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inating any inaccuracies that may result from a manual approach. Future work will consist

of incorporating this assistive framework with other intraoperative imaging modalities such as

US and tactile sensing to render a virtual image overlayed onto the actual surgical scene for

additional guidance.



Chapter 3

Tissue Stiffness Characterization Based on

Lung Surface Tracking

3.1 Motivation

In Chapter 2, we presented an assistive framework that is capable of characterizing tissue stiff-

ness minimally invasively and telemanipulatively when using the da Vinci R© surgical robotic

system. We tested the performance of the framework on a stationary silicon phantom with

materials of different stiffnesses. The surgical scene during an in-vivo thoracic surgery is much

more challenging due to the presence of motion in the lung surface. The target lung is deflated

during a VATS for stabilizing the surface [89]. Even after the lung has been deflated, it still has

some motion due to the motion of the contralateral lung and the heart as the patient lies in a

lateral recumbent position. The framework should be designed to take into account this motion

or at least its most dominant part (frequency), i.e., the frequency of respiratory motion. Also,

robot-assisted palpation should be performed either at the rising part of the breathing cycle or

at the falling part of the cycle to produce consistent results. In other words, a more realistic

validation experiment should involve a phantom which can simulate the motion of a deflated

71
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lung. Therefore, surface tracking is an important upgrade to the current framework that will

enable us to compute the relative indentation incorporating the motion of the tissue surface as

well as the interacting tool.

Deflation of the lung results in a significant shift in the location of a tumor that is initially

obtained from preoperative CT scans. Also, an intra-operative imaging modality such as the

US produces distorted images of the lung because some amount of air is still present in the

alveoli of the deflated target lung which interferes with the reflected US signals. Naini et al.

[90] developed an algorithm that can determine the lower and the upper-intensity thresholds

for segmenting lung’s soft tissue and air-volume based on the principles of tissue incompress-

ibility and lung’s air-mass conservation. They analyzed the histograms obtained from the CT

scans at different inflation and deflation levels during respiration for initializing the threshold

value. Then using an optimization algorithm, they computed the optimum threshold values for

segmentation. Naini et al. [20] further worked on computing the global and the local non-

rigid registration transformations between CT scans at different deflation levels. The resulting

transformation parameters were optimized to compute a new set of parameters that can extrap-

olate the CT scan of the deflated lung. These results assist in constructing a CT scan for a

deflated lung which can determine the location of the shifted tumor thereby enhancing surgi-

cal planning. Even after the tumor location is predicted intra-operatively by extrapolation, the

lung tissue surface still undergoes deformation due to continuous cardiac and respiratory mo-

tions which can introduce further uncertainty during a surgical procedure. Therefore, it will be

helpful to provide visual cues to the surgeon about the real-time movement of a tumor during

VATS.

Apart from providing visual guidance, surface motion information can also act as an input

to the robotic control system so as to cancel any active relative motion between the tool and the

lung surface to achieve more accurate control. One such example is the macro-micro robotic

tool designed to compensate for tissue surface motion in [91]. Lung Brachytherapy is relatively

a new minimally invasive interventional procedure where a radioactive seed is placed in a tumor
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using a hollow needle at a target location to destroy cancerous cells effectively. This procedure

is dependent on an accurate needle placement and steering. Farokh et al. [91] designed an

impedance controller that synchronizes the motion of a needle with the motion of a lung for

effective seed placement. In such a motion stabilizer and synchronizer design, estimation of

lung surface motion can act as an important feedback for the controller. In this chapter, we

present a tracking algorithm, designed to obtain the data about the motion of the lung surface

intraoperatively. The tracking algorithm is implemented on in-vivo VATS videos for analyzing

the motion of distinctive landmarks on the surface of a lung. We also extend this study by

evaluating the motion of a pair of distinctive landmarks to compute the lateral strain variation

between them over the period of the experiment. This analysis helps us to validate an important

property that the lateral strain variation can characterize tissue stiffness.

3.2 Literature Review

The literature regarding tracking can be broadly classified into feature-based tracking, contour-

based tracking, region-based tracking and learning-based tracking. Feature-based tracking gen-

erally employs feature descriptors such as SURF [74], SIFT [92] and BRISK [75] for matching

a distinctive feature in consecutive images. All of these correspondence matches are scale and

rotation invariant, hence they are robust for accurate tracking if the feature is repeatable and

stable in consecutive frames. These feature matching algorithms are robust but time-consuming

because the matching method is followed by an outlier rejection mechanism which is a com-

putationally intensive task.
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Figure 3.1: Matching for a single feature using SIFT.

The contour-based matching algorithms are essentially modeled to match the contour’s

segment in consecutive images. These algorithms employ prior knowledge of the structure.

Seminal work in these matching algorithms indicates a dependence on the extraction of an

edge map using either motion or texture cue [93]. The matching algorithm most commonly

used for contour matching is chamfer matching that computes the amount of similarity between

two contours to recognize the best match [94]. Several variations of basic contour matching

algorithms are available such as using the generalized Hough transform instead of chamfer

matching for analytic curve detection [95] or using a multi-scale contour detection that detects

contour fragments by defining a basis function that optimizes for the correct match [96].

Region-based matching algorithms determine the overlap corresponding to the best match

that minimizes the difference. Similarity metrics used for the computation of the best match

in the literature are Sum-of-Squared Difference (SSD), Normalized Cross Correlation (NCC)

and Mutual Information (MI). Non-rigid region-based registration uses a mesh that fits the

deformed surface initially, the mesh is iteratively registered to the surface based on the trans-

formation of the control points [97]. Template-based matching is a region-based matching

algorithm where a template with a specific feature is searched in the base image using the

similarity metrics such as SSD, NCC and MI. We have used template-based matching for our

purpose that estimates the best similarity match corresponding to the defined template. Since,
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it can be time-consuming to do the match for the whole image, we choose a small search space

of width (w) and height (h) and predict its motion over time using a Kalman Filter (KF) for an

accurate estimation.

The template matching algorithm has evolved over time to be a better tracking estimator

by implementation of corrections for occlusion detection and continuous template update for

scale and rotation changes. Matthew et al. [98] designed a drift correction update algorithm

that constantly updates the template in each iteration by registering the old template to the cur-

rent template. Schreiber et al. [99] suggested a more robust variation by using adaptive weights

for each pixel that maximize the effect of dominant data along with the use of a drift correction

algorithm. Chambers et al. [100] designed a higher learning based template matching algo-

rithm that learns the template parameters. In our work, we have used template matching with

a continuous template update for scale and rotation changes as explained in Section 2.3.1.3.3.

The KF estimates the shift in search space with higher accuracy that significantly improves the

computation time by reducing the size of the search space for searching the template.

3.3 Lung Surface Tracking Algorithm

Analyzing the shape changes, the deformations and the temporal motion from a sequence of

image data acquired using an endoscope is a challenging problem. Seminal works in tracking

a deformable surface involves a mathematical template mesh model that is deformed over time

with the motion of the control points [101]. In [102] [103], the authors suggested attaching

artificial fiducial markers over the surface of a beating heart to assess the displacement of

those markers. Though these markers, if fixed properly to the tissue surface, can result in a

robust detection, the problem lies in designing a fixing mechanism. Also, it is not deemed

safe to introduce miniaturized markers in the body due to the possibility of dislocation and

other complications such as bio-compatibility of the material used in the fabrication of those

markers. Ortmaier et al. [104] suggested tracking of a distinctive biological landmark on the
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heart surface. Lung surface also has prominent markers and especially, a smoker’s lung will

contain scavenger cells filled with the impurities absorbed from smoking. Black lines in case of

a smoker as shown in Figure 3.13, and red arteries-based biological markers in case of healthy

tissue as shown in Figure 3.2, can serve as a template for tracking the lung surface. The basic

flow of the tracking algorithm is depicted in the Figure 3.3.

Figure 3.2: A user selected template on a lung’s surface.

Figure 3.3: Basic block-diagram of the tracking algorithm.
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We have used a template-based matching algorithm for tracking multiple biological land-

marks on a tissue surface. The user manually selects a biological marker with a mouse click (x,

y) as depicted in Figure 3.2 and the initial template (T0) image of size 50× 50 is computed and

saved in the memory. The template is updated recursively using the Template Update method

defined in Chapter 2 in Section 2.3.1.3.3. This template update procedure resolves the issue of

drifting over the search space that contains the marker with time. To localize the presence of

a template in the computed search space (B), the updated template is matched within the com-

puted search space using the Matching Method explained in Chapter 2 in Section 2.3.1.3.4. The

Matching Method returns the location of the center of the template found in the search space

corresponding to the best match from the NCC similarity metric analysis. This approach can be

repeated for multiple templates, and these selected templates can be localized simultaneously

over the period of the experiment. The motion of a deflated lung is acquired from the motion

of the heart and the contralateral lung which is quasi-periodic in nature. Therefore, the motion

of the deflated lung surface is inherently periodic, and the Fourier theorem states that any pe-

riodic signal can be expressed as a sum of sine and cosine functions with different amplitudes

and harmonic frequencies. Richa et al. [105] have utilized this theorem to model the 3D coor-

dinates of the motion of the heart surface as a dual non-stationary Fourier series. The unknown

parameters of the series were recursively estimated using the Extended Kalman Filter (EKF).

The motion of the deflated lung is an amalgamation of the periodic motion of the heart and the

contralateral lung. By incorporating this knowledge about the bandwidth of the motion signal

of the deflated lung, we have modeled the motion as a truncated Fourier series with unknown

amplitudes. We discuss various filters that were used in literature to model a reference signal

with prior knowledge about the frequency and bandwidth to estimate the unknown weights.

We have chosen a KF with a motion model that incorporates the knowledge of the bandwidth

of lung’s surface motion and it adapts to the determine the unknown weights recursively by

using the motion model as well as the value obtained from the tracking algorithm.
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3.3.1 Fourier linear combiner

Fourier Linear Combiner (FLC) is an adaptive filter that can estimate the Fourier series coeffi-

cients of a quasi-periodic signal of a known frequency using Least Mean Squares (LMS) [106].

If the base-frequency of a signal is known a priori, FLC can adapt to the amplitude and phase

change of the signal. The reference signal equation is as follows:

Y(n) =

M∑
r=1

ar sin(rwknownn) + br cos(rwknownn) (3.1)

where M is the number of harmonics in the model.

3.3.2 Band Limited Multiple Linear Fourier Combiner

The FLC filter assumes a fixed known base frequency for modeling the unknown signal, but our

problem involves a motion signal within a frequency band. The motion signal of the deflated

lung has a lower cut-off frequency corresponding to the frequency of respiration and an upper

cut-off frequency corresponding to cardiac motion. Band Limited Multiple Fourier Linear

Combiner (BMFLC) is a filter that estimates the modulated signal within a band of frequencies.

BMFLC can be considered as the combination of multiple FLCs for the estimation of a band-

limited signal. The reference signal is modeled as a weighted sum of sine and cosine functions

at specific frequencies within the band, given by Equation 3.2 which is defined in [107]. A user

can decide the number of divisions in the bandwidth for the signal modeling.

Y(n) =

L∑
r=0

ar sin(2π( f0 +
r
P

)n) + br cos(2π( f0 +
r
P

)n) (3.2)

where P is the number of divisions in the frequency band and L = ( f − f0)P.
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3.3.3 Kalman Filtering

The motion of the template on the surface of the deflated lung is modeled similarly to the

reference signal for the BMFLC defined in Equation 3.2. The motion model of the displace-

ment between the consecutive frames, also known as the inter-frame motion, is modeled as

the weighed sum of sine and cosine functions at sampled frequencies in the bandwidth. The

deflated lung surface motion’s bandwidth has the lowest frequency component corresponding

to the respiration of 0.16Hz and the highest frequency component corresponding to the cardiac

motion of 1.83Hz. The higher the number of sampled frequencies within the bandwidth the

better will be the motion model work to estimate the inter-frame motion. The motion model

for the surface motion is defined as the weighed sum of the sine and the cosine at five dominant

frequencies (0.16Hz, 0.58Hz, 1Hz, 1.42Hz, 1.83Hz) as shown in Equation 3.3. The KF adapts

to the changes in the phase and amplitude of the inter-frame motion and predicts the shift for

the next frame. The KF is an estimator that recursively predicts the future state of a dynamic

system model that may be excited by random disturbances and noisy measurements. It is a

minimal variance estimator for a linear time varying system containing statistical noise and

other inaccuracies. The motion model of the template’s movement in 2D space (x, y) is defined

using a linear time varying equation described as follows:

x

y

 =


∑4

r=0 a1r sin(2π( f0 + r
P )n) + b1r cos(2π( f0 + r

P )n)∑4
r=0 a2r sin(2π( f0 + r

P )n) + b2r cos(2π( f0 + r
P )n)

 (3.3)

Let the 2D motion vector at time instant ‘n’ be denoted as:

d(n) =

x

y

 (3.4)

The measurement equation can be given by Equation 3.5, where M is the transformation

matrix that maps the state vector into the measurement domain and is given by Equation 3.6.
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d(n) = M(n)A(n) + λ(n) (3.5)

M(n) =

sin(w1n) cos(w1n) · · · sin(w5n) cos(w5n) 0 · · · 0

0 · · · 0 sin(w1n) cos(w1n) · · · cos(w4n) sin(w5n) cos(w5n)


(3.6)

KF works in a state-space representational framework where a set of first-order differential

equations relate the input, output and state variables. The amplitude also known as the weight

of the truncated Fourier series is the state vector. The state update equation is defined in 3.7.

Since, we have no prior information of the weights, it is described as a random walk [108].

KF uses noisy measurements and inputs corrupted with white noise to estimate the unknown

variable of the system. The measurement error λ(n) and the state error µ(n) are assumed to be

uncorrelated, zero mean Gaussian white noise as described in Equation 3.9 and 3.10 respec-

tively.

˜A(n) = A(n − 1) + µ(n) (3.7)

where A(n) is a 20 × 1 column vector containing all the unknown weights.

A(n) =

[
a11(n) b11(n) · · · b15(n) a21(n) b21(n) · · · a25(n) b25(n)

]T

(3.8)

µ ≈ N(0,Q) (3.9)

λ ≈ N(0,R) (3.10)

R = 0.01 × I2 and Q = 0.1 × I20 (3.11)

where R is the measurement error covariance whose value is estimated by studying the variance

of the measurement error signal λ(n) around its mean value and Q is the state error covariance

whose value is empirically set higher than R to give higher weight to the values obtained from

the camera measurements.
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3.3.3.1 Prediction Step

This step computes the new state estimate at every discrete time by applying a linear operator

to the current state based on the state equations defined in 3.12, 3.13. ˜A(n) and ˜P(n) represents

apriori estimates of amplitude and covariance at time step n.

˜A(n) = FA(n − 1) (3.12)

where F is the state transition matrix and defined as I20.

˜P(n) = FP(n − 1)FT (3.13)

3.3.3.2 Correction Step

This step involves the combination of current observation with the state estimate obtained from

the prediction step to refine the value of the state vector. The calculation of innovation e(n) in

Equation 3.14 refers to the deviation of the measured variable from the estimated variable.

Kalman gain (K) computation is defined in Equation 3.15 and this value is used to correct the

predicted state vector and predicted covariance matrix in Equation 3.16 and 3.17 respectively.

KF can effectively determine the next state by not only taking into account the process model,

but also giving different weighing to measurements and process values by adjusting the Kalman

gain (K).

e(n) = d(n) − M ˜A(n) (3.14)

K = ˜P(n)M(n)T {M(n) ˜P(n)M(n)T + R}−1 (3.15)

A(n) = ˜A(n) + Ke(n) (3.16)

P(n) = (1 − KM(n)) ˜P(n) (3.17)
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3.4 Results

The proposed tracking algorithm in Section 3.3 is validated on a video obtained from an in-

vivo VATS, conducted by a thoracoscopic surgeon at LHSC, Dr. Richard Malthaner. Figure 3.4

shows a snapshot of the video with four selected templates that are tracked iteratively. The lung

is deflated but still has motion due to the contralateral lung and the heart. Figure 3.5 and 3.6

shows the displacement signal of these four templates in x and y directions respectively. Figure

3.7 shows a plot of the power spectral density for template T1’s motion in the x-direction, and

it has peaks at frequencies corresponding to the bandwidth of respiratory motion and cardiac

motion. The peaks for dominant frequencies in the signal are at 0.17Hz, 0.35Hz and 1.64Hz

where the first two highlighted peaks have frequencies indicating the motion corresponding

to the lung and third highlighted peak indicates the motion due to the heart. The inter-frame

displacement prediction from the KF improves the tracking capability by reducing the search

space image window size from 500 × 500 to 150 × 150. Figures 3.8 and 3.10 show the actual

position of the template motion in the next frame computed using the camera and the motion

predicted using the KF considering the motion model and the computed values for the current

frame. The search space is now initialized with the center position predicted by the KF in the

next frame. This reduces the computational complexity and the chance of false detection which

can occur when the search space is not updated for the movement over time. Figure 3.9 and

3.11 report the Normalized Root Mean Square Error (NRMSE) for the difference in the shift

computed using the KF and measured by the camera for x and y directions respectively.
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Figure 3.4: A snapshot from the video of a VATS procedure on a deflated lung with the selected
templates depicted in the box with their respective notations.

Figure 3.5: The displacement of the template in the x-direction for T1, T2, T3 and T4 respec-
tively.
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Figure 3.6: The displacement of the template in the y-direction for T1, T2, T3 and T4 respec-
tively.

Figure 3.7: Power spectral density plot for T1 in the x-direction showing peaks corresponding
to the bandwidth of respiratory and cardiac frequencies.
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Figure 3.8: The motion of T1 in the x-direction measured using the camera and predicted by
the KF.

Figure 3.9: NRMSE for motion prediction in the x-direction using the KF.
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Figure 3.10: The motion of T1 in the y-direction measured using the camera and predicted by
the KF.

Figure 3.11: NRMSE for motion prediction in the y-direction using the KF.

Strain is a dimensionless quantity that is defined as the ratio of the change in dimension to

the original dimension when the body is subjected to stress. The strain is generated when there

is a change in the spatial domain state such as length, volume or angle. When normal stress

is applied on a material, it results in a change in length in the direction of the force which is

termed linear or longitudinal strain whereas if the change appears in the direction perpendicular
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to the force it is termed lateral strain. In Chapter 2, we characterized stiffness based on the

measurement of the longitudinal strain when a pressing normal force is applied to a set of

sampled points on the phantom surface. The motion of a lung is associated with a continuous

change in its volume that generates a lateral strain on the surface. Therefore, the measurement

of the lateral strain can assist in characterizing the tissue surface. The tumorous tissue is stiffer

than the surrounding non-malignant tissue, and it has been experimentally validated for breast

tissue in [109]. Tumorous tissue being stiffer than the surrounding healthy tissue should ideally

show more resistance to deformation and stretch less. To verify this, a pair of points on the

tumorous region and two pairs of points on the non-tumorous region at an increasing distance

from the tumorous region are sampled. Figure 3.12 shows the deflection curve in black that

stretches and contracts due to the motion of the lung surface. We chose a small element ds

on the deflection curve between a pair of points (p1, p2) and observe the curvature variation at

different time instances. The chosen deflection curve between template pair is a small fraction

of the deflection curve spanning the lung surface therefore the arc-length can be approximated

as the Euclidean distance between the points (p1, p2). The tracking algorithm described in

Section 3.3 returns the best match corresponding to the center of the template found within

the search space. The computation of centers for a pair of templates over time can assist in

evaluating the variation of the arc-length between the two chosen templates. The strain is

assumed to be zero at the initial configuration, i.e., ds(n0). The Lagrangian strain (εL) measure

for the computation of lateral strain between two points at a given time instant (n) is given by

Equation 3.18. Equation 3.19 shows that the lateral strain is proportional to the inter-template

distance with respect to the initial distance between the points. This inter-template distance

variation with respect to the initial distance between the pair (β(n)) can be used as a measure

to differentiate regions with different stiffnesses.

εL(n) =
ds(n)
ds(n0)

− 1 (3.18)

εL(n) = β(n) − 1, εL(n) ∝ β(n) (3.19)
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where

ds(n) =
√

(p1x(n) − p2x(n))2 + (p1y(n) − p2y(n))2

ds(n0) =
√

(p1x(n0) − p2x(n0))2 + (p1y(n0) − p2y(n0))2

Figure 3.12: A snapshot from a video of a VATS, indicating the deflection curve and a small
element ds between a pair of points (p1, p2).

A region with tumor will have high stiffness and therefore will stretch less than the sur-

rounding non-tumorous region with low stiffness. Figure 3.13 shows a snapshot from a video

of an in-vivo VATS performed on a human lung. In the figure, the tumorous region can be

seen as the tissue with the distinctive gray color and a template pair (T5,T6) is placed on the

tumor surface. T1...4 lie on the nonmalignant surface where template pair (T1,T2) is placed

farther from the tumor than the pair (T3,T4). The variation of the lateral strain for the selected

template pairs over time is depicted in Figure 3.14. This plot concludes that the lateral strain

variation between pairs of templates can characterize tissue stiffness. To do a comprehensive

analysis, we sampled template pairs along a line that does not pass through the tumor to verify

whether the lateral strain variation is due to the inherent motion of the lung surface or due to the

presence of a stiffer region. Figure 3.15 shows the line along which the sampled template pairs
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are selected, and the results of lateral strain variation among the template pairs are depicted in

Figure 3.16. Figure 3.16 shows that lateral strain variation signal does not show a significant

difference in the absence of a tumor whereas Figure 3.14 shows that the variation of the signal

corresponding to tumor is damped compared to the signal for the healthy tissue. Therefore, we

can conclude that the analysis of motion of the tissue surface can characterize tissue stiffness

by analyzing the change in lateral strain.

Figure 3.13: A snapshot from a video of a VATS, indicating the templates positions and their
notations on the lung surface. The template pairs (T1,T2), (T3,T4) lie on the non-tumorous
region and (T5,T6) lies on the the surface of the tumor.
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Figure 3.14: Lateral strain variation plot for the selected template pairs in Figure 3.13.

Figure 3.15: A snapshot from a video of a VATS, indicating the templates positions and their
notations on the lung surface. The template pairs (T1,T2), (T3,T4) and (T5,T6) lies on the
non-tumorous region.
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Figure 3.16: Lateral strain variation plot for the selected template pairs in Figure 3.15.

3.5 Conclusions

In this chapter, we presented a method for tracking multiple biological markers on the lung

surface and implemented the tracking algorithm on videos obtained from an in-vivo VATS.

The motion detected by the algorithm can serve as feedback for the robotic controller used to

cancel the active relative movement between the tool and the tissue surface. We also verified a

hypothesis that the tumorous surface will have a less lateral strain as compared to the strain of

the non-tumorous surface. We concluded that the extraction and analysis of the 2D motion of

the lung surface can be used to characterize tissue stiffness. The tumor localization mechanism

based on this principle can be developed further by analyzing along multiple scan lines and

sampled template pairs to localize the tissue surface that has a higher probability of being a

tumorous region. The lateral strain determination will assist in narrowing down to the region

that contains the tumor and later the suspicious area can be probed with the force-sensorized

da Vinci R© tool for more accurate localization of the tumor. Therefore, the surface tracking

algorithm will serve as an important upgrade to the framework developed in Chapter 2 for the
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determination of the most probable region that may contain a tumor. Also, the motion of the

lung surface will interfere with the robot-assisted palpation motion suggested in Chapter 2. The

integration of tool-tip tracking with lung surface tracking will make it possible to determine the

relative depth change while pressing the surface. Despite being close to the manual palpation

process, one of the major limitation of the probing device is the slow speed of palpation. The

work presented in this chapter has the potential to accelerate the tumor localization process by

helping to identify the probable area to be palpated instead of probing the entire surface.



Chapter 4

Conclusions and Future Work

This chapter concludes the research presented in this thesis on the topic of the development of

an assistive framework for tumor localization in RAMIS. A brief summary of the key aspects,

concluding remarks and possible extensions as future work are presented.

4.1 Summary

The sense of touch is a critical feedback for surgeons during open surgical procedures to lo-

calize tumors and assess tissue properties for surgical resections. To overcome the loss of this

crucial information, researchers have tried to design frameworks that mimic hand-tissue inter-

action similar to manual palpation. The aim of this research was to develop a framework that

can increase the probability of tumor localization in RAMIS where feedback from manual pal-

pation is not possible. In Chapter 1, we reviewed different feedback modalities used to recover

soft tissue stiffness information in the absence of manual palpation. We concluded from the

literature review that a good framework should require minimal redesign to the existing setup

and should be sufficiently miniaturized for use in RAMIS. Also, its design principle should

mimic manual palpation, and provide fast and accurate results.

Based on the extensive review regarding the preferred characteristics of the probe design, a

93
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vision-based tissue stiffness characterization framework for RAMIS was developed in Chapter

2. The framework was experimentally validated on a silicon phantom with regions of different

stiffnesses, using a telemanipulation setup involving the da Vinci R© surgical system and a force-

sensorized da Vinci R© surgical tool. An FBG force-sensorized da Vinci R© needle driver was used

for sensing the force applied to the phantom’s surface as the tool was made to perform pressing

motions on the tissue teleoperatively. The use of da Vinci R© tool provides better control and

higher DOFs, and this tool is also used for suturing. Therefore, no additional port or setup

re-design is required to use it during teleoperated palpation. We also developed a vision-based

tracking algorithm for 3D tool-tip tracking using the inbuilt da Vinci R© stereo endoscope, for

the measurement of indentation depths. The framework analysis depends on two parameters

for characterizing the phantom stiffness: indentation depth and force applied. We concluded

in Chapter 2 that when the amount of force applied to a set of sampled points is controlled,

the indentation depth alone can characterize the phantom stiffness. The palpated points were

differentiated into two groups based on stiffness using K-means clustering. The lower stiffness

points were segmented to present the localized boundary of the tumor within the palpated re-

gion. This chapter presented a model for robot-assisted tumor localization using a standard da

Vinci R© tool by integrating force sensing, vision-based sensing, and machine learning.

The framework presented in Chapter 2, required a mechanism to compensate for the intraoper-

ative motion observed on the lung surface during an actual surgical scene to ensure reliable and

robust stiffness measurements. In Chapter 3, we presented an algorithm for tracking distinctive

biological markers on the surface of the lung. The tracking efficiency was further improved

by using the Kalman filter to predict the inter-frame motion. The proposed tracking algorithm

was tested on the videos obtained from an in-vivo VATS. The lung surface undergoes a contin-

uous volume change due to its motion which results in a strain on its surface. We computed

the values of strain variations on the surface corresponding to different stiffnesses from an in-

vivo VATS video with a tumor and validated an important result that the lateral strain variation

can be used to characterize tissue stiffness. This characterizing parameter can be employed
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to determine the region that is likely to contain a tumor. The probing mechanism can then be

used to evaluate the relative stiffness of this region. The integration of surface tracking in the

framework proposed in Chapter 2, will result in a robust framework that can be validated in an

in-vivo experiment. The work presented in the thesis forms the basis for characterizing lung

tissue stiffness by analyzing the longitudinal strain change during robot-assisted palpation and

the lateral strain change due to the motion of the lung tissue surface.

4.2 Future Work

Though the framework proposed in this thesis has attempted to address the problem of tumor

localization in a comprehensive manner, there is significant scope for further improvements

and testing. Some suggestion for future work are outlined in this section:

1. The experiment designed in Chapter 2 can be performed in a controlled manner by au-

tomating certain segments of the task of robot-assisted palpation. We can make the

process semi-autonomous and move the da Vinci R© tool in a pre-defined number of dis-

crete steps so that the amount of force applied can be controlled better. The automation

will reduce the variability in the way that the user presses the tissue surface. Also, the

relative orientation of the tissue and the palpation plane can be maintained while press-

ing the surface. A semi-autonomous approach will allow the surgeon to focus on other

aspects of the surgical procedure.

2. The framework is designed to provide continuous kinesthetic feedback about tool-tissue

interaction (pseudo-haptics). Tavakoli et al. [110] suggested that haptic feedback de-

creases the time required for palpating a tissue surface. Therefore, the visual force

feedback while maneuvering an indenter tool can be replaced with haptic feedback at

the master console. A better framework design would consist of a pressure-sensitive

touch-pad that would create an immersive perception of interacting with either a tumor

or non-tumorous soft tissue.
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3. We used an unsupervised clustering algorithm, i.e., K-means clustering for grouping

points into two groups based on their stiffnesses. This division can be considered as an

initial partition which can be used to train a classifier that can classify any new palpated

point into either of two groups. Also, instead of computing the maximal area spanned by

the points with lower stiffness, we can segment a set of points to present a fitted boundary

that deforms around the contour of each palpated point.

4. The lung surface undergoes a continuous volume change due to its motion which de-

velops a strain on its surface. We showed that lateral strain variations can be used to

characterize tissue stiffness. This algorithm can be further developed by evaluating strain

variations for template pairs along multiple sampled parallel scan lines for detecting the

pair that behave differently. For the detection of a confined region, the algorithm can be

run iteratively for sets of parallel scan lines in different directions. This simultaneous

analysis of template pairs along multiple scan lines will be a very time intensive process.

It can be speeded up by using a GPU that can process the data in parallel along the scan

lines. This framework can accelerate the palpation process by confining the search of a

tumor to a narrow region. Also, this approach needs no marker or physical device for its

implementation and can be performed using an endoscopic camera and software analysis

for determining regions with low stiffness.

5. The framework developed in Chapter 2 and the approach suggested above can be com-

bined to first confirm the probable region having one or more tumors and then palpated

in the specified zone using the FBG-sensorized tool. The sequential analysis will sig-

nificantly reduce the computational time because the probing device now has to palpate

only the suspicious region instead of the entire region. This framework will need to be

evaluated in phantoms where motions corresponding to respiration can be simulated.
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