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Abstract 
 

This thesis consists of two parts. The first part deals with the development of proper 

methodology, i.e. a spectrally accurate algorithm suitable for analysis of convection 

problems in corrugated slots. The second part is devoted to the study of natural 

convection in corrugated slots.  

 

The algorithm uses the immersed boundary conditions (IBC) concept to deal with the 

irregular form of the solution domain associated with the presence of corrugated plates. 

The field equations are discretized on a regular domain surrounding the flow domain 

using Fourier expansions in the horizontal direction and Chebyshev expansions in the 

vertical direction. The boundary conditions are expressed in the form of constraints and 

the spectrally accurate discretization of these constraints has been proposed.  

 

The buoyancy forces associated with the temperature difference between isothermal 

plates drive the natural convection. This temperature difference is expressed in terms of 

the Rayleigh number Ra and the analysis is limited to its subcritical values where no 

secondary motion takes place in the absence of corrugation. Corrugations have a 

sinusoidal form characterized by the wave number , the upper and lower amplitudes and 

the phase difference between the upper and lower corrugation systems. They create 

horizontal temperature gradients which lead to the formation of vertical and horizontal 

pressure gradients which drive the motion regardless of the intensity of the heating. 

Presence of corrugations affects the conductive heat flow and creates the convective heat 

flow. The increase of the heat flow induced by the corrugations has been determined. The 

convection is qualitatively similar for all Prandtl numbers with the intensity of convection 

increasing for smaller Pr’s and with the heat transfer augmentation increasing for larger 

Pr’s. 

 

Keywords: Spectral discretization, Natural Convection, Conduction, Immersed boundary 

conditions method, Linear solvers, Corrugation, Membrane 
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Chapter 1 
 

Introduction 
 

1.1. Objectives 

The objective of this thesis is to analyze convection inside a heated corrugated slot. The 

effects of corrugations on the heat transfer, the intensity of fluid movement and the forces 

created at the bounding plates are of interest. The heat transfer characteristics are sought 

for engineering applications. The convection-generated forces are of interest in systems 

where erosion is possible and in systems involving membranes which may be either 

stretched, or deformed or both.  

 

 

1.2. Motivation 

Boundary irregularities are found in many physical systems, e.g. heat transfer devices, 

biological membranes, the surface of the earth, etc. Understanding the effect of such 

irregularities is of vital interest in many applications including enhancing performance of 

heat exchangers, in designing microfluidic components, and in developing cell analyzers, 

e.g. counting and measuring blood cells, to name just a few. Analysis of the effects of 

corrugations on convection helps in understanding the mechanism of natural phenomena 

such as circulation in urban and rural environments, convection above ocean bottoms, 

weather prediction, surface erosion and many other cases.  

 

Boundary irregularities include geometric irregularities as well as temperature 

irregularities. Their spatial distribution and shape may have many forms but, regardless, 

one is interested in providing a general assessment of their effect on convection. The 

existing analysis represents case studies as they are focused either on specific geometries 

or on specific temperature distributions (Choi & Orchard 1997; Stalio & Nobile 2003; 

Herwig et al. 2008; Gamrat et al. 2008). It is rather difficult to extrapolate such results to 

arbitrary irregularities and this prevents their use for improvement of efficiency of 



2 
 

 
 

convection processes and/or control of such processes through the proper design of such 

irregularities. Geometric irregularities result in irregular flow domains and systematic 

analysis of their effects requires development of algorithms capable of handling variable 

geometries with a minimum of manual effort. The first objective of this study is therefore 

development of the required algorithms. 

 

1.3. Methodology development 

Analysis of effects of corrugations on the convection processes must address the issue of 

modelling of corrugation geometry. As there are a countless number of possible 

corrugation shapes, it appears that a general solution is not possible. Typical approaches 

rely on the selection of the geometry of interest and construction of boundary fitted 

coordinates followed by a solution of the field equations (Choi 1997; Stalio & Nobile 

2003; Herwig et al. 2008; Gamratet al. 2008). These methods are usually based on the 

finite-volume, finite-element, or finite-differences and have low-order spatial accuracy. 

Increase of accuracy necessitates use of finer grids which is computationally expensive. 

These methods are impractical for geometry optimization and for systematic investigation 

of a large number of corrugation geometries. 

 

Convective motion is highly unstable and their analysis requires the determination of the 

onset condition and form of secondary motions. The prediction of the onset of secondary 

states requires a highly accurate solution of the primary state, but very few high-accuracy 

grid generation methods are available, e.g. conformal mapping based on the Schwartz-

Christoffel transformation whose parameters can be determined with near spectral 

accuracy (Floryan 1986; Floryan & Zemach 1987; 1993). One alternative is offered by 

the domain transformation method, which relies on the analytical mapping of the 

irregular physical domain to a rectangular computational domain. However, such 

mappings are available only for a limited class of geometries (Hamed & Floryan 1998; 

Cabal et al. 2001). The other alternative involves the immersed (or fictitious) boundaries 

concept, whose origin can be traced to the analysis of moving boundary problems and the 

development of interface tracking methods (Floryan & Rasmussen, 1989). In this class of 
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problems, the grid is fixed while the solution domain moves through this grid eliminating 

the high computational cost of the adjustment of boundary fitted grids. The available 

algorithms rely either on surface tracking, or on volume tracking (Floryan & Rasmussen, 

1989) 

 

1.3.1. Surface tracking 

In this method, a discrete set of points is used to mark the location of the interface which 

is represented using interpolated curves. At each time-step, the location of the marker 

points and the sequence in which the curves are connecting them are saved. In the case of 

two-dimensional surface tracking, the points are saved either as a sequence of heights 

above the reference line (See Fig.1.1A) or the points follow a parametric representation 

(See Fig.1.1B). This method provides precise information about the interface location but 

is expensive due to the need to maintain a separate grid system (marker points) defining 

interface location. 

 

  

(A) (B) 
Figure 1.1: Surface tracking of an interface. The interface is determined by (A) a sequence of 

heights above a reference line or (B) a series of points (Hyman 1984). 

 

1.3.2. Volume tracking 

In this method, the location of the interface is reconstructed when needed rather than 

being explicitly tracked. There are several versions of volume tracking. 

 

Marker-And-Cell method (Harlow & Welch 1966) represents the simplest form of 

volume tracking (Floryan & Rasmussen 1989). This method decomposes the 

computational domain into cells with velocities defined at the faces of the cells and 
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scalars defined at the centres of the cells. Rectangular mesh grids are used to cover the 

solution domain. The interface tracking is based on the idea of the so-called fraction 

function. If the fraction is 1, the cell is completely occupied by the fluid and if the 

fraction is 0 the fluid does not occupy the cell. There is no interface present if the fraction 

is 1 or 0. An interface is to be constructed only if the fraction is between 0 and 1. The 

method does not give any details about the exact location, orientation, and curvature of 

the interface (see Figs.1.2A and 1.2B). 

 

Volume-Of-Fluid method developed by Hirt & Nichols (1981) reconstructs the interface 

in the relevant cells by approximating it with a straight line (see Fig 1.2.C). This method 

provides approximation for the location and slope of the interface (see Hyman 1984 for 

details).  

 

   

(A) (B) (C) 

Figure 1.2: Reconstruction of interface using volume tracking procedures: (A) the actual form of 

the interface; (B) reconstruction based on a MAC procedure (the interface is somewhere inside 

the shaded area); (C) reconstruction based on a VOF procedure (Hirt & Nichols 1981). 

 

Improvements in the surface tracking and volume tracking have lead to the front tracking 

(Glimm et al. 1998) and level set (Sethian 1999; Sethian & Smereka 2003) methods, 

respectively. The standard form of these algorithms relies on spatial discretization with a 

low-order accuracy consistent with the diffused boundary locations resulting from the 

tracking procedures. 

 

1.3.3. Immersed Boundary Method 

The immersed boundaries concept has re-emerged recently and has undergone a rapid 

development (Peskin 2002; Mittal & Iaccarino 2005). This method is suitable for 

simulations of problems involving the interaction of fluids and immersed elastic 
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structures. It uses finite-difference discretization, Eulerian grid points for the fluid 

variables and Lagrangian variables for the immersed boundary (see Fig.1.3). These two 

types of variables are linked by a smooth version of the Dirac delta function. 

 

  

(A) (B) 

Figure 1.3: A general body immersed into a fluid (Fig1.3.A). The body and fluid ocupy the 

volume 𝜴𝒃, and 𝜴𝒇, respectively with boundary 𝜞𝒃. L is the charactristic length of the body and 𝜹 

is the thickness of the boundary layer developed over the body. Figure 1.3.B shows the schematic 

body immersed in a Cartesian grid discrtizing the governing equations (Mittal & Iaccarino 2005). 

 

The common limitation is the spatial accuracy, as most of these methods are based on 

either low-order finite-difference, finite-volume or finite-element techniques (Kim, 2001; 

Deng et al. 2006; Taira & Colonius 2007). The second, less known limitation is the use of 

the local fictitious forces required to enforce the no-slip and no-penetration conditions at 

the boundaries. These forces locally affect the flow physics and this may lead to incorrect 

estimates of derivatives of flow quantities, i.e. misrepresentation of the local wall shear. 

This problem is likely to be more pronounced in the case of methods with high spatial 

accuracy. 

 

1.3.4. Immersed Boundary Conditions method 

The spectrally-accurate version of the immersed boundary concept, referred to as the 

Immersed Boundary Conditions (IBC) method, was proposed in 1999 (Szumbarski & 

Floryan 1999) for the solution of the Navier-Stokes equations and is still the only method 

which guarantees spectral accuracy of the complete solution rather than just the spectral 

discretization of the field equations. In this method, the flow domain is immersed into a 

fixed rectangular computational domain, the solution is represented in terms of global 

basis functions and boundary conditions are expressed as boundary constraints resulting 
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in a gridless system (see Fig1.4). This method has been extended to two- and three-

dimensional conduction problems (Husain & Floryan 2007; Del Rey Fernandez et al. 

2010) as well as conduction problems with moving boundaries (Husain & Floryan 2008). 

This method will be used as the starting point to develop an algorithm suitable for the 

analysis of convection in corrugated slots. 

 

 

Figure 1.4: Sketch of flow domain (dotted-area) immersed into a gridless rectangular 

computational domain (gray-area); boundary conditions are replaced by boundary constraints. 

 

1.4. Natural Convection 

Thermal convection is one of the most common forms of fluid motions. It occurs in many 

application areas such as heat exchangers, biological systems, weather predictions, and 

convection in the atmosphere, oceans and within the earth mantle, among many others. 

Understanding its characteristics is therefore of the utmost importance.  

 

The character of convection depends on the geometry of the flow system and on the 

externally imposed thermal conditions. Because of a large range of variability of such 

conditions, the analysis of fundamental aspects of convection have been focused on 

simple reference cases. One of the best-known reference problems is the natural 

convection in a horizontal slot subject to a spatially homogeneous heating applied at the 

lower plate. This problem is referred to as the Rayleigh-Bénard (RB) convection (Bénard 

1900; Rayleigh 1916) and has been studied for many decades using both theoretical and 

experimental approaches (Bodenschatz et al. 2000). Convection results from the 

transition from a conductive state when the critical conditions are exceeded (Chilla & 

Schumacher 2012) and it changes the character of the heat flow in qualitative terms. 

These critical conditions are expressed in terms of the critical Rayleigh number 𝑅𝑎𝑐𝑟 
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with secondary flow occurring for Ra> 𝑅𝑎𝑐𝑟. A large enough heating intensity leads to 

turbulent RB convection (Ahlers et al. 2009; Lohse & Xia 2010). 

 

The convection onset conditions can be affected by heating non-uniformities (Freund et 

al. 2012) as well as non-uniformities in the plate geometry (McCoy et al. 2008; Seiden et 

al 2008; Weiss et al. 2012). Results dealing with the effects of geometry modulation on 

the RB convection are very limited but demonstrate that the non-uniformities do play a 

role; the detailed analyses and identification of mechanisms activated by them are yet to 

be carried out. Two-dimensional convection rolls have been observed for subcritical 

conditions (𝑅𝑎 << 𝑅𝑎𝑐𝑟) in the case of the lower plate being augmented with thin 

stripes. Amplitude of these rolls grew with Ra until they were destabilized with 

mechanisms which depended on the ratio of the wave number of the imposed modulation 

and the critical wave number of the RB convection producing a variety of three-

dimensional patterns (McCoy et al. 2008; Seiden et al. 2008). Experiments show that the 

combined effect of strips parallel to the flow and gravity-induced shear flow leads to the 

creation of longitudinal and transverse rolls depending on the angle of the corrugation 

and gravity component (Weiss et al. 2012).  

 

Temperature non-uniformities affect the onset conditions for RB convection (Freund et 

al. 2012) as well as create their own convection which occurs regardless of the heating 

intensity (Hossain & Floryan 2013a; 2013b; 2014; 2015a; 2015b). As there are an 

uncountable number of heating non-uniformities, the recent studies have been focused on 

the simplest pattern consisting of sinusoidal heating with an arbitrary wavelength 

(Hossain & Floryan 2013b) and has led to the concept of structured convection. There are 

numerous examples of such convection in very low wind speed conditions, e.g. 

circulation in urban environment as local heating rates are determined by the dissimilar 

thermal properties of roofs, streets and parks, and circulation in rural environments where 

variations of the heating rates of forests, fields, and lakes drive the local circulation 

Convection within the Earth mantle is affected by the insulating effect of continents and 

represents a spatially structured convection with heating from above (Lenardic et al. 

2005). A system of fractures, leads and polynyas in sea ice leads to convection in both the 



8 
 

 
 

ocean and atmosphere (Marcq & Weiss 2012). Use of mixed insulating and conducting 

boundary conditions leads to a spatially patterned convection (Ripesi et al. 2014). Human 

activity resulting in the heat island effect (Rizwam et al. 2008) can be analyzed from the 

heating pattern point of view. Dynamics of a systems of localized fires and prediction of 

their propagation represent another challenging problem (Finney et al. 2012) similarly as 

the thermal patterning in micro-fluidic devices (Beltrame et al. 2011; Krishnan et al. 

2002). Applying the same heating either from above or from below results in similar 

motions (Hossain & Floryan 2014). The flow topology is locked in with the heating 

pattern but only for small convection intensities. Higher intensities result in the transition 

to secondary states which might have different patterns (Hossain & Floryan 2013a).  

 

Heating non-uniformities represent a wider class of problems which has been studied on 

a case by case basis. The non-uniformities create horizontal and vertical temperature 

gradients which result in the horizontal density variations which create motions 

frequently referred to as horizontal convection. Maxworthy (1997) has reviewed the 

numerical and experimental analysis focused on convection in regions with either open or 

partially-open lateral boundaries. Three typical geometries have been considered in this 

review, i.e. convection in a channel, convection from a patch or strip into stratified and/or 

rotating surroundings and convection into a rotating coastal environment. Siggers et al. 

(2004) have showed numerically that the horizontal convection can be unsteady and 

turbulent, capable of maintaining overturning circulation within a layer heated and cooled 

differentially at its surface with a general temperature distribution imposed at the top of 

the layer and a variety of thermal boundary conditions at the base of the layer. Hughes & 

Griffiths (2008) used horizontal convection as an idealized model of the ocean 

overturning circulation where the non-uniformities profiles of heating were imposed at a 

horizontal boundary. The horizontal convection in oceans was studied by Winters & 

Young (2009) from the energy balance point of view resulting in the conclusion that the 

buoyancy force alone is insufficient to account for the observed levels of kinetic energy 

in oceans, and additional energy sources, e. g. wind, are needed.  
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There are numerous case studies focused on the applied aspects of convection and 

involving specialized geometries. Nicolas (2000) reviewed results dealing with the 

Poiseuille-Rayleigh-Bénard flows in rectangular smooth ducts. Bergles (2001) showed 

that for single phase flows in tubes, up to a 400% increase in the nominal heat transfer 

coefficient can be achieved by adjusting surface topography. Siddique et al. (2010) 

reviewed different heat transfer enhancing techniques based on (a) use of extended 

surfaces including fins and micro-fins, (b) use of porous media, (c) use of suspensions of 

large particles, (d) use of suspensions of small particle (nanofluids), (e) use of phase-

change devices, (f) use of flexible seals, (g) use of flexible complex seals, (h) use of 

vortex generators, (i) use of protrusions, and (j) use of composite materials with ultra-

high thermal conductivity. Dewan et al. (2004) carried out a review of the passive heat 

transfer augmentation techniques based on the use of twisted tapes and wire coils; these 

devices are of interest due to their low cost. Jacobi & shah (1998) discussed the 

enhancement of heat transfer in a single fin heat exchanger. Ligrani (2003) suggested that 

all these techniques can either create secondary flows and/or can increase the turbulence 

level resulting in an increase of fluid mixing. 

 

There is a gap in the literature between the fundamental and applied convection studies, 

and its elimination would yield practically important information about convection in 

more complex geometries. One of the areas where the fundamental information is 

missing is the effect of surface roughness/corrugations on the natural and mixed 

convection, and on the onset of secondary states in buoyancy driven motions. This issue 

is prominent in micro-conduits where the roughness size cannot be reduced to a 

negligible level using currently available manufacturing techniques. Sobhan & Garimella 

(2001) has reviewed different studies on the flow and heat transfer in micro-channels 

with surface roughness. They suggested that there is a need for additional systematic 

studies to examine each parameter influencing heat transport in such channels.  Xia et al. 

(2011) have studied the fluid flow and heat transfer mechanism in micro-channels with 

aligned fan-shaped re-entrant cavities and identified the increase of the surface area, the 

redeveloping boundary layers, and the jet and throttling effects as responsible for the 

increased heat transfer which is accompanied by an increased pressure drop.  
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The above discussion shows that there is a need for a systematic study of the effects of 

geometric non-uniformities on convection and for identification of the mechanisms 

responsible for heat transfer intensification. The second part of this thesis is focused on 

the analysis of convection in corrugated slots and fills in some of the gaps in the 

understanding of convection in such systems. 

 

1.4. Overview of the work presented in this thesis 

Analysis of the basic features of convection requires the selection of a convenient model 

problem. The model configuration has the form of a horizontal slot extending to ± ∞ in 

the horizontal direction with gravity acting in the vertical direction, as shown in Fig.1.5. 

The geometric non-uniformities have the form of sinusoidal corrugations which represent 

the leading term of Fourier expansions describing corrugations of arbitrary form. It is 

expected that corrugations of such form capture most of the physics associated with the 

corrugations of more complex forms. The plates are assumed to be isothermal, with the 

lower plate having a higher temperature. The fluid movement is described by a system of 

equations consisting of the continuity, Navier-Stokes and energy equations. Properties of 

the fluid are approximated using the so-called Boussinesq approximation. It is assumed 

that in the case of natural convection there is no mean pressure gradient in the horizontal 

direction. The heat transfer from the plates and the forces acting on the plates are 

determined from the solution of the field equations. 

 

 

Figure 1.5: Schematic diagram of the flow system. The corrugated slot is subject to a uniform 

heating from below. 

 

Chapter 2 provides the description of a grid-less, spectrally-accurate algorithm based on 

the IBC concept suitable for analysis of convection in corrugated conduits.  The 



11 
 

 
 

algorithm is general in the sense that it can simulate the natural, mixed and forced 

convections. Sinusoidal grooves and sinusoidal heating non-uniformities have been 

selected to represent geometric and temperature non-uniformities. Discretization of the 

field equations, the boundary conditions, and the flow rate constraint are presented. The 

linear solver which takes advantage of the structure of coefficient matrix is also 

described. The potential gains associated with the overdetermined formulation of the 

numerical problem are discussed. 

 

Chapter 3 is devoted to the analysis of natural convection in a slot formed by two 

horizontal corrugated plates using the algorithm described in Chapter 2. The goal of this 

Chapter is to develop an understanding of the natural convection arising in response to 

geometric non-uniformities. The analysis is focused on the reference case involving 

sinusoidal corrugations whose geometry is characterized in terms of the corrugation wave 

number and the corrugation amplitude. Placement of corrugations on both plates adds the 

second amplitude as well as the phase difference describing the relative position of both 

corrugations systems. The heating intensity is expressed in terms of the Rayleigh number 

based on the temperature difference between both plates as the temperature scale and the 

half of the mean slot opening as the length scale. The Chapter ends with the assessment 

of the effects of the Prandtl number. 
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Chapter 2 
 

Spectrally Accurate Algorithm  
 

2.1. Introduction 

This Chapter is focused on the extension of the Immersed Boundary Condition (IBC) 

algorithm to non-isothermal conditions. The roughness can have any shape. Since the 

main goal of the analysis is to develop techniques for the analysis of roughness effects, 

the reduced geometry model is invoked in which the geometry is projected onto a 

convenient reference functional space and elements of this space relevant for 

hydrodynamics are sought (Floryan 2007). This leads to the analysis of sinusoidal 

grooves which represent the dominant terms in the geometry projection onto Fourier 

space. It has been demonstrated that this approach provides a general answer to the issue 

of roughness effects with accuracy sufficient for most applications. Section 2.2 provides a 

description of the model problems used to illustrate the algorithm. Section 2.3 discusses 

the discretization, with Section 2.3.1 focused on the discretization of the field equations, 

Section 2.3.2 describing the discretization of the boundary conditions and Section 2.3.3 

discussing the discretization of the flow rate constraint. Section 2.4 describes the solution 

process, Section 2.5 is focused on the linear solvers and Section 2.6 discusses the 

evaluation of the pressure field. Section 2.7 discusses the performance of the algorithm 

while Section 2.8 describes the gains associated with the overdetermined formulation. 

Section 2.9 provides a short summary of the main conclusions.     

 

2.2. Problem Formulation 

Consider channel formed by two horizontal corrugated plates (see Fig.2.1) whose 

geometries have the form 

 

𝑦𝐿
∗(𝑥∗) =  −ℎ∗ + 𝐶𝐿

∗ 𝑐𝑜𝑠(𝛼∗𝑥∗), (2.2.1a) 

𝑦𝑈
∗ (𝑥∗) = ℎ∗ + 𝐶𝑈

∗  𝑐𝑜𝑠(𝛼∗𝑥∗  + Ω𝐶
∗ ), (2.2.1b) 
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where the subscripts L and U refer to the lower and upper plate, respectively, 𝐶𝐿
∗ and 𝐶𝑈

∗   

are the amplitudes of the corrugations at the lower and upper plates, respectively, Ω𝐶
∗  

stands for the phase shift between them, 𝛼∗ is their wave number and stars denote 

dimensional quantities. The channel is periodic with a wavelength 𝜆∗ = 2𝜋 𝛼∗⁄  and 

extends to ±∞  in the x-direction with the mean distance between the plates 2ℎ∗. The 

gravitational acceleration 𝑔∗ is acting in the negative y-direction. The steady, 

incompressible flow of a Newtonian fluid is driven in the positive x-direction by an 

externally imposed pressure gradient. The fluid has thermal conductivity 𝑘∗, specific heat 

𝑐∗, thermal diffusivity 𝜅∗ = 𝑘∗ 𝜌∗𝑐∗⁄ , kinematic viscosity 𝜈∗, dynamic viscosity µ∗, 

thermal expansion coefficient 𝛤∗ and variations of the density 𝜌∗ follow the Boussinesq 

approximation. All material properties are evaluated at the reference temperature. 

 

 

Figure 2.1: Schematic diagram of the flow system. 

 

The lower and upper plates are subject to the spatially periodic heating resulting in the 

temperatures of the lower (𝑇𝐿
∗) and the upper (𝑇𝑈

∗) plates of the form 

 

𝑇𝐿
∗(𝑥∗) = 𝑇𝑚𝑒𝑎𝑛,𝐿

∗ + 0.5 𝑇𝑝,𝐿
∗  𝑐𝑜𝑠(𝛼∗𝑥∗ + Ω𝑇𝐿

∗ ), (2.2.2a) 

𝑇𝑈
∗(𝑥∗) = 𝑇𝑚𝑒𝑎𝑛,𝑈

∗ + 0.5 𝑇𝑝,𝑈
∗ 𝑐𝑜𝑠(𝛼∗𝑥∗ + Ω𝐶

∗ + Ω𝑇𝑈
∗ ), (2.2.2b) 

 

where the subscripts “mean” and “p” refer to the mean and periodic parts, respectively, 

𝑇𝑝,𝐿
∗  and  𝑇𝑝,𝑈

∗  are the peak-to-peak amplitudes of the periodic heating components at the 

lower and upper plates, respectively, and Ω𝑇𝐿
∗  and Ω𝑇𝑈

∗  are the phase shifts of the heating 
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patterns with respect to the corrugation patterns at the lower and upper plates, 

respectively.  

 

We select the mean temperature of the upper plate as the reference temperature and 

define the relative temperature as ∗  =  𝑇∗ – 𝑇𝑈,𝑚𝑒𝑎𝑛
∗ . The plates’ relative temperatures 

take the form of  

 

𝜃𝐿
∗(𝑥) = 𝜃𝑢𝑛𝑖

∗ + 0.5 𝜃𝑝,𝐿
∗  𝑐𝑜𝑠(𝛼∗𝑥∗ + Ω𝑇𝐿

∗ ), (2.2.3a) 

𝜃𝑈
∗ (𝑥) =  0.5 𝜃𝑝,𝑈

∗ 𝑐𝑜𝑠(𝛼∗𝑥∗ + Ω𝐶
∗ + Ω𝑇𝑈

∗ ), (2.2.3b) 

 

where 𝜃𝑢𝑛𝑖
∗ = 𝑇𝑚𝑒𝑎𝑛,𝐿

∗ − 𝑇𝑚𝑒𝑎𝑛,𝑈
∗ , 𝜃𝑝,𝑈

∗ = 𝑇𝑝,𝑈
∗ , 𝜃𝑝,𝐿

∗ = 𝑇𝑝,𝐿
∗ . Use of half of the mean 

channel opening ℎ∗ as the length scale and 𝜅∗𝜈∗ (𝑔∗𝛤∗ℎ∗3)⁄  as the temperature scale 

result in the following dimensionless expressions for the geometry and temperatures 

 

𝑦𝐿(𝑥) =  −1 + 𝑦𝑏 𝑐𝑜𝑠(𝑥), (2.2.4a) 

𝑦𝑈(𝑥) =  1 + 𝑦𝑡 𝑐𝑜𝑠(𝑥 + 𝐶), (2.2.4b) 

 

𝜃𝐿(𝑥) = 𝑅𝑎𝑢𝑛𝑖 + 0.5 𝑅𝑎𝑝,𝐿 𝑐𝑜𝑠(𝛼𝑥 +𝑇𝐿), (2.5a) 

𝜃𝑈(𝑥) = 0.5 𝑅𝑎𝑝,𝑈 𝑐𝑜𝑠(𝛼𝑥 + 𝐶 +𝑇𝑈), (2.5b) 

 

where 𝑦𝑏 and 𝑦𝑡 are the amplitudes of the corrugation at the lower and upper plates, 

respectively, 𝑅𝑎𝑢𝑛𝑖 = 𝑔∗𝛤∗ℎ∗3𝑇𝑢𝑛𝑖
∗ (𝜅∗𝜈∗)⁄  is the uniform Rayleigh number measuring 

the intensity of the uniform heating,  𝑅𝑎𝑝,𝐿 = 𝑔∗𝛤∗ℎ∗3𝑇𝑝,𝐿
∗ (𝜅∗𝜈∗)⁄  is the lower periodic 

Rayleigh number measuring the intensity of the lower heating and 

𝑅𝑎𝑝,𝑈 = 𝑔∗𝛤∗ℎ∗3𝑇𝑝,𝑈
∗ (𝜅∗𝜈∗)⁄  is the upper periodic Rayleigh number measuring the 

intensity of the upper heating. 

 

The field equations take the following form 
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𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0, (2.2.6a) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

𝜕𝑝

𝜕𝑥
+ ∇2𝑢, (2.2.6b) 

𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −

𝜕𝑝

𝜕𝑦
+ ∇2𝑣 + 𝑃𝑟−1 𝜃, (2.2.6c) 

𝑢
𝜕𝜃

𝜕𝑥
+ 𝑣

𝜕𝜃

𝜕𝑦
= 𝑃𝑟−1∇2𝜃, (2.2.6d) 

 

where (𝑢, 𝑣) are the velocity components in the (x, y) directions, respectively, scaled with 

 𝑈𝑣
∗ = 𝜈∗ ℎ∗⁄  as the velocity scale, 𝑝 stands for the pressure scaled with 𝜌∗𝑈𝜈

∗2 as the 

pressure scale and Pr = 𝜈∗/𝜅∗ is the Prandtl number. These equations are subject to the 

following boundary conditions 

 

𝑢(𝑦𝐿(𝑥)) = 𝑢(𝑦𝑈(𝑥)) = 0, (2.2.7a) 

𝑣(𝑦𝐿(𝑥)) = 𝑣(𝑦𝑈(𝑥)) = 0, (2.2.7b) 

𝜃(𝑦𝐿(𝑥)) = 𝐿(𝑥), (2.2.7c) 

𝜃(𝑦𝑈(𝑥)) = 𝑈(𝑥). (2.2.7d) 

 

The problem formulation requires specification of one closing condition. We shall use the 

fixed flow rate constraint, i.e. we shall require that the flow rate through the heated 

corrugated channel must be the same as the flow rate through the smooth isothermal 

channel. The reference flow in the latter channel has the form of 

 

𝒗0(𝑥, 𝑦) = [𝑢0(𝑦), 0] = [1 − 𝑦2, 0] ,      𝑝0(𝑥, 𝑦) = −2𝑥/𝑅𝑒,   𝑄0 = 4/3, (2.2.8) 

 

where the subscript 0 identifies the reference flow quantities, velocity has been scaled 

with its maximum 𝑈𝑚𝑎𝑥
∗  as the velocity scale, Q0 stands for the flow rate scaled with the 

same velocity scale, the pressure has been scaled using 𝜌∗𝑈𝑚𝑎𝑥
∗2  and 𝑅𝑒 = 𝑈𝑚𝑎𝑥

∗ ℎ∗/𝜈∗ 

= 𝑈𝑚𝑎𝑥
∗  𝑈𝑣

∗⁄  is the Reynolds number. The flow rate constraint takes the form of 

𝑄(𝑥)|𝑚𝑒𝑎𝑛 = (∫ 𝑢(𝑦)
𝑦𝑈(𝑥)

𝑦𝐿(𝑥)
𝑑𝑦)|

𝑚𝑒𝑎𝑛
=

4

3
𝑅𝑒, (2.2.9) 

 

where 𝑄 is the flow rate carried by the stream and scaled with 𝑈𝑣
∗as the velocity scale. 
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2.3. Discretization 

Introduce the stream function 𝜓 defined in the usual manner, i.e. 

 

𝑢 =
𝜕𝜓

𝜕𝑦
, 𝑣 = −

𝜕𝜓

𝜕𝑥
, (2.3.1) 

 

and eliminate pressure from the field equations to arrive at 

 

∇4𝜓 − 𝑃𝑟−1 𝜕𝜃

𝜕𝑥
= 𝑁𝑉𝑉, (2.3.2a) 

𝛻2𝜃 = Pr𝑁𝑉𝜃, (2.3.2b) 

𝑄(𝑥)|𝑚𝑒𝑎𝑛 =  𝜓(𝑦𝑈(𝑥))|𝑚𝑒𝑎𝑛 − 𝜓(𝑦𝐿(𝑥))|𝑚𝑒𝑎𝑛 =
4

3
𝑅𝑒, (2.3.2c) 

 

where the nonlinear terms 𝑁𝑉𝑉 and 𝑁𝑉𝜃 have the following forms  

 

𝑁𝑉𝑉 =
𝜕

𝜕𝑦
(

𝜕

𝜕𝑥
𝑢𝑢̂ +

𝜕

𝜕𝑦
𝑢𝑣̂) −

𝜕

𝜕𝑥
(

𝜕

𝜕𝑥
𝑢𝑣̂ +

𝜕

𝜕𝑦
𝑣𝑣̂), (2.3.3a) 

𝑁𝑉𝜃 =
𝜕

𝜕𝑥
𝑢𝜃̂ +

𝜕

𝜕𝑦
𝑣𝜃̂. (2.3.3b) 

 

In the above, symbol 𝑢𝑢̂ denotes a product of two functions. The boundary conditions 

assume the form of 

 

𝜕𝜓

𝜕𝑦
(𝑦𝐿(𝑥)) =

𝜕𝜓

𝜕𝑦
(𝑦𝑈(𝑥)) = 0, (2.3.4a) 

𝜕𝜓

𝜕𝑥
(𝑦𝐿(𝑥)) =

𝜕𝜓

𝜕𝑥
(𝑦𝑈(𝑥)) = 0, (2.3.4b) 

𝜃(𝑦𝐿(𝑥)) = 𝜃𝐿(𝑥), (2.3.4c) 

𝜃(𝑦𝑈(𝑥)) = 𝜃𝑈(𝑥). (2.3.4d) 

 

We wish to determine solution of the above problem with spectral accuracy. The 

difficulties associated with the irregularity of the flow domain will be solved using the 

Immersed Boundary Conditions (IBC) concept. In this method, we use a fixed 

rectangular computational domain sufficiently large to contain the flow domain in its 
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interior. Our computational domain extends over one period in the x-direction and over 

(−1 − y𝑏 , 1 + y𝑡) in the y-direction, where 𝑦𝑡 and 𝑦𝑏 denote locations of extremities of 

the upper and lower plates, respectively (see Fig.2.1). The flow boundary conditions 

cannot be enforced directly and, thus, one needs to develop equivalent constraints. 

  

We shall use the Chebyshev expansions for discretization in the transverse direction and, 

in order to use their standard definition, the y-extent of the computational domain needs 

to be mapped into (−1, 1). Mapping of the form 

 

𝑦̂ = 2 [
𝑦−(1+𝑦𝑡)

𝑦𝑡+𝑦𝑏+2
] + 1, (2.3.5) 

 

is used in the present work. The flow problem expressed using (x, 𝑦̂) coordinates has the 

form 

 

𝜕4𝜓

𝜕𝑥4 + 2𝛤2 𝜕4𝜓

𝜕𝑥2𝜕𝑦̂2 + 𝛤4 𝜕4𝜓

𝜕𝑦̂4 − 𝑃𝑟−1 𝜕𝜃

𝜕𝑥
= 𝑁𝑉𝑉, (2.3.6a) 

𝜕2𝜃

𝜕𝑥2 + 𝛤2 𝜕2𝜃

𝜕𝑦̂2 = Pr𝑁𝑉𝜃, (2.3.6b) 

𝑄(𝑥)|𝑚𝑒𝑎𝑛 =  𝜓(𝑦̂𝑈(𝑥))|𝑚𝑒𝑎𝑛 − 𝜓(𝑦̂𝐿(𝑥))|𝑚𝑒𝑎𝑛 =
4

3
𝑅𝑒, (2.3.6c) 

 

where 𝛤 =
𝑑𝑦̂

𝑑𝑦
=

2

𝑦𝑡+𝑦𝑏+2
   and the nonlinear terms change to the following form 

 

𝑁𝑉𝑉 = 𝛤
𝜕

𝜕𝑦̂
(

𝜕

𝜕𝑥
𝑢𝑢̂ + 𝛤

𝜕

𝜕𝑦̂
𝑢𝑣̂) −

𝜕

𝜕𝑥
(

𝜕

𝜕𝑥
𝑢𝑣̂ + 𝛤

𝜕

𝜕𝑦̂
𝑣𝑣̂), (2.3.7a) 

𝑁𝑉𝜃 =
𝜕

𝜕𝑥
𝑢𝜃̂ + 𝛤

𝜕

𝜕𝑦̂
𝑣𝜃̂. (2.3.7b) 

 

The boundary conditions have the form of 

 

𝜕𝜓

𝜕𝑦̂
(𝑦̂𝐿(𝑥)) = 0, 

𝜕𝜓

𝜕𝑦̂
(𝑦̂𝑈(𝑥)) = 0, (2.3.8a) 

𝜕𝜓

𝜕𝑥
(𝑦̂𝐿(𝑥)) = 0, 

𝜕𝜓

𝜕𝑥
(𝑦̂𝑈(𝑥)) = 0, (2.3.8b) 

𝜃(𝑦̂𝐿(𝑥)) = 𝜃𝐿(𝑥), 𝜃(𝑦̂𝑈(𝑥)) = 𝜃𝑈(𝑥), (2.3.8c) 
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where 

 

𝑦̂𝐿(𝑥) =  1 + 𝛤(𝑦𝑏 cos(𝛼𝑥) − 𝑦𝑡 − 2), (2.3.9a) 

𝑦̂𝑈(𝑥) = 1 + 𝛤𝑦𝑡(cos(𝑥 + 𝐶) − 1). (2.3.9b) 

 

One can replace (2.3.8b) with boundary conditions expressing the fact that 𝜓 is constant 

along each plate. Use of (2.3.8b) is more efficient computationally (see Section 2.4) 

while specification of 𝜓 along the plates is more convenient for the enforcement of the 

flow rate constraint (see Eq.2.3.6c). 

 

 

2.3.1. Discretization of the field equations 

We begin discretization by representing the unknowns as well as the nonlinear terms as 

Fourier expansions of the form 

 

𝜓(𝑥, 𝑦̂) = ∑ 𝜑(𝑛)(𝑦̂)𝑛=+∞
𝑛=−∞ 𝑒𝑖𝑛𝛼𝑥 ≈ ∑ 𝜑(𝑛)𝑛=𝑁𝑀

𝑛=−𝑁𝑀
(𝑦̂)𝑒𝑖𝑛𝛼𝑥, (2.3.10a) 

𝜃(𝑥, 𝑦̂) = ∑ ∅(𝑛)(𝑦̂)𝑛=+∞
𝑛=−∞ 𝑒𝑖𝑛𝛼𝑥 ≈ ∑ ∅(𝑛)𝑛=𝑁𝑀

𝑛=−𝑁𝑀
(𝑦̂)𝑒𝑖𝑛𝛼𝑥, (2.3.10b) 

[𝑢𝑢̂, 𝑢𝑣̂, 𝑣𝑣̂, 𝑢𝜃̂, 𝑣𝜃̂](𝑥, 𝑦̂) =

             ∑ [𝑢𝑢̂(𝑛), 𝑢𝑣̂(𝑛), 𝑣𝑣̂(𝑛), 𝑢𝜃̂(𝑛), 𝑣𝜃̂(𝑛)](𝑦̂)𝑛=+∞
𝑛=−∞ 𝑒𝑖𝑛𝛼𝑥 ≈

             ∑ [𝑢𝑢̂(𝑛), 𝑢𝑣̂(𝑛), 𝑣𝑣̂(𝑛), 𝑢𝜃̂(𝑛), 𝑣𝜃̂(𝑛)](𝑦̂)𝑛=𝑁𝑀
𝑛=−𝑁𝑀

𝑒𝑖𝑛𝛼𝑥, 

 

(2.3.10c) 

 

where 𝜑(𝑛) = 𝜑(−𝑛)∗, ∅(𝑛) = ∅(−𝑛)∗ , 𝑢𝑢̂(𝑛) = 𝑢𝑢̂(−𝑛)∗, 𝑢𝑣̂(𝑛) = 𝑢𝑣̂(−𝑛)∗, 𝑣𝑣̂(𝑛) =

𝑣𝑣̂(−𝑛)∗, 𝑢𝜃̂(𝑛) = 𝑢𝜃̂(−𝑛)∗, 𝑣𝜃̂(𝑛) = 𝑣𝜃̂(−𝑛)∗  represent the reality conditions with * denoting 

the complex conjugates. Substituting (2.3.10) into (2.3.6) and separating Fourier modes 

lead to the modal equations of the form 

 

𝐷𝑛
2𝜑(𝑛) − 𝑖𝑛𝛼𝑃𝑟−1∅(𝑛) = 𝑁𝑉𝑉

(𝑛)
, (2.3.11a) 

𝐷𝑛∅(𝑛) = Pr 𝑁𝑉𝜃
(𝑛)

, (2.3.11b) 
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for –𝑁𝑀 < 𝑛 < 𝑁𝑀 where 𝐷 = 𝑑 𝑑𝑦̂⁄ , 𝐷𝑛 = 𝛤2𝐷2 − 𝑛2𝛼2, 𝐷𝑛
2 = 𝛤4𝐷4 − 2𝑛2𝛼2𝛤2𝐷2 +

𝑛4𝛼4, 𝑁𝑉𝑉
(𝑛)

= 𝑖𝑛𝛼𝛤𝐷𝑢𝑢̂
(𝑛)

+ (𝛤2𝐷2 + 𝑛2𝛼2) 𝑢𝑣̂
(𝑛)

− 𝑖𝑛𝛼𝛤𝐷𝑣𝑣̂
(𝑛)

, 𝑁𝑉𝜃
(𝑛)

= 𝑖𝑛𝛼 𝑢𝜃̂(𝑛) +

𝛤𝐷 𝑣𝜃̂(𝑛). The modal functions are represented in terms of Chebyshev expansions of the 

form 

 

𝜑(𝑛)(𝑦̂) = ∑ 𝐺𝜑̂𝑘
(𝑛)𝑘=∞

𝑘=0 𝑇𝑘(𝑦̂) ≈ ∑ 𝐺𝜑̂𝑘
(𝑛)𝑘=𝑁𝑇−1

𝑘=0 𝑇𝑘(𝑦̂), (2.3.12a) 

∅(𝑛)(𝑦̂) = ∑ 𝐺∅̂𝑘
(𝑛)𝑘=∞

𝑘=0 𝑇𝑘(𝑦̂) ≈ ∑ 𝐺∅̂𝑘
(𝑛)𝑘=𝑁𝑇−1

𝑘=0 𝑇𝑘(𝑦̂), (2.3.12b) 

[𝑢𝑢̂(𝑛), 𝑢𝑣̂(𝑛), 𝑣𝑣̂(𝑛), 𝑢𝜃̂(𝑛), 𝑣𝜃̂(𝑛)](𝑦̂) =

             ∑ [𝐺𝑢𝑢̂𝑘
(𝑛)

, 𝐺𝑢𝑣̂𝑘
(𝑛)

, 𝐺𝑣𝑣̂𝑘
(𝑛)

, 𝐺𝑢𝜃̂𝑘
(𝑛)

, 𝐺𝑣𝜃̂𝑘
(𝑛)

]𝑘=∞
𝑘=0 𝑇𝑘(𝑦̂) ≈

             ∑ [𝐺𝑢𝑢̂𝑘
(𝑛)

, 𝐺𝑢𝑣̂𝑘
(𝑛)

, 𝐺𝑣𝑣̂𝑘
(𝑛)

, 𝐺𝑢𝜃̂𝑘
(𝑛)

, 𝐺𝑣𝜃̂𝑘
(𝑛)

]
𝑘=𝑁𝑇−1
𝑘=0 𝑇𝑘(𝑦̂), 

 

 

(2.3.12c) 

 

where 𝑇𝑘 denotes the Chebyshev polynomial of the first kind of order k and 𝐺𝑥𝑥̂𝑘
(𝑛)

 

denotes the unknown expansion coefficients. Substitution of (2.3.12) into (2.3.11) gives 

the following expressions 

 

∑ [(𝛤4𝐷4𝑇𝑘(𝑦̂) − 2𝑛2𝛼2𝛤2𝐷2𝑇𝑘(𝑦̂) + 𝑛4𝛼4𝑇𝑘(𝑦̂))𝐺𝜑̂𝑘
(𝑛)

−
𝑘=𝑁𝑇−1
𝑘=0

                   𝑖𝑛𝛼𝑃𝑟−1𝑇𝑘(𝑦̂)𝐺∅̂𝑘
(𝑛)

] − 𝑁𝑉𝑉
(𝑛,𝑘)

= 𝑅𝑒𝑠1(𝑦̂), 

 

 

(2.3.13a) 

 

∑ [(𝛤2𝐷2𝑇𝑘(𝑦̂) − 𝑛2𝛼2𝑇𝑘(𝑦̂))𝐺∅̂𝑘
(𝑛)

]
𝑘=𝑁𝑇−1
𝑘=0 − Pr𝑁𝑉𝜃

(𝑛,𝑘)
= 𝑅𝑒𝑠2(𝑦̂), 

 

(2.3.13b) 

 

where the modal functions for the nonlinear terms have been represented as Chebyshev 

expansions of the form 

 

𝑁𝑉𝑉
(𝑛,𝑘)

= ∑ [𝑖𝑛𝛼𝛤𝐷𝑇𝑘(𝑦̂)𝐺𝑢𝑢̂𝑘
(𝑛)

+                                     (𝛤2𝐷2𝑇𝑘(𝑦̂) +
𝑘=𝑁𝑇−1
𝑘=0

              (𝛤2𝐷2𝑇𝑘(𝑦̂) + 𝑛2𝛼2𝑇𝑘(𝑦̂))𝐺𝑢𝑣̂𝑘
(𝑛)

− 𝑖𝑛𝛼𝛤𝐷𝑇𝑘(𝑦̂)𝐺𝑣𝑣̂𝑘
(𝑛)

], 

 

 

(2.3.14a) 

𝑁𝑉𝜃
(𝑛,𝑘)

= ∑ [ 𝑖𝑛𝛼𝑇𝑘(𝑦̂)𝐺𝑢𝜃̂𝑘
(𝑛)

+ 𝛤𝐷𝑇𝑘(𝑦̂)𝐺𝑣𝜃̂𝑘
(𝑛)

]
𝑘=𝑁𝑇−1
𝑘=0 , (2.3.14b) 

 



20 
 

 
 

and Res1 and Res2 denote residua. The nonlinear terms are considered to be known during 

iterative solution. Evaluation of the relevant modal functions and their representation in 

terms of Chebyshev expansions will be discussed later in this presentation. 

 

The algebraic equations for the expansion coefficients are constructed using the Galerkin 

projection method by setting projections of the residua onto the base functions of the 

Chebyshev expansions to zero. This leads to NT equations for each Fourier mode. The 

projections are evaluated using the inner product defined as 〈𝑅𝑒𝑠(𝑦̂), 𝑇𝑘(𝑦̂)〉 =

∫ 𝑅𝑒𝑠(𝑦̂)𝑇𝑘(𝑦̂)
1

−1
𝜔(𝑦̂)𝑑𝑦̂ where the weight function has the form 𝜔 = (1 − 𝑦̂2)−1/2. 

The projection equations can be brought to the following form 

 

∑ [(𝛤4 < 𝑇𝑗 , 𝐷
4𝑇𝑘 > −2𝑛2𝛼2𝛤2 < 𝑇𝑗, 𝐷

2𝑇𝑘 > +𝑛4𝛼4  <
𝑘=𝑁𝑇−1
𝑘=0

                +𝑛4𝛼4  < 𝑇𝑗, 𝑇𝑘 >)𝐺𝜑̂𝑘
(𝑛)

− 𝑖𝑛𝛼𝑃𝑟−1 < 𝑇𝑗, 𝑇𝑘 > 𝐺∅̂𝑘
(𝑛)

] =

              ∑ [𝑖𝑛𝛼𝛤 < 𝑇𝑗, 𝐷𝑇𝑘 > 𝐺𝑢𝑢̂𝑘
(𝑛)

+ (𝛤2 < 𝑇𝑗, 𝐷
2𝑇𝑘 > +𝑛2𝛼2 <

𝑘=𝑁𝑇−1
𝑘=0

             +𝑛2𝛼2 < 𝑇𝑗 , 𝑇𝑘 >)𝐺𝑢𝑣̂𝑘
(𝑛)

− 𝑖𝑛𝛼𝛤 < 𝑇𝑗, 𝐷𝑇𝑘 > 𝐺𝑣𝑣̂𝑘
(𝑛)

],  0 ≤ 𝑗 ≤ 𝑁𝑇 − 5, 

 

 

  

 

(2.3.15a) 

 

∑ [(𝛤2 < 𝑇𝑗 , 𝐷
2𝑇𝑘 > −𝑛2𝛼2 < 𝑇𝑗, 𝑇𝑘 >)𝐺∅̂𝑘

(𝑛)
]

𝑘=𝑁𝑇−1
𝑘=0 =, 

             𝑃𝑟∑ [ 𝑖𝑛𝛼 < 𝑇𝑗, 𝑇𝑘 > 𝐺𝑢𝜃̂𝑘

(𝑛)
+ 𝛤 < 𝑇𝑗, 𝐷𝑇𝑘 > 𝐺𝑣𝜃̂𝑘

(𝑛)
]

𝑘=𝑁𝑇−1
𝑘=0 ,    

             0 ≤ 𝑗 ≤ 𝑁𝑇 − 3, 

 

 

 

(2.3.15b) 

 

where only the leading 𝑁𝑇 − 4 equations resulting from the momentum equations and 

𝑁𝑇 − 2 of the leading equations resulting from the energy equations are retained in order 

to provide space for the boundary conditions (Tau method). The inner products appearing 

in (2.3.15) can be evaluated analytically as explained in Appendix A. 

 

2.3.2. Discretization of the boundary conditions 

The temperature and flow boundary conditions are to be implemented along the plates 

located inside the computational domain. While the problem formulation given in Section 

2.2.2 assumes that the boundary shapes are represented by a single Fourier mode, the 
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description of the discretization is generalized to include boundaries described by 

arbitrary Fourier expansions.  Construction of constraints equivalent to these conditions 

at the upper plate is described below while construction for the lower plate can be 

developed following a similar process. Substituting (2.3.10a,b) into (2.3.8) results in the 

boundary conditions of the form 

 

∑
𝜕𝜑(𝑛)(𝑦̂𝑈(𝑥))

𝜕𝑦̂

𝑛=+𝑁𝑀
𝑛=−𝑁𝑀

𝑒𝑖𝑛𝛼𝑥 = 0, (2.3.16a) 

∑ 𝑛 𝜑(𝑛)(𝑦̂𝑈(𝑥))
𝑛=+𝑁𝑀
𝑛=−𝑁𝑀

𝑒𝑖𝑛𝛼𝑥 = 0,  (2.3.16b) 

∑ ∅(𝑛)(𝑦̂𝑈(𝑥))
𝑛=+𝑁𝑀
𝑛=−𝑁𝑀

𝑒𝑖𝑛𝛼𝑥 = 𝜃𝑈(𝑥). (2.3.16c) 

 

The reader may note that (2.3.16b) does not provide conditions for 𝑛 =  0. Substitution 

of the Chebyshev expansions for the modal functions leads to 

 

∑ ∑ 𝐺𝜑̂𝑘
(𝑛)𝑘=𝑁𝑇−1

𝑘=0 𝐷𝑇𝑘(𝑦̂𝑈(𝑥))
𝑛=+𝑁𝑀
𝑛=−𝑁𝑀

𝑒𝑖𝑛𝛼𝑥 = 0,                (2.3.17a) 

∑  ∑ 𝑛𝐺𝜑̂𝑘
(𝑛)𝑘=𝑁𝑇−1

𝑘=0 𝑇𝑘(𝑦̂𝑈(𝑥))
𝑛=+𝑁𝑀
𝑛=−𝑁𝑀

𝑒𝑖𝑛𝛼𝑥 = 0,  (2.3.17b) 

∑ ∑ 𝐺∅̂𝑘
(𝑛)𝑘=𝑁𝑇−1

𝑘=0 𝑇𝑘(𝑦̂𝑈(𝑥))
𝑛=+𝑁𝑀
𝑛=−𝑁𝑀

𝑒𝑖𝑛𝛼𝑥 = 𝜃𝑈(𝑥). (2.3.17c) 

 

It is convenient to express shapes of the plates using exponential notation in the form of 

 

𝑦̂𝐿(𝑥) = ∑ 𝐴𝐿
(𝑛)𝑛=𝑁𝐴

𝑛=−𝑁𝐴
𝑒𝑖𝑛𝛼𝑥,  (2.3.18a) 

𝑦̂𝑈(𝑥) = ∑ 𝐴𝑈
(𝑛)𝑛=𝑁𝐴

𝑛=−𝑁𝐴
𝑒𝑖𝑛𝛼𝑥,  (2.3.18b) 

 

where 𝑁𝐴 modes are used in order to capture more complex shapes, 𝐴𝐿
(𝑛)

 and 𝐴𝑈
(𝑛)

 are the 

known expansions coefficients and, in the case of geometry of interest in this analysis 

(see Eq. (2.3.9)), all coefficients are zero except  𝐴𝐿
(0)

= 1 + 𝛤(−2 − 𝑦𝑡), 𝐴𝑈
(0)

= 1 −

𝛤𝑦𝑡,   𝐴𝐿
(1)

= 0.5𝛤, 𝐴𝑈
(1)

= 0.5𝛤 ∗ e𝑖𝐶. 
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Values of the Chebyshev polynomials and their derivatives evaluated along the boundary 

represent periodic functions of x and, thus, can be expressed as Fourier expansions of the 

form 

 

𝑇𝑘(𝑦̂𝑈(𝑥)) = ∑ 𝑊𝑈̂𝑘
(𝑚)𝑚=+𝑁𝑆

𝑚=−𝑁𝑆
𝑒𝑖𝑚𝛼𝑥, (2.3.19a) 

𝐷𝑇𝑘(𝑦̂𝑈(𝑥)) = ∑ 𝐷𝑈̂𝑘
(𝑚)𝑚=+𝑁𝑆

𝑚=−𝑁𝑆
𝑒𝑖𝑚𝛼𝑥, (2.3.19b) 

 

where 𝑊𝑈̂𝑘
(𝑚)

and 𝐷𝑈̂𝑘
(𝑚)

 are the expansion coefficients of the Chebyshev polynomials and 

their derivatives evaluated along the upper plate. These expansions involve 𝑁𝑆 = (𝑁𝑇 −

1) ∗ 𝑁𝐴 terms as the highest order polynomials is of the order 𝑁𝑇 − 1. Their evaluation 

relies on the recurrence relations presented in Appendix A which leads to expressions of 

the form 

 

𝑊𝑈̂𝑘+1
(𝑚)

= 2∑ 𝐴𝑈
(𝑛)𝑛=+𝑁𝐴

𝑛=−𝑁𝐴
𝑊𝑈̂𝑘

(𝑚−𝑛)
− 𝑊𝑈̂𝑘−1

(𝑚)
          𝑓𝑜𝑟 𝑘 > 1, (2.3.20a) 

𝐷𝑈̂𝑘+1
(𝑚)

= 2∑ 𝐴𝑈
(𝑛)𝑛=+𝑁𝐴

𝑛=−𝑁𝐴
𝐷𝑈̂𝑘

(𝑚−𝑛)
− 𝐷𝑈̂𝑘−1

(𝑚)
+ 2𝑊𝑈̂𝑘

(𝑚)
. (2.3.20b) 

 

The evaluation process begins with k = 0 and results in 

 

𝑊𝑈̂0
(0)

= 1, 𝑊𝑈̂0
(𝑚)

= 0   𝑓𝑜𝑟 |𝑚| ≥ 1, 𝑊𝑈̂1
(𝑚)

= 𝐴𝑈
(𝑚)

   𝑓𝑜𝑟 |𝑚| ≥ 0, (2.3.21a) 

 

𝐷𝑈̂0
(𝑚)

= 0        𝑓𝑜𝑟 |𝑚| ≥ 0, 𝐷𝑈̂1
(0)

= 1,  

𝐷𝑈̂1
(𝑚)

= 0       𝑓𝑜𝑟 |𝑚| ≥ 1, 𝐷𝑈̂2
(𝑚)

= 4𝐴𝑈
(𝑚)

   𝑓𝑜𝑟 |𝑚| ≥ 0. (2.3.21b) 

 

Substituting (3.19) into (3.17) and separating Fourier modes leads to boundary relations 

of the form  

 

∑ ∑ ∑ 𝐺𝜑̂𝑘
(𝑛)𝑚=+𝑁𝑆

𝑚=−𝑁𝑆

𝑘=𝑁𝑇−1
𝑘=0 𝐷𝑈̂𝑘

(𝑚)𝑛=+𝑁𝑀
𝑛=−𝑁𝑀

𝑒𝑖(𝑛+𝑚)𝛼𝑥 =

              ∑ ∑ ∑ 𝐺𝜑̂𝑘
(𝑛)𝑘=𝑁𝑇−1

𝑘=0
𝑛=𝑁𝑀
𝑛=−𝑁𝑀

𝐷𝑈̂𝑘
(𝑠−𝑛)𝑠=+𝑁𝑀+𝑁𝑆

𝑠=−𝑁𝑀−𝑁𝑆
𝑒𝑖𝑠𝛼𝑥 = 0, 

 

(2.3.22a) 

 

∑  ∑ ∑ 𝑛𝐺𝜑̂𝑘
(𝑛)𝑚=+𝑁𝑆

𝑚=−𝑁𝑆

𝑘=𝑁𝑇−1
𝑘=0 𝑊𝑈̂𝑘

(𝑚)𝑛=+𝑁𝑀
𝑛=−𝑁𝑀

𝑒𝑖(𝑛+𝑚)𝛼𝑥 =

             ∑ ∑ ∑ 𝑛𝐺𝜑̂𝑘
(𝑛)𝑘=𝑁𝑇−1

𝑘=0
𝑛=𝑁𝑀
𝑛=−𝑁𝑀

𝑊𝑈̂𝑘
(𝑠−𝑛)𝑠=+𝑁𝑀+𝑁𝑆

𝑠=−𝑁𝑀−𝑁𝑆
𝑒𝑖𝑠𝛼𝑥 = 0, 

 

 

(2.3.22b) 
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∑ ∑ ∑ 𝐺∅̂𝑘
(𝑛)𝑚=+𝑁𝑆

𝑚=−𝑁𝑆

𝑘=𝑁𝑇−1
𝑘=0 𝑊𝑈̂𝑘

(𝑚)𝑛=+𝑁𝑀
𝑛=−𝑁𝑀

𝑒𝑖(𝑛+𝑚)𝛼𝑥 =

             ∑ ∑ ∑ 𝐺∅̂𝑘
(𝑛)𝑘=𝑁𝑇−1

𝑘=0
𝑛=𝑁𝑀
𝑛=−𝑁𝑀

𝑊𝑈̂𝑘
(𝑠−𝑛)𝑠=+𝑁𝑀+𝑁𝑆

𝑠=−𝑁𝑀−𝑁𝑆
𝑒𝑖𝑠𝛼𝑥 = 𝜃𝑈(𝑥), 

 

 

(2.3.22c) 

 

where 𝑠 = 𝑛 + 𝑚. Re-arrangement of indices 𝑛 → 𝑚 and 𝑠 → 𝑛 eventually leads to 

boundary relations for lower and upper plates of the form 

 

∑ ∑ 𝐺𝜑̂𝑘

(𝑚)𝑘=𝑁𝑇−1
𝑘=0

𝑚=𝑁𝑀
𝑚=−𝑁𝑀

𝐷𝐿̂𝑘
(𝑛−𝑚)

= 0, (2.3.23a) 

∑ ∑ 𝐺𝜑̂𝑘
(𝑚)𝑘=𝑁𝑇−1

𝑘=0
𝑚=𝑁𝑀
𝑚=−𝑁𝑀

𝐷𝑈̂𝑘
(𝑛−𝑚)

= 0, (2.3.23b) 

∑ ∑ 𝑛𝐺𝜑̂𝑘
(𝑚)𝑘=𝑁𝑇−1

𝑘=0
𝑚=𝑁𝑀
𝑚=−𝑁𝑀

𝑊𝐿̂𝑘
(𝑛−𝑚)

= 0, (2.3.23c) 

∑ ∑ 𝑛𝐺𝜑̂𝑘
(𝑚)𝑘=𝑁𝑇−1

𝑘=0
𝑚=𝑁𝑀
𝑚=−𝑁𝑀

𝑊𝑈̂𝑘
(𝑛−𝑚)

= 0, (2.3.23d) 

∑ ∑ 𝐺∅̂𝑘
(𝑚)𝑘=𝑁𝑇−1

𝑘=0
𝑚=𝑁𝑀
𝑚=−𝑁𝑀

𝑊𝐿̂𝑘
(𝑛−𝑚)

= 𝜃𝐿
(𝑛)

, (2.3.23e) 

∑ ∑ 𝐺∅̂𝑘
(𝑚)𝑘=𝑁𝑇−1

𝑘=0
𝑚=𝑁𝑀
𝑚=−𝑁𝑀

𝑊𝑈̂𝑘
(𝑛−𝑚)

= 𝜃𝑈
(𝑛)

, (2.3.23f) 

 

where −𝑁𝑓 ≤ 𝑛 ≤ 𝑁𝑓 with 𝑁𝑓 = 𝑁𝑆 + 𝑁𝑀. In the particular case studied in this work, all 

𝜃𝐿
(𝑛)

 and 𝜃𝑈
(𝑛)

 are zero except for 𝜃𝐿
(0)

= 𝑅𝑎𝑢𝑛𝑖, 𝜃𝐿
(1)

= 0.25 𝑅𝑎𝑝,𝐿 𝑒
𝑖𝑇𝐿, 𝜃𝑈

(1)
=

0.25 𝑅𝑎𝑝,𝑈 𝑒𝑖(𝐶+𝑇𝑈) in view of (2.2.5). 

Since the number of the modal equations for each unknown is (2𝑁𝑀 + 1) and each 

boundary condition leads to 2𝑁𝑓 + 1 boundary relations, only the leading  2𝑁𝑀 + 1 of 

these relations can be enforced directly. The remaining relations can be used for testing 

the consistency of the algorithm. It is possible to use the additional relations which lead 

to the overdetermined formulation of the same problem [63]. We shall come back to this 

issue in Section 2.7. 

 

2.3.3. Discretization of the flow rate constraint 

Substitution of (2.3.10a) and (2.3.12a) into (2.3.2c) results in 

 

𝑄(𝑥) = ∑ ∑ 𝐺𝜑̂𝑘
(𝑛)𝑘=𝑁𝑇−1

𝑘=0 [𝑇𝑘(𝑦̂𝑈(𝑥)) − 𝑇𝑘(𝑦̂𝐿(𝑥))]
𝑛=𝑁𝑀
𝑛=−𝑁𝑀

𝑒𝑖𝑛𝛼𝑥 =
4

3
𝑅𝑒. (2.3.24) 
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Substitution of (2.3.19) into (2.3.24) results in 

 

𝑄(𝑥) = ∑ ∑ ∑ 𝐺𝜑̂𝑘
(𝑛)

(𝑊𝑈̂𝑘
(𝑚)

− 𝑊𝐿̂𝑘
(𝑚)

)
𝑚=𝑁𝑆
𝑚=−𝑁𝑆

𝑘=𝑁𝑇−1
𝑘=0

𝑛=𝑁𝑀
𝑛=−𝑁𝑀

𝑒𝑖(𝑛+𝑚)𝛼𝑥 =

∑ ∑ ∑ 𝐺𝜑̂𝑘
(𝑛)

(𝑊𝑈̂𝑘
(𝑠−𝑛)

− 𝑊𝐿̂𝑘
(𝑠−𝑛)

)
𝑘=𝑁𝑇−1
𝑘=0

𝑛=𝑁𝑀
𝑛=−𝑁𝑀

𝑠=𝑁𝑆+𝑁𝑚
𝑠=−𝑁𝑆−𝑁𝑚

𝑒𝑖𝑠𝛼𝑥 =
4

3
𝑅𝑒, 

 

(2.3.25) 

 

 

where s = n + m. Re-arranging the indices 𝑛 → 𝑚 and 𝑠 → 𝑛 eventually leads to 

 

𝑄(𝑥) = ∑ ∑ ∑ 𝐺𝜑̂𝑘
(𝑚)

(𝑊𝑈̂𝑘
(𝑛−𝑚)

− 𝑊𝐿̂𝑘
(𝑛−𝑚)

)
𝑘=𝑁𝑇−1
𝑘=0

𝑚=𝑁𝑀
𝑚=−𝑁𝑀

𝑛=𝑁𝑆+𝑁𝑀
𝑛=−𝑁𝑆−𝑁𝑀

𝑒𝑖𝑛𝛼𝑥. (2.3.26) 

 

Since mode zero from the above expansion represents the mean flow, prescribing its 

value is equivalent to the imposition of the flow rate constraint, i.e. 

 

𝑄(𝑥)|𝑚𝑒𝑎𝑛 = ∑ ∑ 𝐺𝜑̂𝑘
(𝑚)

(𝑊𝑈̂𝑘
(𝑚)∗ − 𝑊𝐿̂𝑘

(𝑚)∗)
𝑘=𝑁𝑇−1
𝑘=0

𝑚=𝑁𝑀
𝑚=−𝑁𝑀

=
4

3
𝑅𝑒. (2.3.27) 
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2.4. Solution Process 

The solution process relies on iterations and yields new approximations of 𝐺𝜑̂𝑘
(𝑛)

and 

𝐺∅̂𝑘
(𝑛)

, denoted as [𝐺𝜑̂
𝑘

(𝑛)
]
(𝑙+1)

and [𝐺∅̂𝑘

(𝑛)
]
(𝑙+1)

, at each iteration where the superscript 𝑙 

denotes the iteration number. The nonlinear terms on the right hand side of (2.3.15) are 

taken from the previous iteration (these terms are ignored during the first iteration) 

resulting in the first order fixed point method. The iteration process can be summarized 

as  

 

[𝐺𝜑̂
𝑘

(𝑛)
]
(𝑙+1)

= [𝐺𝜑̂
𝑘

(𝑛)
]
(𝑙)

+ 𝑅𝐹𝜑 {[𝐺𝜑̂
𝑘

(𝑛)
]
(𝑐𝑜𝑚𝑝)

− [𝐺𝜑̂
𝑘

(𝑛)
]
(𝑙)

}, 
(2.4.1a) 

[𝐺∅̂𝑘

(𝑛)
]
(𝑙+1)

= [𝐺∅̂𝑘

(𝑛)
]
(𝑙)

+ 𝑅𝐹∅ {[𝐺∅̂𝑘

(𝑛)
]
(𝑐𝑜𝑚𝑝)

− [𝐺∅̂𝑘

(𝑛)
]
(𝑙)

}, 
(2.4.1b) 

 

where the superscript 𝑐𝑜𝑚𝑝 identifies the solution computed at the new iteration, and the 

process is controlled using the under-relaxation parameters 𝑅𝐹𝜑 and 𝑅𝐹∅.  Typically, 

𝑅𝐹𝜑 < 0.1 and 𝑅𝐹∅ < 0.1 were used with their values decreasing with an increase of the 

corrugation amplitude and wave number, and the Reynolds and Rayleigh numbers. 

Iterations are stopped when the convergence criterion of the form  

 

‖[𝐺𝜑̂𝑘

(𝑛)
,]

(𝑙+1)
−[𝐺𝜑̂𝑘

(𝑛)
,]

(𝑙)
‖

2

‖[𝐺𝜑̂𝑘

(𝑛)
]
(𝑙+1)

‖
2

< 𝐶𝑂𝑁𝑉, 
‖[𝐺∅̂𝑘

(𝑛)
]
(𝑙+1)

−[ 𝐺∅̂𝑘
(𝑛)

]
(𝑙)

‖
2

‖[𝐺∅̂𝑘
(𝑛)

]
(𝑙+1)

‖
2

< 𝐶𝑂𝑁𝑉, (2.4.2a-b) 

 

is satisfied with 𝐶𝑂𝑁𝑉 = 10−14 used in all tests reported in this thesis. In the above, the 

L
2
 norm of the difference between the solution vectors computed at two consecutive 

iterations is placed at the numerator and the L
2
 norm of the current solution vector is 

placed in the denominator. The L
2
 norm of a vector V with size n is defined as ‖𝑽‖2 =

√(∑ |𝑉𝑖|2
𝑛
𝑖=1 ).  

The nonlinear terms on the right hand side of (2.3.15) need to be updated at the end of 

each iteration step. It is more efficient to evaluate the required products by transferring 

data to the physical space, carrying out the multiplications there and transferring the 
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results back into the Fourier space (Canuto et al. 2006). Velocity components and 

temperature are expressed as 

 

𝑢(𝑥, 𝑦̂) = 𝛤 ∑ ∑ 𝐺𝜑̂𝑘
(𝑛)𝑘=𝑁𝑇−1

𝑘=0 𝐷𝑇𝑘(𝑦̂)𝑛=+𝑁𝑀
𝑛=−𝑁𝑀

𝑒𝑖𝑛𝛼𝑥,                (2.4.3a) 

𝑣(𝑥, 𝑦̂) = −𝑖𝛼 ∑  ∑ 𝑛𝐺𝜑̂𝑘
(𝑛)𝑘=𝑁𝑇−1

𝑘=0 𝑇𝑘(𝑦̂𝑈(𝑦̂))
𝑛=+𝑁𝑀
𝑛=−𝑁𝑀

𝑒𝑖𝑛𝛼𝑥,  (2.4.3b) 

𝜃(𝑥, 𝑦̂) = ∑ ∑ 𝐺∅̂𝑘
(𝑛)𝑘=𝑁𝑇−1

𝑘=0 𝑇𝑘(𝑦̂)𝑛=+𝑁𝑀
𝑛=−𝑁𝑀

𝑒𝑖𝑛𝛼𝑥, (2.4.3c) 

 

and are evaluated on a suitable grid in the (𝑥, 𝑦̂) plane. 2𝑁𝑥 + 2 equidistant points, where 

𝑁𝑥 =
3

2
𝑁𝑀, are used along the 𝑥-direction in order to remove the aliasing error with the 

last point removed due to periodicity, and 𝑁𝑇 points are used in the 𝑦̂-direction with the 

first and last points overlapping with the borders of the computational domain. 

Chebyshev points defined as 𝑦̂𝑗 = cos (
𝑗𝜋

𝑁𝑇−1
), where 𝑗 = 1, 2, … ,𝑁𝑇 − 2, are used in the 

interior of the domain. This process results in the formation of three matrices containing 

𝑢, 𝑣, 𝜃  and their multiplications yield the desired products 𝑢𝑢̂, 𝑢𝑣̂, 𝑣𝑣̂, 𝑢𝜃̂, 𝑣𝜃̂. These 

products need to be expressed using Fourier expansions (3.10c) which necessitates the 

determination of the modal functions 𝑢𝑢̂〈𝑛〉,  𝑢𝑣̂〈𝑛〉, 𝑣𝑣̂〈𝑛〉, 𝑣𝜃̂〈𝑛〉, 𝑢𝜃̂〈𝑛〉. This is 

accomplished using the Fast Fourier Transform (FFT) at each 𝑦̂-location; 2𝑁𝑥 + 1 data 

points are used in the 𝑥-direction resulting in values of 2𝑁𝑥 + 1 modal functions. Modal 

functions with indices in the range [–𝑁𝑀 , 𝑁𝑀] are retained and the remaining functions 

are discarded as a part of the aliasing error control process [64]. The last step involves 

expressing each modal function known on the set of grid points 𝑦̂𝑗 in terms of a 

Chebyshev expansion and this requires evaluation of coefficients 

𝐺𝑢𝑢̂𝑘
(𝑛)

, 𝐺𝑢𝑣̂𝑘
(𝑛)

, 𝐺𝑣𝑣̂𝑘
(𝑛)

, 𝐺𝑢𝜃̂𝑘
(𝑛)

, 𝐺𝑣𝜃̂𝑘
(𝑛)

. This is done by writing equation of type (3.12c) for 

each grid point resulting in a system of linear equation for the unknown coefficients 

which is solved numerically. The number of grid points determines the maximum length 

of the Chebyshev expansion. No de-aliasing is required in the Chebyshev direction if a 

sufficient number of polynomials are used. 
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2.5. The Linear Solver 

The linear system for 𝐺𝜑̂𝑘
(𝑛)

 and 𝐺∅̂𝑘
(𝑛)

 has to be solved at each iteration step. The 

problem has three types of intermodal couplings, i.e. coupling due to nonlinear terms, 

coupling between the momentum and energy equations in the linear terms and coupling 

due to the boundary relations. The former has been eliminated by the use of nonlinear 

terms from the previous iteration. The remaining two remain and, as result, one needs to 

solve a very large linear system involving all modal functions at each iterations step. This 

system can be written in a matrix notation as 

 

[
𝑳1 𝑳2

0 𝑳3
] [

𝑽
𝑻
] = [

𝑹1(𝑽, 𝑻)

𝑹2(𝑽, 𝑻)
], 

(2.5.1) 

 

where L1 denotes the coefficient matrix of size size 𝑝 × 𝑝 with 𝑝 = (2𝑁𝑀 + 1)𝑁𝑇 arising 

from the terms in the momentum equation involving stream function and the relevant 

boundary relations, L2 denotes the coefficient matrix of size 𝑝 × 𝑝 resulting from the 

terms in the momentum equation involving temperature and the relevant boundary 

relations, L3 denotes the coefficient matrix of size 𝑝 × 𝑝 resulting from the energy 

equation and the relevant boundary relations, V is the p-dimensional vector of the 

unknown expansions coefficient 𝐺𝜑̂𝑘
(𝑛)

, T is the p-dimensional vector of the unknown 

expansion coefficients 𝐺∅̂𝑘
(𝑛)

, R1 stands for the p-dimensional right-hand side vector 

containing nonlinearities associated with the momentum equation and R2 stands for the p-

dimensional vector containing nonlinearities associated with the energy equation. The 

structure of (2.5.1) shows that the energy equation is decoupled from the momentum 

equation resulting in two independent systems of the form 

 

𝑳1𝑽 = −𝑳2𝑻 + 𝑹1(𝑽, 𝑻), (2.5.2a) 

𝑳3𝑻 = 𝑹2(𝑽, 𝑻), (2.5.2b) 

 

which permits solution of (2.5.2B) for T to be followed by solution of (2.5.2A) for V.  
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We shall begin discussion of linear solvers starting with (2.5.2B). The structure of the 

coefficient matrix L3 is displayed in Fig. 2.2. The upper triangular blocks correspond to 

the modal equations and are uncoupled, and the black horizontal lines correspond to the 

two boundary relations per block which provide coupling. The system can be solved in 

this form but significant computational savings can be realized by taking advantage of the 

structure of L3 following ideas presented in (Husain & Floryan 2013). 

 

(A) (B) 
  

Figure 2.2: Structure of the coefficient matrix 𝑳𝟑 before (Fig. 2.2A) and after (Fig. 2.2B) re-

arrangement for 𝑁𝑀 = 3 and 𝑁𝑇 = 15. Black dotes identify the non-zero elements and lines 

indicate borders between blocks associated with different Fourier modes organized according to 

the mode number – 𝑁𝑀 , … ,0, … ,𝑁𝑀. 

 

The solution process begins with re-organization of 𝑳3. In the first step all boundary 

relations are moved to the bottom of 𝑳3 forming a block diagonal matrix 𝑳31 of size 

𝑞 × 𝑝, where 𝑞 = (2𝑁𝑀 + 1)(𝑁𝑇 − 2) and a full matrix 𝑳32 of size 𝑟 × 𝑝, where 

𝑟 = 2(2𝑁𝑀 + 1). Extraction of the largest possible square matrix A3 from 𝑳31is carried 

out in the second step. This is done by moving the unknown Chebyshev coefficients 

corresponding to the two lowest polynomials in each modal equation to the end of the 

vector of unknowns. The resulting matrix structure is illustrated in Fig.2.3. The square 

matrix A3 of size 𝑞 × 𝑞 has a block diagonal structure with each block of size (𝑁𝑇 − 2) ×

(𝑁𝑇 − 2). The rectangular matrix 𝑩𝟑 of size 𝑞 × 𝑟 also has a block diagonal form with 

blocks of size (𝑁𝑇 − 2) × 2 whereas the full rectangular matrix 𝑪𝟑 has size 𝑟 × 𝑞 and the 

full square matrix 𝑫𝟑 has size 𝑟 × 𝑟. Matrices 𝑩𝟑 and 𝑫𝟑 contain coefficients 
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corresponding to 𝐺∅̂0
(𝑛)

, 𝐺∅̂1
(𝑛)

 while information associated with the remaining 

coefficients is stored in matrices A3 and 𝑪𝟑. The vector of unknowns consists of two parts 

with T1 containing unknowns 𝐺∅̂𝑘
(𝑛)

 for 𝑛 ∈ 〈−𝑁𝑀, 𝑁𝑀〉, 𝑘 ∈ 〈2, 𝑁𝑇 − 1〉, and T2 

containing 𝐺∅̂𝑘
(𝑛)

  for 𝑛 ∈ 〈−𝑁𝑀, 𝑁𝑀〉, 𝑘 ∈ 〈0,1〉. Equation (2.5.2b) can now be written as 

 

𝑨3𝑻1 + 𝑩3𝑻2 = 𝑹21,   𝑪3𝑻1 + 𝑫3𝑻2 = 𝑹22  (2.5.3) 

 

where 𝑹21contains elements of 𝑹2 corresponding to 𝑛 ∈ 〈−𝑁𝑀, 𝑁𝑀〉, 𝑘 ∈ 〈2, 𝑁𝑇 − 1〉 and 

𝑹22 contains elements of 𝑹2 corresponding to 𝑛 ∈ 〈−𝑁𝑀, 𝑁𝑀〉, 𝑘 ∈ 〈0,1〉. The solution of 

(2.5.3) can be written as  

 

𝑻2 = [𝑫3 − 𝑪3𝑨3
−1𝑩3]

−1(𝑹22 − 𝑪3𝑨3
−1𝑹21),  𝑻1 = 𝑨3

−1[𝑹21 − 𝑩3𝑻2].        (2.5.4) 

 

The memory requirements are significantly reduced as one needs to store only the 

diagonal blocks of matrices 𝑨3 and 𝑩3. Computational savings result from the 

construction of 𝑨𝟑
−1, 𝑪𝟑𝑨𝟑

−𝟏, 𝑪𝟑𝑨𝟑
−𝟏𝑩𝟑, 𝑨𝟑

−𝟏𝑹21, 𝑨𝟑
−𝟏𝑩𝟑 block by block rather than 

working with complete matrices. Further efficiencies can be obtained by taking 

advantage of the complex conjugate properties of the modal functions. 

 

Solver for (2.5.2a) is developed following the same arguments. The re-organization of 

𝑳1involves moving all boundary relations to its bottom forming a block diagonal matrix 

𝑳11 of size 𝑞 × 𝑝, where 𝑞 = (2𝑁𝑀 + 1)(𝑁𝑇 − 4) and a full matrix 𝑳12 of size 𝑟 × 𝑝, 

where 𝑟 = 4(2𝑁𝑀 + 1). Extraction of the largest possible square matrix 𝑨𝟏 from 𝑳11is 

carried out in the second step. This is done by moving the unknown Chebyshev 

coefficients corresponding to the four lowest polynomials in each modal equation to the 

end of the vector of unknowns. The resulting matrix structure is similar to that shown in 

Fig.2.3. The square matrix 𝑨𝟏 of size 𝑞 × 𝑞 has a block diagonal structure with each 

block of size (𝑁𝑇 − 4) × (𝑁𝑇 − 4). The rectangular matrix 𝑩𝟏 of size 𝑞 × 𝑟 also has a 

block diagonal form with blocks of size (𝑁𝑇 − 4) × 4 whereas the full rectangular matrix 

𝑪𝟏 has size 𝑟 × 𝑞 and the full square matrix 𝑫𝟏 has size 𝑟 × 𝑟. Matrices 𝑩𝟏 and 𝑫𝟏 
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contain coefficients corresponding to 𝐺𝜑̂0
(𝑛)

, 𝐺𝜑̂1
(𝑛)

, 𝐺𝜑̂2
(𝑛)

, 𝐺𝜑̂3
(𝑛)

 while information 

associated with the remaining coefficients is stored in matrices 𝑨𝟏  and 𝑪𝟏. The vector of 

unknowns consists of two parts with 𝑽𝟏 containing unknowns 𝐺𝜑̂𝑘
(𝑛)

 for 𝑛 ∈

〈−𝑁𝑀, 𝑁𝑀〉, 𝑘 ∈ 〈4, 𝑁𝑇 − 1〉, and 𝑽𝟐 containing  𝐺𝜑̂𝑘
(𝑛)

 for 𝑛 ∈ 〈−𝑁𝑀, 𝑁𝑀〉, 𝑘 ∈ 〈0,3〉. 

Equation (2.5.2a) can now be written as 

 

𝑨1𝑽1 + 𝑩1𝑽2 = 𝑹11,   𝑪1𝑽1 + 𝑫1𝑽2 = 𝑹12  (2.5.3) 

 

where 𝑹11contains elements of −𝑳2𝑻 + 𝑹1(𝑽, 𝑻) corresponding to 𝑛 ∈ 〈−𝑁𝑀, 𝑁𝑀〉, 𝑘 ∈

〈4, 𝑁𝑇 − 1〉 and 𝑹12 contains elements of −𝑳2𝑻 + 𝑹1(𝑽, 𝑻),corresponding to 𝑛 ∈

〈−𝑁𝑀, 𝑁𝑀〉, 𝑘 ∈ 〈0,3〉. 

 

(A) (B) 

 

 

Figure 2.3: Structure of the coefficient matrix 𝑳𝟏 before (Fig. 2.3A) and after (Fig. 2.3B) re-

arrangement for 𝑁𝑀 = 3 and 𝑁𝑇 = 15. Black dotes identify the non-zero elements and lines 

indicate borders between blocks associated with different Fourier modes organized according to 

the mode number – 𝑁𝑀 , … ,0, … ,𝑁𝑀. 
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2.6. Evaluation of the pressure field 

The pressure field can be determined from the known velocity field. The x-component of 

the momentum equation (2.2.6b) is expressed using the stream functions defined by 

Eq.(2.3.1) and re-arranged to the following form 

 

𝜕𝑝

𝜕𝑥
= 𝛤

𝜕3𝜓

𝜕𝑥2𝜕𝑦̂
+ 𝛤3

𝜕3𝜓

𝜕𝑦̂3
−

𝜕

𝜕𝑥
𝑢𝑢̂ − 𝛤

𝜕

𝜕𝑦̂
𝑢𝑣̂. 

(2.6.1) 

 

The pressure field is represented in terms of a Fourier expansion of the form 

 

𝑝(𝑥, 𝑦̂) = 𝐴𝑥 + ∑ 𝑝(𝑛)(𝑦̂)𝑛=+∞
𝑛=−∞ 𝑒𝑖𝑛𝛼𝑥 ≈ 𝐴𝑥 + ∑ 𝑝(𝑛)𝑛=𝑁𝑀

𝑛=−𝑁𝑀
(𝑦̂)𝑒𝑖𝑛𝛼𝑥, (2.6.2) 

 

where A has been added for generality purposes. It can be shown that A represents the 

mean pressure gradient. Substitution of (2.3.10) and (2.6.2) into (2.6.1) and separation of 

Fourier modes lead to equations for the pressure modal functions of the form 

 

𝐴 + 𝑖𝑛𝛼𝑝(𝑛) = (𝛤3𝐷3 − 𝑛2𝛼2𝛤𝐷) 𝜑(𝑛) − 𝑖𝑛𝛼 𝑢𝑢̂(𝑛) − 𝛤𝐷 𝑢𝑣̂(𝑛). (2.6.3) 

 

The mean pressure gradient can be determined form the modal equation for mode 0 

which has the following form 

 

𝐴 = 𝛤3𝐷3 𝜑(0) − 𝛤𝐷 𝑢𝑣̂(0). (2.6.4) 

 

Substitution of (2.3.12a) and (2.3.12c) into (2.6.4) leads to an expression of the form 

 

𝐴 = ∑ [𝛤3 𝐺𝜑̂𝑘
(0)

𝐷3𝑇𝑘(𝑦̂) − 𝛤𝐺𝑢𝑣̂𝑘
(0)

𝐷𝑇𝑘(𝑦̂)]
𝑘=𝑁𝑇−1
𝑘=0 , (2.6.5) 

 

which can be used for evaluation of A. It is convenient for interpretation purposes to 

extract the pressure gradient correction 𝐴𝐶  induced by the heating and the grooves by 

subtracting the pressure gradient associated with the flow in a smooth isothermal channel 

from the total pressure gradient, i.e. 
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𝐴 = −2𝑅𝑒 + 𝐴𝐶. (2.6.6) 

 

This correction can be obtained directly from the following relation 

 

𝐴𝑐 = ∑ [𝛤3 𝐺𝜑̂𝑘
(0)

𝐷3𝑇𝑘(𝑦̂) − 𝛤𝐺𝑢𝑣̂𝑘
(0)

𝐷𝑇𝑘(𝑦̂)] + 2𝑅𝑒𝑘=𝑁𝑇−1
𝑘=0 , (2.6.7) 

 

which can be evaluated at any 𝑦̂. It has been verified that 𝐴𝑐 computed using (2.6.7) does 

not depend on 𝑦̂ which verifies the integrity of the algorithm. 

 

The other pressure modal functions can be evaluated from (2.6.3) written in the following 

form 

  

𝑝(𝑛)(𝑦̂) =
1

𝑖𝑛𝛼
[(𝛤3𝐷3 − 𝑛2𝛼2𝛤𝐷) 𝜑(𝑛) − 𝑖𝑛𝛼 𝑢𝑢̂(𝑛) − 𝛤𝐷 𝑢𝑣̂(𝑛)]. (2.6.8) 

 

It is obvious that the above equation cannot be used for n = 0. Substitution of (2.3.12) 

into (2.6.8) results in  

 

𝑝(𝑛)(𝑦̂) =
1

𝑖𝑛𝛼
∑ [𝛤3𝐺𝜑̂𝑘

(𝑛)
𝐷3𝑇𝑘(𝑦̂) − 𝑛2𝛼2𝛤𝐺𝜑̂𝑘

(𝑛)
𝐷𝑇𝑘(𝑦̂) −

𝑘=𝑁𝑇−1
𝑘=0

                   𝑖𝑛𝛼𝐺𝑢𝑢̂𝑘
(𝑛)

𝑇𝑘(𝑦̂) − 𝛤𝐺𝑢𝑣̂𝑘
(𝑛)

𝐷𝑇𝑘(𝑦̂)],   

 

 

(2.6.9) 

 

which is used for evaluation of 𝑝(𝑛). The modal function 𝑝(0) needs to be evaluated from 

the y-momentum equation. This equation can be re-arranged to the following form  

 

𝛤
𝜕𝑝

𝜕𝑦̂
= −

𝜕3𝜓

𝜕𝑥3 + 𝛤2 𝜕3𝜓

𝜕𝑥𝜕𝑦̂2 + 𝑃𝑟−1 𝜃 −
𝜕

𝜕𝑥
𝑢𝑢̂ − 𝛤

𝜕

𝜕𝑦̂
𝑣𝑣̂. (2.6.10) 

 

Extraction of mode 0 results in the following relation 

 

𝛤𝐷𝑝(0) = 𝑃𝑟−1∅(0) −  𝛤𝐷𝑣𝑣̂(0).  (2.6.11) 
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Substitution of (2.3.12) and integration of the resulting relation lead to 

 

𝑝(0)(𝑦̂) = 𝛤−1𝑃𝑟−1 ∫ ∅(0)𝑑𝑦̂
𝑦̂

−1
−  𝑣𝑣̂(0).  (2.6.12) 

 

Use of Chebyshev expansions (2.3.12) in (2.6.12) results in an expression used for 

evaluation of 𝑝(0)(𝑦̂), i.e. 

 

𝑝(0)(𝑦̂) = ∑ [𝛤−1𝑃𝑟−1𝐺∅̂𝑘
(0)

𝐼𝑘(𝑦̂) − 𝐺𝑣𝑣̂𝑘
(0)

𝑇𝑘(𝑦̂)]
𝑘=𝑁𝑇−1
𝑘=0 , (2.6.13) 

 

where 𝐼𝑘(𝑦̂) = ∫ 𝑇𝑘(𝑦̂)
𝑦̂

−1
 can be expressed analytically in terms of Chebyshev 

polynomials (see Appendix A for details). 

 

2.7. Performance of the Algorithm 

The main advantage of the present algorithm is the spectral accuracy achieved for the 

geometrically complex flow domain. We shall describe various tests carried out in order 

to demonstrate that the algorithm does indeed deliver the predicted accuracy.  

 

In a spectrally accurate algorithm, the solution converges exponentially as the number of 

Chebyshev polynomials 𝑁𝑇 and the number of Fourier modes 𝑁𝑀 used in the 

computations increase. To demonstrate the character of convergence as the number of 

Chebyshev polynomials 𝑁𝑇 increases, we define the errors of the field quantities in the 

form of 

 

𝐸𝑟1 =
||𝑢𝑟𝑒𝑓(𝑥,𝑦)−𝑢(𝑥,𝑦)||2

‖𝑢𝑟𝑒𝑓(𝑥,𝑦)‖
2

,         𝐸𝑟2 =
||𝜃𝑟𝑒𝑓(𝑥,𝑦)−𝜃(𝑥,𝑦)||2

||𝜃𝑟𝑒𝑓(𝑥,𝑦)||2
. 

(2.7.1a-b) 

 

Here ||𝑋𝑟𝑒𝑓 − 𝑋||2 is the L
2
 norm of the difference between the reference solution and 

the solution obtained with the prescribed NT and NM , and ||𝑋𝑟𝑒𝑓||
2 is the L

2
 norm of the 

reference solution. The solutions have been evaluated on the same grid points as used for 

FFT in Section 2.4. The L
2
 norm of a matrix A with size 𝑚 × 𝑛 is equal to its largest 
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singular value, i.e. ||𝑨||2 = 𝑚𝑎𝑥(𝑆𝑉𝐷(𝑨)). The evaluation of SVD is discussed later in 

this presentation. 𝐸𝑟1 measures the accuracy of determination of the velocity field and is 

based on the x-velocity component as this is a stricter error measure. This is so because 

the numerical solution is carried out for the stream function and the x-velocity component 

is defined as the derivative of the stream function which results in a larger absolute error. 

𝐸𝑟2 measures the accuracy of determination of the temperature field. As the exact 

reference solution is not available, the reference solution has been determined 

numerically using using 𝑁𝑇 = 80 Chebyshev polynomials and 𝑁𝑀 = 40 Fourier modes. 

The errors of such solutions are below machine level and, thus, the exact solutions and 

the numerical constructed reference solutions are the same within the double precision 

accuracy used in the tests. To test error variation as a function of 𝑁𝑇, a large number of 

Fourier modes (NM = 30) is used in order to eliminate the error associated with the x-

discretization. Results displayed in Fig.2.4 clearly demonstrate the exponential reduction 

of the error when the number of Chebyshev polynomials 𝑁𝑇 increases which confirms the 

spectral convergence of the y-discretization. To test error variations as a function of 𝑁𝑀, a 

large number of Chebyshev polynomials (𝑁𝑇 = 80) has been used in order to eliminate 

error associated with the y-discretization. Results displayed in Fig.2.5 clearly demonstrate 

the exponential reduction of the error when the number of Fourier modes 𝑁𝑀 increases 

which confirms the spectral convergence of the x-discretization. 

(A) (B) 
  

Figure 2.4: Variations of the errors 𝐸𝑟1 (Fig. 2.4A) and 𝐸𝑟2 (Fig. 2.4B) as functions of the 

number of Chebyshev polynomials 𝑁𝑇 used in the computations for  = 2, 𝑅𝑒 = 1, Rauni = 0, 

𝑃𝑟 = 0.71, 𝛺𝑇𝐿 = 𝜋 2⁄ , 𝛺𝑇𝑈 = π/2, 𝛺𝐶 = 0, 𝑦𝑡 = 𝑦𝑏 = 𝑦𝑡,𝑏, 𝑅𝑎𝑝,𝑈 = 𝑅𝑎𝑝,𝐿 = 𝑅𝑎𝑝. 
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(A) (B) 
  

Figure 2.5: Variations of the errors 𝐸𝑟1 (Fig. 2.5A) and 𝐸𝑟2 (Fig. 2.5B) as functions of the 

number of Fourier modes NM used in the computations for  = 2, 𝑅𝑒 = 1, 𝑅𝑎𝑢𝑛𝑖 = 0, 𝑃𝑟 =
0.71, 𝛺𝑇𝐿 = 𝜋 2⁄ , 𝛺𝑇𝑈 = 𝜋 2⁄ , 𝛺𝐶 = 0, 𝑦𝑡,𝑏 = 𝑦𝑏 = 𝑦𝑡, 𝑅𝑎𝑝 = 𝑅𝑎𝑝,𝑈 = 𝑅𝑎𝑝,𝐿. 

 

The convergence of the Fourier expansions can be assessed by looking at the magnitudes 

of the modal functions 𝐷𝛷(𝑛) and ∅(𝑛) which can be measured using Chebyshev norms 

defined as  

‖𝐷𝜑(𝑛)‖
𝜔

= {∫ 𝐷𝜑(𝑛)(𝑦̂) ∙ 𝐷𝜑(𝑛)∗(𝑦̂) ∙ 𝜔(𝑦̂) ∙ 𝑑𝑦̂
1

−1
}
1 2⁄

, 
(2.7.2a) 

‖∅(𝑛)‖
𝜔

= {∫ ∅(𝑛)(𝑦̂) ∙ ∅(𝑛)∗(𝑦̂) ∙ 𝜔(𝑦̂) ∙ 𝑑𝑦̂
1

−1
}
1 2⁄

, 
(2.7.2b) 

where 𝜔 = 1 √1 − 𝑦̂2⁄  and the superscript n corresponds to the mode number. All tests 

have been carried out using a large number of Chebyshev polynomials (𝑁𝑇  =  80) in 

order to reduce error associated with the y-discretization below the machine level. Results 

displayed in Fig. 2.6 demonstrate the exponential decrease of both norms with the Fourier 

mode number n which confirms the spectral convergence of the x-discretization. 
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(A) (B) 
  

Figure 2.6: Variations of the Chebyshev norms of 𝐷𝜑(𝑛) (Fig.2.6A) and ∅(𝑛) (Fig.2.6B) as 

functions of the Fourier mode number n for  = 2, 𝑅𝑒 = 1, 𝑅𝑎𝑢𝑛𝑖 = 0,  𝑃𝑟 = 0.71, 𝛺𝑇𝐿 = 𝜋 2⁄ , 

𝛺𝑇𝑈 = 𝜋 2⁄  , 𝛺𝐶 = 0,  𝑁𝑇 = 80, 𝑁𝑀 = 25.  

 

The overall accuracy of the IBC method is dominated by the accuracy in the enforcement 

of boundary conditions. Conditions (2.2.7) state that  𝑢(𝑦
𝐿
(𝑥)), 𝑢(𝑦

𝑈
(𝑥)), 𝑣(𝑦

𝐿
(𝑥)), 

𝑣(𝑦
𝑈
(𝑥)), 𝜃(𝑦

𝐿
(𝑥)) − 𝜃𝐿(𝑥),  𝜃(𝑦

𝑈
(𝑥)) − 𝜃𝑈(𝑥) are to be zero along the plates. 

Accordingly, their values define boundary errors of the form 𝑢𝐿𝑒 = 𝑢(𝑦
𝐿
(𝑥)), 𝑢𝑈𝑒 =

𝑢(𝑦
𝑈
(𝑥)), 𝑣𝐿𝑒 = 𝑣(𝑦

𝐿
(𝑥)), 𝑣𝑈𝑒 = 𝑣(𝑦

𝑈
(𝑥)), 𝜃𝐿𝑒 = 𝜃(𝑦

𝐿
(𝑥)) − 𝜃𝐿(𝑥),  𝜃𝑈𝑒 =

𝜃(𝑦
𝑈
(𝑥)) − 𝜃𝑈(𝑥) which provide a means for assessing the error of the whole method. It 

is convenient to use the 𝐿∞ norms defined for the lower plate 

 

‖𝑢𝐿𝑒‖∞ = 𝑠𝑢𝑝 |𝑢(𝑥, 𝑦𝐿)|,                          0 ≤ 𝑥 ≤ 𝜆, (2.7.3a) 

‖𝜃𝐿𝑒‖∞ = 𝑠𝑢𝑝|𝜃(𝑥, 𝑦𝐿) − 𝜃𝐿(𝑥)|,           0 ≤ 𝑥 ≤ 𝜆, (2.7.3b) 

 

as an explicit measure of this error. Similar norms for the upper plate can be easily 

introduced. Results displayed in Fig.2.7 demonstrate that both norms decrease 

exponentially as the number of Fourier modes 𝑁𝑀 used in the computations increase and 

this further demonstrates the spectral convergence of the algorithm. 
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Figure 2.7: Variations of ‖𝑢𝐿𝑒‖∞ and ‖𝜃𝐿𝑒‖∞ as functions of the number of Fourier modes 𝑁𝑀 

used in the computations for  = 2, 𝑅𝑒 = 1, 𝑅𝑎𝑢𝑛𝑖 = 0, 𝑃𝑟 = 0.71, 𝛺𝑇𝐿 = 𝜋 2⁄ , 𝛺𝑇𝑈 = 𝜋 2⁄ , 

𝛺𝐶 = 0, NT =80. Case A: 𝑅𝑎𝑝,𝑈 = 𝑅𝑎𝑝,𝐿 = 100, 𝑦𝑡 = 𝑦𝑏 = 0.02; Case B:  𝑅𝑎𝑝,𝑈 = 𝑅𝑎𝑝,𝐿 =

500, 𝑦𝑡 = 𝑦𝑏 = 0.02; Case C:  𝑅𝑎𝑝,𝑈 = 𝑅𝑎𝑝,𝐿 = 1000, 𝑦𝑡 = 𝑦𝑏 = 0.05. 

 

 

Distributions of 𝑢𝐿𝑒(𝑥) and 𝜃𝐿𝑒(𝑥) along the heated plate provide further information 

about the properties of the method. Typical distributions shown in Fig.2.8 demonstrate 

that the locations of the maximum errors coincide with the largest channel opening. 

These errors are generated by truncating the Fourier expansions and, thus, they consist of 

higher Fourier modes. As the modal functions for the higher Fourier modes have large 

amplitudes close to the edge of the computational domain, the truncations of the Fourier 

expansions have a greater effect in the valley position than in the crest position. The 

Fourier spectra of 𝑢𝐿𝑒(𝑥) and 𝜃𝐿𝑒(𝑥) are defined as  

 

𝑢𝐿𝑒(𝑥) = ∑ 𝑈𝐿𝑒
(𝑛)𝑒𝑖𝑛𝛼𝑥∞

𝑛=−∞ , (2.7.5a) 

𝜃𝐿𝑒(𝑥) = ∑ 𝜃𝐿𝑒
(𝑛)𝑒𝑖𝑛𝛼𝑥∞

𝑛=−∞ , (2.7.5b) 

 

and their distributions are shown in Fig.2.9. These spectra have no components for n < 

NM which is consistent with the construction of boundary relations described in Section 

2.3.2. They consist entirely of higher modes discarded in the solution process. 

 



38 
 

 
 

 

Figure 2.8: Distributions of the boundary errors 𝑢𝐿𝑒(𝑥) and 𝜃𝐿𝑒(𝑥) along the lower plate for 

 = 5, 𝑅𝑒 = 5, 𝑦𝑡 = 𝑦𝑏 = 0.05, 𝑃𝑟 = 0.71, 𝑅𝑎𝑝,𝑈 = 𝑅𝑎𝑝,𝐿 = 500, 𝑅𝑎𝑢𝑛𝑖 = 0, 𝛺𝑇𝐿 = 0, 

𝛺𝑇𝑈 = 0, 𝛺𝐶 = 0, 𝑁𝑇 = 50, 𝑁𝑀 = 20. Thick solid line illustrates the geometry of the plate. 

 

(A) (B) 
  

Figure 2.9: Fourier spectra of the error in the enforcement of the boundary conditions for 𝑢 and  

along the lower plate for  = 5, 𝑦𝑡 = 𝑦𝑏 = 0.05, 𝑅𝑎𝑝,𝑈 = 𝑅𝑎𝑝,𝐿 = 500, 𝑅𝑎𝑢𝑛𝑖 = 0,  𝑃𝑟 =

0.71, 𝑅𝑒 = 5, 𝑃𝑟 = 0.71, 𝛺𝑇𝐿 = 0, 𝛺𝑇𝑈 = 0, 𝛺𝐶 = 0, 𝑁𝑀 = 20, 𝑁𝑇 = 50. The reader may note 

the absence of the first 20 modes. 

 

We shall now start discussing effects of various physical parameters present in the 

problem on the absolute accuracy of the numerical solution. Variations of the boundary 

errors as functions of the groove geometry are illustrated in Fig.2.10. The errors remain at 

the machine level as long as 𝑦𝑡,𝑏 and 𝛼 remain below certain critical thresholds. When 

either 𝑦𝑡,𝑏 or 𝛼 increases beyond any of these thresholds, the error starts to increase 

rapidly. While the error increase associated with an increase of the groove amplitude is 

rather obvious and does not require further discussion, error changes associated with 

variations of the groove wave number require explanation. The velocity and temperature 
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field displayed in Fig.2.11 demonstrate that a large change in the flow topology takes 

place as  increases. The convective motion occurs over the whole domain for  = 2 (see 

Fig.2.11A) while it is confined to a thin boundary layer attached to the corrugated plate 

for  = 15 (see Fig.2.11B). The thickness of this layer is of the same order as the groove 

amplitude and this leads to the error increase. The error increase for small  is related to 

the fact that a large number of Fourier modes is required in order to resolve fields with 

long wavelength (Asgarian et al.). The geometrical thresholds leading to the error 

increase can be expanded by increasing the number of Fourier modes and Chebyshev 

polynomials used in the computations. One may need to use an excessively large 𝑁𝑀 and 

𝑁𝑇 in order to significantly increase these thresholds and this places limitations on use of 

the algorithm for grooves of large amplitudes and short wavelengths. An over-determined 

formulation discussed in Section 2.8 provides a more efficient alternative. 

 

(A) (B) 
  

Figure 2.10: Variations of ‖𝑢𝐿𝑒‖∞ and ‖𝜃𝐿𝑒‖∞ as functions of the groove wave number   for 

𝑦𝑡 = 𝑦𝑏 = 0.02 (Fig. 2.10A) and as functions of the corrugation amplitude 𝑦𝑏,𝑡 = 𝑦𝑏 = 𝑦𝑡 for 

 = 2 (Fig. 2.10B) for 𝑅𝑎𝑝,𝑈 = 𝑅𝑎𝑝,𝐿 = 1000, 𝑅𝑎𝑢𝑛𝑖 = 0, 𝑅𝑒 = 1, 𝑃𝑟 = 0.71, 𝛺𝑇𝐿 = 𝜋/2, 

𝛺𝑇𝑈 = 𝜋/2, 𝛺𝐶 = 0, 𝑁𝑇 = 80. 
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(A) (B) 
  

Figure 2.11:  Flow and temperature fields for 𝑅𝑒 = 1, 𝑃𝑟 = 0.71, 𝛺𝑇𝐿 = 𝜋 2⁄ , 𝛺𝑇𝑈 = 𝜋 2⁄ , 

𝛺𝐶 = 0, 𝑦𝑡 = 𝑦𝑏 = 0.02, 𝑅𝑎𝑢𝑛𝑖 = 0, 𝑅𝑎𝑝,𝑈 = 𝑅𝑎𝑝,𝐿 = 1000 for  = 2 (Fig.2.11A) and  = 15 

(Fig.2.11B). The solid lines identify streamlines and the dashed (dashed-dotted) lines identify the 

positive (negative) isotherms. Stream function has been normalized with its maximum values, i.e. 

||𝑚𝑎𝑥 =  6.45 for  = 2 and ||𝑚𝑎𝑥  =  1.33 for  = 15. Temperature has been normalized 

with 𝑚𝑎𝑥  =  500.   

 

The changes of the boundary errors as functions of the Reynolds number are illustrated in 

Fig.2.12. The errors are insensitive to variations of Re as along as Re remains small 

enough, i.e. Re < 5. An increase of Re beyond this threshold leads to a significant error 

reduction but further increase to Re >100 results in a slow increase of this error. The 

changes in the magnitude of the error are related to changes in the flow topology and the 

role of nonlinear terms in the momentum equation. The topology is quite complex for 

small Re (see Fig.2.13A) and this causes large absolute error. Increase of Re results in a 

simplified topology (see Fig.2.13B) and reduction of the absolute error. Further increase 

of Re leads to a still simpler topology (see Fig.2.13C) but increases the role of nonlinear 

terms resulting in an increase of the errors. The magnitude of these errors can be 

controlled by increasing the number of Fourier modes used in the computations, as 

demonstrated in Fig.2.12. 
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Figure 2.12: Variations of ‖𝑢𝐿𝑒‖∞ and ‖𝜃𝐿𝑒‖∞ as functions of the Reynolds number Re for 

 = 2, 𝑦𝑡 = 𝑦𝑏 = 0.02,  𝑅𝑎𝑝,𝑈 = 𝑅𝑎𝑝,𝐿 = 500, 𝑅𝑎𝑢𝑛𝑖 = 0, 𝑃𝑟 = 0.71, 𝛺𝑇𝐿 = 𝜋/2, 𝛺𝑇𝑈 = 𝜋/2, 

𝛺𝐶 = 0, 𝑁𝑇 = 80. Calculations have been carried out using different number of Fourier modes 

𝑁𝑀. 

 

(A) (B) (C) 
   

Figure 2.13: Flow and temperature fields for  = 2, 𝑃𝑟 = 0.71, 𝛺𝑇𝐿 = 𝜋 2⁄ , 𝛺𝑇𝑈 = 𝜋 2⁄ , 

𝛺𝐶 = 0, 𝑦𝑡 = 𝑦𝑏 = 0.05, 𝑅𝑎𝑢𝑛𝑖 = 0, 𝑅𝑎𝑝,𝑈 = 𝑅𝑎𝑝,𝐿 = 500 for Re =1 (Fig. 2.13A), Re = 20 

(Fig. 2.13B) and Re = 1000 (Fig. 2.13C). Dashed (dashed-dotted) lines correspond to positive 

(negative) isotherms. The stream function has been normalized with ||𝑚𝑎𝑥  =  4.24 for 𝑅𝑒 = 1, 

with ||𝑚𝑎𝑥 =  26.67 for 𝑅𝑒 = 20, and with ||𝑚𝑎𝑥  =  1333.33 for 𝑅𝑒 = 1000. Temperature 

has been normalized with 𝑚𝑎𝑥  =  250.    

 

Variations of the boundary errors as functions of Rayleigh numbers are illustrated in 

Fig.2.14. The errors remain at the machine level for small enough 𝑅𝑎𝑝,𝑈 and 𝑅𝑎𝑝,𝐿 but 

begin to increase exponentially when the Rayleigh numbers becomes larger than ~300. 

This increase is associated with an increase of the strength of the nonlinear terms in the 

energy equation and increase of the complexity of the resulting flow and temperature 

fields as illustrated in Fig.2.15.  The magnitude of the error can be reduced through the 

use of more Fourier modes as shown in Fig.2.14. The role of 𝑅𝑎𝑢𝑛𝑖 is illustrated in 
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Fig.2.16. An increase of 𝑅𝑎𝑢𝑛𝑖 increases the intensity of the natural convection 

component and, thus, increases the importance of the nonlinear terms in the energy 

equation and increases the complexity of the velocity and temperature fields as illustrated 

in Fig.2.17. Negative values of 𝑅𝑎𝑢𝑛𝑖 reduce the intensity of convection and reduce the 

complexity of the velocity and temperature fields and, as a result, the magnitude of the 

error decreases. 
 

Figure 2.14: Variations of ‖𝑢𝐿𝑒‖∞ and ‖𝜃𝐿𝑒‖∞ as a function of the Rayleigh number 𝑅𝑎𝑝,𝑈 =

𝑅𝑎𝑝,𝐿 = 𝑅𝑎𝑝 for  = 2 , 𝑦𝑡 = 𝑦𝑏 = 0.02, 𝑅𝑎𝑢𝑛𝑖 = 0, 𝑅𝑒 = 1, 𝑃𝑟 = 0.71, 𝛺𝑇𝐿 = 𝜋/2, 𝛺𝑇𝑈 =

𝜋/2, 𝛺𝐶 = 0, 𝑁𝑇 = 80. Calculations have been carried out using different number of Fourier 

modes 𝑁𝑀. 

 

(A) (B) 
  

Figure 2.15: Flow and temperature fields for  = 2, Re =1, 𝑃𝑟 = 0.71, 𝛺𝑇𝐿 = 𝜋 2⁄ , 𝛺𝑇𝑈 = 𝜋 2⁄ , 

𝛺𝐶 = 0, 𝑦𝑡 = 𝑦𝑏 = 0.02, 𝑅𝑎𝑢𝑛𝑖 = 0 for 𝑅𝑎𝑝,𝑈 = 𝑅𝑎𝑝,𝐿 = 100 (Fig. 2.15A) for 𝑅𝑎𝑝,𝑈 =

 𝑅𝑎𝑝,𝐿 = 1000 (Fig. 2.15B). The stream function and temperature have been normalized with 

||𝑚𝑎𝑥  =  1.68 and 𝑚𝑎𝑥  =  50 for  𝑅𝑎𝑝,𝑈 = 𝑅𝑎𝑝,𝐿 = 100, and with ||𝑚𝑎𝑥 =  6.45, and 

𝑚𝑎𝑥  =  500 for 𝑅𝑎𝑝,𝑈 = 𝑅𝑎𝑝,𝐿 = 1000. The dashed (dashed-dotted) lines correspond to the 

positive (negative) isotherms.  
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Figure 2.16: Variations of  ‖𝑢𝐿𝑒‖∞ and ‖𝜃𝐿𝑒‖∞ as functions of the uniform Rayleigh 

number 𝑅𝑎𝑢𝑛𝑖 for  = 2 , 𝑅𝑎𝑝,𝑈 = 𝑅𝑎𝑝,𝐿 = 1000, 𝑦𝑡 = 𝑦𝑏 = 0.02, 𝑅𝑒 = 1, 𝑃𝑟 = 0.71, 

𝛺𝑇𝐿 = 𝜋/2, 𝛺𝑇𝑈 = 𝜋/2, 𝛺𝐶 = 0, 𝑁𝑇 = 80.  

 

(A) (B) (C) 
   

Figure 2.17: Flow and temperature fields for  = 2, Re =1, 𝑃𝑟 = 0.71, 𝛺𝑇𝐿 = 𝜋 2⁄ , 𝛺𝑇𝑈 = 𝜋 2⁄ , 

𝛺𝐶 = 0, 𝑦𝑡 = 𝑦𝑏 = 0.02, 𝑅𝑎𝑝,𝑈 = 𝑅𝑎𝑝,𝐿 = 1000 for 𝑅𝑎𝑢𝑛𝑖 = −500 (Fig.2.17A), 𝑅𝑎𝑢𝑛𝑖 = 0 

(Fig.2.17B) and 𝑅𝑎𝑢𝑛𝑖 = 500 (Fig.2.17C). The stream function and temperature have been 

normalized with ||𝑚𝑎𝑥  =  3.64 and 𝑚𝑎𝑥  =  500 for 𝑅𝑎𝑢𝑛𝑖 = −500, with ||𝑚𝑎𝑥 =  6.45 and 

𝑚𝑎𝑥  =  500 for 𝑅𝑎𝑢𝑛𝑖 = 0, and with ||𝑚𝑎𝑥  =  9.59 and 𝑚𝑎𝑥  =  750 for 𝑅𝑎𝑢𝑛𝑖 = 500. The 

dashed (dashed-dotted) lines correspond to the positive (negative) isotherms. 
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2.8. Over-determined formulation 

The formulation described in Section 2.3 uses the same number of Fourier modes for the 

field equations and for the boundary relations. We shall refer to this formulation as the 

“classical” formulation. Results presented in Section 2.7 demonstrate that increase of the 

complexity of the geometry results in an increase of the boundary errors. The reader may 

note that the algorithm relies on two types of Fourier expansions, one for the field 

variables and one for the boundary relations. The field equations are always the same 

regardless of the channel geometry and, thus, the convergence rates of the relevant 

Fourier expansions do not pose problems. On the other hand, the boundary relations 

directly account for the plate geometry and the rate of convergence of the relevant 

Fourier expansions decreases as the geometry becomes more extreme. This suggests the 

use of more Fourier terms for the boundary relations and, as a result, one ends up with an 

over-determined problem formulation (Husain et al. 2009). 

 

We shall describe the over-determined formulation starting with the energy equation. As 

shown in Section 2.3 (see Eq.2.3.23), discretization of each boundary condition results in 

the construction of 2𝑁𝑓 + 1 boundary relations. Formulation described in Section 2.3.1 

uses the leading 2𝑁𝑀 + 1 of these relations for each boundary condition. The 

overdetermined formulation uses 2𝑁𝑀,𝐵 + 1 of such relations, where 𝑁𝑀 ≤ 𝑁𝑀,𝐵 ≤ 𝑁𝑓, 

resulting in 2(2𝑁𝑀,𝐵 + 1) boundary relations for each modal function. The system 

reduces to the classical form for  𝑁𝑀,𝐵 = 𝑁𝑀.  

 

The over-determined system can be written as 

 

𝑳𝟑,𝑶𝑻 = 𝑹𝟐,𝑶(𝑽, 𝑻).  (2.8.1) 

 

In the above, 𝑳𝟑,𝑶 is the coefficient matrix of dimension 𝑞 × 𝑝 where 𝑞 = (𝑁𝑇 −

2) (2𝑁𝑀 + 1) + 2 (2𝑁𝑀,𝐵 + 1), 𝑝 = 𝑁𝑇(2𝑁𝑀 + 1), 𝑻 is the vector of unknowns of 

dimension 𝑝 and 𝑹𝟐,𝑶 is the right hand side vector of dimension 𝑞. Figure 2.16a 

illustrates the structure of 𝑳𝟑,𝑶 where all boundary relations have been placed at the 
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bottom of the matrix. Entries corresponding to the field equations are contained in 𝑯𝟑,𝑶 

which has a block-diagonal structure with each block of the size (𝑁𝑇 − 2) × 𝑁𝑇. The 

boundary relations are contained in 𝑲𝟑,𝐎 which has the size 𝑟 × 𝑝 where 𝑟 =

2 (2𝑁𝑀,𝐵 + 1), and has to be treated as a full matrix. System (2.8.1) can be solved only 

in the least square sense. The Singular Value Decomposition (SVD) method has been 

used in the present work. The solution can be written as 

 

𝑻 = 𝑳𝟑,𝑶
+  𝑹𝟐,𝑶, (2.8.2) 

 

where 𝑳𝟑,𝑶
+  represents the pseudoinverse of 𝑳𝟑,𝑶 to be evaluated using the Singular Value 

Decomposition (SVD). If 𝑳𝟑,𝑶 is a 𝑚 × 𝑛 matrix, the singular value theorem states that 

there exists a factorization of 𝑳𝟑,𝑶, called SVD, of the form 

 

𝑳𝟑,𝑶 = 𝑼𝒁𝑾∗, (2.8.3) 

 

where U is a m × m unitary matrix, 𝑾 is a n × n unitary matrix, 𝑾∗ is the conjugate 

transpose of 𝑾 and 𝒁 is a m × n  matrix containing singular values of 𝑳𝟑,𝑶 placed on the 

diagonal. 𝒁 and its pseudo-inverse 𝒁+ have the form of 

 

𝒁 = (
𝒁𝟏 0
0 0

),     𝒁+ = (𝒁𝟏
−𝟏 0
0 0

), 
(2.8.4) 

 

where 𝒁1 = 𝑑𝑖𝑎𝑔(𝜎1, 𝜎2, 𝜎3, … , 𝜎ℎ) are singular values of 𝑳𝟑,𝑶 ordered in a descending 

order. The pseudo inverse of 𝑳𝟑,𝑶 is of the form 

 

𝑳𝟑,𝑶
+ = 𝑾𝒁+𝑼∗, (2.8.5) 

A more accurate and more efficient solution is obtained by solving part of the system 

associated with the field equations exactly and part associated with the boundary relations 

in the least square sense (Husain & Floryan 2014). Construction of this solver begins 

with the extraction of the largest possible square matrix 𝑨3,𝑂 from 𝑯3,𝑂. This is done by 
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moving the unknown Chebyshev coefficients corresponding to the two lowest 

polynomials in each modal equation to the end of the vector of unknowns. The resulting 

matrix structure is illustrated in Fig.2.16B. The square matrix 𝑨𝟑,𝑶 of size (𝑞 − 𝑟) × (𝑞 −

𝑟) has a block diagonal structure with each block of size (𝑁𝑇 − 2) × (𝑁𝑇 − 2). The 

rectangular matrix 𝑩3,𝑂 of size (𝑞 − 𝑟) × 𝑟 also has a block diagonal form with blocks of 

size (𝑁𝑇 − 2) × 2 whereas the full rectangular matrix 𝑪𝟑,𝑶 has size 𝑟 × (𝑞 − 𝑟) and the 

full square matrix 𝑫3,𝑂 has size 𝑟 × 𝑟. Matrices 𝑩3,𝑂 and 𝑫3,𝑂 contain coefficients 

corresponding to G∅̂0
(n)

, G∅̂1
(n)

 while information associated with the remaining 

coefficients is stored in matrices A3,O and 𝑪3,𝑂. The vector of unknowns consists of two 

parts with 𝑻𝟏 containing 𝐺∅̂𝑘
(𝑛)

 for 𝑛 ∈ 〈−𝑁𝑀, 𝑁𝑀〉, 𝑘 ∈ 〈2, 𝑁𝑇 − 1〉, and T2 containing 

𝐺∅̂𝑘
(𝑛)

  for 𝑛 ∈ 〈−𝑁𝑀, 𝑁𝑀〉, 𝑘 ∈ 〈0,1〉. Equation (2.8.1) can now be written as 

 

𝑨3,𝑂𝑻1 + 𝑩3,𝑂𝑻2 = 𝑹21,𝑂,      𝑪3,𝑂𝑻1 + 𝑫3,𝑂𝑻2 = 𝑹22,𝑂, (2.8.6) 

 

where 𝑹21,𝑂 contains elements of 𝑹2,𝑂 corresponding to 𝑛 ∈ 〈−𝑁𝑀, 𝑁𝑀〉, 𝑘 ∈ 〈2, 𝑁𝑇 − 1〉 

and 𝑹22,𝑂 contains elements of 𝑹2,𝑂 corresponding to 𝑛 ∈ 〈−𝑁𝑀, 𝑁𝑀〉, 𝑘 ∈ 〈0,1〉. The 

solution of (8.6) can be written in the form 

 

𝑻2 = (𝑫3,𝑂 − 𝑪3,𝑂𝑨3,𝑂
−1 𝑩3,𝑂)

+
[𝑹22,𝑂 − 𝑪3,𝑂𝑨3,𝑂

−1 𝑹21,𝑂],     

𝑻1 = 𝑨3,𝑂
−1 [𝑹21,𝑂 − 𝑩3,𝑂𝑻2], 

 

(2.8.7) 

 

One needs to store only the diagonal blocks of 𝑨3,𝑂 and 𝑩3,𝑂. Computational savings 

result from the construction of  𝑨3,𝑂
−1  , 𝑪𝟑,𝑶𝑨3,𝑂

−1 , 𝑪3,𝑂𝑨3,𝑂
−1 𝑩3,𝑂, 𝑨3,𝑂

−1 𝑹21,𝑂, 𝑨3,𝑂
−1 𝑩3,𝑂 block 

by block rather than working with the complete matrices. 
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(A) (B) 
  

Figure 2.18: Structure of the coefficient matrix 𝑳𝟑,𝑶  for the over-determined formulation for the 

energy equation with 𝑁𝑇 = 15, 𝑁𝑀 = 3, 𝑁𝑀,𝐵 = 6 . Black dotes identifies the non-zero elements. 

Fig.2.18A displays the initial form of the matrix with all boundary relations placed at its bottom 

while Fig.2.18B shows the form after extractions of the largest diagonal matrix 𝑨𝟑,𝑶 from 𝑳𝟑,𝑶. 

 

The solver for the momentum equation is constructed in a manner similar to the energy 

equation. The momentum equation can be written as 

 

𝑳𝟏,𝑶𝑽 = −𝑳𝟐,𝑶𝑻 + 𝑹𝟏,𝑶(𝑽, 𝑻). (2.8.8) 

 

In the above, 𝑳𝟏,𝑶  is the coefficient matrix of dimension 𝑞́ × 𝑝́ where 𝑞́ = (𝑁𝑇 −

4) (2𝑁𝑀 + 1) + 4 (2𝑁𝑀,𝐵 + 1),  𝑝́ = 𝑁𝑇(2𝑁𝑀 + 1), 𝑽 is the vector of unknowns of 

dimension 𝑝́ and [−𝑳𝟐,𝑶 𝑻 + 𝑹𝟏,𝑶] is the right-hand-side vector of dimension 𝑞́. Figure 

2.17a illustrates the structure of 𝑳𝟏,𝑶. Entries corresponding to the field equations are 

contained in 𝑯𝟏,𝑶 which has a block-diagonal structure with each block of the size 

(𝑁𝑇 − 4) × 𝑁𝑇. The boundary relations are contained in 𝑲𝟏,𝐎 which has the size  𝑟́ × 𝑝́ 

where 𝑟 = 4 (2𝑁𝑀,𝐵 + 1), and has to be treated as the full matrix. System (2.8.8) can be 

solved similar to system (2.8.1), i.e. 

 

𝑽 = 𝑳𝟏,𝑶
+  (−𝑳𝟐,𝑶𝑻 + 𝑹𝟏,𝑶), (2.8.9) 

 

where 𝑳𝟏,𝑶
+  represents the pseudoinverse of 𝑳𝟏,𝑶. Construction of the efficient solver 

begins with the extraction of the largest possible square matrix 𝑨1,𝑂 from 𝑯1,𝑂. This is 
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done by moving the unknown Chebyshev coefficients corresponding to the four lowest 

polynomials in each modal equation to the end of the vector of unknowns. The resulting 

matrix structure is shown in Fig.2.17b. The square matrix 𝑨𝟏,𝑶 of size (𝑞́ − 𝑟́) × (𝑞́ − 𝑟́) 

has a block diagonal structure with each block of size (𝑁𝑇 − 4) × (𝑁𝑇 − 4). The 

rectangular matrix 𝑩1,𝑂 of size (𝑞́ − 𝑟́) × 𝑟́ also has a block diagonal form with blocks of 

size (𝑁𝑇 − 4) × 4 whereas the full rectangular matrix 𝑪𝟏,𝑶 has size 𝑟́ × (𝑞́ − 𝑟́) and the 

full square matrix 𝑫1,𝑂 has size 𝑟́ × 𝑟́. Matrices 𝑩1,𝑂 and 𝑫1,𝑂 contain coefficients 

corresponding to G∅̂0
(n)

, G∅̂1
(n)

, G∅̂2
(n)

, G∅̂3
(n)

 while information associated with the 

remaining coefficients is stored in matrices 𝑨𝟏,𝑶 and 𝑪𝟏,𝑶. The vector of unknowns 

consists of two parts with 𝑻𝟏 containing 𝐺∅̂𝑘
(𝑛)

 for 𝑛 ∈ 〈−𝑁𝑀, 𝑁𝑀〉, 𝑘 ∈ 〈4, 𝑁𝑇 − 1〉 and 

𝑻2 containing 𝐺∅̂𝑘
(𝑛)

  for 𝑛 ∈ 〈−𝑁𝑀, 𝑁𝑀〉, 𝑘 ∈ 〈0,3〉. Equation (2.8.9) can now be written 

as 

 

𝑨1,𝑂𝑻1 + 𝑩1,𝑂𝑻2 = 𝑹11,𝑂,      𝑪1,𝑂𝑻1 + 𝑫1,𝑂𝑻2 = 𝑹12,𝑂, (2.8.10) 

 

where 𝑹11,𝑂 contains elements of (−𝑳𝟐,𝑶𝑻 + 𝑹𝟏,𝑶) corresponding to 𝑛 ∈ 〈−𝑁𝑀, 𝑁𝑀〉, 𝑘 ∈

〈4, 𝑁𝑇 − 1〉 and 𝑹12,𝑂 contains elements of (−𝑳𝟐,𝑶𝑻 + 𝑹𝟏,𝑶) corresponding to 𝑛 ∈

〈−𝑁𝑀, 𝑁𝑀〉, 𝑘 ∈ 〈0,3〉. The solution of (2.8.10) can be written in the form 

 

𝑻2 = (𝑫1,𝑂 − 𝑪1,𝑂𝑨1,𝑂
−1 𝑩1,𝑂)

+
[𝑹12,𝑂 − 𝑪1,𝑂𝑨1,𝑂

−1 𝑹11,𝑂],     

𝑻1 = 𝑨1,𝑂
−1 [𝑹11,𝑂 − 𝑩1,𝑂𝑻2], 

 

(2.8.11) 

 

One needs to store only the diagonal blocks of matrices 𝑨1,𝑂 and 𝑩1,𝑂. Computational 

savings result from the construction of  𝑨1,𝑂
−1  , 𝑪𝟏,𝑶𝑨1,𝑂

−1 , 𝑪1,𝑂𝑨1,𝑂
−1 𝑩1,𝑂 , 𝑨1,𝑂

−1 𝑹11,𝑂, 𝑨1,𝑂
−1 𝑩1,𝑂 

block by block rather than working with complete matrices. 
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(A) (B) 
  

Figure 2.19: Structure of the coefficient matrix 𝑳𝟏,𝑶  for the over-determined formulation for the 

momentum equation with 𝑁𝑇 = 15, 𝑁𝑀 = 3, and 𝑁𝑀,𝐵 = 6. Black dotes identifies the non-zero 

elements. Fig. 2.19A displays the initial form of the matrix after placing all boundary relations at 

its bottom while Fig. 2.19B shows its form after extractions of the largest diagonal matrix 𝑨𝟏,𝑶 

from 𝑳𝟏,𝑶. 

 

Figure 2.20 displays the Fourier spectra of boundary errors 𝑢𝐿𝑒
(𝑛) and 𝜃𝐿𝑒

(𝑛)
 for the same 

condition as in Fig.2.8. The errors are distributed over several Fourier modes including 

modes with n < 𝑁𝑀 which is consistent with the least square solution method. Results 

presented in Fig.2.21A demonstrate that the errors of the over-determined method 

increase as the Rayleigh number increases but, at the same time, the error for the velocity 

field is always smaller by an order of magnitude than the error for the classical 

formulation while the error of the temperature field remains the same as in the classical 

formulation. Results displayed in Fig.2.21B demonstrate that the errors increase as the 

groove amplitude increases but, at the same time, the error of the overdetermined 

formulation for the velocity field remains by an order of magnitude smaller than the error 

for the classical formulation. This extends the applicability of the IBC method to 

amplitudes by about 40% larger than those for which the classical formulation provides 

an acceptable accuracy. Use of the overdetermined formulation reduces the temperature 

error by a factor of ~2 for large enough groove amplitudes. 

 

Data presented in Fig.2.21 demonstrate that the error decreases when the number of 

additional Fourier modes used in the boundary relations increases. There is however a 
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limit to this decrease as any further increase in the number of Fourier modes does not 

affect these errors. The number of Fourier modes that produces the largest error decrease 

is referred to as the optimum number and it is approximately equal to half of 𝑁𝑀. Use of 

an excessively large number of Fourier modes is counterproductive as it does not 

improve the accuracy of the results.  

 

Results presented in Fig.2.21 suggest that the use of the overdetermined formulation for 

the temperature boundary conditions is not recommended. Data presented in Fig.2.22 

have been obtained using the classical formulation of the temperature boundary 

conditions and the overdetermined formulation of the velocity boundary conditions. The 

error distributions displayed in Figs 2.21 and 2.22 are nearly identical. Elimination of the 

overdetermined formulation for the temperature reduces size of matrix 𝑪1,0 in Fig.2.19 

resulting in a more efficient computing. 

 

(A) (B) 
  

Figure 2.20: Fourier spectra of the error in the enforcement of the boundary conditions along the 

lower plate for  = 5, 𝑦𝑡 = 𝑦𝑏 = 0.05, 𝑅𝑎𝑝,𝑈 = 𝑅𝑎𝑝,𝐿 = 500,  𝑅𝑎𝑢𝑛𝑖 = 0, 𝑃𝑟 = 0.71, 𝑅𝑒 = 5, 

𝛺𝑇𝐿 = 0, 𝛺𝑇𝑈 = 0, 𝛺𝐶 = 0, 𝑁𝑇 = 50. This test has been carried out using the overdetermined 

method with 𝑁𝑀 = 20 Fourier modes for field equations and 𝑁𝑀,𝐵 = 30 Fourier modes for the 

boundary relations. 
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(A) (B) 
  

Figure 2.21: Variations of ‖𝑢𝐿𝑒‖∞ and ‖𝜃𝐿𝑒‖∞ as functions of the Rayleigh number 𝑅𝑎𝑝 =

𝑅𝑎𝑝,𝑈 = 𝑅𝑎𝑝,𝐿  for 𝑦𝑡 = 𝑦𝑏 = 0.02 (Fig.2.21A) and as functions of the amplitude 𝑦𝑏,𝑡 = 𝑦𝑡 = 𝑦𝑏 

for 𝑅𝑎𝑝,𝑈 = 𝑅𝑎𝑝,𝐿 = 1000 (Fig.2.21B). All results have been obtained for  = 2 , 𝑅𝑒 =

1, 𝑅𝑎𝑢𝑛𝑖 = 0, 𝑃𝑟 = 0.71, 𝛺𝑇𝐿 = 𝜋/2, 𝛺𝑇𝑈 = 𝜋/2, ΩC = 0, 𝑁𝑇 = 80 using the overdetermined 

method. 

 
 

(A) (B) 
  

Figure 2.22: Variations of ‖𝑢𝐿𝑒‖∞ and ‖𝜃𝐿𝑒‖∞ as functions of the Rayleigh number 𝑅𝑎𝑝 =

𝑅𝑎𝑝,𝑈 = 𝑅𝑎𝑝,𝐿  for 𝑦𝑡 = 𝑦𝑏 = 0.02 (Fig.2.22A) and as functions of the amplitude 𝑦𝑏,𝑡 = 𝑦𝑡 = 𝑦𝑏 

for 𝑅𝑎𝑝,𝑈 = 𝑅𝑎𝑝,𝐿 = 1000 (Fig.2.22B). All results have been obtained for  = 2, 𝑅𝑒 =

1, 𝑅𝑎𝑢𝑛𝑖 = 0, 𝑃𝑟 = 0.71, 𝛺𝑇𝐿 = 𝜋/2, 𝛺𝑇𝑈 = 𝜋/2, ΩC = 0, 𝑁𝑇 = 80 using the overdetermined 

method only for the velocity boundary conditions. 
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2.9. Summary 

A gridless, spectrally accurate algorithm for analysis of convection problems in 

corrugated conduits has been developed. Boussinesq model has used to describe fluid 

properties. Field equations are expressed with Fourier expansions in stream-wise 

direction and Chebyshev expansions in the transverse direction with the gravity directed 

across the conduit. The geometric non-uniformities are treated by placing the corrugated 

conduit inside this domain and expressing the physical boundary conditions as 

constraints, i.e. using the Immersed Boundary Conditions (IBC) method. Several steps 

were taken to improve the efficiency of the algorithm. Numerous tests confirm the 

spectral accuracy of the solution. The algorithm is suitable for problems involving 

geometry optimization. 

Application of this algorithm to analysis of natural convection in a corrugated slot is 

described in the next Chapter. 
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Chapter 3 
 

Natural convection in a corrugated slot 
 

3.1. Introduction 

This Chapter presents analysis of the natural convection in a slot formed by two 

isothermal horizontal corrugated plates and is aimed at the identification of the 

fundamental features of convection resulting from the presence of geometric non-

uniformities. The analysis relies on the algorithm described in Chapter 2 simplified by 

setting, 𝑅𝑒 = 0, 𝑅𝑎𝑝𝐿 = 0, 𝑅𝑎𝑝𝑈 = 0. The schematic diagram of the flow system is 

shown in Fig 3.1. Section 3.2 describes the model problem which represent a simplified 

version of the general model problem discussed in Section 2.2. The pressure gradient 

constraint (3.2.6c) is used instead of the flow rate constraint (2.2.9) as it better represents 

conditions found in the case of natural convection. Section 3.3 discusses convection 

resulting from corrugations placed at the lower plate; Section 3.3.1 discusses convection 

associated with the long wavelength corrugations while Section 3.3.2 deals with 

convection associated with corrugations of arbitrary wavelengths. Section 3.4 describes 

convection resulting from placing corrugation at the upper plate. Section 3.5 is devoted to 

description of convection when both plates are corrugated; Section 3.5.1 discusses the 

role of the long wavelength corrugations while Section 3.5.2 describes convection 

associated with corrugations of arbitrary wavelengths. All results presented in Sections 

3.3, 3.4 and 3.5 have been determined for the Prandtl number 𝑃𝑟 =  0.71. Section 3.6 

extends the analysis to arbitrary Prandtl numbers.  Section 3.7 provides a short summary 

of the main conclusions. 

 

3.2. Problem Formulation 

Consider fluid contained in a slot formed by two horizontal corrugated plates (see 

Fig.3.1) with geometries specified at Eq. 2.2.1.  
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Figure 3.2: Schematic diagram of the flow system. 
 

We define the relative temperature as ∗  =  𝑇∗ –  𝑇𝑈
∗ which leads to the thermal boundary 

conditions of the form 

 

𝜃𝐿
∗(𝑦𝐿

∗) = 𝜃𝑆
∗,     𝜃𝑈

∗ (𝑦𝑈
∗ ) = 0 (3.2.1a,b) 

 

where 𝜃𝑆
∗ = 𝑇𝐿

∗ − 𝑇𝑈
∗. Use of the half of the mean distance between the plates ℎ∗ as the 

length scale and 𝜅∗𝜈∗ (𝑔∗𝛤∗ℎ∗3)⁄  as the temperature scale result in the following 

expressions for the temperatures 

 

𝜃𝐿(𝑦𝐿) = 𝑅𝑎,      𝜃𝑈(𝑦𝑈) = 0 (3.2.2a,b) 

 

where 𝑅𝑎 = 𝑔∗𝛤∗ℎ∗3𝜃𝑆
∗ (𝜅∗𝜈∗)⁄  is the Rayleigh number measuring the intensity of the 

heating. The field equations have the same forms as Eq. 2.2.6. 

There is no externally imposed horizontal pressure gradient and this condition can be 

expressed as 

 

 
𝜕𝑝

𝜕𝑥
|
𝑚𝑒𝑎𝑛

= 0. (3.2.3) 

 

The pressure field is normalized in such a way that 𝑝(0, 0) = 𝐶 where 𝐶 is an arbitrary 

constant. Details of this spectrally accurate algorithm can be found in Chapter 2. (Husain  

& Floryan 2010; Abtahi et al. 2016). 
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3.2.1. Evaluation of stresses 

Analysis of the system dynamics requires evaluation of forces acting on the plates. Stress 

vector 𝝈⃗⃗ 𝐿 acting on the lower plate can be expressed as  

 

𝝈⃗⃗ 𝐿 = [𝜎𝑥,𝐿 , 𝜎𝑦,𝐿] = [𝑛𝑥,𝐿 ,  𝑛𝑦,𝐿] [
𝜏𝑥𝑥 + 𝑝 𝜏𝑥𝑦

𝜏𝑦𝑥 𝜏𝑦𝑦 + 𝑝]
𝑦𝐿

, 
(3.2.4) 

 

where 

 

𝜏𝑥𝑥 = −2
𝜕𝑢

𝜕𝑥
,   𝜏𝑥𝑦 = 𝜏𝑦𝑥 = −

𝜕𝑢

𝜕𝑦
−

𝜕𝑣

𝜕𝑥
,   𝜏𝑦𝑦 = −2

𝜕𝑣

𝜕𝑦
 (3.2.5a,b,c) 

 

are the components of the shear tensor and  

 

[𝑛𝑥,𝐿 , 𝑛𝑦,𝐿] = 𝑁𝐿[−𝑦𝑏 𝑠𝑖𝑛(𝑥), −1] (3.2.6) 

 

stands for the normal unit vector pointing outwards with 𝑁𝐿 = {1 +

[𝑦𝑏 𝑠𝑖𝑛(𝑥)]2}−1/2. The x- and y-components of the stress vector have the following 

forms 

 

𝜎𝑥,𝐿 = 𝜎𝑥𝑣,𝐿 + 𝜎𝑥𝑝,𝐿 = 𝑁𝐿 [2𝑦𝑏 𝑠𝑖𝑛(𝑥)
𝜕𝑢

𝜕𝑥
|
𝑦𝐿

+ (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)|

𝑦𝐿

] −

                                          𝑁𝐿𝑦𝑏 𝑠𝑖𝑛(𝑥)𝑝|𝑦𝐿
, 

(3.2.7a) 

𝜎𝑦,𝐿 = 𝜎𝑦𝑣,𝐿 + 𝜎𝑦𝑝,𝐿 = 𝑁𝐿 [𝑦𝑏 𝑠𝑖𝑛(𝑥) (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)|

𝑦𝐿

+ 2
𝜕𝑣

𝜕𝑦
|
𝑦𝐿

] − 𝑁𝐿𝑝|𝑦𝐿
, 

(3.2.7b) 

 

where (𝜎𝑥𝑣,𝐿 , 𝜎𝑦𝑣,𝐿) and (𝜎𝑥𝑝,𝐿, 𝜎𝑦𝑝,𝐿) denote viscous and pressure contributions, 

respectively. The normal 𝜎𝑛,𝐿 and tangential 𝜎𝑡,𝐿 components can be expressed as 

 

 

 



56 
 

 
 

𝜎𝑛,𝐿 = 𝜎𝑛𝑣,𝐿 + 𝜎𝑛𝑝,𝐿 = 

                             𝑁𝐿
2 [−22𝑦𝑏

2 𝑠𝑖𝑛2(𝑥)
𝜕𝑢

𝜕𝑥
|
𝑦𝐿

−

                            2𝑦𝑏 𝑠𝑖𝑛(𝑥) (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)|

𝑦𝐿

−  2
𝜕𝑣

𝜕𝑦
|
𝑦𝐿

] + 𝑝|𝑦𝐿
, 

 

(3.2.7c) 

𝜎𝑡,𝐿 = 𝑁𝐿
2 {2𝑦𝑏  𝑠𝑖𝑛(𝑥) (

𝜕𝑢

𝜕𝑥
−

𝜕𝑣

𝜕𝑦
)|

𝑦𝐿

+ [1 − 2𝑦𝑏
2 𝑠𝑖𝑛2(𝑥)] (

𝜕𝑢

𝜕𝑦
+

            
𝜕𝑣

𝜕𝑥
)|

𝑦𝐿

}, 

(3.2.7d) 

 

where 𝜎𝑛𝑣,𝐿 and 𝜎𝑛𝑝,𝐿 denote viscous and pressure contributions to the normal 

component, respectively.  

 

3.2.2. Evaluation of heat transfer 

The heat transfer characteristics are expressed in terms of the local Nusselt number 

𝑁𝑢𝑙𝑜𝑐,𝐿 defined as 

 

𝑁𝑢𝑙𝑜𝑐,𝐿 = 𝒏⃗⃗ 𝐿 . 𝒒⃗⃗ 𝐿 = 𝑛𝑥,𝐿𝑞𝑥,𝐿 + 𝑛𝑦,𝐿𝑞𝑦,𝐿 (3.2.8) 

 

where 𝒒⃗⃗ 𝐿 = [𝑞𝑥,𝐿 , 𝑞𝑦,𝐿] = [
𝜕𝜃

𝜕𝑥
,
𝜕𝜃

𝜕𝑦
]
𝑦𝐿

 stands for the temperature gradient at the plate. The 

net heat flux leaving the plate is expressed in terms of the mean Nusselt number 

𝑁𝑢𝑎𝑣,𝐿defined as 

 

𝑁𝑢𝑎𝑣 = 𝜆−1 ∫ 𝑁𝑢𝑙𝑜𝑐,𝐿𝑁𝐿
 −1𝑑𝑥

𝜆

0
. (3.2.9) 

 

Similar relations can be developed for the upper plate and the relevant quantities are 

identified using subscript U. The reader may note that 𝑁𝑈 = {1 + [𝑦𝑡  𝑠𝑖𝑛(𝑥 +

𝛺𝐶)]2}−
1

2 in this case. 
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The reader may note that convection does not occur in the absence of the heating, i.e. (u, 

v, )  0, p  C, 𝜎𝑥𝑣,𝐿 → 0, 𝜎𝑥𝑝,𝐿  → −𝑁𝐿𝑦𝑏 𝑠𝑖𝑛(𝑥)𝐶, 𝜎𝑦𝑣,𝐿 → 0, 𝜎𝑦𝑝,𝐿  → −𝑁𝐿𝐶 

when Ra 0. Similarly, convection does not occur in a smooth heated slot, i.e. (u, v)  

0, 𝜃 →
𝑅𝑎

2
(1 − 𝑦),  𝑝 →

𝑅𝑎

2𝑃𝑟
(−

𝑦2

2
+ 𝑦) + 𝐶, 𝜎𝑥𝑣,𝐿 → 0, 𝜎𝑥𝑝,𝐿  → 0, 𝜎𝑦𝑣,𝐿 → 0, 𝜎𝑦𝑝,𝐿  →

−
3𝑅𝑎

4𝑃𝑟
+ 𝐶 when (yb, yt)  0. 

 

It is convenient for interpretation purposes to define the conduction problem in a slot 

displayed in Fig.3.1, i.e. 

 

   ∇2𝜃𝑐𝑜𝑛𝑑=0,  𝜃𝑐𝑜𝑛𝑑,𝐿(𝑦𝐿) = 𝑅𝑎,      𝜃𝑐𝑜𝑛𝑑,𝑈(𝑦𝑈) = 0 (3.2.10) 

 

which can be solved using an algorithm adapted from Szumbarski & Floryan (1999). One 

can also define the conductive Nusselt numbers of the form 

 

 𝑁𝑢𝑐𝑜𝑛𝑑,𝑙𝑜𝑐,𝐿 = 𝒏⃗⃗ 𝐿 . 𝒒⃗⃗ 𝑐,𝐿 = 𝑛𝑥,𝐿
𝜕𝜃𝑐

𝜕𝑥
|
𝐿
+ 𝑛𝑦,𝐿

𝜕𝜃𝑐

𝜕𝑦
|
𝐿
,      

 𝑁𝑢𝑐𝑜𝑛𝑑,𝑎𝑣 = 𝜆−1 ∫ 𝑁𝑢𝑐𝑜𝑛𝑑,𝑙𝑜𝑐,𝐿𝑁𝐿
 −1𝑑𝑥

𝜆

0
. 

(3.2.11) 

 

3.3. Convection driven by corrugation placed at the lower plate 

A typical pattern of motion resulting from the heating is illustrated in Fig.3.2. The 

conductive temperature field in the absence of corrugation is uniform in the x-direction 

and the fluid movement may occur only if the vertical temperature gradient meets critical 

conditions (Chandrasekhar 1961).  Presence of corrugation generates horizontal 

conductive temperature gradients which lead to the formation of horizontal and vertical 

pressure gradients which drive the motion. The fluid moves upwards above the 

corrugation peaks and downwards above the corrugation troughs resulting in the 

formation of counter rotating horizontal rolls. The topologies of the pressure field at the 

top and bottom of the slot are different due to the presence of static component as 

documented by plots of the pressure field with the mode zero 𝑝(0)(𝑦) removed displayed 

in Fig.3.2B. The motion occurs regardless of the intensity of the heating and its 
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characteristics are determined by the corrugation geometry. The convective motion 

amplifies the horizontal temperature gradients increasing the convection-driving force 

until a saturation state is reached where the driving force is balance by the flow 

resistance. We shall now focus on the detailed description of this motion starting with 

long wavelength corrugations. 

 

  

(A) (B) 

Figure 3.2: The flow topology and the temperature and pressure fields in a slot with  =
1.53, 𝑅𝑎 = 200, 𝑦𝑏 = 0.1 normalized with their maxima (Fig.3.2A). The solid, dashed, dashed-

dotted and dotted lines identify streamlines, isotherms of the complete temperature field, lines of 

constant pressure and isotherms of the conductive temperature field, respectively.  The maxima of 

the stream function and the temperature, pressure and conduction temperature fields are 

|𝜓|𝑚𝑎𝑥 = 1.145, |𝜃|𝑚𝑎𝑥 = 200, |𝑝|𝑚𝑎𝑥 = 213.7, |𝜃𝑐𝑜𝑛𝑑|𝑚𝑎𝑥 = 200, respectively. The pressure 

constant C has been set zero. Pressure field with mode zero eliminated is displayed in Fig.3.2B 

together with streamlines; dashed and dotted lines identify positive and negative values, while 

dashed dotted line identifies zeros. This pressure field is normalized with its maximum 

|𝑝|𝑚𝑎𝑥 = 24.67. 

 

3.3.1. Long-wavelength corrugation 

Consider the limit 𝛼 → 0. The solution process begins with domain transformation of the 

form   

 

 = 𝛼𝑥,  = 2
𝑦−1

2−𝑦𝑏 cos 
+ 1, (3.3.1a,b) 

 

where  is a slow scale and  maps the corrugated slot into a regular strip   [-1,1]. The 

field equations expressed in the (,)-coordinates take the form of 
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𝛼
𝜕𝑢

𝜕
+ 𝐹7

𝜕𝑢

𝜕
+ 𝐹8

𝜕𝑣

𝜕
= 0, (3.3.2a) 

𝜕2𝑢

𝜕2 + [𝐹1 − 𝐹2𝑢 − 𝐹3𝑣]
𝜕𝑢

𝜕
+ 𝐹4

𝜕2𝑢

𝜕𝜕
+ 𝐹5

𝜕2𝑢

𝜕2
− 𝐹6𝑢

𝜕𝑢

𝜕
− 𝐹6

𝜕𝑝

𝜕
− 𝐹2

𝜕𝑝

𝜕
= 0, 

(3.3.2b) 

𝜕2𝑣

𝜕2
+ [𝐹1 − 𝐹2𝑢 − 𝐹3𝑣]

𝜕𝑣

𝜕
+ 𝐹4

𝜕2𝑣

𝜕𝜕
+ 𝐹5

𝜕2𝑣

𝜕2
− 𝐹6𝑢

𝜕𝑣

𝜕
− 𝐹3

𝜕𝑝

𝜕
+ 𝑃𝑟−1𝐹9𝜃 = 0, (3.3.2c) 

𝜕2𝜃

𝜕2 + [𝐹1 − 𝑃𝑟𝐹2𝑢 − 𝑃𝑟𝐹3𝑣]
𝜕𝜃

𝜕
+ 𝐹4

𝜕2𝜃

𝜕𝜕
+ 𝐹5

𝜕2𝜃

𝜕2
− 𝑃𝑟𝐹6𝑢

𝜕𝜃

𝜕
= 0, 

(3.3.2d) 

 

where the coefficients F1, …, F6 are defined in Appendix B. The form of the conduction 

problem (3.2.16) is not given but its solution can be obtained in a similar manner. The 

boundary conditions assume the following form 

 

𝑢(, ±1) = 0,      𝑣(, ±1) = 0,   𝜃(, −1) = 𝑅𝑎,     𝜃(, 1) = 0. (3.3.3) 

 

The unknowns are represented as power expansions in terms of , i.e. 

 

[𝑢, 𝑣, 𝜃, 𝜃𝑐] = [𝑢0, 𝑣0, 𝜃0, 𝜃𝑐0] + 𝛼[𝑢1, 𝑣1, 𝜃1, 𝜃𝑐1] + 𝛼2[𝑢2, 𝑣2, 𝜃2, 𝜃𝑐2] +

                        𝑂(𝛼3), 

(3.3.4a) 

𝑝 = 𝛼−1𝑝−1 + 𝑝0 + 𝛼𝑝1 + 𝑂(𝛼2), (3.3.4b) 

 

these expansions are substituted into (3.3.2) - (3.3.3) and the leading-order terms are 

extracted resulting in a system of the form 

 

𝜕𝑣0

𝜕
= 0,        

𝜕2𝑢0

𝜕2 −
𝐺

2
𝑣0

𝜕𝑢0

𝜕
−

1

4
𝐺2 𝜕𝑝−1

𝜕
+

1

4
𝑦𝑏 𝐺(− 1) sin    

𝜕𝑝−1

𝜕
= 0, (3.3.5a,b) 

𝜕𝑝−1

𝜕
= 0,       

𝜕2𝜃0

𝜕2 − 𝑃𝑟
𝐺

2
𝑣0

𝜕𝜃0

𝜕
= 0, (3.3.5c,d) 

𝑢0(, ±1) = 0,   𝑣0(, ±1) = 0, 𝜃0(, −1) = 𝑅𝑎,    𝜃0(, 1) = 0,  
𝜕𝑃−1

𝜕
|
𝑚𝑒𝑎𝑛

= 0, (3.3.3.5e) 

 

whose solution can be expressed as 

 

𝑢0 = 0,            𝑣0 = 0,            𝜃0 = 𝜃𝑐0 =
𝑅𝑎

2
(1 − ),              𝑝−1 = 0. (3.3.6) 
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The next order system, i.e. system 0(𝛼1), has the form of  

 

𝜕𝑣1

𝜕
= 0,       

𝜕2𝑢1

𝜕2 −
1

4
𝐺2 𝜕𝑝0

𝜕
+

𝑦𝑏 𝐺 sin 

4
(− 1)

𝜕𝑝0

𝜕
= 0, (3.3.7a,b) 

−
𝐺

2

𝜕𝑝0

𝜕
+

𝐺2

4𝑃𝑟
𝜃0 = 0,         

𝜕2𝜃1

𝜕2 −
Pr𝐺

2
𝑣1

𝜕𝜃0

𝜕
= 0, (3.3.7c,d) 

𝑢1(, ±1) = 0,     𝑣1(, ±1) = 0,    𝜃1(, ±1) = 0,    
𝜕𝑃0

𝜕
|
𝑚𝑒𝑎𝑛

= 0, (3.3.7e) 

 

whose solution can be easily found, i.e. 

 

𝑢1 =
𝑦𝑏 𝑅𝑎

7680 𝑃𝑟
 (54 − 203 − 62 + 20+ 1)[(𝑦𝑏

2 + 16)𝑠𝑖𝑛− 8𝑦𝑏 sin(2) +

           𝑦𝑏
2sin (3)]   ,     𝑣1 = 0,          

𝑝0 =
𝑅𝑎

 80𝑃𝑟
{−202 + 40− 2𝑦𝑏 +

10𝑦𝑏
2

(2−𝑦𝑏)
− 𝑦𝑏(−102 + 20− 22)𝑐𝑜𝑠} + 𝐶,  

𝜃1 = 0, 𝜃𝑐1 = 0 . 

(3.3.8) 

 

System 0(𝛼2) has the form  

 

𝜕𝑣2

𝜕
−

𝑦𝑏𝑠𝑖𝑛

2
(− 1)

𝜕𝑢1

𝜕
+

𝐺

2

𝜕𝑢1

𝜕
= 0,  

𝜕2𝑢2

𝜕2 −
1

4
𝐺2 𝜕𝑝1

𝜕
+

𝑦𝑏 𝐺 sin 

4
(− 1)

𝜕𝑝1

𝜕
= 0, (3.3.9a,b) 

−
𝐺

2

𝜕𝑝1

𝜕
+

𝐺2

4𝑃𝑟
𝜃1 = 0,   

𝜕2𝜃2

𝜕2 +
2𝑦𝑏

2 sin2 −𝑦𝑏𝐺 cos 

4
(− 1)

𝜕𝜃0

𝜕
+

Pr𝑦𝑏 𝐺 sin 

4
(− 1)𝑢1

𝜕𝜃0

𝜕
−

Pr𝐺

2
𝑣2

𝜕𝜃0

𝜕
= 0, 

(3.3.9c) 

(3.3.9d) 

𝑢2(, ±1) = 0,     𝑣2(, ±1) = 0,    𝜃2(, ±1) = 0,  
𝜕𝑃1

𝜕
|
𝑚𝑒𝑎𝑛

= 0. (3.3.9e) 

 

Its solution can be written as 

 

𝑢2 = 0,      𝑣2 =
𝑦𝑏 𝑅𝑎

30720 𝑃𝑟
[𝑘1𝑐𝑜𝑠+ 𝑘2cos (2) + 𝑘3cos (3) + 𝑘4cos (4) + 𝑘5],   

 𝑝1 = 0, 

𝜃2 =
𝑦𝑏 𝑅𝑎

12902400
[(𝑅𝑎 𝑘6 + 𝑘7)𝑐𝑜𝑠+ (𝑅𝑎 𝑘8 + 𝑘9) cos(2) + 𝑅𝑎 𝑘10 cos(3) +

         𝑅𝑎 𝑘11 cos(4) + 𝑅𝑎 𝑘12 cos(5) + (𝑅𝑎 𝑘13 + 𝑘14)]   , 

𝜃𝑐2 =
𝑦𝑏𝑅𝑎

48
(3 − 32 − + 3) [−2𝑐𝑜𝑠−

1

2
𝑦𝑏cos (2) +

3

2
𝑦𝑏], 

 

 

 

 

 

(3.3.10) 
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with coefficients k1, …, k14 being defined in Appendix B. Stresses associated with 

convection acting on the plates have the following forms: 

 

𝜎𝑥𝑣,𝐿 = 𝜎𝑡,𝐿 = −𝛼
𝑦𝑏𝑅𝑎

𝑃𝑟
[

1

10
sin  −

𝑦𝑏

40
sin(2)] + 𝑂(𝛼3), (3.3.11a) 

𝜎𝑥𝑝,𝐿 = 𝛼 {
𝑦𝑏𝑅𝑎

𝑃𝑟
[(

3

4
+

𝑦𝑏

40
−

𝑦𝑏
2

8(2−𝑦𝑏)
) sin  −

13𝑦𝑏

40
sin(2)] − 𝐶𝑦𝑏 sin } + 𝑂(𝛼3), (3.3.11b) 

𝜎𝑦𝑣,𝐿 = 0(𝛼2),               𝜎𝑦𝑝,𝐿 =
𝑅𝑎

𝑃𝑟
[
3

4
+

𝑦𝑏

40
−

𝑦𝑏
2

8(2−𝑦𝑏)
−

13𝑦𝑏

20
cos] − 𝐶 + 0(𝛼2), (3.3.11c,d) 

𝜎𝑛,𝐿 = 𝜎𝑛𝑝,𝐿 = −
𝑅𝑎

𝑃𝑟
[
3

4
+

𝑦𝑏

40
−

𝑦𝑏
2

8(2−𝑦𝑏)
−

13𝑦𝑏

20
cos ] + 𝐶 + 𝑂(𝛼2), 

(3.3.11e) 

𝜎𝑥𝑣,𝑈 = 𝜎𝑡,𝑈 = 𝛼
𝑦𝑏𝑅𝑎

𝑃𝑟
[

1

15
sin −

𝑦𝑏

60
sin(2)] + 𝑂(𝛼3),       𝜎𝑥𝑝,𝑈 = 0 (3.3.11f,g) 

𝜎𝑦𝑣,𝑈 = 0(𝛼2),                𝜎𝑦𝑝,𝑈 =
𝑅𝑎

𝑃𝑟
[
1

4
−

𝑦𝑏

40
+

𝑦𝑏
2

8(2−𝑦𝑏)
+

3𝑦𝑏

20
cos] + 𝐶 + O(𝛼2), (3.3.11h,i) 

𝜎𝑛,𝑈 = 𝜎𝑛𝑝,𝑈 =
𝑅𝑎

𝑃𝑟
[
1

4
−

𝑦𝑏

40
+

𝑦𝑏
2

8(2−𝑦𝑏)
+

3𝑦𝑏

20
cos] + 𝐶 + 𝑂(𝛼2). 

(3.3.11j) 

 

The above relations show that viscous stresses are proportional to Ra, inversely 

proportional to Pr and have a complex dependence on yb. Since yb < 2, analysis of 

(3.3.11a) shows that 𝜎𝑡,𝐿 < 0 for x  (0, /2) which means that shear stress acts towards 

corrugation peaks. This would result in steepening of the slopes, increase of the peaks’ 

elevation and flattening of the troughs’ bottoms if erosion was allowed. If the lower plate 

was replaced by a membrane, the convection would result in its stretching with the 

membrane being pulled away from the troughs. The total stretching force per half of the 

corrugation wavelength 𝐻𝑡,𝐿  

 

𝐻𝑡,𝐿 = 2𝜆−1 ∫ 𝜎𝑡,𝐿

𝜆

2
0

𝑁𝐿
−1𝑑𝑥 = −𝛼

𝑦𝑏𝑅𝑎

5𝜋𝑃𝑟
,          

(3.3.12a) 

 

The reader may note that the total stretching forces per one corrugation wavelength are 

zero. The pressure forces associated with the heating are also proportional to Ra, 

inversely proportional to Pr and have a complex dependence on yb. While determination 

of their direction is not in general possible without knowledge of the free constant C, it is 

nevertheless possible to deduce if the pressure contributes either to the flattening or to the 
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growth of the corrugations, assuming that surface deformation is allowed. In the former 

case, the difference Dif1 between the y-components of forces acting on the upper 

(𝐻𝑦,𝑝𝑒𝑎𝑘) and the lower parts of the corrugation (𝐻𝑦,𝑡𝑟𝑜𝑢𝑔ℎ) defined as (see Fig.3.3) 

 

𝐷𝑖𝑓1 = 𝐻𝑦,𝑝𝑒𝑎𝑘 − 𝐻𝑦,𝑡𝑟𝑜𝑢𝑔ℎ =

2𝜆−1 ∫ (𝜎𝑦𝑝,𝐿 + 𝜎𝑦𝑣,𝐿)𝑑𝑥 −                2𝜆−1 ∫ (𝜎𝑦𝑝,𝐿 + 𝜎𝑦𝑣,𝐿)𝑑𝑥
3𝜆/4

𝜆/4
=

𝜆/4

−𝜆/4
−

13𝑦𝑏𝑅𝑎

5𝜋𝑃𝑟
, 

(3.3.13) 

 

must be negative which is always the case, i.e. pressure in the case of the long 

wavelength corrugations always acts in a manner which contributes to the corrugation 

flattening.  

 

 

Figure 3.3: Sketch of pressure forces acting on the corrugated plate. 

 

The local and average Nusselt numbers, which can be expressed as 

 

 𝑁𝑢𝑙𝑜𝑐,𝐿 = 𝑁𝑢𝑐𝑜𝑛𝑑,𝑙𝑜𝑐,𝐿 = 𝑅𝑎(2 − 𝑦𝑏cos)−1 + 𝑂(𝛼2),  

 𝑁𝑢𝑎𝑣 = 𝑁𝑢𝑐𝑜𝑛𝑑,𝑎𝑣 = 𝑅𝑎(4 − 𝑦𝑏
2)−1/2 + 𝑂(𝛼2), 

(3.3.14a,b) 

 

demonstrate that the heat flow is dominated by conduction, its magnitude is proportional 

to Ra, it is independent of Pr and it increases rapidly with yb. The reader may note that 

the local heat flux is largest at the corrugation tip and smallest at the bottom of the 

trough.  
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The range of applicability of solution for 0 can be determined from comparisons with 

the solution of the complete system. The difference between both solutions is defined 

using norm of the form 

||𝐸𝑟||𝑚𝑎𝑥 ≝ 𝑠𝑢𝑝⏟
0≤≤2𝜋,   −1≤≤1

 |𝜙𝑛(,) − 𝜙𝑎(,)|, (3.3.15) 

where 𝜙 stands for any of 𝑢, 𝑣, 𝜃, 𝑝 and the subscripts “a” and “n” correspond to the 

asymptotic and complete solutions, respectively. Results presented in Fig.3.4 demonstrate 

that the error decreases as predicted by the analysis and the asymptotic solution provides 

acceptable accuracy for  < 0.1. 

 

 

Figure 3.4: Variations of the error ||𝐸𝑟||𝑚𝑎𝑥 for  𝑢, 𝑣, 𝜃, 𝑝 (see Eq. 3.3.15) as a function of  for 

𝑦𝑏 = 0.1, 𝑅𝑎 = 150. 

 

3.3.2 Corrugation with an arbitrary wave number  

Typical flow field topologies displayed in Fig.3.5 suggest that the roll size is dictated by 

the corrugation wavelength. In the case of long wavelengths, the rolls completely fill in 

the slot (see Fig.3.5A) while convection, as measured by the maximum of the stream 

function, is very weak (see Fig.3.6A) and the temperature field modulations are relatively 

small. Reduction of the wavelength down to   1 results in the intensification of 

convection (see Fig.3.6A) with the rolls completely filling in the slot and with significant 

modifications of the temperature field (see Fig.3.5B). Further reduction of the wavelength 

down to  = 5 results in the weakening of convection (see Fig.3.6A) with the fluid 

movement as well as the temperature modifications concentrated in a boundary layer 
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adjacent to the corrugated plate (see Fig.3.5C); the thickness of this boundary rapidly 

decreases with an increase of . Analysis carried out in Section 3.3.1 shows that 

|𝜓|𝑚𝑎𝑥 = 0(𝛼) when 𝛼 → 0 and analysis carried out using method described in (Hossain 

& Floryan 2014; 2015a, 2015b) shows that |𝜓|𝑚𝑎𝑥 = 0(𝛼−3) when 𝛼 → ∞ (details not 

given). 

 

   

(A) (B) (C) 

Figure 3.5: The flow and the temperature fields for  𝑅𝑎 = 200, 𝑦𝑏 = 0.05 and  = 0.1 

(Fig.3.5A),  = 1.53 (Fig.3.5B) and  = 5 (Fig.3.5C) normalized with their maxima. The 

maxima of the stream function are: a) |𝜓|𝑚𝑎𝑥 = 0.0149, b)  = 0.7786, c) |𝜓|𝑚𝑎𝑥 = 0.0040. The 

maxima of the temperature are max = Ra in all cases. 

 

The effects of the remaining parameters can be deduced from the other data displayed in 

Fig.3.6. An increase of 𝑦𝑏 results in an increase of |𝜓|𝑚𝑎𝑥 initially proportional of 𝑦𝑏, as 

demonstrated using small amplitude approximation described in Appendix C, but slowing 

down for larger 𝑦𝑏’s as nonlinear effects become more important and convection 

saturates (see Fig.3.6B). The saturation occurs at smaller 𝑦𝑏’s for larger Ra’s. An increase 

of Ra results in an increase of  |𝜓|𝑚𝑎𝑥 initially proportional to Ra followed by a rapid 

acceleration for Ra > 100 (see Fig.3.6C). This suggests that the system approaches a 

stability limit as the critical value of the Rayleigh number in the case of smooth plates is 

Racr = 213.5 (Rayleigh 1916). The initial rate of growth of |𝜓|𝑚𝑎𝑥 can be predicted 

analytically using the weak convection assumption following (Floryan & Floryan et al. 

2015) and (Hossain & Floryan 2013). 
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(A) (B) (C) 

Figure 3.6: Variations of the maximum of the stream function |𝜓|𝑚𝑎𝑥 as a function of  for  

𝑦𝑡 = 0, 𝑦𝑏 = 0.05  (Fig.3.6A), as a function of yb for  = 1.53, 𝑦𝑡 = 0 (Fig.3.6B), and as a 

function of Ra for  = 1.53, 𝑦𝑡 = 0 (Fig.3.6C).    

 

  

(A) (B) 

Figure 3.7: Variations of 𝜎𝑡,𝐿, 𝜎𝑡,𝑈 (Fig.3.7A) and of 𝜎𝑦𝑝,𝐿, 𝜎𝑦𝑝,𝑈 (Fig.3.7B) for yb = 0.05, yt = 0, 

Ra = 200, and 𝐶 = 0. Dotted, solid, and dashed lines correspond to  = 0.1, 1.53, 5. The maxima 

used for normalizations are: |𝜎𝑡,𝐿|𝑚𝑎𝑥
= 0.1416, 6.8594, 0.3629; |𝜎𝑡,𝑈|

𝑚𝑎𝑥
= 0.0947, 6.2586, 

0.0041; |𝜎𝑦𝑝,𝐿|𝑚𝑎𝑥
 = 220.7034, 211.3108, 224.9411; |𝜎𝑦𝑝,𝑈|

𝑚𝑎𝑥
 = 72.2485, 84.6565, 70.6266. 

 

Variations of forces acting on both plates are illustrated in Fig.3.7. Distribution of shear 

stresses is very similar for all ’s, i.e. they always act towards corrugation peaks 

contributing to the corrugation build up if such an effect was permitted. Distribution of 

the y-component of pressure forces associated with the heating shows qualitative change 

with the maxima occurring at the corrugation troughs for small and large ’s but at the 

corrugation tips for medium ’s. Contours of Dif1 displayed in Fig.3.8 show that pressure 
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may act in a manner consistent with corrugation build up but only if Ra exceeds the 

critical value of 192.6, only for a certain finite range of ’s and only for a sufficiently 

small corrugation amplitude. Pressure always contributes to the flattening of the 

corrugation if  <  192.6 , ’s are either excessively small or excessively large, and 

amplitude is too big. In particular, pressure supports corrugation built up for Ra = 193, 

196, 200, 201 when   (1.42, 1.53), (1.31, 1.65), (1.24, 1.73), (1.13, 1.88) and yt < 

0.016, 0.051, 0.076, 0.12, respectively. Details of the system response have been 

determined using the small-amplitude solution described in Appendix C.  

 

 

Figure 3.8: Contour plots of Dif1 = 0 (see Eq.3.3.13) in the (, yb)-plane for yt = 0.   

 

Changes of the heat transfer illustrated in Fig.3.9A demonstrate the existence of a range 

of  where convective effects play a role. To help with interpretation, we represent the 

temperature field  as a superposition of the conductive and convective components, i.e. 

 

𝜃 = 𝜃𝑐𝑜𝑛𝑑 + 𝜃𝑐𝑜𝑛𝑣, (3.3.16) 

 

where 𝜃𝑐𝑜𝑛𝑑 represents solution of the conduction problem (3.2.16) and 𝜃𝑐𝑜𝑛𝑣 has been 

determined by subtracting 𝜃𝑐𝑜𝑛𝑑 from . The average Nusselt number can be similarly 

represented as a superposition of Nusselt numbers associated with each field, i.e.  

 

𝑁𝑢𝑎𝑣 = 𝑁𝑢𝑐𝑜𝑛𝑑,𝑎𝑣 + 𝑁𝑢𝑐𝑜𝑛𝑣,𝑎𝑣. (3.3.17) 
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The conductive part has a well-known smooth-slot limit, i.e. 𝑁𝑢𝑐𝑜𝑛𝑑,𝑎𝑣 → 𝑅𝑎/2 when yb 

 0. Results displayed in Fig.3.9 permit to follow changes of both 𝑁𝑢𝑐𝑜𝑛𝑑,𝑎𝑣 and 

𝑁𝑢𝑐𝑜𝑛𝑣,𝑎𝑣 as functions of the corrugation geometry. Figure 3.9A displays variations of 

the excess heat flow above that occurring in the smooth slot, i.e. 
𝑁𝑢𝑎𝑣

𝑅𝑎
−

1

2
. The limit of 

this quantity for the long wavelength corrugations can be easily determined using 

solution from Section 3.3.1, i.e. 

 

lim𝛼→0 (
𝑁𝑢𝑎𝑣

𝑅𝑎
−

1

2
) =

1

2
{[1 − (

𝑦𝑏

2
)
2

]
−1/2

− 1} ≈
𝑦𝑏

16

2
≈ 1.56 ∗ 10−4. 

(3.3.18) 

 

The heat flow in the limit of   0 is always a bit higher than in the smooth slot and this 

is due to the conduction modifications which are functions of yb. Increase of  away from 

this limit increases the conductive effect but, at   0.4 convective effects begin to play a 

role and the heat flow increases above that expected from the pure conduction. 

Convective effects peak at   1.53 and then rapidly decrease with the heat flow being 

again dominated by conduction. The upper limit of this growth can be easily determined 

as conductive heat flow cannot be larger than that in a slot whose height has been reduced 

by half of the corrugation amplitude, i.e. lim𝛼→∞ 𝑁𝑢𝑐𝑜𝑛𝑑,𝑎𝑣 =
𝑅𝑎

(2−𝑦𝑏)
. The character of 

variations of convective effects are well illustrated in Fig.3.9B. These effects need to be 

accounted for only for medium ’s as they decrease as 4
 when   0 and as --7

 when 

  . The dependence of the heat transfer modifications as a function of the 

corrugation amplitude can be deduced from the results displayed in Fig.3.9C. 𝑁𝑢𝑎𝑣 

increases away from the smooth-slot limit of Ra/2 proportionally to 𝑦𝑏
2, as shown in 

Appendix C, and then this growth begins to saturate when the amplitude becomes 

excessively large (see Fig. 3.9C). This saturation is associated with the fact that increase 

of the amplitude increases the wetted area which in turn increases dissipation. While 

horizontal temperature gradients, which are responsible for driving this convection, 

increase with an increase of yb, the increase of dissipation eventually begins to slow down 

the growth of intensity of convection. Results displayed in Fig.3.9D demonstrate that the 

convective heat flow initially increases proportionally to Ra
3
 with this growth rapidly 
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accelerating when Ra approaches the critical value for the smooth-slot limit where it 

gives rise to transition to a secondary state. Variations of the local Nusselt number 

displayed in Fig.3.10A demonstrate that the maxima of 𝑁𝑢𝑙𝑜𝑐,𝐿 occur at the corrugation 

peaks for small and large ’s but at the corrugation troughs for medium ’s. This effect 

is associated with a larger role of convective effects for medium ’s and their negligible 

role for large and small ’s. The changeover is well illustrated in Fig.3.10B displaying 

variations of the difference 𝐷𝑖𝑓2 between 𝑁𝑢𝑙𝑜𝑐,𝐿 at x = 0 and at x = /2, i.e. between the 

peak and the bottom of the trough, defined as 

 

𝐷𝑖𝑓2 = 𝑁𝑢𝑙𝑜𝑐,𝐿(0) − 𝑁𝑢𝑙𝑜𝑐,𝐿(𝜆/2) , (3.3.19) 

  

as a function of  and 𝑦𝑏. The changeover can occur only if Ra exceeds the critical value 

of 161.9, only for a certain finite range of ’s and only for a sufficiently small 

corrugation amplitude. Most of the heat flow occurs around the corrugations peaks if Ra 

is sufficiently small, ’s are either sufficiently small or sufficiently large, and amplitude 

is sufficiently large. In particular, most of heat flow occurs in the vicinity of the 

corrugation troughs for Ra = 162, 165, 180, 200 when   (1.26, 1.29), (1.11, 1.45), 

(0.91, 1.73), (0.78, 1.95), respectively. Details of the system response have been 

determined using the small-amplitude solution described in Appendix C.  
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(A)  (B) 

  

(C) (D) 

Figure 3.9: Variations of the excess heat flow due to corrugation 
𝑁𝑢𝑎𝑣

𝑅𝑎
− 1/2 (Fig.3.9A) and the 

ratio of the convective and average Nusselt numbers 𝑁𝑢𝑐𝑜𝑛𝑣,𝑎𝑣/𝑁𝑢𝑎𝑣 (Fig.3.9b) as functions of 

the wave number 𝛼 for 𝑦𝑏 = 0.05, 𝑦𝑡 = 0; variations of the excess heat flow due to corrugation 
𝑁𝑢𝑎𝑣

𝑅𝑎
− 1/2 as a function of 𝑦𝑏 for  = 1.53, 𝑦𝑡 = 0 (Fig.3.9C) and variations of Nuconv,av as a 

function of Ra for  = 1.53, 𝑦𝑡 = 0 (Fig.3.9D). Thin dotted lines represent asymptotes. Dashed 

lines correspond to the conductive Nusselt number Nucond,av; such lines for different 𝑦𝑏’s overlap 

in Fig.3.9D. 
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                                 (A)                                            (B) 

Figure 3.10: Variations of the local Nusselt number 𝑁𝑢𝑙𝑜𝑐,𝐿 as a function of x for 𝑅𝑎 = 200, 

𝑦𝑏 = 0.05, 𝑦𝑡 = 0,  = 0.1, 1.53, 5 (Fig.3.10A) and contour plots of Dif2 = 0 (see 

Eq.3.3.19) in the (, yb)-plane (Fig.3.10B). 
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3.4. Convection driven by corrugation placed at the upper 

plate 

Pattern of motion for the same conditions as used in Fig.3.2 but with the corrugation 

moved to the upper plate is displayed in Fig.3.11. The fluid flows upwards below the 

corrugation trough and downwards below the corrugation peak. The flow topology is the 

same as in the case of corrugation placed at the lower plate displayed in Fig.3.2. One can 

map both topologies using the up/down symmetry combined with a phase shift of /2. 

Because of that, the global convection characteristics for corrugation at the upper plate 

can be deduced from the known characteristics of convection associated with corrugation 

at the lower plate.  The system response is qualitatively similar to that found in the case 

of a smooth slot subject to periodic heating either at the lower or upper plates (Winters & 

Young 2009).  

 

 

Figure 3.11: The flow topology and the temperature and pressure fields in a slot with  = 1.53,  
𝑦𝑡 = 0.1 for the same heating conditions as in Fig.3.2, i.e. Ra = 200, normalized with their 

maxima. The solid, dashed, dashed-dotted and dotted lines identify streamlines, isotherms of the 

complete temperature field, lines of constant pressure and isotherms of the conductive 

temperature field, respectively.  The maxima of the stream function and the temperature, pressure 

and conduction temperature fields are |𝜓|𝑚𝑎𝑥 = 1.1452, |𝜃|𝑚𝑎𝑥 = 200, |𝑝|𝑚𝑎𝑥 = 213.7, 
|𝜃𝑐𝑜𝑛𝑑|𝑚𝑎𝑥 = 200, respectively. The pressure constant has been set at 𝐶 = 0. 
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3.5. Convection driven by corrugations placed at both plates 

Patterns of motion displayed in Fig. 3.12 demonstrate a strong dependence on the phase 

shift 𝛺𝐶 between the lower and upper corrugations. Convection forms a single layer of 

rolls in the case of the “wavy slot” with the fluid rising up above peaks of the lower 

corrugation and flowing down above its troughs (see Fig.3.12 A). As 𝛺𝐶  increases from 0 

to 𝜋,  the rolls begin to deform, the inflow stagnation points form in the middle of the slot 

and the rolls split into two layers when 𝛺𝐶 = 𝜋 with the slot assuming the “converging-

diverging” form. This transition is very rapid as illustrated in Figs 3.12C, D, E which 

display flow topologies for 𝛺𝐶  = 0.995 𝜋, 0.999 𝜋 and 𝜋. We shall begin detailed 

discussion with the long wavelength corrugations, i.e. with the limit 0. 

 

   

(A) (B) (C) 

   

(D) (E) (F) 

Figure 3.12: Flow and temperature fields for  = 1.53, 𝑅𝑎 = 200, 𝑦𝑡 = 𝑦𝑏 = 0.05 and A) 

𝛺𝐶 = 0 (the “wavy” slot), B) 𝛺𝐶 = 𝜋 2⁄ , C) 𝛺𝐶 = 0.995 𝜋, D) 𝛺𝐶 = 0.999 𝜋, E) 𝛺𝐶 = 𝜋 (the 

“converging-diverging” slot), and F) 𝛺𝐶 = 3𝜋 2⁄ , The maxima of the stream function, the 

average Nusselt numbers and the conduction Nusselt numbers in Figs A,…F are: |𝜓|𝑚𝑎𝑥 = 

1.1696, 1.0709, 0.0232, 0.0179, 0.0173, 1.0709, Nuav = 106.6463, 104.7624, 100.2124, 100.2110, 

100.2109, 104.7624, Nucond,av = 100.1741, 100.1922, 100.2103, 100.2103, 100,2103, 100.1922, 

respectively.  
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3.5.1. Long-wavelength corrugation 

Transformation of the form  

 

 = 𝛼𝑥,  = 2
𝑦−1−𝑦𝑡𝑐𝑜𝑠(+𝛺𝐶)

2+𝑦𝑡𝑐𝑜𝑠(+𝛺𝐶)−𝑦𝑏 cos 
+ 1 (3.5.1) 

 

maps the corrugated slot into a regular strip   [-1,1] and introduces the slow scale . 

The field equations assume form (3.3.2) with the coefficients defined in Appendix D. The 

solution process follows method described in Section 3.3.1. The three leading-order 

systems are described in Appendix D. Their solutions have the following forms  

 

𝑢0 = 0,       

 𝑢1 =
𝑅𝑎

1536 𝑃𝑟
(𝜂2 − 1){𝐿𝑢 + ∑ [𝐿𝑆𝑢,𝑛𝑠𝑖𝑛(𝑛) + 𝐿𝐶𝑢,𝑛𝑐𝑜𝑠(𝑛)]3

𝑛=1 },    𝑢2 = 0, 

(3.5.2a-c) 

 

𝑣0 = 0,         𝑣1 = 0,            

𝑣2 =
𝑅𝑎

7680 𝑃𝑟
(𝜂2 − 1){𝐿𝑣 + ∑ [𝐿𝑆𝑣,𝑛𝑠𝑖𝑛(𝑛) + 𝐿𝐶𝑣,𝑛𝑐𝑜𝑠(𝑛)]6

𝑛=1 }, 

(3.5.3a-b) 

 

𝑝−1 = 0,                  

𝑝0 = −
𝑅𝑎

40 Pr (2−𝑦𝑏+𝑦𝑡𝑐𝑜𝑠𝛺𝐶)
{𝐿𝑝 + 𝐿𝑆𝑝,1𝑠𝑖𝑛() + 𝐿𝐶𝑝,1𝑐𝑜𝑠()} + 𝐶,        

𝑝1 = 0 

(3.5.4a-c) 

 

𝜃0 =
𝑅𝑎

2
(1 − ),        𝜃1 = 0,         

𝜃2 = 𝐿𝜃 + ∑ [𝐿𝑆𝜃,𝑛𝑠𝑖𝑛(𝑛) + 𝐿𝐶𝜃,𝑛𝑐𝑜𝑠(𝑛)]7
𝑛=1 , 

(3.5.5a-c) 

 

where all coefficients L, LS and LC are given in Appendix D. The x-components of 

stresses as well as the tangential stresses acting on each plate can be easily determined, 

i.e. 

 

𝜎𝑥𝑣,𝐿 = 𝜎𝑡,𝐿 = −𝛼
𝑅𝑎

120𝑃𝑟
{𝐿𝑣𝐿 + ∑ [𝐿𝑆𝑣𝐿,𝑛𝑠𝑖𝑛(𝑛) + 𝐿𝐶𝑣𝐿,𝑛𝑐𝑜𝑠(𝑛)]2

𝑛=1 } + 𝑂(𝛼3), (3.5.6a) 
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𝜎𝑥𝑣,𝑈 = 𝜎𝑡,𝑈 =   𝛼
𝑅𝑎

120𝑃𝑟
{𝐿𝑣𝑈 + ∑ [𝐿𝑆𝑣𝑈,𝑛𝑠𝑖𝑛(𝑛) + 𝐿𝐶𝑣𝑈,𝑛𝑐𝑜𝑠(𝑛)]2

𝑛=1 } + 𝑂(𝛼3), (3.5.6b) 

𝜎𝑥𝑝,𝐿 = 𝛼 {
𝑦𝑏𝑅𝑎

80 Pr (2−𝑦𝑏+𝑦𝑡 𝑐𝑜𝑠 𝛺𝐶)
{𝐿𝑝𝐿 + ∑ [𝐿𝑝𝐿,𝑛𝑠𝑖𝑛(𝑛) + 𝐿𝐶𝑝𝐿,𝑛𝑐𝑜𝑠(𝑛)]2

𝑛=1 } −

                   𝐶𝑦𝑏 sin } +  𝑂(𝛼2), 

(3.5.6c) 

𝜎𝑥𝑝,𝑈 = 𝛼 {
𝑦𝑡𝑅𝑎

80 Pr (2−𝑦𝑏+𝑦𝑡 𝑐𝑜𝑠 𝛺𝐶)
{𝐿𝑝𝑈 + ∑ [𝐿𝑆𝑝𝑈,𝑛𝑠𝑖𝑛(𝑛) + 𝐿𝐶𝑝𝑈,𝑛𝑐𝑜𝑠(𝑛)]2

𝑛=1 } +

                   𝐶 𝑦𝑡 sin( + 𝛺𝐶)} + 𝑂(𝛼2), 

(3.5.6d) 

 

where all coefficients L, LC and LS are also given in Appendix D. The reader may note 

the appearance of aperiodic terms which have interesting physical consequences 

discussed latter in this presentation. It is instructive to write these distributions for 

𝑦𝑏 = 𝑦𝑡 = 𝑆 for three special 𝛺𝐶’s whose significance will become obvious later in the 

discussion, i.e. 

 

𝛺𝐶 = 0:   𝜎𝑡,𝐿 = −𝛼
𝑆𝑅𝑎

6𝑃𝑟
sin ,                              

                  𝜎𝑡,𝑈 = 𝛼
𝑆𝑅𝑎

6𝑃𝑟
sin , 

 

(3.5.7a) 

𝛺𝐶 =
𝜋

2
:    𝜎𝑡,𝐿 = −𝛼

𝑆𝑅𝑎

120𝑃𝑟
[12 sin  + 8cos  − 5S sin(2) + S cos(2) − 5S],    

                     𝜎𝑡,𝑈 =   𝛼
𝑆𝑅𝑎

120𝑃𝑟
[8 sin  + 12 cos  − 5S sin(2) − S cos(2) − 5S], 

 

(3.5.7b) 

𝛺𝐶 = 𝜋:   𝜎𝑡,𝐿 = −𝛼
𝑆𝑅𝑎

120𝑃𝑟
[4 sin  − 2S sin(2)],         

                  𝜎𝑡,𝑈 = −𝛼
𝑆𝑅𝑎

120𝑃𝑟
[4 sin − 2S sin(2)].  

(3.5.7c) 

 

The total forces acting in the x-direction per unit length of the slot are determined through 

integration, i.e.  

 

𝐹𝑥,𝐿 = 𝐹𝑥𝑣,𝐿 + 𝐹𝑥𝑝,𝐿 = 𝜆−1 ∫ 𝜎𝑥𝑣,𝐿

𝜆

0

𝑁𝐿
−1𝑑𝑥 + 𝜆−1 ∫ 𝜎𝑥𝑝,𝐿

𝜆

0

𝑁𝐿
−1𝑑𝑥 = 

            +𝛼
𝑦𝑏𝑦𝑡𝑅𝑎

24𝑃𝑟
sin𝛺𝐶 − 𝛼

3𝑦𝑏𝑦𝑡𝑅𝑎

40𝑃𝑟
sin𝛺𝐶 + 𝑂(𝛼2) = −𝛼

𝑦𝑏𝑦𝑡𝑅𝑎

30𝑃𝑟
sin𝛺𝐶 + 𝑂(𝛼2),  

(3.5.8a) 
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𝐹𝑥,𝑈 = 𝐹𝑥𝑣,𝑈 + 𝐹𝑥𝑝,𝑈 = 𝜆−1 ∫ 𝜎𝑥𝑣,𝑈

𝜆

0

𝑁𝑈
−1𝑑𝑥 + 𝜆−1 ∫ 𝜎𝑥𝑝,𝑈

𝜆

0

𝑁𝑈
−1𝑑𝑥 = 

            −𝛼
𝑦𝑏𝑦𝑡𝑅𝑎

24𝑃𝑟
sin𝛺𝐶 + 𝛼

3𝑦𝑏𝑦𝑡𝑅𝑎

40𝑃𝑟
sin𝛺𝐶 + 𝑂(𝛼2) = 𝛼

𝑦𝑏𝑦𝑡𝑅𝑎

30𝑃𝑟
sin𝛺𝐶 + 𝑂(𝛼2), 

(3.5.8b) 

 

where 𝐹𝑥,𝐿 and 𝐹𝑥,𝑈 denote forces acting at the lower and upper plates, respectively, and 

𝐹𝑥𝑣,𝐿, 𝐹𝑥𝑣,𝑈 and 𝐹𝑥𝑝,𝐿, 𝐹𝑥𝑝,𝑈 denote their shear (viscous) and pressure components, 

respectively. The reader may note that these forces do not balance out within one period 

as the aperiodic terms generate a net force, with pressure opposing shear and prevailing. 

Forces at the upper and lower plates are equal but act in the opposite directions producing 

a moment M with the magnitude  

 

 𝑀 = 𝐹𝑥,𝑈 ∗ 2 = 𝛼
𝑦𝑏𝑦𝑡𝑅𝑎

15𝑃𝑟
sin𝛺𝐶 + 𝑂(𝛼2) (3.5.9) 

 

which attempts to change the relative position of the plates. Positive M corresponds to the 

upper plate being pushed to the right. Appearance of this moment correlates with the lack 

of symmetry between the intensity of the clockwise and anti-clockwise rotations in the 

neighboring cells (see Fig.3.12). This dynamical system has two states of equilibria 

defined by M = 0, i.e. the “wavy” slot with 𝛺𝐶  = 0 and the “converging-diverging” slot 

with 𝛺𝐶 = 𝜋. The second state is unstable as any small displacement from this position 

results in the formation of a moment which attempts to change the relative position of 

both plates until the “wavy” configuration is achieved, assuming that a relative 

movement of both plates is possible. The reader may note that 𝛺𝐶 = 𝜋/2 results in the 

largest M. Moment created by a single corrugation may be small but a significant force 

may be created when many wavelengths are involved. 

 

The shear stresses are directed towards the corrugation peaks, thus, potentially 

contributing to the corrugation build up although this may not be obvious from the 

functional form (3.5.6). Distributions of stresses for 𝛺𝐶 = 0,
𝜋

2
, 𝜋 displayed in Fig.3.13 

demonstrate this effect. The same comments apply to the stretching force which would 

affect membrane dynamics if the slot was formed by such membranes. The stretching 
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force has a periodic component, which changes direction within each corrugation half-

wavelength, as well as an average, non-zero component which pulls the complete 

membrane in a direction dictated by the phase shift 𝛺𝐶. The magnitude of the periodic 

component can be estimated by integrating shear stress between corrugation’s peak and 

trough, i.e. 

 

𝐻𝑡,𝐿 = 2𝜆−1 ∫ 𝜎𝑡,𝐿

𝜆

2
0

𝑁𝐿
−1𝑑𝑥 = −𝛼

𝑅𝑎

120𝜋𝑃𝑟
(24𝑦𝑏 + 16𝑦𝑡𝑐𝑜𝑠𝛺𝐶 −

             5𝜋𝑦𝑏𝑦𝑡𝑠𝑖𝑛𝛺𝐶),      

(3.5.10a) 

𝐻𝑡,𝑈 = 2𝜆−1 ∫ 𝜎𝑡,𝑈

𝜆−
𝛺𝐶
𝛼

𝜆

2
−

𝛺𝐶
𝛼

𝑁𝑈
−1𝑑𝑥 = −𝛼

𝑅𝑎

120𝜋𝑃𝑟
(24𝑦𝑡 + 16𝑦𝑏𝑐𝑜𝑠𝛺𝐶 +

              5𝜋𝑦𝑏𝑦𝑡𝑠𝑖𝑛𝛺𝐶), 

(3.5.10b) 

 

In the special cases of 𝛺𝐶 = 0,
𝜋

2
, 𝜋 these forces become 𝐻𝑡,𝐿 = −𝛼

𝑆 𝑅𝑎

3𝜋𝑃𝑟
, −𝛼

𝑆 𝑅𝑎

120𝜋𝑃𝑟
(24 −

5𝜋𝑆),  −𝛼
𝑆 𝑅𝑎

15𝜋𝑃𝑟
 ,  and 𝐻𝑡,𝑈 = −𝛼

𝑆 𝑅𝑎

3𝜋𝑃𝑟
,  −𝛼

𝑆 𝑅𝑎

120𝜋𝑃𝑟
(24 + 5𝜋𝑆),  −𝛼

𝑆 𝑅𝑎

15𝜋𝑃𝑟
 , respectively. 

 

   

(A) (B) (C) 

Figure 3.13: Distributions of tangential stresses acting on both plates for 𝛺𝐶 = 0 (Fig.3.13A), 

𝛺𝐶 =
𝜋

2
 (Fig.3.13B), 𝛺𝐶 = 𝜋  (Fig.3.13C) for Ra =200. Solid, dashed-dotted, dashed, and dotted 

lines correspond to 𝑦𝑏 = 𝑦𝑡 = 𝑆 = 0.05, 0.1, 0.5, 1, respectively. All lines overlap in Fig.3.13A. 

 

The y-components of forces acting on the plates can also be easily determined resulting in 

the following expressions 

   

𝜎𝑦𝑣,𝐿 = 0(𝛼2),   

𝜎𝑦𝑝,𝐿 =    
𝑅𝑎

40 Pr (2−𝑦𝑏+𝑦𝑡𝑐𝑜𝑠𝛺𝐶)
(𝐿1𝑠𝑖𝑛+ 𝐿2𝑐𝑜𝑠+ 𝐿3) + 𝐶 + 𝑂(𝛼2), 

(3.5.11a-b) 
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𝜎𝑦𝑣,𝑈 = 0(𝛼2),       

𝜎𝑦𝑝,𝑈 = −
𝑅𝑎

40 Pr (2−𝑦𝑏+𝑦𝑡𝑐𝑜𝑠𝛺𝐶)
(𝐿4𝑠𝑖𝑛+ 𝐿5𝑐𝑜𝑠+ 𝐿6) + 𝐶 + 𝑂(𝛼2), 

(3.5.11c-d) 

 

which demonstrate that pressure plays the dominant role. To answer the question if the 

pressure attempts to flatten corrugations, we compute difference between the total 

pressure force acting on the part of the corrugation that bulges inwards 𝐻𝑦,𝑝𝑒𝑎𝑘 and on 

the part that bulges outwards 𝐻𝑦,𝑡𝑟𝑜𝑢𝑔ℎ. Such differences for the lower (𝐷𝑖𝑓1,𝐿) and upper 

(𝐷𝑖𝑓1,𝑈) plates are defined as follows: 

 

𝐷𝑖𝑓1,𝐿 = 𝐻𝑦,𝑝𝑒𝑎𝑘,𝐿 − 𝐻𝑦,𝑡𝑟𝑜𝑢𝑔ℎ,𝐿 = 2𝜆−1 ∫ (𝜎𝑦𝑝,𝐿 + 𝜎𝑦𝑣,𝐿)𝑑𝑥
𝜆

4

−
𝜆

4

  −

               2𝜆−1 ∫ (𝜎𝑦𝑝,𝐿 + 𝜎𝑦𝑣,𝐿)𝑑𝑥
3𝜆

4
𝜆

4

= −
𝑅𝑎

20𝜋Pr
(52𝑦𝑏 − 12𝑦𝑡𝑐𝑜𝑠𝛺𝐶), 

(3.5.12a) 

𝐷𝑖𝑓1,𝑈 = 𝐻𝑦,𝑝𝑒𝑎𝑘,𝑈 − 𝐻𝑦,𝑡𝑟𝑜𝑢𝑔ℎ,𝑈 = 2𝜆−1 ∫ (𝜎𝑦𝑝,𝑈 + 𝜎𝑦𝑣,𝑈)𝑑𝑥 −
3𝜆

4
−

𝛺𝐶
𝛼

𝜆

4
−

𝛺𝐶
𝛼

               2𝜆−1 ∫ (𝜎𝑦𝑝,𝑈 + 𝜎𝑦𝑣,𝑈)𝑑𝑥
𝜆

4
−

𝛺𝐶
𝛼

−
𝜆

4
−

𝛺𝐶
𝛼

= −
𝑅𝑎

5𝜋𝑃𝑟
(7𝑦𝑡 +  3𝑦𝑏𝑐𝑜𝑠𝛺𝐶), 

 (3.5.12b) 

 

Negative 𝐷𝑖𝑓1,𝐿 and positive 𝐷𝑖𝑓1,𝑈 imply flattening which takes the place when both 

corrugations have similar amplitudes. 

 

The local and average Nusselt numbers can be expressed as 

 

𝑁𝑢𝑙𝑜𝑐,𝐿 = 𝑁𝑢𝑙𝑜𝑐,𝑈 =
𝑅𝑎

2+𝑦𝑡𝑐𝑜𝑠(+𝛺𝐶)−𝑦𝑏𝑐𝑜𝑠
+ 𝑂(𝛼2),     

𝑁𝑢𝑎𝑣 =
𝑅𝑎

√4−𝑦𝑏
2−𝑦𝑡

2+2𝑦𝑏𝑦𝑡 𝑐𝑜𝑠𝛺𝐶

+ 𝑂(𝛼2). 

(3.5.13a,b) 

 

The ratio R of the Nusselt numbers for slots with corrugations placed at both plates and at 

a single plate can be expressed as 

 

𝑅 = √
4−y𝑏

2

4−y𝑏
2−y𝑡

2+2𝑦𝑏𝑦𝑡 𝑐𝑜𝑠𝛺𝐶
,  

(3.5.14) 
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and its analysis shows that the heat transfer is increased only when  𝑐𝑜𝑠𝛺𝐶 <
𝑦𝑡

2𝑦𝑏
. In the 

case of equal amplitudes, the heat transfer is increased when 𝜋/3 < 𝛺𝐶 < 5𝜋/3. This 

suggests a possible use of the positioning of the upper corrugation as a heat transfer 

control device as one can significantly increase/decrease the heat flow by simply 

changing the phase shift. 

 

3.5.2. Corrugations with an arbitrary wave number  

Discussion presented in the previous Section demonstrates that the phase shift 𝛺𝐶  may 

potentially have a very strong effect on the convection. Results presented in Fig.3.14 

illustrate the order of magnitude changes in the intensity of motion when 𝛺𝐶  changes 

from 0 to . The most intense motion occurs at   1.53 and it rapidly decreases for both 

smaller and larger ’s (see Fig.3.15A). The asymptotes do not depend on 𝛺𝐶  and are 

|𝜓|𝑚𝑎𝑥 = 0(𝛼) when 𝛼 → 0 and |𝜓|𝑚𝑎𝑥 = 0(𝛼−3) when 𝛼 → ∞, i.e. are the same as for 

convection in a slot with one corrugated plate. |𝜓|𝑚𝑎𝑥 increases initially proportionally to 

the amplitude of the corrugation, as shown in Fig.3.15B, until a saturation process is 

initiated and the rate of growth slows down. This saturation occurs fastest for 𝛺𝐶   0 

when the convection is most intense. The intensity of convection initially increases 

proportionally to Ra, as illustrated in Fig.3.15C, and then it rapidly accelerates which 

suggests that the system may be approaching a stability limit. The most rapid acceleration 

is observed for 𝛺𝐶   /2. 
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Figure 3.14: Variations of the maximum of the stream function |𝜓|𝑚𝑎𝑥 as a function of the phase 

shift 𝛺𝐶 for 𝑦𝑏 = 𝑦𝑡 = 0.05, 𝛼 = 1.53. Dashed lines correspond to a single corrugated plate. 

 

 
 

 

(A) (B) (C) 

Figure 3.15: Variations of the maximum of the stream function |𝜓|𝑚𝑎𝑥 as a function of  for 

𝑦𝑡 = 𝑦𝑏 = 0.05, 𝛺𝐶 = 0, 𝜋/2, 𝜋 and Ra = 200 (Fig.3.15A), as a function of 𝑦𝑡𝑏 = 𝑦𝑡 = 𝑦𝑏 for  

= 1.53, Ra = 200, 𝛺𝐶 = 0, 𝜋/2, 𝜋 (Fig.3.15B), and as a function of Ra for  = 1.53, 𝑦𝑡 = 𝑦𝑏 =
0.05, 𝛺𝐶 = 0, 𝜋/2, 𝜋 (Fig.3.15C). Dashed-lines correspond to corrugation placed only on the 

lower plate. 

 

Variations of the x-components of all forces acting at both plate per one corrugation 

wavelength as functions of 𝐶 illustrated in Fig.3.16 demonstrate that their maxima 

occur for 𝐶   7/12  and 17/12 , the pressure force always opposes the viscous force 

and, since it is much stronger, it determines the direction of the total force. Results 

presented in Fig.3.17A demonstrate that the moment M changes rapidly as a function of 

the corrugation wave number with the largest magnitude attained for   1.5 and this 

magnitude rapidly increases with Ra. Use of corrugations with smaller wave numbers 

reduces M proportionally to  and use of larger ’s reduces M proportionally to -11
. 

Figure 3.17B demonstrates that M is positive for 𝛺𝐶 ∈ (0, 𝜋) and negative for 𝛺𝐶 ∈

(𝜋, 2𝜋), it changes smoothly in the whole range of 𝛺𝐶 , the maxima of |𝑀| occur at 𝐶  

7/12  and 17/12 ,  and the zeros correspond to the two special points, i.e. to 𝐶= 0, . 
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Figure 3.16: Variations of the x-component of shear forces at the lower (𝐹𝑥𝑣,𝐿)  and upper (𝐹𝑥𝑣,𝑈) 

plates (dashed lines), the x-component of pressure forces at the lower (𝐹𝑥𝑝,𝐿) and upper (𝐹𝑥𝑝,𝑈) 

plates (Dashed-dotted lines) as well as their sums (𝐹𝑥,𝐿 , 𝐹𝑥,𝑈; solid lines) as functions of the phase 

shift 𝛺𝐶 for 𝛼 = 1.53, 𝑅𝑎 = 200, 𝑦𝑡 = 𝑦𝑏 = 0.05. 
 

  

(A) (B) 

Figure 3.17: Variations of the moment 𝑀 as a function of 𝛼 for 𝛺𝐶 =
𝜋

2
 (Fig.3.17A) and as a 

function of 𝛺𝐶 for 𝛼 = 1.49 (Fig.3.17B) for 𝑦𝑡 = 𝑦𝑏 = 0.05. 
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Figure 3.18: Variations of tangential stresses acting at the lower (𝜎𝑡,𝐿) and upper (𝜎𝑡,𝑈) plates as 

functions of x for 𝑅𝑎 = 200, 𝑦𝑏 = 𝑦𝑡 = 0.05,  = 0.1 (dotted lines),  = 1.53 (solid lines) and 

 = 5 (dashed lines) for 𝛺𝐶 = 𝜋 2⁄ . 

 

Figure 3.18 displays a typical distribution of the tangential stress acting on the plates. 

These distributions are very similar for all ’s and for all 𝛺𝐶’s i.e. the shear is directed 

towards the corrugation peak and, thus, it would contribute to the corrugation build up if 

such an effect was permitted. Distributions of the y-component of pressure forces have 

different form at the lower and upper plates (Fig.3.19). Their net effect can be assessed 

by evaluating Dif1,L and Dif1,U (see Eq.3.5.12). At the lower plate, the pressure maxima 

generally occur at the corrugation troughs except for medium ’s where the maxima 

occur at the corrugation peaks but only if the phase difference is not too close to 𝛺𝐶 =  . 

Pressure contributes to the corrugation build up at the lower plate when Dif1,L > 0. Results 

displayed in Fig.3.20 demonstrate that this occurs only for a finite range of medium ’s, 

for Ra’s which are large enough and for corrugation amplitudes which are small enough. 

Distributions of pressure forces at the upper plate have maxima always overlapping with 

the troughs which lead to Dif1,U < 0 and, as a result, these forces would always contribute 

to the corrugation built up if such an effect was allowed. 
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(A) (B) (C) 

Figure 3.19: Variations of the y-component of forces acting at the lower (𝜎𝑦𝑝,𝐿) and upper 

(𝜎𝑦𝑝,𝑈) plates as functions of x for 𝑅𝑎 = 200, 𝑦𝑏 = 𝑦𝑡 = 0.05,  = 0.1 (dotted lines),  = 1.53 

(solid lines) and  = 5 (dashed lines) for 𝛺𝐶 = 0 (Fig.3.19A), 𝛺𝐶 = 𝜋 2⁄  (Fig.3.19B) and 

𝛺𝐶 = 𝜋 (Fig.3.19C). 
 

 

 

Figure 3.20: Contour plots of Dif1,L = 0 (see Eq. (3.5.12) in the (, ytb)-plane for yt = yb = ytb and 

𝛺𝐶 = 0,  (solid and dashed lines, respectively). 

 

To illustrate the magnitude of various forces, consider Ra = 200, air as the working fluid 

and the reference temperature 𝑇𝑈
∗ = 20℃ which result in the following material 

properties: 𝜈∗ = 1.511 ∗ 10−5 𝑚2/𝑠, 𝑘∗ = 0.0257 𝑊/(𝑚 𝐾), 𝑐∗ = 1005 𝐽/(𝑘𝑔 𝐾), 

𝜅∗ = 2.12 ∗ 10−5 𝑚2/𝑠, 𝛤∗ = 3.43 ∗ 10−31/𝐾, 𝜌∗ = 1.205 𝑘𝑔/𝑚3. Substitution of this 

information as well as the numerical value of g into definition of Ra results in a relation 

between the mean temperature difference 𝜃𝑠
∗ and the slot half-height ℎ∗of the form 

𝜃𝑠
∗ ∗ ℎ∗3 = 1.9 ∗ 10−6. Use of slot with heights ℎ∗= 0.1, 0.01, 0.005, 0.004 leads to 

temperature differences 𝜃𝑠
∗ = 0.0019, 1.9, 15.23, 29.75, respectively. Computations 

carried out for 𝛼 = 1.53, Ω𝑐 = 𝜋/2 and  𝑦𝑏 = 𝑦𝑡 = 0.05 give forces 𝐹𝑥𝑣,𝐿
∗ = 3.65 ∗
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10−10𝑁 and 𝐹𝑥𝑝,𝐿
∗ = 5.11 ∗ 10−10𝑁 acting per slot segments of length of 𝜆∗ = 0.4107, 

0.0410, 0.0205, 0.0164 m, respectively, and unit width. These forces increase to 𝐹𝑥𝑣,𝐿
∗ =

9.71 ∗ 10−10, 1.63 ∗ 10−9, 𝐹𝑥𝑝,𝐿
∗ = 1.38 ∗ 10−9, 2.37 ∗ 10−9  when corrugation height is 

increases to 𝑦𝑏 = 𝑦𝑡 = 0.1, 0.15, respectively. 

 

The Nusselt number strongly depends on 𝛺𝐶  with the largest heat flow corresponding to 

the “wavy” configuration (𝛺𝐶 = 0) and the smallest corresponding to the “converging-

diverging” configuration (𝛺𝐶 = 𝜋), as illustrated in Fig.3.21. The range of variations of 

Nuav increases significantly with an increase of Ra (see Fig.3.21).  

 

It is convenient to start discussion of Nuav dependence on the slot geometry by looking at 

the limit of yt  0, yb  0 which gives Nuav  Ra/2. Results displayed in Fig.3.22A 

illustrate variations of the heat flow above the smooth slot limit, i.e. 
𝑁𝑢𝑎𝑣

𝑅𝑎
−

1

2
. The limit of 

this quantity for   0 determined using solution from Section 5.1 has the form 

 

lim𝛼→0 (
𝑁𝑢𝑎𝑣

𝑅𝑎
−

1

2
) =

1

2
{

1

(1−(
𝑦𝑏
2

)
2
−(

𝑦𝑡
2

)
2
+

𝑦𝑏𝑦𝑡 𝑐𝑜𝑠𝛺𝐶

2
)

1
2

− 1} ≈
y𝑏
2+y𝑡

2−2𝑦𝑏𝑦𝑡 𝑐𝑜𝑠𝛺𝐶

16
, 

(5.15) 

 

i.e. it shows a strong dependence on 𝛺𝐶 . To illustrate this point, evaluate (3.5.15) for 

𝑦𝑏 = 𝑦𝑡 and a few characteristic values of 𝛺𝐶 , i.e.  

 

𝛺𝐶 = 0  :           
𝑁𝑢𝑎𝑣

𝑅𝑎
−

1

2
≈

(𝑦𝑏−𝑦𝑡)
2 

16
= 0, 

𝛺𝐶 = 𝜋
2⁄  :        

𝑁𝑢𝑎𝑣

𝑅𝑎
−

1

2
≈

y𝑏
2+y𝑡

2 

16
=

y𝑏
2 

8
= 3.12 ∗ 10−4, 

𝛺𝐶 = 𝜋 :           
𝑁𝑢𝑎𝑣

𝑅𝑎
−

1

2
≈

(𝑦𝑏+𝑦𝑡)
2 

16
=

y𝑏
2 

4
= 6.25 ∗ 10−4. 

(5.16) 

 

Equations (3.5.16) show that the heat transfer for   0 can be either larger or equal to 

that in a smooth slot depending on the phase difference. This conclusion is well 
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illustrated in Fig.3.22A which shows that 
𝑁𝑢𝑎𝑣

𝑅𝑎
−

1

2
 either approaches an amplitude-

dependent constant or decreases to zero as   0 depending on the value of 𝛺𝐶. An 

increase of  away from this limit increases the heat flow mainly due to an increase of the 

corrugation-driven conductive effects. At   0.4 convective effects begin to play a role 

and the heat flow increases above that expected from the pure conduction, but only if 𝛺𝐶  

is not too close to  as convective effects play nearly no role for the “converging-

diverging” configuration. The convective effects peak at   1.53 for all 𝛺𝐶’s which are 

not too close to  and then they rapidly decrease with the heat flow being again 

dominated by the conduction and with its increase resulting from the corrugation-driven 

changes in the conduction. The upper limit on this growth corresponds to conduction in a 

slot whose height has been reduced by half of the corrugations’ amplitudes, i.e. 

lim𝛼→∞ 𝑁𝑢𝑐𝑜𝑛𝑑,𝑎𝑣 =
𝑅𝑎

(2−𝑦𝑏−𝑦𝑡)
.  The variations of the convective effects are well 

illustrated in Fig.3.22B. These effects need to be accounted for only 𝛺𝐶’s which are not 

too close to  and only for a range of medium ’s as they decrease as 4
 when   0 and 

as -7
 when   . The dependence of the heat transfer modifications on the corrugation 

amplitude is illustrated in Fig.3.22C. 𝑁𝑢𝑎𝑣 increases away from the smooth- slot limit of 

Ra/2 proportionally to 𝑦𝑡𝑏
2  for all 𝛺𝐶’s with 𝑁𝑢𝑎𝑣 for 𝛺𝐶 ≈ 𝜋 being at least two orders of 

magnitude smaller than 𝑁𝑢𝑎𝑣 for 𝛺𝐶 ≈ 0. This growth begins to saturate when the 

amplitude becomes excessively large as illustrated in Fig.3.22C with the earliest 

saturation occurring for 𝛺𝐶 ≈ 0 which corresponds to the strongest convection. Results 

displayed in Fig.3.22D demonstrate that the convective heat flow initially increases 

proportionally to Ra
3
 with this growth rapidly accelerating when Ra approaches the 

critical value which gives rise to transition to a secondary state in a smooth slot. 

 

Distributions of the local convective and conductive Nusselt numbers displayed in 

Fig.3.23 demonstrate that the conductive heat flux is directed from the lower to the upper 

corrugation peaks while the convective heat flux is directed from the lower to the upper 

corrugation troughs. The direction of the convective heat flux changes for small enough 

and large enough ’s as it is directed from the lower to the upper corrugation peaks, 

similarly as in the case of only one plate being corrugated (see Section 3.2). 
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Figure 3.21: Variations of the average Nusselt number 𝑁𝑢𝑎𝑣  as a function of the phase shift 𝛺𝐶 

for 𝑦𝑡 = 𝑦𝑏 = 0.05, 𝛼 = 1.53.  

 

  (A) 

 

(B)                                  

 

(C)                          

 

(D)                                      

 

Figure 3.22: Variations of the excess heat flow due to corrugation 
𝑁𝑢𝑎𝑣

𝑅𝑎
− 1/2 (Fig.3.22A) and 

the ratio of the average convective and the average Nusselt numbers 𝑁𝑢𝑐𝑜𝑛𝑣,𝑎𝑣/𝑁𝑢𝑎𝑣 

(Fig.3.22B) as functions of the wave number 𝛼 for Ra = 200, 𝑦𝑏 = 𝑦𝑡 = 0.05 and 𝛺𝐶 =

0,
𝜋

2
, 𝜋; variations of the excess heat flow due to corrugation 

𝑁𝑢𝑎𝑣

𝑅𝑎
− 1/2 as a function 𝑦𝑡𝑏 =

𝑦𝑏 = 𝑦𝑡 for  = 1.53, Ra = 200, 𝛺𝐶 = 0,
𝜋

2
, 𝜋 (Fig.3.22C) and variations of 𝑁𝑢𝑐𝑜𝑛𝑣,𝑎𝑣 as a 

function of Ra for  = 1.53, 𝑦𝑏 = 𝑦𝑡 = 0.05, 𝛺𝐶 = 0,
𝜋

2
, 𝜋 (Fig.3.22D). Thin dotted lines 

represent asymptotes. Dashed lines correspond to the corrugation at the lower plate only. 

Dashed-dotted lines in Fig.22A describe the conductive effects; the dashed-dotted and solid 

lines overlap for 𝛺𝐶 = 𝜋. 
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Figure 3.23: Variations of the local convective (𝑁𝑢𝑐𝑜𝑛𝑣,𝑙𝑜𝑐,𝐿, 𝑁𝑢𝑐𝑜𝑛𝑣,𝑙𝑜𝑐,𝑈) and conductive 

(𝑁𝑢𝑐𝑜𝑛𝑑,𝑙𝑜𝑐,𝐿, 𝑁𝑢𝑐𝑜𝑛𝑑,𝑙𝑜𝑐,𝑈) Nusselt numbers at the lower (solid lines) and upper (dashed lines) 

plates as functions of x for 𝑅𝑎 = 200, 𝑦𝑏 = 𝑦𝑡 = 0.05,  = 1.53 and 𝛺𝐶 = 0,
𝜋

2
, 𝜋. Lines for 

𝑁𝑢𝑐𝑜𝑛𝑑,𝑙𝑜𝑐,𝑈 and 𝑁𝑢𝑐𝑜𝑛𝑑,𝑙𝑜𝑐,𝐿, and for 𝑁𝑢𝑐𝑜𝑛𝑣,𝑙𝑜𝑐,𝐿 and 𝑁𝑢𝑐𝑜𝑛𝑣,𝑙𝑜𝑐,𝑈 overlap when  𝛺𝐶 = 𝜋. 

 

 

3.6. Effects of the Prandtl number 

Results presented in the previous sections have been obtained for Pr = 0.71. As 

convection is driven by the horizontal temperature gradients which are dominated by 

conductive effects, one should expect increase of convection intensity as Pr is reduced. 

Results displayed in Fig. 3.24A confirm this prediction. The most intense convection 

occurs for   1.53 and it decreases for   0 and for    always in the same manner 

regardless of the value of Pr as illustrated in Fig.3.24B. The heat transfer process 

displays the same characteristics with conduction dominating its increase above the 

smooth-slot limit for both small and large ’s and convection dominating this increase 

for  = 0(1), as illustrated in Fig.3.25A. The increase of Pr leads to larger convective 

corrections as convective transport becomes stronger than the conductive transport. This 

process is well illustrated in Fig.3.25B displaying variations of Nuav as a function Pr. 

Nucond,av does not depend on Pr while Nuconv,av changes significantly. The convective part 

becomes stronger as Pr increases and reaches the limiting state for Pr > 1. 
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                                     (A)                                      (B) 

Figure 3.24: Variations of the maximum of the stream function |𝜓|𝑚𝑎𝑥 as a function of Pr 

(Fig.3.24A) for 𝛺𝐶 = 0, 𝜋/2, 𝜋, 𝑦𝑡 = 𝑦𝑏 = 0.05, Ra = 200, and as a function of  (Fig.3.24B) for 

𝑦𝑡 = 𝑦𝑏 = 0.05, 𝛺𝐶 = 0, Ra = 200. The dashed lines correspond to the lower plate corrugated 

with 𝑦𝑡 = 0, 𝑦𝑏 = 0.05.  Dotted lines identify asymptotes. 

 

 

  

                                   (A)                                                 (B) 

Figure 3.25: Variations of the average Nusselt number Nuav as a function of  (Fig.3.25A) and as 

a function of Pr (Fig.3.25B). Results displayed in Fig.3.25A are for both plates being corrugated 

with 𝑦𝑡 = 𝑦𝑏 = 0.05, 𝛺𝐶 = 0, Ra = 200 (solid lines) and include the conductive Nusselt number 

Nucond,av (dashed-dotted line).The same figure displays variations of Nuav (dashed lines) and 

Nucond,av (dotted line) for the lower plate corrugated with 𝑦𝑡 =0, 𝑦𝑏 = 0.05. Results displayed in 

Fig.3.25B are for both plates being corrugated with 𝑦𝑡 = 𝑦𝑏 = 0.05, 𝛺𝐶 = 0,
𝜋

2
, 𝜋, Ra = 200,  = 

1.53 (solid lines) and include Nucond,av (dashed-dotted lines). Lines for Nuav and Nucond,av overlap 

when 𝛺𝐶 = 𝜋. The same figure displays variations of Nuav (dashed lines) and Nucond,av (dotted 

line) for the lower plate corrugated with 𝑦𝑡 =0, 𝑦𝑏 = 0.05. Thin dotted lines identify asymptotes.           
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3.7. Summary  

Analysis of natural convection in a horizontal slot formed by two corrugated, isothermal 

plates has been carried out under subcritical heating conditions. The corrugations have 

the form of sinusoidal grooves and can be placed either at the lower plate, or at the upper 

plate or at both plates. It has been shown that corrugations create horizontal temperature 

gradients which lead to the formation of vertical and horizontal pressure gradients which 

drive the motion regardless of the intensity of the heating. Convection has the form of 

pairs of counter-rotating rolls. 

  

The most intense convection occurs at wave number 𝛼 ≈  1.53. The intensity of 

convection initially increases proportionally Ra and then its growth rapidly accelerates 

when Ra approaches conditions giving rise to secondary flows in smooth slots. An 

increase of the corrugation amplitude results in an increase of the convection intensity 

proportionally to the amplitude but the system begins to saturate and the growth slows 

down when an excessively large amplitude is reached. Placement of corrugations on both 

plates may either significantly increase or decrease the convection intensity depending on 

the phase shift between both corrugation systems. The most intense convection results 

from the phase shift 𝛺𝑐 =  0 (“wavy” slot), and the weakest convection corresponds 

to 𝛺𝑐 =  𝜋 (“converging-diverging” slot). Reduction of the Prandtl number increases the 

strength of convection proportionally to Pr
-1

. 

  

The presence of the corrugation affects the conductive heat transfer as well as it creates 

convection-driven heat flow. The conductive heat transfer increases with an increase of 

the corrugation wave number; this growth is limited from above in the limit of 𝑎 →

∞. by conduction in a smooth slot whose height is reduced by half of the corrugation 

amplitude. The convective part of the heat flow is relevant only for a = 0(1) as it rapidly 

decreases in the limits of 𝑎 →  0 and 𝑎 → ∞. The most effective corrugation wave 

number as far as maximization of the heat flow is concerned is 𝛼 ≈  1.53. Convection 

also creates forces acting on the plates. Conditions under which these forces act in a 
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manner which results in the growth of corrugation have been identified assuming that 

either erosion or surface deformations are allowed. 
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Chapter 4 
 

Conclusion and Recommendations 

 
4.1 Conclusions 

Natural convection in a horizontal slot bounded by corrugated isothermal plates has been 

studied. A mathematical model based on the Boussinesq approximation has been used to 

describe fluid movement. This model involves two transport parameters, e.g. the 

Rayleigh number and the Prandtl number. Corrugations with simple sinusoidal shapes 

have been considered. Such corrugations are fully parametrized in terms of the 

corrugation wave number and the corrugation amplitude.  

The presence of corrugations results in an irregular solution domain and this necessitates 

development of the proper solution methodologies. A grid-less, spectrally-accurate 

algorithm based on Immersed Boundary Conditions (IBC) concept has been developed. 

The algorithm uses Fourier expansions in the horizontal direction and Chebyshev 

expansions in the vertical direction. The field equations have been discretized using a 

regular, rectangular computational domain with the irregular flow domain placed inside 

the computational domain. The Galerkin procedure has been used to construct the 

relevant algebraic equations. Constraints have replaced the flow and thermal boundary 

conditions. The Tau procedure has been used for their inclusion in the discretized 

problem. The solution procedure relies on the iterative process with the nonlinear terms 

taken from the previous iteration resulting in a first order fixed-point method. The 

iterative process consists of solving the energy equation followed by solution of the flow 

equations. An efficient solver has been developed for solution of the linear algebraic 

systems arising during each iteration step. Numerous tests confirm the spectral accuracy 

of the solution. Limitations of the algorithm have been discussed and correlated with the 

severity of the geometry. A method for extension of the algorithm to more extreme 

geometries using the over-determined formulation has been presented. The discretization 

process results in an algorithm capable of determination of the flow and temperature 
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fields for any combinations of the geometric parameters without the need to construct any 

grids and, thus, it is suitable for use in geometry optimization problems.  

The analysis of convection has been focused on the so-called subcritical heating 

conditions, i.e. conditions which do not result in transition to secondary convection. 

Corrugations have been placed either at the lower plate or the upper plate, or at both 

plates. The slot geometry has been parametrized in terms of the corrugation wave number 

, the upper (yt) and lower (yb) corrugation amplitudes and the phase shift c between the 

upper and lower corrugation systems. It has been shown that corrugations create 

horizontal temperature gradients that lead to the formation of vertical and horizontal 

pressure gradients which drive the motion regardless of the intensity of the heating. 

Convection has the form of pairs of counter-rotating rolls whose size is dictated by the 

corrugation wavelength. Rolls fill in the slot completely except for the short wavelength 

corrugations where the motion is confined to a thin layer adjacent to the corrugated plate. 

 

When the corrugation is placed at the lower plate, the most intense convection occurs for 

the corrugation wavelengths comparable to the slot height. The intensity of convection 

rapidly decreases as the corrugation wavelength is either increased or decreased away 

from its optimum. It has been found that the optimal wavelength corresponds to   1.53 

regardless of the Rayleigh number Ra, the Prandtl number Pr and the corrugation 

amplitude. The intensity of convection initially increases proportionally Ra and then its 

growth rapidly accelerates when Ra approaches conditions giving rise to secondary flows 

in smooth slots. An increase of the corrugation amplitude results in an increase of the 

convection intensity proportionally to the amplitude but the system begins to saturate and 

the growth slows down when an excessively large amplitude is used. Transfer of the 

corrugation to the upper plate results in a similar convection whose properties can be 

deduced from the properties of convection occurring when the corrugation is placed at 

the lower plate. Placement of corrugations on both plates may either significantly 

increase or decrease the convection intensity depending on the phase shift between both 

corrugation systems. The most intense convection results from the phase shift c = 0 

(“wavy” slot) and it is almost twice as strong as convection driven by corrugation placed 
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at just one plate, and the weakest convection corresponds to c =  (“converging-

diverging” slot). The latter convection is very weak and has no practical significance. 

Reduction of the Prandtl number increases the strength of convection proportionally to 

Pr
-1

. 

 

Convection creates forces acting on the plates. It has been shown that the shear forces 

would always attempt to build up the corrugation while the role of the pressure forces 

depends on the corrugation wave number, the corrugation amplitude and position of the 

corrugation either at the lower or upper plate. When the upper plate is corrugated, 

pressure always contributes to the plate flattening. When the lower plate is corrugated, 

pressure generally contributes to the flattening except for a range of  = 0(1) which must 

be combined with a sufficiently small corrugation amplitude and a sufficiently large 

Rayleigh number. The built up of the corrugations is likely to occur under such 

conditions as both pressure and shear act in the same manner. When both plates are 

corrugated, the horizontal forces create a moment which attempts to change plates’ 

relative position. There are two states of equilibria corresponding to the elimination of 

this moment, i.e. the “wavy” slot and the “converging-diverging” slot. The latter one is 

unstable as small departures from this state create a moment which attempts to change the 

relative position of the plates until the “wavy” configuration is reached. 

 

The presence of corrugation affects the conductive heat transfer and also creates 

convection-driven heat flow. The former increases with an increase of the corrugation 

wave number; this growth is limited from above in the limit of   by conduction in a 

smooth slot whose height is reduced by half of the corrugation amplitude. The convective 

part of the heat flow is relevant only for  = 0(1) as it rapidly decreases in the limits of  

 0 and   . The most effective corrugation wave number as far as maximization of 

the heat flow is concerned is   1.53. The magnitude of the heat flow may change by an 

order of magnitude depending on the corrugation phase shift. The maximum heat flow 

occurs in the “wavy” slot while the minimum heat flow corresponds to the “converging-

diverging” slot. The additional heat flow associated with the introduction of the 

corrugation is of the order of 5% of the heat flow in a smooth slot.  



93 
 

 
 

4.2 Recommendations for future work  

This thesis considers only the primary convection, i.e. convection which occurs when the 

Rayleigh number is not too large. It is expected that when the heating intensity reaches a 

certain critical magnitude, the system may go through transition to a secondary state. 

Both the form of such secondary convection as well as conditions leading to its onset are 

not known and should be investigated. 

This thesis considers only corrugations of sinusoidal shape. The convection properties 

associated with other corrugation shapes are not known and should be investigated. It is 

of interest to determine if an optimal corrugation shape exists. The shape which leads to 

the most intense convection is considered optimal. 

Finally, this thesis considers just the two-dimensional corrugations. It would be of 

interest to determine the form of convection associated with the three-dimensional 

corrugations as such are most likely to occur in nature. 
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Appendices 

 

Appendix A. Evaluation of the inner products of Chebyshev 

polynomials and their derivatives, and evaluation of the integrals of 

Chebyshev polynomials. 
Chebyshev polynomials satisfy the following relations 

 

𝑇0(𝑦) = 1, 𝑇1(𝑦) = 𝑦, 𝑇𝑘+1(𝑦) = 2𝑦𝑇𝑘(𝑦) − 𝑇𝑘−1(𝑦)    for 𝑘 ≥ 2, (A.1a) 

𝐷𝑛𝑇𝑘+1(𝑦̂) = 2𝑛𝐷𝑛−1𝑇𝑘(𝑦̂) + 2𝑦̂𝐷𝑛𝑇𝑘(𝑦̂) − 𝐷𝑛𝑇𝑘−1(𝑦̂)          for      𝑛 ≥ 1. (A.1b) 

 

The inner product of two Chebyshev polynomials is defined as 

 

〈𝑇𝑗(𝑦̂), 𝑇𝑘(𝑦̂)〉 = ∫ 𝑇𝑗(𝑦̂)𝑇𝑘(𝑦̂)
1

−1
𝜔(𝑦̂)𝑑𝑦̂, (A.2) 

 

where 𝜔 = (1 − 𝑦̂2)−1/2 is the weight function. Its evaluation results in   

 

〈𝑇𝑗 , 𝑇𝑘〉 =
𝜋

2
𝐶𝑘𝛿𝑖𝑘 {

0            for            𝑗 ≠ 𝑘   
𝜋            for        𝑗 = 𝑘 = 0

𝜋 2⁄        for        𝑗 = 𝑘 > 0
  , 

 

 

 

(A.3) 

 

where 𝛿𝑖,𝑘 is the Kronecker delta and 𝐶𝑘 = {
2,   𝑘 = 0
1,    𝑘 ≥ 1 

. 

 

The first, second, and forth derivatives of a Chebyshev polynomial can be expressed in 

terms of the Chebyshev polynomials as follows: 

 

𝐷𝑇𝑘 = 2𝑘 ∑
1

𝐶𝑙

𝑙=𝑘−1
𝑙=0 𝑇𝑙, 𝑘 − 𝑙 = 𝑜𝑑𝑑, 𝑘 ≥ 𝑖 + 1, (A.4a) 

𝐷2𝑇𝑘 = ∑
1

𝐶𝑙

𝑙=𝑘−2
𝑙=0 𝑘(𝑘2 − 𝑙2)𝑇𝑙, 𝑘 − 𝑙 = 𝑒𝑣𝑒𝑛, 𝑘 ≥ 𝑙 + 2, (A.4b) 
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𝐷3𝑇𝑘 = ∑
1

𝐶𝑙

𝑙=𝑘−2
𝑙=0 𝑘(𝑘2 − 𝑙2) [2𝑙 ∑

1

𝐶𝑧

𝑧=𝑙−1
𝑧=0 𝑇𝑧], 

                             𝑘 − 𝑙 = 𝑒𝑣𝑒𝑛, 𝑙 − 𝑧 = 𝑜𝑑𝑑,    𝑘 ≥ 𝑙 + 2, 𝑙 ≥ 𝑧 + 1, 

 

 

(A.4c) 

𝐷4𝑇𝑘 = ∑
1

𝐶𝑙

𝑙=𝑘−2
𝑙=0 𝑘(𝑘2 − 𝑙2)𝐷2𝑇𝑙, 𝑘 − 𝑙 = 𝑒𝑣𝑒𝑛, 𝑘 ≥ 𝑙 + 2. (A.4c) 

 

The inner products of the derivatives of the Chebyshev polynomials and the Chebyshev 

polynomials by themselves can be evaluated explicitly resulting in the following relations 

 

〈𝑇𝑗 , 𝐷𝑇𝑘〉 = 𝑘𝜋,                                                  for      𝑘 − 𝑗 = 𝑜𝑑𝑑, 𝑘 ≥ 𝑗 + 1, (A.5a) 

〈𝑇𝑗 , 𝐷
2𝑇𝑘〉 = 𝑘(𝑘2 − 𝑗2)

𝜋

2
,                             for   𝑘 − 𝑗 = 𝑒𝑣𝑒𝑛 , 𝑘 ≥ 𝑗 + 2, (A.5b) 

〈𝑇𝑗 , 𝐷
3𝑇𝑘〉 = ∑

1

𝐶𝑖
𝑘(𝑘2 − 𝑙2)[𝜋𝑙]𝑙=𝑘−2

𝑖=0 , 

                     for {
𝑘 − 𝑙 = 𝑒𝑣𝑒𝑛,             𝑘 ≥ 𝑙 + 2
𝑙 − 𝑗 = 𝑜𝑑𝑑,                 𝑙 ≥ 𝑗 + 1

, 

 

(A.5c) 

〈𝑇𝑗 , 𝐷
4𝑇𝑘〉 = ∑

1

𝐶𝑖
𝑘(𝑘2 − 𝑙2) [𝑙(𝑙2 − 𝑗2)

𝜋

2
]  𝑙=𝑘−2

𝑖=0 , 

                     for {
𝑘 − 𝑙 = 𝑒𝑣𝑒𝑛, 𝑘 ≥ 𝑙 + 2 ≥ 𝑗 + 4
𝑖 − 𝑗 = 𝑒𝑣𝑒𝑛,                    𝑙 ≥ 𝑗 + 2

. 

 

 

 

(A.5d) 

 

The integral of the Chebyshev polynomial 𝐼𝑘(𝑦̂) = ∫ 𝑇𝑘(𝑦̂)
𝑦̂

−1
can be evaluated 

analytically resulting in 

 

𝐼0(𝑦̂) = 𝑇1(𝑦̂) + 1, (A.6a) 

𝐼1(𝑦̂) =
𝑇2(𝑦̂)−1

4
. (A.6b) 

𝐼𝑘(𝑦̂) =
1

2
[
𝑇𝑘+1(𝑦̂)−(−1)𝑘+1

𝑘+1
−

𝑇𝑘−1(𝑦̂)−(−1)𝑘−1

𝑘−1
] ,          𝑘 > 1.  

(A.6c) 
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Appendix B. Solution for the long wavelength corrugations (  0) 

placed at the lower plate. 

This Appendix provides definitions of various coefficients used in the development of 

analytic solution for the long wavelength corrugations.  

Coefficients used in Eq. (3.3.2) in Chapter 3: 

 

𝐹1 =
𝑥𝑥

𝑥
2+𝑦

2 = 𝛼2  
2y𝑏

2sin2−𝑦𝑏𝐺cos 

4
(− 1) + 𝑂(𝛼4),     

(B.1) 

𝐹2 =
𝑥

𝑥
2+𝑦

2 = −𝛼 
𝑦𝑏𝐺sin

4
(− 1) + 𝑂(𝛼3),  

𝐹3 =
𝑦

𝑥
2+𝑦

2 =
𝐺

2
− 𝛼2  

y𝑏
2𝐺sin2

8
(− 1)2 + 𝑂(𝛼4),      

 

𝐹4 =
2𝛼𝑥

𝑥
2+𝑦

2 = −𝛼2  
𝑦𝑏𝐺sin

2
(− 1) + 𝑂(𝛼4),  

𝐹5 =
𝛼2

𝑥
2+𝑦

2 = 𝛼2 𝐺2

4
+ 𝑂(𝛼4),                                         

 

𝐹6 =
𝛼

𝑥
2+𝑦

2 = 𝛼 
𝐺2

4
+ 𝑂(𝛼3), 

 

𝐹7 = 𝑥 = −𝛼 
𝑦𝑏 sin

𝐺
(− 1),  

𝐹8 = 𝑦 =
2

𝐺
,  

𝐹9 =
1

𝑥
2+𝑦

2 =
𝐺2

4
− 𝛼2 (

𝑦𝑏𝐺 sin

4
)
2

(− 1)2 + 𝑂(𝛼4),      
 

𝐺 = 2 − 𝑦𝑏𝑐𝑜𝑠,  

 

Coefficients used in Eqs (3.3.10) in Chapter 3: 

 

𝑘1 = (52𝑦𝑏
2 + 64)5 + (−260𝑦𝑏

2 − 320)4 + (88𝑦𝑏
2 + 192)3 + (328𝑦𝑏

2 + 320)2 +

           (−140𝑦𝑏
2 − 256) − 68𝑦𝑏

2- 320, 

𝑘2 = (−4𝑦𝑏
3 − 16𝑦𝑏)

5 + (20𝑦𝑏
3 + 80𝑦𝑏)

4 + (8𝑦𝑏
3 + 416𝑦𝑏)

3 + (−40𝑦𝑏
3 −

            544𝑦𝑏)
2 + (−4𝑦𝑏

3 − 400𝑦𝑏) + 20𝑦𝑏
3 + 464𝑦𝑏 , 

𝑘3 = (−4𝑦𝑏
2)5 + (20𝑦𝑏

2)4 + (−184𝑦𝑏
2)3 + (152𝑦𝑏

2)2 + (188𝑦𝑏
2) − 172𝑦𝑏

2, 

𝑘4 = (𝑦𝑏
3)5 + (−5𝑦𝑏

3)4 + (22𝑦𝑏
3)3 + (−14𝑦𝑏

3)2 + (−23𝑦𝑏
3) + 19𝑦𝑏

3, 

𝑘5 = (−5𝑦𝑏
3 − 80𝑦𝑏)

5 + (25𝑦𝑏
3 + 400𝑦𝑏)

4 + (−14𝑦𝑏
3 − 224𝑦𝑏)

3 + (−26𝑦𝑏
3 −

           416𝑦𝑏)
2 + (19𝑦𝑏

3 + 304𝑦𝑏) + 16𝑦𝑏 , 

(B.2) 
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𝑘6 = 5(𝑦𝑏
4 + 36𝑦𝑏

2 + 64)(7 − 76 −
21

5
5 + 354 + 73 − 1052 +

51

5
 + 77), 

𝑘7 = −5376003 + 16128002 + 537600 − 1612800, 

𝑘8 = −80(𝑦𝑏
3 + 7𝑦𝑏)(

7 − 76 −
21

5
5 + 354 + 73 − 1052 +

51

5
 + 77), 

𝑘9 = −134400𝑦𝑏(
3 − 32 − + 3), 

𝑘10 = 10(𝑦𝑏
4 + 30𝑦𝑏

2)(7 − 76 −
21

5
5 + 354 + 73 − 1052 +

51

5
 + 77), 

𝑘11 = −65𝑦𝑏
3(7 − 76 −

21

5
5 + 354 + 73 − 1052 +

51

5
 + 77), 

𝑘12 = 5𝑦𝑏
4(7 − 76 −

21

5
5 + 354 + 73 − 1052 +

51

5
+ 77), 

𝑘13 = −15(𝑦𝑏
3 +

16

3
𝑦𝑏)(

7 − 76 −
21

5
5 + 354 + 73 − 1052 +

51

5
 + 77), 

𝑘14 = 403200𝑦𝑏(
3 − 32 −  + 3), 
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Appendix C. Solution for the small corrugation amplitude (𝒚𝒃 → 𝟎) 

with corrugations placed at the lower plate. 

 

The unknowns are represented in the form of power expansions in terms of the 

corrugation amplitude of the form 

 

[𝑢, 𝑣, 𝜃, 𝑃] = [𝑢0, 𝑣0, 𝜃0, 𝑃0] + 𝑦𝑏[𝑢1, 𝑣1, 𝜃1, 𝑃1] + 𝑂(𝑦𝑏
2), (C.1) 

 

the expansions are substituted into (3.2.5) in Chapter 3 and the leading order terms are 

extracted resulting in the following system 

 

𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
= 0 ,    

𝜕𝑝0

𝜕𝑥
= 0   −

𝜕𝑝0

𝜕𝑦
+ 𝑃𝑟−1 𝜃0 = 0,     𝑃𝑟−1∇2𝜃0 = 0. (C.2) 

 

The system of order 𝑂(𝑦𝑏
1) has the form of 

 

𝜕𝑢1

𝜕𝑥
+

𝜕𝑣1

𝜕𝑦
= 0,    −

𝜕𝑝1

𝜕𝑥
+ ∇2𝑢1 = 0,     −

𝜕𝑝1

𝜕𝑦
+ ∇2𝑣1 + 𝑃𝑟−1 𝜃1 = 0,     

𝑃𝑟−1∇2𝜃1 − 𝑣1
𝜕𝜃0

𝜕𝑦
= 0.   

(C.3) 

 

Use of expansions (C.1) in the boundary conditions leads to the following expressions: 

 

𝑦 = 1:                                  

𝑢0 + 𝑦𝑏𝑢1 + 𝑂(𝑦𝑏
2) = 0, 𝑣0 + 𝑦𝑏𝑣1 + 𝑂(𝑦𝑏

2) = 0, 𝜃0 + 𝑦𝑏𝜃1 + 𝑂(𝑦𝑏
2) = 0,         

 

(C.4) 

𝑦 = −1 + 𝑦𝑏 cos(𝛼𝑥) ∶  

𝑢0 + 𝑦𝑏𝑢1 + 𝑂(𝑦𝑏
2) = 0, 𝑣0 + 𝑦𝑏𝑣1 + 𝑂(𝑦𝑏

2) = 0,  𝜃0 + 𝑦𝑏𝜃1 + 𝑂(𝑦𝑏
2) = 𝑅𝑎. 

(C.5) 

 

Transfer of (C.5) into the mean plate position results in the following form of these 

boundary conditions: 
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𝑦 = −1 ∶   

𝑢0 +
𝜕𝑢0

𝜕𝑦
𝑦𝑏 cos(𝛼𝑥) + 𝑦𝑏𝑢1 + 𝑂(𝑦𝑏

2) = 0,  

𝑣0 +
𝜕𝑣0

𝜕𝑦
𝑦𝑏 cos(𝛼𝑥) + 𝑦𝑏𝑣1 + 𝑂(𝑦𝑏

2) = 0,  

𝜃0 +
𝜕𝜃0

𝜕𝑦
𝑦𝑏 cos(𝛼𝑥) + 𝑦𝑏𝜃1 + 𝑂(𝑦𝑏

2) = 𝑅𝑎. 

(C.6) 

  

Boundary conditions for the leading-order system have the form of 

 

𝑦 = 1    ∶    𝑢0 = 0, 𝑣0 = 0,  𝜃0 = 0,  (C.7) 

𝑦 = −1 ∶    𝑢0 = 0, 𝑣0 = 0,  𝜃0 = 𝑅𝑎,  (C.8) 

 

and the boundary condition for system of order 𝑂(𝑦𝑏
1) have the form of 

 

𝑎𝑡 𝑦 = 1       ∶    𝑢1 = 0, 𝑣1 = 0, 𝜃1 = 0,  (C.9) 

𝑎𝑡 𝑦 = −1   ∶    𝑢1 = 0, 𝑣1 = 0, 𝜃1 =
𝑅𝑎

2
cos (𝛼𝑥).  (C.10) 

 

Solution of (C.2) subject to (C.7) - (C.8) has the following form 

 

𝑢0 = 0,            𝑣0 = 0,            𝜃0 =
𝑅𝑎

2
(1 − 𝑦),              𝑝0 =

𝑅𝑎

2 𝑃𝑟
(𝑦 −

1

2
𝑦2). (C.11) 

 

Solution of (C.3) subject to (C.9) and (C.10) is assumed to be of the form 

 

[𝑣1, 𝜃1, 𝑃1] = [𝑣1̂, 𝜃1̂, 𝑃1̂](𝑦) cos (𝛼𝑥),      𝑢1 = 𝑢1̂(y) sin(𝛼𝑥). (C.12) 

 

Substitution of (C.12) into (C.3) and elimination of  𝑢1̂, 𝜃1̂, 𝑃1̂ leads to a single 6
th

 order 

equations for 𝑣1̂ in the following form  

 

(𝐷2 − 𝛼2)3𝑣1̂ = −𝛼2
𝑅𝑎

2
𝑣1̂ 

(C.13) 
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subject to boundary conditions of the form 

 

𝑦 = 1       ∶    𝑣1̂ = 0,     D𝑣1̂ = 0,     (𝐷2 − 𝛼2)2 𝑣1̂ = 0,  (C.14) 

𝑦 = −1   ∶    𝑣1̂ = 0,      𝐷𝑣1̂ = 0,    (𝐷2 − 𝛼2)2𝑣1̂ = 𝛼2 𝑅𝑎

2𝑃𝑟
  (C.15) 

 

where D = d/dy. Solution of (C.13) - (C.15) can be expressed in terms of exponentials 

𝑒𝜀𝑦 with the exponents  defined by the roots of the following polynomial 

 

(𝜀2 − 𝛼2)3 = −𝛼2 𝑅𝑎

2
, (C.16) 

 

which have the following forms 

 

𝜀1,2 = ∓𝛼√1 − (
𝑅𝑎

2𝛼4)
1

3,    

𝜀3,4 = ∓𝛼√1 +
1

2
(1 + 𝑖√3)(

𝑅𝑎

2𝛼4)
1

3,    

𝜀5,6 = ∓𝛼√1 +
1

2
(1 − 𝑖√3)(

𝑅𝑎

2𝛼4)
1

3. 

(C.17) 

 

The solution has the form of 

 

𝑣1̂ = ∑ 𝑐𝑘𝑒
𝜀𝑘𝑦

6

𝑘=1

 

(C.18) 

 

where all ck’s are determined numerically from the boundary conditions. The remaining 

unknowns are determined using the following formulae 

 

𝑢1̂ = −
1

𝛼
𝐷𝑣1̂,            𝜃1̂ =

𝑃𝑟

𝛼2
(𝐷2 − 𝛼2)2𝑣1̂,         𝑃1̂ =

1

𝛼2
(𝐷3 − 𝛼2𝐷)𝑣1̂. (C.19) 
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The range of applicability of the above solution can be determined from the plot of 

variations of solution error defined as 

 

||𝐸𝑟||𝑚𝑎𝑥 ≝ 𝑠𝑢𝑝⏟
0≤𝑥≤𝜆,   0≤𝑦≤1

 |𝜙𝑛(𝑥, 𝑦) − 𝜙𝑎(𝑥, 𝑦)|, (C.20) 

 

where  stands for any flow quantity, as a function of yb displayed in Fig. C.1. 

 

 

Figure C.1: Variations of the error of the small-amplitude solution||𝐸𝑟||𝑚𝑎𝑥 for  𝑢, 𝑣, 𝜃, 𝑝 (see 

Eq.C.20 for definition) as a function of the corrugation amplitude for  = 1.53, Ra = 200, yt = 0. 

 

Physical quantities of interest are: 

 

𝜎𝑦𝑝,𝐿 = −
3𝑅𝑎

4 𝑃𝑟
− 𝑦𝑏 [

𝑅𝑎

𝑃𝑟
+ 𝑃1̂(−1)] cos(𝛼𝑥) + 𝑂(𝑦𝑏

2), (C.21) 

𝐷𝑖𝑓1 = 𝜎𝑦𝑝,𝐿(0) − 𝜎𝑦𝑝,𝐿(𝜋) = −2𝑦𝑏 [
𝑅𝑎

𝑃𝑟
+ 𝑃1̂(−1)] + 𝑂(𝑦𝑏

3),  (C.22) 

𝐷𝑖𝑓2 = 𝐻𝑦,𝑢𝑝𝑝𝑒𝑟 − 𝐻𝑦,𝑙𝑜𝑤𝑒𝑟 = −
4𝑦𝑏

𝜋
[
𝑅𝑎

𝑃𝑟
+ 𝑃1̂(−1)] + 𝑂(𝑦𝑏

2), (C.23) 

𝑁𝑢𝑎𝑣 =
𝑅𝑎

2
  +𝑂(𝑦𝑏

2)  ,       𝑁𝑢𝑙𝑜𝑐,𝐿 =
𝑅𝑎

2
− 𝑦𝑏𝐷𝜃1̂(−1)𝑐𝑜𝑠(𝛼𝑥) + 𝑂(𝑦𝑏

2). (C.24) 
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Appendix D. Solution for the long wavelength corrugations (  0) 

placed at both plates. 

 

This Appendix provides definitions of various coefficients used in the development of 

analytic solution for the long wavelength corrugations as well as definitions of 

differential systems describing different levels of approximations. 

 

Coefficients used in Eqs (3.3.2) in Chapter 3: 

 

𝐹1 =
𝑥𝑥

𝑥
2+𝑦

2 = 𝛼2  
(2𝑀3

2+𝑀1𝐺)+𝑀2𝐺+2𝑀3𝑀4

4
+ 𝑂(𝛼4),   

𝐹2 =
𝑥

𝑥
2+𝑦

2 = 𝛼 
𝐺(𝑀3+𝑀4)

4
+ 𝑂(𝛼3), 

(D.1) 

𝐹3 =
𝑦

𝑥
2+𝑦

2 =
𝐺

2
− 𝛼2  

𝐺(𝑀3+𝑀4)
2

8
+ 𝑂(𝛼4),               

𝐹4 =
2𝛼𝑥

𝑥
2+𝑦

2 = 𝛼2   
𝐺(𝑀3+𝑀4)

2
+ 𝑂(𝛼4), 

 

𝐹5 =
𝛼2

𝑥
2+𝑦

2 = 𝛼2   
𝐺2

4
+ 𝑂(𝛼4),                                 

𝐹6 =
𝛼

𝑥
2+𝑦

2 = 𝛼 
𝐺2

4
+ 𝑂(𝛼3), 

 

𝐹7 = 𝑥 = 𝛼  
𝑀3+𝑀4

𝐺
,                                               

𝐹8 = 𝑦 =
2

𝐺
, 

 

𝐹9 =
1

𝑥
2+𝑦

2 =
𝐺2

4
− 𝛼2  

𝐺2(𝑀3+𝑀4)
2

16
+ 𝑂(𝛼4),           

𝐺 = 2 + 𝑀1, 

 

𝑀1 = 𝑦𝑡𝑐𝑜𝑠(+ 𝛺𝐶) − 𝑦𝑏𝑐𝑜𝑠,                               

𝑀2 = 𝑦𝑡𝑐𝑜𝑠(+ 𝛺𝐶) + 𝑦𝑏𝑐𝑜𝑠, 

 

𝑀3 = 𝑦𝑡𝑠𝑖𝑛(+ 𝛺𝐶) − 𝑦𝑏𝑠𝑖𝑛,                                

𝑀4 = 𝑦𝑡𝑠𝑖𝑛(+ 𝛺𝐶) + 𝑦𝑏𝑠𝑖𝑛. 

 

 

The leading-order systems are: 
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O(𝛼0) 𝜕𝑣0

𝜕
= 0,   

𝜕2𝑢0

𝜕2 −
𝐺

2
𝑣0

𝜕𝑢0

𝜕
−

𝐺2

4

𝜕𝑝−1

𝜕
−

𝐺 (𝑀3+𝑀4)

4

𝜕𝑝−1

𝜕
= 0,   

𝜕𝑝−1

𝜕
= 0, 

 
𝜕2𝜃0

𝜕2 −
Pr𝐺

2
𝑣0

𝜕𝜃0

𝜕
= 0 

(D.2a) 

𝑢0(, ±1) = 0,   𝑣0(, ±1) = 0, 𝜃0(, −1) = 𝑅𝑎,     𝜃0(, 1) = 0, 

𝜕𝑃−1

𝜕
|
𝑚𝑒𝑎𝑛

= 0. 

(D.2b) 

 

O(𝛼1) 𝜕𝑣1

𝜕
= 0,  

𝜕2𝑢1

𝜕2 −
𝐺2

4

𝜕𝑝0

𝜕
−

 𝐺(𝑀3+𝑀4)

4

𝜕𝑝0

𝜕
= 0,   −

𝐺

2

𝜕𝑝0

𝜕
+

𝐺2

4𝑃𝑟
𝜃0 = 0,   

𝜕2𝜃1

𝜕2 −
Pr𝐺

2
𝑣1

𝜕𝜃0

𝜕
= 0, 

(D.3a) 

𝑢1(, ±1) = 0,     𝑣1(, ±1) = 0,    𝜃1(, ±1) = 0, 
𝜕𝑃0

𝜕
|
𝑚𝑒𝑎𝑛

= 0. (D.3b) 

 

O(𝛼2) 𝜕𝑣2

𝜕
+

(𝑀3+𝑀4)

2

𝜕𝑢1

𝜕
+

𝐺

2

𝜕𝑢1

𝜕
= 0,   

𝜕2𝑢2

𝜕2 −
𝐺2

4

𝜕𝑝1

𝜕
−

𝐺(𝑀3+𝑀4)

4

𝜕𝑝1

𝜕
= 0,  

 −
𝐺

2

𝜕𝑝1

𝜕
+

𝐺2

4𝑃𝑟
𝜃1 = 0, 

(D.4a-c) 

𝜕
2
𝜃2

𝜕2 +
(2𝑀3

2+𝑀1𝐺)+𝑀2𝐺+2𝑀3𝑀4

4

𝜕𝜃0

𝜕
−

Pr𝐺 (𝑀3+𝑀4)

4
𝑢1

𝜕𝜃0

𝜕
−

Pr𝐺

2
𝑣2

𝜕𝜃0

𝜕
= 0, 

(D.4d) 

𝑢2(, ±1) = 0,     𝑣2(, ±1) = 0,    𝜃2(, ±1) = 0,       
𝜕𝑃1

𝜕
|
𝑚𝑒𝑎𝑛

= 0. (D.4e) 

 

Coefficients used in Eqs (3.5.2) - (3.5.4) in Chapter 3: 

 

𝐿𝑢 = 24 [𝑦𝑡
2𝑦𝑏(

2 +
4

3
−

1

5
)𝑐𝑜𝑠3𝛺𝐶 −

1

2
𝑦𝑡

2𝑦𝑏(
2 +

4

3
−

1

5
)𝑐𝑜𝑠𝛺𝐶 +

8

3
𝑦𝑡𝑦𝑏] 𝑠𝑖𝑛𝛺𝐶, 

𝐿𝑆𝑢,1  =   −4𝑦𝑏𝑦𝑡
2 (2 − 4−

1

5
)𝑐𝑜𝑠2𝛺𝐶 − [𝑦𝑡(3𝑦𝑏

2 + 𝑦𝑡
2 + 16)2 + 𝑦𝑡(−4 𝑦𝑏

2 +

             4 𝑦𝑡
2 + 64)− 

3

5
 𝑦𝑏

2𝑦𝑡 −
1

5
 𝑦𝑡

3 −
16

5
𝑦𝑡 ] 𝑐𝑜𝑠𝛺𝐶 + (𝑦𝑏

3 + 4𝑦𝑡
2𝑦𝑏 + 16𝑦𝑏)(

2 −

             4−
1

5
), 

𝐿𝐶𝑢,1  =  [2𝑦𝑏𝑦𝑡
2 (2 + 12−

1

5
) 𝑐𝑜𝑠𝛺𝐶 − (𝑦𝑏

2𝑦𝑡 + 𝑦𝑡
3 + 16𝑦𝑡)

2 − (20𝑦𝑏
2𝑦𝑡 + 4𝑦𝑡

3 +

             64𝑦𝑡)+
1

5
𝑦𝑏

2𝑦𝑡 + 
1

5
𝑦𝑡

3 +
16

5
𝑦𝑡] 𝑠𝑖𝑛𝛺𝐶, 

𝐿𝑆𝑢,2  =  8 [−2𝑦𝑡
2 (2 + 4−

1

5
) 𝑐𝑜𝑠2𝛺𝐶 + 2 (2 −

1

5
)𝑦𝑏𝑦𝑡𝑐𝑜𝑠𝛺𝐶 + (𝑦𝑡

2 − 𝑦𝑏
2)2 +

             4(𝑦𝑏
2 + 𝑦𝑡

2)+  
1

5
(𝑦𝑏

2 − 𝑦𝑡
2) ], 

(D.5) 
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𝐿𝐶𝑢,2  =  16𝑦𝑡 [−𝑦𝑡(
2 + 4−

1

5
)𝑐𝑜𝑠𝛺𝐶 + 𝑦𝑏(

2 −
1

5
)] 𝑠𝑖𝑛𝛺𝐶, 

𝐿𝑆𝑢,3  = −4𝑦𝑡
3 (2 + 4−

1

5
) 𝑐𝑜𝑠3𝛺𝐶 − 3𝑦𝑡 [(𝑦𝑏

2 − 𝑦𝑡
2)2 + (−

4

3
𝑦𝑏

2 − 4𝑦𝑡
2)−

               
1

5
𝑦𝑏

2 +
1

5
𝑦𝑡

2] 𝑐𝑜𝑠𝛺𝐶 + 𝑦𝑏
3(2 − 4−

1

5
), 

𝐿𝐶𝑢,3 = 3 [−
4

3
𝑦𝑡

3 (2 + 4−
1

5
) 𝑐𝑜𝑠2𝛺𝐶 + 2𝑦𝑡

2𝑦𝑏 (2 +
4

3
−

1

5
) 𝑐𝑜𝑠𝛺𝐶 + 𝑦𝑡

3 (
1

3
2 +

               
4

3
−

1

15
) −  𝑦𝑏

2𝑦𝑡(
2 − 

4

3
−

1

5
)] 𝑠𝑖𝑛𝛺𝐶, 

𝐿𝑣   =  2𝑦𝑡𝑦𝑏
2 [(𝑦𝑏 +

5

2
𝑦𝑡)

3 −
5

2
𝑦𝑏

2 + (3𝑦𝑏 −
61

2
𝑦𝑡)−

19

2
𝑦𝑏] 𝑐𝑜𝑠2𝛺𝐶 − 5𝑦𝑡𝑦𝑏 [(𝑦𝑏

2 +

             𝑦𝑡
2 + 8)3 + 

5

2
 (𝑦𝑡

2 − 𝑦𝑏
2)2 +

1

5
(−𝑦𝑏

2 − 𝑦𝑡
2 − 168)+

1

10
𝑦𝑏

2 −
1

10
𝑦𝑡

2] 𝑐𝑜𝑠𝛺𝐶 +

             
1

4
(5𝑦𝑏

4 − 8𝑦𝑡𝑦𝑏
3 + (10𝑦𝑡

2 +  80)𝑦𝑏
2 + 5𝑦𝑡

4 + 80𝑦𝑡
2)3 +

1

4
(−25𝑦𝑏

4 + 20𝑦𝑏
3𝑦𝑡 +

             25𝑦𝑡
4 − 400𝑦𝑏

2 + 400𝑦𝑡
2)2 +

1

4
(19𝑦𝑏

4 − 24𝑦𝑡𝑦𝑏
3 + (198𝑦𝑡

2 + 304)𝑦𝑏
2 + 19𝑦𝑡

4 +

             304𝑦𝑡
2)+

1

4
𝑦𝑏

4 + 19𝑦𝑡𝑦𝑏
3 −

1

4
𝑦𝑡

4 + 4𝑦𝑏
2 − 4𝑦𝑡

2, 

𝐿𝑆𝑣,1 = −13𝑦𝑡 [−2𝑦𝑡𝑦𝑏(
3 −

5

13
2 −

125

13
−

43

13
) + (𝑦𝑏

2 + 𝑦𝑡
2 +

16

13
)3 + (−

75

13
𝑦𝑏

2 +

               5𝑦𝑡
2 +

80

13
)2 + (15𝑦𝑏

2 +
35

13
𝑦𝑡

2 −
16

13
)−

69

13
𝑦𝑏

2 −
17

13
𝑦𝑡

2 −
80

13
] 𝑠𝑖𝑛𝛺𝐶, 

𝐿𝐶𝑣,1 = −26𝑦𝑡
2𝑦𝑏 [3 −

5

13
2 −

125

13
−

43

13
] 𝑐𝑜𝑠2𝛺𝐶 + 39𝑦𝑡 [(𝑦𝑏

2 +
1

3
𝑦𝑡

2 +
16

39
)3 +

               (−
5

3
𝑦𝑏

2 +
5

3
𝑦𝑡

2 +
80

39
)2 + (−

55

39
𝑦𝑏

2 +
35

39
𝑦𝑡

2 −
16

39
)−

80

39
+

17

39
𝑦𝑏

2 −

               
17

39
𝑦𝑡

2] 𝑐𝑜𝑠𝛺𝐶 − 13𝑦𝑏 [(𝑦𝑏
2 + 𝑦𝑡

2 +
16

13
)3 + (−5𝑦𝑏

2 +
75

13
𝑦𝑡

2 −  
80

13
)2 + (

35

13
𝑦𝑏

2 +

               15𝑦𝑡
2 −

16

13
)+

17

13
𝑦𝑏

2 +
69

13
𝑦𝑡

2 +
80

13
], 

𝐿𝑆𝑣,2  =  2𝑦𝑡 {2𝑦𝑡
2𝑦𝑏 (3 −

5

2
2 − 21−

19

2
) 𝑐𝑜𝑠2𝛺𝐶 − 3𝑦𝑡 [

1

3
𝑦𝑡

2(+ 5)(𝜂2 − 1) +

               (𝑦𝑏
2 +

4

3
)3 + (−

10

3
𝑦𝑏

2 +  
20

3
)2 − (𝑦𝑏

2 +
100

3
)−

14

3
𝑦𝑏

2 −
116

3
] 𝑐𝑜𝑠𝛺𝐶 +

                𝑦𝑏 [𝑦𝑡
2 (3 +

15

2
2 + 19+

9

2
) + (𝑦𝑏

2 + 4)3 −  
15

2
𝑦𝑏

22 + (19𝑦𝑏
2 + 60)−

               
9

2
𝑦𝑏

2]} 𝑠𝑖𝑛𝛺𝐶, 

𝐿𝐶𝑣,2 = −4𝑦𝑡
3𝑦𝑏 (3 −

5

2
2 − 21−

19

2
) 𝑐𝑜𝑠3𝛺𝐶 + 𝑦𝑡 [(23 + 102 − 2− 10)𝑦𝑡

3 +

               𝑦𝑡(6𝑦𝑏
23 − 20𝑦𝑏

22 − 6𝑦𝑏
2 − 28𝑦𝑏

2 + 83 + 402 − 200 − 232) + 𝑦𝑏
3(3 −

               
5

2
2 + 3−

19

2
)] 𝑐𝑜𝑠2𝛺𝐶 +

1

2
𝑦𝑡

4(−23 −  102 + 2+ 10) +
1

2
𝑦𝑡

2[−83 +

               40(𝑦𝑏
2 − 1)2 + 200+ 56𝑦𝑏

2 + 232] − 𝑦𝑏
3𝑦𝑡(

3 −
5

2
2 + 3−

19

2
) + 𝑦𝑏

2(−

               1)[(𝑦𝑏
2 + 4)2 + (−4𝑦𝑏

2 − 16)− 5𝑦𝑏
2 − 116], 

𝐿𝑆𝑣,3 = 3𝑦𝑡 [
4

3
𝑦𝑡

2(3 + 52 + 47+ 43)𝑐𝑜𝑠
2𝛺𝐶 − 2𝑦𝑡𝑦𝑏 (3 +

5

3
2 −

19

3
+

               
43

3
) 𝑐𝑜𝑠𝛺𝐶 −

1

3
𝑦𝑡

2(3 + 52 +  47+ 43) + 𝑦𝑏
2(3 −

5

3
2 −

19

3
−

43

3
)] 𝑠𝑖𝑛𝛺𝐶, 



110 
 

 
 

𝐿𝐶𝑣,3 = −4𝑦𝑡
3(3 + 52 + 47+ 43)𝑐𝑜𝑠

3𝛺𝐶 + 6𝑦𝑡
2𝑦𝑏 (3 +

5

3
2 −

19

3
+

43

3
) 𝑐𝑜𝑠

2
𝛺𝐶 −

             3𝑦𝑡 [𝑦𝑡
2(−3 − 52 − 47− 43) + 𝑦𝑏

2(3 −
5

3
2 −

19

3
−

43

3
)] 𝑐𝑜𝑠𝛺𝐶 +

             𝑦𝑏[𝑦𝑡
2(−33 − 52 + 19− 43) + 𝑦𝑏

2(3 − 52 + 47− 43)], 

𝐿𝑆𝑣,4   =  3𝑦𝑡
2 {

2

3
𝑦𝑡

2(3 + 52 + 23+ 19)𝑐𝑜𝑠
3𝛺𝐶 −

4

3
𝑦𝑡𝑦𝑏 (3 +

5

2
2 + 3+

               
19

2
) 𝑐𝑜𝑠

2
𝛺𝐶 + [−

1

3
𝑦𝑡

2(3 +  52 + 23+ 19) + 𝑦𝑏
2(3 −

11

3
)] 𝑐𝑜𝑠𝛺𝐶 +

               
1

3
𝑦𝑡𝑦𝑏(

3 +
5

2
2 + 3+

19

2
)} 𝑠𝑖𝑛𝛺𝐶, 

𝐿𝐶𝑣,4  = −2𝑦𝑡
4(3 + 52 + 23+ 19)𝑐𝑜𝑠

4𝛺𝐶 + 4𝑦𝑡
3𝑦𝑏 (3 +

5

2
2 + 3+ 

19

2
) 𝑐𝑜𝑠

3
𝛺𝐶 −

             2𝑦𝑡 [𝑦𝑡
3(−3 −  52 − 23− 19) +

3

2
𝑦𝑏

2𝑦𝑡(
3 −

11

3
) + 𝑦𝑏

3(3 −
5

2
2 + 3−

             
19

2
)] 𝑐𝑜𝑠2𝛺𝐶 + 𝑦𝑡𝑦𝑏 [𝑦𝑡

2(−33 −
15

2
2 −  9−

57

2
) + 𝑦𝑏

2(3 −
5

2
2 + 3−

             
19

2
)] 𝑐𝑜𝑠𝛺𝐶 +

1

4
𝑦𝑡

4(−3 − 52 − 23− 19) + 
1

4
𝑦𝑡

2(6𝑦𝑏
23 − 22𝑦𝑏

2) +

             2𝑦𝑏
3𝑦𝑡(

3 −
5

2
2 + 3−

19

2
) −

1

4
𝑦𝑏

4(3 − 52 + 23− 19), 

𝐿𝑆𝑣,5 = 𝐿𝐶𝑣,5 = 𝐿𝑆𝑣,6 = 0, 

𝐿𝐶𝑣,6   =  
1

2
𝑦𝑏

3𝑦𝑡(2
3 − 52 + 6− 19)𝑠𝑖𝑛2𝛺𝐶, 

𝐿𝑝 = −6𝑦𝑡
2𝑐𝑜𝑠2𝛺𝐶 − 8𝑦𝑡 (−

5

4
2 +

5

2
+ 𝑦𝑏 +

1

4
) 𝑐𝑜𝑠𝛺𝐶 − 10(𝑦𝑏 − 2)2 + 20(𝑦𝑏 −

               2)− 6𝑦𝑏
2 + 2𝑦𝑏. 

𝐿𝑆𝑝,1 = 𝑦𝑡(5
2 − 10− 9)(−𝑦𝑡𝑐𝑜𝑠𝛺𝐶 + 𝑦𝑏 − 2)𝑠𝑖𝑛𝛺𝐶, 

𝐿𝐶𝑝,1 = 5(−𝑦𝑡𝑐𝑜𝑠𝛺𝐶 + 𝑦𝑏 − 2) [−𝑦𝑡 (2 − 2−
9

5
) 𝑐𝑜𝑠𝛺𝐶 + 𝑦𝑏 (2 − 2+

11

5
)], 

 

Coefficients 𝐿𝜃, 𝐿𝑆𝜃,𝑛, 𝐿𝐶𝜃,𝑛 are not given due to their length. Instead, 𝜃2 is expressed 

combining all polynomials of  in the form shown below as this is more convenient for 

computations: 

 

𝜃2 =
𝑅𝑎

8
[𝑍1

7 + 𝑍2
6 + 𝑍3

5 + 𝑍4
4 + 𝑍5

3 + 𝑍6
2 + 𝑍7 + 𝑍8], (D.6a) 

[
 
 
 
 
 
 
 
 
 
 𝑍1

𝑍2

𝑍3

𝑍4

𝑍5

𝑍6

𝑍7

𝑍8]
 
 
 
 
 
 
 
 
 
 

=

(

 
 
 
 
 
 
 
 
 
 

𝑅𝑎𝐺3

[
 
 
 
 
 
 
 
 
 
 
 
 

−1

80640
0

1

26880
0

0
−1

11520
0

1

3840
1

19200
0

−1

6400
0

0
1

2304
0

−1

768
−1

11520
0

1

3840
0

0
−1

768
0

1

256
19

403200
0

−19

134400
0

0
11

11520
0

−11

3840]
 
 
 
 
 
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
 
 
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1

6
0

1

3
0

0
1

2
0 1

−1

6
0

−1

3
0

0
−1

2
0 −1]

 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 

×

[
 
 
 
 
 𝑀1𝐺
𝑀2𝐺

𝑀3
2

𝑀3𝑀4]
 
 
 
 
 

. 

(D.6b) 
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Coefficients of Eqs (3.5.6) in Chapter 3: 

 

𝐿𝑣𝐿 = −5𝑦𝑡𝑦𝑏𝑠𝑖𝑛𝛺𝐶, (D.7) 

𝐿𝑆𝑣𝐿,1 = 12𝑦𝑏 + 8𝑦𝑡𝑐𝑜𝑠𝛺𝐶,               𝐿𝑆𝑣𝐿,2 = 4𝑦𝑡
2𝑐𝑜𝑠2𝛺𝐶 + 𝑦𝑡𝑦𝑏𝑐𝑜𝑠𝛺𝐶 − 3𝑦𝑏

2 −  2𝑦𝑡
2,  

𝐿𝐶𝑣𝐿,1 = 8𝑦𝑡𝑠𝑖𝑛𝛺𝐶,                               𝐿𝐶𝑣𝐿,2 = 2𝑦𝑡
2 sin(2𝛺𝐶) + 𝑦𝑡𝑦𝑏𝑠𝑖𝑛𝛺𝐶,  

𝐿𝑣𝑈 = −5𝑦𝑡𝑦𝑏𝑠𝑖𝑛𝛺𝐶,  

𝐿𝑆𝑣𝑈,1 = 8𝑦𝑏 + 12𝑦𝑡𝑐𝑜𝑠𝛺𝐶,               𝐿𝑆𝑣𝑈,2 = 6𝑦𝑡
2𝑐𝑜𝑠2𝛺𝐶 − 𝑦𝑡𝑦𝑏𝑐𝑜𝑠𝛺𝐶 − 2𝑦𝑏

2 − 3𝑦𝑡
2,  

𝐿𝐶𝑣𝑈,1 = 12𝑦𝑡𝑠𝑖𝑛𝛺𝐶,                           𝐿𝐶𝑣𝑈,2 = 3𝑦𝑡
2 sin(2𝛺𝐶) − 𝑦𝑡𝑦𝑏𝑠𝑖𝑛𝛺𝐶,  

𝐿𝑝𝐿 = −6𝑦𝑡(2 − 𝑦𝑏 + 𝑦𝑡 𝑐𝑜𝑠 𝛺𝐶)𝑠𝑖𝑛𝛺𝐶,  

𝐿𝑆𝑝𝐿,1 = −6𝑦𝑡
2𝑐𝑜𝑠2𝛺𝐶 + 𝑦𝑡(−16𝑦𝑏 + 56)𝑐𝑜𝑠𝛺𝐶 − 12𝑦𝑏

2 − 3𝑦𝑡
2 − 56𝑦𝑏 + 120, 

𝐿𝑆𝑝𝐿,2 = 𝑦𝑡(−32𝑦𝑏 + 12)𝑐𝑜𝑠𝛺𝐶 + 26𝑦𝑏
2 + 3𝑦𝑡

2 − 52𝑦𝑏, 

 

𝐿𝐶𝑝𝐿,1 = −3𝑦𝑡
2 sin(2𝛺𝐶),                     𝐿𝐶𝑝𝐿,2 = −12𝑦𝑡𝑦𝑏𝑠𝑖𝑛𝛺𝐶,  

𝐿𝑝𝑈 = 6𝑦𝑏(2 − 𝑦𝑏 + 𝑦𝑡 𝑐𝑜𝑠 𝛺𝐶)𝑠𝑖𝑛𝛺𝐶,  

𝐿𝑆𝑝𝑈,1 = 12𝑦𝑡
2𝑐𝑜𝑠3𝛺𝐶 + (16𝑦𝑡𝑦𝑏 + 24𝑦𝑡)𝑐𝑜𝑠2𝛺𝐶 + (12𝑦𝑏

2 − 24𝑦𝑏 + 40)𝑐𝑜𝑠𝛺𝐶, 

𝐿𝑆𝑝𝑈,2 = 28𝑦𝑡
2𝑐𝑜𝑠3𝛺𝐶 − (22𝑦𝑡𝑦𝑏 − 56𝑦𝑡)𝑐𝑜𝑠2𝛺𝐶 − (14𝑦𝑡

2 + 6𝑦𝑏
2 − 12𝑦𝑏)𝑐𝑜𝑠𝛺𝐶 −

               28𝑦𝑡 + 14𝑦𝑡𝑦𝑏, 

 

𝐿𝐶𝑝𝑈,1 = 12 [𝑦𝑡
2𝑐𝑜𝑠2𝛺𝐶 + (

4

3
𝑦𝑡𝑦𝑏 + 2𝑦𝑡) cos𝛺𝐶 + 𝑦𝑏

2 − 2𝑦𝑏 +
10

3
] sin𝛺𝐶, 

𝐿𝐶𝑝𝑈,2 = (28𝑦𝑡cos𝛺𝐶 + 6𝑦𝑏)(2 − 𝑦𝑏 + 𝑦𝑡 𝑐𝑜𝑠 𝛺𝐶)sin𝛺𝐶. 

 

 

Coefficients of Eqs (3.5.11) in Chapter 3: 

 

𝐿1 = −6𝑦𝑡(2 − 𝑦𝑏 + 𝑦𝑡  𝑐𝑜𝑠 𝛺𝐶)𝑠𝑖𝑛𝛺𝐶,                      

𝐿2 = −(2 − 𝑦𝑏 + 𝑦𝑡  𝑐𝑜𝑠 𝛺𝐶)(−6𝑦𝑡𝑐𝑜𝑠𝛺𝐶 + 26𝑦𝑏), 

(D.8) 

𝐿3 = −6𝑦𝑡
2𝑐𝑜𝑠2𝛺𝐶 + 𝑦𝑡(28 − 8𝑦𝑏)𝑐𝑜𝑠𝛺𝐶 − 6𝑦𝑏

2 − 28𝑦𝑏 + 60,                         

𝐿4 = 14𝑦𝑡(2 − 𝑦𝑏 + 𝑦𝑡  𝑐𝑜𝑠 𝛺𝐶)𝑠𝑖𝑛𝛺𝐶, 

 

𝐿5 = −(2 − 𝑦𝑏 + 𝑦𝑡  𝑐𝑜𝑠 𝛺𝐶)(14𝑦𝑡𝑐𝑜𝑠𝛺𝐶 + 6𝑦𝑏),      

𝐿6 = −6𝑦𝑡
2𝑐𝑜𝑠2𝛺𝐶 − 𝑦𝑡(8𝑦𝑏 + 12)𝑐𝑜𝑠𝛺𝐶 − 6𝑦𝑏

2 + 12𝑦𝑏 − 20. 
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