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Abstract 

Common buckthorn (Rhamnus cathartica) is a competitive Eurasian woody shrub 

currently invading North America. Buckthorn thickets reduce native diversity and may 

reduce mycorrhizal diversity through the release of allelochemicals. Two aspects of 

buckthorn’s invasional biology are explored: 1) identifying fungi associating with 

buckthorn, and 2) determining buckthorn’s allelochemical impacts on arbuscular 

mycorrhizae in forest soils and an open-greenhouse experiment.  

Twenty-three fungi were found growing on buckthorn, including Armillaria mellea 

s.l., Hypoxylon fuscum, H. perforatum, Nectria cinnabarina, and Cylindrobasidium 

evolvens. Data from invaded and uninvaded sugar maple (Acer saccharum) soils revealed 

that arbuscular mycorrhizal fungi (AMF) diversity fluctuated as a function of season or 

potting disturbance, but the presence of buckthorn had little effect on AMF development 

in maple roots. Buckthorn may be a mycorrhizal generalist, and changes in AMF 

abundance may be more influenced by underlying stochastic soil processes and 

aboveground plant composition than by buckthorn and its allelochemicals. 

 

Keywords: arbuscular mycorrhizal fungi, Rhamnus cathartica, Acer saccharum, 

allelochemicals, PCR, small-subunit RNA gene, Illumina MiSeq, bioinformatics, R 

programming, phylogenetics 
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Chapter 1: Introduction 

Non-native plants are commonly introduced into North America through landscape 

trades such as horticulture, agriculture, and forestry (Reichard and Hamilton 1997). As of 

1997, 235 intentionally introduced woody plant species have naturalized in North America 

(Reichard and Hamilton 1997). In some cases, these naturalized species proliferate and 

persist to the detriment of the environment (Mack et al. 2000). Invasive species are thought 

to be the second biggest cause of biodiversity loss, next to habitat loss (Heneghan et al. 

2006, IUCN 2014). Invasive plants, in particular, have been implicated in disrupting forest 

ecosystems by altering species composition (Heneghan et al. 2006), chemically modifying 

soils (Barto et al. 2011), and hindering interspecies interactions (Heneghan et al. 2006).  

There are more species of invasive plants in Ontario than any other Canadian 

province (OMNRF 2012). The Ontario Invasive Plants Council highlights 16 species of 

terrestrially invading plants that pose a threat to the province’s natural diversity 

(http://www.invadingspecies.com/invaders/plants-terrestrial/). Of the 5 267 plots surveyed 

in southern Ontario between the period of 2005 to 2010, 11% of the top four dominant 

plant species were invasive (Puric-Mladenovic et al. 2012). Common buckthorn (Rhamnus 

cathartica) was the most commonly recorded (in 333 plots), followed by purple loosestrife 

(Lythrum salicaria) (85 plots), European frog-bit (Hydrocharis morsus-ranae) (78 plots), 

Tartarian honeysuckle (Lonicera tatarica) (66 plots), garlic mustard (Alliaria petiolata) 

(50 plots), cow vetch (Vicia cracca) (39 plots), and bittersweet nightshade (Solanum 

dulcamara) (33 plots). Buckthorn was considered to be an aggressive invader, 

attaining 9% average cover in all plots where it was identified, and reaching a maximum 

cover of 80% (Puric-Mladenovic et al. 2012). In London, Ontario, the title for “most 

common tree” is held by two invasive species—European Buckthorn by number of 

stems and Norway Maple by total size (UFORE 2012). Buckthorn’s effects on its 

surrounding environment is still an understudied subject, and there is little information 

on the native fungi that it may have interactions with.  
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1.1 COMMON BUCKTHORN (RHAMNUS CATHARTICA)  

1.1.1 Invasion History 

Rhamnus cathartica L. (Common Buckthorn, European Buckthorn) was first imported to 

North America from its native Eurasian range during the early 1800s for its medicinal 

qualities, namely the cathartic properties of its fruits (see Chapter 3, Section 3.1.2) (Kurylo 

and Endress 2012). It was so commonly seen in New England by the early 19th century that 

it was assumed to be a native shrub in many plant catalogues (Kurylo and Endress 2012). 

Most of its spread within North America was due to human-mediated movement as an 

ornamental, hedge, and/or shelterbelt plant because of its growth rate, hardiness, ease of 

propagation, and low susceptibility to herbivory (Kurylo and Endress 2012). An 1824 issue 

of the New England Farmer mentioned Common Buckthorn’s superiority as a hardy hedge 

species and, by 1864, Toronto nursery catalogs listed buckthorn as an available hedge plant 

(Kurylo and Endress 2012). By 1877, this species was present in cultivated grounds near 

Castleton, northeast of Toronto (Kurylo and Endress 2012) and, by the 1930s, it had been 

introduced (and subsequently abandoned) in western Saskatchewan as a potential 

shelterbelt species (Archibold et al. 1997). Now, R. cathartica is identified as a noxious 

weed in six US states and two Canadian provinces (NRCS 2013; 

http://www.omafra.gov.on.ca/english/crops/facts/info_buckthorn.htm).  

1.1.2 Ecosystem Impacts 

Buckthorn is able to outcompete and displace native understory vegetation, transforming 

the forest into dense monoculture thickets (Becker et al. 2013) that are not found in its 

native area in Europe (Knight 2006). Exotic species that form monocultures are typically 

rarer in their native ranges. It is believed that the growth of an invasive in non-native 

environments is promoted by altering its interaction with native plants. In some cases, 

invasive plants owe their success to the production of biochemicals that are novel in the 

invaded range (Vandenkoornhuyse et al. 2003). A study on buckthorn’s soil ecosystem 

impacts was done by Stinson et al. (2006), who observed a reduction of native diversity 

through the alteration of interspecies interactions or ecosystem properties. Buckthorn is 

adaptable to a wide range of soil moisture and light levels; it has an extended range of 
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optimal photoperiods, high seed production, effective seed dispersal through frugivorous 

birds, high seedling germination, low seedling mortality rates, and produces allelopathic 

compounds (Au and Tuchscherer 2014). These and other advantages allow buckthorn to 

compete vigorously for limiting resources in native forested communities, with removal 

being costly and difficult once established. 

1.1.3 Changes in Soil Nutrient Availability 

Buckthorn has high foliar nitrogen (Heneghan et al. 2007), a common limiting nutrient in 

many soil habitats and its leaves remain green after they are shed (Becker et al. 2013). 

Litter high in nitrogen typically has more simple sugars that make it attractive to microbial 

decomposers as well as detritivores (ranging from protozoans to earthworms) (Stinson et 

al. 2006).   

Buckthorn thickets are associated with elevated soil nitrogen, carbon, pH, and water 

content. Invaded areas show twice the percentage of soil nitrogen (mean, 0.54%) than open 

areas (native species woodlots) (mean, 0.27%) and 80% more carbon (mean 6.83%) than 

open areas (mean, 3.81%), which was hypothesized to occur due to the rapid incorporation 

of nitrogen-rich buckthorn litter into the soil (Heneghan et al. 2006). Soil pH was 

significantly higher in invaded areas as was gravimetric water content —40% higher in 

buckthorn areas (Heneghan et al. 2006). Site-specific differences were seen in extractable 

nitrogen and nitrogen mineralization (ammonification, nitrification and total nitrogen 

mineralization) rates, alongside a slightly lower overall carbon:nitrogen ratio (Heneghan 

et al. 2006). Since this was not a manipulative study, distinguishing the cause and effect of 

buckthorn invasion in regards to changes in soil nutrient levels was not possible, but other 

studies demonstrate the ability of invasive plants to alter soil chemical properties (nitrogen 

and carbon) (Ehrenfeld et al. 2001; Vitousek and Walker 1989; Wall et al. 2002; Witkowski 

1991).  

1.1.4 Competitive Growth Advantages 

Some invasive species are able to utilize resources when native plants are inactive, or are 

able to use the available resources more efficiently (Zhou et al. 2004). Comparing the 
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ecophysiological responses of two invasive shrubs, R. cathartica and Lonicera x bella 

(Showy fly honeysuckle), to two native shrubs, Cornus racemosa (gray dogwood) and 

Prunus serotina (black cherry), Zhou et al. (2004) demonstrated an invasive plant’s ability 

to take advantage of high light situations. Of the four species, buckthorn showed the 

greatest response to increased light availability, with greater trunk diameter increments in 

open wetland systems than closed canopies (Gourley 1985; Zhou et al. 2004). Rhamnus 

cathartica is in leaf an average of 58 days longer than gray dogwood and black cherry 

(Catling and Mitrow 2012), during which it gains most of its annual carbon (Zhou et al. 

2004). Early emerging buckthorn saplings shade the ground layer with the potential to 

inhibit photosynthesis in smaller native herbs and seedlings during critical life stages. 

Buckthorn saplings are light tolerant but capable of growing in shaded conditions until 

canopy openings trigger a rapid growth response (Catling and Mitrow 2012) .  

1.1.5 Reproductive Success 

Buckthorn takes at least 9–20 years to reach reproductive age (Gourley 1985). It is a 

dioecious plant, with female trees being noted for their prolific seed production, which can 

be from 2 to 6 times higher in open fields than in closed canopy environments (Catling and 

Mitrow 2012). The seeds set between late July to early August and are generally untouched 

by most birds in both naturalized and native ranges (Catling and Mitrow 2012). Often, 

berries remain on the parent plant until late winter or early spring, leading to large seed 

banks below the trees, some reported to contain up to 5000 seeds/m2 (Becker et al. 2013). 

After the removal of the parent tree due to natural or restoration events, seeds in the seed 

banks may germinate in canopy openings for up to 2–6 years (Becker et al. 2013; Converse 

1984; Delanoy and Archibold 2007; Pergams and Norton 2006), with seed viability 

increasing after digestion and/or flesh removal (Catling and Mitrow 2012). High 

germination success of 85–95% have been seen under the parent tree (Catling and Mitrow 

2012).  

1.1.6 Interspecies Interactions 

Multiple invasive species originating from the same native ranges typically maintain their 

associations in invaded ranges, and may lead to a compounded decline in ecosystem health 
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because of advantageous co-evolutionary interactions. These synergistic interactions are 

termed ‘invasional meltdowns’ (Simberloff and Von Holle 1999). Meltdowns are best 

viewed at the community level, where there is an increased impact and/or rate of 

establishment of the invasive species (Simberloff and Von Holle 1999). 

Buckthorn thickets are characterized by a conspicuous reduction in the litter layer 

in comparison to native forests (Heimpel et al. 2010), with soil exposure occurring within 

the first few weeks of spring (Stinson et al. 2006). Buckthorn leaf litter has ideal chemical 

and physical properties, including high nitrogen and calcium, low tannins, and 

comparatively softer leaves that are easier for consumption by decomposers (Heimpel et 

al. 2010). This makes the leaf litter layer under buckthorn-dominant canopies an ideal 

habitat for the invasive European earthworm (dew worm), Lumbricus terrestris (Hale et al. 

2005). It is hypothesized that native earthworm populations did not survive the Pleistocene 

glacial events, and that most of the northern current-day populations originate from 

invasive European species (Heimpel et al. 2010; Stinson et al. 2006). The detrimental 

impacts of invasive earthworms on woodland habitats has been confirmed (Catling and 

Mitrow 2012; Groffman et al. 2004; Gundale 2002). In one instance, a negative correlation 

was observed between the earthworm, Lumbricus rubellus, and an endangered fern, 

Botrychium mormo, due to the loss of mycorrhizae in the litter layer stemming from 

increased earthworm activity (Gundale 2002). Different European earthworm species 

predominate in disturbed habitats, depending on the type of disturbance. The invasive dew 

worm dominates woodland and fencerow soil faunal communities, whereas other 

earthworm species prefer agricultural and adjacent woodlot sites (Hale et al. 2005)  

A litter decomposition study using buckthorn, sugar maple (Acer saccharum), red 

oak (Quercus rubra), and white oak (Quercus alba) leaves was done in locations 

characterized by low, medium, and high abundances of dew worms (Stinson et al. 2006). 

Earthworms have observable distribution heterogeneity within heterogeneous forest 

systems (Groffman et al. 2004; Stinson et al. 2006). Earthworms displayed preference for 

buckthorn and sugar maple litter bags, which resulted in the accelerated decomposition rate 

of both leaf types, whereas the decomposition of red and white oak litter was slower, 

indicating lower immediate litter quality (Heneghan et al. 2007). Despite the heterogeneous 
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distribution of earthworm populations, there is a substantial mass loss of R. cathartica litter 

in bags that allowed earthworm access; 50% of the litter decomposed in less than 3 months, 

demonstrating preferential decomposition despite it being in areas of low earthworm 

numbers (Stinson et al. 2006).  

Lumbricus terrestris prefers the shadier, cooler understories that are found in 

buckthorn monoculture micro-environments. The bare soil resulting from increased 

earthworm activity is ideally suited for the germination and survival of buckthorn seedlings 

(Knight et al. 2007; Stinson et al. 2006). Lower germination success are seen with 

buckthorn seedlings that fall in more competitive native understory environments because 

of increased herbaceous plant density and larger litter O-horizons (typically 10–15 cm 

thick) (Frelich et al. 2006). The types of mycorrhizae (see section 1.2) that typically 

associate with buckthorn roots are not negatively affected by L. terrestris in comparison to 

those that are associated with native tree species (e.g., sugar maples) (Catling and Mitrow 

2012). 

The associations between R. cathartica and other invasive species go beyond the 

changes in soil organic matter (SOM) and disturbances in leaf litter dynamics (Heimpel et 

al. 2010). To begin, buckthorn creates favourable conditions for invasive European 

earthworm growth and reproduction, which in turn assists with the spread of the introduced 

Asian flatworm (Bipalium adventitium), a specialist earthworm predator. Buckthorn is also 

the primary overwintering host for oat crown rust (Puccinia coronata), which is a 

problematic plant pathogen for cultivated oats (Avena sativa) and other cereal grains (Liu 

and Hambleton 2013). Rhamnus cathartica is also the obligate overwintering host for the 

invasive soybean aphid (Aphis glycines). Buckthorn growth, alongside the increased 

planting of soybean crop—the aphid’s summer host—has led to the aphid becoming the 

most important soybean pest in North America since 2000 (Ragsdale et al. 2004). The 

soybean aphid is also linked to three other invasive predatory insects, the lady beetle 

(Harmonia axyridis), the ground beetle (Agonum muelleri), and the Asian parasitoid of the 

soybean aphid (Aphelinus certus) (Heimpel et al. 2010).  
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Finally, the primary dispersal of buckthorn seeds is done by a number of bird 

species including the European starling (Sturnus vulgaris) (Heimpel et al. 2010). 

Rhamnaceae seeds in native European ranges are typically dispersed by birds (Godwin 

1943); however, European starlings are not one of the main dispersal agents in Germany 

or the United Kingdom (Heimpel et al. 2010). Up to 8.3% of the stomach contents of 

European starlings caught in New York state consisted of common buckthorn berries 

(Lindsey 1939). The purgative effects of buckthorn fruit on starlings isn’t yet known, so 

there may only be a partial link between the European starling and the spread of buckthorn 

in North America (Heimpel et al. 2010). 

1.2 ARBUSCULAR MYCORRHIZAL FUNGI (GLOMEROMYCOTA) 

1.2.1 AMF and Plant Symbiosis 

Arbuscular mycorrhizal fungi (AMF) represent a phylum of fungi, the Glomeromycota 

(Schüßler et al. 2001), in which four orders have been described: the Glomerales, the 

Diversisporales, the Archaeosporales and the Paraglomerales (Krüger et al. 2009). These 

fungi are obligate biotrophs and form associations with approximately 67% of surveyed 

land plants (Brundrett 2009) based on a 400 million-year-old reciprocal exchange system 

(Taylor et al. 1995). AMF provides limiting nutrients (primarily phosphorus) in exchange 

for carbon assimilates (van der Heijden and Horton 2009, Smith and Read 2008) by 

creating arbuscules, tree-like nutrient exchange structures surrounded by the host 

membrane, within root cortical cells (Bever et al. 2001; Chandramohan et al. 2002). 

Members of the suborder Glomineae also forms vesicles (storage organs) within plant 

cortical cells (Bever et al. 2001). Buckthorn associates with AMF in both native and 

invaded ranges (Knight 2006), but details on the functional and taxonomic types of the 

associations are unknown. Other major mycorrhizal groups include ectomycorrhizal 

(ECM) and ericoid mycorrhizal fungi (Smith et al. 1997), but these are not the focus of this 

study since they do not associate with buckthorn (Au and Tuchscherer 2014; Knight 2006). 

The arbuscule, surrounded by the host membrane, is a structure with high surface 

area where the fungus primarily provides phosphates in exchange for plant-derived 

carbohydrates (Bever et al. 2001). Since AMF are obligate biotrophs, anywhere from 4% 
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to 17% of the host’s fixed carbohydrates may be taken (Dong et al. 2005). Some nitrogen 

and trace elements (Cu and Zn) can also be absorbed by the extraradical mycelium (ERM) 

of AMF (Smith and Read 2008). Nitrogen sources taken up by the ERM include NH4
+ 

(Bennett and Wallsgrove 1994; Hawkins et al. 2000), NO3
− (Bennett and Wallsgrove 1994; 

Hawkins et al. 2000; Walker et al. 2003) and organic nitrogen sources (Hawkins et al. 2000; 

Leigh et al. 2009; Mithöfer and Boland 2012).  

A reciprocal reward system has been observed where an influx of carbon from the 

plant to the fungal partner results in increased P uptake and transfer to the host (Ellison and 

Barreto 2004; Hasan and Wapshere 1973). Similarly, inorganic and organic nitrogen 

uptake and transport in the ERM are enhanced in response to experimental addition of 

sucrose (carbohydrates) in the root compartment (Fellbaum et al. 2012). This demonstrates 

the ability of AMF to benefit the plant by providing the most limiting nutrient (P or 

nitrogen) as a response to increases in carbon supply (Fellbaum et al. 2012). 

1.2.2 Methods of Dispersal 

Arbuscular mycorrhizal fungi, like other mycorrhizae, propagate using infective hyphae, 

hyphal fragments, or asexual spores (Bever et al. 2001). The colonization of a root, leading 

to the formation of vesicles and arbuscules within the cortical cells, may also lead to the 

extension of the hyphal network from one root to another or to different hosts (Bever et al. 

2001). Spores are formed within the root cortex or the soil, having the potential to colonize 

another host with an optional period of dormancy in between (Bever et al. 2001).  

Mycorrhizal fungi colonize and connect roots of similar or different plant species, 

constructing a mycelial network for resource distribution regardless of plant size, identity, 

age, or forest dominance (van der Heijden and Horton 2009). Apart from nutrient 

acquisition, arbuscular mycorrhizae influence plant growth, improve plant resistance to 

stressors such as drought, prevent nutrient leaching, facilitate bacterial dispersion, and bind 

soil particles (van der Heijden and Horton 2009).  
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1.2.3 Host Specificity and AMF Diversity 

Mycorrhizal diversity may not directly reflect aboveground plant diversity. In some cases, 

species-poor coniferous forests may have hundreds of ECM fungi (Trappe 1997), but 

species-rich tropical or temperate forests may only boast one to two dozen AMF species 

(Allen et al. 1995).  

 Aboveground plant community structure affects fungal community composition 

(Bever et al. 2001), and vice versa. There are two explanations for the maintenance of AMF 

diversity within a forest community: (1) all of the species have similar ecological niches 

within the plant roots, or (2) fungal species are ecologically distinct and occupying 

different niches (Bever et al. 2001). The first hypothesis holds true if diversity is 

maintained by random drift processes, and has invariably (possibly incorrectly) been 

substantiated by the observation of single fungal isolates colonizing multiple plant hosts, 

and single plant species hosting multiple fungal species (Bever et al. 2001). However, 

multiple fungi have been shown to differ in their effects on plant hosts (Nemec 1979; 

Powell et al. 1982). The second hypothesis assumes that individual fungi are more 

competitive in their respective roles, which means that multiple niches within a habitat 

maintain a diverse community (Bever et al. 2001). Individual species play different roles 

in plant communities (phosphorus facilitation, pathogen protection, etc.), so a full 

complement of fungi would improve the plant community’s productivity (Newsham et al. 

1995). 

 The question of whether AMF display narrow or wide ranges of host specificity has 

been explored with trap cultures in soils from various ecosystems, including tallgrass 

prairies, sand dunes, California grasslands, chalk grasslands, and agricultural fields (Bever 

et al. 2001). In all systems, fungi that were “trapped” by various host plants sporulated 

differently depending on the plant species (Bever et al. 1996). Bever et al. (2001) showed 

dominance of the mycorrhiza Acaulospora colossica when grown with only field garlic 

(Allium vineale), but the same mycorrhiza was only a minor component of a community 

containing planted Plantago lanceolata. Scutellospora calospora displayed the reverse 

relationship. A similar distribution of mycorrhizae relating to host specificity was also 
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observed in vivo (Bever et al. 1996; Schultz 1996). Differences in AMF temporal 

abundance were also observed; some were active in the fall and winter months, resulting 

in sporulation in late spring, and others were active in the spring and summer months, and 

sporulated at the end of summer (Dumbrell et al. 2011; Santos-González et al. 2007; 

Schultz et al. 1999).  

Plants can exude chemical signals that attract mycorrhizal fungi when they lack 

nutrients, or can reduce root colonization and mycorrhizal phosphorus uptake during high 

nutrient availability (van der Heijden and Horton 2009). Not all plants equally benefit from 

mycorrhizae (van der Heijden and Horton 2009, Barto et al. 2011), and multiple AMF 

species may simultaneously associate with a single plant, each with its own cost-benefit 

relationship (van der Heijden and Horton 2009). Some woody species, such as maple (Acer 

saccharum, A. rubrum) and ash (Fraxinus americana) (Barto et al. 2011), and understory 

herbs (van der Heijden and Horton 2009) are thought to be AMF dependent, especially 

during seedling emergence and establishment (Barto et al. 2011). Perennials can be 

colonized by AMF in as little as 3 to 6 days after seedling emergence (van der Heijden and 

Horton 2009). 

Within the complex dynamics of plant-fungal relationships, there is the potential to 

develop positive and negative feedback growth loops. In a positive feedback dynamic, the 

fungus that promotes the highest growth rate of the host will in turn have a higher relative 

growth rate on the host, if it is the preferred associated species (Bever et al. 2001). Positive 

feedback may lead to a local loss of mycorrhizal diversity and contribute to the small-scale 

heterogeneous spatial structuring of forest populations, but also promote the stability of 

large scale diversity, where each host supports the growth of a different mycorrhiza (Bever 

et al. 1997). Alternatively, local and large scale plant and fungal diversity may be 

maintained if the fungus promoting the growth of one host has a higher growth rate on 

another host species. This is a negative feedback dynamic, where there is a reduction in the 

benefit a plant species receives from its fungal partner over time (Bever et al. 2001).  
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1.2.4 Habitat Disturbance 

Fungi have a strong effect on forest plant succession (Gange et al. 1990; Janos 1980). 

Nonmycotrophic plants dominate in environments where disturbance reduces the density 

of infective fungal parts (spores and hyphae) (Medve 1984). With the eventual invasion of 

fungi, plants that are facultative or obligate fungal symbionts should have a higher 

competitive advantage (Janos 1980). Plant restoration benefits from the inoculation of 

these fungi into the soil (Aerts and Honnay 2011; Korb et al. 2003). Evidence for fungal 

successional dynamics has also been observed (Johnson et al. 1991; Kernaghan 2005), 

indicating that the presence or absence of fungi may also influence later stages of plant 

succession.  

1.3 RESEARCH OBJECTIVES 

Several studies on the mechanisms of invasion and the ecological impacts of invasive 

species in North America view sugar maple communities as an integral part of native 

temperate forest ecosystems (Barto et al. 2011; Stinson et al. 2006). In this study, sugar 

maple (Acer saccharum Marsh.) stands were surveyed to observe the changes in native soil 

AMF communities in the midst of buckthorn (Rhamnus cathartica L.) invasion because 

maples associate with and rely on AMF during all life stages (Barto et al. 2011).  

This project explores two aspects of the biology of the invasive European buckthorn 

in Southern Ontario. It will document 1) the aboveground fungi that are associated with 

buckthorn, and 2) buckthorn’s belowground impacts on arbuscular mycorrhizal fungi 

(AMF) associated with sugar maple trees and seedlings through allelochemical exudates 

and leachates.  

There is limited information on buckthorn-associated fungi in Canada; many of the 

documented observations originate in Europe and the USA. Preliminary surveys in 

London, Ontario, and the surrounding area identified multiple undocumented species on 

buckthorn, which necessitated a more thorough analysis.  

Co-evolutionary resistance to buckthorn allelochemicals developed by European 

AMF communities may not yet have occurred in invaded North American ranges. It is 
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hypothesized that the addition of buckthorn allelochemicals to naïve sugar maple seedlings 

will result in a change in the native root-associated AMF communities, benefitting the 

growth of tolerant mycorrhizae over those that are not. Differences in allelochemical 

tolerance will be observed through changes in community composition and abundance 

between treated and untreated samples. 
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Chapter 2: Fungi associated with Rhamnus cathartica in Southwestern Ontario 

2.1 INTRODUCTION AND OBJECTIVES 

Common buckthorn (Rhamnus cathartica) thrives in a variety of habitats due to its high 

tolerance to a wide range of light and soil conditions (Heneghan et al. 2006). It is often 

found in woodlots and open fields that are subject to disturbances, growing into dense 

single-species stands that effectively choke out native understory plants (Catling and 

Mitrow 2012; Knight et al. 2007). Buckthorn seeds are mainly distributed with the help of 

birds and animals that consume the fruits. Seeds have high germination success and 

seedlings are difficult to eradicate once established (Catling and Mitrow 2012). This 

becomes problematic when buckthorn grows in or near diverse native communities as it is 

a better competitor for light and resources (Klionsky et al. 2011). The reduction of native 

plant biodiversity is a monumental problem because many organisms have evolved a 

dependence on specific plant hosts to survive. Ignoring the spread of invasive plants in 

small areas may lead to a decline in the health of an entire ecosystem, and so the 

development of cost-effective buckthorn removal strategies is crucial. 

2.1.1 Chemical and Mechanical Buckthorn Removal 

The estimated annual cost of damages and invasive species management in Canada in the 

forest sector is $20 billion, and $2.2 billion for invasive plants in the agricultural sector 

(Environment Canada 2012). In London, Ontario, buckthorn accounts for about 19.5% of 

the urban forest tree population and is the most prevalent tree in five of the seven land use 

types in the city (UFORE 2012). It has the highest occurrence in disturbed habitats, 

including medium/high density residential areas, natural areas/open spaces, and industrial 

areas (UFORE 2012). 

Eradication of buckthorn from invaded plant communities can be difficult for a 

number of reasons. Established buckthorn populations can have densities of several 

thousand stems per hectare, cut stumps will readily resprout unless chemically treated, 

seedbank densities and germination rates can be high, with seed viability remaining for 2–

6 years after the adults are removed, and there may be a constant supply of seeds brought 
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in by birds feeding in untreated areas (Heimpel et al. 2010). Buckthorn sapling removal 

from invaded areas and maintenance of uninvaded areas requires constant monitoring 

(Converse 1984; Larkin et al. 2014), which may be expensive and/or unfeasible depending 

on the level of degradation of a site.  

In 2004, the City of London began experiments in woodlots and municipal parks to 

determine the best management practices for buckthorn. Mechanical techniques spanning 

a three-year removal program showed promise: the first year would remove all seed-

bearing stems, the second year would remove any stems above the knee, and the third 

would remove any stems above the ankle (Bergsma and De Young 2012). There are 

multiple options for mechanical control of buckthorn, as outlined by the Upper Thames 

River Conservation Authority (UTRCA 2007), which include cutting/mowing, girdling, 

pulling/excavation, burning, underplanting, and restoring water levels. Common buckthorn 

vigorously resprouts from the buds at the base of the stem after cutting. Revisiting and 

cutting buckthorn every year in early June and late August for three successive years may 

be effective enough to weaken the root systems (Converse 1984). Girdling buckthorn plants 

involves cutting into the phloem (inner bark) of the plant but leaving the xylem (sapwood) 

intact. This allows the roots to send nutrients up to the aboveground structures, but does 

not allow the delivery of photosynthates to the roots, and may take anywhere from one to 

two years for the plant to die (UTRCA 2007). The removal of seedlings and small plants 

can be done when the soil is moist using hand pulling or excavation with a grubbing hoe, 

although this technique may activate dormant seeds within the seedbank. Burning 

buckthorn and the restoration of water levels back to historic conditions, specifically in 

wetlands, has been shown to control buckthorn (UTRCA 2007) but are not techniques that 

are currently used in London. Common management programs within London run by the 

UTRCA typically rely on basal bark sprays, manual pulling, and foliar control, with 

consideration to the size of the treatment area, stem density, sensitivity of the habitat in the 

management area and adjacent land, and availability of resources for any given project 

(Pers. comm. Brandon Williamson, UTRCA, June 2016). Following any invasive removal, 

underplanting the disturbed soil with native woody species is required to encourage the 

natural rehabilitation of the area. However, it was seen that underplanting with sugar maple 

seedlings in oak woods of Morton Arboretum Illinois had poor success under buckthorn 
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canopies (Converse 1984), indicating that the choice of rehabilitative species is important 

and there may be legacy effects within the soil.  

Chemical applications of glyphosate (Roundup®) or triclopyr (Garlon®) on cut 

stumps are a common strategy for buckthorn removal (Converse 1984; Reinartz 1997), but 

also require multiple applications over a period of years to prevent germinating seeds from 

re-establishing. Unfortunately, vigorous re-sprouting from a cut buckthorn stem is common 

(Pers. comm. Alastair Biscaia, Credit Valley Conservation, September 2016), and stump 

applications of Garlon RTU or glyphosate may be ineffective or unfeasible, especially in 

wet conditions (Dornbos Jr. and Pruim 2012) or due to the ineffective mode of delivery 

(spray bottles). Within London, Ontario, chemical control is limited to late fall or early 

winter, while buckthorn is still growing, to reduce harm done to dormant native plants. 

Stump and basal bark chemical applications employ Garlon RTU (pre-mixed at 23% 

solution in mineral spirits) and foliar applications use RoundUp Weathermax mixed in 

water (Pers. comm. Brandon Williamson, UTRCA, June 2016). The Thames Talbot Land 

Trust (TTLT) employ glyphosate (Roundup®) on cut buckthorn stumps when temperatures 

are above ~10 °C, and Garlon RTU on cut stumps or painted onto the base of the tree (up 

to ~15 cm in diameter) during colder weather (pers. comm. Daria Koscinski, TTLT, 

February 2017).  Both RoundUp Weathermax and Garlon RTU have proven effective at 

controlling adult and seedling buckthorns, and have the advantage of reduced labour and 

physical disturbance to the soil and groundcover compared to cutting or pulling methods. 

However, chemical control may not always be feasible due to pesticide spray drift affecting 

the surrounding environment, especially near water, or harming human health (Bales and 

Krick 2012). 

2.1.2 Biocontrol agents 

There is growing interest in developing biocontrol agents for buckthorn and other invasive 

plants. Traditional methods involve the testing and release of co-evolved host pathogens 

from its native Eurasian range, or the application of natural pathogens to target the invasive 

species early in the growing season to kill it or reduce its competitive ability (Templeton 

1979). Arthropod species including internal feeders and sap suckers (those that feed from 
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the interior or the exterior of the plant, respectively) were prioritized for biological control 

of buckthorn, but none were monospecific at the genus or species level, targeting native 

plants in the genus Rhamnus as well (Gassmann and Tosevski 2014). The discovery of 

‘Candidatus Phytoplasma rhamni’, an obligate bacterial pathogen that lives in the phloem 

tissue of buckthorn and causes Buckthorn Witches’ Broom (BWB) phytoplasma in 

Germany, sparked interest for use as a biocontrol. However, high transmission risks of 

BWB to the native Rhamnus alnifolia in North America (Gassmann and Tosevski 2014) as 

well as the occurrence of the phytoplasma in 25% of surveyed R. cathartica in Europe 

without BWB symptoms means it is a weak and unreliable pathogen-host relationship for 

effective use as a biocontrol (Jovic et al. 2011).  

The use of fungal pathogens as a biocontrol (mycoherbicides) is a viable solution 

for buckthorn management. This technology has already been studied for invasive 

management programs, with the first agent, the rust Puccinia chrondrillina, being released 

in Australia in 1972 to control Chrondilla juncea (skeleton weed) (Hasan and Wapshere 

1973). Since then, over 25 introductions have been made, with a large number having a 

major impact on invasive alien weed populations (Evans 2002), but the technology is still 

in its early stages. Pathogenic opportunistic fungi that are present in invaded ranges can be 

cultured and formulated as a product to be applied in the appropriate season. Commercial 

mycoherbicides have already been introduced in North America: Colletotrichum 

gloeosporioides is used for the control of northern jointvetch (Aeschynomene virginica), 

and fresh preparations of Phytophthora palmivora are used against stranglervine (Morrenia 

odorata) (Ellison and Barreto 2004). The natural fungal plant pathogen Chondrostereum 

purpureum sold under the Chontrol Peat Paste (CPP) label is intended for use on broad-

leaved plants as a biocontrol. Applications to buckthorn during the early spring on girdled 

trees resulted in a 90% mortality (Au and Tuchscherer 2014), although caution may be 

required in some settings since Chondrostereum is known to cause silver leaf disease of 

commercial fruit trees (Agrios 2005). Seasonal limitations on the use of this product 

resulted in lower success in late summer and late fall periods due to temperatures beyond 

the optimal 15–25 °C range, as well as low efficacy on cut stump applications (Au and 

Tuchscherer 2014). In Manitoba, CPP paste applied onto girdled stems resulted in 70-90% 

of stems showing no regrowth in the following spring, whereas paste application on cut 
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stumps higher regrowth (Nature Manitoba 2014). It was suspected that the initial available 

colonisable area available to the fungus increased its efficacy the next growing season 

(Nature Manitoba 2014) Similar opportunistic pathogenic fungi may be used in a spore 

mixture and applied to buckthorn to help control regrowth after the use of mechanical 

controls.  

One solution may be the use of a “Multiple-Pathogen Strategy” (MPS) to create a 

mixture consisting of at least three targeted pathogenic fungi that may increase the 

effectiveness of the product as well as the mortality of plants (Chandramohan 1999). This 

will allow for compensation by other species if one pathogen fails, reduce the chance of 

resistance development in the target weed, and favour the potential synergism between 

pathogens to enhance efficacy (Chandramohan 1999). The simultaneous control of 

northern jointvetch (Aeschynomene virginica) and winged waterprimrose (Jussiaea 

decurrens) was achieved through the addition of Colletotrichum gloeosporioides f. sp. 

aeschynomene and C. gloeosporioides f. sp. jussiae (Boyette et al 1979). A pre-injection 

of Alternaria macrospora allowed for the control of spurred anoda (Anoda cristata) by 

Fusarium lacteritium (Crawley and Walker 1983). In 2002, three grass pathogens 

(Drechslera gigantea, Exserohilum longirostratum, and E. rostratum) were tested 

individually and as a mixture for the control of 7 grasses in a mixed plot, as well as a 

separate field trial of guineagrass (Megathyrsus maximus). The three-pathogen mixture 

was just as effective as single isolates in controlling both trials, with no guineagrass 

regrowth for ~10 weeks (Chandramohan et al. 2002). Spore suspensions on the same three-

pathogen mixture from Chandramohan et al. (2002) was further tested on green foxtail 

(Setaria viridis), which resulted in a noticeable damage on seedlings one day after 

treatment and substantial seedling death after one week (Casela 2010). Constraints on the 

type of pathogen strains used to develop bioherbicides include finding those that are 

virulent, destructive, and have high host specificity (Chandramohan 1999). Without a 

comprehensive, up-to-date list of fungi that naturally occur on the target species, the 

development of successful bioherbicides would be difficult. 
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2.1.3 Fungi on Buckthorn  

Of all known insect and fungal species associated with buckthorn, only a few occur within 

its naturalized range. A total of 30 fungal species have been reported on R. cathartica, of 

which just five species: Cucurbitaria rhamni (Barr 1990) and four members of the Puccinia 

coronata complex (Conners 1967; Ginns 1986; Jin and Steffenson 1999; Liu and 

Hambleton 2013), have been documented in Canada (Table 2.1). A few additional fungi, 

such as Cercospora rhamni, Nectria cinnabarina, Phyllosticta rhamni, Pyrenopeziza 

morthieri [as Pezicula morthieri], and Schizophyllum commune, have been noted on other 

species of Rhamnus in Canada (Conners 1967; Ginns 1986). 

2.1.4 Aims and Objectives 

A thorough survey of fungi on buckthorn has yet to be done for Southern Ontario 

populations. Many of the documented cases outside of Europe are found in the USA, 

thereby increasing the likelihood of similar observations being made in Canada. The 

objective of this chapter is to survey and identify fungi growing on buckthorn (Rhamnus 

cathartica) in open- and closed- canopied environments in the London and surrounding 

area. 
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Table 2.1. Fungi associated with dead or living common buckthorn (Rhamnus 

cathartica); summarizing records from the Systematic Botany and Mycology Laboratory 

(SBML) Database (Farr and Rossman), Diseases and Pests of Ornamental Plants (Pirone 

1978), and Agriculture Canada (Conners 1967; Ginns 1986; Liu and Hambleton 2013) 

Fungus Location(s) 
Asteromella vogelii Europe 
Berkleasmium dudkae Europe 
Biscogniauxia simplicior Europe 
Cercospora rhamni [= Passalora rhamni] Europe, USA (New Jersey, 

New York, Wisconsin) 
Cladosporium aecidiicola Europe 
Coniothyrium dumeei Europe 
Cucurbitaria rhamni Canada (Ontario) and Europe 
Diaporthe fibrosa Europe 
Dothiorella sp. USA (North Dakota) 
Erysiphe friesii [= Microsphaera friesii] Europe and Asia 
Eutypa lata Europe 
Eutypella extensa Europe 
Fomitiporia punctata [= Phellinus punctatus] Europe, USA (North Dakota) 
Leucostoma persoonii [as Cytospora leucostoma] Europe 
Lophiostoma rugulosum Europe 
Lophiostoma viridarium [as L. desmazieri] Europe 
[Oidium sp. - anamorphic Erysiphe] Europe 
Peniophora violaceolivida Europe 
Phellinus rhamni 
Phyllactinina alnicola [= Microsphaera alni] 

Europe 
USA (Wisconsin) 

Phyllactinia guttata [= Phyllactinia suffulta] Europe 
Phyllosticta cathartici Europe 
Phyllosticta rhamni Europe and USA (Wisconsin) 
Phyllosticta rhamnicola Europe 
Phyllosticta sp.  USA (Wisconsin) 
Phymatotrichopsis omnivora USA 
Phytophthora ramorum USA (California) 
Puccinia coronata [= P. lolii and P. rhamni, and 
includes material previously named Aecidium rhamni, 
Dicaeoma rhamni, P. coronifera and P. aecidii-
cathartici; P. coronata var. avenae and P. coronata var. 
coronata] 

Europe, Canada, and USA 

Puccinia coronati-hordei [= P. coronata var. hordei] Canada (Manitoba, 
Saskatchewan) and USA 
(North Dakota, South Dakota) 

Puccinia coronati-brevispora Canada, Europe 
Puccinia coronati-agrostis Canada, Europe 
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Septoria rhamni-catharticae  Europe 
Sphaeropsis rhamni   USA (Oklahoma) 
Tubercularia sp. [anamorphic Nectria] USA (North Dakota)  

 
 
 

2.2 MATERIALS AND METHODS 

2.2.1 Sampling Regions 

Macrofungi were sampled in multiple locations within or around the city of London, 

Ontario (Table 2.2, Figure 2.1). At least 100 buckthorns from both open habitats and within 

closed canopy forest were sampled within each location in early spring, summer, fall, and 

early winter. A random wandering survey design was used. Fungal fruiting bodies, 

including a section of the substrate bark, branch, or leaf, were collected in individual paper 

bags, air dried at low heat (~35 °C) with forced air in a commercial food dehydrator, and 

stored in the lab.  

2.2.2 Fungi Identification 

Samples were rehydrated with a drop of 95% ethanol followed by deionized water for 1 

minute, thinly sectioned and mounted on slides. Mountants for microscopy included KOH 

(2% aqueous) and Melzer’s reagent (1.5 g potassium iodide, 20 mL distilled H2O, 0.5 g 

iodine, 20 g chloral hydrate), the latter to stain for amyloidity (Kirk et al. 2008). 

Morphological features were recorded and photographed. Identification keys were used to 

identify the sample to genus and species level. Vouchers are labeled with collector’s name 

and date in the UWO Herbarium. 
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Table 2.2. Sampling locations, coordinates, and seasons visited for all fungi on common buckthorn (Rhamnus cathartica) 

surveys. 

Location Co-ordinates  
(UTM, Zone 17T) Year/season visited 

Five Points Forest - Driedger Tract, near Putnam, ON 505949mE 4761949mN 2014: fall 
AFAR Trail1 west of Western University campus, 
London ON 477085mE 4761818mN 2013: fall; 2015 spring 

Kains Woods ESA, London, ON 471261mE 4758802mN 2014: spring; fall 
Kilally Meadows ESA, London, ON 482984mE 4765179mN 2014: fall 
Komoka Provincial Park, London, ON 467893mE 4754927mN 2014: spring, summer, fall; 2015: spring 

Medway Valley Heritage Forest ESA, London, ON 476649mE 4761462mN 2013: fall, winter; 2014: spring, summer, 
fall; 2015: spring 

rare Charitable Research Reserve, Cambridge, ON 552191mE 4803346mN 2014: spring, summer, fall; 2015 summer 
Sifton Bog ESA, London, ON 473676mE 4757663mN 2013: fall; 2014: spring, fall,  
Warbler Woods ESA, London, ON 471258mE 4756433mN 2014: summer, 2015: spring 
Westminster Ponds ESA, London, ON 481962mE 4755073mN 2014: fall; 2015 summer 

1 Trail joins with Medway Valley Heritage Forest ESA
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Figure 2.1. Survey locations for fungi on common buckthorn (Rhamnus cathartica) 

within A) Komoka Provincial Park (London ON), rare Charitable Research Reserve 

(Cambridge, ON), and Five Points Forest – Driedger Tract (Putnam, ON) (17T 509350mN 

and 4783358mW. Google Earth. April 9, 2013); B) Environmentally Significant Areas 

(ESA) in London, ON (17T 478815mN and 4870148mW. Google Earth. September 27, 

2013) 

A 

B 

A 
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2.3 RESULTS 

The survey of macrofungi growing on common buckthorn (Rhamnus cathartica) resulted 

in the addition of 23 additional species from a total of 45 observations to the known list 

(Table 2.1). Two species (Puccinia coronata and Cucurbitaria rhamni) had been 

previously identified in Canada and the USA (Farr and Rossman, Barr 1990, Conners 1967; 

Ginns 1986, Liu and Hambleton 2013), bringing the total number of fungi known on 

buckthorn to 52 species, with 28 found in Canada (Table 2.3). 

A cluster of the honey mushroom (Armillaria mellea s.l.) root pathogen was seen 

(Figure 2.2 A) at the base of a fallen buckthorn in Sifton Bog ESA (Sifton Bog), a year 

after characteristic rhizomorphs were seen underneath the peeled bark of another dead 

buckthorn. The teleomorph stage of the coral spot fungus group (Nectria cinnabarina) 

(Figure 2.2 B & C), a weak twig and branch pathogen, had not been seen on buckthorn in 

North America prior to this survey, but its anamorph Tubercularia sp. had been seen in 

North Dakota (Farr and Rossman). During the survey period, the teleomorphic coral spot 

was seen in nearly all sampling locations in the fall. The canker fungi Hypoxylon fuscum 

and H. perforatum were found in Medway Valley Heritage ESA (Medway Valley), and in 

Sifton Bog (Figure 2.2 D & E) on dying buckthorn branches without bark. A weak 

opportunistic branch pathogen, Cylindrobasidium evolvens, was found in multiple 

locations (Figure 2.2 F). 

Although Schizophyllum commune (split gill) has a ubiquitous distribution on dead 

wood as a white rot fungus (Schmidt and Liese 1980), it was found only once in two 

locations, Sifton Bog and Westminster Ponds ESAs (Figure 2.2 G). Other primary 

decomposers included Antrodia malicola, Datronia mollis, Irpex lacteus, Polyporus 

alveolaris, Plicaturopsis crispa, Steccherinum ochraceum, and Phlebia radiata (Figure 2.2 

H-N). Weaker primary decomposers and secondary decomposers included Crepidotus 

calolepis, Crepidotus caspari, Daldinia concentrica, Hyphoderma cf. mutatum, Lachnum 

virgineum, Merismodes fasciculata, Morrisographium persicae, Mycena meliigena, 

Peniophora incarnata, and Peniophora cinerea (Figure 2.2 O-X).  
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Table 2.3. Survey results of fungi found on dead or living common buckthorn 

(Rhamnus cathartica) within Medway Valley ESA (MV), Sifton Bog (SB), Westminster 

Ponds (WP), AFAR trail (AFAR) on Western’s campus, Five Points Forest (FPP), rare 

Charitable Research Reserve. Detection methods include visual (V) or visual and 

microscopy (VM). 

 ESA     
Fungus MV SB WP AFAR FPP rare Detection 
Hypoxylon perforatum *      VM 
Antrodia malicola group  *     VM 
Crepidotus calolepis  *     VM 
Crepidotus caspari  *     VM 
Hypoxylon fuscum  *     VM 
Hyphoderma cf. mutatum  *     VM 
Lachnum virgineum  *     VM 
Mycena meliigena  *     V 
Phlebia radiata  *     VM 
Plicatura crispa  *     VM 
Morrisographium persicae    *   VM 
Daldinia concentrica     *  V 
Datronia mollis     *  V 
Steccherinum ochraceum     *  VM 
Armillaria mellea group * *     V 
Merismodes fasciculata * *     VM 
Peniophora cinerea * *     VM 
Polyporus alveolaris *   *   V 
Schizophyllum commune  * *    V 
Irpex lacteus  *    * VM 
Peniophora incarnata * *   *  VM 
Cylindrobasidium evolvens  * *  *  VM 
Nectria cinnabarina2 * * * *  * VM 
Puccinia coronata1 * * * * * * V 

1 Previously identified on buckthorn (R. cathartica) in Table 2.1 
2 including Tubercularia anamorphs 
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Figure 2.2. Fruiting bodies of all fungi found on buckthorn (Rhamnus cathartica). A) 

Armillaria mellea (Vahl) P. Kumm. s.l. (honey mushroom); B) Nectria cinnabarina (Tode) 

Fr. group (coral spot) and its C) Tubercularia anamorph (asexual stage); D) Hypoxylon 

fuscum (Pers.) Fr.; E) Hypoxylon perforatum (Schwein.) Fr.; F) Cylindrobasidium evolvens 

(Fr.) Jülich; G) Schizophyllum commune Fr. (split gill); H) Antrodia malicola (Berk. & 

M.A. Curtis) Donk group; I) Datronia mollis (Sommerf.) Donk; J) Irpex lacteus (Fr.) Fr.; 

K) Polyporus alveolaris (DC.) Bondartsev & Singer (=Neofavolus alveolaris); L) 

Plicatura crispa (Pers.) Rea; M) Steccherinum ochraceum (Pers.) Gray; N) Phlebia radiata 

Fr.; O) Crepidotus calolepis (Fr.) P. Karst; P) Crepidotus caspari Velen.; Q) Daldinia 

concentrica (Bolton) Ces. & De Not. (coal fungus, King Alfred’s cake); R) Hyphoderma 
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cf. mutatum (Peck) Donk; S) Lachnum virgineum (Batsch) P. Karst.; T) Merismodes 

fasciculata (Schwein.) Donk; U) Morrisographium persicae (Schwein.) Illman & G.P. 

White; V) Mycena meliigena (Berk. & Cooke) Sacc.; W) Peniophora incarnata (Pers.) P. 

Karst.; and X) Peniophora cinerea (Pers.) Cooke  

 

Many of the saprobic fungi were found in Sifton Bog because of its high 

buckthorn stem count as well as the ongoing management of the invasive in the area by 

the UTRCA. This left weakened or dying trees susceptible to the invasion of 

opportunistic fungi as well as a large number recently dead trees available for the natural 

succession of fungal decomposers. Similarly, the entranceway to Komoka Provincial 

Park and Five Points Forest, having many buckthorn brush piles due to management 

programs, yielded many more fungi than other survey areas such as rare CRR, and other 

ESAs. In total, 3 observations were made along the AFAR trail connecting to Medway 

Valley, 7 in Five Points Forest, 2 in Killaly, 2 in Medway Valley, 3 in rare CRR, 22 in 

Sifton Bog, 3 in Warbler Woods, and 3 in Westminster Ponds (Appendix I). 

Fungi were rarely seen on open-field buckthorn, despite surveying an equal number 

of open-field and closed-canopy trees in each location. The only exception was a large, 

~10+ year-old buckthorn growing by the parking lot entrance to Kilally Woods with 

multiple fungi growing on dead branches underneath its full canopy. Thirty-three of the 45 

identified fungi (77.8%) were seen on closed-canopied buckthorn, either on the tree itself, 

a fallen branch, or in a human-mediated buckthorn brush pile. One observation (I. lacteus; 

2.2% of observations) was made at the forest edge, three fungi (P. incarnata, and two H. 

cf. mutatum; 6.7% of observations) were seen in an open-field buckthorn, and six fungi (D. 

concentrica, P. incarnata, S. ochraceum, D. mollis, and two C. evolvens; 13.3% of 

observations) were seen in an open-field brush pile of buckthorn branches after a buckthorn 

management crew had passed through Five Points Forest. Puccinia coronata (not included 

in the total recorded count of 45) was found ubiquitously on buckthorn regardless of its 

location within or outside forests in the late summer to fall seasons. 
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2.4 DISCUSSION 

Gaining thorough knowledge of an invasive species’ range of natural enemies is important 

in determining its impact in its invaded regions. Fungi growing on the invasive common 

buckthorn (Rhamnus cathartica) have been recorded in its native range in Eurasia, as well 

as its invaded range in the central and northern United States, but sightings in Canada are 

limited. In Ontario, two fungi (Puccinia coronata and Cucurbitaria rhamni) had been 

identified on buckthorn. However, because of the overlap in biomes across central and 

northern USA into Canada, it is expected that fungi found associated with the invasive in 

the United States would also be found in the southern area of this province. A wandering 

survey of open- and closed- canopied buckthorn trees that spanned all four seasons across 

20 months yielded 23 species that can be added to the list of buckthorn-associated fungi.  

Armillaria, the causal agent of Armillaria root disease, is a facultative necrotroph—

colonizing living roots, killing root tissue, and feeding off dead tissue for nutrients. After 

plant death, Armillaria survives as a white-rotter on the infected root system (Redfern and 

Filip 1991). For this reason, the genus has been well studied in forest communities to 

determine its trigger for pathogenicity. It is one of the most important genera of fungal root 

pathogens worldwide, affecting not only tree species, but agroeconomic crops in many 

climates (Baumgartner et al. 2011). Armillaria’s rootlike rhizomorphs can be observed 

under the bark on root and trunk systems of dead, diseased or healthy host plants 

(McDonald et al. 1987). Its pathogenicity between isolates can range from very high to 

obligately saprophytic, where pathogenic severity tends to increase as management 

intensifies (McDonald et al. 1987). Its mycelium often survives in residual debris, after the 

clearing of infected forest stands or fruit/nut crop, until the next crop (Redfern and Filip 

1991). In Queensland, Australia, Armillaria was found in nearly all stumps after clear-

cutting an introduced pine forest (McDonald et al. 1987), and chemical and mechanical 

killing has been linked to increased Armillaria activity in hardwood forests (Pronos and 

Patton 1977; Swift 1972). All three Armillaria samples in this study were collected in 

Sifton Bog, the most intensively managed ESA for buckthorn, where plenty of recently cut 

or chemically weakened trees and seedlings remained to decompose. Interestingly, 

parasitism of Armillaria by Entoloma abortivum resulting in misshapen fruiting bodies 

 
 



33 

called carpophoroids (Czederpiltz et al. 2001) was also observed in this study (Appendix 

I). 

The coral spot fungus, Nectria cinnabarina, and its “Tubercularia” anamorph were 

seen in nearly all sampling areas on dead buckthorn twigs and fallen branches. The Nectria 

cinnabarina group (Rossman 1983) consists of at least 20 morphologically 

indistinguishable varieties of N. cinnabarina (Hirooka et al. 2011) as well as several 

species of Tubercularia anamorphs. It is a common saprobe species, occurring on a range 

of hardwood trees and woody shrubs in temperate areas (Hirooka et al. 2011). Rarer 

occasions of facultative pathogenicity on apple and other hardwoods are known as “coral 

spot”, where the fungus typically infects compromised wood, but can later spread (Sinclair 

and Lyon 2005). Nectria cankers were reported on Acer, Aesculus, Prunus, Robinia, 

Spiraea, Tilia and Ulmus in 1883 by Mayr (Hirooka et al. 2011), as well as other hardwood 

shrubs and trees around the world (Sinclair and Lyon 2005).  

Hypoxylon fuscum and H. perforatum canker fungi are endophytes that develop into 

wood saprotrophs (Granito et al. 2015). In beech forests, fruiting bodies of Hypoxylon 

fragiforme (Pers.) J. Kickx develop during tree water stress (Chapela and Boddy 1988) and 

the tree is therefore more exposed to fungal attack in drier conditions (Granito et al. 2015). 

Water stress may not be the cause for Hypoxylon infection on buckthorn since the invasive 

is known to tolerate a wide range of environmental conditions, and so, the cause of its 

growth on buckthorn is likely a result of other sources of stress. 

The white rot Cylindrobasidium evolvens is a pioneer saprobe and weak branch 

pathogen that colonizes recently dead coniferous and deciduous wood, especially fresh cut 

surfaces (Vasiliauskas and Stenlid 1998) of corticated branches and trunks (Eriksson and 

Ryvarden 1976). A comparison of saprobic fungi among Cylindrobasidium torrendii, 

Fistulina hepatica, A. mellea, and S. commune shows that C. torrendii and S. commune are 

intermediates between white and brown rot fungi, degrading all wood components but 

leaving the central lamella intact, similar to soft rot (Floudas et al. 2015).  

Fungi previously reported on buckthorn in North America but not found in this 

study included: Cercospora rhamni [=Passalora rhamni], Cucurbitaria rhamni, 
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Fomitiporia punctata [=Phellinus punctatus], Phyllosticta rhamni, Phymatotrichopsis 

omnivora, Phytophthora ramorum, and Sphaeropsis rhamni (Table 2.1). Cercospora 

rhamni is a leaf spot described on buckthorn in Wisconsin, New Jersey, and New York in 

the 1960 U.S.D.A. Agriculture Handbook (USDA 1960). Similarly, leaf spot fungi such as 

Phyllosticta rhamni, reported in Wisconsin (Greene 1945; USDA 1960), P. ramorum, 

cause of Sudden Oak Death in California (Ivors et al. 2006), and Sphaeropsis rhamni in 

Oklahoma (Preston 1945) were not sampled in this study. In Wisconsin, USA, Phyllactina 

alnicola, the cause of a powdery mildew of buckthorn leaves, has the ability to impair 

photosynthesis, stunt growth, and increase senescence of its host plant (Pirone 1978). 

However, instances of severe buckthorn infection by P. alnicola have not been 

documented. Cucurbitaria rhamni has been previously reported in Ontario (Barr 1990) as 

well as Europe, but was not adequately verified. Samples having similar morphological 

features, globose black pyrenomycete fruiting body clusters erupting from basal stromatic 

tissue, were collected, although repeated attempts at culturing or morphological 

visualization of the characteristic small ovoid ascospores were not successful 

(http://fungi.myspecies.info/all-fungi/cucurbitaria-rhamni). Similarly, F. punctata 

(synonymous with P. punctatus) was not positively identified in this study, although 

samples with brown resupinate sporocarps were seen in Five Points Forest, which warrants 

further investigation. Leaf diseases and microfungi were not the focus of this study as 

identification would have required culturing and sequencing, and leaf spots rarely become 

serious enough to cause harm (Pirone 1978). However, adequate sampling material of 

unnamed microfungi can be found in the UWO Herbarium for eventual sequencing studies. 

The wandering surveys did not include every buckthorn in the area, but great effort was 

made to find trees with obvious signs of fungal growth, so leaf diseases may have been 

missed.  

Sequencing of all samples within identified species groups, such as A. mellea, N. 

cinnabarina, and A. malicola would help determine if particular varieties are more 

commonly associated with buckthorn. Further steps would involve looking at other regions 

of Canada and the USA, to include both urban and disturbed pockets in rural areas, and to 

identify a relatively robust fungus or combination of fungi that are able to take advantage 

of a weakened buckthorn and aid in its eventual eradication from the rehabilitation area. 
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Extending lists of associated organisms capable of using problematic invasive 

plants as hosts is key to the ongoing management and removal of the invasives. The success 

of biocontrol agents can be difficult to predict in vivo. Although the application of the 

causal agent of silverleaf disease, Chondrostereum purpureum, in the Chontrol Peat Paste 

mycoherbicide used on cut buckthorn stumps has met with some success, its efficacy can 

vary (Au and Tuchscherer 2014). In Manitoba, CPP use is encouraged in sensitive habitats 

or during seasons when other chemical methods are not as effective (Nature Manitoba 

2014). Buckthorn is a vigorous plant, and for this reason the development of an effective 

and cheap adjunct that can be used in conjunction with the current ‘standard’ treatment 

would be beneficial. The use of fungal pathogens to formulate mycoherbicides in a single 

or multiple-pathogen strategy may become a viable method of control, once we have a 

complete picture of the buckthorn mycobiota.  
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Chapter 3: Common buckthorn (Rhamnus cathartica) allelopathy and arbuscular 

mycorrhizal fungi 

3.1 INTRODUCTION AND OBJECTIVES 

3.1.1 Chemical Defense Mechanisms 

Plants, as a rich source of nutrients for many organisms, have developed a range of 

structural, chemical, and protein-based defenses (Freeman and Beattie 2008). It has been 

estimated that plants are able to synthesize more than 200 000 specialized metabolites 

(Pichersky and Lewinsohn 2011), some of which are secondary metabolites that are toxic, 

anti-digestive, or unpalatable and help defend against bacteria, fungi, protists, insects, and 

vertebrates (Mithöfer and Boland 2012). Secondary metabolites also include attractants 

that allow for, or enhance, the communication between plants and symbiotic insects, 

epiphytes, and soil microorganisms (e.g., nitrogen-fixing bacteria and mycorrhizal fungi) 

(Santi et al. 2013; Schmitz and Harrison 2014), as well as allelopathic compounds that 

result in the inhibition of germination or growth of other plants (or organisms). The release 

of allelopathic compounds has been implicated in the invasional success of multiple non-

native plants in North America, such as garlic mustard (Alliaria petiolata) (Barto et al. 

2011; Cantor et al. 2011), spotted knapweed (Centaurea maculosa) (Bais et al. 2003; 

Thelen et al. 2005), and common buckthorn (Rhamnus cathartica) (Knight 2006; Seltzner 

and Eddy 2003), among others (Callaway and Aschehoug 2000; Orr et al. 2005). The 

rationale for considering allelopathy as a mechanism for invasional success hinges on the 

observation that invasive plants often establish monocultures where diverse native 

communities once were, and that allelopathy may be more effective in invaded ranges than 

in originating ones. This is known as the novel weapons hypothesis (Burke and Chan 2010; 

Callaway and Ridenour 2004; Hierro and Callaway 2003; Thorpe et al. 2009). An example 

can be seen with the Canada goldenrod (Solidago canadensis) species complex, a vital 

component in diverse grassland and prairie communities in North America, but considered 

an invasive, rapidly-spreading weed in China (Dong et al. 2005). Conversely, the Eurasian 

invasive garlic mustard causes significant shifts in mycorrhizal (see 3.1.4) and bacterial 
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community composition and structure in North America because of allelopathic 

compounds released into the soil (Thorpe et al. 2009).  

3.1.2  Allelochemicals in Common Buckthorn 

The purgative effects of common buckthorn have been recorded in English herbal literature 

dating from 1633 (Kurylo and Endress 2012). Common buckthorn had a long history of 

pharmaceutical applications, but had fallen out of use by the early 19th century because its 

effects were “more offensive, and operate more severely” (Coxe 1806, cited in Kurylo 

2012) than fruits of other medicinal trees listed in The American Dispensatory from 1806 

(Kurylo and Endress 2012).  

Despite buckthorn’s decline in medicinal popularity, the plant’s cathartic properties 

enabled its wide dispersal and low susceptibility to herbivory. This may be partly attributed 

to the presence of anthraquinones—a chemical class of secondary metabolites—found in 

all parts of the plant. Over 170 naturally occurring compounds are considered 

anthraquinones, of which more than half are produced by fungi (e.g., Penicillium and 

Aspergillus, mushrooms, and lichens), and others in flowering plants and some insects 

(Wink 2010). Several plant families, including the Rhamnaceae, the Rubiaceae, and the 

Fabaceae are rich in anthraquinones (van den Berg et al. 1988).  

The most common anthraquinones produced by Rhamnus spp. are emodin, rhein, 

chrysophanol, aloe-emodin, madagascin, and physcion (Genovese et al. 2010; Newman 

1966). The compound madagascin was confirmed in R. cathartica fruits (Epifano et al. 

2012) as well as a newly discovered anthraquinone derivative: 1,8-dihydroxy-2-[(z)-4-

methylpenta-1,3-dien-1-yl]anthraquinone). Other known lesser-known compounds 

include: 2-acetyl-3,8-dihydroxy-6-methoxy-anthraquinone and glucofrangulin (both 

anthraquinones), dendrochrysanene (a phenanthrene derivative), β-sorigenin and geshoidin 

(lactones), pruniflorone H (xanthone), rumejaposide I (oxanthone), and kaempferol and 

quercetin (flavonols) from various parts of a R. cathartica plant (Hamed et al. 2014). 

As a secondary metabolite, emodin is not essential to the survival and reproduction 

of plants. The compound was first described over 75 years ago as frangula-emodin (Kurylo 

 
 



42 

and Endress 2012), but its biological properties have only recently been elucidated. Emodin 

has been identified in at least 17 plant families (28 genera and 94 species) with a worldwide 

distribution in tropical, subtropical and temperate regions (Mummey and Rillig 2006). 

Some of the better known sources include the plant families Fabaceae (Cassia), 

Polygonaceae (Polygonum, Rheum, and Rumex) and Rhamnaceae (Rhamnus in the north 

temperate zones and Ventilago in Australasia). Emodin and other anthraquinones are stored 

in plants as inactive glycosides (Newman 1966). The most common emodin-related 

glycosides are emodin-8-glucose, frangulin, and glucofrangulin (Newman 1966). The 

distribution of emodin among plant organs is ubiquitous, with it being found in the stem, 

bark, root, and foliage, as well as reproductive organs (flower, fruit, seeds, and pods) 

(Mummey and Rillig 2006). Secondary metabolites with an adaptive function are found in 

unequal concentrations in plant organs (Mummey and Rillig 2006). Light intensity and 

season temporally affect the levels of emodin in Rhamnus and other plants. In R. frangula 

bark, three peaks have been observed in April, July-August, and November (Newman 

1966), and R. purshiana showed a significantly increased emodin content when exposed 

to a daily photoperiod of 12 h (van den Berg et al. 1988). This may relate to possible 

functions of emodin in photoprotection from UV radiation as well as the inhibition of 

superoxide radicals (Newman 1966). In Rheum undulatum, anthraquinone content (where 

50% was emodin) is highest in spring, having a continuous decrease during the summer 

(Paneitz and Westendorf 1999). This suggests the occurrence of a tradeoff between defense 

and development, where the potential for herbivory is highest in the spring and other 

metabolic activities takes precedence in the summer (growing, flowering, and fruiting) 

(Mummey and Rillig 2006). 

Emodin and its derivatives have purgative effects (Newman 1966). In mammals, 

emodin glycosides are not absorbed until they reach the large intestine, where bacteria 

metabolize them into aglycones. In turn, aglycones damage epithelial cells, inhibit Cl- 

channels across colon cells (Rauwald 1998), and affect the immune system as well as 

vasomotor and other metabolic processes (Mummey and Rillig 2006). Emodin extracted 

from R. alnifolia leaves and mixed into an artificial diet was an effective feeding deterrent 

for the larvae of species such as gypsy moths (Lymantria dispar) (Trial and Dimond 1979). 

Emodin may be responsible for the lower number of recorded phytophagous insects found 

 
 



43 

on R. cathartica in Canada than in Europe, where they are native (Malicky et al. 1970). 

Emodin can be toxic to some birds and mammals; starlings (Sturnus vulgaris) and redwing 

blackbirds (Agelaius phoeniceus) have a LD50 of >100 mg kg-1, whereas white footed mice 

(Peromyscus leucopus) avoid emodin-containing foods (Schafer et al. 1983). Emodin-

containing plants such as R. alaternus allow for fruit dispersal by birds while maintaining 

low seed predation by invertebrates and microorganisms (Knight et al. 2007). Any unripe, 

fleshy fruits are well protected against seed predation due to the presence of 

anthraquinones, as seen in Old World Rhamnus alaternus and R. palestina, and New World 

R. cathartica, where most bird species do not consume unripe fruits (Newman 1966). The 

process of fruit ripening is thought to break down secondary metabolites. In R. alaternus, 

emodin deceases during ripening but does not fully disappear (Tsahar et al. 2002). Avian 

frugivores that act as primary seed dispersers have been seen consuming fruit of R. 

cathartica. The seeds are protected during digestive passage by a moisture-sensitive 

envelope that splits and ejects the seed after exposure to dry air, allowing germination to 

be independent of the gut characteristics of dispersers (Izhaki and Safriel 1990). Izhaki 

(2002) suggested that emodin within the flesh of the fruit may deter germination based on 

the observation that the removal of fruit pulp (by hand or through digestive passage) is 

required for the germination of R. cathartica and R. alaternus seeds.  

Growth inhibition of the roots and shoots of sunflower (Helianthus annus, LD50 = 

45 mg L-1) and popcorn (Zea mays var. everta, LD50 = 65 mg L-1) was observed with 

emodin concentrations ranging from 10 to 100 mg L-1 (Hasan 1998). Ninety-eight percent 

of the sunflowers in the control group germinated, but with exposure to 50 and 100 mg L-

1 of emodin, percent germination dropped to 76% and 55%, respectively (Hasan 1998). 

Lettuce seedlings (Lactuca sativa) were inhibited by 1.85 × 10-4 M (50 ppm) emodin, with 

concentrations greater than 3.7 × 10-4 M (100 ppm) inhibiting root and hypocotyl (leaf 

sheath) growth (Inoue et al. 1992). Klionsky et al. (2011) suspected that growth and 

germination of herbaceous woodland seedlings (Eurybia macrophylla, Thalictrum 

dasycarpum, Symphyotrichum lateriflorum, and Geranium maculatum) were hindered by 

surrounding R. cathartica. It is also hypothesized that emodin leached from fallen fruits 

and leaves into the soil and slowed the growth of competing plants (Izhaki 2002). Seltzner 

and Eddy (2003) assessed the inhibition of alfalfa germination by emodin derived from 
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buckthorn roots, bark, fruits, and leaves. Full strength (100%) drupe extract had the highest 

percentage germination inhibition, with 1 alfalfa seed germinating from 2000, and 256 

seeds germinating at 50% extract concentration (both significantly less than in the control). 

Leaf extracts (100%) had the second-highest percentage of germination inhibition, with 

1167 of 2000 seeds germinating (p<0.05). Neither root nor bark extracts significantly 

affected germination, even at full concentration.  

Allelochemicals have been shown to influence nutrient availability within the soil 

by indirectly affecting soil nutrients and rates of nutrient cycling through the influence of 

microorganisms (Gerdemann and Nicolson 1963). The addition of emodin was shown to 

indirectly decrease Mn2+ and PO4
3- availability and increase Na+ and K+ availability by 

influencing soil microbes and their subsequent nutrient uptakes (Inderjit and Nishimura 

1999). Information about antimicrobial influences within the soil is less clear. Emodin may 

have a role in protecting plants from disease in vivo (Liu and Wang 2003). Addition of 

Aloe vera anthraquinones caused the inhibition of nucleic acid synthesis in Bacillus subtilis 

(Schultz et al. 1999). In vitro exposure to emodin (concentrations of 10-200 μg mL−1 

inhibited nine soil microbial species (Arthrobacter globiformis, Chlorella pyrenoidosa, 

Bacillus megaterium, four Rhizobium spp., and Azotobacter chroococcum) (Clapp et al. 

1995). Emodin isolated from Cassia nodosa inhibited the growth of all pathogenic 

microorganisms tested, namely the bacteria Staphylococcus aureus, Salmonella typhi, 

Escherichia coli, and Pseudomonas aeruginosa, and the fungi Aspergillus flavus, A. niger, 

Gibberella fujikuroi [as Fusarium moniliforme] and Macrophomina phaseolina [as 

Rhizoctonia bataticola]), with MICs ranging from 1×10-3 to 1×10-5 mg mL-1 and maximum 

activity against F. moniliforme (Brundrett et al. 1999). Highly effective inhibition of spore 

germination of 17 tested fungal species was observed with emodin isolated from Rhamnus 

triquetra bark (Fogel and Hunt 1979). Maximum inhibition (100%) was seen with 

Aspergillus awamori [as A. luchuensis], Botrytis cinerea, Cladosporium cladosporioides, 

Helminthosporium sp., and Trichothecium sp. at 2000 μg mL−1, but growth inhibition was 

also observed at lower concentrations (Fogel and Hunt 1979). Fewer than 50% spore 

inhibition was achieved at emodin concentrations of 500 μg mL−1, with a maximum 

inhibition seen with the pathogenic basidiomycetous fungus Heterobasidion annosum 

(Lugo and Cabello 2002). Hempel et al. (2007) subjected 11 isolated compounds as well 
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as the crude extract from R. cathartica to an antimicrobial activity test with E. coli (G -ve), 

S. aureus (G +ve), Candida albicans (yeast), and A. niger. All isolated compounds 

inhibited S. aureus, whereas there was no inhibition zone in any A. niger plates (Hempel 

et al. 2007). Compound 1 (a newly identified anthraquinone), emodin, and rumejaposide 

(a glucosyl anthrone) had significant antibacterial effects on the bacteria and yeasts 

(Hempel et al. 2007).  

A greenhouse study of seed germination and seedlings examined the effects of 

macerated root extracts of R. cathartica (European invasive) and Fallopia japonica 

(Japanese knotweed; Asian invasive) on arbuscular mycorrhizal fungal (AMF; see 3.1.3) 

associated with Ulmus alata, U. parvifolia and U. minor (Pinzone 2016). Tree seedlings 

resisted the allelopathic effects from co-evolved plant species, but R. cathartica had the 

most effect on U. parvifolia from East Asia, whereas F. japonica affected the European U. 

minor. Only buckthorn treatments showed indirect effects on Ulmus spp., witnessed by the 

reduction in the abundance of arbuscules, and the rare occurrence of vesicles. This study, 

unlike many others, assessed growth inhibition using crude R. cathartica extracts and not 

isolated compounds, making it a more accurate representation of in vivo conditions. 

Emodin is a highly reactive anthraquinone, but it does not act alone in the environment. 

3.1.3 Arbuscular Mycorrhizae 

Arbuscular mycorrhizal fungi (AMF) are obligate plant symbionts that form a large, 

spreading hyphal network in the soil and have multiple points of invasion within roots of 

various host plants (Smith and Read 2008). The mycelium is multinucleate and coenocytic 

(with no septa separating cells), facilitating its primary function of nutrient transfer (Zolan 

and Pukkila 1986). Hyphal filaments penetrate root cortical cells, forming a trunk with a 

highly branched, terminal tree-like structure, an arbuscule, where bi-directional nutrient 

exchange takes place (Smith and Read 2008). Vesicles (storage organs) may or may not 

form inter- or intra- cellularly. Some vesicles thicken to form intraradical or extraradical 

spores (Smith and Read 2008).  
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3.1.4 Invasives Altering Soil Communities 

Arbuscular mycorrhizae influence growth and mediate interactions between plants, with 

the potential to enhance competitiveness of invasive plants (Marler et al. 1999; Stampe and 

Daehler 2003; Walling and Zabinski 2004), and reduce it in others (Stampe and Daehler 

2003). In certain cases, plant communities can be altered by invasive plants when sensitive 

species of AMF are replaced with more resistant species (Brundrett 2009). As observed 

with some invasive species in North America, allelopathic chemicals may inhibit the 

growth of surrounding plants directly (Bainard et al. 2009; Bais et al. 2003; Dorning and 

Cipollini 2006; Lawrence et al. 1991; Ridenour and Callaway 2001) or by limiting AMF 

growth (Callaway et al. 2008; Seltzner and Eddy 2003; Stinson et al. 2006).  

The invasive garlic mustard (Alliaria petiolata) disrupts native mycorrhizal 

communities. Garlic mustard is non-mycorrhizal and produces a host of secondary 

metabolites that change soil microbial communities. Garlic mustard-induced community 

shifts show no change in AMF richness but undergo the replacement of sensitive species 

with more resistant ones, and a suppression of AMF colonization (Barto et al. 2011). 

Stinson et al. (2006) confirmed garlic mustard’s antifungal effects, where its extracts added 

to potted native sugar maples (Acer saccharum) were just as effective as the living plant at 

reducing AMF colonization and spore germination. Similar reductions in mycorrhizal 

diversity have been reported with other invasive species such as Centaurea maculosa 

(Spotted knapweed) (Mummey and Rillig 2006), Solidago canadensis (Canada goldenrod) 

(Zhang et al. 2007), and Tamarisk spp. (Meinhardt and Gehring 2012). 

Buckthorn forms mycorrhizal connections in its native and invaded ranges (Knight 

2006), but not much is known about the associations in invaded habitats. In its invaded 

range, the connections consist of coiled and straight hyphae, arbuscules, and oval-shaped 

vesicles within aniline blue-stained buckthorn roots; although, the taxonomic 

classifications of these fungi are still unknown. No molecular work has been done on the 

types of AMF communities of buckthorn in its invaded range, or on the changes that native 

woodland AMF communities may undergo during and after buckthorn invasion. 
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3.1.5 Past Methods of Describing AMF Communities  

Early researchers used classical methods of quantifying mycorrhizae by clearing and 

staining roots to determine the proportion that were mycorrhizal (Chandramohan et al. 

2002). One popular method was the (grid) line intersect technique developed by Newman 

(1966), which was modified and standardized by Powell et al. (1982) to include arbuscules, 

vesicles, and root length containing hyphae in order to estimate the degree of mycorrhizal 

colonization on roots. This technique involves counting the number and type of 

mycorrhizal structures within stained, sectioned roots that intersect lines of a grid (or hair-

line of the eyepiece); the number of intersections with AMF divided by the total number 

of root–grid intersections gave the percent colonization (Newman 1966, Sun and Tang 

2012).  

Quantifying mycorrhizal infection within a root does not identify species since 

roots were rarely seen with identifiable spores. Identification of mycorrhizae was 

accomplished through wet-sieving for spores in soil (direct estimates) or ‘trapping’ fungi 

in pots with host plants (trap cultures) followed by wet-sieving (indirect estimates). Current 

wet-sieving and decanting techniques for spore and hypha isolation, developed by 

Gerdemann and Nicolson (1963), use sodium pyrophosphate (NaPyrP) to help break soil 

colloids (Fogel and Hunt 1979; Pacioni 1992), mechanical agitators to help thoroughly mix 

the slurry (Pacioni 1992), and centrifugation in sucrose to separate the spores (based on 

Jenkins 1964).  

Fungal surveys based on spores in soil may not detect species that sporulate in host 

root systems and not the soil (Liu and Wang 2003), or those that have seasonal variation in 

spore development (Hempel et al. 2007; Lugo and Cabello 2002). Other detection methods 

were developed, including trap culturing on mycorrhizal host plants to promote the growth 

and sporulation over a period of months within a greenhouse (Bever et al. 2001). Choosing 

appropriate host species affected spore densities in pots. Some hosts such as white clover 

(Trifolium repens) were better than others (Z. mays, Nicotiana tabacum, and Potentilla 

anserina) for the quantification of fungal diversity in soils (Liu and Wang 2003). However, 

certain AMF, such as Acaulospora colossica, would grow only when host and greenhouse 
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conditions were typical of North Carolinian winter and spring months (Schultz et al. 1999). 

Invariably, differences in methodology (greenhouse conditions, host species, treatment of 

soil prior to trapping, season of field soil sampling, etc.) would lead to the proliferation of 

different species that were more suited to those conditions (Bever et al. 2001; Öpik et al. 

2014), and a considerable effort would be necessary to determine effective host plants and 

conditions for each AM fungus.  

Problems occur with trap cultures when opportunistic species, those that are suited 

to disturbance, proliferate (e.g., Glomus sp.), which results in the misrepresentation of their 

abundance in natural conditions (Brundrett et al. 1999; Öpik et al. 2014). Numerous abiotic 

and biotic factors affect sporulation spatially and temporally (Hempel et al. 2007). 

Sporulation may be necessary for some taxa (e.g., Gigasporaceae) to complete their life 

cycles, whereas others (e.g., Glomeraceae) rely on infective hyphae and the extension of 

hyphae between colonized roots (Smith and Read 2008). Fungi also display differences in 

biomass allocation between the roots and rhizospheres of the same plant; Scutellospora 

shows a preference for growth in the rhizosphere whereas Glomus shows increased 

allocation within the roots (Clapp et al. 1995). This leads to differences in composition 

within and around the plant, as well as differences in sporulation patterns among species 

(Öpik et al. 2014). Trap cultures are invaluable when certain treatment conditions cannot 

or should not be carried out in the field, but any inferences drawn from the data should be 

done carefully. 

3.1.6 AMF Taxonomy 

The development of AMF taxonomy was originally developed on the basis of discrete 

spore subcellular structures obtained by wet sieving potted or field soil. A comprehensive 

manual of spore identification of AMF was developed by Schenck and Perez (1987). By 

2001, AMF were classified into 7 genera on the basis of spore wall characteristics and 

ontogeny, and approximately 145 described species were accepted (Bever et al. 2001). 

However, identification of spores directly from field soil was not always reliable due to 

morphological differences between intraradical and extraradical spores of the same species 

(Stockinger et al. 2009). The species of a genus have a limited number of differences in 
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morphology and hyphal structure, viable spores are ephemeral, direct examination may not 

reveal all species present, and soil conditions may alter the appearance spores, making it 

difficult to differentiate species (Bever et al. 2001; Stockinger et al. 2010). Currently, any 

morphology-based identification of Glomeromycota requires microscopy expertise and 

adequate literature on the topic (Öpik et al. 2014). 

3.1.6.1 DNA-based Techniques 

The use of DNA as a tool to catalogue biodiversity and generate phylogenies provides a 

more objective and reliable alternative to morphological identification of AMF. Extraction 

of genomic DNA for any molecular analysis involves disruption of cells or tissues, 

denaturation of nucleoprotein complexes, and removal of contaminants (RNA, proteins, 

carbohydrates, lipids, etc.), while maintaining quality and integrity of the final product by 

inactivation of nucleases (DNase) (Tan and Yiap 2009). Advancement in DNA extraction 

technology resulted in solution-based or column-based protocols that could accept tissue 

(e.g., ground cultured mycelium or sectioned mushroom) or soil as a raw DNA source (Tan 

and Yiap 2009). DNA extraction followed by PCR amplification of target DNA gene 

regions became a rapid, simple, and reliable procedure to collect data on single or multiple 

taxa within samples (Hudson 2008). However, picking the most appropriate gene region 

for sequencing can itself be a challenge.  

3.1.6.3 Sequencing Platforms 

Parallel advancements in sequencing technology provided the basis for molecular and/or 

taxonomic analyses, starting with classical cloning and Sanger sequencing methods in the 

early 1990s (Sanger 1977; Swerdlow et al. 1990), leading up to 1996 where the full genetic 

code of the first eukaryotic and fungal organism, baker’s yeast (Saccharomyces cerevisiae), 

was sequenced (Goffeau et al. 1996).  Multiple different DNA sequences of mixed 

microbial communities were separated by cloning—each clone taking up only one copy of 

PCR-amplified DNA—and then the PCR inserts in individual clones were sequenced 

(Bianciotto et al. 2011). However, classical cloning and Sanger sequencing techniques can 

be costly and time-consuming for multiple samples containing complex communities, as 

they usually sample a small fraction of each community (Horn et al. 2014). Sanger 
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sequencing (using an ABI 3730xl) can yield 400~900 bp × 96 samples per run with 

1.9~84 kb of data per run, 454-pyrosequencing using the Roche FLX platform (ceased in 

2013) could sequence up to 700 bp with 1 M reads per run (Liu et al. 2012b), and the MiSeq 

(Illumina) Next Generation Sequencing (NGS) platform can sequence 250 bp paired-end 

reads with 15~20 M reads per run (http://genecore3.genecore.embl.de/ 

genecore3/illumina.cfm). With the advance of high throughput NGS technology such as 

454 and Illumina, AMF taxonomic studies began to look in greater depth at species-level 

distributions in environmental samples (Öpik et al. 2014; Shendure and Ji 2008). PCR-

based NGS sequencing technologies produce millions of short sequence reads, varying 

from tens of base pairs to ~800 bp (Luo et al. 2012) using amplicons from PCR reactions. 

Even with technology advancements, these lengths may not be sufficient for confident 

species-level identification (Öpik et al. 2014). Ideal AMF identification requires a larger 

1 500 bp fragment spanning the SSU-ITS-LSU region of the rRNA gene (see 3.1.6.2 Gene 

Markers) (Krüger et al. 2009b; Öpik et al. 2014). Studies outlining limitations and 

advantages of various NGS platforms have already established that the Roche 454 

platform, previously one of the more popular NGS technologies, has high homopolymer 

error rates (Quince et al. 2009) and 11% to 35% of the sequences are the result of artificial 

replicates (Gomez-Alvarez et al. 2009). The single nucleotide detection method in 

Illumina, another popular NGS platform alternative, avoids this issue but has base calling 

biases (phasing and fading) (Erlich et al. 2008). Many error estimates and sequence bias 

studies have been based on simple DNA samples (Quince et al. 2009) that have low 

relevance to complex community samples (Luo et al. 2012). The analysis of a complex 

freshwater planktonic community was done on the Roche 454 and Illumina platforms by 

Luo et al. (2012), and both were considered reliable for quantitatively assessing genetic 

diversity within the community. However, Illumina yielded longer, more accurate contigs 

despite the shorter read length compared to Roche 454, and Roche 454 retrieved 14% fewer 

complete genes than Illumina due to A-T rich homopolymer regions. Monetarily, the 

Illumina dataset was one fourth of the cost of the Roche 454 data and was considered to be 

more appropriate for short-read metagenomic studies, whereas Roche 454 is more 

appropriate for repetitive sequences, palindromes, or for metagenomic analyses based on 

longer, unassembled fragment lengths (Luo et al. 2012). In terms of read depth, an 
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important factor to consider when sequencing large communities (Caporaso et al. 2011), 

the Illumina dataset contained 23.82 million reads, whereas Roche 454 contained 1.28 

million reads (Luo et al. 2012).  

Within the Illumina NGS platform, PCR amplicons of desired gene regions are 

attached to short complementary nucleotide adaptor regions to allow binding onto a flow 

cell microchip. Platform-specific chemistry converts dsDNA into single-stranded 

fragments, then copying single fragments to create clusters, and cyclically attaching 

fluorescently labeled nucleotides that are imaged using LASER excitation. Compilation of 

the images allows for the simultaneous recording of sequence information from each 

amplicon cluster as they are being built in first the forward and then the reverse direction 

(http://www.illumina.com/documents/products/techspotlights/techspotlight_sequencing.p

df). Output data files are analyzed to remove PCR and sequencing errors, cluster sequences, 

and provide a formatted table of sequences and sample groups for use in any molecular or 

phylogenetic downstream analyses (Gloor et al. 2010). Unfortunately, inadequate reference 

sequence data are still a constraint for taxonomic studies using NGS platforms, so the 

continued sequencing of known reference strains or specimens from culture collections or 

herbaria is necessary to build suitable databases (Lumini et al. 2010; Stockinger et al. 

2009).  

3.1.6.2 Gene Markers  

The locus used to quantify fungal diversity must be a short sequence that is universally 

present in target lineages and is a compromise between the possibility of designing 

universal primers for PCR amplification and having sufficient sequence variation to 

distinguish species (Vialle et al. 2009). The marker used by the Consortium for the Barcode 

of Life for most eukaryotes is the mitochondrial gene encoding the cytochrome c oxidase 

subunit (CO1 or COX1) (http://www.barcodeoflife.org/content/about/what-dna-

barcoding). This functions well for some fungal genera (Penicillium) but poorly for other 

Ascomycota—Fusarium have multiple CO1 copies—as well as species in the orders 

Neocallimastigales and the pathogenic Microsporidia since they completely lack 

mitochondria (Bullerwell and Lang 2005). Mycologists have converged to the nuclear 
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ribosomal RNA gene region (nu rRNA gene region or nu rDNA) as the most informative 

region of study because of the ease of its extraction from total genomic material as well as 

the level of taxonomic detail present in multiple 500- to 800- bp sections of the gene. The 

nu rRNA gene region consists of the small subunit (SSU or 18S), 5.8S, and large subunit, 

(LSU or 28S) rRNA genes as a transcribed unit of RNA polymerase I. Two internal 

transcribed spaces (ITS1 and ITS2) are spliced out after the transcription of the ribosome 

gene. These two regions, including the 5.8S gene, are referred to as the ITS region, which 

is the official barcode for fungi due to its hypervariability and ability to delineate to species 

and subspecies levels (Schoch et al. 2012). Unfortunately, related species in many fungal 

groups (e.g., Penicillium) lack distinguishing variation in their ITS region (Skouboe et al. 

1999), and the sequence information is “saturated” over broader evolutionary comparisons, 

precluding the use of ITS data in phylogenetic analyses, for instance, to place unknown 

sequences from soil into families or orders (Liu et al. 2012a). For arbuscular mycorrhiza, 

the same hypervariability presents problems because of heterogeneity in repeat ITS copies 

within a single isolate, their asexual lifecycle, and the possibility of clonal diversity 

complicating AMF species boundaries (Öpik et al. 2014). Nucleotide variation between 

and within Glomeromycota species in the ITS and the LSU rRNA gene is such that no 

single fragment is able to distinguish among all species (Stockinger et al. 2010). Krüger et 

al. (2009b) analyzed the species-level resolving power of multiple sections of the nu rRNA 

gene; the largest fragment, 1 500 bp spanning the 3’ end of SSU, ITS, and 5’ end of LSU 

gene regions provided the ability to resolve to species level with confidence for AMF 

sequences. Other fragments, including 800 bp of the nu LSU rRNA gene, three 400 bp 

fragments throughout the ITS2, LSU-D1, and LSU-D2 were not sufficient on their own. 

Other markers such as the mitochondrial LSU rRNA gene and intergenic region have been 

applied to describe intraspecific species variation (de la Providencia et al. 2013). 

Multilocus analyses are preferred for studies of evolutionary relationships because no 

single locus is best suited to answer all the questions (Robert et al 2011). This invariably 

led to phylogenetic analyses that looked at gene relatedness instead of species relatedness 

(Öpik et al. 2014). However, single-gene analyses are still a practical tool for metagenomic 

studies because multiple samples containing multiple taxa can be analyzed through a single 
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NGS run, and high-throughput sequencing technology cannot yet sequence large 

fragments.  

Even though SSU variation is insufficient to identify species of later-diverging 

fungi (within the Ascomycota and Basidiomycota, for example), early diverging lineages 

such as the Glomeromycota show better species-resolution with SSU and LSU regions 

(Schoch et al. 2012, Öpik et al. 2014). A simplified comparison of ITS, LSU, and ITS + 

LSU sequences between 42 species (606 sequences) of Glomeromycota showed high levels 

of intraspecific variation (Schoch et al. 2012). A consideration for the use of the SSU over 

the LSU for AMF studies is the low number of sequences deposited in GenBank for the 

LSU region for arbuscular mycorrhizal fungi (Lumini et al. 2010). Dunthorn et al. (2012) 

compared two popular hyper-variable regions of the SSU, the variable regions 4 and 9 (V4 

and V9), for microbial eukaryotes (ciliates). Both regions were attractive options, but in 

ciliates the genetic distances within and among species in the same genus were more 

similar when using just the V4, or whole SSU, than comparing the V9 and SSU. Many 

projects that use NGS sequencing to describe the AMF community composition employ 

the V4 region of the nuclear SSU rRNA gene (Lumini et al. 2010; Öpik and Davison 2016). 

Multiple primer pairs are available to amplify the SSU of AMF preferentially (Figure 3.1). 

The first primer pair NS31-AM1 (Helgason et al. 1998; Simon et al. 1992) used to detect 

AMF communities using 454-pryosequencing, failed to pick up some occurrences of the 

basal families Ambisporaceae, Archaeosporaceae, and Paraglomeraceae (Daniell et al. 

2001). Lee et al. (2008) improved upon this primer set and created AML1 and AML2 which 

showed better coverage and recovery of taxa. AML2 and NS31 have been used in Roche 

454 studies to sequence the V4 and part of the V5 region of the SSU (Van Geel et al. 2014). 

Another primer set, AMV4.5N-F and AMDG-R (Sato et al. 2005), that strictly covered the 

V4 region in a study by (Lumini et al. 2010), was shown to retrieve a broader spectrum of 

AMF sequences in higher proportion than the NS31/AM1 set (Van Geel et al. 2014). The 

comparison of results using different primer pairs in NGS studies is difficult. Van Geel et 

al. (2014) critically evaluated six different primer pairs (4 from the SSU, 2 from the LSU) 

in silico as well as with surface-washed roots from apple orchards. The highest nucleotide 

diversity was found in the V4 region between primers AMV4.5NF-AMDGR, with AMDG-

R and AML2 having the highest in silico AMF specificity.  
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Figure 

3.1. Primers amplifying arbuscular mycorrhizal fungi (AMF), phylum Glomeromycota, in the nuclear ribosomal RNA gene 

region small subunit (SSU). Percent conservation line plot made using reference sequences found in (Krüger et al. 2012) 

(http://www.arbuscular-mycorrhiza.net/amphylo_downloads.html, version 2) including Glomus intraradices X58725 as a positional 

reference, aligned and visualized using CLC Sequence Viewer (http://www.clcbio.com/). The primers used for this analysis, AMV4.5F-

AMDGR (Sato et al. 2005), span 258 bp of the G. intraradices gene. Primers AML1, AML2 (Lee et al. 2008), NS31, VANS1 (Simon 

et al. 1992), AMV4.5F, AMDGR, AM1 (Helgason et al. 1998), nu-SSU-0817-5ʹ, nu-SSU-1196-3ʹ and nu-SSU-1536-3ʹ (Borneman and 

Hartin 2000) have been used in high-throughput sequencing AMF studies. 
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Primers AMV4.5NF-AMDGR, AML1-AML2 and NS31-AML2 were all powerful 

enough to characterize the community, but AMV4.5NF-AMDGR favoured Glomeraceae 

sequences over the Ambisporaceae, Claroideoglomeraceae, and Paraglomeraceae (Van 

Geel et al. 2014). Despite this drawback, the AMV4.5NF-AMDGR primer set is the only 

one yielding an amplicon short enough (300 bp) to be used in Illumina NGS sequencing 

platform while still covering the largest variable region (V4) in the SSU.  

3.1.7 Aims and Objectives 

The aim of this chapter is to determine whether there are changes in abundance and 

diversity of AMF communities associated with the native sugar maple (Acer saccharum) 

tree due to the presence of buckthorn (Rhamnus cathartica). Arbuscular mycorrhizalfungi 

have been shown in other studies to be responsive to invasives, allelochemicals, or 

disturbance, and mycorrhizal communities are expected to show a shift from sensitive to 

more resistant generalists during or after buckthorn invasion.  

Objective 1 

A comparison of soil and roots of sugar maples (Acer saccharum) within buckthorn 

(Rhamnus cathartica) invaded or uninvaded stands will assess the differences in AMF 

communities in established forests.  

Objective 2 

A manipulative common-garden experiment will assess the effects of different sources 

of buckthorn allelochemicals (roots, leaves and fruit) on AMF communities in sugar maple 

from soils previously unexposed to buckthorn. 
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3.2 MATERIALS AND METHODS 

3.2.1 Soil Sampling 

Objective 1 

Sampling sites included plots within Komoka Provincial Park (Komoka, Ontario; Figure 

3.2 A), and rare Charitable Research Reserve (referred to as rare CRR) (Cambridge, 

Ontario; Figure 3.2 B and C). Latitude and longitude coordinates of sampling sites using 

the universal transverse Mercator system (UTM) are provided in the figure captions. 

Uninvaded sites were defined as mature sugar maple stands at least 30 m away from nearest 

mature fruiting buckthorn and at least 10 m away from any garlic mustard plants, another 

allelochemically active invasive species. Invaded sites were classified as mature sugar 

maple stands with at least one mature, fruiting buckthorn tree (approximately 9–20 years 

old) growing underneath the drip line (canopy). Uninvaded and invaded plots were at least 

10 m apart.  

Feeder roots and associated soil were collected from mature maples in uninvaded 

and invaded stands in the summer on June 12, 2014 (at rare CRR) and July 14, 2014 (at 

Komoka), and in the fall on October 23, 2014 (at rare CRR) and October 28, 2014 (at 

Komoka). Within each sampling area, three maple trees were sampled with three root 

samples per tree. Root excavation followed a main root from the trunk to a point where a 

15 × 15 × 20 cm pit was dug and soil was collected in a plastic sampling bag. A total of 32 

samples was collected from 18 uninvaded and 18 invaded sites.  

Objective 2 

Sugar maple seedlings (15–20 cm in height) and potting soil were collected on May 22nd 

and 23rd, 2014—to avoid the disturbance of spring ephemerals—from a woodlot at Shady 

Maples Farm, Ilderton, Ontario (Figure 3.2 D). The plots were dominated by sugar maple 

trees (>50%), with no history of buckthorn influence, and at least 30 m away from the 

nearest mature, fruiting buckthorn. Extra potting soil was taken from each site. Buckthorn 

seedlings were taken from the edge of a buckthorn-invaded woodlot at the Environmental  
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Figure 3.2. Sampling locations for Objective 1 and 2 in A) Komoka Provincial Park, 

Komoka, ON (17T 467284mE and 4755082mN. Google Earth. September 10, 2015.); B) 

Cliffs and Alvars forest at rare Charitable Research Reserve, Cambridge, ON (17T 553163 
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mE and 4802913mN. Google Earth. April 16, 2016); C) Grand Alee and Indian Woods 

forest at rare Charitable Research Reserve, Cambridge, ON (17T 551133mE and 

4802510mN. Google Earth. April 16, 2016.) and D) Uninvaded sugar maple (Acer 

saccharum) seedlings at Shady Maple Farm, Ilderton, ON (17T 478949mE and 

4775237mN. Google Earth. September 22, 2015). E) Open-air greenhouse location and 

seedling sampling location for buckthorn (Rhamnus cathartica) seedlings at the 

Environmental Sciences Western Field Station, Middlesex Centre, ON (17T 472643mE 

and 4769095mN. Google Earth. September 22, 2015). Pins labeled “A” indicate sugar 

maple trees in uninvaded plots, those labeled “RA” indicate sugar maple trees with mature 

fruiting buckthorn in invaded plots. 

 

Sciences Western Field Station on May 28, 2014 (Middlesex Centre, ON; Figure 3.2E). 

A total of 72 sugar maple seedlings (including associated soil) and 48 buckthorn 

seedlings (excluding associated soil) were collected. Shady Maple Farm was revisited on 

November 4th, 2014, at the end of the treatment period, to collect six field control 

seedlings from each site. 

3.2.2 Seedling Treatments  

Seedlings (sugar maples alone, or sugar maples with buckthorns; see Fig. 3.4) were 

immediately planted in 15 cm diameter pre-cleaned pots and kept in a partially shaded 

enclosure at the Environmental Sciences Western Field Station (Figure 3.2E). Watering 

regimes included natural precipitation as well as early morning watering to prevent drought 

and seedling death. Seedlings were left to grow from May until the end of October, 2014. 

Weeds were actively removed from the pots, taking care to reduce soil disturbance, and no 

fertilizer was added. 

Buckthorn amendments were applied in twice during the testing season since there 

are two major periods of increased buckthorn leachate in soils, when berries are picked off 

and are excreted by frugivores in mid-fall, and when leaves fall in early winter (personal 

observation). Due to growing and timing constraints, amendment additions mirroring 

natural timelines were not possible, so treatments occurred once in June and again in 
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September, 2014.  Leaves were picked in June of 2014 and berries from the previous year’s 

growing season were picked in March 2014, both from buckthorn trees growing on 

Western’s campus (477001 m E and 4761149 m N; Figure 3.3). The leaves were dried at 

60 °C for 24 hours, and the berries were freeze-dried at 64 mtorr for 6 hours. The berries 

were coarsely mulched with a cold mortar and pestle. Each pot received 12 g or 

approximately 60 fruits (equivalent to 202 fruits/m2; Seltzner and Eddy 2003) and/or an 

equal weight of leaves. Treatment 4 (fruit + leaves) was the combined mulched weight of 

treatments 2 and 3 (Figure 3.4). 

The treatment period ended October 30th, 2014. Maple seedlings were carefully 

removed from the pots, and soil was gently washed away to keep the fine roots intact. The 

entire root mass was clipped, placed in sterile 50 mL tubes, and frozen at ‒20 °C. Clippers 

and buckets were cleaned between each treatment to reduce the chance of cross-

contamination. 

3.2.3 Soil DNA Extraction 

Collected soils from Objective 1 were washed with 1M sodium pyrophosphate 

(NaPyrP) (Anachemia) to help break up soil particles. Up to 20 g wwt of soil was washed 

with 200 mL of NaPyrP in clean glass jars. Samples were left to sit for 5 min, hand-shaken 

for 1 min to break up soil colloids, then strained through a coarse (No. 16, 1.18 mm), 

medium (No. 60, 250 µm), and fine (No. 270, 53 µm) sieve (VWR Scientific, West Chester, 

PA). Roots were separated by hand from the coarse and medium sieve. Organic matter, 

including mycelia and spores, were pipetted out from the fine sieve using 1 mL broad tips 

into 50 mL Falcon tubes together with the root material. Sieves were washed with soapy 

water, rinsed for 1–2 min with dH2O, and cleaned in 70% ethanol between samples. Sample 

tubes were centrifuged for 3 min at 2 000 rpm, the supernatant was removed and the pellet 

was frozen until lyophilization. For Objective 2, frozen fine sugar maple roots were washed 

with NaPyrP as described above.  
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Figure 3.3. Collection locations for buckthorn (Rhamnus cathartica) fruits and leaves 

(collected in March and June, 2014, respectively) (17T 477001mE and 4761149mN. 

Google Earth. September 22, 2015).  
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Figure 3.4. Experimental design of the potted greenhouse experiment, Objective 2. A) 

Open-air greenhouse design using two replications of four buckthorn (Rhamnus cathartica) 

allelochemical treatments: (1) roots only (no leaves or fruits); (2) leaves; (3) fruits; (4) 

leaves and fruits. Control pots had two Acer saccharum seedlings to control for effects of 

root disturbances and competition; all treatment pots had one R. cathartica seedling and 

one A. saccharum seedling. B) Complete replicated design. 

 

All samples were freeze-dried for 24 h at 52–64 mtorr (Virtis Bench Top 3.5 Freeze 

Dryer). Care was taken to prevent cross-contamination by plugging the open end of each 

tube with a paper towel. Samples were ground in liquid nitrogen, with acid-washed mortars 

and pestles, to break up soil particles, and release spore or cell contents. After grinding, 

samples were kept frozen at –20 °C in sealed 50 mL Falcon tubes until DNA extraction. 

DNA isolation from roots and soils was done using the ZR Soil Microbe DNA 

MicroPrep (Zymo Research Corporation). Up to 0.25 g of ground sample was added to the 

ZR Bashingbead™ Lysis tube with 750 µL Lysis Solution, and processed in a FastPrep 

FT120 for 45 s at speed setting 4. Isolated DNA was immediately quantified using a 

nanodrop (Nanodrop 2000, Thermo Scientific) to determine DNA concentration. If DNA 

concentrations were below 15 ng/µL, additional extractions were performed and combined. 

Extracts were stored at –20 °C until PCR amplification. 

3.2.4 Soil and Root PCR Amplification 

The nuclear ribosomal small subunit was targeted to provide taxonomic 

identification and abundances of buckthorn AMF and soil/root-associated fungi. For 

sequencing using the Illumina MiSeq (MiSeq) platform, the primer set AMV4.5F-

AMDGR (Sato et al. 2005) was chosen to amplify species within the Glomeromycota. The 

5’ end of the forward and reverse primers were modified to include the forward or reverse 

Illumina adapter, a 4 bp linker (NNNN), and an 8 bp barcode sequence that allowed 

recognition of products from different samples following Illumina sequencing (Gloor et al. 

2010) (Appendix II).  
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PCR reactions were set up on ice to minimize primer dimerization. PCRs were 

carried out in 25 µL reactions with variable DNA loading volumes (4-8 µL), 1.25 µL of 5 

µM each of forward and reverse primers (0.5 nmol per reaction), 0.5 µL loading dye, and 

12.5 µL Accustart II PCR ToughMix mastermix. PCRs using the ToughMix mastermix 

and AMF primers used the following thermal profile: 94°C for 1 min, 29 cycles of 94°C 

for 30 s, 55°C for 30 s, 72°C for 18 s. No final extension step was used.  

DNAs from potted sugar maple roots (Objective 2) were individually amplified 

within PCR reactions and each treatment within a replication was pooled into one tube to 

be sequenced under one barcode pair. For example, the 6 individual PCRs from all 6 

Control seedlings in replication 1 were PCR amplified using one set of barcoded primers. 

Performing multiple PCRs was considered unnecessary as increasing the number of pooled 

replicates had not shown an observable increase in sequencing depth, especially when 

using the MiSeq platform (Hale et al. 2005). 

PCR products were visualized using gel electrophoresis in a 1% Agarose-A gel to 

verify PCR success before pooling replicates. Pooled replicates were lyophilized and 

reconstituted with 30 µL mH2O and stored at –80 °C before submission for sequencing at 

the London Regional Genomics Centre at Robarts Research Institute (London, Ontario). 

3.2.5 Bioinformatic Analysis 

The Illumina MiSeq platform was used to sequence the DNA samples. Raw FASTQ 

data were processed using a custom MiSeq data processing pipeline 

(https://github.com/ggloor/ miseq_bin/tree/master) using the AMV4.5F-AMDGR primer 

set (labelled as V4AMF in the online documentation). PANDAseq 

(https://github.com/neufeld/pandaseq) (Masella et al. 2012) was used to overlap forward 

and reverse reads with a minimum overlap distance of 30 nt. Sequences containing 

ambiguous basecalls (N) were removed, as well as sequences with mismatches to the 

primer sequence due to sequencing errors. Both barcode and primer sequences were 

trimmed prior to clustering. The pipeline groups individual reads into identical sequence 

units (ISUs) and checks for chimeras using the UCHIME de-novo algorithm (Edgar et al. 

2011). It then groups ISUs into operational taxonomic units (OTUs) at 97% identity around 
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the most abundant centroid sequence using the UCLUST algorithm in the USEARCH 

v7.0.1090 program (Edgar 2010). Although the distance cut-off is considered arbitrary and 

controversial, it has been used in other sequencing studies and allows for comparisons 

between them (Lumini et al. 2010; Santos-González et al. 2007). A preliminary taxonomic 

assignment was given to each sequence by the built-in Mothur v1.34.0 (Schloss et al. 2009) 

classification program based on the Silva 16S rRNA gene reference dataset (Pruesse et al. 

2007). 

3.2.6 Statistical Analyses and Data Visualization 

Samples were combined for differential abundance analysis using ALDEx2 in R 

3.3.1 (R Core Team 2016), ALDEx2 package (Fernandes et al. 2013), zCompositions 

package (Palarea-Albaladejo and Martín-Fernández 2015), and CoDASeq Microbiome 

Tutorial by Dr. Greg Gloor and Jean Macklaim 

(https://github.com/ggloor/CoDa_microbiome_tutorial/wiki). No OTUs were removed 

from the analysis. Cluster dendrograms using the Aitchison distance metric and the Ward 

D2 clustering method were created to visualize community composition in all samples (see 

documentation for the hclust command in the ‘stats’ package for other options). ALDEx2, 

a univariate comparison tool, incorporates the Bayesian estimate of taxon abundance into 

a compositional framework. ALDEx2 estimates the distribution of taxon abundance by 

sampling from 1000 Dirichlet Monte Carlo (DMC) replicates—the distribution of posterior 

probabilities of observing each taxon. Data were transformed by the centered log-ratio (clr) 

transformation and used to conduct a univariate statistical test between observed and 

posterior probabilities, and distributions of P and Benjamini-Hochberg (BH) adjusted P 

values were given. ALDEx2 is designed to identify significant taxa between treatment 

groups despite the large variation in metagenomics datasets. 

A phi analysis combines the correlation of direction of variance and the correlation 

of amount of variance into one number (the phi value) to measure the strength of 

association between OTUs (Lovell et al. 2015). A constant ratio between OTUs—those 

that respond similarly between environments or treatments—is said to have high 

association, which corresponds to a low phi value. This can be compared to the expected 
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value of phi calculated from the 1000 DMC replicates in the ALDEx analysis after the 

centered zero value (CZM) replacements. Phi cutoffs of 0.2 and 0.3 (Objective 1) and 0.2 

and 0.15 (Objective 2) were used for this dataset to help simplify the output, although 

typical metagenomic studies use phi cutoffs between 0.2 to 0.3. The compositional biplot 

highlights all positively correlated taxa clustered by colour and the highly significant taxa 

in the ALDEx analysis are shown as grey dots (Aitchison and Greenacre 2002). All phi-

metric analyses were done using R and code provided in the CoDa Microbiome Tutorial 

by Greg Gloor and Jean Macklaim (https://github.com/ggloor/CoDa_microbiome_tutorial/ 

wiki/Part-3%3A-OTU-Correlations-with-Phi) and based on Lovell et al. (2015). 

 

3.3 RESULTS 

The MiSeq run had a total of 704 293 raw reads that clustered into 31 008 ISUs with 1 055 

(3.4%) rejected as possible chimeras. The remaining ISUs clustered into 1 279 OTUs (529 

348 reads) at 97% identity. Of those, 143 OTUs that were present at an abundance less than 

0.01% in any sample and 278 OTUs with a sum of less than 5 reads across all samples were 

discarded. This left 858 OTUs (528 076 reads, 75.0% of the raw read count) for taxonomic 

analysis. 

The BLAST query function in the MaarjAM online database 

(http://maarjam.botany.ut.ee/; Öpik et al. 2010) was used to identify possible virtual taxon 

(VTX) numbers for all OTU sequences. This was done on top of the preliminary Mothur 

assignments because the SILVA database did not have adequate Glomeromycota reference 

sequences (e.g., many Glomus and Claroideoglomus remained unclassified, and some 

Paraglomus were misclassified as Basidiomycota). All potential Glomeromycota reads 

were pooled and aligned using command line Muscle v3.8.31 (Edgar 2004) and made into 

Neighbour Joining (NJ) and Maximum Likelihood (ML) trees using MEGA v7.0.18 

(Kumar et al. 2016). The dataset also included sequences of the VTX Type (listed in the 

MaarjAM database), MaarjAM top matches for each OTU, SSU AMF reference sequences 
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from (Krüger et al. 2012), with Mortierella hyalina JQ040259.1 as an outgroup (Appendix 

III). 

Eighty-six OTUs had high matches to Paraglomus VTX00308 (P308) sequences 

within the MaarjAM database. Of these, all but two had initially been assigned to 

Basidiomycota using the SILVA reference dataset within Mothur; one remained 

unclassified and the other was assigned to Glomeromycota. Neighbour Joining and ML 

trees were created to determine a more parsimonious phylogenetic placement of all 

potential Paraglomus OTUs, using the top MaarjAM VTX sequence hits, VTX Type 

sequence, and named BLAST sequences (Edgar 2010) with the closest distance tree 

matches (Koski and Golding 2001) (Appendix IV). Eight of the 86 OTUs clustered 

consistently among the P308 and P. laccatum VTX281 (Plac281) type sequences in both 

NJ and ML trees, with 78 OTUs excluded since they clustered within the Basidiomycota.  

The remainder of the dataset included 449 Fungal OTUs (454 233 reads, 86.0% of 

final reads) as well as one Florideophycidae OTU, one Monosigidae (Choanomoda) OTU, 

two Ichthyosporea OTUs, and three Ochrophyta OTUs (229 total reads, 0.0434% of final 

reads), and 402 unclassified OTUs (73 460 reads, 13.9% of final reads). Within the Fungi, 

132 OTUs belonged to the Glomeromycota (335 666 reads, 73.9% of final reads), 1 

Blastocladiomycota OTU (61 reads, 0.0134% fungal reads), 122 Chytridiomycota OTUs 

(8.04% fungal reads), 17 Ascomycota OTUs (1 475 reads, 0.325% fungal reads), 134 

Basidiomycota OTUs (69 984 reads, 15.4% fungal reads), 10 Zygomycota OTUs (1 527 

reads, 0.336% fungal reads), and 33 unclassified Fungi OTUs (8 868 reads, 1.95% fungal 

reads). Of the Glomeromycota reads, there were 8 genera, including Acaulospora (2 OTUs; 

1 VTX), Claroideoglomus (14 OTUs, 10 VTX), Diversispora (3 OTUs, 3 VTX), 

Funneliformis (1 OTU, 1 VTX), Glomus (99 OTUs, 40 VTX), Paraglomus (8 OTUs, 2 

VTX), Rhizoglomus (3 OTUs, 2 VTX), and Septoglomus (2 OTUs, 1 VTX).  

3.3.1 Objective 1 

Dataset 1 (Objective 1) had 101 Glomeromycota OTUs with 14 688 reads (2.78% of total 

reads), which comprised 55 unique VTX: 1 Acaulospora lacunosa, 7 Claroideoglomus 

spp., 1 Claroideoglomus lamellosum, 3 Diversispora spp., 1 Funneliformis mosseae, 36 
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Glomus spp., 1 Glomus macrocarpum, 1 Paraglomus spp., 1 Paraglomus laccatum, 1 

Rhizoglomus fasciculatus, 1 Rhizoglomus vesiculiferus, and 1 Septoglomus constrictum 

(Appendix V).  

No OTUs were found with significant BH-adjusted p-values (< 0.05) or with 

moderate to large effect sizes between June and October data, so reads were merged 

between the sampling seasons. Average read counts within each site were relativized to 

10 000 reads per sample and then visualized on a ML tree as OTUs (with 100 bootstrap 

replicates) (Figure 3.5). Some OTUs within the Glomus-Rhizoglomus clades (322, 326, 

392, 378, 695, 891, 904, 966, 989, 1161, and 1274) have higher reads in A (uninvaded) 

plots, whereas others (OTUs 121, 372, 458, 468, 572, and 583) show higher reads in RA 

(invaded) plots. OTU164 (Scon64) was present in all samples, with a lower read count 

found in buckthorn-invaded than pristine plots, and the second OTU108 (Scon64) was 

amplified in all uninvaded plots but was present in the highest amount in the Cliffs 

buckthorn invaded plot. OTU617 (Fmos67) had a higher read count in the invaded Komoka 

soils, but was not amplified in any of the pristine sugar maple soils except Komoka. The 

Claroideoglomus branch had five OTUs (32, 60, 154, 158, and 252) that did not show site- 

or invasion- specific patterns. OTUs 480 and 980 were amplified only in pristine Komoka 

soils, OTU432 was amplified in Grand Alee in invaded buckthorn soils, and OTU320 

seemed to have site-specific amplification in Komoka soils. OTU551 was present in both 

Komoka and Grand Alee, but had higher read counts in both invaded plots. Paraglomus 

laccatum OTU161 was seen only in Komoka soils, with a higher relative abundance in 

pristine sugar maple stands, whereas unknown Paraglomus spp. OTUs 986 and 718 were 

amplified in Komoka invaded and uninvaded soils and smaller amounts within uninvaded 

Grand Alee soils. Among Diversispora spp. phylotypes, OTUs 96 and 307 were seen in all 

soils, but OTU177 was present in all uninvaded plots and only in invaded Cliffs soils. 

Finally, the two Acaulospora lacunosa OTUs 482 and 113 were only picked up in Grand 

Alee sugar maple stands.  
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Figure 3.5. Molecular phylogenetic analysis by Maximum Likelihood method. 

Maximum Likelihood tree based on the Tamura-Nei model (Tamura and Nei 1993) of all 

OTUs found in invaded and uninvaded field samples (Objective 1). The tree with the 

highest log likelihood is shown. The percentage of trees in which associated taxa clustered 

together >50% of the time is shown next to the branches (bootstrap values of 1000 

replicates) (Felsenstein 1985). Values that are ≥ 70% are highlighted in bold. Initial trees 

were obtained using the Neighbour-Joining and BioNJ algorithms from a matrix of 

pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach. 

Branch lengths are proportional to the number of substitutions per site. The analysis 

involved 101 nucleotide sequences, and all positions with less than 95% site coverage were 

eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases 

were allowed at any position. A total of 213 positions were used in the final dataset. Raw 

OTU reads were relativized to 10 000 reads per sample between invaded and uninvaded 

buckthorn sites (n=2) and are represented on a log2 scale next to each terminal node, and 

are colour coded by treatment type. Evolutionary analysis was conducted in MEGA7 
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(Kumar et al. 2016), abundance and treatment information was done through the phyloseq 

R package (McMurdie and Holmes 2013). Thirty-three OTUs were found in all 6 sites, 10 

in 5, and 24 were found only in sites without buckthorn, including both OTUs of 

Acaulospora spp., one of Paraglomus sp., two of Claroideoglomus spp., and 20 of Glomus 

spp. 

 
 

A coloured biplot function mapping VTX against sampling locations (n=12) with 

June and October sampling times is shown in Figure 3.6. Principal Components axes 1 and 

2 explain 21.6% and 19.4% of the variation, respectively, with PC3 dropping to 

approximately 14% explained variance. Clustering of June samples can be seen in the 

center of the plot, having little bearing on components 1 and 2, whereas larger diversity is 

visible with October samples. Invaded October plots within Grand Alee and Komoka 

(OG_RA and OK_RA) are more similar to one another’s OTU composition than invaded 

October Cliffs (OC_RA) plots, which are characterized by eight different Glomus and one 

Claroideoglomus OTUs. Uninvaded October Komoka plots (OK_A) had the largest 

difference between all the plots, characterized by nine Glomus OTUs, one Diversispora 

OTU (D62), one Claroideoglomus OTU (C279), and one Paraglomus laccatum OTU 

(Plac261). The presence of D356 has the highest influence on the October uninvaded Cliffs 

(OC_A) sample, driving it away from the central cluster.  

Similar patterns of seasonal variability can be seen within the cluster dendrogram 

when considering all VTX in each sample (Figure 3.7). Both OK_AR/OG_AR and 

OK_A/OG_A samples clustered together, whereas both October Cliffs uninvaded and 

invaded (OCA and OC_AR) sites fell together within the June sampling point cluster. Both 

JC_AR and JC_A clustered within the same branch indicating similar VTX communities 

and a stronger plot effect, whereas the grouping of JK_AR and JG_AR shows more of a 

treatment (buckthorn invasion) effect. OC_A has a unique community of Glomeromycota, 

with high proportions of G199 and G88 comprising nearly 60% of the read count. 
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Figure 3.6. Covariance biplot (A) and scree plot of eigenvalues (B) based on virtual taxa found in buckthorn (Rhamnus 

cathartica) invaded (RA) and uninvaded (A) sugar maple (Acer saccharum) soils (Objective 1), taken from plots within 

Komoka Provincial Park (K), London, ON, Grand Alee-Indian Woods (G) and Cliffs and Alvars (C), in rare Charitable Research 

Reserve, Cambridge, ON. Samples taken from each location are marked with the time of year they were taken, June (J) in red or 

October (O) in black. 95% confidence ellipses indicate lower degree of arbuscular mycorrhizal fungi (AMF) variation in June 

and higher AMF variation in October. Virtual taxa are shortened to the first letter of the genus, followed by the last three digits 

of the taxon number, as referred to in the MaarjAM database (Öpik et al. 2010). Genera found in this study are Acaulospora – 

A, Claroideoglomus – C, Diversispora – D, Funneliformis – F, Glomus – G, Paraglomus – P, Rhizoglomus – R, Septoglomus – 

S. The scree plot histogram shows eigenvalues (% explained variance) for the covariance biplot in other Principal Component 

axes.
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Figure 3.7. Cluster dendrogram and abundance barplot of all unique Virtual Taxa found in buckthorn (Rhamnus 

cathartica) invaded and uninvaded sugar maple (Acer saccharum) plots (Objective 1). October (O) and June (J) sampling 

times for each sampling location (Cliffs & Alvars – C, Grand Alee-Indian Woods – G, Komoka Provincial Park – K) is shown 

with buckthorn invaded (RA) or uninvaded (A) sites. Virtual Taxa are represented by the first letter of the genus (Acaulospora 
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– A, Claroideoglomus – C, Diversispora – D, Funneliformis – F, Glomus – G, Paraglomus – P, Rhizoglomus – R, Septoglomus 

– S) followed by the last three digits of the VTX number as found in the MaarjAM database (Öpik et al. 2010). A small seasonal 

effect is seen with the October Komoka and Grand Alee sites clustering together, whereas October Cliffs was clustered within 

the June sample branches. No definite pattern in VTX abundance is seen within the June samples. The top four abundant VTX 

among all samples were G117, G88 and G199 (all Glomus spp.), and Diversispora sp. VTX62. Figure generated using R 3.3.1 

and the CoDASeq microbiome tutorial (https://github.com/ggloor/ CoDa_microbiome_tutorial/wiki). Inner branches are scaled; 

terminal branches are not scaled. 
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Differences between the October pristine samples was seen in the presence of D64 in 

Komoka, G117 in Grand Alee, and G119 in Cliffs & Alvars. On the other hand, June uninvaded 

samples had a prevalence of G117 in both Grand Alee and Komoka sites and an equal proportion 

of G88, D61, and Rfas113 in Cliffs & Alvars. 

OTUs with differential abundances (those with moderate to large effect sizes due to larger 

between-group than within-group differences) in buckthorn uninvaded (A) versus invaded (RA) 

sites were highlighted with the ALDEx2 package in R. All OTUs and samples were kept in the 

dataset since OTU subsampling measures (e.g., retaining those with reads > 0.1% of the total 

dataset read count) did not substantially increase PC variance contained in axes 1 and 2. Two 

OTUs 129 and 164 belonging to G117 and Scon64 were considered moderately influential, with 

effect sizes within the range of -0.8 and -1 (Figure 3.8; Appendix VI). Glomus sp. VTX117 was 

present in five of the six pristine sites (147 total read count) and in two of the invaded sites (4 total 

read count), and S. constrictum VTX64 was present in all pristine sites (141 total read count) and 

in three of the invaded sites (5 total read count). No significant taxa were identified with the BH-

adjusted p-values in relation to invaded or uninvaded soils.  

Positively associated OTUs (those with low phi values) were shown within eight clusters 

(represented by their assigned genus and VTX number) at phi ≤ 0.3 (Figure 3.9). Six of the eight 

clusters contained OTUs within the same genus, whereas the other two contained a Glomus-

Claroideoglomus pairing and a Glomus-Glomus-Diversispora pairing.  A positive correlation 

among these clusters indicates similar increases or decreases in abundances across samples. A 

stronger positive correlation was seen with phi ≤ 0.2 clusters containing C279-C193, and G74-

G219 (Figure 3.9). 
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Figure 3.8. Analysis of 

OTUs in invaded versus 

uninvaded plots with 

differential variations 

(Objective 1); A) Scatterplot 

of the within- to between- 

condition differences in OTU 

variation among sample 

types. Dark blue dots 

represent samples with 

moderate effect sizes between 

-0.8 and -1 (those with larger 

between-group variation in 

comparison to within-group 

variation), and black dashed 

lines represent the line of 

equivalence for the within- 

and between- group values. Taxa that are more abundant than the mean in pristine (A) samples have negative y values, taxa that 

are more abundant than the mean in invaded (RA) samples have positive y values; B) Plot of effect size vs the BH adjusted P 

value; C) Volcano plot for reference. Figures generated using the ALDEx2 package (Fernandes et al. 2013) in R 3.3.1 (R Core 

Team 2016) using the CoDASeq microbiome tutorial (https://github.com/ggloor/CoDa_ microbiome_tutorial/wiki). 
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Figure 3.9. Positively correlated OTUs shown in an A) ordinal diagram (phi ≤ 0.3), and B) covariance biplot (Objective 

1) based on buckthorn (Rhamnus cathartica) invaded and uninvaded sugar maple (Acer saccharum) soils. All positively 

correlated OTUs are represented by Virtual Taxa (VTX) designation. First letter genus abbreviations (C – Claroideoglomus, D 

– Diversispora, G – Glomus) are followed by the last three digits of its VTX numeric identifier. Stronger positive correlations 

(at phi ≤ 0.2) between taxa are indicated using heavy dashed lines. Coloured clusters from the ordinal diagram (A) are shown in 

the covariance biplot (B). Figures generated using R 3.3.1 and the CoDASeq microbiome tutorial 

(https://github.com/ggloor/CoDa_microbiome_tutorial/wiki).  
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3.3.2 Objective 2 

Dataset 2 (Objective 2) had 126 Glomeromycota OTUs with 165 805 reads (31.1% of total 

reads), which comprised 55 unique VTX: 1 Acaulospora lacunosa, 8 Claroideoglomus sp., 

1 Claroideoglomus lamellosum, 2 Diversispora sp., 1 Funneliformis mosseae, 36 Glomus 

sp., 1 Glomus macrocarpum, 1 Paraglomus sp., 1 Paraglomus laccatum, 1 Rhizoglomus 

fasciculatus, 1 Rhizoglomus vesiculiferus, and 1 Septoglomus constrictum (Appendix VII). 

Average read counts between replications were relativized to 10 000 reads within 

each treatment and placed into a ML tree (with 1000 bootstrap replications) as OTUs 

(Figure 3.10). Glomus spp. sequences clustered into three groups, separated by 

Septoglomus spp., Funneliformis spp., and Rhizoglomus spp. clades. Glomus spp. OTUs 

97, 38, 820, 617, and 23 clustered with the Septoglomus/Funneliformis branch with high 

bootstrap confidence (>80), indicating that these sequences may be phylogenetically closer 

to the last two genera than to Glomus spp.  

All zero values within the read count table were replaced with the count zero 

multiplicative (CZM) method and converted to proportions before creating a cluster 

dendrogram visualizing all unique VTX between samples (Figure 3.11). Both field control 

(CF) samples clustered on a separate branch from potted control (CP) samples, indicating 

the presence of a potting effect on the dataset. Control replications are sister groups, and 

Root 1 (R1) replicate clustered alongside the Control branch, showing similar VTX 

composition but higher G177 proportions and a subsequent reduction in Rfas113. Root 2 

(R2) replicate clustered with Leaves & Berries 1 (LB1), Leaves 1 (L1), and Berries 1 (B1), 

whereas a slight replication effect was seen with the branches ending with Berries 2 (B2) 

replicate, Leaves 2 (L2) and Leaves & Berries 2 (LB2) terminal nodes.  

Both control replications of the field (CF) and potted (CP) samples were combined 

(n=4) and both replications of all emodin treatments, Roots (R), Leaves (L), Berries (B) 

and Leaves/Berries (LB) were combined (n=8) since a minimum of 3 replicates are 

required for the ALDEx2 package.  
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Figure 3.10. Molecular phylogenetic analysis by Maximum Likelihood method of all 

OTUs found in potted samples (Objective 2). Maximum Likelihood tree based on the 

Tamura-Nei model (Tamura and Nei 1993). The tree with the highest log likelihood is 

shown. The percentage of trees in which associated taxa clustered together >30% of the 

time is shown next to the branches (bootstrap values of 1000 replicates) (Felsenstein 1985). 

Values that are ≥70% are highlighted in bold. Initial trees were obtained using the 

Neighbour-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the 

Maximum Composite Likelihood (MCL) approach. Branch lengths are measures in the 

number of substitutions per site. The analysis involved 245 nucleotide sequences, and all 

positions with less than 95% site coverage were eliminated. That is, fewer than 5% 

alignment gaps, missing data, and ambiguous bases were allowed at any position. A total 

of 211 positions were used in the final dataset. Raw OTU reads were relativized to 10 000 

reads per sample and averaged between replications (n=2). Data are represented on a log2 

scale next to each terminal node, and are colour coded by treatment type. Evolutionary 

analysis was conducted in MEGA7 (Kumar et al. 2016), abundance and treatment 

information was done through the phyloseq R package (McMurdie and Holmes 2013). 

Fifty-eight OTUs were found in all six treatments, 4 were only seen in the Field control, 

and 11 OTUs were found only in Treatment samples, including two of Paraglomus spp., 

two of Claroideoglomus spp., and 7 of Glomus spp
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Figure 3.11. Cluster dendrogram and abundance barplot of all unique Virtual Taxa (VTX) found in potted Control (Acer 

saccharum) and Treatment (Acer saccharum, Rhamnus cathartica, plus allelochemicals) samples (Objective 2). VTX found in 

Potted Control (CP) and Field Control (CF) are clustered alongside buckthorn (R. cathartica) allelochemical treatment pots (R – Root, 

L – Leaves, B – Berries, LB – Leaves and Berries). All VTX are listed with the genera’s first letter and first three letters of the species, 

if known (A – Acaulospora lacunosa, C – Claroideoglomus, Clam – C. lamellosum, D – Diversispora, Fmos – Funneliformis mosseae, 
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G – Glomus, Gmac – G. macrocarpum, P – Paraglomus, Plac – P. laccatum, Rfas – Rhizoglomus fasciculatus, Rves – Rhizoglomus 

vesiculiferus, and Scon – Septoglomus constrictum), and the last three digits of its VTX identifier (Öpik et al. 2010). Clustering patterns 

show a potting effect with the CF samples. The top three abundant VTX in the potted samples (Rfas113, G166, and G160) are not found 

in high abundance in the CF samples, whereas G72, G151, and G222, make up the largest proportion. Legend lists taxa in order of 

decreasing overall abundance starting from the top left. Figures generated using R 3.3.1 and the CoDASeq microbiome tutorial 

(https://github.com/ggloor/CoDa_microbiome_tutorial/wiki).  
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All OTUs and samples were kept in the dataset since OTU subsampling measures (e.g., 

retaining those with reads > 0.1% of the total dataset read count did not substantially 

increase PC variance contained in axes 1 and 2). Five OTUs (4, 462, 17, 23 and 48) had 

large effect sizes (> 1, or < -1) between groups, and 6 OTUs (99, 40, 35, 1255, 695, and 

1274) had moderate significant effect sizes (between 0.8 and 1, or -0.8 and -1) (Figure 3.12, 

summarized in Appendix VIII). All of the OTUs with moderate or large effect sizes 

between Control and Treatment plots were Glomus spp. sequences. Both OTUs of G177 

had low reads in the control samples and significantly more in the treatment samples 

(positive y-axis values). In contrast, G151, G125, and G72 were higher in control than the 

four treatments (negative y-axis values). No OTUs were found to have significant BH-

adjusted p-values (<0.05). 

A cluster dendrogram was created using taxa with large and moderate effect sizes 

(Figure 3.13). Both CF samples were strikingly different than all the potted samples, with 

a much higher proportion of OTU23 (G151), and CF2 having the highest proportion of 

OTU17 (G72) than all other samples. Within the potted samples, OTU4 steadily increased 

in proportion, with potted controls having the lowest (disregarding B1 & B2 samples), 

followed by Leaves, Leaves/Berries, and Roots. The B1 replication clustered with the two 

CP1 and CP2 replications, whereas the B2 replication was most similar to both R1 and R2.  

Disturbance of the soil caused by the potting procedure appears to have encouraged growth 

of OTU4 (G177), which was present in both field controls in very low counts in the raw 

data (13 reads between both sites). OTUs 695, 1274, and 462 are considered absent from 

field samples (2 reads between both sites) but show an increase after disturbance. The G177 

VTX, represented by OTUs 4, 462, and 1274 all increased after potting and buckthorn 

disturbance.  

Positively associated OTUs (phi ≤ 0.15) are clustered by colour in Figure 3.14A. 

Taxa with large effect sizes highlighted in Figure 3.12 are shown with grey centers in the 

ordination plot (Figure 3.14A), and as grey dots on the covariance biplot (Figure 3.14B). 

The potting effect is visible along PC1 (27.1% explained variance), with both CF 

treatments clustering away from potted samples. 
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Figure 3.12. Analysis of OTUs in control versus treatment samples with differential variations (Objective 2); A) Scatterplot 

of the within- to between- condition differences in OTU variation among samples. Red dots represent those with large effect 

sizes between > 1 or < -1 (those with larger between-group variation in comparison to within-group variation), dark blue dots 

represent samples with moderate effect sizes (between 0.8 and 1, or -0.8 and -1) and black dashed lines represent the line of 

equivalence for the within- and between- group values. Taxa that are more abundant than the mean in Control (Field Control and 

Potted Control) samples have negative y values, taxa that are more abundant than the mean in Treatment (Roots, Leaves, Berries, 

and Leaves & Berries) samples have positive y values; B) Plot of effect size vs the BH adjusted P value; C) Volcano reference 

plot. Figures generated using the ALDEx2 package (Fernandes et al. 2013) in R 3.3.1 (R Core Team 2016) through the CoDASeq 

microbiome tutorial (https://github.com/ggloor/CoDa_microbiome_tutorial/wiki). 
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Figure 3.13. Cluster dendrogram and abundance barplot of taxa with large (red dot) 

and moderate (blue dot) effect sizes (Objective 2). A potting effect is shown as the 

biggest difference between Field Control (CF) and potted samples (CP – Potted Control, R 

– Roots, L – Leaves, B – Berries, LB – Leaves & Berries), with the appearance of 4 taxa 

(OTUs 695, 1274, 462, and 4) after potting, and the reduction in proportion of OTUs 23 

and 17 after potting. Treatment effects (except for B1 and B2) include a large increase in 

the proportion of OTU4 and subsequent decrease in abundance of all other OTUs. B1 

shows no treatment effect and clusters with both Controls, B2 shows an extreme increase 

in OTU4. Figures generated using R 3.3.1 (R Core Team 2016) and the CoDASeq 

microbiome tutorial (https://github.com/ggloor/CoDa_microbiome_ tutorial/wiki). 
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Figure 3.14. Positively correlated OTUs shown in an A) ordinal diagram (phi ≤ 0.2) and B) covariance biplot based on Control 

and Treatment potted samples (Objective 2).  Ordinal diagram visualizing positively correlated VTX at both phi ≤ 0.2 (grey line) and 

0.15 (dashed line). OTUs with large effect sizes are shown in grey. Coloured clusters from the ordinal diagram (A) are shown in the 

covariance biplot (B). Biplot PC1 explained 27.1% of the variation between potting effects, with Field Control (CF) samples clustering 

separately from Potted Control (CP) and all other treatments: Roots (R), Leaves (L), Berries (B) and Leaves & Berries (LB). PC2 
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explained 21.9% of the variance due to sampling location (disregarding TB1 as an outlier), with potted replicates 1 and 2 clustering 

above and below the PC2 axis. First letter VTX abbreviations (C – Claroideoglomus, G – Glomus, P – Paraglomus, R – Rhizoglomus) 

are followed by the last three digits of its VTX numeric identifier. Numbers following sample names indicate sampling location (1 or 

2). Figures generated using R 3.3.1 (R Core Team 2016) and the CoDASeq microbiome tutorial 

(https://github.com/ggloor/CoDa_microbiome_ tutorial/wiki).  
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Treating B1 as a potential outlier, sampling location variance (21.9%) can be explained by PC2 

where there is separation between sampling locations 1 and 2 above and below the dashed line. 

The associated scree plot (Figure 3.8B) of eigenvalues and PC components confirms that most of 

the variation can be explained by PC1 and PC2. The ordination diagram (Figure 3.14A) shows a 

clearer view of OTUs and AMF genera (C – Claroideoglomus, G – Glomus, P – Paraglomus, and 

R – Rhizoglomus) that are positively correlated with both phi cutoffs (0.15 and 0.1). VTX are 

expected to respond similarly to treatment effects and would typically fall into clusters amongst 

themselves (as seen in the two clusters comprised mainly of G166 or G222). Six of the 9 clusters 

(at phi ≤ 0.2) all contain the same genus (Glomus spp.), and 3 contain different genera (Glomus- 

Claroideoglomus, Glomus-Paraglomus, and Glomus-Rhizoglomus). Clustering at phi ≤ 0.15 (dark 

dashed lines) all involve OTUs within the same genus, except for the Glomus-Rhizoglomus group, 

and all involve at least one different VTX. 

A covariance biplot of OTUs found in the manipulative experiment, after the outlying B1 

sample was removed, shows the separation of CF replications 1 and 2 from all potted replications 

along PC1 (29.1% explained variance), and clear site-specific clustering of samples and OTUs 

along PC2 (20.4% explained variance) (Figure 3.15A). The scree plot of eigenvalues shows a drop 

in explained variance in PC3 to approximately 11% (Figure 3.15B). Despite the Shady Maples 

sites being within the same forest, approximately 400 m from one another (Figure 3.2D), there are 

observable differences in AMF communities. The 95% confidence ellipses (calculated using 

standard error) exclude the more variable CF replications within each site, as well as the B2 

replicate. 
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Figure 3.15. Covariance biplot (A) and scree plot of eigenvalues (B) based on virtual taxa found in potted Control (Acer 

saccharum) and Treatment (Acer saccharum, Rhamnus cathartica, plus allelochemicals) samples (Objective 2). VTX found 

in each replication (1 or 2) in Potted Control (CP), Field Control (CF), and buckthorn allelochemical treatment pots (R – Root, 

L – Leaves, B – Berries, LB – Leaves and Berries), with B1 removed as an outlier. Virtual taxa are shortened to the first letter 

of the genus, followed by the last three digits of the taxon number, as referred to in the MaarjAM database (A – Acaulospora 

lacunosa, C – Claroideoglomus, Clam – C. lamellosum, D – Diversispora, Fmos – Funneliformis mosseae, G – Glomus, Gmac 

– G. macrocarpum, P – Paraglomus, Plac – P. laccatum, Rfas – Rhizoglomus fasciculatus, Rves – Rhizoglomus vesiculiferus, 

and Scon – Septoglomus constrictum) (Öpik et al. 2010). 95% confidence ellipses (red for replication 1, cyan for replication 2) 

indicate site specific differences in VTX abundances. The scree plot histogram shows eigenvalues (% explained variance) for 

the covariance biplot in other Principal Component axes. 
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3.4 DISCUSSION 

The spread of invasive plants into native communities has been associated with changes in 

soil AMF community composition through disturbance or allelochemicals (Barto et al. 

2011; Meinhardt and Gehring 2012; Mummey and Rillig 2006; Stinson et al. 2006; Zhang 

et al. 2007).  

The first objective was to determine whether local invasion of buckthorn (Rhamnus 

cathartica) into pristine sugar maple (Acer saccharum) forests would affect fungal 

communities, most likely due to the release of multiple secondary metabolites through 

roots, decomposing berries, and litter. An increase in disturbance—and allelochemical—

tolerant AMF and a decrease in sensitive or rare species in sugar maple forests was 

hypothesized because of similar occurrences documented with other invasive plants 

(Epifano et al. 2012; Genovese et al. 2010; Hempel et al. 2007). However, data revealed 

that AM fungal communities in sugar maple forests varied by site and sampling time as 

much or more than in their response to buckthorn invasion. 

The second objective was to find out whether any short-term AMF community 

changes would occur in pots containing sugar maple seedlings exposed to buckthorn root 

exudates and leachates from leaves and berries. Maple seedlings and naïve soil were 

collected, and the maples were planted alongside root-washed buckthorn seedlings and 

allowed to grow over the summer from May to October. The seedlings were given time to 

establish for one and a half months before buckthorn allelochemical additions using 

mulched leaves, coarsely ground berries, or a combination of both. Sequencing of 

mycorrhizal DNA from root-washed sugar maple seedlings (as well as undisturbed field 

controls) revealed a strong potting/greenhouse effect as well as a weaker treatment effect 

between samples, indicating the potential for buckthorn influence on native seedlings. 

Potting effects include the compaction of soil near the bottom of the pot, as well as the 

removal of water-soluble compounds from drainage holes over time.  

Despite the difficulty in generalizing the overall changes in community 

composition and abundance, changes in local AMF dynamics can still provide insight into 
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buckthorn’s invasional success. It was possible to put names onto previously unknown 

AMF that may be associated with, and affected by, buckthorn during invasion. Considering 

every sample taken from buckthorn-invaded or -uninvaded soils, only 24 OTUs were seen 

solely in uninvaded sites, including sequences belonging to species of Acaulospora, 

Paraglomus, Claroideoglomus, and Glomus. Despite high variance among samples, a 

prevailing pattern in seasonal AMF dynamics became apparent when comparing June and 

October sample dates. Here, similar mycorrhizal communities consisting of 

Claroideoglomus spp. and Glomus spp. VTX were observed between some summer 

(June/July) sample dates, and different taxa dominated in the fall for each area (species 

from Diversispora, Rhizoglomus, and Glomus). Seasonal shifts in AMF dominance were 

seen in the same location despite the presence or absence of buckthorn, i.e., between 

pristine Komoka/Cliffs & Alvars, and invaded Grand Alee/Komoka plots.  

Significant differences were not evident between paired sites when all three 

sampling locations and both temporal replications were considered, which necessitated a 

closer look at paired sites to identify site-specific changes during buckthorn invasion. No 

AMF VTX differences between invaded and pristine soils were seen in Cliffs & Alvars in 

June, an unexpected finding given that the invaded plot had more mature buckthorn stems 

than invaded Komoka or Grand Alee sites. This may indicate influences of soil 

composition on mycorrhizae in the area, that buckthorn did not substantially affect 

mycorrhizal communities, or that the ‘pristine’ Cliffs & Alvars site may already have 

disrupted AMF communities due to the advancing garlic mustard front along the periphery. 

In general, October samples from Komoka and Grand Alee were considered similar in 

AMF composition when invaded and uninvaded sites were compared, and only the June 

invaded sites were similar across the two locations. Here, comparable edaphic factors 

within Komoka and Grand Alee may be driving the parallel trajectory of AMF community 

development in these separate locations.  

Low explained variance in the first two principal components in this study may be 

attributed to AMF community variance among sampling locations due to soil properties 

such as pH, soil fertility and texture (Jansa et al. 2014), soil carbon, gravimetric water, site-

specific changes in extractable nitrogen and nitrogen mineralization (Barto et al. 2011; 
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Heneghan et al. 2006), and the presence of other mycorrhizal native plants (Davison et al. 

2012; Helgason et al. 2014). The visible differences in dominant AMF VTX across all 

sampled pristine locations demonstrates spatial structuring, something that has been 

observed in scales as small as < 1 m (Mummey and Rillig 2008), as well as the functional 

redundancy of these organisms (Gosling et al. 2016). This suggests that generalizing AMF 

community patterns is difficult without proper representative sampling (a known limitation 

in this study) as well as appropriate metadata, a recommended component for future 

investigations involving buckthorn and AMF.  

Positive correlations in VTX abundances were seen using the compositional 

association analyses, where six of the eight OTU clusters demonstrated coordinated genus-

level fluctuations across all samples; of these, four contained only Glomus spp. sequences. 

This may be the result of 1) the preferential amplification of Glomeraceae DNA (genera in 

this study include: Glomus spp., Rhizophagus spp., and Septoglomus spp.) known to occur 

with the AMV4.5NF-AMDGR primer pair (Van Geel et al. 2014), 2) the functional 

redundancy and functional synergy of mycorrhizae within a niche (Doherty 2009), or 3) 

the incomplete separation of sequences into OTU clusters (pers. comm. Gregory B. Gloor, 

2016) (Gloor et al. 2016; Lovell et al. 2015). In the third case, the 3% OTU cutoff for the 

V4 SSU region may be too high for adequate AMF species delineation using the current 

primers, resulting in pairs or groups of sequences having proportional changes in 

abundance because they originally stemmed from a single organism. In this study, OTUs 

belonging to G166 and G222 grouped tightly within each respective cluster, and may 

indicate that current species delineation within these Glomus spp. VTX may not correlate 

with the differences within their genetic sequences, specifically the V4 region of the SSU. 

This alludes to the limitations of using short-read sequence studies for this DNA region, 

where the nucleotide differences between species are not congruent with OTU clustering. 

Phi clusters containing different genera may indicate functionally redundant organisms 

within the cluster in sugar maple roots, increasing or decreasing in abundance due to the 

same factors (treatment or other environmental influences). In this study, clusters 

containing sequences belonging to Rhizoglomus-Glomus, Paraglomus-Glomus, and 

Claroideoglomus-Glomus were observed. The last two groups were seen only at phi ≤ 0.2, 
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and the Rhizoglomus-Glomus cluster had a stronger positive correlation, possibly due to its 

close phylogenetic relatedness to one another or their role within a niche.  

The manipulative garden experiment allowed for the direct addition of buckthorn 

allelochemicals to naïve sugar maple seedlings and associated soil arbuscular mycorrhizae 

(Objective 2). Pooling control samples and comparing them to the four allelochemical 

treatments highlighted two OTUs both belonging to G177 that were recorded in higher 

abundance in treatment samples, and three OTUs belonging to Glomus spp. (G151, G125 

and G72) that were higher in controls. G151 and G72 were highest in field control samples, 

and dropped in reads in the potted control replications, indicating that they are sensitive to 

potting disturbances. Certain disturbance-tolerant Glomeraceae such as G. intraradices and 

F. mosseae [≡G. mosseae] produce large amounts of spores and are found in disturbed sites 

(Jansa et al. 2003; Öpik et al. 2006). The hyphal networks of the Glomeraceae, as opposed 

to the family Gigasporaceae, are better integrated within soils because they have more 

hyphal fusions, are faster root colonizers, are able to allocate a larger fraction of fungal 

biomass into the host root, and form lipid-storing vesicles (Maherali and Klironomos 2007; 

van der Heijden and Scheublin 2007). Similarly, G177, having very low counts in the field 

control, which increased 100-fold in the potted control, seemed to be better adapted to 

disturbance (both potting and buckthorn treatment effects). Glomus spp. (G166 and G130) 

and closely related Rhizoglomus fasciculatus (Rfas113) also responded favorably to potting 

disturbances, whereas field control maples maintained higher associations with Glomus 

spp. G72, G22 and G151—presumed to be species that are better suited to undisturbed 

habitats. Interestingly, both G151 and G72 abundances were positively correlated despite 

their distant phylogenetic relatedness within the ML phylogenetic analysis (Appendix III). 

The likelihood of these OTUs belonging to a single, improperly clustered species is low, 

and may instead indicate functional dependency or redundancy between separate 

mycorrhiza within the same ecosystem.  

Taxa with large and moderate effect sizes with higher between treatment variation 

than within treatment variation showed relatively even proportions between six OTUs in 

the potted controls, with five decreasing in evenness in response to buckthorn leaves, leaves 

and berries, and roots, as the proportion of OTU4 (G177) increased. It was expected that 
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the leaves and berries treatment would have a greater effect on AMF abundance as it had 

the combined weight of crushed leaves and ground berries than in the separate leaves only 

and berries only treatments, but this was not the case in this experiment.  

The buckthorn berries were picked in March and it is possible that freeze-thaw 

temperature cycles of winter as well as the natural reduction in allelochemical 

concentrations, due to a defense and development tradeoff, in mature fruit made them less 

potent (Mummey and Rillig 2006; Newman 1966; Paneitz and Westendorf 1999). Other 

comparative allelochemical studies used fresh buckthorn extracts from berries collected in 

the midsummer (Epifano et al. 2012) or fall (Seltzner and Eddy 2003). The extreme AMF 

community shift seen in the B2 replication may be due to the emergence of buckthorn 

seedlings from the added berries, later in the growing season. Buckthorn seedlings were 

not removed alongside other weeds, as germination is part of the natural progression of 

fallen fruit. It is unknown whether the majority of germinated seedlings were found in the 

B2 replication, since notes on which pots contained the newly germinated seedlings were 

not made at the time of root harvest. There may be a stronger than anticipated root effect 

in the potted soils. Root exudates may have been actively produced by buckthorn seedlings 

growing alongside sugar maples, resulting in an extreme shift to G177 (OTU4) dominated 

mycorrhizal communities. Buckthorn’s below-ground influences have been observed on 

three of four tested native forbs after the removal of buckthorn canopy cover in the field, 

demonstrating that its inhibitory effects within the soil are at least as large as its shading 

effects (Klionsky et al. 2011). The below-ground root effect diminished in L and LB 

treatments amended with leaves and/or berries, which warrants further investigation. 

Starting seedlings from seed in native forest soil and growing for multiple season would 

have removed potting and greenhouse disturbance variation to better resemble natural 

conditions. In this way, a buckthorn seedling may be planted beside each maple seedling, 

and litter bags containing buckthorn leaves and berries may be added to the soil surface to 

begin the treatment. In this case, care must be taken to fully remove the buckthorn and 

monitor for any germination of seedlings after the treatment period to prevent the reduction 

of site quality after the experiment. 
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The AMV4.5F-AMDGR primers have been shown preferentially to amplify AMF 

sequences from the Claroideoglomeraceae, Gigasporaceae, and Glomeraceae families, 

while underrepresenting the Ambisporaceae, Diversisporaceae, and Paraglomeraceae in a 

primer evaluation using five orchard soil samples (Van Geel et al. 2014). In this study, 

sequences belonging to the Gigasporaceae were not identified in either experiment, and the 

highest amplification was seen with Glomeraceae (nearly 98% of all reads), with lower 

amplification of Claroideoglomeraceae, Paraglomeraceae, Diversisporaceae and 

Acaulosporaceae. The high proportion of Glomeraceae found in this study can also be 

partly explained by their natural occurrence within sugar maple forests. Spore analyses on 

AM populations in three sugar maple forests showed the presence of 8 Glomeraceae spp. 

(Glomus hoi, G. macrocarpum, G. aggregatum, G. microaggregatum, Funneliformis 

mosseae [≡G. mosseae], Funneliformis geosporum [≡G. geosporum], Rhizoglomus clarum 

[≡G. clarum], and Sclerocystis rubiforme [≡G. rubiforme]), as well as unknown Glomus 

spp., Acaulospora spp., and AMF spp. (Moutoglis and Widden 1996). Sequences obtained 

from the V4 region in this study identified G. macrocarpum and A. lacunosa, with 76 

Glomus spp. OTUs, as well as the renamed Funneliformis mosseae [≡G. mosseae] 

(Schüßler and Walker 2010), Rhizoglomus fasciculatus [≡G. fasciculatus] (Schüßler and 

Walker 2010), R. vesiculiferus [≡Glomus vesiculiferum] (Redecker et al. 2013; Sieverding 

et al. 2015), and Septoglomus constrictum [≡Glomus constrictum] (Oehl et al. 2011).  

The transplanting procedure from forest to open-air greenhouse had an immediate 

effect on sugar maple seedlings, where visible stress, namely yellowing and browning 

along the leaf edges of the maple seedlings, was seen in the leaves within the first week 

after planting. Buckthorn plants, despite the root-washing procedure to remove associated 

soil, showed no visible signs of stress after replanting into pots. The sensitivity of the sugar 

maple to potting disturbance, as well as the introduction of an invasive plant into its root 

zone, may greatly reduce the AMF community’s resistance to the effects of invasion, as 

seen in the dominance of Glomus spp. after potting. Abrupt disturbances are not common 

in forests unless through human activity, and sugar maple forest communities involving 

not just seedlings but their mature counterparts, as well as many other native trees, shrubs, 

and herbs, have larger sources of soil variation, and with that, better resistance to invasion 

than a single seedling within a pot. As a result, more field studies on the effects of 
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buckthorn invasion in forests are needed. Although different VTX were highlighted as 

associated with buckthorn invasion in both experiments, they were all Glomeraceae, a 

family with phylogenetic traits that are better suited to disturbed environments (de la 

Providencia et al. 2005; Hart and Reader 2002; Jansa et al. 2003; Morton and Benny 1990; 

Öpik et al. 2006; van der Heijden and Scheublin 2007). Seasonal variation had a stronger 

influence over AMF community changes than the presence or absence of buckthorn, and 

so this particular invasive may not directly influence mycorrhizal communities as seen with 

other allelochemically active plants (garlic mustard) (Barto et al. 2011; Cantor et al. 2011; 

Stinson et al. 2006). The allelochemicals of R. cathartica may have a stronger influence on 

surrounding plants and seedling germination inhibition instead of directly affecting the 

mycorrhizae (Klionsky et al. 2011; Seltzner and Eddy 2003). Disrupting the root functions 

of nearby native plants and subsequently affecting their health could lead to a natural shift 

in AMF communities, where established mycorrhizae associated with undisturbed trees (S. 

constrictum, Glomus spp.) are replaced with disturbance-loving AMF (specifically Glomus 

VTX117 and VTX177) that may not functionally support native trees and forest 

communities as well as their replaced counterparts. However, mycorrhizal species undergo 

temporal changes in dormancy naturally throughout the year, and these fluctuations may 

not indicate an overall loss of diversity or changes in community health. Comparing 

sequence information from other studies may help to determine whether increases in 

disturbance-loving AMF negatively affect plant communities. 

Subsequent studies may require increasing the number of paired sample locations 

to reduce the influence of spatial heterogeneity and seasonal variation. Difficulty in finding 

appropriate paired sites within a sampling region was and will continue to be a limitation 

for this type of study (see 3.2.1 Soil Sampling). The difficulty lies in finding buckthorn-

invaded sites without garlic mustard nearby, which is made unlikely by the affinity of both 

invasive species for disturbance and their prolific spread once established. Nevertheless, 

assessing sequence data from a larger number of samples alongside other metadata (soil 

pH, carbon, nitrogen, phosphates, herb and tree inventories, emodin, and other 

allelochemical concentrations) may help to tease apart the effects of edaphic factors from 

those that more directly arise from buckthorn influence. Soil samples collected from 

buckthorn monoculture sites without the influence of any native trees would yield 
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information about the final composition of AMF communities after invasion, when all 

native plants have died. An attempt to sequence soil from buckthorn monocultures was 

made in this study from five different ESA locations but the extracted DNA from these 

sites consistently failed to amplify so that sequencing was not possible, possibly due to soil 

variables acting upon PCR success. Assessment of AMF in multiple buckthorn-dominated 

stands will assist in determining whether all sites converge to similar mycorrhizal 

communities or whether mycorrhizae in buckthorn monocultures are more influenced by 

stochastic processes, resulting in different soil communities across sites. Field observations 

of buckthorn invasion into plant communities that are dependent on ectomycorrhizal 

(ECM) or ericoid mycorrhizal fungi would supplement observations made by Pinzone 

(2016), where seed germination, root infection, and seedling growth of ECM-associated 

Betula species were severely reduced. Comparing sequence information from soils taken 

in the native Eurasian range of common buckthorn would help determine whether there are 

any major differences between North American and Eurasian AMF communities. Parallel 

soil chemistry studies showing the concentration and residence times of buckthorn 

allelochemicals and other effects of buckthorn on soil fertility and structure are also 

necessary. With more information, it may be possible to determine the impact of Rhamnus 

cathartica invasion in native forest communities, whether allelochemicals directly 

influence arbuscular mycorrhizae or directly alter plant communities during invasion. Any 

information will help with the ever-growing problem of buckthorn management and forest 

rehabilitation plans across the continent. 
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Chapter 4: General Discussion 

The primary objective of this thesis was to determine buckthorn’s (Rhamnus cathartica) 

interactions and associations with Ontario’s native fungal communities. Specifically, I tried 

to determine what fungi colonize and degrade open-field and closed-canopy buckthorn, the 

correlations of species within communities of arbuscular mycorrhizal fungi (AMF) in sugar 

maple (Acer saccharum) forests during invasion, and how different sources of buckthorn 

allelochemicals affect AMF associated with sugar maple seedlings during a growing 

season. By using a wandering survey of fungi on buckthorn, by sequencing soil fungi from 

buckthorn-invaded and -uninvaded forests, and from a greenhouse experiment in which 

maple seedlings were grown with and without added buckthorns, their leaves and fruit, the 

nature of buckthorn’s interaction with fungi in this region was illuminated. 

4.1 CONTEXT AND SIGNIFICANCE OF THIS STUDY 

Prior to this survey, 30 fungal species had been documented on buckthorn across the globe, 

of which just five species had been reported in Canada and ten in the United States 

(Conners 1967; Farr and Rossman; Ginns 1986; Liu and Hambleton 2013). After a 20-

month survey of buckthorn in and around London, Ontario, I have added 23 fungi to 

Canadian records, including the root rotter Armillaria mellea s.l., the canker fungi 

Hypoxylon fuscum and H. perforatum, the weak branch pathogens Nectria cinnabarina s.l. 

and Cylindrobasidium evolvens, as well as multiple primary and secondary decomposers 

(Chapter 2, Figure 2.2). Fungi were rarely found on healthy buckthorn trees in open-field 

environments, whereas sites undergoing management practices (chemical spraying and 

mechanical removal) had the highest occurrences of fungal colonization on dead or dying 

buckthorn matter. This suggests that active physical or chemical management will be 

necessary to control open-grown buckthorns. In their study surveying forest stands in 

southern Italy, Granito et al. (2015) confirmed that some fungi were preferentially found 

in actively managed plots, namely those with consistent sources of disturbance that resulted 

in increased coarse woody debris. Armillaria mellea, C. evolvens, H. fuscum, and P. crispa 

were all found in managed plots, whereas D. mollis, and S. commune were seen in old-

growth plots and/or mature plots. In my study, managed plots consistently harboured more 
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fungi than unmanaged plots, and certain species were found only in managed plots, such 

as A. malicola, A. mellea, C. calolepis, C. caspari, H. fuscum, L. virgineum, M. meliigena, 

and P. crispa in Sifton Bog ESA during ongoing buckthorn management, and D. 

concentrica, D. mollis, S. ochraceum in managed Five Points Forest. Management and the 

subsequent accumulation of coarse woody debris increases the chance encounters for 

necrotroph/parasitic and saprobic fungi. Armillaria is known to occur more frequently in 

highly managed zones (McDonald et al. 1987), where it may survive in residual debris after 

clearing (Redfern and Filip 1991) by chemical or mechanical means (Pronos and Patton 

1977; Swift 1972). Plicatura crispa was seen on a dying open-canopy buckthorn outside 

of the survey period in Westminster Ponds ESA (personal observation), which confirms 

that these fungi can occasionally be found on buckthorn beyond actively human-mediated 

zones. The higher occurrence of opportunistic and pioneer saprobes can be expected in any 

region that is undergoing management. Any increase in fungal activity will assist in the 

degradation of cleared wood, but might also lead to higher infection pressures on native 

plants growing in the area. Because of this, after successful invasive species management, 

planting seeds or saplings of native species with associated mycorrhizae may be required 

to stabilize the soil communities and promote rehabilitation (Cuenca et al. 1997; Medina 

and Azcón 2010; Mendes Filho et al. 2010).  

 The second research objective was to compare differences in AMF communities 

pristine sugar maple soils and those being invaded by buckthorn. Twenty-four OTUs 

belonging to Acaulospora sp., Paraglomus spp., Claroideoglomus spp. and Glomus spp. 

were seen only in pristine sites and a moderate increase in relative abundance of Glomus 

VTX177 and Septoglomus constrictum VTX64 was seen in disturbed sites. Trends in AMF 

activities in response to seasonal changes is not a ubiquitous phenomenon, having been 

observed in studies from different ecosystems from deserts (Panwar and Tarafdar 2006) to 

dunes (Stürmer and Bellei 1994), temperate grasslands (Escudero and Mendoza 2005), as 

well as greenhouse soils (Liu et al. 2013), but not in a mature mixed forest in Estonia 

(Davison et al. 2012). Genus-level patterns in seasonal variation were observed in this 

study with higher relative abundances of Claroideoglomus spp. and Glomus spp. in 

summer, contrasted with higher relative abundances of Diversispora spp., R. fasciculatus 

and other Glomus spp. in the fall, depending on the location and despite buckthorn 
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encroachment. This partly agrees with a study of AMF spore abundance in a grassland in 

Inner Mongolia, where Funneliformis caledonium was significantly higher in spring, while 

Claroideoglomus etunicatum, R. fasciculatus and Glomus warcupii were abundant in the 

fall (Sun et al. 2013). Glomus remains a phylogenetically diverse, poorly-defined genus 

(Schwarzott et al. 2001) and contains species that are active at different times of the year. 

In soils collected from Grasslands National Park, Saskatchewan, Glomus viscosum, G. 

mosseae, and G. hoi were better suited to moist July soils, and were replaced by three 

unknown Glomus species during the warm and dry conditions of late August (Yang et al. 

2010). Sequences belonging to Rhizoglomus spp., Glomus spp., and Septoglomus 

constrictum were positively correlated with treatments, an expected result as Septoglomus, 

and more recently Rhizoglomus, were delineated from Glomus (Oehl et al. 2011; Redecker 

et al. 2013; Sieverding et al. 2015). Functional similarity among closely related species in 

arbuscular mycorrhizae has been seen when growing Plantago lanceolata with 

Glomeraceae and Gigasporaceae mycorrhizae (Maherali and Klironomos 2007; van der 

Heijden and Scheublin 2007). The complementary nature of Glomeraceae and 

Gigasporaceae (higher fungal mass allocation outside vs. within the root, respectively) led 

to increases in biomass of P. lanceolata, whereas the plant grown with only one or the 

other did not change in biomass (Maherali and Klironomos 2007).  

The second research objective also included a common-garden experiment to 

determine whether the addition of buckthorn leachates and root exudates to naïve potted 

sugar maple seedlings and associated AMF would change the proportions of mycorrhizal 

communities in comparison to field seedlings and potted controls. Glomus VTX177 

responded favourably to disturbance (potting, buckthorn allelochemicals, or both) and was 

recorded in higher relative abundance in all treatment samples and potted controls than in 

the field. In contrast, G151, G125, G222, and G72 were consistently more proportionally 

abundant in potted controls across both replicates, with G151 and G72 demonstrating 

sensitivity to potting disturbance and being found mostly in field control sugar maple roots. 

Disturbances due to potting soil for greenhouse studies has been shown to cause shifts in 

mycorrhizal communities (Hazard et al. 2013; Sýkorová et al. 2007). A comparison of 

AMF ITS sequences from greenhouse pots using bait plants and field soil showed similar 

patterns: Glomus mosseae was never detected in the field samples but increased to 25% in 
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bait plants (grown in field sites) and 50% in greenhouse compartments, whereas Glomus 

badium was never found in greenhouse soils, only in small amounts in association with 

bait plants, and highest in undisturbed field soils (Sýkorová et al. 2007). However, G. 

mosseae disappeared from the greenhouse soils over time, possibly due to fungal 

successional dynamics, characterizing it as an early-stage colonizer. The greenhouse study 

described in this thesis spanned 5 months in comparison to the 20-month study by 

Sýkorová et al. (2007), and so changes in relative abundances beyond the single growing 

season could not have been observed. Other AMF phylotypes tended to occur in cultivated 

or natural environments: Funneliformis constrictum, and sister groups Claroideoglomus 

luteum and C. etunicatum showed growth preferences of early successional colonizers. 

Rhizophagus intraradices, similar to both sequencing studies in Chapter 2, was the most 

frequently detected in all systems and had growth patterns of a generalist mycorrhiza 

(Sýkorová et al. 2007).  As G177 increased in proportion across treatments, a decrease in 

other Glomus VTX were observed. Explaining the source of the shift in AMF abundance 

is difficult as multiple possibilities may have occurred: 1) G177 had a competitive 

advantage over other mycorrhizae during buckthorn disturbance, resulting in increased 

allocation of sugars from the roots of the sugar maple, 2) the other 9 Glomus species were 

more negatively affected by disturbance/buckthorn, leaving behind vacant niche space for 

G177 to expand into, or 3) the use of relative abundances in sequencing studies to monitor 

changes in taxa may result in data that incorrectly implicate a decrease in one taxon or taxa 

because of an observed proportional increase of another. Because only sugar maple roots 

were analysed, an increase in G177 after potting and treatment disturbance indicates that 

this specific OTU may have been more beneficial to the native plant during times of stress. 

4.2 STUDY LIMITATIONS AND FUTURE DIRECTIONS  

Buckthorn surveys in other regions of Canada, especially in moist and northern areas, may 

add to the list of associated fungi, and sequencing specimens within species complexes 

(Armillaria mellea, Nectria cinnabarina, and Antrodia malicola) would improve on the 

identification of these collections.  
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Another exotic invasive plant spreading across Ontario is Vincetoxicum rossicum 

(dog-strangling vine), which is highly dependent upon mycorrhizal connections in both 

invaded and native Eurasian ranges. A greenhouse soil experiment compared paired sites 

with no record of invasion or decades of invasion over the course of a single growing 

season of 29 weeks (Day et al. 2015). The authors found that fungal composition in 

greenhouse soils did not mirror those of invaded field soils after the study period, most 

likely due to the generalist nature of dog-strangling vine. Less is known about buckthorn’s 

dependency on AMF in native ranges, and obtaining sequence data for AMF communities 

in buckthorn monoculture soils would clarify the structure of communities after long 

periods of invasion, specifically whether stochastic processes and low host specificity lead 

to different community compositions across sampling sites or whether specific AMF are 

better suited to buckthorn invasion. Similarly, it would be interesting to sequence AMF 

directly from buckthorn roots to see if they yield the same or different taxa associating with 

buckthorn in each invasion scenario. If G177 was also found in high abundances in roots 

of both maple and buckthorn, there is a possibility for lateral nutrient transfer between 

plants, and further studies may be able to determine in which direction it may occur. 

Environmental metadata, including soil pH, C, N, P, plant inventories, and allelochemical 

quantification would have helped to explain some of variation present in the datasets 

(Hazard et al. 2013; Yang et al. 2012). Furthermore, additional replications in the 

greenhouse experiment would have allowed for the separate statistical comparison of field 

and potted controls, as both were pooled in this study to allow for adequate statistical 

power. Future studies focusing on the invasion of buckthorn into forests dominated by 

ectomycorrhizal or ericoid mycorrhizal associations would improve our understanding of 

its invasional biology (Pinzone 2016). It would be interesting to determine whether 

buckthorn requires AMF to proliferate in these soils and successfully invade, or whether it 

utilizes other means to compete with native communities such as alteration of soil nutrient 

cycling, high light competition, increased relative growth rate after canopy openings, and 

reduced herbivory due to allelochemicals (Catling and Mitrow 2012). 

The advancement of sequencing technology as well as reference databases for AMF 

will be an integral part of building upon the data presented. Many of the sequences obtained 

from this study are from unnamed species belonging to Glomus, a genus that contains 
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“species of uncertain position” (Redecker et al. 2013). This impediment will have to be 

addressed in multiple ways, including the re-evaluation of phylogenetic relationships 

among members within the Glomeromycota as more reference specimens are discovered 

and sequenced, the improvement of DNA amplification and sequencing technologies to 

reduce error rates, improvements in the reproducibility of direct amplification from soil, 

increased sequencing length to capture larger and more diagnostic fragments of the 

genome, and continually refining bioinformatics analytical methods to cluster and compare 

sequence data. The cryptic nature of mycorrhizae and the difficulties culturing AMF makes 

studying these organisms challenging, as non-congruencies of morphological and 

molecular characters are observed (Redecker et al. 2013), and sequencing of genetically 

heterogeneous multinucleate organisms leads to problems equating read count numbers to 

biomass and abundance (Corradi et al. 2007; Schlaeppi et al. 2016). Increasing the ability 

of sequencing technology to compare longer sections of the mycorrhizal genome (e.g., 

~1550 bp of rDNA) will allow for the better identification and phylogenetic placement of 

OTUs (Krüger et al. 2009). This has been accomplished through the advent of a new single 

molecule real time (SMRT) methodology that was able to sequence a ca. 1.5 kbp fragment 

spanning the SSU-ITS-LSU region (Schlaeppi et al. 2016). The ability to increase the 

phylogenetic resolution in metagenomic studies will continue to improve as SMRT 

sequencing, its successor the ‘Sequel’ system, and others become more broadly available 

(Schlaeppi et al. 2016).  

4.3 INTEGRATING MANAGEMENT AND RESTORATION PLANS 

By learning about the ways in which buckthorn changes the environment after a large-scale 

invasion, it will be possible to mitigate the loss of resources and time during the 

rehabilitation process. The potential to formulate stump sprays or foliar applications of 

parasitic fungal spores for buckthorn management hinges on the discovery of associated 

fungi, and from there identifying isolates that are effective in killing weakened trees. 

Similarly, any legacy effects that remain in soils after buckthorn removal may have to be 

reversed through the addition of mycorrhizal inoculum to the root zone of native seedlings 

prior to restoration (Cuenca et al. 1997; Rowe et al. 2007). This may help decrease seedling 

mortality and also provide the foundation to engineer heterogeneous environments of fungi 
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that contribute to the maintenance of plant diversity well into the future. Continuing 

research on the biology of buckthorn invasion and building upon the current standard of 

chemical and mechanical removal would provide tremendous benefit to the many 

organizations across North America tasked to eradicate this noxious weed.  
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Appendices 

Appendix I. Sample collection and identification information (Chapter 2). Green/underlined names are samples that were 

identified through microscopy, the remainder were visually identified based on morphological characteristics. 

ID Number Date 
collected 

Location UTM 
Coordinates  
(Zone 17T) 

Latin Name & 
Authority 

Description Location 
Notes 

ID Notes 

NMW 
130609/01 

6/9/2014 rare 
Research 
Reserve 

552191.45mE  
4803346.61mN 

Rhamnus 
cathartica 
voucher (male) 

Male 
flowering 
Rhamnus 
cathartica 
voucher 

Open 
field 

Det: NMW 

NMW 
130925/01 

9/25/2013 AFAR Trail 477085.79mE  
4761818.65mN 

Nectria 
cinnabarina 
(Tode) Fr. 

Salmon pink, 
raised fruiting 
bodies 
Smooth 
surface on fine 
twigs 

Canopied Det: RGT  

NMW 
131023/01a 

10/23/2013 Sifton Bog 
ESA 

476988.10mE 
4761930.75mN 

Armillaria mellea 
(Vahl) P. Kumm. 
group 
rhizomorphs 

Rhizomorphs 
of fruiting 
body found on 
dead trunk of 
R. cathartica 
across the trail 
from another 
R. cathartica 
tree with 
aborted 
fruiting body 

Canopied Det: RGT 
and NMW 
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(NMW-
0001b-2013) 

NMW 
131023/01b 

10/23/2013 Sifton Bog 
ESA 

476988.10mE  
4761930.75mN 

Armillaria mellea 
(Vahl) P. Kumm. 
group aborted 
fruiting bodies 

Dark, cream 
colour with 
light patches 
found at base 
of R. 
cathartica 
(dead, 
sprayed) 
Moist, 
rubbery before 
drying, no 
visible gills, 
misshapen 

Canopied Honey 
mushroom 
aborted 
fruiting body 

NMW 
131023/04 

10/23/2013 Sifton Bog 
ESA 

476988.10mE  
4761930.75mN 

Mycena 
meliigena (Berk. 
& Cooke) Sacc. 

Small, beige 
fruiting body, 
dried out on 
trunk of R. 
cathartica 
1.5mm height, 
1 mm width 

Canopied RGT Visual 
ID 

NMW 
131023/05 

10/23/2013 Sifton Bog 
ESA 

476988.10mE  
4761930.75mN 

Crepidotus 
calolepis (Fr.) P. 
Karst 

Bracket gilled 
fungi, yellow-
brown 

Canopied Det: NMW 
and RGT 

NMW 
131023/06 

10/23/2013 Sifton Bog 
ESA 

476988.10mE  
4761930.75mN 

Nectria 
cinnabarina 
(Tode) Fr. 

Salmon pink, 
raised fruiting 
bodies 
Smooth 
surface on fine 
twigs 

Canopied Visual ID 
based on 
NMW 
131023/06 
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NMW 
131023/08 

10/23/2013 Sifton Bog 
ESA 

476988.10mE  
4761930.75mN 

Peniophora 
cinerea (Pers.) 
Cooke 

Gray-pink, 
powdery, 
amorphous 

Canopied ID: RGT 

NMW 
131023/09 

10/23/2013 Sifton Bog 
ESA 

476988.10mE  
4761930.75mN 

Irpex lacteus 
(Fr.) Fr. 

Old fruiting 
body, yellow, 
elongated 
pores/toothy, 
not resupinate 
white when 
young, almost 
toothy, 
resupinate 
Ranges from 1 
mm to 10 mm 
wide, 
amorphic 
shape 

Canopied Det: NMW 

NMW 
131023/11 

10/23/2013 Sifton Bog 
ESA 

476988.10mE  
4761930.75mN 

Merismodes 
fasciculata 
(Schwein.) Donk 

Beige fruiting 
bodies, 
clusters 
between 
cracks of bark 

Canopied Det: RGT 

NMW 
131023/12 

10/23/2013 Sifton Bog 
ESA 

476988.10mE  
4761930.75mN 

Hyphoderma cf. 
mutatum (Peck) 
Donk 

White 
powder, 
creamy raised 
center, dry 
and cracked 
Spore shape is 
wrong, but 
looks similar 
under 
dissecting 
microscope 

Open 
field 

Det: RGT 
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NMW 
131023/13 

10/23/2013 Sifton Bog 
ESA 

476988.10mE  
4761930.75mN 

Cylindrobasidium 
evolvens (Fr.) 
Jülich 

Gray purple 
central body, 
resupinate 
Fluffy white 
fringe 
R. cathartica 
brush pile 

Canopied Clumped 
non-amyloid 
basidiospores 
Leptocystidia 
(smooth, 
fusiform) 

NMW 
131023/15 

10/23/2013 Sifton Bog 
ESA 

476988.10mE  
4761930.75mN 

Nectria 
cinnabarina 
(Tode) Fr. 

Salmon pink, 
raised fruiting 
bodies 
Smooth 
surface on fine 
twigs 

Canopied Visual ID 
based on 
NMW 
131023/06 

NMW 
131023/16 

10/23/2013 Sifton Bog 
ESA 

476988.10mE  
4761930.75mN 

Plicatura crispa 
(Fr.) Rea 

Bracket fungi, 
brown to 
light-brown 
underside, 
gilled 
surface of 
branch, 5 mm 
long, 2-3 mm 
tall 

Canopied Det: NMW 
and RGT 

NMW 
131023/17 

10/23/2013 Sifton Bog 
ESA 

476988.10mE  
4761930.75mN 

Peniophora 
incarnata (Pers.) 
P. Karst. 

Orange-pink-
brown 
amorphic 
crust 

Canopied Visual ID 
based on 
NMW 
141127/09 

NMW 
131023/19 

10/23/2013 Sifton Bog 
ESA 

476988.10mE  
4761930.75mN 

Lachnum 
virgineum 
(Batsch) P. Karst. 

Small white 
cups, 1 mm 
diameter 

Canopied Det: NMW 
and RGT 

NMW 
140527/01 

5/27/2014 Precious 
Blood Field 
behind 

476804.76mE  
4761257.87mN 

Rhamnus 
cathartica L. 

Buckthorn 
voucher for 
June 2014 
samples 

Open 
field 

Det: NMW 
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Brescia 
College 

NMW 
140527/02 

5/27/2014 Precious 
Blood Field 
behind 
Brescia 
College 

476773.57mE  
4761208.31mN 

Puccinia 
coronata Corda 

Voucher of P. 
coronata on 
R. cathartica 

Open 
field and 
canopied 

Det: NMW 
and RGT 

NMW 
140527/03 

5/27/2014 Medway 
Valley ESA 

476649.92mE  
4761462.29mN 

Hypoxylon 
perforatum 
(Schwein.) Fr. 

Brown 
mounds in 
mature, dying 
R. cathartica 
tree near the 
entrance to 
Medway 
Valley interior 
trails 

Canopied Det: NMW 

NMW 
140605/01 

6/5/2014 Sifton Bog 
ESA 

473718.92mE  
4757959.11mN 

Irpex lacteus 
(Fr.) Fr. 

See 
description for 
NMW 
131023/09 

Forest 
edge 

Visual ID 
based on 
NMW 
131023/06 

NMW 
140605/03 

6/5/2014 Sifton Bog 
ESA 

473718.92mE  
4757959.11mN 

Peniophora 
cinerea (Pers.) 
Cooke 

Purple/gray 
crust 

Canopied Visual ID on 
NMW 
131023-08 

NMW 
140605/04 

6/5/2014 Sifton Bog 
ESA 

473600.19mE  
4757301.29mN 

Irpex lacteus 
(Fr.) Fr. 

See 
description for 
NMW 
131023/09 

Canopied Visual ID 
based on 
NMW 
131023/06 

NMW 
140620/01 

6/20/2014 Warbler 
Woods ESA 

471258.72mE 
4756433.11mN 

Hyphoderma cf. 
mutatum (Peck) 
Donk 

White crust, 
cracked, dried, 
yellow to 
white with 
central 

Canopied Visual ID 
based on 
NMW 
131023/12 
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mound, 
amorphic 

NMW 
140620/02 

6/20/2014 Warbler 
Woods ESA 

471258.72mE 
4756433.11mN 

Merismodes 
fasciculata 
(Schwein.) Donk 

Beige fruiting 
bodies, 
clusters 
between 
cracks of bark 

Canopied Visual ID 
based on 
NMW 
131032/11 

NMW 
140620/03 

6/20/2014 Warbler 
Woods ESA 

471258.72mE 
4756433.11mN 

Hyphoderma cf. 
mutatum (Peck) 
Donk 

White crust, 
cracked, dried, 
yellow to 
white with 
central 
mound, 
amorphic 

Canopied Visual ID 
based on 
NMW 
131023/12 

NMW 
141023/01 

10/23/2014 rare 
Research 
Reserve 

551291.02mE  
4802734.24mN 

Tubercularia sp. 
J.C. Carter 

Salmon pink, 
raised fruiting 
bodies 
Smooth 
surface on fine 
twigs 

Canopied Visual ID 
based on 
NMW 
131023/06 

NMW 
141023/03 

10/23/2014 rare 
Research 
Reserve 

551291.02mE  
4802733.98mN 

Irpex lacteus 
(Fr.) Fr. 

See 
description for 
NMW 
131023/09 

Canopied Visual ID 
based on 
NMW 
141023/03 

NMW 
141023/06 

10/23/2014 rare 
Research 
Reserve 

551291.02mE  
4802733.98mN 

Hyphoderma cf. 
mutatum (Peck) 
Donk 

White crust, 
cracked, dried, 
yellow to 
white with 
central 
mound, 
amorphic 

Canopied Visual ID 
based on 
NMW 
131023/12 
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NMW 
141028/01 

10/28/2014 Sifton Bog 
ESA 

473718.92mE  
4757959.11mN 

Schizophyllum 
commune Fr. 

R. cathartica 
banch on 
ground 

Canopied 
brush pile 

Det: NMW 

NMW 
141028/03 

10/28/2014 Sifton Bog 
ESA 

473718.92mE  
4757959.11mN 

Hypoxylon 
fuscum (Pers.) Fr. 

Brown 
mounds on 
large dying 
buckthorn 
underneath 
peeled bark 

Canopied Det: NMW 

NMW 
141028/04 

10/28/2014 Sifton Bog 
ESA 

473718.92mE  
4757959.11mN 

Antrodia 
malicola (Berk. 
& M.A. Curtis) 
Donk 

Bracket 
polypore on 
roots of dead 
R. cathartica 
(same tree as 
NMW 
141028/05)  
Brown rot 

Canopied Det: NMW 
and RGT 

NMW 
141028/05 

10/28/2014 Sifton Bog 
ESA 

473718.92mE  
4757959.11mN 

Armillaria mellea 
(Vahl) P. Kumm. 
group 

Fruiting body; 
Armillaria 
mellea group 

Canopied Det: NMW 

NMW 
141028/07 

10/28/2014 Sifton Bog 
ESA 

473718.92mE  
4757959.11mN 

Crepidotus 
caspari Velen. 

White bracket, 
beige gills, 
small 

Canopied Final 
taxonomy 
determined 
by spore 
shape and 
size 

NMW 
141127/01 

11/27/2014 Killaly 
Meadows 

482984.61mE  
4765179.20mN 

Peniophora 
incarnata (Pers.) 
P. Karst. 

Bright-pale 
orange crust 
on undersde 
of branch 

On open 
field 
buckthorn 
by 
parking 
lot 

Visual ID 
based on 
NMW 
141127/09 
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NMW 
141127/02 

11/27/2014 Killaly 
Meadows 

482984.61mE 
4765179.20mN 

Hyphoderma cf. 
mutatum (Peck) 
Donk 

White crust On open 
field 
buckthorn 
by 
parking 
lot 

Visual ID 
based on  
NMW 
131023/12 

NMW 
141127/05 

11/27/2014 Five Points 
Driedger 
Tract 

505337.91mE  
4761948.90mN 

Cylindrobasidium 
evolvens (Fr.) 
Jülich 

Crust, purple-
gray 

Canopied RGT Visual 
ID 

NMW 
141127/06 

11/27/2014 Five Points 
Driedger 
Tract 

505337.91mE  
4761948.95mN 

Daldinia 
concentrica 
(Bolton) Ces. & 
De Not. 

In R. 
cathartica 
brush pile 

Open 
field 
brush pile 

Det: RGT in 
field 

NMW 
141127/09 

11/27/2014 Five Points 
Driedger 

505337.91mE  
4761948.95mN 

Peniophora 
incarnata (Pers.) 
P. Karst. 

Bright-pale 
orange crust 
on undersde 
of branch 

Open 
field 
brush pile 

Det: NMW 
and RGT 

NMW 
141127/11 

11/27/2014 Five Points 
Driedger 
Tract 

505337.91mE  
4761948.95mN 

Steccherinum 
ochraceum 
(Pers.) Gray 

R. cathartica 
brush pile 

Open 
field 
brush pile 

Visual IDs 
on NMW 
131023-13 

NMW 
141127/12 

11/27/2014 Five Points 
Driedger 
Tract 

505337.91mE  
4761948.95mN 

Cylindrobasidium 
evolvens (Fr.) 
Jülich 

See 
description for 
NMW 
141130/02 

Open 
field 
brush pile 

RGT Visual 
ID 

NMW 
141127/13 

11/27/2014 Five Points 
Driedger 
Tract 

505337.91mE  
4761948.95mN 

Datronia mollis 
(Sommerf.) Donk 

Polypore, 
white 

Open 
field 
brush pile 

Det: RGT 

NMW 
141127/14 

11/27/2014 Five Points 
Driedger 
Tract 

505337.91mE  
4761948.95mN 

Cylindrobasidium 
evolvens (Fr.) 
Jülich 

See 
description for 
NMW 
141130/02 

Open 
field 
brush pile 

Det: NMW 
and RGT 
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NMW 
141130/01 

11/30/2014 Westminster 
ponds ESA 

481962.44mE 
4755073.24mN 

Phlebia radiata 
Fr. 

Resupinate 
grey-purple 
jelly-like 
fungus on R. 
cathartica 
branch pile 

Canopied 
brush pile 

Visual IDs 
on NMW 
131023-13 

NMW 
141130/02 

11/30/2014 Westminster 
ponds ESA 

481962.44mE 
4755073.24mN 

Cylindrobasidium 
evolvens (Fr.) 
Jülich 

See 
description for 
NMW 
141130/02 

Canopied Visual ID 
based on 
NMW 
131023/06 

NMW 
141130/03 

11/30/2014 Westminster 
ponds ESA 

481962.44mE 
4755073.24mN 

Nectria 
cinnabarina 
(Tode) Fr. 

Coral spot 
fungus 

Canopied Visual ID on 
NMW 
131023-08 

NMW 
141130/04 

11/30/2014 Westminster 
ponds ESA 

481962.44mE 
4755073.24mN 

Schizophyllum 
commune Fr. 

R. cathartica 
brush pile 

  

RGT 
141226/06 

12/26/2014 Medway 
Valley ESA 

476667.63mE 
4761876.21mN 

Peniophora 
cinerea (Pers.) 
Cooke 

Gray-pink, 
powdery, 
amorphous 

Canopied RGT Visual 
ID 

NMW 
150309/01 

3/18/2015 AFAR Trail 476988.10mE  
4761930.75mN 

Polyporus 
alveolaris (DC.) 
Bondartsev & 
Singer 

AKA 
Neofavolus 
alveolaris 

Canopied Det: NMW 
and RGT 

NMW 
150309/04 

3/18/2015 AFAR Trail 476988.10mE  
4761930.75mN 

Morrisographium 
persicae 
(Schwein.) Illman 
& G.P. White 

Spear like 
projections 
from bark, 
black 

Canopied Det: NMW 
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Appendix II. Primer and tag information for Illumina MiSeq sequencing using AMF-specific primers spanning the V4 

SSU (Chapter 3, Objective 1). 

Primer 
label 

Primer 
name_label Illumina adaptor Linker Barcode 

Primer sequence  
(Sato et al. 2005) 

Total 
length 

Forward       

7F AMV4.5N_7F 
ACA CTC TTT CCC TAC ACG 
ACG CTC TTC CGA TCT nnnn ccaaggcc 

AAG CTC GTA GTT 
GAA TTT CG 65 

8F AMV4.5N_8F 
ACA CTC TTT CCC TAC ACG 
ACG CTC TTC CGA TCT nnnn aagatggt 

AAG CTC GTA GTT 
GAA TTT CG 65 

9F AMV4.5N_9F 
ACA CTC TTT CCC TAC ACG 
ACG CTC TTC CGA TCT nnnn agttaacc 

AAG CTC GTA GTT 
GAA TTT CG 65 

10F AMV4.5N_10F 
ACA CTC TTT CCC TAC ACG 
ACG CTC TTC CGA TCT nnnn cttcctgg 

AAG CTC GTA GTT 
GAA TTT CG 65 

11F AMV4.5N_11F 
ACA CTC TTT CCC TAC ACG 
ACG CTC TTC CGA TCT  nnnn gcttgatg 

AAG CTC GTA GTT 
GAA TTT CG 65 

12F AMV4.5N_12F 
ACA CTC TTT CCC TAC ACG 
ACG CTC TTC CGA TCT nnnn tgacttca 

AAG CTC GTA GTT 
GAA TTT CG 65 

Reverse       

5R AMDG_5R 
CGG TCT CGG CAT TCC TGC 
TGA ACC GCT CTT CCG ATC T nnnn agttaacc 

CCC AAC TAT CCC 
TAT TAA TCA T 71 

6R AMDG_6R 
CGG TCT CGG CAT TCC TGC 
TGA ACC GCT CTT CCG ATC T nnnn ccaaggcc 

CCC AAC TAT CCC 
TAT TAA TCA T 71 

7R AMDG_7R 
CGG TCT CGG CAT TCC TGC 
TGA ACC GCT CTT CCG ATC T nnnn ataacgaa 

CCC AAC TAT CCC 
TAT TAA TCA T 71 

8R AMDG_8R 
CGG TCT CGG CAT TCC TGC 
TGA ACC GCT CTT CCG ATC T nnnn tgacttca 

CCC AAC TAT CCC 
TAT TAA TCA T 71 

9R AMDG_9R 
CGG TCT CGG CAT TCC TGC 
TGA ACC GCT CTT CCG ATC T nnnn agccacac 

CCC AAC TAT CCC 
TAT TAA TCA T 71 

10R AMDG_10R 
CGG TCT CGG CAT TCC TGC 
TGA ACC GCT CTT CCG ATC T nnnn caggctta 

CCC AAC TAT CCC 
TAT TAA TCA T 71 
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11R AMDG_11R 
CGG TCT CGG CAT TCC TGC 
TGA ACC GCT CTT CCG ATC T nnnn cttcctgg 

CCC AAC TAT CCC 
TAT TAA TCA T 71 

12R AMDG_12R 
CGG TCT CGG CAT TCC TGC 
TGA ACC GCT CTT CCG ATC T nnnn gactaatc 

CCC AAC TAT CCC 
TAT TAA TCA T 71 

13R AMDG_13R 
CGG TCT CGG CAT TCC TGC 
TGA ACC GCT CTT CCG ATC T nnnn gcttgatg 

CCC AAC TAT CCC 
TAT TAA TCA T 71 

14R AMDG_14R 
CGG TCT CGG CAT TCC TGC 
TGA ACC GCT CTT CCG ATC T nnnn tggcggct 

CCC AAC TAT CCC 
TAT TAA TCA T 71 

15R AMDG_15R 
CGG TCT CGG CAT TCC TGC 
TGA ACC GCT CTT CCG ATC T nnnn gtaagcgc 

CCC AAC TAT CCC 
TAT TAA TCA T 71 

16R AMDG_16R 
CGG TCT CGG CAT TCC TGC 
TGA ACC GCT CTT CCG ATC T nnnn tccgccaa 

CCC AAC TAT CCC 
TAT TAA TCA T 71 
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Appendix III. Molecular phylogenetic analysis by Maximum Likelihood methods of 

unknown OTUs and reference sequences from NCBI, Krüger et al. (2012), and 

MaarjAM databases (Öpik et al. 2010) and using Mortierella hyalina JQ40259.1 as an 
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outgroup. Initial trees were obtained using the Neighbour-Join and BioNJ algorithms to a 

matrix of pairwise distances estimated using the Maxiumum Composite Likelihood (MCL) 

approach (bootstrap values of 1000 replicates) (Felsensetein 1985). Values that are > 50% 

are highlighted in bold. Branch lengths are measures in the number of substitutions per site. 

All positions with less than 95% site coverage were eliminated. That is, fewer than 5% 

alignment gaps, missing data, and ambiguous bases were allowed at any position. Terminal 

groups connected by navy blue lines are paraphyletic, those connected by a light blue line 

are polyphyletic, and those connected by a red line are monophyletic. MaarjAM Virtual 

Taxa type sequences are underlined in green. OTUs are listed with the OTU number, 

followed by genus and VTX of closest MaarjAM BLAST match. Evolutionary analysis 

was conducted in MEGA7 (Kumar et al. 2016). 
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Appendix IV. Molecular phylogenetic analysis by Maximum Likelihood methods of 

unknown “Paraglomus sp.” OTUs and closest BLAST matches from NCBI and 
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MaarjAM databases (Öpik et al. 2010), with Mortierella hyalina JQ40259.1 as an 

outgroup. Initial trees were obtained using the Neighbour-Join and BioNJ algorithms to a 

matrix of pairwise distances estimated using the Maxiumum Composite Likelihood (MCL) 

approach (bootstrap values of 1000 replicates) (Felsensetein 1985). Values that are > 50% 

are highlighted in bold. Branch lengths are measures in the number of substitutions per site. 

All positions with less than 95% site coverage were eliminated. That is, fewer than 5% 

alignment gaps, missing data, and ambiguous bases were allowed at any position. Terminal 

groups connected by navy blue lines belong to a Paraglomus monophyletic groups, those 

connected by a red line belong to a non-Paraglomus monophyletic groups. MaarjAM 

Virtual Taxa type sequences are underlined in green. OTUs are listed with the OTU 

number, NCBI closest BLAST matches are listed by accession number followed by identity 

of the sequence, MaarjAM Virtual Taxa reference sequences are underlined in green. 

Evolutionary analysis was conducted in MEGA7 (Kumar et al. 2016).
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Appendix V. Table of OTU read numbers found in buckthorn (Rhamnus cathartica) invaded and uninvaded sugar 

maple (Acer saccharum) soils. 

Key to seasons: O – October; J – June 

Key to sites: C – Cliffs & Alvars, rare Charitable Research Reserve; G – Grand Alee & Indian Woods, rare Charitable 

Research Reserve; K – Komoka Provincial Park, London, Ontario 

Key to site type: A – buckthorn uninvaded; RA – buckthorn invaded  

 

OTU  OC 
RA 

OK 
RA 

JK 
RA 

OG 
RA 

JG 
RA 

JC 
RA 

OK 
A 

OC 
A 

JK 
A 

OG 
A 

JC 
A 

JG 
A 

Phylogenetic VTX 
Assignment 

113 0 0 0 0 0 0 0 0 0 0 0 8 Acaulospora lacunosa 
24 

482 0 0 0 0 0 0 0 0 0 0 0 3 Acaulospora lacunosa 
24 

480 0 0 0 0 0 0 1 0 0 0 0 0 Claroideoglomus 278 
154 2 15 25 36 7 43 15 30 2 0 6 23 Claroideoglomus 279 
320 0 4 0 0 0 1 164 0 0 0 0 0 Claroideoglomus 279 
252 5 3 1 0 5 0 0 0 4 0 0 72 Claroideoglomus 340 
432 0 0 0 1 0 0 0 0 0 0 0 0 Claroideoglomus 358 
980 0 0 0 0 0 0 2 0 0 0 0 0 Claroideoglomus 358 
551 0 2 0 13 0 0 1 0 0 0 0 1 Claroideoglomus 55 
158 1 27 56 9 8 1 0 131 0 0 5 9 Claroideoglomus 56 
60 2 6 7 3 3 1 1 1 4 0 1 199 Claroideoglomus 57 
32 23 55 58 99 25 150 21 58 0 2 20 61 Claroideoglomus 

lamellosum 193 
177 12 0 0 0 0 93 1 7 9 0 4 130 Diversispora 356 
96 205 22 5 8 19 109 40 32 33 44 39 241 Diversispora 61 
307 1 8 11 0 22 0 1320 0 13 12 2 21 Diversispora 62 
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617 0 0 6 0 0 1 0 0 1 0 0 0 Funneliformis mosseae 
67 

339 0 0 0 1 0 0 0 0 0 1 0 0 Glomus 103 
270 0 0 0 0 0 0 0 0 0 0 0 1 Glomus 115 
38 55 48 57 72 11 14 3 8 124 279 8 714 Glomus 117 
97 4 6 9 9 0 2 22 0 1 40 0 113 Glomus 117 
129 0 3 0 1 0 0 15 0 14 35 1 82 Glomus 117 
820 1 3 3 2 2 3 0 0 2 5 4 2 Glomus 117 
48 2 10 1 3 5 1 2 58 2 2 0 7 Glomus 125 
583 37 0 0 0 1 0 0 0 0 0 0 0 Glomus 130 
39 0 31 3 5 1 3 2 13 0 37 2 5 Glomus 135 
717 0 0 1 0 1 0 0 5 0 1 2 0 Glomus 135 
121 0 1 1 0 0 2 0 0 0 0 0 0 Glomus 140 
458 0 2 0 0 0 1 0 0 1 0 0 0 Glomus 140 
1193 0 0 0 0 0 0 1 0 0 0 0 0 Glomus 140 
904 0 0 0 0 0 0 18 0 0 0 0 0 Glomus 142 
392 0 0 0 0 0 0 0 26 0 0 0 0 Glomus 146 
23 60 6 4 1 20 30 11 15 8 2 17 17 Glomus 151 
211 1 26 0 0 6 0 3 70 0 1 7 3 Glomus 151 
106 7 0 0 0 1 1 0 0 0 0 1 0 Glomus 159 
1 41 7 0 2 0 16 2 0 34 1 1 1 Glomus 160 
28 0 0 0 0 0 1 0 18 0 0 0 2 Glomus 163 
47 0 0 0 1 0 2 0 7 0 0 0 0 Glomus 165 
6 0 25 1 59 2 0 16 0 0 7 3 1 Glomus 166 
34 0 14 0 13 0 0 0 0 0 1 0 1 Glomus 166 
331 0 0 0 0 0 0 1 0 0 0 1 0 Glomus 166 
468 0 0 0 0 0 1 0 0 0 0 0 0 Glomus 166 
862 0 29 0 36 0 0 12 1 2 3 0 4 Glomus 166 
1079 0 0 0 0 0 0 1 0 0 1 0 0 Glomus 166 
1158 9 6 1 12 4 5 18 9 6 5 4 32 Glomus 166 
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1263 0 25 0 33 3 0 0 1 1 2 0 1 Glomus 166 
372 0 0 0 2 0 0 0 0 0 0 0 0 Glomus 172 
378 0 0 0 0 0 0 0 32 1 0 0 0 Glomus 175 
4 0 26 3 4 36 1 3 36 1 1 3 7 Glomus 177 
462 0 0 0 0 0 0 0 1 0 0 0 0 Glomus 177 
989 0 0 0 0 0 0 2 1 0 0 1 2 Glomus 177 
1274 0 0 0 0 0 0 6 0 0 0 0 0 Glomus 177 
118 0 1 0 1 0 0 177 3 1 0 0 1 Glomus 188 
125 0 76 0 94 1 0 3 0 2 0 1 1 Glomus 194 
366 0 14 0 13 0 0 3 0 0 0 0 0 Glomus 194 
292 7 13 1 12 1 1 0 7 4 4 3 15 Glomus 199 
658 0 1 1 0 0 0 0 4 12 32 0 1 Glomus 199 
57 5 114 1 2 4 2 0 2 1 13 2 7 Glomus 212 
5 0 4 0 0 1 5 149 1 0 140 3 2 Glomus 214 
880 0 0 0 0 0 0 0 0 1 0 0 0 Glomus 214 
891 0 0 0 0 0 0 6 0 0 0 0 0 Glomus 214 
1215 0 0 0 0 1 3 57 0 0 61 0 1 Glomus 214 
16 24 237 12 382 3 6 2 1 101 7 4 4 Glomus 219 
557 0 1 2 0 1 2 0 0 4 1 0 0 Glomus 219 
957 0 1 0 0 0 0 0 0 0 0 1 0 Glomus 219 
966 0 0 0 0 0 0 25 0 0 0 0 0 Glomus 219 
35 27 21 5 4 3 3 1 50 9 9 7 9 Glomus 222 
40 27 16 0 1 1 3 0 22 1 7 0 8 Glomus 222 
99 6 7 3 1 3 6 3 43 0 4 0 8 Glomus 222 
326 0 0 0 0 0 0 2 0 0 0 0 0 Glomus 222 
454 4 2 0 0 1 1 276 3 0 0 0 1 Glomus 222 
750 7 17 4 1 5 1 11 110 7 2 3 18 Glomus 222 
1250 27 2 7 2 0 3 0 2 3 5 2 12 Glomus 222 
860 0 1 0 0 0 0 0 0 1 2 2 0 Glomus 234 
322 0 0 0 0 0 0 1 0 1 0 2 0 Glomus 247 
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537 0 0 0 0 0 0 0 0 0 0 0 1 Glomus 247 
481 12 1 0 0 0 3 120 0 0 0 0 0 Glomus 342 
646 0 0 0 0 0 0 1 0 0 0 0 0 Glomus 342 
280 0 1 1 1 0 0 0 0 0 0 2 0 Glomus 366 
695 0 0 0 0 0 0 7 0 2 0 0 0 Glomus 366 
241 22 58 3 114 2 0 53 0 23 3 2 1 Glomus 411 
17 0 0 1 1 0 4 7 3 2 8 0 50 Glomus 72 
1149 0 1 0 0 0 0 0 0 0 0 0 0 Glomus 72 
19 11 95 4 388 4 6 4 0 38 138 7 6 Glomus 74 
875 0 0 0 0 0 1 14 0 1 0 1 0 Glomus 74 
731 0 4 0 0 2 0 0 11 0 0 1 0 Glomus 83 
80 0 23 1 56 0 2 2 0 0 3 1 1 Glomus 84 
572 0 7 0 1 0 0 0 0 0 0 0 0 Glomus 84 
733 0 4 0 2 0 0 12 0 0 0 1 0 Glomus 84 
46 0 0 0 0 1 0 0 0 2 39 0 0 Glomus 86 
1161 0 0 0 0 0 0 34 0 0 0 0 0 Glomus 86 
1175 0 0 0 0 0 0 1 0 0 0 0 0 Glomus 86 
64 0 344 3 1003 3 9 81 2 1 8 9 8 Glomus 88 
20 150 91 2 5 43 57 67 714 8 3 36 114 Glomus macrocarpum 

199 
161 0 0 1 0 0 0 48 0 0 0 0 0 Paraglomus laccatum 

261 
718 0 1 0 0 0 0 0 0 0 1 0 0 Paraglomus sp. 308 
986 0 0 0 0 0 0 2 0 0 0 0 0 Paraglomus sp. 308 
0 13 15 24 18 8 17 0 8 9 6 28 51 Rhizoglomus 

fasciculatus 113 
1255 3 5 5 13 4 1 3 4 2 0 13 64 Rhizoglomus 

fasciculatus 113 
257 0 0 0 0 0 1 0 0 1 0 0 0 Rhizoglomus 

vesiculiferus 115 
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108 15 0 0 0 0 17 0 4 3 15 0 6 Septoglomus 
constrictum 64 

164 0 0 1 0 3 1 14 49 1 1 10 66 Septoglomus 
constrictum 64 

 

 
 



146 

Appendix VI. Variance analysis of OTUs found in buckthorn (Rhamnus cathartica) invaded and uninvaded soils. Taxa 

listed below had moderate effect sizes between buckthorn invaded (RA) and pristine (A) sugar maple (Acer saccharum) plots. 

Key to table headings: rab.all – median clr value for all samples in the feature; rab.win.A – median clr value for the A group of 

samples; rab.win.RA - median clr value for the RA group of samples; dif.btw – median difference in clr values between A and 

RA groups; dif.win – median of the largest difference in clr values within A and RA groups; effect - median effect size: 

diff.btw /max(dif.win) for all instances; overlap - proportion of effect size that overlaps 0 (i.e., no effect)  

 

OTU rab.all 
rab.win. 
A 

rab.win. 
RA diff.btw diff.win effect overlap Taxa 

129 0.553687 3.737143 -0.66007 -4.38511 4.221231 -0.91193 0.167278 G117 
164 1.124166 3.526518 -0.51474 -3.91217 4.289638 -0.83722 0.15928 S64 
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Appendix VII. Table of OTUs found in potted greenhouse experiment involving sugar maple (Acer saccharum) 

seedlings exposed to buckthorn (Rhamnus cathartica) allelochemicals. 

Key to samples: B – Berries; CF – Field Control; CP – Potted Control; LB – Leaves & Berries; R – Roots; L – Leaves 

Key to sites: 1 – Shady Maples site 1, Ilderton, Ontario; 2 – Shady Maples site 2, Ilderton, Ontario 

OTU B2 CF1 CP1 B1 LB1 LB2 R2 CF2 L2 L1 R1 CP2 Phylogenetic VTX 
Assignment 

113 6 0 1 0 0 0 0 226 0 1 1 2 Acaulospora lacunosa 
24 

482 0 0 0 0 0 0 0 6 0 0 0 0 Acaulospora lacunosa 
24 

469 0 0 0 0 0 0 0 0 34 0 0 0 Claroideoglomus 225 
480 1 10 1 0 0 0 0 0 0 0 0 0 Claroideoglomus 278 
154 4 1 43 6 10 25 20 0 61 61 104 37 Claroideoglomus 279 
320 1 0 0 0 0 1 0 0 44 0 0 0 Claroideoglomus 279 
252 0 0 4 1 0 1 1 0 12 10 9 7 Claroideoglomus 340 
306 1 0 15 0 1 0 3 0 0 0 18 2 Claroideoglomus 340 
455 1 0 26 0 3 0 2 0 14 6 0 1 Claroideoglomus 340 
432 2 0 10 2 6 11 5 0 10 10 12 4 Claroideoglomus 358 
980 0 0 7 1 1 2 3 0 6 3 6 4 Claroideoglomus 358 
352 1 0 16 2 5 0 0 0 0 19 7 1 Claroideoglomus 402 
158 0 0 19 0 9 0 0 0 2 0 0 4 Claroideoglomus 56 
60 8 3 175 2 44 26 24 0 249 64 184 82 Claroideoglomus 57 
32 16 0 311 28 105 98 109 0 313 241 403 149 Claroideoglomus 

lamellosum 193 
177 0 1 0 0 1 0 0 0 0 2 0 0 Diversispora 356 
96 0 0 0 0 19 0 6 1 2 17 6 3 Diversispora 61 
617 0 3 0 0 1 0 1 0 1 0 2 0 Funneliformis 

mosseae 67 
339 0 0 0 24 5 0 0 0 0 2 5 0 Glomus 103 

 
 



148 

270 135 1 109 92 370 184 101 2 116 79 49 81 Glomus 115 
38 1 0 3 4 1 0 0 0 0 47 2 0 Glomus 117 
97 0 0 0 0 0 0 0 0 0 8 0 0 Glomus 117 
820 0 0 0 0 0 0 0 0 0 4 0 0 Glomus 117 
48 121 78 592 273 140 133 77 474 519 171 387 161 Glomus 125 
720 12 0 27 21 9 8 2 0 15 7 8 6 Glomus 125 
1097 1 0 6 0 0 2 0 0 3 0 1 0 Glomus 125 
583 0 7 0 0 0 0 0 0 1 0 0 2 Glomus 130 
39 16 0 28 15 18 6 19 1 36 28 277 827 Glomus 135 
717 1 0 1 4 4 2 1 0 7 2 30 146 Glomus 135 
121 182 1 121 28 61 125 185 0 461 55 140 131 Glomus 140 
458 5 1 132 3 219 16 18 0 27 66 1 2 Glomus 140 
1193 0 0 9 1 8 2 0 0 5 3 1 2 Glomus 140 
904 90 0 0 1 1 4 1 0 5 3 0 0 Glomus 142 
23 104 895 65 6 25 17 42 1452 68 15 82 75 Glomus 151 
211 0 1 0 1 0 0 0 3 0 0 0 0 Glomus 151 
106 3 0 13 2 15 2 271 1 2 22 19 8 Glomus 159 
1 176 21 5428 605 2851 54 8091 30 112 2048 4469 81 Glomus 160 
430 0 0 11 0 5 0 6 0 0 3 10 0 Glomus 160 
652 0 0 8 2 10 0 9 1 0 5 6 0 Glomus 160 
28 73 0 0 29 40 24 54 0 23 4788 0 29 Glomus 163 
520 0 0 1 1 29 0 0 0 0 5 0 0 Glomus 163 
47 23 0 413 13 1483 43 56 0 103 187 1 7 Glomus 165 
792 7 0 57 6 41 0 96 0 1 17 33 0 Glomus 165 
973 7 0 32 1 103 2 6 0 3 12 2 1 Glomus 165 
6 6115 0 26 1165 183 232 137 279 757 140 65 526 Glomus 166 
34 1479 0 9 285 71 76 38 4 210 29 18 126 Glomus 166 
331 85 0 0 21 9 7 4 1 13 4 2 6 Glomus 166 
468 26 0 0 1 0 9 1 0 5 1 1 2 Glomus 166 
544 48 0 6 7 29 56 6 6 67 8 4 84 Glomus 166 
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746 9 0 0 1 0 1 0 0 0 0 1 1 Glomus 166 
862 4792 3 21 1241 176 132 156 244 664 107 102 255 Glomus 166 
1028 65 0 0 13 16 15 2 0 22 3 0 3 Glomus 166 
1079 282 0 2 83 17 13 8 3 28 5 2 14 Glomus 166 
1158 1238 8 1312 1483 1519 4021 1523 189 2656 1088 369 388 Glomus 166 
1263 3365 1 31 594 171 188 94 154 493 104 72 363 Glomus 166 
372 111 0 29 0 0 10 3 0 18 2 0 5 Glomus 172 
4 3825 3 818 194 1503 988 1179 10 1802 963 4363 339 Glomus 177 
462 163 0 33 12 106 50 24 1 48 26 45 9 Glomus 177 
989 291 2 51 21 42 14 77 3 35 44 122 14 Glomus 177 
1274 23 0 6 3 15 27 10 1 22 12 25 3 Glomus 177 
118 26 0 99 4 291 34 27 0 55 25 37 30 Glomus 188 
125 0 0 0 0 0 0 0 39 0 0 0 0 Glomus 194 
366 0 0 0 0 0 0 0 8 0 0 0 0 Glomus 194 
346 5 1 56 10 81 9 77 3 9 26 44 3 Glomus 196 
292 275 104 13 23 51 2045 36 321 613 47 209 94 Glomus 199 
658 0 17 14 0 11 4 0 0 10 44 268 2 Glomus 199 
1143 58 2 0 7 0 22 3 1 63 1 14 5 Glomus 199 
57 12 9 74 87 289 18 12 0 14 35 5 486 Glomus 212 
5 369 4 1633 361 841 350 666 59 781 368 1589 944 Glomus 214 
880 32 0 137 30 108 44 60 1 41 18 35 22 Glomus 214 
891 0 0 6 0 1 0 2 0 2 3 4 1 Glomus 214 
1060 2 0 4 1 3 7 3 0 7 0 7 1 Glomus 214 
1215 112 4 342 148 297 59 145 4 352 42 263 191 Glomus 214 
16 1875 0 75 1682 260 415 587 381 568 31 6 42 Glomus 219 
557 257 0 7 127 13 9 35 6 18 15 0 7 Glomus 219 
957 44 0 4 19 6 4 6 9 5 5 0 3 Glomus 219 
966 14 0 0 3 1 0 3 1 0 0 0 0 Glomus 219 
35 151 67 532 315 173 209 120 671 677 241 472 291 Glomus 222 
40 39 20 302 100 79 56 50 260 188 89 227 90 Glomus 222 
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99 76 28 403 195 78 132 50 300 289 122 240 138 Glomus 222 
326 1 0 12 6 13 7 2 1 4 4 6 5 Glomus 222 
344 5 0 64 24 24 27 7 1 27 18 11 8 Glomus 222 
454 1 0 221 2 7 1 1 0 2 20 9 6 Glomus 222 
750 46 0 1168 92 47 61 10 89 164 109 107 45 Glomus 222 
1195 7 2 9 10 18 6 2 1 17 3 3 5 Glomus 222 
1250 39 2 34 27 37 28 34 269 120 87 194 26 Glomus 222 
860 5 0 2 2 4 9 10 0 6 9 54 3 Glomus 234 
322 132 2 721 39 3115 795 333 0 317 1331 216 323 Glomus 247 
336 116 0 116 81 69 95 87 3 82 44 24 38 Glomus 247 
493 17 0 24 6 64 26 21 0 19 11 11 15 Glomus 247 
537 125 5 172 43 244 34 159 0 49 273 36 46 Glomus 247 
861 7 0 11 2 5 4 19 0 9 5 0 5 Glomus 247 
481 17 0 158 26 232 18 1013 1 19 116 114 18 Glomus 342 
646 9 0 0 7 4 4 5 0 2 450 0 7 Glomus 342 
1127 1 0 8 2 6 4 3 1 5 16 5 9 Glomus 344 
280 1 0 1 1 15 18 6 0 2 9 10 2 Glomus 366 
695 50 0 1 3 6 28 12 0 14 8 14 3 Glomus 366 
241 641 1 48 529 141 175 257 133 192 16 3 22 Glomus 411 
1047 0 0 0 0 10 0 0 0 0 0 0 0 Glomus 417 
17 109 1732 685 48 89 263 65 376 617 177 119 202 Glomus 72 
1149 2 0 216 0 1 9 1 0 129 1 0 1 Glomus 72 
19 20 254 104 16 190 374 14 131 1110 223 22 109 Glomus 74 
875 6 0 5 1 5 10 1 0 24 3 0 0 Glomus 74 
1056 0 0 0 0 0 0 0 0 6 0 0 0 Glomus 74 
80 14 0 90 1 244 14 7 6 11 116 37 71 Glomus 84 
285 4 0 5 0 16 0 1 0 0 2 4 6 Glomus 84 
572 0 0 2 0 0 1 0 0 0 1 0 0 Glomus 84 
733 0 0 0 0 0 0 0 126 0 0 1 0 Glomus 84 
46 97 3 345 89 198 78 169 12 247 76 353 242 Glomus 86 
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1161 9 0 0 0 0 0 0 0 0 0 0 0 Glomus 86 
1175 4 0 9 2 4 1 7 0 2 2 10 3 Glomus 86 
64 2 1 0 0 0 13 0 0 0 0 1 0 Glomus 88 
20 41 58 42 5 207 140 299 2 99 238 253 196 Glomus macrocarpum 

199 
161 2 1 1 2 3 45 52 0 34 4 0 17 Paraglomus laccatum 

261 
297 2 0 1 1 78 3 2 0 2 0 0 2 Paraglomus sp. 308 
510 0 0 0 0 33 0 0 0 0 1 0 0 Paraglomus sp. 308 
718 35 0 2 16 25 28 9 4 6 5 1 5 Paraglomus sp. 308 
778 0 0 0 0 6 3 0 0 0 0 2 4 Paraglomus sp. 308 
863 0 0 0 7 0 0 3 0 0 1 0 0 Paraglomus sp. 308 
974 0 0 0 0 0 0 0 11 0 0 0 0 Paraglomus sp. 308 
986 9 0 4 10 6 3 3 0 0 5 0 0 Paraglomus sp. 308 
0 2798 195 11720 2160 45759 16588 7797 983 10107 17691 3542 12127 Rhizoglomus 

fasciculatus 113 
1255 1309 9 1492 1604 3110 5126 2548 145 3062 1230 516 607 Rhizoglomus 

fasciculatus 113 
257 18 1 22 30 37 68 25 7 51 117 7 5 Rhizoglomus 

vesiculiferus 115 
108 128 3 182 1 2 4 0 1 9 1 8 14 Septoglomus 

constrictum 64 
164 0 0 1 0 2 0 7 0 3 24 2 0 Septoglomus 

constrictum 64 
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Appendix VIII. Variance analysis of OTUs found in the potted greenhouse experiment. Taxa listed below had large effect 

sizes between sugar maple (Acer saccharum) Control and Field Control pots (C) and those with buckthorn (Rhamnus 

cathartica) allelochemical treatments (T) 

Key to table headings: rab.all – median centered log ratio (clr) value for all samples in the feature; rab.win.C – median clr 

value for the C group of samples; rab.win.T - median clr value for the T group of samples; dif.btw – median difference in clr 

values between A and RA groups; dif.win – median of the largest difference in clr values within A and RA groups; effect - 

median effect size: diff.btw /max(dif.win) for all instances; overlap - proportion of effect size that overlaps 0 (i.e., no effect)  

 

OTU rab.all rab.win.C rab.win.T diff.btw diff.win effect overlap taxa 
462 2.130989 0.661496 2.724349 2.207336 2.056791 1.014875 0.0925 G177 
23 3.077592 7.228731 2.28584 -5.42048 5.26009 -1.12797 0.110945 G151 
48 5.472669 6.672472 4.476688 -1.99961 1.972655 -1.02201 0.121 G125 
17 5.002389 7.388068 4.213059 -3.01941 2.787897 -1.2014 0.054 G72 
4 7.073497 5.195408 7.528629 3.137322 2.735607 1.164232 0.062 G177 
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