
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

3-1-2017 12:00 AM 

Using Machine Learning to Predict Chemotherapy Response in Using Machine Learning to Predict Chemotherapy Response in 

Cell Lines and Patients Based on Genetic Expression Cell Lines and Patients Based on Genetic Expression 

Dimo Angelov 
The University of Western Ontario 

Supervisor 

Dr. Lucian Ilie 

The University of Western Ontario Co-Supervisor 

Dr. Peter Rogan 

The University of Western Ontario 

Graduate Program in Computer Science 

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Science 

© Dimo Angelov 2017 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Artificial Intelligence and Robotics Commons 

Recommended Citation Recommended Citation 
Angelov, Dimo, "Using Machine Learning to Predict Chemotherapy Response in Cell Lines and Patients 
Based on Genetic Expression" (2017). Electronic Thesis and Dissertation Repository. 4530. 
https://ir.lib.uwo.ca/etd/4530 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 





20 Chapter 1. Background

Figure 1.14: Paclitaxel SVM Feature Selection - Sequential Backward Feature Selection (El-
sevier, Molecular Oncology, Dorman et al. [12].)

paclitaxel SVM. The initial set of 31 genes had a misclassification score of 36%, after the gene
removal the misclassification score was reduced to 17%. Figure 1.13 shows the genes that were
left after the gene removal process, they are indicated by a dark grey outline.

The SVMs were trained on the cell line data with the idea that they will capture the rela-
tionship between genetic expression and drug response. The goal for the SVM is to be able to
predict chemotherapy response on patients. Clinical data for 319 patients was obtained, along
with genetic expression measurements for each patient [14]. Some of the genes in the SVM
model were not present in the patient data so they were removed from the SVM. The SVM
was then used to predict the therapeutic response of the patients. The SVM predicitons were
compared with the clinical outcome of the patients; which was either the patient had recurrent
disease or complete pathological response. The SVM correctly predicted complete pathologi-
cal response for 84% of patients. The SVM only correctly predicted 53% of patients who had
recurrent disease. The overall accuracy on all the patients was only 58%. Additionally, tissue
blocks were obtained from 17 patients whose response to paclitaxel and gemcitabine is known
[12]. The genetic expression measurements for only 11 genes out of the 15 in the SVM were
obtained. The SVM was trained on those 11 genes and were used to predict the outcome of
the patients. Its accuracy was 71%, which is similar to the SVM performance on cell lines,
which was 70%. These results show that SVMs trained on cell line data are able to transfer
their ability to predict to patients.



Chapter 2

Methods

2.1 Selection of Initial Gene Sets

2.1.1 Data Dimensionality
In machine learning, as the number of features of the data set increases, the amount of data
required to train an accurate model increases exponentially [15]. Additionally, data sets with
a high number of features and low number of samples are prone to over-fitting. An SVM
will try and find a relationship in any data it is given, and it will often find some relationship,
regardless of whether or not that relationship actually means anything. The goal is to be able
to train an SVM on cell line data and to capture the relationship between genetic expression
and chemotherapy response. However, if the SVMs are trained on data with genes that are not
involved in determining drug response, then there is the possibility that the SVM will just fit
the noise in the data. The SVM trained on these irrelevant genes may learn to predict the cell
line response for the cell line training data, but then when used to predict patient outcome it
will fail to make accurate predictions, as it has fit a relationship that does not exist in patients.
It is very important that the initial set of genes that are used for feature selection are chosen
carefully and are known to be genes that are related to chemotherapy response.

2.1.2 Informed Gene Selection
We chose to use the methods that Dorman et al. [12] performed for initial feature selection.
Which is using scientific literature and knowledge of drug pathways to select an initial set of
genes that are known to be associated with chemotherapy response. Also including genes that
are know to affect chemotherapy resistance in general, not necessarily for the specific drug the
model is being built for.

2.1.3 Multiple Factorial Analysis and Epistasis
One modification in the initial gene selection process is the elimination of the multiple factorial
analysis, which eliminated genes that did not correlate with the GI50 of the treated cell lines.
The goal of this elimination was to get rid of genes that were deemed to not have predictive
value for drug response. However, this elimination relies on the assumption that if a gene does

21



22 Chapter 2. Methods

not correlate with GI50 it does not have any predictive value for the model. This implies that
the gene should have a linear relationship with GI50. However, genes often have synergistic
effects. This phenomenon is called epistasis, which is where one gene’s effect depends on one
or more other genes. For example, two genes might be dependent on each other because they
both encode for different proteins that interact together to carry out some function. Therefore
the combination of expression values of multiple genes might become meaningful, due to their
combined non-linear relationship, even if individually they did not correlate with GI50. The
idea is that when training the SVM it may find these non-linear gene interactions. So the fea-
tures that were normally eliminated during the MFA step will be put into the feature selection
process, with the assumption that the feature selection process will keep genes that have these
synergistic relationships, and eliminate those who do not, as they will not improve the predic-
tive ability. In order to verify this assumption, the feature selection process was carried out
with the MFA eliminated genes, and without them. SVMs were then trained on the final set
of genes from both feature selection processes to compare which SVM is better able to predict
response.

2.1.4 Challenges of Available Data Size
Sometimes it is not known what genes are related to chemotherapy response, or there is still
a lack of information about their involvement in chemotherapy response. Ideally if there were
cell line data sets that contained more samples compared to the number of features, then feature
selection techniques could be used to more accurately select the genes that are likely to be
involved in predicting chemotherapy outcome. Feature selection techniques could be used to
find which genes have the greatest predictive ability on the training data. This would allow for
new genes to be discovered as having predictive value. The problem is that most cell line data
sets are small; they usually have less then a hundred cell line types for a specific type of cancer.
So it is not possible to use this strategy for selecting initial genes, as the data sets are too small
to be able to capture the relationships of the thousands of potential genes.

The size of the cell line data sets presents a challenge even with the few carefully selected
genes, as the initial number of genes is generally larger than the number of cell lines. This
makes feature selection very important to building a good model, as it is important to use
as few genes as possible, in order to prevent fitting noise and ensuring the model is able to
capture the relationships present in the data. As previously mentioned the more features that
are present in the model, the more data that is required to be able to learn the relationship
between the features and the label that is to be predicted.

2.2 Automated Feature Selection and Parameter Tuning

2.2.1 Automating Sequential Backward Feature Selection
In Dorman et al. [12] the feature selection method used was sequential backward feature
selection. This method starts with a full set of features, then leaves out each feature and trains
a model. Each model’s performance is then evaluated on the training data. The feature that
decreased the misclassification the most when left out is then eliminated from the feature set.



2.2. Automated Feature Selection and Parameter Tuning 23

This is repeated until the stopping criterion is reached. The stopping criterion for their method
was when misclassification started to increase. This process was performed manually so they
had to train each SVM with each gene left out. With their initial set of 31 genes they reached
the stopping criterion after eliminating 16 genes. This means 376 SVMs had to be manually
trained.

In order to speed up this process we wrote a Matlab program that automates this process.
We used the Statistics and Machine Learning Toolbox SVM library. The program takes as
input a data set with a full set of features. It performs sequential backward feature selection and
outputs the subset of features that produce the lowest misclassification score on the provided
test data. It also outputs the misclassification score for the subset of features that were found
to be optimal. The automated feature selection method repeats the gene elimination process
until there is only one gene left instead of stopping when misclassification starts to increase, as
was done in the manual process. The reason this change was made is that the misclassification
might increase in a certain step, but later decrease when more genes are removed; the old
method was more prone to getting stuck in local optima.

The function that we used for evaluating gene sets is leave-one-out cross-validation. The
model is trained on the whole cell line data set except one cell line, which is used for vali-
dation. The process is repeated for each cell line; thus each one is used for validation. Each
prediction the SVM makes is on a cell line that was not included in its training set. The mis-
classification score is the percent of cell lines that were misclassified during the leave-one-out
cross-validation. The goal of cross-validation is to see how well the trained model generalizes
to unseen data. Leave-one-out cross-validation generally gives an optimistic misclassification
score since the model is trained on the whole data set less one member; so the model sees
most of the data. The reason why leave-one-out cross-validation was chosen is because the
cell line data sets are very small, thus smaller values of k for the k-fold cross-validation would
lead to the model not seeing enough data to learn the relationship. We also used 9-fold cross-
validation, and other smaller values of k-fold validation when larger data sets were available
and to more rigorously test successful models trained on smaller data sets.

The benefit of leave-one-out cross-validation is that it considers each combination of train-
ing and validation sets, since the validation set is just one member. The drawback is that it is
computationally expensive, since the number of iterations required to compute it is the number
of data members, so it can take a very long time to compute for large data sets. The benefit of
smaller values of k-fold cross-validation is that less models have to be trained, since the data
is split into fewer groups, thus it is less computationally expensive than leave-one-out cross-
validation. The drawback is that each group is usually randomly generated, so each time it is
performed the misclassification score varies, depending on how the data elements were grouped
into the folds. In order to reduce the variance in the misclassification score cross-validation
must be performed several times to combine the results of different group combinations.

2.2.2 Change of Kernel and Parameter Tuning
Dorman et al [12] used a linear kernel for their support vector machine models. A linear kernel
uses a hyperplane to separate the cell lines into resistant and sensitive classes. In order to try
and improve the SVM model we introduced a soft-margin linear kernel. The soft-margin kernel
allows the SVM to place the hyperplane in such a way that some cell lines end up in the wrong



24 Chapter 2. Methods

Figure 2.1: How C affects SVM Hyperplane. (Springer, A Users Guide to Support Vector
Machines, Asa Ben-Hur.)

class or allows the hyperplane to come very close to data points. This is something an SVM
normally does not do, as it is a large margin classifier; it normally places the hyperplane so
that it is as far away from data points of both classes. When using the soft-margin the SVM is
better able to get more of the cell lines into the right class. When using the soft-margin there
is a parameter C that needs to be tuned. The value of C determines how the hyperplane will be
placed. Large values of C penalize the SVM for misclassifying cell lines, thus it tries to place
the hyperplane in such a way as to get as many cell lines into the right classes. Smaller values
of C penalize the SVM less for misclassifying cell lines, so it tries to find a larger margin
hyperplane. Figure 2.1 shows how a smaller C allows the hyperplane to get closer to data
points.

The reason we do not just use a very large value for C, so that the SVM just puts all the
cell lines into the right classes is that this can lead to over-fitting. In order to find the optimal
value of C we try values from 10−10 to 1010. In order to prevent over-fitting we perform cross-
validation for each C value. An SVM is trained for each C value. The SVM that has the lowest
misclassification score during cross-validation is the one with the correct C value, since it is
best able to generalize to unseen data.

This parameter tuning was integrated into the feature selection program. The way this was
done is the sequential feature selection algorithm was run for each value of C. The program still
takes as input a data set with a full set of features. However it outputs not just the optimal subset
of features and corresponding misclassification score but also the optimal C value. Algorithm
1 shows the pseudo code for the C optimization program.

Even with the use of a soft margin, if the data is not linearly separable there will be cell
lines that the hyperplane cannot separate properly. There is no way to directly tell if a data
set is linearly separable. However, if a linear kernel is able to achieve a low misclassification
percentage then the data is probably linearly separable. This would be true if the misclassifi-



2.2. Automated Feature Selection and Parameter Tuning 25

Input : Data set with full set of features
Output: Optimal Subset of Features, Misclassification Score, Optimal C Value
Cbest;
Missclassi f icationbest;
Featuresbest;
for C ← 10−10 to 1010 do

Mcurrent, Fcurrent ← S equntialBackwardS election(Features,C);
if Mcurrent < Missclassi f icationbest then

Cbest = C;
Missclassi f icationbest = Mcurrent;
Featuresbest = Fcurrent;

end
end
return Cbest,Missclassi f icationbest, Featuresbest;

Algorithm 1: C Optimization

cation percentage was close to 0%, since that would be the case where the two classes can be
perfectly separated by a linear hyperplane. Another way to know if the data is linearly separa-
ble is to compare the use of kernels that allow the model to fit non-linear data and compare the
results with the use of a linear kernel. If the use of a non-linear kernel does not improve the
misclassification percentage then the data is likely linearly separable since a linear hyperplane
is able to separate the classes as well as a non-linear hyperplane. Since the misclassification
score could be improved we decided to try using a Gaussian kernel. Additionally, since it is
not explicitly known if the cell line data is linearly separable it is better to use the Gaussian
kernel since it performs at least as well as a linear kernel. The linear kernel is a special case
of the Gaussian kernel, since a Gaussian kernel with a very small σ value can be made to have
the same performance as the linear kernel [21]. The Gaussian kernel can handle data where
the relationship between gene expression and response is non-linear by mapping the data to
higher dimensional space where it is linearly separable. Therefore, using the Gaussian kernel
only increases the ability for the model to learn the data, whether the data is linearly separable
or not.

When using the Gaussian kernel there is still the C parameter that needs to be tuned, but
there is also another parameter σ. C still affects how close the hyperplane can get to data
points. The value of parameter sigma determines how much curvature the decision boundary
can have. When sigma is small the hyperplane is closer to being linear, when sigma is larger
the hyperplane has more curvature. Therefore, large values of sigma can lead to over-fitting,
as the hyperplane can perfectly fit the training data, which likely wont allow it to generalize to
unseen data. Figure 2.2 shows how as sigma increases so does the curvature of the hyperplane.
It is apparent that when sigma = 100 the hyperplane is over-fitting the data.

In order to prevent over-fitting with the Gaussian kernel both parameters C and sigma need
to be tuned. The way we choose sigma will be the same as C, we try values from 10−10 to 1010.
In order to prevent over-fitting we perform cross-validation for each sigma value. However,
we also have to consider C, so we decided to do a grid search on all values of C and sigma.
We chose to do this because there are only 121 combinations to try and it ensures we consider



26 Chapter 2. Methods

Figure 2.2: How σ(gamma in this diagram) affects SVM Hyperplane. (Springer, A Users
Guide to Support Vector Machines, Asa Ben-Hur.)



2.3. Regression 27

a wide range of C and sigma; the computational cost of this is not significant. The program
still takes as input a data set with a full set of features. However, it outputs not just the optimal
subset of features and corresponding misclassification score but also the optimal C and sigma
values. Algorithm 2 shows the pseudocode for the C and sigma optimization program. Inside
the nested loops of the algorithm, the sequential feature selection algorithm is run, it does not
rely on previous iterations of C and sigma. We decided to parallelize this program, since the
sequential backward features selection could be run simultaneously for different values of C
and sigma. This significantly improved the run time of the program.

Input : Data set with full set of features
Output: Optimal Subset of Features, Misclassification Score, Optimal C Value
sigmabest;
Cbest;
Missclassi f icationbest;
Featuresbest;
for σ← 10−10 to 1010 do

for C ← 10−10 to 1010 do
Mcurrent, Fcurrent ← S equntialBackwardS election(Features,C, σ);
if Mcurrent < Missclassi f icationbest then
σbest = σ;
Cbest = C;
Missclassi f icationbest = Mcurrent;
Featuresbest = Fcurrent;

end
end

end
return Cbest,Missclassi f icationbest, Featuresbest, σbest;

Algorithm 2: C and σ Optimization

2.3 Regression
The goal of the SVM trained on cell lines is to be able to predict based on genetic expression
if the cell lines will be resistant or sensitive to chemotherapy. The resistant and sensitive labels
for the cell line data are generated based on the GI50 values, which represent the amount of
drug concentration required to inhibit their growth. This problem is actually a simplification of
the harder problem of being able to predict the continuous variable GI50 based on the genetic
expression of the cell lines. Being able to predict GI50 would be a lot more useful as it is
more precise, that way an expert in biology could decide exactly what the predicted GI50 value
means for resistance or sensitivity. We decided to try and solve this harder problem by using
regression.

We first tried performing linear regression, which tries to fit the relationship of the data with
a linear hyperplane. We initially tried doing this with the full set of features. We then performed
sequential backward feature selection in order to improve results by reducing the number of



28 Chapter 2. Methods

features. Since we do not know if the relationship in the data is linear we also tried using
polynomial kernels to perform non-linear regression. Polynomial kernels can be of different
degrees, the higher their degree the more curves it will have. However, when using a high
degree polynomial over-fitting can occur. We tried different degrees of polynomial kernels,
along with sequential backward feature selection. We evaluated the models based on their
mean-squared-error on leave-one-out cross-validation, along with looking at the predictions of
GI50 for leave-one-out cross-validation.

In order to try and reduce the dimensionality of the data without losing the information
from the features, we decided to design a custom kernel for regression. We did this specifi-
cally for the drug paclitaxel since it is one of the most widely used chemotherapy drugs and
there is lots of information about its mechanism of action and the genes that affect its efficacy.
The idea behind the custom kernel is that some of the genes in the feature set belong to the
same drug pathway. We combined those genes and multiplied their expression values together
to generate a new feature which represents that specific pathway. We did research to find the
main pathways for the method of action of paclitaxel. We found three pathways to be most sig-
nificant. The pathway that affects microtubules, the pathway that affects the drug metabolism,
and the pathway that affects transport of the drug. In the microtubule pathway there were
three genes: MAPT, MAP2, and MAP4. In the metabolism pathway there were four genes:
CYP3A4, CYP2C8, CYP1B1, and NR1I2. In the transport pathway there were seven genes:
ABCB1, ABCG2, ABCC1, ABCC2, NR1I2, SLC22A7 and SLCO1B3. During the research
we also found that a specific gene TLR4, correlates with chemoresistance and metastasis for
breast cancer being treated with paclitaxel [30]. We decided that this gene should also be in-
cluded, however it was not combined with other genes as it did not belong to any of the other
pathways. There is also a group of five genes BMF, BBC3, BAD, BCL2L1, BCL2 that are
associated with cellular stress [12]. We used those genes all multiplied by each-other as an-
other feature. The kernel has weight parameters for each feature that even out the values during
training, since some features have more genes than others; thus when multiplied together will
give larger values than other features.

2.4 Using Multi-class SVM
The quantity of cell line data was insufficient for regression, so we tried to solve a simpler
problem. Instead of predicting GI50, we decided to split the cell lines into three categories
rather than just two. Initially the cell line data was split into resistant and sensitive categories,
with the split happening based on the mean GI50 value. The assumption is that if a cell line
requires a higher concentration of drug for its growth to be inhibited then it is more likely that
it will be resistant. The issue with having just two labels is that cell lines that are really close
the the mean GI50 will not be represented properly, as they are right on the border. In order to
prevent this we proposed three labels, low, medium and high concentration of drug required.
This would be a more accurate predictor since it will identify the cell lines close to the mean
GI50 as medium. This would be a more useful predictor as it gives more information about how
likely a cell line is to being resistant.

SVMs are binary classifiers, so they can learn to distinguish only between two different
classes. In order to make a multi-class SVM several binary SVMs can be combined together;



2.5. Using Neural Networks 29

there are two main strategies for doing this. The one-verses-rest method trains an SVM for
each class; it learns to distinguish between that class and the remaining classes. Each SVM
outputs a confidence score rather than a label. When predicting a class the SVM for each class
will make a prediction, the SVM with the highest score will determine which class is predicted.
The other approach is called one-versus-one, where if there are K classes K(K − 1)/2 binary
classifiers are trained to form the multi-class SVM. In the one-versus-one approach an SVM
is trained for each combination of pairs of classes, instead of just an SVM that distinguishes
from one class and the rest. When making a prediction the class that gets the most votes from
the binary classifiers gets chosen as the predicted class.

The Matlab multi-class SVM function we used employed the one-versus-one approach.
We divided the cell line data set into three equal parts with the low, medium and high drug
concentration labels. We then used the feature selection and parameter tuning program to train
our model. The results were not as good as the SVM we trained on just two labels. This was
to be expected since we are splitting an already small data set into even smaller groups. We
concluded that the data set is also too small for multi-class classification. The loss of accuracy
was not worth the added ability to be able to predict low, medium and high concentrations of
drug. Thus we concluded that these small data sets will be best used with just sensitive and
resistant labels.

2.5 Using Neural Networks
Artificial neural networks (NNs) are a supervised learning classifier that is frequently used in
machine learning. We decided to try using NNs for classifying the cell line data, due to their
ability to learn both linear and non-linear relationships. The goal was to find out if NNs are
better at classifying the cell line data set than SVMs. Additionally, we wanted to compare
the complexity of training a NN to that of training an SVM, as well as their computational
requirements.

NNs consist of several layers which contain interconnected neurons. Each connection be-
tween two neurons is a weight function; it multiplies the value it receives from the previous
neuron which it then passes on to the other connected neuron. Neurons themselves also per-
form functions to the values they receive before passing them on. A neural network has an
input layer which is the features that it takes as input. That layer has a neuron for each feature,
which for the cell line data would take the gene expression values. It then has hidden layers of
neurons, which perform operations to the initial expression values and which then get passed
on to the other hidden layers. The final layer is the output layer where the neural network
outputs its prediction. NNs are a supervised learning model, so they are trained by being given
an input and the corresponding desired output. There are different algorithms that adjust the
weights of the neurons to achieve the desired output from the input.

When creating a NN one of the challenges is choosing the number of hidden layers and the
number of neurons in each layer. There is a lot of opinions on how many hidden layers to use,
but for many problems one hidden layer is sufficient [27]. Adding additional layers to a NN
improves its ability to fit more complex functions, however with two layers a NN can represent
a function of any shape [27]. The number of neurons in each hidden layer also improves the
ability of the NN to fit more complex functions. It is important to choose the correct amount



30 Chapter 2. Methods

of neurons since too few neurons can lead to under-fitting and too many neurons can lead to
over-fitting. A guideline for choosing the correct number of neurons in the hidden layer is that
there should be an amount between the size of the input layer and the output layer. The correct
amount is different for each data set since there a number of factors that determine the optimal
number of neurons in the hidden layer. The number of features, the size of the data set, the
amount of noise in the data, the complexity of the relationship to be learned, and the training
algorithm all affect the selection of the optimal amount of neurons. Therefore, trial and error
is required to find the correct amount.

We used the Matlab Statistic and Machine Learning Toolbox which provides a NN library.
When designing our neural network we initially started with one hidden layer and with ten
neurons. We experimented with increasing the number of neurons up to the number of input
features. The results were not significantly affected by increasing the number of neurons, ten
performed just as well as greater values. Additionally, we tried adding an additional layer, this
actually decreased the performance of the classifier, so we concluded one hidden layer was
optimal for our problem.

During training, backpropagation is the algorithm that updates the weights of the NN. It
propagates the error of the output back to each neuron, figuring out the contribution of each
neuron to the error; based on that it updates the weights of the neuron. There are many dif-
ferent types of modifications of the backpropagation algorithm, all aimed at improving neural
network training. Initially we used Bayesian regularization back-propagation which is a type
of backpropagation that reduces over-fitting. We also tried using Levenberg-Marquardt back-
propagation, which is optimized for fast training. Finally, we tried using scaled conjugate
gradient back-propagation. All of these back-propagation algorithms were a part of the Matlab
Statistics and Machine Learning Toolbox. We used sequential backward feature selection and
cross validation to train and test the NNs. We got the best results using Bayesian regularization
back-propagation.

From the many variations of NN architectures we tried, none of the NNs were able to
achieve results that surpassed those of the SVM models. Each time a NN model is trained it
forms a different set of weights; sometimes the models do not find the optimal weights for the
neurons due to the training algorithm getting stuck in a local optimum. It is therefore neces-
sary to re-train the model multiple times until it reaches an acceptable misclassification score.
Choosing the correct number of hidden layers and hidden neurons is another challenge that
complicates training as the trial and error process is time consuming. In contrast to NNs which
can get stuck in local optima during training, SVMs always find a global minimum during
training [6]. SVMs also do not require the selection of the internal architecture, they automat-
ically determine their internal structure by selecting support vectors [19]. We concluded that
SVMs are preferable to NNs for classifying our cell line data due to their ability to produce
better results and their simplicity.

2.6 Limitations of Sequential Backward Feature Selection
The major challenge of feature selection is that the size of the search space is too large for any
algorithm to be able to fully explore, since the number of possible feature subsets for n features
is 2n. Feature selection methods are heuristics that explore some of the search space. They all



2.7. Genetic Algorithm for Feature Selection 31

aim to reach the global optimum, which is the optimal subset of genes.
Greedy algorithms are algorithms that are short sighted, they only consider the locally op-

timal choice at each step. They are not guaranteed to reach the global optimum and in most
cases they do not [32] because that is not their goal. Their goal is to make the optimal choice at
each step with no regard for how that will affect future steps. The sequential backward feature
selection algorithm is a greedy algorithm. Its only consideration is what feature is bringing
the misclassification down the most in each iteration. Its greedy because it just eliminates the
gene that improves the the misclassification the most at each step, without considering how
eliminating that feature will affect future steps. The main limitation of sequential backward
feature selection is that it can not re-evaluate the usefulness of a feature after it has been re-
moved. There could be combinations of features that could benefit from a feature that has been
removed. Additionally, backward feature selection explores mostly large subsets of features.
As the backward feature selection algorithm removes genes, each following iteration has fewer
combinations to consider. When the algorithm starts it explores the greatest number of combi-
nations of genes. When the algorithm has removed most of the genes it considers much fewer
combinations. Thus when the algorithm is working with smaller subsets it has a lot fewer
genes to consider. A similar algorithm, sequential forward selection works in the reverse order.
It begins with an empty set of genes and adds genes one by one, according to which gene max-
imized performance when added. This algorithm mostly explores small subsets of data; since
it only has a few genes left to add near the end of its operation. Therefore, with sequential
backward feature selection, if the optimal subset of features is smaller it is less likely to be
found. The sequential backward feature selection algorithm explores a very narrow section of
the search space.

2.7 Genetic Algorithm for Feature Selection
Genetic algorithms are a type of artificial intelligence algorithms that are inspired by evolution.
They are used to solve a variety of optimization problems. They are based on the principle of
”survival of the fittest” [31]. This is the principle that organisms that are best able to meet
the demands of their environment are the ones that will live on and spread their genes to the
following generation. Organisms that are not able to cope with their environment as well will
have few or no offspring, and thus will not spread their genes. Since organisms that are more
fit spread their genes more than ones who are less fit, with time the whole population evolves
to be more like the fit organisms, since their genes become more widespread.

Genetic algorithms use chromosomes to encode possible solutions to the problem to be
solved. These chromosomes are strings, where each position in the string represents an element
of the solution. The chromosome strings are normally bit strings; thus the solution must be
encoded as a bit string. There are also other string types such as hexadecimal that can be
used, however binary is the simplest. A genetic algorithm starts with a population of randomly
generated bit strings, representing random solutions to the problem that is to be optimized.
This is referred to as the first generation. The techniques of evolution are then applied to the
first generation to generate the following generations. This process is repeated until either a
predefined number of generations have been generated or a satisfactory solution is found in
one of the generations.



32 Chapter 2. Methods

Figure 2.3: Single-Point Crossover. (Wikimedia Commons.)

During each generation a subset of the population is selected to breed the new generation.
Chromosomes that have a higher fitness are more likely to be chosen for breeding; according
to a fitness function that ranks the chromosomes solution. There are many different techniques
for choosing this subset. The main issue in genetic algorithms is early convergence, which
happens when the whole population looses its diversity and it becomes just multiple copies of
one solution. This can happen due to many reasons, but one of the undesirable reasons is a
poor choice for the method that selects which chromosomes should breed. If the method just
chooses the best performing chromosomes of each generation to mate and gives no chance to
chromosomes with worse performance, they would be wiped out entirely, when some part of
their solution could have been useful. There are methods for avoiding this that will be discussed
later.

Crossover is the step that comes after chromosomes are chosen for breeding. Crossover
is a genetic operator that combines two chromosomes to form a new one. Usually two parent
chromosomes are used to generate the child chromosome, but more than two can be used.
The child chromosome is formed by taking a section of the chromosome from one parent
and another section from the other parent. There are multiple ways to choose the portion of
the chromosomes from the parents. The two common ways are single-point and two-point
crossover [31]. In single point crossover a point along the chromosome is randomly chosen,
then both parent chromosomes are cut at that point and each child gets one part from each
parent; forming two new children. This is demonstrated in Figure 2.3. In two-point crossover
two points are randomly chosen, both parent chromosomes are cut at those points, each child
then gets the middle section of one parent and the outside sections of the other parent. This
is demonstrated in Figure 2.4. Having more crossover points reduces the performance of the
genetic algorithm, since the information about each solution is more likely to be scattered [31].

In order to increase diversity and explore more of the search space mutation is applied
to chromosomes after they undergo crossover. Additionally, this prevents the algorithm from
getting stuck in local optima. The goal of crossover is to find the best solution from the current
solutions and the goal of mutation is to find new solutions from the search space [31]. A
mutation involves making a random change to some part of the chromosome. There are many
different techniques for mutation, the simplest is just choosing a random element of the binary
chromosome string and flipping the bit; if it was a zero make it a one and vice versa. Another
technique is choosing two random positions on the chromosome and exchanging the bits. Any
manipulation that randomly alters the chromosome is a technique that can be used for mutation.



2.7. Genetic Algorithm for Feature Selection 33

Figure 2.4: Two-Point Crossover. (Wikimedia Commons.)

Once the chromosomes have undergone crossover and mutations have been applied to the
children the new population is formed. Another step before the new population is finalized is
evaluation. The performance of each chromosome of the new population is measured, using
the evaluation function that tests the candidate solutions. There are many techniques for what
is done after the evaluation to finalize the new generation. The simplest technique is to just
use the entire new population. Other techniques only take the best performing chromosomes
from the new generation combined with the best performing chromosomes from the previous
generation. There is also a technique called elitism, where the worst chromosome from the new
generation is replaced by the best chromosome from the previous generation. This ensures the
solution quality will not decrease from one generation to the next, however it can also lead to
early convergence. Once these techniques are applied, the new generation is finalized and it
undergoes through the whole process over and over until the stopping criterion is reached.

When implementing the genetic algorithm for feature selection the first step was to encode
the problem as a string. We choose to use a binary string since it is sufficient for our purposes.
Our goal was to find the optimal subset of features that minimize misclassification error on the
cell line data. The genetic algorithm tries to find this subset of features, so each chromosome
in the population represents a subset of genes. The chromosome was a binary string that has
a bit for each feature in the set of chromosomes from which the subset is to be found. A one
in the string represents a gene that is included in the subset and a zero represents a gene that
is not included in the subset. We decided to start with a population of 10 randomly generated
chromosomes. The evaluation function for the genes is training an SVM on the subset of the
genes represented by the binary string and performing leave-one-out cross-validation. The
misclassification was the score that is assigned to the corresponding chromosome.

Crossover requires some fraction of the genes to be selected for breeding. The percentage
of genes that get selected for crossover must be selected for the algorithm. This parameter is
very important, since too small a value will lead to little progress in finding new solutions and a
value that is too high will lead to early convergence and potentially scatter valuable information
that is contained in chromosomes.

In order to avoid early convergence, we decided to use linear rank based selection for select-
ing the chromosomes that will be used for breeding. Rank based selection assigns probability
of being chosen for breeding based on the relative fitness of the chromosome. It assigns prob-
ability based on the rank of the chromosome relative the the fitness of other chromosomes,
rather than based on the absolute fitness. If the most fit chromosome had a score 10 times



34 Chapter 2. Methods

better than the second best, that will not affect the probability that the most fit chromosome
would get. In order to assign probabilities, the chromosomes are first ranked from worst to best
according to their fitness scores as evaluated by the leave-one-out SVM cross-validation. For
a population of size N, rank r would be assigned a new score of

∑r
n=1 n/N. In order to choose

a chromosome for breeding a random number is generated between the min and max score,
and the chromosome that is the closest to that number is chosen. This randomness ensures that
even chromosomes with low performance score get a chance to breed. However, they are less
likely to be chosen, ensuring that more high performing chromosomes breed more often.

For breeding we decided to use single-point crossover. To perform single-point crossover
we generate a random index, then both parent chromosomes are split at that index. Children
receive one half from each parent so two children are formed from the breeding process.

For mutation we decided to use a single point mutation per chromosome since our chromo-
somes are relatively small; mutating more than one feature per chromosome would introduce
too much randomness and we will loose too much valuable information. We used a 60% muta-
tion rate in our algorithm. The mutation probability for genetic algorithms normally represents
the percent of bits in each chromosome string that will be flipped. We used a slightly differ-
ent approach, our percentage represents the percentage of chromosomes that will be mutated.
However, each chromosome that is selected for mutation only has one bit that is flipped. There-
fore our 60% mutation rate means that 1.9% of the bits in the population will be mutated, since
we have a population of 10 and chromosome length of 31.

The genetic feature selection algorithm we implemented took a considerably longer time
to run compared to our sequential backward feature selection algorithm. In order to speed
up the run time, we parallelized the population evaluations. This is possible since they are
all independent of each-other. During evaluation an SVM is trained for each member of the
population and its performance evaluated on leave-one-out cross-validation. All these SVMs
were trained and evaluated in parallel. There was no other part of the algorithm that could
be parallelized since each generation of the algorithm depends on the previous generation.
Algorithm 3 shows the pseudocode for the steps we performed in our genetic algorithm.

Input : Data set with full set of features, Number of generations
Output: Optimal subset of features, Misclassification score
P←Generate random initial population;
for 1 to Number of Generations do

Evaluate population(P);
Pnew ← Perform crossover(P);
Perform mutation(Pnew);
Evaluate population(Pnew);
Perform elitism(Pnew);
P← Pnew;

end
Missclassification← getBestScore(P);
OptimalGeneS ubset ← getBestChromosome(P);
return OptimalGeneS ubset,Missclassi f ication;

Algorithm 3: Genetic Algorithm



2.8. Simulated Annealing for Feature Selection 35

2.8 Simulated Annealing for Feature Selection
”I have never encountered any problem where genetic algorithms seemed to me the right way
to attack it. Further, I have never seen any computational results reported using genetic algo-
rithms that have favorably impressed me. Stick to simulated annealing for your heuristic search
voodoo needs.” [32]. According to Skiena genetic algorithms do not work as well as simulated
annealing for combinatorial optimization problems due two main reasons. Modelling the so-
lution with genetic operators like crossover and mutation adds an unnecessary additional layer
to the problem that is to be solved. The other reason is that crossover and mutation transitions
usually lead to inferior solutions therefore making convergence of the algorithm very slow.

Simulated annealing is a probabilistic technique that is useful for finding the global opti-
mum to an optimization problem in a large search space. Simulated annealing is inspired from
the formation of crystals in solids during cooling [31]. When complex physical systems are
cooling they naturally converge toward a state of minimal energy. The slower the cooling the
more minimal energy state can be reached. During cooling particles move around randomly,
the probability to stay in a particular configuration depends on the energy of the system and
the temperature. This relationship is modelled by the equation p = e−E/kT . Where e is Euler’s
number, E stands for energy, k is the Boltzmann constant, and T is the temperature. At high
temperatures the system behaves more randomly, where as at low temperatures it becomes
more stable since the probability to stay in a certain configuration increases.

The idea behind simulated annealing is in some ways similar to genetic algorithms. Usually
the algorithm begins by generating a random solution. It then finds the fitness of the solution
using an evaluation function. Then the algorithm generates a random neighbouring solution.
This is similar to mutation, since these neighbouring solutions are formed by taking the cur-
rent best solution and making a random change to it. The fitness of the neighbouring solution
is then determined with the evaluation function. If the neighbour solution is better than the
current best solution it replaces the current best, since it is getting closer to the optimum. If
the neighbouring solution is worse then it decides whether or not to replace the current best
solution based on the principles behind annealing. If the fitness of the current best solution is si

and the fitness of the neighbouring solution is s j the probability that the neighbouring solution
will be chosen to replace the current based is modelled by the equation p = esi−s j/kT . The prob-
ability is determined by the temperature and the difference between fitness of the neighbouring
and current best solution. If the temperature is higher, the probability that a worse solution
will be accepted is higher. The larger the difference between the neighbouring solution and
the current best the lower the probability that it will be accepted. Once this probability is cal-
culated, a random number between zero and one is generated and if the probability calculated
is greater than this number then the neighbouring solution replaces the current best solution.
For some implementations even if the neighbouring solution is better than the current best it
is only accepted if the probability determined by the equation p = esi−s j/kT is greater than the
randomly generated number between one and zero. This whole process is then repeated for
many iterations at the same temperature. The temperature is then decreased and the procedure
is repeated.

Simulated annealing models the cooling process so it starts at a high temperature and slowly
reduces it. When the temperature is high worse neighbouring solutions are more likely to be
accepted. This allows the algorithm to thoroughly explore the search space while the temper-



36 Chapter 2. Methods

ature is high. As the temperature is decreased worse solutions are less likely to be accepted,
however they still can. This prevents the algorithm from getting trapped in local optima. Sim-
ulated annealing behaves like a hill climbing algorithm that sometimes permits going downhill
to avoid local optima [31]. As the temperature reaches the minimal value the algorithm rarely
accepts worse solutions and narrows in on the best solution.

There are several parameters that need to be selected when implementing the simulated
annealing algorithm. The initial temperature parameter is usually set to 1, which is then de-
creased by the temperature decrement function. The function for decrementing the temperature
is modelled by the equation tk = α ∗ tk−1. The temperature undergoes exponential decay, the
rate of the decay is controlled by the parameter α. This parameter α is generally set between
values of 0.8 and 0.99 [32]. The algorithm undergoes a set amount of iterations between each
temperature change. The number of iterations is usually set between 100 and 1000 [32]. The
stopping criterion for the algorithm can be either achieving a specific classification score, or
until the minimum temperature is reached.

Our genetic algorithm was implemented in Matlab and did not use any of the Matlab Statis-
tics and Machine Learning simulated annealing libraries. When implementing our simulated
annealing feature selection algorithm, we encoded our solutions as binary strings just as we did
for genetic algorithms. We defined the neighbouring solution to be the current best solution
with a random bit that is flipped. Our fitness function for evaluation solutions was training an
SVM with leave-one-out cross-validation on the cell line data and using the performance of the
gene subset as the score. Our initial temperature was set to 1. The minimum temperature was
set to 1−6. We experimented with different values of α and found the value that gave the best
results to be 0.9 for our data sets. We also experimented with different values for the number
of iteration at each temperature and found 100 iterations to be sufficient for producing good
results. We considered results to be good when they surpassed the misclassification scores of
sequential backward feature selection and were at least as good as the results obtained from the
genetic algorithm. Higher values did not produce significantly better results but significantly
increased the run time. There is no part of this algorithm that can be parallelized, however
several instances of the algorithm can be run in parallel. This was a big advantage over the
genetic algorithm, since we need to find optimal C and σ parameters for the Gaussian kernel of
the SVM. Simulated annealing allowed us to run several instances of the algorithm for different
C and σ values. We also modified the algorithm slightly by keeping track of the best solution
encountered while searching, as there is no guarantee the final solution will be better than all
solutions that were encountered during the search. Algorithm 4 shows the pseudocode for our
simulated annealing feature selection algorithm.



2.8. Simulated Annealing for Feature Selection 37

Input : Data set with full set of features
Output: Optimal Subset of Features, Misclassification Score
T ←1;
Tmin = 0.00001;
alpha = 0.9;
OptimalGeneS ubsetcurrent ← Generate Random Solution;
Missclassi f icationcurrent ← Evaluate(OptimalGeneS ubsetcurrent);
OptimalGeneS ubsetbest ← OptimalGeneS ubsetcurrent;
Missclassi f icationbest ← Missclassi f icationcurrent;
while T > Tmin do

for i← 1 to 100 do
NeighbourGeneS ubset ← generateNeighbour(OptimalGeneS ubsetcurrent);
NeighbourMissclassi f ication← Evaluate(NeighbourGeneS ubset);
∆← Missclassi f icationcurrent − NeighbourMissclassi f ication;
p← e∆/kT ;
if p random(0,1) then

OptimalGeneS ubsetcurrent ← NeighbourGeneS ubset;
Missclassi f icationcurrent ← NeighbourMissclassi f ication;

end
if NeighbourMissclassi f ication < Missclassi f icationbest then

OptimalGeneS ubsetbest ← NeighbourGeneS ubset;
Missclassi f icationbest ← NeighbourMissclassi f ication;

end
T = T ∗ α;

end
end
return OptimalGeneS ubsetbest,Missclassi f icationbest;

Algorithm 4: Simulated Annealing Algorithm



Chapter 3

Results

3.1 Results after Optimizing Parameters and Kernel Change

3.1.1 Cell Line Data
The paclitaxel cell line data we used was the same data set used by Dorman et al. [12]. We
obtained the data set from the Daemen et al. [11] supplementary materials. The data set
contains 49 cell lines with GI50 values for each cell line along with genetic expression values.
The GI50 is the drug concentration M, that is required to inhibit cell line growth by 50%. The
values of drug concentration in the dataset are recorded as −log10M. The genetic expression
values were log2 normalized, the data was derived from Affymetrix GeneChip Human Genome
U133A and Affymetrix GeneChip Human Exon 1.0 ST arrays [11].

SVMs are sensitive to the way features are scaled, the accuracy of an SVM can be impacted
if the data is not normalized [4, 8]. When proper scaling is not performed features with larger
numeric ranges dominate features with smaller numeric ranges, which skews results. It is
important that all features have values that fall within the same range. It is recommended that
this range be [-1,+1] or [0,1], so feature scaling must be used to normalize the feature values
to fall within those ranges [16].

In the paclitaxel cell line data, the gene expression values for each gene have slightly dif-
ferent ranges so we decided to normalize the data. To normalize our data, we chose to use
standardized z-scores, which is the number of standard deviations each data point is from the
mean. The range of gene expressions values were normalized to the range [0,1]. The z-score
normalization ensures that the values for each feature have a mean of zero and a standard devi-
ation of 1. The z-score represents the number of standard deviations a specific cell line is from
the average of all cell lines for that gene.

3.1.2 Patient Data
Cancer patient data sets contain gene expression measurements and clinical data for patients
who were treated with chemotherapy drugs. In order to test our models on patient data, patients
must be classified as either resistant or sensitive based on the clinical data. However, there are
no GI50 measurements available for patients. There is either time to relapse or time to death.
We used thresholds of 5 years or less until relapse to divide patients into sensitive and resistant

38


