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Abstract

In density-functional theory, one can approximate either the exchange-correlation energy

functional or the corresponding Kohn–Sham effective potential, which is then converted into

an energy functional by functional integration. A directly approximated potential may de-

pend on the electron density explicitly or implicitly through Kohn–Sham orbitals. A poten-

tial that depends on the electron density explicitly can be converted into an energy functional

by evaluating the Leeuwen–Baerends line integral along some path of electron densities. We

extend this technique to orbital-dependent potentials by integrating them along the path

of scaled orbitals. Using this method, we assign energy expressions to the Slater, Becke–

Johnson and van Leeuwen–Baerends model Kohn–Sham potentials. We also investigate the

conditions under which the zero-force test for functional derivatives holds in finite basis set.

Specifically, we show that any functional derivative of an explicitly density-dependent func-

tional satisfies the zero-force test in any finite basis set. Approximate exchange-correlation

potentials constructed by the Ryabinkin–Kohut–Staroverov (RKS) method are found to

pass the zero-force test only in the basis-set limit. Our results confirm that RKS potentials

obtained from Hartree–Fock wave functions are practically indistinguishable from exact ex-

change potentials when a large basis set is employed.

Keywords: density-functional theory, exchange-correlation functional, Kohn-Sham po-

tential, line integral, orbital-dependent functionals, functional derivative
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Chapter 1

Introduction

1.1 Density functional theory and the Hohenberg–Kohn theorems

Much of the chemically relevant information about molecular structure and properties can

be extracted from stationary electronic wave functions obtained as solutions to the time-

independent Schrödinger equation. Unfortunately, this equation cannot be solved analyt-

ically except for a few model systems that are of limited interest in chemistry. Another

challenge when dealing with the Schrödinger equation is that as the electron number N

becomes large, the wave function (a function of 3N spatial and N spin variables) becomes

extremely complicated and prohibitively expensive to compute. Density-functional theory

(DFT) is a clever approach that overcomes these difficulties.

DFT treats the total energy as a functional of electron density,

Etotal = E[ρ]. (.)

By using the electron density as input, DFT significantly decreases the computational cost

by reducing the N -electrons problem involving wave functions of 3N spatial coordinates to

a problem involving a function of 3 spatial coordinates.

DFT is based on two theorems due to Hohenberg and Kohn [1]. The first Hohenberg–

Kohn theorem states that the ground-state electron density uniquely determines the external

potential, hence the Hamiltonian and all other information about the system that can be
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derived from it. For the total electronic energy, this fact can be expressed as

E[ρ] =

∫
vext(r)ρ(r) dr + F [ρ], (.)

where vext(r) is the external potential (usually the electrostatic potential of the nuclei) and

F [ρ] is the so-called universal (i.e., system-independent) density functional. The second

Hohenberg–Kohn theorem states that the exact ground-state energy and density of the sys-

tem can be found by minimizing E[ρ] over all acceptable densities [1, 2].

1.2 Kohn–Sham scheme

The functional F [ρ] in Eq. (.) can be separated into two terms

F [ρ] = T [ρ] + Vee[ρ], (.)

where T [ρ] is the kinetic energy of the electrons and Vee is the electron-electron interaction.

The electron-electron interaction can be partitioned into classical and quantum-mechanical

parts

Vee = J + E(c)
xc , (.)

where J is the classical Coulomb repulsion energy

J =
1

2

∫
dr1

∫
dr2

ρ(r1)ρ(r2)

|r1 − r2|
, (.)

and E
(c)
xc is the conventional (in wave function-based methods) non-classical exchange-correlation

energy. Thus, F [ρ] becomes

F [ρ] = T [ρ] + J [ρ] + E(c)
xc [ρ]. (.)
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The remaining problems are how to approximate T [ρ] and the non-classical part of Vee.

Kohn and Sham proposed a method for handling the kinetic energy term [3], which turned

DFT into a practical tool. The Kohn–Sham method is based on the assumption that for

any real (interacting) system with the ground-state density ρ(r) there exists a corresponding

non-interacting system which has the same ground-state ρ(r). Thus, the difficult many-

body problem of interacting electrons in a static external potential is reduced to a simpler

problem of non-interacting electrons moving in an effective potential veff(r). Non-interacting

systems are relatively easy to solve as their wave functions are just Slater determinants. The

non-interacting single-particle Schrödinger equations,

[
−1

2
∇2 + veff(r)

]
φi(r) = εiφi(r), (.)

can also be readily solved. The universal functional for the non-interacting system F0[ρ]

becomes

F0[ρ] = Ts[ρ] = −1

2

N∑

i=1

〈φi|∇2|φi〉, (.)

where the density is

ρ(r) =
N∑

i=1

|φi(r)|2. (.)

Since Kohn and Sham assumed ρKS = ρreal, Eq. (.) can be rewritten as

F [ρ] = Ts[ρ] + J [ρ] + Exc[ρ], (.)

where Ts[ρ] is the kinetic energy of the non-interacting electrons and Exc[ρ] is the exchange-

correlation energy defined as

Exc[ρ] = T [ρ]− Ts[ρ] + E(c)
xc . (.)
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The total energy functional from Kohn and Sham is written as

E[ρ] =

∫
v(r) dr + Ts[ρ] + J [ρ] + Exc[ρ]. (.)

Applying the variational principle to the Kohn–Sham functional, we obtain the one-electron

equation

[
−1

2
∇2 + v(r) + vH(r) + vxc(r)

]
φi(r) = εiφi(r), (.)

where vH is the Hartree potential, the functional derivative of the electrostatic repulsion

functional,

vH =
δJ [ρ]

δρ(r)
=

∫
ρ(r′)

|r− r′|dr
′, (.)

and vxc is the exchange-correlation potential, defined as the functional derivative of Exc with

respect to the density,

vxc =
δExc[ρ]

δρ(r)
. (.)

Eqs. (.) and (.) are known as the Kohn–Sham equations. In a way, the Kohn–Sham

method packs the complexity of the interacting wave function into the exchange-correlation

functional Exc[ρ]. The principal task of DFT is to design accurate approximations to the

unknown exact exchange-correlation energy functional. Usually, the Exc[ρ] can be separated

into two parts, exchange and correlation functionals:

Exc[ρ] = Ex[ρ] + Ec[ρ]. (.)

The exchange part is defined exactly by

Eexact
x [ρ] = −

N/2∑

k,l=1

∫
dr1

∫
dr2

φk(r1)φ∗k(r2)φ∗l (r1)φl(r2)

|r1 − r2|
. (.)
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The above expression is the same as in the Hartree–Fork (HF) theory [4, 5] but uses the

Kohn–Sham orbitals instead of HF orbitals. Since the exact exchange functional combined

with standard correlation functionals gives poor accuracy in most cases [6], approximate

exchange energy functionals are commonly employed, even though the exact one is available.

The exact exchange energy functional itself is used as a guide for developing new exchange

energy functionals [7, 8].

1.3 Explicit and implicit energy functionals

The simplest functional in DFT is the local density approximation (LDA) to the exchange

and correlation energy

Exc[ρ] =

∫
ρ(r)εxc(ρ)dr, (.)

where εxc(ρ) is the exchange-correlation energy per particle of a uniform electron gas. The

uniform electron gas is a useful model of metallic systems.

The εxc(ρ) can be partitioned into exchange and correlation parts

εxc(ρ) = εx(ρ) + εc(ρ). (.)

The εx(ρ) is given by

εx(ρ) = −Cxρ
1/3(r), (.)

where Cx = (3/4)(3/π)1/3. The correlation part can be calculated by the quantum Monte

Carlo method [9].

LDA gives reasonably accurate predictions for solids [10] but produces poor results for

atoms and molecules because the electron densities of atoms and molecules are far from
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uniform. For this reason, LDA is rarely useful for chemical systems.

Many failures of the LDA are corrected by introducing the gradient of density into εxc(ρ),

Exc[ρ] =

∫
ρ(r)εxc(ρ,∇ρ)dr. (.)

Density functionals of this type are known as generalized gradient approximations (GGA).

GGAs give much better results than LDA [11–18]. LDA and GGAs are said to be explicit

or density-dependent, since all variables in the Eq. (.) and (.) depend on ρ explicitly.

In general, a functional Exc of the form

Exc[ρ] =

∫
exc(ρ,∇ρ,∇2ρ)dr (.)

is said to be explicit or density-dependent. The ∇2ρ in the above equation is the Laplacian

of the electron density.

Although GGAs produce better overall predictions than LDA, both of those approxima-

tions suffer from two deficiencies. First, there is a self-interaction error in LDA and GGAs. In

Eq. (.), the electron-electron interaction energy is artificially partitioned into the Hartree

part and the exchange-correlation part. The Hartree potential in Eq. (.) is inherently in

error because it includes the spurious self-interaction energy of electrons. In exact DFT, the

self-interaction error is canceled out by the exchange-correlation term. Unfortunately, only

part of this error is canceled in LDA and GGAs. Another drawback of LDA and GGAs is

that they lack derivative discontinuities in the exchange-correlation energies.

The above-mentioned errors in LDA and GGAs can be reduced by employing orbital-

dependent functionals which use Kohn–Sham orbitals directly in the construction of exchange-

correlation functionals.

6



A functional of the type

Exc[ρ] =

∫
exc(ρ,∇ρ,∇2, τ)dr, (.)

where τ is Kohn–Sham (non-interacting) kinetic energy density

τ =
1

2

occ.∑

k

|∇φk|2, (.)

is said to be implicit or orbital-dependent, because τ cannot be written explicitly in terms

of ρ, even though it is determined by the density. An orbital-dependent functional given

by Eq. (.) is also known as the meta-GGA for exchange and correlation energy. Meta-

GGAs give more accurate results than GGAs in the prediction of atomization energies,

metal surface energies and lattice constants of solids [19–24]. There is also more flexibility

in the construction of density functionals afforded by using orbitals directly. Therefore,

orbital-dependent functionals are the most practically important types of density-functional

approximations.

1.4 Functionals and functional derivatives

In this section, we present a brief mathematical discussion of functionals and functional

derivatives. “A function is a rule for going from a variable to a number. A functional is a

rule for going from a function to a number” [25]. A function uses a number as input and

gives a number as output, whereas a functional takes an entire function as input and gives

a number:

f(r)
rule−−→ F [f ]. (.)
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Most functionals used in DFT have the form of integrals over some well-behaved function

f(x). For example, if

F [f ] =

∫ 1

−1

f(x)dx, (.)

and we take f(x) = x2, then

F [f ] =

∫ 1

−1

x2dx =
2

3
. (.)

One of the simplest functionals in DFT, as discussed in Section 1.3, is the LDA for exchange

energy

ELDA
x [ρ] = −Cx

∫
ρ4/3(r)dr, (.)

where Cx = (3/4)(3/π)1/3. The integration in the above equation is over the entire three-

dimensional space.

Let us consider functional derivatives. A variation of any function f(r) in the direction

h(r) may be described as

δhf = th(r), (.)

where t is a real number and h(r) is an arbitrary integrable function. Suppose that F [ρ]

satisfies the following formula

DF [ρ, h] = lim
t→0

F [ρ+ th]− F [ρ]

t
(.)

=

{
d

dt
F [ρ+ th]

}

t=0

. (.)

If the above limit exists for all h, we say that F [ρ] is Gâteaux-differentiable.
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The Gâteaux derivative DF [ρ, h] can be written as an integral

DF [ρ, h] =

∫
v([ρ]; r)h(r) dr, (.)

where v([ρ]; r) is defined as the functional derivative of F [ρ]

v([ρ]; r) ≡ δF [ρ]

δρ(r)
. (.)

To calculate the functional derivative of F [ρ], one first needs to evaluate the differential

DF [ρ, h] using Eq. (.). In the second step, one has to cast the result in the form of Eq.

(.).

Take the LDA for exchange energy as an example. The first differential of LDA is

DELDA
x = −Cx

{
d

dt

∫
[ρ(r) + th(r)]4/3 dr

}

t=0

(.)

= −4

3
Cx

∫
ρ1/3(r)h(r) dr. (.)

By comparing this expression with Eq. (.), we find that the functional derivative of the

LDA, called the LDA potential, is

vLDA
x = −4

3
Cxρ

1/3(r). (.)

The exchange-correlation potential for a density-dependent functional given by Eq. (.)

can be obtained directly by functional differentiation. The first Gâteaux differential of such

a functional is

DExc =

{
d

dt

∫
exc

(
ρ+ th,∇ρ+ t∇h,∇2ρ+ t∇2h

)
dr

}

t=0

(.)

=

∫ (
∂exc

∂ρ
h+

∂exc

∂∇ρ∇h+
∂exc

∂∇2ρ
∇2h

)
dr. (.)

9



Applying integration by parts to the second and third terms of the above equation and using

the fact that exc and its derivatives vanish at infinity, we obtain

DExc =

∫ [
∂exc

∂ρ
h−∇ ·

(
∂exc

∂∇ρ

)
h−∇

(
∂exc

∂∇2ρ

)
· ∇h

]
dr. (.)

Applying integration by parts again to the third term of the above equation, we arrive at

DExc =

∫ [
∂exc

∂ρ
h−∇ ·

(
∂exc

∂∇ρ

)
h+∇2

(
∂exc

∂∇2ρ

)
h

]
dr (.)

=

∫ (
∂exc

∂ρ
−∇ · ∂exc

∂∇ρ +∇2 ∂exc

∂∇2ρ

)
h(r) dr. (.)

Comparing Eq. (.) with Eq. (.), we find that functional derivative or potential of an

explicit functional is

vxc([ρ]; r) =
∂exc

∂ρ
−∇ ·

(
∂exc

∂∇ρ

)
+∇2

(
∂exc

∂∇2ρ

)
. (.)

Unfortunately, the exchange-correlation potential for a given orbital-dependent functional

given by Eq. (.) cannot be obtained directly by functional differentiation. If we apply

the chain rule for functional derivatives to Exc, we obtain

vxc =
δExc

δρ(r)
(.)

=
N∑

i=1

∫
δExc

δφ(r′)

δφ(r′)

δρ(r)
dr′ + c.c., (.)

where c.c. stands for the complex conjugate of the preceding term. The second factor under

the integral δφ(r′)/δρ(r) cannot be evaluated directly. The functional derivative in Eq. (.)

can be obtained numerically by the optimized effective potential (OEP) method [8, 26, 27].

Therefore, for a density functional, there is always a way to find its corresponding functional

derivative, at least in principle.
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A functional derivative has the properties similar to the properties of ordinary derivate

δ

δf(r)
(C1F1 + C2F2) = C1

δF1

δf(r)
+ C2

δF2

δf(r)
(.)

and

δ

δf(r)
(F1F2) =

δF1

δf(r)
F2 + F1

δF2

δf(r)
. (.)

The chain rule for functional derivatives is

δF

δg(r′)
=

∫
δF

δf(r)

δf(r)

δg(r′)
dr. (.)

We will employ the above properties in the following sections.

1.5 Model potentials

In DFT, one can approximate the exchange-correlation energy functional Exc, then obtain the

correspond potential vxc by functional differentiation. An alternative approach is to model

the exchange-correlation potential vxc directly and then obtain the corresponding energy

functional by functional integration. Let us review some of the directly approximated (so-

called “model”) potentials arising in the latter approach.

1.5.1 The potential of van Leeuwen and Baerends

Most existing exchange-correlation energy functionals, even at the meta-GGA level, have

wrong asymptotic decay in their potential. In 1994, van Leeuwen and Baerends proposed a

model potential (LB94) [28], aiming to correct this wrong behavior. The LB94 potential is

given by

vLB94
xσ = vLDA

xσ − ρ1/3
σ

βx2
σ

1 + 3βxσ sinh−1 xσ
, (.)

11



where β = 0.05 is an empirical parameter and σ is the spin index. The quantity xσ in the

above equation, defined as

xσ =
|∇ρ|
ρ4/3

, (.)

is a dimensionless reduced-density gradient.

1.5.2 Slater potential

The exact exchange energy functional of Eq. (.) is implicit, so its functional derivate

or potential vexact
x cannot be obtained analytically by functional differentiation. It can only

be evaluated numerically by the OEP method, which is inconvenient. Thus, a variety of

approximations have been made to model vexact
x directly.

Usually, vexact
x is treated as a sum of the so-called Slater potential [4] and a response

correction

vexact
x = vS

x + vresp
x . (.)

The decomposition of vexact
x is a useful strategy for modeling potentials, and the Slater

potential is a starting point for many approximations.

The Slater potential is defined by

vS
xσ(r) = − 1

ρσ(r)

∫ |ρσ(r, r′)|2
|r− r′| dr′, (.)

where ρσ(r, r′) =
∑Nσ

i=1 φiσ(r)φ∗iσ(r′) is the one-particle Kohn–Sham σ-spin density matrix

The Slater potential has the correct −1/r asymptotic decay, but it is deeper than the exact-

exchange potential by a factor of 3/2 for a uniform electron gas.
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1.5.3 Becke–Johnson potential (BJ)

Becke and Johnson analyzed the difference between the exact exchange OEP and the Slater

potential [29],

∆vxσ = vOEP
xσ − vS

xσ, (.)

and proposed an approximation to ∆vxσ given by

∆vxσ =
kBJ
σ

2π
, (.)

where kBJ
σ =

√
10
3
τσ
ρσ

.

The Becke–Johnson potential is written as

vBJ
xσ = vS

xσ +
kBJ
σ

2π
. (.)

The term kBJ
σ /2π becomes a constant as r → ∞. As a result, the Becke–Johnson potential

behaves asymptotically as −1/r + C, where C is a system-dependent constant.

1.5.4 Räsänen–Pittalis–Proetto potential (RPP)

The Becke–Johnson potential was improved by Räsänen, Pittalis and Proetto [30]. They

replaced the kBJ
σ by

kRPP
σ =

√
10

3

(τσ − τW
σ )

ρσ
, (.)

where τW
σ = |∇ρσ|2/8ρσ is the von Weizsäcker kinetic energy density.

The RPP potential is defined as

vRPP
xσ = vS

xσ +
kRPP
σ

2π
. (.)

The advantages of RPP potential are (i) it is exact for one- or two-electron systems. (ii) it

has a correct −1/r asymptotic decay since the term kRPP
σ /2π becomes zero as r →∞.
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1.5.5 Integration of model potentials

There are two questions associated with any model potential: (i) how to assign an energy

expression to the potential; (ii) how to tell whether the potential is a functional derivative.

The first problem was studied by van Leeuwen and Baerends [31], followed by Gaiduk and

Staroverov [32]. A potential that depends on the electron density explicitly can be turned

into an energy functional by integrating vxc along some path of electron densities

Exc[ρ] =

∫
dr

∫ 1

0

vxc([ρλ]; r)
∂ρλ(r)

∂λ
dλ, (.)

where ρλ is a scaled electron density. This method generally requires knowing the potential

as an explicit functional of the density

Functional derivatives should satisfy certain conditions. For example, their net forces on

density must be zero; their parent functionals must be translationally invariant. By using

these conditions, we may determine whether a given potential is a functional derivative.

1.6 Translational invariance and the zero-force theorem

In this section, we give a brief introduction about translational invariance and the net

force on density. In the above figure, we displaced the molecule by a vector R. The exchange

14



energy of the displaced density, E[ρ′], and the original E[ρ] are related by

E[ρ′] = E[ρ] + R ·
∫
∇vx([ρ]; r)ρ(r)dr, (.)

with

ρ′(r) = ρ(r + R), (.)

where R is an arbitrary vector. Any reasonable physical functional should not depend on

position or coordinate. This property, known as translational invariance, requires that the

second term on the right-hand side of the Eq. (.) be zero, so that the energy at different

positions is the same. The integral in that term may be defined as the net force on the

electron density

F = −
∫
∇vx([ρ]; r)ρ(r)dr. (.)

For a potential that is a functional derivative, its net force is always zero [33, 34], and its

parent functional should be translationally invariant. Therefore, this property may be used

to test whether a given potential is a functional derivative or not (more details will be

discussed in Chapter 3).

1.7 Objectives of my study

The objective of my research is twofold: to develop a systematic method to convert a given

orbital-dependent potential into an energy functional; to investigate the zero-force conditions

for functional derivatives.
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Chapter 2

Construction of energy functionals from orbital-dependent

potentials by integration along orbital-scaling paths

Unacceptably large errors of approximate DFT in calculations of band gaps of semiconduc-

tors, excitation energies, polarizabilities and other properties arise from the wrong asymp-

totic behavior and the lack of derivative discontinuity in the exchange-correlation potential

vxc([ρ]; r). It is possible to reduce these errors by directly modeling the potential vxc([ρ]; r)

as a function of Kohn–Sham orbitals. Several model potentials were proposed in the last two

decades. For example, the potential of van Leeuwen and Baerends [1] corrected the wrong

asymptotic behavior of the LDA potential. The Becke–Johnson and related potentials [2, 3]

exhibited derivative discontinuities. Those model potentials give accurate predictions of band

gaps in semiconductors, polarizabilities of molecular chains, and other molecular response

properties [4–8]. Another advantage of directly approximating vxc([ρ]; r) is that the potential

is a unique and simple function of r, so it is more amenable to study and modeling.

Despite the appeal of model potentials, the methodology of calculating energy from

these potentials or turning these potentials into energy functional is not yet fully developed.

Gaiduk and Staroverov used the line integral method to convert model potentials into energy

functionals [9]. They also successfully constructed a new functional from the non-integrable

potential of van Leeuwen and Baerends (LB94) [10]. However, their method was restricted

to explicitly density-dependent potentials and could not be applied to the more important

class of orbital-dependent potentials, such as the Slater, BJ, and RPP potentials.
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2.1 Motivation

The purpose of our reasearch in this chapter is to develop a systematic method for turning

orbital-dependent potentials into energy functionals.

2.2 Methodology

2.2.1 Line integrals of Kohn–Sham potentials

Let us first recall how one can derive energy functionals from density-dependent potentials

by line integrals. Given an integrable potential vxc(r), one can reconstruct its correspond-

ing energy functional by integrating vxc(r) along a continuous line (path) of parametrized

densities as

Exc[ρ] =

∫
dr

∫ 1

0

vxc([ρλ]; r)
∂ρλ(r)

∂λ
dλ, (.)

provided that the path ρλ(r) is such that Exc[ρ0] = 0. This method first studied by Leeuwen

and Baerends [11,12] and by Gaiduk and Staroverov [9].

Let us focus on the van Leeuwen–Baerends formula. Suppose we are given an exchange-

correlation functional Exc[ρ]. First, we introduce a parametrized density ρλ, where λ is a

parameter varying in the range A ≤ λ ≤ B. If Exc[ρλ] is piecewise differentiable function of

λ in this interval, then we can write

Exc[ρB]− Exc[ρA] =

∫ B

A

dExc[ρλ]

dλ
dλ. (.)

The derivative of the function may be rewritten using the chain rule,

dExc[ρt]

dλ
=

∫
δE[ρλ]

δρλ(r)

∂ρλ(r)

∂λ
dr =

∫
v([ρλ]; r)

∂ρλ(r)

∂λ
dr. (.)
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Interchanging the order of integrals, we obtain

Exc[ρB]− Exc[ρA] =

∫
dr

∫ B

A

v([ρλ]; r)
∂ρλ(r)

∂λ
dλ. (.)

If we choose A = 0, B = 1 and E[ρ0] = 0, ρ1 = ρ, then Eq. (.) reduces to Eq. (.). But,

if this technique is applied to a potential that is not a functional derivative, the resulting

energy functional will depend on how the path is chosen, meaning that the energy functional

is not unique, and will not be suitable for computing electronic energies. However, in such

cases integration of vxc(r) can nevertheless be used to produce new energy functionals.

2.2.2 Density- and coordinate-scaling paths

The simplest path [11] for Eq. (.) is produced by scaling the density

ρq(r) = qρ(r), (.)

which we call here direct scaling. A line of scaled densities from q = 0 to q = 1 is called a Q

path.

Another possibility is the number-conserving coordinate scaling [11]

ρλ(r) = λ3ρ(λr). (.)

A line of λ-scaled densities from λ = 0 to λ = 1 is called a Λ path.

2.2.3 Levy–Perdew virial relation

The Levy–Perdew virial relation is a special case of the line integral taken along the Λ

path, applied to exchange functionals. Under uniform coordinate scaling, all valid exchange
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functionals satisfy the following equation [13,14]

vx([ρλ]; r) = λvx([ρ];λr). (.)

Using Eq. (.) and (.), we find

Ex[ρ] =

∫ 1

0

dλ

∫
λvx([ρ]; r)λ2[3ρ(λr) + (λr)∇λrρ(λr)]dr. (.)

If we substitute λr = r′, we obtain

Ex[ρ] =

∫ 1

0

dλ

∫
vx([ρ]; r′)[3ρ(r′) + r′ · ∇r′ρ(r′)]dr′. (.)

Noting that the integral over λ is simply 1, and switching back from r′ to r, we obtain the

Levy–Perdew virial relation in the form

Ex[ρ] =

∫
vx([ρ]; r)[3ρ(r) + r · ∇ρ(r)]dr. (.)

2.2.4 Line integration along direct orbital-scaling (DOS) paths

Using the traditional line integral method it is not difficult to convert explicit potentials

into energy functionals. However, application of this method to implicit (orbital-dependent)

potentials is limited. One can integrate an orbital-dependent potential only through two

particular paths: (i) the path of uniformly scaled densities, and (ii) the Aufbau path, which

is based on the Janak theorem [15]. The drawback of approach (i) is that the functional Ex[ρ]

constructed from vx([ρ]; r) may not be translationally invariant [10, 16] when the potential

is not a functional derivative. Approach (ii) requires performing many self-consistent field

(SCF) calculations to obtain a single energy value, which is impractical. All these prob-

lems can be resolved if we assume that the orbital-dependent potential vxc([φk]; r) and the
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unknown parent functional Exc[φk] are related through the equation [17,18]

δExc

δφ∗i
= vxcφi. (.)

The same equation holds for explicit density functionals. Using this assumption and treating

Exc as a functional of orbitals, we may write Eq. (.) as

dExc([{φkλ}]; r)
dλ

=
N∑

i=1

∫
δExc([{φkλ}]; r)

δφ∗iλ

∂φ∗iλ
∂λ

dr + c.c. =
N∑

i=1

∫
vxc([{φkλ}]; r)φiλ

∂φ∗iλ
∂λ

dr + c.c.,

(.)

where c.c. stands for the complex conjugate term. Then, we integrate this over some path

of scaled orbitals, we obtain

Exc([{φkλ}]; r) =
N∑

i=1

∫
dr

∫ 1

0

vxc([{φkλ}]; r)φiλ(r)
∂φ∗iλ(r)

∂λ
dλ+ c.c.. (.)

For potentials that are explicit functionals of ρ(r),

∂ρλ(r)

∂λ
=

N∑

i=1

[
φiλ(r)

∂φ∗iλ(r)

∂λ

]
+

N∑

i=1

[
φ∗iλ(r)

∂φiλ(r)

∂λ

]
, (.)

so Eq. (.) correctly reduces to Eq. (.). Now, we can reconstruct energy functional not

only from potentials that dependent on ρ(r) explicitly, but also from orbital-dependent model

potentials. Another advantage is that we are now free to use any density- or coordinate-

scaling transformation of the orbital.

To test Eq. (.), we applied it to explicitly density-dependent potentials and to several

orbital-dependent potentials. In all cases, we used direct orbital scaling (DOS)

φiλ = λφi(r),

where λ is real.
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For future reference, we write out the following equations

φiλ = λφi(r) ; φ∗iλ = λφ∗i (r) (.)

ρλ(r) = λ2ρ(r) (.)

Let us now consider several examples.

2.3 Integration of potentials that are functional derivatives

2.3.1 Local-density approximation

The LDA exchange functional is

ELDA
x [ρ] = −Cx

∫
ρ4/3dr, (.)

where Cx = (3/4)(3/π)1/3. The exchange potential is given by

vLDA
x = −4

3
Cxρ

1/3(r). (.)

Suppose we did not know what functional generated this potential. Let us apply our method

to reconstruct its “unknown” functional.

We have

vLDA
x ([{φkλ}]; r) = −4

3
Cxρ

1/3
λ (r) = λ2/3vLDA

x ([{φk}]; r). (.)

Using Eq. (.)

ELDA
x ([{φk}]; r) =

N∑

i=1

∫
dr

∫ 1

0

λ5/3vx([{φk}]; r)φ∗i (r)φi(r)dλ+ c.c

=
3

4

∫
vLDA
x (r)ρ(r)dr

= −Cx

∫
ρ4/3dr,

(.)

which is the original LDA exchange energy functional.
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2.3.2 Fermi–Amaldi potential (FA)

The Fermi–Amaldi exchange energy functional is defined as [19,20]

EFA
x [ρ] = − 1

2N

∫
ρ(r′)ρ(r)

|r− r′| dr
′dr, (.)

where N is the number of electrons. Here, we treat N as a constant.

The FA exchange potential is given by

vFAx = − 1

N

∫
ρ(r′)

|r− r′|dr
′. (.)

We have

vFAx ([{φkλ}]; r) = − 1

N

∫
ρλ(r

′)

|r− r′|dr
′

= − 1

N

∫
λ2ρ(r′)

|r− r′|dr
′.

(.)

Using Eq. (.), we obtain

EFA
x ([{φk}]; r) =

∫
2

2 + 2
vFAx (r)ρ(r)dr

= − 1

2N

∫
ρ(r′)ρ(r)

|r− r′| dr
′dr.

(.)

The expression we obtained from Eq. (.) is the same as Fermi–Amaldi energy functional.

For LDA and FA potential, which are both functional derivatives, the line integrals are

path-independent.

2.4 Integration of potentials that are not functional derivatives

2.4.1 Van Leeuwen–Baerends potential

Now let us turn our attention to some model exchange potentials that are not functional

derivatives. The van Leeuwen–Baerends potential is given by [1]
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vLB94
xσ = vLDA

xσ − ρ1/3σ

βx2σ
1 + 3βxσ sinh−1 xσ

, (.)

where β = 0.05 and xσ = |∇ρσ|/ρ4/3σ . The line integral of the LB94 potential under di-

rect orbital-scaling path involves integration over the parameter λ, which cannot be done

analytically. However, the necessary numerical integrals will be discussed in Section 2.5.

Figure 2.1: The LB94 exchange potential of the Mg atom based on HF/UGBS density

2.4.2 Slater potential

We will now apply our method to orbital-dependent potentials such as the Slater potential

and related approximations. The Slater potential is defined by [21]

vSxσ(r) = − 1

ρσ(r)

∫ |ρσ(r, r′)|2
|r− r′| dr′, (.)
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Figure 2.2: The Slater exchange potential of the Ca atom based on HF/UGBS density

where ρσ(r, r′) =
∑Nσ

i=1 φiσ(r)φ∗iσ(r′) is the one-particle Kohn–Sham σ-spin density matrix.

In terms of scaled orbitals,

vSxσ([{φkλ}]; r) = − 1

λ2ρσ(r)

∫ |∑N
j=1 λ

2φiσ(r)φ∗iσ(r′)|2
|r− r′| dr′

= λ2vSxσ([{φk}]; r).
(.)

Using Eq. (.), we obtain

ES
xσ([{φk}]; r) =

N∑

i=1

∫
dr

∫ 1

0

λ3vSxσ([{φk}]; r)φ∗iσ(r)φiσ(r)dλ+ c.c.

=
1

2

∫
vSxσ([{φk}]; r)ρσ(r)dr

= −1

2

∫ ∫ |ρσ(r, r′)|2
|r− r′| dr′dr.

(.)

Comparing Eq. (.) and Eq. (1.17), we find that the energy functional obtained from the

Slater potential along the DOS path is identical to Eexact
x of Eq. (1.17).
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2.4.3 Becke–Johnson potential

The Becke–Johnson potential is given by [2]

vBJ
xσ = vSxσ +

kBJ
σ

2π
, (.)

where kBJ
σ =

√
10
3
τσ
ρσ

.

We have

∇φiλ(r) =
∂λφi(r)

∂x
+
∂λφi(r)

∂y
+
∂λφi(r)

∂z
= λ∇φi(r). (.)

So,

τσλ(r) =
N∑

i=1

1

2
|λ∇φiσ(r)|2 = λ2τσ(r). (.)

Then, we obtain

kBJ
σλ(r) =

√
10

3

λ2τσ(r)

λ2ρσ(r)
= kBJ

σ (r). (.)

Using Eq. (.) and Eq. (.), we obtain the second part of the Becke–Johnson functional

EBJ−2
xσ ,

EBJ−2
xσ ([{φkλ}]; r) =

∫
1

2π

√
10

3
τσ(r)ρσ(r) dr

=

∫
kBJ
σ (r)

2π
ρσ(r)dr.

(.)

So,

EBJ
xσ ([{φk}]; r) = −1

2

∫ ∫ |ρσ(r, r′)|2
|r− r′| dr′dr +

∫
1

2π

√
10

3
τ(r)ρ(r) dr

= Eexact
xσ [ρ] +

∫
kBJ
σ (r)

2π
ρσ(r)dr.

(.)
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The energy functional obtained from the BJ potential along DOS path is a sum of Eexact
x

and an additional integral of kBJ
σ /2π times density. This additional integral is not zero for

N -electron systems. As a result, the BJ–DOS functional deviates from Eexact
x .

Figure 2.3: The BJ exchange potential of the Be atom based on HF/UGBS density

2.4.4 Räsänen–Pittalis–Proetto potential

The Räsänen–Pittalis–Proetto potential is given by [3]

vRPP
xσ = vSxσ +

kRPP
σ

2π
, (.)

where kRPP
σ =

√
10
3

(τσ−τWσ )
ρσ

and τWσ = |∇ρσ|2/8ρσ.

Similarly, we have

τWσλ =
|∇ρσ|2

8ρσ
= λ2τWσ . (.)
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Using Eq. (.), we obtain

ERPP
x ([{φk}]; r) = Eexact

x [ρ] +
1

2π

∫ √
10

3

(τσ − τWσ )

ρσ
ρ(r) dr (.)

= Eexact
xσ [ρ] +

∫
kRPP
σ (r)

2π
ρσ(r)dr. (.)

The energy functional obtained from the RPP potential along DOS path has a similar

formula to the BJ–DOS functional, but the kBJ
σ under the integral is replaced by kRPP

σ . For

one- or two-electron systems, as discussed in Chapter 1, kRPP
σ becomes zero, and thus, the

RPP–DOS functional becomes exact.

Figure 2.4: The RPP exchange potential of the Ar atom based on HF/UGBS density
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2.4.5 Uniform coordinate scaling

Under uniform coordinate scaling, all exchange potentials satisfy Eq. (.). Using the

following equation,

∂φiλ(r)

∂λ
=
∂λ3/2φi(λr)

∂λ

=
3

2
λ1/2φi(λr) + λ3/2∇λrφi(λr) · r,

(.)

our line integral method of Eq. (.) also reduces to the Levy–Perdew virial relation, Eq.

(.).

2.5 Results and discussion

In Table 2.1, we listed total energies obtained from various orbital-dependent exchange-only

model potentials for selected atoms and molecules along the DOS and Λ paths. For the

Slater potential, the proposed DOS path gave better energies than all other paths relative

to the reference exact (HF) values. For other potentials, the Λ-path energies were most

reasonable.

The energies obtained from the BJ potential along DOS path were significantly higher

than the exact values (see Table 2.1). One important reason for this is that the BJ potential

is upshifted [2, 15] relative to the other potentials (see Figure 2.5). We shifted vBJ
xσ , so that

the highest occupied orbital energies were equal to their HF orbital energies. In Table 2.3,

the results given by the shifted BJ potential were better than from the unshifted potential.
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Figure 2.5: The original and shifted BJ exchange potentials of the Ne atom based on

HF/UGBS density

The RPP–DOS functional produces better results than the BJ–DOS functional. The

energies of H and He atoms obtained from RPP potentials along DOS path are the same as

the exact values (see Table 2.1), which indicates the RPP–DOS functional is exact for one-

or two-electron systems.

The energy expression of LB94 along DOS path involves integrals over the parameter λ,

which cannot be evaluated analytically. Therefore, we wrote a subroutine performing the

Gauss–Legendre quadrature with 256 × N point grids [22, 23]. Our results were reported

in Table 2.2. We also refined the DOS-LB94 functional by changing the value of β from

0.05 to 0.025 so that it satisfied the second-order gradient expansion of GGA. The refined

LB94 functional along DOS path gave reasonable results, even better than whose from Λ

path. We also found that the energies of selected atoms obtained from the LB94 and refined
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Figure 2.6: The Slater, BJ, RPP and LB94 exchange potentials of the Ne atom based on

HF/UGBS density

LB94 potentials along the DOS paths were the same as the energies reported by Gaiduk and

Staroverov along the Q path [10], which shows that for a density-dependent potential, our

line integral expressed in Eq. (.) correctly reduces to Eq. (.).

We also tested the translational invariance of the energy expression arising by integration

along the DOS path. As discussed in Section 1.6, the difference of the energies between the

displaced and original molecule is proportional to the displacement vector R. We displaced

two test molecules (H2O and HSOH) by R = (0, 0, 5)Å, so that the energy differences can be

easily observed. The results reported in Table 2.4 and 2.5 show that the energies obtained by

integrating the Slater, Becke–Johnson, Räsänen–Pittalis–Proetto potentials along the DOS

path at two different places are always the same, meaning that the corresponding energy
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Figure 2.7: Structure of HSOH molecule

expressions are translationally invariant. This is to be contrasted with the energy expressions

obtained by integrating the same potentials along the Λ-paths, which are strongly position-

dependent.
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Table 2.1: Total ground-state energies (in hartrees) obtained from the Slater, Becke–Johnson, Räsänen–Pittalis–Proetto

exchange-only potentials by integration along DOS and Λ paths. All values are for HF/cc-pVTZ densities (Grid=399590).

Slater Becke–Johnson RPP HF/cc-pVTZ

DOS Λ DOS Λ DOS Λ

H −0.4998 −0.4998 −0.2944 −0.5007 −0.4998 −0.4998 −0.4998

He −2.8612 −2.8612 −2.1679 −2.7857 −2.8612 −2.8612 −2.8612

Li −7.4327 −7.5389 −6.2274 −7.3771 −7.3320 −7.5522 −7.4327

Be −14.5729 −14.9126 −12.7462 −14.5317 −14.2464 −14.9416 −14.5729

B −24.5321 −25.1396 −21.9464 −24.4697 −23.8471 −25.0435 −24.5321

N −54.4007 −55.7559 −49.8808 −54.1410 −52.5111 −54.9486 −54.4007

Na −161.8580 −165.5980 −152.2437 −161.0215 −156.3319 −162.5022 −161.8580

MAE 0.0000 0.8784 2.9501 0.1903 1.2183 0.3131

Molecules at the MP2/6-31G* geometries

H2O −76.0561 −78.2515 −69.8975 −75.8002 72.8987 −76.7435 −76.0561

CH4 −40.2133 −41.4833 −35.7680 −40.4514 −38.3002 −40.6189 −40.2133

MAE: Mean absolute error
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Table 2.2: Total ground-state (in hartrees) energies obtained from the LB94 and refined

LB94 exchange-only potentials by integration along DOS path and Λ paths. All values are

for HF/cc-pVTZ densities (Grid=399590).

LB94 revLB94 HF/cc-pVTZ

DOS Λ DOS

H −0.6307 −0.4657 −0.5006 −0.4998

He −3.3133 −2.8191 −2.8721 −2.8612

Li −8.1969 −7.3555 −7.4439 −7.4327

Be −15.7065 −14.5420 −14.5844 −14.5729

B −26.1085 −24.5764 −24.5458 −24.5321

N −56.9620 −54.5857 −54.4122 −54.4007

Ne −133.0357 −129.3972 −128.5677 −128.5319

Na −166.9842 −162.8578 −161.8765 −161.8580

P −348.5923 −342.4021 −340.6820 −340.7163

Ar −537.0174 −529.1603 −526.7488 −526.8131

kr −2779.4403 −2761.9119 −2751.8550 −2752.0521

MAE 5.6106 1.4701 0.0372
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Table 2.3: Total ground-state energies (in hartrees) obtained from shifted BJ potential cal-

culated for the HF/cc-pVTZ densities.

Becke–Johnson Potential HF/cc-pVTZ

DOS DOS shifted Λ

H −0.2945 −0.5000 −0.5000 −0.5000

He −2.1781 −2.8433 −2.7784 −2.8617

Li −6.2255 −6.5079 −7.3809 −7.4328

Be −12.7431 −13.2920 −14.5400 −14.5730

B −21.9504 −22.7712 −24.4755 −24.5331

Table 2.4: Total ground-state (in hartrees) energies of H2O at different positions obtained

from different exchange-only potentials by integration along DOS and Λ paths.

Position Total Energy

Slater BJ RPP HF/cc–pVTZ

DOS Λ DOS Λ DOS Λ

Initiala −76.0561 −78.2547 −69.8976 −75.8040 −72.8987 −76.7377 −76.0561

Displacedb −76.0561 −78.1176 −69.8976 −75.6467 −72.8987 −76.9825 −76.0561
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Table 2.5: Total ground-state (in hartrees) energies of HSOH at different positions obtained from different exchange-only

potentials by integration along DOS and Λ paths.

Position Total Energy

Slater BJ RPP HF/cc-pVTZ

DOS Λ DOS Λ DOS Λ

Initialc −473.5717 −483.7200 −450.2699 -472.3416 −459.3102 −475.5704 −473.5717

Displacedd −473.5717 −483.8716 −450.2699 −472.5100 −459.3102 −475.4311 −473.5717

Displacedc,d position: Both H2O and HSOH molecules are translated by R, where R=(0, 0, 5)
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2.6 Analysis of integrating vSlaterx + vrespx along the DOS path

As discussed in Chapter 1, vexactx is usually treated as a sum of the Slater potential and a

response correction

vexactx = vSlaterx + vrespx . (.)

Since vexactx is a functional derivative of Eexact
x , the line integral of vexactx is path-independent.

Integrating vexactx along any path should always give Eexact
x .

Integrating each side of Eq. (.) along the DOS path, we have

Eexact
x = Eexact

x +

(
N∑

i=1

∫
dr

∫ 1

0

vrespx ([{φkλ}]; r)φiλ(r)
∂φ∗iλ(r)

∂λ
dλ+ c.c.

)
, (.)

where vrespx ([{φkλ}]; r) in terms of scaled orbitals.

The terms in the brackets of the above equation should be zero

N∑

i=1

∫
dr

∫ 1

0

vresp,λx φiλ(r)
∂φ∗iλ(r)

∂λ
dλ+ c.c. = 0, (.)

which indicates that the line integral of vrespx should vanish for any system.

2.7 Summary

We developed a systematic method for turning orbital-dependent model potentials into en-

ergy functionals. As stated in Section 2.2, when vxc is not a functional derivative, the

resulting energy functional will depend on the integration path chosen. Therefore, our pro-

posed line integral expressed in Eq. (.) can be used as a method to define a new functional

approximation. The line integral along the DOS path can be applied not only to density-

dependent potentials, but also to orbital-dependent potentials. It is more general than the

traditional line integral introduced by van Leeuwen and Baerends.
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We also applied direct orbital scaling to several model exchange potentials, and the results

were acceptable. The finding that the line integral of vrespx should vanish may be used as a

constraint in approximating vrespx .
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Chapter 3

Tests for the functional derivatives

In Chapter 2, we developed a systematic method for turning orbital-dependent model po-

tentials into energy functionals. A model potential may not be a functional derivate. The

zero-force theorem may be used to test whether a given potential is not a functional derivate.

In this chapter, we focus on understanding and analyzing this theorem in application to var-

ious model potentials in calculations with finite basis sets.

3.1 The zero-force theorem

Any acceptable exchange functional should be invariant with respect to translation and

rotation of the density, and it should satisfy the Levy–Perdew virial relation [1–3]:

Ex[ρ] = −
∫
ρ(r)r · ∇vx([ρ]; r)dr.

Translational and rotational invariance mean that the energy of a system should not depend

on the system’s position and orientation with respect to coordinate axes. For example, if we

move a molecule from its original position by R, the density ρ(r) becomes ρ(r′) = ρ(r + R).

The exchange energy functional of the displaced molecule is

Ex[ρ
′] = −

∫
ρ(r + R)r · ∇rvx([ρ]; r + R)dr. (.)

After substituting r′ = r + R in Eq. (.) and replacing r′ with r we have

Ex[ρ
′] = Ex[ρ] + R ·

∫
ρ(r)∇vx([ρ]; r)dr. (.)
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Since the displaced molecule should have the same energy as the undisplaced one, the second

term on the right-hand side of Eq. (.) must vanish for an arbitrary R, which requires

∫
ρ(r)∇vx([ρ]; r)dr = 0 (.)

or, after integration by parts,

∫
vx([ρ]; r)∇ρ(r)dr = 0. (.)

Similarly, rotational invariance requires

∫
ρ(r)r×∇vx([ρ]; r)dr = 0 (.)

or, after integration by parts,

∫
vx([ρ]; r)r×∇ρ(r)dr = 0. (.)

In electrostatics, a particle of charge q in an electric field E experiences the force

F = qE. (.)

Now the electric field can be written as the gradient of a scalar potential v,

E = −∇v. (.)

Therefore, the quantity −ρ(r)∇vx(r)dr may be interpreted as the exchange force acting on

the charge ρ(r)dr. Since the electron density is the distribution of electrons for a given

system, we may define the total net exchange force on the electron density

F ≡ −
∫
ρ(r)∇vx([ρ]; r)dr. (.)
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Translational invariance requires this force to be zero. In addition, Levy and Perdew, van

Leeuwen and Baerends independently showed that functional derivatives satisfy Eq. (.-

.) [1,4]. Eq. (.) and (.) are known as the “zero-force” and “zero-torque” theorems [3,5].

Levy and Perdew derived these conditions by employing the Hellmann–Feynman theorem [1],

whereas van Leeuwen and Baerends deduced them by using a line integral along the Λ

path [4].

If the zero-force and zero-torque theorems do not hold for an approximate vx, then

the potential is not translationally and rotationally invariant, and it is not a functional

derivative [4]. Evidence given by Gaiduk and Staroverov showed that all existing model

potentials violate these conditions and therefore have no parent energy functionals [6]. Thus,

the zero-force and zero-torque theorems can be used as tests for determining whether a given

potential is not a functional derivative and for examining the properties of a potential.

3.2 Motivation

Although Levy and Perdew, van Leeuwen and Baerends showed that functional derivatives

satisfy the zero-force test, they assumed a complete (infinite) basis set. However, in practice,

researchers use finite basis sets in any computational calculations, and it is possible that

functional derivative tests may produce different results when the calculations are done

using a finite basis set. One of our goals in this chapter is to prove that potentials derived

from explicit density functionals such as LDA and GGA satisfy the zero-force theorem in any

finite basis set. Another goal is to apply these theorems to a new type of model potentials

recently developed by Ryabinkin, Kohut and Staroverov (RKS).
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3.3 Basis set and basis-set limit

Most ab initio and density-functional calculations are performed using a finite set of basis

functions that is called a basis set. In DFT, specifically, a Kohn-Sham orbital φKS
i is expressed

as a linear combination of basis functions χµ,

φKS
i =

∑

µ

Cµiχµ, (.)

where Cµi are the coefficients determined from by solving the Kohn-Sham equations. A

Kohn-Sham orbital φKS
i can only be expanded exactly if a complete (infinite) set of basis

functions χµ is used. However, in practice, one has to use a finite basis set. Therefore, it is

important to choose a basis set so that φKS
i can be accurately represented. In this way, the

electron density can be written in terms of basis functions,

ρ =
∑

µ

∑

ν

Pµνχµχν (.)

where P is the density matrix.

There are two types of basis functions: Slater-type orbitals (STO) and Gaussian-type

orbitals (GTO). An STO can be written as

φSTO = Nxaybzce−ζr
2

, (.)

whereN is a normalization constant, a, b, c are related to the angular momentum L = a+b+c,

while ζ determines the spatial extent of the orbital. Similarly, a GTO can be expressed as

φGTO = Nxaybzce−ζr, (.)

In general, STOs give more accurate results, but they take longer to compute integrals. A

combination of n GTOs to mimic an STO is called an STO-nG basis. For example, a basis

using 3 GTOs to approximate an STO is called STO-3G.
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3.3.1 Types of basis sets

The STO-3G basis set is known as a single-ζ basis set, or a minimal basis set, which indicates

that only one basis function is used to define an atomic orbital (AO). For example, N atom

has five STO-3G basis functions roughly corresponding to the AOs: 1s, 2s, 2px, 2py, 2pz.

One can increase the accuracy and flexibility of a basis set by using more than one

function to define each AO. A double-ζ basis uses two functions for each AO. Similarly, a

triple-ζ basis uses three functions. Examples of this type basis set are cc-pCVXZ, where

X=D, T, Q, 5, 6,... (D=double, T=triples, Q=quadruple, etc.). The acronym stands for

‘correlation-consistent polarized core and valence (double/triple/quadruple/etc.) zeta’.

Another type of basis sets is called a split-valence basis, which uses only one basis function

for each core AO, but two or more functions for each valence AO. The reason for this is

that core orbitals are weakly affected by their surroundings; valence orbitals, on the other

hand, must adapt to chemical bonding. Some of the commonly used split-valence basis sets

developed by Pople and co-workers are known by such names as 3-21G, 4-31G and 6-31G.

In this case, the first number represents the number of primitive Gaussians functions used

for each core AO, and the numbers after the hyphen represent the numbers of primitive

functions used for the valence functions. A universal Gaussian basis set (UGBS) is a large

basis set that uses the same set of exponents for all primitive GTOs, and only the range of

these exponents varies from one element to another.
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3.3.2 Basis-set limit

Generally, the more basis functions are used, the more accurate results are obtained. In

DFT calculations, a larger basis set is needed to approach the basis set limit. The basis set

limit can be extrapolated from several calculations using two or more basis sets.

Figure 3.1: Extrapolation to the basis-set limit.

Fig 3.1 is an example of an extrapolation method to estimate the energy of a given system

at the basis-set limit using the cc-pVXZ basis sets, where X=D, T, Q, 5, 6.

3.4 Zero-force condition for LDA and GGA exchange functionals

Let us focus on the zero-force condition for LDA and GGA exchange potentials. The LDA

exchange potential is written as vLDA
x = −C ′xρ1/3(r), where C ′x = (3/π)1/3. Ignoring the

constant C ′x, the zero-force theorem for the LDA potential requires that

∫
ρ1/3(r)∇ρ(r)dr = 0. (.)
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Applying integration by parts to the left-hand side of the above equation, we obtain

∫
ρ1/3(r)∇ρ(r)dr = ρ4/3(r)|+∞−∞ −

∫
ρ(r)∇ρ1/3(r)dr. (.)

Since the electron density of any finite system vanishes at infinity, the first term at the

right-hand side of the above equation is zero. Using this fact and rearranging Eq. (.), we

obtain

∫ [
ρ1/3(r)∇ρ(r) + ρ(r)∇ρ1/3(r)

]
dr = 0. (.)

Because

∇ρ(r) = ∇[ρ1/3(r)ρ1/3(r)ρ1/3(r)] = 3[ρ2/3(r)∇ρ1/3(r)], (.)

combining (.) to Eq (.), we obtain

4

∫
ρ(r)∇ρ1/3(r)dr = 0. (.)

The critical step of our proof is Eq. (.). Eq. (.) holds as long as the density vanishes

at infinity. As shown in Eq. (.), every basis function has an exponential decay. Thus,

any electron density expressed in a GTO- or STO-type basis set (written as a combination of

basis functions) vanishes at infinity. Therefore, we proved that the LDA exchange potential

satisfies the zero-force theorem in any basis set as long as the density is integrable, that is,

tends to zero at infinity. All densities of finite systems are integrable.

The above analysis is also applicable to any local potential of the form

v = Cρn(r), (.)

where C and n are constants.
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Let us now consider a functional of the form

F [ρ] =

∫
f(r, ρ,∇ρ,∇2ρ)dr, (.)

where the function f is integrable that is, vanishes sufficiently fast at infinity. For conve-

nience, let us first analyze its gradient

∇f(r, ρ,∇ρ,∇2ρ) =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k, (.)

where i, j, k are unit vectors. Applying the chain rule to the right-hand side of the above

equation, we obtain

∂f

∂x
=
∂f

∂ρ

∂ρ

∂x
+

∂f

∂∇ρ ·
∂∇ρ
∂x

+
∂f

∂∇2ρ

∂∇2ρ

∂x
. (.)

∂f
∂y

and ∂f
∂z

have the similar formula with respect to y and z. Therefore, we may write ∇f as

∇f =
∂f

∂ρ
∇ρ+

(
∂f

∂∇ρ · ∇
)
∇ρ+

∂f

∂∇2ρ
∇
(
∇2ρ

)
, (.)

where ∇ (∇2ρ) is a vector whose components are ∂2∇ρ
∂x

, ∂
2∇ρ
∂y

, ∂
2∇ρ
∂z

.

According to the gradient theorem, the fact that f(r, ρ,∇ρ,∇2ρ) vanishes at infinity implies

that

∫
∇f(r, ρ,∇ρ,∇2ρ)dr = 0. (.)

Substitution of Eq. (.) into Eq. (.) gives

∫ [
∂f

∂ρ
∇ρ+

(
∂f

∂∇ρ · ∇
)
∇ρ+

∂f

∂∇2ρ
∇
(
∇2ρ

)]
dr = 0. (.)

Integrating by parts the second and third terms under the above integral and assuming that

the products of the gradients of f and ρ(r) vanish at infinity we obtain

∫ [
∂f

∂ρ
∇ρ−∇ ·

(
∂f

∂∇ρ

)
∇ρ−∇

(
∂f

∂∇2ρ

)
∇2 ρ

]
dr = 0. (.)
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Integrating by parts the third term under the above integral again we have

∫ [
∂f

∂ρ
∇ρ−∇ ·

(
∂f

∂∇ρ

)
∇ρ+∇2

(
∂f

∂∇2ρ

)
∇ρ
]
dr =

∫
∇ρ
[
∂f

∂ρ
−∇ ·

(
∂f

∂∇ρ

)
+∇2

(
∂f

∂∇2ρ

)]
dr = 0.

(.)

In Section 1.4, we showed that the functional derivative of a given explicit functional is

δF

δρ
=
∂f

∂ρ
−∇ ·

(
∂f

∂∇ρ

)
+∇2

(
∂f

∂∇2ρ

)
, (.)

so Eq. (.) in fact says

∫ (
δF

δρ

)
∇ρ dr = 0. (.)

The above proof holds if the products of derivatives of f and ρ(r) vanish at infinity. In

that case, the functional derivative of any generalized gradient approximation satisfes the

zero-force theorem for any basis set.

Figure 3.2: Structure of H2O molecule.

Unfortunately, the zero-force test may give a false positive, meaning that for a molecule

with at least one symmetry element the net force from a potential that is not a functional

derivative may vanish by symmetry. For example, the total net forces of H2O molecule from
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Table 3.1: Cartesian components and total magnitudes of net forces (in hartrees/bohr) for the

H2O molecule calculated from LB94 potentials using different basis sets and Grid=Ultrafine.

Fx Fy Fz | F |

6-31G* 0.000000 0.000000 0.000000 0.000000

cc-pVQZ 0.000000 0.000000 0.000000 0.000000

the LB94 exchange potential (not a functional derivative) are zero (see Table 3.1). This is

because the force on the left H atom of H2O is canceled by the force on the right H atom, so

that the total forces vanish. In order to avoid false positives, we use an artificial asymmetric

cluster of 4 H atoms (H4) throughout this chapter (Fig 3.3)

Figure 3.3: Structure of H4 molecule.

To illustrate our findings for H4, we applied the zero-force tests to LDA exchange poten-

tial using different basis sets, compared with the LB94 exchange potential which is not a

functional derivative. The results are listed in Table 3.2.
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Table 3.2: Cartesian components and total magnitudes of net forces (in hartrees/bohr) for

the H4 molecule calculated from the LDA and LB94 potentials using different basis sets and

Grid=Ultrafine.

Fx Fy Fz | F |

LDA

6-31G* 0.000000 0.000000 0.000000 0.000000

cc-pVQZ 0.000000 0.000000 0.000000 0.000000

UGBS1O 0.000000 0.000000 0.000000 0.000000

UGBS2O 0.000000 0.000000 0.000000 0.000000

LB94

6-31G* 0.000002 −0.000060 −0.000047 0.000076

cc-pVQZ 0.000075 −0.000261 −0.000093 0.000287

UGBS1O 0.000015 −0.000397 −0.000167 0.000431

In Table 3.2, the magnitudes of net forces and their components were calculated from

a potential that is a functional derivatives (LDA) and a potential that is not a functional

derivative (LB94). As we can see, the forces obtained from a functional derivative are always

zero for any basis set used. However, a potential that is not a functional derivative always

violates the zero-force theorem for any basis set.
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3.5 Zero-force test for the RKS potential

Orbital-dependent functionals directly constructed from Kohn–Sham orbitals provide better

description of molecular properties than the LDA and GGA [7–10]. However, they pose

distinctive challenges since they are implicit functionals of the density. In particular, their

functional derivatives (Kohn–Sham potentials) cannot be obtained in closed form by explicit

functional differentiation of Exc with respect to the density, but may be computed numeri-

cally via the optimized effective potential (OEP) method [11–13]. The exchange-only OEP

method minimizes the HF total energy expression within the Kohn–Sham scheme

vOEP
x (r) =

δEexact
x

δρ(r)
, (.)

where Eexact
x is the HF exchange energy expression written in terms of Kohn–Sham orbitals.

To obtain vOEP
x (r) in practice, one has to solve the OEP integral equation, which can

be easily done only for systems with spherical symmetry [12]. For atomic and molecular

systems, a linear combination of atomic orbitals procedure is required [14, 15], where the

orbitals as well as the local potential are expanded in finite basis sets. Unfortunately, the

auxiliary basis set turns the OEP method into an ill-posed problem, and the solution of an

integral equation depends on what auxiliary basis is chosen.

Because of the high computational cost and the lack of effective OEP solvers, several

approximations were developed, such as the Krieger–Li–Iafrate (KLI) [16], localized Hartree–

Fock [17] and Becke–Johnson (BJ) approximations [18]. However, all these approximations

are not functional derivatives, meaning that they violate the zero-force and zero-torque

theorems.

Recently, Ryabinkin, Kohut and Staroverov developed a method to compute the Kohn–
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Sham exchange-correlation potential corresponding to a HF electron density [19, 20]. This

potential is almost indistinguishable from the exact-exchange OEP, and is dramatically better

than all existing models, while having the same low computational cost as KLI and BJ

potentials. The RKS potential for a Hartree-Fock wave function may be written as

vHF
xc = vholexc + ε̄KS − ε̄HF(r) +

τHF
P (r)

ρHF(r)
− τKS

P (r)

ρKS(r)
. (.)

Here vholexc is the exchange-correlation hole potential of the interacting system built in terms

of the HF orbitals

vholexc = − 1

2ρHF(r)

∫ |γHF(r, r′)|2
|r− r′| dr′, (.)

where γHF(r, r′) =
∑N

i=1 φ
HF
i (r)φHF∗

i (r′) is the spinless reduced density matrix, φHF
i is the

spatial part of the ith HF spin orbital, ε̄KS(r) and ε̄HF(r) are Kohn–Sham and Hartree–Fock

average local ionization energies, given by

ε̄KS(r) =
1

ρKS(r)

N∑

i=1

εKS
i |φKS

i (r)|2, (.)

ε̄HF(r) =
1

ρHF(r)

N∑

i=1

εHF
i |φHF

i (r)|2, (.)

where εKS
i and εHF

i are the eigenvalues of Kohn–Sham and Hartree–Fock equations, and

τHF
P (r) and τKS

P (r) are Hartree–Fock and Kohn–Sham Pauli kinetic energy densities, defined

by

τHF
P (r) =

1

2ρHF

N∑

i<j

|φHF
i (r)∇φHF

j (r)− φHF
j (r)∇φHF

i (r)|2, (.)

τKS
P (r) =

1

2ρKS

N∑

i<j

|φKS
i (r)∇φKS

j (r)− φKS
j (r)∇φKS

i (r)|2, (.)

In Equation (.), ρKS = ρHF, but τKS
P 6= τHF

P and ε̄KS 6= ε̄HF.
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3.5.1 Results and discussion

The RKS potential is almost indistinguishable from the exact OEP when large basis sets are

employed [19,20]. This indicates that the RKS potential is exact in the basis-set limit, and

that it is a functional derivative. We wish to find out whether the RKS potential satisfies the

zero-force theorem when different basis sets and grids are employed. Therefore, we applied

systematic zero-force tests to RKS potentials. All calculations were performed using the

modified Gaussian 09 program.

In Table 3.3, the magnitudes of net forces and their components were calculated from the

RKS potential using different basis sets and integration grids. The integration grid needs

to be specified (by using keyword Grid= mmmnnn) for numerical integrations in Gaussian

09 program, where mmmnnn is a positive integer, which requests a grid with mmm radial

shells around each atom and nnn angular points in each shell. For example, Grid=399,590

means it has 399 radial shells and 590 angular points per shell. Generally, the more grids

used, the more accurate results obtained. For H atom, keyword ‘Ultrafine’ requests a 99,590

grid. In our calculations, we used three different grids. The net forces and their components

did not change as the grids changed, but the magnitude of the net forces decreases as the

basis sets increases. The RKS potential passed the zero-force when a very large UGBS2O

basis set was used.

As discussed in Section 3.4, a potential that is not a functional derivative always violates

the zero-force theorem, while a potential that is a functional derivative satisfies the zero-force

theorem for any basis set. The interesting finding is that the net force obtained from RKS

potential decreases as the basis set increases. They passed the test when the large basis set
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Table 3.3: Cartesian components and total magnitudes of net forces (in hartrees/bohr) for

the H4 molecule calculated from RKS potentials using different basis sets and grids.

Fx Fy Fz | F |

Grid=UltraFine

6-31G* −0.000360 0.000164 −0.000089 0.000405

cc-pVQZ −0.000053 0.000023 −0.000023 0.000062

UGBS1O −0.000027 −0.000025 −0.000020 0.000042

UGBS2O −0.000003 0.000003 0.000000 0.000004

Grid=399,590

6-31G* −0.000360 0.000164 −0.000089 0.000405

cc-pVQZ −0.000053 0.000023 −0.000023 0.000062

UGBS1O −0.000027 −0.000025 −0.000020 0.000042

UGBS2O −0.000003 0.000003 0.000000 0.000004

Grid=999,974

6-31G* −0.000360 0.000164 −0.000089 0.000405

cc-pVQZ −0.000053 0.000023 −0.000023 0.000062

UGBS1O −0.000027 −0.000025 −0.000020 0.000042

UGBS2O −0.000003 0.000003 0.000000 0.000004
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UGBS2O was used, which indicates that the RKS potential is an almost exact functional

derivate of Eexact
x . Our result confirm that the RKS potential is virtually indistinguishable

from the exact OEP when the large universal Gaussian basis set is employed. RKS potentials

are defined in such a way that ρKS = ρHF only in the basis-set limit (infinite basis). When

a small (finite) basis set is used, ρKS does not equal to ρHF exactly. In this case, the RKS

potential is not a functional derivative and violates the zero-force theorem.

3.6 Summary

We proved analytically that any functional derivative of an explicit density functional satisfies

the zero-force theorem. For RKS potentials generated using finite basis set, net exchange-

correlation force decreases as the basis set increases. The RKS potential becomes indistin-

guishable from the exact OEP in the basis-set limit.

Violation of the zero-force theorem by a given vxc indicates that (i) the potential is not

translationally invariant, or (ii) it is not a functional derivative. However, passing the zero-

force test is not sufficient to ensure that the trial potential is a functional derivative. In

addition, even if a functional derivative satisfies the zero-force theorem, its parent functional

may not be translationally invariant.
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[5] M. Mundt, S. Kümmel, R. van Leeuwen, and P.-G. Reinhard, Phys. Rev. A 75,

050501(R) (2007).

[6] A. P. Gaiduk and V. N. Staroverov, J. Chem. Phys. 131, 044107 (2009).

[7] V. V. Karasiev and E. V. Ludeña, Phys. Rev. A 65, 032515 (2002).

[8] M. E. Casida and D. R. Salahub, J. Chem. Phys. 113, 8918 (2000).

[9] M. K. Harbola and K. D. Sen, J. Phys. B: At. Mol. Opt. Phys. 35, 4711 (2002).

[10] V. N. Staroverov, J. Chem. Phys. 129, 134103 (2008).

[11] R. T. Sharp and G. K. Horton, Phys. Rev. 90, 317 (1953).

[12] J. D. Talman and W. F. Shadwick, Phys. Rev. A 14, 36 (1976).
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