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Abstract 

In situ STAR (Self-sustaining Treatment for Active Remediation) is an emerging 

remediation technology which uses smouldering combustion to destroy non-aqueous phase 

liquid (NAPL) contamination in the subsurface. Since STAR smouldering travels through 

contaminated soils slowly (~0.5 to 5 m/day) and subjects them to high temperatures (400–

1000°C), it is expected that this technology will thoroughly dry and sterilize the zones 

which it treats. Further, soils surrounding the treatment zone which are not smouldered will 

be heated, although not smouldered, by virtue of their proximity to STAR, impacting 

microbial communities within them. Therefore, the objectives of this work are to quantify 

the microbial repopulation of the STAR treated zone, and observe heating effects on 

microorganisms living in surrounding soils. STAR is currently being applied as a full scale, 

in situ remedy for coal tar beneath a former creosol manufacturing facility in New Jersey, 

USA. This study analyzed soil cores taken at regular intervals following STAR treatment, 

allowing time for groundwater to re-infiltrate and for microbial populations to potentially 

reestablish. Treated soil, as well as untreated soil above the treatment zone and 

groundwater were analyzed for bacteria abundance and microbial diversity. Results 

demonstrate bacterial repopulation over a six-month period to ~107 gene copies/g of soil 

in the treated zone, and variable bacterial concentrations within untreated soils adjacent to 

and ~1m above the treated zone. In general, long term microbial abundance was largely 

dependent on the amount of organic matter present in the soil following STAR. To examine 

microbial transport and repopulation of STAR treated soils in more detail, and to consider 

the effects of bio-stimulating amendments, a bench top column study using site soil and 

artificial groundwater was set up to determine the rate at which STAR-treated soil is 

repopulated with naturally occurring microorganisms in the presence and absence of lactate 

and elevated sulfate concentrations. Results demonstrated that this amendment scheme 

increased the carrying capacity of the STAR treated soil and shifted the microbial 

community to promote sulfate reducing bacteria. Overall, the work illustrates that 

microbial populations in STAR treated soil do recover via groundwater infiltration but 

robust communities will take time to naturally establish. 



ii 

 

Keywords 

Microbial repopulation, bio-transport, microbial community structure, biostimulation, 

field investigation, column study, qPCR, Illumina, smouldering remediation, STAR  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

Co-Authorship Statement  

This thesis was written by the candidate in accordance with the guidelines and regulations 

as stipulated by the Faculty of Graduate Studies at the University of Western Ontario. The 

candidate conducted research design, data collection and data analysis for both the 

laboratory experiments and field study under the guidance of Dr. Jason Gerhard and Dr. 

Elizabeth Edwards. The co-authorship of Chapter 3 is as follows: 

 

Chapter 3: Microbial Abundance and Community Structure Before and After In Situ STAR 

Remediation. 

 

Authors Gavin Overbeeke, Jason Gerhard, Elizabeth Edwards, Line 

Lomheim, Ivy Yang, Laura Kinsman   

 

G. Overbeeke Design and implementation of field study and laboratory 

experiments. Performed all data interpretation and wrote chapter 

drafts 

J. Gerhard Initiated research topic, supervised field study and laboratory 

experiments, assisted in design and data interpretation in both the 



iv 

 

field study and laboratory experiments, and reviewed/revised draft 

chapters 

E. Edwards Supervised field study and laboratory experiments, assisted in 

design and data interpretation for the field study and laboratory 

experiments, and reviewed/revised draft chapters   

L. Lomheim Provided training and troubleshooting for DNA extraction and 

qPCR 

I. Yang Performed Illumina data manipulation and visualization via QIIME  

L. Kinsman Provided experimental data on the sterilizing effect of STAR using 

bacterial plating methods   

 

 

 

 

 

 



v 

 

Acknowledgments 

 

I would first like to extend my sincere thanks and gratitude to my supervisors, Dr. Jason 

Gerhard and Dr. Elizabeth Edwards for their support, guidance and patience, without which 

this research could not have been possible. 

 

Thank you to the entire RESTORE research group for all your support and encouragement. 

Specific thanks to Laura Kinsman for providing her results on bacterial plating of STAR 

treated soils, to Cjestmir de Boer, Jorge Dominguez, and Ahmed Chowdhury for their 

advice regarding column experiments, and to Nicholas Head for his help in running the 

column study in my absence. 

 

Thank you to the Geosyntec and Savron staff for helping with soil coring, groundwater 

sampling and sample transport from the field site in New Jersey to the University of 

Western Ontario. Specific thanks are due to Andrew Sims and Dave Leifle, who acted as 

liaisons between myself and Savron, and were instrumental in organizing and 

implementing sampling timelines at the site. 

 

Finally, I would like to thank my friends and family for their love and support throughout 

this journey.    



vi 

 

Table of Contents 

Abstract ................................................................................................................................ i 

Keywords ............................................................................................................................ ii 

Co-Authorship Statement................................................................................................... iii 

Acknowledgments............................................................................................................... v 

List of Tables ..................................................................................................................... ix 

List of Figures ..................................................................................................................... x 

List of Appendices ............................................................................................................ xii 

List of Abbreviations ....................................................................................................... xiii 

1 Introduction .................................................................................................................... 1 

1.1 Background ............................................................................................................. 1 

1.2 Research Objectives ................................................................................................ 2 

1.3 Thesis Outline ......................................................................................................... 3 

1.4 References ............................................................................................................... 4 

2 Background Literature ................................................................................................... 5 

2.1 Introduction ............................................................................................................. 5 

2.2 Coal Tar Sites .......................................................................................................... 5 

2.2.1 Site Characterization ................................................................................... 5 

2.2.2 Microbial Characterization ......................................................................... 7 

2.3 STAR Remediation of Coal Tar & Creosote Sites ................................................. 7 

2.4 Effects of Heating on Soil ..................................................................................... 10 

2.5 Microbial Repopulation of Heated Soil ................................................................ 11 

2.5.1 Soil Repopulation Following Surface Fires .............................................. 11 

2.5.2 Microbial Repopulation Following Thermal Remediation ....................... 13 



vii 

 

2.6 Subsurface Microbial Transport ........................................................................... 15 

2.6.1 Transport Processes .................................................................................. 15 

2.6.2 Retardation Processes: Straining............................................................... 17 

2.6.3 Retardation Processes: Sedimentation ...................................................... 18 

2.6.4 Retardation Processes: Interception .......................................................... 19 

2.6.5 Retardation Processes: Adsorption ........................................................... 20 

2.7 Summary ............................................................................................................... 29 

2.8 References ............................................................................................................. 30 

3 Microbial Abundance and Community Structure in the Subsurface Before & After 

In Situ STAR ................................................................................................................ 41 

3.1 Introduction ........................................................................................................... 41 

3.2 Site Description ..................................................................................................... 44 

3.3 Materials & Methodology ..................................................................................... 47 

3.3.1 Soil Coring & Groundwater Sampling ..................................................... 47 

3.3.2 Field Study: Soil Structure, Water Content, and Organic Matter 

Characterization ........................................................................................ 50 

3.3.3 Column Study: Experimental Setup.......................................................... 51 

3.3.4 Column Study: Materials & Reagents ...................................................... 53 

3.3.5 Column Study: Column Preparation ......................................................... 54 

3.3.6 Column Study: Sampling Procedures ....................................................... 55 

3.3.7 Field and Column Studies: DNA Extraction, Analysis & Statistics ......... 58 

3.3.8 Assessment of Soil Sterilization by STAR ............................................... 59 

3.4 Results ................................................................................................................... 60 

3.4.1 Field Study: Impact of STAR on In Situ Hydrocarbon Concentrations ... 60 

3.4.2 Field Study: qPCR Results ....................................................................... 63 



viii 

 

In Situ Bacterial Concentrations ........................................................................... 64 

3.4.3 Field Study: Amplicon Sequencing Results ............................................. 70 

3.4.4 Column Study: Tracer Test Results .......................................................... 74 

3.4.5 Column Study: qPCR Results ................................................................... 75 

3.4.6 Column Study: Amendment Results ......................................................... 78 

3.4.7 Column Study: Amplicon Sequencing Results ......................................... 80 

3.5 Discussion of Whole Study ................................................................................... 82 

3.6 Conclusions ........................................................................................................... 83 

3.7 References ............................................................................................................. 84 

4 Conclusions and Recommendations ............................................................................ 89 

4.1 Conclusions ........................................................................................................... 89 

4.2 Recommendations ................................................................................................. 91 

Appendices ........................................................................................................................ 92 

Curriculum Vitae ............................................................................................................ 153 

 



ix 

 

List of Tables 

Table 3.1: Timeline of Pre- and Post-STAR Coring Events. ............................................ 47 

Table 3.2: Bacterial Concentrations In Pore Water & On Soil Grains ............................. 68 

Table 3.3: Gene Copy Balance for Column B .................................................................. 78 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

file:///O:/Gavin%20O/Thesis%20Draft%208.docx%23_Toc470627002


x 

 

List of Figures 

Figure 2.1: DNAPL contamination in the subsurface. ........................................................ 6 

Figure 2.2: In situ application of STAR .............................................................................. 9 

Figure 2.3: Maximum ground temperatures during a fire as a function of vegetation cover

........................................................................................................................................... 12 

Figure 2.4:  Collector efficiencies of various removal mechanisms as a function of 

particle size ....................................................................................................................... 19 

Figure 2.5: Reversible adhesion of a bacterium to a mineral surface on soil grain at low 

(A) and high (B) ionic strength ......................................................................................... 22 

Figure 2.6: (A) Hypothetical speciation profile of major ligands associated with bacteria. 

(B) Hypothetical titration profile showing net surface charge with increasing pH .......... 25 

Figure 2.7: A Biofilm Formed on a Feldspar Grain.......................................................... 29 

Figure 3.1: Soil coring and groundwater sampling locations. .......................................... 46 

Figure 3.2: Work flow diagram for DNA analysis of (a) untreated, (b) transition and (c) 

treated soil zones in a typical core .................................................................................... 48 

Figure 3.3: Experimental Setup for Column Studies 1 & 2. ............................................. 51 

Figure 3.4: Sterivex filtration setup .................................................................................. 56 

Figure 3.5: Soil cores revealing the contrast between the STAR-treated and untreated soil 

zones ................................................................................................................................. 62 

Figure 3.6: Pre- and Post-STAR soil bacterial concentrations from the field study as 

estimated by 0.25g vs 10g soil samples. A 1:1 ratio between 0.25g and 10g 

concentrations is delineated by the dashed line ................................................................ 63 

file:///O:/Gavin%20O/Thesis%20Draft%208.docx%23_Toc470626732
file:///O:/Gavin%20O/Thesis%20Draft%208.docx%23_Toc470626733
file:///O:/Gavin%20O/Thesis%20Draft%208.docx%23_Toc470626734
file:///O:/Gavin%20O/Thesis%20Draft%208.docx%23_Toc470626734
file:///O:/Gavin%20O/Thesis%20Draft%208.docx%23_Toc470626735
file:///O:/Gavin%20O/Thesis%20Draft%208.docx%23_Toc470626735
file:///O:/Gavin%20O/Thesis%20Draft%208.docx%23_Toc470626736
file:///O:/Gavin%20O/Thesis%20Draft%208.docx%23_Toc470626736
file:///O:/Gavin%20O/Thesis%20Draft%208.docx%23_Toc470626737
file:///O:/Gavin%20O/Thesis%20Draft%208.docx%23_Toc470626737
file:///O:/Gavin%20O/Thesis%20Draft%208.docx%23_Toc470626738
file:///C:/Users/Aquifer%20Printzone/Documents/Draft%207!.docx%23_Toc470171087
file:///C:/Users/Aquifer%20Printzone/Documents/Draft%207!.docx%23_Toc470171088
file:///C:/Users/Aquifer%20Printzone/Documents/Draft%207!.docx%23_Toc470171088
file:///C:/Users/Aquifer%20Printzone/Documents/Draft%207!.docx%23_Toc470171089
file:///C:/Users/Aquifer%20Printzone/Documents/Draft%207!.docx%23_Toc470171090
file:///C:/Users/Aquifer%20Printzone/Documents/Draft%207!.docx%23_Toc470171091
file:///C:/Users/Aquifer%20Printzone/Documents/Draft%207!.docx%23_Toc470171091


xi 

 

Figure 3.7: Bacterial concentrations (gene copies/g of wet soil) in untreated (purple), 

transition (red) and treated (green) zone soils at IP03 and IP06. ...................................... 65 

Figure 3.8: Bacterial concentrations attached to the soil at 174 days after STAR vs. 

average hydrocarbon content in treated (green), transition (red) and untreated (purple) 

zones ................................................................................................................................. 69 

Figure 3.9: Heat maps showing percent values of microbial classes (OTU cutoff: 2%) 

present over time in Pre-STAR, Untreated, Transition and Treated soil zones. ............... 71 

Figure 3.10: NMDS visualization of all samples (field and column studies) ................... 74 

Figure 3.11: Bacterial concentrations in untreated soil used to pack Column A, and 

bacterial concentrations in Column B before (t=0) and at the end of Experiment 1 (not 

amended) and 2 (amended) ............................................................................................... 75 

 Figure 3.12: Column B influent (red) and effluent (green) bacterial concentrations during 

Experiment 1 and 2. .......................................................................................................... 76 

Figure 3.13: Sulfate Trends in Column A & Column B Effluent During Column 

Experiment 2 ..................................................................................................................... 79 

Figure 3.14: Heat maps showing percent values of microbial classes (OTU cutoff: 2%) 

present over time in the soil and effluent of Column A and B in Experiment 1 (not 

amended) and Experiment 2 (amended) ........................................................................... 81 

 

 

 

 

 

file:///C:/Users/Aquifer%20Printzone/Documents/Draft%207!.docx%23_Toc470171093
file:///C:/Users/Aquifer%20Printzone/Documents/Draft%207!.docx%23_Toc470171093
file:///C:/Users/Aquifer%20Printzone/Documents/Draft%207!.docx%23_Toc470171094
file:///C:/Users/Aquifer%20Printzone/Documents/Draft%207!.docx%23_Toc470171094
file:///C:/Users/Aquifer%20Printzone/Documents/Draft%207!.docx%23_Toc470171094
file:///C:/Users/Aquifer%20Printzone/Documents/Draft%207!.docx%23_Toc470171097
file:///C:/Users/Aquifer%20Printzone/Documents/Draft%207!.docx%23_Toc470171097
file:///C:/Users/Aquifer%20Printzone/Documents/Draft%207!.docx%23_Toc470171097
file:///C:/Users/Aquifer%20Printzone/Documents/Draft%207!.docx%23_Toc470171099
file:///C:/Users/Aquifer%20Printzone/Documents/Draft%207!.docx%23_Toc470171099


xii 

 

List of Appendices 

Appendix A. Field Study: Tables and Figures .................................................................. 93 

Appendix B. Column Study: Tables and Figures ........................................................... 120 

Appendix C. Column Study: Photos ............................................................................... 142 

Appendix D. DNA Statistics ........................................................................................... 148 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 

 

List of Abbreviations 

 

NAPL………………………………Non-Aqueous Phase Liquid 

DNAPL……………………..Dense Non-Aqueous Phase Liquid 

PCB…………………………………Poly-chlorinated biphenyls 

STAR……….Self-sustaining Treatment for Active Remediation 

qPCR……………………Quantitative polymerase chain reaction 

COC……………………………………..Contaminant of concern 

MGP…………………………………….Manufactured gas plant 

ISTD…………………………………..In situ thermal desorption 

ERH…………………………………Electrical resistance heating 

SEE……………………………..……Steam enhanced extraction 

ROI…………………………………………..Radius of influence 

bgs…………………………………………Below ground surface 

VOC………………………………...Volatile organic compounds 

EPS……….………………..…Extracellular polymeric substances  

IP…………………………………………………….Ignition point 

ORP………………………....………Oxidation reduction potential 

DO………………………………………………Dissolved oxygen 

AGW……………………………………….Artificial groundwater 

EtOH………………………………………………………Ethanol 



xiv 

 

UV…………………………………………………….Ultraviolet 

RPM……………………………………..Revolutions per minute 

EC……………………………………………Electroconductivity 

ID………………………………………………….Inner diameter 

PTFE…………………………………….Polytetrafluoroethylene 

PV…………………………………………………..Pore volume 

LOQ……………………………………...Limit of quantification 

QA/QC………………………Quality Assurance/Quality Control 

CFU…………………………………………Colony forming unit 

DI………………………………………………………Deionized 

NMDS…………………….Non-metric multidimensional scaling 

 

 

 

 

 

 

 



1 

 

1 Introduction 

1.1 Background 

Non-aqueous phase liquids (NAPLs), a class of hazardous and typically carcinogenic 

organic contaminants, have been introduced into the subsurface at thousands of sites across 

the globe (Pankow & Cherry, 1996). Many NAPLs, such as coal tar, creosote, chlorinated 

solvents and polychlorinated biphenyls (PCBs), are highly recalcitrant, having the potential 

to persist for thousands of years within the subsurface (Gerhard et al., 2007; Pape et al., 

2015). Further, such NAPLs are typically denser than water (DNAPLs) and exhibit low 

solubility, allowing them to migrate deep into the subsurface, pooling on layers of low 

permeability soils below the water table (Gerhard et al., 2007; Kueper & Davis, 2009). 

Current remedial strategies for such DNAPLs includes excavation, encapsulation, in situ 

thermal desorption, and in situ chemical oxidation (Scholes et al., 2015). 

In situ STAR (Self-sustaining Treatment for Active Remediation) is an alternative 

remediation approach which uses smouldering combustion as a mechanism to eradicate 

pools of DNAPL from the subsurface. Remediation of free phase coal tar at a former 

industrial site by STAR demonstrated a 97.3 – 99.3% reduction in contamination, 

highlighting the effectiveness of STAR as a tool for aggressive removal of NAPL (Scholes 

et al., 2015). Due to its high temperatures, STAR remediation not only removes organics 

from the soil, but also likely sterilizes the soil (Pape et al., 2015). Microbes within the 

subsurface perform a variety of services for subsurface and above ground ecosystems. 

Moreover, they are known to play a role in biodegradation and natural attenuation of 

contaminants. Therefore, it is important to understand the influence of STAR on subsurface 
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microbial populations. While one study has examined microbial growth in microcosms 

containing STAR-treated soil,, the influence of STAR on microbial populations has never 

before been studied in situ or in ex situ systems with flowing groundwater.  

1.2 Research Objectives  

The overall scope of this research was to provide an understanding of microbial dynamics 

in STAR impacted soils, and may be broken down into 2 main objectives. The first 

objective was to quantify microbial abundance and community structure within and 

bordering an in-situ STAR treatment zone. This was accomplished by means of a field 

study that analyzed DNA from soil cores taken before, and up to six months after, STAR 

was applied. This was repeated at two treatment locations within the context of a full STAR 

site remedy being applied in the coal tar contaminated soil beneath a former chemical 

manufacturing facility. The second objective was to elucidate the processes that support 

the transport and growth of microbes in STAR-treated zones. This objective was met by 

performing a laboratory-based column study using soils from the field site. The study was 

designed to evaluate whether groundwater alone would facilitate the transport of microbes 

from contaminated, up-gradient soil to treated, down-gradient soil. This experiment was 

repeated with the groundwater amended with sulfate and lactate as biostimulating 

compounds. This explored the additional questions of whether biostimulation enhances 

microbial repopulation and how it affects the resulting microbial community. 
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1.3 Thesis Outline 

This thesis is written as an “Integrated Article”. A summary of the chapters is given 

below: 

Chapter 1:  Topic introduction and research objectives 

Chapter 2:  Provides a review of the relevant literature. Specific topics include DNAPL 

contaminated sites and their remediation, microbial groundwater transport 

and subsurface colonization, and the fate of microorganisms within soils 

heated to various degrees by surficial fires or thermal remediation. 

Chapter 3:  Describes the materials used, setup, sampling procedures, and data analysis 

for the field and column studies. Results for each objective are presented 

and discussed, providing insight into microbial dynamics before and after 

STAR treatment. 

Chapter 4:  Summarizes conclusions for each objective and provides recommendations 

for future work  

Appendices A-D contain supplementary information for Chapter 3:    

Appendix A:  Contains raw data from the field study (i.e., data relevant to Objective 1) 

Appendix B:  Contains raw data from the column experiments (i.e., data relevant to 

Objective 2) 

Appendix C: Contains images at various stages of the column experiments 
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Appendix D: Contains tables and figures of statistics associated with qPCR and Illumina 

data analysis 

1.4 References 

 

1) Gerhard, J. I., Pang, T., & Kueper, B. H. (2007). Time scales of DNAPL migration 

in sandy aquifers examined via numerical simulation. Ground Water, 45(2), 147-

157. doi: 10.1111/j.1475-6584.2006.00269.x 

 

2) Kueper, B., & Davis, K. (2009). Assessment and Delineation of DNAPL Source 

Zones at Hazardous Waste Sites. Cincinnati, OH: United States Environmental 

Protection Agency     

 

3) Pankow, J., & Cherry, J. (1996). Dense Chlorinated Solvents and other DNAPLs in 

Groundwater  Portland, OR: Waterloo Press. 

 

 

4) Pape, A., Switzer, C., McCosh, N., & Knapp, C. W. (2015). Impacts of thermal and 

smouldering remediation on plant growth and soil ecology. Geoderma, 243, 1-9. 

doi: 10.1016/j.geoderma.2014.12.004 

 

5) Scholes, G., Gerhard, J., Grant, G., Major, D., Vidumsky, J., Switzer, C., & Torero, 

J. (2015). Smouldering Remediation of Coal-Tar-Contaminated Soil: Pilot Field 

Tests of STAR. Environ. Sci. Technol., 49(24), 14334-14342.  



5 

 

2 Background Literature 

2.1 Introduction 

This review begins by describing typical features of coal tar contaminated sites and the 

microbial life potentially found within them. It then presents the available thermal 

treatment methods for such sites, focusing in particular on the STAR technology. The 

impacts of heating on soil are discussed, which leads to a review of microbial repopulation 

in thermally impacted soils. No studies exist to date which measure in situ colonization of 

STAR treated zones or address the ability of groundwater to transport microbes in STAR-

treated soils. Therefore, this review surveys the literature within a range of related fields. 

This includes those studies that quantify microbial repopulation following other methods 

of thermal remediation, although it is noted that these typically use lower temperatures than 

those applied in STAR. Also relevant are studies discussing microbial repopulation in 

surface soils following brush and forest fires. Finally, this review also summarizes the main 

mechanisms of bacterial transport, retardation, sorption, and colony formation within the 

subsurface.  

2.2 Coal Tar Sites 

2.2.1 Site Characterization 

NAPL contamination within the subsurface arises through accidental and premeditated 

releases during a variety of industrial processes, including chemical manufacturing, 

industrial liquid storage and transport, and industrial waste storage and disposal (Pankow 

& Cherry, 1996). NAPLs such as coal tars, creosotes, chlorinated solvents, PCBs are denser 

than water (DNAPLs), and thus percolate down through the subsurface, pooling on soils 
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with low permeability, and leaving a trail of residual DNAPL blobs and ganglia above 

them (Fig 2.1). Compounds of concern (COC) within the DNAPL pool and residuals 

partition into the groundwater and vadose zone, bringing them into direct contact with 

humans and the surrounding ecosystem (Fig 2.1). Coal tar, the DNAPL considered in this 

thesis, is a byproduct of historical manufactured gas plant (MGP) operations, and contains 

a mixture of aliphatic and aromatic compounds (Scholes et al., 2015). Although coal tar 

contains a plethora of compounds, major COCs which exist in significant proportions 

include naphthalene, phenanthrene, benzo[a]pyrene, and BTEX (benzene, toluene, 

ethylbenzene, xylene) compounds (Kueper & Davis, 2009).  

 

Figure 2.1: DNAPL contamination in the subsurface. Image taken from Kueper et 

al., (2013)  
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2.2.2 Microbial Characterization 

Few studies describe abundances of microbial taxa in sites contaminated specifically with 

coal tar. However, in most DNAPL contaminated soils, microbes are distributed in 

relatively high concentrations within the aqueous phase adjacent to the DNAPL, and are 

inhibited from growth within the DNAPL itself (Capiro et al., 2015; Mueller et al., 1989; 

Philips et al., 2012). Although coal tar NAPL is recalcitrant, various microorganisms have 

demonstrated the ability to degrade coal tar components in the aqueous phase (Bakermans 

et al., 2002; Liou et al., 2008; Nyyssonen et al., 2009). Since coal tar and creosote are a 

mixture of various hydrocarbon contaminants, microbial communities at coal tar 

contaminated sites often show large proportions of hydrocarbon-degrading bacteria (Ding 

et al., 2013; Lors et al., 2010). Based on published reports, the most important 

hydrocarbon-degrading bacterial genera in contaminated soil environments include 

Achromobacter, Acinetobacter, Alcaligenes, Arthrobacter, Bacillus, Burkholderia, 

Collimonas, Corynebacterium, Dietzia, Flavobacterium, Gordonia, Micrococcus, 

Mycobacterium, Nocardia, Nocardioides, Pseudomonas, Ralstonia, Rhodococcus, 

Sphingomonas and Variovorax (Chikere et al., 2011). 

2.3 STAR Remediation of Coal Tar & Creosote Sites 

Due to the physical and chemical properties of coal tar, remediation is very difficult and 

economically demanding. Coal tar is an “intermediate” DNAPL, being only slightly denser 

than water, which causes it to have greater lateral distribution and thus increases the total 

volume of the subsurface needing to be treated relative to other denser DNAPLs (Gerhard 

et al., 2007). The high viscosity of coal tar (20-100 centipoise) makes it difficult to move, 
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limiting pumping extraction technologies (Scholes et al., 2015). Further, by virtue of the 

complex and recalcitrant nature of the compounds within it, coal tar exhibits a resistance 

to volatility based remedial strategies and bioremediation (Scholes et al., 2015). Thermal 

remediation technologies such as in situ thermal desorption (ISTD), electrical resistance 

heating (ERH), steam enhanced extraction (SEE) and STAR have shown the ability to 

remediate coal tar. While SEE and ERH typically operate at maximum temperatures of 

100oC, ISTD may be applied at temperatures of 400oC and greater for months at a time, 

and STAR operates in temperature ranges of 400oC to 1200oC (Baker et al., 2016; Heron 

et al., 2005; McGowan et al., 1996; Pironi et al., 2011; Scholes et al., 2015; Switzer et al., 

2009).  

STAR has recently been applied to remediate pools of highly recalcitrant NAPLs such as 

coal tar. STAR operates using smoldering combustion, an exothermic oxidation reaction 

of a solid or liquid fuel which occurs on the fuel surface (Pironi et al., 2011; Switzer et al., 

2009). Maximum temperatures within the STAR smoldering reaction typically range from 

400-1200oC, depending on contamination type (Pironi et al., 2011; Switzer et al., 2009). 

The smoldering combustion associated with STAR is self-sustaining, as the porous 

medium (here, the soil) absorbs energy from the reaction and re-emits it back into the un-

burnt fuel (Howell et al., 1996; Switzer et al., 2009). This self-sustaining helps to make 

STAR an energy conserving and therefore cost efficient option for coal tar remediation 

(Pironi et al., 2011; Switzer et al., 2009).  
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In situ STAR treatment is delivered by pumping air down a well past an in-line heater into 

a contamination source zone (Fig 2.2). The hot air dries and heats the soil around the well 

screen until temperatures conducive to smoldering are reached (Scholes et al., 2015). Once 

smoldering begins, the reaction is self-sustaining, and the heater is turned off. The self-

sustaining reaction relies only on continued injection of air. Vapors produced by the 

reaction are removed via soil vapor extraction units (Scholes et al., 2015). The radius of 

influence (ROI) around each ignition well during in situ STAR is influenced by delivery 

of air to the reaction as it propagates outwards from the ignition point and through the 

treatment zone. The feasibility of in situ STAR was recently demonstrated by a pilot test 

in a coal tar contaminated aquifer roughly 7.9 m below ground surface (bgs). During this 

 

Figure 2.2: In situ application of STAR. Image modified from Scholes et al. (2015). 
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test, a treatment zone up to 1.9 m thick with an ROI of 3.7 m was achieved (Scholes et al., 

2015). Comparison of pre- and post- STAR sampling from multiple locations within the 

targeted treatment area confirmed that 98.6% of aromatics, 99.7% of aliphatics, and 100% 

VOC/BTEX compounds were removed by STAR (Scholes et al., 2015). A similar test in a 

shallower aquifer (~3m bgs) followed the same trend, with overall coal tar removal of 

99.72% (Scholes et al., 2015).   

2.4 Effects of Heating on Soil 

During heating events in the subsurface, temperature induced changes occur to the 

biological and physicochemical properties of the soil (Diazravina et al., 1992; Whitmore, 

1984). It is generally understood that maximum temperatures attained during thermal 

remediation (i.e., 100oC or greater) will be deleterious to the immediate well-being of 

typical soil microbial communities, with microbial die-off proportional to the severity of 

heating (Dettmer, 2002; Neary et al., 1999; Pape et al., 2015; Richardson et al., 2002). It is 

also known that soil structure, porosity, pH, and water storage are altered during severe 

heating, often accompanied by a loss of organic matter and nutrients (Pape et al., 2015; 

Powers et al., 1990). Indeed, it has been shown that at temperatures greater than 500oC, 

losses of organic matter and nitrogen in the soil are nearly complete, and clay particles 

begin to break down and aggregate, altering soil structure and making it difficult to retain 

valuable nutrients (Pape et al., 2015; Weast, 1988). As temperatures rise, more nutrients 

are lost. Nutrient compounds containing potassium volatilize at 760oC, containing 

phosphorus at 774oC, sulfur at 800oC, sodium at 880oC and magnesium at 1107oC (Weast, 

1988). Further, soils may become water repellant after exposure to elevated temperatures 
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(Debano, 1981). This phenomenon is initiated at temperatures above 176oC and is 

terminated at temperatures greater than 288oC due to formation and destruction of 

hydrophobic materials at each respective temperature (Debano, 1981; DeBano et al., 1977; 

Debano et al., 1976). Hydrophobic layers often adsorb large amounts of organic matter, 

allowing them to support small, high growth rate microbial communities shortly after 

(Pietikainen et al., 2000). It is likely that the high temperatures associated with STAR will 

thus remove most of the hydrophobic material from the treatment zone. However, 

periphery temperatures surrounding the treatment zone may fall within this range, 

influencing microbial communities within them. 

2.5 Microbial Repopulation of Heated Soil 

2.5.1 Soil Repopulation Following Surface Fires 

The overall effects of heat transfer from fires into subsurface ecosystems are complex, with 

impacts on subsurface physical, chemical, and microbial processes (Neary et al., 1999). 

These impacts may cause either positive or deleterious effects on the subsurface, depending 

on the severity of the fire (Neary et al., 1999). The maximum soil temperature during an 

above ground fire varies with fuel type, and can range from 200oC-700oC (Fig 2.3), with 

instantaneous “flash” temperatures greater than 1,500oC (Dunn & Debano, 1977; Rundel, 

1983). In severe fires, microbes up to 50 mm below the ground surface may be killed, while 

mild fires often have no deleterious effects (DeBano et al., 1977). 

Post–fire subsurface microbial abundances reported in the literature are highly variable. In 

one study, microbial concentrations were significantly increased as early as 1 month after 

a fire (Vazquez et al., 1993). On the other hand, another study showed decreases in 
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microbial biomass of up to 50% following a wildfire, with little recovery over a 2-year 

period (Prieto-Fernandez et al., 1998). The explanation for this apparent discrepancy is that 

microbial life in the subsurface is more negatively impacted with increasing severity of 

heating (Neary et al., 1999). Soil alterations (i.e., loss of organics, nutrients, etc.) caused 

by sustained high temperatures stunt microbial repopulation, while shorter exposures and 

lower temperatures may actually alter soil chemistry in such a way as to spur microbial 

growth during repopulation (Acea & Carballas, 1996; Ahlgren & Ahlgren, 1960; DeBano 

et al., 1977; Hossain et al., 1995; Mabuhay et al., 2003; Vazquez et al., 1993; Whitmore, 

1984). The species of microorganisms that emerge dominant in the shallow subsurface 

following a severe surface fire differs between studies, and this is likely because of the 

 

Figure 2.3: Maximum ground temperatures during a fire as a function of 

vegetation cover. Reprinted with permission byRundel (1983). 
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variability in the physicochemical properties of the post-burn soils, as well as the resilience 

of different microbial species to heating (Acea & Carballas, 1996). 

2.5.2 Microbial Repopulation Following Thermal Remediation 

Thermal remediation, the heating of the subsurface via hot air or steam injection, electrical 

resistance, radio wave heating, thermal conduction, or smoldering (i.e., STAR), is a 

remediation type that targets NAPLs within the subsurface. Typical temperature values 

during thermal treatment range from ~100oC during steam injection to ~1200oC during 

STAR treatment (Dettmer, 2002; Switzer et al., 2009). Though repopulation following 

thermal remediation is not often studied, the studies that have been done agree that thermal 

remediation technologies have a significant impact on the microbial communities within 

and above the targeted treatment zone.  

Contaminated soils subjected to treatments which operate at higher temperatures, (i.e., 

STAR, radio wave heating and thermal conduction) experience heavy die off of microbial 

life during remediation (Dettmer, 2002; Pape et al., 2015). In a study by Pape et al. (2015), 

it was found that microbial repopulation over an 8-week period after STAR or after 

exposure to temperatures of 500oC or greater was 2-3 orders of magnitude lower than an 

unheated control soil. However, the same soil type, if heated to temperatures below 500oC, 

exhibited rapid recovery to similar bacterial concentrations seen in the control. In this 

study, differences in success of repopulation was attributed to the loss of organics and 

nutrients caused by temperatures at or above 500oC (Pape et al., 2015). Amendments of 

organic matter and specific nutrients were recommended by the authors in order to facilitate 

complete recolonization, a strategy which still requires further study (Pape et al., 2015). In 
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shallow soils which have been thermally treated, nutrient amendments may be coupled 

with the addition of certain plants and microorganisms to initiate a semi-natural succession 

(Bradshaw, 1997).     

Surrounding the treatment zone are fringe soils. The “fringe” is here defined as the zone 

surrounding the treatment zone, where a gradient exists between the treatment temperature 

and the ambient soil temperature. Because thermal treatments often target DNAPL pools 

specifically, fringe zones may also be contaminated with residual DNAPL which goes 

untreated, especially in the soils above the treatment zone, through which DNAPL has 

previously migrated. Thus, hydrocarbon degrading microorganisms may play a role in 

natural attenuation of DNAPL in these soils. Therefore, it is important to understand the 

impacts heating will have on the fringe zone microbial communities. Due to lower 

temperatures in fringe soil relative to the treatment zone, microbial populations in the 

fringe may be more abundant during treatment (Krauter et al., 1996). However, if 

temperatures in fringe soils are high enough to cause partial or complete sterilization, heat-

generated release of organics and nutrients often cause repopulating microbes to exhibit a 

rapid and robust recovery, and occasionally even biostimulation after treatment is 

completed and temperatures return to ambient (Dettmer, 2002; Pape et al., 2015; 

Richardson et al., 2002). Indeed, it has been observed that moderate heating (i.e., <500 oC) 

may result in post treatment recovery to numbers equal to or even greater than the original 

pre-heated population (Dettmer, 2002; Fletcher et al., 2011; Pape et al., 2015; Richardson 

et al., 2002). Further, because fringe zones experience a temperature gradient between 

treatment and ambient conditions, it is likely that the optimal temperature for microbial 

growth will be obtained at some point within the fringe zone. Therefore, there is potential 
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for biostimulation of fringe soil during treatment. Further, different microbial community 

structures have been shown to thrive at different temperatures, so it is likely that fringe 

zone microbial communities will vary in structure as a function of soil temperature (Norris 

et al., 2002; Zogg et al., 1997).  

2.6 Subsurface Microbial Transport 

2.6.1 Transport Processes 

Movement of microorganisms through the subsurface is primarily influenced by the Darcy 

velocity of the groundwater, the size of the microorganism, and the physical properties of 

the porous medium through which it travels (Camesano & Logan, 1998; Ginn et al., 2002). 

Advection is the primary mode of transportation of microorganisms in the groundwater. 

During advective transport, microorganisms undergo some mixing due to dispersion and 

Brownian motion (Corapcioglu & Haridas, 1984). At high Darcy velocities, both motile 

and non-motile microorganisms are subjected to this mixing effect (Camesano & Logan, 

1998). However, at lower Darcy velocity, only non-motile microorganisms exhibit 

mechanical mixing, since motile microorganisms can overcome the force of the 

groundwater flow and swim in any direction through the pore space (Camesano & Logan, 

1998). Mixing is also limited by the size of the microorganism. In general, microorganisms 

exhibit a dampened Brownian motion, limiting the mixing effect of microbes in the 

subsurface (Li et al., 1996). Further, by virtue of their size, microbial cells preferentially 

experience the higher pore water velocities associated with the center of the pore (de 

Marsily, 1986; Dodds, 1982). Repulsive interactions between soil grain and microorganism 

surface charges may also push the microorganisms away from the soil grains and into the 
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center of the pore (Bradford et al., 2014). As a result of reduced mixing and preferential 

high velocity exposure, some microorganisms have been reported to breakthrough before 

conservative tracers (Ginn et al., 2002). Indeed, numerous field and column studies have 

shown microbes transported at speeds as much as 70% greater than the mean pore water 

velocity (Enfield & Bengtsson, 1988; Hubbard et al., 2001; Li et al., 1996; Zhang et al., 

2001).  

Many microorganisms have the ability to move themselves through the subsurface, 

propelled by their flagellum or Cilia (Corapcioglu & Haridas, 1984). Swimming speeds 

can vary greatly for a cell over time, and there are differences in minimum and maximum 

speeds between different species (Armitage et al., 1999). For example, bacteria have a 

swimming speed range of 1-1000 µm/s documented in the literature (Fenchel & Thar, 

2004; Marwan et al., 1991). At the lower end of this spectrum, the benefit of movement 

may be lost, since nutrients will likely diffuse faster than the bacterium travels (Mitchell & 

Kogure, 2006). At the higher end, maximum motor rotation and optimal length/number of 

flagellum is reached, making 1000 µm/s a physically constrained maximum speed 

(Mitchell & Kogure, 2006). Flagellar travel velocity is dependent on multiple factors, such 

as the length and number of flagellum, size, and shape of the microorganism, as well as 

environmental conditions (Armitage et al., 1999; Calladine, 1978; Mitchell & Kogure, 

2006; Scharf, 2002). Migration in small pores is an issue especially effecting motile 

microbes since the flagella add extra length, making it difficult to navigate in tight spaces. 

Lui & Papadapoulos, (1995) found that E. coli in a 6 µm wide capillary could only swim 

in one direction, unable to turn due to their flagella. In a 3 µm wide capillary, geometric 

restriction not only precluded turning, but also passing alongside other microorganisms 



17 

 

(Liu et al., 1997). Indeed, evidence has been shown that pore radius selects for a 

microorganism’s flagella length, number, and cell size (Chen et al., 1998; Mitchell & 

Kogure, 2006).   

2.6.2 Retardation Processes: Straining 

Straining refers to the entrapment of microorganisms in pore throats between soil grains 

which are too small to allow passage, and is exclusively a result of pore geometry 

(Corapcioglu & Haridas, 1984). Microbial removal by straining is considered to be an 

irreversible process, in that strained microorganisms do not reenter the pore water 

(Tufenkji, 2007). Silliman, 1995, found that straining of latex colloids which were in the 

size range of 2-90 µm in diameter by a glass bead porous medium was enhanced as 

heterogeneity increased. In his experiments, Silliman found that colloids deposited in the 

porous media had the highest probability to be found at contacts where the pore water 

moved from large to small pores (Silliman, 1995). Further, the more perpendicular the 

contacts were to the flow of the water, the more colloids were deposited (Silliman, 1995). 

Theoretically, a particle of any size may get wedged in a crevice between two soil grains 

in the subsurface (Corapcioglu & Haridas, 1984). Nevertheless, it is estimated that straining 

only has a significant effect on mass removal when the colloid passing through a pore has 

a diameter greater than 5% of the porous media grain diameter (Corapcioglu & Haridas, 

1984; Harvey & Garabedian, 1992; Herzig et al., 1970; McDowellboyer et al., 1986). Once 

the particle diameter is less than 5% of the grain diameter, the predominant mechanism for 

attachment to the soil grains will be surface forces (Corapcioglu & Haridas, 1984). 

Therefore, the ratio of microbe to pore throat diameters will determine the role of microbial 

straining in a porous medium. 
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2.6.3 Retardation Processes: Sedimentation 

Sedimentation, or gravitational deposition onto the grains of the porous media, may 

also occur when a microorganism travelling through pore space has a density greater than 

the pore water (Corapcioglu & Haridas, 1984). While the majority of microorganisms are 

so small that gravitational settling is negligible, some microorganisms may exhibit 

densities greater than water, in which case transport velocity will be reduced by 

sedimentation (Corapcioglu & Haridas, 1984; Reynolds et al., 1989; Bradford er al., 2014). 

Yao et al, 1971, showed that sedimentation only plays a significant role in increasing the 

efficiency of a collector (i.e., a sand grain which collects particles such as microorganisms 

from the pore water) if the particle is greater than 5 µm (Fig 2.4). Some microbes have 
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exhibited the ability to produce bio-gas, which in some way enhanced travel efficiency 

(Reynolds et al., 1989). In theory, gas production could increase the buoyancy effect for 

microorganisms, reducing sedimentation effects. 

2.6.4 Retardation Processes: Interception 

It is inevitable that even the most minute suspended particles will at some point be unable 

to follow the tortuous flow paths and collide with the porous media (Corapcioglu & 

Haridas, 1984).  However, as seen in Fig 2.4, Interception of small particles is a very rare 

 

Figure 2.4:  Collector efficiencies of various removal mechanisms as a function of 

particle size. Reprinted with permission from Yao et al. copywright (1971) American 

Chemical Society. 
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event, making it negligible as a standalone phenomenon. Microbial cells, on the other hand, 

are much larger, and thus often intercept pore walls, forming clusters on the grain surface 

(Corapcioglu & Haridas, 1984). Clustering is often so extensive that it causes the effective 

grain size diameter of the soil grain to increase (Corapcioglu & Haridas, 1984). This 

increase leads to increased straining of smaller particles in the pore throat and 

filtration/sorption of particles to the bacterial cluster (Konhauser, 2007; Krone et al., 1958). 

These accumulations often grow to the point of instability, at which point large bunches of 

the cluster slough off and are transported down gradient (Corapcioglu & Haridas, 1984). 

The rate of sloughing is a function of the pore water flow rate and the size and density of 

the microbial cluster (Krone et al., 1958). 

2.6.5 Retardation Processes: Adsorption  

Rather than colliding with a grain surface via straining, sedimentation and interception, a 

microorganism may biochemically adsorb to it (Konhauser, 2007). There are three main 

mechanisms that determine the success or failure of complete microbial adsorption to a 

grain surface: the solution chemistry, substratum chemistry, and finally, bio-attachment 

(Konhauser, 2007). Generally, adsorption of microbes to a surface is reversible until the 

microbially-mediated bio-attachment is complete (Konhauser, 2007).  

Reversible Attachment: Solution Chemistry   

Initially, the adsorption between a microorganism and a soil grain is termed reversible 

adhesion (Konhauser, 2007). Reversible adhesion is an instantaneous attraction by long 

range forces holding the microbe at a distance of 1-10 nm from the grain surface, depending 

largely on the ionic strength of the solution (Konhauser, 2007). At this stage, the 
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microorganism can easily be pulled away from the surface by a rotation of its flagella or 

shear forces of the passing groundwater (Marshall et al., 1971). This initial and reversible 

attraction can be predictably modeled using DLVO (Derjaguin-Landau-Verwey-

Overbeek) theory (Fig 2.5) (Konhauser, 2007). According to DLVO theory, surfaces have 

a tendency to minimize their total Gibbs free energy by satisfying their charges, and one 

way of doing this is via microbial adsorption (Absolom et al., 1983). Assuming that steric 

effects are negligible, the total Gibbs free energy (GT, Fig 2.5) will be the difference of the 

van der Walls attractive energy (GA, Fig 2.5) and the electrostatic repulsive energy (GR, 

Fig 2.5) (Konhauser, 2007). At low ionic strength, the repulsive forces are greater than the 

attractive forces between the microorganism and the grain surface (Vanloosdrecht et al., 

1989). This creates a positive spike in total Gibbs free energy between the microbe and the 

surface, making it thermodynamically unsatisfactory for the microorganism to approach 

any closer (Vanloosdrecht et al., 1989). As the ionic strength of the solution increases, the 

electrostatic repulsive energy decreases (Vanloosdrecht et al., 1989). This causes the 

attractive van der Walls energy to exceed electrostatic repulsive forces within the aqueous 

phase, removing the positive Gibbs free energy barrier, and creating a state of increasingly 

negative Gibbs free energy from the microbe to the grain surface (Stumm & Morgan, 1996; 
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Vanloosdrecht et al., 1989). Since Gibbs total energy is increasingly negative towards the 

grain surface, cation bridging in the solution acts to bring the microorganism closer to the 

surface (Stumm & Morgan, 1996). Both column and field experiments have backed up the 

theory of ionic strength dependent sorption, documenting an increased attachment 

efficiency with an increased ionic strength (Gannon et al., 1991; Scholl & Harvey, 1992; 

Tan et al., 1995).  

 

Figure 2.5: Reversible adhesion of a bacterium to a mineral surface on soil grain 

at low (A) and high (B) ionic strength. Where GT is total Gibbs free energy, GA is 

van der Waals attraction, and GR is electrostatic repulsion (Konhauser, 2007). 
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Reversible Attachment: Substratum Chemistry 

When considering initial adhesion, the chemical composition of the mineral and the 

microbial cell surfaces are also of importance. Depending on the chemistry of the mineral 

surfaces, their charge may be either positive or negative, whereas microbial cell surfaces 

are most often negative or neutral, and in some cases, positively charged (Konhauser, 

2007). Thus, depending on the surface chemistry, there could be either attractive or 

repulsive electrostatic forces between the microorganism and the mineral surface 

(Konhauser, 2007).  

Surface charges are controlled by the master variable pH. Microbial cell surfaces are 

teaming with ligands, which may become protonated or deprotonated at various pH levels 

(Konhauser, 2007). The most simplistic representation of reversible deprotonization takes 

the form of the following reaction (Konhauser, 2007): 

R–AH ↔ R–A- + H+  Eq 2.1  

Typical ligand types found on cell surfaces include hydroxyl (R–OH), carboxyl (R–C–

OOH), sulfhydryl (R–S–H), phosphate (P–O4H2
 ) and amino groups (N–H3) (Konhauser, 

2007). The distribution of protonated and deprotonated ligands can be quantified with the 

following equation (Konhauser, 2007): 

𝐾𝑎 =
[𝑅 − 𝐴−][𝐻+]

[𝑅 − 𝐴𝐻]
                  𝐸𝑞 2.2 

where Ka is the acid dissociation constant for the reaction. As evidenced in Eq 2.2, when 

the pH increases, [H+] in solution decreases, causing an increase in [R–A-] and a decrease 
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in [R-AH]. This gives the cell surface an increasingly negative charge (Konhauser, 2007). 

On the other hand, as the pH lowers, [R–A-] decreases, while [R-AH] increases, causing 

the cell surface to be neutrally or positively charged (Konhauser, 2007). The pH at which 

[R–A-] and [R-AH] are equal is known as the pKa, and is defined as the negative log of Ka 

(Konhauser, 2007). There are often multiple ligand types on a single cell surface each with 

its own pKa (Fig 2.6-A) (Haas et al., 2001). This means that different ligands on a cell 

surface will dominate the change in surface charge at different pHs, 
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typically resulting in a slowly increasingly negative charge as pH rises (Fig 2.6-B) (Haas 

et al., 2001). Depending on the growth conditions of the microorganism, the proportions 

of ligand types on its surface will often change, causing surface charges to vary at different 

stages in cellular growth (Fletcher, 1977; Gilbert et al., 1991). The pH also has an effect 

on the charge of the mineral surface being adhered to by the microorganism. In a study by 

Yee et al, 2000, B. subtilis would not adhere to a quartz surface at a neutral pH, since both 

 

Figure 2.6: (A) Hypothetical speciation profile of major ligands associated with 

bacteria. (B) Hypothetical titration profile showing net surface charge with 

increasing pH. Image modified from Konhauser (2007) 
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the bacterium and the mineral are negatively charged at pH’s above 2.5. However, B. 

subtilis did adhere to corundum (a crystalline aluminum oxide) at neutral pH, since 

corundum is positively charged at pH values less than 9 (Yee et al., 2000). When the pH 

was driven past 9, both B. subtilis and the corundum were negatively charged, and repelled 

each other (Yee et al., 2000). The presence of organic and inorganic compounds sorbed to 

the mineral surface may also alter its charge (Mills et al., 1994). Quartz is often coated with 

iron hydroxide, giving it a positive charge at neutral pH (Mills et al., 1994). However, 

organic molecules may also sorb to the Fe-coated quartz, making the surface negative once 

again and repelling microorganisms (Sharma et al., 1985). On the other hand, hydrophobic 

adhesion of organic matter onto cell surfaces increases the microorganisms overall negative 

charge, and leads to an increased attraction to the Fe-quartz surface (Johnson & Logan, 

1996).    

Aside from electrostatic forces, hydrophobicity is another driver for microbial adsorption. 

In a study by Yee et al, 2000, it was shown that microbes adsorbed to corundum, even 

though their cell surfaces were neutrally charged and the corundum surface was positively 

charged. It was hypothesized that since the cell surface was hydrophobic, it was attracted 

to the nearest non-aqueous phase, the corundum, despite the lack of electrostatic attraction 

between them (Yee et al., 2000). pH is also the controlling variable for hydrophobic 

attraction to a mineral surface. As ligands protonate and deprotonate with changing pH, 

they become respectively hydrophobic or hydrophilic (Konhauser, 2007; Yee et al., 2000). 

Thus, microorganisms may transition from hydrophobic attraction → electrostatic 

repulsion → electrostatic attraction to a mineral surface as the pH rises (Konhauser, 2007). 

For example, a microbe at low pH is protonated and hydrophobic, so it attaches to a mineral 
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surface via hydrophobic attraction. As the pH rises, the microbe becomes increasingly 

deprotonated. This reduces hydrophobicity, causing the microbe to detach from the mineral 

surface. However, as pH continues to rise, the microbes surface becomes increasingly 

anionic, electrostatic attractive forces increase, and the microbe re-adsorbs to the site 

(Konhauser, 2007).   

Irreversible Attachment & Biofilm Formation 

If a reversibly attached microbe is not carried away by shear forces, and is in a desirable 

location, it will use biological means to more permanently adhere itself to the surface (Ginn 

et al., 2002; Jucker et al., 1998; Konhauser, 2007). Microorganisms have many unique 

ways to initiate a permanent attachment (O'Toole et al., 2000). Most microorganisms 

utilize extracellular polymeric substances (EPS) to affix themselves to a surface (Ginn et 

al., 2002; Konhauser, 2007). It has been shown in the literature that the initial state of 

reversible adhesion to a surface triggers genes that regulate EPS (Davies & Geesey, 1995). 

Other mechanisms include the use of pili, fibrils, holdfasts, lipopolysaccharides (LPS), etc., 

to adhere to the surface (Deweger et al., 1987; Doig et al., 1988; Konhauser, 2007; Makin 

& Beveridge, 1996). It is interesting to note that starving microorganisms (i.e., 

microorganisms repopulating an oligotrophic environment) are more likely to adhere 

permanently to a surface (Konhauser, 2007). When starving, microbes shrink in size, but 

produce more EPS, making them more adhesive (Konhauser, 2007). This is ecologically 

advantageous, as there are typically more organic and inorganic compounds that can be 

used for growth accumulated at solid-liquid interfaces (Dawson et al., 1981; Konhauser, 

2007). Once adhered to the soil grain, microorganisms such as P. aeruginosa can travel 

using pili to push or pull themselves across the surface (Boyd & Chakrabarty, 1994; Wu & 
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Kaiser, 1995). Others use a twitching motility to facilitate surface travel (Semmler et al., 

1999).  Surface transport is utilized by some microbial species to initiate biofilm formation, 

as they congregate into large clusters (O'Toole & Kolter, 1998). These clusters may then 

travel as a unit across the surface, potentially to a more favorable location (O'Toole & 

Kolter, 1998). 

Once attached to the surface, the microorganisms adapt to life in a biofilm (O'Toole et al., 

2000; Probst et al., 2013). Primarily, production of EPS is increased dramatically 

(Konhauser, 2007). In fact, mature biofilms may be upwards of  90% composed of EPS 

(Christensen & Characklis, 1990). Aside from adhering the microbes to a surface (Fig 2.7), 

EPS provides several vital services. These services include: attracting and storing organics 

and inorganics, buffering environmental stressors such as temperature and pH, and 

allowing for mixed communities to live in close proximity (Decho, 2000). Microbes living 

in biofilms also exhibit increased antibiotic resistance, resistance to UV light, increased 

rates of genetic exchange, altered biodegradative capabilities, and increased secondary 

metabolite production (Annachhatre, 1996; Brazil et al., 1995; Gross & Logan, 1995; 

Karamanev et al., 1998; Marshall et al., 1971; Moller et al., 1998; Sarra et al., 1999; 

Wolfaardt et al., 1994; Zobell, 1943). Once a  biofilm is formed, it increases straining and 

interception, and thus instigates its own growth (Little et al., 1997). In a column experiment 

by Morales et al, 2007, it was found that colloid transport through porous media was 

heavily influenced by the presence of biofilms. As the biofilm matured with time, colloid 

breakthrough concentrations decreased, until complete retention was observed by three 

weeks (Morales et al., 2007). After some time, microorganisms may slough off the biofilm, 

forming large pulses travelling through the pore water (G. O'Toole et al., 2000). Although 
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little is known of the regulatory pathways that result in the release of individual microbes 

from the biofilm, the overexpression of the enzyme alginate lysase has been correlated with 

increasing the rate of detachment from some biofilms (Boyd & Chakrabarty, 1994).  

2.7 Summary  

Little is known regarding the microorganisms in soils contaminated specifically with coal 

tar.  However, the dominant microorganisms in the pore water within soils contaminated 

by similar hydrocarbons have been documented. NAPL thermal remediation technologies, 

such as STAR, operate at temperatures that can cause significant die-off of microbial life. 

Further, these technologies may alter the physical structure and chemistry of a soil during 

 

Figure 2.7: A Biofilm Formed on a Feldspar Grain. Several bacteria (b) live on the 

surface, residing within the EPS (Konhauser, 2007). 
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treatment, making complete microbial repopulation challenging. There is a strong 

understanding regarding the general, various mechanisms of subsurface microbial transport 

and soil colonization.  In addition, studies have explored the microbial repopulation of 

near-surface soil following brush and forest fires.  However, little information exists 

regarding repopulation of treated and fringe zones following the in situ thermal remediation 

of coal tar and other recalcitrant NAPLs. This highlights a gap in knowledge regarding the 

long-term effects that STAR and other in situ thermal technologies have on subsurface 

microbiology. Understanding the effects of STAR on microbial communities will play an 

important role in the success of ecosystem recovery following remediation, reaching 

acceptable levels of soil health after remediation, and implementing microbially-mediated 

natural attenuation of contaminants in untreated fringe zones.   
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3 Microbial Abundance and Community Structure in the 
Subsurface Before & After In Situ STAR  

3.1 Introduction 

Exposing soils to high temperatures (>100oC) in situ is a common practice during thermal 

remediation of subsurface contaminants, resulting in partial or complete sterilization of microbial 

life within impacted soils (Krauter et al., 1996; Pape et al., 2015). Microbial communities within 

the subsurface provide a myriad of ecosystem services including nutrient and carbon cycling on 

a local and global scale, soil humus formation and enhancement of soil structure (Bordenave et 

al., 2013; Chapelle et al., 2002; Hubert et al., 2012; Kennedy & Smith, 1995; Simkus et al., 

2016). Therefore, microbial repopulation following soil sterilization by thermal remediation is 

both desirable and advantageous. Further, since the soils directly above and downgradient from 

the zone targeted for thermal remediation may be involved with natural attenuation of residual 

free phase and dissolved contaminants, heat induced microbial die-off in these regions may slow 

or halt natural progression to complete remediation.     

The success of microbial repopulation within a previously heat-treated volume of subsurface is 

largely dependent on the transport, retention, and growth of microorganisms within the thermally 

impacted soils. Many factors influence microbial transport, attachment, and growth within the 

subsurface, including nutrient and organic matter availability, various physical and chemical soil 

properties, and groundwater chemistry (Debano et al., 1976; Fletcher et al., 2011; Konhauser, 

2007; Krauter et al., 1996; Pape et al., 2015; Richardson et al., 2002; Roland et al., 2008). These 

and other factors may be significantly altered by thermal remediation, depending on the 

magnitude and duration of heating experienced by the soil (Neary et al., 1999). It has been shown 
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that at temperatures <500 oC, soils retain their physical structure and chemical properties, while 

soils exposed to temperatures >500 oC tend to experience degradation and loss of organic matter 

and nutrients (Pape et al. 2015; Debano 1981; Weast 1988). Because of this, soils that are heated 

below this threshold will often experience a rapid and robust microbial repopulation event when 

cooled, at times even exceeding pre-heating microbial abundance,  while soils heated above it 

are more likely to exhibit microbial repopulation to a fraction of original microbial abundances 

after cooling (Acea & Carballas, 1996; Prieto-Fernandez et al., 1998; Vazquez et al., 1993). 

In situ STAR (Self-sustaining Treatment for Active Remediation) is a novel thermal remediation 

technology which utilizes smoldering combustion to remove targeted NAPL (Non – Aqueous 

Phase Liquid) pools from the subsurface (Scholes et al. 2015). During in situ STAR operation, 

groundwater is initially boiled away around an ignition well through the injection of hot air. 

Then, once temperatures in the dry, NAPL contaminated soil reach a critical temperature, the 

NAPL begins to smoulder. At this point, the heater in the ignition well is turned off, and ambient 

temperature air is continuously injected down the well.  This propagates the smouldering front 

radially outwards from the well screen at a rate on the order of 0.5 m/day. Between the front and 

the well remains a zone of dry, NAPL-free soil. Temperatures during in situ STAR typically 

range between 400 and 1200oC (Pironi et al., 2011; Scholes et al., 2015; Switzer et al., 2009). 

Considering that the temperatures as low as 170oC for 1 hr are recommended for sterilization of 

surgical instruments (Rutala et al., 2008; Rutala & Weber, 2004), it is hypothesized that STAR 

temperatures are sufficient to sterilize the soil which it treats. Once STAR is complete and the 

air pressure is released from the injection well, groundwater imbibes the dry, treated zone. It is 

hypothesized that this groundwater could carry microorganisms which may repopulate the soil. 

However, given the potential loss of all organic matter and soil nutrients, it is possible that 
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microbial repopulation of such treated soils in the short term is challenging. Such hypotheses 

have motivated this work. 

In a recent study by Pape et al. (2015), coal tar-contaminated soil was smouldered in the 

laboratory using a standard STAR bench-top column. These soils were then placed into 

microcosms and inoculated with microorganisms and a solution of compost, orange juice, and 

deionized water. After eight weeks of incubation at 27oC, soils were analyzed for total bacteria. 

No additional organic matter, nutrients or bacteria were added during the eight weeks. The study 

found that bacterial concentrations in the STAR-treated soil were 2-3 orders of magnitude less 

than those in a non-contaminated, unheated control soil (i.e., on the order of 105 gene copies/g 

and 108 gene copies/g in the smouldered and control soils, respectively). After analysis of the 

soil chemistry and microbial characteristics, it was hypothesized that the removal of organic 

matter and nutrients from the soil following STAR resulted in the stunted microbial repopulation 

(Pape et al., 2015). It is important to note that this occurred despite the initial addition of organic 

matter solution, further suggesting that a single loading of organic matter is not sufficient to 

facilitate complete microbial recovery. However, microbial repopulation of STAR-treated soil 

in the field (i.e., in situ) has the advantage of continuous nutrient and organic matter delivery by 

the groundwater into the treated zone. Therefore, depending on the quantity and quality of 

organic matter and nutrients made available by the groundwater, microorganisms may be able to 

repopulate STAR-treated zones to greater concentrations than possible in a microcosm study. 

The goal of this work is to better understand the fate of microorganisms in the context of in situ 

STAR. This includes the objectives of (1) quantifying the rate and extent of microbial 

repopulation of subsurface soils at a STAR-treated site, and (2) determining the in-situ processes 
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that support microbial transport and repopulation. To answer these objectives, an integrated set 

of field and laboratory studies were conducted. An 8-month field study was performed analyzing 

soil and groundwater obtained from a former industrial site contaminated with coal tar. Bacterial 

concentration and community structure were measured via quantitative Polymerase Chain 

Reaction (qPCR) and Illumina sequencing, respectively, on samples taken before and up to six 

months after in situ STAR was applied. Particular attention was paid to differences between 

subsurface zones that experienced smouldering and the adjacent zones that were not remediated 

but may have been heat-affected. In parallel, a two-month, laboratory, multi-column experiment 

was conducted that employed soils from the field site, with sterile groundwater flowing through 

coal tar-contaminated soil before flowing through STAR-treated soil. This experiment was 

repeated with amendments in the groundwater, exploring how biostimulation affects microbial 

repopulation. qPCR and Illumina sequencing were performed on the groundwater throughout the 

experiment as well as on the column soil afterwards. Taken as a whole, this work provides novel 

insights into the microbial communities present in a heavily coal tar-contaminated soil and how 

they respond within and adjacent to STAR-treated zones within the first few months after 

remediation. 

3.2 Site Description 

The site, an industrial area previously operated from the early 1900s until 1983, is located along 

the Passaic River in New Jersey, USA (Fig A1, Appendix A). The site is composed of two 

relatively permeable units: an upper fill unit and lower alluvium sand layer, separated by a 

confining clay “meadow mat” layer of variable thickness (Scholes et al., 2015). Both the deep 

sand and shallow fill layers are contaminated with coal tar DNAPL (Scholes et al., 2015). The 
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water table at the site is roughly 1m below ground surface (bgs) (Scholes et al., 2015). The 

average hydraulic conductivity in the fill and alluvium units are 6.8 × 10–4 and 1.4 × 10–4 m/s, 

respectively (Scholes et al., 2015) 

In situ STAR was applied in the North-West corner of the site during November 1-5, 2015, in 

heavily contaminated soils directly under a former industrial waste lagoon. Six ignition wells, 

otherwise known as ignition points (IPs) were used to initiate smouldering in the alluvium sand 

over a depth interval of 6-9 m bgs. Two of these IPs, IP03 and IP06, located approximately 6.1 

m apart from each other, were targeted for this study (Fig 3.1).  
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Figure 3.1: Soil coring and groundwater sampling locations. Pre-STAR cores 

are denoted by black circles, while IP03 and IP06 are red circles. Stars indicate 

upgradient (green), study area (red) and downgradient (yellow) groundwater 

sampling events. 
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3.3 Materials & Methodology 

3.3.1 Soil Coring & Groundwater Sampling 

Direct push soil coring was performed before and up to six months after STAR treatment (Table 

3.1). Prior to STAR, cores were taken from contaminated soils under the same waste lagoon 

approximately 14 m South-East of IP03 and IP06 (Fig 3.1). Following STAR, coring was 

performed within a ~0.3 m radius around each of IP03 and IP06 (Fig A 2, Appendix A). Once 

taken 

out of 

the 

casing, 

the 

cores 

were 

logged, 

photographed, and cut via hacksaw into ~0.3 m sections. Soil from the pre-STAR cores in the 

depth interval of 7.9-8.2 m bgs was extracted, homogenized and sealed in sterile glass jars on 

site. Post-STAR core sections from 6.1-9.1 m bgs were kept intact and wrapped in saran wrap to 

minimize handling in the field. All core sections were labeled and packed into coolers with 

frozen gel packs, which were then shipped to the University of Western Ontario (UWO), 

London, Ontario, Canada, for further analysis. Note that, due to operational restrictions, no 

Table 3.1: Timeline of Pre- and Post-STAR Coring Events. 

Timeline Date Days After STAR Cores Taken 

Prior to STAR Aug 25, 2015 -72 2 

STAR Treatment Nov 1-5, 2015 0 N/A 

Post STAR T1 Dec 2, 2015 27 2 

Post STAR T2 Jan 31, 2016 87 2 

Post STAR T3 Mar 22, 2016 138 2 

Post STAR T4 Apr 27, 2016 174 2 
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coring was permitted during or immediately after STAR (i.e., when the soil was dry prior to 

groundwater re-infiltration). 

At UWO, pre- and post-STAR cores were stored in a cold room at 4 oC, and were subsampled 

within a maximum of 5 days following arrival. Post-STAR soil cores were visually delineated 

into three zones of interest: (a) untreated, (b) transition and (c) treated soil (Fig 3.2). There is a 

clear contrast between the red/brown colour of the treated soil and the black/grey of the untreated 

 

Figure 3.2: Work flow diagram for DNA analysis of (a) untreated, (b) transition 

and (c) treated soil zones in a typical core. (1) Homogenization of each zone is 

followed by (2) subsampling into 0.25g and 10g aliquots, which undergo (3) DNA 

extraction, resulting in (4) a DNA sample for each subsample. These DNA samples are 

then (5) split into aliquots for downstream qPCR and Illumina sequencing. 
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soil, with the transition zone being taken as the interval separating the two. All soil samples 

obtained for analysis were taken well within the respective zone (i.e., at least 0.5m from the 

zones upper and lower boundaries). Each sample taken was approximately 0.15 m subsection of 

core, which was then homogenized in previously autoclaved plastic bottles (Steps 1a-1c; Fig 

3.2). The homogenization process was performed in an anaerobic glove bag. Once homogenized, 

triplicate subsamples weighing ~0.25 g were taken and placed into individual sterile tubes (Step 

2; Fig 3.2). Because pre-STAR soil was homogenized in the jars they arrived in, subsamples 

were taken directly from the jars. All samples were then frozen at -20 oC until DNA extraction 

(Step 3; Fig 3.2).  Following DNA extraction, aliquots of DNA from each sample replicate (Step 

4; Fig 3.2) were analyzed for total bacteria via quantitative Polymerase Chain Reaction (qPCR) 

analysis and community structure was analyzed via Illumina sequencing (Step 5; Fig 3.2). 

Initially, all soil samples were 0.25g. However, it was found that the bacterial concentrations of 

some samples were near or below the qPCR limit of quantification (LOQ) (Appendix A, Table 

A4). Therefore, a 10g subsample was subsequently taken from each field sample (Step 2, Fig 

3.2) and analyzed.  

Groundwater samples were collected from IP06, as well as from locations upgradient and 

downgradient of the STAR treatment zone (Fig 3.1). All groundwater samples were collected 

during a single sampling event which took place ~7 months following STAR treatment. Due to 

their proximity to the edge of the site, upgradient samples were assumed to be characteristic of 

background groundwater entering the site. At each sampling location, duplicate samples of ~950 

mL were collected into sterile plastic bottles via peristaltic pump, with dedicated tubing used for 

each sample. Samples were only taken after substantial well purging (i.e., 3 to 5 well volumes) 

or until each groundwater parameter changed by less than 10% over time during continuous 
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monitoring. Groundwater parameters of pH, temperature, Oxidization/Reduction Potential 

(ORP), Dissolved Oxygen (DO) and specific conductance were measured every 5 minutes during 

purging (Appendix A, Tables A1-A3). It is noted that a true “upgradient” groundwater sample 

would be directly West from the study area, but this was not possible. In this case, the 

“upgradient” sample was taken from the nearest practical location, which was slightly North of 

the treatment zone (Fig 3.1). Nevertheless, it is still considered representative of groundwater 

near the influent boundary of the site.  

3.3.2 Field Study: Soil Structure, Water Content, and Organic Matter 
Characterization 

All field samples (i.e., untreated, transition and treated soil, as well as groundwater) were 

gravimetrically analyzed for water and hydrocarbon content (BSI, 1995). Precise details 

regarding the procedure are described in method A1, Appendix A.  

The grain size distribution of alluvium sand from the STAR-treated zone was characterized by a 

mechanical sieve. Grains passing through the no. 200 sieve were further analyzed via a 

hydrometer test, which was monitored over a two-day period. 
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3.3.3 Column Study: Experimental Setup 

In both experiments, a dual flow through column set up was set up (Fig 3.3). The two columns 

were packed with site soil using one of the field study cores acquired adjacent to IP06. Column 

A was packed with the coal tar contaminated soil from the untreated zone, while Column B was 

packed with soil taken from the center of the STAR treated zone. This setup was intended to 

 

Figure 3.3: Experimental Setup for Column Studies 1 & 2. Artificial groundwater 

flows from the anaerobic reservoir through the untreated (residually contaminated) 

soil (A) then through the STAR treated soil (B).  Effluent samples from either column 

was acquired in an electric cooler. All nitrogen lines shown in red. Items boxed in red 

(Syringe pump with electron donor and addition of Terminal Electron Acceptor 

[+TEA] to the reservoir) only apply to Experiment 2, while all other items were 

identical in both experiments 1 & 2. 
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mimic conditions on site where groundwater would flow through contaminated, up-gradient 

regions prior to entering the STAR-treated zone. It was hypothesized that any microorganisms 

entering the STAR-treated soil would need to enter the groundwater upgradient and be 

transported by advection.  

To achieve this, sterile artificial groundwater (AGW) was pumped (Masterflex LS) from an 

anaerobic reservoir through the untreated soil in Column A and then through the STAR-treated 

soil of Column B. A flow rate of 0.30 mL/min, corresponding to a pore-water velocity of 0.042 

cm/min, was chosen to match the average pore water velocity measured at the field site. 

Sampling valves for the effluent from either column were located in an electric cooler (Fig 3.3). 

Tracer tests were performed on Column B only in both experiments, since Column A was kept 

as pristine as possible until the experiment commenced. Precautions were taken to ensure the 

equipment and AGW were sterile All tubing, fittings, and the influent reservoir containing the 

AGW were autoclaved prior to experimental setup, while the glassware was baked at 220oC for 

24 hrs to ensure sterility. Plastic column parts which could not be heat treated were rinsed with 

70% EtOH and allowed to air dry prior to assembly. As a further precaution, an Acrodisc syringe 

filter (0.45 um membrane) was attached to the N2 feed line, to ensure no microbial life could 

enter the system through the N2 gas feed. Each experiment was run for ~50 days. 

Experiment 2 was set up identically, except that lactate and sulfate were added as electron donor 

and acceptor compounds, respectively (Fig 3.3). Sulfate was continuously supplied in the AGW, 

while lactate solution was administered five days per week into the tube feeding Column A (Fig 

3.3). At the beginning of each week, two sterile 60 mL syringes were filled with the donor 

solution and placed on the syringe pump (Kd Scientific). Prior to drawing the donor solution into 
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the syringes, the solution and the syringes were left to equilibrate in an anaerobic box for 2 hr to 

remove the oxygen. The tubing between the syringe pump and the column influent line was 

primed by running the syringe pump until donor solution was seen to drip out of the end of the 

tubing. At this point, the tube was attached to a 3-way valve in the influent line of column A. 

The 3-way valve was then opened to allow the lactate pulse to enter the column, while flow from 

the AGW reservoir was shut off. The flow rate from the syringe pump was matched to the normal 

flow rate of the system to ensure continuity and evenness of flow. After ~20 mL of donor solution 

was injected, the syringe pump was shut down, and inflow from the AGW reservoir was 

resumed. 

3.3.4 Column Study: Materials & Reagents  

AGW used for experiments was modified from the recipe of Middeldorp et al. (1998). The AGW 

contained: Na2HPO4
.2H2O, 0.20 mM; KH2PO4, 0.51 mM; Na2SO4, 0.06 mM, NaHCO3, 1 mM; 

NH4Cl, 0.93 mM; MgCl2, 0.05 mM; MnCl2, 0.02 mM; NaCl, 0.12; CaCl2 1 mM; demineralized 

and sterile water 30 L from a UV water dispenser (Barnstead EasyPure II). During the second 

experiment, concentrations of Na2SO4 were elevated to 0.76 mM. Upon mixing of the recipe, the 

entire carboy was autoclaved for 1 hr. Then, the carboy was purged with N2 for ~1 hr while 

vigorously stirred (1000 RPM), after which time the purge was turned off and the headspace was 

kept under positive pressure with N2 to ensure that the AGW was completely anaerobic 

throughout the experiments. The pH of the AGW was measured continuously (Orion 5-star 

probe, ThermoElectron Corp.), while dissolved oxygen (DO), temperature, and 

electroconductivity (EC) were measured continuously via a YSI Model 85 probe. 
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During Experiment 2, lactate was added 5 times per week throughout the experiment as 11.1 

mmol/L of sodium lactate mixed with AGW. Lactate concentrations were chosen to be 1000 

mg/L (11.1 mmol/L) based on a range of literature values (Abdelouas et al., 1998; Anid et al., 

1993; Carrey et al., 2014; Davis et al., 2004; Ebihara & Bishop, 2002; Handley et al., 2012; 

Ikuma & Gunsch, 2013; Joner et al., 2002; Macur et al., 2001; Mosher et al., 2012; Nelson et al., 

2012; Peyton, 1996; Tokunaga et al., 2003; Tront et al., 2008; Williams et al., 2005) (Table B 2, 

Appendix B). Lactate donor solution was prepared by dissolving a known mass of Na-Lactate 

into AGW, autoclaving for 30 min, and storing the cooled solution in a refrigerator. Sulfate and 

lactate concentrations in column B effluent were measured using Ion Chromatography (Dionex 

ICS-2100 equipped with an AS11 column). 

Prior to both experiments, an autoclaved ~300 mg/L Br- solution was used as a conservative 

tracer to examine the flow characteristics of Column B. Tracer effluent was collected in 4 mL 

fractions by a fraction collector (Spectra/Chrom CF-1) and analyzed via High Performance 

Liquid Chromatography (HPLC). Following the tracer test, 5 PVs of autoclaved deionized water 

and 1 PV of autoclaved AGW were pumped through the system. 

3.3.5 Column Study: Column Preparation  

The columns used were standard glass (Chromaflex) barrels with a 4.8 cm inner diameter (I.D.) 

and 15 cm length. Column barrel bottoms were sealed via PTFE o-rings attached to the PTFE 

end fittings, while the tops were fitted with Chromaflex flow adaptors, which enabled the 

columns to be filled with porous media to any desired height.   

In both experiments, Column A was packed in three layers: (1) a 1cm layer of sterile coarse silica 

sand (2), a 10 cm layer of the contaminated, untreated soil from the site mixed with AGW as a 
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slurry, and (3), a final 1 cm sterile coarse grain sand cap. Columns were wet packed in a method 

modified from Oliviera et al. (1996) by pouring an initial small amount of sterile AGW into the 

base of the column, and adding 1cm layers of sand/AGW or soil/AGW slurry while stirring in 

the column with a sterile glass rod.   

Column B was packed with ~250g of STAR-treated site soil in both experiments. A large beaker 

of STAR-treated soil from the site was placed in the oven at 220oC for 24 hrs in order to dry and 

sterilize it, mimicking conditions immediately after treatment. Once cool, soil was dry packed 

by raining it directly from the oven treated beaker from a set height through a series of coarse 

sieves in a method similar to that described by Rad & Tumay (1987). STAR treated soil was 

capped on the effluent end of the column by a 1cm layer of sterile coarse silica sand. In both 

experiments porosity of the site soil in Column B was duplicated at 39.5 ± 0.2%. In both 

experiments, 1 Pore Volume (PV), accounting for the site soil and the coarse-grained sand, was 

calculated to be 82.30 ± 1.06 mL. Once packed, ~10 PVs of CO2 gas were flushed through the 

column. This was followed by ~10 PVs of autoclaved anaerobic, demineralized water, dissolving 

any residual CO2 remaining in the pores, resulting in complete saturation. 

3.3.6 Column Study: Sampling Procedures 

Effluent sampling timelines for both column studies were similar. During Experiment 1 (not 

amended), Column B effluent was sampled over a ~24 hr period every Monday and Friday, while 

Column A effluent samples were collected over ~6 hrs on Wednesdays for the first 4 weeks, and 

over ~10 hrs for the last 3 weeks. Sampling times were chosen in order to acquire a large enough 

effluent sample (i.e., >100mL), given the low flow rate (0.3 mL/min). Sample sizes needed to 

be large to collect enough biomass to measure potentially low microbial concentrations emerging 
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from the soil. Column B had a longer sampling time than Column A since it was possible that 

much of the influent bacteria might be filtered by the Column B soil, reducing effluent 

concentrations. Sample sizes from Column A were increased in Experiment 1 at later time in 

case bacterial depletion over time in the column caused lower effluent concentrations. In 

Experiment 2 (amended), sampling times were the same, except samples from Column A were 

kept at ~6 hrs for the duration of the experiment. Due to the sampling of Column A, there was 

no flow through Column B for ~5% of total column operation in both of the 50 day experiments. 

All sample bottles were custom made by drilling three holes in the lid of a 700 mL autoclavable 

plastic bottle. A 20cm length of autoclavable tubing was inserted through one of the holes down 

into the bottom of the bottle. The cap and excess tubing on the outside of the bottle were then 

 

Figure 3.4: Sterivex filtration of biomass from column effluent sample. Nitrogen 

(N2) lines shown in red.  

 

 

 

. 
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covered with tin foil, autoclaved, and allowed to cool. Following autoclaving, all contact with 

the sample bottle was done using disinfected (70% EtOH) blue nitrile gloves. During a standard 

sampling event, the tin foil was removed and the bottle was placed in the electric cooler. A line 

from the effluent sampling valve was inserted into one of the remaining two holes and a N2 line 

was fed into the other (Fig 3.4). Effluent sampling commenced ~10 min after N2 flow began in 

order to ensure an anaerobic environment was present in the bottle during the sampling event. 

Once the allotted time for sampling was complete, the effluent sampling valve was shut off, 

diverting flow back to Column B (Column A sampling) or waste (Column B sampling) (Fig 3.4). 

A sterivex filter (0.45 um membrane) was then attached to the previously autoclaved tubing (Fig 

3.4). The entirety of the sample was then passed through the Sterivex filter at a flow rate of ~2 

mL/min using a peristaltic pump (Masterflex). Filtered volume was determined by collecting the 

filtered sample in a graduated cylinder (Fig 3.4) Samples continued to remain under N2 stream 

until filtering completion to ensure anaerobic conditions were met. During Experiment 2, 3 mL 

aliquots were taken from the graduated cylinder to measure lactate and sulfate concentrations. 

Sample collection and sterivex filtering were performed within the electric cooler to ensure that 

the sample remained at low temperatures until it was completely filtered. Filters and effluent 

liquid samples were immediately transferred into a -20 oC freezer after acquisition.  

In both experiments, soil samples representing pre-experimental conditions were acquired. From 

Column A, duplicate 0.25g samples and a single 10g sample were taken. From Column B, a 10g 

sample of the STAR treated soil was taken. All pre-experimental column samples were taken 

from the soil stocks used to pack the columns. For Column A samples, this entailed sampling 

from the beaker of soil slurry used to wet pack the column (0.25g samples) or from the soil prior 

to forming the slurry (10g samples). For Column B, this was accomplished by packing the oven 
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sterilized, STAR treated soil into 2 identical and sterile columns, one of which was the 

experimental column, and the other of which was used to take the 10g sample. 

After the experiments were complete, soil from columns A and B were pushed out of the glass 

column barrels in 2 cm increments. Each subsection was then placed into individual sterile 

plastic bags and homogenized. Following homogenization, duplicate soil aliquots of ~0.25 g 

were subsampled into tough tubes placed in the freezer at -20oC. Subsequently, fractions of each 

subsection from Column B were combined and homogenized, creating a single sample 

representing the whole column. A ~10g subsample of this was acquired and placed in the freezer 

at -20oC. Sampling and homogenization of samples was performed in an anaerobic glove bag. 

3.3.7 Field and Column Studies: DNA Extraction, Analysis & Statistics 

DNA was extracted from sterivex filters, site soil and column soil samples using the PowerSoil® 

DNA Kit (MoBio Laboratories, Inc.) according to the manufacturer’s instructions. Once 

extracted, DNA was eluted into sterile qPCR grade water and stored at -80 oC.  

Total abundance of 16s rRNA in each DNA sample was measured by a quantitative Polymerase 

Chain Reaction (qPCR) thermocycler (BioRad). All qPCR setup was done in a laminar flow 

hood with pipettes dedicated to qPCR. The flow hood, pipettes and all other instruments involved 

in qPCR prep work were UV treated for ~1 hr prior to work. Each sample was run in duplicate, 

and each qPCR run contained blanks of the water used during DNA extraction.  

100ng Aliquots of the extracted DNA samples were sent to the Genome Quebec and McGill 

University Innovation Centre. In Genome Quebec, the 16S rRNA gene library preparation was 

constructed using the primer sets 926fw-5’-AAACTYAAAKGAATWGRCGG and 1392rw-5’-
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ACGGGCGGTGWGTRC to target both general bacteria and general archaea (Kunin et al., 

2010). The amplified DNA products were subject to quality control. High throughput sequencing 

was conducted to the pooled samples (84 from this study, along with 60 samples from other 

research) using the Illumina MiSeq technology. 

Demultiplexed (i.e., reads batched based on samples) sequence reads were provided by Genome 

Quebec. Analysis of the Illumina MiSeq sequencing data was performed using the open source 

software package QIIME version 1.9 (http://qiime.org/), which allowed the analysis of high 

throughput community sequencing data (Caporaso et al., 2010). Data Quality Assurance/Quality 

Checking (QA/QC) and analysis were performed by the Biozone research facility at the 

University of Toronto (Appendix D, Method D1).  

3.3.8 Assessment of Soil Sterilization by STAR 

Cores cannot be taken immediately after STAR in the field due to residual heat and pressure in 

the treated subsurface. The effect of STAR on bacterial concentrations immediately after 

treatment was evaluated by creating comparable STAR treated site soil in the laboratory using 

standard ex situ smouldering column experiments (i.e., Pironi et al., 2011). The treated soil was 

removed clean and dry within a few hours after the test. Here, agar plates were employed for 

observing growth of colony forming units (CFU). Pre-treatment site soil with 11% coal tar 

saturation and 21% coal tar saturation were also plated and analyzed for CFUs.  

Treated and untreated soils were stored at room temperature at 15% moisture content in constant 

light for 24 hrs, after which time they were plated. To prepare the soil for plating, a stock solution 

of soil, deionized (DI) water and NaCl was created by mixing 1 g of soil with 9 mL of 0.85% 

NaCl solution. log order serial dilutions of the stock solution were created, and duplicate plates 
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were streaked with 0.1 mL of each dilution. All plates were then incubated for 24 hrs at room 

temperature to allow for CFU formation. 

3.4 Results  

3.4.1 Field Study: Impact of STAR on In Situ Hydrocarbon 
Concentrations 

Within the targeted treatment zone, STAR was observed to reach temperatures of ~480oC at 

thermocouples placed ~0.5m from each ignition point, indicating the in situ smouldering of coal 

tar (Fig A3, Appendix A). In both cases, smouldering temperatures were maintained for 

approximately 24 hours as the reaction propagated outwards from the ignition point and 

consumed the coal tar mass in its path. Figure 3.5 presents example soil cores taken adjacent to 

the two ignition points. It reveals an obvious contrast between the red (iron-oxidized) treated soil 

and the black untreated soil above. Such results are typical of in situ STAR treatment, which 

targets a specific treatment thickness in the subsurface (Scholes et al., 2015).  

Pre-STAR soil cores (locations A and B, Fig 3.1) exhibited 13,000 mg/kg and 30,000 mg/kg of 

hydrocarbons respectively (Table A4, Appendix A); this is representative of intermediate to 

heavy coal tar DNAPL contamination and is typical of the areas targeted for treatment on site 

(Scholes et al., 2015). The STAR-treated zone exhibited hydrocarbon concentrations of 1,000 

mg/kg (IP03) and 2,000 mg/kg (IP06) 27 days after STAR (i.e., at the first coring event). Over 

the next four months of the field study, hydrocarbon concentrations were consistently low in the 

STAR-treated zone, averaging 3,000±500 mg/kg (±Standard Error [SE]) (Calculated from values 

in Table A4, Appendix A). The slight increase is likely due to resaturation with contaminated 

groundwater from surrounding untreated zones. Groundwater samples within and downgradient 
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from the treated zone exhibited hydrocarbon concentrations of 4,000 mg/L and 2000 mg/L 

respectively, compared to up-gradient concentrations of 500 mg/L. In all soil cores, an untreated 

zone was identified (black/grey colour) as well as the transition zone between it and the STAR-

treated zone. As illustrated in Fig. 3.5, some cores exhibited a sharp boundary between treated 

and untreated zones, while others exhibited a more gradual transition zone. The transition and 

untreated zones at both ignition locations exhibited average hydrocarbon concentrations of 

6,000±1,000 mg/kg and 10,000±1,000 mg/kg, respectively (Calculated from values in Table A4, 

Appendix A). While nearly all transition zone soils had hydrocarbon concentrations under 

10,000 mg/kg, the transition zone soils cored 138 days post-STAR at IP06 exhibited 15,000 

mg/kg (Table A4, Appendix 4).  
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Figure 3.5: Soil cores revealing the contrast between the STAR-treated and 

untreated soil zones. (Top) Core from IP06 obtained 138 days after STAR, exhibiting 

a sharp transition between treated and untreated zones (A); (Bottom) core from IP03 

also obtained 138 days after STAR exhibits a more gradual transition between the two 

zones. The total length of core shown is ~1.5m, with depth below ground surface 

increasing to the right 
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3.4.2 Field Study: qPCR Results 

Comparison of 0.25g vs. 10g Soil Subsamples    

In the majority of samples, bacterial concentrations were greater when estimated by DNA 

extracted from 10g of soil than from 0.25g of soil (Fig 3.6). Further, nearly all the 10g samples 

exhibit bacterial concentrations above their limit of quantification (LOQ), while many of the 

0.25g samples have concentrations that are near or below their LOQ (Fig 3.6).  

  

Figure 3.6: Pre- and Post-STAR soil bacterial concentrations from the field study as 

estimated by 0.25g vs 10g soil samples. A 1:1 ratio between 0.25g and 10g concentrations is 

delineated by the solid line, while the limit of quantification (LOQ) for 0.25g and 10g 

samples is shown by the dotted lines. Samples skew to the right, indicating that 10g samples 

estimate higher bacterial concentrations than 0.25g samples of the same soil. Further, many of 

the 0.25g samples are below the LOQ, while nearly all the 10g samples exhibit concentrations 

far above the LOQ.   
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Extracting DNA from 10g of soil enhances the accuracy of the bacterial concentration 

estimations by (a) removing much of the uncertainty associated with heterogeneity through 

acquisition of larger soil samples, (b) losing smaller proportions of DNA during extraction by 

virtue of larger handling volumes, and (c) allowing for extracted DNA to be concentrated up to 

10 times if extracted DNA concentrations still remain to close to the LOQ. Therefore, bacterial 

concentrations estimated by the 10g samples are considered to be more accurate and are the focus 

of the data analysis and discussion for the rest of this study.  

In Situ Bacterial Concentrations 

In the Pre-STAR A and pre-STAR B soils, bacterial concentrations of 2×106 gene copies/g and 

3×108 gene copies/g were observed, respectively (Fig 3.7). It is interesting to note that the 

bacterial concentrations in the pre-STAR soils were robust, although varying by several orders 

of magnitude between locations A and B. While few studies have quantified microbial 

concentrations at coal tar sites specifically, high concentrations of bacteria are often found 

adjacent to pure phase NAPL (Capiro et al., 2015; Mueller et al., 1989; Philips et al., 2012). 

Therefore, it is likely that similar conditions also exist at this site. 

Immediately following STAR, soil in the treated zone is expected to be sterile.  This was 

supported by the laboratory finding that 0 CFUs formed after 24hr incubation on agar plates 

streaked with STAR treated soil, compared to 2×107 CFUs formed on plates streaked with site 

soil exhibiting 11% and 21% coal tar saturation. Only 27 days following STAR at the field site, 

bacterial concentrations in the treated zone at IP03 and IP06 rebounded to 1×106 and 7×106 

gene copies/g, respectively (Fig 3.7). After 174 days, bacterial concentrations in the treated zones   
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at were an order of magnitude greater (8×106 gene copies/g and 2×107 gene copies/g at IP03  

 

Figure 3.7: Bacterial concentrations (gene copies/g of wet soil) in untreated (purple), 

transition (red) and treated (green) zone soils at IP03 and IP06. Darkening of the bars 

indicates progression of time following STAR. Bars represent bacterial concentrations 

within 10g samples. The Limit of Quantification (LOQ) is represented by a solid line. The 

range of Pre-STAR bacterial concentrations is shown in blue.  
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and IP06, respectively) (Fig 3.7). These are within the range of bacterial concentrations found in 

the pre-STAR soils, albeit at the lower end of the range. 

Bacterial concentrations in the untreated zones were predominantly high at ~1 ×109 gene 

copies/g and remained relatively unchanged over time (Fig 3.7). The one exception was the first 

sample (27 days post-STAR) at IP03, which exhibited 3×106 gene copies/g. The transition zone 

samples exhibited different trends at the two locations. Consistently high bacterial concentrations 

at IP03 mirrored that of the untreated zones (Fig 3.7). However, at IP06, concentrations were 

below the LOQ at day 27 and rose consistently with time to 6×109 gene copies/g after 138 days 

(Fig 3.6). It is noted that the IP03 transition sample at 87 days and the IP06 transition sample at 

174 days after STAR could not be acquired.  

Representative groundwater samples were taken at the earliest opportunity, 207 days following 

STAR. The groundwater obtained up-gradient of the treatment area, and close to the site 

boundary (Fig 3.1), was tan in color and exhibited minimal odor.  It contained 3×103 gene 

copies/mL (Appendix A, Fig A4). In contrast, the groundwater obtained from IP06 and 

downgradient from the treatment area was black and had a strong “coal tar” odor (Appendix A, 

Fig A6).  The bacterial concentrations were 2×106 gene copies/mL in the treated zone at IP06 

and 8×105 gene copies/mL downgradient. 

The concentration of bacteria attached to the soil can be resolved from that in the pore water for 

a soil sample by: 

 



67 

 

𝐶𝐺𝑟𝑎𝑖𝑛𝑠 =
𝑔𝑒𝑛𝑒 𝑐𝑜𝑝𝑖𝑒𝑠𝑇  − 𝑔𝑒𝑛𝑒 𝑐𝑜𝑝𝑖𝑒𝑠𝑃𝑊

𝑀𝑇
       𝐸𝑞 3.1 

 

where 𝐶𝐺𝑟𝑎𝑖𝑛𝑠 is the concentration of bacteria attached to the soil grains in given sample (gene 

copies/g), 𝑔𝑒𝑛𝑒 𝑐𝑜𝑝𝑖𝑒𝑠𝑇 is the total amount of bacteria (where 1 gene copy ≈ 1 bacterium) in 

the sample, 𝑔𝑒𝑛𝑒 𝑐𝑜𝑝𝑖𝑒𝑠𝑃𝑊 is the amount of bacteria within the pore water of a given sample 

and 𝑀𝑇  is the total wet mass of the sample. Equations used to calculate 𝑔𝑒𝑛𝑒 𝑐𝑜𝑝𝑖𝑒𝑠𝑇  and 

𝑔𝑒𝑛𝑒 𝑐𝑜𝑝𝑖𝑒𝑠𝑃𝑊  may be found in Appendix A (Eqs A2 and A3). This assumes that the bacterial 

concentration in the pore water is constant over time.  

The results of these calculations are displayed in Table 3.2. The table reveals that the percentage 

of bacteria attached to the soil ranged between 55% and effectively 100%. Moreover, it revealed 

that the average amount attached to the soil for the untreated and transition zone soils were 98% 

and 98%, respectively while the average for the treated zone soils was 85%. It is noted that the 

sample obtained from the IP03 transition zone at 27 days exhibited bacterial concentrations 

below the LOQ and thus the percent of bacteria attached to its soil could not be resolved from 

the groundwater concentration. There appears to be no trend with time in these percentages, 

although STAR-treated zones do exhibit an overall increase in the percentage of bacteria 

attached over time.   
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Table 3.2: Bacterial Concentrations In Pore Water & On Soil Grains 

*Sample below LOQ 

  

Days 

After 

STAR 

Sample 

Location 
Soil Zone 

Total 

Bacteria/g 

of sample 

Pore Water 

Bacteria/g 

of sample 

Attached 

Bacteria\g 

of sample 

% 

Attached 

Bacteria 

-72 
Pre-STAR A Untreated 1.8E+06 2.2E+05 1.6E+06 88% 

Pre-STAR B Untreated 3.2E+08 3.0E+05 3.2E+08 >99% 

27 

IP06 

Untreated 1.1E+09 3.1E+05 1.1E+09 >99% 

Transition 6.4E+04 Unresolvable* 

Treated 7.0E+06 3.3E+05 6.7E+06 95% 

IP03 

Untreated 2.5E+06 3.2E+05 2.2E+06 87% 

Transition 7.7E+08 3.0E+05 7.7E+08 >99% 

Treated 1.2E+06 3.4E+05 8.3E+05 71% 

87 

IP06 

Untreated 1.3E+09 3.1E+05 1.3E+09 >99% 

Transition 5.4E+08 3.3E+05 5.4E+08 >99% 

Treated 7.4E+06 2.6E+05 7.2E+06 97% 

IP03 

Untreated 2.7E+09 2.7E+05 2.7E+09 >99% 

Transition Sample Not Obtained - Poor Core Recovery 

Treated 6.4E+05 2.9E+05 3.5E+05 54% 

138 

IP06 

Untreated 1.4E+09 2.9E+05 1.4E+09 >99% 

Transition 5.7E+09 3.9E+05 5.7E+09 >99% 

Treated 2.4E+06 2.6E+05 2.2E+06 89% 

IP03 

Untreated 4.8E+09 2.9E+05 4.8E+09 >99% 

Transition 1.2E+09 2.8E+05 1.2E+09 >99% 

Treated 1.4E+06 2.7E+05 1.1E+06 80% 

174 

IP06 

Untreated 3.0E+08 2.6E+05 3.0E+08 >99% 

Transition Sample Lost During DNA Extraction 

Treated 2.3E+07 2.3E+05 2.3E+07 >99% 

IP03 

Untreated 1.1E+09 2.7E+05 1.1E+09 >99% 

Transition 9.3E+08 2.7E+05 9.3E+08 >99% 

Treated 8.4E+06 2.8E+05 8.1E+06 97% 
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The logarithm of the bacterial concentrations attached on the soil grains at 174 days following 

STAR exhibited a positive linear relationship (R2 = 0.6471) with the average hydrocarbon 

concentration in each zone (Fig 3.8). It is noted that bacterial concentrations at 138 days were 

used for the IP06 transition zone, since the sample at 174 days was unavailable. This figure 

reveals that there is a correlation between the average concentration of hydrocarbons in post-

STAR soil and the abundance of bacteria which accumulate on the soil grains in a given time. 

 

Figure 3.8: Bacterial concentrations attached to the soil at 174 days after STAR 

vs. average hydrocarbon content in treated (green), transition (red) and 

untreated (purple) zones. Error bars represent standard error of hydrocarbon 

concentrations within triplicate samples. Note that the sample for the IP06 transition 

zone at 174 days was lost, and therefore the attached concentration at 138 days was 

used.   
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This agrees with previous findings be Pape et al., (2015), who found that the extent of microbial 

repopulation in smouldered and heated soils is largely dependent on the presence of organic 

matter. 

3.4.3 Field Study: Amplicon Sequencing Results 

Results from Illumina sequencing of field samples were visualized as heat maps at the class 

resolution (Fig 3.9). Heat maps in this context display the relative proportion of each class as a 

percentage of the entire microbial population. Percentages of all microbial genera within each 

class are also exhibited (Fig A9 & A10, Appendix A).  

The microbial communities in all of the soil samples were primarily composed of Proteobacteria 

and, in particular, the class gamma-proteobacteria (Fig 3.9).  Within this class, the genera 

Psuedomonas and Acinetobacter dominated, although the relative proportions of these two 

varied (Fig. A9, Appendix A).  For example, while the Pre-STAR B soil was dominated by 

Psuedomonas (93%), the Pre-STAR A soil exhibited more Acinetobacter (25%) and also 

displayed a greater range of dominant microorganisms, including the Proteobacteria genera 

Myxoccales (7.6%) and the Fermicutes genera Aerococcacaea (19%) (Fig A9, Appendix A). 

Overall, Proteobacteria dominated both the pre-STAR samples (51% and 97% for A and B) and 

the STAR-treated soils (average of 75% and 77% over all times at IP03 and IP06) (Fig 3.8).  

Within the Proteobacteria, the class Gamma-proteobacteria dominated in pre- and post-STAR 

soil, although diversity  widened to include higher proportions of other proteobacteria classes in  
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Figure 3.9: Heat maps showing percent values of microbial classes (OTU cutoff: 2%) 

present over time in Pre-STAR, Untreated, Transition and Treated soil zones. Both Pre-

STAR samples were taken at the same time (i.e., 72 days before STAR) and are therefore also 

classified as (A) and (B), in reference to the pre-STAR coring locations A and B. 
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the treated soils than observed in the pre-STAR soils (Fig 3.9). The transition and untreated zones 

were particularly dominated by Gamma-proteobacteria, although other classes of 

Proteobacteria were also found in significant proportions (Fig 3.9). Minor genera (i.e., those 

present as less than 2% of the microbial population) were noted to increase over time in the 

transition and treated zones at IP03, but remained relatively consistent over time in all other soils 

(Fig A9 & A10, Appendix A). It is also interesting to note the presence of anaerobic and 

thermophilic genus Thermoanaerobacterium in the transition and untreated soils, suggesting the 

possibility of heat biostimulation in these zones (Fig A9 & A10, Appendix A). 

Statistical differences in microbial community structure between all samples was shown on a 

NMDS plot, where increasing distance between samples on the plot indicates decreasing 

similarity of community structure (Fig 3.10). Clusters were circled on the plot to highlight 

particular regions with similar community structure, and arrows were used to reveal temporal 

changes in community structure. Nearly all post-STAR field samples were present initially (i.e., 

27 days after STAR) in the upper right quadrant of the NMDS, and generally shift with time 

towards the lower left quadrant (Fig 3.10, arrows), suggesting similar patterns in community 

structure transitions within the different soil zones.    
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Figure 3.10: NMDS visualization of all samples (field and column studies). Greater distance 

between samples indicates less similarity of microbial community. Sample types are color coded 

and labeled. For field samples, Pre-STAR (dark brown), untreated (dark blue), transition (light 

blue), and treated (orange) soil zones are labeled in the following format: “soil zone . days after 

STAR . sample location” where sample locations include 03 (IP03), 06 (IP06), A (pre-STAR 

location A) and B (pre-STAR location B). Labeling of column samples has the format: “Column 

and Experiment . Sample type . Sample variable”, where A1 would refer to column A, experiment 

1, sample types include Eff (column effluent) and soil, and sample variables give the pore 

volumes passed prior to effluent sampling or a soil samples average distance from the influent 

port. Column study samples are color coded in the following format. Experiment 1: pre-

experiment column A soil (grey), post-experiment column A soil (dark pink), column A effluent 

(light brown), column B soil (purple), column B effluent (light pink). Experiment 2: pre-

experiment column A soil (black), post-experiment column A soil (yellow), column A effluent 

(dark green), column B soil (dark orange), column B effluent (light green). Column samples are 

shown to cluster (circled), while field samples change over time to become more similar in 

composition (arrows). 

 

3.4.4 Column Study: Tracer Test Results 

Bromide tracer tests conducted on Column B (STAR-treated soil) in both Experiments 1 (not 

amended) and 2 (amended) exhibited similar step function breakthrough curves, with complete 

breakthrough of the tracer observed within 2 pore volumes (PV) of the onset of flow (Fig B3, 

Appendix B).  The analytical solution (Eq. B1 – B6, Appendix B) for the 1-D advection 

dispersion equation was fit by minimizing the mean square error between the model and the 

breakthrough data. Based on the model fit, the dispersivity (α) of the packed soil in column B 

was determined to be 0.55 cm in Experiment 1 and 0.16 cm in Experiment 2. This difference 

indicates some variability in the physical structure of packed soil in Column B (including the 
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coarse grain sand cap). Overall, the differences in α are minor, revealing the similarity of Column 

B packing in both experiments.  

3.4.5 Column Study: qPCR Results 

Analysis of the column soil in Experiment 1 (not amended) and 2 (amended) revealed significant 

repopulation of Column B by bacteria from Column A. Column A exhibited bacterial 

concentrations of 1.2 ×1 09 gene copies/g prior to experimentation (Fig 3.11). In both 

experiments, initial concentrations of bacteria in Column B were below the LOQ, confirming 

that the column was sterile prior to experimentation. Final bacterial concentrations exhibited in 

Column B were 8.6×107 gene copies/g and 8.2×108 gene copies/g in Experiments 1 and 2, 

respectively (Fig 3.11). It is noted that net bacterial growth was assumed negligible, and thus all  

bacteria in Column B after both experiments was considered to be exclusively delivered by the 

groundwater flowing from Column A. In both experiments, bacterial concentrations in the 
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Figure 3.11: Bacterial concentrations in untreated soil used to pack Column A, and 

bacterial concentrations in Column B before (t=0) and at the end of Experiment 1 (not 

amended) and 2 (amended). The limit of quantification (LOQ) is delineated by the dashed line. 
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Column B influent were steadily supplied from Column A, highlighting the effectiveness of 

bacterial transport in groundwater (Fig 3.12). Also, influent concentrations of bacteria to Column 

B were consistently greater than or equal to the effluent concentrations coming from Column B, 

revealing that bacterial repopulation was occurring during the experiments (Fig 3.12).  

 Figure 3.12: Column B influent (red) and effluent (green) bacterial concentrations and 

bromine (Br) breakthrough curve during Experiment 1 and 2. 
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The extent of bacterial repopulation within Column B was quantified using a gene copy “mass 

balance” approach and is summarized in Table 3.3. The expected number of total bacteria 

remaining in Column B at the end of each experiment was calculated by: 

𝑇𝑜𝑡𝑎𝑙 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑎 =  𝑇𝑜𝑡𝑎𝑙 𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝐼𝑛 − 𝑇𝑜𝑡𝑎𝑙 𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑂𝑢𝑡          𝐸𝑞 3.2 

 Where 𝑇𝑜𝑡𝑎𝑙 𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝐼𝑛  represents the total number of bacteria introduced into Column B 

through the influent, and 𝑇𝑜𝑡𝑎𝑙 𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑂𝑢𝑡  is the total number of bacteria removed from 

Column B by the effluent. 𝑇𝑜𝑡𝑎𝑙 𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝐼𝑛 and 𝑇𝑜𝑡𝑎𝑙 𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑂𝑢𝑡 in each experiment were 

taken as the area under the breakthrough curve for Column B influent and effluent, respectively 

(Fig 3.12). The expected number of total bacteria remaining in column B calculated in this 

manner was compared to the actual number of total bacteria measured in Column B soil at the 

end of the experiment (where actual total bacteria = measured soil bacterial concentration × total 

mass of sand in Column B). Results show that: (a) in Experiment 2 (amended), measured total 

bacteria was similar to the abundance of expected total bacteria (9.1×109 gene copies measured 

and 1.1×1010 gene copies expected) while (b) in Experiment 1 (not amended), measured total 

bacteria was much lower than the expected total bacteria (9.4×108 gene copies measured and 

1.1×1010 gene copies expected) (Table 3.3). These results suggest microbial die-off during 

repopulation of Column B, although much less die-off occurs in the presence of biostimulants 

during Experiment 2. 
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Table 3.3: Gene Copy Balance for Column B 

*Below LOQ 

 

3.4.6 Column Study: Amendment Results 

Analysis of lactate revealed minimal degradation of the organic substrate in Columns A and B 

(Appendix B, Fig B 2). This was attributed to the relatively high concentrations of organic 

contaminants present in column A (17,000 mg/kg), which would compete with the lactate as a 

potential electron donor. These contaminants were noted as a light yellowish-brown tinge in the 

effluent, and would accumulate on sterivex filters during liquid sampling of the columns. The 

filters routinely turned dark brown-grey after ~120mL of column A or ~450 mL of column B 

effluent, qualitatively highlighting the transport and retention of organic contaminants within 

column B. 

On average, removal of sulfate was observed in columns A and B (Fig 3.13), indicating 

stimulation of sulfate reducing bacteria (SRB). In column A, effluent sulfate concentrations were 

reduced from ~0.073 g/L (i.e., equivalent to 0.108 g/L or 0.76 mM of Na2SO4) to 0.06±.001 g/L, 

Parameters 
Experiment 1: Not Amended 

(gene copies) 
Experiment 2: Amended 

(gene copies) 

Total Influent Bacteria 2.1×1010 1.8×1010 

Total Effluent Bacteria 1.0×1010 7.4×109 

Expected Total Bacteria 
in Column 

1.1×1010 1.1×1010 

Measured Starting Total 
Bacteria in Column 

1.0×105 * 1.0×105 * 

Measured Final Total 
Bacteria in Column  

9.4×108 9.1×109 
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a decrease of ~18% (Fig 3.12). In column B, effluent concentrations were reduced further to 

0.05±0.003 g/L, another decrease of ~18%1, relative to the influent concentration. Further, 

Column B soil exhibited black veins of precipitate at the end of Experiment 2, which was not 

observed in Experiment 1, suggesting iron sulfide formation was occurring as a byproduct of 

sulfate reduction (Appendix B, Fig B5). These results suggest that sulfate is readily accepted as 

a TEA in both the untreated and STAR treated soils, and is likely the reason for the order of 

magnitude more total bacteria measured in Column B at the end of the Experiment 2. 

                                                 

1
 The percentage of 18% was generated disregarding the initial data point from the column B effluent, since it was 

taken before any column A effluent sample, and therefore the column A effluent sulfate concentration is unknown 

for that time.  

 

Figure 3.13: Sulfate Trends in Column A & Column B Effluent During Column 

Experiment 2. Sulfate concentrations supplied in the AGW are denoted by the green line. 
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3.4.7 Column Study: Amplicon Sequencing Results   

In both experiments, it was shown that microbial taxa which were present in large proportions 

within Column A soil were (i) present in the Column A effluent and (ii) populated Column B to 

similar proportions (Fig 3.14). Although Experiment 2 (amended) showed greater microbial 

diversity, both experiments were dominated by the phylum Proteobacteria, in particular by the 

classes Gamma-proteobacteria and Beta-proteobacteria (Fig 3.14). This similarity causes 

column samples to cluster on the NMDS (Fig 3.10, cluster). In both experiments, the Gamma-

proteobacteria were primarily composed by the genus Psuedomonas (on average, 69±3.3% and 

32±2.7% of the entire microbial population throughout all samples in Experiment 1 and 2, 

respectively), while Beta-proteobacteria was dominated by the Achromobacter genus in 

Experiment 1 (5.1±0.01%) and by Cupriavidus (15±2.4%) in Experiment 2 (Appendix B, Fig 

B3-B6). It is noted that the increased diversity in Experiment 2 was skewed towards taxa with 

known ability to reduce sulfur compounds, including the Pseudomonadaceae family and the 

genus Desulfovibrionaceae (Fig B5 & B6, Appendix B).  
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Figure 3.14: Heat maps showing percent values of microbial classes (OTU cutoff: 2%) 

present over time in the soil and effluent of Column A and B in Experiment 1 (not amended) 

and Experiment 2 (amended). Effluent sampling times are given in units of pore volumes, and 

each soil subsection represents a depth interval in the column, with 0 cm being closest to the 

bottom of the column, near the inlet. It is noted that not all subsections of Column B soil could 

be presented due to insufficient DNA concentrations during Illumina sequencing.  
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3.5 Discussion of Whole Study 

First, it was discovered that heavily contaminated, coal tar DNAPL-occupied soils contained 

robust microbial communities on the order of 107-108 gene copies/g. Microorganisms in these 

communities reflect those often found at hydrocarbon-contaminated sites, and are likely 

surviving off the aqueous phase coal tar compounds and other organic matter in the soil, which 

is abundant. However, it is unlikely that these communities will achieve any significant removal 

of coal tar DNAPL in such heavily contaminated soils, for which reason coal tar sites are known 

to persist relatively unchanged for many decades. Because of this, large removals of coal tar 

mass through thermal treatments such as STAR are valuable for removing significant DNAPL 

mass. It is, however, possible that microbial communities could play a role in degrading 

remaining groundwater and soil contamination following aggressive, initial site treatment. 

Integrating the laboratory and field results, it is understood that in situ STAR not only dried, but 

also sterilized and removed virtually all organic matter from the soil which it treated. 

Groundwater imbibing the treated zone carried a modest number of bacteria and organic matter, 

but continuous flow over time allowed for accumulation of bacteria and organics back onto the 

treated soil. It was found that organic matter played an important role in final bacterial 

concentrations attached to the soil. Despite the loading of organic matter onto STAR-treated soil 

by the groundwater, STAR-treated zones still had much less organic content than the surrounding 

soil. Nevertheless, treated soil repopulated to concentrations on the order of 106 gene copies/g 

after 27 days, and on the order of 107 gene copies/g after 174 days. If necessary, biostimulating 

amendments may be applied to potentially increase the microbial populations within the treated 

soil by an order of magnitude within a 50-day period. In general, microbial community structure 
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present in up-gradient soils was mirrored in the STAR-treated zone, which reveals conservative 

groundwater transport and non-selective colonization of microbial communities in STAR-treated 

soil. 

Some bacterial depletion was noted in the untreated and transition zones at 27 days after STAR, 

but was followed by a rapid recovery to concentrations on the order of 109 gene copies/g. It was 

understood that the transition zone would likely experience heat effects, as it comprised the first 

0.15m adjacent to the treatment zone. However, bacterial depletion in the untreated zone ~1m 

above the treatment zone suggests a possible increased range of heating impacts.  This is likely 

due to steam and hot combustion gases rising upwards from the smouldering zone towards the 

vapor collection system at the surface. 

Microbial diversity was also affected by STAR treatment. Prior to STAR, microbial communities 

in coal tar-contaminated soil displayed a relatively limited diversity of microbial life, likely due 

to the hostile environment they occupied. Following STAR, although similar microbial classes 

dominated the soil, there was a greater diversity of genera present. Biostimulation further 

diversified post-STAR soils, in particular selecting for those microorganisms which could best 

metabolize the amendments.  

3.6 Conclusions 

This study used a combined field and laboratory approach to evaluate the propensity of microbial 

repopulation in STAR-treated and STAR-impacted soils. Overall findings reveal that STAR not 

only cleans the targeted treatment zone, but also sterilizes it. Further, heat from STAR may 

influence microorganisms in the surrounding soil. Following STAR, microorganisms were 

transported via groundwater, resulting in a rapid colonization of STAR treated soils within 1 
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month, followed by a slow and continued growth thereafter. Negative impacts of STAR heating 

on microorganisms within soils surrounding the treatment zone were recovered from within 87 

days. Biostimulation appears to have benefit but may not be necessary unless a more rapid 

repopulation is needed to meet specific project objectives. 

It is noted that this study does contain various assumptions and limitations. One limitation was 

the inability to take cores during or immediately after STAR. Instead, soil plating on laboratory 

STAR-treated site soil was used to determine STAR’s capacity to sterilize. A second limitation 

was the lack of multiple groundwater sampling events throughout the field study. Although 

column studies suggest relatively consistent groundwater concentrations over time, site 

conditions may have varied throughout the study. Another limiting factor was the inability to 

distinguish between coal tar constituents and natural organic compounds in the soil. The 

appearance of the soil (i.e., exuding black liquid and strong coal tar odor) suggests that coal tar 

makes up the majority of the hydrocarbon concentration.  Nevertheless, none of these are critical 

to the main conclusions of the study.  Long term monitoring of this and other sites treated by in 

situ STAR will be valuable in confirming the effective microbial recovery of STAR-treated soils. 
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4  Conclusions and Recommendations 

4.1 Conclusions  

The effects of STAR on microorganisms in the treated and surrounding soils was evaluated in 

this thesis. Bacterial abundance and microbial community structures were examined in both soil 

and groundwater samples from a field and column study. The field investigation considered 

microbial concentration and community structure before and after STAR in treated, transition 

and untreated soil zones. To obtain a better understanding of groundwater microbial transport 

and colonization of STAR treated zones, a column experiment was performed using site soil and 

artificial groundwater. A second column experiment was also performed, identical to the first, 

except that biostimulating amendments were also added to investigate the effects of 

biostimulation on transport and repopulation. 

Results from the field investigation suggest that: 

• Significant bacterial concentrations exist in heavily contaminated, coal tar containing 

soils. These microbial communities are primarily composed of Proteobacteria, and 

include large percentages of genera associated with hydrocarbon degradation, such as 

Pseudomonas and Acinetobacter. 

• Not only does STAR clean and dry the soil, but it also sterilizes it. 

• STAR treated soil is rapidly colonized within the first 27 days following treatment, after 

which repopulation occurs more slowly.  
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• If bacterial concentrations in the untreated and transition zones are negatively impacted 

by STAR-induced heating, they quickly recover to concentrations on the order of 109 

gene copies/g. 

• The magnitude of bacterial concentrations accumulated on the soil is exponentially 

proportional to the average concentration of organic content within the same soil. 

• Bacterial and organic matter abundance in the groundwater on site were much higher 

than those in the groundwater entering the site, indicating that on site contaminants may 

act as a food source for bacteria and thus enhance bacterial concentrations on site. 

• All soils have an abundance of hydrocarbon degrading genera, suggesting that active 

biodegradation may be occurring on site both before and after STAR.  

Results of the column experiments suggest: 

• Groundwater flow acts as an effective transportation vector for microorganisms 

repopulating STAR-treated zones. 

• Microbial community structure is similar in up-gradient and STAR-treated zones.  

• Addition of biostimulants increases the total number of bacteria repopulating STAR-

treated soil and increases the diversity of dominant genera in microbial communities, 

particularly selecting for microorganisms associated with sulfur reduction. 

• Low uptake of lactate was noted, likely due to the overwhelming presence of organic 

contaminants, which could render lactate concentrations negligible. 
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4.2 Recommendations 

While much work has been presented on microbial repopulation following STAR, the potential 

of microorganisms to degrade residual contamination within the post-STAR environment fell 

largely outside the scope of this study. Understanding this gap in knowledge would help inform 

the efficacy of natural attenuation used as a polishing step to achieve site remediation goals. It 

would be beneficial to study biodegradation in both the untreated and the treated zones, since 

the heavily contaminated groundwater likely re-introduces coal tar compounds to the treated soil. 

It is also recommended that 10g soil samples be used for DNA extraction in order to enhance 

accuracy of bacterial concentrations measured by qPCR.  

Finally, there is much future work which may be performed on the Illumina data. Analysis of 

microbial diversity in the field and column study samples has not yet been performed. Further, 

relationships between individual OTUs and sample metadata would provide insight into the 

variables which control community structure in soils at coal tar contaminated sites and in post-

STAR soils. 
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Appendix A. Field Study: Tables and Figures 
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Figure A1: STAR treatment site in New Jersey, USA. Areas outlined in blue 

represent historical locations of waste lagoons.  
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Figure A2: Grouted boreholes (1-12) radially surrounding IP03 (A) and IP06 (B) 

corresponding to post-STAR core sampling events and former thermocouple 

locations at each ignition point. Grouted boreholes are ~5-8 cm in diameter. 
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Table A1: STAR Treated Zone Groundwater Parameters During Well Purging 

Purge 
Time 
(min) 

Temperature 
(OC) 

pH 
Specific 

Conductance 
(mS/cm) 

DO (mg/L) ORP (mV) 

0 NA NA NA NA NA 

5 28.29 6.86 4.786 0.67 -174.7 

10 28.38 6.82 4.579 0.58 -174.1 

15 28.39 6.79 4.6 0.47 -157 

20 28.39 6.76 4.365 0.4 -135 

25 28.32 6.75 4.295 0.35 -115 

30 28.42 6.73 4.321 0.2 -114.5 

35 28.34 6.72 4.245 0.21 -112.2 

40 28.39 6.72 4.292 0.23 -104.3 

45 28.39 6.72 4.134 0.23 -100.4 
 

 

 

Table A2: Downgradient Groundwater Parameters During Well Purging 

Purge 
Time 
(min) 

Temperature 
(OC) 

pH 
Specific 

Conductance 
(mS/cm) 

DO (mg/L) 
ORP 
(mV) 

0 NA NA NA NA NA 

5 19.47 9.18 5.421 0.06 -125.5 

10 19.15 9.1 5.426 0.06 -112.9 

15 18.94 9 5.423 0.03 -316.3 

20 18.8 8.96 5.428 0.03 -180.7 

25 18.6 8.96 5.416 0.04 -136.4 

30 18.54 8.93 5.399 0.04 -138.9 

35 18.39 8.92 5.39 0.05 -154.5 

40 18.29 8.75 5.39 0.04 -252.6 

45 18.22 8.31 5.338 0.06 -266.2 

50 18.14 8.25 5.252 0.06 -267.1 

55 18.08 8.24 5.199 0.06 -270.5 
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Table A3: Up Gradient Groundwater Parameters During Well Purging 

Purge 
Time 
(min) 

Temperature 
(OC) 

pH 
Specific 

Conductance 
(mS/cm) 

DO (mg/L) 
ORP 
(mV) 

0 NA NA NA NA NA 

10 16.4 7.15 7.094 0.23 -153.3 

15 16.37 7.15 6.983 0.2 -145.7 

20 16.36 7.14 6.926 0.2 -137.1 

25 16.38 7.16 6.858 0.19 -133.3 

30 16.41 7.15 6.838 0.18 -130.4 

 

 

 

 

Method A1: Gravimetric Analysis for Water and Hydrocarbon Content 

In this procedure, triplicate subsamples of approximately 20g were taken from each 

homogenized sample (i.e., from sample bottles in Step 3 of Fig 3.2). Subsamples were weighed, 

oven dried for roughly 48 hr, weighed a second time, heated via muffle furnace at 550oC for 6 

hr, and weighed a third and final time. Water mass in each subsample was defined as the 

difference between the second and first measurements. Hydrocarbon mass in each subsample 

was defined as the difference between the final and second measurements.   
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Figure A3: Thermocouple (TC) data for IP03 and IP06. In both figures, TC4 is 

closest to the top of the treatment zone and TC1 is at the bottom, with 2 & 3 spaced in 

between. 
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Figure A4: Groundwater bacterial concentrations on site. 
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Figure A5: Grain size distribution in the alluvium soil unit. 

 

Days After 
STAR 

Treatment 

Sample 
Location 

Zone 
Wet Soil 
Mass (g) 

Dry Soil 
Mass (g) 

Water 
Mass (g) 

HC Free Soil 
Mass (g) 

HC Mass 
(g) 

Dry/Wet 
Ratio (g/g) 

(Dry & HC 
Free)/Wet 
Ratio (g/g) 

-72 Pre-STAR A contaminated 24.54 21.85 2.69 65.75 1.93 0.89 2.68 

-72 Pre-STAR A contaminated 21.37 18.93 2.44 41.44 1.49 0.89 1.94 
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Table A4: Amounts of gravimetrically determined water content (mL/g), and total, soil, and pore water hydrocarbon (HC) concentrations (mg/kg) in 

the field samples. It is noted that total, pore water and soil hydrocarbon concentrations are all given per kg of wet sample, and are therefore directly comparable. 

Triplicate samples were taken from pre-STAR soil and untreated, transition and treated zones in post-STAR soil from IP03 & IP06. It is noted that the 

concentration of hydrocarbons in the pore water of each sample was calculated using duplicate measurements of the hydrocarbon concentration in the IP06 

groundwater 207 days after STAR treatment.  

Days 
After 
STAR 

Location Zone 

Wet 
Sample 
Mass 

(g) 

Dry 
Sample 
Mass 

(g) 

Sample 
Water 

Content 
(mL/g) 

Dry, HC 
Free 
Mass 

(g) 

Total HC 
Concentration 

(mg/kg wet 
sample) 

Pore Water 
HC 

Concentration 
(mg/kg wet 

sample) 

Soil HC 
Concentration 

(mg/kg wet 
sample) 

Average total 
HC 

concentration 
(mg/kg) 

Average Pore 
Water HC 

Concentration 
(mg/kg) 

Average Soil 
HC 

Concentration 
(mg/kg) 

-72 

Pre- 
STAR A 

untreated 

25 22 110 *66 28,544 458 28,086 

30,473 483 29,989 21 19 114 *41 34,778 477 34,301 

34 29 123 *76 28,096 515 27,581 

Pre-
STAR B 

30 26 150 *78 15,417 625 14,792 

12,753 651 12,102 35 30 163 *83 12,164 679 11,485 

21 18 156 *65 10,678 650 10,028 

27 

IP06 

untreated 

29 24 162 24 9,904 678 9,226 

9,762 669 9,093 29 24 164 24 9,940 686 9,254 

19 16 154 16 9,442 644 8,797 

IP03 

21 17 162 17 7,951 678 7,273 

7,926 685 7,240 28 23 166 23 7,871 691 7,180 

24 20 164 20 7,955 686 7,269 

IP06 transition 
19 16 172 16 7,146 719 6,427 

7,139 723 6,416 
24 20 176 20 7,123 733 6,389 
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21 17 172 17 7,150 717 6,433 

IP03 

26 22 155 21 6,022 647 5,375 

5,985 652 5,334 27 22 158 22 5,881 658 5,223 

23 19 156 19 6,054 650 5,404 

IP06 

treated 

28 23 172 23 1,663 719 944 

1,729 713 1,015 19 16 169 16 1,702 707 995 

22 18 171 18 1,821 714 1,107 

IP03 

23 19 170 19 815 709 107 

805 730 76 21 17 181 17 762 756 5 

18 15 173 15 839 724 115 

87 

IP06 

untreated 

25 21 162 21 9,355 674 8,680 

9,388 669 8,718 20 17 160 17 9,318 666 8,652 

30 25 160 25 9,490 667 8,823 

IP03 

19 17 148 42 14,248 616 13,632 

14,186 623 13,562 22 19 151 44 14,194 629 13,565 

18 16 149 41 14,114 624 13,490 

IP06 transition 

24 20 156 20 8,172 653 7,519 

7,807 712 7,096 24 20 153 20 8,121 639 7,481 

16 12 202 12 7,130 843 6,287 

IP06 

Treated 

18 15 129 *39 1,888 540 1,348 

1,894 550 1,344 17 15 132 *41 1,862 552 1,310 

17 15 134 *40 1,931 558 1,372 

IP03 
20 17 140 17 2,167 585 1,582 

2,113 591 1,522 
17 14 138 14 2,089 578 1,511 
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22 19 146 19 2,084 610 1,474 

138 

IP06 

Untreated 

25 22 150 22 4,988 627 4,361 

4,931 629 4,302 23 19 152 19 4,848 634 4,214 

23 20 150 20 4,956 625 4,331 

IP03 

30 26 145 25 11,810 607 11,202 

12,044 615 11,429 27 23 153 23 13,306 638 12,669 

27 23 144 23 11,016 599 10,417 

IP06 

transition 

20 13 333 13 9,795 1,392 8,403 

11,592 844 10,748 24 21 138 20 13,351 575 12,777 

20 17 135 17 11,630 564 11,066 

IP03 

19 16 141 Sub-Sample Lost 2,708 597 2,111 

17 15 140 15 2,679 585 2,094    
18 16 146 16 2,737 608 2,129 

IP06 

Treated 

26 23 136 23 6,170 568 5,602 

5,021 559 4,461 16 14 128 14 4,287 534 3,753 

23 20 138 20 4,604 576 4,028 

IP03 

27 23 140 23 3,178 583 2,595 

3,203 589 5,702 25 22 142 21 12,466 591 11,875 

19 17 142 17 3,228 592 2,636 

174 

IP06 

untreated 

22 19 130 19 5,201 545 4,657 

5,094 552 4,542 17 15 131 15 5,236 545 4,691 

18 16 135 16 4,843 565 4,278 

IP03 
18 16 139 16 13,711 579 13,131 

13,953 587 13,366 
17 14 134 14 13,633 561 13,072 
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25 22 149 21 14,517 622 13,895 

IP06 

transition 

22 19 139 19 3,805 581 3,224 

3,764 594 3,170 21 18 144 18 3,713 601 3,112 

20 17 144 17 3,773 600 3,173 

IP03 

34 29 140 29 5,229 584 4,645 

5,383 577 4,806 28 24 141 24 5,333 591 4,742 

24 21 133 21 5,586 556 5,031 

IP06 

Treated 

20 18 117 18 2,893 488 2,405 

2,795 487 2,308 29 25 114 25 2,678 477 2,201 

19 17 119 17 2,815 498 2,317 

IP03 

19 16 141 16 1,400 590 810 

1,292 613 680 21 18 148 18 1,242 618 624 

25 21 151 21 1,236 630 606 

*larger soil subsamples were used to calculate HC content than those used to calculate water content  
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Table A5: Compendium of qPCR Results for All Soil Core Samples. Each post-STAR core includes 

triplicate 0.25g and single 10g samples of untreated, transition and treated zone soil from both IP06 & 

IP03.  Samples in red have quantitation cycle (Cq) values greater than the reagent blanks and are thus 

below the qPCR limit of quantification. Total gene copies were determined by multiplying the extracted 

DNA concentration (gene copies/µL) by dilution and total extracted volumes.  

Days 
After 
STAR 

Soil 
Type 

Zone Cq 
Gene 

Copies/µL 

Total 
Gene 

Copies 

Wet Soil 
Mass (g) 

Gene 
Copies/g 
Wet Soil 

Average 
Gene 

Copies/g 
Wet Soil 

Standard 
Deviation 

(Gene 
Copies/g) 

-72 
Pre- 
STAR 

A 
Untreated 

31.95 3.2E+02 1.6E+05 0.23 7.1E+05 

4.4E+05 2.0E+05 

32.29 2.5E+02 1.3E+05 0.23 5.6E+05 

31.31 5.0E+02 2.5E+05 0.46 5.5E+05 

32.97 1.6E+02 8.0E+04 0.46 1.8E+05 

32.73 1.9E+02 9.4E+04 0.25 3.7E+05 

33.30 1.3E+02 6.4E+04 0.25 2.5E+05 

17.45 9.2E+05 4.6E+09 14.57 3.1E+08 
3.2E+08 NA 

17.43 9.3E+05 4.6E+09 14.57 3.2E+08 

-72 
Pre- 
STAR 

B 
Untreated 

24.64 4.7E+04 2.3E+07 0.29 7.9E+07 

6.7E+07 2.3E+07 

25.43 2.7E+04 1.4E+07 0.29 4.6E+07 

24.16 6.5E+04 3.2E+07 0.42 7.7E+07 

25.03 3.6E+04 1.8E+07 0.42 4.2E+07 

25.20 3.2E+04 1.6E+07 0.29 5.6E+07 

24.28 5.9E+04 3.0E+07 0.29 1.0E+08 
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26.06 3.7E+03 1.9E+07 10.01 1.9E+06 
1.8E+06 NA 

26.09 3.6E+03 1.8E+07 10.01 1.8E+06 

27 IP06 Untreated 

26.77 1.1E+04 5.5E+06 0.19 2.9E+07 

4.5E+07 4.9E+07 

26.96 9.6E+03 4.8E+06 0.19 2.5E+07 

25.28 3.0E+04 1.5E+07 0.28 5.4E+07 

23.90 7.7E+04 3.9E+07 0.28 1.4E+08 

27.77 5.5E+03 2.8E+06 0.34 8.1E+06 

27.03 9.2E+03 4.6E+06 0.34 1.3E+07 

15.81 2.6E+06 1.3E+10 12.53 1.0E+09 
1.1E+09 NA 

15.76 2.7E+06 1.3E+10 12.53 1.1E+09 

27 IP06 Transition 

33.12 1.4E+02 7.2E+04 0.25 2.9E+05 

2.6E+05 1.4E+05 

32.87 1.7E+02 8.6E+04 0.25 3.4E+05 

32.64 2.0E+02 1.0E+05 0.31 3.3E+05 

32.32 2.5E+02 1.2E+05 0.31 4.1E+05 

33.94 8.3E+01 4.2E+04 0.27 1.5E+05 

36.14 1.9E+01 9.3E+03 0.27 3.4E+04 

31.29 1.3E+02 6.6E+05 8.53 7.7E+04 
6.4E+04 NA 

31.91 8.9E+01 4.4E+05 8.53 5.2E+04 

27 IP06 Treated 

33.40 1.2E+02 6.0E+04 0.29 2.0E+05 

2.3E+05 1.0E+05 

33.68 9.9E+01 5.0E+04 0.29 1.7E+05 

33.35 1.2E+02 6.2E+04 0.24 2.6E+05 

34.21 6.9E+01 3.4E+04 0.24 1.4E+05 

32.20 2.7E+02 1.4E+05 0.33 4.1E+05 

33.56 1.1E+02 5.4E+04 0.33 1.6E+05 

20.13 9.3E+05 9.3E+07 12.31 7.6E+06 
7.0E+06 NA 

20.40 8.0E+05 8.0E+07 12.31 6.5E+06 
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27 IP03 Untreated 

33.24 1.3E+02 6.7E+04 0.23 2.9E+05 

1.2E+05 9.9E+04 

33.96 8.2E+01 4.1E+04 0.23 1.8E+05 

35.74 2.4E+01 1.2E+04 0.25 4.8E+04 

34.68 5.0E+01 2.5E+04 0.25 1.0E+05 

36.17 1.8E+01 9.1E+03 0.22 4.2E+04 

35.58 2.7E+01 1.4E+04 0.22 6.3E+04 

25.96 4.0E+03 2.0E+07 8.83 2.2E+06 
2.5E+06 NA 

25.59 5.0E+03 2.5E+07 8.83 2.8E+06 

27 IP03 Transition 

33.80 9.1E+01 4.6E+04 0.22 2.1E+05 

1.5E+05 3.7E+04 

34.12 7.3E+01 3.7E+04 0.22 1.6E+05 

34.26 6.7E+01 3.3E+04 0.26 1.3E+05 

34.73 4.8E+01 2.4E+04 0.26 9.5E+04 

34.35 6.3E+01 3.1E+04 0.22 1.4E+05 

34.39 6.1E+01 3.0E+04 0.22 1.4E+05 

17.12 1.1E+06 5.6E+09 7.88 7.1E+08 
7.7E+08 NA 

16.91 1.3E+06 6.5E+09 7.88 8.2E+08 

27 IP03 Treated 

33.70 9.8E+01 4.9E+04 0.31 1.6E+05 

1.8E+05 4.6E+04 

33.65 1.0E+02 5.0E+04 0.31 1.6E+05 

34.07 7.6E+01 3.8E+04 0.23 1.7E+05 

34.55 5.5E+01 2.7E+04 0.23 1.2E+05 

33.35 1.2E+02 6.2E+04 0.24 2.5E+05 

33.72 9.6E+01 4.8E+04 0.24 2.0E+05 

24.06 9.3E+04 9.3E+06 8.14 1.1E+06 
1.2E+06 NA 

23.98 9.8E+04 9.8E+06 8.14 1.2E+06 

87 IP06 Untreated 
20.84 6.2E+05 3.1E+08 0.28 1.1E+09 

1.8E+09 8.8E+08 
21.13 5.1E+05 2.5E+08 0.28 9.1E+08 



107 

 

19.14 2.0E+06 9.8E+08 0.34 2.9E+09 

19.13 2.0E+06 9.9E+08 0.34 2.9E+09 

19.99 1.1E+06 5.5E+08 0.33 1.7E+09 

20.09 1.0E+06 5.2E+08 0.33 1.6E+09 

16.15 2.1E+06 1.1E+10 8.30 1.3E+09 
1.3E+09 NA 

16.09 2.2E+06 1.1E+10 8.30 1.3E+09 

87 IP06 Transition 

24.29 5.9E+04 3.0E+07 0.18 1.6E+08 

4.7E+07 5.7E+07 

26.58 1.2E+04 6.2E+06 0.18 3.4E+07 

26.77 1.1E+04 5.5E+06 0.28 1.9E+07 

27.47 6.8E+03 3.4E+06 0.28 1.2E+07 

26.89 1.0E+04 5.0E+06 0.18 2.8E+07 

26.89 1.0E+04 5.0E+06 0.18 2.8E+07 

17.61 8.3E+05 4.1E+09 8.10 5.1E+08 
5.4E+08 NA 

17.44 9.2E+05 4.6E+09 8.10 5.7E+08 

87 IP06 Treated 

33.07 1.5E+02 7.5E+04 0.32 2.4E+05 

3.6E+05 3.2E+05 

30.95 6.4E+02 3.2E+05 0.32 1.0E+06 

33.28 1.3E+02 6.5E+04 0.20 3.2E+05 

34.34 6.3E+01 3.1E+04 0.20 1.6E+05 

33.47 1.1E+02 5.7E+04 0.25 2.3E+05 

33.73 9.6E+01 4.8E+04 0.25 1.9E+05 

20.50 7.5E+05 7.5E+07 9.85 7.6E+06 
7.4E+06 NA 

20.59 7.1E+05 7.1E+07 9.85 7.2E+06 

87 IP03 Untreated 

34.03 7.8E+01 3.9E+04 0.36 1.1E+05 

2.6E+05 1.1E+05 
33.37 1.2E+02 6.1E+04 0.36 1.7E+05 

32.21 2.7E+02 1.3E+05 0.31 4.3E+05 

33.00 1.6E+02 7.9E+04 0.31 2.5E+05 
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32.41 2.3E+02 1.2E+05 0.37 3.2E+05 

32.73 1.9E+02 9.4E+04 0.37 2.6E+05 

14.97 4.5E+06 2.2E+10 8.62 2.6E+09 
2.7E+09 NA 

14.90 4.7E+06 2.3E+10 8.62 2.7E+09 

87 IP03 Transition Sample Lost During Coring Event 

87 IP03 Treated 

33.11 1.5E+02 7.3E+04 0.19 3.9E+05 

6.4E+05 5.4E+05 

34.40 6.1E+01 3.0E+04 0.19 1.6E+05 

33.38 1.2E+02 6.1E+04 0.17 3.6E+05 

33.76 9.4E+01 4.7E+04 0.17 2.7E+05 

30.64 7.8E+02 3.9E+05 0.27 1.4E+06 

30.86 6.7E+02 3.4E+05 0.27 1.2E+06 

24.37 7.8E+04 7.8E+06 12.18 6.4E+05 
6.4E+05 NA 

24.38 7.7E+04 7.7E+06 12.18 6.3E+05 

138 IP06 Untreated 

32.00 4.9E+02 2.4E+05 0.21 1.1E+06 

2.9E+07 4.3E+07 

32.14 4.5E+02 2.2E+05 0.21 1.0E+06 

25.13 4.6E+04 2.3E+07 0.32 7.2E+07 

24.75 6.0E+04 3.0E+07 0.32 9.3E+07 

31.23 8.1E+02 4.1E+05 0.21 1.9E+06 

31.63 6.2E+02 3.1E+05 0.21 1.5E+06 

16.48 1.7E+06 8.5E+09 6.30 1.3E+09 
1.4E+09 NA 

16.32 1.9E+06 9.4E+09 6.30 1.5E+09 
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138 IP06 Transition 

22.39 2.8E+05 1.4E+08 0.20 7.1E+08 

3.0E+08 2.2E+08 

23.34 1.5E+05 7.6E+07 0.20 3.8E+08 

24.35 7.7E+04 3.9E+07 0.18 2.1E+08 

24.42 7.4E+04 3.7E+07 0.18 2.0E+08 

24.44 7.3E+04 3.7E+07 0.23 1.6E+08 

24.47 7.2E+04 3.6E+07 0.23 1.6E+08 

14.14 7.6E+06 3.8E+10 6.74 5.6E+09 
5.7E+09 NA 

14.10 7.8E+06 3.9E+10 6.74 5.8E+09 

138 IP06 Treated 

33.97 1.3E+02 6.6E+04 0.20 3.3E+05 

2.4E+05 7.4E+04 

34.19 1.1E+02 5.7E+04 0.20 2.8E+05 

33.88 1.4E+02 7.0E+04 0.31 2.2E+05 

34.38 1.0E+02 5.1E+04 0.31 1.6E+05 

33.98 1.3E+02 6.6E+04 0.22 3.0E+05 

35.04 6.5E+01 3.3E+04 0.22 1.5E+05 

22.59 2.2E+05 2.2E+07 10.57 2.1E+06 
2.4E+06 NA 

22.10 2.9E+05 2.9E+07 10.57 2.8E+06 

138 IP03 Untreated 

NA NA NA NA NA 

1.0E+07 7.5E+06 

27.94 7.2E+03 3.6E+06 0.18 2.0E+07 

30.01 1.8E+03 9.1E+05 0.28 3.3E+06 

30.25 1.6E+03 7.8E+05 0.28 2.8E+06 

27.51 9.6E+03 4.8E+06 0.35 1.4E+07 

27.75 8.1E+03 4.1E+06 0.35 1.2E+07 

13.96 8.5E+06 4.2E+10 8.49 5.0E+09 
4.8E+09 NA 

14.11 7.8E+06 3.9E+10 8.49 4.6E+09 

138 IP03 Transition 
31.62 6.3E+02 3.1E+05 0.19 1.7E+06 

7.5E+05 7.9E+05 
31.48 6.9E+02 3.4E+05 0.19 1.8E+06 
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33.12 2.3E+02 1.2E+05 0.22 5.2E+05 

34.28 1.1E+02 5.4E+04 0.22 2.4E+05 

34.89 7.2E+01 3.6E+04 0.26 1.4E+05 

35.03 6.6E+01 3.3E+04 0.26 1.3E+05 

16.38 1.8E+06 9.1E+09 7.75 1.2E+09 
1.2E+09 NA 

16.39 1.8E+06 9.0E+09 7.75 1.2E+09 

138 IP03 Treated 

33.31 2.0E+02 1.0E+05 0.22 4.7E+05 

4.6E+05 1.9E+05 

33.13 2.3E+02 1.2E+05 0.22 5.3E+05 

33.62 1.7E+02 8.4E+04 0.31 2.7E+05 

33.63 1.7E+02 8.3E+04 0.31 2.7E+05 

32.24 4.2E+02 2.1E+05 0.27 7.7E+05 

33.08 2.4E+02 1.2E+05 0.27 4.4E+05 

23.89 1.0E+05 1.0E+07 7.96 1.3E+06 
1.4E+06 NA 

23.74 1.1E+05 1.1E+07 7.96 1.4E+06 

174 IP06 Untreated 

32.08 4.6E+02 2.3E+05 0.29 8.0E+05 

9.8E+05 3.6E+05 

32.53 3.4E+02 1.7E+05 0.29 5.9E+05 

33.03 2.5E+02 1.2E+05 0.22 5.7E+05 

31.78 5.6E+02 2.8E+05 0.22 1.3E+06 

32.00 4.9E+02 2.4E+05 0.20 1.2E+06 

31.88 5.3E+02 2.6E+05 0.20 1.3E+06 

18.35 5.1E+05 2.6E+09 8.97 2.9E+08 
3.0E+08 NA 

18.22 5.6E+05 2.8E+09 8.97 3.1E+08 

174 IP06 Transition 

22.88 2.1E+05 1.0E+08 0.36 2.9E+08 

4.6E+08 2.2E+08 
22.71 2.3E+05 1.1E+08 0.36 3.2E+08 

21.98 3.7E+05 1.9E+08 0.27 6.9E+08 

21.80 4.2E+05 2.1E+08 0.27 7.8E+08 
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22.90 2.0E+05 1.0E+08 0.29 3.5E+08 

22.86 2.1E+05 1.0E+08 0.29 3.6E+08 

25.65 4.8E+03 2.4E+07 12.96 1.9E+06 
1.9E+06 NA 

25.61 5.0E+03 2.5E+07 12.96 1.9E+06 

174 IP06 Treated 

32.01 4.8E+02 2.4E+05 0.27 8.9E+05 

6.5E+05 3.1E+05 

32.09 4.6E+02 2.3E+05 0.27 8.5E+05 

33.42 1.9E+02 9.5E+04 0.33 2.9E+05 

33.62 1.7E+02 8.3E+04 0.33 2.6E+05 

32.85 2.8E+02 1.4E+05 0.22 6.5E+05 

32.25 4.1E+02 2.1E+05 0.22 9.6E+05 

18.10 3.1E+06 3.1E+08 12.31 2.5E+07 
2.3E+07 NA 

18.36 2.6E+06 2.6E+08 12.31 2.1E+07 

174 IP03 Untreated 

23.98 9.9E+04 5.0E+07 0.17 2.9E+08 

8.9E+07 1.3E+08 

24.41 7.5E+04 3.7E+07 0.17 2.2E+08 

29.77 2.1E+03 1.1E+06 0.27 4.0E+06 

30.16 1.7E+03 8.3E+05 0.27 3.1E+06 

29.52 2.5E+03 1.3E+06 0.17 7.5E+06 

29.69 2.3E+03 1.1E+06 0.17 6.7E+06 

16.06 2.2E+06 1.1E+10 10.41 1.1E+09 
1.1E+09 NA 

15.96 2.4E+06 1.2E+10 10.41 1.1E+09 

174 IP03 Transition 

33.48 1.8E+02 9.2E+04 0.31 3.0E+05 

3.2E+05 1.7E+05 

32.31 4.0E+02 2.0E+05 0.31 6.5E+05 

33.43 1.9E+02 9.5E+04 0.30 3.1E+05 

34.16 1.2E+02 5.8E+04 0.30 1.9E+05 

34.15 1.2E+02 5.9E+04 0.35 1.7E+05 

33.23 2.2E+02 1.1E+05 0.35 3.1E+05 
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16.10 2.2E+06 1.1E+10 11.65 9.3E+08 
9.3E+08 NA 

16.12 2.1E+06 1.1E+10 11.65 9.2E+08 

174 IP03 Treated 

35.58 4.6E+01 2.3E+04 0.40 5.8E+04 

1.5E+06 1.9E+06 

35.55 4.6E+01 2.3E+04 0.40 5.9E+04 

30.17 1.6E+03 8.2E+05 0.20 4.1E+06 

30.30 1.5E+03 7.6E+05 0.20 3.8E+06 

32.08 4.6E+02 2.3E+05 0.37 6.3E+05 

32.24 4.2E+02 2.1E+05 0.37 5.7E+05 

Replicate Lost During qPCR Preparation 

20.06 9.7E+05 9.7E+07 11.60 8.4E+06 NA NA 

NA NA NA 
33.26 

NA 

32.93 

NA NA NA 
33.17 

32.61 

NA NA NA 
33.77 

ND* 

NA NA NA 
33.70 

32.97 

NA NA NA 
31.21 

31.33 
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Figure A6: From left to right: up-gradient, downgradient and IP06 treated 

zone groundwater samples. 
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Figure A7: Water content at IP03 & IP06 following STAR treatment. 
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Eq A1 and A2:  

 

𝐺𝑒𝑛𝑒 𝑐𝑜𝑝𝑖𝑒𝑠𝑇 = 𝐶𝑆𝑎𝑚𝑝𝑙𝑒 ∗ 𝑀𝑆𝑎𝑚𝑝𝑙𝑒                                        𝐸𝑞 𝐴1 

𝐺𝑒𝑛𝑒 𝑐𝑜𝑝𝑖𝑒𝑠𝑃𝑊 = 𝐶𝐺𝑊 ∗ 𝑀𝑆𝑎𝑚𝑝𝑙𝑒 ∗
𝑀𝑃𝑊

𝑀𝑆𝑎𝑚𝑝𝑙𝑒
∗ 𝜌𝑊                  𝐸𝑞 𝐴2 

 

Where 𝐶𝑆𝑎𝑚𝑝𝑙𝑒 is the concentration of bacteria in the sample, 𝑀𝑆𝑎𝑚𝑝𝑙𝑒 is the mass of the wet sample (g), 𝐶𝐺𝑊 

is the bacteria concentration measured 7-months after STAR in the groundwater (gene copies/mL), assumed 

constant in all samples, 
𝑀𝑃𝑊

𝑀𝑆𝑎𝑚𝑝𝑙𝑒
 is the fraction of pore water mass to wet sample mass (g/g), and 𝜌𝑊 is the 

density of water (constant; 1 g/mL). 

 

Figure A8: DO & ORP Measurements from: (1) the STAR treated zone (red), (2) 

an untreated, contaminated zone down-gradient from the STAR treated zone 

(orange), and (3) up gradient from the STAR treated zone, also in a contaminated, 

untreated soil (green). 
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Figure A9: Percentages of the microbial population made up by each genus (or lowest resolvable taxonomic unit) in pre-STAR and 

post-STAR Untreated, Transition and Treated soil at IP06. Both Pre-STAR samples were taken at the same time (72 days before STAR) 

and are therefore also classified as (A) and (B), in reference to pre-STAR coring locations A and B. Genera present at greater than 2% in 

at least 1 sample are shown individually, while those below 2% across all samples are presented as a summed percentage. 
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Figure A10: Percentage of the microbial population made up by each genus (or lowest resolvable taxonomic unit) in pre-STAR 

and post-STAR Untreated, Transition and Treated soil at IP03. Both Pre-STAR samples were taken at the same time (72 days 

before STAR) and are therefore also classified as (A) and (B), in reference to pre-STAR coring locations A and B. Genera present at 

greater than 2% in at least 1 sample are shown individually, while those below 2% across all samples are presented as a summed 

percentage
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Appendix B. Column Study: Tables and Figures 
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Table B1: Ion Concentrations in Various Artificial Groundwater Recipes 

Ion* This 
Study 

Middelorp 
et al. 

Peters & 
Gauthier 

Idaho 
National 

Laboratory 

Qafoku et 
al. 

Mailloux & 
Fuller 

Husman 
et al. 

NH4+ 0.93 1.00 0.00 0.00 0.00 0.00 0.00 

Cl- 3.19 3.26 0.63 3.50 0.16 0.65 0.10 

Mg2+ 0.05 0.05 0.24 0.91 0.08 0.41 0.14 

Mn2+ 0.02 0.02 0.00 0.00 0.00 0.00 0.00 

Ca2+ 1.00 1.00 0.67 1.75 2.77 0.59 0.07 

Na+ 2.14 4.02 0.43 1.14 0.34 1.40 0.25 

PO4
2- 0.60 0.60 0.00 0.00 0.00 0.00 0.00 

K+ 0.15 0.15 0.20 0.10 1.20 0.11 0.06 

SO4
2- 0.06 0.06 0.39 0.91 0.17 0.73 0.21 

NO3- 0.00 0.00 0.62 0.08 0.00 0.00 0.06 

HCO3
- 1.00 1.00 0.43 1.16 0.00 1.40 0.14 

 

*For Experiment 2, the concentration of SO4
2- was increased by an order of magnitude to 

0.6 M. 
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Table B2: Biostimulation Column Experiments in The Literature 

Paper 
Purpose of 
Experiment 

Lactate 
(mg/L) 

Other Carbon 
Source (mg/L) 

SO4 
(mg/L) 

Residence 
Time 

(min)* 

Tokunaga 
et al, 2003 

Biostimulation to 
enhance chromium 

(IV) degradation 

800 & 
4000 

Tryptic Soy 
Broth (800 & 

4,000) 
0.00 NA 

Davis et 
al, 2004 

Biostimulation to 
enhance RDX 
degradation 

0 

acetate, 
ethanol, 

soluble starch, 
and acetate 
(500 mg/L) 

0.00 525.66 

Tront et 
al, 2008 

Measured microbial 
activity as a function 

of lactate 
concentration 

provided 

450.4 - 
3693.28 

0 0.29 1213.33 

Benchiekh
-Latmani 

et al 

Measured gene 
regulation during 
Cr(IV) reduction 

2702.4 0 0.29 NA 

Mosher et 
al, 2012 

Community 
succession dynamics 
during amendment 

procedure 

2702.4 0 14.41 2826.09 

Joner et 
al, 2002 

Simulation of 
rhizosphere 
nutritional 

requirements 

0 
Root Exudates 

at unknown 
concentration 

0.00 NA 

Anid et al, 
1992 

Biostimulation to 
degrade BTEX 

0.00 

BTEX 200mg/L 
plus trace (.03-
.08%) organics 

naturally 
occurring in 

soil 

0.10 794.21 

Abdelouas 
et al, 1998 

Biostimulation of 
UV(1V) degraders 

0.00 
Ethanol at 
unknown 

concentration 
9.56 NA 
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Handley 
et al, 2012 

Biostimulation using 
acetate 

0.00 
Acetate at 

590.437 mg/L 
960.56 NA 

Ebihara et 
al, 2002 

Biostimulation to 
degrade PAHs 

0.00 

Acetate at 43 
mg/L pulsed 

for 1 hr every 4 
hrs 

2.78 263.93 

Peyton, 
1996 

pulsed vs continuous 
donor injection 

0.00 

Acetate at 
2000 mg/L for 
0.5 hr every 12 

hrs 

0.00 
189.71 - 
569.13 

Williams 
et al, 2005 

Geophysical imaging 
of biostimulation 

252.22 0.00 377.50 817.86 

Ikuma & 
Gunsch, 

2013 

Biostimulation in 
column to degrade 

toluene 
0.00 

Glucose at 
1000 mg/L 

either 
continuous or 
pulsed every 5 

days 

NA 1285.20 

Nelson et 
al, 2012 

Pulsed vs continuous 
biostimulation 

0.00 

Molasses at 
10% (140,000 

mg/L) pulsed in 
every 27 days 

for 3 days 

NA NA 

Macur et 
al, 2001 

Biostimulation 
effects on 

mobilization of As 
90.08 

90.08 mg/L 
Glucose 

192.11 56853.00 
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Carry et 
al, 2014 

Biostimulation to 
reduce high levels of 

Nitrate 
0.00 

18.02 mg of  
Glucose every 

3 days as 
1801.55 mg/L 

0.10 NA 

*Residence time refers to the duration of time after which one PV is passed through 

the column 

 

 

 

Table B3: Parameters Measured in Artificial Groundwater Reservoir 

Experiment Temperature (OC) DO (mg/L) pH 

1 (not amended) 21.11 ± 0.07 0.009 ± 0.008 7.36 ± 0.04 

2 (amended) 21.31 ± 0.89 0.006 ± 0.006 7.17 ± 0.05 

* Where all values are averaged over time ±standard error  

 

 

Eq. B1 – B2 

𝐶(𝑥, 𝑡)

𝐶0
= 0.5[exp(𝐴1) 𝑒𝑟𝑓𝑐(𝐴2) + exp(𝐵1) 𝑒𝑟𝑓𝑐(𝐵2)]                    𝐸𝑞 𝐵1 

𝐴1 =
𝑥

2𝐷∗
(𝑣∗ − √𝑣∗2 + 4𝐷∗𝜆∗)                                                            𝐸𝑞 𝐵2 

𝐴2 =
𝑥 − 𝑡√𝑣∗2 + 4𝐷∗𝜆∗

√4𝐷∗𝜆∗
                                                                       𝐸𝑞 𝐵3 

              𝐵1 =
𝑥

2𝐷∗
(𝑣∗ + √𝑣∗2 + 4𝐷∗𝜆∗)                                                           𝐸𝑞 𝐵4               
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  𝐵2 =
𝑥 + 𝑡√𝑣∗2 + 4𝐷∗𝜆∗

√4𝐷∗𝜆∗
                                                                    𝐸𝑞 𝐵5 

𝐷 = 𝛼𝑣                                                                                                       𝐸𝑞 𝐵6 

 

Where 
𝐶(𝑥,𝑡)

𝐶0
 is the normalized concentration of the compound of interest at a specific time 

and distance from the source, relative to the original concentration at the source, x is distance 

from the source, t is time, D* is the dispersion coefficient divided by the retardation factor 

(𝐷∗ =
𝐷

𝑅
) v* is the porewater velocity divided by the retardation factor, and  𝜆∗ is the decay 

function, divided by the retardation factor. Because a conservative tracer was used, 𝜆∗ = 0, 

and there is no retardation (D*≡ D, etc). Thus, the only unknown in the equation is D, which 

can be further broken down to solve for the dispersivity (α) of the soil. 
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Table B4: Bacterial Concentrations in Depth Intervals of Column A Soil After 

Experiment 1 (not amended) As Determined by 0.25g Samples. The cycle of quantitation 

(Cq) is the main output of qPCR and is to calculate the gene copies/µL of extracted DNA. 

Gene copy/µL values were dilution corrected, multiplied by the total volume of extracted 

DNA and divided by the wet soil mass to obtain the bacterial concentration in each sample. 

Distance 
from 

Influent 
Inlet (cm) 

Cq 
Gene 

Copies/µL 

Wet 
Soil 

Mass 
(g) 

Bacterial 
Concentration 

(gene copies/g) 

Average 
Bacterial 

Concentration 
(gene copies/g) 

Standard 
Deviation 

(gene copies/g) 

0-2 

19.26 7.4E+05 0.26 1.6E+09 

1.6E+09 3.9E+08 
18.87 9.4E+05 0.26 2.1E+09 

19.38 6.8E+05 0.31 1.3E+09 

19.29 7.2E+05 0.31 1.3E+09 

2-4 

22.91 7.1E+04 0.22 2.1E+08 

5.8E+08 4.8E+08 
23.12 6.2E+04 0.22 1.8E+08 

20.91 2.6E+05 0.22 7.2E+08 

20.13 4.2E+05 0.22 1.2E+09 

4-6 

21.13 2.2E+05 0.26 5.1E+08 

4.4E+08 7.9E+07 
21.53 1.7E+05 0.26 3.9E+08 

21.07 2.3E+05 0.39 3.5E+08 

20.52 3.3E+05 0.39 5.0E+08 

6-8 

21.19 2.1E+05 0.30 5.3E+08 

2.8E+08 3.1E+08 
21.10 2.3E+05 0.30 5.6E+08 

27.85 3.0E+03 0.30 7.6E+06 

27.75 3.2E+03 0.30 8.0E+06 

8-10 

20.48 3.4E+05 0.27 7.6E+08 

4.8E+08 3.1E+08 
20.53 3.3E+05 0.27 7.3E+08 

22.38 1.0E+05 0.29 2.0E+08 

22.22 1.1E+05 0.29 2.3E+08 

10-12                              
(Coarse 

Sand Cap) 

19.64 5.8E+05 0.27 1.2E+09 
1.3E+09 4.6E+08 

20.60 3.1E+05 0.27 6.8E+08 
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19.31 7.1E+05 0.25 1.7E+09 

19.40 6.7E+05 0.25 1.6E+09 

 

 

Table B5: Bacterial Concentrations in Depth Intervals of Column A Soil After 

Experiment 2 (amended) As Determined by 0.25g Samples. The cycle of quantitation (Cq) 

is the main output of qPCR and is to calculate the gene copies/µL of extracted DNA. Gene 

copy/µL values were dilution corrected, multiplied by the total volume of extracted DNA and 

divided by the wet soil mass to obtain the bacterial concentration in each sample.  

Distance 
from 

Influent 
Inlet 
(cm) 

Cq 
Gene 

Copies/µL 

Wet 
Soil 

Mass 
(g) 

Bacterial 
Concentration 

(gene copies/g) 

Average 
Bacterial 

Concentration 
(gene copies/g) 

Standard 
Deviation 

(gene copies/g) 

0-2 

23.01 4.4E+05 0.31 8.6E+08 

6.7E+08 

 

3.9E+08 
22.56 5.8E+05 0.31 1.1E+09 

25.92 7.6E+04 0.16 2.9E+08 

25.39 1.0E+05 0.16 4.1E+08 

2-4 

24.34 2.0E+05 0.21 5.9E+08 

9.9E+08 2.7E+08 
23.35 3.6E+05 0.21 1.1E+09 

22.84 4.9E+05 0.28 1.1E+09 

22.70 5.4E+05 0.28 1.2E+09 

4-6 

23.51 3.3E+05 0.22 9.2E+08 

5.5E+08 3.3E+08 
23.91 2.6E+05 0.22 7.2E+08 

25.12 1.2E+05 0.21 3.5E+08 

25.97 7.3E+04 0.21 2.1E+08 

6-8 

24.97 1.4E+05 0.28 2.9E+08 

6.3E+08 3.4E+08 
24.46 1.8E+05 0.28 4.0E+08 

23.46 3.4E+05 0.21 9.6E+08 

23.61 3.1E+05 0.21 8.8E+08 
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8-10 

24.42 1.9E+05 0.25 4.6E+08 

2.4E+08   2.2E+08 
24.64 1.6E+05 0.25 4.0E+08 

27.58 2.8E+04 0.33 5.0E+07 

27.68 2.6E+04 0.33 4.7E+07 

10-12                              
(Coarse 

Sand 
Cap) 

24.69 1.6E+05 0.28 3.5E+08 

4.4E+08 1.8E+08 
24.08 2.3E+05 0.28 5.1E+08 

24.70 1.6E+05 0.41 2.4E+08 

23.08 4.2E+05 0.41 6.4E+08 

 

 

Table B6: Bacterial Concentrations in Depth Intervals of Column B Soil After 

Experiment 1 (not amended) As Determined by 0.25g Samples. The cycle of quantitation 

(Cq) is the main output of qPCR and is to calculate the gene copies/µL of extracted DNA. 

Gene copy/µL values were dilution corrected, multiplied by the total volume of extracted 

DNA and divided by the wet soil mass to obtain the bacterial concentration in each sample. 

Samples in red are below the limit of quantification. 

Distance 
from 

Influent 
Inlet (cm) 

Cq 
Gene 

Copies/µL 

Wet 
Soil 

Mass 
(g) 

Corrected 
Concentration 

(gene copies/g) 

Average 
Concentration 

(gene copies/g) 

Standard 
Deviation 

(gene copies/g) 

0-2 

26.26 8.4E+03 0.18 2.7E+07 

1.4E+07 1.3E+07 
26.54 7.0E+03 0.18 2.2E+07 

29.36 1.2E+03 0.34 2.0E+06 

28.89 1.6E+03 0.34 2.6E+06 

2-4 

29.96 7.9E+02 0.25 1.8E+06 

1.7E+06 3.0E+05 
30.19 6.8E+02 0.25 1.6E+06 

30.10 7.2E+02 0.21 2.0E+06 

30.78 4.7E+02 0.21 1.3E+06 

4-6 
31.05 3.9E+02 0.26 9.3E+05 

9.3E+05 3.1E+05 
31.21 3.5E+02 0.26 8.4E+05 
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31.75 2.5E+02 0.26 6.1E+05 

30.49 5.6E+02 0.26 1.4E+06 

6-8 

31.56 2.8E+02 0.23 7.1E+05 

1.3E+06 1.1E+06 
31.26 3.4E+02 0.23 8.6E+05 

31.43 3.1E+02 0.24 7.5E+05 

29.27 1.2E+03 0.24 3.0E+06 

8-11.3 

29.05 1.4E+03 0.27 3.1E+06 

4.3E+06 2.3E+06 
29.97 7.8E+02 0.27 1.7E+06 

28.25 2.3E+03 0.27 5.1E+06 

27.75 3.2E+03 0.27 7.0E+06 

11.3-12                              
(Coarse 

Sand Cap) 

24.46 2.6E+04 0.30 5.1E+07 

9.9E+07 4.6E+07 
23.70 4.3E+04 0.30 8.2E+07 

22.58 8.8E+04 0.31 1.6E+08 

23.25 5.7E+04 0.31 1.0E+08 

*Red Cq values represent samples below the limit of quantification (LOQ). LOQ was 

determined by the highest Cq value generated by a sample blank. 

 

Table B7: Bacterial Concentrations in Depth Intervals of Column B Soil After 

Experiment 2 (amended) As Determined by 0.25g Samples. The cycle of quantitation (Cq) 

is the main output of qPCR and is to calculate the gene copies/µL of extracted DNA. Gene 

copy/µL values were dilution corrected, multiplied by the total volume of extracted DNA and 

divided by the wet soil mass to obtain the bacterial concentration in each sample.  

Distance 
from 

Influent 
Inlet (cm) 

Cq* Gene 
Copies/µL 

Wet 
Soil 

Mass 
(g) 

Corrected 
Concentration 

(gene copies/g) 

Average 
Concentration 

(gene copies/g) 

Standard 
Deviation 

(gene copies/g) 

0-2 

29.97 6.5E+03 0.22 1.8E+07 

1.2E+07 3.8E+06 30.68 4.2E+03 0.22 1.1E+07 

30.01 6.3E+03 0.32 1.2E+07 
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30.56 4.5E+03 0.32 8.5E+06 

2-4 

34.99 3.1E+02 0.19 9.6E+05 

8.9E+05 2.7E+05 
34.60 3.9E+02 0.19 1.2E+06 

33.97 5.7E+02 0.45 7.7E+05 

34.41 4.4E+02 0.45 5.9E+05 

4-6 

33.92 5.9E+02 0.53 6.7E+05 

1.6E+06 1.3E+06 
35.06 3.0E+02 0.53 3.3E+05 

32.62 1.3E+03 0.30 2.6E+06 

32.50 1.4E+03 0.30 2.8E+06 

6-8 

30.45 4.8E+03 0.18 1.6E+07 

1.4E+07 1.7E+07 
29.05 1.1E+04 0.18 3.8E+07 

34.53 4.1E+02 0.25 1.0E+06 

34.77 3.5E+02 0.25 8.7E+05 

8-11 

33.21 9.0E+02 0.29 1.8E+06 

6.4E+06 5.2E+06 
33.12 9.6E+02 0.29 1.9E+06 

30.05 6.2E+03 0.34 1.1E+07 

29.98 6.4E+03 0.34 1.1E+07 

11-12                              
(Coarse 

Sand 
Cap) 

30.03 6.2E+03 0.24 1.5E+07 

1.2E+08 1.3E+08 
29.82 7.1E+03 0.24 1.7E+07 

25.38 1.1E+05 0.23 2.7E+08 

26.00 7.2E+04 0.23 1.8E+08 

*Red Cq values represent samples below the limit of quantification (LOQ). LOQ was 

determined by the highest Cq value generated by a sample blank.  
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Table B8: Column A Effluent Bacterial Concentrations During Experiment 1 (not amended). The pore 

volumes (PV) represent the cumulative amount of effluent passed through the column at the time when 

sampling started. 1 PV is ~80 mL. The Cycle of Quantitation (Cq) is the main output of qPCR and is used as 

an input to calculate the gene copies/µL of extracted DNA. The 2 Cq values corresponding to each PV 

represent duplicate qPCR runs of single effluent samples. In order to calculate the Bacterial Concentration, 

SQ concentrations were dilution corrected, multiplied by the total volume of extracted DNA and divided by the 

volume of effluent sampled. Cumulative bacteria passed represents the total number of bacteria (assuming 1 

bacterium = 1 gene copy) transported within the effluent until the current PV, and was calculated by 

trapezoidal integration of effluent curves.  

Pore 
Volumes 

Cq 
Gene 

Copies/µL 

Corrected 
Concentration 

(gene copies/mL) 

Average 
Concentration 

(gene copies/mL) 

Cumulative 
Bacteria Passed                    

(gene copies) 

1.03 
14.40 1.6E+07 7.1E+07 

5.3E+07 2.7E+07 
15.56 7.8E+06 3.4E+07 

15.03 
12.58 5.2E+07 2.3E+08 

2.2E+08 2.0E+09 
12.68 4.9E+07 2.1E+08 

53.11 Sample Lost During DNA Extraction 

90.11 
14.85 1.2E+07 5.9E+07 

4.9E+07 1.2E+10 
15.49 8.2E+06 3.9E+07 

164.21 
13.69 2.6E+07 6.9E+07 

6.5E+07 1.6E+10 
13.87 2.3E+07 6.1E+07 

203.89 
13.87 2.3E+07 6.2E+07 

6.2E+07 1.9+10 
13.87 2.3E+07 6.2E+07 

241.03 
13.67 2.6E+07 7.1E+07 

7.1E+07 2.1E+10 
13.68 2.6E+07 7.1E+07 
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Table B9: Column A Effluent Bacterial Concentrations During Experiment 2 (amended). The pore 

volumes (PV) represent the cumulative amount of effluent passed through the column at the time when 

sampling started. 1 PV is ~80 mL. The Cycle of Quantitation (Cq) is the main output of qPCR and is used 

as an input to calculate the gene copies/µL of extracted DNA. The 2 Cq values corresponding to each PV 

represent duplicate qPCR runs of single effluent samples. In order to calculate the Bacterial 

Concentration, SQ concentrations were dilution corrected, multiplied by the total volume of extracted DNA 

and divided by the volume of effluent sampled. Cumulative bacteria passed represents the total number of 

bacteria (assuming 1 bacterium = 1 gene copy) transported within the effluent until the current PV, and 

was calculated by trapezoidal integration of effluent curves. 

Pore 
Volumes 

Cq 
Gene 

Copies/µL 

Corrected 
Concentration 

(gene copies/mL) 

Average 
Concentration 

(gene copies/mL) 

Cumulative 
Bacteria Passed 

(gene copies) 

1.03 
18.07 8.9E+06 5.9E+07 

5.8E+07 3.0E+07 
18.12 8.6E+06 5.8E+07 

15.30 
16.75 2.0E+07 9.7E+07 

9.5E+07 1.1E+09 
16.80 1.9E+07 9.4E+07 

53.11 
16.66 2.1E+07 9.5E+07 

8.1E+07 4.4E+09 
17.26 1.5E+07 6.6E+07 

90.11 
17.30 1.4E+07 6.9E+07 

6.8E+07 7.1E+09 
17.37 1.4E+07 6.6E+07 

164.21 
17.94 9.6E+06 4.8E+07 

4.2E+07 1.1E+10 
18.40 7.3E+06 3.6E+07 

203.89 
16.94 1.8E+07 8.7E+07 

8.4E+07 1.4E+10 
17.09 1.6E+07 8.0E+07 

241.03 
15.90 3.3E+07 1.8E+08 

1.7E+08 1.8E+10 
16.20 2.8E+07 1.5E+08 
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Table B10: Column B Effluent Bacterial Concentrations During Experiment 1 (not amended). The pore 

volumes (PV) represent the cumulative amount of effluent passed through the column at the time when 

sampling started. 1 PV is ~80 mL. The Cycle of Quantitation (Cq) is the main output of qPCR and is used as 

an input to calculate the gene copies/µL of extracted DNA. The 2 Cq values corresponding to each PV 

represent duplicate qPCR runs of single effluent samples. In order to calculate the Bacterial Concentration, 

SQ concentrations were dilution corrected, multiplied by the total volume of extracted DNA and divided by the 

volume of effluent sampled. Cumulative bacteria passed represents the total number of bacteria (assuming 1 

bacterium = 1 gene copy) transported within the effluent until the current PV, and was calculated by 

trapezoidal integration of effluent curves. 

Pore 
Volumes 

Cq 
Gene 

Copies/µL 

Corrected 
Concentration 

(gene copies/mL) 

Average 
Concentration 

(gene copies/mL) 

Cumulative 
Bacteria Passed 

(gene copies) 

1.03 Sample Lost During DNA Extraction 

17.28 
15.98 9.9E+06 1.3E+07 

1.3E+07 1.2E+08 
15.83 1.1E+07 1.4E+07 

42.90 
14.78 2.1E+07 2.3E+07 

2.5E+07 5.92E+08 
14.58 2.4E+07 2.6E+07 

60.59 
15.04 1.8E+07 2.4E+07 

2.4E+07 1.02E+09 
15.03 1.8E+07 2.4E+07 

79.59 
14.21 3.0E+07 3.5E+07 

3.4E+07 1.58E+09 
14.25 2.9E+07 3.4E+07 

96.34 
14.25 2.9E+07 3.3E+07 

3.5E+07 2.16E+09 
14.11 3.2E+07 3.6E+07 

134.70 
13.80 3.9E+07 5.4E+07 

5.9E+07 3.96E+09 
13.54 4.6E+07 6.4E+07 

153.71 
13.58 4.4E+07 4.8E+07 

5.7E+07 5.06E+09 
13.12 5.9E+07 6.5E+07 

170.46 
13.39 5.0E+07 5.7E+07 

7.2E+07 6.16E+09 
12.74 7.5E+07 8.6E+07 

191.17 
13.40 5.0E+07 5.6E+07 

5.9E+07 7.56E+09 
13.24 5.5E+07 6.2E+07 

203.89 
13.81 3.9E+07 4.4E+07 

4.4E+07 8.22E+09 
13.78 3.9E+07 4.4E+07 

225.36 
13.26 5.4E+07 6.1E+07 

6.2E+07 9.3E+09 
13.22 5.6E+07 6.2E+07 

244.33 13.64 4.3E+07 4.8E+07 4.8E+07 1.0E+10 
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13.67 4.2E+07 4.7E+07 

 

Table B11: Column B Effluent Bacterial Concentrations During Experiment 2 (amended). The pore 

volumes (PV) represent the cumulative amount of effluent passed through the column at the time when 

sampling started. 1 PV is ~80 mL. The Cycle of Quantitation (Cq) is the main output of qPCR and is used as 

an input to calculate the gene copies/µL of extracted DNA. The 2 Cq values corresponding to each PV 

represent duplicate qPCR runs of single effluent samples. In order to calculate the Bacterial Concentration, 

SQ concentrations were dilution corrected, multiplied by the total volume of extracted DNA and divided by the 

volume of effluent sampled. Cumulative bacteria passed represents the total number of bacteria (assuming 1 

bacterium = 1 gene copy) transported within the effluent until the current PV, and was calculated by 

trapezoidal integration of effluent curves. 

Pore 
Volume 

Cq 
Gene 

Copies/µL 

Corrected 
Concentration 

(gene 
copies/mL) 

Average 
Concentration 

(gene copies/mL) 

Cumulative 
Bacteria Passed 

(gene copies) 

8.08 
16.33 2.6E+07 3.3E+07 

3.4E+07 1.40E+08 
16.18 2.8E+07 3.6E+07 

20.38 
16.28 2.6E+07 3.9E+07 

4.1E+07 6.00E+08 
16.08 3.0E+07 4.4E+07 

37.97 
16.13 2.9E+07 4.1E+07 

4.0E+07 1.32E+09 
16.16 2.8E+07 4.0E+07 

53.72 
16.14 2.9E+07 4.5E+07 

4.6E+07 2.00E+09 
16.07 3.0E+07 4.7E+07 

72.94 
15.89 3.3E+07 4.2E+07 

4.3E+07 2.86E+09 
15.84 3.4E+07 4.4E+07 

88.03 
16.02 3.1E+07 3.6E+07 

3.5E+07 3.44E+09 
16.17 2.8E+07 3.3E+07 

108.37 
16.17 9.7E+06 1.2E+07 

1.1E+07 3.90E+09 
16.60 7.5E+06 9.3E+06 
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124.26 
16.45 8.2E+06 1.1E+07 

9.0E+06 4.06E+09 
16.99 5.9E+06 7.5E+06 

143.73 
Replicate Lost 

NA 4.3E+09 
16.17 9.7E+06 1.2E+07 

158.80 
15.95 1.1E+07 1.4E+07 

1.6E+07 4.49E+09 
15.49 1.5E+07 1.9E+07 

179.69 
14.06 3.6E+07 4.6E+07 

3.9E+07 5.06E+09 
14.69 2.4E+07 3.1E+07 

193.72 
14.34 3.0E+07 3.8E+07 

2.8E+07 5.07E+09 
15.50 1.5E+07 1.8E+07 

212.92 
13.71 4.4E+07 5.7E+07 

5.2E+07 5.08E+09 
14.06 3.6E+07 4.6E+07 

233.86 
12.15 1.2E+08 1.6E+08 

1.1E+08 6.8E+09 
13.84 4.1E+07 5.7E+07 

234.65 End of Experiment 7.3E+09 
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Table B12: Gene Copy Balance Parameters and Calculations. Parameters used for the balance 

include total gene copies in influent and effluent of column B, previously calculated in tables B8-

B11, as well as total gene copies in column B soil as estimated using concentrations in 10g samples 

of column B soil.  

Parameters Calculations Used 

Total Influent Bacteria 

Trapezoidal Integration: 

Exp 1 - bottom cell in Column 6, Table B8, Appendix B      

Exp 2 – bottom cell Column 6, Table B9, Appendix B 

Total Effluent Bacteria 

Trapezoidal Integration: 

Exp 1 – bottom cell in Column 6, Table B10, Appendix B    

Exp 2 – bottom cell iln column 6, Table B11, Appendix B 

Expected Total Copies In Column Total Influent - Total Effluent  

Measured Total Copies In Column Gene copies/g * total g of soil 
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Figure B1: Conservative bromine tracer breakthrough curves and the 

corresponding advection dispersion equation solutions for Experiments 1 and 

2. 
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Figure B3: Column B influent vs. effluent lactate concentrations. 
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Figure B3: Percentage of the microbial population made up by each genus (or lowest resolvable taxonomic unit) in all effluent (pore volumes) and soil 

samples (subsections) from column A in experiment 1 (not amended). Subsections of column soil increase in distance from the inlet at the base of the column 

(ie: subsection 0-2cm refers to a sample taken from a homogenized sample representing the first 2 cm adjacent to the inlet at the bottom of the column). Genera 

present at greater than 2% in at least 1 sample are shown individually, while those below 2% across all samples are presented as a summed percentage. 

 

 



139 

 

 

 

Figure B4: Percentage of the microbial population made up by each genus (or lowest resolvable taxonomic unit) in all effluent (pore volumes) and soil 

samples (subsections) from column B in experiment 1 (not amended). Subsections of column soil increase in distance from the inlet at the base of the 

column (ie: subsection 0-2cm refers to a sample taken from a homogenized sample representing the first 2 cm adjacent to the inlet at the bottom of the column). 

Genera present at greater than 2% in at least 1 sample are shown individually, while those below 2% across all samples are presented as a summed percentage. 
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Figure B5: Percentage of the microbial population made up by each genus (or lowest resolvable taxonomic unit) in all effluent (pore volumes) 

and soil samples (subsections) from column A in experiment 2 (amended). Subsections of column soil increase in distance from the inlet at the base 

of the column (ie: subsection 0-2cm refers to a sample taken from a homogenized sample representing the first 2 cm adjacent to the inlet at the bottom 

of the column). Genera present at greater than 2% in at least 1 sample are shown individually, while those below 2% across all samples are presented 

as a summed percentage. 
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Figure B6: Percentage of the microbial population made up by each genus (or lowest resolvable taxonomic unit) in all effluent (pore volumes) 

and soil samples (subsections) from column B in experiment 2 (amended). Subsections of column soil increase in distance from the inlet at the base 

of the column (ie: subsection 0-2cm refers to a sample taken from a homogenized sample representing the first 2 cm adjacent to the inlet at the bottom 

of the column). Genera present at greater than 2% in at least 1 sample are shown individually, while those below 2% across all samples are presented 

as a summed percentage. 
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Appendix C. Column Study: Photos 
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Figure C1: Overview of column setup prior to experimental commencement. Proceeding 

from left to right, significant items include: (1) probes to measure artificial groundwater (AGW) 

parameters, (2) AGW reservoir, (3) peristaltic pump used to flow AGW (4) syringe pump, used 

only for delivering lactate pulses, (5) 70% EtOH used for disinfection of gloves prior to any 

interactions with the experimental setup, (6) columns A and B, directly following soil packing 

and prior to being wrapped in tin foil, (7) various valves used to direct flow from the peristaltic 

and syringe pumps to the appropriate columns, (8) rotameter used to control nitrogen gas flow 

rate, (9) electric cooler used for collecting samples and sterivex filtering, and (10) effluent line 

from sterivex filter to collection vessel.  
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Figure C2: Columns A and B directly following packing. 
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Figure C3: Columns A and B during experimental operation. 

 



146 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C4: Formation of sulfide precipitate veins in 

Column B after Experiment 2 (amended). 
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Figure C6: Peristaltic pump used to flow artificial groundwater. 
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Appendix D. DNA Statistics 
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Table C 1: Standard Curve Statistics from qPCR 

 

 

 

 

 

 

Method D1: Illumina Data QA/QC and Analysis 

Once the demultiplexed reads were sent from Genome Quebec, several steps were 

taken to analyze the data. First, the forward and reverse sequences for each sample were 

joined together using the following parameters: 1) minimum overlap size was 80 bp 

long; 2) maximum allowed percentage of differences within the joined region was eight; 

3) joining method was fast join. The joined reads of individual samples then went 

through quality control and were merged into one single data file in the split library 

step, with a minimum phred quality threshold equal to twenty. The chimera sequences 

in the merged sequence file were identified and filtered using the USearch61 algorithm 

with the Ribosomal Database Project (RDP) 16s rRNA database as the reference. The 

chimera-free sequences were grouped into operational taxonomy units (OTUs) using 

the open-reference OTU picking approach with the USearch61 algorithm and the 

Greengene database (version 13_8) as the reference, and a representative sequence was 

picked for each OTU for downstream analysis (e.g. taxonomy classification and biom 

table construction).   The summary of the taxonomic composition of each community 

was generated at different levels, from kingdom to OTU, in both biom and txt formats. 

Samples Quantified Efficiency R2 Value 

Column Exp A (Plate 1) 92% 0.984 

Column Exp A (Plate 2) 90% 0.989 

Column Exp B (Plate 1) 84% 0.982 

Column Exp B (Plate 2) 87% 0.989 

Field Study (0.25g soil) 
(Plate 1) 

94% 0.997 

Field Study (0.25g soil) 
(Plate 2) 

97% 0.998 

Groundwater 80% 0.999 

Field Study (10g soil) 80% 0.999 
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Based on the txt files at the genus level, the heatmaps of major organisms (i.e., >2% in 

the total population in each sample) were constructed in Excel (with the exception of 

unclassified organisms for which the percentage of specific OTUs were used instead).  

Sample comparison and clustering was carried out using the nonmetric multi-

dimensional scaling (NMDS) ordination numerical technique with the statistical 

software R (R-Core-Team, 2013). Initially, the Bray-Curtis dissimilarity scores were 

calculated by comparing the percentages of the major genera in a pair-wise manner for 

all samples, which were then transformed into rank orders. NMDS was applied to 

represent the original positions of communities (i.e., an 71-dimentional space due to 71 

major genera) as closely as possible using a reduced number of dimensions (i.e., k) for 

easier yet accurate vitalization on a 2-D plot. The stress value and the Shepard plot 

were examined to ensure the appropriateness of the chosen k-value. The stress values 

were found to be 0.11 and 0.06 for k=2 and k=3 respectively, where the later indicated 

an excellent representation of the original data. The Shepard plot of k=3 also showed 

smaller scatter of samples than that generated with k=2 (Fig C 1, Appendix C). 

Therefore, k=3 was chosen for NMDS to compute the data. The sample names and the 

names of the genera were plotted on the NMDS plots to reflect the community 

differences and to visualize the affecting organisms.  
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Figure C7: Shepard plots visualizing data scatter with k = 2 (A) and k = 3 (B) 
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Table C2: Statistics Regarding Forward and Reverse DNA Reads Generated by Illumina (Raw 

Reads), Combined Forward and Reverse Reads (After Joining), Combined Reads After Quality 

Control Check (QC) and After Chimera Check and OTU Selection. 

Statistic Raw Reads 
Reads after 

Joining 
Reads after QC 

Reads after 
Chimera Check and 

OTU-picking 

Average 67049 43071 41178 38339 

Standard 
deviation 

28422 18680 17893 16291 

Maximum 100013 67503 64609 62038 

Minimum 1859 881 844 843 

Median 78944 50370 48071 43695 
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