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Abstract

Recommender systems have dramatically changed the way we consume content. Internet

applications rely on these systems to help users navigate among the ever-increasing number

of choices available. However, most current systems ignore that user preferences can change

according to context, resulting in recommendations that do not fit user interests. Context-aware

models have been proposed to address this issue, but these models have problems of their

own. The ever-increasing speed at which data are generated presents a scalability challenge for

single-model approaches. Moreover, the complexity of these models prevents small players

from adapting and implementing contextual models that meet their needs.

This thesis addresses these issues by proposing the (CF)

2

architecture, which uses local

learning techniques to embed contextual awareness into collaborative filtering (CF) models.

CF has been available for decades, and its methods and benefits have been extensively dis-

cussed and implemented. Moreover, the use of context as filtering criteria for local learning

addresses the scalability issues caused by the use of large datasets. Therefore, the proposed ar-

chitecture enables the creation of contextual recommendations using several models instead of

one, with each model representing a context. In addition, the architecture is implemented and

evaluated in two case studies. Results show that contextual models trained with a small frac-

tion of the data resulted in similar or better accuracy compared to CF models trained with the

total dataset. Moreover, experiments indicate that local learning using contextual information

outperforms random selection in accuracy and in training time.

Keywords: Recommender System, Collaborative Filtering, Context Aware, Local Learn-

ing, Instance Selection

ii
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Chapter 1

Introduction

In everyday life, it is not uncommon to rely on recommendations by friends or family to de-

cide on a restaurant for dinner. During the years, many publications around the globe have

specialized in providing people with lists of recommendations for all kinds of areas. Although

Zagat1

and Michelin Red Guide2

are two of the best-known publications in this category, many

others are available and range from recommending the best food in town to suggesting which

dog breed best matches someones personality. Nowadays, Internet applications have turned

to recommender systems to help users navigate among the ever-increasing number of avail-

able choices. Perhaps Netflix3

is the most common example of such a system and helps video

enthusiasts to decide on which movie or TV show marathon to watch next.

Recommendation systems can be broadly categorized as collaborative, content-based, or

hybrid [1]. Collaborative recommendation resembles word-of-mouth communication, in which

the opinions of others are used to determine the relevance of a recommendation. In this case, a

collaborative recommender system uses the ratings provided by its users either to recommend

an interesting item or to identify like-minded users. For instance, Netflix uses this technique

to recommend videos that were highly rated by people who, in the past, have rated videos in

a similar manner to the user. Content-based recommendation focusses on using the content

of an item to assert its relevancy. To put it di↵erently, a music recommender application that

uses the content-based approach may use the genre of a piece of music to recommend other

musical selections that share the same genre. The hybrid category is reserved for those systems

that use both techniques when deliberating on a recommendation. As an illustration, the same

music recommender that uses the content-based approach can also be extended to incorporate

the collaborative method. In this scenario, the recommendation would contain pieces of music

1

http://zagat.com

2

http://travelguide.michelin.com

3

http://netflix.com

1



2 Chapter 1. Introduction

of the same genre that were also appreciated by like-minded users.

1.1 Motivation

Much work has been done to develop new recommender methods that focus both on the item

and on the user [2, 3, 4]. Nevertheless, in many applications, this does not su�ce. In fact, if

only items and users are used to provide recommendations, it would be safe to assume that a

travel agency is doing a proper recommendation if it suggests a ski package to someone who

has skiing as an interest. However, this probably would not be a wise idea if the recommenda-

tion were given in the peak of summer. Therefore, it is also important to incorporate contextual

information into the recommendation process.

In recent years, with the proliferation of smart phones, smart watches, and other smart de-

vices, applications have access to more and more contextual information from their users, and

yet recommender systems fail to use this contextual information explicitly when giving recom-

mendations. One way of addressing this issue is to create new models that can incorporate user

context and thereby improve the quality of their recommendations [5, 6].

Although these e↵orts are promising, several issues arise when incorporating context into

the recommendation process. The first is the volume and speed at which contextual data are

generated, making it a challenge to train and use a single contextual model. More specifically,

the processing power required to train a model using such datasets is enormous [7]. There-

fore, this work leverages local learning techniques to distribute the load among several models

instead of one, reducing the number of entries used to train each model.

Moreover, the di�culty involved in incorporating user context into new models presents

another challenge because it adds new dimensions to the model. This work proposes an archi-

tectural design that relies on existing collaborative techniques to provide contextual awareness

to recommendations. Assuming that existing collaborative models are unaware of user context,

the architecture uses the contextual information as filtering criteria for a local learning tech-

nique, which attempts to locally adjust the capacity of the training system to the properties of

the training set in each area of the input space [8]. By rearranging the data in this way, each

generated model represents a context, after which these models are used to generate contextual

recommendations.

Another problem is the complexity of understanding and implementing new recommender

models, as well as the costs involved. Large companies have enough resources to invest in

their own models and peculiarities. For instance, not long ago, Netflix paid 1 million dollars

for statisticians to improve their Cinematch algorithm by 10.06% [9]. On the other side, small

companies, developers, and researchers in general struggle to find a flexible solution that re-
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moves from them the need to understand the inner workings of each model. Therefore, another

motivation of this work is to present a framework that enables small players to implement their

own recommender systems using existing models that best suit their needs.

1.2 Contribution

This research provides several contributions aimed at overcoming the challenges mentioned

and ultimately at enabling the development of Context Filtering for Model-Based Collaborative

Filtering recommender system (CF)

2

architecture.

The main contribution of this thesis is (CF)

2

, a modular architecture that uses local learning

techniques to embed contextual awareness into collaborative filtering models. (CF)

2

enables

algorithms that focus solely on items and users to leverage contextual information in addition

when making recommendations. Moreover, this added capability is achieved without requiring

changes to the algorithms involved. The components of (CF)

2

are described in detail, and their

roles, functions, and relationships are explained.

Another major contribution of this thesis is to introduce a framework that can be used as a

foundation to implement (CF)

2

. Details are presented at an algorithmic level, which enables

small players to build context-aware recommender systems using widely available collabo-

rative filtering libraries. Moreover, the concepts laid out by this thesis do not restrict their

implementation by enforcing a single machine language or paradigm, enabling use of the tech-

nology that best fits the needs of each application. The proposed framework was implemented

using the functional paradigm of the Scala4

language. This implementation used the large-scale

data-processing properties of the Spark5

engine and was made available in a public repository.

6

The proposed approach was evaluated in the Find Good Items task. A methodology to eval-

uate (CF)

2

is provided, and two case studies using implicit ratings are presented. The first case

study uses embedded context and analyzes how (CF)

2

performs when the contextual attribute

operating system and platform is used to provide recommendations for a Web site specialized in

weather- and traveller-related content and technology. Moreover, contextual inference is used

in a second case study where weather conditions are used as contextual attributes. Both case

studies were evaluated using the same methodology and had their accuracy results compared

against traditional methods using CF models. The results indicated that contextual models

trained with a small fraction of the data resulted in similar or better accuracy compared to

models trained using the total dataset. In addition, local models created using random sam-

4

http://www.scala-lang.org

5

http://spark.apache.org

6

https://github.com/dennisbachmann/cf2-scala



4 Chapter 1. Introduction

pling instead of contextual dataset reduction were compared, and the results demonstrate that

the use of contextual information outperforms random selection in accuracy.

The results obtained in this thesis shows that contextual information can be used as filtering

criteria for local learning algorithms and that existing collaborative filtering algorithms can be

used by (CF)

2

to leverage contextual information.

1.3 Organization of the Thesis

The remainder of this thesis is organized as follows:

• Chapter 2 provides background information that is useful in understanding this work as

well as a literature review of work done in the areas of local learning, instance selection,

and context-aware recommender systems. This chapter first provides an introduction to

the technical terms and concepts that are used throughout this thesis. Moreover, this

chapter presents a review of current studies on local learning and instance selection as

well as the pre-filtering approach towards context-aware recommender systems.

• Chapter 3 describes the components of the (CF)

2

architecture. Besides providing an

overview of the function of each component, this chapter also describes how each com-

ponent interacts with others. The description is broken down into four sections: the first

is external entities, which covers the produced artifact as well as the external services

that are part of (CF)

2

. The second is the storage layer, which describes the components

that serve as abstractions to prevent direct access to the datasets. The third is the training

layer, which covers the components involved during the training phase of (CF)

2

. Finally,

the production layer explains the components involved in the production phase.

• Chapter 4 provides a framework that can be used as a foundation to implement the (CF)

2

architecture. It starts with a discussion of the design and structure of the framework.

Afterwards, a generic implementation of each component is provided at the method level.

• Chapter 5 presents an evaluation of (CF)

2

. It starts with a description of the scenario

being evaluated and how rating data were captured. Next, the methodology used during

the evaluation process is presented and discussed. Finally, this chapter presents two case

studies that validate (CF)

2

in di↵erent scenarios, assess the systems execution time, and

analyze the e↵ects of using contextual dataset reduction instead of random sampling.

• Chapter 6 presents the conclusions of this work, as well as a discussion of areas of future

work involving the (CF)

2

architecture.



Chapter 2

Background and Literature Review

The objective of this chapter is two-fold: first, it introduces the background terminology and

concepts related to the topics discussed in this thesis; second, it gives an overview of existing

research done in the area of local learning and instance selection and also studies that use

contextual information in recommender systems.

2.1 Background

This section introduces and discusses the concepts of recommender systems, local learning,

instance selection, and contextual inference, which are the foundation for understanding (CF)

2

.

2.1.1 Recommender Systems

As Resnick and Varian [10] mentioned in their 1997 article, the term recommender systems is

applied to systems that, by using various information sources, can suggest relevant items to a

user. In addition to filtering out irrelevant content from the list of recommended items, they also

try to balance factors like accuracy, novelty, diversity, and stability in these recommendations.

The data sources may contain rating information acquired explicitly (typically by collect-

ing users’ ratings) or implicitly (typically by monitoring users’ behaviour, such as songs heard,

applications downloaded, Web sites visited, and books read). Other information sources in-

clude demographic databases, social networks, and data from Internet of Things (IoT) devices,

with the last being a new trend in the development of Recommender Systems [11]. Use of IoT
devices enables the acquisition and use of contextual information in a manner unobtrusive to

the users, which is a desirable feature in next-generation Recommender Systems [4].

As mentioned by Bobadilla et al. [11], Lu et al. [12], Ricci et al. [13], and Adamavicius

and Tuzhilin [4], recommender systems can use several filtering algorithms or techniques. The

5



6 Chapter 2. Background and Literature Review

most relevant are further described below.

Collaborative Filtering

Collaborative filtering (CF) was the first technique used by a recommender system and is also

considered to be the most popular and widely implemented [13]. Examples of popular Web

sites that make use of this technique are Amazon1

, TiVo2

, and Netflix [14, 15].

CF provides recommendations based on the opinions of others who share the same interests

as the user [12]. These opinions are often represented as the ratings matrix R [16]. This matrix

is an m ⇥ n matrix containing m users and n items. Hence, the rating of user i for item j is

given by ri j. Because in any recommender system, the number of ratings obtained is usually

very small compared to the number of recommendations that must be made, the matrix R is

often a sparse one [4]. This property is usually exemplified by considering an example of a

video streaming service. Most users have watched only a small subset of the available videos.

Therefore, even if users rate all watched videos, many items ri j in the matrix R will still be

missing.

The approach adopted by CF methods is that these missing ratings can be guessed because

the observed ratings are often highly correlated across various users and items [17]. For exam-

ple, if two users share similar ratings among items, the CF algorithm will identify these users

as having similar taste. Therefore, this similarity can be used to make inferences about those

ratings that are missing a value. Most CF models focus on leveraging inter-item correlations or

inter-user correlations [17]. This is the reason why CF is often referred to as “people-to-people

correlation” [18]. Figure 2.1 illustrates this rating inference based on similarities among users.

In this illustration, it is clear that Bob and Alice share the same taste, whereas Chris does not

share these interests.

Figure 2.1: Ratings given to movies by users.

This method has problems of sparsity and limited coverage and is still an open research

field. Data reduction techniques appear to be a promising research directions to solve this

1

http://www.amazon.com

2

http://www.tivo.com
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problem [4]. The use of CF also has the advantage of using an approach that enables it to

obtain meaningful relations between users or items that are not directly connected [13].

According to Adamavicius and Tuzhilin [4], CF algorithms can be grouped into two cate-

gories: memory-based and model-based.

1. Memory-based methods: Memory-based algorithms, also referred to as neighbourhood-
based algorithms, were among the earliest CF algorithms [16]. These algorithms predict

the ratings of user-item combinations based on their neighbourhood [17]. These neigh-

bourhoods can be defined in one of two ways:

• User-based collaborative filtering: these algorithms provide recommendations of

items that were liked by similar users [4]. Therefore, the objective is to recommend

ratings for items not yet rated by a user u. This can be achieved by computing

weighted averages of the ratings provided by users sharing the same interests as

the user u [17]. To exemplify, whenever Alice and Bob have similar ratings among

rated movies, a user-based CF algorithm can use the rating given by Alice to the

movie Rambo to predict the rating that Bob would have given if he had to rate it

himself.

• Item-based collaborative filtering: these algorithms provide recommendations of

items similar to those that the user liked in the past [4]. Consequently, to predict

the rating for an item i given by a user u, the first step involves determining the

set S of items that are most similar to item i. The ratings in set S are then used

to predict whether the user u will like item i. Hence, if Bob gave positive ratings

to classic movies like Gone with the Wind, these ratings can be used to predict his

ratings of other classic movies, like Citizen Kane.

The decision on which approach to use usually relies on the ratio of the number of users

to the number of items. In those cases where the number of users is greater than the

number of items, item-based approaches are more appropriate because they provide more

accurate recommendations while being more computationally e�cient [13]. On the other

hand, user-based approaches usually provide more original recommendations [19].

These neighbourhood-based methods can be viewed as generalizations of k-nearest neigh-

bours classifiers. Therefore, these methods are considered instance-based learning meth-
ods, which are specific to the instance being predicted [20]. Among the advantages of

these algorithms are their simplicity of implementation and the ease of explanation of

their recommendations. Even so, these algorithms do not work very well with sparse

rating matrices [17].
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2. Model-based methods: Model-based algorithms make use of machine learning and data

mining methods to generate predictive models that will be used to predict missing entries

in the ratings matrix R [20]. As with others supervised or unsupervised machine learning

methods, these predictive models are created before the prediction phase. Examples

of traditional machine-learning methods that can be generalized to the model-based CF
scenario include decision trees, rule-based methods, Bayes classifiers, regression models,

support vector machines, and neural networks [21].

According to Aggarwal [20], model-based collaborative filtering recommender systems

(MB-CFRS) often have a number of benefits over memory-based methods:

• Space e�ciency: typically, the generated model is much smaller than the original

rating matrix.

• Training and prediction speed: whereas memory-based methods have a quadratic

preprocessing stage, model-based systems are usually much faster in the pre-processing

phase, while in most cases also being able to make predictions e�ciently.

• Avoiding overfitting: although overfitting is a serious problem in machine-learning

algorithms, the summarization approach used by model-based methods can often

help in avoiding overfitting.

Although memory-based systems o↵er the advantage of simple implementation [17],

they often lack accuracy. In general, model-based techniques are the most accurate meth-

ods, especially when using latent factor models [20].

Regardless of which method is used, CF provides recommendations based on the opinions

of others who share the same interests as the user [12]. These opinions are captured in the form

of ratings and are often specified on a scale that indicates how satisfied a user is with an item.

Although it is possible for the rating scale to be represented as a set of continuous values, this

is relatively rare. Usually the rating scale is represented as a discrete interval representing how

satisfied the user is with a certain item [17]. In addition, instead of using numerical values, the

rating scale can be represented as icons. A common example of such a representation is illus-

trated in Figure 2.2, where a five-point scale representing the set {�2,�1, 0, 1, 2} is portrayed

as a star drawing.
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Figure 2.2: Example of fine-point ratings scale.

Moreover, the interpretation of the rating scale may vary from one vendor to another. Even

though both Amazon and Netflix use the same five-point rating scale, the interpretation varies.

Whereas Amazon uses a linear scale, Netflix chose to use a five-star rating system in which

the four-star point level corresponds to “really liked it” and the central three-start point level

corresponds to “liked it”. Therefore, there are three favourable ratings and two unfavourable

ratings [17].

A special case of a rating scale is the unary scale [17]. In these cases, users have the

opportunity of providing their “like” opinion towards an item, but there is no alternative to

specify a dislike. A unary rating scale is normally associated with systems that use of implicit

feedback [22], in which users’ preferences are obtained based on their activities instead of

being explicitly given by users. The impact of using such a scale must be taken into account

by the recommender algorithm because there is no information on user dislikes.

Content-Filtering

The Content-Filtering recommends items similar to those the user liked in the past [12], but

unlike the CF method, content-filtering uses the content or features of the compared item to

calculate the similarity among all the other items in the system [12]. This technique can also

make use of ontologies and semantic analysis to retrieve user preferences, storing them in a

user profile [13].

To provide recommendations, the content-filtering recommender systems can use heuristics

with common information-retrieval techniques, or can use machine-learning methods to build

models based on the historical interest of the user [4].

Demographic Method

This method is justified by assuming that users belonging to the same demographic group

share the same interests [11]. Although these approaches have been popular in the market-
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ing literature, there has been relatively little recommender-systems research on demographic

systems [12].

Context-Aware Systems

Context-aware recommender systems (CARS) are a widely researched topic that has empow-

ered recommender applications in several areas, including movies, restaurants, travel, music,

news, shopping assistants, mobile advertising, mobile apps, and many others [23].

Most current-generation recommender systems operates in the two-dimensional User ⇥
Item space, meaning that they take into consideration only user and item information [24].

However, CARS can provide multidimensionality to a model [23].

This multidimensionality can be an advantage because in many situations, the relevance of

a certain item to a user may depend on the time of purchase, or the circumstances under which

the item will be consumed [23]. For example, a travel agency Web site may want to use the

season of the year to determine whether they should sell beach resort packages or ski vacations

to their users.

Although the ability to add other dimensions to the model is desirable, many standard two-

dimensional recommendation algorithms cannot be directly extended to the multidimensional

case. On the other hand, reduction-based algorithms, which use only ratings belonging to the

user context, can be used with any standard two-dimensional recommendation method, which

suits the purpose of this research [4].

To put this into context, when reduction-based algorithms are used to provide recommen-

dations, the CARS will use only the available ratings that match the context information desired

by the user, thus behaving as a filter [23].

Hybrid Filtering

This technique uses two or more recommender methods to provide recommendations to the

user [13]. Combining two or more methods is usually an attempt to overcome the drawbacks

of one solution by incorporating another method [12].

The most common practice is to use CF recommendation techniques with content-filtering

to avoid cold-start, sparseness, and scalability problems [4].

2.1.2 Local Learning

Local learning algorithms attempt to divide the training set into several local clusters to capture

more e↵ectively the properties of each neighbourhood of the input space [25]. This results in

creating separate local models for each cluster [26].
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Local learning is based on the assumption that large training datasets are very rarely evenly

distributed in the input space [8]. Moreover, current machine-learning systems are not inher-

ently e�cient or scalable enough to deal with large data volumes, and therefore a growing

fraction of data remain unexplored or underexploited [26]. Hence, local learning is considered

a suitable approach for machine-learning algorithms that use large data volumes [26].

As defined by Bottou and Vapnik [8], local learning can be accomplished by performing a

simple local algorithm for each testing pattern:

1. Select the training samples located in the vicinity of the test pattern.

2. Train the model using only these samples.

3. Apply the resulting model to the test pattern.

Recent studies have shown that local learning yields results far superior to a global learning

strategy, especially on datasets that are not evenly distributed [8, 27, 28, 29].

In addition, for computationally intensive algorithms, it is faster to find solutions for k
problems of size m/k than for one problem of size m [30].

2.1.3 Instance Selection

The exponential growth of available information has enabled machine-learning methods to

be used in a wide variety of fields. However, training on large datasets is often a very slow

process and has become a bottleneck [7]. For example, training of support vector machines

(SVM) implies a high training-time complexity O(n3

) and a spatial complexity O(n2

) [31, 32,

33]. Moreover, in classification problems, a large training set often results in slower response

times [34].

To overcome this issue, many methods have been developed to reduce the high compu-

tational complexity of machine-learning algorithms that use large datasets [35]. Among the

proposed techniques, scaling down the training set has proved to be one of the most direct and

e↵ective ways to solve large-scale classification problems [7].

According to Liu [36], instance selection has the following functions:

• Enabling: Instance selection renders the impossible possible. When a data set is too

large, it may not be possible to run a data mining algorithm. Instance selection reduces

data and enables a data mining algorithm to function and work e↵ectively with huge

data.
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• Focussing: The data includes almost everything in a domain, but a particular application

is normally about only one aspect of the domain. It is natural and sensible to focus on

the part of the data that is relevant to the application so that search is more focussed and

mining more e�cient.

• Cleaning: The “garbage in, garbage out” principle applies to all or almost all, data min-

ing algorithms. It is therefore of paramount importance to clean data before mining. By

selecting relevant instances, usually irrelevant ones as well as noise and/or redundant

data are removed. High-quality data lead to high-quality results and reduced costs for

data mining.

To obtain a scaled-down training set, similar instances are removed from the dataset, re-

sulting in a subset that can be used to make inferences about the original dataset [7]. How-

ever, when noisy instances are present, the accuracy of classification models can su↵er. To

alleviate these problems, the instance selection technique also proposes to delete these noisy

instances [34].

Instance selection approaches are diverse and include random selection, genetic algorithm-

based selection, progressive sampling, using domain knowledge, and cluster sampling [7].

2.1.4 Contextual Inference

Because useful contextual attributes may not be available in the historical data, the architecture

uses the contextual inference concept, which uses inference rules or external knowledge to

provide extended contextual attributes to the dataset.

An example of this contextual inference concept is illustrated in Figure 2.3, which shows

the process of extending a request containing an IP address and a time to contain in addition the

location and the weather condition at the time of the request. This is achieved by first querying

a geolocation service to obtain the approximate geographic location of the client and then using

this location and the time of the request to query a weather service to obtain the appropriate

weather conditions.

Although this example uses external data or services to extend the contextual attributes, this

may not be necessary. On some occasions, these transformations can be done using internal

logic, like the classification of a given day into a weekday or a weekend day.

These examples demonstrate the potential that contextual inference can provide to imple-

mentations of (CF)

2

, because contextual attributes that may look uninteresting at first can be

extended to provide powerful contextual meaning to data.
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Figure 2.3: Example of contextual inference for location and weather conditions.

2.2 Literature Review

This section provides a literature review and is broken down into two sub-sections. The first

covers instance selection and local learning and provides a review of how these techniques have

been used in the academia, and the second section describes the use of a pre-filtering approach

for CARS.

2.2.1 Local Learning and Instance Selection

Several previous studies have used instance selection with the intent of reducing the number

of instances in the training set without a↵ecting classification accuracy [37, 38, 39, 40, 41].

Leyva et al. [37] proposed three selection strategies with several accuracy-reduction trade-o↵s.

In their work, the focus was on memory-based algorithms to prioritize instance selection for

nearest-neighbour classification problems. Their results involved 26 databases and were com-

pared with 11 state-of-the-art methods in standard and noisy environments. The comparison

was performed using the Technique for Order Preference by Similarity to Ideal Solution (TOP-
SIS), and the proposed Local Set-Based Centroids Selector method (LSCo) achieved the best

rankings for all levels and types of noise but one, for which it was the second-best.

Garc´ıa et al. [38] outlined the importance of instance selection in the data reduction phase

of knowledge discovery and data mining. Their work demonstrated that instance selection

performs a complementary function to feature selection. In addition, they defined instance

selection as an intelligent operation of instance categorization according to the degree of ir-

relevance or noise and depending on the data mining task. Furthermore, they separated the
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instance selection task into two processes: training set selection and prototype selection. Their

work also presented a list of almost 100 prototype selection methods that had been proposed in

the literature.

Carbonneau et al. [39] proposed the Random Subspace Instance Selection (RSIS) method

to improve pattern recognition problems that can be modelled using multiple-instance learn-

ing (MIL). According to their work, state-of-the-art MIL methods provide high performance

when strong assumptions are made about the underlying data distributions and the ratios of

positive to negative instances in positive bags (instances containing all patterns). Their method

focused on cases where prior assumptions about data structure could not be made and the ratios

of instances in bags were unknown. To achieve this result, instance selection probabilities were

computed based on training data clustered in random sub-spaces and then used to generate a

pool of classifiers.

Chen et al. [40] performed instance selection by leveraging a genetic algorithm approach

to improve the performance of data mining algorithms. In their work, they introduced a novel

instance selection algorithm called a genetic-based biological algorithm (GBA). GBA fits a

“biological evolution” into the evolutionary process, where the most streamlined process also

complies with the reasonable rules. This means that, after long-term evolution, organisms find

the most e�cient way to allocate resources and evolve. Consequently, this technique closely

simulates the natural evolution of an algorithm to become both e�cient and e↵ective.

Silva et al. [41] proposed the e-MGD method for instance selection. This method is as an

extension of the Markov Geometric Di↵usion (MGD) method, which is a linear complexity

method used in computer graphics to simplify triangular meshes. The original method was

extended to reduce datasets commonly found in data mining.

In contrast to these studies [37, 38, 39, 40, 41], this research introduces context to instance

selection because a point might be considered irrelevant or noise in one context, but not in

another. The studies described earlier considered the training set as a whole, rather than treat-

ing it as a collection of sub-spaces. Moreover, these studies dealt with neighbourhood-based

classifiers, whereas this research is focussed on model-based classifiers.

Other studies have used local learning to achieve simplified local models and increased

precision. Piegat and Pietrzykowski [25] presented a new version of the mini-model method.

Generally, these models do not identify the full global model of a system, but only a local

model of the neighbourhood of the query point of special interest. In their work, the authors

extended the mini-model method to include local dimensionality reduction.

The work conducted by Domeniconi et al. [42] also aimed to perform dimensionality reduc-

tion. In their study, they tackled the curse of dimensionality su↵ered by clustering algorithms

by discovering clusters in sub-spaces spanned by several combinations of dimensions using
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local feature weightings. Their method associated with each cluster a weight vector, whose

values were then used to capture the relevance of features within the corresponding cluster.

This approach avoids the risk of information loss encountered in global dimensionality reduc-

tion techniques and does not assume any data distribution model.

Wu and Sch¨olkopf [43] presented a local learning approach for clustering. Their idea was

that an adequate clustering result should have the property that the cluster label of each data

point can be well predicted based on its neighbouring data and their cluster labels. Relaxation

and eigen-decomposition techniques were used to solve this problem. In addition, the authors

provided a parameter selection method for the proposed clustering algorithm.

Chitta et al. [44] proposed a sparse kernel k-means clustering algorithm that incrementally

sampled the most informative points from the dataset using importance sampling and con-

structed a sparse kernel matrix using these sampled points. This sparse kernel matrix was then

used to perform clustering and obtain cluster labels. This combination of sampling and sparsity

reduces both the running time and the memory complexity of kernel clustering. The authors

also showed analytically that only a small number of points from the dataset need to be sam-

pled, yielding a well-bounded error for the resulting approximation. Zhou et al. [45] proposed a

global and local structure-preserving sparse sub-space learning model for unsupervised feature

selection. Their model can perform feature selection and sub-space learning simultaneously.

In addition, they developed a greedy algorithm to implement a generic combinatorial model.

These studies [25, 42, 43, 44, 45] focussed on ways of adapting existing models to simplify

them and improve their accuracy while also performing dimensionality reduction. Nevertheless

the models presented were static and could not be extended to other existing models used in

MB-CFRS. In contrast, the present work focusses on contextual information explicitly available

in the dataset or inferred to perform clustering. Hence, by using data embedded in the dataset,

the properties of local learning can be applied to existing algorithms.

2.2.2 Contextual Information in Recommender Systems

Several studies have focussed on enhancing recommendation accuracy by using contextual

information gathered from user interactions. Some have focussed on using contextual informa-

tion to remove the variability and noise that are an intrinsic part of human behaviour [46, 47],

whereas others used this additional information to retrieve personalized items for users accord-

ing to their particular context [48, 49, 50, 51, 52]. In addition, other studies used contextual

information to present a multidimensional approach to recommender systems that can provide

contextual recommendations using existing CF algorithms [53, 54, 55, 56].

Jawaheer et al. [46] discussed the user modelling preferences incorporated into context-
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aware recommender systems and questioned how user feedback is applied to recommender

systems. In their work, they proposed a classification framework to use explicit and implicit

user feedback in recommender systems based on a set of distinct properties that included Cog-

nitive E↵ort, User Model, Scale of Measurement, and Domain Relevance. Akuma et al. [47]

investigated the relationship between implicit parameters and explicit user ratings during search

and reading tasks. In their work, they identified implicit parameters that were statistically cor-

related with the explicit user ratings through user study and used these parameters to develop

a predictive model that could be used to represent the perceived users’ relevance. Their find-

ings suggest that there is no significant di↵erence between predictive models based on implicit

indicators and on eye gaze within the context examined.

Colombo-Mendoza et al. [48] proposed a movie recommender system that combined loca-

tion, time, and crowd information with a semantic Web to recommend movies to a users. To

obtain location and crowd information, the proposed approach used an explicit check-in per-

formed by the user through the Foursquare application. Wang et al. [49] proposed a context-

aware recommender for a Web news mobile application that relied on explicit input of user

preferences modelled as a tensor to perform a cold-start of the recommender system.

Aghdam et al. [50] proposed a context-aware recommender algorithm based on hierarchi-

cal hidden Markov modelling. This approach represents the contextual changes in the user’s

preferences as hidden variables in the model and uses them to produce personalized recom-

mendations to the user. Hussein et al. [51] proposed a software framework called Hybreed
for developing context-aware hybrid recommender systems. This software framework enables

developers to create new hybrid recommender systems by combining existing algorithms while

facilitating the incorporation of context and third-party applications into the recommendation

process. Liu and Wu [52] also proposed a generic framework to learn context-aware latent rep-

resentations for context-aware collaborative filtering. In their work, the proposed framework

combined contextual contents by means of a function that produces a context influence factor,

which was then combined with each latent factor to derive latent representations. Moreover,

a stochastic gradient descent-based optimization procedure was applied to fit the model by

jointly learning the weight of each context and of the latent factors.

These studies [46, 47, 48, 49, 50, 51, 52] used explicitly obtained contextual information to

model user preferences and then applied hard-wired algorithms to obtain recommendations. In

contrast, the present research uses local learning properties to extend existing CF algorithms.

Hence, algorithms previously developed and fine-tuned to address a specific scenario can now

be extended to play a context-aware role without major modifications. Moreover, using contex-

tual inference, new contextual attributes obtained from external sources can be used to provide

contextual meaning to data.
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Adomavicius et al. [53] presented a multidimensional approach to recommender systems

that can provide recommendations based on additional contextual information beyond typical

information on users and items used in most current recommender systems. They proposed

to obtain a multidimensional rating estimate by selecting two-dimensional segments of ratings

pertinent to the recommendation context and applying standard collaborative filtering or other

traditional two-dimensional rating estimation techniques to these segments. Although they

proposed this multidimensional approach, their work did not provide an extensible architec-

ture that could make use of this technique. Building on this multidimensional approach, this

study proposes an extensible architecture that can leverage contextual information to create

contextualized local models.

Campos et al. [54] took advantage of time contexts in CF by grouping and exploiting

ratings according to the contexts in which they were generated. This approach showed positive

e↵ects on recommendation in the presence of significant di↵erences among user preferences

within distinct contexts. The authors focussed only on time contexts, whereas this study has

adopted a generic approach that can use any kind of contextual information.

Yao et al. [55] proposed a graph-based generic recommendation framework that constructs

a multi-layer context graph from implicit feedback data and then executes ranking algorithms

in this graph to produce context-aware recommendations. The proposed graph models the

interactions between users and items and incorporates a variety of contextual information into

the recommendation process. Pessemier et al. [56] described a framework to detect the current

context and activity of a user by analyzing data retrieved from various sensors available on

mobile devices. On top of this framework, a recommender system was built to provide users

a personalized content o↵er, consisting of relevant information such as points of interest, train

schedules, and tourist information, based on the user’s current context.

In contrast to these studies [53, 54, 55, 56], the present research focusses on creating an

architecture that enables recommendations to be generated using any kind of contextual infor-

mation. Hence, by using local learning with contextual information to generate the models,

only the ratings made in the same context as the target prediction are used. Moreover, by

using a pre-filtering approach towards the training set, any CF model can be used to gener-

ate the recommendations. These models can range from simple classifiers to more complex

regression-based approaches.

2.3 Summary

In this chapter, an overview of the concepts involved in local learning for MB-CFRS has been

presented. More specifically, an introduction to the terminology of recommender systems has
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been presented. In addition, an introduction to local learning and instance selection, which play

a role in this research, was provided. Finally, current studies on local learning and instance

selection domain as well as contextual information in recommender systems were discussed.
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Context Filtering for Model-Based
Collaborative Filtering Recommender
System Architecture

This chapter introduces the Context Filtering for the Model-Based Collaborative Filtering Rec-

ommender System (CF)

2

architecture. The (CF)

2

uses user rating data with embedded contex-

tual attributes to generate smaller datasets for model-based collaborative filtering recommender
systems (MB-CFRS). In addition, if a context cannot be directly obtained, (CF)

2

introduces a

technique that enables the use of contextual knowledge to provide new attributes to the dataset.

Given that using large datasets to train MB-CFRS requires substantial computing resources,

(CF)

2

proposes that instead of relying on a single model to generate user recommendations,

several models should be used, each trained with just a small subset of the original dataset.

(CF)

2

uses contextual attributes to perform dataset reduction. This is exemplified in Figure 3.2,

where a full dataset is divided into smaller subsets based on contextual criteria.

By means of this approach, each model is trained using only the portion of the rating data

that matches the contextual criteria. As a result, each training procedure requires fewer compu-

tational resources than if it were to use the totality of the rating data. The exact computational

gain will depend on the complexity of the recommender algorithm.

In addition, not only does (CF)

2

provides improved performance during training, but it also

embeds contextual awareness into the recommender system. All this can be achieved because

model training is performed using only the subset of data that matches the contextual attributes.

(CF)

2

operates in two phases: a training phase and a production phase. Each of these

phases is represented as a layer in the architecture. Moreover, an additional third layer, called

the storage layer, is used to handle rating data and contextual information retrieval. This layer

is also responsible for storing the trained models and their auxiliary files. The three layers

19
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Figure 3.1: (CF)

2

architecture.

Figure 3.2: Dataset divided into smaller subsets based on contextual attributes.
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ensure better separation of concerns and provide higher decoupling between the phases.

The following sections describe the architectural details proposed by (CF)

2

and illustrated

in Figure 3.1.

3.1 External Entities

This section describes the artifact produced as well as the external entities of (CF)

2

.

3.1.1 Recommendations

The only artifact generated by (CF)

2

is the list of recommendations that are returned when

requested by the client. MB-CFRS allows recommendations to be a list of items for a user or a

list of users for a certain item. Hence, the recommendations can belong to either of these two

types.

3.1.2 Client

The client is a software application, acting on behalf of a user, which is mostly involved in

consuming content served by an application. Eventually, the client may also be involved in

obtaining recommendations from the recommender service of this application.

3.1.3 Recommender Service

The recommender service is the service responsible for processing requests issued by clients
when they are in need of recommendations. Requests issued to this service must be accom-

panied by a client identifier, an identifier for the item or client for which the requesting party

wants to obtain recommendations, and a list of contextual attributes.

3.1.4 Application

The application is the service that handles regular requests from clients interested in consuming

its content, usually an item. Because the use of MB-CFRS requires data containing ratings

given by users to items to generate the recommender model, this service is also responsible for

gathering and storing ratings provided by clients.

Sometimes these data are also copied into a data warehouse. Because (CF)

2

is involved

only with the rating data (item identifier, client identifier, rating, and contextual attributes), the

data-warehousing solution can assume the role of application if desired.
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3.1.5 Trainer

The trainer is the service responsible for initiating the training phase. This service can be

manually invoked by a system administrator or it can be periodically invoked by a time-based

job scheduler.

3.1.6 External Knowledge

The external knowledge is the service that holds the additional contextual information used by

the contextual storage component. This service is often provided by an external vendor and

is accessible through the use of an application programming interface (API). Examples of this

service are weather forecast systems, demographic databases, and geo-location services.

3.2 Storage Layer

This layer contains all the components required by (CF)

2

to access the data in a standard

manner. Because the actual data may be stored by third-party applications, this layer provides

a set of components that serves as abstractions to these datasets.

3.2.1 Rating Storage

The rating storage ensures a standardized interface to access the historical dataset containing

the ratings stored in the application. This interface will be used during the training phase to

provide access to these ratings.

Implementation of this component will fetch a copy of the ratings available through the

API of the application and format it in a way that can be easily used by other architecture

components.

Although the actual format of the rating is not enforced by (CF)

2

because it can vary ac-

cording to the application domain, it must contain at least the following elements:

• Client identification

• Item identification

• Rating

• Contextual attributes
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Figure 3.3: Rating data are requested and formatted to meet the requirements of (CF)

2

.

Figure 3.3 gives an example of this interface. A copy of the ratings is requested from

the application and then formatted to maintain only the elements that are meaningful for the

training.

3.2.2 Contextual Storage

The contextual storage component ensures a standardized interface to access the datasets that

can provide additional contextual information to the data.

(CF)

2

may use more than one service to provide external contextual data. Hence, this com-

ponent implements a method for each of these services to abstract the complexity of handling

the peculiarities of each external service.

The use of external contextual attributes is achieved by matching embedded contextual

attributes available in the rating storage component with those provided by the contextual
storage component. Therefore, the returned value should follow a structure containing the

following elements:

• Contextual attribute 1

• Contextual attribute ...

• Contextual attribute n

• External contextual attribute.

To exemplify such a data structure, Figure 3.4 illustrates a scenario in which two contextual

attributes embedded in the dataset (location and date) are used to match an external contextual

value (weather condition).
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Figure 3.4: External service providing external contextual attributes.

3.2.3 Contextual Model Storage

The contextual model storage component functions as the interface between the training phase
and the production phase, handling the storage of and access to all the contextual collaborative

filtering models trained during the training phase. These models will later be used by the

recommender engine to provide customized recommendations.

To accomplish this task, the contextual model storage component must be implemented in

such a way that only the most recent model is used for each context.

3.3 Training Layer

The training layer contains all the components required to extract contextual attributes from

the historical data provided by the rating storage. These components are used to generate the

contextual models that the recommender engine will use to provide personalized recommenda-
tions during the production phase.

Due to the complexity of this task, this layer is separated into two components. The contex-
tual filtering component is responsible for identifying the contextual attributes of past requests

and performing contextual inference when required. The recommender trainer component is

responsible for carrying out training for each of the identified contextual attributes.

Moreover, to accommodate new ratings captured by the application and to provide more

up-to-date recommendations, this layer must be periodically invoked by an external system.

The exact periodicity is domain-specific and must be addressed on a case-by-case basis.

During the training phase, a traditional MB-CFRS uses historical data to generate a single



3.3. Training Layer 25

Figure 3.5: Training phase using the weather condition context.

model that can be used to create a list of recommendations. Instead of following this pattern,

(CF)

2

uses contextual subsets of historical data to generate several contextual models.

Figure 3.5 illustrates the steps followed by (CF)

2

to process a historical dataset with its

contextual attributes. Moreover, the recommender trainer uses these attributes to train the

contextual models. This illustration of the training phase is expanded as follows:

1. The starting point of the training phase occurs within the context extraction sub-component.

This sub-component requests the rating storage component to provide a list of the ratings

stored in the application. Using the example illustrated in Figure 3.5, the list contains

the client identifier, item identifier, rating, and contextual attributes location and date.

Because the weather condition cannot be obtained directly from these attributes, the con-
textual extraction sub-component delegates the contextual inference task to the context
inferrer sub-component;

2. The context inferrer sub-component either infers the contextual attributes using internal

rules or reaches out to the contextual storage component to obtain the external knowl-

edge. In this case, historical weather conditions provided by an external data source are

required;
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3. To obtain these weather conditions, the context inferrer sub-component reaches out to the

contextual storage component. In this case, the contextual storage component provides

a list containing the location and date followed by the weather condition;

4. With the list of contexts in place, the context extraction component invokes the data
splitter sub-component to divide the rating dataset into smaller datasets, each of them

representing a di↵erent context, in this case a weather condition;

5. For each contextual dataset generated, the data splitter sub-component invokes the rec-
ommender trainer component to train the collaborative filtering models e↵ectively;

6. This results in the creation of a set of new models and auxiliary files that will be stored

in the contextual model storage component.

An extended description of these components is presented below.

3.3.1 Contextual Filtering

Contextual filtering is responsible for identifying the contextual attributes of past requests and

creating their corresponding training datasets.

This component initiates the training phase by requesting that all ratings captured during a

period of time be sent to the rating storage component, regardless of their context. The proper

contextual identification is then performed for each request in the dataset. For cases where a

useful context cannot be directly obtained, this component also performs contextual inference.

Once the contextual attributes have been identified, this component splits the historical data

into contextual subsets. Finally, it invokes the recommender trainer component to train each

contextual collaborative filtering models. An example of this process is illustrated by arrows

1, 2, 3, and 4 in Figure 3.5.

Because these tasks are well defined, (CF)

2

proposes the creation of three sub-components

to create a better separation of concerns. These sub-components, which are already present in

Figure 3.5, are described below.

Context Extraction

To achieve the contextual filtering goal of this component, the first step is to extract a list of

contextual attributes available in the rating storage component and remove those that are not

useful for training purposes.

The exact contextual attributes used are domain-specific, but (although this is not manda-

tory) the decision on which ones to use should always be preceded by an analysis of past user
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behaviour. This step determines whether the chosen context attributes a↵ect user behaviour,

thereby ensuring a better use of (CF)

2

.

It is important to realize that these contextual attributes may not be su�cient to conduct

a proper contextual separation of the historical dataset. It may be necessary to perform a

contextual inference to obtain the proper contextual attributes. In these cases, this component

delegates the contextual inference process to the context inferrer sub-component.

With the contextual attributes identified, the context extraction sub-component can then

invoke the data splitter sub-component to conclude the splitting process.

Context Inferrer

This optional sub-component is responsible for inferring contextual attributes that are not ex-

plicitly available in the historical dataset.

These inferred contexts can be as simple as using the date of the request to determine

whether it was made during a weekday or on the weekend, or they can be more complex, such

as using location and time to infer whether a request was made during the day or at night,

taking sunrise and sunset times for di↵erent seasons into consideration.

Although this is not mandatory, these inferences may require access to an external knowl-

edge base. In these cases, the contextual storage is contacted in to provide the desired infor-

mation. This interaction is exemplified by arrow 3 in Figure 3.5.

By using this sub-component, the contextual information previously available is extended

in numerous ways, enabling (CF)

2

to make use of several new contexts to perform data splitting

process.

Data Splitter

With the contextual attributes properly identified, the only task left for the contextual filtering
component to fulfill its goal is to perform the splitting itself. This is the responsibility of the

data splitter sub-component.

Invoked by the context extraction sub-component, each identified context attribute is used

to perform splitting on the historical dataset, resulting in several subsets matching the desired

context.

It is worth mentioning that the data present in the application or in rating storage are not

altered by (CF)

2

at any point because all the filtering is done in memory or using auxiliary

storage within the component. The choice of location depends on the implementation.

To conclude, each of the split datasets is then forwarded to the recommender trainer compo-

nent so that the latter can perform training using only the ratings performed within the desired
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context.

3.3.2 Recommender Trainer

The last component of the training layer, the recommender trainer component, is responsible

for training the recommender model using the subsets provided. This process is invoked for

each contextual attribute and can be carried out using one of the many collaborative filtering

techniques available. After training takes place, the model, along with its contextual attributes,

is forwarded to the contextual model storage to be stored and used during the production phase.

This flow is exemplified by arrows 5 and 6 in Figure 3.5, which illustrates the generated con-

textual models and their storage.

By using a technology-agnostic approach, (CF)

2

ensures that the best technique can be

used for each application domain, enabling its adoption by a wide gamut of applications.

3.4 Production Layer

The production layer is responsible for inspecting all incoming requests made to the recom-
mender service and generating a list of personalized recommendations that match the requested

content.

To accomplish this task, this layer is divided into two components. The request inspector
component is responsible for inspecting all incoming requests in order to identify their con-

textual attributes. The recommender engine component is responsible for choosing the proper

model to produce the recommendations and for generating them.

During the production phase, a traditional MB-CFRS is involved in using the model ob-

tained during the training phase to create a list of recommended items for a user or a list of

users for a certain item. (CF)

2

can do this because it uses several contextual models instead of

one.

Figure 3.6 illustrates the steps followed by (CF)

2

for an incoming request during the pro-
duction phase. In this case, the incoming request has its contextual attribute inferred by the

request inspector component, and the recommender engine uses this attribute to select the

proper model to generate the recommendations list. This illustration of the production phase
is further described below.

1. The production phase starts every time a client issues a request to the recommender ser-
vice. Using the example illustrated in Figure 3.6, the request contains the client identifier,

item identifier, and contextual attributes location and date;
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2. Because the recommender service processes only those requests that need a list of rec-

ommendations to provide content, it delegates the request to the context extraction sub-

component of the request inspector component;

3. The context extraction sub-component extracts the contextual attributes present in the

request. In this example, because the weather condition cannot be obtained directly

from location and date, the contextual extraction sub-component delegates the contextual

inference task to the context inferrer sub-component;

4. The context inferrer sub-component either infers the contextual attributes using an inter-

nal rule or reaches out to the contextual storage component to obtain external knowledge.

In this case, weather condition requires the use of an external datasource. To obtain this

weather condition, the context inferrer sub-component reaches out to the contextual stor-
age component for the current weather condition given a location and a date;

5. With the context properly identified, the context extraction sub-component invokes the

context chooser sub-component of the recommender engine component. The purpose of

this invocation is to obtain the corresponding contextual model along with its auxiliary

files;

6. Because the actual contextual models are stored in the contextual model storage compo-

nent, the context chooser sub-component fetches the model from the contextual model
storage component;

7. The retrieved model with its auxiliary files is then passed to the predictor sub-component,

which queries the model for the list of recommendations;

8. This list of recommendations is then returned to the client.

An extended description of these two components is presented below.

3.4.1 Request Inspector

The first component of the production phase, the request inspector component, performs a

proper contextual identification of the incoming requests and, for those cases where a useful

context cannot be directly obtained, also performs contextual inference. Once the contextual

attributes have been identified, the request inspector invokes the recommender engine to gen-

erate the list of recommendations requested by the client.
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Figure 3.6: Production phase using the weather condition context.
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Because these tasks are well defined and very di↵erent, (CF)

2

separates them into two sub-

components, much as was done in the contextual filtering component of the training layer.

These sub-components are described below.

Context Extraction

Similarly to the sub-component with the same name present in the contextual filtering com-

ponent of the training layer, the context extraction component is responsible for extracting all

contextual attributes for a request, but instead of working with past usage data, this component

deals with requests made during the production phase.

The exact contextual attributes are domain-specific, but they should be the same ones de-

fined in the training layer.

Because the context may require inference of contextual attributes, it may be necessary to

carry out contextual inference to obtain the proper contextual attributes. In these cases, this

component delegates the contextual inference process to the context inferrer sub-component.

With the contextual attributes identified, the context extraction sub-component then dele-

gates the remaining work to the recommender engine component.

Context Inferrer

Implementation of this component often relies on the same logic as the context inferrer sub-

component of the contextual filtering component. This is the case because often the inference

rules are the same, independently of whether the request was performed in the past or the

present. In those rare cases where they di↵er, the context inferrer sub-component of the pro-
duction phase should reflect these changes.

3.4.2 Recommender Engine

The last component of the production layer, the recommender engine component is responsi-

ble for generating the list of recommendations that is returned to the client. To achieve this

goal, the component must choose the proper recommender model and use it to predict which

recommendations are most suitable for the current request.

These tasks were divided into two sub-components, each of them being responsible for a

part of this procedure.
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Context Chooser

The context chooser sub-component uses the contextual attributes identified by the request
inspector component to query the contextual model storage component for the matching rec-

ommender model. This query returns the corresponding model to be used by the next sub-

component to generate the list of recommendations requested by the client.

Predictor

With the appropriate model in place, the only thing left to do to obtain the list of recommen-
dations is to query the model for recommendations. Because a recommendation can be a list

of items for a user or a list of users for a certain item, this sub-component needs to determine

which recommendation type was requested and provide the list to the recommender service.

3.5 Summary

This chapter introduced the (CF)

2

architecture and discussed each of its components. The

discussion provided an explanation of the responsibilities of each layer and components of the

architecture and also explained how they interact with each other. Because the architecture

operates in two phases, each phase was presented individually, along with a description of the

steps to be performed. Finally, this chapter also introduced the contextual inference concept,

which enables the architecture to use inference rules or external knowledge to provide extended

contextual attributes to the dataset.
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(CF)2 Framework

This chapter proposes a framework for the (CF)2
architecture that can be used as a foundation

for implementing the proposed work in di↵erent programming languages and paradigms.

The framework uses an object-oriented approach design to provide a class diagram (Fig-

ure 4.1) for each architectural component and sub-component and to describe the methods

implemented by each component or sub-component. This chapter also explains the inputs and

outputs structure and presents the algorithms at a high level. An exceptions is made for the

methods responsible for identifying contextual attributes. This logic often relies on the ap-

plication domain and changes for each deployed system. This framework uses packages to

represent layers and components containing sub-components. It also uses constants to manage

workflow and prevent declaration redundancy.

The following subsections details the (CF)2
layers, components, and sub-components.

4.1 Storage Layer

This section provides the implementation details for each architectural component present in

the storage layer.

4.1.1 Rating Storage

The rating storage component is responsible for providing an interface between the (CF)

2

architecture and the historical dataset, which is stored in the application and accessed through

an Application Programming Interface (API). Because each application provides a di↵erent

API, the logic to access this dataset varies.

This logic must be implemented using a method called getDataBetweenPeriods, which

receives two parameters: a starting date and time, and a final date and time. This method

33
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Table 4.1: Column structure of the matrix returned by the rating storage component.

Column Description

1 Client Identification

2 Item Identification

3 Rating

4 Contextual Attribute 1

... ...

n+3 Contextual Attribute n

Table 4.2: Generic data source structure used by the contextual storage component.

Column Description

1 Contextual attribute 1

... ...

n Contextual attribute n
n+1 External Contextual Attribute

submits a request to the application for a copy of the historical data between the two specified

points in time, which returns this data as a matrix structured as in Table 4.1. Each request to

this historical dataset is represented as a line in the returned matrix, and the columns of this

matrix should follow the structure presented on Table 4.1.

Because the implementation of this method varies according to the dataset, an example of

the implementation of this method will be presented for each case study.

4.1.2 Contextual Storage

The contextual storage component is responsible for providing an interface between the archi-

tecture and the external contextual dataset. Because each external contextual dataset is accessed

di↵erently, the logic to access them varies.

This logic must be implemented in a method called getDataForContextualAttributes, which

receives a matrix containing contextual attributes as parameters. This method submits a request

to the external service for extended contextual data that match those passed as parameters

and returns the data as a matrix containing these contextual attributes and their corresponding

external values. As with the rating storage, each line of the matrix corresponds to one data

entry, and the columns follow the structure presented in Table 4.2.
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Because the implementation of this method varies according to the dataset, an implemen-

tation will be presented for each case study.

4.1.3 Contextual Model Storage

The contextual model storage component is responsible for storing the most recent models

generated by the recommender trainer and for providing an instance of these models when

requested by the recommender engine. To do so, it implements two methods: storeModelWith-
ContextualAttribute and retrieveModelWithContextualAttribute.

The storeModelWithContextualAttribute method receives two parameters, the model to be

saved and a string containing the contextual attribute. This implementation opted to store the

model as a file named after the contextual attribute. This ensures that only the most recent

model is used. This procedure is outlined in Algorithm 4.1. The auxiliary methods FileExists
and DeleteFile are usually provided by the programming language.

Algorithm 4.1: storeModelWithContextualAttribute method of the contextual model
storage component

Input: Model model to be persisted

String context containing the contextual attribute of the model

1 if FileExists(context) is true then
2 DeleteFile(context);
3 end
4 model.saveToFile(context);

The retrieveModelWithContextualAttribute method receives a single string parameter con-

taining the contextual attribute. This implementation loads the model from a file named after

the contextual attribute, therefore ensuring that the most recent model is always used for each

contextual attribute. This procedure is outlined in Algorithm 4.2.

Algorithm 4.2: retrieveModelWithContextualAttribute method of the model storage
component

Input : String context containing the contextual attribute of the model

Output: Model model

1 model null;
2 if FileExists(context) is true then
3 model Model.retrieveFromFile(context);
4 end
5 return model;
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4.2 Training Layer

This section provides the implementation details for each architectural component present in

the training layer.

4.2.1 Contextual Filtering

This component is separated into three sub-components, which are described below.

Context Extraction

The context extraction sub-component is responsible for initiating the training process, as well

as for identifying the contextual attribute to be used as a filtering criterion. Because each

application is di↵erent, identification of the contextual attribute varies among applications,

with each requiring its identification logic to be implemented in its own method.

Granted that obtaining the contextual attribute may require the use of contextual inference,

the implementation defines the constant UsesInferredContext to identify which logic to exe-

cute. This constant is of Boolean type and has the value true when an inference is necessary or

false when the contextual attribute can be directly obtained.

This sub-component implements two methods: initiateTrainingBetweenPeriods and con-
textualizeDataset. The first method is responsible for initiating the training process, whereas

the second contains the contextual attribute identification logic. When a contextual inference
is necessary, the contextualizeDataset method is not implemented.

The initiateTrainingBetweenPeriods method receives a starting date and time and a final

date and time as parameters and does not return any value. The procedure performed by this

method is outlined by Algorithm 4.3.

The contextualizeDataset method receives the historical dataset in the format supplied by

the getDataBetweenPeriods method of the rating storage component and returns a matrix

striped of the columns containing contextual attributes that are di↵erent from the one used

as a filtering criterion. The column structure is presented in Table 4.3.

Because each application performs this logic di↵erently, this methods must be addressed

on a case-by-case basis. An implementation of this method will be presented in the case study

section.

Context Inferrer

This optional sub-component is required only when the application uses contextual inference
to infer the contextual attribute to be used as a filtering criterion. Because each application is
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Algorithm 4.3: initiateTrainingBetweenPeriods method of the contextual extraction
sub-component

Input : DateTime startingTime containing the starting date and time

DateTime finalTime containing the final date and time

Constant: Boolean UsesInferredContext determining whether the algorithm should

make use of contextual inference

1 ratingStorage RatingStorage.new();
2 historicalDataset
 ratingStorage.getDataBetweenPeriods(startingTime,finalTime);

3 if UsesInferredContext is true then
4 contextInferrer ContextInferrer.new();
5 contextualData

 contextInferrer.inferContextForDataset(historicalDataset);
6 else
7 contextualData contextualizeDataset(historicalDataset);
8 end
9 dataSplitter DataSplitter.new();

10 dataSplitter.splitAndTrainDataset(contextualData);

Table 4.3: Column structure of the matrix supplied to the contextualizeDataset method.

Column Description

1 Client Identification

2 Item Identification

3 Rating

4 Contextual attribute to be used as filtering criterion
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Table 4.4: Column structure of the matrix returned by the inferContextForDataset method.

Column Description

1 Client Identification

2 Item Identification

3 Rating

4 Inferred contextual attribute to be used as filtering criteria

di↵erent, the inference logic for the contextual attribute varies among applications, with each

requiring its inference logic to be implemented in its own method.

Granted that the contextual inference may require the use of external database, the imple-

mentation defines the constant UsesExternalKnowledge to identify which logic to execute. This

constant is of Boolean type and has the value true when an external knowledge is necessary or

false when the contextual inference can be obtained locally.

This sub-component implements three methods: inferContextForDataset, matchContex-
tualAttributesWithExternalDataset, and inferAttributeBasedOnContextualAttributes. The first

method is responsible for initiating the contextual inference process, the second contains the

logic that determines how to match existing contextual attributes with the obtained external

knowledge, and the last contains the contextual inference logic.

Only the inferContextForDataset method and one of the other two methods need to be im-

plemented. When external knowledge is needed, the method to be implemented is matchCon-
textualAttributesWithExternalDataset, whereas in other cases, the method to be implemented

is inferAttributeBasedOnContextualAttributes.

The inferContextForDataset method receives the historical dataset in the format supplied

by the getDataBetweenPeriods method of the rating storage component and returns a matrix

containing the client identification, the item identification, the rating, and the inferred contex-

tual attribute. The column structure is presented in Table 4.4, and the procedure performed by

this method is outlined as Algorithm 4.4.

The matchContextualAttributesWithExternalDataset method receives two parameters: an

array of contextual attributes in the format presented in Table 4.5, and the external contextual

dataset in the same format supplied by the getDataForContextualAttributes method of the con-
text storage component. This method returns the external contextual attribute used as a filtering

criterion.

The inferAttributeBasedOnContextualAttributes method receives as parameters an array of

contextual attributes in the format presented in Table 4.5 and returns the inferred contextual
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Algorithm 4.4: inferContextForDataset method of the context inferrer sub-

component

Input : Matrix historicalDataset containing the historical data with contextual

attributes

Output : Matrix containing the client identification, the item identification, the

rating, and the inferred contextual attribute

Constant: Boolean UsesExternalKnowledge determining whether the algorithm

uses external knowledge

1 /* InitializeMatrix() auxiliary method to create empty matrix */
2 contextualDataset InitializeMatrix();
3 /* contextualColumnsOfDataset() is a method that returns only

the contextual columns of a given dataset */
4 contextualAttributes contextualColumnsOfDataset( historicalDataset);

5 if UsesExternalKnowledge is true then
6 contextualStorage ContextualStorage.new();
7 externalDataset

 contextualStorage.getDataForContextualAttributes(contextualAttributes);

8 for line in historicalDataset do
9 contextualDataset [line][RatingStorage.ClientIdentifierIndex] 

historicalDataset [line][RatingStorage.ClientIdentifierIndex];

10 contextualDataset [line][RatingStorage.ItemIdentifierIndex] 
historicalDataset [line][RatingStorage.ItemIdentifierIndex];

11 contextualDataset [line][RatingStorage.RatingIndex] historicalDataset
[line][RatingStorage.RatingIndex];

12 contextualDataset [line][RatingStorage.ContextualAttributeIndex] 
matchContextualAttributesWithExternalDataset(
contextualAttributes [line], externalDataset);

13 end
14 else
15 for line in historicalDataset do
16 contextualDataset [line][RatingStorage.ClientIdentifierIndex] 

historicalDataset [line][RatingStorage.ClientIdentifierIndex];

17 contextualDataset [line][RatingStorage.ItemIdentifierIndex] 
historicalDataset [line][RatingStorage.ItemIdentifierIndex];

18 contextualDataset [line][RatingStorage.RatingIndex] historicalDataset
[line][RatingStorage.RatingIndex];

19 contextualDataset [line][RatingStorage.ContextualAttributeIndex] 
inferAttributeBasedOnContextualAttributes(
contextualAttributes [line]);

20 end
21 end
22 return contextualDataset;
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Table 4.5: Structure supplied to the matchContextualAttributesWithExternalDataset method.

Column Description

1 Contextual attribute 1

... ...

n Contextual attribute n

attribute to be used as a filtering criterion.

Because each implementation performs this logic di↵erently, this methods must be ad-

dressed on a case-by-case basis. The implementation of this method will be presented in the

case study section.

Data Splitter

The data splitter sub-component is responsible for splitting the historical dataset into contex-

tual sub sets, and invoking the recommender trainer to train the models. To achieve this goal,

this components implements the splitAndTrainDataset method.

This method receives as parameter a matrix containing requests with client identification,

item identification, rating, and the contextual attribute that serves as a filtering criterion. This

is the same format supplied by the contextualizeDataset method of the context extraction sub-

component or the inferContextForDataset method of the context inferrer sub-component.

This method does not return any value, and the procedure is performs is outlined as Algo-

rithm 4.5.

4.2.2 Recommender Trainer

The recommender trainer component is responsible for training and sustaining the contextual

collaborative filtering models. This is achieved by implementing the train method, which is

outlined as Algorithm 4.6.

This method receives two parameters, a string containing the contextual attribute, and a

matrix containing the requests, each accompanied by its client identifier, item identifier, and

rating. The column structure of these parameters is presented in Table 4.6.

This method does not return any value and concludes the training process.
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Algorithm 4.5: splitAndTrainDataset method of the data splitter sub-component

Input : Matrix contextualDataset containing the client identification, item

identification, rating, and the contextual attribute that will serve as a

filtering criterion

Constant: Integer RatingStorage.ContextualAttributeIndex containing the array

index that contains the contextual attribute

1 /* InitializeHashWithDefaultValueOfMatrix() auxiliary method to
create hashmap objects with default value of matrix */

2 contextualDatasets InitializeHashWithDefaultValueOfMatrix();
3 for line in contextualDataset do
4 /* getUserItemAndRatingFromArray() is a method that returns

the userId, itemId, and rating from an array */

5 contextualDatasets
6 .get(line [RatingStorage.ContextualAttributeIndex])
7 .add(getUserItemAndRatingFromArray(line));
8 end
9 for (key, value) of contextualDatasets do

10 recommenderTrainer RecommenderTrainer.new();
11 recommenderTrainer.train(key,value);
12 end

Algorithm 4.6: train method of the recommender trainer component

Input : String context containing the contextual attribute of the model

Matrix trainingSet containing the client identification, item identification,

and rating

1 model Model.new();
2 model.train(context, trainingSet);

3 contextualModelStorage ContextualModelStorage.new();
4 contextualModelStorage.storeModelWithContextualAttribute(model,context);

Table 4.6: Structure of the requests passed as parameters to the train method.

Column Description

1 Client Identification

2 Item Identification

3 Rating
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4.3 Production Layer

This section provides the implementation details for each architectural component present in

the production layer.

4.3.1 Request Inspector

This component is separated into two sub-components, which are described below.

Context Extraction

The context extraction sub-component is called whenever the recommender service is in need

of recommendations. This sub-component is responsible for identifying the contextual attribute

that determines which contextual collaborative filtering model to use. Because each application

is di↵erent, the identification of the contextual attribute varies among applications, with each

application requiring identification logic to be implemented in its own method.

Granted that the contextual attribute may require contextual inference, the implementation

defines the constant UsesInferredContext to identify which logic to execute. This constant is of

Boolean type and has the value true when an inference is necessary or false when the contextual

attribute can be obtained directly.

This sub-component implements two methods: getRecommendationsForRequest and con-
textualizeRequest. The first method is responsible for initiating the recommendation process,

whereas the second contains the contextual identification logic. In cases where a contextual in-
ference is necessary, the contextualization is delegates to the context inferrer sub-component,

hence the contextualizeRequest method is not implemented.

The getRecommendationsForRequest method receives as parameter a request in the form

of an array containing the client identifier, item identifier, and contextual attributes and returns

a list of recommendations. The parameters supplied follow the structure of Table 4.1, and the

procedure performed by this method is outlined as Algorithm 4.7.

The contextualizeRequest method receives as its only parameter the same request as the

getRecommendationsForRequest and returns a contextualized request, in the form of an ar-

ray containing the client identifier, item identifier, and contextual attribute, as presented in

Table 4.7.

Because each implementation performs this logic di↵erently, this methods must be ad-

dressed on a case-by-case basis.
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Algorithm 4.7: getRecommendationsForRequest method of the contextual extraction
sub-component

Input : Array request containing the client identification, item identification, and

contextual attributes

Output : List of recommendations
Constant: Boolean UsesInferredContext determining whether the algorithm should

make use of contextual inference

1 contextualizedRequest null;
2 if UsesInferredContext is true then
3 contextInferrer ContextInferrer.new();
4 contextualizedRequest

 contextInferrer.inferContextForRequest(request);
5 else
6 contextualizedRequest contextualizeRequest(request);
7 end
8 modelChooser ModelChooser.new();
9 recommendations modelChooser.provideRecommendationsForRequest(

contextualizedRequest);
10 return recommendations;

Table 4.7: Structure of the requests returned by the contextualizeRequest method.

Column Description

1 Client Identification

2 Item Identification

3 Contextual attribute that determines which model to use
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Context Inferrer

This optional sub-component is required only when the application uses the contextual infer-
ence concept and is responsible for inferring the contextual attribute to be used as a filtering

criterion. Because each application is di↵erent, the inference logic for the contextual attribute

varies among applications, requiring each application’s inference logic to be implemented in

its own method.

Granted that the contextual inference may require the use of external knowledge, the im-

plementation defines the constant UsesExternalKnowledge to identify which logic to execute.

This constant is of Boolean type and has the value true when an external knowledge is neces-

sary or false when the contextual inference can be obtained locally.

This sub-component implements three methods: inferContextForRequest, matchContex-
tualAttributesWithExternalDataset, and inferAttributeBasedOnContextualAttributes. The first

method is responsible for initiating the contextual inference process, the second contains the

logic that matches existing contextual attributes with obtained external knowledge, and the last

contains the contextual inference logic.

Only the inferContextForRequest method and one of the other two methods need to be

implemented. When external knowledge is needed, the method to be implemented is match-
ContextualAttributesWithExternalDataset, whereas in those other cases, the method to be im-

plemented is inferAttributeBasedOnContextualAttributes.

The inferContextForRequest method receives as parameter a request in the form of an array

containing the client identifier, item identifier, and contextual attributes, and returns an array

containing the client identification, the item identification, and the inferred contextual attribute.

The column structure of this parameter is presented in Table 4.7, and the procedure performed

by this method is outlined as Algorithm 4.8.

The matchContextualAttributesWithExternalDataset method receives two parameters: an

array of contextual attributes in the format presented in Table 4.5, and the external contextual

dataset in the same format as supplied by the getDataForContextualAttributes method of the

context storage component. This method returns the external contextual attribute to be used as

a filtering criterion.

The inferAttributeBasedOnContextualAttributes method receives as parameter an array of

contextual attributes in the format presented in Table 4.5 and returns the inferred contextual

attribute to be used as a filtering criterion.

Because each implementation performs these logics di↵erently, these methods must be

addressed on a case-by-case basis.
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Algorithm 4.8: inferContextForRequest method of the context inferrer sub-

component

Input : Array request containing the client identification, item identification, and

contextual attributes

Output : Array containing the client identification, the item identification, the

rating, and the inferred contextual attribute

Constant: Boolean UsesExternalKnowledge determining whether the algorithm

uses external knowledge

Integer ContextExtraction.ClientIdentifierIndex containing the array

index that contains the client identifier

Integer ContextExtraction.ItemIdentifierIndex containing the array index

that contains the item identifier

Integer ContextExtraction.RatingIndex containing the array index that

contains the rating

Integer ContextExtraction.ContextualAttributeIndex containing the array

index that contains the contextual attribute

1 /* InitializeArray() auxiliary method to create empty array */

2 contextualizedRequest InitializeArray();
3 contextualizedRequest [ContextExtraction.ClientIdentifierIndex] request

[ContextExtraction.ClientIdentifierIndex];

4 contextualizedRequest [ContextExtraction.ItemIdentifierIndex] request
[ContextExtraction.ItemIdentifierIndex];

5 contextualizedRequest [ContextExtraction.RatingIndex] request
[ContextExtraction.RatingIndex];

6 if UsesExternalKnowledge is true then
7 /* contextualColumnsOfRequest() is a method that returns only

the contextual columns of a given request */
8 contextualAttributes contextualColumnsOfRequest(request);
9 contextualStorage ContextualStorage.new();

10 externalDataset contextualStorage.getDataForContextualAttributes(
[contextualAttributes ]);

11 contextualizedRequest [ContextExtraction.ContextualAttributeIndex] 
matchContextualAttributesWithExternalDataset(
contextualAttributes, externalDataset);

12 else
13 contextualizedRequest [ContextExtraction.ContextualAttributeIndex] 

inferAttributeBasedOnContextualAttributes(contextualAttributes);
14 end
15 return contextualizedRequest;
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4.3.2 Recommender Engine

This component is separated into two sub-components as described below.

Model Chooser

The model chooser sub-component is responsible for selecting the model and requesting the

predictor sub-component to predict the best recommendations for the incoming request.

This logic is implemented using a method called provideRecommendationsForRequest,
which receives as parameter a contextualized request in the form of an array containing the

client identifier, item identifier, and contextual attribute. This is the same format supplied

by the contextualizeRequest method of the context extraction sub-component or the inferCon-
textForRequest method of the context inferrer sub-component. As return value, this method

returns the list of recommendations provided by the getRecommendations method of the pre-
dictor sub-component.

The procedure performed by this method is outlined as Algorithm 4.9.

Algorithm 4.9: provideRecommendationsForRequest method of the model chooser
sub-component

Input : Array request containing the client identification, item identification,

rating, and contextual attribute

Output : List of recommendations
Constant: Integer ContextExtraction.ContextualAttributeIndex containing the array

index that contains the contextual attribute

1 contextualAttribute request [ContextExtraction.ContextualAttributeIndex];

2 contextualModelStorage ContextualModelStorage.new();
3 model contextualModelStorage.retrieveModelWithContextualAttribute(

contextualAttribute);

4 predictor Predictor.new();

5 /* getUserItemAndRatingFromArray() is a method that returns the
userId, itemId, and rating from an array */

6 recommendations predictor.getRecommendations(
getUserItemAndRatingFromArray( request), model);

7 return recommendations;

Predictor

The predictor sub-component is responsible for querying the model for a prediction on the best

recommendations for the incoming request.
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This logic is implemented in a method called getRecommendations, which receives as pa-

rameters a request in the form of the model to be used and an array containing the client

identifier and the item identifier. This method returns a list of recommendations that are judged

best by the model.

Because recommendations can be a list of items for a client or a list of clients for a certain

item, the recommendations returned to the client can be of any of either type. This implemen-

tation defines the constant TypeOfRecommendations to identify which logic to execute. This

constant is of string type and has the value item when recommendations of items are desired or

client when recommendations of clients are desired.

The procedure performed by this method is outlined as Algorithm 4.10.

Algorithm 4.10: getRecommendations method of the predictor sub-component

Input : Array request containing the client identification, item identification, and

rating

Model model to fetch recommendations

Output : List of recommendations
Constant: Boolean TypeOfRecommendations determining what type of

recommendation should be provided by the model

Integer ContextExtraction.ClientIdentifierIndex containing the array

index that contains the client identifier

Integer ContextExtraction.ItemIdentifierIndex containing the array index

that contains the item identifier

1 recommendations null;
2 if TypeOfRecommendations is “Client” then
3 recommendations model.getRecommendationsForClient(request

[ContextExtraction.ClientIdentifierIndex]);

4 else
5 recommendations model.getRecommendationsForItem(request

[ContextExtraction.ItemIdentifierIndex]);

6 end
7 return recommendations;

4.4 Summary

This chapter proposed a framework for the (CF)

2

architecture and discussed each of the com-

ponents that are part of this framework. The discussion provided an algorithmic description

of the methods of each layer and component of the architecture, and also explained how they

interact with each other.
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Evaluation

This chapter presents an evaluation of the (CF)2
architecture using two case studies. Because

both experiments were conducted using data sources belonging to the same application domain,

a contextualization of the domain is provided. Moreover, the methodology used to conduct the

evaluation process is presented. To conclude, each case study is introduced and evaluated,

providing an analysis of how the proposed architecture performs compared to the traditional

method.

In this research, the case studies were evaluated in the context of a Web site dedicated to

provide personalized recommendations of pages to its clients. For this purpose, past interac-

tions between clients and the service were used to train the collaborative filtering models.

These past interactions were provided by a multi-media company specialized in weather-

and traveller-related content and technology. The (CF)

2

architecture was evaluated by analysing

the tra�c on their Web site. Tra�c was captured in clickstream form by two on-line marketing

tools and Web analytics applications: Google Analytics1

and Omniture2

, an Adobe3

company.

The task being evaluated is defined in the literature as Find Good Items. In this task, the

recommender system is interested in suggesting items to a user, but displaying only those that

are a “best bet”. Because on-line evaluation was not a viable option for this research, evaluation

was conducted through an o↵-line evaluation containing only real data (not synthesized).

One characteristic of recommender systems based on clickstream data is the implicit nature

of the ratings. Because an explicit rating is not provided by users, an implicit rating rui of 1

is used to indicate that a user u likes the requested page i. Moreover, because MB-CFRS
models need enough data to generate good recommendations, rui with contextual attributes

representing less than 0.1% of the total dataset were purged. This procedure was necessary to

1

http://google.com/analytics

2

http://www.omniture.com

3

http://www.adobe.com
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prevent results provided by sparse models from contaminating the evaluation process.

5.1 Methodology

The evaluation scenario consists of a dataset D divided into two subsets, a training set T and

a validation set V . The training set represents 80% of the dataset and is obtained by random

selection from the original dataset without repetition. The remaining 20% represents the vali-

dation set. The sets are then saved as di↵erent comma-separated value (CSV) files.

Because the (CF)2
architecture proposes the use of contextual datasets to train CF models,

each contextual attribute c is represented by a training subset Tc representing ratings of T
containing the contextual attribute c. Moreover, because this research aims to prove that the

use of contextual attributes as filtering criteria is better than random dataset reduction, the

training subset T c
r represents a randomly selected subset of T with the same size as Tc. This

process is illustrated in Figure 5.1.

Figure 5.1: Training set T segmented by contextual attributes and random dataset reduction.

Similarly, each contextual attribute c is represented by a validation subset Vc representing

ratings of V containing the contextual attribute c, and the subset Vc
r represents a randomly

selected subset of V with the same size as Vc.

Moreover, because the evaluation is accomplished by comparing the proposed architecture

with the traditional method, the subsets Tt and Vt (subsets of T and V respectively) represent

the average rating rui given by a user u to a page i, regardless of context. Both sets are also

saved as di↵erent CSV files and will be used to train and validate the traditional CF model mt.

To assess the predictive quality of the models, this research used predictive accuracy met-
rics. These metrics measure how close the predictions made by the recommender system are

to the true user rating. The metric used is the mean squared error (MSE), which is given by the

equation

MSE(V) =
1

|V | ·
X

(u,i)2V
(rui � r̂ui)

2

(5.1)
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Table 5.1: Notations used throughout the chapter.

Symbol Description

rui Rating given by a user u to page i
r̂ui Predicted rating given for a user u of page i
D Dataset containing ratings given by a user u to page i in context c
T Subset of D containing random elements without repetition and where |T | = 0.8 · |D|
Tu Subset of T containing the average rating rui given by a user u to page i
Tc Subset of T containing ratings given in a context c
T c

r Subset of T containing random ratings without repetition and where |T c
r | = |Tc|

V Set of D � T
Vu Subset of V containing the average rating rui given by a user u to page i
Vc Subset of V containing ratings given in a context c
Vc

r Subset of V containing random ratings without repetition and where |Vc
r | = |Vc|

mu CF model trained using set Tu

mc CF model trained using set Tc

mc
r CF model trained using set T c

r

where V is the validation set, |V | is the size of the set V , rui is the true user rating, and r̂ui is

the predicted rating. These and other notations used throughout the chapter are presented in

Table 5.1. The adoption of MSE over other accuracy metrics was based on the e�ciency of its

calculation.

Using the implementation provided in Chapter 4, the training dataset T (available as a CSV
file) is then used to feed the training process by means of the rating storage component. This

step ensures the creation of a di↵erent model mc for each contextual attribute c present in T .

This process is illustrated in Figure 5.2.

Figure 5.2: Training set T segmented into subsets Tc to train model mc.

Validation is then performed by splitting the validation set V into di↵erent contextual sub-

sets Vc and using these subsets to compare the predicted rating r̂ui with the rating rui available in

the validation set Vc. The average of the sums of the squared di↵erences of r̂ui and rui provides

the MSE for the contextual model mc. This process is illustrated in Figure 5.3.

Validation of the models mt, representing the traditional method, and mc
r , representing ran-
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Figure 5.3: Validation set V segmented into subsets Vc to predict ratings using model mc.

dom dataset reduction, is performed di↵erently. Because the architecture has the option of

determining the context using the method inferAttributeBasedOnContextualAttributes of the

context inferrer sub-component, an implementation that always returns the same context re-

gardless of input is used, ensuring that all ratings in the training set are classified as being part

of the same context.

By using this adaptation, each set of Tt and T c
r is used as a data source for the rating

storage component, resulting in training of the models mt and mc
r respectively. Validation of

these models is done in the same way as for the models mc, but using the validation set Vt for

model mt and Vc
r for model mc

r .

Furthermore, because the training time of each model is di↵erent, the training time values

(in milliseconds) are then used to compare the two approaches.

Because this architecture can use two types of contextual attributes, embedded and inferred,

the evaluation process was divided in two case studies, each covering one of these types.

5.2 Case Studies

The (CF)

2

evaluation was performed by means of two case studies. Each case study used its

own dataset and di↵erent types of contextual attributes. The first case study used contextual at-

tributes embedded in the data source, whereas the second case study used contextual inference.

To conduct the evaluation, the implementation described in Chapter 4 was adapted to use

the functional paradigm of the Scala language and the large-scale data processing properties of

the Spark engine. The resulting implementation is available in a public repository

4

.

For the CF recommendation engine, both case studies used the matrix factorization tech-
nique [57] using the alternating least squares [57] (ALS) algorithm. This has already been

implemented by Spark’s spark.mllib machine learning library, providing an “out of the box”

solution that can process large volumes of data. Moreover, this implementation includes a spe-

cial training technique based on the work done by Hu et al. [22], which specializes in training

CF models using implicit ratings.

4

https://github.com/dennisbachmann/cf2-scala
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Table 5.2: Parameters used to train the CF models.

Parameter Value

� (Regularization Parameter) 100

Number of Features 20

Number of Iterations 10

↵ (Confidence Level) 1500

Because the application domains for both case studies were the same, this decision did not

have a significant impact on the evaluation. These values were obtained after performing a

cross-validation with partitions of the T dataset. Various configurations of the regularization

parameter (�), number of features, number of iterations, and confidence level (↵) were consid-

ered. The parameter values that resulted in a minimum stable MSE were chosen and are given

in Table 5.2.

An attempt to execute the experiments on Amazon’s EC2 cloud computing services was

made. The cluster was configured with four nodes of type “m4.large”, meaning that each node

used 2 virtual processors and 8 gigabytes of memory. After 2,152 hours of utilization, the

cluster did not yield any result. As a consequence, the decision to run the experiments on

a more powerful machine was made. Therefore, each case study was executed on a private

server with 24 Cores Intel Xeon E5-2630 2.3 GHz and 96 GB RAM DDR3 1600 MHz running

Ubuntu 14.04.2 LTS.

5.2.1 Case Study 1: Embedded Context

The first case study used clickstream data captured by the Google Analytics tool during the

summer of 2016 (June 20 to September 22) to create recommender models based on the con-

textual attribute “operating system with platform”. To achieve this goal, the data were exported

as a CSV file and pre-processed to remove entries captured by the clickstream that did not rep-

resent a page view. These entries usually represent interactions with objects inside a Web page

that do not trigger a page change, like interaction with map objects or social media snippets.

After this step, the resulting dataset was filtered to contain only unique values with the follow-

ing properties:

• Visitor identifier

• Uniform Resource Locator (URL)

• Operating System
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• Platform is mobile (true or false)

This process resulted in a dataset containing 130,994,883 unique samples. Because the

dataset does not contain the desired contextual attribute as a single attribute, the operating
system property must be combined with the platform property. This is achieved by the logic

outlined in Algorithm 5.1.

Algorithm 5.1: Logic to obtain the contextual attributes for case study 1

Input : String operatingSystem containing the operating system of the request

Boolean isMobile containing whether the platform is mobile or not

Output: The computed contextual attribute

1 contextualAttribute “”;

2 if isMobile is true then
3 contextualAttribute contextualAttribute.append(“MOBILE - ”);
4 else
5 contextualAttribute contextualAttribute.append(“NOT MOBILE - ”);
6 end
7 contextualAttribute.append(operatingSystem);
8 return contextualAttribute;

This logic was then implemented in the contextualizeDataset and contextualizeRequest
methods of the context extraction sub-components in the training layer and production layer.

The constant UsesInferredContext was set to false, forcing the algorithm to execute these meth-

ods.

Because the evaluation methodology specifies that contextual attributes representing less

than 0.1% of the total dataset should be purged, the 309,948 entries classified under this cat-

egory had to be removed. Moreover, because of the sensitive nature of this information, all

contextual names were anonymized to the format “OS/Platform”. The last step before ex-

porting the dataset was to inject the rating of 1 into each tuple. The final dataset containing

130,684,845 unique samples was then split into a training set T and a validation set V . Each set

was then exported as a CSV file. The final size of each dataset classified by contextual attribute

and already anonymized is displayed in Table 5.3.

The training set was then used to create the contextual models mc, mc
r , and mt, and to

calculate the time spent to train them. Moreover, the validation set was used to calculate the

MSE of each model. This process was repeated 30 times, and the final analysis used the average

values of these properties.
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Table 5.3: Size of each dataset classified by contextual attribute.

Contextual Attribute Full Dataset Size Training Set Size Validation Set Size

OS/Platform 1 17,099,871 13,681,058 3,418,813

OS/Platform 2 151,710 120,902 30,808

OS/Platform 3 2,464,423 1,971,104 493,319

OS/Platform 4 1,623,950 1,300,121 323,829

OS/Platform 5 65,221,859 52,179,154 13,042,705

OS/Platform 6 385,096 307,823 77,273

OS/Platform 7 923,827 738,438 185,389

OS/Platform 8 626,817 501,195 125,622

OS/Platform 9 11,812,359 9,452,167 2,360,192

OS/Platform 10 30,374,933 24,300,878 6,074,055

Total 130,684,845 104,552,840 26,132,005

Results and discussion

The performance of the (CF)2
architecture in the context of this case study is shown in Table 5.4

and graphically represented in Figure 5.4. The MSE obtained for the traditional method, rep-

resented by model mt, is compared with each model mc, and its equivalent model mc
r , obtained

by random reduction. To facilitate interpretation, the MSE for the model mt is displayed as a

dotted reference line.

The analysis conducted on these values indicates that using the proposed architecture often

provides better results than the traditional method, and significantly better results than using

random dataset reduction. This is also corroborated by the average MSE value for each dataset

reduction technique when compared with the traditional method, as displayed in Figure 5.5.

Taking dataset size into consideration, the analysis shows that when using contextual dataset

reduction, the MSE values tend to fluctuate around the value obtained when using the traditional

method, regardless of the dataset size. The same is not true for the random dataset reduction.

When using this technique, the error increases as the dataset becomes smaller and converges

to the accuracy of the traditional method as the dataset increases in size. This is to be expected

because there is almost no dataset reduction when the size approaches the original one. This

situation is shown in Figure 5.6, which also has the MSE value for the model mt as a dotted

reference line.

Furthermore, the times (in milliseconds) taken to train each model mt, mt, and mc
r were

compared. The values are shown in Table 5.5, and illustrated in Figure 5.7.

These values indicate that the time to train each model increases almost linearly as the
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Table 5.4: MSE values obtained using dataset reduction.

Contextual Attribute Contextual Reduction Random Reduction

OS/Platform 1 0.2527/0.2671 0.5854/0.2671

OS/Platform 2 0.2676/0.2671 1.0764/0.2671

OS/Platform 3 0.2179/0.2671 0.9121/0.2671

OS/Platform 4 0.2017/0.2671 0.9705/0.2671

OS/Platform 5 0.2499/0.2671 0.3542/0.2671

OS/Platform 6 0.2192/0.2671 1.0295/0.2671

OS/Platform 7 0.2032/0.2671 1.0156/0.2671

OS/Platform 8 0.2476/0.2671 1.0308/0.2671

OS/Platform 9 0.2253/0.2671 0.6624/0.2671

OS/Platform 10 0.2823/0.2671 0.4763/0.2671

Figure 5.4: MSE of mt, mc, and mc
r segmented by dataset.
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Figure 5.5: Average MSE for the traditional method and each dataset reduction technique.

Table 5.5: Training time (in milliseconds) taken to train each contextual model.

Contextual Attribute Contextual Reduction Random Reduction

OS/Platform 1 394,317/1,448,614 516,530/1,448,614

OS/Platform 2 135,793/1,448,614 139,874/1,448,614

OS/Platform 3 171,586/1,448,614 189,306/1,448,614

OS/Platform 4 167,061/1,448,614 180,242/1,448,614

OS/Platform 5 836,524/1,448,614 1,129,829/1,448,614

OS/Platform 6 166,619/1,448,614 171,285/1,448,614

OS/Platform 7 174,793/1,448,614 185,463/1,448,614

OS/Platform 8 171,915/1,448,614 175,023/1,448,614

OS/Platform 9 264,369/1,448,614 365,504/1,448,614

OS/Platform 10 606,478/1,448,614 691,034/1,448,614
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Figure 5.6: MSE value by dataset size for each dataset reduction technique.

dataset size increases. This is especially true in the case of Spark’s implementation of ALS,

but other matrix factorization implementations should also experience a significant reduction

in training time when dataset reduction is used. Moreover, the contextual dataset reduction

technique requires less training time than the random dataset reduction technique.
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Figure 5.7: Training time in milliseconds taken to train each model.
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5.2.2 Case Study 2: Contextual Inference

The second case study used clickstream data captured by the Omniture tool. The data was col-

lected during the period of April 1

st

2015 to June 30

th

2015 and includes only visits generated

by users in London, ON, Canada. Recommender models were created based on the contextual

attribute “weather condition”. Similarly to the previous case study, the data were exported as a

CSV file and pre-processed to remove entries captured by the clickstream that did not represent

a page view. After this step, the resulting dataset was filtered to contain only unique values

with the following properties:

• Visitor identifier

• Uniform Resource Locator (URL)

• Time of Access

• Location

This process resulted in a dataset containing 7,729,696 samples. Because the dataset does

not contain the desired contextual attribute, the time of access property along with the location
property were used to obtain the weather condition of each visit. After removing the duplicate

entries, the dataset containing the tuples visitor identifier, URL, and weather condition was

reduced to 3,185,660 entries. Because the evaluation methodology specifies that contextual

attributes representing less than 0.1% of the total dataset should be purged, the 3,852 entries

classified under this category had to be removed. The last step before exporting the dataset

containing 3,181,808 unique samples was to inject the rating of 1 into each tuple. The final

dataset was then split into a training set T and a validation set V . Each set was then exported

as a CSV file. The final size of each dataset classified by contextual attribute is displayed in

Table 5.6.

The training set was then used to create the contextual models mc, mc
r , and mt, and to

calculate the time spent to train them. Moreover, the validation set was used to calculate the

MSE of each model. This process was repeated 30 times, and the final analysis used the average

values of these properties.

Results and discussion

The performance of the (CF)2
architecture in the context of this case study is shown in Table 5.7

and graphically represented in Figure 5.8. The MSE obtained for the traditional method, rep-

resented by model mt, is compared with each model mc, and its equivalent model mc
r , obtained
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Table 5.6: Size of each dataset classified by contextual attribute.

Contextual Attribute Full Dataset Size Training Set Size Validation Set Size

Clear 120,430 96,511 23,919

Fog 32,945 26,437 6,508

Haze 7,241 5,832 1,409

Heavy Thunderstorms and Rain 9,478 7,564 1,914

Light Drizzle 49,873 40,000 9,873

Light Rain 105,339 84,186 21,153

Light Rain Showers 241,165 192,911 48,254

Light Snow Grains 10,159 8,163 1,996

Light Snow Showers 61,258 48,943 12,315

Light Thunderstorms and Rain 30,470 24,344 6,126

Missing 9,164 7,315 1,849

Mostly Cloudy 1,112,850 890,189 222,661

Overcast 758,930 607,310 151,620

Partly Cloudy 314,711 251,800 62,911

Rain 5,719 4,574 1,145

Rain Showers 14,002 11,216 2,786

Scattered Clouds 262,744 210,320 52,424

Shallow Fog 11,711 9,369 2,342

Thunderstorm 10,979 8,678 2,301

Thunderstorms and Rain 12,640 10,126 2,514

Total 3,181,808 2,545,788 636,020
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Table 5.7: MSE values obtained using dataset reduction.

Contextual Attribute Contextual Reduction Random Reduction

Clear 0.2356/0.1485 0.5601/0.1485

Fog 0.1894/0.1485 0.7857/0.1485

Haze 0.2094/0.1485 0.9302/0.1485

Heavy Thunderstorms and Rain 0.1061/0.1485 0.9491/0.1485

Light Drizzle 0.1767/0.1485 0.7672/0.1485

Light Rain 0.1710/0.1485 0.5688/0.1485

Light Rain Showers 0.1911/0.1485 0.4072/0.1485

Light Snow Grains 0.2183/0.1485 0.9472/0.1485

Light Snow Showers 0.1837/0.1485 0.6613/0.1485

Light Thunderstorms and Rain 0.1384/0.1485 0.7599/0.1485

Missing 0.2314/0.1485 0.8465/0.1485

Mostly Cloudy 0.1641/0.1485 0.2059/0.1485

Overcast 0.1738/0.1485 0.2446/0.1485

Partly Cloudy 0.2258/0.1485 0.3647/0.1485

Rain 0.2005/0.1485 0.9974/0.1485

Rain Showers 0.1970/0.1485 0.9577/0.1485

Scattered Clouds 0.2353/0.1485 0.3930/0.1485

Shallow Fog 0.2591/0.1485 0.9044/0.1485

Thunderstorm 0.1496/0.1485 0.8584/0.1485

Thunderstorms and Rain 0.1999/0.1485 0.9239/0.1485

by random reduction. To facilitate interpretation, the MSE for the model mt is displayed as a

dotted reference line.

The analysis conducted on these values indicate that (CF)2

yields similar results to the

traditional method, while outperforming the accuracy obtained when using random dataset

reduction. Moreover, results indicate that accuracy improves when weather conditions deteri-

orate. Most compelling evidence is the MSE obtained for the “heavy thunderstorms and rain”

weather condition. This happens because under these circumstances the rating pattern among

users are shared. In this case study, users have the tendency to check the same Web pages

during bad weather.

Despite the fact that there were improvements, the obtained results indicate that weather

condition is not a suitable contextual attribute for this application. This is also corroborated by

the average MSE values displayed in Figure 5.9. Nevertheless, the use of contextual attribute

as filtering criterion for local learning is more appropriate than random selection.

Further analysis indicates that navigation behaviour remains similar among contexts, re-

sulting in contextual models built with scattered points. To put in another way, the contextual
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Figure 5.8: MSE of mt, mc, and mc
r segmented by dataset.
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Figure 5.9: Average MSE for the traditional method and each dataset reduction technique.

attribute often served as an instance selection mechanism, rather than serving as a clustering

factor towards local models.

Taking dataset size into consideration, the analysis shows that when using contextual dataset

reduction, the MSE values tend to fluctuate around the value obtained when using the traditional

method, regardless of the dataset size. The same is not true for the random dataset reduction.

When using this technique, the error increases as the dataset becomes smaller and converges

to the accuracy of the traditional method as the dataset increases in size. This is to be expected

because there is almost no dataset reduction when the size approaches the original one. This

situation is shown in Figure 5.10, which also has the MSE value for the model mt as a dotted

reference line.

Furthermore, the times (in milliseconds) taken to train each model mt, mt, and mc
r were

compared. The values are shown in Table 5.8, and illustrated in Figure 5.11.

These values indicate that the time to train each model increases almost linearly as the

dataset size increases. This is especially true in the case of Spark’s implementation of ALS,

but other matrix factorization implementations should also experience a significant reduction

in training time when dataset reduction is used. Moreover, the contextual dataset reduction

technique requires less training time than the random dataset reduction technique.
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Table 5.8: Training time (in milliseconds) taken to train each contextual model.

Contextual Attribute Contextual Reduction Random Reduction

Clear 6,907/83,869 10,331/83,869

Fog 4,208/83,869 4,479/83,869

Haze 1,741/83,869 2,405/83,869

Heavy Thunderstorms and Rain 2,332/83,869 2,658/83,869

Light Drizzle 3,044/83,869 9,355/83,869

Light Rain 6,582/83,869 8,745/83,869

Light Rain Showers 10,464/83,869 17,299/83,869

Light Snow Grains 2,991/83,869 2,852/83,869

Light Snow Showers 4,613/83,869 8,369/83,869

Light Thunderstorms and Rain 2,894/83,869 4,361/83,869

Missing 3,465/83,869 3,778/83,869

Mostly Cloudy 35,505/83,869 42,515/83,869

Overcast 29,036/83,869 33,740/83,869

Partly Cloudy 19,247/83,869 37,703/83,869

Rain 1,927/83,869 2,172/83,869

Rain Showers 2,753/83,869 3,118/83,869

Scattered Clouds 11,402/83,869 17,638/83,869

Shallow Fog 2,703/83,869 2,940/83,869

Thunderstorm 2,907/83,869 3,857/83,869

Thunderstorms and Rain 2,998/83,869 2,946/83,869



66 Chapter 5. Evaluation

Figure 5.10: MSE value by dataset size for each dataset reduction technique.
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Figure 5.11: Training time in milliseconds taken to train each model.
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5.3 Summary

In this chapter, the evaluation of the architecture described in Chapter 3 and the framework

presented in Chapter 4 was presented. Moreover, the methodology used in the experiments as

well as the results of the two case studies were discussed. In the first case study, the details of

the implementation of (CF)2

using embedded contextual information was presented. Further-

more, a comparison between models created using contextual subsets, randomized subsets and

the training set in its totality was presented. In the second case study, contextual inference was

used to provide weather condition information to the dataset. Randomized training subsets

were also created and a comparison between contextual, randomized and traditional models

was presented. The results show that contextual models trained with a small fraction of the

data resulted in better or similar accuracy when compared to the traditional method. Moreover,

local learning using contextual information outperforms random selection in accuracy and in

training time.



Chapter 6

Conclusions and Future Work

This chapter presents a concluding summary based on the contributions of the proposed con-

text filtering for model-based collaborative filtering recommender system (CF)

2

architecture.

In addition, a description of possible future research on the proposed frameworks will be pre-

sented.

6.1 Conclusions

The work described in this thesis presents the (CF)

2

architecture and uses local learning tech-

niques to embed contextual awareness into collaborative filtering models. Typically, collabo-

rative models are implemented with a focus on user-item interactions. By incorporating con-

text into standard collaborative user-item models, recommender applications used in context-

sensitive domains can provide recommendations with a better chance of being relevant to users.

Moreover, local learning using context as a filtering criterion enables the scalability of recom-

mender systems that use large datasets. An overview of the architecture has been presented,

including its components, their roles, and their relationships.

The (CF)

2

architecture is also introduced in the form of a framework. This framework

is presented at an algorithmic level and can serve as a foundation to implement the (CF)

2

architecture.

Because of the layered and orthogonal properties of (CF)

2

, context-aware recommender

systems can be implemented using one of the several widely available collaborative filtering

libraries. Moreover, the concepts presented in this thesis do not restrict (CF)

2

implementation

by enforcing a single machine language or paradigm, enabling the system builder to use the

technology that best fits the needs of each application.

To demonstrate the applicability of the architecture and framework, this thesis also provided

an implementation of the framework using the functional paradigm of the Scala language and
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the large-scale data processing properties of the Spark engine. Using this implementation, two

case studies were evaluated on the “Find Good Items” task. The first case study used embedded

context, and the second used external knowledge by means of the contextual inference. Both

case studies were evaluated using the same methodology, and their accuracy was compared

against the traditional method. The results indicate that contextual models trained with a small

fraction of the data gave better or similar accuracy than models trained with the full data set. In

addition, local models created using random sampling instead of contextual dataset reduction

were compared, and the results demonstrate that using contextual information outperforms

random selection in accuracy and in training time.

6.2 Future Work

This section presents several areas of future work that can be explored:

• The (CF)

2

architecture presented in this study considers all samples in the training set to

perform model training. Future work will consider using instance selection techniques

to reduce dataset sizes even further. Although the architecture uses contextual informa-

tion to perform local learning, integrating instance selection techniques would enhance

scalability on training and prediction time even further.

• Another future project is to adapt (CF)

2

to incorporate the micro-services architectural

style. Micro-services is an approach to software development that divides a single appli-

cation into a combination of small services, each running in its own process and commu-

nicating linked data services with lightweight mechanisms. This communication often

occurs by means of an HTTP resource API. Incorporation of micro-services will lead

to componentization through services, increasing the decoupling of the architecture and

facilitating deployment of the recommender application into the cloud.

• In this study, the proposed architecture was designed with the assumption that the im-

plemented system runs in a secure environment and that users agree to have their ratings

used by the system. Future work will explore privacy and security issues associated with

recommender systems.

• Future work will explore the use of a fine-tuning component to ensure the best parameters

for each contextual model. For instance, a model trained for one context may achieve

better accuracy than another if the regularization parameter is modified. By using a

cross-validation procedure for each contextual model generated, the best parameters for

each model will be used to generate future recommendations.
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• Given the challenges of using implicit feedback to generate recommendations, this work

focused on this feedback to demonstrate that the proposed approach works even for the

most challenging cases. To expand the architectural evaluation, case studies using ex-

plicit rating can be used.

• The framework implemented to run the evaluation was developed as a proof of concept.

A future study will focus on performance improvements, taking advantage of JVM pa-

rameters and Spark functionalities to achieve a better distribution of workload among

cluster nodes.

• In this study, contextual information is available as a single and flat attribute. Although

composite contexts can always be expressed as fine-grained contexts, e.g., by concate-

nating all composites of a context, the use of hierarchical contexts is not supported by

the architecture. Future work will implement the hierarchical nature of contexts to en-

hance recommendation quality. A starting point towards this direction would be the use

of Linked Data, which uses published structured data to interlink semantic queries.

• To reduce the impact of sparse matrices generated by dataset reduction, future work

can experiment with incorporating a rating estimation component. This component will

attribute rating values to unrated items, hence reducing matrix sparsity.
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