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Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease associated with protein
misfolding and protein aggregation. In particular, the TAR DNA-binding protein (TDP-43) is
often found in the pathological inclusions in neurons of ALS patient brains and spinal cords.
This phenomenon is known as TDP-43 proteinopathy, the mislocalization of TDP-43 from
the cell nucleus and the formation of aggregates in the cytoplasm. Numerous mutations in
the gene encoding TDP-43 have also been linked to familial cases of ALS (fALS) and cause
TDP-43 proteinopathy. This study attempts to decipher how the molecular chaperone Hsp90
and its co-chaperones, Ahal, Stil, and Cdc37, modulate TDP-43 aggregation,
mislocalization, and toxicity using a yeast model and cultured mammalian cells. We propose
that Hsp90 stabilizes aberrant forms of TDP-43 and the inhibition of Hsp90 through
moderate overexpression of Stil is able to rescue TDP-43 toxicity by modifying cytoplasmic

TDP-43 aggregates.
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Chapter 1

1 Introduction

Neurodegenerative diseases, such as Alzheimer’s Disease (AD), Parkinson’s Disease
(PD), Huntington’s Disease (HD), and amyotrophic lateral sclerosis (ALS), are
characterized by the progressive loss of function and death of neurons leading to
dementia and ultimately the death of patients. They are also associated with misfolding
and aggregation of disease proteins. In ALS, the accumulation of the TAR DNA-binding
protein (TDP-43) in pathological neuronal inclusions of patient’s brain and spinal cord is
found in the vast majority of patients. These pathological inclusions are a result of the
mislocalization of TDP-43 from the nucleus and the formation of aggregates in the
cytoplasm. This phenomenon is known as TDP-43 proteinopathy, and observed in about

97% of all ALS patients [1].

It is essential for proteins to obtain and maintain their proper native conformations to
perform their biological functions. Yet proteins can misfold or aggregate due to genetic
mutations, avert environmental factors, and aging. Consequently, cells have evolved
several mechanisms to defend against protein misfolding and aggregation [2]. Once
proteins misfold and aggregate, they fail to obtain their proper conformations and cannot
perform their regular cellular functions, i.e. toxicity associated with loss of function.
Misfolded proteins can also disturb regular cellular physiology and thus become toxic,
1.e. toxicity associated with gain of function. Through mechanisms, such as protein
remodeling by molecular chaperones or degradation by the ubiquitin proteasome pathway
and autophagy [2], cells ensure proper protein quality and normal function of all
biological processes. My study focuses on how cellular protein quality control regulates

TDP-43 misfolding via the action of molecular chaperones.

Molecular chaperones guide misfolded proteins to refold into their native conformations,
thus reducing toxicity and restoring regular function. Many molecular chaperones are
induced in response to stressful conditions, including heat and chemical stress, as proteins

have a tendency to misfold under stressful conditions. Molecular chaperones bind to



partially folded or exposed hydrophobic regions of proteins in order to stabilize them and
prevent further misfolding and aggregation. Proteins are released after chaperones have
successfully refolded them into their functional conformation [3]. In addition, chaperones
have also been reported to prevent the aggregation of unfolded polypeptide chains,
cooperate with proteases to facilitate protein degredation, as well as act as disaggregases,
1.e. directly dissolving protein aggregates [4]. More recently, molecular chaperones have
also been shown to ameliorate the toxic effects of protein misfolding and aggregation [5].
My studies focus on the role of the molecular chaperone Hsp90 and its co-chaperones in

the regulation of TDP-43 misfolding and the associated toxicity.

Hsp90 plays central roles in key cellular pathways, such as cellular signaling, cell cycle
control, cell survival, as well as guiding structural formation of proteins [6]. Data from a
genome-wide yeast study indicate that Hsp90 is required for 10% of all proteins to
function properly, whether by direct interactions or indirect interactions mediated by co-
chaperones [7]. Hsp90 functions with the aid of its co-chaperones that regulate Hsp90

activity and its specific binding to client proteins [8].

My research focuses on the highly conserved Hsp90 co-chaperones Ahal, Cdc37, and
Stil. Ahal stimulates Hsp90 ATPase activity and is a potent activator of its activity,
whereas both Cdc37 and Stil inhibit Hsp90 ATPase activity [8]. Targeting Hsp90 and its
co-chaperones as a potential therapeutic approach to treat neurodegenerative diseases has
been thoroughly studied in recent years [9]. Despite the beneficial role of Hsp90 in many
cellular processes, it has been suggested that Hsp90 allows toxic aberrant protein
aggregates to accumulate by maintaining their stability under non-physiological
conditions [10]. Thus, inhibition of Hsp90 may prove to be a viable therapeutic approach
to treat neurodegenerative diseases, as it activates the heat shock factor (HSF-1) and in
turn promotes the expression of other neuroprotective chaperones that are responsible for

protein disaggregation and degradation [9].

In studies on tau aggregation, observed in Alzheimer’s disease and other tauopathies,
Hsp90 co-chaperones have been shown to control whether tau aggregates are toxic or

benign by specific interaction with co-chaperones [4]. This co-chaperone mediated



alteration of tau aggregation suggests that the activity of Hsp90 and its co-chaperones are
important in regulating protein misfolding and toxicity in neurodegenerative disease
beyond tauopathies. Of note, Hsp90 levels are relatively high and static in the aging brain

whereas co-chaperone expression is more dynamic [4].

My study aims to understand how Hsp90 and its co-chaperones modulate the toxicity of
TDP-43 using a yeast model and cultured mammalian cells. The benefits of using yeast
models to investigate TDP-43 toxicity are well established as they recapitulate many
central aspects of ALS pathology, including TDP-43 toxicity, aggregation, and
mislocalization [11]. Yeast orthologues of Hsp90 and its co-chaperones are also well
described [12]; in fact, many functional and structural features of Hsp90 and its co-
chaperones were initially established by studies in yeast. Our vast knowledge of the yeast
genome and proteome as well as the plethora of available research tools, such as genome-
wide deletion and overexpression libraries, make yeast an optimal experimental system to

study how Hsp90 and its co-chaperones modulate TDP-43 misfolding and toxicity [13].

1.1 Protein Quality Control

Proteins are essential components to maintaining cellular homeostasis and are responsible
for many cellular processes. The function of proteins is not only determined by its amino
acid sequences, but also by the proper three-dimensional folding of its polypeptide
chains. The folding of proteins into their native conformation is vital for them to perform
their biological functions. Though the native conformation of a protein is
thermodynamically favored in the equilibrium between partially folded or misfolded
states and the native state (Figure 1) [14], proteins have an intrinsic tendency to misfold
or aggregate [15], as stable interactions of partially folded intermediate proteins can
occur to promote misfolding and aggregation [16]. The balance between the native state
of a protein and other non-native states is delicate. As a consequence, cells have
developed several mechanisms to combat protein misfolding and aggregation, known as

cellular protein quality control.



Misfolded Partially Folded Native State

Figure 1: Equilibrium between the native state of a protein and other non-native
species. Though the native state of a protein is most stable thermodynamically, proteins
are constantly being unfolded and misfolded in the cell and rely on protein quality control

mechanisms to rectify its conformation.

Cellular protein quality control aims to maintain protein homeostasis, or proteostasis, in
the cell through regulating the accurate production, folding of all proteins, and the
refolding or degradation of misfolded proteins, or through sequestering misfolded
proteins to specific quality control compartments [14]. Molecular chaperones are central
to cellular protein quality control as they determine whether a misfolded protein should
be refolded, degraded through the ubiquitin proteasome system (UPS) or autophagy, or
sequestered into cellular quality control compartment to minimize toxicity [14]. The role
and function of specific molecular chaperones will be discussed in more detail in the

following section.

It has become increasingly evident through recent research that the accumulation of
protein misfolding and aggregation is the hallmark of an expanding list of “protein-
conformational diseases” [17], including lysosomal storage disease, cystic fibrosis,
cancer, and neurodegenerative disease [14]. Although the mechanisms by which proteins
misfold remains unclear, it is evident that environmental and metabolic stresses and aging
are major factors that contribute to increased protein misfolding [14]. These stress
conditions increase the burden on the cellular protein quality control machinery to

maintain proteostasis often beyond its capacity, leading or contributing to disease [18].



1.2 Molecular Chaperones

Molecular chaperones are central to cellular protein homeostasis. Their role in protein
quality control ranges from protein maturation by guiding the folding of newly
synthesized proteins to the refolding of misfolded proteins [16]. In addition to refolding
of misfolded proteins, they can also prevent the aggregation of the unfolded polypeptide
chains of misfolded or exposed proteins and act as a disaggregases to pull apart
aggregates [4]. Recent studies have also shown that chaperones suppress cytotoxicity
associated with protein aggregation [4]. Molecular chaperones are also responsible for
determining whether a protein should be folded back to its native conformation or
degraded by the UPS or autophagy [4, 17]. Lastly, they also direct potentially toxic
protein species to be sequestered into cellular compartments and “quarantined” [14]
(Figure 2). Chaperones perform all these functions through cycles of substrate binding
and release that is often ATP-dependent. Although most chaperones are able to bind to
substrates independently, many of them rely on co-chaperones to modulate efficiency and
specificity [19]. Co-chaperones play key roles in the molecular chaperone machinery,
including regulation of ATPase activity, determining the specificity of chaperone

substrates, and directing substrates to be either refolded or degraded.
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Figure 2: The role of molecular chaperones in maintaining proteostasis. Molecular

chaperones are responsible for folding newly synthesized peptides or assist in refolding

misfolded protein into their native conformation. If the protein species cannot be refolded

back into their native conformation, they are sent to be degraded through the UPS or

autophagy. Molecular chaperones can also sequester toxic protein species into cellular

compartments to be “quarantined”. (Adapted from Chen, Retzlaff et al. 2011 [14])



The heat shock response is activated when cells encounter stressful conditions such as
environmental stress, chemical stress, heat stress, and pathological stresses that can
ultimately lead to denaturing and misfolding of proteins. The key player induced by the
heat shock response is a group of molecular chaperones named “heat shock proteins”
(Hsps). Heat shock proteins are ubiquitously expressed and classified into gene families,
according to their molecular weight: Hsp110, Hsp90, Hsp70, Hsp60, Hsp40, and small
Hsps (sHsp) [19]. In this study, we mainly focus on Hsp90 and its co-chaperones.

1.2.1 Hsp90

Hsp90 is a highly conserved cytosolic molecular chaperone that plays central roles in key
cellular pathways, such as cellular signaling, cell cycle control, cell survival, as well as
guiding structural formation of proteins [6]. It is responsible for the folding activation of
over 200 different client proteins [20]. The structure of Hsp90 consists of an N-terminus
responsible for ATP binding, a middle domain responsible for substrate and co-chaperone
binding, and a C-terminus that is essential for dimerization of the protein (Figure 3A and
D) [21]. In eukaryotes, a MEEVD polypeptide chain is attached to the C-terminus of
Hsp90, responsible for binding to co-chaperones with tetratricopeptide repeats (TPR)
[22]. Dimerization is essential to Hsp90 function in vivo [23] and contributes to the open
and closed conformation of Hsp90’s ATPase cycle (Figure 3B). The dimerization of
Hsp90 results in a “clamp” like structure that maximizes binding with client proteins;
once the N-terminus binds to ATP, Hsp90 adopts a “closed” conformation that allows for
interaction with client protein, in addition to ATP hydrolysis [24]. The chaperoning
ability of Hsp90 is strongly dependent on the binding and hydrolysis of ATP and
essential for the function of Hsp90 in vivo [25]. Although Hsp90 function is dependent
on ATPase activity, ATP turnover is very slow and requires mediation by a large group
of molecular co-chaperones to influence its ATPase cycle by inhibiting or stimulating its

ATPase activity and change its conformation [21, 26].

There are two forms of Hsp90, Hsc82 and Hsp82, in yeast and in most other eukaryotic
systems. Hsc82 is constitutively expressed at high levels, whereas Hsp82 is normally
expressed at much lower levels and strongly induced under stress conditions. The two

proteins share ~97% sequence homology and are functionally redundant. Only one



isoform needs to be present in the cell for viability under normal temperatures [7]. At
higher temperatures, both isoforms are expressed at high levels, providing a buffer for the

fluctuation in protein folding efficiency.

Hsp90 has been thoroughly studied in recent years [9] as a potential therapeutic target for
neurodegenerative diseases, as Hsp90 has been found to co-localize with aggregates of
disease related proteins, such as amyloid Beta (AP) plaques and tau in Alzheimer’s
disease (AD) [4]. Though Hsp90 has been reported to reduce the aggregation-propensity
of numerous proteins such as AP [27, 28], recent studies suggest that inhibition of Hsp90
and the ensuing induction of the heat shock response may be beneficial in other
neurodegenerative diseases and thus has the potential of becoming a therapeutic target
[9]. Also, it is speculated that Hsp90 can stabilize toxic protein species through binding
and contribute to disease progression [9]. Inhibition of Hsp90 can therefore direct toxic
protein species to be degraded through the UPS (Figure 3C) [29]. Collectively, these
studies provide a strong rationale to further explore the role of Hsp90 in protein

misfolding in neurodegenerative diseases.
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1.2.2 Hsp90 Co-chaperones

Hsp90 function relies heavily on the binding and hydrolysis of ATP and the specific
binding to client proteins, which can be achieved through the cooperation with various
co-chaperones. Co-chaperones are able to inhibit or stimulate the ATPase activity of
Hsp90 and facilitate the folding or activation of its client proteins [26]. In this study, we
focus on the Hsp90 co-chaperones Ahal, Cdc37, and Stil.

1.2.2.1  Aha1

Ahal (activator of Hsp90 ATPase) was first identified in yeast as a stress-regulated
protein that interacts directly with Hsp90 to stimulate its ATPase activity along with its
shorter homologue, Hchl. [25]. It was later found to bind to the middle domain of Hsp90
and to stimulate its ATPase activity by up to twelve fold over its basal level [25, 31].
Ahal is also involved in the activation of client proteins such as tyrosine-protein kinase

transforming protein (v-Src) and the glucocorticoid receptor (GR) [32].

Ahal is a cytoplasmic protein that is highly conserved in eukaryotes. It is divided into
two domains: the N-terminal domain and the C-terminal domain. Both of these domains
are required for interaction with Hsp90 (Figure 4A and C) [33]. Ahal first interacts with
Hsp90 through the asymmetric binding of its N-terminus to the M-domain of Hsp90
(Figure 4B). The C-terminus of Ahal is capable of binding to the N-terminal ATP-
binding domain of Hsp90 to induce its closed conformation and facilitate ATP binding
and hydrolysis [33]. The binding of Hsp90 and Ahal is independent of ATP at the N-
terminal domain of Hsp90 [26].

Ahal has also been found to act independently of Hsp90 and interact with stress-
denatured proteins to prevent their aggregation [34]. This suggests that Ahal may play an
important role in protein folding under stress conditions by directing misfolded proteins

to be degraded through ubiquitin-dependent pathways.
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Figure 4: Structure of Ahal and its interaction with Hsp90. A Structural schematic of
Ahal consisting of two domains, the N-terminal domain and the C-terminal domain
connected by a linker. B Ahal binds asymmetrically to Hsp90 by binding to the middle
domain of Hsp90 through its N-terminal domain, and the N-terminal domain of Hsp90
through its C-terminal domain to stimulate the ATPase activity of Hsp90 and induce its

closed conformation. C Crystal structure of human Ahal (PDB ID 1X53 [35])

1.2.2.2 Cdc37

Cdc37 (Figure SA and C), also known as p50, was first discovered in a screen for genes
related to the cell division cycle in yeast [36], and it is essential to drive cell proliferation
[37]. It is conserved from yeast to humans, though homologues to Cdc37 have yet to be
found in plants [38]. It plays an essential role in stabilizing and stimulating the activity of
protein kinases [38]. The binding of the C-terminal domain of Cdc37 to the ATP-binding
domain of Hsp90 inhibits the ATPase activity of Hsp90 and it is thought to prolong
interactions between client proteins and Hsp90 in order to facilitate more effective

chaperoning activity (Figure 5B) [38, 39].

In addition to its role as a co-chaperone of Hsp90, Cdc37 is able to function

independently as a molecular chaperone with strikingly similar activities to Hsp90 and
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can even compensate for decreased Hsp90 function in vivo [40]. The Cdc37-Hsp90
complex has also been found to influence protein quality control through activation of
autophagy [38]. The involvement of the Cdc37-Hsp90 complex in autophagy may be
important in neurodegenerative diseases, as it may play a role in the clearance of the

accumulation of aggregates in these diseases [38].
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Figure S: Structure of Cdc37 and its interaction with Hsp90. A Structural schematic
of Cdc37 consisting of two domains, the N-terminal domain and the C-terminal domain.
B Cdc37 binds asymmetrically to Hsp90 by binding to the ATP-binding domain of
Hsp90 through its C-terminal domain, thus inhibiting its ATPase activity. C Crystal
structure of human Cdc37 (PDB ID: AWO0G [41]).

1.2.23 St

Stil (Stress-inducible protein 1), also known as Hop (Hsp70/Hsp90 Organizing Protein)
in animals, was first identified in yeast as a trans-acting factor that induces heat-shock
gene expression [42]. Stil homologues have since been identified in many different
organisms and can generally be divided into yeast Stil (yStil), plant Stil, and animal Stil
(Hop) [43]. The structure of Stil is shown in Figure 6A and D. Stil contains nine
tetratricopeptide repeat (TPR) motifs that are clustered into three domains with three TPR
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motifs per domain. The TPR domains are important for directing protein-protein
interactions. Stil is capable of binding to the MEEVD polypeptide chain of Hsp90 and
the PTIEVVD polypeptide chain of Hsp70 simultaneously through its TPR motifs to
connect Hsp90 to Hsp70 [22].

The binding of Stil to Hsp90 inhibits Hsp90’s ATPase activity and stabilizes the open
conformation of Hsp90, which allows unloading of the client protein from Hsp70 into the
open “clasp” of Hsp90 once Stil also binds to the Hsp70-client protein complex (Figure
6B) [22]. After the client protein binds to the middle domain of Hsp90, Ahal out-
competes Stil to stimulate the ATPase activity of Hsp90 to change the conformation of

Hsp90 from open to closed (Figure 6C) [32].

Stil is largely cytoplasmic under normal conditions, though nuclear-localization of the
protein has also been observed in small quantities [43]. Stil also has a nuclear
localization sequence (NLS) overlapping with its Hsp90-binding TPR2A domain,
suggesting an alternate binding of Stil to Hsp90 and various nuclear import factors to

retain Stil in either the cytoplasm or the nucleus, respectively [43].

In addition to function as a Hsp90 co-chaperone, Stil partakes in other cellular processes
independently of Hsp90. Notably, Stil is involved in protein folding through the Cdc37
chaperone complex and the prion protein complexes, which are responsible for the
folding of protein kinases and recruiting and curing of prions, respectively [43]. In yeast,
overexpression of Stil has been shown to interfere with the propagation and
manifestation of prions and consequently suppression of the expression of prion proteins
[44]. This leads to the speculation that Stil cures prions by inhibiting the formation of
non-soluble aggregates of prion protein or prevents its structural conversion from the
cellular form to the scrapie form [43]. We focus on Stil in this study due to its various

roles in protein folding and aggregation.
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Figure 6: Structure of Stil and its interaction with Hsp90. A Structural schematic of
Stil consisting of three tetratricopeptide repeat (TPR) domains with three TPR motifs
each and a nuclear localization sequence (NLS). B Stil binds to the C-terminal MEEVD
peptide and the ATP-binding domain of Hsp90 through its TPR domains to link the
Hsp70-client protein complex with Hsp90 and transfer the client protein from Hsp70 to
Hsp90. C Ahal outcompetes Stil to bind to the ATP-binding domain of Hsp90 and
induces the closed conformation of Hsp90. D Model structure of Stil, the TPR1 and
TPR2a domains are shown bound with Hsp70 and Hsp90 (Picture from Prodromou, 2012
[45]. (Adapted from Odunuga et al. [43] and Li et al. [20])
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1.3 Neurodegenerative Disease

Protein misfolding and aggregation is the central hallmark of many neurodegenerative
diseases such as Alzheimer’s Disease (AD), Huntington’s Disease (HD), Parkinson’s

Disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD).

The prominence of protein misfolding and aggregation in neurodegenerative disease can
perhaps be explained by the fact that neurons are particularly susceptible to stress
conditions including genetic and environmental changes to cellular proteostasis [4]. In
addition, aging is a factor that contributes to the decline of the cell’s capacity to maintain
proteostasis as old cells accumulate mutations and damaged proteins that can overwhelm
the overall balance of cellular proteostasis [14]. This line of thinking is consistent with

the late, age-dependent onset of most neurodegenerative diseases.

In order to combat the accumulation of damaged or misfolded proteins in the aging cell,
particular chaperones are up-regulated to prevent aggregation and facilitate their
refolding or degradation [46]. Though molecular chaperones show altered or even
impaired induction in the aging cell, the expression level of heat shock factor-1 (HSF-1),
the transcription factor responsible for the induction of most of the genes encoding
chaperones, stays surprisingly unchanged [46]. Yet the binding of HSF-1 to the heat
shock element leading to the activation of HSF-1 decreases in aging cells, which in turn

does not activate the heat shock response properly [46].

Hsp90 has been found to repress HSF-1 activity. It is proposed that under normal
conditions, Hsp90 and HSF-1 forms a complex that inhibits the activities of HSF-1;
however, under heat shock conditions, HSF-1 is released from the Hsp90-complex
activates the heat shock response [47]. Since the inhibition of Hsp90 has been reported to
stimulate HSF-1 activation [48], it was proposed that in the case of neurodegenerative
diseases with characteristic protein aggregates, the inhibition of Hsp90 can activate HSF-
1 and lead to increased induction of other chaperones such as Hsp70 and Hsp40 that can
aid in protein disaggregation and degradation [9]. Furthermore, inhibition of Hsp90 can

prove to be beneficial in protein misfolding diseases, as it is speculated that Hsp90
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stabilizes misfolded or aberrant protein species that can lead to an accumulation in toxic

aggregates [9].

1.4 Amyotrophic Lateral Sclerosis (ALS)

Approximately two in 100,000 people develop Amyotrophic Lateral Sclerosis (ALS)
[49]. ALS, also known as Lou Gehrig’s disease, is a neurodegenerative disease
characterized by progressive impairment of muscle function due to neuronal loss often
leading to fatal paralysis of the respiratory system. The disease has an onset average age
of ~60 years and is fatal within 3-5 years following disease onset [50]. The only
treatment currently available for ALS is Riluzole; yet the drug is not at all an effective
treatment as it only extends the lifespan of patients for about three months [51]. ALS can
be divided into two forms, sporadic ALS (sALS) and familial ALS (fALS). sALS
accounts for up to 95% of all ALS cases, whereas fALS only accounts for about 5% [52].

The first cause for fALS was identified in 1993 as a mutation in the copper-zinc
superoxide dismutase 1 (SOD1) gene [53]. Mutations in the gene are responsible for
about 20% of fALS cases and 1% of sALS [51]. SODI is an enzyme that converts
superoxide anions into hydrogen peroxide and oxygen, thus reducing the levels of free
radicals and reactive oxygen species (ROS) and protecting cells from oxidative stress.
The mechanism by which mutations in SODI1 contribute to ALS pathogenesis remains
unclear. Since mutant SOD1 shows no decrease in free-radical scavenging and copper
binding abilities [54], it has been speculated that rather than loss-of function in mutant
SOD1, a gain-of-function mechanism is responsible for ALS disease progression through
the formation of aggregates. Studies have also found mutant human SOD1 (hSOD1) to
destabilize native SOD1 and lead to the formation of misfolded aggregates and
degradation of SOD1 [54]. Furthermore, mutant SOD1 has been found to seed misfolding
of wild type (wt) SODI1, allowing the aggregation of wt SOD1 and the propagation of
SOD1 misolding in a prion-like manner [55, 56].

SODI1 remained the only known ALS protein until the recent discovery of the TAR DNA
Binding protein (TDP-43) inclusion bodies in brains of ALS patients in 2006 [57]. Also,
TDP-43 mutations account for ~5% of fALS and ~1% of sALS [58]. Following the
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discovery of TDP-43 as a cause for ALS, other genetic mutations have been linked to
fALS, such as mutations in Fused in Sarcoma (FUS) in 2009 [59], C9ORF72 in 2011
[60], Rho guanine nucleotide exchange factor (RGNEF) [61], and the more recent
discovery of NEK-1 in 2016 [62]. C9ORF72 mutations account for about 40-50% of all
fALS cases and up to 20% of sALS cases, making it the most prominent genetic cause for

ALS found so far [58].

At a pathological level, ALS is characterized by protein aggregates or inclusions in motor
neurons containing FUS, TDP-43, RGNEF, SODI, neurofilaments (NF), ubiquitin,
peripherin, and others [63]. Though in the vast majority (95%) of all ALS cases, TDP-43
proteinopathy is observed (Figure 7) [64]. In TDP-43 proteinopathy mutant or wild type
TDP-43 is mislocalized from the nucleus to the cytoplasm followed by the formation of
ubiquitinated inclusions or aggregates in the cytoplasm of neurons and occasionally glia
cells of patient’s brain [65]. TDP-43 has also been found to co-localize with other ALS-
linked proteins such as RGNEF [61], while FUS and SODI1 positive inclusion bodies are
always TDP-43 negative [58]. In this study, we focus on TDP-43 proteinopathy as a
cause for ALS due to its prominence in ALS patients. TDP-43 will be discussed further in

the following section.
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Table 1: Genetic mutations associated with ALS.

Genetic Subtype  Gene Inheritance Function/ Putative Function
ALS1 SOD1 AD/AR Enzymes

ALS2 Alsin AR Cellular transport

ALS4 SETX AD RNA metabolism

ALSS SPG11 AR DNA damage

ALS6 FUS AD/AR RNA metabolism

ALSS VAPB AD Cellular transport

ALS9 ANG AD RNA metabolism

ALS10 TARDBP AD RNA metabolism

ALSI11 FIG4 AD Enzymes

ALS12 OPTN AD/AR Protein metabolism

ALSI13 ATXN2 AD RNA metabolism

ALS14 VCP AD Protein metabolism
ALS15/ALSX UBQLN2 XD Protein metabolism

ALS16 SIGMAR1 AD Protein metabolism

ALS17 CHMP2B AD Intracellular transport protein
ALSI18 PFN1 AD Axonal outgrowth

ALS19 ERBB4 AD Enzyme

ALS20 hnRNPA1 AD RNA metabolism

ALS21 MATR3 AD Protein metabolism
ALS-FTD C90ORF72 AD RNA metabolism

NA DCTNI1 AD Intracellular transport protein
NA ARHGEF28 Unknown RNA metabolism

NA NEK-1 Unknown DNA damage

*Abbreviations in this table: AD autosomal dominant, 4R autosomal recessive, ALS amyotrophic lateral sclerosis,
SOD1 superoxide dismustase 1, SPG11 spastic paraplegia type 11, SETX senataxin, FUS, fused in sarcoma, VAPB
vesicle-associated membrane protein-associated protein B, ANG angiogenin, TARDBP transactivation response DNA
binding protein 43 kDa, FIG4 factor induced gene 4, OPTN optineurin, ATXN2 ataxin-2, VCP valosin-containing
protein, UBQLN?2 ubiquilin 2, SIGMARI sigma non-opioid intracellular receptor 1, CHMP2B chromatin modifying
protein 2B, PFNI profilin 1, ERBB4 erb-b2 receptor tyrosine kinase 4, hnRNPAI heterogeneous nuclear
ribonucleoprotein Al, MATR3, matrin-3, C9ORF72 chromosome 9 open reading frame 72, DCTNI Dynactin 1,
ARHGEF28 Rho Guanine Nucleotide Exchange Factor 28, NEK-1 NIMA (Never In Mitosis Gene A)-Related Kinase 1.
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TDP-43 is located in the nucleus

Healthy (Motor) Neuron

(Motor) Neuron
with TDP-43 Proteinopathy ~

TDP-43 is mislocalized to the cytoplasm,
leading to a toxic gain of function of TDP-43 in the cytoplasm,
a toxic loss of function in the nucleus,
and an eventual degeneration of the neuron.

Figure 7: TDP-43 proteinopathy in neurons. In healthy neurons, TDP-43 is normally
located in the nucleus. In neurons with TDP-43 proteinopathy, TDP-43 mislocalizes to
the cytoplasm. The mislocalization of TDP-43 causes a toxic loss of function in the
nucleus and a toxic gain of function in the cytoplasm leading to degeneration of the

neuron. (Adapted from Vanden Broeck, 2014 [66])
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1.5 TDP-43:
Transactive Response DNA-Binding Protein 43

Transactive Response (TAR) DNA-binding protein 43 (TDP-43), is a 43 kDa
DNA/RNA-binding protein of 414 amino acids encoded by the TAR DNA-binding
protein (TARDBP) gene located on chromosome 1p36.2. It is ubiquitously expressed in
the nucleus of most metazoans, but constantly shuttles between the nucleus and the
cytoplasm [67]. TDP-43 contains a nuclear localization sequence (NLS), two RNA
recognition motifs (RRM) that are responsible for RNA binding, a nuclear export
sequence (NES) located in the second RRM, and a glycine-rich prion-like domain at the
C-terminus (Figure 8A) [68]. A truncation of TDP-43’s C-terminus (1-216, with the NLS
and NES region intact) results in both cytoplasmic and nuclear inclusion body formation,

suggesting that the C-terminus plays a pivotal role in the aggregation of TDP-43 [67].

TDP-43 is involved in RNA regulation and protein production in the cell, such as
regulating transcription, pre-mRNA splicing, and processing of microRNA [69], and
other cellular processes such as apoptosis, cell division, and stabilization of messenger
RNA [68]. Inhibition of RNA polymerase II by using actinomycin D decreases nuclear
import and results in an accumulation of TDP-43 in the cytoplasm, suggesting that
continuous mRNA synthesis is necessary for nuclear import of TDP-43 [67]. TDP-43
was first discovered as a protein that binds to the transactive response (TAR) DNA of the
HIV-1 virus, giving its name [70] but its role in HIV-1 regulations has hence been

challenged [71].

Recent studies have focused on the implication of TDP-43 in neurodegenerative diseases.
TDP-43 proteinopathy is observed in the majority of ALS cases (Figure 8B) as well as
the most frequent form of frontotemporal dementia (FTD), frontotemporal lobar
degeneration with ubiquinated inclusions (FTLD-U) (Figure 8C). Strikingly, a portion of
patients shows both FTLD and ALS features, suggesting that ALS and FTD may be a
spectrum disorder (Figure 8D) [72, 73] rather than two distinct diseases. While TDP-43
was originally implicated in FTD and ALS, it has also recently been linked to
Alzheimer’s disease (AD) [74], Parkinson’s disease (PD) [75, 76], and Huntington’s
disease (HD) [77]. TDP-43 proteinopathy is present in over 50% of AD patients, 60% of
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PD, PD with dementia, and dementia with Lewy bodies plus AD patients, as well as co-
localization of cytoplasmic inclusions with mutant huntingtin [72]. While TDP-43
inclusions are present in the majority of FLD and ALS patients, in diseases such as AD,
PD, and HD, it appears to be only a secondary histopathological feature [72]. The disease
form of TDP-43 is often ubiquitinated, hyperphosphorylated, or cleaved into smaller
fragments of 25 and 35 kDa containing the C-terminus [78].

Fifty missense mutations in TDP-43 implicated in ALS have so far been described
(Figure 8A); the vast majority of TDP-43 mutations implicated in both sporadic and
familial ALS are located in the prion-like domain of the protein, with the exception of
two mutations located in the N-terminus and the RRMI. This has led to the extensive
studies on the prion-like domain in TDP-43 to decipher the mechanism underlying TDP-
43 aggregation governed by its different domains. It has been reported that TDP-43
fragments containing the N-terminal domain and RRM1 are soluble and do not aggregate,
while fragments containing RRM2 and the C-terminal region aggregated with similar
efficiency as full-length TDP-43 [79], contributing to the theory that the C-terminal
domain is essential for TDP-43 aggregation. It is speculated that the C-terminus is
responsible for the interference of normal protein-protein interaction that can lead to
impaired nuclear import of TDP-43 [68]. It has also been reported that mislocalized wild
type TDP-43 can induce wild type SOD1 to misfold and aggregate [80]. These misfolded
wild type SOD1 aggregates can then propagate from cell to cell to promote misfolding of
SODI in a prion-like manner [81]. Our work focuses on how molecular chaperones
interact with TDP-43 as a potential therapeutic target for TDP-43 proteinopathy in ALS

and possibly other neurodegenerative diseases.
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Figure 8: TDP-43 and ALS. A Schematic representation of the domain structure of

TDP-43 and the TDP-43 mutations associated with ALS. B TDP-43 proteinopathy in

neurons of brain tissue of FTLD patient (brown structures indicated by arrows) (Picture

credit: Felix Geser, MD, PhD, University of Pennsylvania School of Medicine). C TDP-

43 inclusions in motor neurons of ALS patient (Picture credit: Mackenzie et al. 2010

[68]). D ALS and FTD is a spectrum disorder where some patients show signs of both
ALS and FTD (adapted from Swinnen and Robberecht 2014) [73].
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1.6 Yeast models

Saccharomyces cerevisiae, commonly known as baker’s yeast, is a eukaryotic, single-cell
organism that has been frequently used as a model organism to investigate protein
misfolding in a wide variety of human diseases, particularly neurodegenerative diseases
([82]). Because of the high degree of conservation of key cellular pathways and processes
with mammalian cells and our vast knowledge of the yeast genome and proteome, yeast
models have been widely used in scientific research and continue to pioneer studies of
genetic interactions. Yeast was also the first eukaryotic organism to have its complete
genome annotated and sequenced. Yeast deletion and overexpression libraries are readily
available for investigating genetic interactions between certain groups of genes [13],

consequently, yeast has been effectively used in high-throughput screening studies.

Studies of molecular chaperones and the heat shock response are well established in yeast
models as many of the mechanisms and roles of these molecular chaperones are
conserved in eukaryotes. Indeed, much of our knowledge on molecular chaperones and
the heat shock response was revealed by studies using the yeast model system [12]. The
molecular chaperones we investigate in this study, Hsp90 and its co-chaperones, are

amongst those that have been well studied in the yeast model.

Yeast models studying many human diseases have been well-established, particularly
neurodegenerative diseases and their disease proteins. This includes a-synuclein (o-syn)
and parkin (PARK2) in Parkinson’s Disease [83, 84], the Huntington (Htt) polyQ
expansion in Huntington’s Disease [85], Alzheimer’s disease [86], and TDP-43 in ALS
[11]. The yeast HD model is one of the most extensively characterized yeast models. It
has been used to established the toxicity associated with the polyQ expansion and
aggregation [85] as well as its interaction with molecular chaperones such as Hsp70 in

attempts to find a therapeutic target for the disease [87].

Although yeast cells do not fully resemble neurons and thus do not display neuron-like
activities, yeast cell death or growth impairment models can provide insights into
neuronal cell death and studies into neurodegenerative diseases [82]. Expression of toxic

proteins in yeast can result in mitochondrial damage and the production of reactive
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oxygen species (ROS) that induce oxidative stress, all of which are hallmarks of many
neurodegenerative disorders [88]. Another hallmark of neurodegenerative diseases, cell
death from accumulation of misfolded and aggregated proteins, can also be studied in the
yeast model, as misfolded proteins can induce ER stress and ROS leading to apoptotic

cell death [82].

Yeast models are also widely used in ALS studies [54], including studies on SOD1, FUS,
and TDP-43. In the TDP-43 yeast model, established by Johnson et al. [11, 79], TDP-43
toxicity as well as the localization and aggregation of the protein was examined, the
results are summarized in Figure 9 below. The model faithfully recapitulates many
central aspects of TDP-43 proteinopathy and are thus comparable to human ALS
pathology, such as the cytosolic mislocalization of TDP-43 [11]. Overexpression of TDP-
43 is used to model TDP-43 proteinopathy and its disease phenotypes in yeast and other
animal models [1]; overexpression of the protein produces great toxicity throughout the
models, supporting the role TDP-43 proteinopathy plays in gain-of-function toxicity [1].
Though there is no evidence of overexpression of TDP-43 in ALS patients,
overexpression of TDP-43 in the yeast model provides a good basis to study TDP-43
proteinopathy and discover potential genetic interactions that may modify the aggregation

and mislocalization of TDP-43 in cells that display TDP-43 proteinopathy.

Further investigation of TDP-43 using yeast established: 1) TDP-43 aggregation patterns
in yeast cells are similar to that of ALS pathology [89], 2) TDP-43 aggregation is toxic to
yeast cells, especially when expressed at high levels [89], 3) TDP-43 does not form
amyloid-like aggregates [11], 4) TDP-43 aggregates differ from other protein misfolding
disease proteins [11], and 5) that TDP-43 is intrinsically aggregation-prone [79].
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Figure 9: Characteristics of the TDP-43 yeast model summarized. The key findings
and the ALS-linked TDP-43 mutants established in the TDP-43 yeast model [11, 79, 89]
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1.7 Rationale, Hypothesis, Objectives, and Significance

1.7.1 Rationale

TDP-43 proteinopathy is present in the majority of ALS patients and many other
neurodegenerative diseases. In TDP-43 proteinopathy, TDP-43 mislocalizes from the
nucleus to the cytoplasm of neurons and forms aggregates. Protein quality control
mechanisms such as molecular chaperones are utilized to combat protein misfolding,
aggregation, and toxic protein species. Many studies on neurodegenerative disease have
explored the interaction of disease proteins and molecular chaperones in attempt to
correct the misfolding and aggregation of these proteins and find a therapeutic target for
the disease. As mentioned in section 1.2.1, studies on Hsp90 as a potential target for tau
aggregation in Alzheimer’s disease provide a strong rationale on investigating the effects
of Hsp90 and its co-chaperones on TDP-43 aggregation. We focus mostly on Stil in this
study as previous results in the Dr. Duennwald’s lab and our collaborator, Dr. Prado’s lab
at the University of Western Ontario, have suggested an interaction between Stil and

TDP-43.

1.7.2 Hypothesis and Objectives

We hypothesize that Hsp90 reduces TDP-43 toxicity and aggregation through Stil in a

dose-dependent manner. In order to test our hypothesis, we pursue three objectives:

1) To examine the effect of deletion and overexpression of Hsp90 and its co-
chaperones on TDP-43 toxicity and aggregation patterns in the yeast model,

2) To establish a biochemical assay to quantify changes in aggregation patterns of
TDP-43, and

3) To validate key findings our experimental results in mammalian cells.

The objectives and the methods we employ in this study are summarized in Figure 10 .
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Figure 10: Graphic summary of this study.

1.7.3

In order to fully understand the pathological mechanisms underlying ALS, we must
tackle the problem by focusing on fundamental mechanistic aspects, using experimentally
tractable model organisms, such as yeast. These results can then be validated in neuronal

systems and ALS patients. Protein aggregation generally is the hallmark of many
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neurodegenerative diseases, and TDP-43 proteinopathy is present in the majority of ALS

and FTD cases, and a portion of patients with PD and HD. Therefore, studying TDP-43

aggregation and its interactions with molecular chaperones will provide insight in how

molecular chaperones can remedy protein aggregation and eventually develop a

therapeutic solution for not just ALS but possibly also other neurodegenerative diseases.
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Chapter 2

2 Material and Methods
2.1 Material

2.1.1 Yeast strains and media

Yeast strain BY 4741 (MAT a his341 leu240 lys240 ura340) and W303 (MAT a leu2-
3,112 trpl-1 canl-100 ura3-1 ade2-1 his3-11,15) were used in this study. Yeast deletion

strains were obtained from the Saccharomyces Genome Deletion Project.

Yeast-peptone-dextrose (YPD) rich media (10 g/L yeast extract, 20 g/L. peptone, and 20
g/L dextrose) and selective dextrose (SD) media (2% glucose, 1X yeast nitrogen base
(YNB), 6 g/L l-isoleucine, 2 g/L L-arginine, 4g/L L-lysine HCI, 6 g/L L phenylalanine, 1
g/ L-threonine, and 1g/L L-methionine) in either liquid media or agar plates (20g/L)
were used to grow yeast cells. SD media was supplemented with 4 different amino acids
(4g/L L-tryptophan, 6g/L L-leucine, 2 g/L. L-histidine-monohydrate) depending on the
selectivity maker of the plasmid. 2% galactose or 2% galactose plus 2% raffinose was
used instead of glucose as a carbon source to make selective galactose (SGal) and
selective galactose raffinose (SGal Raf) media respectively, for induction of gene

expression from plasmid with the GAL1 promotor.

2.1.2 E. Coli strains and media

Escherichia coli Strain DH5a Genotype F—®80lacZAMI15 A(lacZYA-argF) 169 recAl
endAl hsdR17 (rK—, mK+) phoA supE44 A— thi-1 gyr496 relAl was used in this study.
Subcloning Efficiency DH5a Competent Cells (Invitrogen, Cat. No. 18265-017) were

used for the cloning work in this study.

E. Coli cultures were grown in Lysogeny Broth (LB) medium (10 g/L NaCl, 10g/L
tryptone, and 5 g/L yeast extract) with antibiotic resistance (1X Ampicillin or Kanamycin
depending on selectivity markers) for transformations and cloning. 2x Yeast-typtone
(2xYT) media (16 g/L tryptone, 10 g/L yeast extract, and 5 g/l NaCl) was used for

recovery of E. Coli cells after transformation.
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2.1.3 Mammalian cell lines and media

Cervical cancer derived HeLa cells, human embryotic kidney cells (HEK), and mouse
neuroblastoma cells (N2a) were used in this study. Cells were grown in Dulbecco's
Modified Eagle Medium (DMEM, Corning) with 4.5 g/ and supplemented with 10%
fetal bovine serum (FBS, Gibco), 1X penicillin-streptomycin solution (Corning), and 1X
glutamine (Sigma Aldrich) at 37°C with ~5% CO2. HEK wild type and HEK STI1KO

cell lines were courtesy provided by the Prado Lab at Western University.

2.1.4 DNA Plasmids

pRS416Gal TDP-43 wt-YFP (low copy yeast expression plasmid) was a gift from Aaron
Gitler (Addgene plasmid #27447 and 27450) [79]. The molecular chaperones for the
overexpression experiments are obtained from Duennwald Lab and used to transform into
pDONR201 (Invitrogen) and further into pAG423Gal-ccdB (high copy yeast expression
plasmid) and pAG413Gal-ccdB (low copy yeast expression plasmid) vectors (Susan
Lindquist, Addgene plasmid #14149 and 14141) through the standard Gateway Cloning
protocol (Invitrogen protocol [90]), the plasmids created through Gateway cloning are
summarized in the Table 2. The pEGFP wtTDP-43 plasmid was a gift from the Strong
Lab at Western University and the pPCMV wtSTI1 and pCFP wtSTI1 plasmids were from
the Prado lab at Western University. The plasmids were transformed and purified using
the Presto Midi Plasmid Kit (Geneaid). Low copy yeast expression plasmids are yeast
centromere plasmids (YCp) that produce 1-2 copies of the plasmid per cell, whereas high
copy yeast expression plasmids are yeast episomal plasmids (YEp) that produce about

100 copies per cell [91].

Table 2: Plasmids created using Gateway Cloning in this study

Template Destination Vector
Stil pAG423Gal-ccdB
Stil pAG413Gal-ccdB
Cdc37 pAG423Gal-ccdB

Ahal pAG423Gal-ccdB




2.1.5

Antibodies

The antibodies used in this study are shown in Table 3.

Table 3: Antibodies used in this study.

Antigen Supplier Use Concentration

GFP Sigma Western Blot 1:1000

TDP-43 Sigma Western Blot 1:1000

HA Sigma Immunofluorescence 1:1000

Hsp70 Thermo Fisher Western Blot 1:2000

V5 Sigma Immunofluorescence 1:1000
Immunofluorescence 1:1000

Histone Abcam Western Blot 1:2000

PGK-1 Antibodies-online Western Blot 1:2000

Rabbit Life Technologies Western Blot 1:2500

(Alexa 680)

Mouse Life Technologies Western Blot 1:2500

(Alexa 680)

Rabbit Life Technologies Immunofluorescence 1:1000

(Alexa 488)

Mouse Life Technologies Immunofluorescence 1:1000

(Alexa 488)

Rabbit Life Technologies Immunofluorescence 1:1000

(Texas Red)

Mouse Life Technologies Immunofluorescence 1:1000

(Texas Red)

30
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2.2 Methods

2.2.1 High Efficiency Yeast Transformation

Yeast transformations were performed according to standard PEG/lithium acetate method
protocol. A single colony of yeast cells are inoculated into 3 mL of YPD liquid or SD
media and incubated at 30° C with shaking overnight. The liquid culture is then combined
with 27 mL of YPD liquid to make a 30 mL liquid culture and incubated at 30" C shaking
till the cells have reached log phase (an ODgy of 0.4 to 0.5). The culture is then
centrifuged at 2000 xg for 5 minutes. The supernatant is aspirated off and the pellet is
washed with 3 mL of sterile water. The cells are centrifuged again at the same speed and
time. The pellet is resuspended in 2 mL of 100 mM Li-Acetate in TE buffer after the
wash step and incubated at 30° C shaking for 10 minutes. The culture is centrifuged again
after incubation and the pellet is resuspended in 100 pL of Li-Acetate per transformation.
Each transformation is composed of 100 pL cell suspension, 250 pL transformation (1 X
TE, 40% PEG, and 100mM Li-Acetate), 12ulL salmon sperm DNA, 1uL (0.3~0.5 ng)
plasmid DNA, and 25ul DMSO and in the order listed and vortexed thoroughly. The cells
then recover at 30" C shaking for 30 minutes, following a 20 minute heat shock at 42" C
shaking. After heat shock, the cells are centrifuged for 1 minute at 2000 xg, the
supernatant aspirated, and the pellet resuspend in 100 pL TE buffer. The cells are then

plated onto selective agar plates.

222 E. Coli Transformation

We perform E. Coli transformations to replicate and amplify plasmid DNA, resulting in
abundant amounts of DNA. 100 ul aliquots of transformation competent DH5a. cells are
thawed on ice from storage at -80° C; 1-5 pl (0.1~0.5 pug) of plasmid DNA is added to the
cells and mixed thorough by gently flicking the tubes (the competent cells should not be
vortexed). The cells are allowed to recover on ice for about 30 mins and heat shocked at
42" C for 100 seconds. The cells rest on ice for 2 mins before 1 mL of 2xYT is added and
the cells allowed to recover at 37 C in a shaking incubator for at least 1 hour. Following

recovery, the cells are centrifuged at 15,000 xg for one minute, the supernatant aspirated
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off, and resuspend in 100 pl of 2xYT. The suspension is plated on LB agar plates with

selective antibiotic depending on the antibiotic resistance of the vector.

2.2.3 Gateway Cloning

The Hsp90s and co-chaperones constructs were created through the standard procedures
of Gateway cloning and consists of three steps, Polymerase Chain Reaction (PCR)
amplification, BP recombination, and LR recombination following the Gateway cloning

protocol developed by Invitrogen [90].

PCR was performed to obtain a template for the BP recombination reaction. We used an
adapted version of the touchdown PCR program in order to avoid non-specific
proliferation as a side-product of the reaction. The reaction cycle for PCR program
protocol includes two cycles. The first cycle is repeated 10 times with an annealing
temperature of 60 C; the second cycle is repeated 20 times with an annealing temperature
of 57 "C. The reaction mixture for PCR consists of 2 pl of template DNA (~200 ng), 2pl
of 100 mM forward primer, 2ul of 100 mM reverse primer, 2 ul of 100 mM dNTPs, 1pul
of Q5 polymerase (New England BioLabs), and 20ul of 5x Q5 buffer (New England
BioLabs). The forward and reverse primers are created using the Custom Primers -

OligoPerfect™ Designer (Thermo Fisher).

The BP recombination was performed by combining 2 ul of template DNA (about 100-
200 ng of DNA), 1 ul of pDONR vector (150 ng/ul) , and 2 pl of 5X BP Clonase
(Invitrogen). The mixture is vortexed and centrifuged twice to ensure thorough mixing
and then allowed to incubate overnight at 37 C. 1 pul of Proteinase K (Invitrogen) solution
is added to the reaction following incubation and left to react at 37 C for 10 minutes. 2 pl
of this reaction mixture is then used to transform into Subcloning Efficiency DHS5a
Competent Cells (Invitrogen, Cat. No. 18265-017) following the protocol provided by the
manufacturer. The cells are plated in LB Kanamycin (Kan) resistant agar plates and
incubated overnight at 37 C. Colonies are picked from the plates and inoculated into LB
Kan liquid overnight at 37" C. The plasmids are then extracted from the E. Coli cells by
using the High-Speed Plasmid Mini Kit (Geneaid); the resulting DNA is in pDONR

vector backbone.
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The LR recombination reaction uses 1 pl of the product (100-300 ng) from the BP
reaction in combination with 2 pl of destination vector (150 ng/ul), 13 ul of TE buffer,
and 4 pl of LR Clonase (Invitrogen). The destination vectors used are listed in section
2.1.4. The mixture is vortexed and centrifuged twice and allowed to incubate overnight at
37" C. The resulting procedure is the same as described for the BP recombination
reaction—Proteinase K is added to the mixture, incubated, and transformed into
competent cells. The destination vectors are Ampicilin (Amp) resistant and therefore

should be plated on LB Amp agar plates and then inoculated in LB Amp liquid.

All constructs are sent to the Robarts Research Institute at University of Western Ontario
for DNA sequencing to verify its identity using pDONR and specifically designed

sequencing primers.

2.2.4 Yeast Cell Viability Assay

Yeast cell viability is measured using two methods—spotting assays and the growth

curve assay by using the BioscreenC instrument (Oy Growth Curves Ab Ltd).

2.2.4.1  Spotting Assays

Spotting assays are performed by first inoculating yeast cells in 3 mL in SD media and
incubated overnight in a shaking incubator at 30" C. 100 pl of the cells are then taken in
an Eppendorf tube to be diluted 1:10 in water in order to measure the ODgo, Which
indicates cell density. In a 96-well plate, we dilute our cell cultures to a cell density
normalized to ODgoo=1 in the first row of wells, followed by a serial dilution of 1:5 in the
subsequent 5 wells. We then use a 48-prong Frogger (V&P Scientific) to spot the samples
on YPD, SD, and SGal Raf plates lacking selective amino acid markers. The YPD and
SD plates are used as growth and spotting controls, whereas the SGal Raf plates reflect
the toxicity (e.g. of TDP-43) of the induced yeast cells. Incubation period varies with the
type of plate; YPD plates are incubated 1-2 days; SD plates 2-3 days; SGal Raf plates 3-5
days. The plates are all incubated at 30" C. The plates are documented during the entire
test period to monitor the growth of the yeast colonies by taking photographs using a

digital camera.
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Aging spotting assays were performed by inducing the yeast culture in Gal for the desired

amount of days and then spotted following the procedure above.

2.2.42  Growth Curve Assay

The growth curve assay is performed by first inoculating yeast cells in 3 mL SD media
overnight in a 30" C shaking incubator. The cells are then spun down by centrifugation
and washed twice with sterile water (resuspending in water, centrifuging, and decanting
the supernatant). Following the wash step, the cells are induced by resuspension in SGal
media. The ODgyo was measured by using the same procedure as described above for the
spotting assays. After measuring the ODgoy, we dilute the cells to a cell density of
ODg0=0.2 and transfer 300 pl of the culture into corresponding wells of a honeycomb
well plate. The assay runs for 3 days with 15 min read intervals. Shaking is set to turn on
for 10 sec prior to the read. The incubation temperature is 30" C and the 600 nm filter is
used. Prism 6 (Graph Pad) is then used to analyze the data, the replicates are averaged,

and the standard deviation calculated using the available programs in Prism.

2.2.5 Fluorescent microscopy

Microscopy imaging of YFP tagged constructs was done by first inoculating yeast cells
in SD media at 30° C overnight. The cells are then washed twice with sterile water,
induced in SGal media, and incubated at 30° C. After inducing for 16 to 20 hours, small
samples of the culture are placed on a microscope slide. The cells are imaged on
Olympus BX-51 Bright Field/Fluorescence Microscope and images were captured using

an equipped CCD camera (Spot Pursuit).

2.2.6 Western Blot

A 5 mL yeast culture is first inoculated in SD media overnight. The culture is then spun
down at 2000 xg, washed twice, and induced in SGal media overnight. The culture is then
spun down and washed once with water. The supernatant is discarded and the pellet is
resuspended in 200 pl of lysis buffer (50 mM Hepes pH 7.5, 5SmM EDTA, 150 mM NaCl,
1% (v/v) Triton X-100, 50 mM NEM, 2mM PMSF, and 1X Sigma protease inhibitor
tablet) and transferred into an Eppendorf tube. We then add 200 ul of glass beads (ca.
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500 wm in diameter) to physically disrupt the cell walls by vortexing them 6 times for 30
sec intervals and cooling on ice for 30 secs between these intervals. We then spin the

culture at 5000 xg for 10 mins and collect the supernatant in a fresh Eppendorf tube.

We perform a BCA Protein Assay to determine the concentration of protein in the
sample. The assay was performed according to the Thermo Scientific Pierce BCA Protein
Assay Kit Instructions. After obtaining the concentration and normalizing the total
protein amount in each sample per blot, we dilute the samples with 4x reducing SDS
buffer (0.25M Trisma Base pH 6.8, 8.0% SDS, 40% sterile glycerol, 10% pB-

mercaptoethanol, 0.04% bromophenol blue).

We run SDS-PAGE with the samples on a 8-16% gradient gel (Bio-Rad Criterion TGX
Stain-Free Precast Gels) and/or 12% acrylamide gels at 220 V for about 30 mins. The gel
is then transferred onto a Nitrocellulose or PVDF membranes (BioRad) using the Bio-
Rad Trans-Blot Turbo machine following the manufacturer’s protocol. We then block the
membrane using 5% skim milk powder (Carnation) in Phosphate Buffered Saline with
0.01 % (v/v) Tween (PBST) and incubating for 1 hr on a shaker. The membrane is then
incubated in primary antibody overnight on shaker. Following incubation with the
primary antibody, we wash the membrane with 50 ml aliquots of PBST at 10 min
intervals for an hour on shaker and then incubate in the secondary antibody for 1 h on a
shaker. The membrane is washed again with 50 ml aliquots of PBST in 10 min intervals
on shaker for an hour. The membrane is then documented using the ChemiDoc MP

System (Bio-Rad) and analyzed using Image Lab (Bio-Rad) and Prism 6 (Graph Pad).

2.2.7 Sedimentation Assay

The sedimentation assay was adapted from Theodoraki et al. (2012) and Shiber et al.
(2013). A 5 mL yeast culture is first inoculated in SD media overnight. The culture is
then spun down at 2000 xg, washed twice, and induced in SGal media overnight. We use
ODgpo=1 amount of cells from the 5 mL culture. The 1 ODggp culture is then further spun
down and washed once with water. The supernatant is discarded and the pellet is
resuspended in 200 pl of lysis (100 mM Tris, pH 7.5, 200 mM NaCl, ] mM EDTA, 1mM
DTT, 5% glycerol, 0.5% TritonX-100, 50 mM NEM, 2mM PMSF, and 1X Sigma
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protease inhibitor tablet) and transferred into an Eppendorf tube. Acid-washed glass
beads (425-600 um, Sigma) are then added to physically lyse the cells by vortexing them
6 times for 30 secs intervals and cooling it on ice for 30 secs between the intervals. The
tubes were pierced with a 16-gauge needle and the lysates (both pellet and supernatant)
are collected in a fresh Eppendorf tube by centrifugation in pulses to separate lysates and

glass beads.

The total lysates are resuspended and a BCA Protein Assay was performed to determine
the concentration of total protein in the sample. The assay was performed according to
the Thermo Scientific Pierce BCA Protein Assay Kit Instructions. 50 ul of the lysate was
taken out and mixed with equal volume of SUMEB Buffer (§8M Urea, 1% SDS, 10 mM
MOPS, 10 mM EDTA, and 0.01% bromphenol blue) in a new tube, this aliquot
represents total lysates. The rest of the lysate was spun down at 500 xg for 15 min at 4
°C. 100 pl of the supernatant was transferred into a new tube and mixed with 100 pl of
SUMEB buffer, this represents the supernatant portion of the lysate. The remaining
supernatant from the lysate was aspirated off. The pellet was resuspended with 100 pl of
the lysis buffer (without protease inhibitors) and 100 ul of SUMEB buffer, this represents
the pellet portion of the lysate. The samples were boiled at 80 °C for 5 min and 25 pl of
the samples were loaded onto a 12% acrylamide gel. The gel is then run according to the

western blot procedures described above.

2.2.8 Mammalian Cell Transfections

Mammalian cells were split into dishes or flasks with cell numbers as recommended by
manufacturer and incubated for ~24 hr in DMEM. Cells were grown to approximately
90% confluency and transfected with Lipofectamine 2000 (Thermo Fisher) following the
supplier recommended concentrations in Opti-MEM (Gibco) low serum media. The cells
are incubated at 37 °C for 6 hr, and followed by a wash in 1X PBS and incubated in
DMEM for ~20 hr at 37 °C. Cells are then split into different dishes or plates for different
experimental setups. Plates destined to contain HEK cells were treated with Attachment
Factor (Gibco) to prevent detaching of cells. HEK and N2a cells were transfected with
Lipofectamine LTX with Plus Reagent (Thermo Fisher) following the supplier
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recommended concentrations. HEK cells were transfected directly into 96 well plates for

the viability assay and chamber slides for immunofluorescence microscopy.

2.2.9 Mammalian Cell Viability Assay

The CellTiter-Glo Luminescent Cell Viability Assay (Promega) was used in this study.
This assay delivers a highly sensitive read out of cellular fitness and is particularly useful
for studies on the toxicity associated with misfolded proteins. Transfected cells are split
into 96 well plates and grown in DMEM (Corning) for HeLa cells or mimimum DMEM
with 1% fetal bovine serum (FBS, Gibco) and 1 g/L glucose for HEK and N2a cells. This
minimal medium increases sensitivity to the toxic effects of protein misfolding in many
other systems [92], as well as differentiating N2a cells [93]. The cells are incubated at 37
°C for 20~24 hr. The cell viability assay is then performed according to the supplier’s
instructions. Plates were then measured using the Victor3V Plate Reader (Perkin Elmer)
using the Perkin Elmer 2030 Manager Software. Viability assays on N2a cells were
measured using the Cytation 5 Cell Imaging Multi-Mode Reader (Biotek).

2.2.10 Immunofluorescence Microscopy

Following transfection, the cells are split into 8 well chambers (Labtek) and grown in
DMEM at 37 °C for 20~24 hr. Each well is seeded with ca. 30,000 cells. The media is
then aspirated off and the cells washed 2 times with PBS. 4% paraformaldehyde is then
added to the wells to fix the cells for 15 min. This is followed by 3 washes in PBS. The
cells are permeablized with 0.5% TritonX-100 in PBS for 15 mins and washed with PBS
3 times, followed by 5 washes in 0.5% BSA (Sigma) in PBS (PBB). We block non-
specific binding sites with 20% normal goat serum (Gibco) in PBB for 45 min. The cells
are then washed with PBB 5 times and incubated for an hour in mouse a-GFP (Sigma) as
well as rabbit a-Hsp90 (Proteintech) primary antibody for Hsp90 co-localization studies.
We wash the cells with PBB 5 times and incubate for an hour in goat a-mouse alexa-488
and/or a-rabbit texas red secondary antibody (Thermo Fisher). Following the secondary
antibody incubation, we wash in PBB 5 times. All the liquid is then aspirated off and
mounted with ProLong® Gold Antifade Mountant with DAPI. The cells are imaged on a
Zeiss Axiovert Al wide-field fluorescent micrope with a AxioCam ICm 1 R1 CCD
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camera (Carl Zeiss). N2a cells were imaged with the Cytation 5 Cell Imaging Multi-
Mode Reader (Biotek).

2.2.11  Statistical Analysis

Statistical analysis of the growth curve assays, viability assays, and the western blots
were done using the GraphPad Prism 6 software. Statistical significance was obtained by
performing unpaired t-tests to compare the means and standard deviations between the
control data set and the experiment data set (each at a minimum of three biological
replicas). Significance levels are indicated using asterisks, where **** is p<0.0001, ***

1s p<0.001, ** is p<0.01, * is p<0.05.
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Chapter 3

3 Results
3.1 The TDP-43 yeast model

We use spotting assays and growth curve assays to determine cellular toxicity in yeast
cells. Reduction of growth rates is a well-established read out for the toxicity associated
with protein misfolding in yeast models [11, 85, 94]. Spotting assays allow us to visualize
cellular toxicity by juxtaposing different constructs diluted 1:5 side by side and assess the
difference in growth, while growth curve assays provide quantitative results for cellular
toxicity by comparing the growth curves of different constructs at different growth stages
(lag, mid-logarithmic, and stationary phase). The combination of spotting assay and
growth curve assay offers a more comprehensive understanding of the growth of different
constructs, allowing us to infer cellular toxicity. All experiments in this study were
performed with a minimum of at least three biologically distinct constructs unless

otherwise specified (i.e. minimum of three biological replicates).

The TDP-43 construct used in this study contains human wild type TDP-43 fused to
yellow fluorescent protein (YFP, schematic is shown in Figure 11A). We refer to TDP-
43VT_YFP as TDP-43 in the rest of this thesis. Spotting assays were performed with
yeast cells expressing TDP-43 show diminished growth, suggesting toxicity of TDP-43 in
yeast (Figure 11B). The same toxicity is replicated in the growth curve assay (Figure
11C). When the TDP-43 expressing yeast cells are viewed under fluorescent microscopy,
we observe TDP-43 expression in both the nucleus and the cytoplasm. Cytoplasmic
aggregates are also present in cells, recapitulating TDP-43 proteinopathy as observed in
motor neurons of ALS patients and many model organisms. Our results thus reproduce
the previously published results introducing the TDP-43 yeast model using our own

expression vectors [11].
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The results shown in this study are obtained by using the BY 4741 (MAT a) yeast strain,
which is commonly used in protein misfolding studies [54] unless otherwise stated.
Molecular chaperone overexpression experiments have additionally been performed in
the yeast W303 (MAT a) strain (another yeast strain commonly used for protein
misdfolding studies), the results of which are shown in the supplement section of this

study.
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Figure 11: TDP-43 yeast model. A Schematic representation of the TDP-43 wild type
construct fused with the yellow fluorescent protein (YFP). B Spotting assay showing
TDP-43 toxicity when induced. C Growth curve assay showing TDP-43 toxicity of
significance level p<0.0001. D Fluorescence microscopy image of TDP-43"'-YFP in BY
(MAT o) showing TDP-43 expression in both the nucleus (white arrowheads) and the

cytoplasm with cytoplasmic inclusions.
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3.2 Sedimentation Assay

Although the localization and aggregation patterns of TDP-43 can be visualized using
fluorescence microscopy, the changes in these patterns could not be fully characterized
and quantified by using microscopic methods alone. TDP-43 aggregates have been
especially difficult to characterize biochemically since TDP-43 has been described as
“sticky” yet rather soluble [79], making it a challenge to quantify or characterize the
changes in aggregation using conventional methods, such as filter retardation assays or
semi-denaturing detergent agarose gel electrophoresis (SDD-AGE). To devise a
reproducible and quantitative biochemical assay to determine TDP-43 aggregation, we
have established here a novel sedimentation assay based on the solubility analysis assays

of Theodoraki et al. (2012) [95] and Shiber et al. (2013)[96].

The sedimentation assay divides cellular protein lysates into two fractions, the pellet,
which represents the insoluble portion of the lysate, and the supernatant, which represents
the soluble portion of the lysate. The two fractions of the lysate were loaded onto a
polyacrylamide (SDS-PAGE) gel along with a sample of the total lysate to ensure equal
expression level. A detailed protocol of this assay is provided under Material and

Methods in this thesis.

We first performed the sedimentation assay on various TDP-43 constructs and compared
them with fluorescence microscopy images. We observe that our TDP-43 construct
expresses mostly insoluble TDP-43 aggregates (Figure 12A). Using yeast strain W303
with various integrated TDP-43 expression levels (1X, 2X, 3X) fused with a green
fluorescence protein (GFP) [11], we observe that 1X TDP-43 is expressed at such low
levels that is difficult to detect by immunoblotting (Figure 12B) and the low protein
levels shown by the sedimentation assay blots correspond to the low intensity of the
fluorescence microscopy of the construct. The 2X and 3X TDP-43 constructs (Figure 12
C and D) show, as expected, higher-level expression levels compared to the 1X TDP-43.
We quantify the sedimentation assay blots of 2X and 3X TDP-43 and compare the
difference in pellet-to-supernatant ratio (Figure 12H). 3X TDP-43 is shown to have a

smaller pellet-to-supernatant ratio, indicating more soluble TDP-43 in the lysate.
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These results of the sedimentation assay correspond to the fluorescent microscopy
images: 3X TDP-43 produces more diffuse signal throughout the cell (cytosol and
nucleus) as shown in Figure 12D. The sedimentation assay was also performed on yeast
cells expressing TDP-43 and empty vector (Figure 12G) and the blots probed with a- and
a-histone antibody as loading controls. The results show that the distribution of PGK-1
and histone does not change whether TDP-43 is expressed or not and therefore PGK-1

and histones can serve as proper loading controls for this assay.

We next tested whether the same protocol can also serve to monitor TDP-43 aggregation
in cultured mammalian cells. To this end, HeLa cells expressing GFP alone and eGFP-
TDP-43 were lysed following the sedimentation assay protocol outlined above with
minimal adjustments for mammalian cell lysis (see Materials and Methods). As expected,
in GFP-expressing HeLa cells (Figure 12E), GFP appears dispersed throughout the cell
and forms no aggregates, which corresponds to the sedimentation assay results where
GFP protein is mostly soluble (Figure 12E and I). In contrast, TDP-43 was localized
predominately in the nucleus of HeLa cells and formed nuclear aggregates (Figure 12F
and I). The results show TDP-43 to be completely insoluble in HeLa cell lysates. Thus,
HeLa cell sedimentation assay results correspond well to the microscopy results

performed on the same cell and constructs.
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Figure 12: Sedimentation assay and fluorescence microscopy of yeast cells
expressing various TDP-43 constructs at different levels. Sedimentation assay and
fluorescence microscopy images of A TDP-43"'-YFP in BY (MAT a) yeast cells, B
integrated 1X TDP-43""-GFP in W303 (MAT a) yeast cells, C integrated 2X TDP-43""-
GFP in W303 (MAT a) yeast cells, D integrated 3X TDP-43V"-GFP in W303 (MAT a)
yeast cells, E eGFP in HeLa cells, and F eGFP-TDP-43 in HeLa cells. G Sedimentation
assay of vector control and TDP-43VT-YFP in BY (MAT a) yeast cells probed with a-
PGK-1 and a-histone antibody. Statistical analysis of the pellet-to-supernatant ratio of the
sedimentation results of H 2X TDP-43""-GFP and 3X TDP-43""-GFP in W303 (MAT
a) yeast cells and I eGFP and eGFP-TDP-43 in HeLa cells.
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Next, we sought to assess whether the sedimentation assay can also serve to follow the
shift of molecular chaperones to a more insoluble subcellular fraction under stress
conditions that elicit protein misfolding and aggregation. Previous microscopic studies
have shown that molecular chaperones can associate closely with such misfolded and
aggregated proteins [19]. We performed the sedimentation assay on wild type yeast cells
and applied protein folding stress chemically with azetidine-2-carboxylic acid (AZC) and
by heat shock. AZC is an analog of proline and is able to reduce the thermal stability or
lead to misfolding when competitively incorporated into proteins in place of proline [97].
The misfolding of these proteins induces protein-folding stress and activates the heat
shock response in the cell. Proteins that have AZC incorporated have also been reported
to misfold and aggregate and show increased binding affinity to Hsp70 [97]. We treat
wild type cells with 2mM AZC for four hours or heat shock at 42 °C for one hour in
order to observe a potential shift from a soluble to a more insoluble fraction of different
molecular chaperones due to association of the chaperones with misfolded and

aggregated proteins using the sedimentation assay.

First, we cultured wild type cells in YPD overnight and treated with AZC or heat shock
and probed the sedimentation analysis blots with an anti-Hsp70 antibody. The Hsp70
family of cytosolic molecular chaperones is responsible for protein folding, the assembly
of newly synthesized protein, and solubilizing protein aggregate and can be up-regulated
under stress conditions to combat protein misfolding and aggregation [98]. The results
are shown in Figure 13A. However, the statistical analysis of these results (Figure 13B)
did not show significance. This may be due to the very high abundance of Hsp70 in the
cell under normal and stress conditions. Therefore the effect of a shift to a more insoluble

subcellular fraction of Hsp70s cannot be clearly observed in the sedimentation assay.

Next, we probed cells with a-Hsp104 antibody instead as it is less abundant than Hsp70s.
Hsp104 is a protein remodeling factor that cooperates with Hsp70s and Hsp40s to
promote the refolding of denatured proteins and acts as a disaggregase to pull apart
protein aggregates [99]. Thus, as demonstrated by microscopic studies, Hsp104, is
closely associated with misfolded and aggregated proteins to mitigate the toxic effects of

protein aggregation and misfolding [100]. The results in Figure 13C show that the
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distribution of pellet-to-supernatant did not show significant change between the stressed
and unstressed samples (Figure 13D). We speculated that stress treatment of cells in the
extremely rich medium YPD did not elicit severe cellular stress due to high cell division
rates. We therefore cultured wild type cells in SD media (a medium with less nutrients
than YPD) overnight instead and stressed them under the same stress conditions. The
results in Figure 13E show that the distribution of pellet-to-supernatant also did not show

a significant change between the stressed and no stress samples (Figure 13F).

We also explored whether the sedimentation assay can detect localization changes in of
molecular chaperones in cultured mammalian cells. To this end, HeLa cells were treated
with 10 mM AZC and 20 puM carbobenzoxy-L-leucyl-L-leucyl-L-leucinal (MG132) for
one hour and the sedimentation assay blots were probed with an anti-Hsp70 antibody.
MG132 is a protease inhibitor that inhibits the 26S proteasome complex in cells, resulting
in protein misfolding and aggregation [101]. The results of AZC and MG132 treatment of
HeLa cells are shown in Figure 13G. We observe no statistically significant change in

Hsp70 solubility (Figure 13F).
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Figure 13: Sedimentation assays of stress treated wild type yeast and HeLa cells.
Sedimentation assay blots and statistical analyses of wild type yeast cells grown in YPD
and probed with a-Hsp70 antibody (A and B) and a-Hsp104 antibody (C and D). The
sedimentation assay blots and statistical analysis of wild type yeast cells grown in SD and
probed with a-Hsp104 antibody (E and F). The sedimentation assay blots and statistical
analysis of wild type HeLa cells probed with a-Hsp70 antibody (G and H).
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3.3 Hsp90 modulates TDP-43 stability, aggregation, and
toxicity in yeast

3.3.1 Hsc82 and TDP-43

We expressed TDP-43 and an empty vector as control in yeast cells that lacked the Hsc82
encoding gene (hsc824), which is the constitutively expressed allele of Hsp90 in yeast.
Growth assays and fluorescence microscopy were performed on Asc824 cells to observe
TDP-43 toxicity and aggregation. Spotting assays show a slight increase in toxicity when
compared to wild type yeast cells expressing TDP-43 (Figure 14A). However, this slight
increase in toxicity is not reproduced in the growth curve assay (Figure 14B) as these
results are not statistically significant. Fluorescence microscopy results show no
significant difference in aggregation pattern of TDP-43 in Asc824 cells when compared
to wild type cells (Figure 14C). Western blots of the two TDP-43 expressing constructs
show no difference in TDP-43 expression level (Figure 14G).

Overexpression of Hsc82 using a high copy plasmid in TDP-43 expressing wild type
yeast cells show significant increase in toxicity in both the spotting assay (Figure 14D)
and the growth curve assay (Figure 14E). Fluorescence microscopy results show no
change in aggregation patterns (Figure 14F), which is corroborated by sedimentation
assays (Figure 14H). Notably, western blots show a significant increase in TDP-43

expression level upon Hsc82 overexpression (Figure 14G and I).
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Figure 14: Hsc82 and TDP-43 interaction in yeast. A Spotting assays of wild type and
hsc824 cells expressing TDP-43. B Growth curve assays of wild type and hsc824 cells
expressing TDP-43. C Fluorescence microscopy of TDP-43 expressing hsc824 cells. D
Spotting assays of TDP-43-expressing wild type cells overexpressing Hsc82. E Growth
curve assays of TDP-43-expressing wild type cells overexpressing Hsc82. The
significance level is p<0.0001. F Fluorescence microscopy of TDP-43-expressing wild
type cells overexpressing Hsc82. G Western blots showing TDP-43 expression level of
wild type and Asc824 cells and wild type cells overexpressing Hsc82. H Sedimentation
assay of TDP-43-expressing wild type cells overexpressing Hsc82. I Statistical analysis
of the western blots showing TDP-43 expression level of cells overexpressing Hsc82 with

a significance level of p<0.0001.
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3.3.2 Hsp82 and TDP-43

In yeast cells that lacked the Hsp82 encoding gene (hsp824), spotting assay results show
a slight rescue in TDP-43 toxicity (Figure 15A). This rescue increase in toxicity is not
observed in the growth curve assay as hsp824 cells expressing TDP-43 grow similarly to
wild type cells (Figure 15B). Fluorescence microscopy results show no significant
difference in aggregation pattern of TDP-43 in hsp824 cells when compared to wild type
cells (Figure 15C). Western blots of the two TDP-43 expressing constructs show no
difference in TDP-43 expression level (Figure 15G).

Overexpression of Hsp82 using a high copy plasmid in TDP-43 expressing wild type
yeast cells show significant increase in toxicity in both the spotting assay (Figure 15D)
and the growth curve assay (Figure 15E). Fluorescence microscopy results show no
change in aggregation pattern (Figure 15F), which is corroborated by the sedimentation
assay (Figure 15H). Notably, western blot results also show a significant increase in
TDP-43 expression level when Hsp82 is overexpressed, similar to the increased TDP-43

levels in Hsc82 overexpressing cells (Figure 15G and I).
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Figure 15: Hsp82 and TDP-43 interaction in yeast. A Spotting assays of wild type and
hsp824 cells expressing TDP-43. B Growth curve assays of wild type and Asp824 cells
expressing TDP-43. C Fluorescence microscopy of TDP-43 expressing hsp824 cells. D
Spotting assays of TDP-43-expressing wild type cells overexpressing Hsp82. E Growth
curve assays of TDP-43-expressing wild type cells overexpressing Hsc82. The
significance level is p<0.0001. F Fluorescence microscopy of TDP-43-expressing wild
type cells overexpressing Hsp82. G Western blots showing TDP-43 expression level of
wild type and Asp824 cells and wild type cells overexpressing Hsp82. H Sedimentation
assay of TDP-43-expressing wild type cells overexpressing Hsp82. I Statistical analysis
of the western blots showing TDP-43 expression level of cells overexpressing Hsc82 with

a significance level of p=0.0036.
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3.4 Hsp90 co-chaperones and TDP-43

We next tested the effect of the Hsp90 co-chaperones Ahal, Cdc37 and Stil on TDP-43

toxicity, localization, aggregation, and protein levels in yeast.

34.1 Aha1

In ahalA cells, both spotting assay and growth curve results show no change in TDP-43
toxicity, as wild type and ahalA cells grow at highly similar rates (Figure 16A and B).
Fluorescence microscopy results show no significant difference in aggregation pattern of
TDP-43 in ahalA cells when compared to wild type cells (Figure 16F). Western blots of
the two TDP-43 expressing constructs show no difference in TDP-43 expression level

(Figure 16G).

Overexpression of Ahal using a high copy plasmid in TDP-43 expressing wild type yeast
cells show significant increase in TDP-43 toxicity in both the spotting assay (Figure 16D)
and the growth curve assay (Figure 16E). Fluorescence microscopy and sedimentation
assay results show no change in aggregation pattern (Figure 16F and H). Western blot
results show no significant change in expression level of TDP-43 due to Ahal

overexpression (Figure 16G).
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Figure 16: Ahal and TDP-43 interaction in yeast. A Spotting assays of wild type and
ahalA cells expressing TDP-43. B Growth curve assays of wild type and ahalA cells
expressing TDP-43. C Fluorescence microscopy of TDP-43 expressing ahalA cells. D
Spotting assays of TDP-43-expressing wild type cells overexpressing Ahal. E Growth
curve assays of TDP-43-expressing wild type cells overexpressing Ahal. The
significance level is p<0.0001. F Fluorescence microscopy of TDP-43-expressing wild
type cells overexpressing Ahal. G Western blots showing TDP-43 expression level of
wild type and ahalA cells and wild type cells overexpressing Ahal. H Sedimentation
assay of TDP-43-expressing wild type cells overexpressing Ahal.
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3.4.2 Cdc37 and TDP-43

Cdc37 is essential for the survival of yeast and cannot be deleted from its genome,
therefore yeast cells lacking Cdc37 expressing TDP-43 could not be obtained.
Overexpression of Cdc37 using a high copy plasmid in TDP-43 expressing wild type
yeast cells show significant increase in toxicity in both spotting assays (Figure 17A) and
growth curve assays (Figure 17B). Fluorescence microscopy and sedimentation assay
results show no change in aggregation pattern (Figure 17C and E). Western blot results
show a decrease in expression level of TDP-43 in some biological replicates (Figure

17D), while others showed no change in TDP-43 expression level (data not shown).
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Figure 17: Cdc37 and TDP-43 interaction in yeast. A Spotting assay of TDP-43-
expressing wild type cells overexpressing Cdc37. B Growth curve assay of TDP-43-
expressing wild type cells overexpressing high copy Cdc37 with significance level
p<0.0001. C Fluorescence microscopy TDP-43-expressing wild type cells overexpressing
Cdc37. D Western blots showing TDP-43 expression level of wild type cells
overexpressing high copy Cdc37. E Sedimentation assay of TDP-43-expressing wild type
cells overexpressing high copy Cdc37.
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3.4.3 Sti1 and TDP-43

In stilA cells, spotting assay show no change in toxicity compared to the wild type cells
(Figure 18A), however, growth curve results show a prolonged lag phase of stilA cells
expressing TDP-43 (Figure 18B). The growth of sti/A constructs were tested at 37 °C
and showed a growth phenotype consistent with previously published results [42](Figure
18D), thus providing evidence that our sti/4 show a proper characteristic phenotype. The
effect of chronological aging on TDP-43 expressing sti/4 was also tested. Here,
chronological aging serves a physiologically relevant stress condition that can sensitize
yeast cells to the toxicity associated with protein misfolding. Our results show that when
TDP-43 expression has been induced for four days, the viability of cells expressing TDP-
43 was decreased since a reduced number of cells grow back into colonies on control
plates (Figure 18F). Interestingly, stil4 cells harboring the empty vector control seem to
be growing better than the wild type cells, indicating that the cells have up-regulated
other cellular mechanisms to combat the lack of Stil in aging. On day six of the aging
assay (Figure 18G) we observe that TDP-43 constructs lose its toxicity, indicating that
the yeast cells have stopped expressing TDP-43. However TDP-43 expressing sti/A cells
continue to show great toxicity. Fluorescence microscopy results of the sti/4 construct
show less cytoplasmic TDP-43 aggregates compared to wild type cells (Figure 18C).
Western blots of the two TDP-43 expressing constructs show no difference in TDP-43

expression level (Figure 18E).
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Figure 18: Stil and TDP-43 interaction in yeast — sti/A. A Spotting assay of wild type
and stilA cells expressing TDP-43. B Growth curve assay of wild type and sti/4 cells
expressing TDP-43. C Fluorescence microscopy of TDP-43 expressing sti/A cells. D
Spotting assay of wild type and sti/A cells expressing an empty vector at 37 °C. E
Western blots showing TDP-43 expression level of wild type and sti/A cells. F Day 4 of
aging spotting assay of wild type and sti/A cells expressing TDP-43. G Day 6 of aging
spotting assay of wild type and stilA4 cells expressing TDP-43. H Fluorescence
microscopy of stilA cells expressing TDP-43 after 4 days of induction.
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Overexpression of Stil using a high copy plasmid in TDP-43 expressing wild type yeast
cells show only a slight increase in toxicity in spotting assays compared to the other
molecular chaperones (Figure 19A). On the other hand, a significant increase in toxicity
is shown in growth curve assays (Figure 19B). Fluorescence microscopy results show

less TDP-43 aggregates in the cytoplasm when Stil is expressed (Figure 19C).

We conduct the same experiments by using the low copy Stil plasmid instead to further
discern the changes in TDP-43 toxicity and aggregation and its interaction with Stil.
Spotting assay results with the low copy overexpression of Stil show no change in
toxicity (Figure 19D), but the growth curve results show a significant rescue in toxicity
(Figure 19E). The fluorescence microscopy results show more soluble TDP-43 in the
cytoplasm (Figure 19F), which is corroborated by sedimentation assays, showing a shift
to the supernatant in the pellet-to-supernatant ratios of TDP-43 (Figure 19H and I).
Western blot results show no significant change in TDP-43 expression levels (Figure

19G).
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Figure 19: Stil and TDP-43 interaction in yeast — Stil overexpression. A Spotting
assay of TDP-43-expressing wild type cells high copy overexpressing Stil. B Growth
curve assay of TDP-43-expressing wild type cells high copy overexpressing Stil with
significance level p<0.0001. C Fluorescence microscopy TDP-43-expressing wild type
cells high copy overexpressing Stil. D Spotting assay of TDP-43-expressing wild type
cells overexpressing low copy Stil. E Growth curve assay of TDP-43-expressing wild
type cells low copy overexpressing Stil with significance level p=0.05. F Fluorescence
microscopy TDP-43-expressing wild type cells low copy overexpressing Stil. G Western
blots showing TDP-43 expression level of wild type cells low copy overexpressing Stil.
H Sedimentation assay of TDP-43-expressing wild type cells overexpressing low copy
Stil. I Statistical analysis of the sedimentation assay showing the change in TDP-43
pellet-to-supernatant ratio of cells overexpressing low copy Stil with significance level

of p=0.01.
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3.5 Mammalian Cells

We sought to validate the results shown for the overexpression of Stil in the TDP-43
yeast model in mammalian cells using HeLLa, HEK, and N2a cells. The results are shown

in the following sections.

3.5.1 HelLa Cells

We co-transfect TDP-43 and Stil into HeLa cells and perform a luciferase viability assay
to assess the toxicity associated with TDP-43 and Stil expression on HeLa cells (Figure
20A). All constructs were transfected with an efficiency of more than 70%. TDP-43
shows no statistically different change in viability in HeLa cells. We also observe cell co-
transfected with TDP-43, Stil, and TDP-43 and Stil under the microscope using
immunofluorescence (20C). TDP-43 is mostly localized in the nucleus and forms nuclear
aggregates in HeLa cells, while Stil is diffusely localized in the cytoplasm. The
sedimentation assays show no change in localization and aggregation of TDP43 when

Stil is overexpressed (Figure 20B).
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transfection.
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3.5.2 HEK Cells

Due to the lack of TDP-43 aggregation and toxicity in HeLa cells, we utilize HEK wild
type and Stil knock out (STI1KO) cells to study the interaction between TDP-43 and
Stil. The luciferase viability assay did not capture a change in toxicity between the
different TDP-43 and Stil constructs as the transfection efficiency of HEK cells were low
(only 30-40 %) (Figure 21A). Microscopy results in HEK wild type cells show
cytoplasmic TDP-43 inclusions when TDP-43 is transfected with an empty pcDNA3.1
vector (Figure 21B), however TDP-43 localizes to the nucleus when cells express both
the transfected Stil and TDP-43. HEK STI1KO cells do not show the same cytoplasmic
TDP-43 inclusions as the wild type cells (Figure 21C).
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Figure 21: TDP-43 interaction with Stil in HEK WT and STI1IKO Cells. A
Luciferase viability assay in HEK WT and STIIKO cells. B Immunofluorescence
microscopy in HEK WT, and C immunofluorescence microscopy in HEK STI1KO of
TDP-43 and Stil co-transfection.



71

353 N2a Cells

We utilize N2a cells to study the interaction between TDP-43 and Stil, due to the lack of
overall TDP-43 toxicity and mislocalization exhibited by the HEK and HeLa cells. TDP-
43 exhibits significant toxicity in N2a cells, as shown in the luciferase viability assay
(Figure 22A). We are able to see a significant rescue in toxicity when TDP-43 is co-
expressed at a 2:1 (amount of DNA TDP-43-to-Stil used in transfection) ratio with Stil
in N2a cells. When TDP-43 is co-expressed at different ratios with Stil (1:1 and 1:2),

TDP-43 toxicity was not rescued.

Microscopy results in N2a cells show cytoplasmic TDP-43 localization when TDP-43 is
transfected with an empty pcDNA3.1 vector (Figure 22B). We see a shift in TDP-43
localization when Stil is co-expressed at different levels. At a higher Stil co-expression
level, TDP-43 is mostly localized in the nucleus, whereas at a lower Stil co-expression

level, TDP-43 appears diffuse and is localized throughout the cell (Figure 22B).

These results demonstrate that N2a cells recapitulate major aspects of TDP-43

proteinopathy and toxicity. We thus conclude that N2a cells are optimal for our studies.
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Figure 22: TDP-43 interaction with Stil in N2a Cells. A Luciferase viability assay in
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Chapter 4
4  Discussion
4.1 Major Findings
4.1.1 Deletion of molecular chaperones

The effects of the deletion of Hsp90 and its co-chaperones on TDP-43 toxicity and

aggregation in yeast are summarized in Table 4.

Table 4: Summarized results of the deletion of molecular chaperones.

Chaperones  Toxicity Aggregation TDP-43 Protein Level
Hsc82 No Change No Change No Change

Hsp82 No Change No Change No Change

Ahal No Change No Change No Change

Cdc37 N/A N/A N/A

Stil No Change Reduced nuclear No Change

localization and
increased cytosolic
aggregation

Although the deletion of these molecular chaperones do not show changes in toxicity,
aggregation changes are seen in TDP-43 expressing stilA4 cells. These cells have reduced
nuclear TDP-43 localization and increased cytosolic aggregation compared to wild type
cells expressing TDP-43. This suggests that the absence of Stil induces TDP-43 to exit
the nucleus and form aggregates in the cytoplasm. This TDP-43 mislocalization could be
the result of increased levels of aberrant TDP-43 species in the cell, inducing normal
TDP-43 to misfold, and localize to the cytoplasm. It is plausible that upon exiting the
nucleus, TDP-43 misfolds, forms aggregates, and induces the mislocalization and
aggregation of further TDP-43 molecules. This notion is supported by previously
published research [102], where TDP-43 found in ALS brains show prion-like properties,

1.e. it seeds aggregation and propagates misfolding and aggregation intracellularly. TDP-
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43 also shuttles forth and back between the cytoplasm and the nucleus as part of its
normal function [67], providing an opportunity for contact with mislocalized and
aggregated TDP-43 in the cytoplasm, and thus creating a feed forward cycle resulting in a
rapid increase in toxic TDP-43 protein species that eventually leads to neuronal

dysfunction and death.

The spotting assays performed with aged yeast cells show that sti/4 cells expressing
TDP-43 display increased toxicity compared to wild type and young control cells (Figure
18F and G). When observed under the microscope, these TDP-43 expressing sti/A cells
(Figure 18H) show increased accumulation of soluble TDP-43 in the cytoplasm. This
suggests that in order to combat toxicity associated with TDP-43 expression combined
with the lack of Stil and the additional stress of aging, cells may have up-regulated other
cellular protein quality control mechanisms to combat TDP-43 toxicity by breaking apart
TDP-43 aggregates. However, breaking apart TDP-43 aggregates may instead create
increased levels of highly toxic oligomeric TDP-43 protein species, thus exacerbating
toxicity. While we need further experiments to support this interpretation, it is in line
with recent research indicating that larger protein aggregates may be protective and that it

is the soluble oligomeric species of a disease protein that is toxic [103].

4.1.2 Overexpression of Molecular Chaperones

The effect of the overexpression of molecular chaperones on TDP-43 toxicity and

aggregation in yeast is summarized in Table 5 below.
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Table 5: Summarized results of the overexpression of molecular chaperones.

Chaperones  Toxicity Aggregation TDP-43 Protein Level

Hsc82 Increase in toxicity**** No Change Increased TDP-43 protein
level***

(High copy)

Hsp82 Increase in toxicity**** No Change Increased TDP-43 protein
level**

(High copy)

Ahal Increase in toxicity**** No Change No Change

(High copy)

Cdc37 Increase in toxicity**** No Change No Change

(High copy)

Stil Increase in toxicity****  Diffuse and no cytosolic No Change

aggregates

(High copy)

Stil Rescue of toxicity * Diffuse and soluble No Change
aggregates,
(Low copy) sedimentation shows

significant shift towards
soluble TDP-43

Asterisks indicate significance level: **** p<(0.0001, *** p<0.001, ** p<0.01, * p<0.05.

In our experiments using overexpression of molecular chaperones, we observe a general
increase in toxicity, even in the absence of TDP-43 expression. We conclude that “over-
chaperoning” may be harmful to cells as the chaperones may possibly generate a toxic
“gain-of-function” and interfere with existing protein quality control mechanisms. Also,
the overexpression of Ahal, Cdc37, and Stil, may lead to extensive inhibition of Hsp90,
causing a toxic “loss-of-function” of Hsp90. However, it is also possible that this increase

in toxicity is associated with an off-pathway mechanism.

In TDP-43 expressing cells, the overexpression of molecular chaperones may increase
toxicity by creating or stabilizing highly toxic soluble oligomeric TDP-43 conformers.
We can also infer from these results that the stoichiometric relationship between the

amount of co-chaperones (Ahal, Cdc37, and Stil), chaperones (Hsp90) and potential
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substrates (TDP-43) present in the cell is important for optimal cellular protein quality

control.

Notably, low copy overexpression of Stil shows a significant rescue of TDP-43 toxicity
(Figure 19D) and shows a more diffuse TDP-43 localization profile that includes more
soluble cytoplasmic protein (Figure 19F). Sedimentation assay results support the
microscopy images and show a shift towards more soluble TDP-43 protein (Figure 19H
and I). The changes in TDP-43 aggregation are unique to moderate overexpression of
Stil and does not occur with overexpressed Hsc82, Hsp82, Ahal, and Cdc37, with Hsc82
and Hsp82 overexpression even increasing overall TDP-43 protein levels (Figure 141 and
151) thus indicating a highly specific role in regulating TDP-43 aggregation, localization,

and toxicity.

4.1.3 Mammalian cell work

We first utilized HeLa cells to study the changes in TDP-43 toxicity and aggregation in
the presence of overexpressed Stil. Notably TDP-43 toxicity in HelLa cells is not
significant and thus cannot serve as a read out for TDP-43-Stil interactions. Microscopy
results indicate nuclear localization of TDP-43 with some nuclear aggregates, which is
distinct from TDP-43 expression in yeast cells (Figure 20B) and many other model
organisms and cell systems (reviewed in [104]). We conclude that due to the persistent
nuclear localization of TDP-43, HeLa cells may not be an ideal model to study TDP-43
proteinopathy as the mislocalization of TDP-43 from the nucleus into the cytoplasm is so
central. It is plausible that the rapidly dividing HeLa cells dilute TDP-43 to such an
extent that it remains in the nucleus and does not cause any measurable toxicity. Also,
Stil is mostly localized to the cytoplasm in HeLa cells and hence cannot interact

efficiently with nuclear TDP-43 aggregates (Figure 20C).

We next chose HEK cells to test the effects of co-expression of TDP-43 and Stil on
TDP-43 aggregation and toxicity. Previous reports indicate some neuronal-like behavior
in HEK cells [105] and they are consequently used in many studies on neurodegenerative
diseases; however, HEK cells should by no means be regarded as proper neurons. We

work with two HEK293 cell lines: wild type HEK cells and Stil knock out (STI1KO)
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cells. The STI1KO HEK cells were engineered in the laboratory of our collaborator, Dr.
Prado, at the Robarts Institute at Western University through CRISPR/Cas9 technology

and generously shared with us for our TDP-43 experiments.

Viability assays of the two HEK cell lines do not show significant difference in the
viability, 1.e. TDP-43 toxicity (Figure 21A), which may be due to the low transfection
efficiency in our HEK transfection protocol. Here, HEK cells adhere extremely poorly
and therefore the transfection has been difficult and very inefficient. We are in the
process of improving this experimental protocol. We therefore confine our interpretation
of HEK cells on our immunofluorescence studies to shed light on the interaction between
TDP-43 and Stil. In wild type HEK cells (Figure 21B), TDP-43 localizes in both the
nucleus and the cytoplasm and forms cytoplasmic inclusions, which is in good agreement
with typical TDP-43 proteinopathy. On the other hand, STI1KO HEK cells show mostly
nuclear TDP-43 localization (Figure 21C). Here, cells may have up regulated other
protein quality control mechanisms to compensate for the lack of Stil in the cell, thus
allowing TDP-43 to remain in the nucleus. We are currently characterizing the STI1KO
HEK cell line to assess their expression of molecular chaperones and their cellular stress

response programs.

Finally, we move into N2a cells to validate our key findings in a mammalian system. N2a
cells are mouse neuroblastoma cells that are neuronal-like and can be further
differentiated into cells that share similar properties to neurons [93]. These characteristics
of N2a cells provide a good basis for conducting studies into neurodegenerative diseases.
TDP-43 overexpression in N2a cells exhibits cytosolic mislocalization of TDP-43, a
hallmark of TDP-43 proteinopathy, in addition to cellular toxicity, as shown in Fig 22.
We are able to a rescue in TDP-43 toxicity when a moderate level of Stil is co-expressed
with TDP-43 (Figure 22B), consistent with our findings in yeast. Our
immunofluorescence results in N2a cells are also consistent with our yeast findings,
where low-level co-expression of Stil results in a more diffuse TDP-43 localization
profile that includes more soluble cytoplasmic protein, and higher levels of Stil result in
a nuclear localization of TDP-43. On the whole, we find N2a cells a good model for

TDP-43 proteinopathy and we are able to validate our key findings in N2a cells.
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4.2 A new sedimentation assay to quantitatively determine
changes in protein aggregation

TDP-43 aggregation and solubility are documented properly by our newly developed
sedimentation assay. Yet the characterization of endogenous molecular chaperones that
associated with misfolded and aggregated protein under cellular stress conditions using
the same sedimentation assay did not produce conclusive results. As shown in Figure 13,
endogenous molecular chaperones (e.g. Hsp70 and Hsp90) are rather abundant in all
eukaryotic cells and therefore relative changes in solubility under stress conditions are

difficult to document.

Overall the sedimentation assay documents changes in aggregation patterns of
aggregating or misfolding proteins, such as TDP-43 (Figure 12) and alpha-synuclein
(data not shown) in both yeast cells and mammalian cells. Notably, the quantitative
assessment of the aggregation of these two neurodegenerative disease proteins has been
challenging using standard biochemical assays. Also, our sedimentation protocol is very
close to standard protein lysis and SDS-PAGE protocols, and is accordingly much easier
to implement than traditional means of detection, e.g. by subcellular fractionation using

sucrose cushions or comparable methods.

4.3 Hsp90 stabilization of aberrant TDP-43 protein species
leads to cellular toxicity

Previous studies on tau aggregation in AD have found that Hsp90 stabilizes the aberrant
form of tau and contributes to the accumulation of these toxic protein species in the cell
[9]. Hsp90 inhibition has accordingly been proposed as a potential therapeutic target of
tauopathies and may even prove to be beneficial for other neurodegenerative diseases

associated with protein misfolding [29].

Our findings are in line with this point of view. We observe an increase in TDP-43
protein levels (Figure 14 and 15 H, I) and an increase in toxicity of TDP-43 when Hsp90
is overexpressed (Fig 14 and 15 D and E). The higher TDP-43 protein level in these
constructs may be due to the stabilization of TDP-43 by Hsp90 due to a direct interaction
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between TDP-43 and Hsp90 leading to cellular toxicity through the accumulation of toxic
TDP-43 species in the cell.

4.4 Moderate expression of Sti1 reduces TDP-43 toxicity
through changes in its localization and aggregation

Our results indicate that reduced TDP-43 toxicity through moderate overexpression of
Stil is directly linked to the change in TDP-43 localization and aggregation. This is may
be due to Stil’s role as an Hsp90 inhibitor. As discussed in section 4.3, Hsp90 may
stabilize aberrant forms of TDP-43 and lead to an accumulation of toxic TDP-43 species
in the cell. Through the inhibition of Hsp90 by Stil, other molecular chaperones such as
the Hsp70 chaperoning complex are allowed to take its place and direct TDP-43
aggregates to be degraded through UPS or dissolved by dissaggregases such as Hsp104 in
yeast [100] or Hsp70 and Hsp110 in mammalian cells [106]. Also, strong overexpression
of Stil shows reduced levels of cytoplasmic TDP-43. High expression levels of Stil may
strongly inhibit Hsp90 activity, leading to a toxic “loss-of-function” as well as a toxic
“gain-of-function” due to the abundance of Stil as discussed above in section 4.1.2. On
the other hand, the lack of Stil can also result in toxicity in the cell. The role of Stil in
keeping TDP-43 localized to the nucleus and decreasing the amount of cytoplasmic TDP-
43 is confirmed in our results using N2a cells. Cells expressing TDP-43 and high-levels
of Stil show almost exclusive nuclear localization of TDP-43, whereas the majority of
cells that express TDP-43 and only endogenous level of Stil show mostly cytoplasmic

localization of Stil.

Our results also indicate that TDP-43 nuclear localization is impaired in stilA cells,
leading to more cytoplasmic TDP-43 and increased cellular toxicity, which is exacerbated
in aged stilA cells. Here, TDP-43 accumulates in the cytoplasm over time, increasing its
cellular toxicity. Aberrant TDP-43 species can also provide a template for TDP-43 to
misfold and form larger aggregates when associated with cytoplasmic TDP-43, causing
more TDP-43 to mislocalize and accumulate in the cytoplasm as discussed as a possible
prion-like mechanism in section 4.1.1. Consequently, only moderate Stil overexpression

proves to be beneficial in cells that express TDP-43.
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The proposed mechanism of TDP-43/Stil interactions is illustrated in Figure 22 below.
While further experiments are required to decipher the precise cellular and molecular
underpinnings, all these different proposed mechanisms support our hypothesis, that Stil

specifically rescues TDP-43 toxicity and modifies its aggregation patterns.



Hsp90

Sti1

TDP-43

Hsp70
complex

Hsp104/
Hsp110

en O0=X3

Under normal conditions, TDP-43 is localized in the nucleus
and does not interact with cytoplasmic Hsp90 or Sti1.

Limited Sti1 inhibition of Hsp90

Hsp90 binds and
stabilizes TDP-43
resulting in the
accumulation of
TDP-43 and increased
cellular toxicity

Normal TDP-43

forms aggregates

with aberrant TDP-43
and cannot be shuttled back
into the nucelus

TDP-43 proteinopathy, TDP-43 is mislocalized to the cytopl. and forms aggregates.

Moderate Sti1 inhibition of Hsp90

Aberrant TDP-43 species
tagged for degredation
through UPS by
other chaperones
i.e. Hsp70 complex

Less aberrant
TDP-43 species

in cytoplasm,
allowing normal
TDP-43 to be shuttled
back into the nucleus

TDP-43 aggregates broken apart
by chaperones i.e. Hsp104 or Hsp110

The moderate up regulation of Sti1 can inhibit Hsp90 activity and the binding to TDP-43.
Through the inhibition of Hsp90, other molecular chaperones can interact with TDP-43, reducing toxicity

81
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Figure 23: Proposed mechanisms for the interaction between Stil and TDP-43. A
Under normal conditions, TDP-43 and Stil localize to different cellular compartments
and do not interact. B In TDP-43 proteinopathy, TDP-43 is mislocalized to the
cytoplasm, allowing Stil and TDP-43 to interact. C When Stil is moderately
overexpressed in TDP-43 proteinopathy, cellular toxicity is reduced by Stil’s role as
Hsp90 inhibitor, allowing other molecular chaperones to interact and more effectively

degrade or break apart TDP-43 aggregation.
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4.5 Conclusion

Our study provides evidence that Stil can rescue TDP-43 toxicity by modifying its
aggregation pattern in a dose-dependent manner. We propose that Hsp90 stabilizes toxic
TDP-43 species in TDP-43 proteinopathy, leading to an accumulation of TDP-43 in
the cytoplasm and cellular toxicity. Moderate overexpression of Stil can correct this
process by inhibiting Hsp90, allowing other molecular chaperones to break apart

aggregates or direct toxic TDP-43 species to be degraded by UPS.

Importantly, it is also possible that Stil interacts directly with TDP-43. Recent studies
have shown Stil to be involved in many cellular processes outside of the Hsp90 and
Hsp70 chaperoning complex [43]; therefore, it is possible that Stil may interact with
TDP-43 independent of Hsp90, but further studies need to be done to confirm this theory.

4.6 Limitations

Yeast models are powerful model systems to study basic mechanisms of cellular
protein quality control and its interaction with misfolded proteins associated with
neurodegenerative disease. The conservation of key cellular pathways between yeast and
humans, such as the ones regulating cellular protein quality control, makes experiments
in yeast directly relevant to human and can be used to decipher aspects of the

pathogeneses of neurodegenerative diseases. Such is the case in our study.

The yeast model system has its limitations. Unlike humans, yeast is a unicellular
organism that does not have differentiated cell types, such as the motor neurons affected
in ALS, to faithfully recapitulate interactions between different cell types of high-level

organisms.

We replicate our key findings in yeast in a mammalian model system using HEK, HelLa,
and N2a cells to relate back to human neurodegenerative disease and ALS pathology.
ALS is a neurodegenerative disease that occurs predominantly in motor neurons. HEK

cells share some features with immature neuronal cells, but it is not truly a neuronal cell
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line and may behave differently than neurons in many regards, including sensitivity to
TDP-43 misfolding. Although we are able to utilize differentiated N2a cells to model
TDP-43 and Stil interaction in neuronal-like cells, N2a cells contain endogenous copies
of mouse TDP-43 that may behave differently compared to human TDP-43. In order to
apply our findings to TDP-43 proteinopathy and ALS pathology, studies in primary
neuron cells or even transgenic mouse models need to be conducted in the future.
Primary neuronal cell lines can provide more insight to the loss-of-function aspects
associated with the death of motor neurons in ALS, while mouse models can provide a

systematic insight into cell-type and tissue-specific aspects of ALS pathogenesis.

Though the model systems used in our study have limitations, they help to elucidate the
basic mechanistic framework underlying TDP-43 proteinopathy and have the potential to

initiate the identification of previously unexplored therapeutic targets for ALS.

4.7 Future work

The interaction between Stil and TDP-43 documented by our findings provides novel
insight into how TDP-43 proteinopathy can be corrected by targeting Stil. However,

several questions remain unanswered and need to be addressed to confirm our theory.

We speculate that Stil interacts indirectly with TDP-43 through Hsp90, and it is the
inhibition of Hsp90 through Stil that rescues TDP-43 toxicity. In experiments performed
by our collaborators in Dr. Prado’s Lab at the Robarts Institute, Western University,
TDP-43 was found to co-immunoprecipitate with Stil. This suggests a direct interaction
between Stil and TDP-43. Whether Stil interacts with TDP-43 directly or indirectly
through Hsp90 will have to be tested through experiments involving Hsp90 deletion in

yeast or knock out models in mammalian cells in future experiments.

The StilKO HEK cell line used in this study is a novel cell line that has not been
characterized in the literature. The overexpression results of TDP-43 in these StilKO
cells show that TDP-43 localizes to the nucleus in this model, which is not consistent
with the yeast results obtained through expression of TDP-43 in Stil deletion cells. HEK

cells are cancer-derived cells that are highly genetically mutated and do not fully
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represent physiological conditions in normal cells. In order to interpret our results in this
cell line, further characterization of these cells, including the endogenous expression

level of other molecular chaperones and their response to stress conditions, are required.

Our studies focused on the localization of TDP-43 and Stil transfected in HeLa, HEK,
and N2a cells. The localization and expression of endogenous TDP-43 and Stil is
experimentally challenging because of low endogenous protein levels and were therefore
not yet examined. These experiments should also be performed to fully understand the

interaction between these two proteins at endogenous expression levels.

As mentioned in the limitations (section 4.5), our model systems do not capture the effect
of Stil over-expression on TDP-43 in neurons. The results in our study should be
replicated in neuronal (e.g. primary cells) in order to apply our proposed mechanism to
motor neurons of ALS. In addition to experiments in cell culture, TDP-43 mouse models
should be adopted to understand the systematic effects of targeting Stil to correct TDP-
43 proteinopathy.

Aging is an important factor in ALS, as well as many other neurodegenerative diseases
involving TDP-43 proteinopathy or protein misfolding generally. The effect of aging on
the “loss-of-function” of molecular chaperones, specifically Stil, and how this influences
TDP-43 to mislocalize and aggregate needs to be further studied. Though this study
demonstrated increased TDP-43 toxicity in aged yeast cells lacking Stil, the full effect of
aging and the cellular protein quality control mechanisms in response to aging should be

addressed in greater detail.

The function of Stil outside of its role as Hsp90 co-chaperone is not as well established.
While our results suggest that Stil genetically interacts with TDP-43 through the
inhibition of Hsp90, it is plausible that Stil directly interacts with TDP-43. Further
studies into this subject matter may shed light on the interaction between TDP-43 and
Stil. For instance, the interaction between Stil and TDP-43 can be understood more in
depth through biochemical analysis using the purified proteins. Through the interaction of
the purified proteins of TDP-43 and Stil, the underlying molecular mechanism can be

surmised.
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4.8 Significance

The specific interaction between TDP-43 and Stil described in this study is a novel

finding and encourages further detailed mechanistic and pathological studies.

ALS mainly manifests at a later onset, therefore aging is an important factor in the
disease. This study shows an interaction between Stil and TDP-43 in chaperoning the
mislocalization and aggregation of TDP-43. Further studies may be able to establish
whether Stil loss-of-function due to aging is important in the mislocalization and

accumulation of toxic species of TDP-43, leading to TDP-43 proteinopathy.

TDP-43 proteinopathy is important in the pathogenesis of ALS, as well as other
neurodegenerative diseases, such as FTD, AD, PD, and HD. This study begins to
decipher genetic and molecular mechanisms by which targeting of TDP-43 by Hsp90 in
an attempt to correct its mislocalization and accumulation of TDP-43 leads to TDP-43
proteinopathy. This might eventually help to establish Hsp90 and its co-chaperones Stil
specifically as a selective therapeutic target to remedy TDP-43 proteinopathy in ALS and

other neurodegenerative diseases.
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Appendices

Appendix A: Supplementary Figures
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Figure 24: Hsp90 and co-chaperones and TDP-43 interaction in yeast strain W303. A
Spotting assays and B Fluorescence microscopy of TDP-43-expressing wild type cells

overexpressing Hsc82, Hsp82, Ahal, Cdc37, and Stil.
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Figure 25: Growth curve assays of Hsp90 and co-chaperones and TDP-43
interaction in yeast strain W303. A Hsc82. B Hsp82. C Ahal. D Cdc37. E Stil.
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Figure 26: Statistical analysis of the sedimentation assay of Hsp90 and co-
chaperones. Shown are the changes in TDP-43 pellet-to-supernatant ratio of cells
overexpressing high copy Hsp82, Hsc82, Cdc37, Ahal, and low copy Stil.

*=significance level of p=0.01.
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