
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

2-27-2017 12:00 AM 

The Effects of Sex, Energy, and Environmental Conditions on the The Effects of Sex, Energy, and Environmental Conditions on the 

Movement Ecology of Migratory Bats Movement Ecology of Migratory Bats 

Kristin A. Jonasson, The University of Western Ontario 

Supervisor: Dr. Christopher Guglielmo, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree 

in Biology 

© Kristin A. Jonasson 2017 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Biology Commons, Comparative and Evolutionary Physiology Commons, and the Other 

Ecology and Evolutionary Biology Commons 

Recommended Citation Recommended Citation 
Jonasson, Kristin A., "The Effects of Sex, Energy, and Environmental Conditions on the Movement Ecology 
of Migratory Bats" (2017). Electronic Thesis and Dissertation Repository. 4411. 
https://ir.lib.uwo.ca/etd/4411 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F4411&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=ir.lib.uwo.ca%2Fetd%2F4411&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/71?utm_source=ir.lib.uwo.ca%2Fetd%2F4411&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/21?utm_source=ir.lib.uwo.ca%2Fetd%2F4411&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/21?utm_source=ir.lib.uwo.ca%2Fetd%2F4411&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/4411?utm_source=ir.lib.uwo.ca%2Fetd%2F4411&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


 

 
 

iii 

ABSTRACT 

Lack of knowledge about the behaviour of migratory species during the migratory period 

is a major barrier to conservation efforts. In this thesis, I focus primarily on differences 

between the sexes of the bat Lasionycteris noctivagans, during spring migration. Females 

are pregnant during spring migration and this overlap between migration and 

reproduction may affect the time and energy management of females as compared to 

males.  In Chapter 2, I examine spring migration phenology of bats at a stopover site. 

Females arrived earlier than males, likely to give their pups a long growing season. Fat 

stores appeared to reflect a strategy to provision for upcoming lactation demands. In 

Chapter 3, I explore stopover behaviour and I show that despite the use of torpor to 

minimize roosting energy expenditure, cold weather extends stopover duration. There 

was no sex difference in the length of time spent at stopover. By regressing the time of 

night bats were captured against their fat and lean mass I demonstrate that bats have 

greater fat and lean masses closer to dawn, and therefore are likely using stopover periods 

to refuel. In Chapter 4, I compare sex and seasonal differences in daytime torpor use at 

stopover. I found that in spring bats used torpor for fewer hours than in autumn, even 

after accounting for the effect of ambient temperature. Further, females used torpor for 

fewer hours than males.  I propose that these seasonal differences are due to lower prey 

abundance and predictability in spring; sex differences may be attributable to a higher 

foraging intensity by females compared to males.  Finally, in Chapter 5, I use a radio-

telemetry array in southwestern Ontario, Canada to track the spring and autumn long 

distance migratory movements of L. noctivagans, Lasiurus borealis, and Lasiurus 

cinereus. No migration corridors were identified in either season. Estimated migration 

speeds indicate that multiday stopovers are also used in the autumn. These studies 

combined show that sex affects the spring migration time and energy management of 

bats. Bat migration research is still in its formative stages and my studies provide new 

information on bat migration in North America. 
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CHAPTER 1 

INTRODUCTION 

1.1 WHY MIGRATE? 
The annual movements of wildlife are one of the most conspicuous responses of animals 

to a seasonally variable world. Migration allows animals to respond to seasonality by 

avoiding energetic bottlenecks or taking advantage of peaks in resource abundance. For 

example, in North America many songbirds breed in the boreal forest to exploit the 

abundance of insects available in summer, but overwinter in the tropics to avoid harsh 

weather (Cox 1985). Other migrants move to use different habitat types for different 

stages of their life history. Baleen whales  for example, migrate from polar feeding 

grounds to warmer waters for calving (Rasmussen et al. 2007). Bats fall into both of these 

categories, migrating seasonally to take advantage of food resources and to find suitable 

roost sites (see section 1.3.2).  

 

A complex suite of traits is required to migrate successfully. Migrants must be able to 

correctly orient and navigate, arrive at their destination at appropriate times, and support 

increased exercise through physiological changes (Dingle 1996). Despite this complexity, 

migration has evolved in many taxa, including insects (e.g., aphids, butterflies, 

dragonflies), fish (e.g. eel, salmon, herring), reptiles (e.g. sea turtles), birds, and 

mammals (e.g. whales, caribou, bats) (Johnson 1954; Berthold 1993; Dragesund et al. 

1997; Wassenaar and Hobson 1998; Corkeron and Connor 1999; Morbey 2000; Mahoney 

and Schaefer 2002; Fleming and Eby 2003; van Ginneken 2005; Wikelski et al. 2006; 

Sale and Luschi 2009).  In order for migration to evolve, the benefits of movement must 

exceed the costs of transport and risks associated with occupying a new habitat (Alerstam 

et al. 2003). Thus, it is no surprise that taxa that migrate long distances have a relatively 

low cost of transport.  Flight, while energetically expensive per unit time, has a lower 

cost of transport for a unit of distance than walking or running (Schmidt-Neilsen 1972). 

Bats are the only mammals capable of true flight, and in this way may be pre-adapted for 
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long distance migration. Bat species that migrate tend to have energetically efficient 

wings, which have high aspect ratios, high wing loading, and low wing tip indices (i.e. 

they are pointed) (Norberg and Rayner 1987).  

 

1.2 SEX AND MIGRATION  

The costs and benefits of migration do not always affect males and females equally. 

Differences between sexual selection pressures and morphology (e.g. body size) can shift 

the trade-offs made by migrants. These different selection pressures can lead to variation 

in migratory tendency and behaviour between sexes (Morbey and Ydenberg 2001; 

Chapman et al. 2011). 

 

Partial migration is the phenomenon where only some members of a population migrate. 

Often the decision to migrate is dependent on trade-offs associated with body condition, 

age, or sex, such as differences in thermal tolerance, competitive ability, or fasting 

endurance (Chapman et al. 2011). For example, white-ruffed manakins (Corapipo altera) 

are small tropical birds that migrate between high-elevation breeding areas and low-

elevation non-breeding areas. Male manakins are more likely to migrate downhill than 

females. This difference in migratory tendency is driven by body size; smaller bodied 

males are less tolerant of fasting during prolonged downpours at high altitudes, which 

limit their ability to forage and can result in starvation (Boyle 2008). Sexual selection 

pressures can also drive shifts in migratory tendency. Red-spotted newts 

(Notophthalamus viridescens) can either overwinter in ponds or migrate to terrestrial 

areas. In this species, females are more likely to develop the migrant phenotype. There is 

pressure for males to be at breeding ponds early in the spring to increase mating 

opportunities (i.e. residency)(Grayson and Wilbur 2009).  

 

One frequent difference in migratory behaviour between sexes is a shift in the timing of 

movement. The most common pattern is protandry – the earlier arrival of males as 

compared to females. Protandrous arrival to breeding grounds is observed in many birds 

and salmonids, as early arrival confers a reproductive advantage to males competing for 

mates (Morbey and Ydenberg 2001). Early arrival can enhance male fitness by increasing 
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the number of mating opportunities, or because early arrivers secure the best breeding 

territories. Interestingly, in the sex-role reversed phalaropes (Phalaropus spp. – arctic 

breeding shorebirds) in which females compete for access to mates, the opposite pattern 

is seen – females arrive earlier than males, termed protogyny (Reynolds et al. 1986). 

 

Sex differences in arrival on the breeding grounds are the product of changes in other 

migratory behaviours, such as departure timing, speed of migration, and latitudinal 

segregation on the wintering grounds. Migratory restlessness, or Zugunrhue, describes the 

behaviour of captive birds that are ready to migrate. There are innate sex differences in 

the onset of  Zugunruhe in birds, with males becoming restless earlier in the season than 

females (Maggini and Bairlein 2012). This difference in the onset of Zugunruhe should 

result in earlier departure of males from the wintering grounds, as is seen in Hermit 

thrushes (Catharus guttatus) (Stouffer and Dwyer 2003).  Male birds also may increase 

their speed of migration by refueling at faster rates than females (Seewagen et al. 2013). 

Finally, some birds may winter closer to their breeding grounds to facilitate earlier 

arrival. Latitudinal segregation on wintering grounds, with males wintering farther north 

than females, occurs in many temperate song birds (Komar et al. 2005), and is generally 

referred to as differential migration. Differential migration is when one demographic of a 

population (i.e. age or sex) migrates farther than another. 

 

1.2.1 MIGRATORY SEX DIFFERENCES IN BATS 

In bats migration tends to be female biased; females are both more likely to migrate and 

to move greater distances than males (Fleming and Eby 2003). This is the case for 

Tadarida brasiliensis (Wiederholt et al. 2013),  Nyctalus noctula (Dechmann et al. 2014), 

Nyctalus leisleri (Ibáñez et al. 2009), Lasionycteris noctivagans, and  Lasiurus cinereus 

(Cryan 2003). Exceptions exist; male Perimyotis subflavis make longer latitudinal 

migrations than females (Fraser et al. 2012). Female bats have high energetic costs 

(associated with pregnancy and lactation), than males and females may benefit by 

traveling farther along a resource gradient than males (Fleming and Eby 2003). Further 

sexual segregation occurs because females must also seek roosts with warm, stable 

microclimates that are suitable for rearing their pups, while males seek cooler roosts to 



 

 
 

4 

save energy during torpor – a state of reduced metabolism and body temperature which 

confers substantial energy savings (Altringham and Senior 2005). 

 

Temperate bats have an unusual reproductive timing compared to other mammals. 

Mating occurs in the autumn, but females store sperm in their reproductive tracts until the 

early spring when they ovulate and become pregnant (Crichton 2000). Thus, spring 

migration trade-offs may differ by sex because females are pregnant, while males have 

several months to prepare for autumn mating. This temporal mismatch in the timing of 

reproductive investment is likely to lead to sex differences in the timing of migration. 

Females are under selective pressure to give their pups a long growing season, as pups 

born earlier in the year are more likely to survive (Frick et al. 2010). Males, having mated 

the previous fall, are likely under selective pressure to move later in the spring when 

weather may be more hospitable. Myotis lucifugus females emerge from hibernation 

earlier than males, and thus begin migrating back to maternity colonies earlier (Norquay 

and Willis 2014). In preparation for the costs of reproduction, female M. lucifugus, 

manage their overwinter energy budget more conservatively than males. “Thrifty” 

females begin hibernation with larger energy stores and use them more slowly than males 

(Jonasson and Willis 2011). The same thrifty female strategy may also apply to the way 

that migrating bats manage their energy stores in anticipation of reproduction, but this 

question has not yet been investigated.  

 

1.3 BAT MIGRATION 
1.3.1 A brief history of bat migration research 

The study of migration in bats has substantially lagged behind our understanding of bird 

and other animal migrations (Fleming and Eby 2003; Popa-Lisseanu and Voigt 2009).  

This is in part because the migrations of birds and other animals, such as insects, whales 

and sea turtles are far more prevalent and conspicuous.  

In 1970, a comprehensive review examined the evidence that bats undertook migrations 

(Griffin 1970). This review summarized the occurrence records of bats that were likely 

migrants blown off course – those found on inhospitable coastlines, ships at sea, and on 
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islands where these species do not usually occur. Griffin (1970) also described the use of 

banded bat recoveries to infer migrations. Many of the first tracked movements of bats 

were discovered by intensive mark-recapture programs whereby unique bands were 

placed on the forearms, legs, or ears of bats roosting in hibernacula (hibernation sites) 

and individuals were later located at other hibernacula or maternity colonies (Griffin 

1936; 1945; Davis and Hitchcock 1965). Major banding efforts of several 

Vespertillionids in Europe, M. lucifugus in the United States and T. brasiliensis in the 

southern United States and Mexico revealed the distances and directions of these 

migrations. For example, one N. noctula, a European species, was found to travel 1,125 

km in 6 weeks. At this time the use of radio-transmitters was limited; transmitters 

weighed ~5 g and so could only be attached to very large bats without substantially 

affecting their behaviour (Griffin 1970).   

 

A seminal review by Fleming and Eby (2003) covered in more detail which bat taxa 

migrate, expanding to include species from tropical regions and exploring the selection 

pressures that may have led to a migratory life history (see section 1.3.2). The authors 

explored some physiological consequences of migration, such as the deposition of fat to 

fuel movement, and estimated migration distances based on observed fat stores. Further, 

this review examined the population-genetics and social consequences of migration. As 

populations mix during migration, mating systems are unlikely to favor stable male-

female associations in migratory species. Further, because migration is a relatively risky 

strategy compared to hibernation, it is expected that migrants will have higher levels of 

annual mortality and relatively fast life histories. Indeed many migratory species 

(Pipistrellus. nathussi, N. noctula, Lasiurus spp, and L. noctivagans) have litters of two 

pups a year as opposed to the one that is common in most species of bat. Fleming and 

Eby (2003) concluded with a comparison of the differences between the migratory 

ecology of birds and bats. The major difference they found was in life history timing; in 

bats there is a concurrence of pregnancy and spring migration, while birds mate after 

completing migration. The effect of bats unique reproductive timing on migration has 

received surprisingly little research since the time of this review.  
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More recently there has been increased interest in how bats undertake their migrations 

both physiologically and behaviourally, and exciting new work warranted a special 

edition of the Journal of Mammalogy (Popa-Lisseanu and Voigt 2009). A paper titled 

“What can birds tell us about the migration physiology of bats?” introduced the 

framework for physiological investigation of bats (McGuire and Guglielmo 2009), which 

was followed up by work investigating seasonal changes in migrant physiology. In 

migratory condition, L. cinereus decrease the size of digestive organs and increase the 

size of the heart and lungs (McGuire et al. 2013a). Further, migrating L. cinerus also 

upregulate fatty acid transporters and mitochondrial oxidative enzymes, necessary for 

high levels of fat metabolism during exercise (McGuire et al. 2013b). These changes 

demonstrate that migration poses distinct physiological challenges to bats.  

 

The behaviour of migrating bats has also recently been explored in more depth.  Acoustic 

detectors were used to monitor the airspace 100 m above the water to determine the 

direction bats flew along a river valley in Poland (Furmankiewicz and Kucharska 2009). 

The authors found bats moved predominantly north in the spring and south in the autumn, 

and concluded that these were migration flyways (Furmankiewicz and Kucharska 2009). 

Further evidence of relatively low altitude flight (e.g. < 500 m) during migration was 

found over the Baltic Sea, where bats flew close enough to remain in acoustic contact 

with the water (< 10 m) (Ahlén et al. 2009). Similarly, migrating P. nathusii on the 

shoreline of the Baltic coast of Latvia were observed flying within 16 m of the ground 

(Šuba 2014). The altitude at which most bats migrate remains unknown, as most 

observations of migration flight altitude have been opportunistic.  

A major recent concern has been the high incidence of migratory bat mortality at wind 

energy facilities. Seasonal peaks in mortality at wind energy facilities occur during 

autumn migration (Arnett et al. 2008; Baerwald and Barclay 2009). Cryan and Barclay 

(2009) proposed numerous hypotheses to explain the causes of bat mortality at wind 

turbines, these fell into three categories: random collisions, coincidental collisions and 

collisions that are a consequence of attraction to these structures. Coincidental collisions 

place bats in the same airspace as turbines due to some aspect of their biology, while 

attraction collisions suggest that bats aggregate near turbines to investigate them out of 
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curiosity, to feed, roost, or seek mates (Cryan and Barclay 2009). Bats may not even need 

to collide with turbine blades to die, but may experience barotrauma due to low pressure 

at the vortices of turbine tips (Baerwald et al. 2008). Although there is contrasting 

evidence that most bats’ injuries are more consistent with traumatic injury than 

barotrauma (Rollins et al. 2012). 

 

1.3.2 Who Migrates? 

Migration is relatively uncommon among bats. Less than 3% of bat species are known to 

migrate  (Fleming and Eby 2003; Bisson et al. 2009), but perhaps more migrants will be 

revealed once they have received further study. The apparent low prevalence of migration 

in bats may be in part because most of bat diversity occurs in less seasonal tropical 

regions – only about 125 of the 1,300 species of bats reside in the Palearctic and Nearctic 

(Fleming and Eby 2003). Another reason that migration is less prevalent in bats than in 

birds is that in the face of dropping temperatures and low food abundance, many bats use 

daily torpor or hibernate, physiological responses that are very uncommon in birds 

(Geiser 1998).  As compared to birds, the majority of bats undertake short migrations, 

usually less than 1000 km (Fleming and Eby 2003). Nevertheless, migration is an 

important aspect of some bat species life histories and occurs in nine out of seventeen 

families of bats (McGuire and Ratcliffe 2011). Within the largest family of bats, the 

Vespertilionidae, migration has evolved repeatedly, likely so that bats can seek 

appropriate winter roosts (Bisson et al. 2009). These migrations fall into regional, 

latitudinal, and altitudinal categories.  

 

Regional migrations are movements in the direction of a specific resource, and the 

population’s movement paths radiate out from this central resource. Many temperate 

vespertillionids in North America and Europe (e.g. M. lucifugus, Myotis daubentonii) 

undertake regional migrations, dispersing out from central hibernacula in spring and 

returning to them in autumn. These movements tend to be short (< 300 km), but some 

individuals can travel up to 500 km to reach suitable winter roosts (Fenton and Brockett 

1970; Norquay et al. 2013). Other regional migrations include aggregations of 5 - 10 

million straw-colored fruit bats (Eidolon helvum) that congregate in northern Zambia to 
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consume a seasonal pulse of fruit (Richter and Cumming 2005; 2008).  Satellite-

transmitter studies have shown that E. helvum is capable of moving up to 2000 km 

annually (Richter and Cumming 2008).   

 

Latitudinal migrations involve movements that follow a climatic gradient, and therefore 

are usually farther than regional migrations.  Large numbers of Brazilian free tailed bats 

(T. brasiliensis) migrate from Mexico to maternity colonies in the southern United States 

to meet the arrival of migratory moths (Bernardo and Cockrum 1962; Wiederholt et al. 

2013). In Mexico, lesser long-nosed bats (Leptonycteris yerbabuenae) undertake 

latitudinal migrations of several hundred kilometers to follow the development of a 

“nectar corridor” as cacti come into bloom (Rojas Martínez et al. 2009).  

Altitudinal migrations are those up or down an elevational gradient, and similar to 

latitudinal migrations, bats are moving between climatic zones. Miniopterus natalensis 

undertake migrations up Mount Kilimanjaro to seek cold hibernacula (Voigt et al. 2013). 

Altitudinal migration may be more common in bats than currently appreciated, and this 

phenomenon deserves further investigation (McGuire and Boyle 2013). 

 

1.3.3 Tree-bat Migration 

“Tree-bats” is a general term for those species that roost almost exclusively in foliage, 

under loose bark or in tree cavities. “Cave-bats” are species dependent on caves for some 

period of the year. Several species of North American tree-bats (Lasiurus cinereus, 

Lasiurus borealis, and Lasionycteris noctivagans) are thought to make latitudinal 

migrations, similar to birds, traveling south for the winter. As these tree-bats are solitary, 

their movements are more difficult to observe than those of species which form large 

aggregations. Several lines of evidence support the theory of tree-bat migration. The first 

were chance observations of bats that had collided with a lighthouse, found while 

searching for migrating birds that had also struck the lighthouse (Saunders 1930). At 

another bird observatory on a remote island 32 km offshore from Point Reyes California, 

the appearance and disappearance of L. cinerus roosting in trees was correlated with low 

winds and low moon illumination (Cryan and Brown 2007) . Cryan (2003) mapped the 
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localities of museum specimens and described seasonal shifts in occurrence of tree bats – 

an expansion northeastwards in the summer, with females traveling further than males. 

Stable isotope analysis of bat fur can reveal the general area in which the fur was grown 

and can be used to infer movement when bats are found at sites away from the locality 

where molting occurred. Several studies of bat fur have shown support for latitudinal 

movements (Cryan et al. 2004; Fraser 2011; Voigt et al. 2012; Baerwald et al. 2014). 

Acoustic monitoring detects the echolocation calls of bats, and can be used to passively 

monitor bat activity. This technique has been used to document the seasonal increase in 

bat activity associated with migration (Baerwald and Barclay 2009; Hamilton 2012). 

Higher levels of acoustic activity at sites closer to the Rocky Mountains has been noted in 

support of the hypothesis that bats use linear landscape features to guide migratory routes 

(Baerwald and Barclay 2009).  Most recently, miniaturized Global Positioning System 

(GPS) tags were used to record a handful of localities that male L. cinereus in California 

used throughout the year (Weller et al. 2016).  

 

Tree-roosting bats are hypothesized to move to milder climates to find hibernacula that 

will buffer them against the winter conditions (Fleming and Eby 2003). Therefore it is not 

surprising that long distance, latitudinal migration has been more likely to evolve in tree-

roosting bats, than those that use caves or buildings (which offer a stable microclimate, 

even in harsh winter conditions) (Bisson et al. 2009).  

The ecology of North America’s migratory, tree-roosting bats is still largely unknown, 

and even less is understood about the behaviour and habitat requirements of these species 

during migratory periods (Cryan and Veilleux 2007). Migration is presumed to be 

energetically demanding and a period of increased mortality for bats (Fleming and Eby 

2003). Yet, little is known about how tree-bats acquire and manage their energy stores 

during migration, and how these factors shape movement patterns. There remain 

questions as to how individual attributes (e.g. sex and energetic state) affect how 

migrating bats manage their energy stores and virtually nothing is known about how bats 

amass fuel stores to support migration. For example, we do not know if bats forage en 

route, or carry sufficient fat stores to complete migration with little or no feeding.  

Similarly, recent work using isotope analysis has provided insights regarding the broad 
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movement patterns of populations (Cryan et al. 2004; Fraser et al. 2012; Voigt et al. 

2012; Baerwald et al. 2014), however, questions regarding the movements of individuals, 

and how traits such as sex and energy stores affect movement remain largely unexplored.  

 

1.4 STUDY SPECIES  

Lasionycteris noctivagans (LeConte, 1831), the silver-haired bat (Fig. 1), is a small (8-15 

g) aerial hawking insectivorous species in the family Vespertilionidae (Kunz 1982). It is 

widely distributed from southeastern Alaska, across the southern half of Canada, and into 

the southern United States.  

Acoustic surveys show that Long Point, Ontario, a world renowned stopover site (a place 

for rest and refuel between flights) for migratory birds is a promising site for migratory L. 

noctivagans research in the August and September (Dzal et al. 2009). This site was 

subsequently used to conduct the first study of migratory bat stopover; McGuire et al. 

(2011) found that L. noctivagans stop only briefly (~ 1 day) compared to bird species 

migrating through the same site (3 - 7 days). To explain the very short stopover duration 

of bats they proposed the “torpor-assisted migration hypothesis”. Bats, unlike most birds, 

can use daily torpor to drastically reduce the cost of thermoregulation during non-flight 

periods. Therefore, if migrating bats use daily torpor they would require much less time 

to refuel, or may not refuel at all. McGuire, Guglielmo and I returned to Long Point in 

2011 and found strong support for the torpor assisted migration hypothesis using 

temperature-sensitive radio-telemetry. Both sexes of L. noctivagans readily entered torpor 

during the day, and the extent of torpor use was dependent on ambient temperature 

(McGuire et al. 2014). 
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FIG 1.1– A silver-haired bat equipped with a radio-transmitter and identifying lipped 

forearm band (arrows).  This rare polydactoulus individual has an extra thumb on each 

wing (circled) and an extra toe on each foot.  
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Mating in tree-bats likely coincides with the autumn migration period (August – 

September), when males are in a state of mating readiness as shown by development of 

keratinized spines on the glans penis and have sperm in the caudae epididymis (Druecker 

1972; Cryan et al. 2012). L. noctivagans overwintering sites have also been challenging 

to locate, in part because this species does not form large colonies, unlike many cave 

hibernating bat species (Kunz 1982). L. noctivagans winter range extends throughout the 

southern United States (Izor 1979). One study found a small population overwintering 

solitarily or in groups of 2 - 3 under the bark of live, mature trees in Arkansas (Perry et al. 

2010). 

 

In the early spring, shortly after emergence from presumed hibernation, females ovulate 

and eggs are fertilized with sperm stored since the autumn (Druecker 1972). Locations 

for capturing spring migrants have also been challenging to locate. Delta Marsh (southern 

Manitoba, Canada) was known as a possible spring stopover site, but the roosting habitat 

was destroyed by a flood in 2011. A study at Delta Marsh of migrating individuals 

characterized roost selection, finding that bats preferred older trees with furrowed bark 

(Barclay et al. 1988). This study also demonstrated that migrant L. noctivagans entered 

torpor while roosting in the April and May, with some individuals remaining in roosts for 

several days when environmental temperatures were cold.  

 

L. noctivagans usually give birth to twins in mid-June after an estimated 50 - 60 day 

gestation period followed by a 36 day lactation period (Druecker 1972; Kunz 1982). 

From June through August, L. noctivagans roost solitarily or form small maternity 

colonies of approximately 10 - 55 individuals in trees under loose bark, crevices, or 

cavities (Kunz 1982; Mattson et al. 1996).  

 

1.5 METHODS FOR TRACKING SMALL MIGRANTS 

Migration, by its very nature is logistically challenging to study. Migration of tree-bats is 

particularly difficult to study because of their elusive nature and small body size. Bat 

migration research has been hindered by the “small animal problem,” that is, technology 

small enough to attach to animals weighing < 190 g, has only recently become available 
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(Holland and Wikelski 2009; Bridge et al. 2011). It is generally widely accepted that in 

order to not substantially affect the behaviour or survival of flying animals, technology 

exceeding 5 % of body mass should not be affixed (Aldridge and Brigham 1988).  

 

GPS tags are now as light as 1 g, which allows attachment to the very largest of the tree-

bat – L. cinereus (body mass 25 - 30 g). However, a major limitation of this technology is 

that the bat must be recaptured for the data to be downloaded, and recordings are limited 

to a handful of GPS fixes at predetermined times. Light level geolocators, although light 

weight (0.5 g), are still too large for the smaller species of bats. Further, geolocators rely 

on the timing of sunrise and sunset to determine location, they are therefore are not useful 

for study of nocturnal species that spend the day roosting in shade (Lisovski et al. 2012). 

 

Radio-transmitters are one of the lightest tracking technologies available (< 0.5 g). 

Transmitters broadcast a radio signal that can be detected for a few hundred meters or a 

few kilometers. In some cases migrating individuals can be tracked by small aircraft e.g. 

(Wikelski et al. 2003; Dechmann et al. 2014). This method is labor intensive, and a 

limited number of subjects can be tracked concurrently. Tracking by plane often relies on 

finding bats the day after they have completed their migratory flight, rather than tracking 

them in real time. 

 

The Motus wildlife tracking system is a radio-telemetry array, comprised of > 150 towers 

in North America, and specifically concentrated in southwestern Ontario and the east 

coast of Canada. Rather than chasing individuals with a single receiver, the Motus array 

is a mesh of “checkpoints” across the landscape that animals fly past. All radio receivers 

monitor a single radio frequency, and tags on animals broadcast a unique identifying 

pulse signature. This technology represents an exceptional opportunity to track the 

movements in real time of small-bodied migrants. I used Motus to track the movements 

of migrating bats for the first time. 
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1.6 THESIS OBJECTIVES 

My thesis examines differences in tactics used by male and female silver-haired bats (L. 

noctivagans) during spring and autumn migration – their movement ecology. Movement 

ecology encompasses the study of the causes, mechanisms, and patterns of movement as 

well as their consequences (Nathan et al 2008).  It is currently unknown how season 

affects the migration strategies of bats. Spring and autumn migrations present different 

challenges both in terms of environmental conditions and life history selection pressures 

that drive individual behaviours. It follows that migrants often employ different 

strategies, shifting the importance of time or energy conservation, during different 

migration seasons. Spring migration is interesting because cold weather places an energy 

constraint on food acquisition (fewer insects are airborne at low temperatures). Further, 

female bats are pregnant during their northward migration (see section 1.2.1). Only two 

bat migration studies have been conducted in the spring.  One was a roost selection study 

(Barclay et al. 1988).  The other found sex differences in the thermoregulation of captive 

L. cinereus – females were less likely to enter torpor than males (Cryan and Wolf 2003). 

 

The objectives of this thesis were three-fold: 1) To investigate spring migration, 

specifically how sex affects the passage timing though, and use of refueling habitats. 2) 

To further explore the torpor-assisted migration hypothesis in the spring, when females 

may avoid torpor. 3) To use Motus to track the long-distance movements of migrating 

bats during both spring and autumn. 

 

1.7 THESIS STRUCTURE 

This thesis is structured as a series of integrated articles that will each be published 

separately. These chapters examine how bats manage their time and energy on different 

temporal and geographic scales. I focus on how sex and season affect the ways that the 

currencies of time and energy are expended.  

 

In Chapter 2, “Sex differences in spring migration timing and body composition of silver-

haired bats Lasionycteris noctivagans” I examine the spring migration timing of bats. 
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Phenology describes the annual timing of events such as emergence from hibernacula, 

and arrival of migrants, and how these phenomena relate to climate. I hypothesized that 

the selective advantages for females to reach summering grounds early to raise their pups 

would result in protogyny, the earlier arrival of female as compared to male bats. My 

second objective was to determine how fat stores relate to arrival timing. If earlier bats 

have larger fat stores, it may provide “insurance” against inclement weather, or 

alternately the “reproductive hypothesis” suggests that females have larger fat stores as 

compared to males to help them fuel pregnancy and lactation after completing migration. 

I test the predictions of both the “insurance” and “reproductive” hypotheses. 

 

Chapter 3, “Evidence for spring stopover refueling in migrating silver-haired bats 

Lasionycteris noctivagans” investigates the migration strategy of bats. It has been 

suggested that autumn migrating silver-haired bats have sufficient energy stores, such 

that they may not need to spend prolonged periods refueling (i.e. torpor-assisted 

migration)(McGuire et al. 2011), or that bats are able to meet their energy needs by 

foraging on the wing (i.e. fly-and-forage migration)(Šuba et al. 2012). Studies on 

migration refueling have taken place in the autumn, when prey are abundant, but this has 

not been examined in the spring when prey densities may warrant a different refueling 

strategy. I used a radio telemetry array to determine how long bats remain in the Long 

Point, Ontario region after first capture. Further, we examined the fat and lean mass of 

bats captured throughout the night to determine if they were gaining mass at our study 

site, as would be expected if Long Point was being used as a stopover refueling site.  

 

Chapter 4, “Cold breaks: seasonal and sex differences in torpor use of migrating silver-

haired bats Lasionycteris noctivagans” explores thermoregulation patterns of migrating 

bats and their relation to overall energy balance. The cost of thermoregulation is high for 

small endotherms (i.e. birds and mammals) because their high surface area to volume 

ratio increases heat loss to the environment. Torpor is a suite of adaptations that can 

result in substantial energy savings for small bodied animals. Torpor is a state of 

depressed metabolic rate and lowered body temperature that decreases heat loss to the 

environment (Geiser 2004). Bats are well known for their extensive use of torpor, but 
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only two studies have explored its use during the migratory period (Cryan and Wolf 

2003; McGuire et al. 2014). Energy expenditure during non-flight periods is a substantial 

factor for birds, accounting for 70% of the migration energy budget (Wikelski et al. 

2003), but bats may manage this cost differently.  The aim of this chapter was to examine 

how free-ranging bats use torpor during spring as compared to autumn migration, and 

examine the effects of fat stores and sex on torpor expression.  

 

In Chapter 5, “Spring and autumn migratory movements of North American Tree-bats (L. 

noctivagans, L. borealis and L. cinereus) using the Motus wildlife tracking system” I 

used a new radio-telemetry array to track the movements of individual bats as they 

traversed south-western Ontario. I hypothesized that bats follow leading lines, such as the 

shorelines of the Great Lakes or the Niagara escarpment while migrating. This has been 

proposed based on acoustic data (Baerwald and Barclay 2009; Furmankiewicz and 

Kucharska 2009), but not demonstrated by tracking the paths of individuals. The second 

objective was to quantify overall migration speed and, if possible, migration flight speed, 

which will give insights into bat migratory behaviour, and potentially how bats allocate 

their time to refuel versus making migratory movements. 

I conclude my thesis with Chapter 6 in which I summarize and integrate my general 

findings, as well as propose future directions for bat migration research. 
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 CHAPTER 2 

SEX DIFFERENCES IN SPRING MIGRATION TIMING AND 

BODY COMPOSITION OF SILVERED-HAIRED BATS 

LASIONYCTERIS NOCTIVAGANS1 
 
2.1 ABSTRACT 

Early arrival on the summering grounds with ample energy stores may give a fitness 

advantage to females preparing to raise pups. In contrast there is no such fitness gain for 

males because they invest in mating during autumn. I use three years of capture data to 

investigate sex differences in spring migration passage date and body composition of 

Lasionycteris noctivagans. I predicted that females would arrive earlier in the spring and 

maintain greater fat stores than males. Females passed through the study site earlier and 

had more fat than males in two of three study years. Cold weather appeared to delay 

female migration and to deplete fat stores, but did not appear to affect the passage date or 

fat stores of males. My findings indicate that sex differences occur in the timing and 

energy management of bats during spring migration. I postulate this difference in 

migration strategy is related to the increased demands of reproduction once females 

arrive at their summering grounds. My results also suggest that females fuel migration 

with energy acquired en route to a greater extent than males. 

 

Key words: Chiroptera, fat stores, phenology, protogyny, migrate, vernal migration  

                                                      
1 A version is published in the Journal of Mammalogy  
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2.2 INTRODUCTION 

Migration evolves in response to predictable shifts in resource availability (Dingle 1996). 

Initiation of migration and the pace of movement must be coordinated such that arrival 

matches the development of resources at the destination (Jones and Cresswell 2010). 

Species and population-level timing of bat migration has been documented at several 

sites in North America and Europe using acoustic detectors (Baerwald and Barclay 2009; 

Furmankiewicz and Kucharska 2009; Rydell et al. 2014). Still, little is known about how 

individual bats migrate or sex differences in timing of movements by migratory bats, 

particularly the North American tree-bats (genera Lasiurus and Lasionycteris).  

 

When the consequences of early or late arrival are contingent on traits such as sex, life 

history stage, or body condition, differential selection on migration timing may result. 

Notable examples are the protandrous migrations of many passerine birds (Francis and 

Cooke 1986; Spina et al. 1996; Rubolini et al. 2004) and salmon (Morbey 2000) – male 

migrants arrive earlier than females. Natural selection can act directly on the timing of 

males relative to females, or indirectly result in the arrival of one sex before the other, 

based on traits associated with sex (Morbey and Ydenberg 2001). Direct selection on 

males to maximize their mating opportunities has likely contributed to the evolution of 

protandry in pacific salmon (Morbey 2000). Similarly, highly polygynous bird species, 

which have greater male-male competition, also show a greater degree of protandry 

(Rubolini et al. 2004; Coppack et al. 2006). In contrast, indirect selection occurs when the 

costs and benefits differ for each sex, but not in reference to each other’s timing. For 

example, the “weather sensitivity hypothesis” predicts that migration timing will differ if 

one sex is more vulnerable to environmental conditions than the other (Conradt et al. 

2000). Such is the case in Great bustards (Otis tarda), which are sexually dimorphic. The 

larger bodied males are less tolerant of warm temperatures and migrate earlier than 

females to avoid extreme summer heat (Palacín et al. 2009).  

 

The timing of tree-bat migration is likely driven by the temporal mismatch of male and 

female reproductive investment. Temperate zone bats usually begin mating in the autumn 

and exhibit delayed fertilization – females ovulate in the early spring and fertilize eggs 
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with sperm stored from autumn mating (Entwistle and Racey 2000). Female migration 

timing is more likely to reflect costs and benefits of raising pups. Arrival at the breeding 

grounds must be timed to match the development of resources in the spring, and fall 

timing may be constrained by the time needed to prepare for migration after weaning 

young. Whereas male migration timing is likely influenced by mating activity in autumn. 

Males may be positioning themselves to intercept the greatest number of females, similar 

to the prolonged swarming season of males in hibernating bat species (Burns and Broders 

2015). Consistent with the hypothesis that L. noctivagans mates along the migration 

route, the passage timing of adult male and female autumn migrants coincided at a wind 

energy facility in southern Alberta, Canada (Baerwald and Barclay 2011). Here I present 

a three-year study to test the hypothesis that the timing of spring migration and body 

condition differ between sexes in L. noctivagans. I made the following predictions. 

 

Prediction 1.–Lasionycteris noctivagans are protogynous – females will pass through the 

stopover site earlier in the season than males. Early arrival on the summering grounds 

should give females, but not males, a fitness advantage. For example, early-born pups are 

more likely to survive their first winter and reproduce as yearlings, as is shown in the 

hibernating species Myotis lucifugus and Eptesicus fuscus (Frick et al. 2010; Barclay 

2012). Further, M. shreberi and M. lucifugus females emerge from hibernation earlier 

than males (Rodrigues and Palmeirim 2008; Norquay and Willis 2014), likely because 

this facilitates earlier parturition (Racey 1976). I expect a similar phenology in migratory 

species, as L. noctivagans females would also benefit by arriving on the summering 

grounds early. In contrast, there should be no reproductive incentive for males, which 

mated the previous autumn and do not provide parental care, to time their spring 

migration in reference to females or to move while environmental conditions are 

marginal. Thus, I expect females migrate earlier in the spring than males.  

 

Prediction 2.–Females will have larger fat stores than males. If female bats are 

protogynous, then according to the “insurance hypothesis” (Sandberg & Moore 1996), 

“overloading” fat may be valuable to safeguard against inclement weather encountered 

early in the season. If fat is used as insurance, then it would be expected that early 



 

 
 

27 

arrivers that are likely to face harsher conditions and have larger fat stores than those 

arriving later in the season. Alternately, the “reproductive hypothesis” posits that fat “left 

over” following migration is needed during pregnancy or lactation. Arrival on the 

breeding grounds with large energy stores has a positive effect on reproductive fitness of 

migratory birds (Sandberg and Moore 1996). This benefit is seen even in income breeders 

that “pay” for reproduction with resources accumulated on the breeding grounds (Smith 

and Moore 2003). Ample fat stores in the spring likely provide such a benefit to female 

bats which face high energy demands during lactation (Kurta et al. 1989). 

 

2.3 MATERIALS AND METHODS 

2.3.1 Study Species   

Lasionycteris noctivagans (LeConte 1831) is a small (8-14 g) insectivorous species of the 

family Vespertilionidae (Kunz 1982). This species is widely distributed from 

southeastern Alaska, across the southern half of Canada, and into the southern United 

States. Evidence for migration in this species comes primarily from seasonal peaks in 

occurrence records and stable isotopes (Cryan 2003; Baerwald et al. 2014). Lasionycteris 

noctivagans reproductive life history overlaps with migratory periods; both sexes are in a 

state of mating readiness during autumn migration (Cryan et al. 2012) and females are 

pregnant during their spring migration, although the stage of embryonic development is 

uncertain (Druecker 1972). After an estimated 50-60 day gestation period females usually 

give birth to twins in mid-June (Druecker 1972; Kunz 1982). During the summer, L. 

noctivagans roost solitarily or form small maternity colonies of approximately 10-55 

individuals in trees under loose bark, crevices, or cavities (Kunz 1982; Mattson et al. 

1996). During migration, bats roost solitarily and use similar types of tree roosts (Barclay 

et al. 1988). Overwintering ecology of this species is poorly known, bats are 

hypothesized to use multi-day torpor (hibernation) and leave roost sites to drink or forage 

opportunistically (Cryan and Veilleux 2007; Perry et al. 2010). 
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2.3.2 Study site and capture methods 

I conducted my study at the base of Long Point, a narrow 35 km long sand peninsula 

projecting southeast from the north shore of Lake Erie, Ontario, Canada (42°34'N, 

80°20'W). The study site is located just north of the center of the annual distribution of L. 

noctivagans.  This region is a renowned stopover site for migratory birds, and prior to my 

study Long Point had also been identified as an important site for migrating bats in the 

autumn (Dzal et al. 2009). I captured bats at the Old Cut field station of the Long Point 

Bird Observatory during the spring migration period in 2012 - 2014 (April 3-May 31, 

2012; April 14-May 27, 2013; April 4-June 5, 2014). The netting site was a 9-ha woodlot, 

comprised of mixed conifers and deciduous trees, adjacent to a marsh and residential 

development (year-round and seasonal cottages). Mist-nets ranging from 3 – 7 m in 

height, were opened from dusk until dawn every night unless this was prevented by rain, 

high winds, or ambient temperatures (Ta) below 3 °C (no bats were captured below 5 °C 

in the first year of the study). I measured body mass ± 0.1 g using a digital scale (CS200, 

OHAUS, Parsippany, NJ, USA), forearm length (mm) as an indicator of body size, and 

body composition for each bat. Body composition was measured using quantitative 

magnetic resonance (QMR, EchoMRI-B; Echo Medical Systems, Houston, TX, USA), a 

non-invasive method that measures wet lean mass (g) ± 2% and dry fat mass (g) ± 10% 

without the use of anesthetic or restraint (McGuire and Guglielmo 2010).  QMR 

measurements took place in a field laboratory. Bats were placed in a 3 cm diameter 

ventilated plastic tube which was then inserted into the QMR machine for two replicate 

two minute scans (additional details in McGuire et al. 2010). The magnetic field 

generated by the QMR does not interfere with the orientation abilities of L. noctivagans 

(McGuire et al. 2011). Female bats were palpated to feel for a fetus, but none were 

detectable. Hourly temperature recordings (± 0.1 ºC) were obtained from a weather 

station at Bird Studies Canada headquarters in Port Rowan (6 km from the capture site). 

All research activities were approved by an Animal Use Protocol from the University of 

Western Ontario Council on Animal Care (protocol 2010-020; Appendix D), and were 

permitted under a Wildlife Scientific Collector’s Authorizations from the Ontario 

Ministry of Natural Resources (authorization no. 1067554, 1073065 and 1076439; 

Appendix E). 
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2.3.3 Analyses 

Passage Timing. First capture date was used as an indicator of arrival at the stopover 

site. I used a two-way analysis of variance (ANOVA) to examine capture date at my site 

using the predictor variables of sex and year, and the interaction sex × year. Tukey tests 

were then used to examine how capture date was influenced by sex within years, and 

were also used to examine between year differences for males and females separately.   

 

To test the prediction of the “insurance hypothesis” that bats which have greater fat stores 

are able to arrive earlier in the migration season, I investigated the effect of fat mass on 

capture date using a general linear model. I used data from bats captured in 2012 and 

2014, when I was able to measure body composition for the entire season. In 2013, the 

QMR was only available for use in the month of April. This model for capture date 

included sex, year, the interaction sex × year, as well as fat mass and a measure of body 

size (forearm length). The effect of Ta among the three study years on annual mean 

values of capture dates for males and females was examined using simple linear 

regressions. To do this I averaged hourly recordings taken during the spring migration 

capture period (April and May combined). 

 

Body Composition. Three measures of body composition (fat mass, percent body fat and 

wet lean mass) were investigated using general linear models and the predictor variables 

sex, year, sex × year, and forearm length as a measure of body size. I tested for a 

correlation between fat mass and forearm length using simple linear regression. Finally, 

the effect of ambient temperature (Ta) among the three study years on annual mean values 

of fat mass for males and females was examined using simple linear regressions. 

 

All values are reported as mean ± SD. Significance was assessed at an α of 0.05 and 

models used type III SS. Statistical analyses were conducted in the program R (version 

3.0.2; R Development Core Team 2009).  
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2.4 RESULTS 

2.4.1 Passage timing 

The first bats were captured between April 14 -16 in all three years. Capture date was 

affected by the interaction of sex × year (F2,108 = 15.4, P < 0.001), year (F2,108 = 12.5, P < 

0.001), and sex (F1,108 = 48.5, P < 0.001; full model F5,108  = 21.1, P < 0.001). Mean 

female capture date was 30 days earlier than male capture date in 2012 (P < 0.001) and 

14 days earlier in 2014 (P < 0.001), there was no sex difference in capture date in 2013 

(P = 0.99; Fig. 2.1). Females arrived incrementally later over the three years of the study, 

but there was only a significant difference between female arrival in 2012 and 2014 (P < 

0.001). Males arrived earlier in 2013 as compared to both 2012 and 2014 (P < 0.001). 

The total passage timing (days between first and last capture) of females was longer than 

males in 2012 and 2014, but was comparable in 2013 (Table 2.1). 

 

Using data from 2012 and 2014 (when it was possible to take QMR measurements of all 

bats), I examined the effect of fat on passage timing. After year and sex effects were 

accounted for, inclusion of fat mass (P = 0.17) and forearm length (P = 0.47) did not 

significantly contribute to the model for capture date (F5,54 = 29.7, P < 0.001). Greater fat 

mass was not associated with earlier arrival dates in either sex.  

 

Females arrived earliest in the warmest years – mean capture date was negatively 

correlated with mean spring migration Ta (Fig. 2.2A; R2 = 0.99, P = 0.04). There was no 

effect of mean spring migration Ta on mean capture date of males (Fig. 2.2A; P = 0.94).  

Cooler Ta were associated with wider migration windows in females, but not males 

(Table 2.1).  
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Table 2.1–  Number of nights between 1st and last capture of male and female L. 

noctivagans migrating through Long Point, Canada in the spring. 

Year 
Sampling period length 

(days) 

Males 

(days) 

Females 

(days) 

Mean migration season 

 Ta at capture site (C) 

2012 59 8 23 12.0 ± 6.4 

2013 45 36 36 10.6 ± 6.9 

2014 63 23 47 9.7 ± 5.8 

 

 

 

 

 

 

Table 2.2– Body composition of spring migrating L. noctivagans measured using 

quantitative magnetic resonance 

    Wet lean mass (g) 

 

Fat mass (g)   Fat (%) 

Year Sex N Mean ± SD Range   Mean ± SD Range   Mean ± SD Range 

2012 M 8 8.24 ± 0.48 7.45-8.83   1.15 ± 0.42 0.55-1.71   10.7 ± 3.1 6.2-14.6 

 F 16 8.92 ± 0.74 7.85-10.23   2.08 ± 0.70 1.03-3.33 

 

16.6 ± 4.6 8.7-22.8 

           

2013 M 7 7.72 ± 0.41 7.45-8.65   0.56 ± 0.13 0.36-0.70  05.7 ± 1.2 6.8-3.9 

 F 16 8.35 ± 0.69 7.10-9.22  1.26 ± 0.63 0.34-2.64  11.1 ± 4.6 3.4-19.4 

           

2014 M 15 8.16 ± 0.57 6.98-9.04  0.97  ± 0.31 0.36-1.41  9.2 ± 2.4 4.1-11.9 

 F 22 8.80 ± 0.55 7.91-9.96  1.13 ± 0.40 0.47-2.02  9.9 ± 3.0 4.6-16.4 
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FIG. 2.1–Timing of spring migrating Lasionycteris noctivagans at a stopover site Long 

Point, Canada (day of year 120 = May 1). Female silver-haired bats (light boxes) were 

captured significantly earlier than males (dark boxes) in 2012 and 2014. In 2013 the lack 

of difference appears to be driven by early arrival of males as compared to other years. 

Distribution of data is shown using Tukey’s box plots. Boxes designate the interquartile 

range, between the first and third quartiles and containing 50% of the observations, and 

are divided by the median. Whiskers connect boxes to the extreme points within 1.5x the 

interquartile range and points outside this range are individually plotted. Sample sizes are 

indicated in brackets below.  
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2.4.2 Body composition 

Female L. noctivagans were 1.8% larger (forearm length: t68 = 3.3, P = 0.001; female = 

41.8 ± 1.1 mm, male = 41.0 ± 1.2 mm) and 11.3% heavier than males (body mass: t90  = 

6.5, P < 0.001; female = 11.5 ± 1.2 g, male = 10.2 ± 0.9 g). Absolute fat mass was 

affected by the interaction of sex × year (F2,76 = 4.1, P = 0.02), year (F2,76 = 18.4, P < 

0.001), and sex (F1,76 = 17.1, P < 0.001; full model F5,76 = 10.8, P < 0.001). Forearm 

length was not correlated with absolute fat mass (P = 0.05). Percent body fat showed the 

same relationship as absolute fat (full model F5,76 = 10.3, P < 0.001). Forearm length was 

not a significant factor in the absolute fat (P = 0.52) or percent fat mass models (P = 

0.79). Females had larger absolute fat stores than males in 2012 (P < 0.001) and 2013 (P 

= 0.03), but there was no sex difference in 2014 (P = 0.93; Table 2.2; Fig. 2.3A). Wet 

lean mass was predicted by forearm length (F2,76 = 12.4, P <0.001) sex (F1,76 =5.4, P = 

0.02) and year (F2,76 = 4.8, P = 0.01; full model F6,76 = 8.6, P < 0.001). Females had 

greater wet lean mass than males (Table 2.2; Fig. 2.3B).  

 

Annual variation in mean absolute fat mass was not significantly correlated with spring 

migration Ta in either sex (Fig. 2.2B; P > 0.05). There was a tendency for female mean 

fat mass to decline with Ta, however three years of data were not sufficient to fully test 

this relationship. 

 

2.5 DISCUSSION 

My findings suggest that male and female L. noctivagans have different migration 

strategies in the spring. Consistent with my prediction of protogyny, the passage date of 

females was earlier than males in two of three years, and median passage date of males 

never preceded that of females. My second prediction was also partially met; after 

accounting for larger female body size, female bats carried fat stores that were nearly two 

times larger than those of males in two out of three study years. My three-year data set 

did not allow me to rigorously test which factors drive annual variation in passage date 

and body composition, however, the direction of these trends is noteworthy, and they 

should guide future studies. 
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FIG. 2.2–The effect of Ta on spring migrating Lasionycteris noctivagans. Temperatures 

were 12.0, 10.6, and 9.7C in 2012–2014, respectively.  A) capture date – females (closed 

circles) passage date advanced with warmer Ta, while no relationship was seen in males 

(open circles); B) fat mass – female fat mass declined with Ta, although not linearly. X 

and Y error bars denote SE. The data point for males in 2012 has been shifted 0.1 C in 

panel A, so that it is visible.
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FIG. 2.3–Body composition of spring migrating Lasionycteris noctivagans captured at a 

stopover site Long Point, Canada. A) Females (light boxes) had significantly greater 

absolute fat mass than males (dark boxes) in during spring migration in 2012, and 2013, 

but not 2014. B) Wet lean mass of females was greater than males in all years. 
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2.5.1 Passage timing 

Earlier spring arrival likely confers a reproductive advantage for female bats. Early birth 

increases survival of M. lucifugus and E. fuscus pups by allowing them more time to 

grow and accumulate fat before hibernation (Frick et al. 2010; Barclay 2012). Young L. 

noctivagans may realize a similar benefit by having additional time to prepare for their 

first migration. Early arrival on the breeding grounds is associated with increased 

fledging success in several taxa of migratory birds, including warblers (American 

redstarts; Smith and Moore 2005), raptors (black kites; Sergio et al. 2007), and seabirds 

(cormorants; Gienapp and Bregnballe 2012). 

 

Years when female L. noctivagans arrived late corresponded with cooler spring 

temperatures at the capture site. This delay was also reflected in the longer total migration 

windows of females in colder years. Low Ta delays arrival to breeding grounds of aerial 

insectivorous birds, such as swallows (Hirundo rustica; Sparks 1999). A study of 15 bird 

species at my study site (Long Point, ON) revealed that for every 1 C increase in mean 

spring migration Ta, the mean passage date of migratory birds advanced by one day 

(Marra et al. 2004). On average, mean female L. noctivagans capture date advanced by 

eight days for every 1 C increase in mean spring migration Ta. This rate should be 

treated with caution because it was calculated using only three years of data. Nonetheless, 

the relationship between Ta and female passage date is informative, and it suggests that 

female bats face analogous limitations to birds during their spring migration. The 

migration pace of birds is largely determined by periods of stopover, where models 

predict that 7-fold more time is spent refueling than in migratory flight (Hedenstrom and 

Alerstam 1997). Poor weather can limit foraging opportunities particularly for 

insectivores because the rate of arthropod development depends on Ta (Lee 1991). I 

hypothesize that the delay of female bats observed in cold years could be in part due to 

refueling limitations.  

 

The second way that low temperatures can slow refueling by migrating birds is by 

diverting a greater proportion of energy accrued during foraging to thermoregulation 

(Wikelski et al. 2003). Torpor allows bats to somewhat decouple their daily energy 
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budgets from Ta, freeing them from some of the costs faced by birds (McGuire et al. 

2014). However, L. noctivagans are pregnant during their spring migration (Druecker 

1972), and female bats commonly use torpor to a lesser extent during pregnancy (Solick 

and Barclay 2006; Turbill and Geiser 2006; Stawski 2010; Dzal and Brigham 2012) but 

see (Chruszcz and Barclay 2002; Rintoul and Brigham 2014). Pregnant hoary bats 

(Lasiurus cinereus) captured during their spring migration defend a high body 

temperature over a wide range of experimental Ta (Cryan and Wolf 2003). If female L. 

noctivagans avoid torpor during spring migration, they would also incur a refueling 

penalty when they encounter low Ta. 

 

The passage date of male bats did not appear to be constrained by cooler weather since 

there was no difference in mean capture date of males between the warmest and coldest 

years. This pattern would be expected if males have the low, predictable daytime energy 

costs associated with using torpor, and rely predominantly on pre-migration energy stores 

as fuel. A similar strategy is seen in both sexes during autumn migration (McGuire et al. 

2014). Future work should experimentally test sex differences in the thermoregulatory 

responses of spring migrating L. noctivagans. 

 

Three potential mechanisms may underlie the observed sex difference in migration timing 

I observed. First, there could be latitudinal segregation of sexes on wintering grounds. 

However, there is no compelling evidence of geographic sex segregation in wintering L. 

noctivagans (Cryan 2003; Perry et al. 2010). I cannot rule out the possibility of latitudinal 

sex segregation during the wintering period because the occurrence data are far from 

complete and the winter habitats of the population migrating through Long Point are 

unknown. Second, females could depart from wintering grounds earlier than males. 

Museum collections suggest that female tree-bats do initiate their northward migration 

before males (Cryan 2003). Third, females could migrate more quickly than males. It 

seems unlikely that females migrate more rapidly than males because my data suggest 

that females are affected more than males by cold weather through an indirect effect on 

refueling (see previous section). If females require more frequent or longer refueling 

periods than males, this would result in an overall slower pace of migration. If the 



 

 
 

38 

observed difference in migration timing at Long Point is a product of earlier departure, 

but a slower migration pace by females, I predict there will be a greater difference in 

male and female passage dates through sites at locations closer to the beginning of their 

migration, a subject for further research. 

 

2.5.1 Body composition 

 Bats carried smaller fat stores in the spring (11% of body mass; this study) than they did 

at the same site during autumn migration (19% of body mass; McGuire et al. 2011). The 

relatively larger autumn fat stores would be expected if L. noctivagans also require these 

fat stores after migration, to sustain hibernation. Alternatively, this seasonal difference in 

body composition could relate to how close bats are to the end of their migration. Bats 

caught in the autumn are expected to travel to the southern United States (Perry et al. 

2010) or eastward to more moderate coastal climates, similar to overwintering 

populations of L. noctivagans in British Columbia (Nagorsen et al. 1993). In contrast, 

spring migrants may potentially have almost reached the end of their journey when 

captured at Long Point if their summering grounds are in southern Ontario (Parsons et al. 

1986), and may thus have depleted more of their fat stores. 

 

Fat stores of female bats were nearly double the mass of those of males in two of the 

study years. This result is striking because previous studies at the same site have reported 

no sex difference in L. noctivagans fat stores during autumn migration (McGuire et al. 

2011; 2014). Two hypotheses (insurance versus reproductive) could explain the greater 

fat stores of female bats. 

 

Sandberg and Moore’s (1996) insurance hypothesis, posits that fat is needed to weather 

harsh environmental conditions early in the season, and makes several predictions 

relevant to my study. First, if there is no sex difference in phenology, there will also be 

no sex difference in fat stores. I found no sex difference in passage date of bats in 2013, 

but females still had larger fat stores than males in this year. Second, earlier migrants will 

have larger fat stores to withstand harsher conditions. I observed no correlation between 

capture date and fat stores in either sex in any year. Early arrivers were not those with 
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greater energy stores. Third, greater fat stores will be evident in colder years. In my 

study, female bats carried the largest fat stores in years when the average Ta was the 

mildest, and there was no directional relationship between Ta and male fat stores.  

Overall, I find little support for the predictions of the insurance hypothesis for L. 

noctivagans. Bats are well-known for their extensive use of torpor, and this may provide 

sufficient insurance against inclement weather. Though bats frequently avoid torpor while 

pregnant, they remain capable of using it during emergencies (i.e., unseasonably low Ta). 

Pregnant female hoary bats have been observed dropping into deep, multiday torpor 

during spring storms (Willis et al. 2006).  

 

The reproductive hypothesis predicts that females will have greater fat stores than males, 

and that there will be no correlation between arrival date and fat mass. In two of the three 

study years, females had significantly larger fat stores than males, and in one year there 

was no sex difference. This is consistent with the reproductive hypothesis, as I also found 

no correlation between arrival date and fat. I hypothesize that females defend a minimum 

fat threshold that exceeds that of males, and that females delay migration to keep fat 

stores above that threshold. While temperature predictably delayed the arrival of female 

bats, it did not have a comparable linear effect on their fat stores. In 2014, the coldest 

year, female fat stores were comparable to 2013, but mean female arrival date was seven 

days later.  

 

The size of fat stores remaining after migration may have substantial impacts on the 

reproductive success of female bats. Female Myotis lucifugus maintain larger fat stores 

than males in late hibernation, presumably because there is a benefit of conserving fat for 

use during reproduction (Jonasson and Willis 2011). Remaining fat stores may allow L. 

noctivagans to maintain Tb that would speed fetal development. Larger fat stores are 

proposed to allow American redstarts (Setophaga ruticilla) to invest time in other 

activities such as territory defense, or focus foraging efforts on accruing essential 

micronutrients (Smith and Moore 2003). Similarly, bats with greater fat stores are able to 

invest more time in searching for suitable maternity roosts (instead of foraging) when 

they first arrive on the breeding grounds. Roost searching is particularly important for 
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tree-bats because cavities in decaying trees are less predictable from year to year than are 

buildings or cave roosts. Females may begin migration with larger fat stores retained over 

winter, similar to the ‘thrifty female’ strategy seen in M. lucifugus (Jonasson and Willis 

2011), or accumulate this fat en route by increasing foraging. 

 

The fat stores of females were more variable than those of males in my study. This 

pattern could be caused by sex differences in refueling strategies. If males carry small fat 

stores, replenish them with brief nightly foraging bouts, and have predictable, low 

daytime energy costs (through torpor use), then they would be expected to maintain 

relatively constant fat stores. If female L. noctivagans use torpor to a lesser extent, their 

thermoregulatory costs will depend on Ta (like all homeotherms) and their 

thermoregulatory costs will be greater, but also less predictable. Females would be 

expected to have a wider distribution of fat stores if they are captured at various stages of 

refueling.   

 

In summary, sex differences exist in the time and energy investments made by migrating 

bats in spring. Females carried the largest fat stores in years when they arrived earliest. 

Cold temperatures delayed the migration of females, and likely resulted in an energy 

penalty. The opposite trend was seen in males, where the relatively earlier arrival of 

males in 2012 coincided with smaller fat stores. Males appear to “pay” for earlier arrival 

(as compared to male arrival date in other years) by depleting fat stores, which suggests 

that males are more reliant on energy acquired prior to migration. I propose that females 

partially fuel spring migration with en route foraging, while males are able to migrate 

using resources leftover from overwintering. Predicting the potential effects of climate 

change and habitat degradation on these species requires knowing which habitats they 

rely upon throughout their annual cycle. Differences in phenology observed among the 

three years of my study emphasize the importance of collecting ecological data over 

multiple years, and open up interesting questions about how bats respond to changes in 

their environment. Future studies are required to explore how environmental factors 

mediate changes in the migration timing of bats and the extent to which these carry-over 

effects impact population recruitment.   
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  CHAPTER 3 

EVIDENCE FOR SPRING STOPOVER REFUELING IN 

MIGRATING SILVER-HAIRED BATS (LASIONYCTERIS 

NOCTIVAGANS) 

 

3.1 ABSTRACT 

The fuel strategies used by migrating bats are not well understood, as there is limited 

evidence regarding whether they forage on the wing while migrating (fly-and-forage 

migration), avoid refueling at stopovers by minimizing roosting energy costs (torpor-

assisted migration), or actively refuel during multi-day stopovers. Further, these 

migration strategies of bats have been explored previously in the autumn, but not during 

the spring when insectivorous bats face low food abundance. I captured migrating 

Lasionycteris noctivagans at a stopover site in Long Point, Ontario, Canada in April and 

May of 2012-2014. I followed the movements of 40 bats (male N=18; female N=22) 

outfitted with radio transmitters using an automated telemetry array. I examined the 

effects of fat stores, sex, and ambient temperature (Ta) on stopover duration. As seen 

previously in autumn, most bats departed the evening following capture, but one third of 

bats were non-transient and used multiday stopovers. Extended stopover was associated 

with lower Ta. There was no effect of sex or fat on stopover departure probability. I used 

nightly mass gain of bats captured a single time to examine refueling. Bats captured 

closer to dawn had greater fat and lean masses than those captured early in the night, a 

trend indicative of mass gain at this site. Mine is the first study to provide evidence that 

bats use stopover habitat for refueling. 

 

Key words: automated radio-telemetry, Chiroptera, migration, migratory strategies, 

refueling, torpor 
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3.2 INTRODUCTION 

Migrating animals must partition time and energy between fuel acquisition and migratory 

movement, but how this is achieved can vary greatly. Optimal migration theory, 

originally developed for birds, posits that avian migrants balance the currencies of time 

and energy mainly by adjusting flight speed, fuel load, and stopover duration (Alerstam 

and Lindström 1990; Hedenström and Alerstam 1997; Hedenström 2009; Alerstam 

2011). Bats, as flying endotherms may behave similarly to birds, but the potential to fuel 

while flying (Šuba et al. 2012),  or use torpor to minimize energy loss during stopover 

(McGuire et al. 2014) may lead to different behaviours and physiology than predicted. 

 

Fuel management decisions of migrants can depend on the distribution of resources 

across the landscape and the foraging ecology of a species. At one extreme, the Bar-tailed 

Godwit (Limosa lapponica) internally deposits its entire fuel load (40% of body mass is 

fat) and makes a single ~ 11,000 km transoceanic flight from New Zealand to Alaska 

(Gill et al. 2009). Short-hop migrants, including many songbirds, have access to many 

foraging sites and intersperse movement with periods of intense foraging at stopovers 

before the next leg of the journey (Newton 2008; Sawyer and Kauffman 2011). Ungulates 

are able to forage while migrating, but use stopover periods to take advantage of patches 

of good refueling habitats along their migration route (Sawyer and Kauffman 2011). Fly-

and-forage migrants are able to combine foraging flight and migratory flight, i.e., species 

that hunt on the wing – aerial insectivores, some raptors and many seabirds (Strandberg 

and Alerstam 2007; Strandberg et al. 2009; Dias et al. 2012). Some aerial insectivores 

(e.g. Common Swifts, Apus apus) adopt a mixed strategy, combining fly-and-forage with 

periods of stopover (Åkesson et al. 2012), while other aerial insectivores (e.g. barn 

swallows, Hirundo rustica) have thus far only been documented using a stopover strategy 

(Gill et al. 2005). 

 

The migration strategies of insectivorous bats remain poorly understood. Many bats may 

not need to make discreet stopovers because, as aerial insectivores, they can hunt while 

migrating. McGuire et al. (2011) proposed that the silver-haired bats (Lasionycteris 

noctivagans) make brief stopovers of < 24 h, refueling for only a few minutes at dusk 
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before initiating a migratory flight. These authors hypothesized that bats had sufficient fat 

stores to theoretically complete migration without refueling because torpor lowered their 

daytime energy costs (McGuire et al. 2011; 2014). This hypothesis could prove to be 

wrong because the degree to which the fat stores, measured by McGuire et al. (2011), are 

available to fuel migration is difficult to ascertain; a proportion of fat stores amassed on 

the summering grounds may be required to sustain hibernation. Nathusius's pipistrelle 

(Pipistrellus nathusii) appears to use a fly-and-forage migration strategy, frequently 

interrupting migratory flight to forage along the coast of the Baltic sea (Šuba et al. 2012). 

Studies of stable isotopes in the breath support this fly-and-forage hypothesis. P. nathusii 

employ a mixed fuel strategy – fueling flight with recently digested food in the early 

evening and transitioning to fat stores near dawn (Voigt et al. 2012). If P. nathusii used 

stopovers, then isotope analysis would be expected to reveal that bats rely only on fat 

stores to fuel flight (unless bats were sampled at a stopover site). The above studies on 

bats were conducted during autumn migration, when insects are relatively abundant as 

compared to spring migration.  Because the ease of energy acquisition is a key factor for 

determining how animals allocate time, where they stop, and for how long, seasonal 

differences in prey abundance are expected to affect migration strategy. For example, 

red-backed shrikes (Lanius collurio) use different migration routes in autumn as 

compared to spring to take advantage of favorable foraging conditions on the northern 

savannah, stage for longer periods of time, but move more rapidly (Tottrup et al. 2012). 

 

The aim of this study was to investigate the use of stopover sites by L. noctivagans during 

spring. I returned to the same stopover site, in southern Ontario, Canada, where previous 

work was conducted on the species in the autumn (McGuire et al. 2011; 2014). I 

hypothesized that the inferred difference in food availability in spring, caused by lower 

temperatures, would affect the way bats refuel.  

 

My first objective was to determine if ambient temperature (Ta), fat stores, and sex affect 

stopover duration in spring. One of the few studies of spring migrating bats found that 

most L. noctivagans occupied roosts for a single day unless the weather was very cold, or 

it was raining (Barclay et al. 1988). However, the methods used in that study were not 
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suitable to measure stopover duration, as any roost switching would be mistaken for a 

departure. I predicted that cold weather would result in extended, multi-day stopover 

periods in spring migrants. Cool spring Ta decreases flying insect abundance and will in 

turn diminish foraging opportunities (Taylor 1963; Holyoak et al. 1997; Benton et al. 

2002), possibly to such an extent that fly-and-forage migration is no longer profitable. 

Migrants are theorized to depart stopovers once they have acquired sufficient fuel stores 

(Alerstam and Lindström 1990). So, I further predicted that within the spring migration 

season, colder Ta will extend stopover because low refueling rates extend stopover 

durations (Alerstam and Lindström 1990). Additionally, I predicted fat stores to be 

negatively correlated with stopover duration as bats with small fat stores would require 

more time to rebuild them. Finally, I predicted that females would have briefer stopovers 

than males. Female bats arrive earlier in the migration season than males (Chapter 2), 

likely because there is an advantage to arriving on the summering grounds early to raise 

their pups (Frick et al. 2010). Female bats may achieve this earlier arrival by speeding 

refueling and in turn likely shortening the duration of their stopovers, a similar strategy is 

used by some male birds rushing to secure breeding territories in the spring (Seewagen et 

al. 2013). In summary, I predicted: 1) spring migrants would make longer stopovers than 

in autumn, 2) cold Ta would extend stopover duration, 3) bats with small fat stores upon 

arrival would have longer stopovers, and 4) females would have shorter stopovers than 

males. 

 

My second objective was to determine if bats refuel at stopover. Several studies have 

examined mass changes of birds recaptured on migration (e.g., Mueller and Berger 1966; 

Moore and Kerlinger 1987; Loria and Moore 1990; Kuenzi et al. 1991), but these studies 

require a massive mark recapture effort that is not feasible for migrating bats. Further, 

birds that are recaptured may not be representative of the population; they often have 

smaller fuel stores than birds captured once and so may be of poorer quality (Moore and 

Kerlinger 1987; Loria and Moore 1990; Kuenzi et al. 1991; Bonter et al. 2007). An 

alternative method is to regress mass on first capture against the time of day, if migrants 

at a site are gaining mass, then the slope should be positive. Increases in mass of the 

population over the day are assumed to represent the daily gain of all individuals (e.g., 
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(King 1976; Winker et al. 1992; Dunn 2000; Bonter et al. 2007). I use this second 

approach to examine the nightly mass gain of bats using a 3-year dataset. If bats are 

depositing fat stores at my site, I predicted that bats captured later in the night would be 

heavier than those captured early in the evening.  

 

3.3 METHODS 

L. noctivagans (LeConte, 1831), the silver-haired bat, is a small insectivorous tree-

roosting bat (Kunz 1982). Evidence for migration in L. noctivagans comes primarily from 

seasonal shifts in distribution (Cryan 2003) and stable isotopes (Baerwald et al. 2014), 

however the connectivity between summer and winter populations remains unknown. The 

Long Point Bird Observatory, ON, Canada (42°34'N, 80°20'W) has been established as a 

reliable point for capture of autumn migrating L. noctivagans (Dzal et al. 2009). My 

study site is on average 10.8 °C cooler during the spring migratory period (April and 

May: 10.4 C) than in the fall (mid-August to mid-September: 21.1C; Long Point 

Environment Canada weather station five year average, 2008-2012). For more 

information about the capture site, see Chapter 2. I used monofilament mist nets to catch 

bats during the spring migration period: April 3-May 31, 2012; April 14-May 27, 2013; 

and April 4-June 5, 2014. Nets were opened nightly throughout the study season from 

dusk until dawn unless there was rain, high winds, or Ta below 3 °C (I captured no bats 

below 5 °C in the first year of the study). 

 

For each bat, I used quantitative magnetic resonance (QMR) body composition analyzer 

(EchoMRI-B; Echo Medical Systems, Houston, TX, USA) to non-invasively measure dry 

fat mass and wet lean mass (McGuire and Guglielmo 2010). QMR measurements are 

taken by placing an unrestrained bat in a small ventilated tube,  which is then  inserted in 

the bore of the QMR machine for three replicates of a 2-minute scan (for details see 

McGuire and Guglielmo 2010). Previous work has shown no impact of the QMR on the 

navigational abilities of bats (McGuire et al. 2011). After the QMR scan, I affixed radio-

transmitters to a fur trimmed region on the bats’ upper back using a non-toxic latex glue 

(Ostobond; Ostomy Quebec), which wears off in approximately 30 days.  The 

transmitters weighed 0.29 g and bat masses ranged from 8.9 – 14.6 g , so transmitter 
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weights ranged from  2.0 – 3.6 % of the body mass of the bats, which is less than the 

accepted guideline of 5 %, to prevent loss of maneuverability that would impede foraging 

(Aldridge and Brigham 1988). I used coded radio transmitters (NTQB-1 Lotek, 

Newmarket, ON), which enabled us to continuously monitor the location of all study 

individuals. The coded transmitters broadcast on a single radio frequency and emitted a 

pulse signature unique to each transmitter at 12 second intervals.  

 

3.3.1 Stopover duration 

To establish when bats departed the stopover region, I used an array of five (2012) or 

eight (2014) automated radio-receiving stations (Fig. 3.1). Each station was comprised of 

a telemetry receiver equipped with 1-3 directional antennas (9-element, Yagi), mounted 

on a 9 m tower. Directional antennas have the strongest radio wave detection beam in the 

forwards direction, a lesser detection beam in the backward direction, and much lower 

detection laterally. Lotek receivers (SRX 600, Lotek Engineering Inc,. Newmarket, 

Ontario) were used in 2012 and SensorGnome receivers (www.sensorgnome.org) were 

used in 2014. The estimated detection range of each antenna was 14 km (based on 

concurrent detections of a bat by two towers using the same equipment as McGuire et al. 

(2011). Bats were considered to have completed their stopover when they left the 

detection range of the tower at the capture site (Oldcut) and were not subsequently re-

detected within the local array. Bats that departed within 24h were classified as 

‘transient’ and those that stayed longer as ‘non-transient’. 

 

3.3.2 Stopover behaviour 

The automated radio telemetry system occasionally allowed us to detect detailed activity 

patterns from individuals that roosted in the proximity of the Old Cut telemetry tower 

(N=9). For these individuals I was able to determine if they left their roost on a given 

night by examining the variability in signal strength. The transmitters of roosting bats 

broadcast a constant, low signal strength, because roosts were often low to the ground or 

sheltered within buildings.  Variable signal strengths are indicative of non-directed flight 

and are likely associated with foraging behaviour (Supplementary Fig. 3.1).  
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FIG. 3.1– Map of the study region Long Point, Ontario, Canada in A) 2012 and B) 2014. 

Bats were captured at the bird observatory (circle) and tracked until they left the stopover 

site, which is delineated by the perimeter of receiving stations. Positioning and estimated 

detection range of antennae on receiving stations are shown by black bars. The grey bar 

denotes the one receiving station, which was not functioning during the study. 
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Absent bats may have left the detection range of the tower, or may have been roosting in 

a very sheltered space. In 2012, I searched for bats during the day to confirm their 

presence in roosts, if a bat was not detectable by the Old Cut tower, but was roosting 

nearby then I can reason that it did not leave its roost the previous evening as its 

departure flight would have been detected. 

 

All research activities were approved by University of Western Ontario Animal Care 

Committee (protocol 2010-020; Appendix D), and were permitted by a Wildlife 

Scientific Collector’s Authorization from the Ontario Ministry of Natural Resources 

(authorization no. 1067554, 1073065 and 1076439; Appendix E). 

 

3.3.3 Analysis 

I modeled stopover using a survival analysis framework, analyzing the “risk” that a bat 

would depart the study site using Cox Proportional Hazards (CPH) models, which are 

semi-parametric survival models. Higher risk is interpreted as a higher chance of a higher 

probability of departure and so shorter stopover durations. The full model included sex, 

fat mass (g), year, and night-time mean temperature experienced during stopover. The 

importance of model covariates was assessed with 95% confidence intervals.  

 

Hourly temperature data (± 0.1 ºC) were obtained from the Bird Studies Canada weather 

station (42º36´50´´N, 80 º27´29´´W) 6 km from my capture site, and within the perimeter 

of stopover stations (Fig. 3.1). CPH models were also used to examine the relationship 

between fat stores and length of stay in two subsets of bats that arrived at the stopover 

site on the same day. One-way ANOVA was used to compare the nighttime Ta on nights 

when bats were active, departed or roosted in close proximity to the Old Cut tower.  

 

I regressed the time of night bats were captured against fat and lean mass to estimate rates 

of nightly mass gain. Statistical analyses were conducted in the program R (version 3.2; 

R Development Core Team 2009). I used the coxph function of the package survival for 

CPH. All values are reported as mean ± standard deviation, N = number of individuals. 
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3.4 RESULTS 

3.4.1 Stopover duration 

Radio transmitters were deployed on 40 L. noctivagans, 24 bats in 2012 (N=13 male; 

N=11 female) and 16 bats in 2014 (N=5 male; N=11 female). I quantified stopover 

duration for 35 bats (N=15 male; N= 20 female). In 2012 three male bats remained in the 

study region for more than 35 days (approx. transmitter battery life). This observation 

was not attributable to death or transmitter loss because bats were recaptured and 

continued to move within the study site. These individuals were classified as residents, 

and excluded from subsequent analyses. In 2014 data were missing from two bats tagged 

on April 15th when there were technical difficulties with the Old Cut receiver.  

 

Stopover duration of bats ranged between 1 and 21 days (3.6 ± 5.3 days, median 0.8 days; 

Fig. 3.2). The majority of bats were transients, 64% of captures, departed the same 

evening they were captured, or the following evening if captured near dawn (i.e. 

stopovers were < 24 h).  Multi-day stopovers could not be entirely attributed to inclement 

weather (e.g., rain or high winds), as there were several nights when some bats departed 

and others remained (Fig. 3.3). Each increase in 1 ºC of night-time mean temperature was 

associated with a 1.2 times greater daily departure probability (hazard ratio [HRTemp] = 

1.2, 95% CI 1.1, 1.3; Fig. 3.4).  I found no difference in the daily probability of departure 

between male and female bats (HRSex = 0.6, 95% CI = 0.1, 2.6), between years (HRYear = 

0.9, 95% CI = 0.5, 1.5), or by fat mass (HRFat = 0.9, 95% CI = 0.3, 2.3).  

 

In both 2012 and 2014 there was a group of 4-6 bats that arrived on the same night (Fig. 

3.3). I used these individuals to further explore the effects of fat stores on stopover 

duration, when all individuals experienced the same weather conditions. Within these 

cohorts there was no increase in the daily probability of departure by fat mass in either 

2012 (HR2012fat = 1.4, 95% CI = 0.1, 23.7) or 2014 (HR2014fat = 0.2, 95% CI = 0.2, 242.2). 
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FIG 3.2– Probability of departure of L. noctivagans from a stopover site during spring 

migration (April – May, 2012 – 2014). Grey shading denotes 95% confidence interval. A 

single day stopover indicates a bat that remained at the site for a single day (inactive 

period), less than one stopover day indicates the bat departed on the same night of 

capture. 
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FIG 3.3– Time periods that L. noctivagans arrived and departed the stopover site in A) 

2012 and B) 2014. Bats arrived in pulses of individuals, but remained at the stopover for 

different lengths of time. Points show when bats were captured and solid lines are the 

time period when bats were detectable within the region. Males are shown in dark grey, 

females in light grey. Note the different x-axis time scales.  
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FIG 3.4– Relationship between L. noctivagans stopover duration and average night-time 

Ta experienced during stopovers. Multiday stopovers are more common when bats 

experienced Ta below 15 ºC. Circles mark 2012 and triangles mark 2014. 

 

 

 

 

  



 

 
 

58 

3.4.2 Stopover behaviour 

Bats that had multi-day stopovers spent several of those nights inactive and presumably 

roosting (Table 3.1). Ta differed on nights when bats were roosting, active or departed the 

study site (F2,82 = 5.4, P < 0.01). Nights on which bats were active were 3 ºC warmer than 

nights when they roosted (P = 0.01). Nights when bats departed did not differ 

significantly from those on which bats were active (P = 0.9) or when they roosted (P = 

0.1).  

 

3.4.3 Nightly mass gain 

Over three years I captured a total of 114 bats (66% female, 34% male). Bats were 

captured throughout the night, with a small peak shortly after dusk and a larger peak 

about 1 h before dawn (Fig. 3.5). Bats carried on average 11.3 ± 4.6% body fat. Time of 

night at which bats were QMR scanned had a significant effect on both fat and lean mass, 

which suggests that bats were gaining mass throughout the night. Fat mass was positively 

correlated with time of night, fatter bats were captured closer to dawn (P = 0.006, 

F1,82=7.9, R2=0.09; Fig. 3.6a). Lean mass was also greater in bats captured later in the 

night (P = 0.001, F1,82=10.9, R2=0.12; Fig. 3.6b). There was no effect of sex on the slope 

of fat or lean mass, males and females gained mass at equal rates (P > 0.05).  

 

For each hour later in the night that a bat was captured, its fat and lean mass were 0.098 g 

and 0.090 g greater, respectively. If bats put on mass at this rate, then in the eight hours 

between sunset and sunrise, bats would be expected to put on 1.50 g of mass or 

approximately 10-17 % of their body weight. Forearm length did not vary with hour of 

capture, indicating that hourly mass change was not driven by larger bats being captured 

later in the night (P = 0.54). The relative deposition of fat (0.44 /g body mass) and lean 

mass (0.49 /g body mass) did not differ between the sexes (P > 0.05; Fig. 3.7).  
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Table 3.1– Nighttime activity patterns of bats during multi-day stopovers. Missing bats 

are presumed to be in an unknown roost, or outside of the range of the tower. 

 Tag id Sex Fat mass 

(g) 

Roosting 

(nights) 

Active 

(nights) 

Missing  

(nights) 

2012       

Lano 6 89 Female 1.88 7 12 1 

Lano 7 146 Female 2.52 4 0 0 

Lano 10 87 Female 1.08 8 4 0 

Lano 11 144 Female 2.27 4 1 0 

Lano 29 94 Male - 0 4 1 

       

2014       

Lano 377 Male  0.78 11 2 0 

Lano 406 Female 1.24 0 4 7 

Lano 408 Male 0.77 5.5 0.5 0 

Lano 411 Female 2.02 7 4 0 
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FIG. 3.5– Time of night L. noctivagans were captured at Long Point (2012 – 2014) form 

two peaks, one shortly after sunset and the greatest number of captures occurred in the 

hour before dawn. Netting effort was constant throughout the night.  
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FIG. 3.6– Quantitative magnetic resonance measurements of fat (R2 = 0.11; P = 0.006; y 

= 0.00136x + 0.721) and lean (R2= 0.12; P = 0.001; y= 0.00150x +7.884) mass regressed 

against time capture for female (circles) and male (triangles) L. noctivagans during their 

spring migration. There was no effect of sex on rate of mass gain (P > 0.05). 
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FIG. 3.7– Deposition of lean (R2=0.71; 0.48x + 3.12) and fat (R2= 0.79; y =0.45x– 3.62) 

masses of female (circles) and male (triangles) L. noctivagans during spring migration. 

There was no effect of sex on mass deposition.  
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3.5 DISCUSSION  

Bats used extended stopover periods during spring migration. Many bats were transient 

and departed the capture site in less than 24 hours, as found previously in autumn. 

However, about one third of L. noctivagans remained at the study site for more than one 

day.  I hypothesize that L. noctivagans has a mixed migration strategy – using multiday 

stopovers during cool weather and fly-and-forage migration when prey availability 

permits. Multiday stopovers were a combination of nights dedicated to foraging and 

nighttime roosting, perhaps entering torpor to “pause” migration when weather and prey 

abundance was unfavorable. Mixed migration strategies, when used by swifts, involve the 

inclusion of stopover to take advantage of a particularly abundant prey source (Åkesson 

et al. 2012). Bats appear to use stopover for the opposite reason – to focus efforts on 

foraging when prey abundance is low and the fly-and-forage strategy may not be 

advantageous. It is also possible that use of multiday stopovers in response to cool 

weather helps bats time their migration so that they do not arrive at breeding areas when 

conditions are still poor.  

 

The proportion of transients (bats that did not stopover for multiple days; 64%) is 

comparable to that observed in migrating birds which use a stopover migration strategy 

e.g., white-crowned sparrows (Zonotrichia leucophrys leucophrys: 46%; Cherry 1982), 

European robins (Erithacus rubecula: ~50%; Bulyuk and Tsvey 2013), and wood 

sandpiper (Tringa glareola: 73.5%; Muraoka et al. 2008). The stopover durations used by 

L. noctivagans (3.7± 5.4 days) were also similar to those used by spring migrating 

passerine birds e.g., Swainson’s thrushes (Catharus ustulatus) – 3.7 ± 3.4 days (Matthews 

and Rodewald 2010), European robin (Erithacus rubecula) – 3.8 ± 4.8 days (Bulyuk and 

Tsvey 2013), and red-eyed vireo (Vireo olivaceus) – 2.80 ± 0.14 days (Cohen et al. 

2014). Combined, these similarities in the proportion of transients and stopover duration 

suggest that during spring migration L. noctivagans use stopovers in a similar way to 

birds, and may not use a fly-and-forage strategy. 

 

I detected no effect of sex on the proportion of transients or stopover duration. This result 

is at odds with the different phenology of male and female L. noctivagans, females arrive 
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earlier than males in the migration season (Chapter 2). In birds, protandry (earlier arrival 

of males) is sometimes achieved by shortening stopovers (Dierschke et al. 2005), so I 

expected female bats would have shorter stopovers than males. This lack of sex 

difference may be due to the small sample size and large variation in the stopover lengths 

that I measured. Alternatively, under the current foraging conditions females may be 

unable to move more rapidly than males, and instead females may achieve earlier passage 

times by initiating their migration earlier, as has been suggested by occurance data 

(Cryan 2003).  

 

If refueling drives stopover length in bats, the size of fat stores should in part determine 

the length of stay (Alerstam 2011). That is, fatter bats will require less time to top up their 

fuel tank. My results did not support this hypothesis, I found that fat did not predict the 

length of a bat’s stopover. The avian literature on the relationship between fuel load and 

stopover duration is mixed. Several studies have found that fat birds depart sooner, 

consistent with the idea that birds have completed refueling (e.g., Biebach et al. 1986; 

Morris 1996; Gannes 2002; Goymann et al. 2010; Seewagen and Guglielmo 2010). Other 

studies have found no effect of fat on the length of stay (Kuenzi et al. 1991; Salewski and 

Schaub 2007; Tsvey et al. 2007). Studies that find a link between fat stores and stopover 

duration are often conducted near an ecological barrier i.e., ocean or desert crossings 

where there is strong selection pressure to build a sufficient fuel store to cross 

inhospitable habitat where refueling is not possible (e.g. Biebach et al. 1986; Goymann et 

al. 2010). In contrast,  European robins experience ample foraging opportunities along 

their migratory route and show no relationship between stopover duration and fat stores 

(Tsvey et al. 2007). L. noctivagans likely experience frequent or continuous foraging 

opportunities along their route, and so may not need to amass large fuel stores before 

departure. Other migrating bat species which cross ecological barriers such as the Baltic 

Sea (Rydell et al. 2014) may show a stronger relationship between stopover duration and 

fuel load. Although, some bat species have been reported to forage for insects up to 14 

km from shore (Ahlén et al. 2009) and may be able to continue to use a fly-and-forage 

strategy over water.  
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Bats used multi-day stopovers during the cool, early spring season. Several passerines 

also tend to have longer stopovers during the early spring when there may be less time 

pressure to reach the breeding grounds (Dierschke and Delingat 2001; Matthews and 

Rodewald 2010).  Prolonging stopover periods when faced with cold conditions may help 

bats and birds time their arrival to the development of resources at the summering 

grounds. During their migration L. noctivagans readily enter torpor, a state of decreased 

metabolism and body temperature that drastically reduces thermoregulatory costs 

(Chapter 4; McGuire et al. 2014). I observed several nights when bats did not leave their 

roosts and were likely torpid. The ability to use torpor could substantially mitigate the 

risks of arriving too early. Whereas most birds risk depletion of fat reserves and 

starvation if they arrive at stopover sites while refueling prospects are still poor, bats may 

be able to “pause” migration during unfavorable periods and wait until refueling 

opportunities improve. Birds that use torpor, such as nightjars and hummingbirds may 

also be able to “pause” migration similar to bats (Carpenter and Hixon 1988; Doucette et 

al. 2011). L. noctivagans remained at stopover for longer periods when Ta dropped below 

12°C, and coincidentally, 10°C is approximately the onset for insect flight and likely 

indicative of poor foraging prospects (Taylor 1963). The extension of stopover and delay 

of migratory movements during cold weather could explain why female passage timing is 

later in cold years (Chapter 2).  Males migrate later in the season, reducing the likelihood 

of encountering cold weather, and so their passage timing is independent of Ta (Chapter 

2). 

 

Use of multi-day stopovers during spring contrasts with the migration strategy of L. 

noctivagans at the same site during the autumn, when nearly all bats departed after a 

single day (McGuire et al. 2011). Environmental conditions were sufficient to explain 

this seasonal difference in stopover behaviour. Bats remained at stopover for longer 

periods when Ta dropped below 12°C, a condition that was not frequently met during the 

autumn migration sampling period of McGuire et al. (2011). Further study later in the 

autumn migratory period (i.e. October) may reveal that multiday stopovers are also used 

at this time. Bats may be able to refuel more rapidly during warm fall nights than in the 

spring when cooler temperatures limit aerial insect abundance. There is limited evidence 
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that fall migrants were active (and presumably foraging) at my study site for more than 

one hour a night (McGuire et al. 2011). Seasonal differences in stopover are unlikely 

related to the position of Lake Erie relative to the direction of flight. If the lake were 

acting as a barrier I would predict the opposite pattern, that bats would spend longer 

periods building up fat stores in preparation to cross the lake (i.e., during autumn 

migration). 

 

I provide the first evidence that like some bird species, bats may also stop for prolonged 

refueling under the right conditions. My telemetry data show that some bats spend several 

nights at a time with activity patterns likely associated with foraging. If bats were putting 

on mass throughout the night, I predicted that time of capture would be positively 

correlated with mass. Both fat and lean mass were positively correlated with time of 

night, which indicates that bats rebuild both their fat and lean tissue as fuel. I detected no 

sex difference in rate of refueling. However, this may be due to the sensitivity of the 

analysis. Analysis of plasma metabolites, which show a finer time scale of foraging status 

have detected sex differences in refueling rates of birds (Seewagen et al. 2011), with 

males refueling faster.   

 

L. noctivagans use multiday stopovers to refuel during spring migration, similar to many 

passerine songbirds. The use of stopovers is not mutually exclusive to torpor-assisted 

migration and/or fly-and-forage migration, which may also be important components of 

the migration strategies of bats. Conditions experienced at stopover habitats can have a 

strong influence on the speed of migration and ultimately the likelihood of survival of 

migrating birds (Russell et al. 1994; Hutto 2000; Newton 2006), similarly if bats are 

refueling as they migrate, they may also be constrained by the quality of stopover habitats 

they encounter along their migration.  
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CHAPTER 4 

COLD BREAKS: SEASONAL AND SEX DIFFERENCES IN 

DAILY TORPOR USE BY MIGRATING SILVER-HAIRED 

BATS (LASIONYCTERIS NOCTIVAGANS) 
 

4.1 ABSTRACT 

Torpor allows heterotherms to conserve energy that would otherwise be expended on 

thermoregulation. Facultative use of torpor appears to be an important element of how 

bats maintain energy balance while migrating. However, little is known about factors that 

affect torpor expression in migrants. I investigated the effects of season, sex and fat stores 

on the use of torpor by migrating silver-haired bats. Spring and autumn migrations 

present different challenges that are likely to modulate the expression of torpor. During 

spring, cool ambient temperatures (Ta) increase the costs of thermoregulation and 

decrease flying insect abundance, making refueling more challenging. Further, females 

are pregnant during their spring migration and may use torpor to a lesser extent to prevent 

reducing fetal development. First, I examined the torpor patterns of free-ranging spring 

migrating bats using temperature-sensitive radio-transmitters. Second, I conducted a 

respirometry trial of torpor use in spring migrants under a constant experimental 

temperature of 10 °C. Finally, I compared spring torpor expression by free-ranging bats 

with data previously reported for autumn migration. Torpor bout duration was negatively 

correlated with Ta. After accounting for the effect of Ta, spring migrants still had 14% 

longer torpor bouts than fall migrants. Females had 14% shorter torpor bouts than males 

in both seasons. I hypothesize that differences in foraging effort between males and 

females, and differences in prey abundance, predictability, and/or nutritional quality 

between spring and fall may drive the observed patterns of torpor expression.  

 

Keywords: Chiroptera, heterothermy, energy balance, sex differences, thermoregulation, 

torpor-assisted migration, migration 
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4.2 INTRODUCTION 

The high energy demands of euthermia become a liability when food resources are 

scarce. When heterotherms enter torpor the decrease in metabolic rate and corresponding 

reduction in body temperature allows them to subsist on relatively small energy stores, 

biding time until conditions improve. Daily torpor has long been considered a 

physiological response to adverse environmental conditions (e.g. food scarcity and/or 

harsh weather)(Wang 1989). Indeed, torpor can facilitate survival during natural disasters 

(Nowack et al. 2015), and the ability to endure such stochastic events has likely 

contributed to lower extinction rates in heterothermic species (Geiser and Turbill 2009; 

Hanna and Cardillo 2014).  

 

Recently, the facultative functions of torpor have become more widely recognized 

(Geiser and Brigham 2012). For example, late-born juvenile dormice experience low food 

availability while they attempt to acquire sufficient energy for growth and hibernation 

(Giroud et al. 2012). By using torpor, food restricted juvenile dormice “catch up” in 

growth to juveniles fed ad lib (Giroud et al. 2012).  Similarly, mulgaras (marsupial 

carnivores) enter torpor during pregnancy to build up fat stores for the more expensive 

lactation period (Geiser and Masters 1994). The facultative use of torpor by a migrant 

was first observed in hummingbirds (Carpenter and Hixon 1988). By entering torpor for 

the entire night, one Rufous hummingbird (Selasphorus rufus) was estimated to have 

conserved 10% of its total fat stores. The authors concluded this observation constituted a 

facultative use of torpor rather than an emergency strategy because the bird was very fat 

and could have balanced its energy budget by using torpor for just part of the night 

(Carpenter and Hixon 1988). Subsequent research has suggested that hummingbirds 

modulate their use of overnight torpor to facilitate fat deposition during migration. While 

refueling, hummingbirds show biphasic mass gain – during the initial days, mass is 

accumulated slowly and then just prior to resumption of migration, mass is put on more 

rapidly (Carpenter et al. 1993). This rapid phase was facilitated by a decrease in 

overnight mass loss, which is hypothesized to be driven by an increase in use of 

overnight torpor (Carpenter and Hixon 1988; Hou and Welch 2016). Similarly, migrating 

Blackcaps (Sylvia atricapilla) that dropped their body temperature several degrees 
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overnight were able to increase their body mass more rapidly than those which defended 

normothermia (Wojciechowski and Pinshow 2009).  The use of heterothermy appears 

related to refueling state. Blackcaps which used heterothermy also had lower body 

masses, and thus lower fuel stores, than those that defended normothermia 

(Wojciechowski and Pinshow 2009).  Migrating silver-haired bats (Lasionycteris 

noctivagans) use torpor to reduce daytime thermoregulation costs (McGuire et al. 2014). 

Torpor assisted migration is hypothesized to shorten refueling times, and may preclude 

the need for bats to use multi-day refueling periods (McGuire et al. 2011; 2014). 

However, little is known about how the  expression of torpor in migrants is affected by 

season or individual traits.  

 

Here I investigate the effects of season, sex and fat stores on the use of torpor by 

migrating L. noctivagans. Spring and autumn migrations present different challenges that 

are likely to modulate the expression of torpor. During spring, migrants experience cooler 

ambient temperatures (Ta) which should increase the costs of thermoregulation. Lower Ta 

also means lower flying insect abundance (Taylor 1963), making refueling more 

challenging. Environmental conditions result in migrants being more energetically 

constrained in spring than in autumn, and may potentially slow the pace of spring 

migration. Consequently, I predict that migrants will spend a greater proportion of time in 

torpor during the spring as compared to the autumn. 

 

Seasonal differences in reproductive investment by male and female bats are likewise 

expected to impact torpor expression. Females are likely in the early stages of pregnancy 

when they undertake spring migration (Druecker 1972). Reproduction and torpor are not 

mutually exclusive (McAllan and Geiser 2014), but pregnant females of many bat species 

typically use shorter torpor bouts and defend higher body temperatures than non-

reproductive females and males (Cryan and Wolf 2003; Solick and Barclay 2006; Turbill 

and Geiser 2006; Stawski 2010; Dzal and Brigham 2012), probably to facilitate fetal 

development. So, I predict that females will use torpor to a lesser extent than males 

during spring migration, but there will be no sex difference in the expression of autumn 
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migrants.  

 

My first objective was to describe the torpor patterns of free-ranging spring migrating 

bats and examine the effect of sex and fat stores. Second was to conduct a respirometry 

trial of torpor use in spring migrants under a constant experimental temperature of 10 °C 

to control for differences in Ta when males and females arrived at the study site (Chapter 

2). Finally, I compared spring torpor expression with data previously reported for autumn 

migration in McGuire et al. (2014). 

 

4.3 MATERIALS AND METHODS 

This study was conducted at the Old Cut field station of the Long Point Bird Observatory, 

Ontario, Canada (42°34'N, 80°20'W).  Situated on the north shore of Lake Erie, Long 

Point is a well-known stopover site for migrating L. noctivagans (Dzal et al. 2009; 

McGuire et al. 2011).  For seasonal comparisons, Ta (  0.1 °C) was recorded from an 

Environment Canada weather station at Long Point (42°34'N, 80°20'W). At my study site 

Ta are on average 10.8 °C cooler during the spring migratory period (April – May, 9.5  

1.6 C) than in the autumn (August – September, 19.7  1.4 C; 20-year average, 1995 – 

2015). 

 

I captured bats using mist nets during the spring migration (April – May) in 2013 and 

2014. I recorded body mass using a digital balance (± 0.1 g). Female bats were palpated 

to determine pregnancy status, but none were at a stage where pregnancy could be 

confirmed. In 2014, fat stores of live bats were measured using a quantitative magnetic 

resonance (QMR) body composition analyzer (EchoMRI-B; Echo Medical Systems, 

Houston, TX, USA) – a minimally invasive technique that measures dry fat mass and wet 

lean mass. QMR measurements are taken by placing an unrestrained bat in a small 

ventilated tube, which is then  inserted in the bore of the QMR machine for three 

replicates of a 2-minute scan (for details see McGuire and Guglielmo 2010). 
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4.3.1 Radio-telemetry 

In 2014, torpor expression of free-ranging bats was monitored using temperature-

sensitive radio transmitters which were used to both locate bats and monitor their skin 

temperature (Tsk; ±0.1 °C; BD 2XT, Holohil Systems Ltd., Carp, Ontario, Canada). 

Transmitter pulse interval encodes the Tsk data (pulse intervals decrease at warmer 

temperatures) and signal strength is used to locate the individual. Transmitters were 

affixed to a small fur-trimmed area (< 1 cm2) on the mid-dorsal region using non-toxic 

latex adhesive (Osto-Bond, Montreal Ostomy, Quebec) that wears off within approx. 30 

days. Tsk is considered a good indicator of core body temperature (Tb) in bats; Tsk is  

~ 2 °C below Tb over a wide range of Tb (5 – 40 ºC) (Audet and Thomas 1996; Barclay et 

al. 1996; McKechnie et al. 2007). Transmitters weighed 0.38 – 0.42 g and bat body mass 

ranged from 9.0 –12.6 g. So transmitters ranged from  3.0 – 4.6 % of body mass, below 

the 5 % guideline for bats, suggested to prevent reductions in maneuverability and 

foraging efficiency (Aldridge and Brigham 1988). Before use, radio transmitters were 

calibrated in a precision water bath (Lauda Eco, LAUDA-Brinkmann, Delran, New 

Jersey, USA) to the nearest 0.1°C, over a range of temperatures (1.5– 40.0 °C) against a 

digital thermometer (Total-Range Digital Thermometer, VWR, Radnor, Pennsylvania, 

USA). Following transmitter attachment, bats were held for 10 minutes to allow the glue 

to set and were released at the capture site.  

 

Shortly after dawn I radio-tracked bats to their day roost using handheld antennas (3-

element, Yagi) and receivers (SRX 600, Lotek Wireless Inc, Newmarket, Ontario, 

Canada). All Tsk measurements took place on the first day of data collection because all 

but one bat departed the study site after a single day. Tsk was recorded every ~ 10 seconds 

using custom-built data-logging SensorGnome receivers (www.sensorgnome.org) 

equipped with one 3-element Yagi antenna, receivers were left near the roost until the bat 

departed. The receiver deployment file was programed to record pulses that that were 

shorter than 23 ms, within 0.048 MHz of the tag frequency, and at least 3 dB above 

background noise (Supplementary Materials). Receivers recorded radio pulse signal 

strength and a timestamp. The raw data were filtered by frequency offset to remove 

harmonics. Hampel filters with a moving window of 20 recordings were used to further 
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remove noise in frequency offset using the hampel function of the pracma package 

(v 1.9.3) in R. Following this filtering, the pulse interval between concurrent recordings 

was calculated. A second hampel filtering removed outliers in the pulse interval. 

Following this the individual calibration curve for each transmitter was used to convert 

pulse interval into Tsk. To delimit when a bat entered torpor, I used a Tsk torpor onset 

threshold calculated using equation 4 from Willis (2007):   

(1)   Tb-onset 1 - SE = (0.041)body mass + (0.040)Ta + 31.083 

To account for the difference between Tsk and Tb, 2 C was subtracted from Tb onset to 

create Tsk onset (Barclay et al. 1996). In this calculation Ta was the mean Ta for the duration 

that the bat was observed. A bat was considered torpid whenever Tsk dropped below this 

threshold. Torpor onset ranged from 29.9 – 30.4 C for different individuals. Torpor bout 

duration was calculated as the cumulative time spent below the torpor onset threshold 

from time of first location until sunset. Autumn torpor and body composition data was 

taken from supplementary table 2 (McGuire et al. 2014), which used similar methods. 

 

I monitored roost Ta by placing a temperature data-logger (HOBO Pendant, Onset, Cape 

Cod, Massachusetts) as near as possible to the bats, within 5 m of the roost and in the 

shade. When bats roosted in woodpiles the data logger was placed ~40 cm deep into an 

adjacent gap in the logs.  

 

4.3.2 Respirometry 

In 2013, I used flow-through respirometry to determine bats’ latency to enter torpor. 

Torpor entry was obvious and defined as a sharp drop in O2 consumption. Bats were held 

in cloth bags upon capture to await their respirometry trials which took place during the 

inactive period, from dawn until sunset. Bats were weighed and then placed inside 1.12L 

respirometry chambers made of metal canisters, which contained a hanging mesh for bats 

to roost upon. Respirometry chambers were housed within a temperature-controlled 

cabinet (± 0.2 °C; model PTC-1 with PELT-5 temperature controller; Sable Systems, Las 

Vegas, NV, USA) set to 10 °C. Outside air was pumped through a drier (PC-4 Peltier 

Effect Dryer; Sable Systems), and two columns of Drierite to remove any water vapor. 

Dry air was then passed through needle valves (air flow manifold MF-8; Sable Systems), 
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which split the flow to supply the three airtight chambers and a line used as a baseline. 

Flow supplied to each chamber was 250 ml/min, but in a few cases dropped as low as 120 

ml/min due to difficulties with water condensing in the incurrent line. I used a 

multiplexer (MUX flow multiplexer; Sable Systems) to monitor each chamber for 10 min 

before switching to the next chamber, after all chambers were monitored I measured a 

baseline airflow. Between 1 and 3 bats were monitored during a trial, therefore the 

measurement error in latency to enter torpor could be as much as 40 min. Excurrent air 

was dried with a column of Drierite to remove any moisture added by subjects. Flow 

from each chamber was monitored with a mass flow meter (840L; Sierra Instruments, 

Monterey, CA, USA) and subsampled at 90 mL min-1 (Gas analyzer sub-sampler v2.0 

Sable Systems). Subsampled air was then sent to CO2 (model CA-2A; Sable Systems) 

and O2 analyzers (model FC-1B; Sable Systems). All readings were recorded using an 

analog-to-digital converter (UI-2; Sable Systems). Upon completion of the trial at sunset 

bats were weighed again. 

4.3.3 Analysis 

For free-ranging bats, linear models were used to assess effects of Ta, sex, season, fat 

mass, and the total time the bat was observed, on torpor bout duration, minimum Tsk, and 

Tsk-Ta. As the effect of Ta on torpor bout duration appeared non-linear, a quadratic model 

was also fit to the data, but this model did not have significantly better fit than the linear 

model (data not shown). For respirometry trial data, I used student’s T-tests to compare 

the bats’ latency to enter torpor, and mass loss between male and female bats in the 

experimental trial at 10 ºC. Numerical values are reported as means   SD. Statistical 

analysis were conducted in R (version 3.2.4, R Core Development Team, 2016).  

 

4.4 RESULTS 

4.4.1 Spring torpor expression – free ranging bats 

I outfitted 23 spring migrants with radio transmitters. Data were collected from 20 bats 

(N=10 male; N=10 female) and a total of 19.79 bat days of data were recorded. Bats were 

located at their day roosts 2.1  1.4 h after sunrise. Temperature monitoring encompassed 
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85.5  9.8% of the daytime period (sunrise to sunset).  At sunset, bats usually departed 

their roosts and were not found within the study area again. Five days of data were 

recorded from one male bat that remained in a roost during cool weather.  

 

All bats entered torpor for the majority of the daytime (10.8   2.2 h). Half of the bats had 

already entered torpor by the time I located them (N = 9/20).  Ten bats remained in deep 

torpor (Tsk below 20 C) for the entire day (Fig. 4.1A). The second most common pattern 

was a bout of torpor in the morning and afternoon, with a single period of euthermia 

during the warmest part of the day (Fig. 4.1B).  Three bats did not arouse from torpor at 

dusk, and roost Ta at sunset was between 10.6 –15.0 C on these nights. 

 

Bats spent more time in torpor on days with colder mean Ta roost (P= 0.02; R2= 0.31; 

F2,17=5.17). After the effects of Ta roost and the total time the bat was observed were 

accounted for, there was no detectable effect of sex or fat mass on torpor bout duration (P 

> 0.05). Fat mass of radio-tagged bats was 0.98 ± 0.36 g fat or 8.9% of body mass. Bats 

maintained Tsk 3.9  2.1 C above Ta roost, and there was no effect of sex or fat on Tsk-Ta 

roost (P > 0.05). Minimum Tsk of torpid bats was 15.6  4.0 C and did not differ between 

sexes or by fat (P > 0.05).  

 

4.4.2 Spring torpor expression – respirometry trial 

I experimentally tested the time since the beginning of the respirometry trial (dawn) until 

torpor entry for 18 bats (male N= 6, female N=12) exposed to a Ta of 10 ºC. Four bats 

roosted on the bottom of the chambers and were damp with urine at the end of the trial, 

these bats were removed from further analysis (male N= 1, female N=3). In two bats O2 

consumption was not monitored because of an error with multiplexer control file, but I 

was still able to record change in mass (male N= 1, female N=1). Time until torpor entry 

varied from 2.25 to 9.1 h and tended to be longer in females than males, but this 

difference was not significant (t9=1.5, P = 0.17; Fig. 4.2). Bats weighed 10.8 ± 1.5 g upon  



 

 
 

80 

 

FIG 4.1– Example skin temperature (Tsk) traces (thick black line) of three free-ranging L. 

noctivagans (A-C). Ta denoted by thin red line. Bats were considered torpid when Tsk 

dropped below the torpor threshold (dashed line). Black bars at the bottom of figures 

represent periods of night with vertical lines indicating sunrise and sunset. 
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FIG 4.2– Time since beginning of respirometery trial until torpor entry of L. noctivagans 

held at an experimental temperature of 10 °C. Females tended to delay torpor entry 

longer than males, but this difference was not significant (P> 0.05). Distribution of data is 

shown using Tukey’s box plots. Boxes designate the interquartile range, between the first 

and third quartiles and containing 50% of the observations, and are divided by the 

median. Whiskers connect boxes to the extreme points within 1.5x the interquartile range 

and points outside this range are individually plotted. 
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beginning of their respirometry trial. The decline in body mass after the trial was 2.5 fold 

greater in females (1.15 ± 0.81 g) than in males (0.43 ± 0.13 g; t10 = 2.76, P = 0.02). 

 

4.4.3 Spring vs. autumn torpor expression 

Temperatures at my study site as measured by the Environment Canada weather station 

were on average 11.4 ºC colder, as well as more variable during the spring 2014 (this 

study), than they were during autumn 2011 study period (McGuire et al. 2014; Table 

4.1). Bats entered torpor for 4.7 h more during spring (10.8  2.2 h) than during autumn 

(6.1  3.5 h). Torpor bout duration was negatively correlated with Ta (R2 = 0.61, P < 

0.001; Fig. 4.3). After accounting for the effects of Ta and observation time, spring 

migrants still spent 14% more time in torpor than autumn migrants (F1,31 = 2.1, P = 

0.049; Fig. 4.4B), and females spent 14% less time in torpor than males (F1,31 = 2.5, P = 

0.017; Fig. 4.4A; full model: F5,31= 20.5, P < 0.001). Controlling for the effects of sex, 

season and observation time, bats with larger fat stores tended to spend less time in 

torpor, although this effect was not statistically significant (F1,31 = 1.8, P = 0.08). 
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Table 4.1– Ambient temperature (°C) from the Environment Canada weather station at 

Long Point (42°34'N, 80°20'W) during this study (spring 2014) and previous work in 

autumn 2011 (McGuire et al. 2014).  

Ta April – May 2014 Aug – Sept 2011  

Daily mean  8.76 20.14 P < 0.001 

SD of daily mean  4.68 3.32 - 

Mean daily min   1.61 17.99 P < 0.001 

Mean daily max  9.64 22.36 P < 0.001 

 

  



 

 
 

84 

 

 

 

FIG 4.3– Bats spent more time in torpor at cooler Ta (R2 =0.61, P < 0.001).  Autumn 

migrants (open symbols; data from McGuire et al. 2014) used less torpor for a given Ta 

than spring migrants (closed symbols; this study). Females (circles) used shorter torpor 

bouts than males (triangles). 
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FIG 4.4–Time in torpor of free-ranging L. noctivagans after controlling for the effects of 

Ta and observation time on torpor bout duration (hours), these are the residuals from the 

regression in Fig. 4.3. Male bats spend more time in torpor than females (A), and spring 

migrants have longer torpor bouts than autumn migrants (B).  Distribution of data is 

shown using Tukey’s box plots. Boxes designate the interquartile range, between the first 

and third quartiles and containing 50% of the observations, and are divided by the 

median. Whiskers connect boxes to the extreme points within 1.5x the interquartile range 

and points outside this range are individually plotted. 
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4.5 DISCUSSION 

Facultative use of torpor appears to be an important component of the migratory strategy 

of L. noctivagans in both spring and autumn. Bats used torpor extensively during both 

migration seasons. Further, torpor expression varied with both season and sex – spring 

migrants had longer torpor bouts than fall migrants and females had shorter torpor bouts 

than males in both seasons.  

 

4.5.1 Season 

L. noctivagans used torpor for 1.8 fold more time in spring than in the autumn. Colder 

spring Ta can explain a large proportion of the variation in torpor expression, but even 

after the effects of Ta were accounted for spring migrants used torpor for 14% more time 

than autumn migrants. I hypothesize that differences in foraging effort, insect prey 

abundance or quality could explain this seasonal shift in torpor patterns. The link 

between food shortage and increased torpor expression is well established. Laboratory 

studies have demonstrated that food restriction alone can induce torpor in several taxa 

including marsupials (Geiser and Baudinette 1987; Song and Geiser 1997; Bozinovic et 

al. 2007), rodents (Lovegrove and Raman 1998; Ehrhardt et al. 2005; Brown and Staples 

2010), primates, (Génin and Perret 2003; Giroud et al. 2009), and bats (Wojciechowski et 

al. 2007; Matheson et al. 2010). Several field studies have found correlations between 

food availability and torpor expression (for a review see Vuarin and Henry 2014). For 

example, in a post-wildfire landscape, bats decreased their use of torpor, likely in 

response to an associated 20-fold increase in insect abundance (Doty et al. 2016). 

To distinguish the effects of food resources from thermoregulatory costs, Doucette et al. 

(2011) examined the use of torpor by owlet nightjars (Aegotheles cristatus) in two nearby 

habitats that experienced the same Ta, but differed in insect abundance – irrigated and 

non-irrigated desert. They found that Australian owlet nightjars respond to lower food 

availability by entering torpor for longer periods (Doucette et al. 2011). Although I did 

not directly quantify insect prey during this study, aerial insect activity is linked 

to Ta, with lower activity at low Ta, and activity particularly drops below 10 °C 

(Taylor 1963). Ta at my study site was 11.4 °C cooler during spring migration (this study) 
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than in the previous autumn study (Table 4.1). Therefore, I expect that prey abundance is 

also lower during spring migration. I propose that this low spring insect abundance could 

explain the increased use of torpor use by spring bats, which could not be fully explained 

by the effect of low Ta. 

 

Spring Ta are also more variable from night to night than in the autumn. The standard 

deviation in mean daily Ta, and the range of Ta experienced were greater in the spring 

than in the autumn. Thus insect prey is expected to also be more variable at my site in the 

spring as compared to the autumn. When offered unpredictable amounts of food, fat-

tailed dunnarts (Sminthopsis crassicaudata) increase their use of torpor more than 

animals offered a predictable, but comparably food-restricted diet (Munn et al. 2010). 

Therefore, I expect that if insect availability is less predictable in the spring, it 

could also increase the torpor expression of bats.  

 

In addition to differences in prey abundance and predictability, the nutritional quality of 

insects may differ by season. Meal quality influences torpor expression in marsupial 

carnivores –mulgaras (Dasycercus blythi) (Pavey et al. 2009). Mulgaras whose diet was 

comprised of a greater proportion of vertebrate prey express less torpor than those that 

consumed more invertebrates (invertebrates were presumed to be of lower energy 

content) (Pavey et al. 2009). I predict that if insects of higher energy content are available 

during the autumn, it could further explain why bats use torpor less frequently during the 

autumn.  

 

Further experiments are needed to determine if the seasonal difference in torpor bout 

duration that I observed is an acclimatization effect or a short term response to diet. In a 

captive study of Daubenton’s bat (Myotis myotis), environmental conditions (Ta and food 

availability) were more important predictors of torpor patterns than season 

(Wojciechowski et al. 2007). For blossom bats (Syconycteris australis), however, torpor 

was more pronounced during the summer season, when nectar availability is unreliable, 

even when food intake in captivity was held constant (Coburn and Geiser 1998).  Which 
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suggests either a seasonal acclimation or endogenous rhythm controls torpor expression 

in blossom bats.  

 

4.5.2 Sex differences 

During both spring and autumn, free-ranging female bats used torpor for 14% less time 

than males. Less pronounced torpor expression by spring females would be advantageous 

because it is expected to speed fetal development (Racey 1973). None of the females in 

this study were palpably pregnant, and were likely at an early stage of pregnancy. In other 

bat species, the avoidance of deep torpor only began in the third trimester (Daniel et al. 

2010). My observation that spring migrating female L. noctivagans extensively use torpor 

contrasts with observations of Lasiurus cinereus females, which are palpably pregnant 

and defend normothermia when cold challenged during spring migration (Cryan and 

Wolf 2003). L. noctivagans females may behave similarly in later stages of pregnancy. If 

this is the case, then the pace of female migrants may slow, if they use less torpor later in 

the migratory period. 

 

The pattern of decreased torpor use by females was also apparent in autumn, when 

females are non-reproductive. Thus, factors other than pregnancy likely contribute lesser 

use of torpor by females. If female L. noctivagans have a different foraging strategy than 

males, it could affect their proclivity to enter torpor. I hypothesize that females forage 

more intensely than males to accrue sufficient fat stores to support the future costs of 

lactation. Experimental manipulations of meal size predicted time until torpor entry in 

little brown bats (Myotis lucifugus) (Matheson et al. 2010). Matheson et al. (2010) 

hypothesized that the delayed entry into torpor after foraging is an adaptation to ensure 

sufficient digestion and absorption of nutrients that would be impaired by torpor. Short-

term responses to meal size are also hypothesized to dictate torpor expression of S. 

crassicaudata (Munn et al. 2010). Moreover, the short-term effects of meal size on torpor 

expression appear to apply to some free-ranging bats. Lactating big brown bats (Eptesicus 

fuscus) that foraged longer expressed shorter torpor bouts (Rintoul and Brigham 2014).  
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I found no sex difference in time to torpor entry in my experimental trial at 10 °C. This 

may be because of my relatively small sample size of males, or because as bats waited for 

their trial to start at dawn, they missed out on foraging time and may have finished 

digesting by the time the trial began. Whereas bats that were radio-tagged and released 

were free to resume their normal activity patterns and forage before dawn. 

 

4.5.3 Summary 

In summary, the effects of Ta could not fully explain the seasonal variation in torpor bout 

duration, and I hypothesize that this effect is driven by differences in prey abundance, 

predictability and/or quality. While I cannot exclude the possibility that pregnancy drives 

sex differences in torpor use in the spring, torpor expression may in part be determined 

by differences in the foraging effort of males and females. If the torpor variation I 

observed is driven by meal size, my data suggest that females forage more intensely than 

males during both spring and autumn migrations. No data on the refueling rates or pace 

of migration exist for L. noctivagans, so it is difficult to determine if the additional use of 

torpor in spring is sufficient to compensate for presumed lower foraging opportunities 

during the spring, or if food availability and Ta are limiting for the pace of spring 

migration. Ongoing work at our site is examining seasonal differences in insect 

abundance and energy content. Future work should examine the relative foraging effort of 

spring and autumn migrants. Further study is required to determine if torpor use is 

enhanced during the migration as compared to pre-migration.  
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 CHAPTER 5 

SPRING AND AUTUMN MIGRATORY MOVEMENTS OF 

NORTH AMERICAN TREE-BATS (LASIONYCTERIS 

NOCTIVAGANS, LASIURUS BOREALIS AND LASIURUS 

CINEREUS) MEASURED USING THE MOTUS WILDLIFE 

TRACKING SYSTEM 
 

5.1 ABSTRACT 

Lack of knowledge about the behaviour of migratory species during the migratory period 

is a major barrier to conservation efforts. This is especially true of North America’s tree-

roosting bats: Lasiurus cinereus, Lasiurus borealis, and Lasionycteris noctivagans. We 

used the Motus wildlife tracking system, an array of 72 radio receiving towers situated in 

south-western Ontario, Canada to follow the movements of 65 migrating bats during both 

spring and autumn. We provide the first long distance movement tracks and estimates of 

migration speeds of North American tree-bats. We found no evidence that bats were 

preferentially following leading lines of features oriented primarily north to south 

(shorelines of Lake Huron or the Niagara escarpment), although several bats moved along 

the shoreline of Lake Erie which runs east to west. Autumn migrating L. noctivagans 

traveled through the monitored space at an average speed of 133 ± 112 km per day, much 

less rapid than their estimated ground speeds of 50 ± 19 km h-1 should allow. This 

strongly implies that bats are using stopover periods and are selective regarding when to 

move.  

 

Keywords: automated radio-telemetry, Chiroptera, flight speed, leading lines, flight 

behaviour, migration corridor, migration speed, migration route, tailwind assistance, wind 

energy 
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5.2 INTRODUCTION 

One of the greatest barriers to effective conservation and management of migratory 

animals is our ability to determine the importance of various landscapes and how they are 

used throughout the year (Wilcove and Wikelski 2008). The ecology of North America’s 

migratory, tree-roosting bats (Lasionycteris noctivagans, Lasiurus borealis, and Lasiurus 

cinereus) is very poorly known, and even less is understood about the behaviour and 

habitat requirements of these species during migratory periods. High incidence of 

migratory bat mortality at industrial wind energy facilities is a cause for concern. 

Between 2000 and 2011 an estimated 650,104 to 1,308,378 bats, mainly migratory tree-

bats, were killed at industrial-scale wind turbines in Canada and the United States (Arnett 

and Baerwald 2013). The impact of this mortality on populations is difficult to assess 

because good population estimates are lacking, but they may be substantial enough to 

threaten population viability (Frick et al. 2017). 

 

This conservation threat has provided impetus to answer fundamental questions about the 

basic biology of migratory bats (Arnett et al. 2016). For example, how do landscape 

features shape movement? Identification of key landscape features could help regulators 

to delineate migration corridors and that should be taken into account when constructing 

wind energy facilities (Arnett et al. 2016). Are there behavioural differences between 

spring and fall migration? Understanding what, if any variation occurs in migratory 

routes between seasons may allow us to better manage and mitigate bat fatalities at wind 

energy facilities. The vast majority of wind-turbine mortality has been reported during the 

autumn migration period. Few mortalities have been reported in the spring. Although 

hypotheses have been proposed to explain the differential mortality, such as the mate 

attraction hypothesis – that bats congregate near the tallest structures on the landscape in 

the autumn to facilitate mate searching, the cause is still unknown (Cryan and Barclay 

2009). 

 

Migratory movements of tree-bats have been inferred from visual (Cryan and Brown 

2007) and acoustic (Baerwald and Barclay 2009; Furmankiewicz and Kucharska 2009; 

Hooton 2010; Johnson et al. 2010; Cryan et al. 2012; Hamilton 2012) surveys, mortality 
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at wind energy facilities (Arnett et al. 2008; Baerwald and Barclay 2009), and analysis of 

museum collections (Cryan 2003). In birds, large-scale mark-recapture efforts have 

provided a wealth of information about movement patterns and survival rates. Banding of 

tree-bats has been largely ineffective because these species are elusive, and they are 

generally solitary or form small colonies (< 40 individuals).  Tree-bats are difficult to 

band in large numbers and the relative scarcity of bat researchers (as compared to bird 

banders), make recaptures extremely unlikely. Stable isotope analysis of bat fur has been 

used to estimate migration distances and connectivity between habitats (Cryan et al. 

2004; Fraser et al. 2012; Voigt et al. 2012; Baerwald et al. 2014). 

 

Banding and stable isotope analyses provide a snapshot of bat activity at fixed locations, 

but cannot provide data about individual movements. None of the methods described 

above currently have the precision to delineate migration corridors, and intensive survey 

efforts are needed to identify stopover habitats (Hooton 2010). Small body size of most 

insectivorous bats prohibits them from carrying GPS tags – the “small animal problem” 

(Holland and Wikelski 2009; Bridge et al. 2011). Geolocators, although lighter than GPS 

tags (0.5 g), rely on the timing of sunrise and sunset, and are ineffective for nocturnal 

species that spend the day roosting in cavities or shaded by the tree canopy (Lisovski et 

al. 2012). Recent advances in the miniaturization of radio transmitters now allow very 

small species, weighing as little as 4 g to be tracked. Radio transmitters broadcast a signal 

that can then be detected by a radio receiver tuned to the appropriate frequency. A 

drawback of radio telemetry tracking is that receivers must be within range to detect the 

radio-tagged animal; researchers can easily lose contact with flying animals if they cross 

barriers (e.g. lakes) or leave road networks. Tracking using small aircraft can solve some 

of these challenges, but it remains logistically challenging to track multiple individuals 

concurrently. The Motus wildlife tracking system (http://motus.org/) is a radio-telemetry 

array consisting of a network of strategically placed automated telemetry receivers. 

Individual migrants are detected as they pass by checkpoints, allowing a large number of 

migrants to be tracked simultaneously. I used lightweight transmitters (0.29 g) in 

combination with Motus to investigate the movement ecology of individual bats as they 

traveled across southwestern Ontario, Canada.  
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My first objective was to map the migration routes of bats traversing southwestern 

Ontario. I hypothesized that landscape-structure influences migration routes. I predicted 

that topographic features, geographical barriers, and habitat types will concentrate 

migrating bats. Acoustic data suggest bats move along leading lines – landscape features 

such as mountain ranges (Baerwald and Barclay 2009), rivers (Furmankiewicz and 

Kucharska 2009), and coastlines (Barclay 1984). Migratory corridors for bats have not 

yet been identified in southwestern Ontario, but, given the geographic features in this 

region (e.g., the shorelines of Lake Erie and Huron, the Bruce Peninsula, the Niagara 

Escarpment), I predicted that such corridors exist. An acoustic study conducted in 

southwestern Ontario found no support for the hypothesis that bats use the Great Lake 

shorelines or the Niagara escarpment as migration routes, but this may be due to 

confounding echolocation calls from non-migrating individuals (Hamilton 2012). I 

further hypothesized that bats preferentially use different habitat types during different 

migration seasons. I predicted that during autumn migration bats select routes that 

incorporate features such as ridgelines that facilitate finding a mate, whereas habitats 

important for foraging such as riparian corridors are used more during spring migration.  

 

My second objective was to estimate the speed of migration and flight speed of bats. 

Aerodynamic theory proposes that bats can fly at either their minimum power speed (Vmp) 

to minimize the amount of energy used for a unit of time, or at their maximum range 

speed (Vmr) to minimize the amount of energy used to cover a unit of distance 

(Hedenström and Alerstam 1995). I hypothesized that bats would fly near their maximum 

range speed to travel most efficiently. 

 

5.3 MATERIALS AND METHODS 

5.3.1 Study site and capture methods 

I used monofilament mist nets (mesh size 28 mm) to capture bats during migration 

periods. In spring, bats were captured at the base of the Long Point Peninsula, ON, 

Canada at the Old Cut field station of the Long Point Bird Observatory (42°34'N, 

80°20'W) from April 3-May 31, 2012 and April 4-June 5, 2014. This site is previously 
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described in more detail in McGuire et al. (2011). I captured autumn migrating bats at the 

northern end of the Motus array on the Bruce Peninsula, ON, Canaada (45°14'N, 

81°38'W), from August 5-October 9, 2014. Because no trapping location was previously 

known on the Bruce Peninsula, I explored several potential netting sites: a shoreline on 

private property (45°13'N, 81°43'W), Little Cove (45°14'N, 81°36'W), Emmet Lake 

(45°13'N, 81°27'W), Singing Sands (45°11'N, 81°34'W), and the Bruce Peninsula Bird 

Observatory (45°14'N, 81°17'W). The northern Bruce Peninsula landscape is comprised 

of mature mixed forest, dominated by balsam fir (Abies balsamea), eastern white cedar 

(Thuja occidentalis), trembling aspen (Populus tremuloides), white birch (Betula 

papyrifera), and sugar maple (Acer saccharum). Coastal habitats are alvars, containing 

slow growing eastern white cedars over 500 years in age and having a canopy height of 

about 9 m (Schaefer and Larson 1997). Between 5 and 18 mist-nets, ranging from 3 – 7 m 

in height, were opened from dusk until dawn every night, with the exception of the first 

two weeks of August when nets were run from dusk until 2am. Nets were not opened on 

nights when this was prevented by rain, high winds or ambient temperatures (Ta) below 3 

°C (no bats were captured below 5 °C in the first year of the study). 

 

Upon capture, bats were weighed ± 0.1 g using a digital scale (CS200, OHAUS, 

Parsippany, NJ, USA), sexed, and aged as adults or young-of-the-year using the degree of 

closure of the epiphyseal cartilages of the metacarpal-phalangeal joint (Kunz and 

Anthony 1982). We outfitted bats with radio-transmitters (NTQB-1 Lotek, Newmarket, 

ON) secured to a fur trimmed region on the bats’ upper back using a non-toxic latex glue 

(Ostobond; Ostomy Quebec), which wears off in approximately 30 days.  The 

transmitters weighed 0.29 g and bat masses ranged from 8.6 g – 30.9 g, so transmitter 

masses ranged from  3.4 – 0.9 % of the body mass of the bats, which is less than the 

accepted guideline of less than 5 % suggested to significantly decrease maneuverability 

and hinder foraging (Aldridge and Brigham 1988). We outfitted a total of 65 bats with 

radio-transmitters (Table 5.1). All research activities were approved by an Animal Use 

Protocol from the University of Western Ontario Council on Animal Care (protocol 

2010-020; Appendix E), and were  
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Table 5.1– Number of radio-transmitters deployed over three migration seasons. 
Year Season Lasionycteris noctivagans  Lasiurus borealis  Lasiurus cinereus 

  Male Female  Male Female  Male Female 

2012 Spring 11 11  1 0  0 1 

2014 Spring 5 11  0 3  0 1 

2014 Autumn 5 4  7 2  1 2 

Total  21 26  8 5  1 4 
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permitted under a Wildlife Scientific Collector’s Authorizations from the Ontario 

Ministry of Natural Resources (authorization no. 1067554 and 1076439; Appendix D).  

 

5.3.2 Radio-telemetry array  

When I began the study in spring 2012 the pilot telemetry array consisted of just eight 

receiving towers. By 2014 the Motus wildlife tracking system in southwestern Ontario 

consisted of approximately 72 towers positioned strategically across the region (Fig. 5.1). 

The system monitored a single radio frequency (166.380 MHz) and each transmitter 

emitted a unique coded identifying pulse every ~12 seconds. This allowed all bats to be 

monitored simultaneously, which reduced the chances of missed detections that could 

occur if receivers scanned different frequencies for individual radio tags.  Each Motus 

station is composed of an automated SensorGnome telemetry receiver 

(www.sensorgnome.org) and three 9-element directional antennas mounted on a 6 m 

mast. Simultaneous detections estimate the range of these towers are up to 15 km (this 

study). 

 

5.3.3 Analysis 

I plotted the routes taken by bats by connecting the points between consecutive Motus 

stations where bats were detected. I estimated the flight speeds of migrating radio-tagged 

bats by observing the time taken to cross distances between Motus stations (23 – 304 

km). Distance and bearing between towers were calculated using the distHaversine and 

bearing functions of the geosphere package, which take into account the curvature of the 

earth (Hijmans et al. 2016) in R (version 3.2.4, R Core Development Team, 2016).  

Tail wind assistance was calculated at surface level and at 925 mb (approx. 750-800 m 

altitude), 850 mb of pressure (approx. 1500 m), and 750 mb (approx. 3000 m) using the R 

package RNCEP (Kemp et al. 2012). This package queries the National Centers for 

Environmental Prediction reanalysis data set 

(http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html) and interpolates 

wind over between locations and time points. We made the simplifying assumption that 

bats intended bearing was a direct line between pairs of towers, and determined wind 



 

 
 

102 

direction and speed at the tower of origin. Tail wind assistance was calculated at the 

tower of origin for each pair of towers a bat moved between. Air speed was calculated by 

subtracting tail wind assistance at surface level from ground speed.  

 

FIG. 5.1– MOTUS wildlife tracking system in a) 2012 and B) 2014. Towers are indicated 

by grey dots. Black lines denote antennae orientations and a 15 km estimated detection 

distance. When towers have more than three antennas, the antenna orientations were 

adjusted throughout the detection season.   
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N denotes number of bats and n denotes number of replicates. 

5.3.4 Estimates of Vmr and Vmp 

To estimate the power curve for L. noctivagans, I used the Pennycuick aerodynamic 

model (Pennycuick 2008) rather than the Norberg model (Norberg 1990) because the 

Pennycuick model better matches data from bats (Grodzinski et al. 2009; Suba 2014). I 

used the program FLIGHT V 1.24 to create the power curve and calculate minimum 

power speed and maximal range speed (available from 

http://www.bristol.ac.uk/biology/people/colin-j-pennycuick/research.html/). 

Morphometric data required for the model were taken from (Farney and Fleharty 1969) 

and represents 35 individuals: wingspan (289.37 mm) and wing area (114.98 cm2). For 

mass I used the average of individuals in this study (10.5 g). Altitude was set at 250 m 

above sea level, the elevation of Long Point. 

 

5.4 Results 

5.4.1 Spring movements 

In spring 2012 I was able to track two L. noctivagans, and in 2014 I was able to track 

eight L. noctivagans, two L. borealis, and one L. cinereus traveling beyond the capture 

site (Table 5.2). In 2012, 20 L. noctivagans, one L. borealis and one L. cinereus were not 

detected at towers outside of the capture site. In 2014, eight L. noctivagans, and one L. 

borealis were not detected at towers outside of the capture site.  Routes taken by bats 

departing from Long Point did not indicate a clearly defined migratory corridor, and there 

was no evidence of travel either along the shoreline of Lake Huron or the Niagara 

Escarpment (Fig. 5.2).  

 

Silver-haired bats.– Five L. noctivagans headed northwards while the remaining five  

traveled along the shoreline of Lake Erie. Of the five bats that travelled along the 

shoreline, four departed eastward off the tip of Long Point and were not subsequently re-

detected within the array. The other bat traveled about 110 km west along the shoreline.  

 

http://www.bristol.ac.uk/biology/people/colin-j-pennycuick/research.html/)
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Table 5.2– Summary of spring movements 

Tag ID Species Sex Distance 

(km) 

Number of 

days 

Estimated average 

migration speed 

(km/d) 

126 L. noctivagans Male 221 10.1 22.1 

95 L. noctivagans Female 355 2.9 105.9 

379 L. noctivagans Female 251.4 14.6 17.2 

382 L. noctivagans Female 189.3 2.3 82.1 

386 L. noctivagans Female 147.7 11.6 12.7 

390 L. noctivagans Male 109.0 2.0 52.5  

405 L. noctivagans Female 28.9 2.9 10.0 

407 L. noctivagans Female 28.9 4.8 6.0 

408 L. noctivagans Male  28.9 7.9 3.7 

410 L. noctivagans Female 28.9 2.1 23.8 

413 L. cinereus Female 371.9 6.2 60.0 

381 L. borealis Female 176.3 1.2 146.0 
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FIG. 5.2– Spring migration tracks of bats 

in 2012 and 2014. Capture sites are 

indicated by an open circle. Grey circles 

denote MOTUS tower locations. Coloured 

circles represent tower detections for 

individual bats and lines connecting them 

are the shortest paths between towers. 

Dashed line denotes the Niagara 

escarpment. 
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Eastern red and Hoary bats.– One L. borealis traveled eastwards from Long Point, 

before nearly returning to the capture site 1.2 days later, a 176 km round trip.  A second 

L. borealis remained near the capture site and was redetected for 10 d at a receiver tower 

18 km north-west of Long Point, before returning to the capture site for another 10 d. The 

only L. cinereus we captured in spring traveled southwest to Point Pelee and returned to 

the capture site in a loop that took 6.2 nights and covered at least 370 km (Appendix, Bat 

413).  

 

5.4.2 Autumn movements 

In autumn I was able to track nine L. noctivagans, four L. borealis, and two L. cinereus 

traveling beyond the capture site (Table 5.3). Three L. borealis were not detected at 

towers outside of the capture site. Routes taken by bats departing from the northern 

terminus of the Bruce Peninsula did not indicate a clearly defined migratory corridor, 

although some individuals appeared to travel along the Niagara Escarpment (Fig. 5.3).  

 

Silver-haired bats.–  I tracked nine L. noctivagans in autumn for an average distance of 

288 ± 56 km for between 1.0 - 32.9 days (Table 5.3). The average pace of movement was 

133 ± 112 km per day (range 9 – 281 km per day). Four bats followed a central trajectory 

traveling nearly due south from the tagging site. Three bats moved in a south-eastern 

direction, co-incident with the line of the Niagara Escarpment. One bat was not detected 

within most of the array, but later was detected far to the south west at Lake St. Clair; the 

route taken cannot be determined (Fig. 5.3).  

 

Eastern red bats.– Four L. borealis were observed traveling southwards from the Bruce 

Peninsula, not following the shoreline or the Niagara Escarpment (Fig. 5.3). Three red 

bats were not detected leaving the capture site, and remained for 6 - 50 days. 

 

Hoary Bats.– All tagged L. cinereus were detected until they departed the study region.  

One first year female hoary bat traveled southwest, moving along the Lake Huron 

shoreline and arriving at Lake St. Clair. The other L. cinereus (an adult male) took a  
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Table 5.3– Summary of autumn movements 
Tag id Species Sex Age Distance 

(km) 

Total 

time  

(d) 

Estimated average 

migration speed 

(km/d) 

256 L. noctivagans Female YOY 375.1 15.1 25.2 

257 L. noctivagans Male YOY 194.9 4.1 47.5 

261 L. noctivagans Male YOY 290.4 32.9 8.8 

505 L. noctivagans Female YOY 347.4 8.0 43.5 

506 L. noctivagans  Male Adult 261.2 1.4 187.1 

507 L. noctivagans Male Adult 304.6 1.3 234.3 

508 L. noctivagans Female YOY 260.0 1.1 236.4 

509 L. noctivagans Female YOY 270.0 1.0 281.2 

263 L. cinereus Male  Adult 44.25 30.0 14.6 

511 L. cinereus Female YOY 358.8 2.0 179.4 

515 L. borealis Male Adult 161.6 2.1 76.9 

517 L. borealis Male Adult 180.6 0.2 – 

267 L. borealis Male Adult 419.5 9.4 46.7 

268 L. borealis Male Adult 42.4 3.0 – 

269 L. borealis Male Adult 228.0 25.9 – 

 

 

Table 5.4– Estimated flight speeds (mean ± SD) of bats migrating past pairs of Motus 

towers. 

 Lasionycteris noctivagans Lasiurus borealis Lasiurus cinereus 

Air speed ms-1 9.9 ± 4.6 5.9 ± 3.3 9.4 ± 6.2 

Ground speed ms-1 13.8 ± 5.3 8.8  ± 4.0 10.8  ± 5.3 
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FIG. 5.3– Autumn migration tracks of bats 

in 2014. Capture sites are indicated by an 

open circle. Grey circles denote MOTUS 

tower locations. Coloured circles represent 

tower detections for individual bats and 

lines connecting them are the shortest paths 

between towers. Dashed line denotes the 

Niagara escarpment. 
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central route, traveling directly south before vanishing off the tip of Long Point. After not 

being detected within the array for 23 days, this male re-appeared on the southern shore 

of Lake Ontario (Fig. 5.3).   

 

5.4.3 Flight speed 

Enough data were available to estimate the ground and air speeds of 13 L. noctivagans, 

two L. borealis and three L. cinereus that were detected flying continuously between 

separate radio receiver towers. We recorded 40 individual instances of bats flying 

between pairs of towers. The average ground speed for L. noctivagans was 13.8 ± 5.3 m 

s-1 or 49.7 ± 19.0 km h-1 (n = 26), and this speed exceeded those recorded for L. borealis 

(8.8  ± 4.0 m s1; n= 6) and L. cinereus (10.8  ± 5.3  ms-1; n= 8) (Fig. 5.4).  Bats received 

on average 3.23 ± 3.06 m s-1 tailwind assistance at surface level, and accordingly air 

speeds were lower than ground speeds for all species (Table 5.4; Fig. 5.4). Using 

Penniquick’s model, L. noctivagans estimated Vmp (the speed at which travel is cheapest 

per unit time) was 4.7 m s-1, while the Vmr (the speed at which travel is cheapest per unit 

distance) was 12.5 m s-1 (Fig. 5.5). Our estimates of free-ranging L. noctivagans air 

speeds fell between their predicted Vmp and Vmr (Fig. 5.5). 

 

Surface tail wind component and tail wind component at 925 mb were more strongly 

correlated with ground speed (surface: R2 = 0.20, p = 0.004; 925 mb: R2 = 0.120 p = 

0.004) than at higher altitudes (850 mb:  R2 = 0.14, p= 0.02; 700 mb: R2 = 0.0.08 p= 

0.06).  
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FIG. 5.4– Estimates of ground speed and air speed of migrating tree-bats taken from the 

time it took bats to pass pairs of towers. 
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FIG. 5.5– Chemical Power curve for L. noctivagans showing minimum power speed 

(Vmp) and maximum range speed (Vmr), generated following the aerodynamic model from 

(Pennycuick 2008). Box plot indicates the 10th, 25th, 75th and 90th percentiles and median 

flight speeds of migrating bats from both migration seasons. 
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FIG. 5.6–Tail wind component at ground level of bats making migratory flights. 
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5.5 Discussion 

I provide the first continuous long distance movement tracks of individual migrating bats 

in North America, and demonstrate the utility of the Motus wildlife tracking system to 

map migratory pathways of bats. These detailed data on the movements of individual bats 

have been difficult to measure previously because of the small animal problem – 

transmitters light enough to attach to small animals have a limited detection range 

(Wikelski et al. 2007). We addressed this challenge by using a combination of 

lightweight transmitters (0.29 g) and increasing detection probability by using an array of 

radio-receiving stations rather than following individuals. This method has allowed us to 

gain unprecedented insight into how migrating bats move across the landscape.  

 

5.5.1 Migration Routes 

The routes taken by migrant bats varied broadly by species and individual. We found no 

evidence that bats preferentially travelled along the north to south running shorelines of 

the Great Lakes or along the Niagara Escarpment. During spring migration, the most 

important movement corridor appeared to be the shoreline of Lake Erie, bats of all 

species made both eastward and westward movements along this shoreline. As bats are 

traveling north from the north shore of Lake Erie in the spring, the lake does not act as a 

barrier at this point. Lakeshores and associated wetlands may be profitable foraging 

grounds for emergent insects. Northward movement followed a dispersed, broad front 

pattern. In autumn, a broad south-east migration corridor appears to exist along the 

Niagara escarpment for L. noctivagans.  Long Point is a well-known stopover site for L. 

noctivagans (Dzal et al. 2009; McGuire et al. 2011; 2014), but none of the fall migrants 

tagged in our study passed through Long Point. This trajectory suggests that bats stopping 

over at Long Point originate from elsewhere. 
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5.5.2 Flight speed 

The observed migration air speed of L. noctivagans (9.9 ± 4.6 m s-1) was double the 

values previously reported for this species in a flight course (5.0 m s-1)(Hayward and 

Davis 1964). The use of flight speeds approximating Vmr is seen in the commuting flights 

of Pipistrellus kuhlii, but interestingly these bats switch to a flight speed closer to the 

minimum power speed (Vmp) when foraging (Grodzinski et al. 2009). Optimal migration 

theory suggests that migrants can fly at Vmr to minimize energy, or above Vmr  to 

minimize time (Alerstam and Lindström 1990) if taking into account stopover time 

losses. Air speeds exceeding Vmr have been reported for several passerine birds smaller 

than 0.1 kg, and may indicate that minimization of total time on migration is more 

important than energetic concerns for many birds (Welhun 1994). L. noctivagans air 

speeds fell short of their predicted Vmr (11.3 ms-1; Fig. 5.6), which suggests one of two 

possibilities. First, bats flew at or above their Vmr, but their perceived flight speeds were 

reduced because the path bats took between the pairs of Motus towers was not a direct 

route. Or second, bats flew at an intermediate speed which falls between a time and 

energy minimization strategy, spending part of the night using foraging flights in the 

direction of travel and the remainder undertaking rapid migratory flight.  Migrating 

Pipistrellus nathusii appear to travel more quickly than their predicted Vmr, which would 

argue for the first option but this study failed to compensate for wind assistance (Suba 

2014). Therefore, I suggest that L. noctivagans have high speed direct flights, but that 

they might stop for brief feeding or drinking along the way, particularly if bats migrate at 

low altitudes.  

 

The values of L. borealis and L. cinereus flight speeds should be taken with caution as 

they are based on a smaller sample size. Our measurements of the flight speeds of L. 

borealis (5.9 ± 3.3 ms-1 N= 5) and L. cinereus (9.4 ± 6.2 ms-1 N = 2) are comparable to 

those reported using Doppler radar for these species while foraging: (6.7±1.1 ms-1) and 

(7.7±1.1 ms-1), respectively (Salcedo et al. 1995). At this time, I cannot determine if these 

flight speeds are indicative of a fly-and-forage strategy, or a consequence of low sample 

size. 
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Previous studies have suggested that migrating bats avoid flying in high winds (Cryan 

and Brown 2007; Baerwald and Barclay 2011). I found evidence that all species studied 

fly with moderate tailwind support, and are selective of when they undertake migratory 

movements, similar to several bird species. The presence of weather systems with 

appropriate tail winds should be investigated in future studies of mortality at wind energy 

facilities. Ground speeds were best correlated with tailwind component at surface level 

and 925 mb in pressure, which suggests that bats migrate somewhere between the surface 

and 1500 m in altitude. This is consistent with studies from Europe which found that bats 

migrating over the Baltic Sea flew close enough to remain in acoustic contact with the 

water (< 10 m). Similarly migrating P. nathusii were visible within 16 m of the ground 

(Suba 2014). More research is needed to better determine the altitude at which North 

American bats migrate.    

 

5.5.3 Speed of Migration 

Overall migration speed includes both periods of movement as well as stops to rest and 

refuel.  For the first time I was able to quantify the autumn migration speed of a North 

American tree-bat.  L. noctivagans traveled 133 ± 112 km per night (range 8.8 - 281 

km/night).  At this pace, bats would reach the Gulf of Mexico (approximately 1500 km) 

in 11.3 nights (range: 6.1 – 71.4 nights). The very slowest migration speed we observed 

(8.8 km per night) is much slower than the flight speeds we observed (50 km/h) and 

indicates that some bats spent several days not making migratory flights. It remains to be 

determined if these periods are spent foraging at stopover sites, were due to inclement 

weather, or were used to participate in mating activity. The much slower pace of 

migration than potential flight speed, which implies the use of stopovers, has also been 

observed in Nyctalus noctula (Dechmann et al. 2014). The maximal migration speed 

observed in this study of 281 km per day, would only be traversed if bats flew for 5.6 

hours at a flight speed of 50 km/h, and shows that bats are capable of spending a large 

proportion of the night undertaking migratory flight. Our observed mean migration speed 

for L. noctivagans exceeds the migration speed of the common noctule (N. noctula; 

females 24.3 km per day; males 14.2 km per day)(Dechmann et al. 2014), and P. nathusii 

(55 – 75 km per day) (Hedendtrom 2009; Rydell et al. 2014). 
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If L. noctivagans travel on average 133 km per day, they could cover this distance in 

about 2.7 hours of flying at the mean flight speeds we recorded (50 km h-1). So, out of 

about 9.5–12.5 hours of night available at this time of year for flight or refueling, bats 

could spend as much as 75 % of their available active hours not making migratory 

movements. The theorized ratio of time to spend on migratory flight vs stopover for birds 

is 1:7, or about 86% of time on stopover (Hedenström and Alerstam 1997). This is a 

similar proportion of time (64%) that passerine birds tracked with geolocators (two 

purple martins and four wood thrushes) spent at stopover (Stutchbury et al. 2009). A 

study of common swifts (Apus apus) spent even less time on stopovers, 47% in the spring 

and 27% in the autumn migration (Åkesson et al. 2012). L. noctivagans spend at least 

75% of their night on non-migratory flight activities, potentially more if our estimates of 

flight speed also incorporate some time spent foraging or drinking.  

 

5.5.4 Detectability 

The three species varied considerably in their detectability by Motus. Several factors such 

as body size and flight characteristics could be responsible. The body of the bat acts as an 

antenna to further amplify the radio signal, and larger bats should have stronger signals 

(Naef-Daenzer 2005). L. cinereus are the largest bodied bats in this study (19 - 31 g), 

followed by L. noctivagans (8.5 - 12.5 g) and L. borealis (10 - 12 g).  The three L. 

cinereus were frequently detected within the array space, appearing at the most towers (5-

9) of any bat in this study, (L. borealis 1-5 and L. noctivagans 1-6).  

 

Another important factor in detectability is the habitat that these bats fly through; more 

vegetation between the antennae and the receiving tower will decrease signal strength 

(Withey et al. 2001). Therefore, high, open fliers (above tower height, 6 m) are less likely 

to experience signal attenuation. Although bats are sometimes presumed to fly at heights 

similar to migrating birds, it is possible that bats migrate lower to the ground.  P. nathusii 

migrate at an altitude of 11.5 m and maintain acoustic contact with the ground (Suba 

2014). Similarly, bats at sea also appear to maintain acoustic contact with the ocean 
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(Ahlén et al. 2009).  Commuting P. kuhlii flew closer to the ground (2.7 m), than while 

foraging (4.7 m) (Grodzinski et al. 2009). Lower flight altitude could also explain the low 

detectability of some bats in my study, because bats flying at altitudes below tower 

height, likely experience more signal interference from vegetation. L. cinereus have 

wings designed to favor open uncluttered habitats, which could increase the detectability 

of this species (Norberg and Rayner 1987). In contrast, L. noctivagans have wings more 

suitable for flying closer to vegetation (Norberg and Rayner 1987). Use of more cluttered 

habitats while migrating could have decreased the detectability of L. noctivagans and L. 

borealis as compared to L. cinereus.  The apparent increased detectability of L. 

noctivagans in the autumn (all bats were detected on multiple towers) as compared to the 

spring (many bats were not detected outside of the capture site) may be partially 

explained by bats flying at higher altitudes in the autumn, which would increase 

detectability. More ground-truthing of the Motus wildlife tracking system is required to 

confirm the hypothesis that season affects migration height. If migratory bats fly at higher 

altitudes during autumn migration, they could be more likely to pass through the swept 

area of wind turbines, and thus be more vulnerable to collision risk in autumn than in 

spring. I propose that future research directly examine seasonal differences in the altitude 

at which migrant bats travel. 

 

5.5.5 Summary 

The Motus wildlife tracking system has proven to be an effective tool for investigating 

the movements of individual migrating bats. I was able to map the migratory routes of 

bats traveling through southwestern Ontario. Contrary to my hypothesis, I was not able to 

find any evidence of migratory corridors in the region. This finding makes it difficult to 

identify specific locales where wind energy development could proceed with lower risk 

to bats. Bats did travel along the shoreline of Lake Erie and wind energy facilities in this 

region should use some form of mitigation during both spring and autumn (e.g. increasing 

the wind speed at which turbines begin generating energy (e.g. Baerwald et al. 2009). 

Motus has also allowed us to estimate the flight speeds of North American migrating 

bats. This new technology holds promise for future work investigating the habits of 

secretive migratory species.   
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CHAPTER 6 

GENERAL DISCUSSION 

The studies in my dissertation provide some of the first insights into the basic biology of 

Lasionycteris noctivagans during their migratory period. The main goal of my research 

was to determine how sex and season affect the migration of tree-bats. I addressed this 

goal in four ways: 1) I examined spring migration phenology and its relation to body 

condition; 2) I explored how sex affects the stopover behaviour of bats in the spring; 3) I 

investigated the torpor-assisted migration hypothesis in the spring, when females may use 

less torpor than males; and 4) I used the Motus wildlife tracking system to monitor the 

long-distance movements of migrating bats during both spring and autumn. Through 

several approaches I have shown that sexes manage both their time and energy 

differently. I have also shown that season has a substantial impact on the pace and use of 

energy during migration. Here I summarize and integrate my findings, discuss the 

potential implications for bat conservation, and I delineate paths for future research on 

bat migration. 

 

6.1 SEX AND MIGRATION 

6.1.1 MIGRATION TIMING 

The phenology of L. noctivagans spring migration differed by sex. Females arrived at the 

stopover site earlier than males in two of the three study years. This matched my 

prediction of protogyny. Early arriving females give their pups a longer growing season, 

and so there is a reproductive advantage to early arrival for females. In contrast, males 

have already mated the previous autumn and are not under selection pressure to arrive 

early. It would be interesting to monitor breeding colonies of L. noctivagans to confirm 

that early arrival to the summering grounds advances parturition date and enhances 

survival of young. Early arrival could be a product of a difference in several aspects of 

migratory behaviour, such as their speed of travel (i.e. air speed, time spent refueling, 
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response to weather), latitudinal differences in overwintering sites, or the timing of their 

departure from the wintering grounds.  

 

I predicted that females would have an overall more rapid pace of migration than males –

either through flying more quickly, or spending briefer periods at stopover sites.  

Unfortunately, there were not enough flight speed data in the spring to differentiate male 

and female airspeeds or migration speeds. Investigation of age and sex differences in 

flight speeds could be an opportunity for future research. It would be interesting to track 

greater numbers of male and female bats in the spring and to examine morphometrics to 

see if females are more adapted for rapid, efficient flight (i.e. have higher aspect ratios 

and/or more pointed wing tips), as has been suggested to confer earlier arrival dates in 

Swainson’s thrushes (Catharus ustulatus)(Bowlin and Lank 2007). 

 

Optimal migration theory predicts that bats will depart stopover sites when they have 

completed refueling. Net refueling rate is determined by both energy intake and energy 

expenditure. Protandry in birds can be partially determined by faster refueling, and thus 

briefer stopovers, by males (Seewagen et al. 2013). I found no sex difference in the 

length of stay at stopovers. Female bats have higher daytime thermoregulation costs than 

males because females use torpor for fewer hours during the day. The observed 

difference in torpor expression may be a product of females foraging more intensely than 

males, and thus spending more time at warm body temperatures to digest large meals 

(Matheson et al. 2010). More work is needed to determine if females forage more 

intensely than males while migrating.  

 

 

I found that cold weather delays female, but not male migration. Female mean arrival 

date at the stopover site was later in colder years. The early timing of L. noctivagans 

spring migration in females makes them more susceptible to the effects of weather than 

males. Females travel while it is still relatively cold, and in Chapter 3, I found that cold 

ambient temperatures extend stopover periods and prolong migration in both sexes.  
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Although it is also possible that females overwinter farther north than males and so have 

shorter migration distances, this seems unlikely. Museum records of L. noctivagans 

collected during the winter months show no sign of sex segregation (Cryan 2003), and 

captures of this species in winter months include both sexes (Perry et al. 2010). Perhaps 

further winter observations will reveal differences in the wintering ranges of the sexes, 

with the current findings explained by a region of overlap. 

 

Given that I observed no difference in the speed of migration, and there is no evidence for 

latitudinal segregation on the wintering grounds, it seems most likely that females depart 

from the wintering grounds earlier than males. A similar phenology is seen in Myotis 

lucifugus where females emerge from hibernation several weeks prior to males to begin 

their migration back to maternity colonies (Norquay 2013).  

 

6.1.2 BODY COMPOSITION 

During spring migration, female L. noctivagans had fat stores nearly double those of 

males in two of the three study years. This contrasts with fall migration where there is no 

sex difference in fat stores (McGuire et al. 2011). The larger fat stores of females (vs 

males) support the “reproductive hypothesis,” i.e. that fat was used after migration to fuel 

reproduction.  This is in contrast to the “insurance hypothesis,” that proposes large fat 

stores help early migrants survive in poor weather. Bats may not need large fat stores as 

insurance against inclement weather because they are able to mitigate the costs of 

thermoregulation by using torpor.  In the coldest study year, females bats had smaller fat 

stores (comparable to those of males), which suggests that cold weather experienced 

during migration may consume their fat stores and so impair reproduction. 

 

6.2 SEASONAL EFFECTS ON MIGRATION 

Ambient temperatures at my study site in the spring were on average 11 ºC colder than in 

autumn. The colder spring temperatures are likely to affect both foraging opportunities 

(as aerial insects decline at low temperatures) and thermoregulation.  
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6.2.1 STOPOVER 

In Chapter 3, I showed that early spring stopovers lasted for several days, while the 

prevailing pattern during fall migration was a stopover at Long Point for a single day 

(McGuire et al. 2011). Data from Chapter 5 on the migration speeds of bats suggests that 

bats also make stopovers of several days during autumn migration, though likely still 

shorter than in spring. Bats appear to spend stopovers using a combination of foraging 

nights when conditions permit, and torpor when cooler temperatures prevail. This 

suggests that bats may need to dedicate more time to refueling when insect densities are 

lower.   

 

6.2.2. TORPOR 

I quantified the use of daytime torpor by free-ranging spring migrants and compared it 

with previously published data from fall migrants (McGuire et al. 2014). All bats used 

torpor extensively, but its use was modulated by season, sex and temperature. Bats with 

larger fat stores tended to use less torpor, but this trend was not significant. The lack of 

significance in this relationship supports the hypothesis that this torpor use is a facultative 

strategy to refuel more rapidly, rather than an emergency response to a negative energy 

balance. Bats used more torpor at colder temperatures, but even after accounting for the 

effect of temperature, spring migrants used torpor for longer durations than fall migrants. 

I hypothesized that lower insect abundance (Doucette et al. 2011; Doty et al. 2016) and  

more unpredictable foraging opportunities (Munn et al. 2010) in the spring could explain 

seasonal differences in torpor expression because food availability is strongly linked to 

torpor use. Spring bats appear to compensate for lower energy availability by increasing 

the length of time they spend in torpor. 

 

The use of daytime and nighttime torpor means that bats are buffered against poor 

conditions at stopover. This is especially useful during spring migration. Bats can wait for 

foraging conditions to improve with very little penalty, as was shown by the behaviour of 

some bats that had prolonged stopovers and remained in their roosts for several nights. 

The utility of torpor to wait-out poor conditions is demonstrated by observations of L. 

cinereus, which enter torpor during spring snowstorms (Willis et al. 2006).  In contrast, 
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birds must decide whether to leave when poor refueling conditions prevail. Birds may 

even undertake a reverse migration when weather conditions are unfavorable (Berthold 

1993).  

 

6.2.3. MOVEMENT 

Bats appeared to be more readily detected by the Motus wildlife tracking system in the 

autumn as compared to the spring. I hypothesized that this difference was due to an 

increase in flight altitude during autumn migration. Further work should be done to 

directly measure the altitudes of migrating bats. This could be done by tagging bats with 

harmonic radar transponders. If differences exist in the height at which spring and 

autumn migrants fly, it could in part explain the seasonal difference in mortality at wind 

turbines. Specifically, autumn migrants may spend more time flying within the 

windswept area of the turbine blades as compared to spring migrants. There is already 

evidence that taller turbines kill more bats, with the suggestion that turbines are sampling 

a higher airspace in which autumn migrants may travel (Barclay et al. 2007). 

 

6.4 REFUELING STRATEGY 

My data have demonstrated that L. noctivagans stop for several days during both their 

spring and autumn migrations. Likely these periods are used for refueling. The data 

presented in Chapter 4, that individuals captured later in the night have greater fat and 

lean mass, is highly suggestive that bats are using stopovers as refueling stages. However, 

the use of stopovers to refuel does not preclude the use of a mixed migration strategy that 

also includes a fly-and-forage component. To determine if bats use a fly-and-forage 

migration strategy would require the monitoring of migrating bats for feeding buzzes. 

Feeding buzzes are echolocation calls indicative of the last approach of prey capture, and 

can be used to quantify foraging activity. It is not possible to separate resident bats and 

those using a stopover period from bats actively migrating using stationary bat detectors.  

 

One could attach miniaturized recorders to bats to capture their echolocation calls. This 

technique has been used to investigate the foraging ecology of greater mouse-tailed bats 
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(Rhinopoma microphyllum) (Cvikel et al. 2015). However, R. microphyllum are relatively 

large bodied and capable of carrying a GPS tag and small microphone weighing 3.8 g. 

The device is then retrieved and downloaded when the bat is recaptured in the roost. New 

technology is available that would use a small microphone and radio-transmitter to 

convey an audio signal much like that of a conventional radio station (M. Bowlin pers. 

comm.). If such a device were modified to also be capable of recording ultrasonic bat 

calls, a researcher in a car or small aircraft could chase a tree-bat long enough to 

determine if feeding buzzes were evenly distributed throughout a migratory flight, or if 

bats used brief mid-flight “stopovers” of several hours at a time to forage.  

 

An echolocation radio-transmitter would have the added benefit of determining if bats 

flock during migration, as the echolocation calls of conspecifics would be audible, but 

quieter (Cvikel et al. 2015). Little is known about the social behaviours of bats during 

migration, but evidence suggests that bats do not migrate with experienced conspecifics 

in the way that long lived birds (e.g. swans and geese) do (Baerwald and Barclay 2016).  

 

Ongoing work in our lab is using stable isotopes of the breath to examine the extent to 

which bats fuel metabolism with fat stores as compared to recently digested insects.  This 

is an alternative way to study bats’ refueling habits and the ways in which they fuel their 

migratory flights.  

 

6.5 CHALLENGES OF STUDYING MIGRATORY BATS 

Throughout this research I was constantly reminded of why there is such a dearth of 

knowledge regarding migratory tree-bats – they are particularly difficult to capture. 

Many net-hours went into catching the bats in this study. I found that it was necessary to 

mist-net for bats throughout the entire night, from dusk until dawn. In contrast the vast 

majority of bat researchers open their nets from dusk until about 2:00. Further, nets of 

twice the usual height were often required, as tree-bats apparently fly higher than others. 

This capture effort was particularly necessary on the Bruce Peninsula, where after two 

months of intense mist-netting we caught a mere 20 tree-bats. In comparison, while mist-

netting at a Myotis maternity colony or hibernacula, it would not be unusual to capture a 
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hundred bats in a single evening.  

 

To further the study of migratory bats, we need more reliable locations at which to 

capture them. I propose that bird banding stations should consider operating a night crew 

at peak bat-capture hours – the hours after dusk and a few hours before dawn. This could 

provide substantial data on migration phenology, ranges, and sexual segregation of 

migratory tree-bats. An additional idea would be for bat researchers to compile their 

incidental captures of migratory tree-bats into a single database. This database would be 

similar to E-bird which uses public observations of songbirds to map the occurrence of 

species throughout the year. This bat database would build on the occurrence data 

mapped by Cryan (2003) to give a more detailed picture of bat migration, and perhaps 

even describe the response of bat migration phenology to climate change.  

 

6.6 CONSERVATION IMPLICATIONS 

Many great migrations are disappearing across the earth (Wilcove and Wikelski 2008). 

Migrating bats are likely also at risk due to habitat loss, wind energy development, and 

potentially climate change. Mortality rates are elevated during migration in birds (Sillett 

and Holmes 2002) and likely in bats also (Tuttle and Stevenson 1977). Therefore, the 

migratory period is an important time to target with conservation measures.  

Migration-related mortality in gray bats (Myotis grisescens) was suggested to be due to 

“stress” or poor roost selection (Tuttle and Stevenson 1977).  Availability of appropriate 

roosts (e.g. mature trees and snags) and foraging opportunities along the migration route 

may be essential for bats to successfully complete their migration. I propose that 

conservation of foraging habitat may be particularly important for spring migrating 

females, who must also prepare for reproduction. The quality of stopover habitats has 

been proposed to limit the populations of migrating birds (Newton 2006). Weather and 

foraging conditions experienced during migration will affect both survival and the time of 

arrival to the breeding grounds, which will in turn affect reproductive success and 

population recruitment. Can stopover habitat also limit the populations of bats? It seems 

that, depending on weather conditions, bats use stopover sites to refuel, particularly in the 

spring, and so they may also face similar challenges and constraints as migrating birds.  
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Spring migrating M. grisescens were twice as likely to experience mortality as fall 

migrants (Tuttle and Stevenson 1977). This difference in mortality could be because 

spring migrants have smaller fat stores than fall migrants, a pattern also seen in L. 

noctivangans. Smaller fat stores offer a smaller buffer against inclement weather and 

poor foraging opportunities.  

 

6.6.1 CLIMATE CHANGE 

Climate change is likely to advance the onset of spring weather. Some birds appear to be 

able to plastically respond to shifts in temperature on their breeding grounds by 

advancing their laying date (Charmantier et al. 2008), but the extent of this plasticity can 

be constrained by arrival date (Both and Visser 2001). Several migratory bird species are 

able to advance their migration timing (Gordo 2007). However, some species are unable 

to detect cues on the wintering grounds that conditions on the breeding grounds are 

advancing, causing a mismatch between migrants and their ecosystems (Jones and 

Cresswell 2010).  Those species unable to shift their migration timing are experiencing 

population declines (Møller et al. 2008). 

 

If bats are to adapt to earlier spring, they will need to either leave the wintering grounds 

earlier or move more rapidly. Little is known about the cues used by bats to terminate 

their hibernation. A large part of the emergence timing from hibernacula is likely a 

circannual rhythm. For tree-bats, emergence may also involve a component of local 

ambient temperatures. This is in contrast to bats that use cave hibernacula, as tree-bats are 

less buffered from local environmental conditions. Tree-bats may be plastic in their 

arrival timing if they are able to move more rapidly in response to warmer spring 

weather. Pied flycatchers (Ficedula hypoleuca) are able to respond to warmer 

temperatures along the migration route by moving more quickly (Ahola et al. 2004). 

Similarly, I have shown that female tree-bats already appear to shift their migration 

timing in response to ambient temperatures (Chapter 2). A likely mechanism for this shift 

in migration timing would be shortened stopover durations, which appear to be highly 
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temperature dependent (Chapter 3). Therefore L. noctivagans may be able to cope with 

shifting temperatures by quickening their pace of migration.  

 

6.6.2 WIND ENERGY  

Unprecedented numbers of tree-bats are killed annually at wind energy facilities, which 

arguably represent the largest threat to migratory tree-bat populations (Arnett et al. 

2016). Wind energy development has been growing in Canada (Government of Ontario 

2016). There is an urgent need to understand how to mitigate bat mortality at these wind 

energy facilities. I endeavoured to map the migratory routes of bats, in part so that 

migratory corridors could be identified and protected. I found no evidence that bats were 

traveling in a concentrated corridor, and instead appear to use broad-front migration 

(Chapter 5). This makes it difficult to identify regions in which to develop wind energy 

within south-western Ontario without providing mitigation for migrating bats. The 

shoreline of Lake Eire was used extensively during spring migration and development 

there should be avoided. Turbines already in place along the lakeshore should implement 

mitigation strategies (i.e. increasing the wind speed at which turbines begin generating 

power)(Baerwald et al. 2009). Most importantly, regulators should work with researchers 

to determine how to alter wind energy production during the short but intense migratory 

periods of bats. 

 

Future work should be done to examine the use of offshore areas by bats for migratory 

crossings (i.e. Lake Eire). Anecdotally, migratory bats have been observed on several 

nights during the autumn migration period in the middle of Lake Huron between 

Manitoulin Island and Tobermory from the Chi-Cheemaun ferry (R. Steinecher pers. 

comm). Despite concerns over the impact of wind energy on bats, several offshore wind 

energy developments have been proposed for Lake Erie. Offshore wind energy sites are 

of particular concern because post monitoring surveys for mortality are not feasible. 

Departures from Long Point suggest that about one third of bats depart off the Long 

Point Peninsula and cross Lake Erie (McGuire et al. 2011). Ongoing work with the 

Motus network is using newly established towers on the south shore of Lake Erie to 

identify incidents of bats that cross the lake (L. McGuire pers. comm). 
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6.7 CONCLUSIONS & FUTURE DIRECTIONS 

Bat migration has begun to receive more attention and continues to be an area of 

promising research. I have made several contributions to our understanding of their 

migration biology. My research has focused mostly on spring behaviour, which has been 

underrepresented in the literature. In Chapter 2, I found that female bats arrive at 

stopover earlier than males and with larger fat stores. In Chapter 3, I observed for the 

first time the use of multi-day stopovers by bats, and provided evidence that these 

stopovers are used for refueling. In Chapter 4, I discovered that the use of daytime torpor 

is modulated by both sex and season, to accommodate different energy budgets. Finally, 

in Chapter 5, I used the Motus wildlife tracking system to quantify the migration routes, 

flight speeds, and migration pace of bats.  

 

There are still many unanswered questions about how bats successfully complete their 

migrations. Among other things, more work is needed to understand how bats orient and 

navigate. The Motus network is particularly well placed to help address these questions. 

The direction of travel in bats appears to be innate and not socially learned, as young 

bats on their first migration do not travel with close relatives (Baerwald and Barclay 

2016). It would be interesting to translocate bats several hundred kilometers eastward or 

westward to southwestern Ontario to see if bats are able to compensate for displacement. 

It would be expected that adults, having an internal map and compass, are able to correct 

their direction of travel. Young bats on their first migration would be expected to travel 

in their programed direction.  

  

  



 

 
 

132 

6.8 Literature Cited 

AHOLA, M., T. LAAKSONEN, K. SIPPOLA, T. EEVA, K. RAINIO AND E. 

LEHIKOINEN. 2004. Variation in climate warming along the migration route 

uncouples arrival and breeding dates. Global Change Biology 10:1610–1617. 

ARNETT, E. B. ET AL. 2016. Impacts of wind energy development on bats: a global 

perspective. in Bats in the Anthropocene: conservation of bats in a changing world 

(C. C. Voigt & T. Kingston, eds.). Springer International AG. 

BERTHOLD, P. (1993). The phenomena of bird migration. In Bird migration: a general 

survey. New York: Oxford University Press, New York. 

BAERWALD, E. F. AND R. M. R. BARCLAY. 2016. Are migratory behaviours of bats 

socially transmitted? Royal Society Open Science 3:150658–11. 

BAERWALD, E. F., J. EDWORTHY, M. HOLDER AND R. M. R. BARCLAY. 2009. A 

large-scale mitigation experiment to reduce bat fatalities at wind energy facilities. 

Journal of Wildlife Management 73:1077–1081. 

BARCLAY, R. M. R., E. F. BAERWALD AND J. C. GRUVER. 2007. Variation in bat 

and bird fatalities at wind energy facilities: assessing the effects of rotor size and 

tower height. Canadian Journal of Zoology 85:381–387. 

BERTHOLD, P. 1993. The phenomena of bird migration. in Bird migration: a general 

survey. Oxford University Press, New York, New York. 

BOTH, C. AND M. E. VISSER. 2001. Adjustment to climate change is constrained by 

arrival date in a long-distance migrant bird. Nature 411:296–298. 

BOWLIN, M. S. AND D. B. LANK. 2007. Sex, wingtip shape, and wing-loading predict 

arrival date at a stopover site in the Swainson's thrush (Catharus ustulatus). The Auk 

124: 1388–1396. 

CHARMANTIER, A., R. H. MCCLEERY, L. R. COLE, C. PERRINS, L. E. B. KRUUK 

AND B. C. SHELDON. 2008. Adaptive phenotypic plasticity in response to climate 

change in a wild bird population. Science 320:800–803. 

CRYAN, P. M. 2003. Seasonal distribution of migratory tree bats (Lasiurus and 

Lasionycteris) in North America. Journal of Mammalogy 84:579–593. 

CVIKEL, N. ET AL. 2015. Bats aggregate to improve prey search but might be impaired 

when their density becomes too high. Current Biology 25:206–211. 

DOTY, A. C., C. STAWSKI, B. S. LAW AND F. GEISER. 2016. Post‐wild re 

physiological ecology of an Australian microbat. Journal of Comparative Physiology 

B:1–10. 



 

 
 

133 

DOUCETTE, L. I., R. M. BRIGHAM, C. R. PAVEY AND F. GEISER. 2011. Prey 

availability affects daily torpor by free-ranging Australian owlet-nightjars 

(Aegotheles cristatus). Oecologia 169:361–372. 

GORDO, O. 2007. Why are bird migration dates shifting? A review of weather and 

climate effects on avian migratory phenology. Climate Research 35:37–58. 

GOVERNMENT OF ONTARIO. 2016. Ontario energy report Q3 2016. Retrieved 

November 10, 2016, from 

www.ontarioenergyreport.ca/pdfs/5993_IESO_Q3OER2016_Electricity_EN.pdf 

JONES, T. AND W. CRESSWELL. 2010. The phenology mismatch hypothesis: are 

declines of migrant birds linked to uneven global climate change? The Journal of 

Animal Ecology 79:98–108. 

MATHESON, A. L., K. L. CAMPBELL AND C. K. R. WILLIS. 2010. Feasting, fasting 

and freezing: energetic effects of meal size and temperature on torpor expression by 

little brown bats Myotis lucifugus. The Journal of Experimental Biology 213:2165–

2173. 

MCGUIRE, L. P., C. G. GUGLIELMO, S. A. MACKENZIE AND P. D. TAYLOR. 

2011. Migratory stopover in the long-distance migrant silver-haired bat, 

Lasionycteris noctivagans. The Journal of Animal Ecology 81:377–385. 

MCGUIRE, L. P., K. A. JONASSON AND C. G. GUGLIELMO. 2014. Bats on a 

budget: torpor-assisted migration saves time and energy. PloS ONE 9:e115724. 

MUNN, A. J., P. KERN AND B. M. MCALLAN. 2010. Coping with chaos: 

unpredictable food supplies intensify torpor use in an arid-zone marsupial, the fat-

tailed dunnart (Sminthopsis crassicaudata). Naturwissenschaften 97:601–605. 

MØLLER, A. P., D. RUBOLINI AND E. LEHIKOINEN. 2008. Populations of migratory 

bird species that did not show a phenological response to climate change are 

declining. Proceedings of the National Academy of Sciences of the United States of 

America 105:16195–16200. 

NEWTON, I. 2006. Can conditions experienced during migration limit the population 

levels of birds? Journal of Ornithology 147:146–166. 

NORQUAY, K. 2013. Hibernation phenology and survival of little brown bats (Myotis 

lucifugus) (M.Sc.). University of Winnipeg. 

PERRY, R. W., D. A. SAUGEY AND B. G. CRUMP. 2010. Winter roosting ecology of 

silver-haired bats in an Arkansas forest. Southeastern Naturalist 9:563–572. 

SEEWAGEN, C. L., C. G. GUGLIELMO AND Y. E. MORBEY. 2013. Stopover 

refueling rate underlies protandry and seasonal variation in migration timing of 

songbirds. Behavioral Ecology 24:634–642. 



 

 
 

134 

SILLETT, T. S. AND R. T. HOLMES. 2002. Variation in survivorship of a migratory 

songbird throughout its annual cycle. The Journal of Animal Ecology 71:296–308. 

TUTTLE, M. D. AND D. STEVENSON. 1977. An analysis of migration as a mortality 

factor in the gray bat based on public recoveries of banded bats. American Midland 

Naturalist 97:235–240. 

WILCOVE, D. S. AND M. WIKELSKI. 2008. Going, going, gone: is animal migration 

disappearing. PLoS Biology 6:e188. 

WILLIS, C. K. R., R. M. BRIGHAM AND F. GEISER. 2006. Deep, prolonged torpor by 

pregnant, free-ranging bats. Naturwissenschaften 93:80–83. 

 

 

 

  



 

 
 

135 

APPENDIX A 

CHAPTER 3 SUPPLEMENTARY MATERIAL 

 
Supplementary Figure 3.1. Example of telemetry activity pattern of a bat roosting near 

the Old Cut receiving station. The red line denotes when the bat was tagged. Colored 

lines indicate signal strength on separate antennas. The bat quickly comes to roost for the 

daytime period, is active on the night of April 20, 2012 roosts at dawn and remains 

roosting until its departure at dusk on April 26, 2012. Periods of no detection during the 

day indicted times when the receiver was removed for manual tracking for a different 

project. Black bars represent periods of night, dashed lines depict sunset and sunrise.   
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APPENDIX B 

CHAPTER 4 SUPPLEMENTARY MATERIAL 

Sensorgnome deployment code 

{ 

    "info": "Record RAW radio signal from all attached fcds", 

    "who": "KAJ", 

    "contact": "contact information for responsible party", 

    "shortLabel": "LANO_X", 

    "acquire": { 

        "gps": { 

            "secondsBetweenFixes": 300 

        }, 

        "USB": { 

            "portInfo": [ 

                "info for USB hub port 1", 

                "info for USB hub port 2", 

                "info for USB hub port 3", 

                "info for USB hub port 4", 

                "info for USB hub port 5", 

                "info for USB hub port 6", 

                "info for USB hub port 7", 

                "info for USB hub port 8", 

                "info for USB hub port 9", 

                "info for USB hub port 10" 

            ], 

            "portLabel": [ 

                "p1", 

                "p2", 

                "p3", 

                "p4", 

                "p5", 

                "p6", 

                "p7", 

                "p8", 

                "p9", 

                "p10" 

            ] 

        }, 

        "plans": [ 

            { 

                "key": { 

                    "port": ".*", 
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                    "devType": "funcube.*" 

                }, 

                "rate": 48000, 

                "channels": 2, 

                "schedule": { 

                    "type": "AlwaysOn" 

                }, 

                "devParams": [ 

                    { 

                        "name": "frequency", 

                        "schedule": { 

                            "type": "Constant", 

                            "value": 164.061 

                        } 

                    } 

                ], 

                "raw": { 

                    "enabled": false, 

                    "chunkMinutes": 5 

                }, 

                "plugins": [ 

                    { 

                        "library": "lotek-plugins.so", 

                        "name": "findpulsefdbatch", 

                        "outputID": "pulses", 

                        "params": [ 

                            { 

                                "name": "plen", 

                                "value": 23 

                            }, 

                            { 

                                "name": "minfreq", 

                                "value": 0 

                            }, 

                            { 

                                "name": "maxfreq", 

                                "value": 24 

                            }, 

                            { 

                                "name": "minsnr", 

                                "value": 5 

                            }                

]                            

                    } 

                ] 

            }                
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        ] 

    }, 

    "module_options": { 

        "find_tags": { 

            "params": [ 

                "--default-freq", 166.380, 

                "--pulse-slop", 1.5 

            ], 

            "enabled": true 

        } 

    } 

} 
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APPENDIX C 

PERMISSIONS TO REPRODUCE PUBLISHED MATERIAL 

A version of Chapter 2 was published in the Journal of Mammalogy. As per American 

Society of Mammalogists copyright assignment policy, no permission is required to 

reproduce this work in my PhD thesis.  

“ASM grants back to the Author the right to use or republish, with a citation to the source 

of the published article, all or part of the material from the published manuscript in oral 

presentations and future published works written or edited by the author.” American 

Society of Mammalogists copyright assignment and author disclosure form.  
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APPENDIX D 
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APPENDIX E 
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