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Abstract
Traffic sign detection and recognition systems are essential components of Advanced Driver
Assistance Systems and self-driving vehicles. In this contribution we present a vision-based
framework which detects and recognizes traffic signs inside the attentional visual field of
drivers. This technique takes advantage of the driver’s 3D absolute gaze point obtained through
the combined use of a front-view stereo imaging system and a non-contact 3D gaze tracker. We
used a linear Support Vector Machine as a classifier and a Histogram of Oriented Gradient as
features for detection. Recognition is performed by using Scale Invariant Feature Transforms
and color information. Our technique detects and recognizes signs which are in the field of
view of the driver and also provides indication when one or more signs have been missed by
the driver.

Keywords: traffic sign detection, traffic sign recognition, traffic sign dataset, Advanced
Driver Assistance Systems (ADAS).
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Chapter 1

Introduction

1.1 Advanced Driver Assistance Systems
Advanced Driver Assistance Systems (ADAS) are technologies that aim to provide drivers
with critical information about road and traffic environments, take control of some complex or
repetitive tasks, and increase the overall safety of drivers and pedestrians.

According to the National Highway Traffic Safety Administration (NHTSA) [7], the main
cause (94%) of vehicle crashes is human error. Among all possible types of driver errors,
recognition errors, decision errors, and performance errors are the most frequent driver-related
critical reasons for accidents. Based on this investigation, we conclude that there should be
a strong motivation to develop and implement technologies that alleviate and avoid accidents.
Indeed, vehicles with Advanced Driver Assistance Systems (ADAS) are common nowadays.

Many ADAS have been proposed in the past two decades. For example, Global Positioning
System (GPS) navigation is the most popular technology that has been around since the 1990s.
There are also other ADAS that have been developed in recent years, including adaptive cruise
control, adaptive light-beam control, automatic braking, automatic parking, collision avoidance
systems, blind spot detection, driver drowsiness detection, hill descent control, night vision,
and lane departure warning systems.

The goal of these systems is to make roads a safer place for vehicles and pedestrians.
However, these systems pay practically no attention to the modes of behaviour exhibited by
the driver. In this thesis, we plan to demonstrate that driver gaze behaviour is an important
aspect of safety as we design and implement a Traffic Sign Detection and Recognition (TSDR)
technique capable of informing drivers if they have not seen particular traffic signs.

1.2 Research Overview
TSDR have attracted a great deal of attention over the past few years. TSDR techniques attempt
to make drivers aware of incoming traffic signs on the road and warn them against possible
dangers and troubles. Traffic signs include useful and essential visual information such as
speed limitation, lane closings, direction, distance to destination, and dangerous or unusual
conditions [8] to assist the driver while driving. If a driver fails to notice a traffic sign or
understand the information provided in it, then it is reasonable to assume that driving conditions
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become suboptimal. In order to mitigate this possibility, a TSDR system can significantly help
the driver by detecting and recognizing those traffic signs.

In this thesis, we describe three different stages. First, we find the attentional visual field of
drivers in every frame by using the 3D absolute gaze point of the driver obtained through the
combined use of a front-view stereo imaging system and a non-contact 3D gaze tracker. After
establishing this gaze area in every image sequence, we perform sign detection based on His-
tograms of Oriented Gradients (HOG) features in addition to a Support Vector Machine (SVM)
classifier. The next stage consists of recognizing the exact type of detected road sign candi-
dates which is performed by combining color information inside a reliable feature matching
technique.

1.3 Problems and Issues
Developing a TSDR system is a challenging and difficult task. There are many factors that can
make the process of detection and recognition of traffic signs less successful. We can divide
the problems each TSDR system is facing into the following elements:

1. Inconsistent Lighting Conditions

One of the main issues in the development of a TSDR system is the problem of incon-
sistent lighting conditions. Different traffic signs have different colors which make them
noticeable. This color information is sensitive to changes in illumination. Figure 1.1
illustrates the effect of lighting on a green information and direction sign.

Figure 1.1: Effect of variable lighting conditions.

2. Damaged Traffic Signs

Damaged and slightly occluded traffic signs can render both the detection and the recog-
nition stages faulty. Figure 1.2 shows examples of damaged and partially occluded stop
signs.

3. Blurring and Fading Effects

2



Figure 1.2: Examples of damaged and partially obscured traffic signs.

Another important difficulty for a TSDR system is the fading and blurring of traffic signs
caused by illumination through rain or snow. These conditions can lead to increase in
false detections, and reduce the effectiveness of a TSDR system.

4. Motion Artifacts
Images taken from a running vehicle may be subject to motion blurr. Using a low-
resolution camera is also another reason for noisy or blurred images.

5. Region Establishment
There are different objects on the road that have characteristics similar to traffic signs.
These objects can cause difficulties for the system while determining the exact location
of the signs. For instance, advertising banners on the road can result in incomplete target
region establishment (see figure1.3).

Figure 1.3: Presence of a banner on the left side of the road

6. Poor Visibility
Headlights of other vehicles on the road can cause shadows which lead to poor visibility.
Other factors that may reduce the visibility are rain, snow, and fog.

All of the aforementioned factors may negatively impact the performance of a TSDR sys-
tem.

3



1.4 Contributions
While the problem of traffic sign detection may appear solved (in particular for European traf-
fic signs), there is still room for numerous improvements for North American traffic signs. We
have created a complete and reliable North American traffic sign dataset by using our experi-
mental vehicle and front-view stereo system which is installed on top of the vehicle. Further-
more, To the best of our knowledge, this work is the first TSDR method that shows how to
detect and recognize traffic signs inside the attentional visual field of drivers and, by extension,
outside of it. Other approaches are just merely concerned with the identification of traffic signs
within image sequences. By using the combination of Histogram of oriented gradients (HoG)
and SVM classifier for the detection phase and combination of color information and Scale In-
variant Feature Transform descriptors for the recognition phase, we have developed an efficient
Traffic Sign Detection and Recognition system (TSDR).

Since our main focus is on the detection and recognition of those traffic signs that drivers
are likely to see at any moment, the number of false detections should be less of a problem due
to the reduction of the search area. In addition, by performing sign detection outside of the
driver’s visual attention area, a feedback can be provided when the driver fails to see a traffic
sign before it reaches a certain, predefined minimal distance to the vehicle.

1.5 Thesis Outline
The rest of this Thesis is structured as follows, in Chapter 2 we focus on describing the algo-
rithms and methods found in the recent literature. Chapter 3 introduces the RoadLAB traffic
sign dataset and provides a comparison between North American and European traffic signs.
Chapter 4 describes the algorithms used for establishing the visual field of drivers, the traffic
sign detection, and the traffic sign recognition in detail. Chapter 5 provides the results of the
detection and recognition phases. Lastly, Chapter 6 concludes the thesis and addresses future
plans.
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Chapter 2

Literature Review

Different traffic sign recognition methods have been proposed in the recent past. They usually
consist of two sequential processes, namely a detection stage that identifies a Region of Interest
(RoI), and a recognition stage that identifies the exact type of sign or rejects the identified RoI.

2.1 Detection Methods

In this Section, we review the techniques that have been used for the detection of traffic signs.
As mentioned above, the main task in detection is creating candidate image regions which are
probably traffic signs. Therefore, we need to search for ROIs from image sequences and pre-
process them for the sign recognition stage. Several methods can be used for extracting RoIs,
based on main characteristics of traffic signs such as shape and color. In general, we can divide
the detection methods into three main groups:

• Detection based on color information

• Detection based on shape information

• Detection based on hybrid methods

In the following Sections, we discuss the common approaches used in each of the three
groups.

2.1.1 Detection Based on Color Information

One of the prevalent approaches for sign detection is using color information. By using thresh-
olding or advanced segmentation methods, finding the areas of an image which contains the
color of interest is possible. However, the main drawback of this method is its high sensitivity
to variable illumination conditions. Depending on the time of the day and weather conditions,
the colors may be inconsistent. Different types of color spaces are used in the current literature.
The most widely used ones are RGB, HSI/HSV, YUV, YCbCr, CIELab, and CIECAM97 [9].
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RGB Color Space

RGB is the most frequently used color space for most applications in image processing and
computer vision. The intensity values of RGB components are between 0 and 255. Since
there are three color channels, a total of 2563 = 16, 777, 216 colors can be displayed. Figure
2.1 represents the RGB color space. In many systems, RGB color segmentation is used for

Figure 2.1: RGB color space [1]

the task of traffic sign detection. For example, authors in [10] tested YUV and RGB color
spaces and finally took the second one because of its lower number of false positives and lower
computational time. Moreover, Benallal and Meunier [11] have studied the behavior of the
RGB components of many traffic signs and have found this method reliable for road signs
segmentation. Many other researchers also focused on RGB segmentation such as [12], [13],
and [14]. Figure2.2 illustrates an example of color segmentation using RGB thresholding.

Authors in [15] proposed a new method for detecting white signs by using RGB color
space. They used chromatic and achromatic filters in order to help them in detecting white
signs. These are computed as:

f (R,G, B) =
(|R −G| + |G − B| + |B − R|)

3D
(2.1)

where R, G, and B represent the brightness of the red, green, and blue channels. D is the
degree of extraction of an achromatic color, and is determined experimentally. If the value of
f (R,G, B) is less than 1, then it is said to represent achromatic colors, and conversely if it is
greater than 1 [15].

6



Figure 2.2: RGB color segmentation results [2]: (a,b): input images, (c,d): candidate regions

In [16, 17] RGB normalized thresholding was used to alleviate the problem of variable
illumination conditions. Each color channel is normalized as follows:

r =
R

R + G + B
(2.2)

g =
G

R + G + B
(2.3)

b =
B

R + G + B
(2.4)

where r + g + b = 1. The use of these normalized parameters have a minor effect in reducing
the effects of illumination changes. However, this method remains sensitive to color saturation.

HSV Color Space

Another color space that has been used for road sign segmentation is known as HSV, stands
for Hue, Saturation, and Value. They are the three components of this color model, defined as
follows:

• Hue: Hue is an angle between 0 and 360 degrees and it represents the color. Table 2.1
shows that different hue angles result in different colors.
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Angle Color
0-60 Red

60-120 Yellow
120-180 Green
180-240 Cyan
240-300 Blue
300-360 magenta

Table 2.1: Hue angle of a color

• Saturation: This value represents the range of gray in color space. It varies from 0 to
1. 0 means the color is gray, and 1 means the color is a primary color. For example, the
saturation value of white is 0.

• Value: This value which is also called lighting varies from 0 to 1. It indicates how dark
or how bright a color is. 0 means completely dark and 1, completely bright.

Figure 2.3 depicts the HSV color space. Since the HSV color space is less sensitive to
variable lighting conditions, many researchers considered using this method for traffic sign
segmentation. For instance, Paclik et al. [18] used this color space due to its similarity to
human perception of colors. Authors in [8] also applied the HSV color space. They converted
the RGB color space to the HSV color space following these equations:

H =


(G − B) ∗ 60/S if V = R
80 + (B − R) ∗ 60/S if V = G
240 + (R −G) ∗ 60/S if V = B

(2.5)

S =

(V −min(R,G, B)) ∗ 255/V if V , 0
0 otherwise

(2.6)

V = max(R,G, B) (2.7)

Hasan Fleyeh [19] proposed a different solution for color detection and segmentation of
road signs based on fuzzy sets. RGB images were first taken by a digital camera mounted on a
vehicle and then converted to the HSV color space. Following this, they were segmented using
a set of fuzzy rules depending on the hue and saturation values of each pixel in the HSV color
space. According to [20], the HSV color space is appropriate for color segmentation since the
Hue component of this space is invariant to changing light intensity.

HSI color space

Another popular color space for traffic sign segmentation is HSI (Hue, Saturation, Intensity).
Chiang et al. [21] transferred colors in RGB color space to the HSI color space because this
color model provides convenience for perceiving colors and their characteristics. They used
the following equations for conversion between the two color models:
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Figure 2.3: HSV color space [3]

H = arccos

 1
2 ((R −G) + (R − B))√

(R −G)2 + (R −G)(R − B)

 (2.8)

S = 1 −
3min(R,G, B)

R + G + B
(2.9)

I =
R + G + B

3
(2.10)

Gudigar et al. [22] believe that the hue and saturation components of the HSI color space
are sufficient to isolate traffic signs. They have built the histogram of hue and saturation for
red traffic signs in order to acquire threshold values. Furthermore, they used Look-Up Tables
(LUTs) for enhancing the hue and saturation values. Authors in [23] also applied LUTs for
enhancing the hue and saturation values of red, blue, and yellow coloured traffic signs.

Another example of using HSI color space is found in [24]. Authors adopted this color
segmentation method because the HSI color space is relatively immune to inconsistent lighting
conditions. Table 2.2 demonstrates the threshold values used in the color segmentation phase.

Red Blue

Hue H ≥ 0 and H < 0.111π
H ≥ 1.8π and H < 2π 1.066π ≤ H ≤ 1.555π

Saturation 0.1<S ≤ 1 0.28<S ≤ 1

Intensity 0.12<I<0.8 0.22<I<0.5

Table 2.2: Threshold values used for color segmentation

Other authors[25, 26, 27, 28] have used this color space as it models human color perception
better than the RGB color space.
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YUV Color Space

This color space has been used for analog color television broadcasting, as defined by National
Television System Committee (NTSC). The Y component represents lightness (or luma), while
the U and V components determine the color (chroma). Y varies from 0 to 1 while U and V
vary from 0 to 255. Conversion formulas from RGB to YUV and from YUV to RGB are
presented below:

• RGB to YUV


Y = 0.299R + 0.587G + 0.114B
U = −0.147R − 0.289G + 0.436B
V = 0.615R − 0.515G − 0.100B

(2.11)

• YUV to RGB


R = Y + 1.140V
G = Y − 0.395U − 0.581V
B = Y + 2.032U

(2.12)

A few researchers used the YUV color space for color segmentation [29], [30]. In [30],
authors combined the results of the HSV and YUV color spaces. Their segmentation method
is based on the Hue value of HSV and image chrominance (U,V) in the YUV space.

YCbCr Color Space

The YCbCr or Y’CbCr color space (sometimes written as YCBCR or Y’CBCR), is used for
component digital video. YCbCr is a scaled and offset version of the YUV color space [31].
Figure 2.4 delineates the YCbCr color space and the following equations that perform the
transformation between RGB and YCbCr spaces.

• RGB to YCbCr


Y = 0.299R + 0.587G + 0.114B
Cb = 0.564(B − Y)
Cr = 0.713(R − Y)

(2.13)

• YCbCr to RGB


R = Y + 1.402Cr
G = Y − 0.334Cb − 0.714VCr
B = Y + 1.772Cb

(2.14)
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Figure 2.4: YCbCr color space [4]

This color space is rarely used for the task of traffic sign segmentation. The CIELab and
YCbCr color spaces were used for different shapes of traffic signs by [32]. In particular, they
have found that YCbCr space is suitable for segmentation of triangular signs.

While we reviewed the most frequently used color segmentation methods, there are still a
few more color spaces that have been used in current literature. Soendoro et al. [33] performed
color filtering using the CIELAB color space adjoined with hue, due to its efficiency on local-
izing traffic signs. According to [34] a color appearance model named CIECAM97 performs
better than other color models such as CIELUV, CIELAB, and RGB. Others [35] also used
CIECAM97 for color segmentation.

2.1.2 Detection Based on Shape Information

Another important characteristic of a traffic sign is its shape (circular, triangular, octagonal,
and rectangular). While color-based detectors are popular, there are many other approaches
based on the shapes of traffic signs. As we previously noted, the main drawback of color-based
detectors is their sensitivity to weather conditions and variations in luminance. In contrast to
color-based detectors, shape-based detectors do not suffer from weather conditions and varia-
tions in luminance. Therefore, many researchers prefer to use shape-based techniques for the
detection of traffic signs. Several approaches for shape-based traffic sign detection have been
proposed in the current literature. We proceed to review the most common ones.
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the Hough Transform

The Hough Transform (HT) can be used for the detection of lines, circles, rectangles or other
curves. This method was first introduced in 1962 and its first application was finding lines in
image sequences. The main advantage of HT is its immunity to noise, scaling, and rotation.

Authors in [36] used the Hough Transform for circumference in order to detect circular
signs, while for triangular-signs detection they used the Hough transform for straight lines.
Loy and Barnes [5] proposed a method for traffic sign detection based on fast radial symmetry
transform, and the general technique is almost identical to the Hough transform. They first
create a gradient magnitude image, and then threshold the output image in order to discard
points with low magnitudes. Each remaining non-zero gradient element votes for a possible
circle center. The vote is placed at the closest pixel to this point. Figure 2.5 shows different
votes cast by a gradient element g(p) when searching for different shapes at a given radius [5].
Another example of using the Hough Transform is found in [37]. This method is suitable only
for circular traffic signs.

Figure 2.5: Different votes cast by a gradient element g(p) when searching for different shapes
at a given radius [5]

Edge Detection

Edge detection is one of the basic techniques of image processing for finding the boundaries
of different objects in images. The main application of edge detection in areas such as im-
age processing and computer vision is segmentation when images can be divided into areas
corresponding to various objects.

The Canny edge detector was used by [38] because this method preserves contours, which is
necessary for shaped based traffic sign detectors. Aoyagi and Asakura [39] proposed a system
that used Gaussian and Laplacian filter.

Corner-point detection is yet another technique for finding shapes of interest. Paulo and
Correia [40] approached traffic sign detection based on the Harris corner detector. They identi-
fied the triangular and square shapes by finding the corners of each ROI, using the Harris corner
detection. The existence of corners is then tested in six different control areas of the ROI [40].
Harris corner detector was first introduced in 1988 by Chris Harris and Mike Stephens [41].This
corner detector is popular because it is simple and fast. Furthermore, the Harris corner detector
is scale, rotation and illumination variation invariant.

Neural Networks

Another approach for shape detection is the use og trained Neural Networks (NN). Zhu et al.
[42] used a neural network for detecting triangular signs. [43] is another example of using NN
for traffic sign shape detection.
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Template Matching

Another common method in image processing and pattern recognition is template matching.
Template Matching is a high-level machine vision technique that allows identifying the parts
of an image (or multiple images) that match a given image pattern [44]. This method is also
used in TSDR systems. For instance, researchers in [45], [46], and [47] all proposed image
matching techniques for TSDR.

Gavrila [6] proposed a shaped-based system, based on distance transforms and template
matching. The first stage of this technique is finding the edges in the original images. In the
second stage, a distance transform (DT) image is created. Figure 2.6 depicts these two stages.
In order to find the traffic signs inside the images, matching a template against the DT image
is performed. Matching a template with the edge image is also possible, but the advantage of
template matching with DT image is that the resulting similarity measure is much smoother.

Figure 2.6: Building the distance transform image. from left to right: original image, edge
image and the distance transform image [6].

Gradient features

In recent years, Histogram of Oriented Gradients (HoG) features [48] were used in many con-
tributions for traffic sign feature extraction, such as [49] and [50]. We also used this method
due to its robustness for object detection applications. The HoG detector was first introduced
for the task of pedestrian detection. This method begins with dividing the imagery into a set
of blocks. The HoG is then computed for each block. HoG has different parameters that can
influence the accuracy of the detection stage. HoG features possess several advantages in com-
parison to other shaped-base methods, including high accuracy, scale invariance, local contrast
normalization, and coarse spatial sampling.

Other methods

Authors in [51] and [52] defined a operator named Local Contour Pattern (LCP) and used it
to detect circular and triangular road sign shapes. They defined this operator as a measure
over binary images to find local geometrical structures. Jiang et al. [53] used mathematical
morphology in order to filter noise out and extract the morphological feature of inner shapes of
traffic signs, in a way that is invariant to translation.
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2.1.3 Detection Based on Hybrid Methods

As previously discussed, Both color-based and shape-based methods have some advantages
and disadvantages. Thus, a combination of the two reviewed methods is also prevalent among
researchers. Many sign detection systems include a color segmentation stage followed by some
kind of shape extraction stage. The work of Fang et al. [43] includes using the hue as a color
feature and an edge detector method for shape feature extraction. [54] and [55] are other exam-
ples of integrating color-based methods with the ones based on shape analysis. Mathias et al.
et al. [56] used Integral Channel Features (ICF) for sign detection which was first established
by Dollar et al. [57] for the task of pedestrian detection. Integral channel features include a
combination of different orientation channels, color space channels, and gradient magnitude
channels. Sekanina and Torresen [58] proposed an algorithm for detection of Norwegian speed
limit signs. They used the RGB color space for the color segmentation stage and template
matching for locating speed limit signs. A converted version of the RGB color space and a
Laplacian of Gaussian (LoG) edge detector have been used by [59] for detection of triangular
traffic signs.

2.2 Recognition Methods

The next stage in TSDR systems is sign recognition, which ascertains whether the detected
candidate is an actual traffic sign or not. Different ways exist for recognizing the detected sign
candidates. We introduce the most widely used methodologies in this Section.

We have reviewed Neural Networks for the task of sign detection. This method is also
prevailing for the task of traffic sign recognition. In [60], six Neural Networks have been
trained with the back propagation method for six different classes of road signs. Their proposed
algorithm was tested on 200 different traffic signs. Authors in [61] also selected six categories
of road signs for recognition. These are stop, yield way, no left turn, no right turn, speed limit
60, and speed limit 90 signs. In order to recognize the exact type of signs, they used a series of
one to one architectural Multi Layer Perception (MLP) Neural Networks. They took advantage
of Resilient Back Propagation (RP)[62] and Scaled Conjugate Gradient (SCG) [63] algorithms
for training their neural networks. The average accuracy of system using RP classifiers is 91%.
And the system using SCG classifiers also resulted in a 91% recognition rate.

Another multi-layer network was used in [64] to classify the extracted candidate road signs.
They performed the classification based on a developed and tested feed-forward MLP neural
network classifier. They also used The Conjugate Gradient Descent optimization algorithm in
order to achieve better results. They obtained an average classification rate of 91%. Another
example of using Neural Networks for sign classification is found in [36]. They implemented
two different back propagation Neural Networks for recognition of circular and triangular road
signs. One of the networks identifies the triangular signs while the other one identifies the
circular ones. The authors considered the speed-limit and end-of-speed-limit, stop, forbidden-
overtaking, and end-of-forbidden-overtaking signs for the circular ones, while for triangular
signs, the yield way sign, and dangerous curves signs were selected. Finally, they reported a
98.5% recognition rate for speed limit signs and a 97.2% recognition rate for warning signs.
Aoyagi and Asakura [39] also proposed a traffic sign recognition module using Neural Net-
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works. They classified their recognition category into three classes: the speed sign, other
traffic sign, and not a traffic sign. They used 324 input layers units, 15 hidden layer units,
and 3 output layer units. Back propagation is also used in their learning process. It is worth
taking into consideration that Neural Network based methods have some drawbacks such as,
over fitting, high computational cost, and difficulty of fine-tuning the performance [65].

Another method for traffic sign classification is using the Joint Transform Correlation
(JTC). JTC is one of the main techniques in pattern recognition. In a JTC, the unknown input
scene and the known reference image are displayed side-by-side in the input plane known as the
input joint image which is Fourier Transformed (FT)[64]. Then, these FT patterns are joined
with each other in order to build a pattern called the Joint Power Spectrum (JPS). Based on JPS
values between a test image and a template one, computing a correlation is possible. If two
correlation peaks are detected, a match is found. Authors in [64] used this method. Miura et al.
[29] carried out identification of traffic signs by a normalized correlation-based pattern match-
ing using a traffic sign image database. They applied this cross correlation between test images
and template images. This normalized cross-correlation made the system invariant to light-
ing conditions. They reached the identification rate of 46%. Perez and Javidi [66] presented
a non-linear correlator that performs many correlations between an input scene and different
reference targets. According to them, non-linear filters provide invariance to distortions of the
target, noise robustness, and rejection of background noise.

S. Lafuente-Arroyo et al.[67] proposed a new method for recognition of traffic signs based
on Support Vector Machines (SVMs) and Distance to Borders (DtBs). The patterns generated
by the vectors describe the distances to borders of the objects candidate to be traffic signs.
They have tested their algorithm on more than 300 image sequences. Based on the reported
results, their system is robust under different states. Authors in [68] combined Distance from
Centre (DfC) vectors with distance to border vectors for making the features for the input to
the linear SVM. According to their explanation, DfC is the distance from the centre of the blob
to the external edge of the blob. The main contribution of their technique is its robustness to
translation, rotation, and scale. They achieved a classification success rate of 89.96% for red
triangular signs and 92.54% for red circular signs.

A new method for traffic sign classification based on grayscale images has been presented in
[69]. In the first stage the RGB images were converted to grayscale by using color thresholding
and histogramming techniques. Then they used a method called ring partitioning in order to
divide the image into several ring areas and match the image by computing the histogram for
every ring. They show that the ring partitioning method performs best in the matching of
rotated, shadowed, occluded, (including illumination changes) images. They achieved a 93.9%
matching rate. Authors in [70] presented a classification method using Principal Component
Analysis (PCA). The system was able to achieve a performance of 99.2% correct classifications
of road signs. It was implemented so as to be invariant to image translation, rotation and
scaling.

A classification model using SVMs was developed by authors in [71]. They performed
recognition for seven categories of traffic sign shapes and five categories of speed limit signs.
Binary images and Zernike moments features were used for presenting the data to the SVM for
training and testing. They achieved a 100% accuracy in sign shapes classification and a 99%
accuracy on speed limit signs classification. Another method that is also based on SVMs has
been proposed by [72]. The authors used a cascade of SVM classifiers that were trained using
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Histogram of Oriented Gradient (HoG) features for recognition. The accuracy of their system
for white road signs is 89.2%, and 92.1% for color signs.

Another proposed method for traffic sign recognition uses the Scale Invariant Feature Trans-
form (SIFT)[73]. This method finds local invariant features in a given image and matches these
features to the features of images that exist in the training set. The training image that gives the
maximum number of matches is the target sign. To increase the performance of the system, the
authors added color and orientation information to the recognition process. For instance, the
orientations of the matched features are also computed and checked. And if two orientations
have a difference larger than a defined threshold, the match is considered to be false, else it
is taken as a true match. They obtained a 99.3% recognition rate by recognizing 149 out of
150 traffic sign images correctly. In [74], the SURF (Sped-Up Robust Features) [75] descriptor
was selected instead of SIFT. There are a few differences between SIFT and SURF. For exam-
ple, for scale spacing, SIFT approximates a Laplacian of Gaussian (LoG) with a Difference of
Gaussian (DoG), but SURF approximates LoG with a Box Filter. To assess the performance
of the proposed method, 200 images were selected. They obtained a recognition accuracy of
92.7%.

Optical Character Recognition (OCR) is also a method used in the current literature for
traffic sign recognition through text recognition of traffic signs. The OCR approach is used
in [76]. The main disadvantage of this method is that it is not able to recognize traffic signs
without text and only the signs with text fit to this method. Therefore, there are several signs
without text that cannot be recognized.
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Chapter 3

Traffic Signs Dataset

3.1 Background
Another principal element of any traffic sign detection and recognition system is the availability
of a dataset. In order to train and test a detector for identifying an object based on different
features and classifiers, we need to have access to a large number of samples of that object.

During the past few years, a number of research groups have worked on creating traffic
sign datasets for the task of detection, recognition, and tracking. Some of these datasets are
publicly available for use by the research community. The following table introduces some of
these datasets.

Dataset Description Paper

GTSRB
Country of origin: Germany
Number of images: 50000

Classes: 43
[77]

GTSDB Country of origin: Germany
Number of images: 900 [77]

BTSCB
Country of origin: Belgium
Number of images: 10000

Classes: 62
[78]

BTSDB Country of origin: Belgium
Number of images: 7000 [78]

STSD Country of origin: Sweden
Number of images: more than 20000 [79]

Stereopolis
Country of origin: France
Number of images: 847

Classes: 10
[80]

LISA
Country of origin: United States

Number of images: 6000
Classes: 46

[81]

Table 3.1: Publicly available traffic sign datasets

Among these datasets, the German Traffic Sign (GTS) dataset and the Belgium Traffic Sign
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(BTS) dataset are the two large and famous datasets that can be used for detection and recog-
nition. The German Traffic Sign Recognition Benchmark (GTSRB) and Belgium Traffic Sign
Classification Benchmark (BTSCB) can be used for the task of both detection and recognition.

3.2 Differences Between North American and European Signs

Most of these traffic sign datasets have been recorded and created in European countries. Fur-
thermore, it is worth taking into consideration that most of the detection and recognition al-
gorithms that have been proposed in the past two decades are based on European traffic signs.
Due to the lack of open-sourced and publicly available datasets for USA and Canada, most
researchers tested their developed methods on European datasets. Figure 3.1 shows some Eu-
ropean traffic signs.

Figure 3.1: Samples of European traffic signs.

The traffic signs in different countries have different colors, backgrounds, and shapes. For
example, the design of traffic signs in North America is entirely different from European traffic
signs. The main difference between the two traffic systems is speed limit signs.

Figure 3.2: Samples of speed limit signs. left: Europe right: Canada.

18



The rectangular shape of North American speed limit signs is completely different from
circular European speed limit signs. The other main difference is related to the color of signs.
In Europe, the speed limit signs are white with a red circular border, but in North America,
these signs are totally white with a black rectangular border. Figure 3.2 represents samples
of speed limit signs in Europe and North America. There are also other traffic signs in North
America with the same shape and color as speed limit signs, including many regulatory and
High Occupancy Vehicle (HOV) signs.

While the problem of detection and recognition of European traffic signs can be considered
solved, there is still much to accomplish for North American traffic signs. As we reviewed
the main proposed methods for detection and recognition of European signs in the previous
Chapter, we found out that some researchers showed impressive and accurate detection results
on the GTSDB. But the story of detection of North American sign is different. If we apply the
same method used for detection of European signs on North American signs, we will not get
the same detection accuracy. This is due to the different designs of the two traffic systems. For
example, color thresholding which was used extensively in segmentation of all types of Euro-
pean signs is not suitable for segmentation of North American speed limit signs. Since speed
limit signs have no color to make them stand out from the background, color segmentation
methods are unable to distinguish them from other objects. Therefore, we can consider most
of the North American traffic signs hard cases for detection. This leads us to conclude that the
challenge of detection of traffic signs is not completely solved.

3.3 RoadLab Traffic Sign Dataset
In this section, we introduce our own traffic sign dataset. Based on a previous project in our
laboratory [82], several driving sequences were recorded by our RoadLab experimental vehi-
cle around the city of London, ON, Canada. This vehicle is equipped with different hardware
systems including stereo camera rigs. The front stereo rig which is mounted on the roof of the
vehicle records stereo images with a resolution of 320 by 240. This dataset includes different
types of traffic signs such as warning signs, temporary condition signs, information and direc-
tion signs and regulatory signs which makes it a complete dataset for the task of detection and
recognition. Therefore, we used our own dataset for training and testing the proposed method.
Figure 3.3 delineates some of the recorded sequences of this dataset.

There are also other vision systems installed on our instrumented vehicle such as a remote
eye tracking system and RoadLAB stereoscopic vision systems. In the next Chapter we provide
more information on these vision systems and their intended use.
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Figure 3.3: Samples of image sequences in our dataset.
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Chapter 4

TSDR System Architecture Design

In this Chapter, we focus on providing detailed information about the three main stages of our
TSDR system and introducing related concepts behind our method. As mentioned before the
three stages of this system are:

1. Establishing the field of view of the driver.

2. Detecting the traffic signs using a linear Support Vector Machine (SVM) and Histogram
of Oriented Gradients (HOG) features.

3. Recognition of detected candidates using color information and Scale Invariant Feature
Transform (SIFT) matching [83].

4.1 Establishing the Field of View of the Driver

All of the current TSDR systems are performing based on detection and recognition of traffic
signs within image sequences. The main difference in our TSDR system from others is our
ability to establish the visual attentional field of the driver and then detecting the signs inside
that area.

In this work, our main focus lies on detection and recognition of signs within the visual
field of the driver. In order to relate the 3D Line-of-Gaze (LoG) of the driver to the depth
map obtained by the forward stereo camera system and derive the 3D Point-of-Gaze (PoG), we
used a technique proposed in our laboratory [84] to identify the 3D PoG in absolute coordinates
expressed in the frame of reference of the vehicle. Figure 4.1 depicts the remote eye tracking
system and the stereoscopic vision system. By intersecting the visual cone of attention with
the plane perpendicular at the 3D PoG along the 3D LoG of the driver, we are able to form a
circle in 3D space which represents our region of interest. Note that this circle becomes a 2D
ellipse once projected onto the imaging plane of the stereoscopic sensors. Figure 4.2 displays
the driver visual cone of attention. According to [85] the radius of the cone is approximately
13◦.

Given the eye position e = (ex, ey, ez) and the 3D PoG g = (gx, gy, gz), provided in the frame
of reference of the eye tracker, we compute the radius of the 3D circular gaze area r onto the
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Figure 4.1: Physical configuration (left): Remote eye tracking system. (right): RoadLAB
stereoscopic vision system.

Figure 4.2: Depiction of the diver attentional gaze cone

plane perpendicular to the LoG and containing the PoG, according to:

r = tan(θ)d(e, g) (4.1)

The area of gaze is defined as the range to extend 6.5 degrees for each pitch and yaw of gaze
direction [85]. Therefore, θ = 6.5◦, and

d(e, g) =

√
(ex − gx)2 + (ey − gy)2 + (ez − gz)2 (4.2)

is the Euclidean distance between eye position and the PoG. The parametric form of the 3D
circle can be written as:

S (φ) = (X(φ),Y(φ),Z(φ))T = g + r(cos(φ)u + r sin(φ)v) (4.3)

where u = (ux, uy, uz) and v = (vx, vy, vz) are the two unit orthogonal vectors within the plane
and φ is an angle varying between 0 and 2π.

The eye tracking system and the forward stereoscopic system each operate in their own
frame of reference, and we need to transform the 3D circle corresponding to the visual at-
tentional area of the driver into the frame of reference of the stereo system of the vehicle.
To accomplish this, we used a cross-calibration process developed earlier in our laboratory to
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compute the parameters of the rigid transformation (a translation T and a rotation matrix R)
between the eye tracker and the stereoscopic system [84]:

S ′(φ) = RT (S (φ) − T ) (4.4)

The last step is the projection of the 3D circle onto the stereo imaging plane in image coordi-
nates, and is computed with the following equation:

s′(φ) =
1

Z′(φ)
KS ′(φ) (4.5)

where K is the matrix of intrinsic parameters of the scene stereo system. Our region of interest
is now defined and figure 4.3 depicts a few attentional gaze areas for chosen frames.

Figure 4.3: Attentional gaze areas projected onto the forward stereo scene system of the vehicle.

4.2 Detection Phase
In this Section, we provide more information regarding the algorithms used in the detection
stage such as HOG features and SVM classifier.

4.2.1 HOG Descriptors
It is widely accepted that Histogram of Oriented Gradients (HOG) features are suitable for rigid
object detection. These features are based on evaluating well-normalized local histograms of
image gradient orientations in a dense grid. This method has been used for the first time by
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Navneet Dalal and Bill Triggs in 2005 [48]. They have used it for the task of pedestrian detec-
tion. Since that year, many researchers have used HOG descriptors for different applications in
the field of image processing and computer vision. These kinds of features have an excellent
performance compared with others [48]. We can divide the implementation of HOG descrip-
tors algorithm into four different stages, namely image normalization, gradient calculation,
orientation binning, and normalization and descriptor blocks. We describe each stage of the
HOG features extraction in detail. Figure 4.3 displays the algorithm implementation scheme.

Figure 4.4: HOG descriptor implementation scheme.

Image Normalization

The first step in extracting HOG features is to apply an image equalization in order to reduce
the impacts of inconsistent illumination. This is performed using Gamma compression by
computing the square root or the log of each color channel.

Gradient Calculation

The second stage consists of computing the first order image gradients. The goal of this step is
capturing some contour and texture information as well as providing more resistance to incon-
sistent lighting conditions. The most common method for computing the image gradients is
using 1-D centred, point discrete derivative mask in both the horizontal and vertical directions.
For instance, the gradient of pixel (x, y) can be defined as follows:

G(x) = H(x + 1, y) − H(x − 1, y) (4.6)
G(y) = H(x, y + 1) − H(x, y − 1) (4.7)
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where H(x, y) is the gray value of pixel (x, y), and G(x) and G(y) are the gradients. Different
methods may use second order image derivatives.

Orientation Binning

The third step is the creation of the cell histograms. Each pixel calculates a weighted vote for
an edge orientation histogram channel based on the orientation of the gradient element centered
on it, and the votes are accumulated into orientation bins over local spatial regions that we call
cells [48]. These cells can be either radial or rectangular. The histogram channels are evenly
spread over 0◦ - 180◦ (unsigned gradient) or 0◦ - 360◦ (signed gradient). According to [48],
increasing the number of orientation bins up to about 9 can improve the performance of the
system remarkably.

Normalization and Descriptor Blocks

The last step consists in the normalization of histograms. Normalization brings more invariance
to illumination changes, shadowing, and edge contrast. Since the range of gradient strength
variations is large, an effective local contrast normalization seems to be critical for improving
the performance of the system. The proposed normalization scheme by Dalal et al. [48] is
based on grouping cells into larger spatial blocks and contrast normalizing each block sepa-
rately. Therefore, the final HOG descriptor is a vector consisting of all cell histograms. The
two main block geometries are rectangular (R-HOG) and circular (C-HOG). R-HOG blocks
are generally represented by three parameters: the number of cells in each block, the number
of pixels in each cell, and the number of channels in each cell histogram. Dalal and Triggs [48]
found 8X8 pixels cells per block with 9 histogram channels to be optimal parameters for the
task of pedestrian detection.

Despite some similarities between R-HOG blocks and SIFT descriptors, they are used dif-
ferently. R-HOG blocks are computed in dense grids at a single scale without dominant ori-
entation alignment, whereas SIFT descriptors are computed at a sparse set of scale invariant
key points, rotated to align their dominant orientations, and used individually [48]. The other
block shape is circular. C-HOG descriptors can be found in two different variants: those with
a single circular central cell and those with an angularly divided central cell. C-HOG blocks
are represented by four parameters: the number of angular and radial bins, the radius of the
center bin, and the expansion factor for the radius of additional radial bins [48]. For achieving
an optimal performance two radial bins and four angular bins are necessary. Dalal and Triggs
evaluated four different block normalization methods for R-HOG and C-HOG blocks:

L1-sqrt: f =

√
v

(‖v‖1 + e)
(4.8)

L1-norm: f =
v

(‖v‖1 + e)
(4.9)

L2-norm: f =
v√

‖v‖22 + e2
(4.10)

(4.11)
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L2-hys: f =
v√

‖v‖22 + e2
(v <= 0.2) (4.12)

where v is the non-normalized feature vector, e is a small constant, and f is the normalization
factor. Based on experiments performed by Dalal and Triggs, L2-hys, L2-norm, and L1-sqrt
schemes provide reliable performance, with L1-norm being less reliable. In general, all of
these block normalization methods showed notable improvement over non-normalized blocks.

After block normalization, all the histograms can be combined in one feature vector for use
in the window classifier. Figure 4.5 illustrates examples of HOG features extracted from a few
traffic signs.

Figure 4.5: Examples of HOG features extracted from traffic signs.

4.2.2 Support Vector Machine (SVM)
This section introduces the Support Vector Machine (SVM) [86] learning algorithm. SVM is
among the best supervised learning algorithms in machine learning. Supervised learning refers
to a machine learning task of inferring a function based on labelled training data. A supervised
learning algorithm evaluates the training data in order to infer a function for mapping new,
unseen examples. SVM is a discriminative classifier formally defined by a separating hyper-
plane. That is to say, given labelled training data, this method produces an optimal hyperplane
which classifies new examples. This classification method is highly accurate and extremely
fast which is a good choice for large amount of training data.

More precisely, SVM is a binary classifier that separates two different classes by a subset
of data samples called Support Vectors. Pedestrian detection is a well-known application of
SVM in the field of computer vision and machine learning. Dalal et al. [48] proposed a robust
pedestrian detection method based on a SVM classifier and HOG descriptors. We show an
example of classifying two types of samples in a two-dimensional space, as illustrated in figure
4.6. Squares and circles represent two different types of samples.
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Figure 4.6: . 2D classification sample

Let’s suppose that our data has the form (~x1, y1), . . . , (~xn, yn). Each pair represents the
labels -1 or +1; -1 for negative samples and +1 for positive samples. A hyperplane used as a
decision function can separate these two classes. Any hyperplane can be defined as a set of
points ~x satisfying:

~w · ~x + b = 0 (4.13)

where ~w is the normal vector to the hyperplane, and b is called the bias.
Our example from Figure 4.6 shows how the squares and circles are separated by a number

of lines (or planes, in higher dimensions). We can select two parallel hyperplanes to separate
our data. The distance between the two hyperplanes is made to be the greatest possible. These
hyperplanes can be defined as follows:

~w · ~x + b = 1 (4.14)
~w · ~x + b = −1 (4.15)

The distance between these two hyperplanes is 2
‖~w‖ . In order to maximize the distance be-

tween the planes we need to minimize ‖~w‖. We also need to look for the maximum-margin
hyperplane which is the hyperplane that lies halfway between the two defined hyperplanes. We
can also define a criterion to find out which hyperplane is the optimal one. If a line passes too
close to the points, it will be sensitive to noise and it will not be a good choice for classifying
the two classes. Therefore our aim is to find the line which is as far as possible from all points.
The SVM algorithm is based on finding the hyperplane which gives the largest minimum dis-
tance to the training data. In SVM’s theory, this distance is named margin. consequently, the
optimal separating hyperplane maximizes the margin of the training samples. Figure 4.7 shows
this optimal hyperplane.

Another important matter in finding the optimal hyperplane is preventing the data points
from falling into the margin. By using the following constraints, we make sure the data points

27



Figure 4.7: . Optimal hyperplane

lie on the correct side of the margin:

~w · ~xi + b ≥ 1 if yi = 1 (4.16)
~w · ~xi + b ≤ −1 if yi = −1 (4.17)

These constraints can be combined as:

yi(~w · ~xi + b) ≥ 1 for all 1 ≤ i ≤ n (4.18)

By joining these equations we obtain the following optimization problem:

Minimize ‖~w‖ subject to yi(~w · ~xi + b) ≥ 1, for i = 1, . . . , n (4.19)

The above constraints guarantee that the maximum margin classifier classifies each sample
correctly when the data is linearly separable. But in those cases that the data is not linearly
separable, a loss function can be introduced. That is to say, a greater margin can be achieved
by enabling the classifier to misclassify some data points. To allow a certain degree of fault
tolerance, slack variables are introduced:

yi(~w · ~xi + b) ≥ 1 − ξi (4.20)

where ξi ≥ 1 for i = 1, . . . , n

If slack variables are between 0 and 1 (that is, 0 <= ξ <= 1) it means that data points
are in the margin (margin error) and if they are greater than 1 (ξ > 1) some data points are
misclassified. In order to penalize misclassification and margin errors, a new term is introduced
which is called the soft margin constant C. The optimization problem thus becomes:

Minimize
1
2
~||w||

2
+ C
∑

i

ξi subject to yi(~w · ~xi + b) ≥ 1 − ξi, ξi ≥ 0 for i = 1, . . . , n (4.21)
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This formulation was presented by Cortes and Vapnik [86]. The soft-margin constant has an
important effect on the decision boundary as it can be used for penalizing misclassification and
margin errors. A large value for C assigns a large penalty to margin errors. As illustrated in
Figure 4.8 (left), the two points that are closest to the hyperplane impact its orientation. This
results in a hyperplane that is close to other data points. When C has a smaller value (Figure
4.8 (right)), those points become margin errors.

Figure 4.8: . The effect of the soft margin constant C.

4.2.3 Implementation Details

In this Section, we introduce advanced learning methods and other techniques related to our
traffic sign detector. Any detection system needs a set of positive and negative samples to be
used in the training process. We selected 1000 images as positive training samples. Addition-
ally, we increased the number of positive images by adding the flipped, rotated, and translated
versions of original samples which results in better detection performance. Figure 4.9 shows
the image visualization of the complete list of object training examples and their average.

The initial number of negative samples (2000) are selected from the training images with
the traffic signs regions cropped out. For boosting the performance of the learned classifier, we
use an advanced and popular learning method called hard negative mining. So far, SVM has
been learned using a small sample of negative images. Nevertheless, in essence, every single
image region that does not contain a traffic sign can be considered as a negative sample. There
are too many samples to be used in practice, but we are only looking for key negative samples
which can be extracted from the hard negative mining stage. We train the SVM in an iterated
procedure. In each iteration, the detector is applied to a new image without traffic signs. Then,
we add the resulting false positives (hard negatives) to the training set for the next iteration. We
performed this process for 5 iterations. Finally, the classifier is provided with more key nega-
tive samples which helps make the detection more robust. Figure 4.10 illustrates the extraction
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Figure 4.9: (top): Positive samples (bottom): Average image.

of hard negative samples from a traffic sign-free image.

Once hard negative mining and training have been performed, we evaluate the model on
test data. We use a sliding window over multiple scales. In order to eliminate redundant
detections, a Non-Maximum Suppression (NMS) algorithm is used. NMS keeps the highest-
scoring detection and removes any other detection whose overlap is greater than a threshold.
We used the pascal overlap score [87] so as to establish the overlap ratio between the two
bounding boxes. It is computed as:

a0 =
area(B1 ∩ B2)
area(B1 ∪ B2)

(4.22)

where a0 is the overlap ratio. B1 and B2 are the two bounding boxes.

4.3 Recognition Phase
This stage of our technique phase is concerned with identifying the exact type of detected
traffic sign candidates. Recognition uses SIFT features and color information. We introduce
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Figure 4.10: Hard negative mining.

the SIFT algorithm and then proceed to describe the combination of SIFT detectors and color
information to build a robust traffic sign recognizer.

4.3.1 Scale Invariant Feature Transform

In order to provide a feature description for any object inside an image, we need to extract
interesting points on the object. By using a feature descriptor that can be extracted from a
training image, we can detect and locate the object inside an image where many other objects
exist. A reliable recognition system should be able to extract features from training images
even under inconsistent illumination changes and noise. Another important factor is that the
relative positions between these extracted features should not vary from one image to another.
For instance, if the four corners of an object are considered as features, they would work with-
out regard to the position of the object. Moreover, features located on flexible objects would
not work if the physical geometry changes between images. However, the SIFT algorithm de-
tects a large number of features from images, which lessens the effect of errors caused by local
variations. The main advantage of SIFT is its ability to identify objects under partial occlusion.
Furthermore, SIFT feature descriptors are invariant to orientation, uniform scaling, and illumi-
nation changes. This Section summarizes the technical details of SIFT algorithm. We divide
our description of the SIFT algorithm into the three following parts: we present the notion of
scale space, then the SIFT detector followed by the SIFT descriptor.
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Scale Space

The SIFT detector and descriptor are built from the Gaussian scale space of an image. The
following equation introduces the Gaussian scale space function, in 1D for simplicity:

G(x;σ) = gσ ∗ I(x) (4.23)

where I is the 1D signal, x is its coordinate, σ is the scale parameter, and gσ is a Gaussian
kernel. The SIFT algorithm uses the Difference of Gaussians (DoG) to create a scale space.
This scale space is the scale derivative of the Gaussian scale space. It is defined by:

D(x, σ(s, o)) = G(x, σ(s + 1, o)) −G(x, σ(s, o)) (4.24)

where o is the octave index and s is the sub-level index. These two parameters can be mapped
to the corresponding scale σ by the formula:

σ(o, s) = σo2o+ s
S (4.25)

o ∈ omin + [0, ...,O − 1] (4.26)
s ∈ [0, ..., S − 1] (4.27)

where σo is the base scale level, O is the number of octaves, S is the number of sub-levels, and
omin is the index of first octave. According to the above equations, the Difference of Gaussian
(DoG) is obtained as the blurring of an image with two differentσ. This procedure is performed
for different octaves of the image in the pyramid. An example is shown in Figure 4.11.

SIFT Detector

SIFT keypoints include a set of points at the local extrema of the DoG scale-space. The selec-
tion of these points is guided by the following parameters:

• Local extrema threshold: if the value |G(x, σ)| of local extrema is less than this threshold,
then they are rejected.

• Local extrema localization threshold: if the local extrema are in a low contrast area, they
are discarded.

• Boundary points removal: keypoints too close to the boundaries of the image are rejected.

The identification of keypoints is performed by comparing each pixel in the DoG images to its
eight neighbors at the same scale as well as nine pixels in next scale and nine pixels in previous
scale. If the pixel value is the maximum or minimum among all existing pixels (local extrema),
it will be selected as a potential keypoint. Figure 4.12 demonstrates this process.

After the extraction of keypoints, the index (x1; x2; s) is fitted to the local extremum by
quadratic interpolation and a threshold on the intensity D(x;σ), and a test on the peakedness
of the extremum is applied in order to reject weak points or points on edges [88]. Any low
contrast and edge keypoints are eliminated at this stage.

Following this, an orientation is allocated to every keypoint to provide invariance to image
rotation. By taking a neighborhood around the location of a key point, the gradient magnitude
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Figure 4.11: Gaussian pyramid.

Figure 4.12: Searching an image for local extrema over scale and space.

and direction are computed in that area. Then an orientation histogram is created with 36 bins
covering 360 degrees. The histogram is weighted both by the magnitude of the gradient and a
Gaussian window centered on the key point and of deviation 1.5σ [88]. Only the highest peaks
are chosen to calculate the orientation. The global maximum and any peak with a value above
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80% of the highest peak is also taken for computation of the orientation.

SIFT Descriptor

The SIFT descriptor of a keypoint is an interpolated histogram of the gradient orientations and
locations in a region surrounding it [88]. The parameters of the descriptor are as follows:

• The magnification factor: spatial bins in the histogram have a size of mσ where σ is the
scale of the frame.

• The number of spatial bins

• The number of orientation bins

Figure 4.13 depicts the SIFT descriptor layout. In the previous part, the orientations were
assigned to keypoints. This ensured invariance to image rotation, location, and scale. In order
to create a keypoint descriptor, a 16 by 16 neighborhood around the keypoint is chosen. Then
it is divided into 16 sub-blocks of 4 by 4 size. 8 bin orientation histograms are created for each
sub-block . Therefore, a total of 128 bin components are available which form the components
of a vector. Next step is to normalize this vector in order to increase invariance to affine
changes. In order to decrease the effect of non-linear illumination, a threshold of 0.2 is used
and the vector is normalized again. SIFT descriptors are invariant to affine changes to some
extent.It is important to note that the 16 by 16 neighborhood around the keypoint or 4 by 4 size
of sub-blocks are default values of the SIFT algorithm and it has been proved that using these
default values will result in generating more unique descriptors.

Figure 4.13: The SIFT descriptor layout. The size of a spatial bin is mσ.

4.3.2 Implementation Details
Since the SIFT algorithm is able to find distinctive keypoints that are invariant to location,
scale, and rotation, and is robust to affine transformations, it is a judicious choice for object
recognition.
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First, the candidates found in the detection phase are scaled to the size of the template
signs. We gathered a full set of template traffic signs to use in the recognition stage. Figure
4.14 depicts a few examples of images in the template database.

Figure 4.14: Examples of template signs.

The following step is to devise a way of integrating color information in order to increase
the performance of the SIFT matching. We calculate the color difference between the candidate
target and the template signs. We have tested HSV and lab color spaces and finally used HSV
color model due to its relative insensitivity to noise and illumination. Moreover, The HSV color
space outperformed Lab color space in showing more consistent color difference between the
candidate target and the template signs. Figure 4.15 displays extracted H, S , and V values for
the template and detected signs. Traffic signs include a wide variety of colors, and it is possible
to differentiate them by using all the components of the HSV color space. Hence, we compute
H, S , and V values of the detected candidate sign and all template signs. Then, we obtain the
average of all values based on a defined mask. We then create the delta images:

δH = Hchannel − Hstandard
δS = S channel − S standard
δV = Vchannel − Vstandard

where the Hchannel, S channel, and Vchannel are the averaged HSV color parameters of the
detected candidate, and the other three are averaged HSV color parameters of the template
sign. The final value which is the color difference between the two images is obtained as:

δ f =
√
δH2 + δS 2 + δV2 (4.28)
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where ∆ f is comprised between 0 and 1. If it is close to 1, we can conclude that there is a large
color difference between the two images, and vice versa. We define a threshold, whose value

Figure 4.15: HSV color space images a) (top): detected sign b) (bottom): template sign.

was experimentally obtained, to determine whether the two images are color-wise similar or
not. If δ f is less than the defined threshold, then we select the corresponding template sign
for feature matching. Hence, we perform feature matching only between the candidate image
and those images in the template database whose colors are similar to the detected sign. This
method removes some of the potential false matches and significantly improves performance.
Once all the sample images that have a similar color to the detected target are found, we per-
form feature matching between those ones and the candidate image. The SIFT algorithm is
used for feature matching. Figure 4.16 shows an illustration of the DoG scale space in different
octaves and scales for traffic signs. After key point extraction, we calculate the descriptors of
each key point. We then proceed with matching the candidate descriptors. In order to do this,
we define a threshold: a descriptor d1 is matched to a descriptor d2 if the distance between
them multiplied by a threshold is not greater than the distance of d1 to all other descriptors.
The value of this threshold was experimentally obtained and it is equal to 1.5.

The RANdom SAmple Consensus (RANSAC) algorithm [89] is also used to discard pos-
sible outliers. This is an iterative method for estimating a mathematical model from a data set
that contains outliers. The basic stages of this algorithm are summarized as follows [90]:

• Randomly select the minimum number of points needed to determine the model param-
eters

• Solve for the parameters of the model

• Determine how many points from the set of the selected points fit the model parameters
with a predefined tolerance ε.
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Figure 4.16: DoG scale space images (left): template sign (right): detected sign.

• Re-estimate the model parameters if the fraction of inliers over the total number of points
in the set is lower than a predefined threshold τ.

• Repeat these steps until an adequate confidence level for the estimated model parameters
is attained.

In order to filter out outliers during training, a small set of samples has been used to train a
homography model. Then the samples which are within the error tolerance of the homography
model are determined. These samples are considered as inliers. If the number of inliers is the
largest found so far, we keep the current inlier set. This process is repeated for a number of
iterations and returns the model with smallest average error among the generated models.
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Chapter 5

Experimental Results

To prove the effectiveness of our framework, the proposed method was tested on 3500 frames.
Among these frames, 1806 traffic signs appeared which were manually annotated. As men-
tioned before, these sequences were recorded with the RoadLAB experimental vehicle. The
size of the recorded images is 320 by 240. While our main focus is on detection and recog-
nition of signs within the visual field of the driver, we also performed sign detection outside
this area in order to provide the driver with a response about a possibly unseen traffic sign. If
the four coordinates of the bounding box are inside the driver’s field of view, we can conclude
that the driver has seen the sign. Otherwise, the driver has missed the sign. Both SEEN and
MISSED feedbacks are given to the driver right after the detection and recognition of signs.

In the first part of this Chapter, we present our traffic sign detection results. Recognition
results are provided in the second part. Finally, some screen shots of detected and recognized
traffic signs both inside and outside of the driver’s visual attentional field are provided.

5.1 Traffic Sign Detection Results
In order to assess the accuracy of sign detection we report two numbers: the Detection Rate
(DR) and the False Positive per Frame (FPPF), defined as:

DR =
T P

T P + FN
(5.1)

FPPF =
FP
F

(5.2)

where T P is the number of true positives, FN is the number of false negatives, FP is the number
of false positives, and F is the number of image frames. Table 5.1 reports on the performance
of traffic sign detection. As mentioned before, the traffic sign detector was applied on 3500
images. Some images have no traffic signs and some have more than one traffic sign. Table 5.1
also demonstrates the performance of the proposed detector. Figure 5.4 depicts the information
provided in Table 5.4.

Another method used for visualizing the performance of our system is the Receiver Op-
erating Characteristics (ROC) curve. ROC curves are commonly used in medicine, radiology,
biometrics, and also in machine learning and data mining research. This curve outputs True
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DR FPPF
Proposed method 0.84 0.04

Table 5.1: Detection rate and false positive per frame

Number of signs 1806
Number of detected signs 1517
Number of missed signs 289

Table 5.2: Summary of traffic sign detection results

Figure 5.1: Traffic sign detection rate

Positive Rate (TPR) which is known as sensitivity, hit rate and recall against False Positive
Rate (FPR) which is known as false alarm rate:

T PR =
Positives Correctly Classified

Total Positives
(5.3)

FPR =
Negatives Incorrectly Classified

Total Negatives
(5.4)

ROC curves can be understood as two-dimensional graphs in which T PR is represented on the
Y axis and FPR is represented on the X axis.

The best possible prediction model represents 100% sensitivity (no false negatives) and
100% specificity (no false positives). That is to say, a point that reaches the coordinate (0,1) can
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be called perfect classification. We can measure the accuracy by defining the Area Under the
Curve (AUC). This area is equal to the probability that a classifier will rank a randomly chosen
positive instance higher than a randomly chosen negative one (assuming positive ranks higher
than negative) [91]. Figure 5.2 shows the area under the curve for two different classifiers. As
can be noted, classifier B has a greater area under the curve and as a result a better performance.
But sometimes a classifier with a greater AUC can have a lower performance in comparison
to a classifier with a lower AUC. For example even though classifier B generally performs
better than classifier A, classifier A, at false positive rate greater than 0.6, has a slightly better
performance. A rough model for classifying the accuracy of tests based on AUC is given below.

Figure 5.2: The AUC of two classifiers

• 0.9 5 AUC 5 1.0 =⇒ Excellent0.8 5 AUC < 0.9 =⇒ Good

•• 0.7 5 AUC < 0.8 =⇒ Fair0.6 5 AUC < 0.7 =⇒ Poor

•• 0.5 5 AUC < 0.6 =⇒ Fail Another important factor in plotting a ROC curve is defining
a threshold. In a classification model, the classifier needs to determine a threshold value for
separating the boundary between classes. Most classifiers produce a score which can be thresh-
olded to decide on the classification. Any threshold applied to a dataset is going to produce four
parameters with different values for: True Positives (T P), False Positives (FP), True Negatives
(T N), and False Negatives (FN) (see figure 5.3).

In our case, we obtain a scoring value for each detected bounding box. After normaliza-
tion, the scoring values vary between 0 and 1. These scoring values can be used as threshold
parameters for plotting the ROC curve. We used the ROC curve in order to obtain an optimal
threshold among all scoring values for our classifier which maximizes the true positive rate,
while minimizing the false positive rate. Different thresholds have been used and we found
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Figure 5.3: true positives, false positives, true negatives and false negatives

that a threshold equal to 0.56 gave us the best trade off between the true positive rate and the
false positive rate. Figure 5.4 depicts this ROC curve.

Figure 5.4: ROC curve with threshold=0.56

It is important to note that due to significant differences between European and North Amer-
ican traffic signs, providing a comparison between our proposed method and other methods
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may not be meaningful. But, we just introduce a state-of-the-art detection method on Euro-
pean traffic sign detection. Authors in [56] have evaluated their method on the German Traffic
Sign (GTS) and the Belgium Traffic Sign (BTS) datasets. Both benchmarks are split in three
main super classes based on their color and shape: (M) mandatory, (D) danger, and (P) pro-
hibitory. The following table summarizes the accuracy of their method by providing the area
under curve (AUC) of their detector.

Dataset mandatory danger prohibitory
GTS 96.98 100.00 100.00

BTS 94.79 96.40 86.51

Table 5.3: State of the art detection results on European traffic signs

Additionally, limited work has been done on the detection and recognition of North Amer-
ican traffic signs. For instance, authors in [92] proposed a detector only for stop, warning , and
speed limit signs and provided separate accuracies for each category. In contrast, our detector
detects most traffic signs, including warning, temporary conditions, information and direction,
and regulatory signs

5.2 Traffic Sign Recognition Results
The recognition phase is built atop the detection phase in order to confirm the detected candi-
dates and determine the exact type of traffic sign. Table 5.4 demonstrates the accuracy of our
proposed method for recognition of traffic signs. The traffic sign recognition results are also
shown in figure 5.5.

Number of detected signs 1517
Number of recognized signs 1348

Number of falsely recognized signs 169
Accuracy rate 88.9

Table 5.4: Summary of traffic sign recognition results

Another standard evaluation method for traffic sign recognition is the confusion matrix.
In the field of machine learning and computer vision, the confusion matrix is a table that is
commonly used for evaluating the performance of a classification model on a set of test data
when the true values are known. Each column of this table represents the predicted values
while each row represents the true values. Figure 5.6 provides an example of the confusion
matrix for a two-class classifier. The meaning of the entries is explained below:

• a: the number of correct predictions that an instance is positive

• b: the number of incorrect predictions that an instance is negative

• c: the number of incorrect predictions that an instance is positive

• d: the number of correct predictions that an instance is negative
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Figure 5.5: Traffic sign recognition rate

Figure 5.6: Confusion matrix example

Figure 5.7 provides the confusion matrix for our recognition method.
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Figure 5.7: Confusion matrix with accuracy of 88.9%
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5.3 Output Images
In this section we provide some output images from our TSDR system. The images include
detected and recognized signs inside and outside of the visual field of drivers as well as SEEN
and MISSED feedbacks. As it is shown in the following images, in some cases the traffic signs
do not appear within the visual field of the driver and it probably means that the sign was not
acknowledged. Therefore, a MISSED feedback is given in these cases. On the other hand, if
traffic signs appear within the visual field of the driver, it also probably means they can be seen
and a SEEN feedback is given.

Figure 5.8: Detection and recognition of the stop sign. The driver has seen the sign.
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Figure 5.9: Detection and recognition of the speed limit sign. The driver has seen the sign.

Figure 5.10: Detection and recognition of the traffic light ahead sign. The driver has seen the
sign.
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Figure 5.11: Detection and recognition of the bike lane ends sign. The driver has seen the sign.

Figure 5.12: Detection and recognition of the school zone sign. The driver has missed the sign.
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Figure 5.13: Detection and recognition of the No heavy trucks permitted on this roadway sign.
The driver has missed the sign.

Figure 5.14: Detection and recognition of the keep to the right of traffic island sign. The driver
has missed the sign.
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Chapter 6

Conclusion and Future Work

In this thesis, we presented an efficient traffic sign detection and recognition system based on
North American traffic signs. The RoadLab traffic sign dataset has been created used for train-
ing and testing the proposed method. Moreover, by using an in-vehicle, non-contact infra-red
binocular gaze tracking system installed in our experimental vehicle, we were able to identify
the exact gaze area of the driver. We were also able to infer whether the driver was likely to
have seen the sign or not based on computing the intersection of the detected bounding box
and driver gaze area. While the detection and recognition of traffic signs have come far in
European countries, little attention has been given to North American signs. We tried to rectify
this dissimilarity by proposing a system for detection and recognition of North American traffic
signs.

This method can be extended to include other possible objects drivers attend to or encounter
such as pedestrians, cyclists, and traffic lights. By identifying all objects that are inside and
outside of the attentional visual field of drivers, an advanced driver assistance system that
informs the driver about those objects can be developed. Such system will be valuable for
safety reasons.

Another important issue which needs to be addressed is the creation of publicly available
North American traffic sign datasets. Most of the proposed TSDR systems have been evalu-
ated on European traffic signs due to a lack of publicly available North American traffic sign
datasets. Based on the differences between these two traffic systems, it is necessary to pay
more attention to detection and recognition of North American traffic signs.
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