
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

1-26-2017 12:00 AM 

Discovery of Novel Diagnostic Biomarkers on Prostate Tumor Discovery of Novel Diagnostic Biomarkers on Prostate Tumor 

Microparticles for Discriminating Between Low and High Risk Microparticles for Discriminating Between Low and High Risk 

Prostate Cancer and Improving Prostate Cancer Screening Prostate Cancer and Improving Prostate Cancer Screening 

Sabine Brett, The University of Western Ontario 

Supervisor: Dr. Hon Leong, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in 

Microbiology and Immunology 

© Sabine Brett 2017 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Cancer Biology Commons, and the Diagnosis Commons 

Recommended Citation Recommended Citation 
Brett, Sabine, "Discovery of Novel Diagnostic Biomarkers on Prostate Tumor Microparticles for 
Discriminating Between Low and High Risk Prostate Cancer and Improving Prostate Cancer Screening" 
(2017). Electronic Thesis and Dissertation Repository. 4547. 
https://ir.lib.uwo.ca/etd/4547 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F4547&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/12?utm_source=ir.lib.uwo.ca%2Fetd%2F4547&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/945?utm_source=ir.lib.uwo.ca%2Fetd%2F4547&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/4547?utm_source=ir.lib.uwo.ca%2Fetd%2F4547&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


Abstract 

There are few protein-based biomarkers to accurately distinguish between patients with low 

risk prostate cancer from those with high risk disease in a non-invasive manner. Prostate 

specific antigen (PSA) is used for clinical follow-up of prostate cancer; however, it is not 

effective as a screening tool.  As a result, many men with non-life threatening disease having 

to undergo unnecessary and painful biopsies. Therefore, there is a dire need for minimally 

invasive platforms for monitoring patients with clinically significant prostate cancer. Prostate 

cell microparticles (PCMPs) released by prostate epithelial cells into plasma are a potential 

source of biomarkers specific for prostate cancer. I undertook a translational prostate cancer 

research project to detect biomarkers expressed in PCMPs isolated from patient plasmas 

representing low and high grade prostate cancer, with the goal to differentiate patients. These 

novel biomarkers will offer a non−invasive means to differentiate between these two disease 

states. 
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Chapter 1  

 « Introduction» 

  Extracellular Vesicles 

Extracellular vesicles (EVs) are a family of heterogeneous, cell-derived fragments or 

vesicles, which can be generated by cell membrane shedding or storage vesicle 

exocytosis. EV generation typically occurs following biological processes such as cell 

activation and modes of cell death such as necrosis and apoptosis (1). Initially perceived 

as cellular by-products or ‘dust’ of insignificant biological importance, recent research 

has shed light on the role of EVs as mediators of intercellular communication, blood 

coagulation and disease progression. Major sources or contributors of EVs in the blood 

are platelets, leukocytes and endothelial cells (2). Secretory glands comprised of 

epithelial cells also are a major source of EVs (3), but their contribution to the EV pool in 

blood is unclear. Several types of EVs are described throughout the literature (Fig.1); 

they are categorized according to their size, contents and mechanism by which they are 

released (4). For example, exosomes (30–100 nm) are EVs of cytoplasmic origin, 

released or exocytosed into the extracellular environment upon fusion of multivesicular 

bodies (MVBs) with the plasma membrane (5). Microparticles (MPs; Fig.1, middle 

panel), also known as microvesicles, are larger than exosomes measuring 100–1000 nm, 

and are the primary result of membrane blebs released from the surface of cells (1). 

Lastly, apoptotic bodies (APBs; Fig. 1, left panel) are larger cell derived vesicles, 

measuring up to 4000 nm, and are eponymously generated during cellular apoptosis (6).  

Given their origin and release from cells, EVs are commonly endowed with a portion of 

membrane proteins, and in some APBs, genetic remnants of the parent cell (4). It is now 

generally accepted that EVs, such as platelet MPs, play a significant role in modulating 

normal physiological processes, such as coagulation (7) via expression of multifunctional 

cellular signaling proteins such as tissue factor (8). However, despite observations of 

elevated EVs in cancer patient plasmas (9) and other diseases (10), it has still not been 

determined whether they originate from tumors, whether they could serve as a rich 
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reservoir of biomarkers for disease detection and the role they play, if any, in disease 

progression. 

 

Figure 1. Schematic representation of the biogenesis of different extracellular 

vesicles. 

The most common populations of extracellular vesicles found in biological fluids (saliva, 

plasma, semen, etc.) include apoptotic bodies (APBs, left panel), 

microparticles/microvesicles (middle panel), and exosomes (right panel). As an outcome 

of their biogenesis during cell apoptosis, APBs package a variety of cellular contents 

including DNA, RNA, and signaling molecules. During the process of cell membrane 

blebbing, membrane and cytosolic proteins are selectively packaged into 

microparticles/microvesicles (middle panel), resulting in the enrichment of specific 

proteins from the parent cell. Lastly, exosomes contain proteins that are primarily 

incorporated during formation of multivesicular bodies, such as tetraspanins CD9 and 

CD63. This figure was adapted from Kooijmans et al. (11). 
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  Intercellular mode of communication 

Heralded as an auxiliary means of signaling across vast cellular distances, the ability of 

EVs to transport oncogenic factors and regulatory RNA in a vesicle format has been a 

topic of intense debate that requires a rollback in perspective. First, classic examples of 

cell-to-cell communication are hormone-based paracrine signaling circuits.  As a specific 

example, testosterone secreted by the testicles or adrenal glands into the circulation 

reaches the prostate to sustain gland viability. Testosterone, primarily in a soluble form, 

is an essential growth factor for prostate epithelium and only requires nanogram 

quantities to elicit a physiological impact. Upstream of this, an additional paracrine 

signaling circuit that relies on a brain–gland axis of communication represents another 

complex and sensitive means of cell-to-cell communication that occurs between the 

pituitary and testicles, in which luteinizing hormone is released into the circulation to 

induce testosterone production by Leydig cells.  

 

In contrast to those classic examples, recent key studies have revealed processes by 

which EVs are able to interact with their target microenvironment, delivering various 

cargo types and facilitating cell-to-cell communication. As an example, leukocyte EVs 

are able to modulate endothelial cell activation by delivering pro-inflammatory agonists 

onto endothelial cells, resulting in the release of endothelium-derived cytokines and 

surface expression of ICAM-1, which is normally agonist-induced (12). Within an 

oncology context, glioblastoma cells have been shown to release EVs that express 

oncogenic factors such as EGFRvIII on their surface, impacting adjacent cells through 

vesicle–cell interactions (13). This represents the first description of ‘oncosomes’, 

wherein EVs that express transforming factors such as EGFRvIII are released from 

parental tumor cells via membrane blebs and merge with the plasma membranes of 

adjacent glioma cells lacking EGFRvIII receptor, resulting in the activation of 

transforming signaling pathways and alteration of EGFRvIII-regulated gene expression 

(13). Similarly, Peinado et al. (14) investigated the transfer of MET oncogene from 

tumor-derived exosomes to bone marrow progenitor cells, wherein exchange of MET 

oncogene induced the formation of a pro-angiogenic bone microenvironment and a pre-

metastatic niche (14). Although both of these lauded studies suggest that EVs containing 
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oncogenic factors can accelerate oncogenesis or metastasis, the potency of these tumor-

derived EVs falls far behind that of classic paracrine signaling mechanisms (pituitary-

luteinizing hormone-leydig cells) because of the submilligram quantities needed to elicit 

a measurable effect in vivo. Hence, these observations may be overly optimistic given the 

field’s lack of knowledge regarding the half-life of tumor-derived EVs and the propensity 

of the immune system to also release counteracting measures potentially in the form of 

exosomes.  

 

Reports of nucleic acid transport via EVs have been the driving force for heightened 

awareness in EV research across many different disciplines. For example, Valadi et 

al.(15) recently demonstrated that RNA resident within exosomes derived from mouse 

mast cells was transferred to human mast cells, resulting in ectopic expression of mouse 

proteins in recipient cells (15). This advancement suggests that EVs are envoys between 

cells, able to deliver mRNA that can impact protein production in recipient cells of a 

measurable magnitude, akin to a hormone operating at the genetic level. Similarly, 

exosomes from colorectal cancer cells determined to be enriched with 15 mRNAs 

associated with M-phase processes of the cell cycle were delivered to healthy endothelial 

cells in vitro, subsequently stimulating the proliferation of recipient endothelial cells (16). 

Although the efficiency of this communication delivery system remains unclear, these 

findings suggest that EVs from malignant cells can facilitate the delivery of RNAs that 

encode factors responsible for cell proliferation. While it is unlikely that entire mRNA 

coding regions are transported via EVs, much smaller miRNA present within EVs are 

much more likely to be transferred (15). Studies of miRNA residing within EVs have 

dominated the field because of their regulatory nature and robustness against degradation. 

miRNAs are a family of small, non-coding RNAs (17–22 nucleotides in length) that 

regulate gene expression by degrading target mRNAs and nullifying translation of those 

target mRNAs (17). miRNAs can directly contribute to tumorigenesis through 

modulation of oncogenic or tumor suppressor pathways by targeting mRNAs of 

oncogenes or tumor suppressor genes to alter expression (18).  
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Given their impact and contributions to tumorigenesis, miRNA can also be used as 

biomarkers to identify patients with aggressive or life-threatening tumors in a non-

invasive manner. As one example, Taylor and Gercel-Taylor (19) isolated exosomal 

miRNA from serum samples of patients with benign ovarian disease, patients with 

adenocarcinoma of the ovary and healthy volunteers to profile stage-specific miRNA-

based biomarkers. The amount of total miRNA was significantly elevated in 

adenocarcinoma patients compared with patients with benign growth, and with minimal 

exosomal miRNA detected in healthy controls. The diversity or levels of most miRNAs 

was not significantly different between patients with early vs late-stage ovarian cancers, 

but expression profiles of exosomal and tumor cell-derived miRNAs were similar (19). In 

parallel, biomarker development for lung cancer has also resulted in a panel of miRNAs 

(20) validated as biomarkers for diagnosis and prognosis for this disease. As described 

previously in ovarian cancer patients, the total amount of exosomal miRNA was also 

elevated in patients with lung adenocarcinoma and low or undetectable in control 

samples. Most importantly, no significant differences were found when comparing 

miRNAs derived from circulating exosomes and miRNAs derived from lung tumors, 

indicating that exosomal miRNAs reflect the genomic identity of the tumor and can be 

used as a potential blood-based marker for lung adenocarcinoma. Hence, EVs derived 

from malignant cells may act as a system of miRNA transport to distant cells and used as 

a novel biomarker platform for cancer progression.  

 

EVs generated by breast cancer cells have also been implicated in de novo miRNA 

processing and biogenesis due to the presence of Dicer, AGO2 and TRBP proteins within 

purified EVs (21). Overlooked in this same study is the contribution of EVs generated by 

other sources (endothelial, leukocyte and so on) that are present in the bloodstream with 

unknown miRNA content. If in fact miRNA biogenesis is exclusive to breast or breast 

cancer cells, this mechanism is unclear and conveniently specific to these sites and 

ultimately may not be applicable to prostate cells because these proteins are not present in 

prostasomes generated by the prostate (22). Studies like these continue to fall short in 

determining whether EV preparations are free of any plasma proteins, which could 

represent a source of the Dicer, AGO2 and TRBP detected.  Currently, these studies 
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dominate currently published reports, lacking sufficient attention to the depletion of 

plasma proteins that continue to be present in purified samples. Although the use of 

atomic force microscopy is key to these evaluations (23), these reports still fail to 

examine the EV preparations at the nanoscale resolution to quantitate soluble protein 

contamination, marking these findings as suspect until further validations are performed. 

 

  Non-tumor derived EVs of physiological importance 

1.3.1  Apoptotic bodies 

Damaged, senescent and/or infected cells are often destined to undergo programmed cell 

death or apoptosis (Note to Sabine: some infections are lytic and cause necrosis, have to 

waffle a bit here or its an overstatement). This process is followed by degradation to 

maintain tissue homeostasis and a normal physiologic milieu (24). Although mechanisms 

of bleb formation are unclear during apoptosis, cells break apart and form membrane 

blebs called APBs, which can contain nucleic acids such as miRNA, mRNA or genomic 

DNA (25). Most importantly, APBs also display phosphatidylserine on their surface, an 

‘eat-me’ signal for engulfment by phagocytes (for example, macrophages, dendritic cells) 

and some fibroblast cells in an immune silent manner (26,27). These APBs play key roles 

in adaptive immune responses in which self vs non-self antigens are processed for 

subsequent development of T- or B-cell-mediated immune responses, depending on the 

ongoing background of immune-based ‘danger signals’ in the body.  

 

In cancer research, APBs have been shown to function as carriers for horizontal transfer 

of oncogenic DNA.  In one such study, APBs transported oncogenic H-rasV12 and c-

myc, to nearby normal mouse embryo fibroblast cells with a p53 knockout background 

(28), resulting in tumor-like growth and progression in vitro. Furthermore, phagocytosis 

of tumor APBs mediated by immature dendritic cells can induce immune tolerance by 

cross-presentation and activation of regulatory T cells (29), revealing a potential 

multifunctional role of APBs despite the lack of knowledge in this field. 
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1.3.2  Platelet MPs 

The discovery of EVs occurred in parallel with the initial studies of blood coagulation, 

when researchers observed platelet-like activity in otherwise platelet-free serum samples 

(30). However, they were not formally described until the late 1960s, when Peter Wolf 

(31) used the term ‘platelet dust’ to describe small, membrane coated fragments he 

observed from activated platelets. Wolf considered these vesicles as by-products of 

platelet activation during storage, and concluded that coagulation activity in platelet-free 

samples was due to the action of ‘platelet dust’. The term ‘platelet dust’ was later 

replaced with ‘microparticles’ (32) and ‘exosomes’ (33), in which platelet MPs are 

membrane-derived and exosomes being the exocytosed storage granules (alphagranules, 

dense granules) of platelets. EVs, either MPs or exosomes, are secreted by platelets (34), 

endothelial cells (32) and leukocytes (33), and these types of cell fragments are relatively 

abundant in different bodily fluids (2). Through quantification of all circulating MPs in 

vivo, it is now understood that platelet EVs are the most abundant types of EVs, when 

compared with MPs from other circulating cells (10). Platelet EVs functionally contribute 

to coagulation and thrombosis because they are enriched in membrane receptors for key 

coagulation factors and prothrombotic proteins. For example, MPs derived from activated 

platelets express a high density of prothrombotic proteins on their surface, such as 

adhesive receptor P-selectins (8), plasminogen activator inhibitor-1 (PAI-1) and 

vitronectin (VN) (35), making thrombi resistant to fibrinolysis. In terms of cancer 

research, platelet EVs (MPs and/or exosomes) have been shown to promote tumor cell 

invasion in vitro by induction of MMP-2 synthesis in a prostate cell line (Clone-1) (36), 

but the impact of platelet MPs on several other prostate cell lines in vitro and in vivo is 

still unclear. 

 

1.3.3  Endothelial MPs 

Endothelial MPs are membrane-derived particles released upon apoptosis or necrosis, 

whereas endothelial EVs are likely exocytosed storage granules of endothelial cells, such 

as Weibel–Palade bodies, and are released upon activation by cytokine agents such as 

tumor necrosis factor-α (37). For example, in a study where human umbilical vein 
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endothelial cells were incubated with tumor necrosis factor-α and anti-tumor necrosis 

factor antibody, it was found that tumor necrosis factor-α elevated endothelial EV 

formations by a maximum of 2.5-fold within a 24-hour period (38). Recent studies have 

also demonstrated that neoplastic cells induce the release of endothelial EVs, revealing 

their potential as a novel biomarker for the detection of cancer and disease progression. 

For lung cancer, levels of circulating endothelial EVs were found to be significantly 

higher in lung cancer patients than in healthy control subjects suggesting that endothelial 

EVs may be involved in endothelial cell proliferation as occurs in angiogenesis (39), 

underscoring their pro-angiogenic effect in cancer progression. A subsequent study by 

this group examined the potential use of endothelial EVs for predicting 1- year mortality 

in patients with end-stage non-small cell lung cancer (34). In accordance with previous 

findings, the results of this study revealed that circulating levels of endothelial EVs were 

significantly higher in patients with 1-year mortality than in patients within the 1-year 

and above mortality category, demonstrating the potential of endothelial EVs as 

biomarkers for lung cancer prognosis (34). Yet again, these findings will require further 

research to validate endothelial EVs as a prognostic biomarker. 

 

1.3.4  Leukocyte MPs 

Leukocyte EVs are released by almost all immune cells when activated by inflammatory 

stimuli (40), further activating receptors on other leukocytes, resulting in the secretion of 

inflammatory and chemotactic cytokines. In detail, in in vitro co-cultures of leukocyte 

EVs with human umbilical vein endothelial cells, leukocyte EVs acted as inflammatory 

agonists on endothelial cells which resulted in the release of cytokines interleukin-6 and 

interleukin-8, and upregulation of leukocyte-endothelial cell adhesion molecules such as 

ICAM-1 (13). These findings suggest that circulating leukocyte EVs can activate a stress 

signaling pathway in endothelial cells, leading to an increase in pro-coagulant and pro-

inflammatory activities.  

 

Circulating leukocyte EVs have also been proposed as determinants for cardiovascular 

risk factors in asymptomatic subjects. Chironi et al. (37) examined the carotid, abdominal 

aorta and femoral arteries to measure levels of circulating MPs in a cohort of 
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asymptomatic subjects without previous cardiovascular diseases. Levels of leukocyte 

EVs were higher in subjects who carried atherosclerotic plaques in two or three sites 

compared with those without plaque at any sites. Therefore, the measurement of 

leukocyte EVs has demonstrated biomarker potential in cardiovascular disease in 

asymptomatic patients, thus offering encouraging signs of their application in other 

disease contexts but none as of yet with oncology although clearly applicable given the 

recent advances of immunotherapy for PCa treatment. 

 

  Limitation of previous methods of EV characterization and 

quantification 

Several techniques have been described for the isolation and identification of EVs from 

different bodily fluid samples. Minimizing the amount of non-target EVs and other 

contaminants is a crucial step towards obtaining a homogenous mixture of EVs. 

Scientists have largely relied upon serial centrifugation and ultracentrifugation steps at 

increasing speeds and time intervals to isolate EVs from cells, proteins and large cellular 

debris (41). However, this method does not guarantee elimination of all non-target 

fragments from samples, resulting in enrichment, as opposed to purification of the desired 

EV population. This was presented by Mrvar-Brečko et al. (42), who reported that after 

several centrifugation steps, samples predominantly contained populations of unwanted 

cells mixed with EVs. This method is also time consuming, as it requires repeated 

centrifugation steps lasting hours. Immunoaffinity approaches that utilize paramagnetic 

beads conjugated with an antibody specific for antigens expressed on the surface of a 

target EV are rapid and more target-MP/exosome specific. Beads are mixed with the 

sample containing target cell fragments and passed through a column based magnet 

separation system (43). The vast majority of non-bead bound cells, non-target MPs and 

plasma proteins will pass through the column, whereas antigen-positive EVs bound to 

paramagnetic beads become indirectly immobilized to the column via magnets (44). For 

purification of prostate-derived EVs, magnetic beads can be conjugated with anti-CD9 or 

anti-prostate-specific membrane antigen antibody, and incubated with peripheral blood or 

platelet-poor plasma collected from PCa patients (44). This method is rapid and 
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customizable, in which the amount of ‘bait’ antibody used can be varied and the number 

of times the beads + EVs are washed can vary from two to eight times to fully eliminate 

plasma proteins and non-target EVs. Unfortunately, the major limitation of this method is 

the lack of bait antibodies available for target EVs and the cost of presently available 

ones.  

 

Electron microscopy (EM) is a powerful method to visually characterize cell-derived 

vesicles, and scanning EM (SEM) is specifically used to visualize the morphology and 

relative size of platelet-derived EVs (31,42). In most cases, SEM can be used to visually 

differentiate EVs from erythrocytes and other circulating cells (42). SEM allows certain 

analyses that are not possible by other techniques such as determining whether objects 

are vesicular or proteinaceous by their ultrastructure; however, it does not quantify the 

concentration of vesicles isolated from a sample in a high-throughput manner. SEM also 

has significant drawbacks related to preparation of sample(s), with purified EVs 

inconsistently being immobilized onto the substrate (silica wafers or mica) for SEM 

imaging (32). Atomic force microscopy is another valuable tool that enables the 

determination of ultrastructure for all entities (EVs, plasma proteins) at an atomic 

resolution (23). Most recently, this technique was used to understand the ultrastructure of 

purified platelet MPs (23) and is the only instrument that offers information regarding 

protein contamination in purified EV fraction owing to its atomic level of resolution.  

 

To enumerate EVs in any given sample, flow cytometry (FC)techniques would be best 

for quantitation of EV subpopulations given the multi-parametric nature of the technique. 

Hamilton and colleagues (45) first described the use of FC for detection of cell-derived 

vesicles released by human umbilical vein endothelial cells. The reliability of FC to 

characterize EVs has substantially improved despite previous ill-informed claims 

regarding the inability of optics to accurately acquire scatter of events smaller than 1 

micron (μm). The emergence of nanoscale FC has made high-throughput, multi-

parametric analysis of all events between 110 and 880 nm possible (46) regardless of the 

incident wavelength of light used. Using the nanoscale flow cytometer Apogee A50-

Micro, polystyrene microspheres and silica-based beads can be size-resolved based on 
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100 nm increments (47), revealing the potential of this instrumentation to become first in 

class for analysis of MPs in complex biological mixtures (48). 

 

  A nanoscale based approach to EV purification and 

evaluation 

In Figure 2, we present an idealized approach to purifying EVs, such as MPs, 

microvesicles and exosomes. The sequence of techniques proposed is important because 

they will allow the experimenter to evaluate their preparations at a nanoscale resolution 

while analyzing each EV as a single discrete event. First, either plasma, serum or urine 

can be used as the starting material and submitted to isolation or purification with the 

three main techniques.  Technique selection for purification is dependent on the 

resources, instrumentation and amount of starting material available to the experimenter. 

We recommend immunoaffinity based approaches to generate ultra-pure preparations of 

antigen specific EVs, such as prostasomes or prostate cell fragments. Immunoaffinity-

based approaches also enable the experimenter to ‘wash’ their sample repeatedly prior to 

elution, to maximally reduce the presence of non-target EVs and plasma or urine 

proteins. The first evaluation step should focus on the enrichment ratio of target EVs vs 

non-target EVs. In the case of PCCFs, nanoscale FC is recommended because all EV 

events in the sample will be evaluated and the percentage of events that bind the prostate 

biomarker can be used to infer enrichment. With exosomes, dynamic light scattering 

instruments must be used because nanoscale FC cannot analyze events smaller than 100 

nm in diameter. Although this is the ideal instrument for that purpose, it does not inform 

the user of the target vs non-target EV ratio unless single fluorescence channel dynamic 

light scattering instruments are used. If these instruments are not available, then ELISA 

followed by sequential western immunoblotting is recommended. Finally, if an EV 

preparation is maximally enriched for target EVs, then the next step is to determine the 

extent of plasma protein ‘contamination’ in the sample. This is significant because of the 

potential for soluble RNA/DNA and miRNA–protein complexes to be present outside 

and alongside the EVs in the preparation. The definitive instrument to determine the 

contribution of EVs vs contaminating protein would be atomic force microscopy. Atomic 
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force microscopy eliminates all washing and processing of the sample and can be 

performed ‘dry’, wherein the solvent is dried off, leaving behind only EVs, ions and 

proteins. Owing to its atomic resolution, all events can be volumetrically analyzed, with 

events smaller than 100 nm in diameter quantitated and compared with much larger 

structures such as MPs. Alternatively, if there are suspicious ultra-structures present in 

the sample, SEM can be performed to determine whether the structure is vesicular in 

structure, or a protein aggregate. By following this scheme, an experimenter can readily 

purify EVs with the full knowledge of the contribution of non-target EVs and 

contaminant proteins and nucleic acids present in the purified sample. 
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Figure 2. Summary of purification and evaluation strategy for extracellular vesicles 

(EVs) from biological samples. 

This scheme can be used to isolate and evaluate EVs from plasma, sera or seminal fluid. 

Various techniques can be used to isolate EVs based on size, immunoreactivity to 

antibodies, or samples can be sent out for purification by third party vendors. Once 

purified, the experimenter may wish to consider the proportion of target EVs to non-

target EVs using western blot, nanoscale flow cytometry, dynamic light scattering or 

ELISA. After determining the extent of non-target EVs in the sample, a second set of 
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techniques to determine the extent of contamination from non-EV proteins can be 

performed using either atomic force microscopy or scanning electron microscopy which 

can readily distinguish EVs from protein based on size. 
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 Current state of prostate cancer diagnosis 

Prostate cancer is the most commonly diagnosed visceral cancer among Canadian men. 

In 2016 it accounted for 21% of all newly diagnosed cancers, and for  ~ 10 % of all 

cancer-related deaths among men in Canada (72). This translates to 65 Canadian men 

being diagnosed and another 11 dying from PCa every day. The prostate specific antigen 

(PSA) testing continues to be heavily relied upon as a monitoring and prognostication 

tool; however, it is produced and secreted by both normal prostate epithelium and PCa 

into the circulation (4). For this reason, PSA-based screening is discouraged for screening 

of PCa because of its low specificity, which means that a high number of PCa cases are 

of a low-risk phenotype forcing men to undergo painful and repeated biopsies to ensure 

the tumor has not upstaged (73). Most of the time, PSA acts as a "red flag" that causes 

considerable anxiety for a patient until the definitive prostate biopsy is taken and 

examined by a pathologist (3). Prostate biopsy is the gold standard for diagnosis, as it 

provides very important histological information regarding the 5 different patterns of 

acinar arrangement and glandular characteristics for grading the tumor with the Gleason 

Score (GS) system. Gleason grade 1 represents the most well-differentiated lesion, 

whereas Gleason grade 5 represents the most poorly differentiated lesion, and hence a 

highly aggressive phenotype of PCa. The most predominant lesion in the specimen also 

known as the primary pattern or first number of the GS, and the second most common 

pattern in the specimen (the secondary pattern) becomes the second number of the score. 

Thus, the Gleason score is the sum of two grades. Only Gleason grade 3, 4, and 5 are 

considered histologically and clinically relevant, therefore only a GS of 6 and higher is 

considered to be PCa. However, only GS ≤ 7 is regarded as clinically significant prostate 

cancer, whereas GS 6 prostate cancer is considered low-risk (73). The recommendation 

options for most patients with Gleason Score 6 PCa is active surveillance, which requires 

regular PSA testing, physical examination and periodic biopsy to determine if the cancer 

has "upstaged" or progressed (74). However, repeated biopsy also submits patients to 

potential complications such as hematuria, rectal bleeding, and urinary tract infection 

with rare cases leading to mortality (75). Also, PSA levels do not correlate with the 

Gleason score of a given cancer (76). Currently, there is a need for new diagnostic tools 



16 

 

to accurately identify patients with aggressive forms of PCa from those with low-risk 

disease. 

 Prostate MPs 

The first studies on prostate EVs in 1977 by Ronquist and Hedström (49) described 

vesicles generated within prostate epithelial cells and released via exocytosis into seminal 

fluid. These EVs were subsequently termed ‘prostasomes’ (50). In seminal studies 

comparing prostasomes from both benign and malignant prostate cells, no significant 

differences were reported regarding synthesis and release of these prostate-derived EVs 

(51). Although there are few reports describing prostate cell MPs in healthy individuals, 

the presence of prostasomes in prostate cancer (PCa) patient plasmas continues to be a 

translational cancer research focus (51).  

 

1.7.1  Prostasomes 

These vesicles range in size from about 50–500 nm, originate from prostatic epithelial 

cells and are present in seminal fluid and post prostatic massage urine (50,51). These EVs 

have been shown to protect sperm within the female reproductive system, in which 

cytotoxic interactions between prostasomes and natural killer cells significantly reduce 

natural killer cells’ activity to prevent immune-mediated sperm destruction (52). 

Prostasomes represent a novel cancer biomarker platform because of their release by 

malignant prostate cells into seminal fluid and blood (53).  

Tavoosidana et al. (54) suggested that the levels of prostasomes reflect disease severity, 

based on the detection of prostasomes in blood samples from patients with PCa and high 

Gleason score, whereas levels of prostasomes were reduced in samples from patients with 

low Gleason score and benign prostatic disease or indolent PCa (54). Despite the small 

sample size in this study, it demonstrated that prostasomes can be detected in patient 

blood, and have the potential to distinguish aggressive PCa from low-risk or benign 

disease (54). 
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1.7.2  PCa cell fragments 

The potential of prostate cancer cell fragments (PCCFs) to serve as a diagnostic 

biomarker platform for PCa is a topic of intense research effort because they are 

independent of other serum-based biomarkers currently used for detection of PCa, such 

as prostate specific membrane antigen (PSA), which is not specific for PCa (4).  

 

Currently, there is a lack of agreement regarding the best purification strategies for 

PCCFs, as well as which biomarkers should be used to characterize PCCFs. Recent 

attempts to discover suitable surface markers specific for PCCFs, which relied on 

proteomic analysis of isolated PCCFs present in the serum of mice grafted with human 

PCa xenografts, identified putative biomarkers such as RAB5A and RAB11A (55). Other 

cell-line-dependent studies reveal a higher abundance of proteins such as FASN in cell 

fragments derived from PC346C and VcaP cells (4). Many of these reported biomarkers 

have not been clinically validated, either in serum or plasma samples, or cross-referenced 

with databases, underscoring the need to substantiate biomarkers beyond the initial 

discovery phase. An approach that enumerates PCCFs based on a multi-parametric 

technique may also improve sensitivity and accuracy if criteria are based on 

superimposition of both prostate-specific and cancer-specific biomarkers on the same 

PCCF. Clearly, PCCFs present an extracellular source of prostate-specific membrane 

antigen reflecting a prostate cell origin (56,57) and should be the initial ‘capture’ 

biomarker for assaying other cancer-specific biomarkers. Other antigens specific to 

prostatic tissue that could potentially be used are STEAP1 (58), STEAP2 (59), and PSCA 

(60); however, their utility remains unclear owing to the lack of reagents such as flow 

cytometry (FC)-compatible antibodies available for each of these putative prostate-

specific biomarkers.  

 

Aside from their putative abundance in patient biofluids, PCCFs, also termed 'large 

oncosomes', are also postulated to play a role in disease progression and metastasis (61). 

Oncosomes, ranging from 1μm to 10μm in size, can be identified histologically in tumor 

tissue sections. Additionally, they exhibit gelatin-degrading proteolytic activity by the 

proteases they contain, such as metalloproteinases (MMP9 and MMP2) (61). As these 
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proteases are commonly associated with tumor cell invasion, oncosomes may serve to 

concentrate proteases that assist tumor cell migration (61). Provided that oncosomes are 

stable in the tumor microenvironment and in serum, they in turn could harbor clinically 

valuable biomarkers to identify patients with intermediate to high-risk PCa in a 

noninvasive blood-based manner.  

 

Currently superseding PCCFs as biomarkers, are circulating tumor cells (CTC), 

characterized by co-expression of EpCAM and various cytokeratins in nucleated cells 

present in a 7–10 mL blood sample collected from patients. CTCs are thought to be 

generated by the release or entry of tumor cells into circulation during the intravasation 

step of the metastatic cascade (62). CTC enumeration via the CellSearch Instrument 

(63,64) is currently the gold standard for prognostication of patients with metastatic PCa 

(65). However, enumeration of CTCs is not a prognostic tool for localized PCa patients 

owing to the low CTC counts even in patients undergoing salvage radiation therapy (66). 

Despite the low abundance of CTCs in patient blood samples (67), several key studies 

have shown that CTC enumeration can distinguish PCa patients from healthy volunteers 

(68).  

 

Emerging clinical data suggests that biomarkers derived from plasma exosomes can 

similarly differentiate PCa patients exhibiting high and low Gleason scores (GS) from 

those with BPH and healthy individuals. Specifically, exosome-associated Survivin is 

highly expressed in plasma samples from PCa patients with Gleason score of 6 and 9, 

whereas the expression of this protein is significantly lower in BPH and healthy donor 

plasmas (69). However, levels of Survivin were not significantly different between the 

PCa patients with different GS (6 vs 9), highlighting the need for biomarkers which are 

Gleason score-specific. Other EV types such as tumor derived microparticles may offer 

an equivalent, if not improved means of prognosticating PCa recurrence given the large 

numbers of these submicron entities within patient plasma samples with metastatic 

disease (68). Clearly, Coumans and co-workers (68) found that tumor cell MPs and tumor 

cell fragments are other types of extracellular vesicle subclasses that can yield important 

prognostic information with a large dynamic range, that is highly amenable to blood 
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based testing. Various genomic tests for prognostication of early biochemical recurrence 

in localized PCa patients have also prompted the notion that these biomarkers in 

combination may be present in or on tumor MPs generated by the primary tumor (70). 

However, transposing transcriptome-based biomarkers into a protein positive EV-based 

format may be challenging given that some of these biomarkers are downregulated or 

absent in the target pathology (70).  

 

Alternative, more promising approaches may be based on the presence of microRNAs 

(miRNAs) within prostate-derived EVs that are specific to each Gleason grade, or 

associated with early biochemical recurrence in patients post prostatectomy or radiation 

therapy. Such is the case for miRNA-34a, whose expression within EVs in patient plasma 

is predictive of sensitivity to first-line treatment with Docetaxel (71). These studies are 

correlative and although suggestive of a pathogenic mechanism, further investigation is 

required to conclusively demonstrate compartmentalization of miR-34a within prostate 

derived EVs or whether they are derived from other non-cancer sources (71). 

Nonetheless, their promise as biomarkers of cancer progression is tantalizing and reflects 

a world-wide intensified effort towards understanding EV biogenesis and their ability to 

mediate intercellular communication during cancer progression. 

 

  Extracellular vesicles such as prostate cancer cell fragments 

as a fluid biopsy for prostate cancer 

Research to discover new diagnostic biomarkers that could differentiate patients with 

indolent, or low-risk PCa, from those with high-risk disease has not significantly 

progressed, but the need for a non-invasive test for monitoring PCa patients is of great 

clinical value. PCCFs are an attractive biomarker platform for detecting PCa, as these 

fragments originate from prostate epithelium or from malignant cells within the primary 

tumor and are released into the blood circulation (76). Moreover, it has been previously 

shown that significant quantities of PCCFs are detectable in samples from PCa patients, 

but are not detected in healthy individuals (61). 
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  Thesis hypothesis and objectives 

The goal of this project is to find biomarkers on the surface of PPCFs that could 

differentiate patients with high-grade PCa from those patients with low-grade disease. It 

is our hypothesis that PCCFs from patients with low grade prostate cancer (GS 6) will 

express different biomarkers than those found on PCCFs from patients with high grade 

prostate cancer (GS 8). The following objectives will be pursued in order to reach my 

goal. 

1. To isolate PCCFs from patient plasmas representing low-grade prostate cancer 

(GS6) and MPs from patient plasmas representing high-grade prostate cancer 

(GS8) using an immunoaffinity isolation protocol developed by our lab. 

2. To assess the enrichment of these isolated PCCFs samples using a nanoscale flow 

cytometry and atomic force microscopy  

3. To perform proteomic and bioinformatics analysis of isolated PCCFs to identify 

biomarkers that differ between GS6 and GS8 patients, which could help to more 

accurately diagnose patients with indolent disease from those with an aggressive 

form of PCa.  
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Chapter 2  

  Materials and Methods 

 

  Patient plasma 

Prostate cancer (PCa) patient plasmas samples were attained through the Ontario Institute 

for Cancer Research Tumor Bank and the University Health Network Genitourinary 

BioBank (Toronto, ON) under Western University Research Ethics Board (REB) 

approved Ethics Applications # 103156 and 103409. Only samples from patients with a 

minimum of 3 years’ follow-up were included to avoid patients that upstaged/upgraded 

during that time. Whole blood was collected into CellSave vacutainers (10mL volume, 

Janssen Diagnostics Inc.). To prepare plasma from whole blood for prostate microparticle 

analysis, whole blood was collected in K2-EDTA Vacutainers (BD Biosciences Inc.) and 

spun at 1500 × g for 10 minutes. The plasma layer was removed, aliquoted and then 

stored at -80 ˚C. 

 

  Antibodies and isotype controls 

Antibodies and isotype controls used in nanoscale flow cytometry and immunoaffinity 

isolation techniques have been compiled in Table 2. 

 

 Buffers and reagents 

Buffers used in the purification of proteins and experiments have been compiled in Table 

3. 
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Table 1: Summary of antibodies and isotype controls used in this study 

Antibody Used in Isotype Control 

STEAP1 clone J2D2 

(Abcam; CA# ab117454). 

Protein G Immuno-

isolation/ Nanoscale flow 

cytometry/immunostaining 

IgG2b 

PSMA clone 3/E7 

(Dr. Philipp Wolf, 

University Medical Center 

Freiburg, Germany) 

Magnetic immunoaffinity 

isolation/ Nanoscale flow 

cytometry/immunostaining 

IgG1κ 
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Table 2: Summary of buffers used in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Buffer Name Used in 

IP Buffer (ThemoFisher CA#: 28379) Protein G IP 

Elution Buffer, (ThermoFisher, CA#: 

21004) 

Protein G IP 

NuPAGE® Sample Reducing Agent (10X) 

(Life Technologies, CA#: NP0009) 

Western blot 

NuPAGE® LDS Sample Buffer (4X) (Life 

Technologies, CA#: NP0008) 

Western blot 

NuPAGE® MES SDS Running Buffer 

(20X) (Invitrogen, CA#: NP0002) 

Western blot 

Chemiluminescence agent Luminata 

Classico Western HRP substrate (EMD 

Millipore, CA#: WBLUR0500) 

Western blot 
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  Confirmation of the sizing resolution of the apogee A50-

micro nanoscale flow cytometer 

Silica microspheres (Apogee FlowSystems Inc.) of varying diameters (110 nm, 179 nm, 

235 nm, 304 nm, 585 nm, 880 nm, 1300 nm) were analyzed using the A50-Micro 

Nanoscale Flow Cytometer (Apogee FlowSystems Inc.). These beads were diluted 

1:10000 prior to analysis on the A50-Micro Nanoscale Flow Cytometer. 

 

  Immunoaffinity isolation of prostate cancer cell fragments 

(PCCFs) from patient plasma with PSMA 

To isolate PCCFs from PCa patient plasma (n=10/Gleason score), the Miltenyi Biotec 

MidiMACS system was used in which 100µL of plasma was incubated at 4 ºC for 30 

minutes with 10 µL of biotinylated anti-PSMA antibody. Subsequently, the plasma was 

diluted in 90 µL of dH2O and then incubated with 20 µL of Streptavidin microbeads 

(Miltenyi Biotec; CA#130-048-102) for an additional 20 minutes at 4 ºC. The sample was 

then diluted in 1 mL of dH2O, passed through a MACS- LS separation column which was 

attached to a magnetic field. This step was repeated 3 times (Miltenyi Biotec; CA#130-

042-401). The column was then removed from the magnetic field and the PSMA positive 

PCCFs were eluted twice with 1mL of dH2O. The eluent was then passed through another 

magnetic column, and a final elution step was done with a total of 600 µL of dH2O. 

 

  Tandem immunoaffinity isolation of PCCFs with Protein G 

agarose beads 

The Protein G agarose beads were first to STEAP1 antibody in a microcentrifuge tube. 

Briefly, 200 µL of Protein G agarose slurry were added to 10 µL of the STEAP1 

antibody; the mixed was incubated overnight at 4°C. For the tandem isolation method, 50 

µL of Protein G-STEAP1 agarose bead slurry was added to 600 µL of the PCCF samples 

previously isolated using the biotinylated-PSMA method, and the reaction was incubated 

with gentle mixing for 1 hour at room temperature. To wash the bead-PCCF immune 

complex, 100 µL of IP Buffer was added, incubated at room temperature for 5 minutes 
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and subsequently centrifuged for 5 minutes at 2500×g; the supernatant was discarded. 

The IP Buffer wash step was repeated a total of 3 times. To elute the PCCF’s attached to 

the agarose beads, 100 µL of Elution Buffer was added to the beads and incubated for 5 

minutes. The tube was centrifuged for 5 minutes at 2500 × g and the supernatant was 

collected. This step was repeated a total of 2 times and the two supernatant fractions were 

collected and combined. The pH of the eluate was adjusted to physiological pH by adding 

~10 µL of a 1M Tris-HCl (pH 7.5-9), per 100 µL of eluate. 

 

  EV isolation from patient plasma using exosome isolation 

kits 

The EV fraction from PCa patient plasma were purified using the following kits: 

ExoQuick-TC™ (EQ, System Biosciences Inc.; Mountain View, CA), ExoSpin™ (Cell 

Guidance Systems LLC.; Carlsbad, CA), and Total Exosome (Life Technologies Inc.; 

Burlington, ON), with some modification to the manufacturer’s recommendations. 

 

2.7.1 ExoQuick-TC™ 

To prepare the plasma for exosome precipitation, 100 μl of the sample was centrifuged at 

3000 × g for 15 minutes. The plasma samples were pre-treated with 1 μl of [500U/mL] 

thrombin to make them compatible with ExoQuick exosome precipitation kit. The 

mixture was incubated at room temperature for 5 minutes while mixing by gently flicking 

the tube, then it was centrifuge in a standard microfuge at 10,000 x g for 5 minutes. The 

supernatant was transferred to a new clean tube and treated with 25μl of ExoQuick 

reagent to precipitate exosomes, and incubated for 60 minutes at 4°C. The 

ExoQuick/biofluid mixture was centrifuged at 1500 × g for 30 minutes, the supernatant 

was carefully aspirated, and the pellet was resuspended in 100μl of dH2O and stored at -

20°C. 
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2.7.2 ExoSpin™ 

100μl of plasma was centrifuged at 300 × g for 10 minutes to remove cell debris. The 

supernatant was transferred to a new microcentrifuge tube and spun at 20,000 × g for 30 

minutes. The supernatant was transferred to a new microcentrifuge tube and 50μl of 

Buffer A was added and incubated at 4°C for 5 minutes, and then centrifuged at 20,000 x 

g for 30 minutes. The supernatant was carefully removed and discarded, and the 

exosome-containing pellet was resuspended in 50 μl of dH2O and stored at -20°C. The 

supplied column was prepared by spinning it down at 50 x g for 30 seconds to remove 

buffer from the top of the column and allowing it to enter the column bed. To wash the 

column, 200µl of dH2O were added to the top, and spun down again at 50 x g for 30 

seconds. The exosome-containing sample was added to the column and centrifuged at 50 

x g for 60 seconds. This step was repeated once more, and the resulting eluate containing 

the purified exosomes was stored at -20°C. 

 

2.7.3 Total Exosome™ 

100μl of plasma was centrifuged at 2000 × g for 20 minutes at room temperature. The 

supernatant containing partially clarified plasma was transferred to a new tube without 

disturbing the pellet, and centrifuged at 10,000 × g for 20 minutes at room temperature. 

The clarified plasma was placed in a new tube without disturbing the pellet, 50 μL of 

dH2O was added and mixed thoroughly by vortexing. 30 μL of the Exosome Precipitation 

Reagent (from plasma) was added to the sample, mixed by vortexing, and incubated at 

room temperature for 10 minutes. The sample was centrifuged at 10,000 × g for 5 

minutes at room temperature. The supernatant was removed and discarded and the 

remaining exosome pellet was resuspended with 50 μL of dH2O, and stored at -20°C. 

 

  Enumerating the PSMA positive populations of PCCFs 

To enumerate the populations of PCCFs in patient plasma, a phycoerythrin (PE) labelled 

antibody directed against PSMA (PSMA-PE) was incubated with the plasma samples. To 
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stain for detection of the PCCFs, 1 μL of the antibody was added to 10 μl of plasma, 

incubated in the dark for 30 minutes, then diluted with 290 µL of PBS and analyzed on 

the Apogee A50-Micro nanoscale flow cytometer. The negative isotype control mouse 

IgG-PE was performed in parallel following the same incubation conditions. Gates for 

the PCCF population were established by analyzing the isotype control first, and then 

analyzing the antibody labeled samples. 

 

  Nanoscale flow cytometric detection of dual positive PCCF 

populations 

For detection of dual positive PCCF populations, the same protocol as section 2.8 was 

followed with some modifications. In brief, 10μl of patient plasma was incubated with 

1μl of anti-PSMA-PE and 2 μL of anti-STEAP1-Alexa 647 antibody at room temperature 

in the dark for 30 minutes. The negative isotype controls were utilized in parallel 

following the same incubation conditions. Samples were diluted with 290 µL of PBS and 

analyzed on the Apogee A50-Micro nanoscale flow cytometer. Gates for each 

microparticle population were established by analyzing the isotype control first, 

modifying the gains for each PMT as necessary, and then analyzing the antibody labeled 

samples. 

 

  Atomic force microscopy 

Exosome suspensions and PCCFs were diluted in dH2O ratios of 1:10, 1:1000, and 1: 

10,000. From these diluted samples, a volume of 2 µL was placed and adsorbed to a 

freshly cleaved mica coverslip (Ted Pella, Inc.; Redding, California) and dried in an oven 

at 60ºC for 5 minutes. Samples were analyzed with the Veeco Dimension 3100 Nanoman 

AFM (Veeco Metrology, LLC; Santa Barbara, California) in tapping mode. Topographic 

height and phase images were recorded at 256×256 pixels at a scan rate of 1 Hz. Image 

processing was performed with Gwyddion Data Processing software, version 2.40 

(Department of Nanometrology, Czech Metrology Institute; Brno, Czech Republic). 
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  Western blotting 

For protein extraction, isolated PCCFs were lysed in a master mix of reducing sample 

buffer at a 10X concentration, and LDS sample loading buffer at a 4X concentration. 

Samples were boiled for ~10 minutes at 90 ºC. Cellular proteins from LNCaP and PC-

3M-LN4 cell lysate were also extracted following the previously described steps. To 

separate the PCCF and cellular proteins, 10 μg were loaded onto a NuPAGE® Novex® 

4-12% Bis-Tris Gels (Invitrogen, CA#: NP0321BOX) and electrophoresed at 200V for 1 

hour. Transfer of the gels to a polyvinylidene difluoride transfer membrane (Thermo 

Scientific, CA#: 88518) was done at 30V for 1 hour. Blocking of the membrane was done 

in 5% powdered milk in TBS-T for 1 hour at room temperature. Membranes were probed 

using primary antibody STEA1 or PSMA, overnight in 4°C at a dilution ratio: 1:500, and 

then with horseradish peroxidase conjugated-second antibody for 1 hour at room 

temperature (Sigma Aldridge, CA#: NXA931-1ML) at a ratio of 1:2000. Protein bands 

were detected by using an enhanced chemiluminescence HRP substrate, incubated for 5 

minutes at room temperature, and the membrane was developed using the Bio-Rad 

ChemiDoc™ MP System (Bio-Rad Laboratories Inc., Hercules, CA). 

 

  Mass spectrometry and proteomic analysis of PSMA 

isolated samples 

This process was contracted out to the Campus Chemical Instrument Center (CCIC) Mass 

Spectrometry and Proteomics Facility at The Ohio State University (Arpad Somogyi, 

PhD - Associate MS&P Facility Director; http://www.ccic.ohio-state.edu/msp) 

 

 

 

http://www.ccic.ohio-state.edu/msp
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  In-solution digestion 

 

2.13.1  List of solution 

Solutions prepared for in-solution digestion have been compiled in Table 4. 

Table 3: Summary of solutions used for in-solution digestion. 

Concentration Preparation 

200 mM Dithiothreitol (DTT) 0.03086 g of DTT in 1000 µL of 100mM 

NH4HCO3 

1M iodoacetamide  Add 0.037 g of iodoacetamide to 200 µL of 

100mM NH4HCO3 

Buffer A 25 µL of Acetonitrile + 50 µL 0.1% formic acid + 

25 µL ddH2O 

Buffer B: 1 µL formic acid + 1000 µL ddH2O 

 

2.13.2  Sample preparation and disulfide reduction 

Samples were first prepared by adding 1 uL of a 100mM NH4HCO3. In order to bring 

samples to 100 μL, dH2O was added if needed. To reduce the sample, 5 μL of 200mM 

DTT were added to the sample, which was subsequently boiled for ten minutes. 
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2.13.1  Sulfhydryl alkylation  

To alkylate the sample, 4 uL of the iodoacetamide stock was added to the sample and 

vortexed, followed by brief centrifugation in a microcentrifuge to get the sample to the 

bottom of the tube. The sample was incubated 1 hour at room temperature. 

 

2.13.2  Stopping alkylation  

To neutralize the remaining iodoacetamide, 20 μL of DTT stock was added to each 

sample, which was then vortexed and incubated at room temperature for 1hour. 

 

2.13.3  Trypsin digest 

For trypic digestion, each sample was gently vortexed and trypsin was added at a 1:20 

ratio (1mg of trypsin for every 20mg of sample). To allow complete digestion, the sample 

was placed in a 37°C water bath overnight. 

 

2.13.4  Sample clean-up  

The SPE cartridges (HyperSep™ C18 columns - 50mg resin, Thermofisher CA: #60108-

390) were prepared by first washing the column 3 times with 1mL of Buffer A, then 3 

times with 1 mL Buffer B, eluting the flow through into a waste beaker. Subsequently, 

the samples were acidified with 0.2% formic acid and passed over the SPE cartridge 

twice. The unbound components were washed off the column with 1 mL of Buffer B 3 

times. The peptides were then eluted off of the column with 400 µL of Buffer A. To 

reduce the volume of the samples and remove the acetonitrile, samples were concentrated 

using a Speed-Vac. 
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 Mass spectrometry and proteomic analysis of tandem 

isolated samples 

This process was contracted out to the Biological Mass Spectrometry Laboratory at the 

University of Western Ontario (Director: Prof. Gilles A. Lajoie; 

http://www.uwo.ca/biochem/bmsl/) 
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Chapter 3  

 « Results» 

 

 The A50-micro nanoscale flow cytometer analyzes events 

within the submicron size range, and detects PSMA positive 

extracellular vesicles 

The A50-Micro nanoscale flow cytometer (NFC; Apogee Flow Systems, Hertfordshire, 

UK) is reported by the manufacturer to be capable of high-throughput and multi-

parametric analysis of events between 100-1000 nm, resolving various sizes of 

calibration beads based on large angle light scatter (LALS) and small angle light scatter 

(SALS). We ran silica beads of various diameters, 110 nm, 179 nm, 235 nm, 304 nm, 585 

nm, 880 nm, 1300 nm (Fig. 3A-B), though the A50-Micro NFC. The analysis of these 

beads show that the A50-Micro has the ability to analyze events within the submicron 

size range, resolving discrete subpopulations when analyzed together.  

The corresponding analysis of PCa patient plasma with the A50-Micro nanoscale flow 

cytometer (Fig. 3C) demonstrate that when the plasma is incubated with an anti-PSMA-

PE antibody, a subpopulation of prostate cancer cell fragments (PSMA positive PCCFs) 

is observed and determined to be within the 110-304 nm diameter size range (red box). 

This population is distinct from other particles in the sample, which are PSMA negative 

(blue box), in both size and immunofluorescence. When the isotype control mouse IgG1ƙ-

PE was incubated with PCa patient plasma, a minimal number of events were recorded 

(Fig. 3D, red box). 
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Figure 3. Nanoscale flow cytometry analysis of sizing beads and PCa patient plasma 

measure events within the submicron range. 

The Apogee A50-Micro nanoscale flow cytometer is able to readily analyze events within 

the submicron range based on the analysis of silica beads of various diameters (A and B). 

When patient plasma is incubated with anti-PSMA-PE antibodies, a subpopulation of 

PSMA positive PCCFs are observed within the 110-304 nm diameter size range (C). 

Isotype control IgG1ƙ-PE incubated with patient plasma does not detect a significant 

number of events (D). 
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 Immunoaffinity isolation using PSMA antibodies enriches 

extracellular vesicles from prostate cancer patient plasma 

The immunoaffinity method for PCCF isolation (Fig. 4A) utilizes a biotinylated PSMA 

antibody and a streptavidin conjugated magnetic bead to separate PSMA positive PCCF’s 

from other plasma components, such as cell debris and non-target MP’s. When patient 

plasma is incubated with the biotinylated PSMA antibody and streptavidin beads and 

subsequently passed through a magnetic field, the magnet attracts the PSMA positive 

PCCFs, while other plasma components which are PSMA negative are not retained, 

resulting in concentration and recovery of PSMA positive PCCFs.  

The enrichment evaluation of immunoaffinity purified PCCFs from patient plasma shows 

the relative abundance of PSMA-PE positive PCCF’s (red box) compared to the total 

events of other non-target MPs (grey shaded areas) in plasma before PSMA 

immunoaffinity isolation (Fig. 4B), within the first elution fraction (Fig. 4C), and within 

the second elution fraction (Fig. 4D) from the same plasma sample. The population 

events of non-target MP’s and other cell debris is greater in plasma samples before 

immunoaffinity purification, when compared to PSMA positive PCCFs. After the first 

elution, the non-target MP population is significantly reduced relative to the PSMA 

positive PCCFs. After the second elution, a greater reduction of non-target MPs is 

observed, and PCCF events. The relative abundance of PSMA positive PCCFs shows the 

enrichment of this populations after isolation. In patient plasma (B), PSMA positive 

events account for 1.1% of all events. After the last elution fraction (D), 21.5% of the 

overall events are PSMA positive PCCFs. 
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Figure 4. Working model of biotinylated-PSMA technique enriches PCCFs from 

patient plasma and are quantified using nanoscale flow cytometry. 

The biotinylated PSMA immunoaffinity method targets PCCFs from prostate cancer 

patient plasma that are positive for PSMA, and washes out EVs which do not express 

PSMA (A).  Enrichment of PCCF populations (red gates) compared to total non-target 

EV populations (shaded areas in histoplot) in patient plasma (B), first elution fraction 

(C), and second elution fraction (D). 
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 Atomic force microscopy (AFM) evaluation of controls 

shows size distribution of soluble proteins 

Standard controls, including bovine serum albumin (BSA) and platelet poor plasma (PPP) 

at varying concentrations, were used to help identify protein content in a sample and 

measure the height and distribution of contaminating protein in the PCCF preparations. 

Atomic force microscopy (AFM) analysis performed at 5 µm ×5 µm and at dilution 

factors of 10X (Fig. 5A), 1000X (Fig. 5B), and 100,000X (Fig. 5C), shows the capability 

of AFM to measure events in the submicron size. In the images representing both BSA 

and PPP (diluted 10X), the samples are dominated by smaller events (̴̴̴̴ 5-10 nanometers 

high), which reflects the small monomeric proteins that are abundant in the BSA and PPP 

controls. Some larger events, between 30-60 nm in height and ~800nm in diameter may 

represent extracellular vesicles in the samples. As samples were further diluted to achieve 

lower concentrations of both BSA and PPP (1,000X and 100,000X dilution factors), the 

images reveal the magnitude of plasma protein depletion, with a corresponding decrease 

in particles visible in the field of view of the AFM. Fig. 5D depicts AFM analysis 

performed at 1 µm by 1 µm of both the BSA and PPP samples.  
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Figure 5. Atomic force microscopy images of bovine serum albumin and platelet-

poor plasma reveal size and distribution of proteins at varying concentrations. 

Height channel of AFM images from BSA and PPP reveal the size and distribution of 

proteins and other particles in these samples. As expected, diluting the samples reduces 

the concentration of particles in the samples, confirming that the detected signal is sample 

specific. 
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 Multimodal characterization of PCCFs isolated using 

different techniques reveals that the immunoaffinity method 

is the most efficient at eliminating background proteins 

Prostate cancer cell fragments from patient plasma were isolated using PSMA 

immunoaffinity-based purification and 3 commercially available extracellular vesicle 

purification kits. A total of 10 samples per isolation method were submitted to NFC and 

AFM; the images in Fig.6 represent the analysis of one sample per isolation method. 

Sample purified using the immunoaffinity method (Fig. 6A) show the presence of 

extracellular vesicles with a small amount of proteins in the background.  

Images of the samples isolated with Total Exosome (Fig. 6B) and Exo Spin (Fig. 6C) kits 

show the presence of isolated extracellular vesicles; however, most of the sample is 

dominated by co-isolated contaminating protein. The purification of extracellular vesicles 

with the Exo Quick kit (Fig. 6D) resulted in the highest concentration of co-isolated 

contaminant proteins, as illustrated in the AFM image of this sample.  

Flow cytometry analysis of isolated PCCFs depicts the enrichment of PSMA positive 

particles (red box) compared to the total amount of other MPs and co-isolated particles 

(shaded areas in histoplot). The sample purified by immunoaffinity shows the greatest 

reduction of non-target MP’s population relative to the dense population PSMA positive 

PCCFs (Fig. 6A). In contrast, the scatterplots representing the three isolation kits contains 

a larger population of non-target MP’s (Fig. 6B, C, D). The relative abundance of PSMA 

positive PCCFs shows the enrichment of achieved after each isolation method. The 

highest percentage of PSMA positive PCCFs was achieved with the immunoaffinity 

isolation method (Fig. 6A), with 49.7% of all events being PSMA positive. For the 

isolation kits, the overall PSMA events were much lower. Total Exosome (Fig. 6B) had a 

relative abundance of 38% PSMA positive events; Exo Spin (Fig. 6D) showed a 30% of 

all events were PSMA positive; and lastly the lowest PSMA abundance was from the Exo 

Quick kit (Fig. 6C), with 14% of all events being PSMA positive PCCF. 

Assessment of PCCF volumetric data shows the differences between the vesicles isolated 

using the isolation kits and those isolated with the PSMA immunoaffinity technique (Fig. 
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6E). The particles measured were from one individual sample per isolation method, and 

one sample of bovine serum albumin (BSA). The BSA volumetric data was used as a 

control. Volumetric measurement of EV provide useful information regarding sizing, 

with the majority of all objects imaged exhibiting particle volumes below 1.0 x 10 -18 m3; 

this is consistent with previous studies of EV volumetric data (23). PCCFs measures from 

the PSMA isolation group (Fig. 6E, PMP34) shows to have a mean volume of 1.0 x 10 -19 

m3. The mean volume of particles in BSA is below 1.0 x 10 -22 m3, due to the high 

quantity of proteins in the sample. From the isolation kits, the volume of particles was 

mostly below 1.0 x 10 -20 m3, with many events close to the volume of particles found in 

BSA, showing that these kits are co-isolating a high quantity of proteins. Volume of the 

particles isolated with PSMA was significantly different than particle volume in BSA and 

from Total Exo kit (both P= 0.0001; Kruskal-Wallis Test), but not from Exo Quick and 

Exo Spin kits (P= NS; Kruskal-Wallis Test). All volume mesurements obtained from the 

exosome kits were not significantly different from particle volume in BSA (P= NS; 

Kruskal-Wallis Test). 
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Figure 6. Atomic force microscopy and nanoscale flow cytometry reveal differences 

in particle size and distribution in PCCF samples obtained using different isolation 

methods. 

AFM images representing the height and amplitude of isolated EVs demonstrate the 

differences in content of extracellular vesicles versus co-isolated contaminant protein and 

non-target particles. NFC of all samples also demonstrates the differences between all 

methods in depleting ‘noise’ populations (outside red boxes) (A, B, C, D). Volumetric 

data of PCCFs isolate with PSMA immunoaffinity and three isolation kits; BSA used as a 

control (E). ***P= 0.0001, ****P= 0.0001; Kruskal-Wallis Test. 
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 Atomic force microscopy resolves three dimensional surface 

characteristics of isolated PCCFs 

Atomic force microscopy evaluation of PCCFs isolated with the PSMA immunoaffinity 

approach detects individual PCCFs measuring ~110nm in height (Fig. 7A). AFM 

imaging also shows that the background of the sample contains minimal amounts of co-

isolated proteins and other EVs from the plasma samples. The height of isolated PCCFs 

are within the range previously determined with NFC. I used the Gwyddion software to 

analyze the PCCF in the inset, both in 2 and 3 dimensional planes. The 2 dimensional 

image of the inset reveals that at a closer magnification (1 µm × 1 µm), the surface of this 

individual PCCF contains areas with higher peaks (Fig. 7A-inset). The 3 dimensional 

image (Fig. 7B) allows for superior resolution of peaks observed in the previous image. 

When one individual peak is measured, it was shown to be ~14 nm in height (Fig. 7C). 

These peaks could represent receptors or other membrane associated proteins on the 

surface of the PCCFs. 
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Figure 7. Atomic force microscopy resolves three-dimensional structures of PCCF 

isolated from patient plasma and reveals small peaks in PCCF surface. 

AFM images of multiple PCCFs in one sample show their distribution, as well as the 

background of the sample to detect co-isolated proteins, which in this case are virtually 

depleted (A). Individual PCCFs can be imaged in 2 (inset) and 3 (B) dimensional planes. 

A profile of an individual PCCF can be plotted to accurately measure peaks on the 

surface of the particle, which may correspond to membrane associated protein (C). 
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 Mass spectrometry analysis of PSMA-isolated PCCFs 

identifies an abundance of albumin and protein peptides 

from tissues other than prostate 

Prostate cancer cell fragments isolated with the PSMA immunoaffinity method were 

submitted for mass spectrometry analysis in order to find proteins which differ from each 

Gleason score group (N=2; one sample belonging to Gleason score 6 and one sample to 

Gleason score 8). Sample preparation and LC-MS/MS was performed by the Ohio State 

University Mass Spectrometry and Proteomics Facility. Consensus lists containing all 

protein hits from each of the samples were provided from this analysis (Appendix A and 

B).  

 

Analysis revealed a total of 158 proteins identified for the Gleason score 6 sample, and 

209 proteins identified for the Gleason score 8 sample. In both types of samples, there 

was an abundance of plasma proteins, such as albumin and immunoglobulins. Other 

abundant proteins include components of the coagulation and complement cascades, 

cytoskeleton-associated proteins, enzymes, and signaling molecules. Keratins and other 

skin related proteins were found in abundance in both sets of samples, indicating the 

possibility of contamination of the samples. We were not able to find any prostate 

specific proteins which we could use as potential biomakers. 
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 Nanoscale flow cytometry detects STEAP1 positive events in 

prostate cancer patient plasma as well as dual positive 

PSMA-STEAP1 PCCF events 

Analysis of PCa patient plasma with the A50-Micro nanoscale flow cytometer 

demonstrates that events in plasma are within the 110-800 nm diameter size range (Fig. 

8A), with a large population of ‘noise’ particles which are smaller (red oval). When 

analyzing PCa patient plasma samples with the isotype control IgG2b-Alexa647 (Fig. 8B, 

red box), a very small number of events were detected by the NFC, allowing us to 

determine the placement of gates to identify positive events. When plasma is incubated 

with an anti-STEAP1 Alexa647 antibody, a subpopulation of PCCFs which express 

STEAP1 is detected within the previously set gate (Fig. 8B, red box). This population is 

distinct in both size and immunofluorescence from other particles in the sample (Fig. 8B, 

blue box). 

The A50-Micro NFC also has the capability to measure events which are positive for two 

antibodies. Dual positive assessment of PCa patient plasma shows events which are 

recognized by both PSMA-PE and STEAP1-Alexa647 antibodies. Indeed, a large 

population of dual positive PCCFs is detected (Fig. 8D, top right quadrant). This 

scatterplot also shows the events that are negative for both antibodies (Fig. 8D, bottom 

left quadrant). 
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Figure 8. Nanoscale flow cytometry reveals the incidence of STEAP1 positive PCCF 

events in PCa patient plasma samples, and also detects dual PSMA-STEAP1 

positive events in PCa patient plasma samples. 

NFC analysis of patient plasma reveals that samples contain EV populations of varying 

sizes, as well as a large population of ‘noise’ particles (A). The isotype control allows for 

the placement of gates as a threshold for negative events (B). The NFC detects clear 

subpopulations of STEAP1 positive (C) as well as dual PSMA-STEAP1 positive (D) 

PCCFs.  
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 Tandem immunoaffinity isolation of PCCFs significantly 

reduces non-target MP populations, while maintaining 

PSMA+STEAP1 dual events 

Tandem immunoaffinity isolation of PCCFs consists of an initial isolation of the 

fragments from patient plasma using the biotinylated-PSMA method. A second 

immunoisolation technique is then performed, using the STEAP1 antibody (Fig. 9A). In 

other words, the PCCFs isolated using the PSMA method are then incubated with the 

Protein G-SEAP1 immune complex.  In this way, the non-target PCCFs that are STEAP1 

negative are washed form the sample, and the PSMA-STEAP1 dual positive PCCFs are 

eluted for subsequent analysis. 

PCCFs isolated with the tandem immunoaffinity method were evaluated using NFC to 

assess the efficiency of this technique at enriching PCCFs populations. Individual 

scatterplot for PSMA-PE, STEAP1-Alexa647, and dual positive PCCF events were 

measured to determine the number of PCCFs that are recognized by one, or both 

antibodies. Individually, the expression of PSMA (Fig. 9B, red gates) and STEAP1 (Fig. 

9C, red gates) was detected in a significant number of events in isolated PCCFs. 

Correspondingly, a high number of dual-positive events were detected as observed on the 

top-right quadrant of the scatterplot, and this was determined to be ~40% of all events 

measured (Fig. 9D, top right quadrant). This is an ~11-fold enrichment from the PCCF 

population detected in samples of plasma only. The ‘noise’ population, which is negative 

for both PSMA and STEAP1, was significantly reduced after tandem isolation (Fig. 9, 

bottom left quadrant). 
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Figure 9. Nanoscale flow cytometry analysis of tandem immunoaffinity isolated 

PCCFs from patient plasma show the enrichment of STEAP1 positive as well as 

dual PSMA-STEAP1 positive events. 

This method of PCCF isolation utilizes Protein G agarose beads and STEAP1 antibody, 

which are incubated with the pooled PCCFs previously isolated with PSMA (A). NFC 

analysis shows that this tandem immunoaffinity isolation yields a sample containing 

PCCF populations which are positive for PSMA (B) and STEAP1 (C), and a double 

positive population of PCCFs which expresses both antigens (D).  
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 Western blot detection of prostate proteins in prostate cell 

lysate and PSMA immuno-purified PCCFs, but not in 

tandem isolated PCCF samples 

Western blot analysis was performed to measure PSMA and STEAP1 protein expression 

in PCCFs isolated using the PSMA technique only, as well as PCCFs isolated using the 

tandem technique. Cell lysate from LNCAP and PC-3M-LN4 cells (10 μg) were also 

loaded onto gels as controls for PSMA and STEAP1 protein expression (Fig. 10). 

Protein bands for STEAP1 are clearly seen in PC-3M-LN4 cell lysate at 47 kDa, which is 

the expected molecular mass of STEAP1 (Fig. 10A).  In the LNCaP cell lysate, the 

STEAP1 protein band is less prominent than in PC3 lysate; however, a faint band is also 

detected at 47 kDa (Fig. 10A). PSMA protein bands are clearly seen in PC-3M-LN4 and 

LNCaP cell lysate at ~110 kDa. 

Samples containing PCCFs isolated using the biotinylated-PSMA technique show the 

presence of a ~110 kDa band corresponding to PSMA, and a band at ~47 kDa 

corresponding to STEAP1 when ~10μg of protein are also loaded onto the gels (Fig. 10B; 

N=5, S1-S5). Both proteins are differentially expressed in individual samples, possibly 

due to the high variances in protein content from one sample to another. ß-actin bands 

were not detected in these samples.  

After tandem isolation, the protein concentration of the PCCF is extremely low and I 

could not load 10 μg as done previously.  Consequently, I could not perform western blot 

analysis to detect PSMA or STEAP1. 

 

 

 



56 

 

 

 

Figure 10. PSMA and STEAP1 protein expression in LNCaP and PC-3M-LN4 

prostate cancer cell lines and PCCFs isolated with biotinylated-PSMA method. 

Western blot analysis PSMA and STEAP1 protein levels of in LNCaP and PC-3M-LN4 

cell lysate (A), as well as in PCCFs isolated using the biotinylated-PSMA 

immunoaffinity isolation from 5 different patient plasma samples (B; S1-S5). Neither 

PSMA nor STEAP1 were detected in the tandem immunoaffinity isolated samples, likely 

because insufficient protein was recovered (data not shown). ß-actin was detected in cell 

lysate for LNCaP and PC-3M-LN4; however, it was not detected in both isolated samples 

(data not shown). 
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  Mass spectrometry results of tandem isolated samples reveal 

abundance of plasma and cytoskeletal proteins. 

To obtain detailed information on the identities of the proteins contained in the plasma 

isolated PCCFs, we submitted the samples for LC–MS/MS proteomic analysis. Initial 

sample preparation for proteomic analysis was done by in-gel digestion of the samples. 

An image of SDS-PAGE gel from one tandem isolated sample (sample ID: PMP-324) 

reveals the absence of any visible protein bands on the gel, when compared to a loading 

control which shows an array of bands (Fig. 11A; courtesy of Campus Chemical 

Instrument Center (CCIC) Mass Spectrometry and Proteomics Facility at The Ohio State 

University). Mass spectrometry was not conducted after in-gel digestion, due to the 

absence of protein bands to pick for digest. 

Subsequently, proteins in the PCCF samples (N=10 per Gleason score group) were 

submitted for in-solution digestion. Mass spectrometry output lists were obtained 

identifying proteins by abundance, in PCCFs from Gleason score 6 (Appendix C) and 8 

(Appendix D) patients. Interestingly, a higher number of proteins were detected in 

Gleason 6 samples totaling 203 proteins; while from the Gleason 8 samples a total of 80 

proteins were detected. The majority of proteins identified, and those with the largest 

number of peptides found in the sample, were serum albumin, immunoglobulins, and 

components of the coagulation and complement cascades, as well as cytoskeleton-

associated proteins, enzymes, and signaling molecules. The abundance of keratins and 

collagens in both groups of PCCF samples could be due to contamination during 

handling of the samples. 

In the analysis of protein differences between Gleason 6 and 8, one prostate protein was 

found in a single Gleason 8 sample from one individual patient, and not found in any of 

the Gleason 6 samples. This protein was Prostasin (PRSS8_HUMAN), a 

glycosylphosphatidylinositol-anchored serine protease involved in epithelial Na channel 

activation (77). However, this protein was only detected in one patient, and in low 

abundance.  
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Figure 11. SDS-PAGE gel show the difference in protein band identification 

between loading controls and a sample consisting of tandem isolated PCCF. 

SDS-PAGE gel of controls and tandem isolated PCCF from patient PMP-324.  Gel was 

stained with coomassie brilliant blue (performed by our Ohio State collaborators), which 

reveals clearly visible protein bands in both controls, but no bands in the PMP-324 lane 

were detected.  
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Chapter 4  

 Discussion 

In this study, we isolated prostate cancer cell fragments (PCCFs) from the plasma of 

prostate cancer patients with Gleason scores of 6 and 8, which indicates low and high-

grade PCa respectively, in order to assess the protein content of these PCFFs. The goal 

was to find a protein specific for each of these PCa grades, which could be used to 

discriminate between these two clinically distinct patient cohorts. We created a novel 

tandem immunoaffinity isolation technique using two prostate-specific antigens, PSMA 

and STEAP1, to separate PCCF from other non-prostate EVs and plasma proteins. The 

purity of the samples, assessed by the reduction of background cellular material and 

plasma protein, as well as the morphological features of the isolated EVs, were analyzed 

with atomic force microscopy and nanoscale flow cytometry. 

 

 Extracellular vesicles such as prostate cancer cell fragments 

as a fluid biopsy for prostate cancer  

Research on EVs began in 1967, when Peter Wolf discovered platelet MPs, but many 

regarded EVs as simply ‘cellular debris’. Currently, research in EVs has increased our 

understanding of the mechanisms of vesicle production, their role as modulators of 

normal physiological processes, as well as in cancer progression and other disease states 

(10). It is now known that during microvesicle biogenesis, cell fragments retain 

membrane proteins and nucleic acid originally found within the parent cell (78). 

Furthermore, studies have confirmed that release of EV is accelerated in cancer (9) and 

other diseases (10), feeding interest for their role in mediating cell-to-cell 

communication, and as a biomarker platform for improved screening and prognosis of 

diseases.  

 

The promise of EVs in PCa may be more suited for biomarker development, considering 

that PCCFs are endowed with portions of membrane proteins from the parent cell (78). 

Attempts to discover PCCFs-associated biomarkers specific for PCa are limited to 
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proteomic analysis of isolated PCCFs from in vitro studies (4), or from human PCa 

xenografts in mice (55). However, these reported biomarkers have not been clinically 

validated, either in serum or plasma samples, underscoring the need to substantiate 

biomarkers beyond the initial discovery phase. 

 

 Immunoaffinity isolation of PCCFs 

The ability to isolate and enrich EVs, such as exosomes or microparticles, is a highly 

important method that is currently not standardized. A significant barrier in discovering 

biomarkers associated with EV samples is due to the lack of robust platforms for isolation 

of EV populations, with the samples mostly dominated by co-isolated soluble proteins 

that may also contain the biomarker of interest (79). As the majority of studies have 

failed to evaluate the purity of isolated EV populations before performing downstream 

analytical assays, the sample may be a misrepresentation of the EV population of interest, 

consequently leading to erroneous conclusions. 

A key step in the isolation of EVs from bodily fluids is the reduction of other non-target 

factors such as proteins, circulating nucleic acids, and non-target EVs in order to 

demonstrate that factors within the target EVs are specific effectors during intercellular 

communication (80). The most commonly used method for EV purification is differential 

ultracentrifugation (4,31), a practice that many consider the “gold standard” for 

purification of EVs (81). However, ultracentrifugation does not guarantee complete 

elimination of non-target EVs, resulting in enrichment as opposed to the purification of 

the desired EV population (42). Moreover, this technique involves lengthy periods of 

centrifugation and requires expensive specialized equipment for ultracentrifugation of the 

sample. 

As interest in EVs has intensified, so has the demand for procedures which are rapid and 

more user-friendly. This has resulted in the creation of several kits which act by 

separating exosomes through sedimentation from other factors within the sample; in 

particular, ExoQuick (System Bioscience), Total Exosome (Life Technologies) and 

ExoSpin (Cell Guidance Systems), which are all commercially available. While these kits 
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minimize the time spent performing EV isolation, little is known about their purification 

efficacy. Newly published data shows that although the precipitation techniques yield a 

higher protein content, this is not an indication of high exosome purification, but rather a 

consequence of contaminating non-exosomal proteins (82). 

In comparison with the other methods of EV isolation, immunoaffinity-based isolation 

methods provide a high level of specificity for selecting EVs from the tissue of interest. 

The ability to select a subpopulation of EVs from biological fluids is an essential 

requirement for studies focusing on the diagnostic potential of EV (83). In this thesis, we 

developed an immunoaffinity isolation protocol using the PSMA antigen, which proved 

to be efficient at separating PCCFs from other small vesicles present in plasma samples. 

This technique proved to be more effective than all previously mentioned commercially 

available kits at removing background subpopulations (Fig. 6A-D). We also created a 

tandem isolation method to further eliminate plasma and other contaminating proteins. 

Moreover, the use of two prostate antigens (PSMA and STEAP1) was helpful in further 

selecting EVs that were prostate specific.  

 

 Multi-modal nano-characterization of purified extracellular 

vesicles from biological samples 

The field of EVs is rapidly evolving in terms of the techniques used for characterizing 

vesicles isolated from different sources. In EV characterization, is important to use 

several techniques in combination for quantifying and visually analyzing the features of 

the vesicles (81). We present here the combined use of nanoscale flow cytometry and 

atomic force microscopy as a means to quantify prostate cancer cell fragment events, to 

measure them to the atomic level, and visualize their topographical morphology. 

 



62 

 

4.3.1 Nanoscale flow cytometry for quantification of PCCFs in plasma 

and isolated samples 

The emergence of nanoscale flow cytometry (NFC) has made high-throughput, multi-

parametric analysis of all events between 110 and 880 nm possible regardless of the 

incident wavelength of light used (46). Using the Apogee A50-Micro nanoscale flow 

cytometer, polystyrene microspheres and silica-based beads can be size-resolved up to 

differences of 100 nm (47), revealing the potential of this instrumentation to become 

widely used for the analysis of EVs in complex biological mixtures (48).  

In the present study, we used the NFC to successfully quantify PCCF events in both 

plasma and isolated samples, which expressed the prostate antigens PSMA (Fig. and 

STEAP1 (Fig. 8C). The Apogee A50-Micro NFC was also useful in validating the 

efficiency of our tandem immunoaffinity method to reduce the population of non-target 

EVs and other noise particles from the starting plasma sample (Fig. 9B-D). 

 

4.3.2 Atomic force microscopy for visual characterization and validation 

of the isolated PCCFs 

Microscopy continues to be a common approach to assessing the efficacy of EV isolation 

from a given sample, as well as to characterize the structure and relative size of these 

vesicles (42,48). Most publications have reported the use of transmission electron 

microscopy (TEM) and scanning electron microscopy (SEM) as key modalities to 

visually characterize and evaluate the ratio of EVs to soluble protein and other cellular 

debris (42). However, these techniques are not quantitative, as they do not allow for the 

atomic measurement of components in the sample, which is important for distinguishing 

exosomes (50-100 nm) from microparticles (100-1000 nm). 

The atomic force microscope (AFM) has been recently reported to be a valuable tool for 

the nanoscale measurement of EVs at atomic resolution (23). This instrument allows for 

the topographical imaging of EV surfaces, as well as offering information regarding 

protein contamination in purified EVs preparations (84). Moreover, sample preparation 

for AFM analysis is rapid and does not alter the native state of the target EV, which is 
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substantially different from the lengthy and harsh sample processing required for electron 

microscopy (85). 

We have shown that AFM is an idea promising imaging modality for the measurement of 

small vesicles with a mean diameter of ~100 nm and for the detection of protein 

complexes co-isolated with the target population of EVs (Fig. 7A). Images of isolated 

PCCFs obtained with AFM also allowed for the 3-dimensional rendering of the particles 

(Fig. 7B); depicting the surface of the particles in a 3-dimensional plane led us to 

visualize small peaks (Fig. 7C), which we speculate could be protein receptors inherited 

from the parental cell. 

 

 Mass spectrometry  

The great interest in EV as protein carriers is evident in the literature, with a large 

number of publications focusing on characterizing the proteome of EVs derived from cell 

culture media (14,86) and biological fluids (4,87). Currently, discovery of disease 

biomarkers from EVs using mass spectrometry (MS) is mostly from cell culture media 

samples. Moreover, the information gained from proteomic analysis of EVs from 

biological fluids is limited in the literature. This could be due to the complexity of 

proteins that are present in biological fluids. The greatest challenge of performing MS 

analysis from blood serum or plasma samples vs. tissue culture is the vast difference in 

the dynamic range of proteins. Even with attempts to remove abundant proteins such as 

albumin and immunoglobulins, small amounts of impurities can have a significant effect 

in MS analysis of isolated EVs, making the identification of low abundance proteins 

difficult (87). 

 

In agreement with previous reports, Bastos-Amador et al. (88) showed that plasma 

proteins such as albumin, and cytosolic proteins like heat shock proteins were among the 

most abundant protein present after EV isolation from plasma samples. They also 

reported a high proportion of immunoglobulins co-isolated with their EV preparations. 

However, some of these generally co-isolated proteins may be difficult to remove from 
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the samples, as they may be purposely packaged in EVs to maintain membrane and 

protein integrity (89). 

 

In the present study, the MS results (Appendix A-D) we obtained from isolated PCCFs 

are consistent with the literature in regards to the majority of proteins detected by MS 

being albumin and immunoglobulins Moreover, the MS output data shows an abundance 

of keratins and collagen, which could be due to contamination caused by handling of the 

sample during the isolation process, or while preparing the samples for in-solution 

digestion. The aim of this part of the study was to find possible protein biomarkers 

uniformly expressed in all the PCCF samples from one Gleason score group that were not 

expressed in the other Gleason score group. Although there were some proteins which 

were differentially expressed between these two Gleason scores, these were found in only 

one or two of the samples, but not the rest.  In addition, only a small number of peptides 

from some of these proteins were identified.  Like our results, another group has similarly 

reported that they were able to identify a small number of proteins in EVs isolated from 

plasma (90). 

 

The inability to detect the expected quantity of proteins in our PCCF samples could be 

due to intrinsic issues with the tandem immunoaffinity method we developed. This 

technique requires the use of elution buffers that modify the pH of the sample. Although 

physiological pH was restored immediately, exposing the PCCFs to the conditions of the 

eluting buffer could have affected the three-dimensional structure of proteins assembled 

on the PCCF surface (91). Consequently, alteration of the biological properties of 

proteins in the isolated PCCF could have resulted in inability to detect these proteins with 

MS. 

 

 Significance 

Currently, there is a need for new diagnostic tools to accurately identify patients with 

aggressive or high-risk PCa from those with low-risk disease. Prostate specific antigen 

(PSA) testing continues to be employed as a monitoring and prognostication tool; 
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however, PSA is produced and secreted by both normal prostate epithelium and PCa into 

the circulation (4). The low specificity and high false-positive rate of PSA have resulted 

in many men without PCa having to undergo painful and unnecessary biopsies and risk 

the possibility of infections post-biopsy. As a result, PSA is no longer recommended as 

the leading test for PCa screening (73). 

 

Research to discover new diagnostic biomarkers that could differentiate low-risk from 

high-risk PCa has not significantly progressed, but the need for a non-invasive test in 

monitoring PCa patients is clearly of great clinical value. PCCFs are an attractive 

biomarker platform for detecting PCa, as these fragments originate from prostate 

epithelium or from malignant cells within the primary tumor and are released into the 

blood circulation (76). Moreover, it has been previously shown that significant quantities 

of PCCFs are detectable in samples from PCa patients, but are not detected in healthy 

individuals (92). 

 

In general, the PCa research community must double its efforts to understand 

extracellular vesicles like PCCFs in order to apply these fragments as a novel non-

invasive biomarker-based test. Biomarkers that arise out of these studies could eventually 

become clinically validated. Upon development of biomarkers specific to PCCFs from 

Gleason score 6 and 8 lesions, a "liquid biopsy" format of the Gleason score could be 

established to evaluate patients prior to biopsy, and determine the stage of cancer. This is 

a major clinically unmet need, which may aid clinicians towards a more precise means of 

managing PCa.  Such a test would also provide major health costs savings, as well as 

minimize patient morbidity and anxiety related to the biopsy procedure. 

 

 Future directions and conclusions 

Future studies will need to focus on further optimizing the tandem isolation protocol to 

allow for the maximum collection of PCCFs to produce a higher yield of prostate-specific 

proteins. This may be partially overcome by scaling up the isolation with a higher volume 
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of initial plasma. Previously, an initial volume of <1 mL has been used for the isolation 

of EV from complex biological fluids (81), which is a feasible volume of starting sample 

to collect from patients.  

 

To further support future efforts in finding independent biomarkers for each Gleason 

score (GS 6 and 8), the small sample size in this study (N=10 per Gleason score cohort) 

should be significantly increased. A larger sample size could guarantee a better 

representation of the population, as well as detection of low-abundance proteins in 

additional samples. 

 

In addition, using antibodies with higher affinity for the target populations could 

potentially have utility, as we only tested one antibody for each target antigen (PSMA 

and STEAP1). Using a cocktail of l antibodies could be better if the target epitope is not 

always available. 

 

Although we proved with NFC and AFM that there is a significant reduction of the noise 

population when using our tandem isolation method, we still detected co-isolated plasma 

and cytosolic proteins. These co-isolated proteins could be masking the expression of 

other, less abundant proteins. Therefore, it is important to effectively separate the target 

EV, in order to avoid the background caused by these co-isolated protein aggregates (91). 

The use of albumin/IgG removal kits has been previously proposed in order to achieve 

the depletion of plasma and cytosolic proteins (81). This step could be introduced prior to 

the tandem immunoaffinity isolation technique. 

To our knowledge, this is the first evidence that the tandem affinity methodology is 

effective at reducing other non-target EVs and proteins from PCa patient samples while 

keeping a significant number of PCCFs. We showed that using our tandem affinity 

technique is more efficient than other isolation methods - such as commercial EV 

purification kits - in removing soluble proteins and other debris from the sample. 

Moreover, we also showed that the combined use of nanoscale flow cytometry and 
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atomic force microscopy has a great potential to become a widely used technique to 

analyze extracellular vesicle enrichment. 

In the current study, we were not able to identify protein biomarkers for differentiating 

the two patient cohorts (Gleason score 6 and 8), which was the principal goal of this 

thesis. However, future efforts in optimizing the protocols we have developed in this 

project could help in the identification of protein biomarkers for better and faster 

diagnosis and staging of prostate cancer. 
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Appendices 

Appendix A: List of proteins identified in PCCF isolated using biotinylated PSMA 

immunoaffinity method from plasma of patients with Gleason score 6. 

Accession Description 

ALBU_HUMAN Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 

CO3_HUMAN Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 

CFAH_HUMAN Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4 

A2MG_HUMAN Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 

SV=3 

APOB_HUMAN Apolipoprotein B-100 OS=Homo sapiens GN=APOB PE=1 

SV=2 

CO4A_HUMAN Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=2 

CO4B_HUMAN Complement C4-B OS=Homo sapiens GN=C4B PE=1 SV=2 

TRFE_HUMAN Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 

FINC_HUMAN Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=4 

HPT_HUMAN Haptoglobin OS=Homo sapiens GN=HP PE=1 SV=1 

CFAB_HUMAN Complement factor B OS=Homo sapiens GN=CFB PE=1 SV=2 

PLMN_HUMAN Plasminogen OS=Homo sapiens GN=PLG PE=1 SV=2 

K2C1_HUMAN Keratin, type II cytoskeletal 1 OS=Homo sapiens GN=KRT1 

PE=1 SV=6 

VTDB_HUMAN Vitamin D-binding protein OS=Homo sapiens GN=GC PE=1 

SV=1 

K1C10_HUMAN Keratin, type I cytoskeletal 10 OS=Homo sapiens GN=KRT10 

PE=1 SV=6 

IGHG3_HUMAN Ig gamma-3 chain C region OS=Homo sapiens GN=IGHG3 

PE=1 SV=2 

IGHM_HUMAN Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3 
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ITIH4_HUMAN Inter-alpha-trypsin inhibitor heavy chain H4 OS=Homo sapiens 

GN=ITIH4 PE=1 SV=4 

A1BG_HUMAN Alpha-1B-glycoprotein OS=Homo sapiens GN=A1BG PE=1 

SV=4 

FETUA_HUMAN Alpha-2-HS-glycoprotein OS=Homo sapiens GN=AHSG PE=1 

SV=1 

K22E_HUMAN Keratin, type II cytoskeletal 2 epidermal OS=Homo sapiens 

GN=KRT2 PE=1 SV=2 

HPTR_HUMAN Haptoglobin-related protein OS=Homo sapiens GN=HPR PE=2 

SV=2 

C4BPA_HUMAN C4b-binding protein alpha chain OS=Homo sapiens GN=C4BPA 

PE=1 SV=2 

K1C9_HUMAN Keratin, type I cytoskeletal 9 OS=Homo sapiens GN=KRT9 

PE=1 SV=3 

CERU_HUMAN Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1 

IGHG4_HUMAN Ig gamma-4 chain C region OS=Homo sapiens GN=IGHG4 

PE=1 SV=1 

KNG1_HUMAN Kininogen-1 OS=Homo sapiens GN=KNG1 PE=1 SV=2 

THRB_HUMAN Prothrombin OS=Homo sapiens GN=F2 PE=1 SV=2 

IGHG1_HUMAN Ig gamma-1 chain C region OS=Homo sapiens GN=IGHG1 

PE=1 SV=1 

A1AG1_HUMAN Alpha-1-acid glycoprotein 1 OS=Homo sapiens GN=ORM1 

PE=1 SV=1 

CO5_HUMAN Complement C5 OS=Homo sapiens GN=C5 PE=1 SV=4 

IGKC_HUMAN Ig kappa chain C region OS=Homo sapiens GN=IGKC PE=1 

SV=1 
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IGHG2_HUMAN Ig gamma-2 chain C region OS=Homo sapiens GN=IGHG2 

PE=1 SV=2 

CO8B_HUMAN Complement component C8 beta chain OS=Homo sapiens 

GN=C8B PE=1 SV=3 

AFAM_HUMAN Afamin OS=Homo sapiens GN=AFM PE=1 SV=1 

AMBP_HUMAN Protein AMBP OS=Homo sapiens GN=AMBP PE=1 SV=1 

CO7_HUMAN Complement component C7 OS=Homo sapiens GN=C7 PE=1 

SV=2 

VWF_HUMAN von Willebrand factor OS=Homo sapiens GN=VWF PE=1 SV=4 

MUCB_HUMAN Ig mu heavy chain disease protein OS=Homo sapiens PE=1 

SV=1 

IGJ_HUMAN Immunoglobulin J chain OS=Homo sapiens GN=JCHAIN PE=1 

SV=4 

APOH_HUMAN Beta-2-glycoprotein 1 OS=Homo sapiens GN=APOH PE=1 

SV=3 

A1AG2_HUMAN Alpha-1-acid glycoprotein 2 OS=Homo sapiens GN=ORM2 

PE=1 SV=2 

IGHA1_HUMAN Ig alpha-1 chain C region OS=Homo sapiens GN=IGHA1 PE=1 

SV=2 

CO6_HUMAN Complement component C6 OS=Homo sapiens GN=C6 PE=1 

SV=3 
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APOA1_HUMAN Apolipoprotein A-I OS=Homo sapiens GN=APOA1 PE=1 SV=1 

C1S_HUMAN Complement C1s subcomponent OS=Homo sapiens GN=C1S 

PE=1 SV=1 

C1R_HUMAN Complement C1r subcomponent OS=Homo sapiens GN=C1R 

PE=1 SV=2 

CD5L_HUMAN CD5 antigen-like OS=Homo sapiens GN=CD5L PE=1 SV=1 

CO9_HUMAN Complement component C9 OS=Homo sapiens GN=C9 PE=1 

SV=2 

LAC2_HUMAN Ig lambda-2 chain C regions OS=Homo sapiens GN=IGLC2 

PE=1 SV=1 

A1AT_HUMAN Alpha-1-antitrypsin OS=Homo sapiens GN=SERPINA1 PE=1 

SV=3 

GELS_HUMAN Gelsolin OS=Homo sapiens GN=GSN PE=1 SV=1 

K2C6B_HUMAN Keratin, type II cytoskeletal 6B OS=Homo sapiens GN=KRT6B 

PE=1 SV=5 

CFAI_HUMAN Complement factor I OS=Homo sapiens GN=CFI PE=1 SV=2 

ITIH1_HUMAN Inter-alpha-trypsin inhibitor heavy chain H1 OS=Homo sapiens 

GN=ITIH1 PE=1 SV=3 

AACT_HUMAN Alpha-1-antichymotrypsin OS=Homo sapiens GN=SERPINA3 

PE=1 SV=2 
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LAC3_HUMAN Ig lambda-3 chain C regions OS=Homo sapiens GN=IGLC3 

PE=1 SV=1 

CO2_HUMAN Complement C2 OS=Homo sapiens GN=C2 PE=1 SV=2 

ITIH2_HUMAN Inter-alpha-trypsin inhibitor heavy chain H2 OS=Homo sapiens 

GN=ITIH2 PE=1 SV=2 

CO8A_HUMAN Complement component C8 alpha chain OS=Homo sapiens 

GN=C8A PE=1 SV=2 

PROS_HUMAN Vitamin K-dependent protein S OS=Homo sapiens GN=PROS1 

PE=1 SV=1 

K1C14_HUMAN Keratin, type I cytoskeletal 14 OS=Homo sapiens GN=KRT14 

PE=1 SV=4 

ACTB_HUMAN Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 

CLUS_HUMAN Clusterin OS=Homo sapiens GN=CLU PE=1 SV=1 

PON1_HUMAN Serum paraoxonase/arylesterase 1 OS=Homo sapiens GN=PON1 

PE=1 SV=3 

HEP2_HUMAN Heparin cofactor 2 OS=Homo sapiens GN=SERPIND1 PE=1 

SV=3 

PZP_HUMAN Pregnancy zone protein OS=Homo sapiens GN=PZP PE=1 SV=4 

K2C5_HUMAN Keratin, type II cytoskeletal 5 OS=Homo sapiens GN=KRT5 

PE=1 SV=3 

VTNC_HUMAN Vitronectin OS=Homo sapiens GN=VTN PE=1 SV=1 
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IGLL5_HUMAN Immunoglobulin lambda-like polypeptide 5 OS=Homo sapiens 

GN=IGLL5 PE=2 SV=2 

IGHA2_HUMAN Ig alpha-2 chain C region OS=Homo sapiens GN=IGHA2 PE=1 

SV=3 

ANT3_HUMAN Antithrombin-III OS=Homo sapiens GN=SERPINC1 PE=1 

SV=1 

HEMO_HUMAN Hemopexin OS=Homo sapiens GN=HPX PE=1 SV=2 

APOE_HUMAN Apolipoprotein E OS=Homo sapiens GN=APOE PE=1 SV=1 

KLKB1_HUMAN Plasma kallikrein OS=Homo sapiens GN=KLKB1 PE=1 SV=1 

A2GL_HUMAN Leucine-rich alpha-2-glycoprotein OS=Homo sapiens GN=LRG1 

PE=1 SV=2 

FHR1_HUMAN Complement factor H-related protein 1 OS=Homo sapiens 

GN=CFHR1 PE=1 SV=2 

POTEF_HUMAN POTE ankyrin domain family member F OS=Homo sapiens 

GN=POTEF PE=1 SV=2 

ANXA2_HUMAN Annexin A2 OS=Homo sapiens GN=ANXA2 PE=1 SV=2 

KV305_HUMAN Ig kappa chain V-III region WOL OS=Homo sapiens PE=1 

SV=1 
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1433S_HUMAN 14-3-3 protein sigma OS=Homo sapiens GN=SFN PE=1 SV=1 

C1QC_HUMAN Complement C1q subcomponent subunit C OS=Homo sapiens 

GN=C1QC PE=1 SV=3 

APOA4_HUMAN Apolipoprotein A-IV OS=Homo sapiens GN=APOA4 PE=1 

SV=3 

FHR4_HUMAN Complement factor H-related protein 4 OS=Homo sapiens 

GN=CFHR4 PE=1 SV=3 

FIBA_HUMAN Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 

SV=2 

FBLN1_HUMAN Fibulin-1 OS=Homo sapiens GN=FBLN1 PE=1 SV=4 

APOL1_HUMAN Apolipoprotein L1 OS=Homo sapiens GN=APOL1 PE=1 SV=5 

TTHY_HUMAN Transthyretin OS=Homo sapiens GN=TTR PE=1 SV=1 

HBB_HUMAN Hemoglobin subunit beta OS=Homo sapiens GN=HBB PE=1 

SV=2 

KPYM_HUMAN Pyruvate kinase PKM OS=Homo sapiens GN=PKM PE=1 SV=4 

ITIH3_HUMAN Inter-alpha-trypsin inhibitor heavy chain H3 OS=Homo sapiens 

GN=ITIH3 PE=1 SV=2 

HABP2_HUMAN Hyaluronan-binding protein 2 OS=Homo sapiens GN=HABP2 

PE=1 SV=1 
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PEDF_HUMAN Pigment epithelium-derived factor OS=Homo sapiens 

GN=SERPINF1 PE=1 SV=4 

KR510_HUMAN Keratin-associated protein 5-10 OS=Homo sapiens 

GN=KRTAP5-10 PE=2 SV=1 

KRA54_HUMAN Keratin-associated protein 5-4 OS=Homo sapiens GN=KRTAP5-

4 PE=2 SV=1 

KRA53_HUMAN Keratin-associated protein 5-3 OS=Homo sapiens GN=KRTAP5-

3 PE=2 SV=1 

FHR2_HUMAN Complement factor H-related protein 2 OS=Homo sapiens 

GN=CFHR2 PE=1 SV=1 

K1C16_HUMAN Keratin, type I cytoskeletal 16 OS=Homo sapiens GN=KRT16 

PE=1 SV=4 

LDHA_HUMAN L-lactate dehydrogenase A chain OS=Homo sapiens GN=LDHA 

PE=1 SV=2 

LV302_HUMAN Ig lambda chain V-III region LOI OS=Homo sapiens PE=1 

SV=1 

KV301_HUMAN Ig kappa chain V-III region B6 OS=Homo sapiens PE=1 SV=1 

HRG_HUMAN Histidine-rich glycoprotein OS=Homo sapiens GN=HRG PE=1 

SV=1 

CO8G_HUMAN Complement component C8 gamma chain OS=Homo sapiens 

GN=C8G PE=1 SV=3 

SAMP_HUMAN Serum amyloid P-component OS=Homo sapiens GN=APCS 

PE=1 SV=2 

KV204_HUMAN Ig kappa chain V-II region TEW OS=Homo sapiens PE=1 SV=1 

KV203_HUMAN Ig kappa chain V-II region MIL OS=Homo sapiens PE=1 SV=1 

ATRN_HUMAN Attractin OS=Homo sapiens GN=ATRN PE=1 SV=2 

DCD_HUMAN Dermcidin OS=Homo sapiens GN=DCD PE=1 SV=2 
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G3P_HUMAN Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens 

GN=GAPDH PE=1 SV=3 

FCN3_HUMAN Ficolin-3 OS=Homo sapiens GN=FCN3 PE=1 SV=2 

APOA_HUMAN Apolipoprotein(a) OS=Homo sapiens GN=LPA PE=1 SV=1 

ALDOA_HUMAN Fructose-bisphosphate aldolase A OS=Homo sapiens 

GN=ALDOA PE=1 SV=2 

FA12_HUMAN Coagulation factor XII OS=Homo sapiens GN=F12 PE=1 SV=3 

C1QB_HUMAN Complement C1q subcomponent subunit B OS=Homo sapiens 

GN=C1QB PE=1 SV=3 

TBA1A_HUMAN Tubulin alpha-1A chain OS=Homo sapiens GN=TUBA1A PE=1 

SV=1 

TETN_HUMAN Tetranectin OS=Homo sapiens GN=CLEC3B PE=1 SV=3 

LRP1_HUMAN Prolow-density lipoprotein receptor-related protein 1 OS=Homo 

sapiens GN=LRP1 PE=1 SV=2 

KRA44_HUMAN Keratin-associated protein 4-4 OS=Homo sapiens GN=KRTAP4-

4 PE=2 SV=1 

HV301_HUMAN Ig heavy chain V-III region TRO OS=Homo sapiens PE=1 SV=1 

MYH9_HUMAN Myosin-9 OS=Homo sapiens GN=MYH9 PE=1 SV=4 

VIME_HUMAN Vimentin OS=Homo sapiens GN=VIM PE=1 SV=4 

MBL2_HUMAN Mannose-binding protein C OS=Homo sapiens GN=MBL2 PE=1 

SV=2 

HSPB1_HUMAN Heat shock protein beta-1 OS=Homo sapiens GN=HSPB1 PE=1 

SV=2 
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CBPB2_HUMAN Carboxypeptidase B2 OS=Homo sapiens GN=CPB2 PE=1 SV=2 

SEPP1_HUMAN Selenoprotein P OS=Homo sapiens GN=SEPP1 PE=1 SV=3 

HBA_HUMAN Hemoglobin subunit alpha OS=Homo sapiens GN=HBA1 PE=1 

SV=2 

LG3BP_HUMAN Galectin-3-binding protein OS=Homo sapiens GN=LGALS3BP 

PE=1 SV=1 

APOD_HUMAN Apolipoprotein D OS=Homo sapiens GN=APOD PE=1 SV=1 

FETUB_HUMAN Fetuin-B OS=Homo sapiens GN=FETUB PE=1 SV=2 

ANXA1_HUMAN Annexin A1 OS=Homo sapiens GN=ANXA1 PE=1 SV=2 

A2AP_HUMAN Alpha-2-antiplasmin OS=Homo sapiens GN=SERPINF2 PE=1 

SV=3 

APOM_HUMAN Apolipoprotein M OS=Homo sapiens GN=APOM PE=1 SV=2 

HV101_HUMAN Ig heavy chain V-I region EU OS=Homo sapiens PE=1 SV=1 

TSP1_HUMAN Thrombospondin-1 OS=Homo sapiens GN=THBS1 PE=1 SV=2 

KV101_HUMAN Ig kappa chain V-I region AG OS=Homo sapiens PE=1 SV=1 

KV111_HUMAN Ig kappa chain V-I region Ka OS=Homo sapiens PE=1 SV=1 
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GSTP1_HUMAN Glutathione S-transferase P OS=Homo sapiens GN=GSTP1 

PE=1 SV=2 

KV310_HUMAN Ig kappa chain V-III region VH (Fragment) OS=Homo sapiens 

PE=4 SV=1 

KV306_HUMAN Ig kappa chain V-III region POM OS=Homo sapiens PE=1 SV=1 

KV308_HUMAN Ig kappa chain V-III region CLL OS=Homo sapiens PE=4 SV=2 

ECM1_HUMAN Extracellular matrix protein 1 OS=Homo sapiens GN=ECM1 

PE=1 SV=2 

DESP_HUMAN Desmoplakin OS=Homo sapiens GN=DSP PE=1 SV=3 

CALM_HUMAN Calmodulin OS=Homo sapiens GN=CALM1 PE=1 SV=2 

SAA1_HUMAN Serum amyloid A-1 protein OS=Homo sapiens GN=SAA1 PE=1 

SV=1 

FA10_HUMAN Coagulation factor X OS=Homo sapiens GN=F10 PE=1 SV=2 

SHBG_HUMAN Sex hormone-binding globulin OS=Homo sapiens GN=SHBG 

PE=1 SV=2 

EF1A1_HUMAN Elongation factor 1-alpha 1 OS=Homo sapiens GN=EEF1A1 

PE=1 SV=1 

LCE2B_HUMAN Late cornified envelope protein 2B OS=Homo sapiens 

GN=LCE2B PE=2 SV=1 

KRA59_HUMAN Keratin-associated protein 5-9 OS=Homo sapiens GN=KRTAP5-

9 PE=1 SV=1 
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LAMC1_HUMAN Laminin subunit gamma-1 OS=Homo sapiens GN=LAMC1 

PE=1 SV=3 

MT2_HUMAN Metallothionein-2 OS=Homo sapiens GN=MT2A PE=1 SV=1 

KRA51_HUMAN Keratin-associated protein 5-1 OS=Homo sapiens GN=KRTAP5-

1 PE=2 SV=1 

FA9_HUMAN Coagulation factor IX OS=Homo sapiens GN=F9 PE=1 SV=2 

TENX_HUMAN Tenascin-X OS=Homo sapiens GN=TNXB PE=1 SV=4 

MT1L_HUMAN Metallothionein-1L OS=Homo sapiens GN=MT1L PE=2 SV=1 

STAB1_HUMAN Stabilin-1 OS=Homo sapiens GN=STAB1 PE=1 SV=3 

KRA57_HUMAN Keratin-associated protein 5-7 OS=Homo sapiens GN=KRTAP5-

7 PE=2 SV=1 

MT1DP_HUMAN Putative metallothionein MT1DP OS=Homo sapiens 

GN=MT1DP PE=5 SV=1 
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Appendix B: List of proteins identified in PCCF isolated using tandem 

immunoaffinity method from plasma of patients with Gleason score 8. 

Accession Description 

APOB_HUMAN Apolipoprotein B-100 OS=Homo sapiens GN=APOB PE=1 

SV=2 

CO3_HUMAN Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 

MYH9_HUMAN Myosin-9 OS=Homo sapiens GN=MYH9 PE=1 SV=4 

FLNA_HUMAN Filamin-A OS=Homo sapiens GN=FLNA PE=1 SV=4 

TLN1_HUMAN Talin-1 OS=Homo sapiens GN=TLN1 PE=1 SV=3 

CO4A_HUMAN Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=2 

CO4B_HUMAN Complement C4-B OS=Homo sapiens GN=C4B PE=1 SV=2 

A2MG_HUMAN Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 

SV=3 

ALBU_HUMAN Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 

A1AT_HUMAN Alpha-1-antitrypsin OS=Homo sapiens GN=SERPINA1 PE=1 

SV=3 

FIBB_HUMAN Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 

FIBA_HUMAN Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 

SV=2 

CERU_HUMAN Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1 

APOA1_HUMAN Apolipoprotein A-I OS=Homo sapiens GN=APOA1 PE=1 SV=1 

ITIH4_HUMAN Inter-alpha-trypsin inhibitor heavy chain H4 OS=Homo sapiens 

GN=ITIH4 PE=1 SV=4 

ITIH2_HUMAN Inter-alpha-trypsin inhibitor heavy chain H2 OS=Homo sapiens 

GN=ITIH2 PE=1 SV=2 

TSP1_HUMAN Thrombospondin-1 OS=Homo sapiens GN=THBS1 PE=1 SV=2 

GELS_HUMAN Gelsolin OS=Homo sapiens GN=GSN PE=1 SV=1 

TRFE_HUMAN Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 

ITA2B_HUMAN Integrin alpha-IIb OS=Homo sapiens GN=ITGA2B PE=1 SV=3 
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CFAB_HUMAN Complement factor B OS=Homo sapiens GN=CFB PE=1 SV=2 

ACTB_HUMAN Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 

AACT_HUMAN Alpha-1-antichymotrypsin OS=Homo sapiens GN=SERPINA3 

PE=1 SV=2 

K2C1_HUMAN Keratin, type II cytoskeletal 1 OS=Homo sapiens GN=KRT1 

PE=1 SV=6 

FIBG_HUMAN Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 

SV=3 

K22E_HUMAN Keratin, type II cytoskeletal 2 epidermal OS=Homo sapiens 

GN=KRT2 PE=1 SV=2 

FA5_HUMAN Coagulation factor V OS=Homo sapiens GN=F5 PE=1 SV=4 

HPT_HUMAN Haptoglobin OS=Homo sapiens GN=HP PE=1 SV=1 

ITIH1_HUMAN Inter-alpha-trypsin inhibitor heavy chain H1 OS=Homo sapiens 

GN=ITIH1 PE=1 SV=3 

ANT3_HUMAN Antithrombin-III OS=Homo sapiens GN=SERPINC1 PE=1 

SV=1 

CFAH_HUMAN Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4 

CO5_HUMAN Complement C5 OS=Homo sapiens GN=C5 PE=1 SV=4 

K1C10_HUMAN Keratin, type I cytoskeletal 10 OS=Homo sapiens GN=KRT10 

PE=1 SV=6 

FINC_HUMAN Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=4 

APOA4_HUMAN Apolipoprotein A-IV OS=Homo sapiens GN=APOA4 PE=1 

SV=3 

MMRN1_HUMAN Multimerin-1 OS=Homo sapiens GN=MMRN1 PE=1 SV=3 

TPM4_HUMAN Tropomyosin alpha-4 chain OS=Homo sapiens GN=TPM4 PE=1 

SV=3 

ACTN1_HUMAN Alpha-actinin-1 OS=Homo sapiens GN=ACTN1 PE=1 SV=2 

HPTR_HUMAN Haptoglobin-related protein OS=Homo sapiens GN=HPR PE=2 

SV=2 

A1BG_HUMAN Alpha-1B-glycoprotein OS=Homo sapiens GN=A1BG PE=1 

SV=4 

TBB1_HUMAN Tubulin beta-1 chain OS=Homo sapiens GN=TUBB1 PE=1 

SV=1 

VINC_HUMAN Vinculin OS=Homo sapiens GN=VCL PE=1 SV=4 
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ACTC_HUMAN Actin, alpha cardiac muscle 1 OS=Homo sapiens GN=ACTC1 

PE=1 SV=1 

IGHG1_HUMAN Ig gamma-1 chain C region OS=Homo sapiens GN=IGHG1 

PE=1 SV=1 

CO9_HUMAN Complement component C9 OS=Homo sapiens GN=C9 PE=1 

SV=2 

APOE_HUMAN Apolipoprotein E OS=Homo sapiens GN=APOE PE=1 SV=1 

K1C9_HUMAN Keratin, type I cytoskeletal 9 OS=Homo sapiens GN=KRT9 

PE=1 SV=3 

CO6_HUMAN Complement component C6 OS=Homo sapiens GN=C6 PE=1 

SV=3 

IGHA1_HUMAN Ig alpha-1 chain C region OS=Homo sapiens GN=IGHA1 PE=1 

SV=2 

IGHM_HUMAN Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 

SV=3 

ANGT_HUMAN Angiotensinogen OS=Homo sapiens GN=AGT PE=1 SV=1 

IGHG3_HUMAN Ig gamma-3 chain C region OS=Homo sapiens GN=IGHG3 

PE=1 SV=2 

HEMO_HUMAN Hemopexin OS=Homo sapiens GN=HPX PE=1 SV=2 

IGHA2_HUMAN Ig alpha-2 chain C region OS=Homo sapiens GN=IGHA2 PE=1 

SV=3 

TTHY_HUMAN Transthyretin OS=Homo sapiens GN=TTR PE=1 SV=1 

HEP2_HUMAN Heparin cofactor 2 OS=Homo sapiens GN=SERPIND1 PE=1 

SV=3 

CBG_HUMAN Corticosteroid-binding globulin OS=Homo sapiens 

GN=SERPINA6 PE=1 SV=1 

TBA4A_HUMAN Tubulin alpha-4A chain OS=Homo sapiens GN=TUBA4A PE=1 

SV=1 

IC1_HUMAN Plasma protease C1 inhibitor OS=Homo sapiens 

GN=SERPING1 PE=1 SV=2 

HBB_HUMAN Hemoglobin subunit beta OS=Homo sapiens GN=HBB PE=1 

SV=2 

CLUS_HUMAN Clusterin OS=Homo sapiens GN=CLU PE=1 SV=1 

HRG_HUMAN Histidine-rich glycoprotein OS=Homo sapiens GN=HRG PE=1 

SV=1 

VTDB_HUMAN Vitamin D-binding protein OS=Homo sapiens GN=GC PE=1 

SV=1 
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THBG_HUMAN Thyroxine-binding globulin OS=Homo sapiens GN=SERPINA7 

PE=1 SV=2 

C1S_HUMAN Complement C1s subcomponent OS=Homo sapiens GN=C1S 

PE=1 SV=1 

CO8B_HUMAN Complement component C8 beta chain OS=Homo sapiens 

GN=C8B PE=1 SV=3 

STOM_HUMAN Erythrocyte band 7 integral membrane protein OS=Homo 

sapiens GN=STOM PE=1 SV=3 

ATPB_HUMAN ATP synthase subunit beta, mitochondrial OS=Homo sapiens 

GN=ATP5B PE=1 SV=3 

GRP78_HUMAN 78 kDa glucose-regulated protein OS=Homo sapiens 

GN=HSPA5 PE=1 SV=2 

IGHG4_HUMAN Ig gamma-4 chain C region OS=Homo sapiens GN=IGHG4 

PE=1 SV=1 

IGHG2_HUMAN Ig gamma-2 chain C region OS=Homo sapiens GN=IGHG2 

PE=1 SV=2 

K2C5_HUMAN Keratin, type II cytoskeletal 5 OS=Homo sapiens GN=KRT5 

PE=1 SV=3 

SAMP_HUMAN Serum amyloid P-component OS=Homo sapiens GN=APCS 

PE=1 SV=2 

1433Z_HUMAN 14-3-3 protein zeta/delta OS=Homo sapiens GN=YWHAZ PE=1 

SV=1 

APOA2_HUMAN Apolipoprotein A-II OS=Homo sapiens GN=APOA2 PE=1 

SV=1 

ITB3_HUMAN Integrin beta-3 OS=Homo sapiens GN=ITGB3 PE=1 SV=2 

TBA1A_HUMAN Tubulin alpha-1A chain OS=Homo sapiens GN=TUBA1A PE=1 

SV=1 

KNG1_HUMAN Kininogen-1 OS=Homo sapiens GN=KNG1 PE=1 SV=2 

PLMN_HUMAN Plasminogen OS=Homo sapiens GN=PLG PE=1 SV=2 

GP1BA_HUMAN Platelet glycoprotein Ib alpha chain OS=Homo sapiens 

GN=GP1BA PE=1 SV=2 

APOL1_HUMAN Apolipoprotein L1 OS=Homo sapiens GN=APOL1 PE=1 SV=5 

PROS_HUMAN Vitamin K-dependent protein S OS=Homo sapiens GN=PROS1 

PE=1 SV=1 

A2AP_HUMAN Alpha-2-antiplasmin OS=Homo sapiens GN=SERPINF2 PE=1 

SV=3 

IGLL5_HUMAN Immunoglobulin lambda-like polypeptide 5 OS=Homo sapiens 

GN=IGLL5 PE=2 SV=2 
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LAC7_HUMAN Ig lambda-7 chain C region OS=Homo sapiens GN=IGLC7 

PE=4 SV=2 

VTNC_HUMAN Vitronectin OS=Homo sapiens GN=VTN PE=1 SV=1 

MYL6_HUMAN Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 

SV=2 

ML12A_HUMAN Myosin regulatory light chain 12A OS=Homo sapiens 

GN=MYL12A PE=1 SV=2 

RET4_HUMAN Retinol-binding protein 4 OS=Homo sapiens GN=RBP4 PE=1 

SV=3 

SDPR_HUMAN Serum deprivation-response protein OS=Homo sapiens 

GN=SDPR PE=1 SV=3 

CO7_HUMAN Complement component C7 OS=Homo sapiens GN=C7 PE=1 

SV=2 

AT2A3_HUMAN Sarcoplasmic/endoplasmic reticulum calcium ATPase 3 

OS=Homo sapiens GN=ATP2A3 PE=1 SV=2 

IDHP_HUMAN Isocitrate dehydrogenase [NADP], mitochondrial OS=Homo 

sapiens GN=IDH2 PE=1 SV=2 

A2GL_HUMAN Leucine-rich alpha-2-glycoprotein OS=Homo sapiens 

GN=LRG1 PE=1 SV=2 

C1R_HUMAN Complement C1r subcomponent OS=Homo sapiens GN=C1R 

PE=1 SV=2 

F13A_HUMAN Coagulation factor XIII A chain OS=Homo sapiens GN=F13A1 

PE=1 SV=4 

IGKC_HUMAN Ig kappa chain C region OS=Homo sapiens GN=IGKC PE=1 

SV=1 

TBB5_HUMAN Tubulin beta chain OS=Homo sapiens GN=TUBB PE=1 SV=2 

LAC2_HUMAN Ig lambda-2 chain C regions OS=Homo sapiens GN=IGLC2 

PE=1 SV=1 

PON1_HUMAN Serum paraoxonase/arylesterase 1 OS=Homo sapiens 

GN=PON1 PE=1 SV=3 

HBA_HUMAN Hemoglobin subunit alpha OS=Homo sapiens GN=HBA1 PE=1 

SV=2 

TBA8_HUMAN Tubulin alpha-8 chain OS=Homo sapiens GN=TUBA8 PE=1 

SV=1 

MYL9_HUMAN Myosin regulatory light polypeptide 9 OS=Homo sapiens 

GN=MYL9 PE=1 SV=4 

THRB_HUMAN Prothrombin OS=Homo sapiens GN=F2 PE=1 SV=2 

RAB1B_HUMAN Ras-related protein Rab-1B OS=Homo sapiens GN=RAB1B 

PE=1 SV=1 

RAB1A_HUMAN Ras-related protein Rab-1A OS=Homo sapiens GN=RAB1A 

PE=1 SV=3 
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PEDF_HUMAN Pigment epithelium-derived factor OS=Homo sapiens 

GN=SERPINF1 PE=1 SV=4 

G3P_HUMAN Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens 

GN=GAPDH PE=1 SV=3 

LTBP1_HUMAN Latent-transforming growth factor beta-binding protein 1 

OS=Homo sapiens GN=LTBP1 PE=1 SV=4 

CALX_HUMAN Calnexin OS=Homo sapiens GN=CANX PE=1 SV=2 

VDAC3_HUMAN Voltage-dependent anion-selective channel protein 3 OS=Homo 

sapiens GN=VDAC3 PE=1 SV=1 

KPYM_HUMAN Pyruvate kinase PKM OS=Homo sapiens GN=PKM PE=1 SV=4 

ALDOA_HUMAN Fructose-bisphosphate aldolase A OS=Homo sapiens 

GN=ALDOA PE=1 SV=2 

HSP72_HUMAN Heat shock-related 70 kDa protein 2 OS=Homo sapiens 

GN=HSPA2 PE=1 SV=1 

C4BPA_HUMAN C4b-binding protein alpha chain OS=Homo sapiens GN=C4BPA 

PE=1 SV=2 

CALD1_HUMAN Caldesmon OS=Homo sapiens GN=CALD1 PE=1 SV=3 

CO8A_HUMAN Complement component C8 alpha chain OS=Homo sapiens 

GN=C8A PE=1 SV=2 

AFAM_HUMAN Afamin OS=Homo sapiens GN=AFM PE=1 SV=1 

LUM_HUMAN Lumican OS=Homo sapiens GN=LUM PE=1 SV=2 

ITIH3_HUMAN Inter-alpha-trypsin inhibitor heavy chain H3 OS=Homo sapiens 

GN=ITIH3 PE=1 SV=2 

1B07_HUMAN HLA class I histocompatibility antigen, B-7 alpha chain 

OS=Homo sapiens GN=HLA-B PE=1 SV=3 

1A68_HUMAN HLA class I histocompatibility antigen, A-68 alpha chain 

OS=Homo sapiens GN=HLA-A PE=1 SV=4 

PHLD_HUMAN Phosphatidylinositol-glycan-specific phospholipase D 

OS=Homo sapiens GN=GPLD1 PE=1 SV=3 

K1C13_HUMAN Keratin, type I cytoskeletal 13 OS=Homo sapiens GN=KRT13 

PE=1 SV=4 

KV312_HUMAN Ig kappa chain V-III region HAH OS=Homo sapiens PE=2 

SV=1 

FETUA_HUMAN Alpha-2-HS-glycoprotein OS=Homo sapiens GN=AHSG PE=1 

SV=1 

1433G_HUMAN 14-3-3 protein gamma OS=Homo sapiens GN=YWHAG PE=1 

SV=2 

1433E_HUMAN 14-3-3 protein epsilon OS=Homo sapiens GN=YWHAE PE=1 

SV=1 
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1433F_HUMAN 14-3-3 protein eta OS=Homo sapiens GN=YWHAH PE=1 SV=4 

C1QB_HUMAN Complement C1q subcomponent subunit B OS=Homo sapiens 

GN=C1QB PE=1 SV=3 

CXCL7_HUMAN Platelet basic protein OS=Homo sapiens GN=PPBP PE=1 SV=3 

C1QC_HUMAN Complement C1q subcomponent subunit C OS=Homo sapiens 

GN=C1QC PE=1 SV=3 

AMBP_HUMAN Protein AMBP OS=Homo sapiens GN=AMBP PE=1 SV=1 

RAB10_HUMAN Ras-related protein Rab-10 OS=Homo sapiens GN=RAB10 

PE=1 SV=1 

CH60_HUMAN 60 kDa heat shock protein, mitochondrial OS=Homo sapiens 

GN=HSPD1 PE=1 SV=2 

KAIN_HUMAN Kallistatin OS=Homo sapiens GN=SERPINA4 PE=1 SV=3 

GTR3_HUMAN Solute carrier family 2, facilitated glucose transporter member 3 

OS=Homo sapiens GN=SLC2A3 PE=2 SV=1 

PLEK_HUMAN Pleckstrin OS=Homo sapiens GN=PLEK PE=1 SV=3 

SAA4_HUMAN Serum amyloid A-4 protein OS=Homo sapiens GN=SAA4 PE=1 

SV=2 

HS71L_HUMAN Heat shock 70 kDa protein 1-like OS=Homo sapiens 

GN=HSPA1L PE=1 SV=2 

ZA2G_HUMAN Zinc-alpha-2-glycoprotein OS=Homo sapiens GN=AZGP1 

PE=1 SV=2 

HV306_HUMAN Ig heavy chain V-III region BUT OS=Homo sapiens PE=1 SV=1 

ATPA_HUMAN ATP synthase subunit alpha, mitochondrial OS=Homo sapiens 

GN=ATP5A1 PE=1 SV=1 

APOC2_HUMAN Apolipoprotein C-II OS=Homo sapiens GN=APOC2 PE=1 

SV=1 

KLKB1_HUMAN Plasma kallikrein OS=Homo sapiens GN=KLKB1 PE=1 SV=1 

FA10_HUMAN Coagulation factor X OS=Homo sapiens GN=F10 PE=1 SV=2 

CPN2_HUMAN Carboxypeptidase N subunit 2 OS=Homo sapiens GN=CPN2 

PE=1 SV=3 

HXK1_HUMAN Hexokinase-1 OS=Homo sapiens GN=HK1 PE=1 SV=3 

GNAI2_HUMAN Guanine nucleotide-binding protein G(i) subunit alpha-2 

OS=Homo sapiens GN=GNAI2 PE=1 SV=3 



97 

 

PECA1_HUMAN Platelet endothelial cell adhesion molecule OS=Homo sapiens 

GN=PECAM1 PE=1 SV=1 

ITB1_HUMAN Integrin beta-1 OS=Homo sapiens GN=ITGB1 PE=1 SV=2 

BIN2_HUMAN Bridging integrator 2 OS=Homo sapiens GN=BIN2 PE=1 SV=3 

URP2_HUMAN Fermitin family homolog 3 OS=Homo sapiens GN=FERMT3 

PE=1 SV=1 

FHR1_HUMAN Complement factor H-related protein 1 OS=Homo sapiens 

GN=CFHR1 PE=1 SV=2 

K2C4_HUMAN Keratin, type II cytoskeletal 4 OS=Homo sapiens GN=KRT4 

PE=1 SV=4 

KV301_HUMAN Ig kappa chain V-III region B6 OS=Homo sapiens PE=1 SV=1 

KV118_HUMAN Ig kappa chain V-I region WEA OS=Homo sapiens PE=1 SV=1 

KV105_HUMAN Ig kappa chain V-I region DEE OS=Homo sapiens PE=1 SV=1 

KV121_HUMAN Ig kappa chain V-I region Ni OS=Homo sapiens PE=1 SV=1 

KV106_HUMAN Ig kappa chain V-I region EU OS=Homo sapiens PE=1 SV=1 

LV302_HUMAN Ig lambda chain V-III region LOI OS=Homo sapiens PE=1 

SV=1 

APOH_HUMAN Beta-2-glycoprotein 1 OS=Homo sapiens GN=APOH PE=1 

SV=3 

TETN_HUMAN Tetranectin OS=Homo sapiens GN=CLEC3B PE=1 SV=3 

CD36_HUMAN Platelet glycoprotein 4 OS=Homo sapiens GN=CD36 PE=1 

SV=2 

FBLN1_HUMAN Fibulin-1 OS=Homo sapiens GN=FBLN1 PE=1 SV=4 

FCN3_HUMAN Ficolin-3 OS=Homo sapiens GN=FCN3 PE=1 SV=2 

HV320_HUMAN Ig heavy chain V-III region GAL OS=Homo sapiens PE=1 

SV=1 

C1QA_HUMAN Complement C1q subcomponent subunit A OS=Homo sapiens 

GN=C1QA PE=1 SV=2 

LV106_HUMAN Ig lambda chain V-I region WAH OS=Homo sapiens PE=1 

SV=1 

PROF1_HUMAN Profilin-1 OS=Homo sapiens GN=PFN1 PE=1 SV=2 

RAP1B_HUMAN Ras-related protein Rap-1b OS=Homo sapiens GN=RAP1B 

PE=1 SV=1 
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RTN4_HUMAN Reticulon-4 OS=Homo sapiens GN=RTN4 PE=1 SV=2 

COF1_HUMAN Cofilin-1 OS=Homo sapiens GN=CFL1 PE=1 SV=3 

MDHM_HUMAN Malate dehydrogenase, mitochondrial OS=Homo sapiens 

GN=MDH2 PE=1 SV=3 

ADT2_HUMAN ADP/ATP translocase 2 OS=Homo sapiens GN=SLC25A5 

PE=1 SV=7 

AT5F1_HUMAN ATP synthase F(0) complex subunit B1, mitochondrial 

OS=Homo sapiens GN=ATP5F1 PE=1 SV=2 

KV309_HUMAN Ig kappa chain V-III region VG (Fragment) OS=Homo sapiens 

PE=1 SV=1 

MBL2_HUMAN Mannose-binding protein C OS=Homo sapiens GN=MBL2 

PE=1 SV=2 

RB27B_HUMAN Ras-related protein Rab-27B OS=Homo sapiens GN=RAB27B 

PE=1 SV=4 

VDAC2_HUMAN Voltage-dependent anion-selective channel protein 2 OS=Homo 

sapiens GN=VDAC2 PE=1 SV=2 

CKLF5_HUMAN CKLF-like MARVEL transmembrane domain-containing 

protein 5 OS=Homo sapiens GN=CMTM5 PE=1 SV=2 

LYSC_HUMAN Lysozyme C OS=Homo sapiens GN=LYZ PE=1 SV=1 

THAS_HUMAN Thromboxane-A synthase OS=Homo sapiens GN=TBXAS1 

PE=1 SV=3 

CISY_HUMAN Citrate synthase, mitochondrial OS=Homo sapiens GN=CS 

PE=1 SV=2 

TAGL2_HUMAN Transgelin-2 OS=Homo sapiens GN=TAGLN2 PE=1 SV=3 

COR1C_HUMAN Coronin-1C OS=Homo sapiens GN=CORO1C PE=1 SV=1 

CBPN_HUMAN Carboxypeptidase N catalytic chain OS=Homo sapiens 

GN=CPN1 PE=1 SV=1 

ZYX_HUMAN Zyxin OS=Homo sapiens GN=ZYX PE=1 SV=1 

CAP1_HUMAN Adenylyl cyclase-associated protein 1 OS=Homo sapiens 

GN=CAP1 PE=1 SV=5 

GBG5_HUMAN Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit 

gamma-5 OS=Homo sapiens GN=GNG5 PE=1 SV=3 

PGRP2_HUMAN N-acetylmuramoyl-L-alanine amidase OS=Homo sapiens 

GN=PGLYRP2 PE=1 SV=1 

INF2_HUMAN Inverted formin-2 OS=Homo sapiens GN=INF2 PE=1 SV=2 
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SEPP1_HUMAN Selenoprotein P OS=Homo sapiens GN=SEPP1 PE=1 SV=3 

LYAM3_HUMAN P-selectin OS=Homo sapiens GN=SELP PE=1 SV=3 

LCAT_HUMAN Phosphatidylcholine-sterol acyltransferase OS=Homo sapiens 

GN=LCAT PE=1 SV=1 

COR1A_HUMAN Coronin-1A OS=Homo sapiens GN=CORO1A PE=1 SV=4 

ALS_HUMAN Insulin-like growth factor-binding protein complex acid labile 

subunit OS=Homo sapiens GN=IGFALS PE=1 SV=1 

MPCP_HUMAN Phosphate carrier protein, mitochondrial OS=Homo sapiens 

GN=SLC25A3 PE=1 SV=2 

CO8G_HUMAN Complement component C8 gamma chain OS=Homo sapiens 

GN=C8G PE=1 SV=3 

CSRP1_HUMAN Cysteine and glycine-rich protein 1 OS=Homo sapiens 

GN=CSRP1 PE=1 SV=3 

CAZA1_HUMAN F-actin-capping protein subunit alpha-1 OS=Homo sapiens 

GN=CAPZA1 PE=1 SV=3 
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Appendix C: List of proteins identified in PCCF isolated using tandem 

immunoaffinity method from plasma of patients with Gleason score 6. 

Accession Description #Peptides 

P01834|IGKC_HUMAN 
Ig kappa chain C region OS=Homo 

sapiens GN=IGKC PE=1 SV=1 
7 

P01834|IGKC_HUMAN 
Ig kappa chain C region OS=Homo 

sapiens GN=IGKC PE=1 SV=1 
8 

P01834|IGKC_HUMAN 
Ig kappa chain C region OS=Homo 

sapiens GN=IGKC PE=1 SV=1 
12 

P02768|ALBU_HUMAN 
Serum albumin OS=Homo sapiens 

GN=ALB PE=1 SV=2 
57 

P02768|ALBU_HUMAN 
Serum albumin OS=Homo sapiens 

GN=ALB PE=1 SV=2 
60 

P02768|ALBU_HUMAN 
Serum albumin OS=Homo sapiens 

GN=ALB PE=1 SV=2 
60 

P0CG05|LAC2_HUMAN 

Ig lambda-2 chain C regions 

OS=Homo sapiens GN=IGLC2 

PE=1 SV=1 

5 

P0CG06|LAC3_HUMAN 

Ig lambda-3 chain C regions 

OS=Homo sapiens GN=IGLC3 

PE=1 SV=1 

5 

P01857|IGHG1_HUMAN 

Ig gamma-1 chain C region 

OS=Homo sapiens GN=IGHG1 

PE=1 SV=1 

24 

P01857|IGHG1_HUMAN 

Ig gamma-1 chain C region 

OS=Homo sapiens GN=IGHG1 

PE=1 SV=1 

29 

P13645|K1C10_HUMAN 

Keratin, type I cytoskeletal 10 

OS=Homo sapiens GN=KRT10 

PE=1 SV=6 

33 

P13645|K1C10_HUMAN 

Keratin, type I cytoskeletal 10 

OS=Homo sapiens GN=KRT10 

PE=1 SV=6 

31 

P01857|IGHG1_HUMAN 

Ig gamma-1 chain C region 

OS=Homo sapiens GN=IGHG1 

PE=1 SV=1 

18 

P01859|IGHG2_HUMAN 

Ig gamma-2 chain C region 

OS=Homo sapiens GN=IGHG2 

PE=1 SV=2 

19 

P35908|K22E_HUMAN 

Keratin, type II cytoskeletal 2 

epidermal OS=Homo sapiens 

GN=KRT2 PE=1 SV=2 

28 

P01859|IGHG2_HUMAN 

Ig gamma-2 chain C region 

OS=Homo sapiens GN=IGHG2 

PE=1 SV=2 

18 
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P01861|IGHG4_HUMAN 

Ig gamma-4 chain C region 

OS=Homo sapiens GN=IGHG4 

PE=1 SV=1 

17 

P01860|IGHG3_HUMAN 

Ig gamma-3 chain C region 

OS=Homo sapiens GN=IGHG3 

PE=1 SV=2 

17 

P04264|K2C1_HUMAN 

Keratin, type II cytoskeletal 1 

OS=Homo sapiens GN=KRT1 PE=1 

SV=6 

32 

P02763|A1AG1_HUMAN 

Alpha-1-acid glycoprotein 1 

OS=Homo sapiens GN=ORM1 

PE=1 SV=1 

7 

P01861|IGHG4_HUMAN 

Ig gamma-4 chain C region 

OS=Homo sapiens GN=IGHG4 

PE=1 SV=1 

14 

P13645|K1C10_HUMAN 

Keratin, type I cytoskeletal 10 

OS=Homo sapiens GN=KRT10 

PE=1 SV=6 

22 

P35527|K1C9_HUMAN 

Keratin, type I cytoskeletal 9 

OS=Homo sapiens GN=KRT9 PE=1 

SV=3 

24 

P04264|K2C1_HUMAN 

Keratin, type II cytoskeletal 1 

OS=Homo sapiens GN=KRT1 PE=1 

SV=6 

27 

P04206|KV307_HUMAN 
Ig kappa chain V-III region GOL 

OS=Homo sapiens PE=1 SV=1 
3 

P02452|CO1A1_HUMAN 
Collagen alpha-1(I) chain OS=Homo 

sapiens GN=COL1A1 PE=1 SV=5 
133 

P80748|LV302_HUMAN 
Ig lambda chain V-III region LOI 

OS=Homo sapiens PE=1 SV=1 
3 

B9A064|IGLL5_HUMAN 

Immunoglobulin lambda-like 

polypeptide 5 OS=Homo sapiens 

GN=IGLL5 PE=2 SV=2 

6 

P02763|A1AG1_HUMAN 

Alpha-1-acid glycoprotein 1 

OS=Homo sapiens GN=ORM1 

PE=1 SV=1 

6 

P04264|K2C1_HUMAN 

Keratin, type II cytoskeletal 1 

OS=Homo sapiens GN=KRT1 PE=1 

SV=6 

20 

P35908|K22E_HUMAN 

Keratin, type II cytoskeletal 2 

epidermal OS=Homo sapiens 

GN=KRT2 PE=1 SV=2 

20 

P81605|DCD_HUMAN 
Dermcidin OS=Homo sapiens 

GN=DCD PE=1 SV=2 
2 
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P01859|IGHG2_HUMAN 

Ig gamma-2 chain C region 

OS=Homo sapiens GN=IGHG2 

PE=1 SV=2 

16 

P01860|IGHG3_HUMAN 

Ig gamma-3 chain C region 

OS=Homo sapiens GN=IGHG3 

PE=1 SV=2 

16 

P01860|IGHG3_HUMAN 

Ig gamma-3 chain C region 

OS=Homo sapiens GN=IGHG3 

PE=1 SV=2 

18 

P02452|CO1A1_HUMAN 
Collagen alpha-1(I) chain OS=Homo 

sapiens GN=COL1A1 PE=1 SV=5 
92 

P0CG05|LAC2_HUMAN 

Ig lambda-2 chain C regions 

OS=Homo sapiens GN=IGLC2 

PE=1 SV=1 

3 

P0CG06|LAC3_HUMAN 

Ig lambda-3 chain C regions 

OS=Homo sapiens GN=IGLC3 

PE=1 SV=1 

3 

P13647|K2C5_HUMAN 

Keratin, type II cytoskeletal 5 

OS=Homo sapiens GN=KRT5 PE=1 

SV=3 

19 

P04206|KV307_HUMAN 
Ig kappa chain V-III region GOL 

OS=Homo sapiens PE=1 SV=1 
2 

P02452|CO1A1_HUMAN 
Collagen alpha-1(I) chain OS=Homo 

sapiens GN=COL1A1 PE=1 SV=5 
82 

P08123|CO1A2_HUMAN 
Collagen alpha-2(I) chain OS=Homo 

sapiens GN=COL1A2 PE=1 SV=7 
57 

P02452|CO1A1_HUMAN 
Collagen alpha-1(I) chain OS=Homo 

sapiens GN=COL1A1 PE=1 SV=5 
64 

P08123|CO1A2_HUMAN 
Collagen alpha-2(I) chain OS=Homo 

sapiens GN=COL1A2 PE=1 SV=7 
80 

P35527|K1C9_HUMAN 

Keratin, type I cytoskeletal 9 

OS=Homo sapiens GN=KRT9 PE=1 

SV=3 

15 

P08123|CO1A2_HUMAN 
Collagen alpha-2(I) chain OS=Homo 

sapiens GN=COL1A2 PE=1 SV=7 
66 

P01598|KV106_HUMAN 
Ig kappa chain V-I region EU 

OS=Homo sapiens PE=1 SV=1 
2 

B9A064|IGLL5_HUMAN 

Immunoglobulin lambda-like 

polypeptide 5 OS=Homo sapiens 

GN=IGLL5 PE=2 SV=2 

5 

P02763|A1AG1_HUMAN 

Alpha-1-acid glycoprotein 1 

OS=Homo sapiens GN=ORM1 

PE=1 SV=1 

5 
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P02533|K1C14_HUMAN 

Keratin, type I cytoskeletal 14 

OS=Homo sapiens GN=KRT14 

PE=1 SV=4 

12 

P07478|TRY2_HUMAN 
Trypsin-2 OS=Homo sapiens 

GN=PRSS2 PE=1 SV=1 
20 

P02647|APOA1_HUMAN 
Apolipoprotein A-I OS=Homo 

sapiens GN=APOA1 PE=1 SV=1 
5 

P02461|CO3A1_HUMAN 

Collagen alpha-1(III) chain 

OS=Homo sapiens GN=COL3A1 

PE=1 SV=4 

37 

P08123|CO1A2_HUMAN 
Collagen alpha-2(I) chain OS=Homo 

sapiens GN=COL1A2 PE=1 SV=7 
34 

P04433|KV309_HUMAN 

Ig kappa chain V-III region VG 

(Fragment) OS=Homo sapiens PE=1 

SV=1 

2 

P04433|KV309_HUMAN 

Ig kappa chain V-III region VG 

(Fragment) OS=Homo sapiens PE=1 

SV=1 

2 

P19652|A1AG2_HUMAN 

Alpha-1-acid glycoprotein 2 

OS=Homo sapiens GN=ORM2 

PE=1 SV=2 

4 

P35030|TRY3_HUMAN 
Trypsin-3 OS=Homo sapiens 

GN=PRSS3 PE=1 SV=2 
8 

P02458|CO2A1_HUMAN 

Collagen alpha-1(II) chain 

OS=Homo sapiens GN=COL2A1 

PE=1 SV=3 

19 

P02461|CO3A1_HUMAN 

Collagen alpha-1(III) chain 

OS=Homo sapiens GN=COL3A1 

PE=1 SV=4 

44 

P81605|DCD_HUMAN 
Dermcidin OS=Homo sapiens 

GN=DCD PE=1 SV=2 
2 

B9A064|IGLL5_HUMAN 

Immunoglobulin lambda-like 

polypeptide 5 OS=Homo sapiens 

GN=IGLL5 PE=2 SV=2 

4 

P35527|K1C9_HUMAN 

Keratin, type I cytoskeletal 9 

OS=Homo sapiens GN=KRT9 PE=1 

SV=3 

10 

P13647|K2C5_HUMAN 

Keratin, type II cytoskeletal 5 

OS=Homo sapiens GN=KRT5 PE=1 

SV=3 

12 

P35030|TRY3_HUMAN 
Trypsin-3 OS=Homo sapiens 

GN=PRSS3 PE=1 SV=2 
12 

Q8NHM4|TRY6_HUMAN 
Putative trypsin-6 OS=Homo 

sapiens GN=TRY6 PE=5 SV=1 
7 
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P01765|HV304_HUMAN 
Ig heavy chain V-III region TIL 

OS=Homo sapiens PE=1 SV=1 
1 

P01596|KV104_HUMAN 
Ig kappa chain V-I region CAR 

OS=Homo sapiens PE=1 SV=1 
1 

P01598|KV106_HUMAN 
Ig kappa chain V-I region EU 

OS=Homo sapiens PE=1 SV=1 
1 

P02787|TRFE_HUMAN 
Serotransferrin OS=Homo sapiens 

GN=TF PE=1 SV=3 
9 

P07477|TRY1_HUMAN 
Trypsin-1 OS=Homo sapiens 

GN=PRSS1 PE=1 SV=1 
12 

P02747|C1QC_HUMAN 

Complement C1q subcomponent 

subunit C OS=Homo sapiens 

GN=C1QC PE=1 SV=3 

3 

P01766|HV305_HUMAN 
Ig heavy chain V-III region BRO 

OS=Homo sapiens PE=1 SV=1 
5 

P01766|HV305_HUMAN 
Ig heavy chain V-III region BRO 

OS=Homo sapiens PE=1 SV=1 
1 

P01774|HV313_HUMAN 
Ig heavy chain V-III region POM 

OS=Homo sapiens PE=1 SV=1 
1 

P01774|HV313_HUMAN 
Ig heavy chain V-III region POM 

OS=Homo sapiens PE=1 SV=1 
1 

P01777|HV316_HUMAN 
Ig heavy chain V-III region TEI 

OS=Homo sapiens PE=1 SV=1 
3 

P01762|HV301_HUMAN 
Ig heavy chain V-III region TRO 

OS=Homo sapiens PE=1 SV=1 
1 

P01762|HV301_HUMAN 
Ig heavy chain V-III region TRO 

OS=Homo sapiens PE=1 SV=1 
1 

P01779|HV318_HUMAN 
Ig heavy chain V-III region TUR 

OS=Homo sapiens PE=1 SV=1 
1 

P01764|HV303_HUMAN 
Ig heavy chain V-III region VH26 

OS=Homo sapiens PE=1 SV=1 
1 

P01776|HV315_HUMAN 
Ig heavy chain V-III region WAS 

OS=Homo sapiens PE=1 SV=1 
1 

P04433|KV309_HUMAN 

Ig kappa chain V-III region VG 

(Fragment) OS=Homo sapiens PE=1 

SV=1 

1 

P07477|TRY1_HUMAN 
Trypsin-1 OS=Homo sapiens 

GN=PRSS1 PE=1 SV=1 
6 

P02461|CO3A1_HUMAN 

Collagen alpha-1(III) chain 

OS=Homo sapiens GN=COL3A1 

PE=1 SV=4 

30 
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P02746|C1QB_HUMAN 

Complement C1q subcomponent 

subunit B OS=Homo sapiens 

GN=C1QB PE=1 SV=3 

4 

P00738|HPT_HUMAN 
Haptoglobin OS=Homo sapiens 

GN=HP PE=1 SV=1 
6 

P01593|KV101_HUMAN 
Ig kappa chain V-I region AG 

OS=Homo sapiens PE=1 SV=1 
1 

P07478|TRY2_HUMAN 
Trypsin-2 OS=Homo sapiens 

GN=PRSS2 PE=1 SV=1 
10 

P01876|IGHA1_HUMAN 
Ig alpha-1 chain C region OS=Homo 

sapiens GN=IGHA1 PE=1 SV=2 
4 

P01876|IGHA1_HUMAN 
Ig alpha-1 chain C region OS=Homo 

sapiens GN=IGHA1 PE=1 SV=2 
4 

P01876|IGHA1_HUMAN 
Ig alpha-1 chain C region OS=Homo 

sapiens GN=IGHA1 PE=1 SV=2 
4 

P01871|IGHM_HUMAN 
Ig mu chain C region OS=Homo 

sapiens GN=IGHM PE=1 SV=3 
6 

P35908|K22E_HUMAN 

Keratin, type II cytoskeletal 2 

epidermal OS=Homo sapiens 

GN=KRT2 PE=1 SV=2 

8 

P19652|A1AG2_HUMAN 

Alpha-1-acid glycoprotein 2 

OS=Homo sapiens GN=ORM2 

PE=1 SV=2 

3 

P02647|APOA1_HUMAN 
Apolipoprotein A-I OS=Homo 

sapiens GN=APOA1 PE=1 SV=1 
3 

P02458|CO2A1_HUMAN 

Collagen alpha-1(II) chain 

OS=Homo sapiens GN=COL2A1 

PE=1 SV=3 

23 

P02461|CO3A1_HUMAN 

Collagen alpha-1(III) chain 

OS=Homo sapiens GN=COL3A1 

PE=1 SV=4 

18 

P02462|CO4A1_HUMAN 

Collagen alpha-1(IV) chain 

OS=Homo sapiens GN=COL4A1 

PE=1 SV=3 

9 

P02747|C1QC_HUMAN 

Complement C1q subcomponent 

subunit C OS=Homo sapiens 

GN=C1QC PE=1 SV=3 

2 

P01617|KV204_HUMAN 
Ig kappa chain V-II region TEW 

OS=Homo sapiens PE=1 SV=1 
1 

P02768|ALBU_HUMAN 
Serum albumin OS=Homo sapiens 

GN=ALB PE=1 SV=2 
6 

P01614|KV201_HUMAN 
Ig kappa chain V-II region Cum 

OS=Homo sapiens PE=1 SV=1 
1 
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P01614|KV201_HUMAN 
Ig kappa chain V-II region Cum 

OS=Homo sapiens PE=1 SV=1 
1 

P06309|KV205_HUMAN 

Ig kappa chain V-II region GM607 

(Fragment) OS=Homo sapiens PE=4 

SV=1 

1 

P13645|K1C10_HUMAN 

Keratin, type I cytoskeletal 10 

OS=Homo sapiens GN=KRT10 

PE=1 SV=6 

4 

P02458|CO2A1_HUMAN 

Collagen alpha-1(II) chain 

OS=Homo sapiens GN=COL2A1 

PE=1 SV=3 

14 

P05997|CO5A2_HUMAN 

Collagen alpha-2(V) chain 

OS=Homo sapiens GN=COL5A2 

PE=1 SV=3 

15 

P81605|DCD_HUMAN 
Dermcidin OS=Homo sapiens 

GN=DCD PE=1 SV=2 
1 

P01742|HV101_HUMAN 
Ig heavy chain V-I region EU 

OS=Homo sapiens PE=1 SV=1 
1 

P01742|HV101_HUMAN 
Ig heavy chain V-I region EU 

OS=Homo sapiens PE=1 SV=1 
1 

P01743|HV102_HUMAN 
Ig heavy chain V-I region HG3 

OS=Homo sapiens PE=4 SV=1 
1 

P06326|HV107_HUMAN 
Ig heavy chain V-I region Mot 

OS=Homo sapiens PE=1 SV=1 
1 

P01761|HV106_HUMAN 
Ig heavy chain V-I region SIE 

OS=Homo sapiens PE=1 SV=1 
1 

P23083|HV103_HUMAN 
Ig heavy chain V-I region V35 

OS=Homo sapiens PE=1 SV=1 
1 

P23083|HV103_HUMAN 
Ig heavy chain V-I region V35 

OS=Homo sapiens PE=1 SV=1 
1 

P06310|KV206_HUMAN 
Ig kappa chain V-II region RPMI 

6410 OS=Homo sapiens PE=4 SV=1 
1 

P06310|KV206_HUMAN 
Ig kappa chain V-II region RPMI 

6410 OS=Homo sapiens PE=4 SV=1 
1 

P04259|K2C6B_HUMAN 

Keratin, type II cytoskeletal 6B 

OS=Homo sapiens GN=KRT6B 

PE=1 SV=5 

5 

A6NJS3|IV1U1_HUMAN 

Putative V-set and immunoglobulin 

domain-containing-like protein 

IGHV1OR21-1 OS=Homo sapiens 

GN=IGHV1OR21-1 PE=5 SV=1 

1 
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O60902|SHOX2_HUMAN 

Short stature homeobox protein 2 

OS=Homo sapiens GN=SHOX2 

PE=2 SV=4 

1 

P04632|CPNS1_HUMAN 
Calpain small subunit 1 OS=Homo 

sapiens GN=CAPNS1 PE=1 SV=1 
1 

Q8NFW1|COMA1_HUMAN 

Collagen alpha-1(XXII) chain 

OS=Homo sapiens GN=COL22A1 

PE=1 SV=2 

7 

P25940|CO5A3_HUMAN 

Collagen alpha-3(V) chain 

OS=Homo sapiens GN=COL5A3 

PE=1 SV=3 

7 

Q5VWW1|C1QL3_HUMAN 

Complement C1q-like protein 3 

OS=Homo sapiens GN=C1QL3 

PE=2 SV=1 

1 

Q5VWW1|C1QL3_HUMAN 

Complement C1q-like protein 3 

OS=Homo sapiens GN=C1QL3 

PE=2 SV=1 

1 

Q5VWW1|C1QL3_HUMAN 

Complement C1q-like protein 3 

OS=Homo sapiens GN=C1QL3 

PE=2 SV=1 

1 

Q7Z794|K2C1B_HUMAN 

Keratin, type II cytoskeletal 1b 

OS=Homo sapiens GN=KRT77 

PE=2 SV=3 

5 

P04259|K2C6B_HUMAN 

Keratin, type II cytoskeletal 6B 

OS=Homo sapiens GN=KRT6B 

PE=1 SV=5 

4 

P01625|KV402_HUMAN 
Ig kappa chain V-IV region Len 

OS=Homo sapiens PE=1 SV=2 
1 

P08727|K1C19_HUMAN 

Keratin, type I cytoskeletal 19 

OS=Homo sapiens GN=KRT19 

PE=1 SV=4 

4 

Q7Z3Y8|K1C27_HUMAN 

Keratin, type I cytoskeletal 27 

OS=Homo sapiens GN=KRT27 

PE=1 SV=2 

5 

P06312|KV401_HUMAN 

Ig kappa chain V-IV region 

(Fragment) OS=Homo sapiens 

GN=IGKV4-1 PE=4 SV=1 

1 

P06313|KV403_HUMAN 
Ig kappa chain V-IV region JI 

OS=Homo sapiens PE=4 SV=1 
1 

Q86Y46|K2C73_HUMAN 

Keratin, type II cytoskeletal 73 

OS=Homo sapiens GN=KRT73 

PE=1 SV=1 

4 
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Q86Y46|K2C73_HUMAN 

Keratin, type II cytoskeletal 73 

OS=Homo sapiens GN=KRT73 

PE=1 SV=1 

4 

Q7RTS7|K2C74_HUMAN 

Keratin, type II cytoskeletal 74 

OS=Homo sapiens GN=KRT74 

PE=1 SV=2 

4 

O00570|SOX1_HUMAN 

Transcription factor SOX-1 

OS=Homo sapiens GN=SOX1 PE=1 

SV=2 

1 

P35030|TRY3_HUMAN 
Trypsin-3 OS=Homo sapiens 

GN=PRSS3 PE=1 SV=2 
5 

Q9NY12|GAR1_HUMAN 

H/ACA ribonucleoprotein complex 

subunit 1 OS=Homo sapiens 

GN=GAR1 PE=1 SV=1 

1 

Q7Z794|K2C1B_HUMAN 

Keratin, type II cytoskeletal 1b 

OS=Homo sapiens GN=KRT77 

PE=2 SV=3 

2 

Q9Y2Z2|MTO1_HUMAN 

Protein MTO1 homolog, 

mitochondrial OS=Homo sapiens 

GN=MTO1 PE=1 SV=2 

1 

P35247|SFTPD_HUMAN 

Pulmonary surfactant-associated 

protein D OS=Homo sapiens 

GN=SFTPD PE=1 SV=3 

1 

Q17RW2|COOA1_HUMAN 

Collagen alpha-1(XXIV) chain 

OS=Homo sapiens GN=COL24A1 

PE=2 SV=2 

6 

P05997|CO5A2_HUMAN 

Collagen alpha-2(V) chain 

OS=Homo sapiens GN=COL5A2 

PE=1 SV=3 

12 

P53420|CO4A4_HUMAN 

Collagen alpha-4(IV) chain 

OS=Homo sapiens GN=COL4A4 

PE=1 SV=3 

5 

P02675|FIBB_HUMAN 
Fibrinogen beta chain OS=Homo 

sapiens GN=FGB PE=1 SV=2 
3 

P13647|K2C5_HUMAN 

Keratin, type II cytoskeletal 5 

OS=Homo sapiens GN=KRT5 PE=1 

SV=3 

3 

Q9UEW3|MARCO_HUMAN 

Macrophage receptor MARCO 

OS=Homo sapiens GN=MARCO 

PE=1 SV=1 

1 

P02647|APOA1_HUMAN 
Apolipoprotein A-I OS=Homo 

sapiens GN=APOA1 PE=1 SV=1 
1 
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P13942|COBA2_HUMAN 

Collagen alpha-2(XI) chain 

OS=Homo sapiens GN=COL11A2 

PE=1 SV=5 

5 

P25940|CO5A3_HUMAN 

Collagen alpha-3(V) chain 

OS=Homo sapiens GN=COL5A3 

PE=1 SV=3 

5 

Q8N136|DAW1_HUMAN 

Dynein assembly factor with WDR 

repeat domains 1 OS=Homo sapiens 

GN=DAW1 PE=1 SV=1 

1 

P15814|IGLL1_HUMAN 

Immunoglobulin lambda-like 

polypeptide 1 OS=Homo sapiens 

GN=IGLL1 PE=1 SV=1 

1 

P02787|TRFE_HUMAN 
Serotransferrin OS=Homo sapiens 

GN=TF PE=1 SV=3 
2 

P02787|TRFE_HUMAN 
Serotransferrin OS=Homo sapiens 

GN=TF PE=1 SV=3 
2 

Q99442|SEC62_HUMAN 

Translocation protein SEC62 

OS=Homo sapiens GN=SEC62 

PE=1 SV=1 

1 

B7Z1M9|C2D4D_HUMAN 

C2 calcium-dependent domain-

containing protein 4D OS=Homo 

sapiens GN=C2CD4D PE=2 SV=2 

1 

B7Z1M9|C2D4D_HUMAN 

C2 calcium-dependent domain-

containing protein 4D OS=Homo 

sapiens GN=C2CD4D PE=2 SV=2 

1 

Q6PK04|CC137_HUMAN 

Coiled-coil domain-containing 

protein 137 OS=Homo sapiens 

GN=CCDC137 PE=1 SV=1 

1 

Q6PK04|CC137_HUMAN 

Coiled-coil domain-containing 

protein 137 OS=Homo sapiens 

GN=CCDC137 PE=1 SV=1 

1 

P20908|CO5A1_HUMAN 

Collagen alpha-1(V) chain 

OS=Homo sapiens GN=COL5A1 

PE=1 SV=3 

4 

P12107|COBA1_HUMAN 

Collagen alpha-1(XI) chain 

OS=Homo sapiens GN=COL11A1 

PE=1 SV=4 

3 

Q5TAT6|CODA1_HUMAN 

Collagen alpha-1(XIII) chain 

OS=Homo sapiens GN=COL13A1 

PE=1 SV=1 

1 

Q14055|CO9A2_HUMAN 

Collagen alpha-2(IX) chain 

OS=Homo sapiens GN=COL9A2 

PE=1 SV=2 

1 

P13942|COBA2_HUMAN 

Collagen alpha-2(XI) chain 

OS=Homo sapiens GN=COL11A2 

PE=1 SV=5 

4 
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P25940|CO5A3_HUMAN 

Collagen alpha-3(V) chain 

OS=Homo sapiens GN=COL5A3 

PE=1 SV=3 

4 

Q9H461|FZD8_HUMAN 
Frizzled-8 OS=Homo sapiens 

GN=FZD8 PE=1 SV=1 
1 

Q7Z2K8|GRIN1_HUMAN 

G protein-regulated inducer of 

neurite outgrowth 1 OS=Homo 

sapiens GN=GPRIN1 PE=2 SV=2 

1 

O60658|PDE8A_HUMAN 

High affinity cAMP-specific and 

IBMX-insensitive 3',5'-cyclic 

phosphodiesterase 8A OS=Homo 

sapiens GN=PDE8A PE=1 SV=2 

1 

Q9UH92|MLX_HUMAN 
Max-like protein X OS=Homo 

sapiens GN=MLX PE=1 SV= 
1 

Q8IXF0|NPAS3_HUMAN 

Neuronal PAS domain-containing 

protein 3 OS=Homo sapiens 

GN=NPAS3 PE=2 SV=1 

1 

Q9H340|O51B6_HUMAN 
Olfactory receptor 51B6 OS=Homo 

sapiens GN=OR51B6 PE=2 SV=2 
1 

Q5T750|XP32_HUMAN 
Skin-specific protein 32 OS=Homo 

sapiens GN=XP32 PE=1 SV=1 
1 

Q5T750|XP32_HUMAN 
Skin-specific protein 32 OS=Homo 

sapiens GN=XP32 PE=1 SV=1 
1 

Q6UWP8|SBSN_HUMAN 
Suprabasin OS=Homo sapiens 

GN=SBSN PE=2 SV=2 
1 

Q7L2R6|ZN765_HUMAN 
Zinc finger protein 765 OS=Homo 

sapiens GN=ZNF765 PE=2 SV=2 
1 

P01009|A1AT_HUMAN 

Alpha-1-antitrypsin OS=Homo 

sapiens GN=SERPINA1 PE=1 

SV=3 

1 

P01023|A2MG_HUMAN 
Alpha-2-macroglobulin OS=Homo 

sapiens GN=A2M PE=1 SV=3 
2 

A9YTQ3|AHRR_HUMAN 

Aryl hydrocarbon receptor repressor 

OS=Homo sapiens GN=AHRR 

PE=2 SV=3 

1 

Q12791|KCMA1_HUMAN 

Calcium-activated potassium 

channel subunit alpha-1 OS=Homo 

sapiens GN=KCNMA1 PE=1 SV=2 

1 

P12107|COBA1_HUMAN 

Collagen alpha-1(XI) chain 

OS=Homo sapiens GN=COL11A1 

PE=1 SV=4 

3 

P12107|COBA1_HUMAN 

Collagen alpha-1(XI) chain 

OS=Homo sapiens GN=COL11A1 

PE=1 SV=4 

2 
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P25067|CO8A2_HUMAN 

Collagen alpha-2(VIII) chain 

OS=Homo sapiens GN=COL8A2 

PE=1 SV=2 

1 

P13942|COBA2_HUMAN 

Collagen alpha-2(XI) chain 

OS=Homo sapiens GN=COL11A2 

PE=1 SV=5 

2 

P02675|FIBB_HUMAN 
Fibrinogen beta chain OS=Homo 

sapiens GN=FGB PE=1 SV=2 
1 

P78415|IRX3_HUMAN 

Iroquois-class homeodomain protein 

IRX-3 OS=Homo sapiens GN=IRX3 

PE=2 SV=3 

1 

Q5VZ66|JKIP3_HUMAN 

Janus kinase and microtubule-

interacting protein 3 OS=Homo 

sapiens GN=JAKMIP3 PE=2 SV=2 

1 

Q7Z478|DHX29_HUMAN 

ATP-dependent RNA helicase 

DHX29 OS=Homo sapiens 

GN=DHX29 PE=1 SV=2 

1 

P20908|CO5A1_HUMAN 

Collagen alpha-1(V) chain 

OS=Homo sapiens GN=COL5A1 

PE=1 SV=3 

1 

P29400|CO4A5_HUMAN 

Collagen alpha-5(IV) chain 

OS=Homo sapiens GN=COL4A5 

PE=1 SV=2 

1 

P01024|CO3_HUMAN 
Complement C3 OS=Homo sapiens 

GN=C3 PE=1 SV=2 
1 

P02671|FIBA_HUMAN 
Fibrinogen alpha chain OS=Homo 

sapiens GN=FGA PE=1 SV=2 
1 

Q96PE1|GP124_HUMAN 

G-protein coupled receptor 124 

OS=Homo sapiens GN=GPR124 

PE=1 SV=2 

1 

Q5T764|IFT1B_HUMAN 

Interferon-induced protein with 

tetratricopeptide repeats 1B 

OS=Homo sapiens GN=IFIT1B 

PE=2 SV=1 

1 

Q5TCX8|M3KL4_HUMAN 

Mitogen-activated protein kinase 

kinase kinase MLK4 OS=Homo 

sapiens GN=MLK4 PE=1 SV=1 

1 

O95428|PPN_HUMAN 
Papilin OS=Homo sapiens 

GN=PAPLN PE=2 SV=4 
1 

Q6ZRV2|FA83H_HUMAN 
Protein FAM83H OS=Homo sapiens 

GN=FAM83H PE=1 SV=3 
1 

Q02388|CO7A1_HUMAN 

Collagen alpha-1(VII) chain 

OS=Homo sapiens GN=COL7A1 

PE=1 SV=2 

1 
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Q5D862|FILA2_HUMAN 
Filaggrin-2 OS=Homo sapiens 

GN=FLG2 PE=1 SV=1 
1 

Q8WZ42|TITIN_HUMAN 
Titin OS=Homo sapiens GN=TTN 

PE=1 SV=4 
6 

Q8WZ42|TITIN_HUMAN 
Titin OS=Homo sapiens GN=TTN 

PE=1 SV=4 
1 

Q5THJ4|VP13D_HUMAN 

Vacuolar protein sorting-associated 

protein 13D OS=Homo sapiens 

GN=VPS13D PE=1 SV=1 

1 

 

Appendix D: List of proteins identified in PCCF isolated using tandem 

immunoaffinity method from plasma of patients with Gleason score 8. 

Accession Description 
Number of 

Peptides 

P02768|ALBU_HUMAN 
Serum albumin OS=Homo sapiens 

GN=ALB PE=1 SV=2 
56 

P02452|CO1A1_HUMAN 
Collagen alpha-1(I) chain OS=Homo 

sapiens GN=COL1A1 PE=1 SV=5 
55 

P08123|CO1A2_HUMAN 
Collagen alpha-2(I) chain OS=Homo 

sapiens GN=COL1A2 PE=1 SV=7 
48 

P13645|K1C10_HUMAN 

Keratin, type I cytoskeletal 10 

OS=Homo sapiens GN=KRT10 PE=1 

SV=6 

31 

P02461|CO3A1_HUMAN 
Collagen alpha-1(III) chain OS=Homo 

sapiens GN=COL3A1 PE=1 SV=4 
31 

P04264|K2C1_HUMAN 

Keratin, type II cytoskeletal 1 

OS=Homo sapiens GN=KRT1 PE=1 

SV=6 

25 

P01857|IGHG1_HUMAN 
Ig gamma-1 chain C region OS=Homo 

sapiens GN=IGHG1 PE=1 SV=1 
18 

P02458|CO2A1_HUMAN 
Collagen alpha-1(II) chain OS=Homo 

sapiens GN=COL2A1 PE=1 SV=3 
18 

P01859|IGHG2_HUMAN 
Ig gamma-2 chain C region OS=Homo 

sapiens GN=IGHG2 PE=1 SV=2 
14 

P08779|K1C16_HUMAN 

Keratin, type I cytoskeletal 16 

OS=Homo sapiens GN=KRT16 PE=1 

SV=4 

12 

P07478|TRY2_HUMAN 
Trypsin-2 OS=Homo sapiens 

GN=PRSS2 PE=1 SV=1 
12 
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P35527|K1C9_HUMAN 

Keratin, type I cytoskeletal 9 

OS=Homo sapiens GN=KRT9 PE=1 

SV=3 

11 

P35030|TRY3_HUMAN 
Trypsin-3 OS=Homo sapiens 

GN=PRSS3 PE=1 SV=2 
11 

P01860|IGHG3_HUMAN 
Ig gamma-3 chain C region OS=Homo 

sapiens GN=IGHG3 PE=1 SV=2 
10 

P02538|K2C6A_HUMAN 

Keratin, type II cytoskeletal 6A 

OS=Homo sapiens GN=KRT6A PE=1 

SV=3 

10 

P35908|K22E_HUMAN 

Keratin, type II cytoskeletal 2 

epidermal OS=Homo sapiens 

GN=KRT2 PE=1 SV=2 

10 

P04259|K2C6B_HUMAN 

Keratin, type II cytoskeletal 6B 

OS=Homo sapiens GN=KRT6B PE=1 

SV=5 

9 

P13647|K2C5_HUMAN 

Keratin, type II cytoskeletal 5 

OS=Homo sapiens GN=KRT5 PE=1 

SV=3 

8 

P02787|TRFE_HUMAN 
Serotransferrin OS=Homo sapiens 

GN=TF PE=1 SV=3 
8 

P01834|IGKC_HUMAN 
Ig kappa chain C region OS=Homo 

sapiens GN=IGKC PE=1 SV=1 
6 

Q86Y46|K2C73_HUMAN 

Keratin, type II cytoskeletal 73 

OS=Homo sapiens GN=KRT73 PE=1 

SV=1 

6 

Q04695|K1C17_HUMAN 

Keratin, type I cytoskeletal 17 

OS=Homo sapiens GN=KRT17 PE=1 

SV=2 

6 

P0CG06|LAC3_HUMAN 

Ig lambda-3 chain C regions 

OS=Homo sapiens GN=IGLC3 PE=1 

SV=1 

5 

P19012|K1C15_HUMAN 

Keratin, type I cytoskeletal 15 

OS=Homo sapiens GN=KRT15 PE=1 

SV=3 

5 

P13646|K1C13_HUMAN 

Keratin, type I cytoskeletal 13 

OS=Homo sapiens GN=KRT13 PE=1 

SV=4 

5 

Q5XKE5|K2C79_HUMAN 

Keratin, type II cytoskeletal 79 

OS=Homo sapiens GN=KRT79 PE=1 

SV=2 

4 

Q7Z3Y7|K1C28_HUMAN 

Keratin, type I cytoskeletal 28 

OS=Homo sapiens GN=KRT28 PE=1 

SV=2 

4 
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Q7RTS7|K2C74_HUMAN 

Keratin, type II cytoskeletal 74 

OS=Homo sapiens GN=KRT74 PE=1 

SV=2 

4 

O95678|K2C75_HUMAN 

Keratin, type II cytoskeletal 75 

OS=Homo sapiens GN=KRT75 PE=1 

SV=2 

4 

Q86YZ3|HORN_HUMAN 
Hornerin OS=Homo sapiens 

GN=HRNR PE=1 SV=2 
4 

Q8TF68|ZN384_HUMAN 
Zinc finger protein 384 OS=Homo 

sapiens GN=ZNF384 PE=1 SV=2 
3 

P08727|K1C19_HUMAN 

Keratin, type I cytoskeletal 19 

OS=Homo sapiens GN=KRT19 PE=1 

SV=4 

3 

P01766|HV305_HUMAN 
Ig heavy chain V-III region BRO 

OS=Homo sapiens PE=1 SV=1 
2 

Q2M2I5|K1C24_HUMAN 

Keratin, type I cytoskeletal 24 

OS=Homo sapiens GN=KRT24 PE=1 

SV=1 

2 

P01777|HV316_HUMAN 
Ig heavy chain V-III region TEI 

OS=Homo sapiens PE=1 SV=1 
1 

Q8N1X5|YF001_HUMAN 
Uncharacterized protein FLJ37310 

OS=Homo sapiens PE=2 SV=1 
1 

P10599|THIO_HUMAN 
Thioredoxin OS=Homo sapiens 

GN=TXN PE=1 SV=3 
1 

P06309|KV205_HUMAN 

Ig kappa chain V-II region GM607 

(Fragment) OS=Homo sapiens PE=4 

SV=1 

1 

P81605|DCD_HUMAN 
Dermcidin OS=Homo sapiens 

GN=DCD PE=1 SV=2 
1 

P56270|MAZ_HUMAN 

Myc-associated zinc finger protein 

OS=Homo sapiens GN=MAZ PE=1 

SV=1 

1 

P04433|KV309_HUMAN 

Ig kappa chain V-III region VG 

(Fragment) OS=Homo sapiens PE=1 

SV=1 

1 

P68871|HBB_HUMAN 
Hemoglobin subunit beta OS=Homo 

sapiens GN=HBB PE=1 SV=2 
1 

P02042|HBD_HUMAN 
Hemoglobin subunit delta OS=Homo 

sapiens GN=HBD PE=1 SV=2 
1 

P02100|HBE_HUMAN 

Hemoglobin subunit epsilon 

OS=Homo sapiens GN=HBE1 PE=1 

SV=2 

1 
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P69891|HBG1_HUMAN 

Hemoglobin subunit gamma-1 

OS=Homo sapiens GN=HBG1 PE=1 

SV=2 

1 

P69892|HBG2_HUMAN 

Hemoglobin subunit gamma-2 

OS=Homo sapiens GN=HBG2 PE=1 

SV=2 

1 

P15814|IGLL1_HUMAN 

Immunoglobulin lambda-like 

polypeptide 1 OS=Homo sapiens 

GN=IGLL1 PE=1 SV=1 

1 

Q9Y2T7|YBOX2_HUMAN 
Y-box-binding protein 2 OS=Homo 

sapiens GN=YBX2 PE=1 SV=2 
1 

Q8IYT1|FA71A_HUMAN 
Protein FAM71A OS=Homo sapiens 

GN=FAM71A PE=2 SV=2 
1 

P02763|A1AG1_HUMAN 

Alpha-1-acid glycoprotein 1 

OS=Homo sapiens GN=ORM1 PE=1 

SV=1 

1 

P01009|A1AT_HUMAN 
Alpha-1-antitrypsin OS=Homo sapiens 

GN=SERPINA1 PE=1 SV=3 
1 

P02647|APOA1_HUMAN 
Apolipoprotein A-I OS=Homo sapiens 

GN=APOA1 PE=1 SV=1 
1 

P04899|GNAI2_HUMAN 

Guanine nucleotide-binding protein 

G(i) subunit alpha-2 OS=Homo 

sapiens GN=GNAI2 PE=1 SV=3 

1 

O43525|KCNQ3_HUMAN 

Potassium voltage-gated channel 

subfamily KQT member 3 OS=Homo 

sapiens GN=KCNQ3 PE=1 SV=2 

1 

P02812|PRB2_HUMAN 

Basic salivary proline-rich protein 2 

OS=Homo sapiens GN=PRB2 PE=1 

SV=3 

1 

Q9P0G3|KLK14_HUMAN 
Kallikrein-14 OS=Homo sapiens 

GN=KLK14 PE=1 SV=2 
1 

P02533|K1C14_HUMAN 

Keratin, type I cytoskeletal 14 

OS=Homo sapiens GN=KRT14 PE=1 

SV=4 

1 

Q8N145|LGI3_HUMAN 

Leucine-rich repeat LGI family 

member 3 OS=Homo sapiens 

GN=LGI3 PE=2 SV=1 

1 

P67809|YBOX1_HUMAN 

Nuclease-sensitive element-binding 

protein 1 OS=Homo sapiens 

GN=YBX1 PE=1 SV=3 

1 
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Q10571|MN1_HUMAN 

Probable tumor suppressor protein 

MN1 OS=Homo sapiens GN=MN1 

PE=1 SV=3 

1 

Q16651|PRSS8_HUMAN 
Prostasin OS=Homo sapiens 

GN=PRSS8 PE=1 SV=1 
1 

Q6UWP8|SBSN_HUMAN 
Suprabasin OS=Homo sapiens 

GN=SBSN PE=2 SV=2 
1 

Q5TAT6|CODA1_HUMAN 

Collagen alpha-1(XIII) chain 

OS=Homo sapiens GN=COL13A1 

PE=1 SV=1 

1 

P02671|FIBA_HUMAN 
Fibrinogen alpha chain OS=Homo 

sapiens GN=FGA PE=1 SV=2 
1 

O60763|USO1_HUMAN 

General vesicular transport factor p115 

OS=Homo sapiens GN=USO1 PE=1 

SV=2 

1 

Q9UKX3|MYH13_HUMAN 
Myosin-13 OS=Homo sapiens 

GN=MYH13 PE=1 SV=2 
1 

Q96Q06|PLIN4_HUMAN 
Perilipin-4 OS=Homo sapiens 

GN=PLIN4 PE=2 SV=2 
1 

Q15283|RASA2_HUMAN 

Ras GTPase-activating protein 2 

OS=Homo sapiens GN=RASA2 PE=1 

SV=3 

1 

P53420|CO4A4_HUMAN 
Collagen alpha-4(IV) chain OS=Homo 

sapiens GN=COL4A4 PE=1 SV=3 
1 

P01024|CO3_HUMAN 
Complement C3 OS=Homo sapiens 

GN=C3 PE=1 SV=2 
1 

Q9BZQ6|EDEM3_HUMAN 

ER degradation-enhancing alpha-

mannosidase-like protein 3 OS=Homo 

sapiens GN=EDEM3 PE=1 SV=2 

1 

Q96PE1|GP124_HUMAN 

G-protein coupled receptor 124 

OS=Homo sapiens GN=GPR124 

PE=1 SV=2 

1 

Q6ZRV2|FA83H_HUMAN 
Protein FAM83H OS=Homo sapiens 

GN=FAM83H PE=1 SV=3 
1 

H7BZ55|CROL3_HUMAN 

Putative ciliary rootlet coiled-coil 

protein-like 3 protein OS=Homo 

sapiens PE=5 SV=2 

1 

Q9H2D6|TARA_HUMAN 

TRIO and F-actin-binding protein 

OS=Homo sapiens GN=TRIOBP 

PE=1 SV=3 

1 
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Q562E7|WDR81_HUMAN 

WD repeat-containing protein 81 

OS=Homo sapiens GN=WDR81 PE=1 

SV=2 

1 

Q12802|AKP13_HUMAN 
A-kinase anchor protein 13 OS=Homo 

sapiens GN=AKAP13 PE=1 SV=2 
1 

P08F94|PKHD1_HUMAN 
Fibrocystin OS=Homo sapiens 

GN=PKHD1 PE=1 SV=1 
1 

Q03164|KMT2A_HUMAN 

Histone-lysine N-methyltransferase 

2A OS=Homo sapiens GN=KMT2A 

PE=1 SV=5 

1 

Q9UPA5|BSN_HUMAN 
Protein bassoon OS=Homo sapiens 

GN=BSN PE=2 SV=4 
1 
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