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ABSTRACT 

 

Manipulation of complex genomes has many beneficial downstream applications in agriculture 

and human gene therapy. Precise genome-editing requires the introduction of a specific DNA 

double-stand break at a locus of interest, in turn inducing host DNA repair pathways to cause gene 

knockout through non-homologous end-joining or gene repair using homologous recombination 

and donor template. No matter the application, the field has depended on a few reagents to 

introduce precise double-strand breaks in host genomes. LAGLIDADG homing endonucleases or 

meganucleases harness the natural properties of these rare-cutting enzymes to target precise 

sequences in a complex genome. Other successful reagents are derived from a type IIS restriction 

endonuclease, FokI, fused to various DNA-binding architectures such as zinc finger domains and 

transcription activator-like effector domains. However, the discovery of clustered regularly 

interspaced short palindromic repeat-associated protein, CRISPR-Cas9, has dominated the field 

with its ease of design requiring a single RNA molecule to target the sequence of interest. Even 

with a handful of reagents to choose from, no one reagent is suitable for every application as every 

reagent has its own set of limitations and advantages. 

Here we present another potential genome-editing reagent derived from a GIY-YIG homing 

endonuclease, I-TevI, fused to all four DNA-targeting proteins described above. First, we 

demonstrate that I-TevI is a portable nuclease domain that can be targeted using Zinc-Fingers and 

LAGLIDADG proteins. Using these new reagents, we were able to further characterize I-TevI 

specificity using high throughput in vitro and in vivo screens to highlight important sequence 

requirements for targeting. Using this knowledge, we systematically engineered new I-TevI 

variants with altered specificity to broaden the number of targets available for I-TevI-derived 

reagents. We incorporated these new I-TevI variants into a more versatile dual-active nuclease, 

TevCas9, capable of introducing two double-strand breaks at a single target site. This dual 

cleavage event is capable of excising a short DNA fragment from the target site and is unique to 

I-TevI derived fusions. We envisioned that the monomeric, sequence-specific I-TevI catalytic 

domain would improve current tools by providing additional specificity and the ability to introduce 

dual-cleavage event would present unique applications for genome engineering. 
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Chapter 1 

1     Introduction 

Macromolecules have evolved to recognize DNA and perform a multitude of functions from DNA 

organization, DNA repair, gene expression and DNA hydrolysis (1–7). These processes require 

macromolecules, such as RNA and proteins, to recognize structural and biochemical features of 

DNA and bind either non-specifically through phosphate-backbone contacts or specifically 

through hydrogen bonding interactions (8–12). The requirement for non-specific or sequence-

specific contacts is highly role dependent. Histones, a conserved chromosomal packing protein in 

eukaryotic cells, are examples of proteins that have evolved to bind DNA non-specifically, 

recognizing primarily the phosphate backbone to help package the large DNA molecule into the 

nucleus via nucleosomes (9). Other proteins, such as a majority of transcription factors and 

endonucleases, have evolved to locate specific sequences for gene regulation and DNA hydrolysis, 

respectively. Whatever the function, there has always been the intriguing question how these 

proteins locate their specific site in complex genomes (13). Some groups have tried to decipher 

the amino acid/nucleic acid binding code is but with a large variety of interacting domain 

structures, determining a simplistic code appears to be a difficult task (5, 8). Better understanding 

of protein specificity could benefit the genome engineering field greatly, by aiding in engineering 

novel reagents targeted to new sequences (14–16). Understanding specificity of the LAGLIDADG 

homing endonuclease (LHE) family (alternatively known as Meganucleases) has been pivotal in 

engineering new endonucleases with alternative target sites (17–19). The focus of this thesis is to 

characterize and decipher the DNA recognition of a GIY-YIG homing endonuclease (GIY-HE), I-

TevI, and adapt it to novel DNA targets for genome engineering applications. 

Using a well-studied GIY-HE, I-TevI, I sought to fuse the nuclease and linker domain to various 

DNA-binding platforms and demonstrate their genome-editing potential. To first demonstrate that 

I-TevI nuclease and linker domain were portable to various DNA-binding platforms, we created I-

TevI fusion proteins to zinc-finger (ZF) DNA-binding domains and LHEs to create GIY-YIG zinc-

finger endonucleases (GIY-ZFE) and GIY-YIG/LAGLIDADG homing endonucleases (GIY-LHE, 

or alternatively, MegaTev). As described in Chapter 2, we investigate I-TevI as a portable nuclease 

domain and optimize I-TevI fusions using in vitro biochemical assays and in vivo bacterial and 

yeast selection assays. In Chapter 3, we examine a potential unique application for MegaTev, a 
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fusion of two nuclease domains capable of creating two double-strand breaks (DSBs) at a single 

target site. Using biochemical and mammalian cell assays, we investigate if MegaTev could help 

escape a persistent cleavage and re-ligation cycling event resulting from unproductive 

modifications at the target site. This cyclic cleavage event has been described previously for single 

cutting genome-editing reagents (20). In addition, we probed the cleavage site specificity of the I-

TevI nuclease domain in an attempt to define the activity for all 64-nucleotide combinations in its 

5 base pair (bp) 5’-CNNNG-3’ cleavage motif. Our next goal was to develop a more versatile I-

TevI genome-editing reagent, as described in Chapter 4 and 5. We deciphered targeting guidelines 

for I-TevI nuclease and linker domains and appied these rules to identify novel I-TevI target sites. 

To aid in increasing applicability of I-TevI derived reagents, we created fusions to a fourth DNA-

binding platform, the clustered regularly interspaced short palindromic repeat-associated protein 

CRISPR-Cas9 protein. By understanding the targeting requirements of the GIY-HE, I-TevI, we 

hope to transform this HE into a malleable genome-editing reagent that can be targeted to various 

human gene targets. 

1.1     Homing endonucleases 

HEs are considered selfish genetic elements that have evolved for the sole purpose of propagating 

their own DNA. HEs are found in all three domains of life. Although viewed as selfish elements, 

there is some evidence of providing beneficial properties to the host (21, 22). One LHE in 

particular, HO, is an example of a beneficial HE as it is responsible for mating-type switch in 

Saccharomyces cerevisiae (23, 24). Another HE first described in the 1980s was originally known 

as the genetic element ‘ω’. It was present in some Saccharomyces cerevisiae strains and was 

observed to transfer when a ω- strain was crossed with a ω+ strain (25, 26). Not too long after, it 

was discovered that a LHE known as I-SceI was responsible for this observation. The transfer of 

the genetic information by a HE was termed “homing” process (27, 28). The homing process 

begins with the introduction of a double-strand break (DSB) by an HE, subsequently inducing 

homologous recombination (HR) to repair the break utilizing the HE open reading frame (ORF) 

(Figure. 1.1) (27–29). Therefore, homing endonuclease specificity is an important aspect to ensure 

successful gene transfer and to prevent toxicity to the host organism. To ensure the correct 

sequence is cleaved, homing endonucleases have evolved to recognize long  
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Figure 1.1: Mobility of homing endonucleases 

Homing endonuclease expression from an intron or intein results in double-strand break 

formation at an intronless sequence resulting in lateral gene transfer through homologous 

recombination. The HE ORF DNA is used as the repair template to propagate the HE coding 

sequence. 
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sequences of DNA, from 12-40 bp (30–34). There are five distinct families of homing 

endonucleases characterized by their conserved nuclease active-site core motifs known as 

LAGLIDADG, GIY-YIG, HNH, HIS-Cys box and PD-(D/E)XK. For the purpose of this thesis, 

our focus is on the largest family, the LAGLIDADG or Meganuclease homing endonucleases, and 

the GIY-HEs. 

1.1.1 Mobility and evolution 

HEs ORFs occur in many different forms including introns, inteins and freestanding. Once 

translated HEs scan for their homing site to introduce a DSB and promote their own proliferation. 

As with group I introns and inteins, the transfer of biological information is initiated solely by the 

endonuclease, whether as a free or fusion protein from an intron- or intein-encoded sequence, 

respectively (Figure 1.1) (7, 27, 29, 35). The cleavage of the intron-less homing site is then 

converted through host repair pathways to an intron or intein containing allele with the HE ORF 

(Figure 1.1). HEs and their hosts possess a very dynamic relationship assures that they rapidly 

spread through a population. However, once this occurs there is no selective pressure to keep a 

functional HE, so the intron/ORF is lost. This results in an increase of intron-less sites available 

for cleavage and reactivates the HE for site re-invasion (36). 

Although HEs target long sequences of DNA in their host genome, they must maintain a certain 

level of sequence tolerance or malleability to adapt to mutations at their homing sites. The extra 

flexibility in sequence recognition may also aid in targeting new sites in a gene duplication event. 

As proposed for the LHE family, single-motif enzymes form dimers bringing two “LAGLIDADG 

motifs” together to form an active protein against pseudopalindromic targets (37). Interestingly, it 

is proposed that double-motif monomers evolved from a duplication event, allowing further 

relaxation of sequence requirements for symmetry, expanding the substrate repertoire (19, 38, 39). 

Evolution of GIY- HEs is thought to be distinct from LHEs, because the GIY-HE DNA-binding 

domain is distant from the catalytic domain, therefore the catalytic domain is more promiscuous 

and can utilize a large variety of DNA-binding proteins (40, 41). As part of this thesis, we expand 

on this hypothesis for the GIY-HE I-TevI, by demonstrating its ability to use various DNA-binding 

platforms to target novel DNA sequences. 

1.1.2 GIY-YIG homing endonuclease 
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The GIY- HE family is a well characterized HE family defined by their conserved GIY-X(10-11)-

YIG motif. The conserved GIY-YIG motif is involved in folding and catalytic activity of the N-

terminal catalytic domain. One of the best-studied GIY-YIG HEs, I-TevI, was found in the 

thymidylate synthase (td) gene of bacteriophage T4 and has been used to studies GIY-YIG HE 

structure and function. Limited proteolysis and footprinting analysis first demonstrated I-TevI was 

a bipartite enzyme, where the N-terminal catalytic domain is connected by a flexible linker region 

to the C-terminal DNA-binding domain (Figure 1.2) (40). NMR and X-ray crystallography studies 

were used to solve the structure of 1-96 amino acids (aa) of the catalytic domain and 148-245 aa 

of the C-terminal DNA-binding domain in complex with DNA provided a closer look at I-TevI 

structure (42–45). The catalytic domain consisted of a globular structure with the conserved GIY-

YIG motif located in the first two β-strands of the core ββααβα fold (46, 47). The catalytic domain 

was crystalized in the absence of DNA substrate, presumably due to the weak binding affinity of 

the catalytic domain for DNA (46). Surprisingly, the C-terminal DNA-binding domain contained 

a non-canonical zinc finger domain from residues 148-169 (42). Previous studies have 

demonstrated that the zinc finger region acts as a molecular ruler in determining the distance for 

I-TevI cleavage and does not make any specific DNA contacts (42, 46). Interestingly, the zinc 

finger region was required for our shortest, most active I-TevI fusions containing aa 1-169 

suggesting it must be important for DSB formation (48). 

I-TevI recognizes a relatively long target site of about ~40 bp, making mostly minor groove and 

phosphate backbone contacts along the full length of its homing site (49, 50). Mutagenesis and 

chemical interference studies have demonstrated that I-TevI can tolerate high abundance of 

nucleotide substitutions at its homing site (49, 50). Mapping the cleavage site for I-TevI identified 

a dinucleotide requirement, 5’-CNNNG-3’, within the 5 bp cleavage motif (51). Not surprisingly, 

I-TevI has evolved to recognize conserved codons found within the thymidylate synthase gene 

active site such as the C and G nucleotide in the cleavage motif of the conserved glutamine (CAR) 

and arginine (CGN or AGR) codons (51). Probing the specificity of the I-TevI linker region 

resulted in similar findings, as described in Chapter 4. Previous studies have shown that I-TevI 

induces a ~40o bend toward the major groove and a similar homing site distortion has been reported 

for the LHEs and restriction  
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Figure 1.2: Structures for GIY-YIG and LAGLIDADG homing endonucleases 

Crystal structures and schematics for the GIY-YIG homing endonuclease I-TevI and 

LAGLIDADG homing endonuclease I-OnuI. LAGLIDADG alpha-helices critical for the two 

domain interactions and forming the active sites are highlighted in orange. Schematic 

representations with red triangles indicating cleavage sites. 
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endonucleases (REs) (30, 38, 49). The DNA distortion by homing endonucleases is thought to help 

expose the phosphate backbone to catalytic residues, helping I-TevI sequentially nick the bottom 

and top strands (30). Biochemical assays have demonstrated that I-TevI binds DNA as a monomer 

with a single active site to create a DSB (30). To better study the mechanism of GIY-YIG HEs, an 

alternative protein, I-BmoI, with ~750-fold reduced specific activity than I-TevI was utilized (52). 

I-BmoI targets a homologous thymidylate synthase gene from Bacillus mojavensis containing a 

similar bipartite structure as I-TevI (53). Both enzymes sequentially nick their target sites leaving 

a 2 bp 3’ overhang, but the reduced specific activity of I-BmoI permitted study of the mechanism 

of GIY-HEs in more detail (52, 54). Using biochemical assays such as OP-Cu footprinting and gel 

filtration, I-BmoI was demonstrated to bind DNA as a monomer and sequentially nick DNA with 

only a single active site (55). In addition, a critical guanine (G) contacted by the I-BmoI linker 

region is responsible for anchoring the linker region on DNA allowing the catalytic domain to 

undergo a conformational change to cleave both strands of DNA (55).This critical G anchor 

position by the I-BmoI linker region parallels an important G requirement for I-TevI cleavage 

described in Chapter 4. 

1.1.3 LAGLIDADG homing endonuclease 

LHEs, often referred to as Meganucleases, are the best-studied group with the largest number of 

characterized proteins. The members are segregated into two main groups depending on whether 

they have a single or double copy of the conserved LAGLIDADG motif. I-CreI is a well-studied 

single copy LAGLIDADG protein that requires dimerization to form an active enzyme (56). Other 

members of the LHE family are monomeric enzymes containing two copies of the LAGLIDADG 

motif expressed as a single polypeptide (19, 57). Surprisingly, with a sequence similarity of only 

~30%, both homodimeric and monomeric LHEs form very similar 3D structures (34, 19, 58, 59). 

The two LAGLIDADG motifs are located in α-helices and have a critical role bringing the two 

halves of the enzyme together to form the catalytic core at the base of the enzyme. Many crystal 

structures have been solved showing an α/β topology, where the β-sheets form a saddle containing 

a large number of basic and polar residues for DNA contacts (Figure 1.2) (34, 37, 19, 58). The 

saddle sits on the ~20 bp homing site and projects amino acid residues into the major groove to 

locate the homing site. Similar to the GIY-HEs, LHEs place a great deal of strain on the DNA 

substrate to help facilitate DNA binding and scissile phosphate positioning in the active site 
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(Figure 1.3) (38). This strain helps LAGLIDADG cleave across the minor groove leaving a 4 bp 

3’ overhang. Their compact size containing both the DNA recognition and catalytic activity packed 

into ~300 amino acids is just one characteristic that has highlighted LHEs as potential genome-

editing reagents. 

1.2 DNA sequence specificity for site-specific proteins 

There has been a large effort to try and decipher a protein-DNA binding code as it would be helpful 

in many downstream applications to help determine transcription binding sites or potential off-

target binding sites. However, proteins contain diverse tertiary and quaternary structures that 

makes deciphering a simple code for sequence-specific contacts a very tough task (8). Surprisingly, 

about two-thirds of all protein-DNA interactions are from van der Waals contacts, while about 

one-sixth are from hydrogen and water-mediated bonds (8). Diverse protein-DNA interactions 

present a problem when mutating proteins with the goal of changing overall specificity. 

Unfortunately, altering the specificity of DNA-binding proteins is not as simple as mutating a 

couple aa-DNA contacts as this may disrupt protein intramolecular interactions. As described in 

previous studies, mutating HEs or zinc-finger (ZF) domains and changing only DNA-contacting 

residues often reduces binding affinity or cleavage activity (19, 60). Another consideration is the 

general flexibility of the DNA sequence. It is well known that HEs and REs distort their DNA 

target sites and a general protein flexibility must be maintained for effective binding and cleavage 

(11, 30). This presents an indirect readout mechanism that is very difficult to characterize and 

generalize across all sequence-specific DNA-binding proteins. A third problem was observed 

when creating de-novo DNA-contacting transcription activator-like effector (TALE) and ZF 

domains. In both cases, intramolecular interactions within the protein structure affected the 

intermolecular DNA-binding contacts (10, 61–63). Although large barriers exist when attempting 

to change specificity, high throughput protein engineering methods have aided in overcoming 

some problems with creating novel DNA-binding proteins. 

1.2.1 Restriction endonuclease sequence specificity 

Restriction endonucleases (REs) are some of the most specific DNA-binding endonucleases as 

single bp substitutions can abolish activity. Therefore, REs have transformed into a massive 

industry allowing scientists to readily manipulate DNA sequences and clone their gene of 



8 
 

 
 

 

Figure 1.3 Crystal structures of various DNA binding domains and nucleases 

Crystal structure of DNA bound proteins highlighting the diversity in DNA recognition. (A) 

Restriction endonuclease I-EcoRV and homing endonuclease I-OnuI bound to DNA with 

indirect readout portion of DNA highlighted in red. (B) Crystal structure of transcription 

activator-like effector (TALE), zinc-fingers and Cas9 bound to DNA with contacting residues or 

RNA molecule highlighted in purple. 
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interest. Although REs may be known mainly for cloning purposes, they were originally 

discovered in the mid 1950’s as a bacterial defense mechanism (64–66). Their natural purpose 

was to identify foreign DNA and cleave it to protect the host from invading DNA molecules (67, 

68). Therefore, REs have evolved to recognize more frequentshort short DNA sequences from 4-

8 bps. In addition, there was evolutionary pressure to become ultra-specific, as introducing a 

DSB in the host genome can be detrimental. Mutagenesis studies making single substitutions in 

the recognition sequence of EcoRI resulted in a reduction in kcat/km cleavage from 105 to 109 

(69, 70). It was observed that single nucleotide substitutions affected DNA cleavage rate larger 

than DNA binding of the enzyme. This stringent discrimination at the EcoRI recognition site is a 

result of both direct and indirect readout of the DNA target site (69). A recurring theme is the 

requirement for DNA distortion, observed in both HEs and REs, to properly bind and access the 

scissile phosphates for cleavage (Figure 1.3). In the case of EcoRI, the DNA distortion allows 

access for a bundle of four α-helices to contact the major groove (71). EcoRI saturates 16 out of 

the 18 possible hydrogen-bonding positions in its 6 bp recognition sequence and makes 

additional van der Waals’ contacts to all thymidine methyl groups (71). Almost complete 

saturation of target site contacts is the main reason why REs are so intolerant to substitutions. 

However, there are examples of REs that do not completely saturate their recognition site, such 

as EcoRV. EcoRV only contacts 4 positions in its target site, as there are no observable 

sequence-specific interactions with the central TA in the recognition site (11). The central two 

bps could be an indirect readout mechanism as severe DNA distortion is observed upon EcoRV 

binding (11, 72). Interestingly, LAGLIDADG homing endonucleases are thought to have an 

indirect readout mechanism for the central 4 bps in their target site, as no contacts have been 

observed in crystal structures (58, 73–75). 

1.2.2 Homing endonuclease sequence specificity 

Altering HE sequence specificity can be a very complex challenge even with a large number of 

crystal structures readily available. With at least 15 crystal structures for LHEs published to date, 

the base-specific residues and hydrogen binding contributions that identify the ~20 bp homing site 

are known. Unlike REs, HEs only contact 65-75% of the possible hydrogen donors and acceptors 

in the major groove and one third of phosphate backbone contacts (59). This makes sense 

evolutionarily, as HEs need to remain flexible to individual polymorphisms that occur at their 
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homing site to prevent loss of binding or cleavage. Therefore, LHEs may target long sequences 

~20 bp, but sacrifice some specificity by under-saturating DNA-protein contacts to maintain the 

ability to adapt to polymorphisms (58, 76, 77). In addition, LAGLIDADG contain a central 4-bp 

region that has no direct contacts but is restricted by an indirect readout mechanism. Substitutions 

at these positions have minimal effects on enzyme binding affinity but cause significant reduction 

in DNA cleavage, presumably because DNA flexibility disrupts metal coordination by catalytic 

residues (75). Some groups have utilized computer modeling to study LHE binding and help 

predict residue combinations to help alter specificity (78–80). One example was using the 

homodimer I-MsoI, the Thr83 residue was predicted to change specificity at +6 and -6 and an 

additional Lys28 mutation would reduce activity on the cognate homing site (Ashworth 2006). 

These two mutations enhanced activity on the mutant target site and reduced the activity on the 

cognate site by 4,000 fold (79). 

GIY-HEs, such as I-TevI and I-BmoI, make mostly minor groove contacts and can tolerate 

multiple nucleotide substitutions at their target site (30, 49). No full-length crystal structure in 

complex with DNA has been solved, leaving little information on direct or indirect contacts. 

Biochemical assays using I-BmoI identified a critical guanine base required to anchor the linker 

region and thought to promote rearrangement of the catalytic domain (55). In addition, the catalytic 

domains of both I-BmoI and I-TevI both have inherent sequence specificity for 5’-NNNNG-3’ and 

5’-CNNNG-3’, respectively (51, 52). However, little is known about how these catalytic domains 

discriminate the identified sequence-specific requirements.  

1.2.3 ZF and TALE DNA-binding sequence specificity 

Zinc fingers are a common DNA-binding platform found in more than a thousand characterized 

transcription factors (81). Each zinc finger is very small consisting of a simple ββα fold and 

recognizing a 3 bp target site (82). Therefore, ZF transcription factors often have multiple fingers 

that wrap around DNA in a spiral manner. Each finger recognizes the 3 bp by inserting the α-helix 

into the major groove to contact DNA bases (Figure 1.3) (10, 83). There are three main positions 

in the alpha helix that recognize each base, the -1 residue contacts 3’ base, position 3 contacts the 

central base and position 6 contacts the 5’ base. A simple rule-based system for zinc-finger 

specificity to govern targeting new DNA sequences was not accomplished as no single approach 

was successful at predicting all possible DNA sequences for new ZFs (84). Swapping the order of 



11 
 

 
 

the fingers resulted in significant context-dependent effects that were difficult to predict (84). 

Although disappointing, complex protein interactions were found in crystal structures revealing a 

cross-strand interactions through position 2 (10). In addition, the insertion of linker regions 

between adjacent zinc-fingers along with mutational analysis has demonstrated to destabilize 

neighboring zinc-finger protein-DNA complexes (85–87). Since no simple code has been 

described, robust screening is required to isolate highly specific ZF domains and these are typically 

biased to G/C rich target sites, limiting programmability (87). 

Transcription activator-like effector (TALE) was the most recent protein-DNA binding 

architecture introduced to the genome-editing field. Naturally, TALEs are transcription factors 

utilized by the bacterial plant pathogen, Xanthomonas, who injects the protein into the plants to 

hijack the plants resources. The first indication of a TALE DNA-binding code was found in the 

avrBs3 gene as it contained a repetitive region that encoded for 34 aa repeats (88). Comparing the 

AvrBs3 and AvrXa10 TALE repeats highlighted a hypervariable di-residue (RVD) region at the 

12th and 13th position in the repeats suggesting that the repeats must determine TALE specificity 

(Figure 1.3) (89, 90). The true breakthrough in deciphering the TALE code was from two 

independent studies, describing how the hypervariable residues 12 and 13 correlated with specific 

bases in the target sequence (62, 63). For example, NI (Asn-Ile) aa coded for adenine and HD (His-

Asp) aa coded for cytosine binding. However, assembling novel TALEs to target any sequence of 

interest was not quite as easy as initially thought, as the putative repeat at the beginning of the 

TALE required a thymine base. Also similar to ZF domains, TALEs had some unexplainable 

context dependent interactions. A simple strategy of increasing the number of repeats to increase 

specificity was not plausible either as the longer TALEs could tolerate more mismatches because 

moderate affinity was maintained through matching repeat-DNA combinations. Therefore, a set 

of rules were defined to help construct reliable TALEs including: (i) minimal number of repeats 

are required; (ii) non-matching repeat-DNA combinations contribute more strongly to overall 

interaction; (iii) different repeat types exhibit different DNA-interaction binding strength; (iv) and 

effect of individual non-matching repeat-DNA combinations are position and context-dependent 

(91). 

1.2.4 CRISPR-Cas9 sequence specificity 
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Clustered regularly interspaced short palindromic repeat-associated protein (CRISPR) evolved as 

a prokaryotic adaptive immunity to recognize and cleave invading DNA (92). CRISPR-associated 

(cas) genes are expressed and function in all steps of host immunity including processing RNA 

molecules used for recognizing invading DNA and endonucleases used to cleave exogenous DNA. 

The Type II CRISPR system is of particular interest as the targeting endonuclease, Cas9, uses a 

single polypeptide loaded with a targeting RNA molecule (crRNA) and a stabilizing RNA 

molecule known as the tracrRNA (Figure 1.3) (93). Since Cas9 uses a RNA molecule to target 

DNA, it depends on Watson-Crick rules for targeting which is different then all previously 

described DNA binding platforms used for genome-editing. One restriction for Cas9 targeting is 

the requirement for a protospacer associated motif (PAM) which evolved to limit off-target 

cleavage by Cas9 (94). The most extensively studied CRISPR-Cas9 is from Streptococcus 

pyogenes and requires a NGG PAM motif (95). The PAM motif varies depending on the organism, 

as different Cas9 orthologs contain different PAM motifs. Cas9 binds a crRNA to target a 20 bp 

DNA sequence and introduce a blunt DSB 3 bp upstream from the PAM motif. Although the 

crRNA is 20 bp in length, the specific recognition is limited to 7-12 nucleotides adjacent to the 

PAM motif as multiple mutations are tolerated in the crRNA (96–100). Early studies identified 

that Cas9 could tolerate many insertions or deletions (indels) in its Watson-Crick binding site. This 

was problematic, as a short recognition sequence in combination with flexible binding of the RNA-

DNA combination results in a large number of unwanted cleavage sites. Efforts to mitigate off-

target cleavage by Cas9 have been performed and are discussed in Chapter 1.3.4. 

1.3 Genome editing 

The ability to modify complex genomes has many downstream applications in agriculture, research 

and human disease treatment. The first therapeutic trial involving a human gene was approved by 

the FDA in the early 1990s to treat adenosine deaminase deficiency (ADA-SCID) (101). This 

monogenetic disease leads to severe immunodeficiency and was thought to be treatable using an 

ex vivo retroviral treatment, where the adenosine deaminase wild-type gene is integrated back into 

the patients (101). Initial treatments were not as effective as researchers hoped, and detrimental 

results were observed in some cases where patients either reacted poorly to the retrovirus or 

random insertions caused leukemia (101, 102). Even with unsettling first results, there have been 

over 1000 approved gene therapies to treat a wide range of human diseases (103). The  



13 
 

 
 

 

Figure 1.4: Schematic of two outcomes of genome-editing.  After the introduction of a double-

strand break, the DNA can be repaired through NHEJ or HR. If no repair template is present, Ku 

proteins will recognize the free ends and they will be ligated back together through NHEJ. If a 

template DNA is provided then the host can use homologous recombination for gene correction. 
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largest fear annotated with integrating vector gene therapy continues to be insertional mutagenesis 

into important host genes, as DNA integration is essentially random (104, 105). In the last 15 years, 

genome engineering has exploded into an exciting field composed using a number of site-specific 

reagents (Table 1.1). Genome-editing reagents have replaced retroviral integrases in non-specific 

‘gene augmentation’, as they are the most efficient method to achieve targeted integration through 

HR (106). Genome-editing reagents take advantage of host repair pathways, in order to correct or 

knockout genes of interest through the HR or non-homologous end joining pathway (NHEJ), 

respectively (Figure 1.4). First generation genome-editing reagents used the FokI Type IIs RE, 

fusing the nuclease domain to various DNA-binding platforms such as ZF and TALE domains to 

target various sequences. The FokI nuclease domain is a non-specific nuclease domain that 

requires dimerization for efficient DNA cleavage (107, 108). One of the first proof of concept 

experiments using FokI/zinc-finger fusions, known as ZFNs, successfully cleaved the ‘common 

gamma chain’ (IL2ry) gene in cultured human cells (109). Initial studies in human embryonic 

kidney (HEK293) cells demonstrated that ZFNs could induce an 1% gene correction efficiency at 

their target site (110–112). Around the same time, engineered LHEs were developed to recognize 

novel targets and were demonstrated to induce modifications at intended target sites (19, 41, 113, 

114). In 2010, the genome engineering field transitioned to TALE/FokI fusions, called TALENs, 

as the repeat:DNA 1:1 code was deciphered and offered a more programmable DNA-binding 

domain. However, TALENs had their own disadvantages and were short lived with the emergence 

of the CRISPR-Cas9 system in 2013. This RNA-guided genome-editing platform now dominates 

the field of genome engineering because of its ease of use. However, it was not long before 

specificity issues emerged in the new CRISPR-Cas9 system. 

1.3.1 Engineered LAGLIDADG homing endonucleases 

The first nuclease to successfully modify mammalian cells was the I-SceI LHE, presenting an 

exciting future for site-specific genome-editing. When I-SceI was co-transfected with a donor 

template in mammalians cells, a 100-fold increase in gene conversion (gene was repaired using 

tamplate DNA) was observed (115). The compact size containing both catalytic and DNA-binding 

capabilities made it an attractive genome-editing reagent. Successful gene modification in 

mammalian cells was only the beginning, since researchers next needed to demonstrate that LHEs  
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Figure 1.5: Schematic of various genome-editing reagents. 

Dimeric genome-editing reagents, zinc-finger nucleases (ZFN) and transcription activator-like 

effector (TALEN) reagents are derived from the non-specific Type IIs restriction enzyme FokI fusions. 

Monomeric genome-editing reagents depicted below with engineered LAGLIDADG homing 

endonuclease in green and Cas9 RNA-guided nuclease in blue. 
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could be reprogrammed to target different sequences. The compact structure of LHEs-two DNA-

binding saddles flanking the central catalytic core-has made engineering these enzymes a daunting 

task. The first two engineered LHE described were chimeras, H-DreI and DmoCre, created by 

fusing the N- and C- terminus of two different LHEs (77, 116). Fusing LHEs halves together to 

create novel engineered LHE was further explored by Baxter et al. 2012, they found roughly 50% 

of chimeras created were active enzymes. With a family of over 300 members characterized to 

date, being able to create chimeras could exponentially increase the number of available targets.  

Other studies have focused on engineering specific members in the LHE family, including the 

homodimeric enzyme I-CreI and monomeric I-OnuI. This approach used rational re-design 

creating libraries of locally altered specificity modules, designed to change specificity for 3 bp at 

a time. Directed evolution of LHE has been successful in creating novel LAGLIDADG targets in 

various human genes including MAO-B, RAG-1 and XPC (17, 15, 19, 117). Since catalytic 

activity is intrinsically related to DNA-binding, reprogramming LHEs often reduces or abolishes 

LHE activity. Other implications to consider when engineering LHE is that binding can involve 

partially folded protein requiring the two LAGLIDADG halves to communicate with each other 

to locate the correct target. Also, a conformational change in the DNA target site occurs upon LHE 

binding requiring intermolecular interactions between the two LAGLIDADG halves. Some pivotal 

high throughput techniques including in vitro compartmentalization and yeast surface display has 

made protein engineering of LAGLIDADG more feasible (118, 119). In addition, to enhance 

LAGLIDADG activity and specificity, recent groups have fused engineered LAGLIDADG 

enzymes to TALE domains to create “MegaTALs”. However, the technical skills involved in 

engineering LHE have limited it to a few specialized labs and in turn has limited their application 

as a genome-editing reagents.   

1.3.2 Zinc-finger and TALE nucleases 

Some of the most successful genome-editing reagents utilized the Type IIs restriction enzyme FokI 

fused to various DNA-binding platforms described in Chapter 1.2.3. Some important 

characteristics of the FokI nuclease include a bi-partite structure, requirement for dimerization for 

cleavage, and a non-specific nuclease domain. The FokI nuclease domain was fused to DNA-

binding platforms ZFs and TALEs to create zinc-finger nucleases (ZFNs) and transcription 

activator-like effector nucleases (TALENs), respectively. One caveat was FokI required 
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dimerization for efficient cleavage making the design more complex, as two ZFNs or TALENs 

were required to bind in a “head-to head” fashion for efficient cleavage. The first ZFNs presented 

many problems with specificity due to both the catalytic domain and DNA-binding domain. As 

described in Chapter 1.2.2, the ZF DNA specificity code was tough to predict and ZFNs required 

lots of optimization for efficient cleavage. Similar to engineered LAGLIDADG, the development 

of high-throughput assembly and screening brought some success to creating active ZFNs (120–

123).  Unfortunately, undesired cleavage was observed as the ZFNs dimerization occurred at 

weakly bound sites (122, 124). Although ZFNs were not very specific, this first generation reagent 

helped pioneer the genome-editing field, developing a lot of the current techniques that are still 

used today.  

The second generation FokI fusions were more customizable utilizing the TALE DNA-binding 

domain to create TALENs. As described in Chapter 1.2.3, TALEs advantage over ZF domains was 

their 1:1 protein-DNA code, where each repeat-variable diresidue (RVD) dictated a single bp 

contact. The discovery of the TALE protein-DNA code in 2010 changed the genome engineering 

field, as TALEs were quickly fused to the FokI nuclease domain and demonstrated to efficiently 

cleave desired targets in a wide range of model organisms (125–128). Although TALENs were 

more programmable, they presented new challenges including the large size ~130 kDa and repeat 

sequences made it difficult to assemble/clone and deliver using lentiviral systems (129, 130). Many 

protocols were developed to overcome the assembly problem including Golden Gate (GG) 

assembly and ligation independent cloning (126, 131). This allowed for easier assembly of a large 

number of TALENs at a single time. Packaging problems were also addressed using an alternative 

scaffold with arrays that are non-repetitive sequences the BurrH domain called BuDs (132). In 

addition, BuDs circumvented another restriction of classic TALENs requiring a 5’ thymine (T) 

due to a non-canonical repeat at the start of classic TALENs (133). TALEs have been used in an 

array of applications apart from nuclease reagents, playing a role in gene regulation by fusing 

TALEs to various transcription factors (125, 134–136). The TALEN platform did have some 

success in genome-editing as they were more specific then ZFNs but were quickly replaced by 

CRISPR-Cas9 technologies because of its ease of use and programmability. 
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Table 1.1: Properties of genome-editing reagents 
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1.3.4 CRISPR-Cas9 nucleases 

The introduction of the CRISPR-Cas9 system into the genome-editing field, it has made an 

astonishing impact on the scientific community. The main reason this platform has been so 

successful is its “ease-of-use”, governed by classic Watson-Crick base pairing to target DNA 

sequences. Therefore, changing the target sequence did not require complex protein engineering 

but a simple change in a RNA sequence. One pivotal study to transition Cas9 into an easy-to-use 

genome-editing reagent, was fusing the crRNA to the stabilizing tracrRNA to create one RNA 

molecule for gene targeting known as the guide RNA (gRNA) (96). Although Cas9 could be 

readily adapted to various sequences, it still had its own limitations that needed to be overcome. 

First, all Cas9 known to-date require a short PAM sequence adjacent to the intended target site. 

For Streptococcus pyrogenes, spCas9, the most widely used CRISPR system in genome-editing 

requires a NGG PAM motif at its target site (95). To expand the NGG requirement, a protein 

engineering approach was used to evolve new Cas9 with novel PAM sequences such as NAG (14). 

Another limitation was that the short 20 bp Watson-Crick target site presented off-target cleavage 

problems. The true specificity was limited to 7-12 nucleotides adjacent to the PAM motif as the 

more distal base-pairing was mismatch tolerant (96–100). Therefore, 12 bps plus the 3 bps for the 

PAM motif was not specific enough for the human genome (415 = 1.07 x 109). Many approaches 

were devised to overcome this problem, one approach used Cas9 nickase mutants as single-strand 

nicks are less detrimental to the genome but off-target cleavage was still observed (137). Another 

study created dimeric FokI-Cas9 fusions using inactive Cas9 proteins to reduce off-target cleavage 

but this also reduced the number of available targets (138). Utilizing truncated gRNAs with only 

17-bp or 18-bp of crRNA sequence aided in reducing the overall binding affinity allowing fewer 

mismatches but did not completely abolish off-target cleavage (139). Finally, through mutating 

the non-specific contacts, a high-fidelity Cas9 with significantly decreased off-target cleavage was 

developed (140, 141). Other applications of Cas9 included using a multiplex gRNA expression 

system to target and knock-out multiple genes simultaneously (99). This approach could be used 

to study protein pathways or redundant proteins. The success of CRISPR technology has scientific 

articles using CRISPR being published almost daily, with over 15 model organisms modified by 

CRISPR-Cas9 (142). 
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1.4 Scope of the thesis: dual-active nucleases utilizing the GIY-YIG I-

TevI nuclease domain for genome engineering 

This thesis focuses on the GIY-HE, I-TevI, with the goal to further characterize its catalytic and 

linker specificity and apply this knowledge to I-TevI derived genome-editing reagents. There have 

been a number of biochemical and structural studies characterizing the catalytic and linker domain 

specificity and function, but due to the inherent toxicity of native I-TevI, all previous studies were 

performed in vitro (30, 46, 49, 51). Biochemical studies highlighted regions in the native I-TevI 

homing site that were hypo- or hyper-sensitive to chemical modifications but sequence specificity 

was still not well characterized (49). Cleavage specificity of I-TevI was determined almost 20 

years ago, having a requirement for a 5’-CNNNG-3’ cleavage motif but the lack of sensitivity of 

the in vitro assay could not determine discrimination in the central 3 bp at the cleavage motif (51). 

By fusing the native I-TevI nuclease and linker domain to different DNA-binding platforms, we 

de-toxified the catalytic domain allowing us to study the specificity of I-TevI in vivo. We exploit 

one of the first I-TevI fusions to the LHE I-OnuI, referred to as MegaTev, to study the inherent 

specificity of the catalytic and linker domain of I-TevI in more depth. We hoped that knowledge 

gained from this platform could be used for other Tev-derived genome-editing reagents. 

Our first goal was to demonstrate that I-TevI could be fused to different DNA-binding platforms 

similar to FokI derived ZFNs and TALENs, to create a monomeric genome-editing reagent. The 

unique aspects of I-TevI fusions compared to FokI fusions included its inherent cleavage motif 

specificity 5’-CNNNG-3’, its ability to function as a monomer resulting in a more simplistic design 

and an opportunity of creating a dual-active endonuclease that can create two DSB at a single 

target site. A dual-active endonuclease could excise a short DNA fragment from the genome, 

resulting in the free DNA ends being ligated together in vivo. We envisioned this would increase 

the efficiency of gene knockouts as persistent cleavage and re-ligation from single cutting 

endonucleases would not occur. Previous studies utilized the DNA 5’-exonuclease Trex2 to 

increase gene modification for LAGLIDADG and ZFNs (20, 143).  All other genome-editing 

reagents, MegaTALs, ZFNs, TALENs, and Cas9 create only a single DSB at their target site. 

Although they all vary in efficiency ranging from 15-80% depending on the target site and reagent, 

the indels created are random and unpredictable (108, 144–146). We proposed that our dual-active 
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endonucleases are able to bias these events to further favour gene-knockout as the excised fragment 

creates a predictable repair event between the two free ends.  

Here, we develop I-TevI fusions to programmable DNA-binding platforms and investigate the 

specificity of the I-TevI nuclease and linker domain in vivo. With this fundamental knowledge we 

were able to engineer novel I-TevI mutants with enhanced activity and altered specificity. Using 

the dual-active nuclease platforms, MegaTev and TevCas9 fusions, could prove advantageous over 

traditional reagents because their ability to create more predictable modifications at their target 

sites. The genome-editing field is always in search of the most specific, easy-to use, and efficient 

reagents. It is difficult to engineer a reagent that checks all three boxes but our most recent TevCas9 

reagent is at least 2 out of 3, being relatively easy-to-use and more efficient then Cas9 alone. 
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Chapter 2 

2 Monomeric site-specific nuclease for genome editing 

The work presented in this chapter is reproduced (with permission, Appendix S1) from: 

Kleinstiver, B.P., Wolfs, J.M., Kolaczyk, T., Roberts, A.K., Hu, S.X., Edgell, D.R. 

(2012) Monomeric site-specific nucleases for genome editing. Proceedings of the 

National Academy of Sciences USA 109(21):8061-6 

2.1 Introduction 

Precise genome editing often requires the introduction of a double-strand break (DSB) at defined 

positions (1-3), and two distinct site-specific DNA endonuclease architectures have been 

developed towards this goal. One of these architectures relies on reprogramming the DNA-binding 

specificity of naturally occurring LAGLIDADG homing endonucleases (LHEs) to target desired 

sequences (4, 5). The other architecture utilizes the reprogrammable DNA-binding specificity of 

zinc-finger proteins or TAL-effector domains that are fused to the non-specific nuclease domain 

of the type IIS restriction enzyme FokI to create chimeric zinc-finger nucleases (ZFNs) or TAL 

effector nucleases (TALENs) (6-8). Regardless of the architecture, the underlying biology of the 

component proteins imposes design challenges and the relative merits of the LHE and the 

ZFN/TALEN architectures are the subject of much debate in the literature (6, 9). One notable 

constraint imposed by the FokI nuclease domain is the requirement to function as a dimer to 

efficiently cleave DNA (10, 11). For any given DNA target, this necessitates the design of two 

distinct ZFNs (or two TALENs), such that each pair of zinc finger or TAL effector domains is 

oriented for FokI dimerization and DNA cleavage (12).  

Expanding the repertoire of DNA nuclease domains with distinctive properties is necessary to 

facilitate the development of new genome editing reagents. Indeed, a number of recent studies 

have explored the potential of the PvuII restriction enzyme as an alternative site-specific nuclease 

domain for genome editing applications (13, 14). The PvuII chimeras, however, share similar 

design constraints as ZFNs and TALENs, requiring two nuclease fusions for precise targeting. In 

considering alternative nuclease domains for genome editing, we were intrigued by the properties 

of the GIY-YIG nuclease domain that is associated with a variety of proteins of diverse cellular 

functions (15). The small (~100 aa) globular GIY-YIG domain is characterized by a structurally 

conserved central three-stranded antiparallel β sheet, with catalytic residues positioned to utilize a 
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single metal ion to promote DNA hydrolysis (16-18). Intriguingly, the GIY-YIG homing 

endonucleases, typified by the isoschizomers I-TevI and I-BmoI (19), bind DNA as monomers 

(20), and generate a DSB with 2-nt, 3’ overhangs. It is unknown, however, if GIY-YIG homing 

endonucleases function as monomers in all steps of the reaction, as the oligomeric status during 

cleavage has yet to be studied. Notably, GIY-YIG homing endonucleases prefer a specific DNA 

sequence to generate a DSB (21, 22). For I-TevI, the bottom (↑) and top (↓) strand nicking sites lie 

within a 5‘-CN↑NN↓G-3’ motif (CNNNG), with the critical G optimally positioned ~28 bp from 

where the H-T-H module of the I-TevI DNA-binding domain interacts with substrate (21, 22). 

From an engineering perspective, the modularity and sequence specificity of the GIY-YIG 

nuclease domain makes it an appealing candidate to create new chimeric endonucleases. Indeed, 

swapping of the I-BmoI and I-TevI catalytic and DNA-binding domains suggested that the GIY-

YIG nuclease domain could be fused to unrelated DNA-targeting platforms (23). 

To highlight the genome engineering potential of the GIY-YIG nuclease domain, we fused the 

domain to 3-member zinc fingers to construct GIY-YIG zinc finger endonucleases (GIY-ZFEs). 

The GIY-ZFEs are active in bacterial and yeast cells, and in vitro data show that they function 

catalytically as monomers and retain the cleavage specificity associated with the parental GIY-

YIG nuclease domain. The GIY-YIG nuclease domain is also portable to the LHE platform, as we 

constructed monomeric GIY-LHEs that are active in vivo and possess ~18-bp binding specificity. 

We selected LHEs as a DNA targeting domain because of the greater sequence specificity 

compared to 3-member zinc fingers, the ability to reprogram LHE DNA-binding specificity (24-

26), and recent success in generating PuvII-LHE fusions (13). Collectively, our data highlight the 

unique biochemical properties of the GIY-YIG nuclease domain as an alternative to the FokI 

nuclease domain for genome editing applications. 

2.2 Material and methods 

See detailed Supplemental materials and methods. Briefly, Tev-ZFE and Tev-LHE fusions and 

hybrid target sites were modeled in PyMOL using the I-TevI 130C (PDB 1I3J), Zif268 (PDB 

1AAY), and I-OnuI (PDB 3QQY) cocrystal structures (25, 27, 28). The in vivo activity of fusions 

was determined using a two-plasmid bacterial selection (31) or yeast-based reporter assay (that 

was used to calibrate activity of Tev-ZFEs and Tev-TALs) against a characterized ZFN (35). 

TevN201-ryA was purified using nickel affinity chromatography to determine the in vitro 
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biochemical properties of Tev-ZFEs. Cleavage assays were performed as described (43). A custom 

Perl script was created to determine CNNNG occurrences relative to 8,829 predicted ZFN sites on 

zebrafish chromosome 1 (40). 

2.3 Results 

2.3.1 Construction and validation of GIY-zinc finger endonucleases 

To create novel chimeric enzymes, we modeled GIY-zinc finger endonucleases (GIY-ZFEs) using 

existing crystal structures of the I-TevI 130C DNA binding domain and the Zif268 zinc finger (27, 

28). One notable feature of our constructs is the polarity, as the I-TevI nuclease domain is fused to 

the N-terminal end of the ryA protein to mimic its native orientation, unlike FokI constructs that 

are fused to the C-terminal end of zinc-finger proteins. We modeled the Zif268 zinc finger in place 

of the H-T-H at the C-terminus of I-TevI, providing the rationale to subsequently fuse various 

lengths of the I-TevI N-terminal region to the ryA zinc finger that targets a sequence in the 

Drosophila rosy gene to create Tev-ryA zinc finger endonucleases (Tev-ZFEs, Fig. 2.1A) (29). 

The Tev-zinc finger DNA substrates (TZ) consisted of 30 to 38 bps of the I-TevI td homing site 

joined to the 9-bp ryA target site. The TZ substrates differ in the distance of the CNNNG cleavage 

motif relative to the ryA-binding site (Fig. 2.1B). Each TZ substrate possesses a single zinc finger 

targeting sequence, rather than two head-to-head zinc finger sites necessary for efficient ZFN 

cleavage. A similar set of I-BmoI-ryA fusions (Bmo-ZFEs) and substrates (BZ) were constructed 

(Fig. S1).  

We tested the activity of the GIY-ZFEs using a well-described two-plasmid bacterial selection 

system, where survival is dependent on the endonuclease cleaving a target plasmid (30, 31). Eight 

Tev-ZFEs were tested on seven TZ substrates cloned into the reporter plasmid (Fig. 2.1B and C, 

Table S2.1). In general, the survival of all Tev-ZFEs was highest against TZ substrates where the 

preferred CNNNG motif was positioned between 33 and 35-bp from the ryA binding site. Low 

survival (~4-6%) was observed for all Tev-ZFEs against the TZ1.32 substrate, while none survived 

on the TZ1.30 substrate. Likewise, there was no survival against the longer substrates, with the 

exception that the longest fusion (TevS206-ryA) exhibited ~22% survival against the TZ1.36 

substrate. No survival was observed when the Tev-ZFEs were tested against the target plasmid 

without a target site (p11lacYwtx1). Mutation of the catalytic arginine 27 of the I-TevI nuclease 

domain to alanine to create TevR27A-ryAs showed that survival is dependent on GIY-YIG  
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Figure 2.1: Design and functionality of Tev-ZFEs  

(A) Modeling of a Tev-zinc finger fusion with DNA substrate (light green) using structures of the 

I-TevI catalytic domain in green (PDB 1MK0), the I-TevI DNA-binding domain co-crystal in blue 

(PDB 1I3J), and the Zif268 co-crystal in red (PDB 1AAY) (B) The TZ-ryA substrate is colored 

according to the structural model. Shown is the top strand of the I-TevI td homing site substrate 

fused to the 5’ end of the ryA-binding site for all wild-type substrates tested. The substrate is 

numbered from the first base of the td homing site sequence (the numbering scheme is reverse of 

that used for the native td homing site). The substrates tested differ by insertion or deletion of td 

sequence at the junction of the td/ryA sites. (C) Percent survival of three representative Tev-ryA 

ZFEs in the bacterial two-plasmid selection. All Tev-ryA ZFEs were tested against plasmids 

containing various length substrates (TZ1.30-1.38), plasmids lacking a target site (p11lacY), and 

TZ1.33 plasmids with single or double mutations in the CNNNG motif (G5A and C1A/G5A) 

(Table S1). (D) Percent survival of TevN201-ryA and TevN201-ryB ZFEs on their cognate and 

reciprocal target sites. Data are plotted with standard deviation for n  3. 
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nuclease activity as none of the Tev-R27A constructs survived (Table S2.1). We also constructed 

and tested a fusion of the TevN201 domain to a different 3-member zinc finger, the ryB zinc finger, 

creating TevN201-ryB. The TevN201-ryB showed survival in the bacterial selection assay against 

a corresponding TZ-ryB target, indicating that the I-TevI nuclease domain can function in the 

context of two different 3-member zinc fingers, but did not survive when tested against the TZ-

ryA substrate (Fig. 2.1D). Likewise, the TevN201-ryA fusion did not survive against the TZ-ryB 

substrate, indicating that the zinc finger alone directs DNA-binding. We also tested the Bmo-ZFEs 

in the genetic selection, but did not observe significant survival for any of the fusions, consistent 

with the ~750-fold reduced activity of wild-type I-BmoI relative to I-TevI (32). However, as 

described below, enzymatic activity was detected in vitro using purified Bmo-ZFEs. Collectively, 

these data show that two different GIY-YIG nuclease domains could be fused to zinc finger DNA 

binding domains to create active site-specific chimeric nucleases. 

2.3.2 Tev-ZFEs function as monomers to cleave at a specific sequence 

To study the GIY-ZFE biochemical characteristics in more detail, we purified TevN201-ryA for 

cleavage assays and in vitro mapping. We first performed cleavage assays to determine the 

relationship between TevN201-ryA enzyme concentration and initial reaction velocity using a 

plasmid substrate with a single TZ-ryA target site. The reaction progress curves indicated an initial 

burst of cleavage followed by a slower rate of product accumulation (Fig. 2.2A), consistent with 

product release being the rate-limiting step.  The initial burst phase was used to estimate initial 

velocity, and plotting against protein concentration yielded a linear relationship (Fig. 2.2A), 

suggesting that DNA hydrolysis catalyzed by TevN201-ryA is first order with respect to protein 

concentration.  

The model TZ-ryA substrates were designed as a single ryA zinc finger site fused to the I-TevI 

target sequence. To determine if cleavage by TevN201-ryA was influenced by additional Tev-ryA 

target sites, we constructed two-site plasmids that differed in whether the target sites were in the 

same or opposite orientations relative to each other. The single- or two-site plasmids were used in 

time-course cleavage assays under single-turnover conditions (~10-fold molar excess of protein to 

substrate) to determine reaction rates. As shown in Fig. 2.2B, cleavage of the one-site plasmid 

yielded kobs(1-site) = 0.099 ± 0.001 s-1, and cleavage of the two-site plasmids with target sites in the 

opposite or same (Fig. S2.2B) orientations generated very similar rate constants, kobs(2-site) = 0.088  
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Figure 2.2: TevN201-ZFE is a monomer with a preferred cleavage site.   

(A) Left panel: plot of initial reaction progress for seven TevN201-ZFE concentrations expressed 

as percent linear product. Protein concentrations from highest to lowest are 47 nM, 32.5 nM, 23 

nM, 11nM, 6nM, 3 nM, and 0.7 nM. Right panel: graph of initial reaction velocity (nM s-1) versus 

TevN201-ZFE concentration (nM). (B) Graphical representation of cleavage assays with 90 nM 

TevN201-ZFE and 10 nM one- or two-site TZ1.33 plasmids (left and right panels, respectively). 

The two-site plasmid had the TZ-ryA sites in the opposite (shown) or same (Fig. S2B) orientation. 

SC, supercoiled; OC, open-circle (nicked); FLL, full-length linear; L1+L2, linear products. (C) 

Mapping of TevN201-ZFE cleavage sites on the TZ1.33 substrate, with top and bottom cleavage 

sites indicated below on the TZ-ryA substrate by open and closed triangles, respectively. (D) 

Activity of TevN201-ZFE on the wild-type TZ1.33, or the TZ1.33 G5A and TZ1.33 C1A/G5A 

mutant substrates. A graph of EC0.5max determinations for each substrate is shown to the right, with 

EC0.5max values in nM. Data are plotted as averages of three independent replicates with standard 

deviations 
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± 0.001 s-1 and 0.089 ± 0.001 s-1, respectively, to the one-site plasmid. In contrast, similar 

experiments with FokI showed a significant rate enhancement for two-site plasmids relative to 

one-site plasmids, consistent with FokI functioning as a dimer (33). We conclude that cleavage by 

TevN201-ryA is non-cooperative and that efficient DNA hydrolysis does not require two sites, 

consistent with TevN201-ryA functioning catalytically as a monomer. 

The I-TevI nuclease domain preferentially cleaves DNA within a 5’-CN↑NN↓G-3’ motif, with ↑ 

and ↓ representing the bottom- and top-strand nicking sites, respectively (22). Wild-type I-TevI 

defaults to cleave at the correct distance on substrates in vitro when this motif is moved closer to, 

or distant from, the primary binding site, whereas mutants in the I-TevI specific zinc finger cleave 

at the correct sequence rather than the correct distance on mutant substrates (34). To determine the 

cleavage preference of the TevN201-ryA construct, we mapped the bottom- and top-strand nicking 

sites using strand-specific end-labeled substrates to the CNNNG motif (Fig. 2.2C). Combined with 

data from the genetic assays showing no survival on substrates that displace the CNNNG motif 

from an optimal position, our data suggests that in the context of a ryA fusion, the TevN201 

domain acts as a molecular ruler with a distance preference.  

To further demonstrate TevN201-ryA cleavage preference, we introduced mutations in the 

CNNNG motif that were previously shown to drastically reduce I-TevI cleavage efficiency (Fig. 

2.2D) (21, 22). Significantly, we observed no survival in the two-plasmid selection assay on 

plasmids carrying either the single G5A (CNNNA) or double C1A/G5A (ANNNA) substitutions 

(Fig. 2.1C), equivalent to positions C-27 and G-23 of the I-TevI td substrate, respectively. We also 

performed in vitro cleavage assays on wild type and mutant substrates with increasing 

concentrations of TevN201-ZFE to determine the amount of protein required for half-maximal 

cleavage (EC0.5max). As shown in Fig. 2.2D, ~60 fold and ~4.7 fold more protein were required to 

achieve half-maximal cleavage of the double- and single-mutant substrates relative to the wild-

type substrate. The greater substrate discrimination observed in the genetic assay likely reflects 

lower in vivo protein concentrations than those used for in vitro cleavage assays. These results 

show that the TevN201-ryA fusion retains the cleavage specificity of the parental I-TevI enzyme 

and that double nucleotide substitutions significantly reduce cleavage efficiency. To determine if 

Bmo-ZFEs also retained substrate specificity, the bottom- and top-strand nicking sites of the 

BmoN221-ryA fusion were mapped to a 5’-NN↑NN↓G-3’ motif, consistent with the cleavage site 
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preference of I-BmoI (Fig. S2.1D) (19).  

2.3.3 The Tev-ZFEs function in a yeast-based recombination assay 

To extend the in vivo relevance of the Tev-ZFE fusions, we utilized a well-described yeast-based 

recombination assay to test Tev-ZFE function in a eukaryotic system (35). This assay provides a 

quantitative -galactosidase readout if the nuclease cleaves its target site that is positioned between 

a partially duplicated lacZ gene. Furthermore, the assay allowed us to calibrate TevN201-ryA 

activity relative to a homodimeric FokI-Zif268 control with previously measured in vivo activity 

sufficient to induce recombination events for genome engineering applications (35). As shown in 

Fig. 2.3, the level of -galactosidase activity for the TevN201-ryA fusion on its cognate TZ-ryA 

substrate was ~1.4-fold higher than the Zif268 ZFN control. The TevN201-ryA or Zif268 ZFN 

constructs displayed no activity on each other’s substrates, and activity was dependent on a 

functional I-TevI nuclease domain, as the TevN201R27A catalytic mutant was unable to induce 

recombination. Furthermore, TevN201-ryA activity was not observed on mutant substrates where 

one or both of the critical residues of the CNNNG motif were mutated in the TZ1.33 substrate. 

Collectively, these assays show that the I-TevI nuclease domain functions in a eukaryotic system 

with activity on par to a characterized ZFN.  

2.3.4 The I-TevI nuclease domain is portable to the LAGLIDADG architecture 

To demonstrate that the I-TevI nuclease domain functions in the context of DNA-targeting 

platforms other than 3-member zinc fingers, we constructed fusions of the domain to a catalytically 

inactive monomeric single-chain LAGLIDADG homing endonuclease (Tev-LHE). As with the 

Tev-ZFE constructs, we modeled a Tev-LHE chimera using the co-crystal of I-OnuI with its DNA 

substrate such that the I-TevI nuclease and linker domains were fused to the N-terminus of I-OnuI, 

which is partially disordered in the structure (Fig. 2.4A) (25). Based on this model, we fused 

TevN201G4 and TevK203 fragments to a catalytically dead I-OnuI E1 E22Q mutant. A series of 

model DNA substrates were constructed by fusing the td target site to the I-OnuI E1 binding site 

in the human MAO-B gene, differing in the position of the CNNNG cleavage motif relative to the 

I-OnuI E1 site (TO1.12 to TO1.30) (Fig. 2.4B).  

In the bacterial two-plasmid selection, we found that the TevN201G4-Onu and TevK203-Onu 

fusions were active against a range of DNA substrates. Notably, the fusions displayed maximal  
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Figure 2.3: Tev-ZFEs can induce recombination in a eukaryotic system 

Shown are normalized -galactosidase units from a yeast-based recombination assay for the 

indicated nuclease/substrate combinations. Activity was normalized to a homodimeric FokI-

Zif268 ZFN positive control. Data are plotted with standard deviation for n = 4.  
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survival on longer targets (TO1.26, TO1.28, and TO1.30), and lower survival against shorter 

targets (TO1.18 and TO1.20 targets). The two groups of substrate differ by approximately one 

helical turn of DNA, meaning that the preferred CNNNG motif would be presented on the same 

face of substrate even though the motif is closer to the I-OnuI E1 binding site on the shorter targets. 

Similar periodic cleavage patterns have been observed in vitro with I-TevI on substrates with a 

displaced CNNNG motif (36). This result also implies that the N-terminus of I-OnuI possesses 

inherent flexibility to allow the I-TevI nuclease domain to search out the CNNNG motif, in contrast 

to the ruler-like behaviour of the Tev-ZFE constructs, likely because the zinc finger N-terminus is 

inflexible. Importantly, the Tev-Onu fusions were not active against the TZ-ryA zinc finger 

substrates (Table S2.2), showing that the LHE, and not the I-TevI linker, directs DNA targeting. 

Survival was also dependent on an active I-TevI nuclease domain, as TevR27A fusions in the 

context of the I-OnuI E22Q mutant did not survive (Fig. 2.4D). Conversely, the targeting and 

activity of wild-type I-OnuI E1 was not affected by fusion of the I-TevI domain, as the TevR27A-

OnuWT fusions survived against TO substrates (Fig. 2.4D).  

The apparent flexibility of the N-terminus and the greater specificity of I-OnuI prompted us to test 

fusions containing shorter fragments of the I-TevI nuclease domain (Fig. 2.4A). Based on structural 

and genetic data, we constructed TevS114-Onu, TevD127-Onu, TevN140-Onu, TevN169-Onu, 

and TevD184G2-Onu fusions, progressively removing amino acid residues of I-TevI that make 

specific base-pair contacts to the td substrate (28)(Fig. 2.4A). Notably, the TevS114, TevD127, 

TevN140 and TevN169 removed the -helix that binds in the minor groove, as well as residues 

shown by structural data to make base-specific contacts (28). The TevS114 fusion point lies at the 

boundary of the deletion tolerant region of the I-TevI linker, and represents a functionally minimal 

GIY-YIG nuclease domain (36, 37). We found that the shorter fusions were not active against the 

longer TO1.28 and TO1.30 substrates, yet displayed the same periodic activity on the shorter 

substrates (Fig. 2.4C and Table S2.2). A single exception was the TevD184G2 fusion that showed 

low survival against the TO1.22 substrates, against which no other fusion survived. No survival 

was observed on mutant substrates that contained single (CNNNA) or double (ANNNA) mutations 

in the CNNNG motif, recapitulating the necessity for an appropriately positioned CNNNG as seen 

with the Tev-ZFE fusions. 

2.3.5 A 5’-CNNNG-3’ cleavage motif is not limiting for targeting 
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Figure 2.4. Design and functionality of Tev-LHEs 

(A) Modeling of a Tev-Onu E1 fusion with DNA substrate (light green) using structures of the I-TevI 

catalytic domain in green (PDB 1MK0), the I-TevI DNA-binding domain co-crystal in blue (PDB 1I3J), 

and the I-OnuI co-crystal in red (PDB 3QQY). Shown are fusion points at which the I-TevI fragment has 

been shortened. (B) The Tev-Onu E1 (TO) substrate is colored according to the structural model. Shown is 

the top strand of the I-TevI td homing site substrate fused to the 5’ end of the Onu E1-binding site. The 

substrates are numbered from the first base of the td homing site sequence and differ by the deletion of td 

nucleotides at the junction of the td/Onu E1 sites. (C) Percent survival of Tev-LHEs in the bacterial two-

plasmid selection with various length target sites (TO1.12-1.30). All Tev-LHEs tested were in the I-OnuI 

E1 E22Q background. (D) Percent survival of TevR27A(N201G4)-OnuE1 and TevR27A(N201G4)-

OnuE1(E22Q) on TO1.30, TO1.30G5A, and TZ1.33. Data are plotted with standard deviation for n = 3. 
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An important consideration in the design of GIY-ZFEs or GIY-LHEs for genome-editing 

applications are the targeting requirements, notably the need for the CNNNG di-nucleotide 

cleavage motif (Fig. 2.5A). In a complex genome of ~ 3x 109 bp, the statistically predicted 

occurrence of the CNNNG motif is once every 15 bp assuming a 50% GC content. To determine 

if the frequency of the CNNNG motif would be limiting for targeting applications, we examined 

35 bp flanking 8,829 computationally predicted ZFN sites on zebrafish chromosome 1 for the 

occurrence of the CNNNG motif (38). As shown in Fig. 2.5B, the motif is highly represented at 

all positions within a 35-bp window relative to the ZFN sites. Of the 8,829 sites examined, 88% 

(7,845) of ZFN sites possessed at least one motif within 35 bp of the predicted binding site (Fig. 

2.5C). These requirements contrast sharply with those of the recently described PvuII-LHEs and 

PvuII-ZFNs that require the 6-bp 5’-CAGCTG-3’ PvuII site in addition to the LHE or ZF binding 

site (13, 14). Of the 8,829 ZFN sites, 97% lacked a PvuII site within the 35-bp window (Fig. S2.3). 

Thus, the requirement for a di-nucleotide cleavage motif in the context of a GIY-ZFE or GIY-LHE 

will not severely limit potential targeting sites. 

2.4 Discussion 

Here, we provide evidence that the GIY-YIG nuclease domain is a potential alternative to the 

currently used FokI nuclease domain for genome editing applications. We show that the I-TevI 

GIY-YIG nuclease domain is portable to two reprogrammable DNA-binding scaffolds, the 3-

member zinc fingers and LAGLIDADG homing endonucleases. The Tev-ZFE and Tev-LHE 

fusions are active in vitro and in vivo, with the activity of the Tev-ZFE in a yeast-based 

recombination assay on par with that of a characterized ZFN. We foresee the monomeric nature of 

the Tev-LHEs and Tev-ZFEs as a key advantage over existing ZFNs and TALENs, as a single 

fusion protein need be designed to target a given sequence, rather than two ZFNs or TALENs 

required to promote dimerization of the FokI nuclease domain (12). Moreover, the fact that the I-

TevI nuclease domain possesses a preferred cleavage motif adds another layer of specificity to 

targeting requirements, potentially limiting DSBs at off-target sites that do not posses the cleavage 

motif.  

One targeting consideration for chimeric GIY-YIG endonucleases is the DNA sequence 

requirement of the I-TevI linker. The I-TevI linker is a complex structure, consisting of defined 

structural elements with distinct roles in I-TevI function (28, 34, 36). The primary role of the linker  
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Figure 2.5: Cleavage requirements do not limit GIY-ZFE and GIY-LHE applicability  

(A) A diverse set of monomeric and sequence specific reagents can be generated by fusing distinct 

GIY-YIG domain linker lengths to engineered DNA-binding platforms, including zinc-finger 

arrays and inactive LAGLIDADGs. (B) Shown is the distribution of the CNNNG motif in a 35-bp 

window flanking 8,829 predicted ZFN sites on zebrafish chromosome 1. The number of 

occurences of the ‘C’ of the motif at each distance is indicated. (C) Unique ZFN sites were grouped 

according to the number of occurences of the CNNNG motif in the 35-bp window. The red line is 

the expected number of ZFN sites for each group based on a binomial distribution.  
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is to position the nuclease domain on substrate for cleavage at the CNNNG motif, which is found 

at a defined distance from the binding site on naturally occurring I-TevI substrates. However, the 

linker can direct the nuclease domain in vitro to search out displaced CNNNG motifs on both 

native and non-native substrates with insertions or deletions, albeit with reduced cleavage 

efficiency. Our Tev-LHE fusions recapitulate this distance versus sequence behaviour in vivo, as 

the fusions can cleave displaced CNNNG motifs with a periodicity that parallels the helical nature 

of DNA. We partially attribute this ability of the Tev-Onu fusions to the flexible N-terminus of I-

OnuI. The substrate flexibility of different length Tev-Onu fusions is an important consideration 

for targeting, as CNNNG motifs at various positions relative to the LHE binding site would be 

accessible by the choice of the appropriate Tev-LHE fusion. In contrast, the apparently inflexible 

N-terminus of the 3-member zinc fingers constrains cleavage to a distance of 33-36 bp from the 

ryA-binding site, mimicking the spacing of the CNNNG motif on native td substrate. Our longest 

Tev-ZFE and Tev-LHE fusions encompass all the known elements of the I-TevI linker that make 

multiple base-specific and non-specific contacts to DNA (28). However, biochemical studies 

revealed that I-TevI retains significant cleavage activity on substrates with multiple substitutions 

in the central region of its cognate DNA substrate that is contacted by the linker, equivalent to 

positions 6-33 of our longest chimeric substrates (39). The shortest Tev-LHE fusions do not 

contain any linker elements that are known to make base-specific DNA contacts, and cleave only 

at the preferred CNNNG motif. This observation implies that the I-TevI linker may contact 

substrate nucleotides adjacent to the CNNNG motif. Potential contacts may play a role in the 

positioning of the nuclease domain, rather than being necessary for cleavage, and any preference 

may be related to regulating the position of the nuclease domain on substrate or the maintenance 

of DNA-structure (36).    

Future work on Tev-ZFEs and Tev-LHEs will require a detailed dissection of binding affinity and 

specificity, and characterization of cellular toxicity that results from cleavage at off-target sites. In 

their current form, the targeting specificity of the Tev-ZFEs is a function of the 3-zinc finger 

domain, which could be further enhanced by addition of zinc fingers to generate a 4-, 5-, or 6-zinc 

finger fusion, as has been done with a variety of ZFNs (40). In contrast, the ~18-bp specificity of 

LHEs is sufficient to direct targeting and cleavage at endogenous loci in human cells. LHEs, 

however, are tolerant of nucleotide substitutions within their recognition sequence, and I-OnuI E1 

cleaves off-target sites that differ by one or two nucleotide substitutions (25). In the context of 
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Tev-LHEs, decoupling of DNA-cleavage and DNA-binding activity by using a catalytically dead 

LHE scaffold, combined with the requirement for a preferred I-TevI CNNNG cleavage motif, 

would significantly reduce cleavage at off-target sites (Fig. S2.4). Another advantage of the 

decoupled activities of Tev-LHEs is that they would not require re-optimization of catalytic 

activity that is often necessary in LHEs that have been reprogrammed to bind non-native target 

sites (25, 41). Similar to the exploration of alternative DNA-binding platforms (2), it is imperative 

to incorporate nuclease domains with distinct biochemical properties into the genome engineering 

pipeline to create highly precise tools. With further optimization, the I-TevI nuclease domain may 

become an alternative to the FokI-derived ZFNs and TALENs. 
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Chapter 3 

3 MegaTevs: Single chain dual-active site nucleases for efficient gene 

disruption 

The work presented in this chapter is reproduced (with permission, Appendix S1) from: 

Wolfs, J.M., Dasilva,M., Meister,S.E., Wang,X., Schild-Poulter,C. and Edgell,D.R. (2014) 

MegaTevs: Single-chain dual nucleases for efficient gene disruption. Nucleic Acids Res., 42, 

8816–8829. 

3.1 Introduction 

The rapid pace of development in the genome-editing field has led to a number of competing 

technologies, each with their benefits and limitations (1,2). The technologies can be broadly 

characterized based on the nuclease domain used to introduce a double-strand break (DSB) or nick 

at a target site. Two common reagents are zinc-finger nucleases (ZFNs) and TAL effectors 

nucleases (TALENs) that utilize the dimeric and non-specific FokI nuclease domain (3-6). Two 

head-to-head ZFN or TALENs pairs must be designed to target a single site, and positioned such 

that the FokI domains can dimerize to introduce a DSB (7-9), typically with 4-nt 5’ overhangs. 

The non-specific cleavage activity of the FokI nuclease domain facilitates targeting of a wide range 

of sequences, but can lead to off-target cleavage (10-12). The recently developed CRISPR/Cas9 

system has received significant attention due to the ease of programming targeting (13,14). In this 

system, a RNA guide molecule (the crRNA) targets the Cas9 nuclease to a DNA target through a 

RNA/DNA heteroduplex (15-18). A blunt-ended DSB results from two independent nicking 

reactions, one by a HNH nuclease domain, and the other by a RuvC-like domain. An alternative 

nuclease architecture utilizes the naturally occurring meganucleases, or LAGLIDADG family 

homing endonucleases, which are typically encoded within self-splicing group I introns and 

inteins, and are characterized by an extensive protein-DNA interface (19,20). The nuclease active 

site is formed at the interface of two parallel α-helices, with cleavage generating a DSB with 4-nt 

3’ overhangs. Recently, a number of recombinase (21,22) and sequence-specific nuclease domains 

have been developed as alternatives to the non-specific FokI nuclease domain (23-26). In 

particular, we and others showed that the monomeric and sequence tolerant GIY-YIG nuclease 

domain from the homing endonuclease I-TevI could be fused to zinc fingers, meganucleases, and 



50 
 

 
 

TAL effectors to create novel monomeric enzymes (27,28). The I-TevI-based reagents are active 

on substrates that contain a preferred CNNNG cleavage motif, generating 2-nt 3’ overhangs.    

Regardless of the technology, one common application of genome-editing nucleases is the 

generation of gene disruptions whereby mutagenic repair at the targeted DSB introduces frame-

shift mutations into a coding region. The mutagenic DNA repair events occur in the absence of an 

exogenously provided DNA repair template, and result mainly from the non-homologous end-

joining (NHEJ) pathway (29-31). However, many DSBs are repaired without mutation, as the 

compatible cohesive ends generated by the nucleases are re-ligated through the canonical NHEJ 

pathway, leading to a cycle of persistent cleavage and precise repair events that are non-productive 

for genome engineering. One strategy to bias repair events towards gene disruption is to co-express 

a DNA end-processing enzyme with the genome-editing nuclease (32,33). For instance, Trex2, a 

3’-5’ exonuclease, dramatically increases gene disruption when co-expressed with ZFNs, 

TALENs, and meganucleases by processing of DSBs before DNA repair. One potential limitation 

of this strategy is the requirement to transfect the Trex2 coding region with the ZFN, meganuclease 

or dimeric TALEN constructs, which may be problematic in size-constrained vectors. 

Overexpression of Trex2 could also enhance mutagenic repair at unwanted off-target sites, 

although no increases in cellular toxicity or off-target cleavages were observed with Trex2 over-

expressing cell lines (32,33). Gene disruption could be enhanced by targeting two reagents to the 

same locus, positioning two DSBs to effectively excise the intervening sequence and introduce a 

deletion. Such multiplexing of genome-editing regents is constrained by the dimeric architecture 

of the ZFNs and TALENs (34), and in the case of the CRISPR/Cas9 system, requires the use of 

nicking variants and dual-guide RNAs (35,36). 

Here, we propose an alternative strategy for gene disruption by coupling two different nuclease 

active sites into a single polypeptide. The MegaTev architecture is the fusion a meganuclease 

(Mega) with the nuclease domain derived from the GIY-YIG homing endonuclease I-TevI (Tev). 

The two active sites are positioned ~30-bp apart on DNA substrate, and generate two DSBs with 

non-compatible cohesive ends. The dual active MegaTev shows high gene disruption activity in 

HEK 293 cells without overexpression of DNA-end processing enzymes.  

3.2 Material and methods 
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3.2.1 Bacterial strains and plasmid construction 

Escherichia coli DH5α (New England Biolabs) was used for plasmid amplification, ER2566 (New 

England Biolabs) for protein expression and BW25141 (λDE3) for bacterial two-plasmid 

selections (Supplemental Table S1) (37). Tev-Onu and Tev-Ltr fusions were cloned into 

pACYCDuet-1 using 5’ NcoI and 3’ XhoI sites as previously described (27). For the yeast DNA 

repair assay (3,38), the Tev-Onu and Tev-Ltr genes were amplified using Phusion DNA 

polymerase (New England Biolabs) with a 3’ primer that introduced a C-terminal SV40 nuclear 

localization sequence (NLS) (primers are listed in Supplemental Table S2). PCR products were 

cloned into the NcoI/SalI sites of pGPD. The backbone target site plasmid for the yeast assay was 

created by amplifying a 300-bp fragment of the pTox plasmid and cloning it BglII/SpeI into 

pCP5.1 to create pCPTox. All target sites were subsequently cloned into pCPTox using in vivo 

homology directed repair. For mammalian assays, human codon optimized Tev-Onu fusions 

(synthesized by IDT-DNA) were PCR amplified and cloned PstI and RsrII into pExodus. Tev-Onu 

fusions were cloned in-frame with a mCherry gene linked by a T2A peptide sequence from Thosea 

asigna virus to separate the translated proteins. The TO15 target site was subcloned into the 

pMSCVpuro retroviral vector (Clontech) using BglII and XhoI sites to integrate into genomic 

DNA in HEK 293 cells. To generate target sites for episomal plasmid assays, substrates were 

cloned the SacI/XhoI sites of pcDNA3(+) vector. Constructs were confirmed by sequencing. 

3.2.2 In vitro randomized substrate selection 

A list of randomized target site oligonucleotides is found in Supplemental Table S2. The target 

site plasmid library for the randomized cleavage motif plus 3 bps of the spacer (N8) were 

constructed in the pSP72 backbone as described (39). The library complexity was estimated to be 

~ 6.4 x104 for the N8 library based on the number of independent transformants, and from analyses 

of next-generation sequencing data. 

Cleavage assays were performed with 23 nM of Tev169-Onu E22Q and 10 nM N8 plasmid in 

NEBuffer 3 (50 mM Tris-HCl pH 7.9, 100 mM NaCl, 10 mM MgCl2 and 1 mM DTT) at 37°C for 

5 mins. The Tev169-Onu fusions were purified as described (27) (Supplemental Fig. S1). Samples 

were prepared for Ion Torrent sequencing at the London Regional Genomics Centre by PCR 

amplification of the target site region from the input plasmid library, and from the plasmids isolated 



52 
 

 
 

after three rounds of selection using PWO (Roche) with barcoded primers. The sequencing data 

were parsed with custom Perl scripts that checked for anchor sequences either side of the 

randomized region, confirmed that the sequence between the anchors corresponding to the 

randomized region was 8 nts in length, and then extracted the randomized region for further 

analyses. For each round of selection, counts for each nucleotide j per position i were determined, 

and then converted to proportions using the centred log-ratio transformation 

Ci,j = log2(pi,j) − mean log2(pj) 

Nucleotide selection was then determined by taking the difference in proportions for each 

nucleotide per position between the final round of selection and the input library. A positive value 

indicates selection or enrichment for a particular nucleotide relative to the input library, and a 

negative value indicates selection against a particular nucleotide relative to the input. The 

enrichment values were plotted in heatmap format using R and ggplot2 (40,41), and enrichment 

values were considered significant if they were > 2 standard deviations from the mean enrichment 

value for each dataset. 

3.2.3 Cleavage assays on radiolabelled substrate 

In vitro cleavage assays were performed on internally radiolabelled substrates that were PCR 

amplified with [α-32P] dCTP. PCR products were loaded onto an 8% (w/v) polyacrylamide gel 

(29:1 acrylamide/bisacrylamide), run at 40 mA for ~1.5 hrs, gel purified, eluted overnight at 42°C 

in 5 mL of TE pH 8.0, and concentrated into 50- Cleavage reactions were performed 

in 20 μL reaction volumes with NEBuffer 3 (50 mM Tris-HCl pH 7.9, 100 mM NaCl, 10 mM 

MgCl2 and 1 mM DTT), 0.1 pmol of substrate and 2 pmols of Tev169-Onu fusion protein. 

Cleavage reactions were incubated at 37°C for 1, 5, 10 and 25 mins before stopping the reaction 

with 6 μL of 100 mM EDTA and 5 μL of loading dye containing 0.5% SDS. Mutant Tev169-Onu 

fusions were incubated for 1 hr at 37°C before stopping the reaction with 6 μL of 100 mM EDTA 

and 5 μL of loading dye containing 0.5% SDS. The entire reaction was loaded on a 15% (w/v) 

polyacrylamide gel (29:1 acrylamide/bisacrylamide) and electrophoresed at 40 mA for ~1.5 hrs. 

The gel was removed from the apparatus and soaked in 10% glycerol plus 8% acetic acid before 

drying on Whatman paper and visualized using a phosphorimager (GE Healthcare). 

3.2.4 Modified two-plasmid target site screen 
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The 64-triplet variants for the CNNNG cleavage motif were screened using a modified two-

plasmid selection (42). Transformants were gridded onto selective plates (LB plus 25 μg/mL 

chloramphenicol and 10 mM L-(+)-arabinose) and non-selective plates (LB plus 25 μg/mL 

chloramphenicol, 50 μL/mL kanamycin and 0.2% glucose) and incubated overnight at 37°C. 

Plasmids isolated from survivors and non-survivors were sequenced to identify the NNN variant 

of the CNNNG motif.  

3.2.5 Yeast β-galactosidase repair assay 

This assay was performed as described (27). Briefly, YPH499(a) containing target site constructs 

were mated in triplicate with YPH500(α) harbouring the MegaTev constructs. After an overnight 

selection for diploids, cells were assayed for β-galactosidase activity using orthonitrophenol 

(ONPG). Activity was normalized to either a validated homodimeric zinc-finger nuclease (Zif268) 

or the wild-type TP15 substrate depending on the assay. 

3.2.6 DdeI-resistance assays with plasmid substrates  

HEK 293T cells were cultured in Dulbecco’s modified eagle medium (DMEM) supplemented with 

10% fetal bovine serum (FBS). Approximately 2.5x106 million cells were seeded 24 hrs before 

transfection on 6 cm plates. Cells were co-transfected with 3 μg of pExodus Tev169-Onu E22Q 

and 3 μg of pcDNA3(+) TO15 using calcium phosphate and incubated at 37°C with 5% CO2 for 

16 hrs before changing media. After 48 hrs, plasmid was isolated from HEK 293T cells using the 

BioBasic miniprep kit. Target sites were PCR amplified, separated on a 1% agarose gel, and gel 

purified. After gel purification, 250 ng of PCR product was incubated with 2 U of DdeI (New 

England Biolabs) in NEBuffer2 for 1 hr at 37°C. Digests were electrophoresed on a 1.5% agarose 

gel, stained with ethidium bromide, and analyzed on an AlphaImagerTM3400 (Alpha Innotech). 

3.2.7 Surveyor assays with integrated targets 

Target site integration into HEK 293 cells was performed using the Phoenix Ampho retroviral 

packaging cell line. To accomplish this, 8 μg of pMSCV TO15 was transfected into Phoenix cells 

using calcium phosphate and incubated at 37°C with 5% CO2 for 48 hrs. Media was removed and 

filtered through a 0.45 μm filter into a falcon tube containing 6 μL of 4 mg/mL polybrene 
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(hexadimethrine bromide), and 6 mls of virus solution was used to infect HEK 293 cells to create 

the integrated cell line (HEK 293-TO15). Approximately 24 hrs before transfections, ~2.5x106 

HEK 293-TO15 cells were seeded on 6 cm plates, and subsequently transfected with 6 μg of 

pExodus Tev169-Onu or pExodus I-SceI. After 48 hrs, the HEK 293-TO15 cells were harvested 

and total genomic DNA isolated. Two rounds of nested PCR were performed, and gel purified 

PCR products were boiled at 95°C for 10min, then cooled slowly to 50°C before flash freezing at 

-20°C for 2 mins. To assay for indels, 200 ng of PCR product was incubated with 2 U of T7 

endonuclease I (New England Biolabs) in NEBuffer2 for 1 hr at 37°C, separated on a 1.5% agarose 

gel, and analyzed using an AlphaImagerTM3400 (Alpha Innotech). 

3.3 Results 

3.3.1 MegaTevs: Chimeric fusions of GIY-YIG and meganuclease components 

To determine if the I-TevI nuclease domain could function in the context of different 

meganucleases, we fused residues 1-169 of I-TevI (Tev169) to the native N-terminus of the 

catalytically inactive I-LtrI variant, I-LtrI E29Q, to create Tev169-Ltr E29Q (Tev-xLtr) (Fig. 

3.1A). Along with the previously constructed Tev169-Onu E22Q (Tev169-xOnu) (27), we assayed 

the activity of both MegaTevs using a yeast recombination assay where a target site is positioned 

between a partially duplicated lacZ gene. Cleavage of the target site induces the single-strand 

annealing pathway to reconstitute a functional lacZ gene resulting in β-galactosidase activity. We 

tested activity on hybrid target sites consisting of the native I-TevI CNNNG cleavage motif (5’-

CAACG-3’) and DNA spacer derived from the phage T4 thymidylate synthase (td) gene fused to 

either the I-OnuI or I-LtrI binding site (TO or TL, respectively) (Fig. 3.1A). The substrates differed 

in the length of the DNA spacer (from 11 to 21-bp) separating the I-TevI CNNNG cleavage motif 

from the I-OnuI or I-LtrI binding site. As shown in Figure 3.1B, Tev169-xOnu and Tev169-xLtr 

activity was highest with a DNA spacer length of 15 bp, agreeing with results from profiling DNA 

spacer length requirements of the Tev-xOnu construct in a bacterial two-plasmid survival assay 

(27). Furthermore, mutating the critical cleavage CNNNG motif to ANNNA abolished activity for 

both Tev169-xOnu and Tev169-xLtr on the 15-bp spacer substrate [TO15CS(-) and TL15CS(-)], 

demonstrating the I-TevI nuclease domain maintains cleavage specificity in the context of a 

meganuclease fusion. To demonstrate that the MegaTevs are directed to their target sites by the  
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Figure 3.1 MegaTev activity in yeast and HEK 293T cells 

(A) (top) Schematic for the modular MegaTev fusions, consisting of the I-TevI nuclease domain 

and various linker lengths fused to a meganuclease. Catalytically inactive R27A I-TevI and E22Q 

I-OnuI are denoted by xTev and xOnu, respectively. (bottom) The modular composition of the 

target site consisting of the 5’-CNNNG-3’ (CAACG) cleavage motif and variable length spacer 

region (11-21bp) from the native I-TevI thymidylate synthase (td) gene located upstream of the 

meganuclease binding site. The arrows highlight the top and bottom I-TevI cleavage sites. 

Highlighted in the box is the DdeI site adjacent to the I-TevI cleavage site used to identify 

mutagenic events in HEK 293T cells. (B) Boxplot of the activity for Tev169-xOnu (Top) and 

Tev169-xLtr (Bottom) on various DNA spacer lengths in the yeast recombination assay. TO15CS(-

), AAACA cleavage motif in the TO15 target site; TL15CS(-), AAACA cleavage motif in the 

TL15 target site; xLtr, a catalytically inactive E29Q I-LtrI. Activity was normalized to the 

homodimeric FokI-Zif268 fusion and data are plotted with SD for n=3. (C) DdeI digestion of PCR 

products to identify mutagenic events for an episomal target in HEK 293T cells. Shown is a 

representative agarose gel for DdeI digested PCR amplified target sites from plasmids isolated 48 

hrs post-transfection. Indicated by the asterisk is the DdeI cleavage-resistant product, with percent 

product indicated below each lane. (D) Cleavage-resistant products from HEK 293T cells 

transfected with Tev169-xOnu were cloned and analyzed by sequencing. The TO15 target site is 

highlighted in green and in the red box is the DdeI site used to identify cleavage resistant products. 

Deletions encompass the I-TevI cleavage site with the length of deletion illustrated by the dashed 

lines.  
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meganuclease and not the I-TevI nuclease domain and linker, we tested the Tev-xOnu against the 

TL15 target site, and tested Tev-xLtr against the TO15 target site. No activity was observed for 

either fusion on the reciprocal substrates (Fig. 3.1B), showing that the I-TevI nuclease domain 

does not direct targeting of the MegaTevs.  

To further demonstrate the genome-editing relevance of MegaTevs, we constructed a Tev169-

xOnu fusion codon-optimized for expression in human cells, and co-transfected it and the TO15 

target site cloned on a separate plasmid into HEK 293T cells. To monitor Tev-xOnu activity, we 

took advantage of a DdeI site that lies immediately downstream of the I-TevI CNNNG motif (Fig. 

3.1A). Plasmid substrates cleaved in vivo by the MegaTev would be subject to mutagenic non-

homologous end joining repair, destroying the DdeI site. Subsequent resistance of target sites to 

DdeI digestion after PCR amplification from genomic DNA reflects Tev-xOnu cleavage and 

mutagenic repair. Significantly, we observed 9% DdeI cleavage resistance for target sites 

amplified from unsorted HEK 293T cells co-transfected with Tev-xOnu and the TO15 target site 

(Fig 3.1C). In contrast, no DdeI resistant products were observed for cells transfected with the 

TO15 target site plasmid only. Cleavage resistant products were cloned and sequenced, revealing 

deletions that spanned the I-TevI cleavage site (Fig. 3.1D), demonstrating that MegaTevs function 

to induce mutagenic DNA repair in human cells. 

3.3.2 Dual active site MegaTevs for highly efficient targeted deletions 

A unique aspect of the MegaTevs is the fusion of two homing endonuclease active sites into a 

single polypeptide chain. Each active site is positioned such that the top-strand nicking sites are 

separated by ~30 bp on the TO15 DNA substrate. When both active sites are functional, this 

arrangement presents the opportunity to introduce two DSBs with different cohesive ends at a 

single site in a highly efficient and concerted process. As a proof of concept, we constructed and 

purified a Tev169-Onu dual nuclease where both the I-TevI and I-OnuI active sites are wild type 

(Tev169-Onu, Fig. 3.2A). Activity was tested in vitro utilizing an internally radiolabelled PCR 

product of 242-bp containing the TO15 target site. Cleavage by the dual nuclease would be evident 

by the release of 29-bp product corresponding to the internal sequence between the I-TevI and I-

OnuI cleavage sites (Fig. 3.2A). As shown in Figure 3.2B, the dual active MegaTev efficiently 

produced three products after 5 mins of digestion, with the accumulation of the internal product  
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Figure 3.2: Dual active site MegaTev activity in vitro  

(A) Schematic of substrate and cleavage products containing the TO15 target site indicated by a 

green-filled rectangle.  The black and red arrows indicate the top and bottom cleavage sites (CS) 

for I-TevI and I-OnuI, respectively. Black dashed lines indicate I-TevI cleavage products (TP1 and 

TP2), I-OnuI cleavage products (OP1 and OP2), and the red dashed line is the internal dual product 

(DP) from both I-TevI and I-OnuI cleavage. Sizes of the substrate and products are indicated in 

base pairs (bp). (B) Polyacrylamide gel of internally labeled TO15 PCR substrate (SUB) incubated 

with (+) or without (-) purified dual active Tev169-Onu and single-active site variants. The 

MegaTevs were incubated with substrate for the indicated times, and cleavage products are 

indicated on the right side of the gel based on their predicted sizes from panel (A). The sizing 

standard (in bp) was cropped from the gel image.  
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(IP) after 25 mins. Interestingly, cleavage by the I-TevI nuclease domain precedes cleavage by I-

OnuI, as I-TevI-specific products are detected at 1 min (TP1 and TP2), whereas I-OnuI products 

are detected after 5 mins (OP1 and OP2). Cleavage assays where I-TevI is active and I-OnuI is 

inactive (Tev169-xOnu) produced two products consistent with only I-TevI cleavage activity. 

Similarly, a catalytically inactive R27A I-TevI in the context an active I-OnuI fusion (xTev169-

Onu) produced two products consistent with I-OnuI cleavage. No cleavage was observed for the 

dual dead nuclease (inactive I-TevI R27A and I-OnuI E22Q, xTev-xOnu) after 1 hr of incubation. 

We also constructed and purified an analogous Tev169-Ltr dual nuclease, and tested for activity 

on an internally labeled PCR product containing the TL15 site (Supplemental Fig. S3.1). I-TevI-

specific cleavage products were observed before I-LtrI products, with the internal cleavage product 

visible after 5 mins of incubation. 

To extend these results to an in vivo context, we stably integrated the TO15 target site into the 

genome of HEK 293 cells, and assayed for activity after independent transfections with the 

Tev169-Onu dual nuclease and single nuclease variants. The expression constructs included the 

MegaTev open-reading frame (ORF), followed by an in-frame T2A peptide and mCherry ORF, 

allowing us to monitor MegaTev expression by mCherry levels (Fig. 3.3A). After 48 hours of 

incubation, the TO15 target site was PCR amplified and subject to digestion by T7 endonuclease 

I (T7EI) to evaluate the extent of MegaTev activity. T7EI was used rather than DdeI digestion to 

allow us to more accurately detect I-OnuI-specific events with the xTev-Onu construct. As shown 

in Figure 3B, the dual active Tev169-Onu showed 24 +/- 6% indels, whereas undetectable levels 

of cleavage were observed with both of the single active site Tev169-Onu fusions (xTev169-Onu 

and Tev169-xOnu), in spite of similar expression levels (Fig. 3.3A). It is important to note that we 

did not co-express DNA end processing enzymes, such as the 3’-5’ exonuclease Trex2, to enhance 

mutagenic repair at the TO15 cleavage site. Extremely low levels of cleavage by the xTev169-Onu 

variant, where I-OnuI E2 is active, is consistent with previous studies that required sorting for cells 

with high I-OnuI expression levels and multiple rounds of PCR enrichment to visualise I-OnuI E2 

cleavage (43).  

To confirm that cleavage by the dual MegaTev resulted in the deletion of the internal sequence 

between the I-TevI and I-OnuI cleavage sites, the PCR products that were resistant to cleavage by 

DdeI were cloned and sequenced. We recovered three sequences (M1, M2 and M3) that each  
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Figure 3.3: Dual active site MegaTev activity in HEK 293 cells 

 (A) Schematic of the expression construct, with the MegaTev ORF linked to mCherry through a 

T2A peptide. The CMV promoter was used to express the constructs. NLS, nuclear-localization 

signal. Representative contrast and fluorescence images for cells transfected with the indicated 

MegaTev fusions are shown below. (B) T7 endonuclease I (T7EI) digests of TO15 target site PCR 

products from HEK 293T cells transfected with the indicated MegaTevs. The extent of T7EI 

digestion is indicated below each lane. An asterisk indicates the T7EI cleavage products. (C) 

Summary of sequencing of PCR amplified TO15 target sites that were resistant to cleavage by 

DdeI. Three sequence types were found, indicated by M1, M2 and M3. The number of independent 

occurrences that each sequence type was identified from Tev169-Onu and Tev184-Onu 

transfections is indicated on the right.  
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occurred multiple times, and in each case the intervening sequence was deleted (Fig. 3.3C). We 

also transfected another dual active MegaTev construct containing the I-TevI 1-184 fragment fused 

to I-OnuI E2 (Tev184-Onu) into the HEK 293 cells, and observed a similar high level of activity 

(Fig. 3.3B). Sequencing of DdeI-resistant PCR fragments from the Tev184-Onu transfection 

revealed only the M1 sequence that was observed with the Tev184-Onu construct (Fig. 3.3C). One 

explanation for the recovered sequences is that the I-TevI 2-bp 3’-overhang is ligated directly to 

the I-OnuI 4-bp 3’-overhang with minimal processing and fill-in of the 2-bp gap.  

Collectively, our data show that the fusion of two homing endonuclease active sites into a single 

polypeptide chain creates a dual nuclease that can introduce two DSBs at a single target site. In 

both an in vitro and in vivo context, the two DSBs excise a short internal fragment, thus increasing 

the efficiency of targeted deletion without expression of DNA end-processing enzymes. 

3.3.3 Requirements of the I-TevI CNNNG cleavage motif in vivo 

Efficient cleavage by the I-TevI nuclease domain requires that the 5’-CNNNG-3’ cleavage motif 

be spaced 15 bp from the meganuclease binding site (Fig. 3.1B). The C and G of the motif are 

critical for cleavage, while the central three bases (the NNN triplet) exhibit a substantial degree of 

tolerance to substitution (44,45). To determine the tolerance of the central three bases to 

substitution in the context of the MegaTev fusion, we used a variation of a two-plasmid bacterial 

selection to rapidly assess survival of all 64 variants of the central triplet cloned into the toxic 

plasmid. In this assay (42), the 64 toxic plasmids were transformed into cells harbouring the 

Tev169-xOnu fusion, plated on non-selective plates, and then replica-gridded onto selective plates 

to induce expression of the ccdB gene on the toxic plasmid. Cells survive this challenge if Tev169-

xOnu can cleave and promote elimination of the toxic plasmid. The Tev169-xOnu fusion was used 

for this experiment to ensure that survival was due to I-TevI activity and not I-OnuI activity. Three 

different morphologies were observed on the selective plates; no growth (dead), colonies that grew 

to the same diameter on both the selective and non-selective plates (strong survivors), and colonies 

that grew on selective plates but were smaller in diameter than on non-selective plates and often 

formed a cauliflower morphology (weak survivors) (Supplemental Fig. S3.4). Weak survivors 

were determined to be target sites that promoted < 1% percent survival when assayed individually. 

Survival was plotted in a heatmap format (Fig. 3.4A) revealing that C/G rich triplets generally 

inhibited Tev169-xOnu survival.   
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Figure 3.4: MegaTev nucleotide preference within the CNNNG cleavage motif 

(A) The three nucleotides of the NNN triplet are labeled as 1, 2, and 3 from 5’ to 3’ within the 

CNNNG motif. Heat map of Tev169-xOnu activity on all 64 variants of the cleavage motif in the 

bacterial two-plasmid selection. The first nucleotide of the NNN triplet is plotted on the left axis, 

the second nucleotide of the NNN triplet on the bottom axis, and the third nucleotide on the right 

axis. (B) Heat map of the activity of Tev169-xOnu on all 64-nucleotide variants in the yeast -

galactosidase repair assay. The values are normalized to the wild-type sequence (AAC) and plotted 

on a log2 scale. The heatmap is labeled as in panel (A). (C) Boxplots depicting the log2 activity 

for NNN triplets that have 1, 2 or 3 nucleotide differences relative to the wild-type AAC sequence. 

For each boxplot, the upper and lower bounds of the boxes indicate the 25th and 75th percentile of 

the data, the solid horizontal bar indicates the median of the data, and the ends of the whiskers 

represent 1.5 times the interquartile range. Individual data points are shown as open circles, and 

data points that lie outside of the interquartile range (outliers) are shown as black points. (D) 

Boxplots of the influence of nucleotide identity at each of the three positions within the NNN motif 

on activity relative to the wild-type AAC sequence. The boxplots are labeled as in panel (C). 
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We also assayed all 64-triplet variants in the quantitative yeast-based lacZ repair assay, and plotted 

the activity for each triplet normalized to the activity of the wild-type AAC triplet on a log2 scale 

(Fig. 3.4B). In general, more substitutions within the triplet resulted in lower activity, however 

some triplets with 2 or 3 substitutions were as active as the wild-type AAC triplet (Fig. 3.4C). A/T 

rich target sites displayed activity on par with the wild type sequence. As with the bacterial two-

plasmid selection, triplets with a C and/or G in the first two positions supported lower β-

galactosidase activity, and triplets with a G in the third position were less active than other 

nucleotides at this position (Fig. 3.4D).  

3.3.4 MegaTevs selects for the appropriately spaced cleavage motif from a random 

substrate 

To determine the optimal sequence and spacing of the cleavage motif, we generated a plasmid 

library where the CAACG cleavage motif and three downstream base pairs were completely 

randomized (Fig. 3.5A, the N8 library). A round of in vitro selection with the N8 plasmid library 

consisted of in vitro digestion with purified Tev169-xOnu, isolation of linearized plasmid, re-

ligation and transformation into E.coli for amplification. After three rounds of selection, the input 

library and the final round of selection were sequenced using the Ion Torrent platform. After data 

processing, we first determined the proportion of all 16 possible dinucleotide combinations 

(ANNNA, ANNNC, ANNNG, etc) regardless of position within the N8 randomized region to 

ascertain if the MegaTev displayed a preference for the CNNNG motif. As shown in Figure 5A, 

the CNNNG motif was greatly enriched by round 1 relative to the other dinucleotide combinations, 

and predominated by round 3, indicating that CNNNG is the preferred motif. Although minor 

enrichment relative to the input library was observed for other dinucleotide combinations 

(ANNNA and ANNNT), these combinations do not support activity in cell-based assays, and are 

not considered relevant.  

We next analyzed the phasing of the CNNNG motif within the N8 randomized region for reads 

containing this motif. This analysis was undertaken as native I-TevI can cleave the wild-type 

CAACG motif that has been moved closer to the primary binding site (albeit with lower efficiency) 

(46). The statistical occurrence of the CNNNG motif is 1 in 15 bps, and would be expected to 

occur at the four possible positions within the input N8 library (C1:G5, C2:G6, C3:G7, and  
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Figure 3.5: MegaTev selects for an appropriately spaced cleavage motif 

(A) At top is a schematic of the TO15 substrate and N8 randomized library with the eight 

randomized positions colored in red. The randomized positions are labeled 1 to 8, with position 1 

corresponding to the C of the CNNNG cleavage motif. Shown below is a bar graph showing the 

fraction of reads with each of the 16 possible dinucleotide combinations. (B) Bar graph showing 

the fraction of reads with the CNNNG cleavage motif at positions C1:G5, C2:G6, C3:G7, and 

C4:G8 for the input library and selection rounds 1 and 3. (C) Heat map plotted on a log2 scale 

showing abundance of all 64 CNNNG motifs after three rounds of selection with the Tev169-xOnu 

fusion. The first, second and third nucleotide corresponds to the second, third and fourth nucleotide 

in the N8 library, respectively. (D) Correlation between the in vitro abundance from the selection 

experiments and in vivo activity in the yeast-based assay for each NNN triplet.  
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C4:G8). Indeed, we observed the CNNNG motif with approximately equal frequency at the four 

possible positions within the input N8 library (Fig. 3.5B, red bars). However, when the sequencing 

reads for selection rounds 1 and 3 were analyzed, we found an overwhelming preference for C and 

G at positions 1 and 5, respectively (Fig. 3.5B, blue and grey bars). This analysis confirms that the 

MegaTev is cleaving at correctly positioned CNNNG motifs within the N8 library, with the G of 

the motif positioned 15-bp from the LHE binding.  

Using sequencing reads that possessed the CNNNG motif at positions 1 and 5 of the randomized 

region, we determined the abundance of each NNN triplet within the motif and plotted the log2 

abundance in a heatmap format (Fig. 3.5C). As anticipated, A/T rich triplets were preferred over 

G/C rich triplets. This analysis also facilitated a comparison to the activity of each NNN triplet in 

the yeast DNA repair assay (Fig. 3.4B). Plotting the normalized abundance of each NNN triplet 

from the sequencing data versus the activity in the yeast-based assay showed that A/T rich NNN 

triplets supported higher activity relative to G/C rich sequences in both datasets (Fig. 3.5D). 

3.3.5 Nucleotide preference within the CNNNG motif and at flanking positions 

We next analyzed nucleotide preferences at each position in the N8 library after the third round of 

selection. Nucleotide preferences were determined by calculating the proportional abundance of 

each nucleotide at each position for both the input library and round 3 selection, and then plotting 

the difference (enrichment) between round 3 and input as a heatmap (Fig. 3.6A). One advantage 

of this analysis is that it corrects for nucleotide bias in the input library. As shown in Figure 6A, 

apart from the expected C and G preference at positions 1 and 5, the strongest preference was 

observed at position 7, where T or A were selected for while a C or G were selected against. 

Interestingly, in four of the positions (3, 6, 7, and 8), the wild-type nucleotide was not preferred, 

implying that the native td target site of I-TevI is not the optimal substrate.  

To provide an in vivo context for the nucleotide preferences observed in the flanking DNA 

sequence, we independently made point substitutions in the TO15 substrate at positions 6 and 7, 

and tested their activity in the yeast β-galactosidase assay (Fig. 3.6B). Substitutions to A or T at 

position 6 did not drastically reduce activity as compared to the TO15 substrate, while the C6G 

substitution showed a modest increase in activity. At position 7, the T7A substitution reduced  
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Figure 3.6: Nucleotide preference within the N8 randomized library  

(A) Heatmap for nucleotide enrichment after three rounds of selection with the Tev169-xOnu 

fusion. Dashed boxes represent enrichment values that are greater than two standard deviations 

away from the mean of enrichment values at all positions. The wild-type sequence is indicated at 

each position.  (B) Validation of nucleotide preferences within the N8 randomized region. Boxplot 

of Tev169-xOnu activity of on TO15 substrates with point mutants indicated by underlined, and 

italicized bold-type font. Activity is normalized to Tev169-xOnu on the TO15 substrate. Each 

mutant was assayed at least three times. Sequences are displayed on the left of the graph with the 

mutations bolded and underlined. 
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activity by half, while the T7G substitution reduced activity to background levels, supporting the 

enrichment preferences seen in the in vitro data.  

Collectively, these data show that the MegaTev strongly prefers to cleave CNNNG motifs spaced 

15-bp from the meganuclease-binding site, agreeing with previous studies on spacing of the 

cleavage motif (27). We also found that the I-TevI nuclease domain is tolerant of multiple 

substitutions within the CNNNG motif, with many variants cleaved better than the wild-type AAC 

triplet, but in general preferring A/T rich sequences. Defining a strict consensus sequence within 

the motif is complicated by the observation of different levels of activity for each of the 64-possible 

CNNNG variants. 

3.3.6 Testing for off-target cleavage 

Off-target cleavage is a significant concern for genome-editing endonucleases. To assess off-target 

cleavage of the MegaTev architecture, we took advantage of previously predicted off-targets for 

the I-OnuI E2 variant (the backbone meganuclease for our MegaTevs) (43). The I-OnuI E2 variant 

was optimized to cleave a site within the human MAO-B gene, and a CNNNG motif is positioned 

11-bp upstream of the I-OnuI E2 binding site. A number of the top-ranked off-target sites also 

possess CNNNG motifs within 30-bp of the I-OnuI E2 binding site (Fig. 3.7A), suggesting that 

they might be substrates for the I-TevI nuclease domain. These sites differ in the spacing of the 

CNNNG motif from the I-OnuI E2 binding site, and also in the NNN triplet of the cleavage motif. 

We tested for cleavage at these sites using T7EI digestion of PCR products amplified from HEK 

293 cells that were transfected with the dual active Tev169-Onu MegaTev. As shown in Figure 

3.7B, we did not observe any T7EI digestion products at these sites, whereas robust T7EI digestion 

was seen at the integrated TO15 site. We attribute undetectable (or extremely low) activity at these 

sites to the sub-optimal spacing of the CNNNG motif from the I-OnuI site, and to the presence of 

NNN triplets that are weakly active as judged by the yeast DNA repair assay. While the sites tested 

represent a small number of the potential off-target sites, our data suggest that very low levels of 

off-target cleavage will be observed with the MegaTev at off-target sites where the CNNNG motif 

is not optimally spaced, or where the NNN central triplet does not support robust activity. 
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Figure 3.7: Surveyor assay for off-target cleavage.   

(A) Schematic showing the TO15, MAO-B and three off-target sites. The I-OnuI E2 site is boxed, 

with the nucleotide differences in pink lower case font, while the upstream sequences are in lower 

case black font. Numbering is relative to the 5’ end of the I-OnuI binding site. Potential CNNNG 

cleavage motifs are highlighted in red boxes. (B) T7 endonuclease I (T7EI) digests of PCR-

products corresponding to the indicated target sites amplified from HEK 293 cells transfected the 

dual active site MegaTev. The extent of T7EI cleavage is indicated below each lane.  
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3.4 Discussion 

A number of characteristics of the I-TevI nuclease domain and meganucleases make them well 

suited for genome-editing applications. Of relevance to the current study is the fact that cleavage 

by each enzyme generates different length non-cohesive overhangs (2-nt 3’ overhangs for I-TevI, 

and 4-nt 3’ overhangs for meganucleases) (47-49). I-TevI remains bound to its cleavage products, 

and protects DNA ends from exonucleolytic resection, affecting the extent and directionality of 

DNA repair events (50). Kinetic studies have also shown that product release by meganucleases is 

rate limiting (51), and denaturation of meganuclease-DNA complexes is often required to resolve 

cleavage products in agarose gels (52). Thus, the efficiency of the dual active MegaTevs in HEK 

293 cells can in part be attributed to the non-compatible cohesive ends that are sequestered from 

the NHEJ repair machinery. Sequencing of cleaved targets sites largely supports this hypothesis, 

as the DSBs are repaired with minimal processing without evidence of deletions up- or down-

stream of the I-TevI and I-OnuI cleavage sites. End-sequestration by the single-chain MegaTev 

would also minimize DNA rearrangements such as translocations, inversions or duplications, as is 

observed with simultaneous expression of multiple genome-editing nucleases in multiplexing 

experiments. 

The MegaTevs used in this study were targeted to model DNA substrates. To be generally useful, 

the MegaTev platform must be able to target a range of sequences. Engineering meganuclease 

specificity has been greatly accelerated by a detailed understanding of protein-DNA contacts 

through crystallographic, computational, and biochemical studies, and by improvements in 

screening methodologies (43,53-56). Recent efforts suggest that 1 in 300 bp can be targeted by the 

current set of meganucleases for which detailed protein-DNA contacts maps are available. The 

targeting range of the MegaTev platform can also be increased by fusing the I-TevI domain to 

different meganucleases, as shown with the I-LtrI fusions. A series of tailored enzymes that can 

target sites with a variety of nucleotide compositions could also be achieved by fusing different 

GIY-YIG nuclease domains with distinct cleavage preferences to the same meganuclease 

backbone. Our preliminary studies in this regard have generated active enzymes by fusion of the 

GIY-YIG domain from the I-TuIa homing endonuclease to I-OnuI (J.M.W and D.R.E, unpublished 

results) (57).  
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Precise targeting and prediction of off-target sites will also require a detailed understanding of the 

nucleotide requirements of the GIY-YIG nuclease domain. In the case of I-TevI, past studies 

revealed that the nuclease domain required a 5’-CNNNG-3’ cleavage motif (45,46), and that the 

linker was tolerant of multiple substitutions within the DNA spacer that separates the cleavage 

motif from binding site (44). More recently, the I-TevI cleavage motif was defined as CDDHGS 

(D=A,G,T;H=A,C,T;S=G or C) in the context of a monomeric TALEN architecture (cTALENs) 

(28). This consensus sequence differs from our observed nucleotide preferences, and one reason 

may be that the cTALEN study examined cleavage preference within a CNNNG motif positioned 

7-bp from the TALE binding site. Our screen of DNA spacer length variation, in contrast, shows 

a clear spacing preference of 15-bp with MegaTevs derived from both I-OnuI and I-LtrI (Fig. 1B). 

Thus, the cTALEN study may in fact be describing nucleotide preference within the DNA spacer 

region that is contacted by the I-TevI linker. Our results also revealed a wide range of tolerance to 

substitution within the CNNNG motif, with some NNN triplets cleaved more efficiently than the 

wild-type AAC sequence. We anticipate that both the spacing and sequence requirement of the 

CNNNG motif will “de-toxify” off-target cleavage, for the simple reason that not all off-target 

sites will have a permissive motif positioned appropriately from the meganuclease binding site. 

Indeed, our data, while representing a small number of potential off-target sites, revealed no 

detectable cleavage by T7EI assays. 

In summary, the MegaTevs represent a novel fusion of two different active sites to generate a dual 

nuclease with a high efficiency of gene disruption without the need to overexpress DNA end-

processing enzymes. The compact size of the MegaTev, coupled with the high fidelity imparted 

by the specificity of the I-TevI and meganuclease domains, makes them suitable for genome-

engineering applications where minimizing off-target effects is paramount.    
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Chapter 4 

4 Biasing genome-editing events towards precise length deletions with 

RNA-guided TevCas9 dual nuclease (Part 1: I-TevI variants) 

The work presented in this chapter is reproduced (with permission, Appendix S1) from: 

Wolfs, J.M., Hamilton, T.A., Lant, J.T, Laforet, M., Zhang, J., Salemi, L., Gloor, G.B., 

Schild-Poulter,C. and Edgell,D.R. (2016) Biasing genome-editing events towards precise length 

deletions with RNA-guided TevCas9 dual nuclease. PNAS (pii: 201616343. [Epub ahead of 

print]) 

4.1 Introduction 

Genome editing with engineered nucleases has revolutionized the targeted manipulation of the 

genomes of organisms ranging from bacteria to mammals 1. Zinc finger nucleases (ZFNs) 2 

LADLIDADG homing endonucleases (also called LHEs or meganucleases) 3, transcription-like 

effector nucleases (TALENs) 4, and nucleases based on the clustered regularly interspersed short 

palindromic repeat (CRISPR) systems all represent programmable genome-editing nucleases that 

have successfully been used to introduce targeted changes in genomes 5. One of the most common 

applications of genome-editing nucleases is gene knockouts that are performed in the absence of 

an exogenously added repair template. The nuclease-introduced break is repaired by the mutagenic 

non-homologous end-joining pathway (mNHEJ) 6-8, resulting in small insertion or deletions 

(indels) that, if targeted to an exon, can change the reading frame to produce a non-functional 

protein. The efficiency of gene knockouts is dependent on multiple factors, including the 

chromatin context of the target site 9,10, the cell cycle stage 11, and the nature of the DNA overhangs 

generated by the nuclease 12. In the case of the commonly used Cas9 (CRISPR-associated protein 

9), robust activity coupled with blunt ends generated upon DNA cleavage often leads to a persistent 

cycle of re-ligation of the DNA ends and regeneration of the target site that will continue until 

sufficient modification of the target site by mNHEJ prevents cleavage, creating a heterogeneous 

population of modified sites 13. Although more commonly used for homology-directed repair 

applications 14, paired Cas9 nickase variants can also be used to create gene knockouts. 

We previously created a modular dual-active site nuclease that introduces two DSBs with non-

compatible DNA ends at a target site to bias repair events towards deletion of the intervening DNA 

segment between the two cleavage sites, escaping the cycles of persistent cleavage and re-ligation 
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cycle 15. We fused the monomeric nuclease and linker domains of the sequence-tolerant GIY-YIG 

homing endonuclease I-TevI to the N-terminus of the I-OnuI LAGLIDADG homing endonuclease 

(or meganuclease), which acts as both a targeting and nuclease domain, creating MegaTevs (Fig. 

4.1) 16-18. The I-TevI nuclease domain generates a 2-nt 3’ overhang 19, whereas the meganuclease 

generates a non-compatible 4-nt 3’ overhang 17. Using model DNA substrates derived from the 

native I-TevI thymidylate synthase (td) and meganuclease target sites, we showed that MegaTevs 

efficiently excises a 30-bp fragment from the target site in HEK 293 cells with minimal 

exonucleolytic processing 15. However, the utility of the MegaTev platform is limited by re-

engineering of meganuclease specificity on a case-by-base basis, and by uncharacterized 

interactions of the I-TevI linker domain with the DNA spacer region that are critical for positioning 

of the nuclease domain at the 5’-CNNNG-3’ cleavage site 20,21 (Fig. 4.1). 

Here, we address these limitations by profiling the sequence requirements of the I-TevI linker-

DNA spacer interactions, identifying nucleotide positions critical for activity and delineating a 

putative linker-DNA code. Directed evolution experiments isolated I-TevI linker variants with 

activity on DNA spacers not cleaved by the wild-type linker, generating a set of variants with 

defined DNA spacer preferences. We created MegaTev and Tev-mTALENs fusions with the new 

I-TevI linker variants to demonstrate that the variants maintain identified target specificity across 

different DNA-binding architectures. In addition, we used the I-TevI DNA code to develop a 

simple prediction module for novel cleavage site identification. 

4.2 Material and Methods 

4.2.1 Bacterial strains and plasmid construction 

Escherichia coli DH5α (New England Biolabs) was used for plasmid manipulations, and E. coli 

ER2566 (New England Biolabs) was used for protein expression. Unless stated, E. coli strains 

were grown in Luria-Bertani (LB) media. E. coli BW25141(DE3) was used for all two-plasmid 

selection assays (Supplementary Table S1) 50. MegaTev constructs that included residues 1-169 or 

1-184 of I-TevI were cloned into pACYCDuet-1 using the NcoI and XhoI sites as previously 

described 18. For the bacterial two-plasmid selection, MegaTev target sites were cloned into pTox 

using the XbaI and SphI cloning sites. The low mutational density MegaTev linker library  
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Figure 4.1: Schematic of modular genome-editing nucleases based on the I-TevI nuclease and 

linker domains.  

The corresponding interactions of each of the protein modules with DNA substrate is shown below. 

The cleavage motif and DNA spacer region are derived from bases –27 to –9 of the native I-TevI 

td substrate, but are renumbered here with +1 indicating the first base (C) of the top strand of the 

DNA spacer. Known interactions of I-TevI with the DNA spacer region based on genetic and 

biochemical data is summarized.  
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encompassing amino acids 104-164 of I-TevI were constructed using Mutazyme II Polymerase 

(Agilent Technologies) with an estimated complexity of 1.4 x 105 and a mutation frequency of 1-

3 base pairs per clone. A library with a higher mutational density was constructured with a 

mutation frequency of 3-10 base pairs per clone using mutagenic dNTPs (TriLink 

Biotechnologies) with an estimated library complexity of 5.7 x 104. Each linker library pool was 

cloned into pACYCDuet-1 harbouring a MegaTev open reading frame using the PciI and BamHI 

sites located in the I-TevI linker region. To create TevCas9 fusions, a human codon optimized 

version of I-TevI (amino acids 1-169) with a GGSGGS peptide at the C-terminal end was fused to 

the N-terminus of Cas9 using SOEing PCR, and cloned into the AgeI and BglII sites of pX458 

(Addgene). The TevCas9 gRNAs were cloned into the BbsI site of pX458, or into the XbaI and 

SphI sites of pTox. All constructs were confirmed by sequencing. 

4.2.2 In vitro enrichment assay  

Target site oligonucleotides containing a randomized 12 bp spacer in the context of a td target site 

were cloned into the pSP72 vector as previously described to create pSP72-N12 39. MegaTev 

purification was performed as previously described 18. Cleavage assays were performed with 360 

nM or 1100 nM purified MegaTev and 10 nM pSP72-N15 plasmid in cleavage buffer (50 mM 

Tris-HCl pH 7.9, 300 mM NaCl, 10 mM MgCl2 and 1 mM dithiothereitol (DTT)) at 37oC for 5 

min. Subsequent rounds of enrichment was performed as previously described 39. Samples were 

prepared for Illumina sequencing at the London Regional Genomics Centre by PCR amplification 

of target site from both the input and round 3 enrichment samples using Phusion polymerase (New 

England Biolabs) with barcoded primers. Custom Perl scripts were used to separate the Illumina 

reads by barcode and to extract the randomized region. Enrichment was determined by using the 

center logarithmic transformation of the nucleotide counts 51, and by taking the difference between 

the enriched and input values per nucleotide per position. 

4.2.3 Bacterial two-plasmid selection 

The bacterial two-plasmid selection was performed with single MegaTev constructs or with 

MegaTev linker libraries as previously described 15,18. Briefly, 50 ng of MegaTev pEndo vector 

was transformed into E. coli BW25141 cells harbouring the pTox plasmid containing the target 

site of choice. Cells were recovered at 37 oC for 1.5 hrs and aliquots plated on selective (LB media 
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plus 25 μg/ml chloramphenicol and 10 mM L-(+)-arabinose) and non-selective plates (LB media 

plus 25 μg/ml chloramphenicol, 50 μg/ml kanamycin and 0.2% glucose). Survival was expressed 

as the ratio of the number of colonies on the selective plate versus the number of colonies on the 

non-selective plate. The MegaTev mutant linker libraries were screened either on solid media, or 

in liquid LB media under selective and non-selective conditions. Identified MegaTev linker 

variants were re-cloned into pEndo and the selection repeated on the appropriate target sites. 

4.3 Results 

4.3.1 Identifying and validating I-TevI nucleotide preference in the DNA spacer  

To determine nucleotide preference of the I-TevI linker for the DNA spacer region, we performed 

sequential in vitro enrichment with the Tev169-xOnu MegaTev nuclease (hereafter MegaTev) and 

a plasmid library containing a randomized 12-bp DNA spacer (Fig. 4.2A). In this construct, I-OnuI 

cleavage is inactivated by an E22Q mutation (represented by an xOnu), meaning that cleavage can 

only occur if the I-TevI linker interacts with the DNA spacer to correctly position the I-TevI 

nuclease domain on substrate. Supercoiled plasmid was incubated with purified MegaTev protein 

(consisting of I-TevI residues 1-169) under two different protein:DNA ratios. Substrates that were 

linearized by the MegaTev were isolated from an agarose gel, re-circularized by ligation and 

amplified in E. coli. After two rounds of enrichment, the DNA spacer region was PCR amplified 

and the nucleotide content at each position relative to the input DNA library was readout by 

Illumina sequencing. As shown in Fig. 4.2B, similar nucleotide enrichment was observed at each 

position under both protein:DNA conditions, differing only in the higher enrichment values for the 

more stringent protein:DNA conditions (~30:1 ratio MegaTev to substrate). We also tested a 

MegaTev construct with a longer I-TevI linker fragment encompassing residues 1-184, and found 

similar nucleotide enrichment in the DNA spacer (Supplementary Figure S4.1). In general, I-TevI 

tolerated a number of nucleotide substitutions at each position, with the exception of position 8 

where only G was enriched relative to the input pool.  

To extend these findings to an in vivo environment, we used a well-characterized two-plasmid 

selection system in E. coli where survival is promoted by the MegaTev endonuclease (expressed 

on pEndo) cleaving the target site cloned on a second plasmid that also encodes a DNA gyrase 

toxin (pTox) (Fig. 4.2C) 23. We made single substitutions in critical positions of the td wild-type  
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Figure 4.2: Determination of I-TevI nucleotide preference in the DNA spacer  

(A) Schematic of the MegaTev DNA substrate that contains the I-TevI cleavage motif, DNA 

spacer, and meganuclease (I-OnuI) binding site. The randomized bases of the DNA spacer region 

are represented by N. (B) Profiling of nucleotide preference in the DNA spacer using sequential 

enrichment of a randomized DNA spacer substrate. Two separate enrichment experiments were 

performed with different protein-DNA ratios. Nucleotide preference in the DNA spacer region is 

displayed as proportional log2 enrichment of each nucleotide at each position relative to the 

abundance in the input pool. Black dots indicate the wild-type nucleotide in the td DNA spacer at 

each position. (C) Schematic of the two-plasmid survival assay, and conditions that promote 

growth (circled green check mark) or no growth (circled red X). (D) Survival in the two-plasmid 

assay of the wild-type MegaTev against DNA substrates with single substitutions in the DNA 

spacer. Data is presented as mean of three independent experiments with error reported as standard 

deviation.   
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DNA spacer in the pTox plasmid, and individually tested these against the MegaTev (Fig. 4.2D). 

In this experiment, MegaTev activity is readout out as the ratio of colonies on non-selective versus 

selective plates, typically expressed as a percentage. The results of these experiments were in 

agreement with the in vitro enrichment data, as we observed survival on substrates with T2A, T6C 

or A9T substitutions. No survival was observed on any of the position 8 substitutions, agreeing 

with the singular preference for G at this position.  

4.3.2 Position G8 of the DNA spacer acts as an anchor for the linker  

The above data implicate G at position 8 of the DNA spacer as a critical determinant for linker 

interactions, possibly by acting as an anchor point for interactions with the DNA spacer such that 

the linker can correctly position the nuclease domain at the 5’-CNNNG-3’ cleavage motif, as is 

observed with the related enzyme I-BmoI. One prediction of the linker-anchor model is that the 

distance between the anchor G8 and the 5’-CNNNG-3’ cleavage motif should remain constant (8 

base pairs, measured from G8 to the G of the cleavage motif) independent of the position of the 

G8 anchor (Fig. 4.3). We tested this model by making substrates with a wild-type DNA spacer 

length of 15 bp, as well as two substrates that differed by +/- 1 base pairs, creating 14-bp and 16-

bp DNA spacers, respectively (Fig. 4.3). To determine if the position of the anchor G8 residue 

influenced selection of a CNNNG cleavage motif by the nuclease domain, the substrates were 

randomized in the predicted cleavage site region, allowing us to readout the distance (or phasing) 

between the G of observed CNNNG motifs and the anchor G8 residue by Illumina sequencing 

after in vitro enrichment. We found that regardless of the DNA substrate, the preferred spacing 

between the G8 anchor base and the cleavage motif was 8 base pairs (Fig. 4.3) as opposed to the 

random distribution of spacing seen in the input pools (Supplemental Fig. S4.2). Illumina 

sequencing also allowed us to determine nucleotide enrichment in the randomized region of each 

substrate, and we observed strikingly similar patterns between the substrates (Fig. 4.3). In 

particular, we noted a strong preference for A or T two base pairs downstream of the G of the 

CNNNG motif, corresponding to position 2 of the DNA spacer region (Fig. 4.3). This finding 

indicates that sequence preference at the critical position 2 of the DNA spacer is maintained 

regardless of the position of the cleavage motif.   

Collectively, these data show that I-TevI linker interactions with the DNA spacer include both 

sequence-preference and sequence-spacing requirements. Position G8 is critical for linker  
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Figure 4.3: Determination of I-TevI distance preference from G8 position in the DNA spacer  

(Top) Schematic of substrates used to determine the effect of positioning of the G8 anchor on 

cleavage motif spacing. (Bottom) For each substrate examined, the position of the G of the 

CNNNG cleavage motif relative to the G8 anchor nucleotide (highlighted by red rectangle) is 

plotted as the proportion of Illumina reads. Note that the maximum distance of the G of the 

cleavage motif from the G8 position is determined by the length of the randomized region. Below 

each substrate is a heat map and sequence logos plot showing nucleotide enrichment at each 

position in the randomized region relative to the starting input. Position 6 of the randomized region 

is equivalent to position 2 of the DNA spacer in Figure 4.2.   
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interactions, possibly by acting as an anchor for the linker such that the nuclease domain is 

positioned 8 base pairs upstream. Our data also agree with previous footprinting, modification 

interference assays, and low-resolution enrichment studies showing that positions 2-10 of the DNA 

spacer are important for I-TevI-DNA interactions 24-26 

4.3.3 Isolation of I-TevI linker variants that can cleave substrates with substitutions 

in critical positions 

The identification of nucleotide positions in the DNA spacer critical for I-TevI linker interactions 

prompted us to screen for I-TevI linker variants that could promote cleavage of substrates with 

substitutions in these positions (summarized in Fig. 4.4A). We used two strategies to isolate I-TevI 

linker variants. First, we created a mutagenic library encompassing amino acid residues 104 to 169 

of the I-TevI linker with on average 1-3 amino acids substitutions per clone. This library was 

screened using the two-plasmid genetic selection system on DNA substrates with single nucleotide 

substitutions in positions 2, 6, 8 and 9. This experiment resulted in the identification of the K135N 

linker variant on the T6G substrate, and the S134G variant on the A9G substrate. No viable clones 

were recovered on the other substrates. A library with a higher substitution rate (3-10 amino acid 

substitutions per clone), was also screened against the singly substituted substrates, resulting in 

the identification of the linker variants K135R/N140S, S134G/N140S, K135R/N140S/Q158R, 

K118R/K135R/N140S. All of these variants were recovered on the G8A substrate, but subsequent 

testing revealed survival on G8T substrates for some of the variants (Fig. 4.4B).  

Our second strategy used a hybrid non-native DNA spacer derived from the human monoamine 

oxidase B gene (MAO-B) 17. This substrate was used to determine if nucleotide identity at positions 

2, 6, 8 and 9 was sufficient for activity of the wild-type I-TevI linker, or if activity was influenced 

by context-dependent effects of the surrounding DNA spacer sequence. The MAO-B substrate 

possessed the wild-type I-TevI linker-DNA spacer nucleotides at positions 2 (A), 6 (C), and 9 (A), 

and an A8G substitution was made so that the substrate conformed to the I-TevI wild-type 

preferences (Fig. 4.4A). We found that the wild-type I-TevI linker did not promote cleavage of 

this substrate in the bacterial two-plasmid assay. Subsequent screening of the mutagenic libraries 

on this substrate identified the V117F/D127G linker variant. 

We de-convoluted the functional importance of the identified amino acid substitutions by   
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Figure 4.4: Identification and characterization of I-TevI linker variants with altered DNA 

preferences.  

(A) Summary of directed evolution experiments to isolate I-TevI linker variants with altered 

specificity against the indicated DNA spacers. For the three td substrates, nucleotide substitutions 

relative to the wild-type sequence are in red type font. Positions 2, 6, 8, and 9 of the DNA spacer 

that are important for I-TevI activity are highlighted by grey rectangles. (B) De-convolution of 

identified amino acid substitutions on MegaTev survival against singly substituted DNA spacer 

substrates in the bacterial two-plasmid survival assay. Mean values from three independent 

biological replicates are reported in the heat map, with white boxes representing linker variant-

substrate combinations that were not tested. MegaTev variants fall into three general classes; those 

with wild-type (WT) preference, those with preference on G8 substituted substrates (G8), and 

those with preference on T6 substituted substrates (T6). (C) Summary of I-TevI linker variant 

nucleotide preferences in the DNA spacer.   
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screening linker variants with individual substitutions, or with combinations of double or triple 

substitutions, against the singly substituted DNA spacer substrates (Fig. 4.4B). Based on these 

results, we classified the I-TevI linker variants into three types. The first type, including variants 

with the V117F substitution, increased activity on DNA spacers on which the wild-type linker was 

active (WT preference). The second type of variants were those active on DNA spacers with T6C 

or T6G substitutions (T6 preference). These variants possessed a K135N substitution, or a S134G 

substitution. The third type of variant was active on substrates with a G8A substitution, and weakly 

active on G8T substrates (G8 preference). These variants include K135R/N140S. Interestingly, 

both the second and third type of linker variants possessed substitutions in residue K135, and were 

not active on the WT DNA spacer substrate suggesting a changed specificity. We noted that the 

N140S substitution was only isolated in the context of a S134G or K135R substitution, suggestive 

of a cooperative effect on linker-DNA spacer interactions. When N140S was combined with the 

K135N substitution, the double mutant K135N/N140S lost activity on all DNA spacers tested, 

indicative of a negative epistatic interaction.  

4.3.4 I-TevI linker variants cleave target sites derived from human genes 

I-TevI linker variants with the strongest phenotypes were chosen for testing on non-native targets 

derived from human genes. We first tested the V117F linker variant that enhanced the wild-type 

preference in the MegaTev architecture. To identify potential DNA target sites, we searched 19-

21 bp windows of the human gene tuberous sclerosis 1 (TSC1) coding region for sites that 

contained a 5’-CNNNG-3’ cleavage motif followed by a DNA spacer of 14, 15, or 16 bps. Of the 

964 sites with DNA spacer lengths of 15 bp, we arbitrarily chose two sites, TSC1.2125 and 

TSC1.5054, for testing in the two-plasmid selection system in E. coli. (Fig 4.5). The MegaTev-

V117F variant showed robust survival (~100%) on both sites, whereas the MegaTev-WT protein 

had significantly lower levels of survival (2% and 5%). We also showed that the MegaTev-V117F 

variant promoted 100% survival on a target site from the human breast cancer 1 gene 

(BRCA1.2541), whereas the MegaTev-WT showed no survival (Fig 4.5). 

Encouraged by these results with the MegaTev-V117F variant, we next tested the I-TevI linker 

variants with altered DNA spacer preferences at position 6 (K135N) and positions 8 and 9 

(K135R/N140S). Potential target sites were chosen from human genes based on the presence and 
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Figure 4.5: I-TevI linker variants cleavage activity for various human gene sequences.  

 

(A) List of genes and target sequences for various human genes. Gene targets are color coded 

based on I-TevI variant used to cleave the site; V117F (V) in purple, V117F/K135N (VK) in red 

and V117F/K135R/N140S (VKN) in yellow (B) Survival percentage on various human target sites 

listed in (A). 
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predicted activity of the CNNNG cleavage motif, a DNA spacer of 15-bps, and nucleotide identity 

at positions 2, 6, 8 and 9 that correlated with preferences of the linker variants (Fig. 4.7). Because 

the potential DNA target sites had a T or A at position 2, and T or C at position 6, the V117F 

mutation (which enhances activity at these positions) was included in all MegaTev variants with 

the K135N and K135R/N140S substitutions. As shown in Figure 4.5B, we observed robust 

survival of the MegaTev variants on 5 of the 8 sites. No survival was seen with the MegaTev-WT 

protein.  

To further investigate new I-TevI variant specificity in alternative DNA-binding platforms we 

created Tev-mTALEN fusions and tested them using a yeast based recombination assay. TALEs 

were assembled using golden gate assembly into vectors containg various I-TevI variants (Fig. 

4.6A). Not surprisely, I-TevI linker variants enhanced activity compared to wild-type I-TevI 

consistent with MegaTev fusions (Fig. 4.6B). No cleavage was observed at other Tev-mTALEN 

sites with new I-TevI variants demonstrating that the TALE domain still guided targeting (Fig. 

4.7C). To further demonstrate the consistence between MegaTev and Tev-mTALENs, we created 

nucleotide substitutions in the Ku70 Tev-mTALEN target site. We made critical G8A substitution 

alone and full spacer sequence swap for XPC spacer sequence that is predicted to effect VK 

cleavage as well as a C12T that should not have detrimental effects (Fig 4.6D). We observed that 

a G8A substitution abolished activity and C12T had little effect (Fig 4.6E). To cleave the XPC 

spacer sequence swap, we used a VKN-Ku70 Tev-mTALEN and observed robust cleavage on the 

XPC spacer and not the Ku70 spacer sequence (Fig 4.6E). These results demonstrated that 

targeting rules identified in the MegaTev architecture was portable to the Tev-mTALEN 

architecture.  

4.4 Discussion 

Homing endonucleases are rare-cleaving enzymes with many properties that are suitable for 

genome-editing applications, including high fidelity, small size, and generation of 3’ DNA 

overhangs that enhance homology-directed repair 31. Of the six families of homing endonucleases, 

the most success in re-programming specificity has come with the LAGLIDADG family (LHEs 

or meganucleases), typically involving prior crystallographic knowledge to direct mutagenesis of 

the network of protein residues involved in DNA contacts by cycles of design and optimization  
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Figure 4.6: I-TevI linker variants function in the context of Tev-mTALENs.  

 

(A) Schematic of the target sites, TALE modules, and recommended I-TevI linker variants based 

on nucleotide identity at positions 6 and 8 of the DNA spacer. (B) Barplots of activity of the Tev-

mTALEN variants on the different target sites (bars are colored according to target site identity). 

The data represent activity values normalized to the activity of control Tev169-PthXO1 Tev-

mTALEN on the TP15 substrate. (C) Barplots showing that activity of Tev-mTALENs is a 

function of the TALE domain. (D) and (E) Testing the effects of single nucleotide substitutions in 

the DNA spacer region of the Ku70 target sites. The different substrates are indicated by the 

substitution in the DNA spacer, and are highlighted in yellow. For panels (B), (C), and (E),data 

are averages of at least three independent experiments with error bars representing standard 

deviation.  
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for each desired target site 32,33. Here, we have explored an alternative strategy to using homing 

endonucleases in genome-editing applications by taking advantage of the sequence-tolerant 

binding properties of the modular GIY-YIG family to design reagents that can be used without 

further engineering steps 24.  

I-TevI is the prototypical member of the GIY-YIG family of homing endonucleases that are 

characterized by a distinctive modularity, consisting of a N-terminal nuclease domain, a flexible 

linker domain, and a C-terminal DNA-binding domain 26,34,35. Known I-TevI-substrate 

interactions, as deduced from crystallographic and biochemical studies 24,26,36, are a mixture of 

discriminatory contacts to bases and sequence-tolerant interactions. In the native I-TevI protein, 

the linker domain acts as a communication device between the N-terminal nuclease and C-terminal 

DNA-binding domains to position the nuclease domain at the correct distance from the DNA-

binding domain such that it cleaves at the appropriate 5’-CNNNG-3’ cleavage motif 20. This 

stringent ruler-like behaviour likely evolved as a mechanism to prevent cleavage at a 5’-CCGTG-

3’ cleavage site that lies upstream of the I-TevI autoregulatory binding site in the phage T4 

genome37. Linker function is maintained in the chimeric I-TevI fusions, as substrates with 

suboptimal spacing of the cleavage site are poor substrates relative to those with optimal spacing 

of the cleavage site. Interestingly, for both the native and chimeric enzymes, cleavage activity 

correlates with a ~10-bp periodicity of the cleavage motif 15,18,27. One interpretation of this 

periodicity is that it reflects the molecular distance between where the linker contacts the DNA 

spacer and where the nuclease is domain positioned on DNA by the linker.  

A critical question thus becomes where does the linker contact the DNA spacer, and what 

residue(s) in the linker are involved in this contact? Our data strongly implicates position G8 of 

the DNA spacer as the anchor point for the linker, and linker residues 134-140 as mediating this 

contact, either directly or indirectly. The distance between G8 and the G of the CNNNG cleavage 

motif is 8-bps, closely matching the ~10-bp periodicity relationship seen between activity and 

motif spacing. The 8-bp distance is also maintained when the G8 nucleotide is moved, further 

emphasizing the ruler-like relationship between the linker and DNA spacer. Position G8 

corresponds to the first nucleotide of a universally conserved Asp codon (GAY) in thymidylate 

synthase genes 38,39. Homing endonucleases typically use conserved nucleotides such as this as 

cleavage determinants because these positions are mutationally constrained by the fact that they  
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Figure 4.7: Overview of TevCas9 targeting model  

(A) Schematic of chimeric I-TevI-based nucleases, with the individual components of the binding 

model highlighted for each domain. The heatmap of relative cleavage CNNNG activity is derived 

from reference (15). (B) Example of TevCas9 site predictions in the human TSC1 coding region 

ranked by Z-score.   
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encode functionally critical residues of the protein (the Asp residue is found near the thymidylate 

synthase active site40), and thus represent evolutionary stable recognition determinants. The related 

enzyme I-BmoI also uses a homologous G residue in its thyA target site as a critical cleavage 

determinant 41. Thus, at least for I-TevI and possibly for other GIY-YIG endonucleases, the linker-

DNA code can be partly deciphered by identifying nucleotides that correspond to conserved 

nucleotides of the target genes.  

Residues 123-148 of the I-TevI linker are predicted to form a β-strand 21, and it is possible that this 

region of the linker interacts with DNA substrate between the G of the cleavage motif and G8 in 

the DNA spacer. Our data implicate residue K135 as important for linker-DNA interactions at 

positions T6 and G8 of the DNA spacer. Interestingly, the phenotypes of the two substitutions we 

isolated at this position, K135N and K135R, have opposing effects and are modulated by 

substitutions at neighboring positions, notably S134 and N140, although we do not yet know how 

S134 or N140 modulate activity. More generally, our data imply that I-TevI linker libraries with a 

high mutational density focused on residues 128-148 may reveal variants that are tolerant of a 

broader range of nucleotide substitutions at positions T6 and G8, or in other positions of the DNA 

spacer we identified as important, notably position T2.    

In summary, we have shown that profiling the DNA sequence requirement of the sequence-tolerant 

I-TevI endonuclease facilitates genome-editing applications. That new I-TevI variants are portable 

to various DNA-binding domains and target sequences can be predicted to identify target sites 

within the genome (fig. 4.7).  
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Chapter 5 

5 Biasing genome-editing events towards precise length deletions with 

RNA-guided TevCas9 dual nuclease (Part 2: TevCas9 Fusions) 

The work presented in this chapter is reproduced (with permission, Appendix S1) from: 

Wolfs, J.M., Hamilton, T.A., Lant, J.T, Laforet, M., Zhang, J., Salemi, L., Gloor, G.B., 

Schild-Poulter,C. and Edgell,D.R. (2016) Biasing genome-editing events towards precise length 

deletions with RNA-guided TevCas9 dual nuclease. PNAS (pii: 201616343. [Epub ahead of 

print]) 

5.1 Introduction 

Genome editing with engineered nucleases has revolutionized the targeted manipulation of the 

genomes of organisms ranging from bacteria to mammals (1). Zinc finger nucleases (ZFNs) (2), 

transcription-like effector nucleases (TALENs) (3), MegaTALs (fusion of a LAGLIDADG 

homing endonuclease and TALE domain) (4-6), and nucleases based on the clustered regularly 

interspersed short palindromic repeat (CRISPR)-associated protein 9 (Cas9) all represent 

programmable genome-editing nucleases that have successfully been used to introduce targeted 

changes in genomes (7-11). One of the most common applications of genome-editing nucleases is 

gene knockouts that are performed in the absence of an exogenously added repair template (12). 

In the case of Cas9, the blunt DNA ends introduced at DNA cleavage are substrates for error-free 

repair by the classical NHEJ pathway (c-NHEJ) (13), regenerating the target site for re-cleavage 

by the nuclease. This cycle of cleavage, ligation and target site regeneration is perturbed when the 

DSB is sufficiently modified by exonucleolytic processing by c-NHEJ, or by the alternative NHEJ 

pathway (alt-NHEJ), to prevent cleavage by the nuclease (14-18). Imprecise repair by either of the 

NHEJ pathways generates the characteristic spectrum of heterogeneous length insertions or 

deletions (indels) centered around the break site (19, 20). The heterogeneous distribution of indels, 

and the fact that not all indels generate gene knockouts, means that downstream screening and 

confirmation of knockout genotypes is required. In addition, the chromatin context of the target 

site (21, 22), the cell cycle stage and cell type (23), and the nature of the DNA overhangs generated 

by genome-editing nucleases influence the types of indels and efficiency of gene knockouts (24). 

Coupling the expression of DNA end processing enzymes and genome-editing nucleases can bias 
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gene knockouts by enhancing exonucleolytic end-processing before ligation by NHEJ, with 

variable rates of success depending on the end-processing enzyme employed (24, 25). Although 

more commonly used for homology-directed repair applications (26), paired Cas9 nickase variants 

can be used to generate gene knockouts, but also generate heterogeneous length deletions. 

Here, we provide a simple and robust solution to bypass the persistent cycle of cleavage and re-

ligation and shift genome-editing events towards deletions of defined length. We created a dual 

nuclease that introduces two non-compatible DNA breaks at a target site such that the majority of 

the target site is deleted, preventing regeneration of the target site and continued cleavage.  We 

fused the monomeric nuclease and linker domains from the I-TevI homing endonuclease to Cas9 

(27, 28), creating an RNA-guided TevCas9 dual nuclease that functions robustly in HEK 293 cells 

at endogenous target sites. TevCas9 generates defined length deletions of 33-36 base pairs at high 

frequencies with minimal DNA end processing compared to Cas9. We envision that the non-

compatible and directional nature of the TevCas9 overhangs will enhance applications such as site-

directed mutagenesis by oligonucleotide ligation, deletion of binding sites, or epitope-tagging. 

5.2 Material and Methods 

5.2.1 Bacterial strains and plasmid construction 

See chapter 4, 4.2.1 Bacterial strains and plasmid construction for TevCas9 construction. 

5.2.2 Protein purification 

For bacterial expression and purification, TevCas9 or Cas9 variants were cloned in pACYC-Duet1 

expression plasmids under control of a T7-regulated promoter. The RARA gRNA was cloned in 

the BmsI sites of the pACYC plasmid. The expression plasmids were transformed into E. coli 

ER2566, and grown in 1L LB broth until an A600 reading of 0.5, induced with isopropyl-D-

thiogalactopyranoside (IPTG) at 1 mM final concentration, and grown overnight at 16C. Cells 

were harvested, resuspended in binding buffer (20 mM Tris-HCl pH 8, 500 mM NaCl, 10 mM 

imidazole, 1 mM dithiothreitol (DTT)), lysed and centrifuged to clarify cell debris. The lysate was 

loaded onto a 1 ml Ni-NTA affinity column (GE Healthcare), washed with 5 column volumes 

binding buffer and 5 column volumes of binding buffer with 25 mM imidazole, before step elution 

with binding buffer containing 100, 200, 300 or 400 mM imidazole. Fractions were dialyzed into 
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storage buffer (20 mM Tris-HCl pH 8, 500 mM NaCl, 1 mM DTT, 5% glycerol) and frozen at -

80C.   

5.2.3 gRNA visualization 

To confirm gRNA co-purification with TevCas9 or Cas9, purified protein (4.4 μg) was treated 

with 20 μg of proteinase K in NEB Buffer 3 at 37C for 30 mins. The sample was split, and half 

treated with RNase A for 30 mins at 37C. Samples were heated to 95C for 5 mins before loading 

on a 12% denaturing urea-polyacrylamide gel. RNA was visualized by staining with ethidium 

bromide.  

5.2.4 TevCas9 endonuclease assays 

The RARA target site was amplified from pTox-RARA by PCR using primers DE1544 and 

DE1191. Cleavage assays were performed with a 90:1 molar ratio of protein:DNA in a pooled 

reaction in cleavage buffer (20 nM DNA substrate, 50 mM Tris-HCl pH 8, 125 mM NaCl, 10 mM 

MgCl2, 1 mM DTT). Aliquots were taken at the appropriate time points, and stopped in stop buffer 

(200 mM ethylenediaminetetraacetic acid (EDTA), 30% glycerol, 1% sodium dodecyl sulphate, 

and xylene cyanol). Reactions were treated with proteinase K and RNase A before electrophoresis 

on an 8% polyacrylamide gel in Tris-borate EDTA buffer.  

5.2.5 HEK293 transfections and genomic extractions 

HEK293 cells were cultured in Dulbecco’s modified Eagle’s medium supplemented with 10 % 

fetal bovine serum and grown at 37 oC with 5 % CO2. One day before transfection, approximately 

1 x 105 cells were seeded into 24-well plates. Transfections were performed using JetPRIME® 

(Polyplus transfection) with 500 ng of pX458 plasmid as recommended in the JetPRIME® 

protocol. Transfection reagent was removed 4 hrs after transfection and replaced with fresh media 

and incubated for 48 hrs at 37 oC with 5 % CO2. Cells were harvested and resuspended in 100μl 

TE pH 8.0. Cells were lysed in 300μl of extraction buffer (100 mM NaCl, 10 mM Tris-HCl pH 

8.0, 25 mM Ethylenediaminetetraacetic acid (EDTA), 0.5 % sodium dodecyl sulfate (SDS) and 

0.1 mg/ml proteinase K) for 16 hrs at 50 oC. Cell lyses were treated with 1 mg/ml RNaseA for 1 

hr at 37 oC and genomic DNA was purified using phenol/chloroform extraction and ethanol 

precipitation. Genomic DNA was resuspended to a final volume of 70 μl in TE pH 8.0. 
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5.2.6 T7 endonuclease I mismatch repair assays and restriction endonuclease assays 

Genomic TevCas9 target sites were PCR amplified with Taq polymerase (Thermo Fisher) using 

nested PCR. For T7 endonuclease 1 (T7E1) mismatch assays 28,29, PCR products were boiled at 95 

oC for 5 min, slowly cooled to 50 oC before flash freezing at -20 oC for 2 min. Approximately 250 

ng of PCR product was incubated with 2 U of T7E1 (New England Biolabs) with NEBuffer 2 for 

15 mins at 37 oC. Cleavage products were separated on a 1.5% agarose gel stained with ethidium 

bromide and analyzed using AlphaImager™ (Alpha Innotech). For restriction endonuclease 

assays, 250ng of PCR product was digested with BamHI or PvuII for 1 hr at 37 oC. Digests were 

electrophoresed on a 1.5% agarose gel containing ethidium bromide and analyzed using 

AlphaImager™ (Alpha Innotech). 

5.2.7 Binding models for MegaTev and TevCas9 

The binding models for MegaTevs and Cas9 included two components essential for I-TevI activity: 

a 5’-CNNNG-3’ cleavage motif, and a DNA spacer. Putative MegaTev binding sites were found 

using custom Perl scripts that windowed across human coding regions for 5’-CNNNG-3 motifs 

followed by a DNA spacer of 14-16 bps. The raw score of the putative binding site was calculated 

by: (1) the log2 value of the activity of the 5’-CNNNG-3’ cleavage motif (relative to the 5’-

CAACG-3’ native motif); (2) the log2 score of the DNA spacer length, and given scores 18 bp = 

0.6; 17 bp = 1; 16 bp = 0.6; 15 bp = 0.4; 14 bp = 0 (3) the log2 score of the fit of the DNA spacer 

sequence to the position weight matrix (PWM) derived from the DNA spacer in vitro enrichment 

data. The predicted binding sites were subsequently ranked by their Z score. The gRNA portion of 

highly ranked TevCas9 sites were individually examined using the XXX server, and TevCas9 sites 

that included poor gRNAs were excluded.  

5.2.8 Next generation DNA sequencing  

Genomic DNA from HEK 293 cells corresponding to three independent transfections of TevCas9, 

Cas9, and one mock transfection, was used to PCR amplify the NQO2, RARA, TSC1-2125 or 

TSC1-5054 target sites with barcoded primers. The PCR products for each site were combined 

into pools, and a single-end 250-bp run performed on an Illumina Mi-Seq platform at the London 

Regional Genomics Centre. Reads were trimmed to 200 nts and then parsed for each barcode using 

custom Perl scripts. We first analyzed the reads for length differences (insertions and deletions) 
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relative to the unmodified site by extracting sequence between anchor sequences that flanked the 

TevCas9 and Cas9 target sites. The proportion of insertions or deletions for each length variant 

was the ratio of the number of reads with length N to the total number of extracted reads, excluding 

reads with less than 1000 counts. To map the positions of deletions within each target site, we used 

the UBLAST function of USEARCH 52, with the following parameters: -evalue 0.01, -mismatch -

5, -gapopen 20IQ/*LQ/*RQ, -gapext 0IQ, -strand plus, -maxhits 2. Searches were exported using 

the –userout option, with the following fields: query, target, id, alnlen, mism, opens, qlo, qhi, tlo, 

thi, thi, qrow. The output files were parsed for deletion start and deletion end point, and length, 

and each deletion plotted as a proportion relative to all mapped deletions using the graphing 

functions of the R project for statistical computing. 

5.3 Results 

5.3.1 Fusion of I-TevI to Cas9 creates an RNA-guided dual nuclease 

To create a TevCas9 RNA-guided dual nuclease, we fused the I-TevI nuclease domain (residues 

1-92) and a portion of the linker domain (residues 92-169) to the N-terminus of SpCas9 nuclease 

derived from the Streptococcus pyogenes Type II CRISPR system (27, 28) (Fig. 5.1A). A TevCas9 

target site includes the I-TevI 5’-CNNNG cleavage motif, a DNA spacer that interacts with the I-

TevI linker and that separates the cleavage motif from the binding site, the DNA-binding site 

complementary to the gRNA, and the downstream NGG protospacer-associated motif (PAM) 

sequence. Previous studies revealed that the length of the DNA spacer is crucial for I-TevI cleavage 

function, with lengths of 14-19 base pairs (bps) supporting activity in various chimeric contexts 

(27, 29, 30). We co-expressed TevCas9 with a C-terminal histidine tag and a gRNA targeting a 

site in the retinoic acid receptor alpha gene (RARA.233, numbered according to start of target site 

in the RARA cDNA) from the same plasmid in E. coli. The RARA.233 target site was predicted 

according to a binding model that utilized data from in vitro profiling of I-TevI linker-DNA spacer 

nucleotide preference (Fig. 4.1, 4.2 and 4.3), and the activity of the I-TevI nuclease domain on all 

possible 64 CNNNG variants (30). The TevCas9 variant used in this experiment (hereafter, TC-

V) contains an activity-enhancing V117F substitution in the I-TevI linker.  

We purified the TC-V by metal-affinity chromatography, and showed that TC-V was complexed 

with an RNA species of the size predicted for the transcribed gRNA (indicated by an asterisk, Fig. 
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Figure 5.1: Purification and characterization of a TevCas9 dual nuclease 

A) Schematic of the TevCas9 nuclease, and general organization of the DNA substrate. (B) 

Summary of in vitro profiling of I-TevI-linker DNA spacer nucleotide preferences, and directed 

evolution experiments that identified I-TevI linker variants with activity on DNA spacers with 

substitutions in positions T6 and G8. Linker variants used in the TevCas9 nuclease are indicated 

on the right, with DNA spacer preference indicated. (C) TevCas9 co purifies with an RNA species 

of the size predicted for the transcribed gRNA. Shown is an 12% urea-polyacrylamide gel of 

TevCas9 protein samples treated with proteinase K, and then with (+) or without (-) RNaseA. The 

marker is an RNA ladder with sizes in nucleotides indicated. (D) (top) Representative time course 

cleavage assay (in minutes) with TevCas9-V117F (TC-V) and a PCR substrate containing the 

RARA target site. The substrate and cleavage products are indicated on the right side of the gel. 

The gel image is inverted. (bottom) Reaction pathway as deduced from the appearance of products 

in the cleavage assay. Note that the 35-bp Tev-P2 is not shown on the gel image. (E) Plot of 

reaction progress in minutes versus percent DNA for the TevCas9 time course cleavage assay with 

the RARA substrate. Data points are mean values of four independent experiments, with vertical 

bars representing standard deviation.  
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1C). To determine if the TC-V/gRNA ribonucleoprotein complex (RNP) introduced two DSBs, 

we examined the cleavage profile on a PCR substrate that contained the RARA.233 target site. 

Cleavage was consistent with two sequential DSBs, first by the Cas9 nuclease, and second by the 

I-TevI nuclease (Fig. 5.1D and 5.1E). The predicted 33-bp product corresponding to the fragment 

excised between the I-TevI and Cas9 cleavage sites was difficult to reproducibly visualize, and not 

used to quantitate reaction progress. Interestingly, cleavage by Cas9 was ~30-fold faster than 

cleavage by I-TevI (Fig. 5.1E, as judged by time required for 50% product formation). 

5.3.2 TevCas9 functions robustly in HEK 293 cells 

TevCas9 is targeted by the Cas9-associated gRNA, a property that allowed us to directly compare 

TevCas9 and Cas9 activity at the same sites in HEK 293 cells. To do so, we used T7 endonuclease 

1 (T7E1) mismatch cleavage assays to measure on-target modification at the RARA.232 site and 

at two other sites, one in the tuberous sclerosis 1 gene (TSC1.2125) and one in the quinone 

reductase 2 gene (NQO2.54) (Fig. 5.2A) (31, 32). With TC-V transfections, we observed 

modification rates ranging from 16-23%, versus 12–29% modification rates at the same sites when 

cells were transfected with Cas9. We also targeted TevCas9 to a second site in the TSC1 gene 

(TSC1.5054). The TevCas9 variant (TC-VK) used in this experiment contained V117F and K135N 

substitutions in the I-TevI linker domain that enhance activity on DNA spacers with a T->C 

substitution in position 6 of the DNA spacer (Fig. 4.2). We observed very similar levels of 

modification with both TC-VK (mean = 15%) and Cas9 (mean = 13%) at the TSC1.5054 site. No 

activity at the NQO2.54, TSC1.2125 or TSC1.5054 sites was observed in cells transfected with 

TC-V programmed with the RARA.233 gRNA, showing that the I-TevI domains do not influence 

gRNA-mediated targeting of Cas9. We also predicted off-targets sites based on the NQO2.54 

gRNA (33), and examined cleavage at these sites by T7E1 mismatch assays (Fig. S4.4). No 

cleavage was observed at these sites, three of which had a correctly space CNNNG motif from the 

binding site for the gRNA. These experiments show that the I-TevI nuclease and variant linker 

domains can be directed by Cas9 to cleave target sites with diverse cleavage motifs and DNA 

spacers, suggesting that the I-TevI sequence requirements are not limiting for TevCas9 targeting.  
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Figure 5.2: Activity and specificity of TevCas9 in HEK 293 cells 

(A) T7E1 mismatch cleavage assays of PCR fragments amplified from the indicated target sites 

after transfection with Cas9 or TevCas9. TC-V, TevCas9-V117F; TC-VK, TevCas9-

V117F/K135N; TC-R27A, TevR27ACas9 (R27A inactivates ITevI cleavage activity). (B) 

Detailed schematic of the target site in exon 6 of the human NQO2 gene, positions of PCR primers 

used for amplification, and sizes of BamHI cleavage products. The I-TevI cleavage motif and DNA 

spacers are highlighted by red and blue rectangles, and the PAM motif by a green rectangle. 

Positions of I-TevI and Cas9 cleavage sites are represented by red and black arrows, respectively. 

(C) Representative agarose gel of BamHI cleavage assays on PCR products amplified from the 

NQO2 locus 48 hrs after transfection with Cas9 or with TC-V. Sizes of the substrate (1124 bp) 

and two BamHI cleavage products (673 bp and 487 bp) are indicated on the right. The percent of 

substrate resistant to cleavage by BamHI is indicated below each lane. (D) Activity of different 

TevCas9 variants at the NQO2 site measured by BamHI resistance. TevCas9 variants labelled as 

in panel (A) except for VKN – TevCas9-V117F/K135R/N140S. In panels (A) and (D), barplots 

are mean values of at least three independent experiments, with vertical bars representing standard 

deviation.  
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5.3.3 TevCas9 generates defined length deletions in HEK 293 cells  

T7E1 mismatch cleavage assays report on the overall nuclease modification rate at a particular 

site, but cannot distinguish the relative contributions of the I-TevI and Cas9 active sites. To do so, 

we used a BamHI restriction site in the NQO2.54 target site that overlaps the predicted I-TevI 

CAACG cleavage motif (Fig. 5.2B). After transfections, TevCas9 or Cas9 activity was estimated 

from the fraction of PCR products amplified from the NQO2 site that are BamHI resistant as a 

result of nuclease cleavage and mNHEJ repair (Fig. 5.2C and 5.2D). In transfections with the TC-

V and TC-WT (wild-type I-TevI) nucleases, we observed 14 – 16% BamHI cleavage resistance. 

This result implied that cleavage by the I-TevI nuclease domain at the CAACG motif knocked out 

the BamHI site. In contrast, transfections with Cas9 alone resulted in 5% BamHI cleavage 

resistance, implying that only a small fraction of Cas9-induced mNHEJ repair events destroy the 

BamHI site (Fig. 5.2D). A similar cleavage resistance assay was performed at the TSC1.5054 site, 

and showed that TC-VK cleavage generated a higher level of PvuII resistance than in transfections 

with Cas9 alone (18% versus 6%) (Fig. S4.3), consistent with deletion of the sequence between 

the I-TevI and Cas9 cleavage sites. We also took advantage of two adjacent NGG PAMs in the 

TSC1-5054 site to determine the effect of DNA spacer length on TevCas9 activity by simply 

changing the position of the gRNA (18_gRNA and 14_gRNA, Fig. 8A) (Fig. S4.3). We found that 

TC-VK programmed with the 18_gRNA produced ~4.5-fold more PvuII resistance than with TC-

VK programmed with the 14_gRNA (Fig. S4.3), suggesting that that the optimal DNA spacer 

length for the TevCas9 is between 15-18 bps. 

5.3.4 Deep sequencing reveals minimal processing of TevCas9 deletions 

 

To more accurately assess indels introduced by TevCas9 and Cas9 in HEK 293 cells, we used 

Illumina sequencing of PCR products amplified from the on-target sites to readout the type and 

length of indels. We first examined the reads for the length of deletions or insertions relative to the 

unmodified target site, and found that a high proportion of reads in the TevCas9 experiments were 

deletions that corresponded in length to the distance between the I-TevI and Cas9 cleavage sites 

(Fig. 5.3A, 5.3D, 5.3G, 5.3J) . For the Cas9 experiments, a range of insertion and deletion lengths 

were observed, including a high proportion of +1 insertions, particularly at the RARA.233 target 

site. The overall modification rates at each target site, estimated from indel-containing reads, was  
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Figure 5.3: TevCas9 generates deletions of precise lengths in HEK 293 cells 

Results from Illumina sequencing of PCR-amplified fragments for (A-C) NQO2, (D-F) TSC1- 

2125, (G-I) TSC1-5054, and (J-L) RARA target sites. (A,D,G,J) Proportion of reads with length 

differences relative to the unmodified target, with blue triangles representing TevCas9, red open 

circles representing Cas9, and grey dots representing mock transfection. (B,D,F,H) Proportion of 

TevCas9 reads with deletions mapped to the position in the target site. (C,F,I,L) Proportion of 

Cas9 reads with deletions mapped to the position in the target site. Dotted vertical lines indicate I-

TevI and Cas9 cleavage sites.  
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very similar for TevCas9 and Cas9, agreeing with the T7E1 mismatch cleavage assays (Fig. 

S4.4). Strikingly, when we mapped the position of the deletions, the predominant deletions in the 

TevCas9 experiments were precise excisions of the DNA segment between the two cut sites (Fig. 

5.3B, 5.3E, 5.3H, 5.3K). In contrast, we found that no single deletion product dominated the 

sequencing reads for the Cas9 experiment, that the deletion lengths were shorter and 

heterogeneous in length, and that the deletions were centered around the Cas9 cleavage site (Fig. 

5.3C, 5.3F, 5.3I, 5.3L). These results demonstrate that TevCas9 cleavage generates defined 

length deletions at a high frequency in HEK 293 cells, and that the two non-compatible DNA 

ends are repaired with minimal DNA processing (Fig. 5.4). 

5.3.5 Positioning of the I-TevI cleavage motif and gRNA biases in-frame to out-of-

frame deletions   

The relative position of the I-TevI and Cas9 cleavage sites at a given target site is determined by 

length of the DNA spacer that separates the I-TevI CNNNG cleavage motif from the gRNA 

binding site. At the NQO2.54 target, the distance between the I-TevI and Cas9 cleavage sites is 

33-bps (measured from the I-TevI top strand cleavage site), which would generate an in-frame 

deletion of 11 amino acids. We examined the proportion of events at the NQO2.54 site and found 

that 59% of deletions are in-frame versus 41% that are out-of-frame (Fig. 5.4). In contrast, 20% of 

events generated by Cas9 are in-frame, and 70% out-of-frame. Conversely, TevCas9 events can 

be biased towards out-of-frame events, as seen at the TSC1.2125 and RARA.233 sites that have 

an even number of bases between the I-TevI and Cas9 cut sites. In both cases, TevCas9 generates 

a higher percentage of out-of-frame deletions than does Cas9 (Fig. S4.5).  
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Figure 5.4: TevCas9 can bias the proportion of in-frame to out-of-frame indels 

Illumina read data for the NQO2 target site is plotted as the proportion of reads that are in-frame 

(green) and out-of-frame (red) for (A) TevCas9 (triangles) and (C) Cas9 (open circles). (C) 

Fraction of reads that are in-frame or out-of-frame for TevCas9 and Cas9.  
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5.4 Discussion 

Motivated by the observation that the majority of genome-editing nucleases generate a DSB with 

compatible cohesive ends, we hypothesized that a single-chain dual nuclease could bias genome-

editing outcomes towards defined length deletions by generating two non-compatible DNA breaks 

at a target site. Subsequent repair would effectively delete the majority of the target site such that 

it would not be a substrate for further nuclease activity. Our first attempt at creating a dual-active 

site nuclease involved fusing the I-TevI nuclease and linker domains to the N-terminus of the I-

OnuI LAGLIDADG homing endonuclease (or meganuclease), which acts as both a targeting and 

nuclease domain, creating MegaTevs (27, 34, 35). Using model DNA substrates, we showed that 

MegaTevs efficiently excises a 30-bp fragment from the target site in HEK 293 cells (30). 

However, the utility of the MegaTev platform is limited by re-engineering of meganuclease 

specificity to each desired target site, and by uncharacterized interactions of the I-TevI linker 

domain with the DNA spacer region that are critical for positioning of the nuclease domain at the 

5’-CNNNG-3’ cleavage site (36, 37).  

Here, we have overcome limitations of the MegaTev platform, in two ways. First, we profiled the 

sequence requirements of the I-TevI linker-DNA spacer interactions, identifying nucleotide 

positions critical for activity and delineating a putative linker-DNA code that enabled development 

of a targeting model. Directed evolution experiments isolated I-TevI linker variants with activity 

on DNA spacers not cleaved by the wild-type linker, generating a set of variants with defined DNA 

spacer preferences. Second, we created an easier-to-target dual nuclease by fusing the I-TevI 

nuclease and linker domains to the N-terminus of Cas9 (28), generating an RNA-guided TevCas9 

nuclease with two active sites. TevCas9 can be purified as an RNP that could be used for direct 

transfection of cell lines, as shown with Cas9 (38). 

The I-TevI nuclease and linker domains have successfully been fused to four different DNA-

binding architectures that are used in genome editing; zinc fingers (27), TALEs (29), 

meganucleases (30), and, as reported here, Cas9. An on-going debate in the genome-editing field 

centers on the ease of use (targeting range) versus specificity (off-target effects) of the various 

reagents, particularly for common laboratory manipulations of cell lines or model organisms. Of 

the I-TevI-based genome-editing nucleases, the TevCas9 fusions are likely to be the most user-

friendly given the ease of programming Cas9-substrate interactions. Similarly, the identification 
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Figure 5.5: Model of how TevCas9 biases DNA repair outcomes 

TevCas9 or Cas9 recognize and cleave a target site. The non-compatible DNA ends and 33-36 

base pair deletion generated by TevCas9 prevents regeneration of the target site. Compatible DNA 

ends generated by Cas9 are repaired by NHEJ, regenerating the target site and inducing a cycle of 

cleavage and ligation. At a lower rate (dashed line), some Cas9 events undergo repair by the 

alternative NHEJ pathway, getting heterogeneous length indels. 
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and characterization of I-TevI linker variants makes the TevCas9 reagent easy-to-use in that 

targeting of a desired site does not require extensive cycles of engineering and optimization of I-

TevI-DNA specificity. For TevCas9, we predicted a potential target site on average every 14 bps 

for the NQO2, TSC1 and RARA genes, with CG-rich regions having a higher number of potential 

sites due the nature of the NGG PAM and I-TevI 5’-CNNNG-3’ cleavage motif. The targeting 

requirements of TevCas9 (two cleavage sites separated by a defined length spacer) are similar to 

the parameters for paired Cas9 nickases and FokI-dCas9 nucleases that function as dimers (two 

independent gRNAs separated by a defined length) (9-11, 26, 33). While future refinements of the 

TevCas9 binding model will improve target site selection, especially for the I-TevI linker variants 

with preferences for substitutions in positions T6 or G8 of the DNA spacer, it is encouraging that 

the high density of predicted sites will not severely limit targeting of TevCas9. Moreover, our 

recent demonstration that I-TevI cleavage specificity can be modulated to include different 

cleavage motifs (notably 5’-NNNNG-3’) could also increase targeting potential by alleviating the 

requirement for a CNNNG motif (39). I-TevI fusions to Cas9 variants with altered PAM 

specificities (40, 41), or fusion to other Cas9 homologs (42), could similarly broaden targeting 

range. It remains to be seen if the I-TevI nuclease and linker domains mitigate Cas9 off-target 

effects, as observed with the chimeric ZF-Cas9 and FokI-dCas9 fusions (9, 11, 43).  The TevCas9 

fusions described here are further expand the repertoire of chimeric fusions that are possible with 

Cas9. Notably, the TevCas9 fusion is similar to the FokI-dCas9 fusion in that both I-TevI and FokI 

are nuclease domains.  

One striking result from our study was that TevCas9 generates defined length deletions of 33-36 

base pairs in HEK 293 with minimal DNA end processing. Sequences of the TevCas9 deletion 

products are consistent with repair by the c-NHEJ pathway whereby the protruding I-TevI 3’ 

overhang was directly ligated to the blunt end generated by Cas9, with subsequent fill-in of the 2-

nt gap on the opposite strand (Fig. 6). The nature of the repair products must mean that TevCas9 

sequesters the DNA ends from exonucleolytic processing associated with NHEJ pathways after 

cleavage, possibly because product release by I-TevI and Cas9 (at least in the context of the 

chimeric TevCas9) is slow (44, 45). In contrast, the heterogeneous length indels observed at Cas9 

events are typical of repair by the alternative NHEJ pathway. Although we did not examine the 

efficiency or types of indels generated by paired Cas9 nickases, published data demonstrates that 

Cas9 nickases introduce heterogeneous length indels (fig S4.5) (46, 47). Interestingly, our in vitro 
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data show that cleavage by I-TevI is ~30-fold slower than Cas9, which is also supported by the 

deep sequencing data showing that approximately half of all TevCas9 indel events are consistent 

with cleavage only by Cas9. This observed difference in cleavage rates could reflect a sub-optimal 

fusion point between I-TevI and Cas9 that hinders I-TevI activity, or inherently faster cleavage by 

Cas9. Improving the rate of I-TevI cleavage in the context of the chimeric TevCas9 nuclease by 

optimization of the fusion could conceivably bias events even more towards deletions of defined 

length than is observed now. 

Cas9 is commonly used to create gene knockouts for downstream phenotypic studies (33). 

However, in-frame deletions could generate different phenotypes than knockouts if the deletions 

encompass functionally important regions. The TevCas9 nuclease can generate in-frame deletions 

of 11 amino acids efficiently, because the length of the deletion is determined by the distance 

between the I-TevI and Cas9 cleavage sites. This property of TevCas9, coupled with the directional 

nature of the TevCas9 deletion (a 3’ 2-nt overhang by I-TevI and a blunt DNA end by Cas9), could 

enhance ligation of oligonucleotides, enabling applications such as site-directed mutagenesis, 

swapping of functional domains, or epitope-tagging (48). Conversely, TevCas9 could be used to 

tile across promoter regions to delineate functional elements (49), or protein-DNA interaction sites 

in introns or other non-coding regions.  

In summary, we have shown that the TevCas9 dual nuclease provides a strategy to bias genome-

editing events towards deletions of defined lengths, escaping the persistent cycle of cleavage and 

ligation of compatible DSBs that results in heterogeneous length deletions observed with other 

genome-editing nucleases.  
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 Chapter 6 

6     Discussion 

The desire to manipulate model organisms or correct human disease has led to a huge development 

in engineered nucleases. Genome engineering was named Method of the Year in 2011 by Nature 

Methods with “CRISPR” publications continuing to grow at an exponential rate (1). A number of 

genome-editing reagents have been created over the years from engineered LAGLIDADG homing 

endonucleases to ZFNs and TALENs, a set of FokI derived reagents, and finally the most recent 

CRISPR-Cas9 system. Each reagent has its own set of advantages and disadvantages that make up 

the genome-editing “toolbox”, with no single reagent being ideal for every situation. One similarity 

of all four reagents is the persistence of a cleavage and re-ligation cycling event (2). Here, we 

describe another potential genome-editing reagent using the GIY-HE I-TevI catalytic and linker 

domain fused to the LHE (MegaTev) or Cas9 (TevCas9) nuclease, creating a dual-active 

engineered reagent capable of making two DSBs at a single target site. We demonstrate that these 

dual-active endonucleases efficiently excise a short fragment from their target site and the 

remaining ends are ligated together in vivo. In addition, we demonstrate that I-TevI is a portable 

domain that can be fused to all four DNA-binding platforms: LAGLIDADG, ZFs, TALEs, and 

Cas9. Utilizing the MegaTev fusion, I investigated the nuclease and linker specificity and 

identified key DNA sequence preferences required to promote robust I-TevI cleavage. Using a 

bacterial selection system, I was able to isolate I-TevI mutants with alternative DNA specificity, 

expanding the number of sites available for I-TevI reagents. Adapting native I-TevI to new target 

sequences was a critical step in uncovering its potential in the genome-editing field. I demonstrate 

the new I-TevI variants are portable to three different DNA-binding platforms and maintain their 

identified specificity. Ultimately, we fused I-TevI to Cas9 to create TevCas9, an adaptable reagent 

and demonstrated for the first time that I-TevI can target novel genomic locus. Distinctly, TevCas9 

fusions are a programmable dual-endonuclease that can excise short fragments at a single target 

site which could provide alternative applications compared to conventional genome-editing 

reagents. 

6.1     Considering off-target cleavage of genome editing reagents 
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One of the most important aspects when optimizing genome editing reagents is minimizing off-

target cleavage events. Expressing a non-specific reagent can be detrimental to the cell, as off-

target DSBs can lead to chromosomal rearrangements, inversion, deletions and substitutions within 

the genome (3–5). A nuclease that has only a couple off-target cleavage events can still be 

detrimental to the cell as changes on the genomic level in the germline are passed to future 

generations. This presents a common conundrum, how do you create a reagent that is highly 

adaptable but also highly-specific. We proposed that the inherent specificity of the I-TevI catalytic 

domain and linker region would reduce off-target cleavage as seen with other genome-editing 

reagents (6). We demonstrate in every platform that I-TevI cleavage is directed by the DNA-

binding platform and not the I-TevI nuclease domain, which suggests minimal additional off-target 

cleavage events. This correlates well with previous studies of I-TevI, as the nuclease domain has 

low affinity for DNA substrates (7). We did explore some potential off-target sites for MegaTev 

and TevCas9 at predicted target sites and saw no evidence that I-TevI increased off-target 

cleavage. However a more exhaustive approach is required to better analyze the potential off-target 

effects of I-TevI-based reagents. Surveying for off-target events is a very technical and expensive 

challenge that should be performed with optimized reagents ready for agricultural or clinical 

applications.   

Many approaches have been used to study undesired modifications created by genome-editing 

reagents. Our initial screens for MegaTev and TevCas9 fusions involved only screening predicted 

sites with the fewest number of mismatches to the on-target. The challenge in developing a whole-

genome screening method is it requires high sensitivity techniques capable of detecting low 

frequency mutations. There are a number of thorough approaches that have been described to date, 

but like genome-editing reagents, each technique has its advantages and disadvantages. A large 

number of bioinformatics approaches to predict off-target cleavage were developed for a number 

of reagents but many fell short at predicting all potential off-target sites (8, 9). Researchers turned 

to an in vitro SELEX (system evolution of ligands exponential enrichment) that allowed them to 

cover a large number of sites (1012) but it failed to mimic a cellular environment (10).  A similar 

approach, known as digenome-seq, used cell free genomic DNA to analyze Cas9 off-target 

cleavage and resulted in an overestimation of the number of target sites similar to SELEX (11). 

ChIP-seq (Chromatin immunoprecipitation sequencing) was another technique that attempted to 

capture all  
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Figure 6.1: Schematic of off-target screening techniques using next-generation sequencing 

Various methods used to determine off-target cleavage frequencies of genome-editing reagents. 

SELEX (system evolution of ligands be exponential enrichment), ChIP-seq (Chromatin 

immunoprecipitation sequencing), HTGTS (high-throughput genome-wide translocation 

sequencing), IDLV capture (integrase-defective lentiviral vectors), dsODN (double-stranded 

oligonucleotide), NGS (next-generation sequencing), WGS (whole-genome sequencing)  
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the off-target sites for many nucleases, but the high background noise and capture of binding sites 

once again did not properly represent off-target cleavage events in a cell (12–14). Some studies 

report the number of off-target binding sites being greater than 1200, however not all bound sites 

are cleaved suggesting binding is more promiscuous than cleavage activity (1, 13). Two 

approaches, IDLV capture (integrase-defective lentiviral vectors) and guide-seq, used a DNA 

integration approach to capture off-target events of a linear IDLV genome or a small double-strand 

oligonucleotide, respectively (15, 16). The main limitations of these techniques is that they depend 

on DNA integration to capture the off-target events which may be less efficient then indel 

formation.  For IDLV, the major limitation is the sensitivity, as it can only detect mutation 

frequency of greater than 1% (15). Similarly, guide-seq failed to identify 7 well-defined off-target 

sites confirmed using chip-seq and cleavage by indel generation (13). The last method called 

HTGTS (high-throughput genome-wide translocation sequencing) detects DSBs based on 

translocation events to other DNA sequences (17). The most systematic comparison of these 

approaches was carried out using spCas9 at a VEGFA gene target with the same gRNA in all four 

studies ChiP-seq (5), Guide-seq (16), HTGTS (17) and digenome-seq (11) identifying 55, 21, 38 

and 87 off-target sites, respectively. Note the number of off-target sites varies greatly with each 

technique and no single method identified all the same off-targets sites. Since each technique 

identified novel off-target sites, it poses the question, how many off-target sites are there truly and 

how safe are engineered nucleases? The difficulty in detecting off-target cleavage should be a sign 

to proceed with caution using these reagents (18). In recent years, concerns have risen after the 

failed attempts to modify human embryos (18–20). 

Indeed, as technology advances our ability to survey for off-target cleavage will improve and 

engineering a precise reagent may become a reality. The limitation in current technology has not 

deterred researchers from attempting to develop precise reagents. A large number of studies have 

focused on improving genome-editing reagents using various techniques. Some of the first off-

target cleavage events observed by ZFNs was a result of ZFNs binding at “half-sites” that caused 

dimerization and cleavage from FokI at unintended target sites. This was improved by eliminating 

homo-dimerization of FokI to create an obligate hetero-dimerization to reduce complex formation 

at “half-sites” (21). The discovery of TALENs also helped to de-toxify FokI based fusions as 

longer recognition domain could be assembled.  Similarly, by fusing the TALE domain to LHEs, 

a reduction in off-target cleavage was observed and also resulted in an increase in on-target 
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efficiency (6). Off-target cleavage is no stranger to the new CRISPR-Cas9 system as the initial 

off-target analysis of spCas9 identified a large number of off-target sites (16, 5, 22). Initial studies 

demonstrated Cas9 could tolerate multiple mismatches in the target site with specificity varying 

based on Cas9 ortholog, gRNA architecture, target sequence, PAM, and relative concentration and 

duration of treatment (16, 23–26). Identified off-targets were poorly related to the on-target site 

making them difficult to predict bioinformatically (16, 22). However, as demonstrated with 

previous genome-editing reagents, modifications to the CRISPR-Cas9 architecture created more 

specific versions. One study truncated the gRNA to reduce the overall binding affinity of the 

DNA/RNA complex to reduce off-target cleavage (16, 27). Similarly, new spCas9 variants with 

mutations knocking-out the non-specific DNA interactions of spCas9 greatly reduced off-target 

cleavage (28, 29). Most recently, identification of new CRISPR-Cas Cpf1 nucleases have 

remarkable specificity only detecting off-target sites for 17 of 20 sites with AsCpf1 and 12 of 20 

with LbCpf1 (30, 31). Using the new high-fidelity Cas9 variants or Cpf1 Cas proteins would help 

reduce any potential off-targets observed for TevCas9 fusions. In addition, eliminating non-

specific contacts could be applied to I-TevI to further reduce the binding affinity to ensure only 

the on-target is cleaved.  

6.2     Implications of I-TevI biology for genome engineering 

I-TevI based genome engineering should proceed with caution as more thorough off-target 

profiling needs to be performed with these reagents. As discovered with FokI-based genome-

editing reagents, DNA-binding platforms that guide nucleases to various sites in the genome bind 

a number of promiscuous sites resulting in off-target cleavage.  FokI requirement of dimerization 

for cleavage was not sufficient in constructing a precise nuclease. However, this observation can 

also be attributed to its non-specific nature, resulting in cleavage at every dimerization complex. 

We approached this problem from the opposite direction, presenting an endonuclease, I-TevI 

which possesses inherent specificity and distance requirements for efficient DSB formation. At 

first glance, I-TevI seemed too restrictive to be a useful genome-editing reagent, but through 

further characterizing the nuclease and linker domain specificity, we were able to identify 

important base-pairs required for cleavage. This allowed us to take a directed evolution approach 

similar to engineering LAGLIDADG proteins, mutating specific modules that may be contacting 

these regions. Unfortunately, no crystal structures of the I-TevI nuclease domain and linker region 
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contacting DNA have been solved, so mutated regions were large to encompass potential DNA-

binding residues. We identified I-TevI linker variants with altered DNA specificity that could be 

utilized to increase the number of potential target sites available for I-TevI-derived reagents. Site-

specific nuclease fusions have been previously demonstrated to increase efficiency and specificity 

as described with the MegaTAL platform (6). In terms of available target sites in the genome, I-

TevI is more malleable then LHEs but more restrictive then the CRISPR-Cas9 system and on par 

with TALENs. Nevertheless, one must select the appropriate genome-editing reagent depending 

on your desired application. 

One important aspect of a good genome-editing reagent is its ability to be applied readily, without 

further protein engineering or understanding. The ultimate goal is to reach into a genetic “toolbox” 

and pick a reagent to manipulate a genome of interest, in the same fashion restriction 

endonucleases are used to manipulate plasmids. Therefore, a desirable reagent would check all 

three requirements of being highly efficient, specific and “ready-to-use”. CRISPR-Cas9 system is 

the closest reagent that checks all three of the boxes with exception of specificity that will require 

more studies. I-TevI-derived engineering reagents, specifically the TevCas9 fusion, is very close 

to checking all three requirements. With further characterization of the various I-TevI variants and 

profiling their specificity, a target site predictive software could be developed using a position-

specific scoring matrix (PSSM) to rank various sites in the genome. Similar to software developed 

for other reagents like CRISPR-Cas9, an online tool would be available to insert your gene of 

interest and would rank potential TevCas9 target sites for the user. Therefore, this would transition 

TevCas9 into a more “ready-to-use” reagent where you order the correct I-TevI variant and gRNA 

specified from the software predictions. 

Our ability to manipulate I-TevI to target various sites within the human genome was a large 

accomplishment in proving it could have a role in the genome-editing field. However, there are 

many hurdles that still must be overcome, as inherent sequence specificity is still restrictive and a 

thorough off-target profiling has yet to be performed. Understanding the basic biology of the I-

TevI nuclease and linker domain may aid in overcoming these future hurdles. Cross-linking studies 

would help to identify key residues within the protein that are making base-specific contacts and 

permit a more directed protein engineering approach. Identifying base-specific contacts could help  
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Figure 6.2: Considerations when targeting I-TevI derived nucleases  
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further engineer I-TevI variants with alternative specificity without reducing overall specificity of 

the nuclease domain. In addition, studying the mechanism could help reduce possible off-target 

sites by potentially making an I-TevI nickase variants. Whatever the implication, understanding 

the basic biology of I-TevI will aid in applying the nuclease domain in an effective manner. 

6.3     Potential for dual-active GIY-YIG endonucleases 

Current genome editing reagents only introduce a single DSB at their target site to induce 

mutagenic NHEJ repair to create gene knockouts. This may lead to persistent cleavage at their 

target sites with a cyclic cleavage and ligation reaction resulting in an unproductive gene 

modification. Although, a lot of reagents are efficient enough to overcome the classical NHEJ 

pathway and produce a mutagenic repair, the repair outcomes are unpredictable. This means only 

2/3 of outcomes will result in an out-of-frame mutation resulting in gene knockout. One potential 

application of the dual-active TevCas9 fusion is the ability to bias the outcome through excising a 

short fragment from its target site. With careful design, excising a fragment not divisible by 3 

(complete codons), would bias repair events to produce gene knockouts more frequently than 66%. 

As a result, dual-active TevCas9 would be more efficient genome-editing reagent in producing 

gene knockouts over Cas9 alone. However, expression of two active nuclease may result in 

increased off-target cleavage, but this has yet to be investigated. Alternatively, dual-active 

TevCas9 could be used to bias repair events toward in-frame deletions. This may be beneficial as 

the excised fragment is large enough to eliminate an alpha-helix from your protein of interest or a 

binding site from a promoter. Sequence deletions are not a new concept, multiplexing genome-

editing reagents such as Cas9 could be used to delete intervening sequences (32). However, these 

studies produce more variable repair products compared to TevCas9 likely attributed to TevCas9 

ability to sequester the excised fragment from cellular repair proteins more effectively than two 

independent nucleases. In addition, expressing two different gRNAs has been demonstrated to 

increase off-target events. 

Another aspect of genome-editing is the ability to bias cellular DNA-repair pathways from 

mutagenic NHEJ to a gene correction homologous recombination (HR) repair pathway. Gene 

correction events using HR (1-8%) still trouble the genome-editing field as the efficiency is orders 

of magnitude lower then mutagenic NHEJ (15-80%) (33–35, 23, 36). Since HR and NHEJ are in 

competition the challenge is inducing HR without any NHEJ background (5, 37). The efficiency 
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Figure 6.3: Potential genome engineering outcomes using TevCas9 dual-active nucleases 
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of both HR and NHEJ are highly dependent on chromosomal location, nuclease platform, cell 

cycle, cell type and topology of repair template (36, 38). Some efforts to increase HR and reduce 

NHEJ were to create nickases, this would still promote HR and yet not activate NHEJ by only 

cleaving one strand of DNA (39, 40). However, this did successfully reduce NHEJ but did not 

significantly increase the rate of HR. Other attempts to increase HR have been to use chemical 

inhibitors to inhibit NHEJ repair proteins and promote HR. One study utilized small molecules 

and only observed a 2-fold increase in knock-in efficiency ranging from 0.8% to 3.5% with only 

a 2-fold increase (41). Only moderate increases in HR were observed, but still not the efficiency 

required for widespread use. Recently, a study reported HR frequencies of ~60% through simple 

rules for designing a single stranded DNA donor template in conjunction with Cas9, but this has 

to be further studied at other genomic sites (42). Resection creating a free 3’ overhang is the first 

step in HR repair, which could be established using a TevCas9 mutant variant (Figure 6.3). It 

would be intriguing to determine if a TevCas9 fusion containing a Cas9 nickase mutant could be 

utilized to produce a long 3’ overhang to help stimulate HR repair. The long 3’ overhang may 

direct cellular repair away from NHEJ and towards HR increasing the efficiency. This is unique 

from past attempts of just reducing NHEJ repair instead of stimulating HR repair. 

The final potential application for the dual-active TevCas9 is to capitalize on its ability to excise a 

fragment from the genome and replace it with a novel sequence. Similar to off-target profiling 

approaches guide-seq and IDLV capture, a short double-stranded oligo or linear IDLV fragment 

are integrated into the genome. Similar to these two approaches, the excised TevCas9 fragment 

can be replaced with an alternative sequence of choice. This would circumvent the problem of low 

HR frequency as sequences could be readily swapped out of genomes using TevCas9, a protocol 

I termed “swap-seq”. This has the potential to be used to correct gene mutations, add alternative 

mutations, or insert protein tags on endogenous genes. However, the inherent specificity of I-TevI 

may restrict the available sites that can be modified using swap-seq. Overall, the unique dual-

active function and applicability of the I-TevI based genome-editing reagent TevCas9 presents 

some interesting new avenues for genome modifications.   
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Appendix S2: Supplemental information for Chapter 2 

S2 Supplemental material and methods 

Bacterial strains and plasmid construction. Escherichia coli strains DH5α and ER2566 (New England 

Biolabs) were used for plasmid manipulations and protein expression, respectively. E.coli strain 

BW25141(λDE3) was used for genetic selection assays [1]. A complete description of all plasmids used in 

this study are listed in Table S3, and oligonucloetides are listed in Table S4. The ryA and ryB zinc-finger 

genes were synthesized by Integrated DNA Technologies with 5’-BamHI and 3’-XhoI sites and a C-terminal 

6-histidine tag, and cloned into pACYCDuet-1 to generate pACYCryAZf+H and pACYCryBZF+H, respectively. 

A stop codon was introduced at the 3’ end of the ryAZf gene using Quikchange (Stratagene) to generate 

pACYCryAZf. To create GIY-ZFEs, the I-TevI and I-BmoI GIY-YIG domains were PCR amplified from 

bacteriophage T4 gDNA and pACYCIBmoI, respectively, and cloned into the NcoI/BamHI sites of 

pACYCryAZf+H,  pACYCryAZf, and pACYCryBZf+H. TevN201-ryA and TevN201R27A were subcloned into 

the XbaI and EcoRV sites of pTAL3 to generate the expression plasmids for the yeast reporter assay 

(pYTZN201 and pYTZN201R27A). To generate Tev-LHEs, the I-OnuI E1 gene was amplified with BamHI and 

SalI ends to clone into the BamHI and XhoI sites of pACYCDuet-1(PciI) to create pACYCOnuE1(+H). This 

vector was subsequently Quikchanged to introduce an E22Q mutation in I-OnuI E1 to create 

pACYCOnuE1E22Q (+H). I-TevI catalytic domains were amplified as above and cloned into PciI/BamHI of 

pACYCOnuE1E22Q (+H). The R27A mutants of Tev-ZFEs and Tev-LHEs were generated using Quikchange 

mutagenesis. Hybrid GIY-ZFE and Tev-LHE target sites (Fig. 1B and 4B, Table S1 and S2) were cloned into 

the toxic plasmid p11-lacY-wtx1 to generate reporter plasmids for the bacterial selection. Tev-ryA and 

Bmo-ryA target sites were cloned into pSP72 for in vitro cleavage assays. The Tev-ryA site hybrid homing 

site was also cloned into LITMUS28i using BamHI and XhoI to generate pTZHS1.35. The two-site Tev-ZF 

plasmids were created by sub-cloning the PvuII/HpaI fragment from pTZHS1.35 into the SwaI site of 

pTZHS1.35 to generate pTZHS2.35 and pTZHS3.35 (with the second TZHS in either orientation). The G5A 

or C1A/G5A mutations were introduced into pToxTZ and pTZHS plasmids by Quikchange mutagenesis. To 

generate the target plasmids for the yeast reporter assay, the TZ-ryA target sites from toxic plasmids 

containing TZ1.33, TZ1.33G5A, and TZ1.33C1A/G5A were amplified and cloned into the BglII and SpeI sites 

of pCS753. All constructs were verified by sequencing, and the amino acid sequences of all GIY-ZFEs and 

Tev-LHEs constructed are provided in Figure S5. 

Two-plasmid genetic selection. The two plasmid genetic selection was performed as described [1], with 

toxic (reporter) plasmids containing hybrid TZ-ryA, TZ-ryB, BZ-ryA, TO target sites (Table S1 and S2), 
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mutant target sites (with G5A or C1A/G5A substitutions), or plasmids lacking a target site (p11-lacY-wtx1).  

Survival percentage was calculated by dividing the number of colonies observed on selective by those 

observed on non-selective plates.  

Yeast reporter assay. Transformants of S.cerevisiae YPH500() with Tev-ZFE constructs and YPH499(a)  

with target constructs were grown overnight (~230 rpm) at 30°C in synthetic complete medium lacking 

histidine (Tev-ZFEs) or lacking tryptophan and uracil (targets). Tev-ZFEs and targets were mated by adding 

equal densities (~400 μl) of overnight culture to 1 ml YPD and left stationary for 5-6 hours at 30°C. Cells 

harvested by centrifugation were washed in 1 ml and resuspended in 4 ml of synthetic medium lacking 

histidine and tryptophan prior to shaking overnight at 30°C. Cells were harvested by centrifugation, 

washed in 1 ml Z buffer (60 mM Na2PO4, 40 mM NaH2PO4, 10 mM KCl, 1 mM MgSO4, pH 7.0), and 

suspended in 250 μl Z buffer. The suspension was diluted 20-fold into 1 ml Z buffer containing 0.27% -

mercaptoethanol, and 75 μl CHCl3 and 45 μl 0.1% SDS were added prior to vortexing. Lysates were pre-

incubated at 30°C prior to the addition of 100 μl 4 mg/ml ONPG. Reactions proceeded until a yellow colour 

developed whereby progress was stopped by the addition of 300 μl 1M Na2CO3. Stopped reactions were 

pelleted and the absorbance of the supernatant was analyzed at 420 nm and 550 nm. 

Protein purification. Cultures overexpressing either TevN201-ZFE or BmoN221-ZFE were grown at 37°C 

to an OD600~0.5 and expression induced by 0.5 mM IPTG (Bio Basic Inc.) overnight at 15°C. Cells were 

harvested by centrifugation at 8983 x g for 12 minutes, re-suspended in binding buffer (20 mM Tris-HCl 

pH 8.0, 500 mM NaCl, 10 mM imidazole, 5% glycerol, and 1 mM DDT), and lysed by homogenization at 

15,000 psi.  The cell lysate was clarified by centrifugation at 20400 x g, followed by sonication for 30 

seconds, and centrifugation at 20400 x g for 15 minutes. The clarified lysate was loaded onto a 1 mL 

HisTrap-HP column (GE Healthcare), washed with 15 mL binding buffer and then 10 mL wash buffer (20 

mM Tris-HCl (pH 8.0), 500 mM NaCl, 50 mM imidazole, 5% glycerol, and 1 mM DDT). Bound proteins were 

eluted in 1.5 mL fractions in four 5 mL step elutions with increasing concentrations of imidazole. Fractions 

containing GIY-ZFEs were dialyzed twice against 1L dialysis buffer (20 mM Tris-HCl (pH 8.0), 500 mM NaCl, 

5% glycerol, and 1 mM DDT) prior to storage at -80°C. 

Cleavage assays. Single time-point cleavage assays to determine the EC0.5max of TevN201-ryA were 

performed in buffer containing 20 mM Tris-HCl pH 8.0, 100 mM NaCl, 10 mM MgCl2, 5% glycerol, 1 mM 

DTT and 10 nM pTZHS1.33. Reactions were incubated for 3 minutes at 37°C, stopped with 5 μl stop 

solution (100 mM EDTA, 40% glycerol, and bromophenol blue), and electrophoresed on a 1% agarose gel 
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prior to staining with ethiduium bromide and analysis on an AlphaImager™3400 (Alpha Innotech). The 

EC0.5max was determined by fitting the data to the equation 

 

where f([endo]) is the fraction of substrate cleaved at concentration of TevN201-ryA [endo], fmax is the 

maximal fraction cleavage, with 1 being the highest value, and H is the Hill constant that was set to 1. The 

initial reaction velocity was determined using supercoiled plasmid substrate with varying concentrations 

of TevN201-ryA (0.7 nM to 47 nM) and buffer as above. Aliquots were removed at various times, stopped 

and analyzed as above. The data for product appearance was fitted to the equation  

 

where P is product (in nM), A is the magnitude of the initial burst, k1 is the rate constant (s-1) of the initial 

burst phase and k2 is the steady state rate constant (s-1). The two-site plasmid cleavage assays were 

conducted as above, using 10 nM pTZHS2.33 or pTZHS3.33 as substrates, and ~90 nM purified TevN201-

ryA. The kobs rate constants were calculated from the decay of supercoiled substrate by fitting to the 

equation  

 

where [{Van Roey, 2001}] is the concentration (nM) of supercoiled plasmid at time t, [C0] is the initial 

concentration of supercoiled substrate (nM), and k1 is the first order rate constant (in s-1). At least 3 

independent trials were conducted for each data set.  

Cleavage mapping. Mapping of cleavage sites was performed as described [2]. Briefly, primers were 

individually end-labeled with  -32P ATP, and used in PCR reactions with pTox or pSP72 plasmids carrying 

TZ-ryA or BZ-ryA target sites to generate strand-specific substrates. The substrates were incubated with 

purified protein as above, and electrophoresed in 8% denaturing gels alongside sequencing ladders 

generated by cycle sequencing with the same end-labeled primers (US Biologicals). 

Bioinformatics. The distribution of the CNNNG cleavage motif was examined in a 35-bp window of ZFN 

sites predicted for Dania rerio chromosome 1 (Ensembl release 51) using a custom Perl script [6]. Briefly, 

40 bp flanking the downstream region of each predicted ZFN was extracted from the corresponding 

zebrafish chromosome 1 cDNA, and searched for position i = C and position i+4 = G, with the occurrences 

of each CNNNG reported at position i (the C of the motif). The number of CNNNG motifs for unique ZFN 



f ([ endo]) 
f max[endo]H

EC0.5max +[endo] H



P  A(1 ek1t ) k 2t



[C]  [C0]exp(k1t)
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sites was fit to a binomial distrubtion, and plotted in R.   
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S2 Supplemental figures 

 

 

Figure S5.1: Design and functionality of Bmo-ZFEs.  

(A) Schematic of Bmo-ZFE constructs, with I-BmoI protein and substrate shown in grey, and the 

ryA protein and binding site shown in red and yellow, respectively. Top panel, the fusion points 

for each of the Bmo-ZFEs are indicated as the last I-BmoI amino acid, with or without a 2xGlycine 

or 4xGlycine linker. Constructs were made with a 6xHis tag on the C-terminal end. Bottom panel, 

the substrate shown consists of 33-nts of the top strand I-BmoI thyA target site (BZ1.33), fused to 

the 5’ end of the ryA binding site. Substrates tested differ by the insertion of one or two T 

nucleotides at the junction of the thyA/ryA sites. (B) Purification of His-tagged BmoN221-ryA. 

Shown is a representative SDS-PAGE gel; M, marker with molecular weights in kDa indicated on 

the left; UN, uninduced culture; IND, induced culture; C, crude lysate; FT, flow-through from 

metal-affinity column; W, wash; E, elution. (C) BmoN221-ryA cleavage specificity. Shown are 

representative agarose gels of cleavage assays with 10 nM pBZ1.33 or pSP72 (no target site) 

substrates and the indicated concentrations of BmoN221-ryA under standard assay conditions for 

10 minutes. BmoN221-ryA cleaves the BZ-ryA target site plasmid (BZ1.33) but not the control 

plasmid (pSP72) lacking the target site. N, nicked; L, linear; SC, supercoiled. (D) Mapping of 

BmoN221-ryA cleavage sites on the BZ1.33 substrate, with top and bottom cleavage sites 

indicated by open and closed triangles, respectively. 
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Figure S2.2: TevN201-ryA purification for in vitro experiments.  

(A) Purification of TevN201-ryA. Shown is a representative SDS-PAGE gel; M, marker with 

molecular weights in kDa indicated on the left; UN, uninduced culture; IND, induced culture; C, 

crude lysate; FT, flow-through from metal-affinity column; W, wash; E, elution. (B) Graphical 

representation of cleavage assays with 90 nM TevN201-ZFE and 10 nM two-site pTZ1.33 plasmid 

with target sites in the same orientation. Data are plotted as averages of three independent 

replicates with standard deviations; SC, supercoiled; OC, open-circle (nicked); FLL, full-length 

linear; L1+L2, linear products. 
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Figure S2.3: PvuII site analysis.  

(A) Shown is the distribution of the 5’-CAGCTG-3’ motif in a 35-bp window flanking 8,829 

predicted ZFN sites on zebrafish chromosome 1. The number of occurences of the ‘C’ of the motif 

at each distance is indicated. (C) Unique ZFN sites were grouped according to the number of 

occurences of the 5’-CAGCTG-3‘ motif in the 35-bp window.  
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Figure S2.4: Occurrence of the 5’-CNNNG-3’ motif upstream of I-OnuI E1 off-target sites.  

Shown is 37-nt of upstream sequence adjacent to the 22-nt I-OnuI E1 MAO-B target site, along 

with 19 predicted off-target sites [3]. CNNNG motifs are highlighted in red, with only 3 of 19 

predicted I-OnuI E1 off target sites containing a CNNNG motif at a targetable distance by Tev-

LHE fusions. Nucleotide differences of the off-target sites to the I-OnuI E1 site are indicated in 

magenta lower case font. 

  



139 
 

 
 

S2 Supplemental tables 

Table S2.1: Tev-ZFE selection data. 
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Table S2.2: Tev-LHE selection data. 
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Supplemental Table 

S2.3: 

Strains 

Strains and plasmids used in this study. 

Description 

 

Source 

E.coli - DH5 F-, φ80dlacZΔM15, Δ(lacZYA-argF)U169, deoR, recA1, 

endA1, hsdR17(rk-, mk+), phoA, supE44, λ-, thi-1, gyrA96, 

relA1 

Invitrogen 

E.coli - ER2566 F- λ- fhuA2 [lon] ompT lacZ::T7 gene 1 gal sulA11 Δ(mcrC-

mrr)114::IS10 R(mcr-73::miniTn10-TetS)2 R(zgb-

210::Tn10)(TetS) endA1 [dcm] 

N.E.B. 

E.coli - 

BW25141(λDE3) 

F- lacIq rrnBT14 DlacZWJ16 DphoBR580 hsdR514 

DaraBADAH33 DrhaBADLD78 galU95 endABT333 

uidA(DMluI)::pir+ recA1,  λDE3 lysogen 

Ref [1],[4] 

S.cerevisiae - YPH499 MATa ura3-52 lys2-801_amber ade2-101_ochre trp1-Δ63 

his3-Δ200 leu2-Δ1 

Dr. Adam 

Bogdanove 

S.cerevisiae - YPH500 MATα ura3-52 lys2-801_amber ade2-101_ochre trp1-Δ63 

his3-Δ200 leu2-Δ1 

Dr. Adam 

Bogdanove 

   

Plasmids Description Source 

pACYCDuet-1 orip15A, cm Novagen 

pACYCDuet-1(PciI) orip15A, cm, pACYCDuet-1 with a PciI site substituted for 

the NcoI site 

Novagen 

p11-lacY-wtx1 oripBR322, amp Ref [4] 

pSP72 oripBR322, amp Promega 

LITMUS28i oripMB1, amp N.E.B. 

pACYCIBmoI pACYCDuet-1, containing the 798bp codon optimized I-

BmoI gene in the NdeI and XhoI sites 

Ref [1] 

pryAzf oripUC, kan I.D.T. 

pTAL3 oripBR322, amp Dr. Adam 

Bogdanove 

pCP5.1 pCP5 derivative, amp, with ColE1 origin from pBluescript 

IIKS(-), reporter plasmid for the yeast based recombination 

assay, see [5] 

Dr. Adam 

Bogdanove 

pOnuE1 oripBR322, amp Ref [3] 

pACYCryAZf+H pACYCDuet-1, containing the ryA zinc-finger gene with a c-

terminal 6-histidine tag cloned into the BamHI and XhoI 

sites 

This study 

pACYCryAZf pACYCDuet-1, containing the ryA zinc-finger gene cloned 

into the BamHI and XhoI sites 

This study 



142 
 

 
 

pACYCryBZf+H pACYCDuet-1, containing the ryB zinc-finger gene with a c-

terminal 6-histidine tag cloned into the BamHI and XhoI 

sites 

This study 

pTevN201-ZFE (or +H) pACYCryAZf (or +H), with residues 1-N201 of I-TevI 

(DE832/840) cloned into the NcoI and BamHI sites (+/- 

6xHis) 

This study 

pTevN201-ryB (or +H) pACYCryBZf (or +H), with residues 1-N201 of I-TevI 

(DE832/840) cloned into the NcoI and BamHI sites (+/- 

6xHis) 

This study 

pTevN201G2-ZFE (or 

+H) 

pACYCryAZf (or +H), with residues 1-N201 of I-TevI 

(DE833/840) + 2 glycine residues cloned into the NcoI and 

BamHI sites (+/- 6xHis) 

This study 

pTevN201G4-ZFE (or 

+H) 

pACYCryAZf (or +H), with residues 1-N201 of I-TevI 

(DE834/840) + 4 glycine residues cloned into the NcoI and 

BamHI sites (+/- 6xHis) 

This study 

pTevK203-ZFE (or 

+H) 

pACYCryAZf (or +H), with residues 1-K203 of I-TevI 

(DE835/840) cloned into the NcoI and BamHI sites (+/- 

6xHis) 

This study 

pTevK203G2-ZFE (or 

+H) 

pACYCryAZf (or +H), with residues 1-K203 of I-TevI 

(DE836/840) + 2 glycine residues cloned into the NcoI and 

BamHI sites (+/- 6xHis) 

This study 

pTevK203G4-ZFE (or 

+H) 

pACYCryAZf (or +H), with residues 1-K203 of I-TevI 

(DE837/840) + 4 glycine residues cloned into the NcoI and 

BamHI sites (+/- 6xHis) 

This study 

pTevS206-ZFE (or +H) pACYCryAZf (or +H), with residues 1-S206 of I-TevI 

(DE838/840) cloned into the NcoI and BamHI sites (+/- 

6xHis) 

This study 

pTevS206G2-ZFE (or 

+H) 

pACYCryAZf (or +H), with residues 1-S206 of I-TevI 

(DE839/840) + 2 glycine residues cloned into the NcoI and 

BamHI sites (+/- 6xHis) 

This study 

pBmoN221-ZFE (or 

+H)  

pACYCryAZf (or +H), with residues 1-N221 of I-BmoI 

(DE841/849) cloned into the NcoI and BamHI sites (+/- 

6xHis) 

This study 

pBmoN221G2-ZFE (or 

+H) 

pACYCryAZf (or +H), with residues 1-N221 of I-BmoI 

(DE842/849) + 2 glycine residues cloned into the NcoI and 

BamHI sites (+/- 6xHis) 

This study 

pBmoN221G4-ZFE (or 

+H)  

pACYCryAZf (or +H), with residues 1-N221 of I-BmoI 

(DE843/849) + 4 glycine residues cloned into the NcoI and 

BamHI sites (+/- 6xHis) 

This study 

pBmoR223-ZFE (or 

+H) 

pACYCryAZf (or +H), with residues 1-R223 of I-BmoI 

(DE844/849) cloned into the NcoI and BamHI sites (+/- 

6xHis) 

This study 
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pBmoR223G2-ZFE (or 

+H)   

pACYCryAZf (or +H), with residues 1-R223 of I-BmoI 

(DE845/849) + 2 glycine residues cloned into the NcoI and 

BamHI sites (+/- 6xHis) 

This study 

pBmoR223G4-ZFE (or 

+H)   

pACYCryAZf (or +H), with residues 1-R223 of I-BmoI 

(DE846/849) + 4 glycine residues cloned into the NcoI and 

BamHI sites (+/- 6xHis) 

This study 

pBmoI226-ZFE (or 

+H) 

pACYCryAZf (or +H), with residues 1-I226 of I-BmoI 

(DE847/849) cloned into the NcoI and BamHI sites (+/- 

6xHis) 

This study 

pBmoI226G2-ZFE (or 

+H)   

pACYCryAZf (or +H), with residues 1-I226 of I-BmoI 

(DE848/849) + 2 glycine residues cloned into the NcoI and 

BamHI sites (+/- 6xHis) 

This study 

pTevN201R27A Similar to pTevN201-ZFE, with an R27A mutation This study 

pTevN201G2R27A Similar to pTevN201G2-ZFE, with an R27A mutation This study 

pTevN201G4R27A Similar to pTevN201G4-ZFE, with an R27A mutation This study 

pTevK203R27A Similar to pTevK203-ZFE, with an R27A mutation This study 

pTevK203G2R27A Similar to pTevK203G2-ZFE, with an R27A mutation This study 

pTevK203G4R27A Similar to pTevK203G4-ZFE, with an R27A mutation This study 

pTevS206R27A Similar to pTevS206-ZFE, with an R27A mutation This study 

pTevS206G2R27A Similar to pTevS206G2-ZFE, with an R27A mutation This study 

pToxTZ1.35 p11-lacY-wtx1, that contains a 44-bp hybrid I-TevI/ryA 

zinc-finger homing site (td bases -27 to +8 fused to the 9-bp 

ryAZf site) cloned into the XbaI and SphI sites (DE824/825) 

This study 

pToxBZ1.35 p11-lacY-wtx1, that contains a 44-bp hybrid I-BmoI/ryA 

zinc-finger homing site (thyA bases -6 to +27 fused to the 9-

bp ryAZf site) cloned into the XbaI and SphI sites 

(DE826/827) 

This study 

pSP-TZHS1.35 pSP72, that contains a 44-bp hybrid I-TevI/ryA zinc-finger 

homing site (td bases -27 to +8 fused to the 9-bp ryAZf site) 

cloned into the XbaI and SphI sites (DE824/825) 

This study 

pTZHS1.35 LITMUS28i, with the 44-bp hybrid I-TevI/ryA zinc-finger 

homing site (td bases -27 to +8 fused to the 9-bp ryAZf site) 

sub-cloned from pSP-TZHS1.35 into the BamHI and XhoI 

sites 

This study 

pBZHS1.35 pSP72, that contains a 44-bp hybrid I-BmoI/ryA zinc-finger 

homing site (thyA bases +6 to -27 fused to the 9-bp ryAZf 

site) cloned into the XbaI and SphI sites (DE826/827) 

This study 

pTZHS2.35 Similar to pTZHS1.35, with a second Tev-ZFE1.35 target 

site sub-cloned from pSP-TZHS1.35 (using PvuII/HpaI) into 

the SwaI site 

This study 

pTZHS3.35 Similar to pTZHS2.35, with the second Tev-ZFE1.35 target 

site in the alternate orientation 

This study 



144 
 

 
 

pToxTZ1.35G5A Similar to pToxTZ1.35, with a G5A substitution 

(DE917/918) 

This study 

pToxTZ1.35C1A/G5A Similar to pToxTZ1.35, with C1A and G5A substitutions 

(DE919/920) 

This study 

pTZHS1.35G5A Similar to pTZHS1.35, with a G5A substitution This study 

pTZHS1.35C1A/G5A Similar to pTZHS1.35, with C1A and G5A substitutions This study 

pToxTZ1.34 p11-lacY-wtx1, that contains a 43-bp hybrid I-TevI/ryA 

zinc-finger homing site (td bases -27 to +7 fused to the 9-bp 

ryAZf site) cloned into the XbaI and SphI sites  

This study 

pToxTZ1.34G5A Similar to pToxTZ1.34, with G5A substitution This study 

pToxTZ1.34C1A/G5A Similar to pToxTZ1.34, with C1A and G5A substitutions This study 

pToxTZ1.33 p11-lacY-wtx1, that contains a 42-bp hybrid I-TevI/ryA 

zinc-finger homing site (td bases -27 to +6 fused to the 9-bp 

ryAZf site) cloned into the XbaI and SphI sites  

This study 

pToxTZ1.33G5A Similar to pToxTZ1.33, with G5A substitution This study 

pToxTZ1.33C1A/G5A Similar to pToxTZ1.33, with C1A and G5A substitutions This study 

pToxTZ1.33-ryB p11-lacY-wtx1, that contains a 42-bp hybrid I-TevI/ryB zinc-

finger homing site (td bases -27 to +6 fused to the 9-bp 

ryBZf site) cloned into the XbaI and SphI sites  

This study 

pToxBZ1.34 p11-lacY-wtx1, that contains a 43-bp hybrid I-BmoI/ryA 

zinc-finger homing site (thyA bases -6 to +26 fused to the 9-

bp ryAZf site) cloned into the XbaI and SphI sites 

(DE826/827) 

This study 

pToxBZ1.33 p11-lacY-wtx1, that contains a 42-bp hybrid I-BmoI/ryA 

zinc-finger homing site (thyA bases -6 to +25 fused to the 9-

bp ryAZf site) cloned into the XbaI and SphI sites 

(DE826/827) 

This study 

pTZHS1.34 Similar to pTZHS1.35, with a 43-bp hybrid I-TevI/ryA zinc-

finger homing site (td bases -27 to +7 fused to the 9-bp 

ryAZf site) 

This study 

pTZHS1.33 Similar to pTZHS1.35, with a 42-bp hybrid I-TevI/ryA zinc-

finger homing site (td bases -27 to +6 fused to the 9-bp 

ryAZf site) 

This study 

pBZHS1.34 Similar to pBZHS1.35, with a 43-bp hybrid I-BmoI/ryA 

zinc-finger homing site (thyA bases +6 to -26 fused to the 9-

bp ryAZf site) 

This study 

pBZHS1.33 Similar to pBZHS1.35, with a 42-bp hybrid I-BmoI/ryA 

zinc-finger homing site (thyA bases +6 to -25 fused to the 9-

bp ryAZf site) 

This study 

pTZHS2.34 Similar to pTZHS2.35, with both Tev-ZFE target sites as 43-

bp hybrid I-TevI/ryA zinc-finger homing site (td bases -27 to 

+7 fused to the 9-bp ryAZf site) 

This study 
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pTZHS3.34 Similar to pTZHS3.35, with both Tev-ZFE target sites as 43-

bp hybrid I-TevI/ryA zinc-finger homing site (td bases -27 to 

+7 fused to the 9-bp ryAZf site) 

This study 

pTZHS2.33 Similar to pTZHS2.35, with both Tev-ZFE target sites as 42-

bp hybrid I-TevI/ryA zinc-finger homing site (td bases -27 to 

+6 fused to the 9-bp ryAZf site) 

This study 

pTZHS3.33 Similar to pTZHS3.35, with both Tev-ZFE target sites as 42-

bp hybrid I-TevI/ryA zinc-finger homing site (td bases -27 to 

+6 fused to the 9-bp ryAZf site) 

This study 

pTZHS1.34G5A Similar to pTZHS1.34, with a G5A substitution This study 

pTZHS1.33G5A Similar to pTZHS1.33, with a G5A substitution This study 

pTZHS1.34C1A/G5A Similar to pTZHS1.34, with C1A and G5A substitutions This study 

pTZHS1.33C1A/G5A Similar to pTZHS1.33, with C1A and G5A substitutions This study 

pToxTZ1.30 p11-lacY-wtx1, that contains a 39-bp hybrid I-TevI/ryA 

zinc-finger homing site (td bases -27 to +3 fused to the 9-bp 

ryAZf site) cloned into the XbaI and SphI sites 

(DE1085/1086) 

This study 

pToxTZ1.32 p11-lacY-wtx1, that contains a 41-bp hybrid I-TevI/ryA 

zinc-finger homing site (td bases -27 to +5 fused to the 9-bp 

ryAZf site) cloned into the XbaI and SphI sites 

(DE1087/1088) 

This study 

pToxTZ1.36 p11-lacY-wtx1, that contains a 45-bp hybrid I-TevI/ryA 

zinc-finger homing site (td bases -27 to +9 fused to the 9-bp 

ryAZf site) cloned into the XbaI and SphI 

sites(DE1134/1135) 

This study 

pToxTZ1.38 p11-lacY-wtx1, that contains a 47-bp hybrid I-TevI/ryA 

zinc-finger homing site (td bases -27 to +11 fused to the 9-bp 

ryAZf site) cloned into the XbaI and SphI 

sites(DE1136/1137) 

This study 

pToxTZ1.33ryB p11-lacY-wtx1, that contains a 42-bp hybrid I-TevI/ryB zinc-

finger homing site (td bases -27 to +6 fused to the 9-bp 

ryBZf site) cloned into the XbaI and SphI sites  

This study 

pToxTO1.12 p11-lacY-wtx1, that contains a 34-bp hybrid I-TevI/I-OnuI 

E1 homing site (td bases -27 to -16  fused to the I-OnuI E1 

site) cloned into the XbaI and SphI sites(DE1072/1073) 

This study 

pToxTO1.14 p11-lacY-wtx1, that contains a 36-bp hybrid I-TevI/I-OnuI 

E1 homing site (td bases -27 to -14  fused to the I-OnuI E1 

site) cloned into the XbaI and SphI sites(DE1070/1071) 

This study 

pToxTO1.16 p11-lacY-wtx1, that contains a 38-bp hybrid I-TevI/I-OnuI 

E1 homing site (td bases -27 to -12  fused to the I-OnuI E1 

site) cloned into the XbaI and SphI sites(DE1068/1069) 

This study 
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pToxTO1.18 p11-lacY-wtx1, that contains a 40-bp hybrid I-TevI/I-OnuI 

E1 homing site (td bases -27 to -10  fused to the I-OnuI E1 

site) cloned into the XbaI and SphI sites(DE1066/1067) 

This study 

pToxTO1.20 p11-lacY-wtx1, that contains a 42-bp hybrid I-TevI/I-OnuI 

E1 homing site (td bases -27 to -8  fused to the I-OnuI E1 

site) cloned into the XbaI and SphI sites(DE1064/1065) 

This study 

pToxTO1.22 p11-lacY-wtx1, that contains a 44-bp hybrid I-TevI/I-OnuI 

E1 homing site (td bases -27 to -6  fused to the I-OnuI E1 

site) cloned into the XbaI and SphI sites(DE1062/1063) 

This study 

pToxTO1.24 p11-lacY-wtx1, that contains a 46-bp hybrid I-TevI/I-OnuI 

E1 homing site (td bases -27 to -4  fused to the I-OnuI E1 

site) cloned into the XbaI and SphI sites(DE1060/1061) 

This study 

pToxTO1.26 p11-lacY-wtx1, that contains a 48-bp hybrid I-TevI/I-OnuI 

E1 homing site (td bases -27 to -2  fused to the I-OnuI E1 

site) cloned into the XbaI and SphI sites(DE1058/1059) 

This study 

pToxTO1.28 p11-lacY-wtx1, that contains a 50-bp hybrid I-TevI/I-OnuI 

E1 homing site (td bases -27 to +1  fused to the I-OnuI E1 

site) cloned into the XbaI and SphI sites(DE1056/1057) 

This study 

pToxTO1.30 p11-lacY-wtx1, that contains a 52-bp hybrid I-TevI/I-OnuI 

E1 homing site (td bases -27 to +3  fused to the I-OnuI E1 

site) cloned into the XbaI and SphI sites(DE976/977) 

This study 

pToxTO1.18C1A/G5A Similar to pToxTO18, with C1A and G5A 

substitution(DE1154/1155) 

This study 

pToxTO1.20 C1A/G5A Similar to pToxTO20, with C1A and G5A 

substitution(DE1156/1157) 

This study 

pToxTO1.26 C1A/G5A Similar to pToxTO26, with C1A and G5A 

substitution(DE1158/1159) 

This study 

pToxTO1.30 G5A Similar to pToxTO30, with a G5A substitution This study 

pToxTO1.30 C1A/G5A Similar to pToxTO30, with C1A and G5A substitution This study 

pACYCOnuE1(+H) pACYCDuet-1(PciI), containing the I-OnuI E1 gene cloned 

into the BamHI and XhoI sites 

This study 

pACYCOnuE1(E22Q) 

(+H) 

pACYCDuet-1(PciI), containing the I-OnuI E1 gene with a 

E22Q mutation cloned into the BamHI and XhoI sites 

This study 

pTevK203-

OnuE1(E22Q)  

pACYCOnuE1(E22Q)(+H), with residues 1-K203 of I-TevI 

(DE) cloned into the PciI and BamHI sites 

This study 

pTevN201G4-

OnuE1(E22Q) (+H) 

pACYCOnuE1(E22Q)(+H), with residues 1-N201 of I-TevI 

+ 4 glycine residues (DE) cloned into the PciI and BamHI 

sites (+6xHis) 

This study 

pTevD184G2-

OnuE1(E22Q) (+H) 

pACYCOnuE1(E22Q)(+H), with residues 1-D184G2 of I-

TevI + 2 glycine residues (DE) cloned into the PciI and 

BamHI sites (+6xHis) 

This study 

pTevN169-

OnuE1(E22Q) (+H) 

pACYCOnuE1(E22Q)(+H), with residues 1-N169 of I-TevI 

(DE) cloned into the PciI and BamHI sites (+6xHis) 

This study 
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Table S2.4: Oligonucleotides used in this study 

Name Sequence (5'-3') Notes 

DE410 GGAAGAAGTGGCTGATCTCAGC Forward primer to generate all cycle-seq 

products for target sites cloned into 

pTox 

DE411 CAGACCGCTTCTGCGTTCTG Reverse primer to generate all cycle-seq 

products for target sites cloned into 

pTox 

DE613 GCTAAAGATTTTGAAAAGGCATGGA

AGAAGCATTTTAAAG 

Forward quikchange primer to create 

R27A Tev-ZFEs 

DE614 CTTTAAAATGCTTCTTCCATGCCTTTT

CAAAATCTTTAGC 

Reverse quikchange primer to create 

R27A Tev-ZFEs 

pTevN140-

OnuE1(E22Q) (+H) 

pACYCOnuE1(E22Q)(+H), with residues 1-N140 of I-TevI 

(DE) cloned into the PciI and BamHI sites (+6xHis) 

This study 

pTevD127-

OnuE1(E22Q) (+H) 

pACYCOnuE1(E22Q)(+H), with residues 1- D127 of I-TevI 

(DE) cloned into the PciI and BamHI sites (+6xHis) 

This study 

pTevS114-

OnuE1(E22Q) (+H) 

pACYCOnuE1(E22Q)(+H), with residues 1- S114 of I-TevI 

(DE) cloned into the PciI and BamHI sites (+6xHis) 

This study 

pTevN201G4R27A -

OnuE1(+H) 

pACYCOnuE1(+H), with residues 1-N201 of I-TevI + 4 

glycine residues (DE) with a R27A mutation in I-TevI 

(+6xHis) 

This study 

pTevN201G4R27A-

OnuE1(E22Q) (+H) 

pACYCOnuE1(E22Q)(+H), similar to  pTevN201G4-

OnuE1(E22Q) (+H) with an R27A mutation in I-TevI 

This study 

pZif268 pTAL3 expression vector containing homodimeric FokI-

Zif268 ZFN 

Dr. Adam 

Bogdanove 

pZif268target pCS753 reporter plasmid with a homodimeric FokI-Zif268 

target site interrupting a partially duplicated lacZ gene 

Dr. Adam 

Bogdanove 

pYTZN201 pTAL3, with TevN201-ryA cloned in XbaI/EcoRV using 

DE1121/1128 

This study 

pYTZN201R27A Similar to pYTZN201, with an R27A I-TevI mutation This study 

pTZYHS1.33 pCS753, with the 42-bp hybrid I-TevI/ryA zinc-finger 

homing site cloned into the BglII/SpeI sites using 

DE1117/1118 

This study 

pTZYHS1.33G5A Similar to PTZYHS1.33, with G5A substitution This study 

pTZYHS1.33C1A/G5A Similar to PTZYHS1.33, with C1A and G5A substitutions This study 
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DE824 CTAGACAACGCTCAGTAGATGTTTTC

TTGGGTCTACCGTTTCCCACGCCGCA

TG 

Top-strand oligo to clone the hybrid 35-

bp I-TevI/9-bp ryAZf using XbaI and 

SphI 

DE825 CGGCGTGGGAAACGGTAGACCCAAG

AAAACATCTACTGAGCGTTGT 

Bottom-strand oligo to clone the hybrid 

35-bp I-TevI/9-bp ryAZf using XbaI and 

SphI 

DE826 CTAGAGCCCGTAGTAATGACATGGCC

TTGGGAAATCCCTTTCCCACGCCGCA

TG 

Top-strand oligo to clone the hybrid 35-

bp I-BmoI/9-bp ryAZf using XbaI and 

SphI 

DE827 CGGCGTGGGAAAGGGATTTCCCAAG

GCCATGTCATTACTACGGGCT 

Bottom-strand oligo to clone the hybrid 

35-bp I-BmoI/9-bp ryAZf using XbaI 

and SphI 

DE832 CCGCGGATCCATTACTAGGCTTTTTA

CC 

Reverse primer for TevN201-ZFE 

cloning, BamHI site underlined 

DE833 CCGCGGATCCACCACCATTACTAGGC

TTTTTACC 

Reverse primer for TevN201G2-ZFE 

cloning, BamHI site underlined 

DE834 CCGCGGATCCACCACCACCACCATTA

CTAGGCTTTTTACC 

Reverse primer for TevN201G4-ZFE 

cloning, BamHI site underlined 

DE835 CCGCGGATCCTTTAATATTACTAGGC

TTTTTAC 

Reverse primer for TevK203-ZFE 

cloning, BamHI site underlined 

DE836 CCGCGGATCCACCACCTTTAATATTA

CTAGGCTTTTTAC 

Reverse primer for TevK203G2-ZFE 

cloning, BamHI site underlined 

DE837 CCGCGGATCCACCACCACCACCTTTA

ATATTACTAGGCTTTTTAC 

Reverse primer for TevK203G4-ZFE 

cloning, BamHI site underlined 

DE838 CCGCGGATCCTGAAATCTTTTTAATA

TTACTAGGC 

Reverse primer for TevS206-ZFE 

cloning, BamHI site underlined 

DE839 CCGCGGATCCACCACCTGAAATCTTT

TTAATATTACTAGGC 

Reverse primer for TevS206G2-ZFE 

cloning, BamHI site underlined 

DE840 GCCGCCATGGGTAAAAGCGGAATTT

ATCAGATT 

Forward primer for Tev-ZFE cloning, 

NcoI site underlined 

DE841 CCGCGGATCCGTTTTTCGGTTTACGA

CC 

Reverse primer for BmoN221-ZFE 

cloning, BamHI site underlined 

DE842 CCGCGGATCCACCACCGTTTTTCGGT

TTACGACC 

Reverse primer for BmoN221G2-ZFE 

cloning, BamHI site underlined 
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DE843 CCGCGGATCCACCACCACCACCGTTT

TTCGGTTTACGACC 

Reverse primer for BmoN221G4-ZFE 

cloning, BamHI site underlined 

DE844 CCGCGGATCCACGAGAGTTTTTCGGT

TTACG 

Reverse primer for BmoR223-ZFE 

cloning, BamHI site underlined 

DE845 CCGCGGATCCACCACCACGAGAGTTT

TTCGGTTTACG 

Reverse primer for BmoR223G2-ZFE 

cloning, BamHI site underlined 

DE846 CCGCGGATCCACCACCACCACCACG

AGAGTTTTTCGGTTTACG 

Reverse primer for BmoR223G4-ZFE 

cloning, BamHI site underlined 

DE847 CCGCGGATCCGATAACCGGACGAGA

GTTTTTCGG 

Reverse primer for BmoI226-ZFE 

cloning, BamHI site underlined 

DE848 CCGCGGATCCACCACCGATAACCGG

ACGAGAGTTTTTCGG 

Reverse primer for BmoI226G2-ZFE 

cloning, BamHI site underlined 

DE849 GCCGCCATGGGTAAATCTGGTGTTTA

CAAAATC 

Forward primer for Bmo-ZFE cloning, 

NcoI site underlined 

DE850 CTTGGGTCTACCGTTCCCACGCCGCA

TG 

Forward quikchange primer to make the 

1.34 I-TevI/ryA zinc-finger target site 

DE851 CATGCGGCGTGGGAACGGTAGACCC

AAG 

Reverse quikchange primer to make the 

1.34 I-TevI/ryA zinc-finger target site 

DE852 CTTGGGTCTACCGTCCCACGCCGCAT

G 

Forward quikchange primer to make the 

1.33 I-TevI/ryA zinc-finger target site 

DE853 CATGCGGCGTGGGACGGTAGACCCA

AG 

Reverse quikchange primer to make the 

1.33 I-TevI/ryA zinc-finger target site 

DE854 GCCTTGGGAAATCCCTTCCCACGCCG

CATG 

Forward quikchange primer to make the 

1.34 I-BmoI/ryA zinc-finger target site 

DE855 CATGCGGCGTGGGAAGGGATTTCCCA

AGGC 

Reverse quikchange primer to make the 

1.34 I-BmoI/ryA zinc-finger target site 

DE856 GCCTTGGGAAATCCCTCCCACGCCGC

ATG 

Forward quikchange primer to make the 

1.33 I-BmoI/ryA zinc-finger target site 

DE857 CATGCGGCGTGGGAGGGATTTCCCAA

GGC 

Reverse quikchange primer to make the 

1.33 I-BmoI/ryA zinc-finger target site 

DE858 CAGAAACAGCTGGTTTAATAACATCA

TCACCACTAACTCG 

Forward quikchange primer to add stops 

to the 3’-end of the ryA zinc-finger 

DE859 CGAGTTAGTGGTGATGATGTTATTAA

ACCAGCTGTTTCTG 

Reverse quikchange primer to add stops 

to the 3’-end of the ryA zinc-finger 
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DE917 CTAGACAACACTCAGTAGATGTTTTC

TTGGGTCTACCGTTTCCCACGCCGCA

TG 

Top strand oligo similar to DE824 with 

G-23A substitution  

DE918 CGGCGTGGGAAACGGTAGACCCAAG

AAAACATCTACTGAGTGTTGT 

Bottom strand oligo similar to DE825 

with C-23T substitution 

DE919 CTAGAAAACACTCAGTAGATGTTTTC

TTGGGTCTACCGTTTCCCACGCCGCA

TG 

Top strand oligo similar to DE824 with 

G-23A and C-27A substitutions 

DE920 CGGCGTGGGAAACGGTAGACCCAAG

AAAACATCTACTGAGTGTTTT 

Bottom strand oligo similar to DE825 

with C-23T and G-27T substitutions 

DE973 CTAGACAACGCTCAGTAGATGTTTTC

TTGGGTCTACCGTTAGCTACTACGCAT

G 

Top-strand oligo to clone the hybrid 33-

bp I-TevI/9-bp ryBZf using XbaI and 

SphI 

DE974 CGTAGTAGCTAACGGTAGACCCAAGA

AAACATCTACTGAGCGTTGT 

Bottom-strand oligo to clone the hybrid 

33-bp I-TevI/9-bp ryBZf using XbaI and 

SphI 

DE976 CTAGACAACGCTCAGTAGATGTTTTC

TTGGGTCTAGGTCCACATATTTAACCTT

TTGCATG 

Top strand oligo to clone the hybrid 30-

bp I-TevI/22-bp I-OnuI E1 using XbaI 

and SphI 

DE977 CAAAAGGTTAAATATGTGGACCTAGAC

CCAAGAAAACATCTACTGAGCGTTGT 

Bottom strand oligo to clone the hybrid 

30-bp I-TevI/22-bp I-OnuI E1 using 

XbaI and SphI 

DE978 CTAGACAACACTCAGTAGATGTTTTC

TTGGGTCTAGGTCCACATATTTAACCTT

TTGCATG 

Top strand oligo similar to DE976 with 

G5A substitution 

DE979 CAAAAGGTTAAATATGTGGACCTAG

ACCCAAGAAAACATCTACTGAGTGTT

GT 

Bottom strand oligo similar to DE977 

with G5A substitution 

DE980 CTAGAAAACACTCAGTAGATGTTTTC

TTGGGTCTAGGTCCACATATTTAACCTT

TTGCATG 

Top strand oligo similar to DE976 with 

C1A and G5A substitution 

DE981 CAAAAGGTTAAATATGTGGACCTAGAC

CCAAGAAAACATCTACTGAGTGTTTT 

Bottom strand oligo similar to DE977 

with C1A and G5A substitution 

DE982 CGGTTTCGCCGACGCGCAAGGCTCCT

TTTTGCTGCG 

Forward quikchange primer to create 

E22Q I-OnuI E1 mutant 



151 
 

 
 

DE983 CGCAGCAAAAAGGAGCCTTGCGCGT

CGGCGAAACCG 

Reverse quikchange primer to create 

E22Q I-OnuI E1 mutant 

DE991 CGCGTCGACTTAGAATACTCTGCCCT

TGTTC 

Reverse primer to amplify the I-OnuI E1 

gene with a 3’ SalI site 

DE1017 CGCGGATCCACCACCGTCTGAATGCT

TATGATTAAAG 

Reverse primer for TevD184G2 cloning, 

BamHI site underlined 

DE1040 CGCGGATCCAGAACGTTTCTTAATAA

TTTC 

Reverse primer for TevS114 cloning, 

BamHI site underlined 

DE1042 CGCGGATCCATCAGGTCCAAGTTTAA

GC 

Reverse primer for TevD127 cloning, 

BamHI site underlined 

DE1044 CGCGGATCCGTTTTTACTTCCGGGTT

TAC 

Reverse primer for TevN140 cloning, 

BamHI site underlined 

DE1045 CGCGGATCCATTTCTGCATTTACTAC

AAG 

Reverse primer for TevN169 cloning, 

BamHI site underlined 

DE1056 CTAGACAACGCTCAGTAGATGTTTTC

TTGGGTCGGTCCACATATTTAACCTTTT

GCATG 

Top-strand oligo to clone the hybrid 28-

bp I-TevI/22-bp I-OnuI E1 using XbaI 

and SphI 

DE1057 CAAAAGGTTAAATATGTGGACCGACCC

AAGAAAACATCTACTGAGCGTTGT 

Bottom-strand oligo to clone the hybrid 

28-bp I-TevI/22-bp I-OnuI E1 using 

XbaI and SphI 

DE1058 CTAGACAACGCTCAGTAGATGTTTTC

TTGGGGGTCCACATATTTAACCTTTTGC

ATG 

Top-strand oligo to clone the hybrid 26-

bp I-TevI/22-bp I-OnuI E1 using XbaI 

and SphI 

DE1059 CAAAAGGTTAAATATGTGGACCCCCAA

GAAAACATCTACTGAGCGTTGT 

Bottom-strand oligo to clone the hybrid 

26-bp I-TevI/22-bp I-OnuI E1 using 

XbaI and SphI 

DE1060 CTAGACAACGCTCAGTAGATGTTTTC

TTGGGTCCACATATTTAACCTTTTGCAT

G 

Top-strand oligo to clone the hybrid 24-

bp I-TevI/22-bp I-OnuI E1 using XbaI 

and SphI 

DE1061 CAAAAGGTTAAATATGTGGACCCAAGA

AAACATCTACTGAGCGTTGT 

Bottom-strand oligo to clone the hybrid 

24-bp I-TevI/22-bp I-OnuI E1 using 

XbaI and SphI 

DE1062 CTAGACAACGCTCAGTAGATGTTTTC

TGGTCCACATATTTAACCTTTTGCATG 

Top-strand oligo to clone the hybrid 22-

bp I-TevI/22-bp I-OnuI E1 using XbaI 

and SphI 
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DE1063 CAAAAGGTTAAATATGTGGACCAGAAA

ACATCTACTGAGCGTTGT 

Bottom-strand oligo to clone the hybrid 

22-bp I-TevI/22-bp I-OnuI E1 using 

XbaI and SphI 

DE1064 CTAGACAACGCTCAGTAGATGTTTTG

GTCCACATATTTAACCTTTTGCATG 

Top-strand oligo to clone the hybrid 20-

bp I-TevI/22-bp I-OnuI E1 using XbaI 

and SphI 

DE1065 CAAAAGGTTAAATATGTGGACCAAAAC

ATCTACTGAGCGTTGT 

Bottom-strand oligo to clone the hybrid 

20-bp I-TevI/22-bp I-OnuI E1 using 

XbaI and SphI 

DE1066 CTAGACAACGCTCAGTAGATGTTGGT

CCACATATTTAACCTTTTGCATG 

Top-strand oligo to clone the hybrid 18-

bp I-TevI/22-bp I-OnuI E1 using XbaI 

and SphI 

DE1067 CAAAAGGTTAAATATGTGGACCAACAT

CTACTGAGCGTTGT 

Bottom-strand oligo to clone the hybrid 

18-bp I-TevI/22-bp I-OnuI E1 using 

XbaI and SphI 

DE1068 CTAGACAACGCTCAGTAGATGGGTCC

ACATATTTAACCTTTTGCATG 

Top-strand oligo to clone the hybrid 16-

bp I-TevI/22-bp I-OnuI E1 using XbaI 

and SphI 

DE1069 CAAAAGGTTAAATATGTGGACCCATCT

ACTGAGCGTTGT 

Bottom-strand oligo to clone the hybrid 

16-bp I-TevI/22-bp I-OnuI E1 using 

XbaI and SphI 

DE1070 CTAGACAACGCTCAGTAGAGGTCCAC

ATATTTAACCTTTTGCATG 

Top-strand oligo to clone the hybrid14-

bp I-TevI/22-bp I-OnuI E1 using XbaI 

and SphI 

DE1071 CAAAAGGTTAAATATGTGGACCTCTACT

GAGCGTTGT 

Bottom-strand oligo to clone the hybrid 

14-bp I-TevI/22-bp I-OnuI E1 using 

XbaI and SphI 

DE1072 CTAGACAACGCTCAGTAGGTCCACAT

ATTTAACCTTTTGCATG 

Top-strand oligo to clone the hybrid 12-

bp I-TevI/22-bp I-OnuI E1 using XbaI 

and SphI 

DE1073 CAAAAGGTTAAATATGTGGACCTACTG

AGCGTTGT 

Bottom-strand oligo to clone the hybrid 

12-bp I-TevI/22-bp I-OnuI E1 using 

XbaI and SphI 

DE1074 CGCGTCGACTTAGTGGTGATGATGGT

GATGGAATACTCTGCCCTTGTTC 

Reverse primer to amplify the I-OnuI E1 

gene with a 3’ his-tag and SalI site 
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DE1082 GCGAGATCTGGTTCCGCCTATATGTC

CCG 

Forward primer to amplify the I-OnuI 

E1 gene with a 5’ BamHI site 

DE1085 CTAGACAACGCTCAGTAGATGTTTTC

TTGGGTCTACCTCCCACGCCGCATG 

Top-strand oligo to clone the hybrid 32-

bp I-TevI/9-bp ryAZf using XbaI and 

SphI 

DE1086 CGGCGTGGGAGGTAGACCCAAGAAA

ACATCTACTGAGCGTTGT 

Bottom-strand oligo to clone the hybrid 

32-bp I-TevI/9-bp ryAZf using XbaI and 

SphI 

DE1087 CTAGACAACGCTCAGTAGATGTTTTC

TTGGGTCTATCCCACGCCGCATG 

Top-strand oligo to clone the hybrid 30-

bp I-TevI/9-bp ryAZf using XbaI and 

SphI 

DE1088 CGGCGTGGGATAGACCCAAGAAAAC

ATCTACTGAGCGTTGT 

Bottom-strand oligo to clone the hybrid 

30-bp I-TevI/9-bp ryAZf using XbaI and 

SphI 

DE1117 GCAGATCTCTAGCATTACGCTAGGG Forward primer to amplify target site in 

pTox with 5’ BglII site to clone into 

pCS753 

DE1118 GCACTAGTCTTCTCTCATCCGCC Reverse primer to amplify target site in 

pTox with 3’ SpeI site to clone into 

pCS753 

DE1121 CGTCTAGAATGAAAAGCGGAATTTAT

CAGATT 

Forward primer to amplify I-TevI with 

5’ XbaI site to clone into pTAL3 

DE1128 CGGATATCTTATTAAACCAGCTGTTT

CTGACGCAGG 

Reverse primer to amplify ryAZF with 

3’ EcoRV site to clone into pTAL3 

DE1134 CTAGACAACGCTCAGTAGATGTTTTC

TTGGGTCTACCGTTTTCCCACGCCGC

ATG 

Top-strand oligo to clone the hybrid 36-

bp I-TevI/9-bp ryAZf using XbaI and 

SphI 

DE1135 CGGCGTGGGAAAACGGTAGACCCAA

GAAAACATCTACTGAGCGTTGT 

Bottom-strand oligo to clone the hybrid 

36-bp I-TevI/9-bp ryAZf using XbaI and 

SphI 

DE1136 CTAGACAACGCTCAGTAGATGTTTTC

TTGGGTCTACCGTTTCCCACGCCGCA

TG 

Top-strand oligo to clone the hybrid 38-

bp I-TevI/9-bp ryAZf using XbaI and 

SphI 

DE1137 CGGCGTGGGAAACGGTAGACCCAAG

AAAACATCTACTGAGCGTTGT 

Bottom-strand oligo to clone the hybrid 

38-bp I-TevI/9-bp ryAZf using XbaI and 

SphI 
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DE1154 CTAGAAAACACTCAGTAGATGTTTTC

TTGGGGGTCCACATATTTAACCTTTTGC

ATG 

Top-strand oligo to clone the hybrid 26-

bp I-TevI/22-bp I-OnuI E1 using XbaI 

and SphI 

DE1155 CAAAAGGTTAAATATGTGGACCCCCAA

GAAAACATCTACTGAGTGTTTT 

Bottom-strand oligo to clone the hybrid 

26-bp I-TevI/22-bp I-OnuI E1 using 

XbaI and SphI 

DE1156 CTAGAAAACACTCAGTAGATGTTTTG

GTCCACATATTTAACCTTTTGCATG 

Top-strand oligo to clone the hybrid 20-

bp I-TevI/22-bp I-OnuI E1 using XbaI 

and SphI 

DE1157 CAAAAGGTTAAATATGTGGACCAAAAC

ATCTACTGAGTGTTTT 

Bottom-strand oligo to clone the hybrid 

20-bp I-TevI/22-bp I-OnuI E1 using 

XbaI and SphI 

DE1158 CTAGAAAACACTCAGTAGATGTTGGT

CCACATATTTAACCTTTTGCATG 

Top-strand oligo to clone the hybrid 18-

bp I-TevI/22-bp I-OnuI E1 using XbaI 

and SphI 

DE1159 CAAAAGGTTAAATATGTGGACCAACAT

CTACTGAGTGTTTT 

Bottom-strand oligo to clone the hybrid 

18-bp I-TevI/22-bp I-OnuI E1 using 

XbaI and SphI 
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Appendix S3: Supplemental information for Chapter 3 

S3 Supplemental figures 

 

Figure S3.1: Dual active Tev169-Ltr activity in vitro  

(A) Schematic of substrate and cleavage products containing the TL15 target site indicated by a 

black-filled rectangle.  The black and red arrows indicate the top and bottom cleavage sites (CS) 

for I-TevI and I-LtrI, respectively. Black dashed lines indicate I-TevI cleavage products (TP1 and 

TP2), I-LtrI cleavage products (LP1 and LP2), and the red dashed line is the internal dual product 

(DP) from both I-TevI and I-LtrI cleavage. Sizes of the substrate and products are indicated in base 

pairs (bp). Mutant R27A I-TevI and E29Q I-LtrI are denoted by xTev and xLtr, respectively. (B) 

Polyacrylamide gel of internally labeled TL15 PCR product incubated with (+) or without (-) 

purified dual active Tev169-Ltr and single-active site variants. Tev169-Ltr was incubated with 

substrate for the indicated times, and cleavage products are indicated on the right side of the gel 

based on their predicted sizes from panel (A). The sizing standard (in bp) was cropped from the 

gel image.  
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Figure S3.2: Purified MegaTev constructs on a Ni2+ column 

SDS-Polyacrylamide gel of the purified MegaTev constructs used in vitro. Protein ladder was 

cropped from the image and sizes markers are indicated in kDa. 
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Figure S3.2: Representation of MegaTev cleavage 

(A) Agarose gel of a DdeI digest for MegaTev with inactive I-OnuI. (B) Sanger sequencing for 

individual DdeI resistant sites treated with Tev169-xOnu (inactive I-OnuI). (C)  Sanger sequencing 

for individual DdeI resistant sites treated with Tev169-Onu (MegaTev dual-active).  
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Figure S3.4: Examples of modified two-plasmid selection for CNNNG TO15 target sites 

(A) Schematic for the TO15 target site highlighting in red the NNN-triplet within the cleavage 

motif. All 64-variants in the CNNNG cleavage motif were screened on selective plates. (B) Sample 

selective plate for the two control target sites and two NNN-triplets substrates consisting of a 

strong and weak survivors. Eight colonies were gridded for each target site with the identity 

displayed on the right. 
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S3: Supplemental Tables 

Table S3.1: Strains used in this study 

 

Table S3.2: Oligonucleotides used in this study 

Name Sequence (5'-3') Notes 

DE-1058 CTAGACAACGCTCAGTAGATGTT

TTCTTGGGGGTCCACATATTTAAC

CTTTTGCATG 

Top strand for T021 target site, 

XbaI/SphI 

DE-1059 CAAAAGGTTAAATATGTGGACCC

CCAAGAAAACATCTACTGAGCGT

TGT 

Bottom strand for T021 target site, 

XbaI/SphI 

DE-1060 CTAGACAACGCTCAGTAGATGTT

TTCTTGGGTCCACATATTTAACCT

TTTGCATG 

Top strand for T019 target site, 

XbaI/SphI 

DE-1061 CAAAAGGTTAAATATGTGGACCC

AAGAAAACATCTACTGAGCGTTG

T 

Bottom strand for T019 target site, 

XbaI/SphI 

Construction Description Source 

Strains     

DH5 F-, φ80dlacZΔM15, Δ(lacZYA-argF)U169, deoR, recA1, 

endA1, hsdR17(rk-, mk+), phoA, supE44, λ-, thi-1, gyrA96, 

relA1 

Invitrogen 

ER2566 F- λ- fhuA2 [lon] ompT lacZ::T7 gene 1 gal sulA11 Δ(mcrC-

mrr)114::IS10 R(mcr-73::miniTn10-TetS)2 R(zgb-

210::Tn10)(TetS) endA1 [dcm] 

N.E.B. 

BW25141 

(λDE3) 

F- lacIq rrnBT14 DlacZWJ16 DphoBR580 hsdR514 

DaraBADAH33 DrhaBADLD78 galU95 endABT333 

uidA(DMluI)::pir+ recA1,  λDE3 lysogen 

 

S.cerevisiae - 

YPH499 

MATa ura3-52 lys2-801_amber ade2-101_ochre trp1-Δ63 

his3-Δ200 leu2-Δ1 

Dr. Adam 

Bogdanove 

S.cerevisiae - 

YPH500 

MATα ura3-52 lys2-801_amber ade2-101_ochre trp1-Δ63 

his3-Δ200 leu2-Δ1 

Dr. Adam 

Bogdanove 

HEK 293 and 

HEK293T 

Human Embryonic kidney  293 cells Dr. Schild-

Poulter 
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DE-1062 CTAGACAACGCTCAGTAGATGTT

TTCTGGTCCACATATTTAACCTTT

TGCATG 

Top strand for T017 target site, 

XbaI/SphI 

DE-1063 CAAAAGGTTAAATATGTGGACCA

GAAAACATCTACTGAGCGTTGT 

Bottom strand for T017 target site, 

XbaI/SphI 

DE-1064 CTAGACAACGCTCAGTAGATGTT

TTGGTCCACATATTTAACCTTTTG

CATG 

Top strand for T015 target site, 

XbaI/SphI 

DE-1065 CAAAAGGTTAAATATGTGGACCA

AAACATCTACTGAGCGTTGT 

Bottom strand for T015 target site, 

XbaI/SphI 

DE-1066 CTAGACAACGCTCAGTAGATGTT

GGTCCACATATTTAACCTTTTGCA

TG 

Top strand for T013 target site, 

XbaI/SphI 

DE-1067 CAAAAGGTTAAATATGTGGACCA

ACATCTACTGAGCGTTGT 

Botttom strand for T013 target site, 

XbaI/SphI 

DE-1068 CTAGACAACGCTCAGTAGATGGG

TCCACATATTTAACCTTTTGCATG 

Top strand for T011 target site, 

XbaI/SphI 

DE-1069 CAAAAGGTTAAATATGTGGACCC

ATCTACTGAGCGTTGT 

Botttom strand for T011 target site, 

XbaI/SphI 

DE-1156 CTAGAAAACACTCAGTAGATGTT

TTGGTCCACATATTTAACCTTTTG

CATG 

Top strand for TO15(CS-) target site, 

XbaI/SphI 

DE-1157 CAAAAGGTTAAATATGTGGACCA

AAACATCTACTGAGTGTTTT   

Bottom strand for TO15(CS-) target site, 

XbaI/SphI 

DE-1257 CCATCTCATCCCTGCGTGTCTCCG

ACTCAGtatcgCCggcagatctgatatcatcg 

Forward barcoded primer to amplify the 

N8 library for Ion Torrent sequencing 

DE1259 CCATCTCATCCCTGCGTGTCTCCG

ACTCAGtgcatCCggcagatctgatatcatcg 

Forward barcoded primer to amplify the 

N8 round 3 selected sites for Ion Torrent 

sequencing 

DE-1267 CCTCTCTATGGGCAGTCGGTGATg

aactcgagcagctgaagc 

Reverse primer to amplify the N8 target 

sites for Ion Torrent sequencing 

DE-1338 CTAGACAACGCTCAGTAGATGTT

TTAATGCTCCTATACGACGTTTAG

CATG 

Top strand for TL15 target site, 

XbaI/SphI 
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DE-1339 CTAAACGTCGTATAGGAGCATTA

AAACATCTACTGAGCGTTGT 

Bottom strand for TL15 target site, 

XbaI/SphI 

DE-1340 CTAGAAAACACTCAGTAGATGTT

TTAATGCTCCTATACGACGTTTAG

CATG 

Top strand for TL15(CS-) target site with 

an AAACA cleavage motif, XbaI/SphI 

DE-1341 CTAAACGTCGTATAGGAGCATTA

AAACATCTACTGAGTGTTTT 

Bottom strand for TL15(CS-) target site 

with an AAACA cleavage motif, 

XbaI/SphI 

DE-1379 CGGAATTCNNNNNNNNAGTAGAT

GTTTTGGTCCACATATTTAACCTT

TTGCATG 

Top strand oligo to create the N8 library 

with EcoRI site and SphI overhang 

DE-1380 CAAAAGGTTAAATATGTGG Bottom strand oligo to make the N8 

library double-stranded 

DE-1497 CTAGACAACGCGCAGTAGATGTT

TTGGTCCACATATTTAACCTTTTG 

Top strand TO15 target site with a T7G 

mutation, XbaI/EcoRI 

DE-1498 AATTCAAAAGGTTAAATATGTGG

ACCAAAACATCTACTGCGCGTTG

T 

Bottom strand TO15 target site with a 

T7G mutation, XbaI/EcoRI 

DE-1499 CTAGACAACGCACAGTAGATGTT

TTGGTCCACATATTTAACCTTTTG 

Top strand TO15 target site with a T7A 

mutation, XbaI/EcoRI 

DE-1500 AATTCAAAAGGTTAAATATGTGG

ACCAAAACATCTACTGTGCGTTGT 

Bottom strand TO15 target site with a 

T7A mutation, XbaI/EcoRI 

DE-1501 CTAGACAACGCTCAGTAGATGTT

TTGGTCCACATATTTAACCTTTTG 

Top strand TO15 target site with a C6A 

mutation, XbaI/EcoRI 

DE-1502 AATTCAAAAGGTTAAATATGTGG

ACCAAAACATCTACTGAGCGTTG

T 

Bottom strand TO15 target site with a 

C6A mutation, XbaI/EcoRI 

DE-1503 CTAGACAACGGTCAGTAGATGTT

TTGGTCCACATATTTAACCTTTTG 

Top strand TO15 target site with a C6G 

mutation, XbaI/EcoRI 

DE-1504 AATTCAAAAGGTTAAATATGTGG

ACCAAAACATCTACTGACCGTTG

T 

Bottom strand TO15 target site with a 

C6G mutation, XbaI/EcoRI 

DE-1505 CTAGACAACGTTCAGTAGATGTTT

TGGTCCACATATTTAACCTTTTG 

Top strand TO15 target site with a C6T 

mutation, XbaI/EcoRI 
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DE-1506 AATTCAAAAGGTTAAATATGTGG

ACCAAAACATCTACTGAACGTTG

T 

Bottom strand TO15 target site with a 

C6T mutation, XbaI/EcoRI 

DE-1544 GCAGATCTCCAGTGTGCCGGTCTC

CG 

Forward primer to clone target sites from 

pKox into pCSTox using homology-

directed repair 

DE-1545 GCACTAGTCTTCTGAGTTCGGCAT

GGG 

Reverse primer to clone target sites from 

pKox into pCSTox using homology-

directed repair 

DE-1645 GCTCTGCAGAATGGCCAACCTTT

AACG 

Forward internal primer to DE1680/1682 

to amplify the TO15 integrated target site  

DE-1646 CTACCCGCTTCCATTGCTCAGCGG

TGC 

Reverse internal primer to DE1680/1682 

to amplify the TO15 integrated target site 

DE-1662 CTAGACAACGCTCAGTAGATGTT

TTCTTGGGAATGCTCCTATACGAC

GTTTAGCATG 

Top strand for TL21 target site, 

XbaI/SphI 

DE-1663 CTAAACGTCGTATAGGAGCATTC

CCAAGAAAACATCTACTGAGCGT

TGT 

Bottom strand for TL21 target site, 

XbaI/SphI 

DE-1664 CTAGACAACGCTCAGTAGATGTT

TTCTTGAATGCTCCTATACGACGT

TTAGCATG 

Top strand for TL19 target site, 

XbaI/SphI 

DE-1665 CTAAACGTCGTATAGGAGCATTC

AAGAAAACATCTACTGAGCGTTG

T 

Bottom strand for TL19 target site, 

XbaI/SphI 

DE-1666 CTAGACAACGCTCAGTAGATGTT

TTCTAATGCTCCTATACGACGTTT

AGCATG 

Top strand for TL17 target site, 

XbaI/SphI 

DE-1667 CTAAACGTCGTATAGGAGCATTA

GAAAACATCTACTGAGCGTTGT 

Bottom strand for TL17 target site, 

XbaI/SphI 

DE-1668 CTAGACAACGCTCAGTAGATGTT

AATGCTCCTATACGACGTTTAGCA

TG 

Top strand for TL13 target site, 

XbaI/SphI 

DE-1669 CTAAACGTCGTATAGGAGCATTA

ACATCTACTGAGCGTTGT 

Bottom strand for TL13 target site, 

XbaI/SphI 
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DE-1670 CTAGACAACGCTCAGTAGATGAA

TGCTCCTATACGACGTTTAGCATG 

Top strand for TL11 target site, 

XbaI/SphI 

DE-1671 CTAAACGTCGTATAGGAGCATTC

ATCTACTGAGCGTTGT 

Bottom strand for TL11 target site, 

XbaI/SphI 

DE-1672 AATGTGCAGTCTAGGGCAGC Forward primer to PCR amplify I-OnuI 

E1 site in the MAO-B gene 

DE-1673 TGAGGGGCGAACTTTGAACA Reverse primer to PCR amplify I-OnuI 

E1 site in the MAO-B gene 

DE-1680 GCTAACTAGCTCTGTATCTGGCG Forward primer to amplify the TO15 

integrated target site  

DE-1682 CTGACGAGTTCTGAACACCC Reverse primer to amplify the TO15 

integrated target site 

DE-1853 TGAGGGGCGAACTTTGAACA Internal forward primer to DE1702/1703 

to PCR amplify I-OnuI E1 site in the 

MAO-B gene 

DE-1854 CAAATCACATAAGAAGTGATCG Internal reverse primer to DE1702/1703 

to PCR amplify I-OnuI E1 site in the 

MAO-B gene 

DE-1855 AGCAGAGAGGCATTCAACCC Forward primer to PCR amplify I-OnuI 

E1 off-target #3 

DE-1856 CTGGGGAGGAAGAGCTTTGG Reverse primer to PCR amplify I-OnuI 

E1 off-target #3 

DE-1857 CTGAGGGCAGTTAATGAGGC Internal forward primer to DE1855/1856 

to PCR amplify I-OnuI E1 off-target #3 

DE-1858 GGAGTCACAAAGCAGGGGC Internal reverse primer to DE1855/1856 

to PCR amplify I-OnuI E1 off-target #3 

DE-1859 AGAGTGAAGTCTGTGGTGG Forward primer to PCR amplify I-OnuI 

E1 off-target #4 

DE-1860 GGCTGATAAGGGAGACTGGC Reverse primer to PCR amplify I-OnuI 

E1 off-target #4 

DE-1861 CACACTGAACATCTAAACTCATG

G 

Internal forward primer to DE1859/1860 

to PCR amplify I-OnuI E1 off-target #4 

DE-1862 CAAAGAGTAGGATTGTGCTCC Internal reverse primer to DE1859/1860 

to PCR amplify I-OnuI E1 off-target #4 
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DE-1863 ATTGCCAAGAAGTCACCCG Forward primer to PCR amplify I-OnuI 

E1 off-target #15 

DE-1864 AAAGGTTTGCAAAGCAGCG Reverse primer to PCR amplify I-OnuI 

E1 off-target #15 

DE-1865 GAATACGCTACCACTCCTTACC Internal forward primer to DE1863/1864 

to PCR amplify I-OnuI E1 off-target #15 

DE-1866 CTGGAAGGAACGTCTCCAAGC Internal reverse primer to DE1863/1864 

to PCR amplify I-OnuI E1 off-target #15 
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Appendix S4: Supplemental information for Chapter 4 and 5 

S4 Supplemental Figures 

 

Figure S4.1: In vitro enrichment of N12 DNA spacer library with the MegaTev(1-169)or 

MegaTev(1-184) constructs under different reaction conditions.  

Nucleotide preference inthe DNA spacer region is displayed as proportional log2 enrichment of 

each nucleotide ateach position relative to the abundance in the input pool. Black dots indicate the 

wild-typenucleotide in the td DNA spacer at each position. 

  



167 
 

 
 

 
Figure S4.2: Frequency and phasing of all 16 NNNNN motifs in the three different DNA 

spacer substrates (panels A, B, and C).  

The frequency of each NNNNN is the proportion of reads with the indicated NNNNN sequence 

relative to total reads at each position (ie. pos1:pos5). The left barplot in each panel is derived from 

the selected data, and the right panel in each plot is from the input library. 
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Figure S4.3: Activity and specificity of TevCas9 in HEK 293 cells 

(A) Detailed schematic of the target site in exon 23 of the human TSC1 gene, positions of PCR 

primers used for amplification, and sizes of PvuII cleavage products. The I-TevI cleavage motif 

and DNA spacers are highlighted by red and blue rectangles, and the PAM motif by a green 

rectangle. Positions of I-TevI and Cas9 cleavage sites are represented by red and black arrows, 

respectively. (B) Representative agarose gel of PvuII cleavage assays on PCR products amplified 

from the TSC1 locus 48 hrs after transfection with Cas9 or with TC-VK. Sizes of the substrate 

(1124 bp) and two PvuII cleavage products are indicated on the right. The percent of substrate 

resistant to cleavage by PvuII is indicated below each lane. (C) Activity of TevCas9  TC-VK 

variant and Cas9 at the TSC1 site measured by PvuII resistance and T7E1. Barplots are mean 

values of at least three independent experiments, with vertical bars representing standard 

deviation. 
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Figure S4.4: Off-target profiling of TevCas9 and Cas9 programmed with the NQO2 gRNA.  

The 5 off-target sites were predicted using the CRISPR design tools (http://crispr.mit.edu/). (A) 

Representative agarose gel images of T7E1 mismatch cleavage assays of PCR fragments 

amplified from HEK 293 cells transfected with Cas9 or TevCas9. (B) For each site, the gRNA 

target is in captial letters with mismatches to the NQO2 gRNA in red font. The lower case letters 

are the 25-bp upstream of the gRNA that would include the DNA spacer contacted by the I-TevI 

linker, and a CNNNG cleavage motif (if present) highlighed by a yellow box. 

http://crispr.mit.edu/
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Figure S4.5: TevCas9 can bias the proportion of in-frame to out-of-frame indels 

Illumina read data for the target site is plotted as the proportion of reads that are in-frame (green) 

and out-of-frame (red) for TevCas9 and Cas9. 
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Figure S4.6: Indels generated at the VEGFA gene by Cas9 paired nickases  

Illumina sequencing data was downloaded from the Sequencing Read Archive (SRP03315, 

experiments SRX380882 (control), SRX380880 (tru_gRNA), SRX380879 (gRNA)), and reads 

analyzed for length of insertion or deletion relative to the unmodified target. Data are plotted as 

length difference to unmodified site versus porportion of each indel relative to total reads.  
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S4 Supplemental Tables 

Table S4.1: Strains used in this study 

Table S4.2: Oligonucleotides used in this study 

 

Name Sequence (5'-3') Notes 

DE-1180 CGCATGCGGCGCNNCAAAAGGTT

AAATATGTGGACCNNNNNNNNNN

NNNNNCGTTGGCCGAATTCCG 

Bottom strand for MegaTev TO15 N15 

randomized spacer target site 

DE-1181 CGGAATTCGGCCAAC Forward primer to make DE1180 double-

stranded DNA for cloning 

DE-1064 CTAGACAACGCTCAGTAGATGTT

TTGGTCCACATATTTAACCTTTTG

CATG 

Top strand oligonucleotide for TevOnu 

TO15 (15-bp spacer) target site 

DE-1065 CAAAAGGTTAAATATGTGGACCA

AAACATCTACTGAGCGTTGT 

Bottom strand oligonucleotide for 

TevOnu TO15 (15-bp spacer) target site 

DE-1412 CTAGACAACGCTCAGTACATGTTT

TGGTCCACATATTTAACCTTTTGC

ATG 

Top strand oligonucleotide for TevOnu 

TO15 G8C target site 

DE-1413 CAAAAGGTTAAATATGTGGACCA

AAACATGTACTGAGCGTTGT 

Bottom strand oligonucleotide for 

TevOnu TO15 G8C target site 

Construction Description Source 

Strains     

DH5 F-, φ80dlacZΔM15, Δ(lacZYA-argF)U169, deoR, recA1, endA1, 

hsdR17(rk-, mk+), phoA, supE44, λ-, thi-1, gyrA96, relA1 

Invitrogen 

ER2566 F- λ- fhuA2 [lon] ompT lacZ::T7 gene 1 gal sulA11 Δ(mcrC-

mrr)114::IS10 R(mcr-73::miniTn10-TetS)2 R(zgb-210::Tn10)(TetS) 

endA1 [dcm] 

N.E.B. 

BW25141 (λDE3) F- lacIq rrnBT14 DlacZWJ16 DphoBR580 hsdR514 DaraBADAH33 

DrhaBADLD78 galU95 endABT333 uidA(DMluI)::pir+ recA1,  λDE3 

lysogen 

 

S.cerevisiae - 

YPH499 

MATa ura3-52 lys2-801_amber ade2-101_ochre trp1-Δ63 his3-

Δ200 leu2-Δ1 

Dr. Adam 

Bogdanove 

S.cerevisiae - 

YPH500 

MATα ura3-52 lys2-801_amber ade2-101_ochre trp1-Δ63 his3-

Δ200 leu2-Δ1 

Dr. Adam 

Bogdanove 

HEK 293  Human Embryonic kidney 293 cells Dr. Schild-

Poulter 
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DE-1414 CTAGACAACGCTCAGTAAATGTT

TTGGTCCACATATTTAACCTTTTG

CATG 

Top strand oligonucleotide for TevOnu 

TO15 G8A target site 

DE-1415 CAAAAGGTTAAATATGTGGACCA

AAACATTTACTGAGCGTTGT 

Bottom strand oligonucleotide for 

TevOnu TO15 G8A target site 

DE-1416 CTAGACAACGCTCAGTATATGTTT

TGGTCCACATATTTAACCTTTTGC

ATG 

Top strand oligonucleotide for TevOnu 

TO15 G8T target site 

DE-1417 CAAAAGGTTAAATATGTGGACCA

AAACATATACTGAGCGTTGT 

Bottom strand oligonucleotide for 

TevOnu TO15 G8T target site 

DE-1418 CTAGACAACGCTCAGTAGTTGTTT

TGGTCCACATATTTAACCTTTTGC

ATG 

Top strand oligonucleotide for TevOnu 

TO15 A9T target site 

DE-1419 CAAAAGGTTAAATATGTGGACCA

AAACAACTACTGAGCGTTGT 

Bottom strand oligonucleotide for 

TevOnu TO15 A9T target site 

DE-1420 CTAGACAACGCTCAGTAGGTGTT

TTGGTCCACATATTTAACCTTTTG

CATG 

Top strand oligonucleotide for TevOnu 

TO15 A9G target site 

DE-1421 CAAAAGGTTAAATATGTGGACCA

AAACACCTACTGAGCGTTGT 

Bottom strand oligonucleotide for 

TevOnu TO15 A9G target site 

DE-1422 CTAGACAACGCTCAGTAGCTGTTT

TGGTCCACATATTTAACCTTTTGC

ATG 

Top strand oligonucleotide for TevOnu 

TO15 A9C target site 

DE-1423 CAAAAGGTTAAATATGTGGACCA

AAACAGCTACTGAGCGTTGT 

Bottom strand oligonucleotide for 

TevOnu TO15 A9C target site 

DE-1209 CTAGACAACGCCCAGTAGACATA

GGGGTCCACATATTTAACCTTTTG

CATG 

Top strand oligonucleotide for TevOnu 

TO15 T2C (includes 10-15 bp spacer 

swapped for MAO-B sequence) target 

site 

DE-1210 CAAAAGGTTAAATATGTGGACCC

CTATGTCTACTGGGCGTTGT 

Bottom strand oligonucleotide for 

TevOnu TO15 T2C (includes 10-15 bp 

spacer swapped for MAO-B sequence) 

target site 

DE-1497 CTAGACAACGCGCAGTAGATGTT

TTGGTCCACATATTTAACCTTTTG

CATG 

Top strand oligonucleotide for TevOnu 

TO15 T2G target site 
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DE-1498 CAAAAGGTTAAATATGTGGACCA

AAACATCTACTGCGCGTTGT 

Bottom strand oligonucleotide for 

TevOnu TO15 T2G target site 

DE-1499 CTAGACAACGCACAGTAGATGTT

TTGGTCCACATATTTAACCTTTTG

CATG 

Top strand oligonucleotide for TevOnu 

TO15 T2A target site 

DE-1500 CAAAAGGTTAAATATGTGGACCA

AAACATCTACTGTGCGTTGT 

Bottom strand oligonucleotide for 

TevOnu TO15 T2A target site 

DE-1501 CTAGACAACGATCAGTAGATGTT

TTGGTCCACATATTTAACCTTTTG

CATG 

Top strand oligonucleotide for TevOnu 

TO15 C1A target site 

DE-1502 CAAAAGGTTAAATATGTGGACCA

AAACATCTACTGATCGTTGT 

Bottom strand oligonucleotide for 

TevOnu TO15 C1A target site 

DE-1503 CTAGACAACGGTCAGTAGATGTT

TTGGTCCACATATTTAACCTTTTG

CATG 

Top strand oligonucleotide for TevOnu 

TO15 C1G target site 

DE-1504 CAAAAGGTTAAATATGTGGACCA

AAACATCTACTGACCGTTGT 

Bottom strand oligonucleotide for 

TevOnu TO15 C1G target site 

DE-1505 CTAGACAACGTTCAGTAGATGTTT

TGGTCCACATATTTAACCTTTTGC

ATG 

Top strand oligonucleotide for TevOnu 

TO15 C1T target site 

DE-1506 CAAAAGGTTAAATATGTGGACCA

AAACATCTACTGAACGTTGT 

Bottom strand oligonucleotide for 

TevOnu TO15 C1T target site 

DE-1958 CTAGACAACGCTCAGCAGATGTT

TTGGTCCACATATTTAACCTTTTG

CATG 

Top strand oligonucleotide for TevOnu 

TO15 T6C target site 

DE-1959 CAAAAGGTTAAATATGTGGACCA

AAACATCTGCTGAGCGTTGT 

Bottom strand oligonucleotide for 

TevOnu TO15 T6C target site 

DE-1960 CTAGACAACGCTCAGGAGATGTT

TTGGTCCACATATTTAACCTTTTG

CATG 

Top strand oligonucleotide for TevOnu 

TO15 T6G target site 

DE-1961 CAAAAGGTTAAATATGTGGACCA

AAACATCTCCTGAGCGTTGT 

Bottom strand oligonucleotide for 

TevOnu TO15 T6G target site 

DE-1962 CTAGACAACGCTCAGAAGATGTT

TTGGTCCACATATTTAACCTTTTG

CATG 

Top strand oligonucleotide for TevOnu 

TO15 T6A target site 
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DE-1963 CAAAAGGTTAAATATGTGGACCA

AAACATCTTCTGAGCGTTGT 

Bottom strand oligonucleotide for 

TevOnu TO15 T6A target site 

DE-2142 CTAGACAGAGGTGGGCAATGGCG

TGGGTCCACATATTTAACCTTTTG

CATG 

Top strand oligonucleotide for TevOnu 

TO15-PKD1 2386 target site  

DE-2143 CAAAAGGTTAAATATGTGGACCC

ACGCCATTGCCCACCTCTGT 

Bottom strand oligonucleotide for 

TevOnu TO15-PKD1 2386 target site  

DE-2144 CTAGACTTTGGAAGGTAATTACA

GTGGTCCACATATTTAACCTTTTG

CATG 

Top strand oligonucleotide for TevOnu 

TO15-HPRT 5740 target site  

DE-2145 CCAAAAGGTTAAATATGTGGACC

ACTGTAATTACCTTCCAAAGT 

Bottom strand oligonucleotide for 

TevOnu TO15- HPRT 5740 target site  

DE-2146 CTAGACTGTGCTCAGGTGATCCTC

CGGTCCACATATTTAACCTTTTGC

ATG 

Top strand oligonucleotide for TevOnu 

TO15-Ku70 14915 target site  

DE-2147 CAAAAGGTTAAATATGTGGACCG

GAGGATCACCTGAGCACAGT 

Bottom strand oligonucleotide for 

TevOnu TO15- Ku70 14915 target site  

DE-2148 CTAGACTAAGGTGGTCCTTCCCA

GAGGTCCACATATTTAACCTTTTG

CATG 

Top strand oligonucleotide for TevOnu 

TO15- XPC 1277 target site  

DE-2149 CAAAAGGTTAAATATGTGGACCT

CTGGGAAGGACCACCTTAGT 

Bottom strand oligonucleotide for 

TevOnu TO15-XPC 1277 target site  

DE-2206 CTAGACATTGCTGTGCTTTGGGGA

TGGTCCACATATTTAACCTTTTGC

ATG 

Top strand oligonucleotide for TevOnu 

TO15-VEGFA 2522 target site  

DE-2207 CAAAAGGTTAAATATGTGGACCC

TTGCAATAATTCTGCAATGT 

Bottom strand oligonucleotide for 

TevOnu TO15-VEGFA 2522 target site  

DE-2208 CTAGACAGAGGAAGATGGTGTGC

CCGGTCCACATATTTAACCTTTTG

CATG 

Top strand oligonucleotide for TevOnu 

TO15-TSC1-2125 target site  

DE-2209 CAAAAGGTTAAATATGTGGACCG

GGCACACCATCTTCCTCTGT 

Bottom strand oligonucleotide for 

TevOnu TO15-TSC1-2125 target site  

DE-2210 CTAGACTGTGGTCTGGTGTTCCAG

CGGTCCACATATTTAACCTTTTGC

ATG 

Top strand oligonucleotide for TevOnu 

TO15-TSC1-5054 target site  
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DE-2211 CAAAAGGTTAAATATGTGGACCG

CTGGAACACCAGACCACAGT 

Bottom strand oligonucleotide for 

TevOnu TO15-TSC1-5054 target site  

DE-2212 CTAGACTGTGCAGCATGGAATTC

CTGGTCCACATATTTAACCTTTTG

CATG 

Top strand oligonucleotide for TevOnu 

TO15-TSC1-6374 target site  

DE-2213 CAAAAGGTTAAATATGTGGACCA

GGAATTCCATGCTGCACAGT 

Bottom strand oligonucleotide for 

TevOnu TO15-TSC1-6374 target site  

DE-2216 CTAGACATTGCAGAATTATTGCA

AGGGTCCACATATTTAACCTTTTG

CATG 

Top strand oligonucleotide for TevOnu 

TO15-APC 1440 target site  

DE-2217 CAAAAGGTTAAATATGTGGACCC

TTGCAATAATTCTGCAATGT 

Bottom strand oligonucleotide for 

TevOnu TO15-APC 1440 site  

DE-2218 CTAGACATTGGTACCTGGTACTG

ATGGTCCACATATTTAACCTTTTG

CATG 

Top strand oligonucleotide for TevOnu 

TO15-BRAC1-2541 target site  

DE-2219 CAAAAGGTTAAATATGTGGACCA

TCAGTACCAGGTACCAATGT 

Bottom strand oligonucleotide for 

TevOnu TO15-BRAC1-2541 target site  

DE-2220 CTAGACAGAGGCGAATTTATTAT

CAGGTCCACATATTTAACCTTTTG

CATG 

Top strand oligonucleotide for TevOnu 

TO15-BRAC1-3999 target site  

DE-2221 CAAAAGGTTAAATATGTGGACCT

GATAATAAATTCGCCTCTGT 

Bottom strand oligonucleotide for 

TevOnu TO15-BRAC1-3999 target site  

DE-2645 CACCGTGGCTGTAGATGAACTGA

GC 

Top strand oligonucleotide for Cas9 

human NQO2 gRNA with BbsI 

overhangs 

DE-2646 AAACGCTCAGTTCATCTACAGCC

AC 

Bottom strand oligonucleotide for Cas9 

human NQO2 gRNA with BbsI 

overhangs 

DE-2701 CACCGTTAGCATCTTGGGGAACA

TG 

Top strand oligonucleotide for Cas9 

human RARA gRNA with BbsI 

overhangs 

DE-2702 AAACCATGTTCCCCAAGATGCTA

AC 

Bottom strand oligonucleotide for Cas9 

human RARA gRNA with BbsI 

overhangs 
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DE-2703 CACCGTACCTCCCCAATGGAAGT

GC 

Top strand oligonucleotide for Cas9 

human TSC1-1 gRNA with BbsI 

overhangs 

DE-2704 AAACGCACTTCCATTGGGGAGGT

AC 

Bottom strand oligonucleotide for Cas9 

human TSC1-1 gRNA with BbsI 

overhangs 

DE-2705 CACCGCTGAGGCAGGGGGATTTG

GT 

Top strand oligonucleotide for Cas9 

human TSC1-2 14bp gRNA with BbsI 

overhangs 

DE-2706 AAACACCAAATCCCCCTGCCTCA

GC 

Bottom strand oligonucleotide for Cas9 

human TSC1-2 14bp gRNA with BbsI 

overhangs 

DE-2707 CACCGGGCAGGGGGATTTGGTAG

GA 

Top strand oligonucleotide for Cas9 

human TSC1-2 gRNA 18bp with BbsI 

overhangs 

DE-2708 AAACTCCTACCAAATCCCCCTGCC

C 

Bottom strand oligonucleotide for Cas9 

human TSC1-2 18bp gRNA with BbsI 

overhangs 

DE-2510 GTTCAAACACACATGCTCTGC Forward primer for 1st round 

amplification of NQ02 54 site human site 

DE-2511 GCACTCCTGATGCTTCCTGTGGG Reverse primer for 1st round 

amplification of NQ02 54 site human site 

DE-2512 CAATCATCACAGGGTCCTGAGGC Forward primer for 2nd round 

amplification of NQ02 54 site human site 

DE-2513 GGAACCCCAGAAAATTGAGAAGC Reverse primer for 2nd round 

amplification of NQ02 54 human site 

DE-2359 TGAGAGCCGTTTTCAACCCT Forward primer for 1st round 

amplification of TSC1 2125 human site 

DE-2360 CCAGCCTTCTCTGTTCAGCA Reverse primer for 1st round 

amplification of TSC1 2125 human site 

DE-2361 GGGATGTCAGGCCATCTGAA Forward primer for 2nd round 

amplification of TSC1 2125 human site 

DE-2362 GGTGGAATACCGACTGCCAT Reverse primer for 2nd round 

amplification of TSC1 2125 human site 
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DE-2779 ACGTCCATGGAGCTTCTAGC Forward primer for 1st round 

amplification of TSC1 5054 human site 

DE2780 CCCGAGAAGCACTTGAGCAT Reverse primer for 1st round 

amplification of TSC1 5054 human site 

DE2713 TTCAGTACCAACTGCCAGCC Forward primer for 2nd round 

amplification of TSC1 5054 human site 

DE-2714 ACCCTTCTGTCTACTGGCCT Reverse primer for 2nd round 

amplification of TSC1 5054 human site 

DE-2777 ACGTCCATGGAGCTTCTAGC Forward primer for 1st round 

amplification of RARA 233 human site 

DE-2778 CCCGAGAAGCACTTGAGCAT Reverse primer for 1st round 

amplification of RARA 233 human site 

DE-2711 TTCAGTACCAACTGCCAGCC Forward primer for 2nd round 

amplification of RARA 233 human site 

DE-2712 ACCCTTCTGTCTACTGGCCT Reverse primer for 2nd round 

amplification of RARA 233 human site 

DE-2783 TTCTCTCCCACAGCTGTCCA Forward primer for 1st round 

amplification of NQ02 off-target #1 

DE-2784 CACTAGGTGCAGACTCAGGC Reverse primer for 1st round 

amplification of NQ02 off-target #1 

DE-2719 CAAGGCCCCTCTCTCTTTCG Forward primer for 2nd round 

amplification of NQ02 off-target #1 

DE-2720 ATGGGTAGAAGCAGATGCCG Reverse primer for 2nd round 

amplification of NQ02 off-target #1 

DE-2721 CCACTGCCAGATTTCTCCCC Forward primer for 1st round 

amplification of NQ02 off-target #2 

DE-2722 GGGCATTCATTTGTCTGCACTT Reverse primer for 1st round 

amplification of NQ02 off-target #2 

DE-2723 TCCTGCCAGGGAGTGATACA Forward primer for 1st round 

amplification of NQ02 off-target #3 

DE-2724 CCAGGGTCGCGAACTAATGA Reverse primer for 1st round 

amplification of NQ02 off-target #3 

DE-2785 TGCAACACCCTCTTTAATACTGA Forward primer for 1st round 

amplification of NQ02 off-target #4 
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DE-2786 AAAACGACCTCCGGTTTGTG Reverse primer for 1st round 

amplification of NQ02 off-target #4 

DE-2725 AGCTGAATCCAGATGCCAGT Forward primer for 2nd round 

amplification of NQ02 off-target #4 

DE-2726 GTGAAACTGGGTTTGCCCCT Reverse primer for 2nd round 

amplification of NQ02 off-target #4 

DE-2727 GCCCCATTTTCCTGATGGGA Forward primer for 1st round 

amplification of NQ02 off-target #5 

DE-2728 ATCCAGAGTGGTTCCATGCG Reverse primer for 1st round 

amplification of NQ02 off-target #5 

DE-2787 CTTGGTGCTGTTGCACTCAT Forward primer for 1st round 

amplification of NQ02 off-target #6 

DE-2788 GCCGCCTACTCCTCTTTTCTT Reverse primer for 1st round 

amplification of NQ02 off-target #6 

DE-2729 GTGCCTCCTCAATGGTGACT Forward primer for 2nd round 

amplification of NQ02 off-target #6 

DE-2730 GGTCAGGTGTGAGGGACTCT Reverse primer for 2nd round 

amplification of NQ02 off-target #6 

DE-2835 ACACTCTTTCCCTACACGACGCTC

TTCCGATCTNNNNccaaggccTCTAT

GCACACCAGG 

Forward primer to amplify NQO2 54 for 

illumina sequencing 

DE-2836 ACACTCTTTCCCTACACGACGCTC

TTCCGATCTNNNNcattaaggTCTATG

CACACCAGG 

Forward primer to amplify NQO2 54 for 

illumina sequencing 

DE-2837 ACACTCTTTCCCTACACGACGCTC

TTCCGATCTNNNNataacgaaTCTATG

CACACCAGG 

Forward primer to amplify NQO2 54 for 

illumina sequencing 

DE-2843 CGGTCTCGGCATTCCTGCTGAACC

GCTCTTCCGATCTGGCTCAAGGTT

CATGGC  

Reverse primer to amplify NQO2 54 for 

illumina sequencing 

DE-2844 ACACTCTTTCCCTACACGACGCTC

TTCCGATCTNNNNagttaaccGAGTGC

CCCAGTCCC  

Forward primer to amplify TSC1 2125 

for illumina sequencing 
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DE-2845 ACACTCTTTCCCTACACGACGCTC

TTCCGATCTNNNNcaggcttaGAGTG

CCCCAGTCCC  

Forward primer to amplify TSC1 2125 

for illumina sequencing 

DE-2846 ACACTCTTTCCCTACACGACGCTC

TTCCGATCTNNNNtggcggctGAGTG

CCCCAGTCCC  

Forward primer to amplify TSC1 2125 

for illumina sequencing 

DE-2847 CGGTCTCGGCATTCCTGCTGAACC

GCTCTTCCGATCTTGCCAAAGACA

GCCC  

Reverse primer to amplify TSC1 2125 for 

illumina sequencing 

DE-2848 ACACTCTTTCCCTACACGACGCTC

TTCCGATCTNNNNcttcctggTTCGTA

CCGTGACAG  

Forward primer to amplify TSC1 5054 

for illumina sequencing 

DE-2849 ACACTCTTTCCCTACACGACGCTC

TTCCGATCTNNNNgtactgcgTTCGTA

CCGTGACAG  

Forward primer to amplify TSC1 5054 

for illumina sequencing 

DE-2850 ACACTCTTTCCCTACACGACGCTC

TTCCGATCTNNNNgctcattgTTCGTA

CCGTGACAG  

Forward primer to amplify TSC1 5054 

for illumina sequencing 

DE-2851 CGGTCTCGGCATTCCTGCTGAACC

GCTCTTCCGATCTTTGGCAGTGGC

AGAG  

Reverse primer to amplify TSC1 5054 for 

illumina sequencing 

DE-2852 ACACTCTTTCCCTACACGACGCTC

TTCCGATCTNNNNgacactcgCGCTG

CTGGAGGCGC  

Forward primer to amplify RARA 233 

for illumina sequencing 

DE-2853 ACACTCTTTCCCTACACGACGCTC

TTCCGATCTNNNNatccactaCGCTGC

TGGAGGCGC  

Forward primer to amplify RARA 233 

for illumina sequencing 

DE-2854 ACACTCTTTCCCTACACGACGCTC

TTCCGATCTNNNNttatacagCGCTGC

TGGAGGCGC  

Forward primer to amplify RARA 233 

for illumina sequencing 

DE-2855 CGGTCTCGGCATTCCTGCTGAACC

GCTCTTCCGATCTGGGCCAGGTGT

CGGG   

 

Reverse primer to amplify RARA 233 for 

illumina sequencing 
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